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SUMMARY 

The objective of this project is to develop a micro total analysis system for water 

pathogen detection. This micro total analysis system will consist of a micro Polymerase 

Chain Reaction (µPCR) chip integrated with a continuous-flow based DNA microarray. 

 

A silicon/glass hybrid µPCR chip had been developed. The µPCR chip was able to 

achieve fast heating/cooling with good temperature uniformity due to the side heating 

concept with etched through slot surrounding the reaction chamber for thermal isolation. 

The design was optimized using numerical simulation and was fabricated using Micro-

Electro-Mechanical Systems (MEMs) technology. Successful amplification of fecal 

indicator Escherichia coli’s (E.coli) had been demonstrated by the µPCR chip. 

 

The silicon/glass hybrid DNA microarray was designed with a passive mixer to allow 

mixing of PCR amplicons and hybridization buffer. Pathogen specific capture probes for 

E.coli and Shigella were spotted on the DNA microarray. Continuous flow of DNA 

targets to the capture probes in the micro device allowed hybridization to be detected 

within 20 mins. 

 

The µPCR chip and the DNA microarray were integrated by packaging the two chips on 

an acrylic housing. The pathogen sample has been successfully detected in our micro 

total analysis system through DNA amplification by the µPCR chip follow by direct 

transfer of the amplicons to the DNA microarray for detection within 3 hours. 
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CHAPTER 1  INTRODUCTION 
 
The microbiological quality of drinking water is a concern to consumers, water suppliers, 

regulators and public health authorities alike. The potential of drinking water to transport 

microbial pathogens to great number of people, causing subsequent illness, is well 

documented in countries at all levels of economic development. Waterborne pathogens 

continue to contaminate drinking water supplies and cause waterborne disease outbreaks 

despite current regulations that are designed to prevent and control their spread. Annually, 

it is estimated that pathogen infected drinking water results in about a million new cases 

of illness and about a thousand deaths [1]. 

In general, waterborne pathogens are disease-causing organism that live in water, and can 

be classified as bacteria, viruses, protozoa, or algae. There are hundreds of different 

pathogens that can be transmitted through exposure to contaminated water. Many of these 

pathogens are enteric in nature, meaning that their primary site of infection is the 

intestines. Exposure to enteric pathogens is typically through consumption of food or 

water that contains the pathogens. These pathogens can enter drinking water supplies or 

water resources through fecal contaminations (enteric pathogens) while some are 

indigenous to natural aquatic environments. They are environmentally stable, infectious 

in notably lower doses, and resistant to many conventional methods used to control 

bacterial pathogens.   

 Existing methods (EPA method 9131 and 9132) [2] that are used to assess the microbial 

water quality is based on culture based approaches which requires more than a day. This 

result in a long delay in obtaining results thereby causing a time lag between the 
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occurrence of the contamination event and its detection to be able to safe guard the 

consumers’ health. Therefore, there is a demand for a faster analytical method for the 

above purpose. 

1.1    Objective 

The main objective of this project was to develop a micro total analysis system as a faster 

analytical method for the detection of water pathogen as compared to the classical 

method that uses cultivation. This micro total analysis system would be based on 

molecular techniques which consist of a µPCR chip integrated with a continuous flow 

DNA microarray. The expected total analysis time was targeted to be within 3 hours. 

1.2    Scope 
 
In this project, a micro total analysis system was developed. This report begins with a 

literature survey on microbial safety of water and molecular techniques for detection of 

water pathogen. This is followed by a chapter on design and numerical analysis of µPCR 

chip and DNA microarray. The experimental procedures, results and discussion of µPCR 

chip, DNA microarray and the integration of both chips to form a micro total analysis 

system will be covered in the next three chapters. Conclusions and recommendations are 

touched in the last chapter. 
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CHAPTER 2  LITERATURE REVIEW 
 
 
2.1    Microbiological Safety of Water  
 
Water is essential to sustain life, and a satisfactory (adequate, safe and accessible) supply 

must be available to all. One of the most important attributes of good quality water is to 

be free of disease-causing organisms-pathogenic bacteria, viruses, protozoa, or parasitic 

worms (microbiological quality). Water contaminated with sewage may contain such 

organisms because they can be excreted in the faeces of infected individuals. If 

contaminated water is consumed by others before it is properly treated, the cycle of 

disease can continue in epidemic proportions. However, it is difficult and time consuming 

to test for the presence of individual pathogens such as Salmonella typhose bacterium 

which causes typhoid fever in water. The concentrations of these organisms in a 

contaminated water sample may be small enough to elude detection, making it necessary 

to test large volumes of water. Further it would be necessary to test for a wide variety of 

different organism before the water could be considered safe. A more practical and 

reliable approach than testing for individual pathogens is to test for a single species that 

would signal the possible presence of sewage contaminations. If sewage is present in the 

water, it can be assumed that the water may also contain pathogenic organisms and is a 

threat to public health.  

 

 2.1.1    Indicator Organisms 

The measured microbiological water quality is to monitor for indicator organisms. They  

are not harmful to health but their presence indicates that other fecal organisms  

(including harmful pathogens) may also be present in water. Members of the coliform 
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group of bacteria are used as indicators of water quality. This group contains many  

species of bacteria that grow in the environment, but a sub-group of coliform bacteria,  

called thermotolerant coliforms (coliforms preferring warmer temperatures), are found  

predominantly in the intestine and faeces of humans and other warm-blooded animals.  

One member of the thermotolerant coliform group, Escherichia coli (often referred to as  

E. coli) is recognized as the most specific indicator of recent fecal contamination in  

water supplies. This organism is now the preferred indicator for assessing the  

microbiological quality and safety of drinking water [1]. 

 
 

2.1.2    Testing for Coliform  

According to EPA regulations, a system that operates at least 60 days per year, and serves 

25 people or more or has 15 or more service connections, is regulated as a public water 

system under the Safe Drinking Water Act [2]. Under the Safe Drinking Water Act, EPA 

requires public water systems to monitor for coliform bacteria first because this test 

produces faster results. When a sample is tested positive, the same sample must be 

analyzed for fecal coliform or E. coli. which are both indicators of contamination with 

animal waste or human sewage. 

Two EPA approved methods that are used for detecting and measuring coliforms in water 

are multiple tube fermentation method (Method 9131) and membrane filter method 

(Method 9132).  
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2.1.2.1    Multiple Tube Fermentation Method [3] 
 
This technique is based on the fact that coliform organism can use lactose, the sugar 

occurring in milk as food and produce gas in the process. A measured volume of water 

sample is added to a tube that contains lactose broth nutrient medium. A small inverted 

vial in the lactose broth traps some of the gas that is produced as the coliform bacteria 

grow and reproduce. The gas bubble in the inverted vial along with a cloudy appearance 

of the broth provides visual evidence that coliforms may be present in the sample. But if 

gas is not produced within 48 hrs of incubation at 35 ºC, it can be concluded that 

coliforms were not present in the sample volume injected into the broth 

 
The failure of gas formation after incubation is called a negative test. The appearance of 

gas and the accompanying cloudiness in the broth is called a positive presumptive test. 

As some bacteria other than coliforms occasionally produce gas in lactose, it is usually 

necessary to perform another test (confirmed test) to prove that it was the coliform 

bacteria that produced the gas in the positive presumptive tube. 

 
The confirmed test involves transferring the nutrient medium from a positive presumptive 

tube to another fermentation tube that contains a different nutrient medium, called 

brilliant green bile. If the gas is again formed within 48 hrs of incubation at 35 ºC, the 

presence of coliforms is confirmed. In some cases, a third procedure called the complete 

test may have to be performed. The fermentation tube procedure can be used to test for 

fecal coliforms as well as total coliforms, but a higher temperature of 44.5 ºC is used for 

fecal indicators. 
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2.1.2.2    Membrane Filter Method [4] 

In this procedure, a measured volume of sample is drawn through a special membrane 

filter by applying a partial vacuum. The filter, a flat, paper-like disk about the size of a 

silver dollar, has uniform microscopic pores small enough to retain the bacteria on its 

surface while allowing the water to pass through. 

After the sample is drawn through, the filter is placed in a sterile container called a Petri 

dish which also contains a special culture medium that the bacteria use as a food source. 

This nutrient medium is usually available in small glass containers called ampules, from 

which is readily transferred into the Petri dish. Its composition is such that it promotes the 

growth of coliforms while inhibiting the growth of other bacteria caught on the filter. 

. 
The Petri dish holding the filter and nutrient medium is usually placed in an incubator at 

35 ºC for 24 hrs which appear as specks or dots, with a characteristic metallic sheen. 

 
The coliform concentration is obtained by counting the number of colonies on the filter. 

A basic premise for the membrane filter test is that each colony started growing from one 

organism. From this it can be assumed that each colony counted represents only 1 

coliform in the original sample. 

 
Coliforms concentration is expressed in terms of the number of organism per 100ml of  
 
water. The basic procedures described here for the membrane filter test can be applied to 

tests for total coliforms or fecal coliforms, but different nutrient media are used and the 

fecal indicator test is conducted at 44.5 ºC or 35 ºC.  
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2.2    Molecular Method for Detection of Water Pathogen 
 
Traditional methods of pathogen detection and identification include microbiological 

culturing techniques, where the pathogen is identified based on biochemical 

characteristics and immunological techniques to detect specific antigens of the pathogen 

[5]. However, these detection methods are very time consuming, as some microorganisms 

are difficult to culture and grow slowly. As well, immunological methods can result in 

false-positive results because of cross-reactivity of antibodies. In addition, routinely used 

biochemical and immunological tests do not provide information about the potential 

pathogenicity or virulence of identified microorganisms.  

 
 
Molecular detection technologies offer several potential advantages over conventional 

microbiological techniques. Several nucleic acid-based methods have been developed for 

the rapid detection of pathogens in food, soil, and water with high degrees of sensitivity 

and specificity and without the need for complex cultivation [6]. In general, these 

methods allow detection within hours rather than days as is normally required by culture 

techniques.  

 

Among the molecular detection technologies, PCR is the most commonly employed as it 

is highly sensitive and specific [7]. It has the ability to detect multiple pathogens in a 

single analysis, to make highly specific identifications, and to detect very low numbers of 

target organisms in a short time [8]. However a major limitation to this approach is the 

utilization of one specific primer pair per gene detection reaction. Although multiple 

primer sets may be successfully combined in one reaction, they rarely exceed more than 

six primer sets due to the generation of non-specific products or false negatives [208]. 
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Another difficulty with multiplex PCR is that it requires additional post amplification 

analysis to discriminate the products. Size separation by electrophoresis is frequently 

used to discriminate multiplex PCR products, but this requires additional labour and that 

the amplicons of each reaction be significantly different in size, which can limit the 

primer pairs that can potentially be multiplexed. Consequently, general pathogen 

detection by PCR can be both labour-intensive and costly [208]. 

 

DNA microarray represents an important advance in molecular detection technology. It 

allows simultaneous detection of labeled DNAs from many different pathogenic 

organisms on a small glass slide containing thousands of surface-immobilized DNA 

probes. Both basic types of microarrays, i.e., immobilized oligonucleotides and PCR 

amplicons probes, have been used to successfully detect [188] and/or characterize [189] 

pathogens. As the sensitivity of microarrays hybridized with total genomic DNA from 

complex mixtures is usually inadequate to provide detection of low pathogen 

concentrations [190], the hybridized DNA (target) usually consists of PCR amplicons 

[191]. This mode of pathogen detection necessitates the combination of PCR prior to 

their hybridization on DNA microarrays.  

 
 
2.2.1 PCR [11,12] 

PCR is a biochemistry and molecular biology technique [13] for exponentially amplifying 

a fragment or sequence of interest of DNA, via enzymatic replication, without using a 

living organism (such as E. coli or yeast). PCR is a three step amplification process first 

introduced by Saiki and co workers in 1985 (Figure 2.1). These in vitro enzymes 

mediated method facilities the generation of nucleic acid sequence based on choice of 
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specific primers. During the first step (denaturation), the hydrogen bonding stabilizing 

the double strand DNA template is broken to form two complementary single strands. In 

order to provide the energy necessary to break the bonding, this step is commonly 

performed at temperatures between 94 ºC and 96 ºC. The temperature is then lowered for 

the annealing steps where primers specifically bind to the complementary sequences of 

the DNA template. Then the temperature is raised to allow extension where the template 

is typically replicated by a thermostable DNA polymerase at a temperature close to 72 ºC. 

The denaturation-annealing-extension cycle is repeated between 25 to 40 times. 

 

Figure 2.1: Schematic drawing of the PCR cycle. (1) Denaturing at 94-96°C. (2) 
Annealing at ~55°C (3) Elongation at 72°C. Four cycles are shown here [11]. 
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Besides the basic PCR method described above, some other PCR variations for different 

applications are described briefly in Table 2.1.  

Table 2.1: Variations of PCR [11, 12] 
 

PCR type Description 
Allele-specific (AS) PCR To determine the genotype of single 

nucleotide polymorphisms (SNP) by 
using primers whose ends overlap the 
SNP and differ by that single base 
 

Assembly PCR An artificial synthesis of long gene 
products by performing PCR on a pool 
of long oligonucleotides with short 
overlapping segments to selectively 
produce their final product 
 

Asymmetric PCR To preferentially amplify one strand of 
the original DNA more than the other 
 

Colony PCR To rapidly screen bacterial clones for 
correct DNA vector constructs 
 

Helicase dependent amplification Similar to traditional PCR but maintains 
a constant temperature rather than 
cycling 
 

Hot start PCR A technique that reduces non-specific 
amplification during the initial set up 
stages of the PCR 
 

Intersequence specific (ISSR) PCR A PCR method for DNA fingerprinting 
that amplifies regions between some 
simple sequence repeats to produce a 
unique fingerprint of amplified fragment 
lengths 
 

Inverse PCR A method used to allow PCR when only 
one internal sequence is known. This is 
especially useful in identifying flanking 
sequences to various genomic inserts. 
 

Ligation-mediated PCR Use to detect vector insertion sites into a 
genome 
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Multiplex Ligation-dependent Probe 
Amplification (MLPA) 

This method permits multiple targets to 
be amplified with only a single primer 
pair, thus avoiding the resolution 
limitations of multiplex PCR 

 
Multiplex-PCR 

The use of multiple, unique primer sets 
within a single PCR reaction to produce 
amplicons of varying sizes specific to 
different DNA sequences 

Nested PCR This method increases the specificity of 
DNA amplification, by reducing 
background due to non-specific 
amplification of DNA. 

Quantitative PCR  Use to measure the quantity of a PCR 
product (preferably real-time). It is the 
method of choice to quantitatively 
measure starting amounts of DNA, 
cDNA or RNA. Q-PCR is commonly 
used to determine whether a DNA 
sequence is present in a sample and the 
number of its copies in the sample. 

RT-PCR This is a method used to amplify, isolate 
or identify a known sequence from a 
cellular or tissue RNA 

TAIL-PCR - thermal asymmetric 
interlaced PCR 

This is used to isolate unknown 
sequence flanking a known sequence 

Touchdown PCR This is a variant of PCR that aims to 
reduce nonspecific background by 
gradually lowering the annealing 
temperature as PCR cycling progresses. 

Strand displacement amplification 
(SDA) 
 
Nucleic acid sequence –based 
amplification amplification (NASBA) 
 
Rolling circle amplification (RCA) and 
the Qβ replicase reaction 

Isothermal amplification reaction 
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2.2.1.1   µPCR Chip 

MEMS are the integration of mechanical elements, sensors, actuators, and electronics on 

a common silicon substrate through microfabrication technology. These miniaturized 

devices are being developed in the semiconductor industry and the characteristic 

dimensions of those small structures are on the order of 1-1000 µm. These devices will 

represent a central technology in many systems used for biological, chemical and medical 

applications, whose advances promise to revolutionize many process of detection of 

pathogens or environmental pollutants [14, 15]. PCR devices are one of the many devices 

that have been manufactured in MEMs technology.  

 

The traditional PCR machines are slow in PCR speed as these peltier effect or metal 

block based PCR system are characterised by high thermal mass, large reaction volume 

and thus slow heating/cooling rates. With advent of micro-electro-mechanical system 

(MEMS) technology, the development of μPCR chip becomes possible [10, 13] and this 

can help to improve PCR speed by increasing the heat transfer rate or decreasing the 

thermal mass. With miniaturizaton, its applications in the chosen fields will lead to many 

improvements such as decreased cost of fabrication and use, reduced reaction time, 

reduced consumption of reagent and increased potential of portability and integration of 

PCR device [16, 17, 18, 19, 20].  

 

2.2.1.1.1 µPCR Chip Substrates  

Currently, the three most popular materials for µPCR fabrication are silicon [21-25], 

glass [26-30] and plastic. Silicon is an excellent material for a thermal cycler chamber. It 
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has a high thermal conductivity and once it is thermally isolated, the chamber has good 

thermal uniformity [49-52]. Micromachining for silicon is also well established. However 

the drawback is that the silicon surface itself inhibits the PCR and its surface has to be 

covered with another material, such as silicon dioxide, SiO2. 

On the other hand, µPCR chip fabricated from glass has a thermal conductivity more than 

a hundred times lower than that of silicon. Due to its low thermal conductance, the 

systems made of glass are thermally isolated. But at the same time, it will also take longer 

to heat up and cool down as compared to silicon device. Moreover creating a device by 

glass machining is rather difficult as compared to either silicon or plastic processing 

[106]. 

The third material commonly used for PCR is plastic (such as polycarbonate [36-40] and 

polydimethylsiloxane (PDMS) [31-35]). All those materials have a cost advantage over 

both silicon as well as glass and they are simple to process. Polycarbonate can be shaped 

by a hot embossing technique, while PDMS polymerizes in a mold. The common 

drawback is the low thermal conductivity of the plastic. 

Although no single substrate material can offer a preferable solution to the restrictions 

such as cost, ease of fabrication, biocompatibility, optical transparence, many researchers 

have taken full advantage of the respective properties of silicon, glass or plastic and have 

investigated µPCR chip based on hybrid substrate materials, for instance silicon/glass 

hybrids [70-72], plastic/silicon [73] and plastic/glass [74, 75]. With the presence of a 

wide range of substrates to choose from, the suitability of each substrate for µPCR chip 

will depend on the applications and technologies available. 
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2.2.1.1.2    Surface Treatment 

The PCR efficiency is often limited by interactions between the chip surface and the 

biomolecules in the PCR solution, primarily due to the increase of the surface-to-volume 

ratio in a micro-scale environment. In general, the hydrophilic PCR solution is not easily 

introduced into the hydrophobic chip [146]. Therefore, a proper surface treatment is 

required to ensure the success of on-chip PCR. The treatment processes can be classified 

as static treatment and dynamic treatment.  

