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SUMMARY 
 
Recommendation Agent (RA) is an online decision-aiding tool that assists a consumer to screen, 

evaluate, and choose suitable purchase options in the electronic marketplace. This dissertation 

focuses on the means by which RA could support the decision making stages involving information 

search, alternative evaluation and choice selection. Information search refers to a consumer’s 

search for information, which can occur internally and externally. A consumer engages in internal 

search when one recalls about products/services from memory, which is determined by the 

consumer’s existing knowledge about the products and his ability to retrieve relevant product 

information. External search occurs when a consumer gathers information through accessing 

online information. With the gathered information, a consumer proceeds to the alternative 

evaluation stage, where a set of alternatives is extracted and evaluated. Often a consumer would 

delineate the criteria to for retrieval and evaluation. Based on the evaluation of the alternatives, a 

consumer makes an explicit choice selection. Applying a wide variety of theories drawing from 

Psychology, Information Systems, Marketing, Economics, and Computer Science, we propose and 

validate distinct RA mechanisms that could affect consumer decision-making behavior and 

performance. 

The dissertation encompasses of three essays. Essay One focuses on proposing and examining 

product learning and preference elicitation supports. A product learning support uses different 

communicating modes, i.e., text and video modes, to educate consumers on the meanings and 

importance of product attributes. A preference elicitation support, on the other hand, focuses on 

assisting consumers in articulating their preferences. The tools investigated are need-based and 

attribute-based. Building on the Cognitive-Experiential Self-Theory (CEST), we posit that: 1) where 

the provisions of the product learning and preference-elicitation supports facilitate the consistent 
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practice of one dominating form of processing system (i.e., either the “experiential” or “analytical”) a 

consumer will experience greater decision confidence and exhibit a lower propensity for purchase-

avoidance; and 2) where the provisions of the two supports lead to switching between the two 

processing systems, a consumer will experience poorer decision performance. A laboratory 

experiment was subsequently conducted to test our hypotheses. The results provide empirical 

evidence for our supposition. 

Essay Two focuses on examining RA features that aid consumer decision-making during the 

stages of alternative evaluation (screening support) and choice selection (evaluation support). This 

study explores how consumers utilize online decision aids with screening and evaluation support 

functionalities under varying product attribute-load conditions. Drawing upon resource-matching 

theory, we conducted a 3x2 factorial experiment to test the interaction between decision aid 

features (i.e., low versus high-screening support, and aids with weight assignment and 

computation decision tools) and attribute-load (i.e., large versus small number of product attributes) 

on decision performance. Unlike theories of cognitive fit and task-technology fit, the resource-

matching theory provides clear predictions of under-fit, ideal-fit and over-fit conditions in the 

decision-aiding context. The findings reveal that: 1) where the decision aids render cognitive 

resources that match those demanded for the task environment, consumers will process more 

information and decision performance will be enhanced; 2) where the decision aids render 

cognitive resources that exceed those demanded for the task environment, consumers will engage 

in less task-related elaboration of decision-making issues to the detriment of decision performance; 

and 3) where the decision aids render cognitive resources that fall short of those demanded for the 

task environment, consumers will either employ simplistic heuristic decision strategies to the 
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detriment of decision performance, or invest additional effort in information processing to attain a 

better decision performance, if they perceive the additional investments in effort to be manageable. 

Essay Three concludes the dissertation by proposing an overarching framework governing the 

design of RA artifacts. Specifically, this article seeks to propose a set of RA design artifacts to 

address decision difficulties entailed during consumer procurement expedition with the outlook of 

alleviating purchase-avoidance propensity. We first establish that decision difficulty could lead to 

purchase-avoidance behavior, a tendency to postpone committing to a purchase or to seek a less 

painful way out that involves no action or no change (i.e., abandon the inclination of committing to 

a purchase). Six factors related to decision-difficulty are identified. We contend that if a purchase is 

difficult to perform because of RA support not being available, adequate or appropriate, a 

consumer then has a high tendency to abandon the purchase. We next propose and theorize a 

research framework demarcating seven RA design artifacts, i.e., preference learning, preference 

discovering, preference framing, option framing, decision strategy-based screening, decision 

guidance, and RA personalization, in alleviating decision-difficulty. 

The essential objective of this dissertation is to incorporate and extend the current state of our 

knowledge on literature in consumer behavior and decision making to provide empirical and 

theoretical justification to the deployment of RA in online context. 
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A. RESEARCH OVERVIEW 
 
A.1 INTRODUCTION 
Shopping for gifts during the holiday season can be an enjoyable or a terrifying task. In order to 

enhance the shopping experience, more people in recent years, have been turning to the online 

Recommendation Agent (RA) to help them find the best gifts (Häubl and Murray 2003; Grenci and 

Todd 2002). You may picture an RA as a dedicated shopping assistant, obedient and wise, who 

can help you to find the ideal slimming belt for your mother-in-law and the perfect body massager 

for your father-in-law. Of course, RA is not just an automated tool that searches for and 

consolidates available products for consumers. It also seeks to assist consumers in eliciting 

preferences, searching for product options and choosing among the retrieved alternatives by 

providing explicit or implicit recommendations (Xiao and Benbasat 2007). 

Using an RA raises the question: What are the pertinent features of RA that will best serve 

consumers? In other words, if you are a consumer, how would you expect RA to assist you in the 

decision-making of a purchase? Over the past five years, both commercial implementations and 

research prototypes have begun to explore the versatility of RA. As in many commercial RAs, such 

as mySimon and Dealtime, consumers using these RAs navigate through the products using 

hyperlinks that delineate the search criteria, such as a price range of between $100 and $250. An 

example of a newly-emergent application is the Yahoo’s SmartSort that filters products based on 

the elicited importance of an attribute (e.g., presence of airbag can be ranked as a more important 

attribute compared with leather seat for car). Another application by Amazon accords consumers 

with recommendations indicating the number of people who purchase similar or complementary 

products. 
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Researchers have explored many additional applications, including delving into automating various 

decision strategies (Aksoy, Bloom, Luri, and Cooil 2006; Tan 2003), comparing the use of 

collaborative-based and content-based filtering of products (Ariely, Lynch and Aparicio 2004), and 

evaluating the persuasiveness of RA in many factors, such as personalization, trust establishment 

and justification for recommendations (Tam and Ho 2005; Komiak and Benbasat 2004). 

While technological advances have brought issues of RA within the scope of Information Systems 

(IS) and Human-Computer Interaction (HCI), we are far from being the pioneers in this field. 

Particularly, the idea of providing RA was first conceived by Negroponte (1970) and later examined 

by Kay (1984), preceding the birth of the Worldwide Web. Furthermore, over the past 20 years, 

behavioral scientists have conducted countless studies on how to improve individual decision-

making by making the task easier to execute (see Payne, Bettman and Johnson 1993). The 

relevance of such works to the design of RA is evident: RA embodies some psychological and 

behavioral understanding of what makes decision-making easier. Drawing from these fields of 

research can provide both a firmer foundation as well as practical design artifacts for RA. In our 

review, we observe that no study has offered a conclusive architectural view of RA by drawing from 

multiple disciplines. The studies closest to achieving this goal are that of Xiao and Benbasat 

(2007), which focuses on addressing the issues of trust and acceptance of RA, and that of 

Adomavicius and Tuzhilin (2005), which centers on comparing two extant RA models (i.e., 

collaborative-based and content-based) and proposing a hybrid preference model. Even with the 

presence of these studies, little has been known about how RA can be designed to assist 

consumers in making more informed and higher-quality decisions throughout the whole decision-

making process. 
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The purpose, and hence a distinguishing feature of this dissertation is to introduce a unified design 

framework for the RA with which designers are encouraged to provide system features to support a 

range of decision-making stages ranging from information search, through alternative evaluation 

and choice selection. We adopt the view that RA should provide informed guidance and 

recommendation to consumers in 1) learning about a product, 2) constructing preferences, and 3) 

evaluating alternatives and choosing a purchase alternative.  

In order to achieve our objectives, we first review previous theoretical and empirical studies of RAs 

in online shopping environments that were published since 2000 when RA becomes visible. A 

search of literature in IS, Marketing, Psychology, Economics and Computer Science was 

undertaken to identify 1) the relevant RA and related HCI studies, and 2) the theoretical 

justifications for the existing RA implementations and our visualized RA design. Academic 

databases for published journal articles, such as EbscoHost, were searched by using relevant 

keywords. The tables of contents of leading journals in various referenced disciplines were also 

scanned for relevant and related theories and studies.  

We next present two empirical studies and one theoretical article on RA. Essay One builds on the 

theoretical underpinning of Cognitive-Experiential Self-Theory to examine two features of RA: 

product learning and preference elicitation supports. Product learning support uses different 

communicating modes, i.e., text and video, to educate consumers on the meanings and 

importance of product attributes. Preference elicitation support, on the other hand, focuses on 

assisting consumers in articulating their preferences. The tools investigated are need-based and 

attribute-based. Drawing on the Cognitive-Experiential Self-Theory (CEST), we posit that: 1) where 

the provisions of the product learning and preference-elicitation supports facilitate the consistent 

practice of one dominating form of processing system (i.e., either the “experiential” or “analytical”) a 
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consumer will experience greater decision confidence and exhibit a lower propensity for purchase-

avoidance; and 2) where the provisions of the two supports lead to switching between the two 

processing systems, a consumer will experience poorer decision performance. 

Essay Two focuses on examining two RA features: screening support and evaluation support. The 

study references the Resource-Matching Theory to examine the interaction between decision aid 

features (i.e., low versus high-screening support, and aids with weight assignment and 

computation decision tools) and attribute-load (i.e., large versus small number of product attributes) 

on decision performance. The findings from a laboratory experiment reveal that: 1) where the 

decision aids render cognitive resources that match those demanded for the task environment, 

consumers will process more information and decision performance will be enhanced; 2) where the 

decision aids render cognitive resources that exceed those demanded for the task environment, 

consumers will engage in less task-related elaboration of decision-making issues to the detriment 

of decision performance; and 3) where the decision aids render cognitive resources that fall short 

of those demanded for the task environment, consumers will either employ simplistic heuristic 

decision strategies to the detriment of decision performance, or invest additional effort in 

information processing to attain a better decision performance, if they perceive the additional 

investments in effort to be manageable. 

Essay Three concludes the dissertation by proposing a set of RA design artifacts to address 

decision difficulties entailed during consumer procurement expedition with the outlook of reducing 

purchase-avoidance propensity. Specifically, we propose and theorize a research framework 

demarcating seven RA design features, i.e., preference learning, preference discovering, 

preference framing, option framing, decision strategy-based screening, decision guidance, and RA 

personalization, in alleviating decision-difficulty. 
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A.2 RA RESEARCH 
The idea of having an RA in the electronic marketplace was first conceived to help consumers in 

addressing the information overload problem (Smith 2002). Specifically, RA builds on the 

preference information elicited by users to filter product options and propose suggestions to the 

users (Haübl and Murray 2003; Grenci and Todd 2002). In other words, rather than flooding the 

consumers with an overwhelming  plethora of product offers and information, an RA assists 

consumers by using information about the consumers’ preferences to identify a small subset of 

alternatives that are more likely to interest them (Smith 2002; Ansari, Essegaier and Kohli 2000).  

One of the earliest academic demonstrations of the worth of RA in alleviating information 

overloading problem is the work by Haübl and Trifts (2000). The authors examine two aiding 

features of RA: one that assists in screening alternatives, and another one that rearranges 

alternatives to make evaluation easier. Their study shows that the provision of aid that supports 

screening and/or rearrangement of alternatives significantly improves the quality of the decision 

made. This view is supported by Montgomery and his colleagues (2004) who conjecture that by 

reducing the cognitive effort associated with evaluating the alternatives, decision aids could 

substantially increase consumers’ propensity to increase the search for more information and 

commit purchases. Other studies have also reported similar findings (see Xiao and Benbasat 2007; 

Smith 2002). 

Beyond articulating the benefits of having an RA with cognitive-effort minimization, a vast body of 

literature has also been devoted to understanding the extent to which RA influences consumer 

decision-making behavior. Extant studies suggest that RA could induce consumers to 1) evaluate 

unfamiliar products together with the familiar (Cooke, Sujan, Sujan, and Weitz 2002), 2) render an 

attribute more prominent by explicitly including it in the recommendation (Haübl and Murray 2003), 
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3) decrease price sensitivity by lowering the search cost for quality information (Diehl, Kornish and 

Lynch 2003), 4) help consumers to learn more about the product domain and better match their 

preferences by controlling the information flow (Ariely 2000), and 5) assist consumers to discover 

new products or generate demand for unfamiliar products through providing personalized offers 

(Tam and Ho 2005).  