In static surface passivation of this type, the inner surface of µPCR chip is pre-coated by 

using a PCR-friendly substance during the fabrication of PCR chip or before starting the 

PCR chemistry. In most silicon/glass hybrid PCR chip, a thin layer of silicon oxide 

surface coating is deposited to enhance PCR compatibility. Sometimes, this type of 

surface coating technique can also be used to deposit the inner surfaces of plastic 

substrates for PCR chip. An obvious advantage of the silicon oxide layer [85, 147, 148] 

method is that the passivation process is accomplished during chip fabrication and the 

subsequent sealing of the chips with glass wafer by an anodic bonding technique is not 

being intervened with. Furthermore, deposition of oxide surfaces is a standard industry 

procedure that is reproducible and inexpensive and can be accomplished in a batch 

production setting.  

 
Another commonly used static passivation procedure is chemical silanization of inner 

surfaces which is performed by filling the reaction chamber/channel with a silanizing 

agent and incubating the filled chip for a period of time. This is followed by removal of 

the excess silanizing agent [108, 152,153, 154] and then the silanized chip is dried and 

washed. However, silanization is a time-consuming and complex labor-intensive process, 
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and the chips need to be stored in liquids to protect the silane film from damage, which 

could be a serious problem for practical applications.  

 

The second type of passivation is dynamic passivation. This passivation procedure occurs 

during the practical operation of PCR chip and is realized by adding the passivation agent 

to PCR solution. For this passivation technique, the most frequently used passivation 

agents include a competing protein adjuvant-bovine serum albumin (BSA) [85, 131, 151], 

polymer solutions such as polyethylene glycol (PEG) [150, 151] and 

polyvinylpyrrolidone (PVP) [88], and the nonionic surfactant Tween 20 [148]. BSA is 

often included into the PCR solution to stabilize the polymerase enzymes and to reduce 

undesired adsorption of polymerase onto the inner surfaces of reaction chamber. PEGs 

with different molecular weights (e.g. PEG 400, PEG 1000, PEG 8000, etc.) had been 

included into the PCR solution respectively and the effect of their addition on the PCR 

had been tested. The best results were achieved by addition of PEG 8000 at a 0.75% (w/v) 

concentration. With respect to the PVP, the addition of only PVP may not have a 

significant effect on PCR in the µPCR chip, regardless of its concentration. It may need 

to be utilized in combination with some other passivation techniques. The PCR buffer is 

completed by using Tween 20 as an additive which is found to be effective for PCR on 

chip. Tween 20, which acts on the relaxation of the surface tension of solutions and is 

often utilized in fields of protein and nucleic acid handling, serves as a dispersant, 

emulsifier and solubilizer in protecting the enzyme. 
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2.2.1.1.3 Architectures for µPCR Chips 
 
µPCR chips can offer an opportunity for automation of PCR amplification, shorter 

processing time, higher sample throughput and minimum human/world to PCR 

intervention and contamination. Two basic approaches have been developed comprising 

mainly of stationary µPCR chip and flow-through µPCR chip. 

2.2.1.1.3.1    Stationary µPCR Chip 

The stationary µPCR chips work in the same manner as conventional PCR thermal 

cycler, where the PCR solution is kept stationary and the temperature of the PCR reaction 

chamber is cycled between three different temperatures. After completion of PCR, the 

amplification products are recovered from the chamber for detection. The stationary 

chamber PCR chip can perform very well in terms of fluidical and thermal control, and 

present beneficial properties such as reduction of thermal and fluidic cross-talk between 

PCR reaction microchambers. [77-81]. 

2.2.1.1.3.2    Flow-Through µPCR Chip 

The flow-through systems typically have zones at three constant temperatures. The 

sample will be moved between zones of different temperatures to go through different 

stages of PCR. This type of PCR system is faster than stationary µPCR chip but it 

requires an implementation of a mechanism to move the sample around during the 

reaction. In addition, this approach lacks the flexibility in control as the cycle number is 

fixed as it is dictated by the channel layout [106,199]. 

 

 

 



 
NUS DESE                                                       Chapter2 Literature Review 

 17

2.2.1.1.4 Heating Methods 

µPCR devices can be also categorized based on the heating system, which is either direct 

or indirect/non contact. Direct heating PCR chips have heaters as well as the temperature 

sensors integrated with the device. A disadvantage associated with the contact heating is 

that a certain amount of thermal mass is added in the PCR chip assembly, which 

inevitably hinders fast thermal transitions. Moreover, when PCR and analytical function 

are integrated on a single chip, it is very difficult to confine the contact heating to the 

PCR chip itself and not analysis part of the chip [106]. 

In order to overcome the issues associated with direct heating, interest in indirect/non-

contact heating continues to grow [104]. Recently, the use of non contact infrared red 

(IR)-mediated heating  [105] and the use of an alternating-electric-current induced buffer 

Joule heating effect without an external heater component [106] have been implemented. 

The disadvantage of non contact heating approaches is the low heating rate and cooling 

rate. 

2.2.1.1.5 Temperature Measurements  

In µPCR chip, it is very important to select methods for temperature measurement to 

accurately control temperature during temperature cycling. Presently, the temperature 

measurement methods are usually divided into two categories which are contact and non-

contact temperature measurement. The contact temperature measurement methods 

include thin-film-type temperature sensing and non-thin-film-type temperature sensing.  

The thin film temperature sensors comprise platinum [107-110], aluminum [111-113], 

ITO [114, 115], polysilicon [116], and even copper temperature sensors [117]. The thin 
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film temperature sensors are usually made from some metallic, nonmetallic or oxide 

materials by using thin film deposition techniques, which can provide the µPCR chips 

with a higher degree of integration, small footprint and good biocompatibility.  

The non-thin-film temperature sensors generally include thermocouples [118-121], Pt100 

electrical-resistance thermometers [122-124], semiconductor electrical-resistance 

thermometers (thermistors) [125, 126], and diode thermometers [127, 128]. The 

utilization of non-thin-film temperature sensors to measure the temperatures may lead to 

adverse problems such as biocompatibility and/or integration. However, they are still 

widely used in µPCR chip because of their lower cost and convenience.  

But whatever the contact temperature sensors' nature, they will add their own thermal 

mass to the PCR system, which ultimately adversely affect the thermal cycling 

performance of µPCR chips. Additionally, the contact temperature measurement 

techniques can yield temperature data only at a few discrete points or lines and only 

indirectly reflect the temperature of the PCR solution, and so the precision and accuracy 

of temperature measurement is limited. Although direct contact between the temperature 

sensors and the PCR solution may lead to a more accurate temperature measurement, the 

presence of the sensor may cause side effects on the PCR and increase the risk for sample 

cross-contamination and can inhibit the PCR by inactivating the Taq polymerase through 

irreversible adsorption [129].  

In order to overcome these problems, some researchers have made attempts to develop 

non-contact temperature measurement techniques for µPCR chips, such as infrared red 

(IR) thermometry [130, 131]. The advantages of this type of temperature measurement 
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technique include rapid response, continuous temperature readings, higher spatial 

resolution, and no interference with the object observed. However, IR thermometry has 

also disadvantages such as a precision lower than that of contact measurements. Also, 

only information about the two-dimensional surface temperature of the IR-absorbing 

substrate is obtained, which can be easily affected by the intermediate medium such as 

vapor and carbon dioxide. 

2.2.1.1.6 Temperature Control 
 
PCR is a typical temperature-controlled reaction system, so temperature control of the 

PCR solution is a key issue. Within current µPCR chips, the most commonly used 

temperature control algorithm is accomplished through a proportional-integral-derivative  

(PID) module (within a certain software program) [86, 107, 132, 134]. PID control is one 

of the earliest developed control strategies, which has been widely used for the control of 

industrial processes. However, in order to meet the requirements of temperature control 

for µPCR chips, some researchers have  to make some modifications to the PID control 

strategy and adopt alternative temperature control algorithms such as proportional control 

[129], PI control [109, 128] , PD control [142], and PD–PID control [116].  

 
 
 
2.2.2 DNA Microarray 
 
DNA microarray technology has been widely developed in many platforms since its 

introduction. In the microarray platform, complementary probes (either PCR products 

cDNA or oligonucleotides) are immobilized in a patterned array on a solid support to 

facilitate simultaneous hybridization of corresponding DNA/RNA targets. When the 
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targets hybridize to their complementary probes, they are detected using some types of 

reporter molecules to allow for rapid and high throughput analysis. 

 

The cDNA and oligonucleotide probes can be deposited on any type of substrates, with 

modified glass being the most common followed by filter membranes and silicon surface 

[158-160]. There are a myriad of approaches to modify slides and to attach probes to the 

slide surfaces. Commonly used surface coatings for the attachment of nucleic acids to 

slide surfaces include aldehyde, silane, poly-L-lysine, polyacrylamide and various 

electrophilic chemicals with different functional groups [161-163]. 

 

The oligonucleotide or cDNA probes are immobilized generally through two formats. In 

the first format, oligonucleotide are synthesized directly onto a slide using the same solid-

phase chemistry as used in conventional DNA systhesis through photolithography 

techniques [164] or ink jet printing technology [165,166]. The second format is to 

directly spot pre-systhesized oligonucleotide probes or single stranded cDNA onto 

microarray substrate through covalent or non covalent  attachments to surfaces [167] 

usually through the use of contact or non contact robotic spotting arrayer system.  

 
Once DNA microarrays have been printed, targets are prepared for hybridization. 

Depending on the objective, targets may be PCR products, genomic DNA, total RNA,  

cDNA, plasmid DNA, or oligonucleotides. In most cases, the targets incorporate either a 

fluorescent label (e.g. Cy-3) or some other moiety such as biotin that permits subsequent 

detection with a secondary label. Once post-hybridization steps are completed, the arrays 

are imaged using a high-resolution scanner. These are laser- or filter-based systems that 
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use specific light spectra to excite fluorescent molecules and collect the subsequent 

emission spectra using CCD cameras.  

 

In general, the most mature applications of this technology have been in comparative 

genomics, single nucleotide polymorphism (SNP) assays, and gene expression [163]. It 

also has clear application as a multiplexed format for bacterial identification and clinical 

diagnostics. Among possible diagnostic targets, the gene encoding the 16S rRNA offers 

the most comprehensive database of sequences of both cultured and uncultured 

microbiota, and has received increasing attention as a target for probes immobilized on 

DNA microarrays [168-172].  

 

The challenge of microbial diagnostics places additional demands on accurate 

interpretation of hybridization results, which often requires discriminating by a single 

nucleotide base-pair [170,172]. Although the influence of an unknown mismatch 

composition on duplex stability cannot be generally predicted, the specificity of an 

individual probe can be improved by optimizing critical hybridization parameters (i.e., 

temperature, ionic strength, and concentration of denaturant). 

 

The other serious limitation on the reaction of biomolecules is the slow diffusion kinetics. 

[173]. DNA microarray hybridization is typically performed overnight to ensure the 

reactions run to completion. Accelerating the reaction by using flow through 3D micro 

channels [174], active mixing using pneumatically powered pumps [175], passive mixing 

using sample oscillations [176] or chaotic advection [177], low density array [178], 



 
NUS DESE                                                       Chapter2 Literature Review 

 22

reduction of DNA microarray channel height [179] were some of the strategies adopted 

which greatly helped to reduce the hybridization time.    

 
2.3    Integrated µPCR Chip with DNA Microarray 
 
To take advantages of the superiority of µPCR chip and DNA microarrays, integrated 

microfluidic devices have been investigated. While there are many works directed at PCR 

chip and DNA microarrays separately, only a few µPCR chip and DNA microarray 

combined systems have been described. However none of these studies on integration of 

μPCR chip and DNA microarray have shown applications in water pathogen detection. 

  

One of the most relevant and cited work is from HKUST [183] which demonstrates the 

integration of DNA microarray into PCR micro reactor. Their group had developed a 

novel micro-DNA amplification and analysis device consisting of multiple PCR 

microreactors with integrated DNA microarrays on a single silicon chip. In their device, 

there were four PCR microreactors with different samples of 3 µl internal volume allow 

to perform parallel analysis of DNA sample, and furthermore the oligonucleotide probes 

are printed on the bottom wall of each microreactor so that no buffer exchange or sample 

transfer is needed, thus leading to reduction of assay time and of contamination risk. The 

static hybridization following PCR will take at least 3 hours to run to completion.  
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CHAPTER 3  DESIGN AND NUMERICAL SIMULATION 
 
3.1    µPCR Chip 

3.1.1   Design of µPCR Chip 
 
Several aspects and parameters of the µPCR Chip function and operation were defined 

and considered during the design stage. Parameters such as reagent volumes, analysis 

time, temperature efficiency, ease of control and biocompatibility of material were also 

considered. The µPCR chip designed in this study was a silicon/glass hybrid single 

chamber microchip (Figure 3.1). Silicon was used for its good thermal performance while 

glass was transparent and allowed viewing of the sample in the chamber. The chip 

consisted of a serpentine-like chamber etched on silicon for easy flow of sample. The 

chamber was supported by silicon beams and thermally isolated from the surrounding 

substrate by air gaps to reduce thermal cross talk. Aluminium was integrated on chip as 

side heaters and sensors to provide fast and accurate heat and control. The chip was 

packaged on a thermal conductive printed circuit board (PCB) for electrical connections 

for power and feedback. An acrylic housing was used for sample delivery through its 

embedded channels connected to the inlet and outlet of the chip. The volume of the 

µPCR chip was 10 µl sufficient for reactions downstream (e.g. detection) and measured 

at 25 mm by 11.6 mm. The µPCR chip’s detail dimensions and mask design are included 

in Appendix A. 
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                       (a)                            (b)  
 
 

Figure 3.1: Schematic of µPCR chip. (a) Top view; (b) Side view 
 
 
3.1.2 Aluminium Heater and Sensor  Design 

Heater and temperature sensors were carefully designed at proper locations. Heaters were 

located around the joints of the reaction chamber and the silicon beams for good heat 

distribution. The relationship between the locations and the achieved temperature 

uniformity had been obtained from numerical simulations in section 3.4. Multiple sensors 

were placed on the area of interest for monitoring the temperature distribution around the 

reaction chamber.  

Metal (aluminium) was used for both heater and sensor because of the simple process and 

the high temperature coefficient of resistivity (TCR). The high TCR makes metal a good 

resistance temperature detector (RTD) that converts changes in voltage signals to 

temperature by the measurement of resistance. As aluminium was used as heating 

material, line width and thickness of the heater needed to be designed in such a way that 

the maximum current density was less than the critical limit where electromigration 

occurs (e.g. 1x106 A/cm2). Electromigration is the transport of material caused by the 

gradual movement of the ions in a conductor due to the momentum transfer between 
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conducting electrons. These diffusing metal atoms caused by electromigration must be 

avoided as it will damage and ultimately results in failure of the affected circuitries or 

interconnects. 

3.1.3 Printed Circuit Board (PCB) Design 
 
PCB (Figure 3.2) was made of thermal conductive material 96% Alumina with 0.3 µm 

thick gold being printed as circuitry and bond pads.  Pitch size was 3.96 mm with 1.54 

mm thickness based on vendor’s fabrication requirements. The central area of the PCB 

was removed to reduce contact with silicon chip for thermal isolation as PCB itself was 

thermal conductive. The µPCR chip was bonded to PCB using a heat conductive epoxy 

which required 30 mins to cure at 150 °C before wire bonding. The purpose of PCB was 

to provide electrical connections between µPCR chip and external power supply and data 

acquisition units through wire bonding. The dimensions of PCB were 39mm by 34 mm. 

Material properties and detailed dimensions of PCB are provided in Appendix B. 

 
 

Figure 3.2: Top view of PCB 
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3.1.4 Acrylic Housing for µPCR Chip 
 
µPCR chip was housed in a custom made acrylic housing (Figure 3.3) with embedded 

channels to facilitate transfer of PCR mixture in and out of the µPCR chip. “O”-rings 

were used as an interface between the connection point of chip and acrylic housing to 

prevent leakage. The dimensions of the housing were 50 mm by 26.6 mm with depth of 

10 mm. Drawings of acrylic housing are attached in Appendix C. 

 

 
 
 
 
 
 
 
 
 

      Figure 3.3: Acrylic housing for µPCR chip  
 
 
3.2 DNA Microarray 
 
3.2.1   Design of DNA Microarray 
 
The DNA microarray design was based upon the concept of a continuous flow device 

where oligonucleotide/PCR amplicons and hybridization buffer would be continuously 

transfer to the  DNA capture probes for hybridization. The DNA microarray consisted of 

a serpentine channel on which the DNA capture probes were spotted. It also consisted of 

a passive mixer incorporated into the device (Figure 3.4) to allow efficient mixing of 

hybridization buffer and oligonucleotide/PCR amplicons from µPCR chip. Detailed 

dimensions of the DNA microarray are attached in Appendix D.  
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                                     Figure 3.4: Design concept of DNA microarray  
 
 
3.2.2 Acrylic Housing for DNA Microarray 
 
The DNA microarray was housed in an acrylic housing (Figure 3.5) with embedded 

channels to allow transfer of PCR amplicons/oligonucleotides and hybridization buffer to 

the microarray. Similarly, “O” rings were used between the chip and housing at 

connections points for sealing. The dimensions of DNA microarray acrylic housing were 

40 mm by 40 mm by 10 mm with drawings attached in Appendix E. 

 
 
 
 
 
 
 
 
 
              
        Figure 3.5: Acrylic housing for DNA microarray 

 
3.3    Design of Micro Total Analysis System 

The micro total analysis system was made up of a µPCR chip packaged with the DNA 

microarray using an acrylic housing (Figure 3.6). The transfer of fluid from one device to 

the other was done through the embedded channels in the acrylic housing. “O” rings were 
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used as described previously to prevent leakage. The device measured at 80 mm by 26.6 

by 10 mm with detailed drawings provided in Appendix F. 

 

 
 

 
 
 
 
 
 
 
 
 
          Figure 3.6: Acrylic housing for micro total analysis system 
 
 
3.4   Numerical Simulation of µPCR Chip 
 
3.4.1 Thermal Analysis of µPCR Chip 
 
Finite element analysis (FEA) was used to optimize the thermal model, using ANSYS 

(Version 8.0). Figure 3.7a shows the parameters used in the simulations. Parameters 

studied included thermal mass, chamber geometry, heater position/configuration and air 

gap’s size. A quarter three dimensional thermal model (Figure 3.7c) was used to study the 

parameters as described above and steady state (to predict the temperature distribution) 

and transient state analysis( to predict the thermal response speed of model) were utilized 

to optimize the parameters.. A quarter model was used due to symmetry to shorten 

analysis time. The thermal model included silicon chip (reaction chambers, beams, 

substrate), glass covering plate, sample filled in chamber (water) and PCB (Figure 3.7b). 

The material properties of the device are shown in Table 3.1.Thermal SOLID 90 element 

in ANSYS was selected for precise modeling. A steady state numerical analysis of a two 
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dimensional thermal model (Figure 3.7d) was also used to compare the thermal 

performance between bottom heater and side heater.  
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  (c) 
 
 
                                                                    
 
 
 
 
 

 (d) 
  

Figure 3.7:  Thermal models for numerical analysis. (a) Quarter model of µPCR chip 
showing various parameters; (b) Side View of thermal model;  (c) 3-D thermal model 
(Quarter model);  (d) 2 D model to compare between bottom heater(model 1) and side 
heater(model 2) 
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                         Table 3.1: Material properties for numerical analysis 
 

Material Thermal Conductivity 
(W/m-K)@room 

temperature 

Specific Heat 
capacity J/Kg-K 

Density kg/m3 

Silicon 150 700 2329 
Pyrex glass 1.143 750 2280 

DNA sample/water 0.58 4.181 997.1 
PCB 24 800 3780 
Air 0.24 1.005 1.205 

 
3.4.2 Channel Geometry of µPCR chip 
 

The channel geometry was modelled using computational fluid dynamics software Fluent 

6.1. The main objective of this analysis was to determine the best geometry that would 

allow maximum recovery of sample and minimum dead volume. This was especially 

important for integration work to ensure that sufficient amount of sample was available 

for reactions downstream.  Two geometries which included the rectangular and 

serpentine like chamber (Figure 3.8a and b) were being considered.  

 

 
 
 
 
 
 
 
 
                         (a)                       (b)  
      Figure 3.8:  Geometries for µPCR chip chamber numerical analysis. (a) Chamber  
      Reactor; (b) Serpentine channels 
 
 
3.5 Numerical Analysis for DNA Microarray Mixer 
 
Fluent (Version 6.1) was used to determine the best mixer design for effective mixing of 

oligonucleotides/PCR amplicons and hybridization buffer. The efficiency of the mixers 

were simulated and gauged on the mixing capability of two samples.
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CHAPTER 4  METHODS AND MATERIALS 
 
4.1  μPCR Chip 
 
4.1.1 Fabrication of μPCR Chip 
 
Two different types of μPCR chips were fabricated to facilitate different sets of 

experiments. Besides the complete version of the μPCR chip, a simplified version of 

μPCR chip known as 2-Mask PCR chip1 with only a reaction chamber was fabricated. 

The 2-Mask PCR chip was used solely to evaluate the effect of silicon surface on PCR. 

 

4.1.1.1   μPCR Chip (Complete Version) 

The substrate for device fabrication was an 8-inch silicon wafer. The device was 

fabricated using microfabrication techniques, which consisted of photolithography, 

dry/wet etching and anodic bonding2. A layer of aluminium that was suitable for use as a 

temperature sensor and resistive heater was deposited to a thickness of 0.8µm on silicon 

substrate. This layer was then patterned and etched to form temperature sensors and 

heater element. The reaction channels, air gaps and silicon membrane were fabricated to 

different depths respectively by etching. The inlet and outlet were etched through by laser 

drilling. Finally before encapsulation with glass, the bare silicon wafer was covered by a 

layer of SiO2 through plasma enhanced chemical vapour deposition (PECVD) to prevent 

DNA from reacting with it. Pyrex Glass was then anodic bonded to the silicon wafer and 

diced to size of 25 mm by 11.6 mm. 

 

                                                 
1 2-Mask PCR chip: Chip was named 2 Mask PCR chip as it requires 2 mask patterns to fabricate  
2 Anodic bonding is the bonding done at elevated temperature clamped between 2 electrodes which will 
supply voltage across the glass to cause it to react chemically with silicon to form a strong permanent bond 
between them.  
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The diced µPCR chip (Figure 4.1a) was bonded onto the custom design printed circuit 

board (PCB) using standard quick cure epoxy (Hysol Loctite). The PCB served as the 

platform for electrical connections between the µPCR chip and external power source. 

These electrical connections were established when µPCR chip’s metal heater and 

sensors were wire bonded (F& K wire bonder) to the gold pads of the PCB. A protective 

layer of non conductive epoxy (silicon rubber) was finally applied to protect the bonded 

wires. Figure 4.1b and Figure 4.1c illustrate the final device and process flow 

respectively. Operating procedures, design of experiment and parameters for wire 

bonding are attached in Appendix G.  

 

 

 

 

 

                                                

                            (a)                                                                               (b)  

 

PCB 
Epoxy over 
bonded wires  
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   (c)  

Figure 4.1: µPCR chip process. (a) Diced µPCR chip; (b) µPCR chip bonded on PCB and 
wire bonded; (c) Process flow of µPCR chip 

 

4.1.1.2    2-Mask PCR Chip 

The 2-Mask PCR chip was a simplified version of the final µPCR chip and required less 

processing steps and time to fabricate. The 2-Mask PCR chip (Figure 4.2) had only 

reaction channels. Similar to the process as mentioned in the previous section, the 

substrate for device fabrication was an 8-inch silicon wafer. The fabrication processes 

consisted of photolithography and etching of the channels and air gap to 300 µm. The 

inlet and outlet were etched through as entry and exit points for sample flow into the 

channels. The bare silicon wafer was covered by a layer of SiO2 through PECVD to 
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prevent DNA from reacting with it. Pyrex Glass was then anodic bonded to the silicon 

wafer and diced to size of 25 mm by 11.6 mm. 

 

 

 

 

                                                Figure 4.2: 2-Mask PCR chip 

 
4.1.2    Device Characterization 
 
The reliability and the performance of the aluminium sensors depended on its 

temperature coefficient of resistance (TCR). This was gauged by the comparison of the 

measured value with the theoretical value. The integrated aluminium sensors on the 

device were characterized by probing the device at the probe station (Cascade Microtech, 

Inc) at different temperatures. Resistance of the aluminium temperature sensors had a 

linear relationship with temperatures based on the following formula: 

                                                R = Ro [1+α(T-To)]                                                 (4.1)                                

where R = sensor resistance (Ω) at temperature T (ºC) 

          Ro = reference resistance (Ω) at reference temperature To (ºC) 

          α  = temperature coefficient of resistance (TCR) of the sensor.  

The TCR of the sensor was determined by equating the slope of the sensor resistance 

temperature plot with αRo. 
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4.1.3 System Setup for PCR Chip 
 
4.1.3.1 System Setup for 2-Mask PCR Chip 
 
2-Mask PCR chip was used to evaluate the effect of silicon chip surface on PCR and thus 

the need of surface passivation for the PCR chip. PCR mixture was pipetted into the 2-

Mask PCR chip and placed on the loading plate of the AttocyclerTM genetic analyzer for 

thermal cycling (Figure 4.3). PCR was also carried out concurrently on conventional 

thermal cycler (Applied Biosystem 2720).  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: 2-Mask PCR experimental setup using AttocyclerTM genetic analyser    

  (Attogenix). AttocyclerTM genetic analyzer is a peltier based thermocycler controlled    
externally by a laptop. 

                                                                                           

4.1.3.2    System Setup for µPCR Chip 

The µPCR chip was housed in an acrylic housing (Figure 4.4a) as described previously. 

A syringe pump (KDS100, KD Scientific, Boston, MA) was used to move and position 

the fluid through a manual three-way valve into the µPCR chip’s reaction channels. The 

three-way valve was used to control the fluid flow sequence to create a fluidic zone with 

water/air/sample/air/water arrangement (Figure 4.4b). Stoppers (Figure 4.4c) were used 

to cap the inlet and outlet of the acrylic housing to further enclose the system during PCR 

to prevent evaporation.  

Placement of 2 Mask PCR chip 
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The chip-based PCR control apparatus consisted of three main units including data 

acquisition system, power supply source and labview control unit. The µPCR chip’s 

temperature sensors (RTD) were electrically connected to the data acquisition (DAQ) 

card (NI 4351 National Instruments) via a terminal block (TBX 68T National Instruments) 

which gave the temperature sensors an excitation current of 1 mA. The conversion from 

voltage reading to temperature was based on equation 4.1. The µPCR chip’s integrated 

heater was connected to PXI Triple-Output Programmable DC power supply card (NI-

4110 National Instruments) with three channels of ± 20 V and 1 channel of ± 6V 

providing current of 1 A from external power sources. Power was modulated through a 

custom Labview program (National Instruments, Austin, TX, USA) (Figure 4.4d) that 

allowed independent, flexible tuning of control parameters and easy setup of PCR 

protocol (e.g. PCR cycle number, pre denaturation temperature and time etc.). For precise 

temperature control and fast temperature transient without overshoots at the three 

temperature set points, the program used the application of gain scheduling3 along with 

the digital feedback of PI [109,128]. A typical Labview program code, electrical 

connections, hardware and operating procedures are provided in Appendix H.  

 

 

 

 

 

 

                                                 
3 Gain scheduling is an approach to control of non-linear systems that uses a family of linear controllers, 
each of which provides satisfactory control for a different operating point of the system. 
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          (a)       (b)  

 
 

 

 

       

                                             

       (c)                                                                     (d) 

 

 

 

 

 

 

                                                         
 
   
                                                              (e)  

 
        
Figure 4.4: µPCR chip experimental setup. (a) µPCR chip in acrylic housing; (b) 
water/air/sample/air/water zone arrangement; (c) µPCR chip system setup (d) Labview 
program; (e) System setup 
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4.1.4 Cleansing 
 
In order to carry out consecutive successful PCR using the µPCR chip, there was a need 

to prevent carry over from previous PCR runs and to remove PCR inhibitors. Cleansing 

protocol which included incubating the PCR chamber in 70% ethanol for 2 mins followed 

by 0.3% sodium hypochlorite for 2 mins thereafter flushed with 3 volumes of water was 

added in to eliminate possible contamination and inhibitors.  

 

4.1.5      Symmetric PCR Protocol 
 
DNA template for PCR was extracted from Escherichia coli (E. coli) ATCC15222 FDA 

strain PCI 1657 [K12; NCIB 10416]. E. coli was used as the target organisms as it is used 

in the EPA approved methods [1]. E. coli with concentrations ranging from 1 to 108 

cfu/ml were extracted using Qiagen DNA min kit 51304 (Protocol attached in Appendix 

I). DNA extracted from E. coli with concentrations of 108 cfu/ml was used for all PCR 

experiments unless otherwise stated.  

 

Three sets of universal primers: reverse primers R2 (5’-G(T/A)ATTACCGCGGC(T/G)G 

CTG-3') and forward primers F1(GAGTTTGATCCTGGCTCAG), reverse primers 

EUB338 (5’-GCT GCC TCC CGT AGG AGT-3') and forward primers F1, reverse 

primers R2 and forward primers EUB338 (5’-ACT CCT ACG GGA GGC AGC-3') were 

chosen to amplify three regions of 16S rRNA region.: bp 11-536(526 bp), bp 11-

338(328), bp 338-536 (199 bp) respectively. All primers were purchased from Proligo. 

Although three sets of primers were designed so that they might be potentially used to 

identify other microbial targets, (such as Cryptosporidium parvum, Giardia lambli, 
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Salmonella sp., Yersinia sp., Campylobacter sp., Enterococcus sp. Escherichia coli, 

Shigella sp., Vibrio sp.) the focus in this study would be on the use of 199 bp product for 

proof of concept on the micro devices.  

 
For each symmetric PCR experiment, 100 µl of master mix was prepared and aliquot to 

10 tubes of 10 µl each. All PCR reagents were purchased from Qiagen (Taq PCR Core 

Kit 201223). The mixture contained 10µl of 10 × PCR buffer solution (Tris.HCl, KCl, 

(NH4)2SO4, 15 mM MgCl2; pH 8.7 (20 ºC)), 4µl of 25 mM MgCl2, 2µl of 10 mM dNTP 

mix (200 µM of each dNTP), 2 µl of 10 µM forward primer and 2µl of 10 µM reverse 

primer, 0.5µl of 2.5 units/reaction Taq DNA polymerase, 74.5µl of autoclaved double-

deionized water (ddH2O). Concentration of BSA was determined based on experiments 

conducted for surface passivation (next section). PCR amplification was carried out using 

Applied Biosystem 2720 thermal cycler under the following thermal program as 

recommended from Qiagen Taq PCR Core protocol: Initial denaturation at 95ºC for 3 

mins, 95ºC for 30s, 55ºC for 30s, 72ºC for 45s and a final extension at 72ºC for 5 mins 

for 20-30 cycles. Optimal annealing temperature for each length was determined and the 

effect of number of cycles needed for PCR cycling was compared. The chip PCRs were 

subjected to the same thermal cycling profile as the conventional protocol.  

 

4.1.6    Surface Passivation 
 
Prior to chip based PCR experiments, the inner surface of the reaction chamber was 

passivated to avoid any non specific adsorption of the reagents, enzymes and DNA which 

would cause poor or no amplification. The 2-Mask chip was covered with SiO2 through 

PECVD for passivation. The SiO2 pre-coating was a reproducible and inexpensive 
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standard MEMS process and could be accomplished in a batch fashion. In addition, 

dynamic coating using BSA was also evaluated.  

 

PCR reaction based on symmetric PCR protocol as described previously was performed 

using 2-Mask PCR chip on AttocyclerTM genetic analyser (Attogenix). PCR were also 

carried out concurrently on Applied Biosystem 2720 thermal cycler to compare the 

device’s efficiency against the conventional thermal cycler. The target sequence for PCR 

was approximately 500 bp fragment (using reverse primers R2 and forward primers F1) 

of 16S rRNA gene of E.coli genome. Different concentrations of BSA were added to the 

PCR master mix to determine the optimal concentrations. The detailed operating 

procedures for this experiment are attached in Appendix J.  

 
4.1.7    µPCR Chip Amplification 
 
With the addition of the titrated amount of BSA based on the surface passivation 

experiments, symmetric PCR amplification using the µPCR chip was carried out. A 

comparison between PCR efficiency between conventional PCR and the µPCR chip was 

also done. 

 
4.2 DNA Microarray  
 
4.2.1 Fabrication of DNA Microarray 
 
Similar to µPCR chip, the substrate for device fabrication was an 8 inch silicon wafer. 

The device was fabricated using microfabrication techniques, which consisted of 

photolithography and dry etching. The channel depth of DNA microarray was etched to 

50 µm. The bare silicon wafer was covered by a layer of SiO2 through PECVD. 
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The DNA microarray wafer was diced to size (16 mm × 11 mm) and was spotted with 

probes (see next section on micro spotting) on the serpentine channels. The DNA 

microarray was capped by glass which was diced to the size. 

 

In order to enclose the DNA microarray with glass, a thin poly (dimethylsiloxane) 

(PDMS) intermediate layer was used as an adhesive (Figure 4.5). PDMS prepolymer 

(SYLGARD 184 Silicone Elastomer Kit, Dow Corning) was mixed with its curing agent 

in the volume ratio of 10:1. A layer of PDMS prepolymer mixture was applied onto the 

glass surface and thinning of the PDMS was done through the use of nitrogen gas N2. The 

glass coated with PDMS was partially cured at 80ºC for about 20-30s before it was 

bonded to the DNA microarray. The glass-DNA microarray bonding was completed after 

curing at 80ºC for about 15 mins.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   Figure 4.5: DNA microarray process 
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4.2.2    System Setup for DNA Microarray 
 
The DNA microarray was housed in an acrylic housing (Figure 4.6a) as described 

previously. The oligonucleotides/PCR amplicons and hybridization buffer mixture that 

were introduced into the device were contained in a 1ml plastic syringe (BD, Franklin 

Lakes, NJ). A syringe pump (KDS100, KD Scientific, Boston, MA) provided a constant 

force to discharge contents of the syringe at a steady flow rate.  

 

The imaging system used to monitor the hybridization signals comprised of an 

epifluorescent microscope (BX51, Olympus, Singapore), a 100W mercury lamp and 

fluororescence filter set 41007 (Chroma technology, Rockingjam, VT). A SPOT-RT 

Slider cooled-charged coupled device (CCD) camera (Diagnostic Instrument, Sterling 

Heights, MI) was used to capture 12-bit monochrome images. Image acquisition was 

controlled with the MetaMorph 5.0 software (Molecular Devices, Sunnyvalve, CA). In all 

experiments, the exposure time was 1500 ms and images were captured at 60s intervals.  

 

A Labview –based program (v7.1, National Instrument, Austin, Tx) developed in house 

previously was modified to batch analyzed the captured images [195]. For each captured 

image, the mean intensity was determined for all probes. The final results were then 

exported to Excel (Microsoft, Redmond, WA) and the variations of the fluorescence 

intensity over the hybridization period were plotted. Figure 4.6d shows the data analysis 

sequence for DNA microarray hybridization experiments.The setup is shown in Figure 

4.6b. Detail operating procedures are attached in Appendix K. 
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(c) 
 

Figure 4.6: DNA microarray setup. (a) DNA microarray in acrylic housing; (b) System 
setup;(c) Data analysis flow for DNA microarray hybridization experiments 
 
 
4.2.3 Mixer Testing 
 
In order to verify the passive mixer’s efficiency, FITC and water were pumped through 

the two inlets of DNA microarray respectively and the mixing efficiency was monitored. 

The imaging system used to monitor the mixing comprised of an epifluorescent 

microscope (IX71, Olympus, Singapore), a 100W mercury lamp and fluororescence filter 

cube#3 for FITC. A Q-Imaging cooled-charged coupled device (CCD) camera was used 
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to capture 12-bit monochrome images. Image acquisition was controlled with software 

Image Pro.  

 

4.2.4 Surface Treatment and DNA Microarray Printing 
 
Prior to DNA microarray experiments, the oxidized silicon wafer was silanized and 

modified with crosslinkers as per protocol attached in Appendix L. The 5’ SH-terminated 

oligonucleotides purchased from Proligo were used as probes and were immobilized on 

silicon based microarray by covalent attachment [193] through micro spotting. 

Oligonucleotides were diluted to a concentration of 5 µM in autoclaved ddH2O and 

spotted with a diameter of approximately 200 µm at intervals of 250 µm. All experiments 

using DNA microarray were spotted with oilgonucleotides using the BioChip Arrayer 

(BCA) (Perkin-Elmer). BCA is a non-contact micro dispensing system designed 

specifically for pipetting sub-microliter volumes to dense arrays controlled by an external 

computer. The operating procedures of BCA are attached in Appendix M. 

 
 
4.2.5 Hybridization using Synthetic DNA Targets 
 
The oligonucleotide probes and synthetic DNA targets used for hybridization were 

purchased from Proligo (Singapore). The 18-mer oligonucleotide probes consisted of a 

perfect match probe PM (5’-GCCCTCACGATCTCTTCC-3’) and three other mismatch 

probe namely MM1 (5’-GCCCTCACTATCTCTTCC-3’), MM2 (5’-

GCCCTCACAATCTCTTCC-3’) and MM3 (5’-GCCCTCACCATCTCTTCC-3’). 