Other studies focus on identifying the conditions in which RA performs best. For instance, RA is: 1) 

observed to possess a greater impact on consumer behavior under conditions of high product risk 

(Swaminathan 2003), 2) evaluated more favorably for search goods than experience goods 

(Aggarwal and Vadyanathan 2005), 3) assessed less positively when the unsolicited 

recommendation or advice contradicts consumer’s initial impressions (Fitzsimons and Lehmann 

2004), 4) better received by consumers when the recommendations are more transparent (Sinha 

and Swearingen 2002), and 5) perceived to be more useful if the RA provided takes into 

consideration the consumer’s characteristics, such as frequency of purchase and perceived risk 

(Sproule and Archer 2000).  The thesis underlying these studies is that RA could offload 

consumers’ effort in evaluating every single alternative by providing guidance and restricting the 

evaluation to the few recommended alternatives that are highly correlated with consumers’ overall 

elicited preferences (Tan 2003). To this end, RA could induce consumers to make decisions in 

accordance with the intention of the agent, which is to encourage consumers to procure (Haübl and 

Murray 2003; Diehl et al. 2003). However, when such intent is perceived to contradict with the 

consumers’ initial impressions of RA usage, a behavioral backlash of ignoring the agent’s 

recommendations may result (Fitzsimons and Lehmann 2004). 

This leads to the next question: How can we design an RA that is well received by consumers? To 

arrive at the answer, we need to first understand that the ability of RA to recommend suitable 
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alternatives depends on how well information on consumers’ preferences is obtained. This 

approach accords with the view that the cost of relying on a badly-designed RA that makes poor 

recommendations, such as those that do not match the consumer’s preferences, can well negate 

the value of using it (Haübl and Murray 2006). 

Table 1 tabulates some of the key studies related to RA. 
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Table 1. Review of Extant RA literature 

Authors and 
Year Research Question/Focus 

Research 
Methodology Constructs used 

Underlying 
Theoretical 
Framework Main Findings/Contributions 

Adomavicius 
and Tuzhilin 
(2005) 

Review of the implementations of 
collaborative-based and content-
based RA. 

Conceptual Not applicable Multi-criteria A hybrid model of an RA that combines 
collaborative-based and content-based techniques is 
proposed. Suggestions on the extension of RA to 
incorporate other factors including the consideration 
of contextual information and the provision of more 
flexible and less intrusive types of recommendations. 

Aggarwal and 
Vaidyanathan 
(2005) 

How will search and experience 
goods affect consumers’ 
perceived effectiveness of two 
RA routines, i.e., rule-based 
filtering and collaborative 
filtering? 

Laboratory 
Experiment 

• Perceived 
Quality of 
Recommendati
ons, 

• Satisfaction 
with the RA,  

• Intent to 
Follow-Up on 
Recommendati
ons  

 

Applied Psychology RA was evaluated more favorably for search goods 
than experience goods. 

 

Further, rule-based recommendations were 
preferred for search goods. However, for experience 
goods, recommendations based on rule-based 
processes and collaborative-filtering processes were 
perceived to be comparable. 

 

Aksoy et al. 
(2006) 

What is the impact of the 
similarity in the attribute weights 
and decision strategies of an 
agent and consumer, on the 
decision performance and 
perception of the agent? 

Experiment • Decision 
strategy 

• Attribute weight 
• Perceived 

benefits 
• Perceived costs 
• Conformity to 

recommendatio
ns 

• Quality of 
decision made 

Concept of similarity Consumers made better decisions using a similar 
agent but were believed to make better choices 
without using an agent than when using a doubly 
dissimilar agent. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Ansari et al. 
(2000) 

Recommendations are based on 
content and/or collaborative filtering 
methods. The merits of these 
methods are examined and 
preference models used in 
marketing are examined if they are 
good alternatives. 

Statistical 
Model, 
Computer 
Simulation 

• Person’s 
Expressed 
Preferences 

• Preferences of 
other 
Consumers 

• Expert 
Evaluations 

• Item 
Characteristics 

• Individual 
Characteristics 

Preferences Models 
used in Marketing, 
Regression, 
Hierarchical Bayesian 
Approach, Markov chain 
Monte Carlo methods. 

Described a Bayesian preference model that allows 
statistical integration of five types of information 
useful for making recommendations: a person’s 
expressed preferences, preferences of other 
consumers, expert evaluations, item characteristics 
and individual characteristics. 

Ariely (2000) Marketers have to select the type of 
information system they want to 
utilize in order to deliver to their 
consumers the most appropriate 
information on which they can base 
their decisions. 

 

An interesting and distinguishing 
dimension of such information 
systems is the level of control the 
consumer has over the information 
system. 

Laboratory 
Experiment 

• Level of 
Information 
Control 

• Cognitive Load 
imposed by the 
Information 
System 

• Amount 
Experienced 
with the 
Interface 

• Decision Quality 
• Memory 
• Knowledge 
• Confidence 

Information Control Controlling the information flow can help consumers 
better match their preferences, have better memory 
and knowledge about the domains they are 
examining, and be more confident in their 
judgments. 

 

However, controlling the information flow creates 
demands on processing resources and therefore, 
under some circumstances can have detrimental 
effects on consumers’ ability to utilize information. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Ariely et al. 
(2004) 

Intelligent recommendation systems 
can be based on 2 basic artifacts: 
collaborative filters and content-
based agent. 

 

Examine the learning function that 
results from these 2 general types of 
learning-smart agents. 

Computer 
Simulation 

• Algorithms for 
Intelligent Agents 
(Random, 
Collaborative 
filtering by K-
mean clustering, 
Collaborative 
filtering by 
nearest neighbor, 
Content-based 
logistic-regression 
intelligent agents) 

• Success 
Measurement 
(Probability of 
Purchasing, 
Comparing the 
performance of 
the agent to an 
omniscient who 
always 
recommended the 
product of the 
highest utility for 
target consumers. 

Recommendation 
Agent, Clustering, 
Nearest-Neighbor 
Algorithm, Regression 

Comparing collaborative filters, K-mean agents 
learning as well as nearest-neighbor algorithm for 
consumers who are close to the centroids of their 
clusters, but less well for consumers farther from 
cluster centroids. Compared to collaborative filters, 
individual agents (a) learn more slowly initially, but 
are better off in the long run if the environment is 
stable; (b) recover faster after a permanent change 
in the consumer’s utility function; and (c) are less 
adversely affected by random error in the purchase 
thresholds that make purchase a noisy indicator of 
underlying utility functions. 

 

Do not necessarily imply that collaborative agents 
are inferior. 

Best approach for smart agents is to base their 
recommendations on a mixture of these two 
approaches: When there is little or no knowledge, 
there should be a reply on the collaborative 
component, but as information about a consumer 
accumulates, the recommendations of individual 
agents should prevail. 
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Authors 
and Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Cooke et. al. 
(2002) 

How do consumers respond to 
recommendations of unfamiliar 
products made by electronic 
agents? 

How might recommendation 
context (assimilation and contrast) 
affect the evaluation of unfamiliar 
recommendations? 

How might the provision of item-
specific information affect the 
evaluation of unfamiliar 
recommendations? 

How might recommendation 
context and item-specific 
information affect the evaluation of 
electronic agents? 

Laboratory 
Experiment 

• Recommendation 
Context 

• Item-Specific 
Information 

• Purchase 
Likelihood 

• Agent Rating 
• Reservation Price 

Consumer Behavior Additional recommendations of familiar products 
serve as a context in which unfamiliar 
recommendations are evaluated. When the 
presentation of the recommendations makes 
unfamiliar and familiar products appear similar, 
evaluative assimilation results. When additional 
information about unfamiliar products is given, 
consumers discriminate them from the familiar 
products, which produce evaluative contrast. 
Information that leads to higher evaluations when 
context is absent can lead to contrast and lower 
evaluations in the presence of attractive contextual 
recommendations. 

Dastani et 
al. (2005) 

How should a generic 
recommendation agent be 
designed to support preference 
elicitation? 

Conceptual/algo
rithm-based 

Not applicable Formal analysis, 
Inductive Logic 
Programming 

Generic agent architecture is proposed. In the view 
of the authors, an agent should induce preferences 
of the involved participants (either human or 
automated agent) by observing their behavior. 
Through the observation, the agent could fine-tune 
the preference model according to the interacting 
environment. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Diehl et al. 
(2003) 

In markets in which price and 
quality are uncorrelated, will the 
use of screening agents increase 
or decrease prices paid compared 
to searching from an unordered 
list of options? 

Will increasing the size of the 
store’s underlying assortment 
increase or decrease prices paid 
when options have been 
screened on quality? 

In markets where higher priced 
goods have higher quality, will the 
use of screening increase or 
decrease prices paid and quality 
selected? 

Laboratory 
Experiment 

• Type of 
Search Agent 

• Assortment 
Size 

• Order of 
Search 

• Order of 
Recipient 

• Sequence of 
Search 

• Relative 
Importance of 
Price in the 
Reward 
Function 

Consumer Behavior Contrary to previous findings lower search costs for 
quality information decreased price sensitivity; 
decreasing search costs for quality information by 
the screening and sorting mechanisms has the 
opposite effect on differentiation and price sensitivity. 

 

 

 

 

 

 



  

 13 

Authors 
and Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying Theoretical 
Framework 

Main Findings/Contributions 

Fitzsimons 
and 
Lehmann 
(2004) 

Consumer response when 
recommendations are made 
by experts and intelligence 
agents contradict initial 
impressions of choice 
options. 

Laboratory 
Experiment 

• Source of 
Recommendation 
(Expert, Non-Expert) 

• Recommendation 
Valence (Supportive, 
Nonsupportive) 

• Attractiveness of 
Recommended 
Option (Dominant, 
Dominated) 

• Expectation of Ability 
to Choose 

• Individual Reactance 
• No. of Target 

Attractive Options 
Chosen 

• Choice Percentage of 
Target Attractive 
Options 

• Decision Satisfaction 
• Difficulty in Making 

Decisions 
• Confidence Correct 

Decisions Made 

Recommendations, 
Intelligent Agents, 
Decision Support System, 
Theory of Reactance 

Unsolicited advice that contradicts initial impressions 
leads to the activation of a reactant state on the part 
of the decision-maker. This reactance, in turn, leads 
to a behavioral backlash, which results not only in 
consumers ignoring the agents’ recommendations 
but in intentionally contradicting them. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Gershoff et 
al. (2003) 

Past opinion agreement 
between the consumer and 
an agent is an important cue 
in customers’ acceptance of 
current agent advice. 

 

Different types of past 
agreements can have 
different effects on the 
acceptance of current agent 
advice. 

Laboratory 
Experiment 

• Overall Opinion 
Agreement 

• Extreme Opinion 
Agreement 

• Preference 
Structures for 
Extreme Objects 

• Likelihood of 
Accepting the 
Agent’s Advice 

• Acceptance of 
Agent Advice 

Determinant of 
Diagnosticity, Relative 
Diagnosticity between 
Positive and Negative 
Areas of the Preference 
Structure. 

Individuals weigh different types of prior agreements 
differently, depending on aspects of the decision-
making context. In addition to the overall level of 
agreement, people also consider agreement on 
extreme opinions when assessing the usefulness of 
agent advice. Positive extreme agreement was more 
influential than negative extreme agreement when the 
agent provided positively balanced advice, but the 
converse was not true in the case of negatively 
balanced advice. 

Haübl and 
Murray 
(2003) 

The inclusion of an attribute 
in a recommendation agent 
renders this attribute more 
prominent in customers’ 
purchase decisions, 
everything else being equal. 

 

This preference construction 
effect may persist beyond 
the initial shopping 
experience and into 
subsequent choice settings 
in which no recommendation 
agent is available. 

Laboratory 
Experiment 

• Inclusion of Attribute 
• Inter-attribute 

Correlation 
• Perceived Rationale 

for Attribute 
Inclusion in the 
Agent 

• Amount of 
Information Search 

Information 
Presentation Format, 
Feature-Based Priming, 
Potential Information 
Value of Attribute 
Inclusion 

Preferences of human decision-makers can in fact be 
influenced in a systematic and predictable manner by 
merely altering the composition of the set of product 
attributes that are included in an electronic 
recommendation agent. This preference-construction 
effect is likely to persist for some time and affect 
subsequent purchase decisions in different settings – 
either in an electronic shopping environment or 
possibly in bricks-and-mortar stores. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Haübl and 
Murray 
(2006) 

Recommendation agents are 
“double agents” in the sense 
that they act on behalf of 
both the buyer and the 
seller, and have the potential 
to both aid and influence 
buyers in their decision-
making. 

Conceptual • Product Choices 
• Search Effort 
• Prices 
• Influence of 

Recommendation 
Agent 

• Trust 

Electronic 
Recommendation 
Agent, Decision 
Support System, 

Consumer Decision -
making, Human-
computer Interaction 

The consumer-centric double agent perspective 
provides a framework for the design of product 
recommendation agents that focus on delivering value 
to consumers by accelerating their decision processes, 
while at the same time improving the quality of the 
product choices they make. This perspective takes into 
account the competitive advantage gained by a vendor 
that delivers the benefits of agent-assisted shopping 
and improves its own position in the marketplace 
through its electronic agent’s influence on consumer 
preferences. 