Probes had identical sequences except for a single nucleotide variation (underlined) and 

were modified with thiol at 5’ end for immobilization onto DNA microarray. Target 

oligonucleotides were perfectly complementary to the PM probes and were labeled with a 
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Cy3 fluorophore at the 5’ end as a reporter for the hybridization activity. These 

oligonucleotide probes were spotted on DNA microarray with control probes (5’-

TTTTTTTTTTTTTTTGGGG-3’) labeled with Cy3 at 3’ end and modified with thiol at 

5’ end as illustrated in Figure 4.7. The use of control probes was to allow a common base 

for result comparison between different chips 

 

Figure 4.7: Probes format  

4.2.5.1    Hybridization Conditions 

To optimize discrimination between PM and MM, different concentrations of sodium 

chloride (NaCl) and formamide (FA) in the hybridization buffer were evaluated for their 

ability to differentiate PM and MM hybridization kinetics. The set of experiments 

conducted was repeated for three different NaCl concentration (100 mM, 300 mM, 900 

mM) while FA concentrations remained at 0%. Another set of experiments was repeated 

for three different FA concentrations (30%, 50%, 60%) while NaCl concentrations 

remained at 300 mM. The hybridization buffer was introduced into the microarray at a 

fixed flow rate, target concentrations and Tris HCl pH 0.8 concentrations (0.02 M). The 

PM and MM hybridization kinetics were monitored temporally for each parameter 

studied. To obtain a quantitative estimate for the difference between the PM and MM 
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hybridization, a maximum discrimination index (DI) was derived based on the following 

formula: 

DI = [
MM
PM ]max     (4.2) 

 
 
4.3 Experimental Procedures for Micro Total Analysis System 
 
4.3.1 System Set Up for Micro Total Analysis System 
 
The µPCR chip and DNA microarray were housed in an acrylic housing with the system 

set up (Figure 4.8a). The movement and positioning of fluid in the system was controlled 

by a syringe pump. The use of a three way valve was to generate the water /air /sample 

/air /water configurations as described previously. Stoppers were used to cap the inlets 

and outlets of the acrylic housing to enclose the system before running PCR.  

 

The µPCR chip was electrically connected to data acquisition and temperature control 

hardware and thermal cycling was controlled by Labview. The stoppers were removed 

after the completion of PCR, to allow the transfer of sample and hybridization buffer to 

the DNA microarray at 1 µl/min for about 30-40 mins. The DNA microarray was imaged 

under fluorescent microscope used in DNA microarray system setup. The system set up is 

shown in Figure 4.8b. Detail operating procedures are found under appendix N.  

 

 

 

 

 

 



 
NUS DESE                                                       Chapter 4 Methods and Materials  

 48

 

 

 

 

 

 

                                                                      (a) 

                    

  (b) System set up 
 

Figure 4.8: Micro total analysis system set up; (a) Micro total analysis system; (b)System 
setup 
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4.3.2  Asymmetric PCR protocol 
 
Asymmetric PCR protocol was used for PCR amplification in the micro total analysis 

system. For each PCR experiment, 100 µl of master mix was prepared and aliquot to 10 

tubes of 10 µl each. All PCR reagents were purchased from Qiagen (Taq PCR Core Kit 

201223). The mixture contained 10µl of 10 × PCR buffer solution (Tris HCl, KCl, 

(NH4)2SO4, 15 mM MgCl2; pH 8.7 (20 ºC)), 4µl of 25 mM MgCl2, 4µl of 10 mM dNTP 

mix (200 µM of each dNTP), 50 µl of 10 µM 5’ end Cy 3 labelled forward primer and 

0.5µl of 10 µM reverse primer, 1µl of 5 units/reaction Taq DNA polymerase, 30.5µl of 

autoclaved double-deionized water (ddH2O). The template DNA was based on 16S rRNA 

of E.coli genome. Amount of BSA added was based on the experiments conducted for 

surface passivation. Asymmetric PCR was carried out on conventional thermocycler and 

µPCR chip with thermal cycling profile as follows: Initial denaturation at 95ºC for 3 

mins, 35 cycles of 95ºC for 30s, 55ºC for 30s, 72ºC for 45s and a final extension at 72ºC 

for 5 mins. This thermal cycling profile was based on previous study [183] which was 

successful. The amplified products from both conventional thermocycler and µPCR chip 

were applied on DNA micorarray (next section) to determine successful conditions for 

asymmetric PCR.  

 

4.3.3 Hybridization with Microbial Targets (E.Coli) 
 
E coli. was used as the microbial targets in this experiments. The oligonucleotide probes 

used for hybridization with microbial targets were purchased from Proligo (Singapore). 

The oligonucleotide probes consisted of a perfect match probe PM Esc447 (5’-ATT AAC 

TTT ACT CCC TTC CTC CCC-3’) and three other mismatch probes including 3MM Esc 

TCA (5’-ATT AAC TTT ATC ACC TTC CTC CCC-3’), 2MM Esc 2C (5’-ATT AAC 



 
NUS DESE                                                       Chapter 4 Methods and Materials  

 50

CTC ACT CCC TTC CTC CCC-3’) and 1MM Esc MM12 (5’-ATT AAC TTT ACA 

CCC TTC CTC CCC-3’). Probes had identical sequences except for variations as 

underlined and were modified with thiol at 5’ end for immobilization onto DNA 

microarray. According to the RDP and a BLAST Search, the probe Esc447 targets 

specifically the genus Escherichia and Shigella. The oligonucleotide probes with the 

positive (5’- GCT GCC TCC CGT AGG AGT-3’) and negative (5’-ACA TCC TAC 

GGG AGG C-3’) control probes for bacteria (modified with thiol at 5’ end) were spotted 

on DNA microarray. The other set of control probes (5’-TTTTTTTTTTTTTTTGGGG-3’) 

labeled with Cy3 at 3’ end and modified with thiol at 5’ were also spotted on the DNA 

microarray as illustrated in two different formats in Figure 4.9. The Labview based 

imaging system as described in DNA microarray setup was used to monitor the 

hybridization signals of microbial target with the oligonucleotide probes. 

 

 
 
 
 

          (a) 

 

 

 

        (b) 
 
Figure 4.9: Layout of probes for hybridization with microbial target. (a) Probe Layout; 1 
(b) Probe layout 2 
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CHAPTER 5  RESULTS  
 
5.1 μPCR Chip 
 
5.1.1 General Design 
 
Silicon was chosen as a base material because of its well known characteristic and its 

well established microfabrication processes [196]. Silicon as a structural material had 

both high thermal conductivity which facilitated fast thermal cycling as well as 

mechanical strength [90]. It allowed for precise design and micromachining of 

components with well defined thermal conductance. Each reaction chamber had a silicon 

membrane as its floor and a glass sheet as its roof. The advantage of using glass was that 

it was transparent so that sample filling and flowing could be seen clearly. A thermal 

isolation design was implemented by etching through thermally conductive silicon 

membrane, to eliminate cross talk between the reaction and the substrate (which is also a 

heat sink) and to reduce parasite heat capacitance. In addition, a side symmetrical heating 

scheme was implemented to achieve good temperature uniformity. Heating structures 

were only placed strategically at the sides of the chamber linked by the small joints made 

by silicon beams to reduce the temperature deviation across the chamber. These results 

will be further elaborated in the next sections. 

 
5.1.2 Numerical Analysis 
 
5.1.2.1     Side Heaters vs Bottom Heater 
 
The 2D simulation results (Figure 5.1a and b) demonstrated that the side heating scheme 

gave a much better uniform heating than the bottom heater. 
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      (a) 

  

 

 

 

 

 

 
 

        (b)  
 
Figure 5.1: Thermal models for heating scheme for µPCR chip. (a) Side view of model 
for heater position comparison; (b) Thermal model comparison between model 1 bottom 
heater and model 2 side heaters 
 
 
5.1.2.2    Heater Position 
 
The 3D thermal model was used to investigate five different heaters’ positions (Figure 

5.2a) to determine its optimal placement. The ANSYS simulation results showed that 

heater position 5 gave the least sample temperature variation of 1 ºC in comparison to the 

rest of the heater positions. Heater position 3 gave a relatively small temperature 

variation of 1.5 ºC while other heater position 1,2,4 gave a variation of 6.5 ºC, 4 ºC and 3 

ºC respectively. These results implied that the placement of heater at a central region 

between the chamber and the silicon beam would allow better heat distribution. In 

additional, simulation results of three different heater configurations (Figure 5.2b,c and d) 

Model 1: Bottom 
Heater 

Model 2: Side 
Heater 

Less variations in temperature 
distribution as compared to Model 

1  

Chamber

Glass
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showed that the “L” shaped heater (configuration  3) gave the least variation in sample 

temperature of 0.5 ºC in comparison to the other two heater configurations. Heater 

configuration 1 and 2 gave a variation of 1 ºC, 1.4 ºC respectively. The final design was 

based on heater configuration 3 which gave the best temperature uniformity. 

 
 

 
 
 
 
 
 
 
 
 
 
                              (a)            (b) 

 
                

 

 

 

 

 
 

(c) (d)  
 
 
Figure 5.2: Different heater configuration. (a) 5 different heater positions; (b) Heater 
configuration 1; (c) Heater configuration 2; (d) Heater configuration3 
 
                         
5.1.2.3    Air Gap 
 
The air gap’s size (La) (Figure 5.3a) was investigated to determine the impact of thermal 

isolation to the reaction channel. As air is a poor conductor of heat, a larger air gap will 

provide a better thermal isolation to the reaction chamber. In this simulation, it could be 

   

4 3 2 
1 
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seen that there was little cross talk between the substrate and reaction chamber at all air 

gap length (La1). This was shown by the large difference in colour contours as illustrated 

in Figure 5.3b-e. However with a shorter air gap (La1), a higher heat flux/power was 

required to heat up the substrate to the desirable temperature.  

 

Another consideration was the critical force of the silicon beam given by Euler’s formula: 

   

 

where E = Young's modulus of the column material 

           I = area moment of inertia of the cross-section 

          L = the length of the column  

As air gap (La1) increased, the silicon beam L would increase. Based on equation 5.1, this 

would imply a large drop in the critical force of the structure. This would mean that the 

chip would become mechanically weaker and more vulnerable to breakages during 

processing and handling. Simulation results further suggested that the difference between 

adopting a 2 mm and 2.5 mm air gap was insignificant. With consideration to simulation 

results, mechanical stability and previous similar studies done [115], an air gap of length 

of 2 mm with width of 0.6 mm silicon beam was adopted for the µPCR design. 

Numerical simulation on the other air gap length (La2) (see also Figure 5.3a) were also 

done. The result demonstrated that the side air gap length (La2) was not a critical 

parameter as changes in La2 did not affect the temperature uniformity significantly. La2 

was given a random value of 0.3 mm. 

 

(5.1) Fcr =   2

2

L
EIπ  
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                                                                       (a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
                          (b)                                                                 (c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) (e)  
 

Figure 5.3: Thermal model with different air gaps La. (a) Length La of air gap; (b) La1 = 
0.1mm; (c) La1 = 1 mm; (d) La1 = 2 mm; (e) La1 = 2.5mm  
 
 
5.1.2.4   Thermal Mass 
 
Numerical simulations of the change in thermal mass would demonstrate the impact on 

sample temperature distribution during heating. The change in thermal mass was 

simulated by changing length (W) as indicated in Figure 5.4a. It was expected that heat 
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La2 
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was able to spread more uniformly at a faster rate with a smaller thermal mass. 

Simulation results showed that the least steady state temperature deviation of 0.5 ºC was 

achieved when the length W was reduced to 0.5 mm. In comparison, the sample 

temperature deviations were 1.5 ºC and 1 ºC when length W was 1.5 mm and 1 mm 

respectively. Length 0.5 mm was chosen as the dimension W of reaction chamber. The 

length W was not further reduced to less than 0.5mm as this would probably cause a 

reduction in mechanical strength unsuitable for chip usage. 

 

 

 

 
 
 
 
                                                    (a) Width W of device 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) W = 1.5 mm          (c) W = 1 mm                     (d) W = 0.5 mm 
 
Figure 5.4: Thermal model for change in thermal mass, (a) Width W of device; (b) W = 
1.5 mm; (c) W = 1 mm; (d) W = 0.5 mm 
 
 
5.1.2.5   Chamber Geometry 
 
Three different chamber configurations of different length (x,y, depth) with total volume 

of 10 µl were investigated (Figure 5.5). The steady and transient state simulations on 

 

W 
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Dead volume 

chamber geometry 1 (3.35 mm, 2.5 mm, 0.3 mm) and geometry 2 (2.5 mm, 3.35 mm, 0.3 

mm) showed similar thermal performances. The steady state temperature deviation of 

geometry 1 and 2 was 1.25 ºC and both geometries required 5 s to heat up (room 

temperature 25ºC to denature temperature of 95 ºC) and 6 s to cool down (95 ºC to 

annealing temperature 55 ºC). While chamber geometry 3 (5 mm, 5 mm, 0.1 mm) 

showed the least temperature deviation across the sample at 1 ºC, its heating/cooling time 

was twice slower than geometry 1 and 2 due to greater thermal path. The final geometry 

chosen was chamber geometry 1 (3.35 mm, 2.5 mm, 0.3 mm) due to the fast heating and 

cooling time. Although results of geometry 1 showed that its sample’s temperature 

deviation was slightly more than geometry 3, it could be corrected through the use of 

other parameters.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.5: Chamber geometry x,y 
 

 
5.1.2.5.1 Chamber Geometry and Dead Volume 

Numerical analysis using Fluent 6.1 was used to study the chamber configuration and to 

minimize dead volume. This was especially important for future integration work as 

maximum sample recovery would allow more sample volume to be available for 

reactions downstream. Serpentine channel geometry was adopted in the µPCR design as 

 

x 
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Dead volume 

 recovery of sample in a serpentine channel was better than a single rectangular chamber 

(Figure 5.6a and b).  

 

  

 
 
 
 
 
 
 
                                        (a)                                   (b)  
Figure 5.6: Comparison of 2 different channel geometries. (a) Rectangular chamber; (b) 
Serpentine channels 
 
 
5.1.2.6    Final Design 
 
The final design was based on results from numerical analysis covered in section 5.1.2.1 

to 5.1.2.5. The dimensions were slightly adjusted to accommodate the chip’s features. 

ANSYS simulations of the final design (Figure 5.7a) showed that the design had a good 

temperature uniformity of ± 0.5ºC (Figure 5.7b) with a rapid heating and cooling rate of 

15 ºC/s and 8 ºC/s (Figure 5.7c) respectively. This was much faster when compared to 

conventional thermal cycler with heating and cooling rates of 1 ºC/s. The final 

dimensions of the µPCR chip are provided in the Appendix A. 
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                                                                     (a) 

 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
                   
                                   (b)                                                       (c)  
 
Figure 5.7: Thermal model of final design of µPCR chip. (a) Half thermal model used 
due to symmetry; (b) Steady state of sample; (c) Transient state at sample 
 
 
5.1.3   Aluminium Heater  
      
Aluminium thin film resistors were designed based on the numerical analysis results. 

Aluminium with resistivity of 2.65 × 10-8 ohm (m) was patterned on the silicon chip as 

heaters. The thickness of alumininum heater was 0.8 µm with a total length of 44 mm. In 

order for the hardware to support the heater, careful considerations were taken to ensure 
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that the maximum voltage required would be less than what could be supplied. The 

following calculations were done to verify this. 

 

In order for the sample to reach the desired denature temperature, numerical simulation 

suggested that a heat flux of 4 x 106 W/m2 was required to be applied onto a total heater 

area of 0.0006 x 0.00015 m2  

Using Power = Heat flux × Area        (5.2) 

Theoretical power required per heater = 4 x 106 W/m2   × 0.0006 × 0.00015 m2 

                                                                                            = 0.36 W                   

Using Resistance =
WidthThickness
Lengthsistivity

×
×Re                     (5.3) 

Resistance of aluminium heater = 66

-3-8

1010108.0
 1044 10  2.65

−− ×××
×××  

                                                   = 145.75 Ω 

  
Using Power =                                     (5.4) 
 
 
Rearranging equation 5.4, Voltage =  cesisPower tanRe×  
 
 
Voltage required per heater = 75.14536.0 ×   

                                            = 7.2 V.  

The maximum voltage supplied by the NI PXI 4110 triple output power card used for the 

control of µPCR chip was ± 20 V. The calculations showed that the voltage required was 

less than the supply source. Another factor that was considered was electromigration. In 

order to prevent ions/atoms in metals from moving and thus resulting in defects such as 

cesis
Voltage

tanRe

2
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open circuit due to voids during heating, the current density value J must not exceed the 

limit where electromigration occurs (1 x 106 A/cm2). 

Based on µPCR chip design parameters 

Using current density value J =                                                                  (5.5) 

                                                J =  6386 101010441065.2108.0
36.0

−−−− ×××××××
 

                                              
         J  =  0.6 x 106 A/cm2   < 1 x 106 A/cm2     

 
The calculated density value was less than the critical value of electromigration. 
  
The µPCR chip’s heaters were designed within hardware’s limitation to provide heat to 

the chip without exceeding electromigration value. 

 
 
5.1.4    Alumininum Sensors 
 
Alumininum were patterned to a thickness of 0.8µm at four corners of the chip’s channels 

(Figure 5.8). The total length of each sensor was 35 mm. This allowed the sensors to 

provide real time temperature feedback to the system. In order to ensure the voltage 

requirement of the sensor would not exceed the hardware source, the following 

calculations were done. 

                                     

Using equation 5.3: Resistance =  
WidthThickness
Lengthsistivity

×
×Re  

 

Resistance of aluminium sensor Ro = 66

38

1010108.0
10351065.2

−−

−−

×××
×××  

 
                                                          =  116 Ω 
  
Maximum temperature measured by sensor for PCR = 100ºC 
 
Using equation 4.1: R = Ro[1+ α(T-To)] 

5.0)(
AreayresistivitThickness

Power
××
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where R = sensor resistance (Ω) at temperature T (ºC) 

          Ro = reference resistance (Ω) at reference temperature To(ºC) = 116 Ω 

          α  =  temperature coefficient of resistance (TCR) of the sensor = 0.0043 

          T  = 100 ºC 

          To = 20 ºC 

Therefore R = 116[1+0.0043(80)] 

                    =  399.04 Ω 

Based on power card used for temperature feedback in the hardware, current supply was 

1 mA and maximum voltage that could be measured by hardware was 2.5 V.   

Using Voltage = Current x Resistance       (5.6) 

Voltage output by aluminium sensor = 1 × 10-3 × 339.04 

                                                           =  0.399 V (<< 2.5 V hardware source)         

The voltage output by the sensor was 0.399 V which was very much less than the 

hardware limitation. Thus hardware was able to measure voltage for the sensor to 

function as feedback to the system for temperature control.   