Haübl and 
Trifts (2000) 

How does the use of 
interactive decision aids 
such as an 
Recommendation Agent and 
Comparison Matrix affect 
consumers’ search for 
product information, the size 
and quality of their 
consideration sets and the 
quality of their purchase 
decisions in an online 
shopping environment? 

Laboratory 
Experiment 

• Interactive Decision 
Aids – 
Recommendation 
Agent and 
Comparison Matrix 

• Amount of search 
for product 
information 

• Consideration Set 
Size 

• Consideration Set 
Quality 

• Decision Quality 

Marketing, Judgment 
and Decision-making, 
Psychology, Decision 
Support System 

Interactive decision aids designed to assist consumers 
in the initial screening of available alternatives and to 
facilitate in-depth comparisons among selected 
alternatives in an online shopping environment may 
have strong favorable effects on both the quality and 
the efficiency of purchase decisions – shoppers can 
make much better decisions while expending 
substantially less effort. 

 

 

 



 

  16 

Authors 
and Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Herlocker 
et al. 
(2004) 

How to evaluate collaborative 
filtering recommender systems and 
their algorithms. 

Review, 
Conceptual, 
Computer 
Simulation 

• User Tasks for 
Recommender 
System 

• Types of 
Analysis 

• Types of Data 
Set 

• Accuracy Metrics 

Collaborative Filtering 
Recommendation 
Agent, Accuracy 
Metrics 

Reviewed the evaluation strategies used by previous 
researchers. 

 

Empirical results from the analysis of various accuracy 
metrics on one content domain shows that all the 
tested metrics collapsed roughly into three equivalence 
classes. Metrics within each equivalency class were 
strongly correlated, while metrics from different 
equivalency classes were uncorrelated. 

Ho and 
Tam 
(2005) 

How does exposure to personalized 
offers affect subsequent product 
consideration and choice outcome? 

 

Examine the effect of three major 
elements of web personalization 
strategy on users’ information 
processing through different 
decision-making stages: 
personalized content quality, 
features overlapping among 
alternatives and personalized 
message framing. 

Laboratory 
Experiment 

• Personalization 
Timing 

• Personalized 
Content Quality 

• Feature 
Overlapping 

• Personalized 
Message 
Framing 

• Composition of 
Consideration 
Set 

• Final Choice 

Human-Computer 
Interaction, User 
Behavior, Decision-
making, Web 
Personalization, 
Consideration Set 
Theory 

When users are forming their consideration sets, the 
agent can play a role in helping users discover new 
products or generate demand for unfamiliar products. 
Once a decision has been made, however, the 
personalization agent’s persuasive effects diminish. 
The role of personalization agents changes at different 
stages of a user’s’ decision-making process. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Komiak and 
Benbasat 
(2004) 

Persuasiveness of an 
recommendation agent (RA) – 
Identifying the most persuasive 
recommendation agent type and 
explaining why it is so. 

Conceptual • RA Types 
• Appropriateness 
• Consistency 
• Effectiveness 
• RA’s 

Persuasiveness 

Recommendation 
Agent, Decision 
Support System, 
Reardon’s 
Persuasion Theory – 
ACE 
(Appropriateness, 
Consistency, 
Effectiveness) 
Theory 

Builds a research model grounded in  Reardon’s 
Persuasion Theory to examine which type of 
recommendation agent  is most persuasive and why. 

 

The persuasiveness of an RA may vary with customer 
expertise and product complexity; however, it is not 
clear how and why these differences will happen. 

Middleton et 
al. (2004) 

How to profile consumers when 
building the collaborative-based 
algorithm. 

Conceptual • Not applicable Artificial Intelligence The authors adopted the ontological approach toward 
profiling users within an RA. Two experimental 
systems were built to create user profiles from 
unobtrusively monitored behavior and relevance 
feedback. Experiments were subsequently 
conducted. They showed that the ontological 
inference can improve user profiling. 

Miller, Joseph, 
Konstan and 
Riedl (2004) 

How to build an RA that does 
not only run on large server 
computers (but in small devices 
such as handheld tools as well) 
and harness the peer-to-peer 
network to offer personal 
assistance to individual 
consumers. 

Conceptual/Syst
em design 

Not applicable Computer science A collaborative-based RA, PocketLens, is proposed. 
Simulation results suggest that PocketLens can offer 
recommendations that are as good as the best 
published algorithms to-date, even when residing in 
connected workstations and occasionally, portable 
devices. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Moon (2003) When consumers use 
computers to help make 
purchase decisions, how do 
they attribute responsibility for 
the positive or negative 
outcomes of those decisions? 

Laboratory 
Experiment 

• Decision 
Outcome 

• Intimate Self 
Disclosure with 
Computer 

Self-Serving Bias, 
Theory of Social 
Response 

Attribution of responsibility reflects a self-serving bias: 
Consumers tend to blame computers for negative 
outcomes and tend to take personal credit for the 
positive. However, when consumers have a history of 
intimate self-disclosure with a computer, this pattern 
of attribution is significantly mitigated: Consumers are 
more willing to credit the computer for positive 
outcomes, and are more willing to accept 
responsibility for negative outcomes. 

Sinha et al. 
(2002) 

The role of transparency (user 
understanding of why a 
particular recommendation was 
made) in a Recommender 
System. 

Survey • Music 
Recommender 
System 

• Liking 
• Confidence 
• Transparency 

Recommendation 
Agent, Human-
Computer Interaction 

In general, users like and feel more confident in 
recommendations perceived as transparent. Users 
are not just looking for blind recommendations from a 
system, but are also looking for a justification of the 
system’s choice. 

Smith (2002) Will RA benefit consumers at 
the expense of retailers? 

How will consumers respond to 
the presence of RA services 
and to the information presented 
by RA? 

How should retailers adjust the 
elements of their marketing mix 
in response to RA? 

How should the RA design and 
price its services to achieve 
profitability? 

Review, 
Conceptual 

• RA Taxonomy 
• Impact of RA 
• Consumer 

Behavior 
• Retailer Behavior 

Consumer Behavior An RA places pressure on retailer margins in some 
circumstances. However retailers retain numerous 
opportunities to differentiate their products, leverage 
brand names, set strategic prices, and reduce the 
effectiveness of consumer search at an RA. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Sproule and 
Archer (2000) 

How theories and findings from 
DSS and marketing research 
can be used to develop and 
design software agents that 
buyers will find useful and 
usable in e-commerce. 

Conceptual • Frequency of 
Purchase 

• Perceived Risk 
• Search Behavior 
• Search Support 
• Choice Behavior 
• Choice Support 

Marketing Models 
and Decision Support 
System 

Frequency of purchase and perceived risks provide a 
framework that can help match agent functions to buyer’s 
need. 

The Purchasing Situation Model can identify important 
differences in the type of information required, the extent 
and duration of search behavior, and the choice 
processes likely to be used. 

Swaminathan 
(2003) 

Use of recommendation agents 
can lead to increase in 
consumer welfare. 

The role of category risk, 
product complexity, and 
customer category knowledge, 
in moderating the impact of 
recommendation agents on 
consumer welfare. 

Laboratory 
Experiment 

• Product 
Complexity 

• Product Category 
Risk 

• Category 
Knowledge 

• Amount of Search 
• Decision Quality 
• Recommendation 

Agent 

Information Overload, 
Information Search 

Recommendation agents have a greater impact on 
decision quality under conditions of the high risk 
category. In addition, recommendation agents have a 
greater impact on reducing the amount of search when 
the number of attributes used to describe a product is 
smaller. 

Tam and Ho 
(2005) 

What are the effects of different 
personalization strategies 
applied at different stages in the 
process of persuasion? 

What are the variables related 
to the user’s personal 
disposition and technology 
features that may have an 
impact on each stage of the 
process? 

Field 
Experiment 

• Preference 
Matching 

• Need for 
Cognition 

• Use of Sorting 
Cue 

• Set Size 
• Attention 
• Elaboration 
• Accept 

Personalized 
Offer 

Recommendation 
Agent, Human-
Computer Interaction, 
Elaboration 
Likelihood Model of 
Persuasion, 
Information-
Processing Model 

Web personalization influences users in two major ways: 
(1) It affects elaboration and decision-making through the 
central route of persuasion by offering products that 
match the preferences of customers. (2) A 
personalization agent can manipulate the presence or 
absence of a sorting cue and the number of 
recommended offers to invoke heuristic rules for users. 
This is the peripheral route of persuasion. 

Personal disposition, as measured by Need for Cognition 
(NFC), played a pivotal role in influencing a user’s level 
of elaboration and choice outcome. Users who have little 
motivation to exert cognitive effort to evaluate the merits 
of alternatives tend to rely on recommendations 
suggested by the personalization agent. 
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Authors and 
Year 

Research Question/Focus Research 
Methodology 

Constructs used Underlying 
Theoretical 
Framework 

Main Findings/Contributions 

Xiao and 
Benbasat 
(2007) 

How do RA use, RA 
characteristics and other factors 
influence consumers’ shopping 
decision-making processes and 
outcomes? 

How do RA use, RA 
characteristics and other factors 
influence users’ evaluations of 
RAs? 

Conceptual • Outcomes of RA 
Use (Consumer 
Decision Making 
and Users’ 
Evaluation of RA) 

• Product 
• User 
• User-RA 

Interaction 
• RA 

Characteristics 
• Provider 

Credibility 
• RA Use 
• Intention for 

Future Use 
• Future Use of RA 

Decision Support 
System, Consumer 
Decision Making, 
User’s Subjective 
Evaluation of RAs, 
Theories of Human 
Information 
Processing, Theory 
of Interpersonal 
Similarity, Theories of 
Trust Formation, 
Technology 
Acceptance Model, 
and Theories of 
Satisfaction. 

Presented a set of theory-based propositions 
concerning the outcomes of RA use and RA adoption 
intentions in e-commerce settings. Went beyond 
generalized models such as TAM to identify the RA 
specific features, such as RA input, process and output 
design characteristics, that influence users’ beliefs and 
evaluations, including usefulness and ease-of-use 
concerning RA. 

Xiao et al. 
(2003) 

Lack of customer service and 
marketing analysis tools in most 
e-commerce web sites. 

Prototype, 
Laboratory 
Experiment 

• Order-Based 
Similarity 
Measure 

• Weight 
Modification 

• Adaptation 

Recommendation 
Agent, Case-Based 
Reasoning, 
Collaborative 
Filtering, Clustering 
Analysis 

Constructed an intelligent agent based on Case-Based 
Reasoning and collaborative filtering. This agent is 
included in a product recommendation system called 
PCFinder. 

The validity test of PCFinder indicates that most people 
are satisfied with the Order-Based Similarity Measure, 
and they also believe that both weight modification and 
adaptation can improve its performance. Furthermore, 
applying either short-term or long-term constraints 
resulted in more satisfactory recommendations (than not 
applying them). 
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B. ESSAY ONE 
ASSESSING PRODUCT LEARNING AND PREFERENCE ELICITATION 
DECISION SUPPORTS: A COGNITIVE-EXPERIENTIAL SELF PERSPECTIVE 

 
B.1 INTRODUCTION 
Understanding how consumers utilize decision aids to make purchase decisions has been a topic 

of enduring interest in Information Systems (IS) literature, particularly in the arena of Decision 

Support Systems (DSS). With a growing commercial interest arising from firms1 offering a wide 

variety of decision aids, such as Recommendation Agents (RAs), on the Internet to support 

consumer decision-making (Ansari, Essegaier, and Kohli 2000), DSS research becomes more 

pertinent. The bulk of the research effort in this field has been directed towards understanding the 

provision of screening and evaluating supports in its entirety2 (Xiao and Benbasat 2007; 

Montgomery, Hosanagar, Krishnan, and Clay 2004; Olson and Widing 2002; Haübl and Trifts 

2000). Essay Two will examine the decision supports for screening and evaluation of alternatives in 

detail. Implicit in these studies, and relatively untested, are the assumptions that most consumers: 

1) have adequate knowledge about the product of interest and 2) are able to elicit preferences 

sufficiently well to engage in alternative screening and evaluation. 

The paucity of empirical studies devoted to examining decision supports for product learning and 

preference elicitation can be understood from two aspects. First, the majority of the DSS literature 

focuses on helping individuals to process and filter the vast amount of available information to 

                                                      

1 The U.S. Census Bureau’s Quarterly Retail E-Commerce Sales reported that e-commerce sales for the fourth quarter 
of 2005 were $22.9 billion, 23% higher than the fourth quarter, 2004 sales of $18.4 billion. 
2 Consumers typically initiate the decision-making process by establishing a list of minimally acceptable product 
attribute level(s) that an alternative must possess in order to be considered further as a possible choice, known as 
screening (Olson and Widing 2002; Edwards and Fasolo 2001). The screened alternatives are then assessed carefully 
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make an informed decision (Eom 2003; Edwards and Fasolo 2001). While it is plausible that 

consumers could learn about a product by engaging in extensive screening and evaluation of the 

alternatives (i.e., by trial-and-error), consumer decision-making literature has clearly documented 

that consumers often engage in important stages of the decision-making process such as learning 

about a new product or service (Hoeffler 2003) and eliciting preferences based on gained 

knowledge (Kardes, Cronley and Kim 2006) before screening and evaluating alternatives 

(Schwartz 2004). Decisional supports to be provided, and hence their effectiveness, could differ 

depending on the objectives and purposes of the usage (Häubl and Murray 2006; Edward and 

Fasolo 2001). Towards this end, the capacity of an RA to recommend suitable alternatives 

depends on how well information on consumers’ preferences is obtained (Xiao and Benbasat 

2007), which in turn depends on the extent to which a consumer is familiar with the product. 

Consequently, an inability to better support consumer decision-making process could yield a 

devastating impediment to Internet Commerce. For instance, consumer decision-making literature 

has suggested that when a consumer faces difficulties during decision-making (e.g., a lack of 

product knowledge to elicit preference clearly), he has an inclination to exhibit the purchase-

avoidance behavior despite having the need to consume the product/service (Anderson 2003). 

Purchase-avoidance behavior refers to a tendency to postpone committing to a purchase or to 

seek a less painful way out that involves no action or no change (i.e., abandoning the inclination of 

committing to a purchase). An online manifestation of purchase-avoidance behavior is the 

                                                                                                                                                              

to make a choice, and this process is known as evaluation (Alba, Lynch, Weitz, Janiszewski, Lutz, Sawyer, and Wood 
1997). 
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shopping cart abandonment rate, which hovers at a disturbingly high level of around 70 percent 

even for today3 (Mummalaneni 2005). 

Second, we attribute the paucity of empirical studies researching on decision supports for product 

learning and preference elicitation to the well-documented complexity of assessing the impact of IT 

artifacts. Specifically, as highlighted by Kumar and Benbasat (2006), developing and mimicking 

websites equipped with RAs, for instance, could be difficult due to: 1) the complexity in building 

online decision aids that are of adequate realism, and 2) the constraints in generating sufficient 

product data. For instance, in our study, the challenges in replicating online product reviews, 

inoculating preference elicitation mechanisms, and collecting information on product alternatives 

could all impede research initiatives. Our study takes a similar approach to Kumar and Benbasat 

(2006) by studying the commercial implementations and extracting the product content of 

commercial websites to manipulate the supports offered for the product learning and the 

preference elicitation. With respect to our product learning support, we referenced websites such 

as mySimon.com and Shopper.com, which leverage on review websites, such as CNET.com and 

About.com, to assist consumers to acquire relevant product knowledge. For the preference 

elicitation support, we observe that websites such as CNET ExactChoice, Surprise.com, Dealtime, 

and mySimon, offer two different forms of preference elicitation supports, namely need-based and 

attribute-based systems (Grenci and Todd 2002). Attribute-based preference elicitation refers to 

the indication of consumer preferences through defining product attribute criteria while need-based 

                                                      

3 Cherkassky, I. “Improving the E-Tail Shopping Experience,” E-Commerce, 2006 [url: 
http://www.vovici.com/pdf/200603-targetmarketing.pdf; last accessed: March 20, 2008] 
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preference elicitation denotes a set of rules to interpret or translate consumer-specified 

preferences (i.e., needs) into alternative product attribute criteria. 

Figure 2: Sample Screenshots of the Experiment 
Product Learning Support 

 

 
 

Video-based Text-based 
Preference Elicitation Support 

 
Attribute-based 
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Need-based 

In response to the lack of understanding of decision supports for product learning and preference 

elicitation, this study focuses on assessing two decisional supports offered by an RA, namely 

product learning and preference elicitation supports. We examine the effectiveness of the product 

learning support and preference elicitation support in terms of their influence on decision 

performance. The central proposition to be examined in this study is that a Web store’s provision of 

the product learning support, as it is implemented in the forms of product reviews in the text and 

video modes; and of the preference elicitation support, as it is implemented by the attribute-based 

and need-based product preference elicitation mechanisms, will influence a consumer’s perception 

of the decision-making process and outcomes. We assess this proposition by drawing on the 

Cognitive-Experiential Self-Theory (CEST) to posit that: 1) where the provisions of product learning 

and preference-elicitation supports facilitate the consistent practice of one dominating form of 

processing system (i.e., either the “experiential” or “analytical”), a consumer will experience greater 

decision confidence and exhibit a lower propensity for purchase-avoidance; and 2) where the 

provisions of the two supports lead to switching between the two processing systems, a consumer 

will experience a poorer decision performance. By focusing on the interaction effects of the product 

learning support and the preference elicitation support on decision performance, we seek to 
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provide a more nuanced theoretical understanding of the impact of decision aids in an online 

consumer decision-making environment. 

B.2 THE RA AND DECISION-MAKING 
Before we examine the product learning and preference elicitation supports of RA, it is imperative 

that we first gain a good understanding of RA in general. The idea of having an RA in the electronic 

marketplace was first conceived to help consumers in addressing the information overload problem 

(Kumar and Benbasat 2006; Smith 2002; Alba et al. 1997). Specifically, an RA builds on the 

preference information elicited by users to filter product alternatives and propose suggestions to 

the users (Haübl and Murray 2003; Grenci and Todd 2002). For instance, Haübl and Trifts (2000) 

studied two aiding features of RAs: one that assists in screening alternatives and another that 

rearranges alternatives to make evaluation easier. They demonstrated that the provision of aid that 

supports screening and/or rearrangement of alternatives significantly improves the quality of the 

decision made. This view is supported by Montgomery and his colleagues (2004) who 

hypothesized that by reducing the cognitive effort associated with evaluating the alternatives, 

decision aids could substantially increase consumers’ propensity to increase the search for more 

information and commit to purchases. Other studies have also reported similar findings (see Xiao 

and Benbasat 2007; Smith 2002). 

Beyond articulating the benefits of having an RA to address information overloading problems, an 

increasing amount of literature has been devoted to extending the application of RAs to better 

support the consumer’s decision-making process. For instance, extant studies have suggested that 

RAs could induce consumers to: 1) evaluate unfamiliar products together with the familiar, (Cooke, 

Sujan, Sujan, and Weitz 2002); 2) render an attribute more prominent by explicitly including it in the 

recommendation (Haübl and Murray 2003); 3) decrease price sensitivity by lowering the search 
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cost for quality information (Diehl, Kornish and Lynch 2003); 4) help consumers to learn more 

about the product domain and better match their preferences by controlling the information flow 

(Ariely 2000); and 5) assist consumers to discover new products or generate demand for unfamiliar 

products through providing personalized offers (Tam and Ho 2005).  

These studies collectively suggest the plausibility of equipping RAs to assist a consumer in: 1) 

acquiring knowledge about new products (i.e., product learning); and 2) articulating preferences 

(i.e., preference elicitation). 

B.2.1 PRODUCT LEARNING 
Studies related to product learning in an online context share the common objective of providing 

consumers with virtual product experiences that enable potential consumers to learn about a 

product (Li, Daugherty, and Biocca 2003). Such experiences could be built through the use of 

stimuli to induce desired product affordances, which in turn lead to better learning outcomes. 

Affordance is defined as a natural and intuitive set of rules that guide the manner in which 

consumers interact with products during pre-purchase inspection. Building on this definition, 

product affordance refers to the real and perceived cues that are available to direct consumers in 

interacting with a product during inspection (Norman 1998). 

Applying this affordance concept to online shopping, a new form of affordance termed as virtual 

affordance is proposed (Li et al. 2003). Virtual affordance refers to the use of an online medium or 

stimuli to induce consumers to learn and gain knowledge about a product without having direct 

and/or physical contact with the product. To gain virtual affordance on the Internet, consumers can 

either access online consumer reports, which are mainly in descriptive text formats, or watch 

related online product review videos. A significant amount of extant literature on product learning 
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focuses on comparing the effectiveness and impact of product learning across different modes, 

such as the text and video modes (e.g., Hoeffler and Ariely 1999; Bradley and Meeds 2004). 

Traditional online product information is usually delivered in the form of text and image modes. 

However, with the increasing availability of broadband and more advanced streaming technologies, 

consumers now enjoy a much richer virtual experience, involving multi-sensory interactions, 

incorporating videos with high-density resolution visuals, stereo sound, and 3-D imagery. This 

study focuses on comparing the traditional form of product learning (i.e., through the text mode) 

and the more recent presentations (i.e., through the video mode).  

In comparing the text and video modes, it is often posited that the video presentation mode can 

result in superior learning outcomes compared to equivalent text forms (Sweller 1994). The 

modality effects induced by video may lead to effective expansion of working memory which 

consequently results in better recall as well as better processing of intrinsic and extraneous 

information in product learning material (Chandler and Sweller 1991). The boom in online video 

consumer guides in the product review industry seems to affirm this inference. Increasing 

multimedia capability brought about by broadband has empowered the migration of Internet users’ 

online learning experience from a text based and two-dimensional visual experience to a 

multimedia and three-dimensional interactive experience. For instance, CNET, one of the world’s 

largest online review providers, now offers thousands of multimedia reviews produced by CNET 

editors on the latest technology and products and attracts more than 3 million unique visitors per 

month4. The immense success of CNET provides a compelling reason to investigate the future 

                                                      

4 CNET's Expansion May Signal a Turnaround in Tech Journalism,  http://www.ojr.org/ojr/glaser/1080709262.php (last 
visited: 24 March, 2007) 
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trend of online shopping if a proper alignment can be found between product learning and the RA 

websites. 

While there is a wealth of studies indicating that video which offers vivid information is likely to 

attract greater attention and is thus more persuasive than pallid information, i.e., one that is text-

based ( e.g., Daft and Lengel 1986), it may not always yield positive outcomes. For instance, when 

a medium is too rich for a task (e.g. choice of product), consumers with an excessively rich 

presentation mode such as a video could be distracted by non-essential cues and information, 

leading to poorer learning performance (McGill and Anand 1989). Furthermore, it has been 

suggested that when people are able to process vivid and non-vivid information in detail, similar 

levels of attention can be devoted to message processing thus eliminating the vividness effect 

(Kisielius and Sternthal 1984).  

Essentially, the comparison between the effects of providing product learning through text and 

video formats is inconclusive. Indeed, the discursive (symbolic or linguistic) information processing 

perspective (Foxall, Goldsmith, and Brown 1998), suggests that product learning should be 

designed to match the users’ procurement goals through the support of cognitive elaboration (i.e., 

reading, interpreting and storing the product information in memory for future use), which could in 

turn yield favorable product learning outcomes. However, from the perspective of imagery 

information processing (Green and Brock 2002), an RA that evokes mental images (i.e., though 

video) could yield a more favorable product learning performance. While both forms of processing 

can be supported and can occur concurrently, the dominance of one over the other could vary 

depending on how it is used. 
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B.2.2 PREFERENCE ELICITATION 
Preference elicitation support in extant RAs can be classified into two categories: attribute-based 

and need-based. The design of an attribute-based RA tends to align the product search criteria 

with names of common key features for the product category (e.g., optical and digital zooms for 

digital cameras). Consumer preference is assessed by analyzing the input value for each criterion. 

On the other hand, a need-based RA usually designs the product search criteria in accordance 

with the customer’s common needs. The search criteria are usually presented in a question-and-

answer format. The consumer’s preferences are indicated by selecting the most suitable answers 

to the questions which are embedded in the description of a specific need. 

Compared to an attribute-based RA, a need-based RA is able to link customers’ personal needs to 

product attribute configurations, thus facilitating the customers’ articulation of their information 

needs and making the need-based RA’s rationale easy to understand (Komiak and Benbasat 

2004). The extra facilitation and increased transparency will make the need-based RA more 

favorable to the consumer than the attribute-based RA. In addition, the need-based RA is more 

preferable to the attribute-based RA should a consumer lack knowledge of a particular product 

category, especially if one does not even understand the key features. Using the attribute-based 

RA in the latter case could turn out to be a very challenging task and hence the recommendation is 

unlikely to be accurate. 