 

The reliability and performance of the fabricated aluminium sensors were also evaluated. 

The temperature-coefficient-of resistance (TCR) of each of the four sensors (Figure 5.8a) 

was measured. The measurements showed very high temperature-coefficient-of resistance 

(TCR) and the sensors had a consistent linear response over the whole temperature range 

(Table 5.1 and Figure 5.8b). Using equation y = 0.924x + 212.14 obtained from graph 

(Figure 5.8b). 

The TCR value of aluminium sensor, α = 
Ro

tempvscesisgraphofSlope __tanRe___  
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        = 
14.212

925.0  = 0.00436 

 The value calculated was almost identical to the theoretical value of 0.0043 which 

implied that the sensor was stable and able to measure temperature accurately. 

 

To further evaluate the sensitivity of the alumininum sensors, change in resistance per 

degree change in temperature was calculated. 

 
Using equation 4.1: R = Ro[1+α(T-To)]          

where R = sensor resistance (Ω) at temperature T (ºC)  

          Ro = reference resistance (Ω) at reference temperature To (ºC) = 116 

          α  = temperature coefficient of resistance (TCR) of the sensor = 0.0043 

At T = 20 ºC = To 

R = Ro = 116 Ω 

At T = 30 ºC 

R = 116[1+ 0.0043(10)] 

   = 120.988 Ω 

Difference between changes in resistance due to change in 10 ºC 

=120.988 -116 Ω 

= 4.988 Ω 

Theoretical change in resistance per change in degree = 
10
988.4  

                                                                                        = 0.4988 Ω/ºC 

 This small change in resistance in relation to 1ºC would enable the sensor to give 

accurate feedback to the system. 
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Table 5.1: Resistance of aluminium sensor over temperature 
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Figure 5.8: Characterization of aluminium sensor. (a) Aluminium sensors position; (b) 
Plot of resistance over temperature based on Table 5.1 

Temperature 
ºC 

Sensor 
1(S1) 

Sensor 2 
(S2) 

Sensor 
3(S3) 

Sensor 
4(S4) Ave 

20 232 233 232 234 232.75 
30 240 242 240 242 241 
40 248 248 249 253 249.5 
50 256 256 258 262 258 
60 262 264 267 269 265.5 
70 272 273 272 275 273 
80 281 282 284 285 283 
90 294 296 296 302 297 
100 306 302 318 310 309 

 

Sensor 1 Sensor 4 

Sensor 2 Sensor 3 
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5.1.5  Temperature Control 
 
The side symmetrical heating scheme with the high thermal conductivity of silicon 

provided fast heating (10-15 º C/s) and cooling (8 º C/s) (Figure 5.9a and b) as well as 

good temperature homogeneity of the µPCR chip during thermal cycling. The integrated 

sensors showed that the temperature distribution around the reaction chamber was less 

than ± 0.3°C (Figure 5.9c).The thermal isolation feature incorporated into the PCR chip 

had also helped to confine heating within the reaction chamber. However the heating and 

cooling rates were slightly slower than numerical simulated results and the voltage 

required was more than the theoretical value of 7 V(the required voltage is still within 

voltage supply source). This may be attributed to the extra mass (acrylic housing) that the 

µPCR chip came in contact with (this was not taken into account during numerical 

simulation) and the imperfect conditions of the aluminium heaters (sometimes present of 

small voids) due to fabrication.  

               
(a) (b)  
 
 
 
 
 
 
 
 
 
 



 
NUS DESE                                                       Chapter 5 Results 

 66

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
          (c) 
  

Figure 5.9: Temperature performance of µPCR chip. (a)  Heating curve: 6s to heat from 
25 ºC to 94 ºC; (b) Cooling curve portion: 8s to cool from 94 ºC to 55 ºC; (c) Feedback 
from 4 on chip aluminium sensors located at 4 locations around the reaction channels. PV 
= Present value; SP = Set point 
 
                              
5.1.6  Cleansing   
 
The chip cleansing step which included the use of ethanol and sodium hypochlorite was 

performed to remove PCR inhibitors and carryover from previous PCR runs to allow  

chips reuse. Figure 5.10 shows that without the cleansing step, subsequent PCR cannot be 

carried out successful.  

 

PV= Present Value;  
SP = Set point 
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Figure 5.10: Gel Electrophoresis (1.5% Agarose Gel) to compare difference in washing 
protocol and effect on PCR on chip when it is used for 3rd time. Lane 1: Conventional 
PCR. Lane 2: Chip PCR with no washing. Lane 3: Chip PCR with 70% ethanol washing 
step. Lane 4: Chip PCR with 70% ethanol and 0.3% NaOCl washing step  
 
 
5.1.7   Symmetric PCR protocol 
 
5.1.7.1   Thermal Cycling Profile 
 
Thermal cycling profile was arbitrary determined based on typical PCR cycling program: 

95ºC for 3 mins, 95 ºC for 30s, 55 ºC for 30s, 72 ºC for 45s and a final extension at 72 ºC 

for 5 mins for 20-30 cycles. 

 
5.1.7.2     Annealing Temperature 
 
Optimization of annealing temperature was required as it would contribute to the purity 

and yield of the reaction products. The optimal temperatures of the three sets of primers 

were determined by using the temperature gradient PCR thermal cycler.  Different 

annealing temperature was used to compare the product intensity on gel (Figure 5.11). 

Multiplex PCR were also run to determine feasibility of using three sets of primers 

together for different pathogen detection for future works. However as the regions of 300 

bp and 500 bp overlapped, the multiplex PCR was only successful for 500 bp and 200 bp 

regions. Re-design of unique primers that amplifies different regions is necessary for 

 1         2   3   4 
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multiplex PCR to function properly, However as this work is out of the scope of this 

thesis, this area of work will not be covered in this thesis 

 

        
 

        (a)               (b) 
 
 
 

 
 

          (c) 
 

Figure 5.11: 1.5% agarose gel of PCR using different annealing temperature.(a) Gel for 
PCR products using annealing temperature from 55.6ºC to 60ºC; (b) Gel for PCR 
products using annealing temperature from 55.6ºC to 60ºC;(c) Gel for PCR products 
using annealing temperature from 55.6ºC to 60ºC. Lane L: 100bp ladder. Lane 1: 
Multiplex PCR of 500 bp, 300 bp and 200 bp products. Lane 2: 500 bp products. Lane 3: 
300 bp products. Lane 4: 200 bp products.  
. 

5.1.7.3   PCR on different E coli dilutions 
 
DNA templates from E coli with concentration ranging from 1 to 108cfu/ml were used as 

template for PCR. Conventional PCR showed that the detection limit was 104 cfu/ml for 

20 to 30 cycles (Figure 5.12). In order to minimise PCR experiment time, 20 cycles were 

used for the rest of the symmetric PCR experiments unless otherwise stated.  

60ºC 59.5ºC  

51.9ºC 53ºC 50ºC  

58.7ºC 57.4ºC  55.6ºC 55.6ºC  54.4ºC 53.5ºC 53ºC 

51.1ºC 

  1  2  3  4  1  2  3  4  1  2  3 4  1  2   3 4  1  2   3  4 L  L L L 
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 1  2  3  4  1  2  3  4  1  2  3  4  1  2  3  4 

 1  2  3  4  1 2   3 4  1  2  3  4  1 2   3  4 L 



 
NUS DESE                                                       Chapter 5 Results 

 69

        

                            (a)                                                                           (b)  
 

 
 

                                             (c)  
 
Figure 5.12: 1.5% agarose gel of PCR using different template concentration and number 
of cycles. (a) 30 cycles; (b) 25 cycles; (c) 20 cycles. Lane L: 100 bp ladder. Lane 1: 108 
cfu/ml. Lane 2: 107 cfu/ml. Lane 3: 106 cfu/ml. Lane 4: 105 cfu/ml. Lane 5: 104 cfu/ml. 
Lane 6: 103 cfu/ml. Lane 7: 102 cfu/ml. Lane 8: 10 cfu/ml. Lane 9: 1 cfu/ml 
 
 
5.1.7.4    Surface Passivation 
 
Adsorption phenomena played a leading role in the inhibition of PCR in non flow 

through silicon based chips [118] because of their large surface to volume ratios [145]. 

This would contribute to the PCR inhibition through non-specific sequestering of Taq 

polymerase [197]. One method for reducing Taq polymerase adsorption on the chip walls 

was the use of BSA as a standard chemical deterrent of polymerase inhibition and 

enhancer of PCR in various reports [198,199]. Previous reports [198,199] had shown that 

the addition of titrated amount of BSA could effectively counteract the polymerase 

adsorption. Using the 2-Mask PCR chip on AttocyclerTM genetic analyser based on PCR 

 1   2    3    4    5   6    7   8    9 L 

L L  1   2    3    4    5   6    7   8    9  1   2    3    4    5   6    7   8    9 
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protocol as described previously, titration experiments to determine the optimal BSA 

concentration for the chip’s operation were conducted.  

 

The experiment results were obtained from a series of conventional and chip based PCR 

experiments carried out with different BSA titration (Figure 5.13). The amplification 

efficiencies at all BSA concentrations for conventional PCR were very similar, whereas, 

the efficiencies for chip PCR were only comparable with the conventional thermal cycler 

at a final BSA concentration of 1µg/µl. The use of higher concentrations of BSA resulted 

in lower yield [204]. Similarly, lower concentration of BSA also resulted in lower 

amplification efficiency as the BSA concentration was not sufficient to counter the 

polymerase adsorption.  

 

Figure 5.13: Gel Electrophoresis (1.5% Agarose Gel) to compare between conventional 
PCR and chip PCR. Lane L: 100 bp ladder. Lane 1: Conventional PCR with BSA 0.1 
µg/µl. Lane 2: Chip PCR with BSA 0.1 µg/µl. Lane 3: Conventional PCR with BSA 
1µg/µl. Lane 4: Chip PCR with BSA 1µg/µL. Lane 5: Conventional PCR with BSA 
10µg/µl. Lane 6: Chip PCR with BSA 10 ug/ul. 
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cycler 
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5.1.8   µPCR Chip Amplification 
 
With the addition of 1µg/µl of BSA into the PCR protocol, successful amplification of 

PCR using the µPCR chip was demonstrated. A comparison between PCR efficiency by 

conventional PCR and the µPCR chip (same PCR protocol) showed a lighter intensity 

band for the µPCR chip in the 1.5% agarose gel (Figure 5.14). This implied that the 

µPCR chip had a lower efficiency than conventional thermal cycler which corresponded 

to a study done [200]. These reports showed that even together with titrated BSA, 

additional amount of Taq polymerase (at least 2x) had to be added to the PCR master mix 

to allow efficiency to be comparable with PCR products from the conventional thermal 

cycler.  

 

 

Figure 5.14: Gel Electrophoresis (1.5% Agarose Gel) to compare PCR between 
conventional thermal cycler and µPCR chip. Lane 1: 100 bp DNA ladder; Lane 2: PCR 
product from conventional thermal cycler; Lane 3: PCR product from µPCR chip. 
 

5.1.8.1    µPCR Operating Procedures 

The cleansing step was added in the operating procedure to ensure repeated use of the 

µPCR chip was achieved. With the cleansing step after each PCR reaction on our chip, 

successful amplification at different denature temperatures and different lengths (500 bp 

and 200 bp) were demonstrated consecutively (Figure 5.15). This showed that there was 

no cross contamination between reactions and cleansing protocol was effective. In 
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addition, the use of water/air/sample/air/water interface during PCR helped to reduce 

evaporation without using oil. This would eliminate the need of an additional device for 

oil removal and was especially crucial during the integration of the µPCR and DNA 

microarray. Any additional device used would not only complicate the operating 

procedure but also caused loss of sample. The water zone was spatially separated from 

reagent and sample by an air zone, providing a barrier to cross contamination and 

dilution.  

 

 
 
 
Figure 5.15: Gel Electrophoresis (1.5% Agarose Gel) to compare PCR between 
conventional thermal cycler and µPCR chip for consecutive amplification. Lane 1: 100 
bp DNA ladder; Lane 2: Thermal Cycler: 500 bp; Lane 3: µPCR chip: 500 bp 94ºC; Lane 
4: µPCR chip: 500 bp 96ºC; Lane 5: µPCR chip: 500 bp 95ºC; Lane 6: Thermal Cycler: 
200 bp; Lane 7: µPCR chip:200bp 94ºC 
 
 
5.2 DNA Microarray 
 
5.2.1 DNA Microarray Design 
 
Several features were added into the DNA microarray design to speed up the 

hybridization reaction.  One of the features was the use of low channel height of 50 µm. 

Study [205] had shown that with continuous flow of DNA target to probes through a 

small channel depth of 100 µm in contrast to bigger channel depth could help to reduce 

the time to reach hybridization equilibrium. This was attributed to faster convection near 

1  2 3 4 5  6 7 
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the surface in smaller channels, due to parabolic velocity profile, which tend to reduce the 

magnitude of the target depletion zones and increases the overall rate of reaction.  

 

The other feature was the DNA microarray’s serpentine channels which allowed the use 

of continuous flow concept where DNA targets could be constantly sent to the probes. 

The passive mixers were also incorporated into the design to allow efficient mixing of 

hybridization buffer and PCR amplicons for hybridization to work.  

 
5.2.2 Numerical Stimulation of Mixer Design 

Four different mixer designs were evaluated using Fluent 6.1. Based on simulation as 

shown in Figure 5.16a-d, design 4 showed the best mixing efficiency. However there was 

still incomplete mixing for design 4 as shown by the presence of different layers of 

colours at the end. To further improve on mixer’s efficiency, two sets of such mixers 

were included in the DNA microarray to enable complete mixing. The final design is 

shown in Figure 5.16e. 

 

 

 

 

 
 
 
 
 
 
 

(a) (b)  
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                              (c)                                                                   (d) 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 
 
       (e) 

 
Figure 5.16: DNA microarray mixer design. (a) Mixer design A; (b) Mixer design B; (c) 
Mixer design C; (d) Mixer design D; (e) Final design 
 
 
5.2.3 Mixer Testing 
 
To further evaluate and compare the efficiency of the DNA microarray mixers, FITC and 

water were input into the two inlets of microarray to determine the mixing capability. The 

fluorescence intensity across the width of the channel started off with approximately high 

intensity (≈ 1200) at one end(due to FITC)  of the channel and low intensity (0) at the 

other end (due to water) but it  leveled off after passing through the two mixers (Figure 5-

17a and b). This result demonstrated that the mixer was able to perform its function.   

Inlet

2 × mixers

Mixer 2

Mixer 1
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                                                                          (a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                       (b)  
 
Figure 5.17: DNA microarray mixer testing. (a) DNA microarray mixer with water and 
FITC; (b) Intensity of fluorescence across the channel width at 2 positions 
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5.2.4 Hybridization with Synthetic DNA Target 
 
Ultimately the use of hybridization between DNA and DNA probes for bacterial 

identification relies on good discrimination between perfect match (PM) duplexes and 

those containing mismatch nucleotides (MM). As complete discrimination is often 

difficult to achieve, non specific hybridization must be quantified in order to establish its 

contribution to signal intensity. One approach has been to compare hybridization of the 

complementary probe with probes having one or two MM nucleotides. Optimization of 

hybridization conditions was done to establish good discrimination between PM and MM.  

 

Even though the ultimate goal of our DNA microarray was to apply it on microbial 

targets, the use of synthetic DNA target before the use of PCR amplicons would enable 

the understanding of the general trend and possible optimal conditions required to 

differentiate between single nucleotide variations. This study was effective in providing 

the relevant information as shorter strands would allow more efficient hybridization 

results [206]. It was expected that with longer strand of PCR products, the optimal 

hybridization conditions may differ slightly.  

 

The study on concentration of synthetic DNA target and flow rate was determined as 

initial experiment conditions and was fixed to study the concentration of NaCl and 

formamide (FA). Different concentrations of NaCl and FA in the hybridization buffer 

were separately evaluated for their ability to maximise the difference between the PM 

and MM hybridization kinetics. Concentration of DNA target and flow rates were fixed 

as these factors were not critical and they would be totally different when microbial DNA 

targets were used.  
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5.2.4.1 Determination of Synthetic DNA Target Concentration 
 
 Arbitrary values of 0.02µM and 0.1µM targets were compared in this experiment. The 

use of synthetic target of concentration of 0.1 µM did not cause over saturation of the 

background and there was no problem during continuous data acquisition during the 

hybridization process (Figure 5.18a and b). It was estimated that the hybridization 

required 1 hour to completion. Comparing the graphs from Figure 5.18a and b, the use of 

0.02 µM targets would require a longer time to reach hybridization equilibrium when 

compared to the usage of 0.1µM target. 0.1 µM synthetic DNA target was chosen as the 

fix parameter in the hybridization experiment. 
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Figure 5.18: Hybridization using different synthetic target. (a) Hybridization using 0.02 
µM Target; (b) Hybridization using 0.1 µM Target    
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5.2.4.2    Determination of Flow Rate 
 
A higher flow rate required a shorter time for hybridization to complete [194], however 

this reduction in hybridization time was offset by a greater increased in hybridization 

buffer required. An arbitrary value of 20 µl/mins was chosen based on studies done [194]. 

In order to ensure sufficient time was given for interaction of target and probes, a slower 

flow rate 5 µl/mins was used for comparison.  

 

Experimental results (Figure 5.19a and b) showed similar maximum intensity attained for 

both speeds. This implied that there was no significant difference in providing sufficient 

time for proper interaction between the matching targets and probes for hybridization at 

the flow rate of 5 µl/mins and 20 µl/mins. The flow rate of 20 µl/mins was chosen for 

hybridization experiments for faster reactions. Thus the initial experiments settings for 

hybridization were run for 1 hour to near hybridization completion using 0.1µM DNA 

target at 20µl/min for different concentrations of NaCl and FA. 
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Figure 5.19: Hybridization at different flow rate (a) Hybridization with flow rate of 5 
µl/min;(b) Hybridization with flow rate of 20 µl/mi 
 
 
5.2.4.3    Determination of NaCl Concentration  
 
Monovalent cations in this case sodium ions interact electrostatically with nucleic acids 

(mainly at phosphate groups) so that the electrostatic repulsion between the two strands 
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of the duplex decreases with increasing salt concentrations. i.e. higher salt concentrations 

increase the stability of the hybrid but reduce the specificity. Experimental results (Figure 

5.20a-c) showed that the optimal concentration of 100 mM NaCl gave the best DI of 1.6 

(Figure 5.20d). It was also noted that with lower concentration of NaCl, the hybridization 

buffer becomes more stringent resulting in better discriminating factor but lower signal 

was generated. 
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Figure 5.20: Hybridization curves of different NaCl concentration. Signal intensity 
normalized using Cy3 control probes (a) NaCl 100 mM;(b) NaCl 300 mM;  (c)NaCl 900 
mM; (d) DI at different NaCl concentration    
                                 
 
5.2.4.4    Determination of FA Concentration 
 
FA is able to reduce the melting temperature of DNA-DNA and DNA-RNA duplexes in a 

linear fashion by 0.72 ºC for each percent FA. Thus hybridization can be performed at 

room temperature with FA present in the hybridization buffer. The renaturation rate 
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decreases in the presence of FA. A suitable concentration of 30% based on the 

experiments (Figure 5-21e) was chosen to allow hybridization with high specificity. From 

data obtained from hybridization curves (Figure 5.21a–c), it was also observed that as the 

FA concentration increases, the hybridization buffer became more stringent. However at 

the same time, the signal intensity dropped as FA concentration reached a critical value. 