Existing literature on the preference for need-based RAs is advocated by various streams of 

research. Some focus on the nature of products, for example, Grenci and Todd (2002) suggested 

that compared to the attribute-based RAs, need-based RAs would be the preferred method 

especially for recommending a complex good or service. On the other hand, others focus on both 

the consumer’s nature and prior knowledge (Grenci and Todd 2002; Felix, Niederberger, Steiger, 

and Stolze 2001). For instance, consumers may recognize the need to purchase a product; but 
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they may not be able to determine the specific product features required. A need-based RA, which 

frames product features based on the needs instead of the values of attributes, is recommended as 

an effective solution in this situation (Grenci and Todd 2002). In addition, even if customers 

understand their need for certain attributes, they might not understand the process required to 

configure the correct solution or to make the best product choice (Grenci and Todd 2002). An 

example cited by Häubl and Murray (2003) is the configuration of inter-related attributes such the 

weight and durability of a backpacking tent. This argument accords with the findings of Stolze and 

Nart (2004). The authors observed that novice customers regard need-based RAs as more helpful 

than attribute-based RAs. Felix et al. (2001) also acknowledged that, for buyers with little product 

knowledge, it can be particularly problematic to use an attribute-based RA, if they desire to receive 

recommendations based only on their personal needs and expected uses of the product. 

However, the findings of some empirical studies have produced inconsistent results and raise 

doubts concerning the common findings. In an experiment conducted by Felix et al. (2001), the 

authors observed that novice consumers who use need-based RAs are not significantly more 

satisfied than those who use attribute-based RAs. It appears that consumers may still prefer to 

manually check technical features in an attribute-based RA, even after receiving need-based or 

other types of recommendations (Spiekermann and Parachiv 2002). 

B.3 THE COGNITIVE-EXPERIENTIAL SELF-THEORY 
The Cognitive-Experiential Self-Theory (CEST) builds on the theorem that the human information 

processing system is dual in nature to hypothesize the relationship between the human processing 

system and behavior (Briňol, Petty and Wheeler 2006). The CEST posits that a consumer learns 

and constructs an implicit model of the world based on two distinct modes of information 

processing systems, namely the experiential and the analytical (Epstein 1991, 2003). The 
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experiential processing system is based on the visual recognition of patterns or associations that 

are often formed with rudimentary and rapid processing. An individual who utilizes the experiential 

processing system often constructs product knowledge based on images, feelings and sensations. 

The analytical processing system, in contrast, is consciously directed and intense, often 

characterized by more deliberative and refined processing of information. An individual who 

activates the analytical processing system tends to gain an understanding of a product through 

symbols, words and figures. The CEST postulates that a consumer could utilize both processing 

systems (i.e., the experiential system enables a consumer to learn and think quickly and 

conceptually, while the rational processing system focuses on the details) concurrently under 

certain conditions. However, the impact on behavior could differ along a continuum and is 

influenced by the relative contribution of these two systems (Epstein 1991, 2003). 

The CEST was first proposed and tested empirically by Epstein and his colleagues (Kirkpatrick and 

Epstein 1992; Epstein 1994; Morling and Epstein 1997; Pacini, Muir and Epstein 1998). They 

demonstrated that the distinction between the experiential and rational processing systems is 

useful for understanding a variety of human behaviors. For instance, these studies have applied 

the CEST to demonstrate and explain the existence of the two processing systems (Epstein, 

Lipson, Holstein and Huh 1992); to predict and identify the conditions in which individuals will 

prefer either self-enhancing or self-verifying feedback (Morling and Epstein 1997); and to compare 

the consequences, such as the probability of judgment errors (Epstein and Pacini 1999) and the 

choices made (Kirkpatrick and Epstein 1992), when adopting different processing systems. 

In recent years, the CEST has been widely adopted by other researchers and applied in many 

psychology-related fields of study. For instance, it has been observed that: 1) when an 

experientially motivated individual is primed to think about his own death, he is more likely to be in 
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agreement with having proper measures against terrorism when compared to a rationally motivated 

individual (Simon, Greenberg, Harmon-Jones, Solomon, Pyszczynski, Arndt and Abend 1997); 2) 

experientially motivated jurors have a tendency to award significantly lower damages to the plaintiff 

when the defendant is attractive as opposed to rationally motivated jurors (Lieberman 2002); and 

3) when a consumer has limited processing resources, he would exhibit more affective reactions 

(i.e., experiential) compared to another consumer who has substantial  processing resources, and 

would thus exhibit a rational reaction (Shiv and Fedorikhin 1999). 

Despite the importance of the CEST in contributing to a better understanding of human behavior, 

no Information Systems (IS) study has yet applied this theory to evaluate the effects of decision 

aids on decision-making performance. There could be two plausible explanations for this. First, 

prior IS studies have traditionally referenced related human information processing theories (Eom 

2003). They include: 1) the Cognitive Fit Theory developed by Vessey and Galletta (1991) which 

postulates that an individual’s performance is the degree to which the problem representation 

matches the representation of the task;  2) the Information Processing Theory proposed by Miller 

(1956) which dictates that humans process information through various stages of information 

encoding, retention and retrieval by engaging short-term and long-term memories; and 3) the 

Social Cognitive Theory posited by Bandura (1986), which dictates that an individual’s behavior is 

the result of the interaction between personal factors and his environment. Studies applying these 

theories generally conclude that: 1) decision supports could be designed to take advantage of the 

competencies of individuals while using decision supports to compensate for their weaknesses; 

and that 2) decision supports could be provided to induce desirable decision performance (Xiao 

and Benbasat, 2007; Montgomery et al. 2004; Whitecotton, Sanders and Norris 1998; Hoch and 

Schkade 1996). 
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A shortcoming of these studies is that they primarily anchor on general human psychology theories 

to evaluate decision supports; but seldom do these empirical studies (e.g., Hoch and Schkade 

1996) delineate clearly the forms and types of processing systems within the human mind. The 

CEST complements the existing theories by explicitly building on the dual human information 

processing system paradigm (Gawronski and Vodenhausen 2006; Sloman 1996) to propose the 

presence of and to distinguish between two processing systems, which could be triggered 

depending on the type and form of information presented (Kirkpatrick and Epstein 1992; Epstein 

1994). In relation to our study, we postulate that the provision of a product learning support could 

potentially trigger experiential or rational processing systems depending on whether video-based or 

text-based information is offered. Furthermore, the degree to which the preference elicitation 

mechanism triggers a similar processing system like in the provision of a product learning support 

could well determine a consumer decision-making performance. Essentially, the CEST offers us a 

concise theoretical underpinning and prediction on the influence of different decision supports on 

consumer decision making behavior and performance. 

B.4 RESEARCH MODEL AND HYPOTHESES 
In Figure 1, we seek to assess the impact of different product learning supports and preference 

elicitation supports on the propensity for purchase-avoidance and perceived decision confidence. 

The theory which guides our research consists of three propositions:  

1. Where the provision of a product learning support induces the activation of the 

experiential processing system, consumers will experience a lower degree of learning 

difficulty; 

2. Where the provisions of the product learning support and the preference-elicitation 

support facilitate the consistent practice of one dominating form of processing system , 
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(i.e., either the “experiential” or “analytical” system), a consumer will experience 

greater decision confidence and exhibit a lower propensity for purchase-avoidance; 

and  

3. Where the provisions of the two supports lead to switching between the two 

processing systems, a consumer will experience a poorer decision performance. 

In line with the taxonomy proposed by Lilien, Rangaswamy, Bruggen, and Starke (2004), we 

assess the decision performance of consumers who use decision aids based on two criteria — the 

decision process and the decision outcome — for which both objective and subjective evaluations 

are included. The decision process, which involves the use of both the product learning and 

preference elicitation supports to arrive at a decision, is characterized by product learning difficulty 

and decision time. Product learning difficulty is assessed by using the affective measure suggested 

as one of the three measures for product learning effectiveness (Mehta 2000). Preference 

elicitation supports help consumers to screen and evaluate product information and select their 

choices. Decision time is an important determinant for the performance of preference elicitation 

support since it is an objective indicator of the amount of effort exerted to process information 

before a decision is made (Payne, Bettmand and Johnson 1993). It should be noted that we 

evaluate the effects of a product learning support on perceived learning difficulty (perceptual); as 

well as the effects of a preference elicitation support on decision time (objective). Both measures 

reflect the level of cognitive difficulty of the decision-making process. 

 

 



 

  36 

Figure 1: Research Framework 

 

 
The joint influence of both the product learning and the preference elicitation supports is evaluated 

on two outcome measures: the propensity for purchase-avoidance and perceived decision 

confidence. According to extant literature, purchase-avoidance refers to the tendency of 

consumers to postpone commitment to a purchase or seek a less painful way out, which involves 

no action or no change, when faced with difficult decisions (Anderson 2003). However, our review 

of RAs indicates that most of the existing RA studies suffer from the assumption that consumers 

will ultimately commit a purchase from the given choice set. In many situations, however, 

consumers often have the option of seeking new alternatives (i.e., delay making a choice) and/or 

deciding whether to choose at all (Dhar and Nowlis 1999). Specifically, distress over the need to 

make an explicit selection could also result in a consumer halting a purchase. Such discontinuation 

of procurement directly threatens the existence of RAs. One of the contributions of this study is to 

complement prior studies by looking at the propensity for purchase-avoidance as an assessed 

consequence of the joint influence of the two RA aids. 

B.4.1 EFFECTS OF PRODUCT LEARNING SUPPORT 
We postulate that a video-based product learning support will generate greater effectiveness in 

product knowledge acquisition compared to a text-based product learning support, and consumers 
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will hence report a lower degree of learning difficulty. This is because, according to the CEST, 

video-based information, which is sensory-based, could trigger an experiential processing system 

that generates primitive, schematic and conceptual processing (Kirkpatrick and Epstein 1992). 

Comparatively, text-based information requires an analytical processing system, which is 

associated with more refined, detailed and deliberative processing (Shiv and Fedorikhin 1999). 

Comparing the two information processing systems, a consumer who activates an experiential 

processing system, which is often related to lower-order processes, could experience a lower level 

of difficulty in absorbing the information since a primitive, affective-based understanding of the 

information is simply needed. In contrast, a rational processing system, which is associated with 

higher-order processes, could cause a consumer to experience a higher level of difficulty in 

comprehending the information as a more detailed understanding is required. 

This view is in accordance with the Media Richness Theory that suggests that information (e.g. 

product learning supports) rich in multiple perceptual systems are better perceived than those 

which are perceived favorably in single or fewer perceptual systems (Daft and Lengel 1986). 

Consumers who experience a rich media product learning support (e.g. video) are more likely to be 

able to form an effective acquirement of product knowledge faster than those who experience a 

lean media product learning support (e.g. text). Similarly, the cognitive load theory suggests that a 

different modality will expand or reduce the working memory processing capacity, thereby 

enhancing or reducing the consumer’s performance in product knowledge acquisition (Sweller, 

1994). Specifically, a video-based product learning support combines both visual and auditory 

channels (i.e. dual-mode), and thus can allow a consumer to process the information more quickly 

(Mousavi, Low, and Sweller 1995). 
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Essentially, the modality effects induced by a video-based system may lead to the activation of the 

experiential processing system, and also an effective expansion of working memory, thus resulting 

in the quicker comprehension of the information as well as the better processing of intrinsic and 

extraneous information in product learning materials (Chandler and Sweller 1991). Consequently, 

participants who use a video product learning support are likely to report a lower level of learning 

difficulty due to an enhanced ability to handle information. 

H1: Consumers with video-based product learning supports will perceive a lower level of 

learning difficulty compared to those with text-based product learning supports. 

B.4.2 EFFECTS OF PREFERENCE ELICITATION SUPPORT 
The difference between attribute-based RAs and need-based RAs lies in the way in which the 

preference elicitation questions are asked. Consumers using attribute-based RAs, articulate 

preferences by inputting the product attribute criteria. However, consumers using need-based RAs 

will articulate preferences by selecting the answers to the questions which are embedded in a 

description of a specific need. Compared to attribute-based RAs, need-based RAs can link 

customers’ personal needs to product attribute configurations, thus facilitating the articulation of 

their information needs and enhancing the ease in understanding the rationale of need-based RAs. 

In this sense, using need-based RAs facilitates the preference elicitation process, thereby leading 

to a shorter decision-making time, compared to the use of attribute-based RAs. 

However, it should be noted that preference elicitation is not a single-step decision-making process 

but rather, it is an iterative process of articulating preferences and evaluating alternatives 

presented. Particularly, product alternatives are often presented in an attribute-based format in 

most RA websites (e.g., digital cameras of optical zoom of 2x, 3x, 4x, 6x, 7x and above). 

Consumers using a need-based preference elicitation support are presented with the search 
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criteria in a need-based question and answer format (Spiekermann and Paraschiv 2002) but the 

results are still presented in an attribute-based format. These consumers could require additional 

cognitive effort to switch between the two modes of processing. Nevertheless, consumers 

employing an attribute-based elicitation aid, are presented with the same information format (i.e., 

attribute-based) when articulating preferences and evaluating the results. According to the 

Cognitive Fit Theory, when there is a match between the task (i.e., to articulate preference in this 

case) and the presentation of information (i.e., to evaluate the result set), a cognitive fit will occur, 

which produces a consistent mental representation for problem-solving, and subsequently leads to 

faster and more accurate performance in decision-making (Hubona, Everett, Marsh, and 

Wauchope 1998; Vessey and Galleta 1991). 

The comparative effects of the two preference elicitation supports on decision time can also be 

predicted through the CEST. Specifically, the need-based preference elicitation support builds on 

the proposition that preferences are often formed based on the needs instead of values of 

attributes and such formation often entails imagining the usage of the product (Grenci and Todd 

2002). More elaborately, the use of the need-based preference elicitation support could primarily 

activate the experiential processing system to visualize the product and utilize the analytical 

processing system to complement the experiential processing system in articulating the details of 

how the product is to be used. The concurrent activation of both forms of processing systems is 

observed in many of the prior empirical studies (Briňol et al. 2006; Berger 2007) and highlighted 

explicitly by Epstein (1994, 2003). When two systems operate in parallel, with the experiential 

processing system dominating the analytical processing system, we posit that decision 

performance could be affected. Evidently, it is observed that imagination is a cognitive process that 

requires more cognitive effort from the consumer (Dahl and Hoeffler 2004) and is more time-
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consuming than accessing memory directly for attribute values. As a result, a consumer is likely to 

spend more time on the need-based preference elicitation support. 

H2: Consumers with an attribute-based preference elicitation support will take less time to 

make decisions compared to those with a need-based preference elicitation support. 

B.4.3 JOINT EFFECTS OF THE PRODUCT LEARNING SUPPORT AND THE 
PREFERENCE ELICITATION SUPPORT 

We postulate that a consumer could experience a greater degree of decision confidence and 

exhibit a lower propensity for purchase-avoidance when the provisions of the product learning 

support and the preference-elicitation support facilitate the consistent practice of one dominating 

form of processing system (i.e., the dominance of either the “experiential” or “analytical”). To fully 

understand this proposition, we examine the joint influences of product learning supports and 

preference elicitation supports in detail. 

A consumer could trigger the usage of the experiential processing system with the presence of a 

video-based product learning support (H1), and the dominating practice of the experiential 

processing system with the use of the need-based preference elicitation support (H2). One 

common characteristic result of the use of the two types of decision supports is the heavy reliance 

on the usage of the experiential processing system, with the analytical processing system playing a 

secondary role. While it is plausible that both processing systems (i.e., both the experiential and 

analytical processing systems) could be activated concurrently (Strack and Deutsch 2004), it is 

understood from empirical evidence that a consumer’s behavior and performance could be 

improved with the consistent adoption of a dominating processing system among the two. 

Specifically, when extensive context switching among the two processing systems occurs, a 

consumer could experience a greater demand for cognition to handle the activation and 
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deactivation of the two processing systems within a short span of decision-making time. We will 

elaborate this point with further theoretical support. 

When a consumer is presented with the video-based product learning support and the attribute-

based preference elicitation support, he may not find the vividness of the product learning video to 

be useful. In the study by McGill and Anand (1989), for instance, the authors highlight that a 

consumer is likely to show more liking for vivid information than non-vivid information only when 

there is a need to visualize or imagine the use of the product. However, when the consumer is 

instructed not to imagine product usage, indifference to product preference is reported. Lim and 

Benbasat (2000) also found that multimedia representation led to a lower level of ambiguity of 

information only for the tasks in which the predefined response and/or knowledge needed is not 

clear (Daft and Macintosh 1981). 

A similar scenario is likely in the use of the attribute-based preference elicitation support. Since the 

differences in attribute values directly indicate the different levels of functionalities and usages, 

consumers do not need to visualize the product usage in order to use attribute-based elicitation. If 

product learning is able to effectively educate consumers about the meaning of attribute values, 

then the attribute values can be self-explanatory and the comparison of product usage can be 

directly translated to comparison of attribute values in the attribute-based system. Hence, 

consumers may not feel that a video is superior compared to plain text when they use attribute-

based elicitation. A supporting argument can be found in the study of Chewning and Harrell (1990) 

in which the authors argue that if a presentation mode is too rich for a choice task, it may not 

necessarily lead to effective communication due to the distraction of non-essential cues. 
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However, when a video-based product learning support is presented to a consumer with a need-

based preference elicitation support, the presence of vivid information could facilitate the use of the 

elicitation aid since both require the consumer to imagine and visualize the usage of the product. 

Video as a rich medium should be able to facilitate the visualizing of the need when a consumer is 

using a need-based preference elicitation support. Thus, we postulate that the presence of both the 

video-based product learning support and the need-based preference elicitation support could help 

consumers to achieve the desired decision-making performance (Vessey and Galletta 1991). 

Likewise, the presence of both the text-based product learning support and the attribute-based 

preference elicitation support could induce a consumer to utilize lesser degree of cognitive effort to 

make procurement decisions. When consumers are able to make procurement decisions more 

easily, it is often observed that a lower propensity for purchase-avoidance and higher decision 

confidence could be yielded (Anderson 2003). 

H3a(i): Compared with the use of the attribute-based preference elicitation support, the 

use of the need-based preference elicitation support will lead to a lower propensity for 

purchase-avoidance in the presence of video-based product learning support. 

H3a(ii): Compared with the use of the attribute-based preference elicitation support, the 

use of the need-based preference elicitation support will lead to a higher propensity for 

purchase-avoidance in the presence of text-based product learning support. 

H3b(i): Compared with the use of the attribute-based preference elicitation support, the 

use of the need-based preference elicitation support will lead to a higher decision 

confidence in the presence of video-based product learning support. 
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H3b(ii): Compared with the use of the attribute-based preference elicitation support, the 

use of the need-based preference elicitation support will lead to a lower decision 

confidence in the presence of text-based product learning support. 

B.5 EXPERIMENTAL DESIGN 
We employed a 2x2 full factorial experimental design to investigate the main and interaction effects 

of product learning supports and preference elicitation supports on consumer decision outcomes in 

the context of a multi-alternative, multi-attribute purchasing decision-making context (see Table 1 

for the operationalization of the dependent variables). The experimental manipulations consisted of 

two types of product learning supports (text-based and video-based) and two types of preference 

elicitation supports (attribute-based and need-based). 

Table 1. Operationalization of Dependent Variables 
Dependent variable Operational measure 
Propensity for purchase-avoidance Decision to procure (coded as 0) or not to procure (coded as 

1). 
Decision time Time taken to make a decision. 
Perceived decision confidence 
(Cronbach’s Alpha = 0.90) 
(Sources: Fitzsimons 2000) 

1. I believe I have made the best choices at this website. 
2. I would make the same choices if I had to do it again. 
3. I believe I have selected the best models for both 

products. 
Perceived decision difficulty 
(Cronbach’s Alpha = 0.95) 
(Sources: Bottomley et al. 2000; 
Steenkamp and Van Trijp 1997) 

1. It is very difficult for me to derive the decision. 
2. It is very hard for me to derive the decision. 
3. It is not easy for me to derive the decision. 
4. The decision making is thorny. 

 

B.5.1 EXPERIMENTAL PROCEDURES 
Our experiment drew the participation of 68 Information Systems (IS) undergraduate students in an 

open university.  Among them, 26 (38.2%) were females and 42 (61.8%) were males. They were 

recruited by electronic mail and advertisements. Their average age was 22.07 (δ = 1.739) years. 

As part of their degree requirements and coursework, all participants had had web-surfing and 

computing experience. They were randomly assigned to each of the four treatments to minimize 
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the effects of individual differences on the results. This resulted in 17 participants per treatment 

group. The participants were told explicitly that their task was to decide whether to procure and 

should one decide to procure, to select any of the alternatives they would like to have in five 

product categories. In order to ensure experimental realism, the participants were told that they 

would be paid a fixed participation fee. They were given monetary incentives consisting of $10.00 

for an hour’s work.  

Each experimental session was conducted in the following sequence. Upon arrival, the participants 

were assigned to one terminal and logged in by using a unique account (according to the treatment 

group to which they belonged). Subsequently, the participants were asked to fill in demographic 

information, in particular, name, gender, age, etc. After submitting their demographic information, 

the participants listened to pre-recorded instructions and viewed illustrations that introduced them 

to the various system features as well as learned how to view the product learning support and use 

the online shopping website. 

Participants were given the scenario of purchasing products for themselves or their best friends. 

They were presented with five product categories and were asked to decide whether to procure, 

and should a ‘buy decision’ be made, to select the best product from each product category. This 

setup was consistent with most experimental studies on information seeking and decision-making 

behavior (Haübl and Trifts 2000) and was necessary to induce mundane realism5. The five product 

categories were: baby strollers, baby car seats, Global Position System (GPS) units, digital 

camcorders, and multimedia projectors. To meet the basic purpose of product learning, the 

                                                      

5 Mundane realism refers to the degree to which the experiment resembles real-life application of the decision aids 
(Neuman 2006). 
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products were not supposed to be familiar to the participants. Our choice of the product categories 

was supported by the results of a pre-test conducted on 20 students who were told to rank the level 

of familiarity of over 40 products listed in the RA websites. To further ensure that the five product 

categories were less familiar to the participants, they were asked to rate their level of product 

knowledge on a 7-point Likert scale. The results confirmed our supposition that the participants 

were not familiar with the products (mean = 2.87 out of highest 7, δ = 1.30). Real product data was 

used in this experiment. All product information was gathered from mySimon.com using a self-

developed web crawler in the month of January 2007. 

Two types of product learning supports were used in this experiment: text-based and video-based. 

The text-based product learning support introduced each product category according to the key 

features of the products in that product category. To ensure that only the vividness aspect of the 

information was altered in the video, two measures were taken. First, all the five videos were self-

produced to minimize the differences in the contents of the products. Second, all the videos were 

created using semantically identical text-based product learning scripts (Lim and Benbasat 2000). 

Each video lasted about 3 to 5 minutes. Participants were able to fully control the video with 

functions provided by the embedded player, i.e., pause, rewind, forward, and restart.  

Then, the participants were presented with input parameters to enter the weights (seven levels: 

from “Least important” to “Most important”) for different attributes (for the attribute-based support) 

or needs (for the need-based support). Each input parameter had 3 to 7 options, which were the 

values of the product-attribute for the attribute-based preference elicitation support or the 

indications of the needs for the need-based preference elicitation support. The participants were 

not required to complete all the parameters. The screening algorithm was based on the weighted-

additive (WADD) decision strategy, i.e., strategy that computes a weighted score for each 
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alternative based on the input attribute importance by which the alternatives among the highest 

scores are selected (Payne et al. 1993). The system then used the inputs to calculate a score 

according to the specified weight of each selected attribute, and compared that score against the 

scores computed for each product in the database. All products with scores equal to or higher than 

the elicited score were presented to the participant. The order of the alternatives was deliberately 

randomized. The rationale was to encourage the participants to be more involved in the experiment 

by scanning through the list and selecting the best product according to their indicated preferences. 

During this process participants would need to reconsider the preferences and articulate them in 

more detail in order to shorten the list. Though the phrasing of each search criterion was different, 

every need-based elicitation question was mapped to only one corresponding product attribute and 

vice versa. When he was satisfied, the participant made a choice of whether to make a purchase or 

not.  

B.6 RESULTS 
Individual characteristics such as age, gender, experience and the skills of participants that could 

potentially affect decision-making and its outcomes were controlled by randomization. Further 

control checks indicated no significant difference for participants in all four treatments in terms of 

gender, age, and online buying experience. F-tests indicated no significant difference for 

participants in all four treatments in terms of age (F = 1.053, p > .10) and online buying experience 

(F = 1.527, p > .10). There was also no significant difference in the gender ratio of participants 

across the treatments as indicated by a Kruskal-Wallis test (χ = 3.451, p > .10). Control over 

participant characteristics through randomization appeared successful. 

Manipulation checks were also conducted to ensure that our manipulation of the product learning 

support and the preference elicitation support were successful. Product learning support 
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manipulation was verified by asking the participants to rate on a 7-point Likert scale how well they 

could understand what the product was all about from the way in which the information was 

provided. A non-parametric Mann Whitney U test comparing the mean ratings obtained for 

providing text-based (mean=4.320, δ=1.273) and video-based (mean=4.970, δ=1.141) product 

learning supports yielded a significant result (Z = -2.102, p < 0.05). A preference elicitation support 

manipulation check was also conducted by asking the participants to rate on a 7-point Likert scale 

how well individual participants were able to define the criteria when compared to an open-ended 

method of defining the search criteria (e.g., which were the attributes that were important to them). 

A non-parametric Mann Whitney U test comparing the mean ratings obtained for providing 

attribute-based (mean=5.45, δ=0.99) and need-based (mean=5.00, δ=1.09) preference elicitation 

supports yielded a significant result (Z = -2.044, p < 0.05).  