For this set of experiments, this occurred at 60% FA as the signal to background ratio 

(S/B) was only slightly more than 1. The optimal conditions used for synthetic DNA 

target was 100 Mm NaCl and 30% FA. More importantly, these studies had provided the 

general trend of the two parameters which could be applied when hybridization was 

carried out with microbial targets 
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Figure 5.21: Hybridization with different FA concentrations. (a) 0% FA; (b) 30% FA; (c) 
50% FA; (d) 60% FA; (e) DI with respect to FA concentration 
 

 
5.3 Micro Total Analysis System 
 
The concept of the micro total analysis system based on nucleic acid based detection of 

pathogen consisted of a µPCR chip integrated with a continuous-flow based micro-array 

as illustrated in Figure 5.22. Sample preparation was done off chip because targeted 

pathogens were often too diluted in environments and thus large sample volumes were 

needed, depending on the infectious dose and minimal detection requirements.  The 

sample volume necessary to filter or concentrate sample volumes could range from 100 

ml for bacteria and up to 1000 L for viruses.  A secondary purification and concentration 

step was also necessary to selectively capture and separate target pathogens from the rest 

of particles in sample.  
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                          Figure 5.22: Concept of nucleic acid based microsystem 
 
5.3.1    Asymmetric PCR  

5.3.1.1    Asymmetric PCR using Thermal Cycler 

Asymmetric PCR is a PCR process in which the predominant product is a single-stranded 

DNA, as a result of unequal primer concentrations.   As asymmetric PCR proceeds, the 

lower concentration primer is quantitatively incorporated into double-stranded 

DNA.  The higher concentration primer continues to primer synthesis, but only of its 

strand. Single stranded DNA can be produced for this purpose using asymmetric PCR, in 

which the two primers are used in 100:1 ratio, so that after 20-25 cycles of amplification, 

one primer is exhausted so that single stranded DNA is produced in the next 5-10 cycles 

[207]. Thermal cycler was used to run the asymmetric PCR. Volume of PCR mixture 

used was 10 µl and 35 cycles were used during thermal cycling. The changes in PCR 

protocol are reflected in Table 5.2.   
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In our experiments, a high concentration of the labeled primers was required to generate 

enough single strands for detection. The ratio of forward labelled primers: Reverse 

primers were 100:1. The increase in DNA polymerase Taq together with the use of 

dynamic coating BSA was used to counter adsorption of Taq by the large surface of 

silicon chip as explained previously. Additional DNTP was also added in consideration 

of the large number of cycles needed for asymmetric PCR. 

 

Studies had also shown that microarray hybridization efficiencies and specificity 

decreased with long PCR amplicons (200 bp) [206]. Thus to improve on hybridization, a 

high concentration of NaCl (900mM) was used with the total hybridization buffer volume 

of 10 µl to reduce DNA target dilution. End point detection instead of continuous data 

acquisition was carried out as high background generated by the high concentrations of 

labeled primers prevents continuous data taking as shown in Figure 5.23. The asymmetric 

PCR protocol was analyzed through hybridization on DNA microarray (next section). 

 
Table 5.2: Asymmetric PCR protocol 

 
Primers 

Conc 
Other 
Reagents 

Hybridization 
buffer volume 

Signal Hybridization 
time 

4uM;0.4
uM 

As per 
protocol in 
section 4.3.2 100ul No 1 hr 

4uM;0.4
uM 

As per 
protocol in 
section 4.3.2 100ul Yes Overnight 

4uM;0.4
uM 

Taq 2x 
100ul No 1 hr 

5uM;0.5
uM 

Taq 2x; 
DNTP 2x 10ul Yes 30 mins 
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         Figure 5.23: High background during hybridization 

5.3.1.2   Asymmetric PCR using µPCR Chip 

Based on conventional asymmetric PCR protocol, the µPCR chip was used to run 

asymmetric PCR. However due to the adsorption of polymerase by the PCR chip, the 

number of cycles used was increased from 35 to 45 (as in contrast with 35 cycles in 

thermal cycler) to improve the chip’s efficiency. On the other hand, due to the fast heat 

transfer of silicon, the denature time was reduced to 10s, annealing time to 30s and 

extension time to 30s. The PCR product was analyzed by hybridization using DNA 

microarray. The results will be shown in the next section. 

 
5.3.2 Hybridization with Microbial Target  
 
5.3.2.1 Hybridization with Microbial Target from Thermal Cycler 
 
In order to facilitate direct transfer of PCR amplicons from PCR chip to microarray, 

asymmetric PCR was adopted. Before asymmetric PCR was conducted on the µPCR chip, 

conventional asymmetric PCR was done to study the protocol. The success of the 

asymmetric PCR was based upon the hybridization signals from the DNA microarray 

when the PCR amplicons were applied to the DNA microarray. 
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Hybridization results from DNA microarray showed positive signals of hybridization 

with 500 mM and 900 mM NaCl. The signals to background noises (S/B) were 16 and 28 

respectively. The need for higher concentration of NaCl was most probably due to the 

longer PCR amplicons trying to hybridize to their matching probe. Effects such as 

steric/repulsive effect became more prominent in longer strands as compared to shorter 

strand. However at high NaCl concentration, the hybridization conditions became less 

stringent and additional washing steps became necessary to generate a better DI value. 

Thus additional washing steps were carried out after hybridization for about 10 mins after 

hybridization using 900 mM NaCl and 30% FA. A stringent washing solution comprising 

of 50 mM NaCl and 30% FA was able to raise the DI from 1 to 2. Figure 5.24f shows that 

with addition of washing steps, the DI becomes higher. 
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(b)  

 
 
 
 
 
 
                                                                              
 
 
 
 
                              (c)                                                                  (d)  
                
 
 
 
 
 
 
 
 

          e) Washing:NaCl: 100  mM                             f) Washing: NaCl: 50 mM 
 
 
 

        (e)            (f) 
 
Figure 5.24: DNA microarray microbial target hybridization. (a) Probes format in each 
row;  (b) NaCl: 300 mM; FA:30%: DI<1 Signal/Background (S/B) <1; (c) NaCl:500Mm; 
FA:30%;DI = 1.6 S/B=16;  (d) NaCl: 900Mm: FA: 30%; DI = 1.1 S/B=26; (e) 
Washing:NaCl: 100  mM    DI = 1.3;S/B=22; (f)Washing: NaCl: 50 mM DI = 2.3;S/B=18 
 
                                                                     
5.3.2.2 Hybridization with Microbial Target from  µPCR Chip 
 
Asymmetric PCR were conducted on the µPCR chip which contained 10 µl of sample. 

The hybridization buffer volume was 10 µl and was made up of 900mM NaCl, 30% FA 

and 0.02 M Tris HCl pH 8. Successful hybridization (Figure 5.25) with DI factor of more 

than two was achieved after washing with 50 mM NaCl and 30% FA for 10 mins. 

 

 



 
NUS DESE                                                       Chapter 5 Results 

 87

 

 

 

 

 

                    (a) 

 

 

 

 

 
 
 
 
 
 
 
                              (b)                                                                      (c)  
 
Figure 5.25: Hybridization with targets from µPCR chip. (a) Probe format in each row; (b) 
After hybridization; DI=1.6; S/B=2.07; (c) After washing DI=14; S/B = 25  
 

5.3.3 Integration of µPCR Chip with DNA Microarray  

Successful amplification by the µPCR chip and hybridization and detection of microbial 

target E coli on DNA microarray were demonstrated separately in the previous sections. 

However the ultimate objective was to combine both chips into an integrated device to 

form a micro total analysis system which could perform amplification to detect water 

borne pathogen.  

 

5µM
3µM

MM
+VE

-VE
Cy3



 
NUS DESE                                                       Chapter 5 Results 

 88

To enable integration, an acrylic housing as described previously was used to house both 

chips together. The chips were linked together through embedded channels in the acrylic 

housing where PCR amplicons can be transfer to the DNA microarray through the use of 

syringe pump. The hybridization buffer was also pumped into the microarray device for 

passive mixing with PCR amplicons before flowing towards the DNA microarray for 

hybridization. Both chips adopted the use of serpentine channels to facilitate continuous 

flow which provided the means of mass transportation, through convection and flow 

induced increment of diffusion coefficient, expecting to reduce the hybridization time and 

overall analysis time. This would also enable maximum recovery of samples from the 

PCR chip to DNA microarray. Asymmetric PCR was use to enable direct transfer of 

product from PCR chip to DNA microarray for hyrbridization. In additional, the use of 

water/air/sample/air/water fluidic zone also facilitates the above. 

 
E coli was used as the target pathogen sample and amplification of DNA using the PCR 

chip was completed within 100 mins. Thereafter the amplified PCR products of 10 µl 

were transferred to DNA microarray at 1 µl/min and were passively mixed with the 

hybridization buffer (900 mM NaCl 30% FA) which was pumped into the DNA 

microarray through another inlet at 1 µl/min. The hybridization was allowed to run for 30 

to 40 mins and end point detection was done using fluorescent microscope. 

 

Successful detection with DI value of more than two was achieved with E coli’s sample 

(Figure 5.26) using hybridization buffer and washing buffer based on previous results. 

The total analysis time was completed within the 3 hours.  
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Figure 5.26: Hybridization results from micro total analysis system; D.I = 2; S/B = 18 
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CHAPTER 6  DISCUSSIONS 

6.1 µPCR Chip 

6.1.1 PCR Speed 

In many cases such as waterborne pathogen detection, amplification is essential for 

nucleic acid analysis. Although there are various nucleic acid amplification techniques 

available, PCR has been the most popular due to its simplicity; however traditional PCR 

instruments are characterised by huge thermal mass and thus slow heating and cooling 

rates (1-2ºC/S) [217]. But the slow PCR speed can be improved by miniaturization using 

MEMS technology [12,15]. The miniaturized PCR chip described in this study was 

fabricated with MEMS technology using silicon substrate integrated with side heaters. 

These features had enabled fast heat transfer (15 ºC/s) and cooling (8 ºC/s) but in 

comparison with some of the reported works [36, 132, 209] the heat transfer was slightly 

slower by about 5 ºC/s. This slower thermal speed was most probably attributed to the 

use of the acrylic block which increased the overall thermal mass of the PCR system. The 

use of the acrylic block was necessary as it was a convenient way to inject and extract 

sample to and from the PCR chip. This method of injection and extraction provided a 

more consistent recovery method than other means [78] which included the use of silicon 

tubes/ pipette tips bonded to the access port of the chip.   

 

Another advantage of PCR chips over conventional systems was their efficient heat 

transfer, which ensured that the heat source temperature was distributed almost instantly 

across the whole PCR chamber [210,211]. This fact was exploited to reduce the denature 

and extension time to 10s and 30s respectively for the PCR chip. However annealing time 
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remained unchanged as study [200] had demonstrated that PCR specificity improved 

when annealing times were decreased, but the overall performance of the reaction seemed 

to be negatively affected by fast cycling, producing inferior products than control 

reactions. A feasible explanation for this effect might reside in the fact that, in 

conventional reactions, extended annealing takes place during the relatively slow cooling 

and heating transients immediately before and after the annealing hold period. 

Conversely, in chip PCR with very fast transients, this principle did not hold and reaction 

efficiency became hampered due to low annealing rates [211]. Therefore, to obtain yields 

comparable to those of standard reactions, primers must be carefully selected to ensure 

that effective annealing took place during the short holding times, and the annealing 

temperature must be carefully titrated to obtain optimal results. Thus not all PCR 

reactions may be effectively adapted for fast PCR [200]. In view of these reasons, a 

straight comparison between different PCR devices in terms of total time and 

consequently yield was difficult.  

 

6.1.2 Temperature Control 

The thermal performance of the PCR chip is not only dependent on the chip design but 

also its temperature control. Although PCR can be carried out with relatively low 

accuracy (±1.5 ◦C [78]), the perceived understanding is that a more precise temperature 

control will improve both reaction yields and specificity [211]. Moreover, given the low 

thermal mass of the µPCR chips and the fast transients sought, reported control methods 

that consisted of simple PID/PI [214] algorithms implemented would tend to cause 

overshoots that could be, particularly at denaturing temperatures, severely detrimental to 
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the PCR.  In order to achieve precise temperature in this study, the application of gain 

scheduling along with digital feedback PI control was used. As PCR requires repetitive 

thermal cycling at three temperature set points, gain scheduling was a good approach to 

provide satisfactory control for a different operating point of the system [216]. With this 

system, an average precision of as low as ± 0.2 ºC precision with minimal overshoot 

(approximately 0.2ºC) was achieved. The adopted control strategy was able to achieve at 

least comparable results to those previously reported [95, 211]. 

 

6.1.3 Chip Design: Chamber Geometry  

The issue of reagent insertion/extraction is of critical importance in PCR chip since PCR 

is often a preliminary step in many analytical procedures and the amplified product must 

be recovered for further analysis. Chamber geometry plays an important factor in this 

aspect. A serpentine like PCR chamber was used in this study and was able to 

consistently recover 70 to 90% of the sample from the PCR chip. In comparison, other 

chamber geometries, such as rectangular and rhomboidal shaped chamber could only 

recover a maximum of 60% of the sample [200].  This extraction limit was probably 

caused by the formation of a low-resistance air conduit between the input and output 

ports. In essence, once a certain amount of the inserted liquid had been extracted, the 

formation of an airway between input and output ports becomes practically unavoidable 

and, once in place, the air conduit would impede the further extraction of reagents, which 

remain stuck at the chip walls [214].  
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6.1.4 Evaporation  

Sample evaporation is often problematic because PCR volumes are usually very small. 

This will occur especially at denaturation temperatures which approach 100°C. At this 

temperature, the sample evaporation is so rapid that the sample would dry up quickly 

under standard atmospheric pressure. To circumvent such evaporation, the application of 

water/air/sample/air/water interface was used in the PCR chip in this study.  The use of 

such method saw a consistent recovery of 70% to 90% of the sample for gel analysis and 

was also applied as part of the integration solution. This approach was different from the 

use of mineral oil cover layer which was frequently used as a vapour barrier to prevent 

evaporation [90, 93, 99, 156]. The mineral oil is a suitable liquid cover because it has a 

boiling point far above 100°C and a density slightly below 1.0 g/cm3. However, its 

applicability is questionable for highly integrated PCR systems. Another approach is the 

use of a solid cover or valve to resist the internal pressure generated during PCR [60, 

94,104, 105]. However the use and fabrication of valve is complex and may be difficult to 

control and maintain [215]. 

 

6.1.5 PCR Amplification 

In order to enable successful PCR amplification by the PCR chip, the fundamental issue 

of adsorption phenomena in silicon chip must be overcome [145].  Previous findings [198, 

199] had shown that the addition of titrated amounts of BSA could effectively counteract 

this adsorption [118]. The use of a final concentration of 1µg/µl of BSA in this study was 

able to lead to successful amplification. This was comparable to various studies reported 

[200,213]. Nonetheless, even when using the titrated BSA concentration, the experiments 
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on PCR chip amplification showed lower product yield than those from the conventional 

thermal cycler. This effect had been previously reported [198] and was probably due to 

the residual polymerase adsorption (by the chip surface) that persisted under BSA 

blocking that may be enough to hinder PCR efficiency. However in general, there was 

consecutive successful amplification of E. Coli in the µPCR chip and were in agreement 

with previously reported amplifications in PCR chips [200]. An additional washing 

protocol was also implemented between PCR experiments to help to prevent cross 

contamination and inhabitation which allow the reuse of chip. 

 

  6.1.6 Active PCR system (µPCR Chip) vs Passive PCR system (2-Mask PCR Chip) 

With appropriate BSA concentration, the PCR product produced by 2-Mask PCR chip 

with external heat source (passive PCR chips4) was as efficient as the conventional PCR. 

In this aspect, the µPCR chip with integrated heater and sensors (active PCR chips) did 

not outperform the passive PCR chip in terms of PCR-product efficiency. Although a 

straight comparison was not done between the two systems, the results were inferred 

from individual experiments to compare product efficiency between each system and 

conventional PCR separately.  

 

The above results corresponded to a study done on comparison between passive and 

active system [200]. A feasible explanation proposed for this effect could be sought in the 

poorer transition rates and the slightly heavier temperature overshoots of passive PCR 

chips. Slower transitions and longer stabilization times due to increased overshoots 

                                                 
4 Passive PCR chip: PCR chip which uses external heat source 
   Active PCR chip: PCR chip with integrated heater and sensor 
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generate prolonged extension and annealing periods both during the temperature 

stabilization phase and the initial stages of transition. Since Taq polymerase is partially 

active (some two orders of magnitude less) at annealing temperatures and annealing may 

begin to take place (depending on primer length and composition) up to 5 ºC off the 

estimated annealing temperature [201], both factors can significantly contribute to an 

increase of PCR efficiency (though at the loss of some specificity).  

 

In light of the above results, the use of which thermal cycling systems is application 

dependent. Active PCR chips still presents far better speed (15–20% shorter analysis 

times in active PCR chips than passive PCR chips[200]) and power consumption rates 

than passive PCR chip and these are highly desirable in the applications of rapid 

pathogen detection [202] and the possibility of using our system as a portable PCR [203] 

in future. In addition, the integration of heating circuitry provides a more scalable 

technology for the development of multi-chip modules or the integration of additional 

mechanisms (e.g. sensors or control circuitry).  

 

6.2  DNA Microarray  
 
6.2.1   DNA Microarray Design 
 
Since the diffusional mobility of DNA fragments is very low [173], static hybridization 

requires a long period (usually overnight) to run to completion. In order to speed up 

hybridization reaction, several features as described previously were added into the DNA 

microarray design. The use of such features was able to bring the hybridization of 

synthetic targets to run to completion within 60 mins and asymmetric PCR was able to 
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generate signals for detection within 30 mins. These features were easy to implement in 

comparison to some of the methods reported [174-176] such as sample oscillations and 

chaotic advection.  