B.6.1 HYPOTHESIS TESTING 
Table 2 depicts the descriptive statistics. All statistical tests were conducted at a five-percent level 

of significance. To control for the possible influence of the decisional sequence (i.e., the order in 

which product categories are displayed), product type, risk propensity, level of involvement, and 

product knowledge on dependent variables, as well as the Multivariate Analysis of Covariance 

(MANCOVA), logistic regressions, and Analysis of Covariance (ANCOVA) were all used to assess 

the effects of manipulated variables, (i.e., product learning support and preference elicitation 

support,) on decision process measures (i.e., perceived learning difficulty and decision time) and 

on the propensity for purchase-avoidance and perceived decision confidence. 

 

 



 

  48 

Table 2. Means (Standard Deviations) of Dependent Variables 
Manipulation Decision Performance 

Process measures Outcome measures 
Propensity for 
purchase-avoidance 

Product 
learning 
support 

Preference 
elicitation 
support 

Perceived 
learning 
difficulty 

Decision time 
(seconds) 

Choice 
made 

Choice 
not made 

Perceived decision 
Confidence 

Attribute 3.875 (1.500) 246.890 (184.785) 80 5 5.251 (0.977) 
Need 4.420 (1.184) 301.560 (180.409) 77 8 4.722 (0.943) Text 
Total 4.147 (1.375) 274.230 (184.121) 157 13 4.986 (0.993) 
Attribute 3.608 (1.442) 210.620 (130.582) 68 17 4.949 (1.337) 
Need 3.612 (1.447) 269.460 (157.485) 81 4 5.318 (0.783) Video 
Total 3.610 (1.440) 240.040 (147.218) 149 21 5.133 (1.108) 
Attribute 3.741 (1.473) 228.760 (160.555) 148 22 5.100 (1.177) - 
Need 4.016 (1.379) 285.510 (169.599) 158 12 5.0196 (.914) 

Before conducting the MANCOVA test, we needed to perform three tests on the data. First, we 

examined the normality of the three dependent variables, namely perceived learning difficulty, 

decision time and perceived decision confidence. The propensity for purchase-avoidance was not 

inspected due to its binary nature. Normality tests included the skewness and kurtosis tests. Our 

tests suggest that perceived learning difficulty (Skewness Z = -.034; Kurtosis Z = -.734), decision 

time (Skewness Z = 1.424; Kurtosis Z = 2.749), and perceived decision confidence (Skewness Z = 

-.759; Kurtosis Z = 1.859) have skewness and kurtosis values near the normal range of -3 to 3, 

which are deemed acceptable (Hair, Anderson, Tatham and Black 1998). Second, we used 

Bartlett’s test for sphericity, which examines the correlations among the three dependent variables 

(i.e., perceived learning difficulty, decision time and perceived decision confidence) and determines 

whether significant intercorrelation exists. The results indicated the existence of significant 

intercorrelations (χ2 = 5379.339, p < .01). Third, we tested whether the data conformed to the 

assumption of the homogeneity of the variance-covariance matrices among the groups. Bartlett-

Box’s M test, which focuses on assessing the overall equivalence of the variance-covariance 

matrices, was adopted. A significant Box’s M value of 73.411 (p < .01) suggested that it was 

appropriate to conduct the MANCOVA test. 
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MANCOVA testing involving all independent variables and three dependent variables were then 

applied to assess hypotheses H1, H2 and H3b. The results revealed significant main effects for the 

product learning support (Wikes’ Λ = 0.970, F = 3.332, p < 0.05) and the preference elicitation 

support (Wikes’ Λ = 0.971, F = 3.249, p < 0.05), and significant interaction effect for the product 

learning * preference elicitation supports (Wikes’ Λ = 0.945, F = 6.362, p < 0. 01). It was also 

observed that control variables, such as risk propensity, level of involvement and product 

knowledge, were found to significantly influence the dependent variables. 

Further univariate tests using ANOVA were conducted separately for each of the three dependent 

variables by controlling for product type, risk propensity, level of involvement, and product 

knowledge. The effects of the manipulated variables on the propensity for purchase-avoidance 

were examined separately using logistic regression. Table 3 summarizes the test results and 

Figure 2 depicts the graphical analysis of the decision support impacts. An examination of the 

psychometric properties of the perceived learning difficulty and perceived decision confidence 

scales used in the survey yielded Cronbach’s Alpha values of 0.95 and 0.90 respectively, which 

are well above the recommended threshold value of 0.7 (see Table 1). We observed significant 

main effects of the product learning support on perceived learning difficulty and the propensity for 

purchase-avoidance and of the preference elicitation support on decision time, as well as the 

significant interaction effects on perceived learning difficulty, the propensity for purchase-avoidance 

and perceived decision confidence. Each of the significant interaction effects was further examined 

using the method of simple effects analysis (Keppel 1991). Table 4 presents the results of the 

simple effects analysis. 
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Figure 2. Graphical Analysis Of The Impacts Of Decision Supports 
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Table 3.  Univariate (ANCOVA) and Logistic Regression Tests 

Decision Performance 
Decision difficulty Overall outcome 

Source of variation Perceived 
learning 
difficulty 

Decision 
time 
(seconds) 

Propensity for 
purchase-
avoidance 

Perceived 
decision 
confidence 

Manipulation variables 
Product learning support F = 9.607*** F = 1.541 b = 1.746*** F = 1.050 
Preference elicitation support F = 1.744 F = 9.343*** b = .547 F = .009 
Product learning support * Preference elicitation 
support F = 8.196** F = .001 b = -2.675*** F = 18.036*** 

Controlled variables 
Product viewing sequence F = .074 F = 5.950** b = .272* F = .969 
Product type (car  seat) F = 1.100 F = .206 b = .361 F = .123 
Product type (camcorder) F = .031 F = 3.837* b = -1.201 F = .119 
Product type (projector) F = .961 F = .313 b = .367 F = .708 
Product type (GPS) F = .815 F = 1.149 b = -.784 F = 1.564 
Risk aversion propensity F = .986 F = 

10.816*** b = .335 F = 2.514 

Perceived level of involvement F = 4.492** F = 5.477** b = .224 F = .336 
Perceived product knowledge F = 9.683*** F = .765 b = -.635 F = 8.174*** 
*** - significant at 99% level; ** - significant at 95% level; * - significant at 90% level 
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Table 4.  Simple Effect Analyses of Product Learning Support * Preference Elicitation 
Support 

Data Split by product learning support 
Text-based Video-based 

Dependent variable Hypothesis Result Hypothesis Result 
Attribute-based (AB) vs. Need-based (NB) 

H3a: Propensity for 
purchase-avoidance 

NB > AB t = -.863, p > .10 
Not Supported 

NB < AB t = 3.097, p < .01 
Supported 

H3b: Decision 
Confidence 

NB < AB t = 3.595, p < .01 
Supported 

NB > AB t = -2.194, p < .05 
Supported 

 
H1 posits that users with the video-based product learning support will perceive lower levels of 

learning difficulty compared to those with text-based product learning support. As predicted, we 

observed a significant main effect of product learning support and an interaction effect on 

perceived learning difficulty. Comparing the means of perceived learning difficulty, we observed 

that text-based product learning support users reported greater perceived learning difficulty than 

those with the video-based product learning support (i.e., main effect: meantext = 4.147, meanvideo = 

3.610; t = 3.518, p < .01). Hence, H1 is supported. The significant interaction effect is further 

analyzed using the simple effects analysis. Two observations were made. First, in the presence of 

the need-based preference elicitation support, users with text-based product learning support 

experienced significantly higher perceived levels of learning difficulty compared to those with video-

based product learning support (i.e., meantneed,text = 4.420, meanneed,video = 3.612; t = 3.983, p < 

.01). Second, in the presence of the text-based product learning support, participants with the 

need-based preference elicitation support reported significantly higher levels of perceived learning 

difficulty than those with attribute-based preference elicitation support (i.e., meanneed,text = 4.420, 

meanattribute,text = 3.875; t = -2.630, p < .01). 

H2 hypothesizes that users with attribute-based preference elicitation support will take less time to 

make decisions compared to those with need-based preference elicitation support. As predicted, 
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the results suggest that attribute-based preference elicitation support users expend less decision 

time (in seconds) compared to others (i.e., main effect: meanattribute = 228.760, meanneed = 285.510; 

F=9.343, p < .01). Hence, H2 is supported. 

H3a denotes that compared to attribute-based preference elicitation support users, need-based 

preference elicitation support users will exhibit a lower propensity for purchase-avoidance in the 

presence of video-based product learning support but not in the presence of text-based product 

learning support. The results show that participants with need-based preference elicitation support 

did significantly exhibit a lower propensity for purchase-avoidance compared to those with 

attribute-based preference elicitation support in the presence of video-based preference elicitation 

support (t = 3.097, p < .01); but they did not perform significantly better than attribute-based 

preference elicitation support participants in the presence of text-based preference elicitation 

support (t = -.863, p > .10), although the effect was in the right direction. Hence H3a(i) is supported 

but not H3a(ii). However, as predicted in H3b, participants with need-based preference elicitation 

support expressed a significantly greater perceived decision confidence than others with attribute-

based preference elicitation support when using video-based product learning support (t = -2.194, 

p < .05) but perceived lower decision confidence than attribute-based preference elicitation support 

users when using text-based product learning support (t = 3.595, p < .01). Hence, H3b(i) and 

H3b(ii) are supported. 

B.7 DISCUSSION 
The purpose of this study was to examine the influence of a Web store’s provision of product 

learning support on a consumer’s perception of the decision-making process and its outcome, by 

means of providing text-based and video-based product reviews, and preference elicitation 

support, as executed in the forms of attribute-based and need-based product preference elicitation 
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mechanisms. Based on prior work on the Cognitive-Experiential Self-Theory (CEST) by Epstein 

and his colleagues (Kirkpatrick and Epstein 1992; Epstein 1994; Morling and Epstein 1997; Pacini 

et al. 1998), the primary proposition was that under conditions where the consumer is induced to 

adopt a dominating processing system (i.e., whether the experiential or analytical), he is more likely 

to choose a product and thus expresses a higher decision confidence. This shall be discussed at a 

later stage, after we have examined two additional propositions that were made: one relating to the 

mode of product learning support and the other relating to the provision of preference elicitation 

support. 

With respect to the investigation on the product learning support, our results suggest that 

participants with text-based product learning support reported a higher level of perceived difficulty 

in learning about a product than participants with video-based product learning support did. To 

investigate further, we asked the participants to articulate the number of attributes (for the text-

based condition) or features (for the video-based condition) of the products encountered. The 

findings suggest that participants with text-based product learning support reported fewer attribute 

recalls (mean = 2.60, δ = 1.81) than participants with video-based product learning support (mean 

= 3.31, δ = 1.85). These results could suggest that the introduction video in the product learning 

support could facilitate the construction of a mental schema of a product. By learning about a 

product through a video, a consumer is able to retrieve more information about the product when 

prompted to recall about the product. This coincides with the observation on the deployment of 

experiential processing system postulated by the CEST (Epstein 1994). 

Based on the initially-built impression of the various product attributes, a consumer proceeds to the 

second stage: cross-attribute processing and linking. At this stage, a consumer will combine 

constituent product attributes to form a conjunction of features known as the master map of 
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locations. Such a map allows a consumer to “activate” a particular node within the map. Explicitly, 

when a consumer learns about a product through a video, he/she could be easily “triggered” to 

extract stored product feature information and associated preferences. Essentially, the extent to 

which a consumer initially forms an impression of the various product attributes and features and 

subsequently links up all these features into a cognitive map for retrieval , (i.e., activates the 

experiential processing system), determines the outcome of learning about (i.e., stored in memory) 

and visualizing (i.e., retrieved from memory) a product. 

With respect to the study of the preference elicitation support, we asked how the use of attribute-

based and need-based preference elicitation supports would affect the decision-making time. Prior 

research on comparing need-based and attribute-based preference elicitation supports suggests 

the use of a need-based preference elicitation tool is likely to lead to better decision performance 

(Stolze and Nart 2004; Grenci and Todd, 2002). Our findings indicated that participants with the 

attribute-based preference elicitation support expended less time on decision-making compared to 

those with the need-based preference elicitation support when appropriate product learning 

support was offered (i.e., text-based support). One plausible reason is that participants might need 

to expend additional cognitive effort to switch between need-based elicitation of preference and 

attribute-based comparison of the alternatives retrieved (Spiekermann and Paraschiv 2002). From 

the theoretical perspective of the CEST, we find support for the argument that the use of the need-

based preference elicitation support could primarily activate both the experiential and analytical 

processing systems. When two systems operated in parallel with the experiential processing 

system dominating the analytical processing system, our participants experienced longer decision-

making times. 
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Our last and most important research question is how the different combinations of product 

learning supports and preference elicitation supports affect decision outcome (i.e., the propensity 

for purchase-avoidance and decision confidence). The results from the experiment suggest that the 

joint presence of both the video-based product learning support and the need-based preference 

elicitation support leads to a lower propensity for purchase-avoidance compared to the presence of 

a video-based product learning support and attribute-based preference elicitation tool. Likewise, 

the presence of the text-based product learning support and the attribute-based preference 

elicitation support leads to a higher perceived decision confidence compared to the situation where 

an RA is equipped with the text-based product learning support and the need-based preference 

elicitation support. 