 

6.2.2     Hybridization 

The use of formamide as the denaturant in the hybridization buffer allowed hybridization 

and disassociation to be temperature-independent thus avoiding the need for precise 

thermal control that would otherwise required for melting curve analysis. It also 

minimizes the bias that arises from the temperature dependency of common fluorophores 

such as the Cy3 dye used in probes/target labeling [212]. But one disadvantage associated 

with the method is that real-time monitoring of the hybridization/disassociation process 

will cause photobleaching of the fluorophore due to continuous imaging and repeated 

exposure of the Cy3-labeled targets to ultra-violet light. This reduces the signal intensity 

of the PM duplex over both the hybridization and disassociation process. But the impact 

on the MM duplex is less as most of the targets are dissociated within very short time 

from the start during dissociation. Overall, the discrimination power will be diminished 

thus to minimize the effect of photobleaching on the PM and MM kinetics in this study, 

end point detection was used on hybridization/disassociation process for microbial targets 

experiments. 

 

6.3 Micro Total Analysis System 

The main objective of this project was to develop a micro total analysis system that could 

potentially be applied for waterborne pathogen detection. The µPCR chip was combined 
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with a DNA microarray as PCR was necessary to amplify the target DNA to provide 

adequate PCR amplicons to hybridize in DNA microarray to facilitate detection. This is 

especially important as water pathogens are usually in low concentration which makes it 

very difficult to detect. 

 

With this focus, both the µPCR chip and DNA microarray were designed with features to 

facilitate integration of both chips. One of the features included the use of serpentine 

channels on both chips which enabled smooth transition of sample between both chips. 

Asymmetric PCR was used as protocol with the water/air/sample/air/water interface to 

enable the direct transfer of fluid from one chip to another. Another important feature that 

was considered was thermal isolation. Most DNA-based assays are highly temperature 

sensitive and require precise temperature control. When integrating these analytical 

components, thermal crosstalk will deteriorate chip device's performance and the thermal 

insulation is often required. In this study, the µPCR chip was isolated through etching of 

air gaps in the device itself and in the acrylic housing that combines both chips.  Finally 

both chips were combined using an acrylic block with embedded channels to form the 

micro total analysis system. This approach of integration was simple and can be easily 

reproduced. 

  

While there are many works directed at PCR chip and DNA microarray separately, only a 

few PCR and microarray combined systems has been described and none has shown its 

application in water pathogen monitoring. One of the reported works [183] was to 

perform PCR and DNA hybridization sequentially in a micro chamber thus no sample 
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transfer was needed. However, conducting hybridization following PCR in the same 

chamber took a long time ranging from several hours to overnight as mass transportation 

was the rate-determination step for static hybridization. In contrast, the use of continuous-

flow hybridization after PCR in the micro total analysis system facilitated mass 

transportation, through convection and flow induced increment of diffusion coefficient, 

reducing the hybridization time to less than 1 hour, resulting in the overall analysis time 

to about 3 hours. This method was also much faster than the detection method based on 

culture based method which usually will take more than a day. 

 

With this concept, the application of this micro total analysis system for fast detection of 

water pathogen becomes possible. In light of health (drinking water is typically 

distributed and consumed before testing) and environmental policies, the need for a faster 

method than the current culture methods becomes more apparent. The micro total 

analysis system introduced in this study has the potential to bridge this gap. 
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CHAPTER 7  CONCLUSION AND RECOMMENDATIONS 
 
7.1 Conclusion 
 
Methods 9131 and 9132 are regulated by EPA to access the microbial safety of water. 

However, they are time consuming (more than 1 day) as they rely on cultivation of 

indicator bacteria in laboratory conditions followed by analysis. This project works on a 

faster method for detection of water pathogen using the concept of micro total analysis 

system.  

 

In this project, a micro total analysis system based on nucleic acid detection of water 

pathogen detection has been developed. The system consisted of silicon/glass hybrid 

based bio devices namely the µPCR chip and DNA microarray. In this system, the PCR 

device was miniaturized and combined with a DNA microarray. Both of the µPCR chip 

and DNA microarray were fabricated based on MEMS technology and were integrated at 

packaged-level using acrylic housing. The µPCR chip consisted of a serpentine channel 

suspended on a silicon membrane and silicon beams which provided air gaps that isolate 

PCR reactor from rest of device during integration. Metal heaters and temperature 

sensors were integrated on chip to allow quick and accurate temperature control (15ºC/s 

for heating and 8ºC/s for cooling) with high thermal uniformity (± 0.1 to 0.3ºC). The 

DNA microarray consisted of a passive micro mixer for mixing of DNA amplicons and 

hybridization buffer and a channel where pathogen genes’ capture probes were spotted. 

Sample was pressured driven and transferred between two chips using embedded channel 

in the acrylic housing. The serpentine channels of both chips allowed maximum sample 

recovery from the µPCR chip to DNA microarray.  



 
NUS DESE                                                       References 

 100

During PCR, the sample was encapsulated by air zones on both sides and kept in place by 

water on each end of the air zone. This water/air/sample/air/water zone arrangement 

helped to reduce evaporation.  Moreover as asymmetric PCR produced single-strand 

DNA, the amplicons were delivered directly to the DNA microarray for hybridization 

reducing operation steps and time. E. coli. was used as the target pathogen sample as it is 

used in the EPA approved methods. The DNA microarray was spotted with probe Esc447 

(specifically targets the genus of Escherichia and Shigella) and several other referenced 

probes with at least 1 base-pair difference.  Final results showed that the fluorescence 

signal of the Esc447 probes was stronger than the referenced probes with a ratio more 

than two. This represents that E.coli can be differentiated from other species even with 1 

base-pair difference. In addition to one species monitoring, our system showed potential 

in direct monitoring of a range of pathogens at the same time through PCR and different 

probes immobilized on DNA microarray.  

 
In conclusion, the pathogen sample has been successfully detected in our micro analysis 

system through DNA amplification by the μPCR chip follow by direct transfer of the 

amplicons to the microarray for detection. The analysis time for our system was 

completed within 3 hours compared with the cultivation methods. 

 
7.2  Recommendations 
 
7.2.1 µPCR chip 
 
7.2.1.1    Dead Volume in Acrylic Housing 
 
The use of acrylic housing as the interface to link the “world to chip” offers a cheap and 

simple solution. However it has its disadvantages. The main disadvantage is the dead 

volume generated in the embedded channels in the acrylic housing especially at 90 º 
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bends due to the limitation of the fabrication process. Although this issue was not critical 

as the device was still able to fulfill its objectives, this problem was raised for awareness. 

Even though it could not be solved currently as the vendor did not have the necessary 

technical capabilities, it provided information to consider other material/fabrication 

method or even integration solution alternatives.  

 

7.2.1.2 Operation Procedures 

Another issue was the operation effectiveness of the device. As illustrated in the 

operating procedure protocol as attached in Appendix, the set up of the device to run the 

PCR required a number of steps. One of the most problematic portions of operation was 

to control fluid movement and the sequence of fluid flow. A possible alternative method 

is to make use of passive valve incorporate into the device/housing which is self 

operating or automated valves to minimize human intervention and thus improve 

consistency during operation. This may also help to bring the solution a step closer to a 

fully automated solution.  However the use of integrated valves may imply the need to 

consider the change of the total design of housing as suitable fabrication process and 

material have to be considered.  

 

7.2.2    DNA Microarray  
 
 
7.2.2.1    DNA Microarray Bonding 
 
The DNA probes were spotted on the microarray’s channels by micro spotting before the 

device was enclosed by the glass wafer on top. This bonding was done manually by 

usually PDMS as an “adhesive to bond glass and silicon chip. The bonding was able to 
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fulfill the purpose of encapsulation and was feasible for protyping. However a 

standardized and consistent bonding procedure may be required for mass production to 

ensure repeatability and good quality control. One possible method is to use UV cure 

bonding between wafer and glass after probes are micro spot on the DNA microarray. 

The region to where the probes are spotted can be covered by using a mask to prevent 

UV exposure.  But in order to do this, micro spotting has to be done at wafer level. 

Currently micro-spotting can only be done at chip level. Micro spotting at wafer level 

may require modification on fixture of micro spotting machines and software. 

 

7.2.2.2    Hybridization Efficiency 

The probes that were used for hybridization were approximately 18 bp oligonucleotide. 

Possible improvement of hybridization efficiency could include the use of spacers to the 

probes to increase the height and thus decrease the distance between the targets and 

probes or using bead based device [194] which could improve hybridization. 

 

7.2.2.3    Detection Limit 

Detection limit was not recorded in this thesis due to the difficulty of getting an accurate 

value. This difficulty lies in the accurate quantification of single strand (DNA) and this 

was demonstrated through the use of spectrophotometer. The data obtained showed wide 

variations and non repeatability in single strand quantification. Moreover this is further 

complicated by different parameter settings (e.g. exposure time) during fluorescence 

imaging which could lead to false interpretation of results, Thus to truly reflect the 

detection limit of the device, a more suitable approach has to taken. One suggestion for 
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accurate quantification might be the use of synthetic DNA strand which can be used as a 

quantity reference during detection limit testing.  In addition to this, one should also 

determine the correct data (intensity) and formulation to extract and use after 

fluorescence imaging to obtain the true detection limit of the device. 

 

7.2.3 Micro Total Analysis System 
 
The peripheral equipment required to run the PCR chips were large. These equipment 

included a personal computer and Labview control hardware. There are further avenues 

to miniaturize these equipment to form a portable system. One such example is the use of 

microprocessor instead of labview. Smaller pumps or passive pumps may be used instead 

of syringe pump. However these works involved system development and would required 

many considerations before proceeding. 
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APPENDIX A  µPCR Chip Mask Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13.6 mm 

3.2 mm 
R0.5 mm 

1 mm 

0.1 mm 0.45 mm 

Mask Layer: Air gap + Channels 

 2 mm 

 1.2 mm 

 2 mm 

 0.3 mm 
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0.19 mm 

3.84 mm 

1.07 mm 

1.69 mm 

0.8 mm 

2.87 mm 

Mask Layer: Etch slot for metal lines 

Mask Layer: Metal lines for heater and sensor 
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Mask Layer: Etch for glass layer for pre-cut 
2.2 mm 

11.6 mm 
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µPCR Chip Dicing Information 
 
 

 
 
                      Dimension of chip and chip position for dicing 
 
Glass Pre cut Blade Depth 0.47 mm 
Glass removal from Silicon/Glass Chip at 
bond pad 

0.9 mm 

 

 

Die saw line Die saw line Die saw line

Die 
saw 
line 

Die 
saw 
line 

Die 
saw 
line 

25 mm 
11.6 m

m

6.4 mm (centre to centre)

11.6 m
m

 (centre to 
centre) 

 
25 mm

11.6 m
m

Centre point (0,0)

11.6 mm

Centre (9.3 mm,0) 
Radius: 1mm 
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APPENDIX B Printed Circuit Board (PCB) Dimensions 

 

 

0.5mm 

0.7mm 

2.3mm 

0.2mm

0.76mm 

1.6mm 

1.6mm 

3.2mm 

3.2mm 

PCB thru Hole 

Enlarged View 

0.3mm 

 
25mm 

39mm 

PCB  Thru Hole  
Ø1.5 mm 

Pitch 
3.96mm 

PCB Board thickness: 1.57mm 

4.285mm

14.03mm 

Cut Area of PCB 

4mm 

4 mm 

4mm 

Alignment mark 

11.6m
m

34m
m
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Material properties of PCB 
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APPENDIX C  µPCR Chip Acrylic Housing Design 
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NUS DESE                                                       Appendices 

 127

APPENDIX D  DNA Microarray Dimensions 
 

 
 
 
 
 

500 um

400 um 
R200 um

R700 um

1500 um

2500 um

12 mm

16 mm 
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APPENDIX E DNA Microarray Acrylic Housing 
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APPENDIX F Micro Total Analysis System Acrylic Housing 
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APPENDIX G     Wire bonding for µPCR Chip 
 
FNK Wire Bonding Operating Procedures 
 

1. “On” button to start machine 
2. Clamp device in place with 2 metal bars 
3. “Load Program”-Press Ok 
4. “Move bond head to init”-Press Ok 
5. File  Load OK  Use Program for 16 mm bond cap 
6. Page  BHC Parameter:Flame off z:9100; gap:120 to check 
7. Esc 
8. Mode Single bond; Mode 11 
9.  Determine position of bond 1 and bond 2 
10. Adjust Focus Height 
11.  Measure bond height 
12. Check ball size and ball current settings 
13. If wire breaks, use “clamp off” to bring in new wires 
14. To shut down 
 
FNK Wire Bonding Parameters 

 
FNK Wire Bonder Parameters 

 
 

Wire: 1.2 mil  
Current 4.5 
Ball size 5.8  

 1st bonding setting 2nd bond setting 
UT 55 80 

UP 65 80 
BF 30 40 
CF 2 0 
VF 0  

   

 
Parameter at 1st 

bond Parameter at 2nd bond 
Bond delay 20 20 

TD Flag 1 1 
Force 30 30 
Ramp 500 500 

TH 15 15 
OD 500 500 

Steps 0 0 
Spd 0 0 

Accel 0 0 
   
 Tail Parameter 

Tear Flag 1 
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Relief Force 35 
Tear US Power 25 

XY Movng counter 0 
Tail Height 150 
Tear Height 150 

  
 Loop Parameter 

Loop form 1 
Loop mode 11 

Z Loop predesign 200 
Ab loop ht 0 

LH Factor 1 60 
RH 300 
RF 0 
XY 40 

Z loop delay 0 
- 70 
- 70 
- 70 
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Wire bonding DOE  
No Parameters          

  Loop Type RH Z Loop 
Loop Ht 
factor RF 

XY 
Factor 

Loop ht at 
corner ht at ball 

ht at 
stitch Remarks 

1 Rectangle 300 50 60 15 40         
2 Rectangle 300 70 60 15 40         
3 Rectangle 300 70 80 15 40         
4 Rectangle 300 90 60 15 40         
5 Rectangle 350 90 60 15 40       Break 
6 Rectangle 300 50 40 15 40         
7 Rectangle 300 30 60 15 40       Break 

                      
1 Rectangle 300 70 60 15 40 0.18 0.1 0.03   
2 Rectangle 600 70 60 15 40 0.17 0.07 0   
3 Triangle 300 70 60 15 40 0.02 0.02 0.6   
4 Triangle 600 70 60 15 40 0.006 0.006 0.87   
5 Triangle 1200 70 60 15 40 0.066 0.066 0.06   
6 Rectangle 1200 70 60 15 40 0.07 0.066 0.012   

7A Rectangle 2000 70 50 15 40 -- -- -- No bond 
7B Rectangle 2000 70 30 15 40 0.09 0.0545 0.02   

8 Rectangle 2000 200 30 30 40 0.08 0.05 0.04 Slack 
9 Rectangle 300 200 60 15 40 0.17 0.06 0.048   

10 Rectangle 300 300 60 30 40 0.16 0.05 0.04   
11 Rectangle 300 300 60 15 40 0.15 0.07 0   

                      
1 Rectangle 300 300 60 15 40 0.16 0.07 0.06   
2 Rectangle 300 300 60 15 80 0.17 0.09 0.04   
3 Rectangle 300 300 60 15 80 0.15 0.06 0.04   
4 Rectangle 300 70 60 15 100 0.14 0.08 0.06   
5 Rectangle 300 300 60 15 20 0.1 0.07 0.064   

6 Rectangle 300 300 60 15 100 0.19 0.08 0.05
Z loop max:  
300 

7 Rectangle 10000 300 60 15 100 -- -- -- Too long: Max 
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10000 
8 Rectangle 5000 300 60 15 100 0.22 0.07 0   
9 Rectangle 5000 300 60 15 100 0.21 0.06 0.04   

10 Rectangle 5000 300 60 15 100 0.15 0.05 0.04   
11A Rectangle 5000 300 60 15 20 -- -- -- Break 
11B Rectangle 5000 300 60 15 40 0.14 0.09 0.03   

12 Rectangle 5000 100 60 15 40 0.16 same plane 0.03   
13 Rectangle 5000 300 60 15 40 0.06 0.19 0.03   
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APPENDIX H  Electrical Connections for µPCR Chip 
 

 
 
 
Wire are soldered directly on gold bond pads of µPCR chip are connected to the 

corresponding hardware respectively 
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        Operating Procedure for µPCR chip 
 
System Set Up 
1. Set up connections between syringe pump, syringe , telfon tubings and acrylic housing 
(with µPCR chip). 
 
 
 
 
 
 
 
 
 
 
 
 
2. Syringe pump is used in the withdrawal mode  
3. Prime all flow line and chip with ultrapure water  
4. Choose port of valve to turn to determine type of fluid flow into PCR chip   
5. Sequence should be as follows:  

A. port for air (Volume: 1µl) 
B. port for PCR (Volume: 10 µl)* About 13µl sample is prepared for input to chip  
C. port for water (Continuous volume) 

6. Position the sample zone into the reaction channels using syringe pump.(Positioning is 
done by setting pre set volume in syringe pump) 
7. Enclosed inlet and out of acrylic housing with stopper 
8. Run PCR 
 
 
 
 
 
 
 
 
 
 
Washing step 
 
1. After PCR, wash chip in acrylic housing 
2. Flush device with ultrapure water 
3. Incubate device with 70% Etoh for 2 mins 
4. Flush device with 3 volumes of ultrapure water 
5. Incubate device with 0.3% NaOCl 
6. Flush device with 3 volumes of ultrapure water

 

µPCR chip in 
acrylic housing Syringe Pump 

Valve

 

Water 

PCR 

Air 

Stopper to close inlet and outlet of acrylic housing 

Syringe 



 
NUS DESE                                                                                  Appendices 

 138

                               A typical Labview Code for PCR 



 
NUS DESE                                                                                                           Appendices 

 139

                  Labview Hardware 
 
 
No Equipment Name Qty Purpose 
1 Labview 8.0/8.2 1 Graphical 

programming 
software 

2 PID Toolset 1 PID control 
3 TBX- 68T Terminal 

block with one cold 
sensor and 88 
  

1 To read sensor 
reading  

4 NI 4351 for PXI 1 As interface between 
TBX-68T and 
Labview 

5 NI PXI 4110 Triple 
Output DC power 
supply 

2 Power supply to 
heater 

6 NI PXI-PCI8331, 
MXI-4 Kit with 
copper cable 

1 Interface between  

7 APS 4100 auxiliary 
power source for NI 
DC power 

 

2 External Power source

8 Power Cord, 
240,10A 

 

2  

9 PXI-1031, 4 slot 3U 
chasis with universal 
AC Power 

 

1 To house all cards 
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TBX 68T NI PXI 4110 Triple 
Output DC power 
supply 

NI 4351 for PXI 
PXI-1031, 4 slot 
chasis with universal 
AC Power 
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APPENDIX  I Protocol for Bacteria DNA Extraction  
 
Protocol from QIAamp® DNA Mini Kit and QIAamp DNA Blood Mini Kit Handbook 
 
Isolation of genomic DNA from bacterial cultures 
a) Plate cultures 
1. Remove bacteria from culture plate with an inoculation loop and suspend in 180 μl 
of Buffer ATL (supplied in the QIAamp DNA Mini Kit) by vigorous stirring. 
2. Follow the Tissue Protocol (page 33) from step 2. 
b) Suspension cultures 
1. Pipet 1 ml of bacterial culture into a 1.5 ml microcentrifuge tube, and centrifuge for 
5 min at 5000 x g (7500 rpm). 
2. Calculate the volume of the pellet or concentrate and add Buffer ATL (supplied in the 
QIAamp DNA Mini Kit) to a total volume of 180 μl. 
3. Follow the Tissue Protocol (page 33) from step 2. 
2. Add 20 μl Proteinase K, mix by vortexing, and incubate at 56°C until the tissue is 
completely lysed. Vortex occasionally during incubation to disperse the sample, or 
place in a shaking water bath or on a rocking platform. 
Note: Proteinase K must be used. QIAGEN Protease has reduced activity in the 
presence of Buffer ATL. 
Lysis time varies depending on the type of tissue processed. Lysis is usually complete 
in 1–3 h. Lysis overnight is possible and does not influence the preparation. In order 
to ensure efficient lysis, a shaking water bath or a rocking platform should be used. 
If not available, vortexing 2–3 times per hour during incubation is recommended. 
3. Briefly centrifuge the 1.5 ml microcentrifuge tube to remove drops from the inside of 
the lid. Continue with step 3a, or if RNA-free genomic DNA is required, continue with 
step 3b. 
Transcriptionally active tissues, such as liver and kidney, contain high levels of RNA 
which will copurify with genomic DNA. RNA may inhibit some downstream 
enzymatic reactions, but will not inhibit PCR. 
3a. Add 200 μl Buffer AL to the sample, mix by pulse-vortexing for 15 s, and incubate 
at 70°C for 10 min. Briefly centrifuge the 1.5 ml microcentrifuge tube to remove 
drops from inside the lid. 
It is essential that the sample and Buffer AL are mixed thoroughly to yield a 
homogeneous solution. 
A white precipitate may form on addition of Buffer AL, which in most cases will 
dissolve during incubation at 70°C. The precipitate does not interfere with the 
QIAamp procedure, or with any subsequent application. 
OR 
3b. First add 4 μl RNase A (100 mg/ml), mix by pulse-vortexing for 15 s, and incubate 
for 2 min at room temperature. Briefly centrifuge the 1.5 ml microcentrifuge tube to 
remove drops from inside the lid before adding 200 μl Buffer AL to the 
sample. Mix again by pulse-vortexing for 15 s, and incubate at 70°C for 10 min. 
Briefly centrifuge the 1.5 ml microcentrifuge tube to remove drops from inside the lid. 
It is essential that the sample and Buffer AL are mixed thoroughly to yield a 
homogeneous solution. 
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A white precipitate may form on addition of Buffer AL. In most cases it will dissolve 
during incubation at 70°C. The precipitate does not interfere with the QIAamp 
procedure or with any subsequent application. 
4. Add 200 μl ethanol (96–100%) to the sample, and mix by pulse-vortexing for 15 s. 
After mixing, briefly centrifuge the 1.5 ml microcentrifuge tube to remove drops from 
inside the lid. 
It is essential that the sample, Buffer AL, and the ethanol are mixed thoroughly to yield 
a homogeneous solution. 
A white precipitate may form on addition of ethanol. It is essential to apply all of the 
precipitate to the QIAamp Spin Column. This precipitate does not interfere with the 
QIAamp procedure or with any subsequent application. 
Do not use alcohols other than ethanol since this may result in reduced yields. 
5. Carefully apply the mixture from step 4 (including the precipitate) to the QIAamp Spin 
Column (in a 2 ml collection tube) without wetting the rim. Close the cap, and 
centrifuge at 6000 x g (8000 rpm) for 1 min. Place the QIAamp Spin Column in a 
clean 2 ml collection tube (provided), and discard the tube containing the filtrate. 
Close each spin column to avoid aerosol formation during centrifugation. 
It is essential to apply all of the precipitate to the QIAamp Spin Column. 
Centrifugation is performed at 6000 x g (8000 rpm) in order to reduce noise. 
Centrifugation at full speed will not affect the yield or purity of the DNA. If the 
solution has not completely passed through the membrane, centrifuge again at a 
higher speed until all the solution has passed through. 
6. Carefully open the QIAamp Spin Column and add 500 μl Buffer AW1 without 
wetting the rim. Close the cap, and centrifuge at 6000 x g (8000 rpm) for 1 min. 
Place the QIAamp Spin Column in a clean 2 ml collection tube (provided), and 
discard the collection tube containing the filtrate. 
7. Carefully open the QIAamp Spin Column and add 500 μl Buffer AW2 without 
wetting the rim. Close the cap and centrifuge at full speed (20,000 x g; 14,000 rpm) 
for 3 min. Continue directly with step 8, or to eliminate any chance of possible Buffer 
AW2 carryover, perform step 7a, and then continue with step 8. 
Note: Residual Buffer AW2 in the eluate may cause problems in downstream 
applications. Some centrifuge rotors may vibrate upon deceleration, resulting in the 
flow-through, which contains Buffer AW2, coming into contact with the QIAamp Spin 
Column. Removing the QIAamp Spin Column and collection tube from the rotor may 
also cause flow-through to come into contact with the QIAamp Spin Column. In these 
cases, the optional step 7a should be performed. 
7a. (Optional): Place the QIAamp Spin Column in a new 2 ml collection tube (not 
provided) 
and discard the collection tube containing the filtrate. Centrifuge at 20,000 x g 
(14,000 rpm) for 1 min. 
8. Place the QIAamp Spin Column in a clean 1.5 ml microcentrifuge tube (not provided), 
and discard the collection tube containing the filtrate. Carefully open the QIAamp 
Spin Column and add 200 μl Buffer AE or distilled water. Incubate at room 
temperature for 1 min, and then centrifuge at 6000 x g (8000 rpm) for 1 min. 
9. Repeat step 8. 
A 5 min incubation of the QIAamp Spin Column loaded with Buffer AE or water, 
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before centrifugation, generally increases DNA yield. 
A third elution step with a further 200 μl Buffer AE will increase yields by up to 15%. 
Volumes of more than 200 μl should not be eluted into a 1.5 ml microcentrifuge tube 
because the spin column will come into contact with the eluate, leading to possible 
aerosol formation during centrifugation. 
Elution with volumes of less than 200 μl increases the final DNA concentration in the 
eluate significantly, but slightly reduces the overall DNA yield (see Table 3, 
page 16). Eluting with 4 x 100 μl instead of 2 x 200 μl does not increase elution 
efficiency. 
For long-term storage of DNA, eluting in Buffer AE and placing at –20°C is 
recommended, since DNA stored in water is subject to acid hydrolysis. 
Yields of DNA will depend both on the amount and the type of tissue processed. 
25 mg of tissue will yield approximately 10–30 μg of DNA in 400 μl of water 
(25–75 ng/μl), with an A260/A280 ratio of 1.7–1.9. 
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APPENDIX J  2-Mask PCR Chip Operation 
 
AttocyclerTM operation 
 
1. Open laptop link to AttocyclerTM 

2. Click on “Attos exe” to open control software 
3. Switch on machine using switch located behind AttocyclerTM 

A “clicking: should be heard: this indicates the detection of controller laptop by the  
machine 

4. Load chip onto loading plate 
5. Close chamber 
6. Choose “reaction” from software 
7. Input thermal cyclng parameters 
8. Start reaction 
9. After completion of reaction, extract PCR mixture from chip using acrylic housing for 
µPCR chip and run product on 1.5% agarose gel for analysis using gel electrophoresis. 
10. Flush acrylic housing with DI water after every extraction to prevent cross 
contamination.  
 
2-Mask PCR Chip preparation 
 
1. Prepare PCR master mix as per required for experiment.  
2. Load 10 µl of PCR mixture to PCR chip using pipette through the inlet/outlet located 
at back of chip. PCR mixture will flow into reaction channel through capillary force.  
3. Once channels are completely filled, covered the inlet/outlet of the chip using PCR 
tape cut to size.  
4. Ensure PCR mixture pump into chip is without bubble. 
5. Load chip to loading plate of AttocyclerTM 
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APPENDIX K Operating Procedures for DNA Microarray 
 
DNA Microarray 
 
External Mixing 
-PCR amplicon/oligonucleotide and hybridization buffer were mixed before input into 
microarray. Initial experiments were done this way to reduce unknown factors (passive 
mixer) if experiment fail. 
 
 
Procedures 
1.Set up device in housing and connect housing to syringe pump through telfon 
tubings.(Note: 2 syringe pumps are used to input hybridization buffer and PCR 
amplicons/oligonucleotides separately into microarray if passive mixer is used;for 
external mixing, only 1 syringe pump is used and the other inlet  is enclosed with a 
stopper) 
2. The mixture is pumped into the device at the appropriate speed and data acquisition is 
carried out continuously using the epiflourescent microscrope. 
3. Flush acrylic housing with filter TT solution and DI water after each experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
NUS DESE                                                                                                           Appendices 

 146

APPENDIX L DNA Microarray Surface modification Protocol 
 
 
Protocol for functionalization of silicon oxide and immobilization of DNA 
 
Cleaning of SiO wafers 
1.Rinse with 100% ethanol. Dry under nitrogen stream. 
 
Reagent preparation 

5% silanes (v/v)( (3-Aminopropyl)triethoxysilane ) in 95% ethanol 
 
Silanization 

1. Dry wafer in nitrogen stream before adding silanes. Add 50 ul of 
silanes to each wafer. Incubate for 3-5 hrs at room.temperature. 

2. Rinse in 100% ethanol (Remember to rinse the back of the chips as 
well, otherwise they will stick to the hot plate later), dried in N2 and 
baked on hotplate at 120 deg C. Cool the wafers before adding cross 
linker solution. (Remove cross linker from fridge to room temperature 
because it is moisture sensitive. Prepare cross linker solution) 

 
Reagent preparation 
2mM cross linkers in DMSO + ethanol 
Recipe for SMPB* = 0.712mg in 100 ul (= 200 ul DMSO + 800ul ethanol) 
Cover cross linker with Al foil id not used immediately after preparation as cross linker is 
light sensitive. The solution should be prepared fresh each time. 
*4-(4-Maleimidophenyl)butyric acid N-hydroxysuccinimide ester  
 
Adding Cross linkers 

1. Add 50 ul of cross linker solution to each wafer and incubate for 2 hrs (Prepare 
ethanol for rinsing) 

2. 2. Rinse wafer with ethanol 
 

Bioarrayer is used to spot DNA immobilization  
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APPENDIX M  Operating Procedures for Biochip Arrayer 
 
Maintenances of machine to be carried out 3 times a week 

1) Switch on the power for the machine 
2) Go to “Utilities” and select “Prime Tips” (This function is to be carried out twice) 
3) After completion of the second Prime Tips function, go to “Utilities” and select 

“Start of Day”. Place the 96 well plate into the designated plate area and fill up 
the first four wells of the plate with 70% methanol. The “Start of Say” function is 
to calibrate the pressures in the tips (look out for the standard deviation of the 
tips: should not be more than 3 to 4) 

4) After doing “Start of Day”. Carry out “Primer Tips” once. 
5) Go to “Utilities” and click on “ Dispense Verification”; this is to see what kind of 

spot, volume and morphology of the spot from each tip. After the tips have picked 
up the buffer from the trough and move itself in front of the camera, press Shift 1 
to dispense followed by shift 2 to equilibrate the pressure in the tips. The 
optimized volume is around 0.287 to 0.333 nl/drop. After you are satisfied with 
the drop volume. Press “.”. This would terminate the testing for the tip and move 
on to the next tip. Repeat the operation for the rest of the tips. 

6) ** If there is no test to run, go to “Utilities and execute ‘End of Day” function. 
Remember to fill up 96 well plate with 70% methanol. 

 
** If there is a test to run, go to “Tool” and “Define Position File” 

- This would allow the user to set the dimension of the array that is going to 
be printed. The x- and y- values show the centre to centre distance of the 
two spots in the array. 

- After putting in the array information, save the file under a recognizable 
name and exit. 

 
Next, go to “Tool” and “ DEFINE Rack type”  

- Select HL for the first rack( and SHAH for the second rack if there are a 
lot of chips to print) and change the file name to “test” and click on 
“Evaluate”. This would bring you to DOS mode and from there , you can 
specify where you want to start spotting your array. 

- The first command you would come up which says “Adjust camera 
Height” 

- Just press”.” And “y” 
- The second command would then ask you to specify your base position 

(first spot of your array) for your array, After maneuvering the tips using 
the x- and y-aixs. Press “.”. And “y” 

- Save the file 
 
Next go t to “File” and “load test” 

- Select on the first 3 files. 
- Change only the number of drops per spot and number of replicates and 

save the file. 
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- Execute the file by pressing >, and click on align racks before pressing run 
test (* Remember to place your 384 well plate in the sample trough) 

- This would allow you to align your chips before printing just in case the 
position is not correct initially. 

- After finishing the re-alignment of chips, click “done: and “run test” 
- Just wait and see your chip printed. 
- At the end of the test, click on the option “view error” 
- If command says there are no errors to view, means the printing has gone 

on smoothly. 
 
In the case where are errors in printing, save the error file (name.err) and close the error 
message. 

- Go to “Tools” and choose option “Convert error to map file: 
- Open folder and choose and open the error file that was saved 
- The error file is now converted into a .map file 
- Close the window and save the map file 
- Go to “file”: and ”load test” 
- ;Load the same test that was used for printing and click on the box use 

MAP based test. 
- Save the table and click > Do not click on align racks before start 
- The MAP based test would print the missed spots 
- After printing has ended Just click on the view dispense error and see if 

any more errors are present.  
- If not, select the “End of Day: option from “Tools”. Fill up the 70% 

methanol and wait till the machine finishes the function and return to the 
original interface before shutting down the machine. 
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1           2         3           4         5           6  
A 
 
 
B 
 
 
C 
 
D 
 
 
E 
 
 
F 
 
G 

 

 
   DNA Micro Spotting Layout 

 
An example of spotting is shown below 
 
With spotting of 2 spots per probe for probe format, the layout on the plate looks like this 
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No Probes O.D. Conc(ng/ul) MW 
Conc 
(µM) 

Probe Conc 
(µM) 

Total 
Vol (µl) Probe Water 

                    
1 PositivecontrolRev  0.24 792 6312.2 125.4713 5 100 4.0 96.0
2 NegativecontrolRev 0.224 739.2 6327.2 116.8289 5 100 4.3 95.7
3 Enc131Rev 0.223 735.9 6336.2 116.1422 5 100 4.3 95.7
4 Bac303Rev 0.23 759 6352.2 119.4862 5 100 4.2 95.8
5 Ecs447_PM23 0.32 1056 7306.2 144.5348 5 100 3.5 96.5
6 Esc447MMTCA 0.323 1065.9 6410.16 166.2829 5 100 3.0 97.0
7 Esc447MMCTC 0.265 874.5 6425.16 136.1056 5 100 3.7 96.3
8 Esc447MM2C 0.325 1072.5 6434.3 166.6848 5 100 3.0 97.0
9 Esc447MMCG 0.303 999.9 6450.16 155.0194 5 100 3.2 96.8

11 Ecs447_MM12 0.32 1056 7315.2 144.357 5 100 3.5 96.5
12 EFA126_PM21 0.27 891 6511.2 136.8411 5 100 3.7 96.3
13 EFA126_MM12 0.125 412.5 6496.2 63.49866 5 100 7.9 92.1
14 Cy3 Control       82.5 1 100 1.2 98.8
15 Cy3 Control       82.5 0.5 100 0.6 99.4
16 Ecs447_PM23 0.32 1056 7306.2 144.5348 3 100 2.1 97.9
17 Ecs447_PM24 0.32 1056 7306.2 144.5348 1 100 0.7 99.3

Hybridization buffer (Microbial 
target)    

Washing 
buffer 

  
900 mM 
NaCl 

500 
mM 
NaCl 

300 mM 
NaCl 

50 mM 
NaCl 

Water 0 1.6 2.4 67
Tris HCl (0.02M) 0.4 0.4 0.4 2
NaCl 3.6 2 1.2 1
FA(30%) 6 6 6 30
Template 10 10 10 -
Volume in µl 10 10 10 10

 DNA Probe Concentrations for Hybridization 
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APPENDIX N Operating Procedures for Micro Total Analysis System 
 
 
1. Set up connections between syringe pump, syringe, telfon tubings and acrylic housing 
(with µPCR chip and DNA microarray). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Syringe pump is used in the withdrawal mode (black arrow) during setup for PCR 
3. Enclosed DNA microarray inlet/outlet using stopper during this phase/use dummy 
DNA microarray(without inlets) to seal of channels leading to DNA microarray 
 
 
 
 
 
 
 
 
 
 
 
4. Choose port of valve to turn to determine type of fluid flow into PCR chip   
5. Sequence should be as follows:  

A. port for PCR (Volume: 10 µl)* About 13µl sample is prepared for input to chip  
B. port for water (Continuous volume) 

6. Position the sample zone into the reaction channels using syringe pump.(Positioning is 
done by setting pre set volume in syringe pump) 
7. Remove stoppers of DNA microarray inlet/outlet or slightly unscrew region of 
microarray region if dummy microarray is used  
8. Fill Channel A with water 

µPCR chip + 
microarray in 
acrylic housing 

Syringe Pump 

ValveWater 

PCR 

Air 

Syringe 

Syringe 
Pump Syringe  

Buffer 
PCR 
amplicons 

 Close DNA microarray inlet/outlet 

DNA microarray inlet 

DNA microarray outlet Channel A 
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9. Enclosed all inlet and outlet of acrylic housing with stoppers and tighen any lossen 
screws of housing 
10. Run PCR 
11. Upon completion of PCR, Remove all stoppers and change actual DNA microarray 
with dummy DNA microarray if used. Attached 2nd syringe pump to inlet of DNA 
microarray. Start syringe pump at 1µl/min to inject hybridization buffer to DNA 
microarray chip. 
12. In this phase, all syringe pumps are used in “pushing” mode (Green arrow) 
13. The PCR sample in µPCR chip is pushed out of the PCR chip at a faster speed. Once 
PCR sample moves out of channel, syringe pump speed will be change to 1µl/min.  
14. When the reaction is complete, DNA microarray is removed and image under 
microscope
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	[1]Al Dufour, Mario Snozzi, Wolfgang Koster, Jamie Bartram, Elettra Ronchi, Lorna Fewtrell (2003), Assessing microbial safety of drinking water: improving approaches and methods. 
	5% silanes (v/v)( (3-Aminopropyl)triethoxysilane ) in 95% ethanol 