Before we discuss the study’s implications, readers should be cautioned about the limitations of 

this research. First, our experimental task has focused on the decision choice for less familiar 

products. While we believe the participants were less familiar with both products, and extra effort 

was devoted to describing and explaining product attributes prior to the experiment, some student 

participants might have had trouble comprehending the given task. To the extent that the nature of 

the products could affect the willingness and involvement level of decision-makers in task 

execution (Swaminathan 2003), further experiments could be conducted to examine the impact of 

other more familiar products (e.g., digital cameras) on decision performance. 

Second, in a real online shopping environment, consumers may first proceed to explore the 

products available rather than start with utilizing the product learning support. In this sense, the use 

of the preference elicitation support precedes the use of the product learning support. It is plausible 

that the change in the sequence of aids used could affect the results (Vessey and Galletta 1991). 

Future research could seek to explore this outcome. 
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Third, this study has examined RAs in the context of goal-driven settings. An examination of other 

task environments, decision contexts, and individual characteristics would also be valuable. For 

instance, factors such as consumer characteristics (e.g., window shoppers versus goal-driven 

buyers), amount of risk (e.g., decision accountability) and incentives (e.g., decisions on high risk 

products with high returns such as shares versus low risk products with low returns such as 

government bonds) associated with the purchase, decision confidence, and trust in the integrity of 

the aid, could all alter the results (Payne et al. 1993). Future studies could seek to examine the 

effects of these contextual factors on the design of an RA. 

In spite of the limitations that serve as suggestions for future research, this study offers several 

contributions. First, this study draws from the CEST (Epstein 1991, 1994, 2003) to examine RA 

tools and distinguish differences among them. This study thus contributes to the existing decision 

support literature (Todd and Benbasat, 1999) by embedding the supports for product learning and 

preference elicitation within RAs, and examining how these tools help consumers to make 

procurement decisions. Specifically, our results suggest that where the provisions of the product 

learning support and the preference-elicitation support facilitate the consistent practice of one 

dominating form of processing system, a consumer will experience higher decision confidence and 

exhibit a lower propensity for purchase-avoidance; otherwise, decision outcome is adversely 

affected. This finding also adds to the CEST by indicating that the concurrent activation of two 

processing systems (though plausible and often occurring) could have an adverse impact on the 

consumer decision-making process. 

Second, this study differs from and complements prior RA studies. Previous research has 

investigated decision supports that help individuals to process and filter the vast amount of 

available information to make an informed decision (Komiak and Benbasat 2006; Eom 2003; 
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Edwards and Fasolo 2001). For instance, studies such as Häubl and Trifts (2000) focused on one 

aspect of an RA that reduces the cognitive load of evaluating the product information. Our study 

ventures one step forward by asking how RAs can be designed to aid consumers in learning about 

a product and eliciting preferences. In our view, this research could offer tangible 

recommendations on what decision support tools should be offered toward the design of RA 

websites, and decision-aided websites in general. 

Third, through referencing the commercial implementations from leading RA-equipped websites to 

develop the IT artifacts and empirically assess them (Kumar and Benbasat 2006), we have 

provides empirical support to a conjecture: with the increasing popularity of online user-generated 

product review videos (e.g., ExpoTV and YouTube) and new product introduction videos generated 

by experts (e.g., CNET), existing RA implementations, which are attribute-based, could be fine-

tuned to cater to consumers who form initial knowledge of a product through videos. We have 

further added that the provision of need-based preference elicitation support in addition to video-

based product learning support could alleviate a consumer’s propensity for choice avoidance. Our 

study hence can offer some insights into how different forms of preference elicitation supports 

could be offered by RAs depending on the type of product learning supports (i.e., text-based or 

video-based) available.  

B.8 CONCLUSION 
As computer and Internet penetration intensifies inexorably around the world (especially in China, 

India and emerging economies), electronic commerce has the potential to grow exponentially. For 

instance, it is projected that sales from China’s electronic-commerce alone may reach USD2.5 



 

  58 

billion by 2010, which is more that triple that of 20066. With introduction of more advanced in 

Internet technologies such as Web 3.0, decision aids have perhaps the greatest potential to 

facilitate and realize this growth in electronic commerce. However, without a careful understanding 

of how these decision aids are utilized during the decision-making process, it is plausible that the 

growth may be stunted or remain lackluster at best. This study took a modest step toward 

developing a theoretically sound understanding of how decision aids, implemented as product 

learning and preference elicitation supports, affect consumer decision-making and performance, 

and in doing so, we hope to help online merchants and consumers gain maximum value from 

electronic commerce, and thereby contribute to its growth. 

 
 
 

                                                      

6 Source: http://seattletimes.nwsource.com/html/businesstechnology/2003735845_amazon06.html [last visited: June 
29, 2007] 
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C. ESSAY TWO 
ASSESSING SCREENING AND EVALUATION DECISION SUPPORT SYSTEMS: 
A RESOURCE-MATCHING APPROACH 

 
C.1 INTRODUCTION 
In essay One, we discuss on equipping RA with product learning and preference elicitation 

supports. Such supports could assist consumers to be cognizant with the products of interest as 

well as the ability to articulate the preferences. Despite such decisional supports, little is studied on 

how to better aid consumers in scanning and evaluating the product alternatives returned. It is to 

be noted that RA is a unique online decision aid in which it assists consumers from acquiring 

necessary knowledge about the desired products to evaluating the products. Most of the online 

decision aids are mainly restricted to screening and evaluation supports, which we will study in 

detailed in Essay Two here. 

Firms keen on exploiting the growing markets associated with electronic commerce7, have begun 

to provide a variety of online decision aids to facilitate consumer decision-making (Redmond 2002). 

These online decision aids vary in sophistication and features, with some providing only basic 

screening support and others more complex screening and evaluation support (Xiao and Benbasat 

2007; Haübl and Trifts 2000).  While these aids have been gaining acceptance among consumers8, 

there are still a number of behavioral concerns associated with how they are utilized (Montgomery, 

Hosanagar, Krishnan and Clay 2004).  For instance, it is not entirely clear in what fashion 

                                                      

7 The U.S. Census Bureau’s Quarterly Retail E-Commerce Sales reported that e-commerce sales for the fourth quarter 
of 2005 were $22.9 billion, 23% higher than the fourth quarter, 2004 sales of $18.4 billion. 
 
8 In a survey (source: Web Search Guide Newsletter, Comparison Shopping on the Web, by Harris, Gwen, November 
29, 2003, Last visit: June 28, 2007) conducted by Nielsen/NetRatings, almost one third of all online consumers used 
decision aids, such as comparison shopping agents, to shop in the 2003 holiday season. In another survey (source: 
CMP TechWeb, Online Marketing Heats Up Holiday e-Retailing, October 4, 2006, Last visit: June 28, 2007) conducted 
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consumers will use these aids under varying information load environments, and how such use will 

affect performance.  

Two fundamental issues associated with the existing decision aids literature contribute to this lack 

of understanding. First, extant decision-aiding literature has produced mixed and conflicting 

findings. Some have found that these aids extend decision-makers’ cognitive capacities to analyze 

the problems in greater depth and scope, hence resulting in better decision outcomes (e.g., Song, 

Jones and Gudigantala 2007; Hostler, Yoon and Guimaraes 2004), while others have noted that 

these aids induce effort minimization and cognitive laziness, resulting in the blind acceptance of 

satisfactory outcomes (e.g., Glover, Prawitt and Spilker 1997; Skitka, Mosier and Burdick 1999). 

One plausible reason for the mixed findings could be attributed to the differences in the design of 

these artifacts. Many studies do not clearly delineate the specific design functionality that 

influences decision performance, making it difficult to attribute decision performance to the specific 

features of the decision aids. Second, there is a paucity of research comparing the use of decision 

aids under varying information environments. In addition, most previous research efforts on 

decision aids generally have not considered the match between the cognitive resources that are 

demanded for the task and the support provided by the decision aids. 

In response to these two concerns, we examine the effectiveness of three online decision support 

features in terms of their influence on decision performance under varying information load 

environments. We do this by investigating how different degrees of screening and evaluation 

support features will affect perceived and objective decision performance under high and low 

information load conditions. Specifically, we provide consumers with one of three decision support 

                                                                                                                                                              

by BizRate, 97.4% of 80 online retailers interviewed indicated that they would invest in decision-aiding technology, 
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tools - a single-attribute screening tool, a multiple-attribute screening tool or a multiple-attribute 

screening cum weight computation evaluation tool - to identify and select a best product alternative 

under either a low product attribute-load or a high product attribute-load condition.  We investigate 

this problem by drawing on the resource-matching theory (Anand and Sternthal 1989) to posit that 

decision performance is enhanced when the supply of cognitive resources available for information 

processing matches, rather than either exceeds or falls short of, those that are required to perform 

the decision task in a way that enables consumers to achieve their goals.  

In this study we focus on attributes rather than alternatives when characterizing information load. 

This is because most prior IS research that has examined the impact of decision aids on decision 

performance, manipulated information load by a change in the number of alternatives available to 

choose from (e.g., Todd and Benbasat 1999, 2000), and not by a change in the number of 

attributes used to describe the alternatives. Our focus on attributes serves to complement the 

existing studies on information load (Todd and Benbasat 1999, 2000) as well as aligning our study 

to the online shopping context where consumers often delineate their preferences in terms of 

product attributes, such as what threshold values to specify or what weights to assign to each 

attribute, when using online decision aids (Haübl and Trifts 2000). For instance, in a 

comprehensive review of the existing studies on Recommendation Agents (RA), an online decision 

aid, Xiao and Benbasat (2007, table 5, pp. 146) identified three general forms of RA 

implementations based on product attributes (e.g., compensatory versus non-compensatory). 

Furthermore, the number of alternatives in an online environment tends to be very large, which 

makes it more challenging for consumers to immediately engage in alternative-based evaluation 

                                                                                                                                                              

such as comparison shopping agents, to attract more online sales during the 2006 holiday season. 
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(Swaminathan 2003) without first conducting some attribute-based eliminations and repeat such 

attribute-based eliminations until the resulting number of alternatives after screening is deemed to 

be small and manageable.  

Essentially, by focusing on the interaction effects of the specific decision support and the product 

attribute-load on decision performance, we seek to provide a more nuanced theoretical 

understanding of the impact of decision aids in an online consumer decision-making environment. 

C.2 RESOURCE-MATCHING PERSPECTIVE ON DECISION-AIDING 
Resource-matching theory explains the effects of utilizing cognitive resources to process 

information for a given task. It states that judgments are affected by the balance between the 

cognitive resources available to process the information and those required for the task (Anand 

and Sternthal 1989). Processing should be most efficient and effective when the level of supplied 

cognitive resources matches the mental resources required for a task, i.e., when RA = RD (Mantel 

and Kellaris 2003). Conversely, it is predicted that decision performance will decline when the 

cognitive resources available either exceed or fall below the mental resources required, i.e., when 

RA ≠ RD (Anand and Stemthal 1989). This theory has been applied and tested in the context of 

promotional stimuli, where an explicit inclusion and reordering of visual cues (e.g., narration and 

pictures) were found to enhance the persuasiveness of an advertisement through bridging the 

cognitive distance between the resources demanded and resources available (Brennan and Bahn 

2006; Martin, Sherrard and Wentzel 2005; Meyers-Levy and Malaviya 1999). 

However, despite the increasing use of the resource-matching theory in the advertising context, no 

Information Systems (IS) study has yet applied this theory to evaluate the effects of decision aids 

on decision-making performance. Prior IS studies have referenced two closely related theories that 

share the same notion of “fit” as the resource-matching theory does (Eom 2003). They are: 1) the 
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cognitive fit theory, which posits that decision performance improves when the problem 

representation and the decision aid(s) promote a consistent mental representation for decision-

making (Vessey 1991); and 2) task-technology fit, which posits that decision performance is 

enhanced when the functionality of a decision aid matches the task as well as the ability of the 

decision-maker (Goodhue and Thompson 1995). Both these theories have been applied to study a 

wide variety of technologies such as virtual team communication (Maruping and Agarwal 2004) and 

mobile computing (Junglas and Watson 2003), and to measure the performance impacts of 

consumers’ search for product information (e.g., Hong, Thong and Tam 2004). While these 

theories have merit, they primarily focus on postulating the outcome of an ideal-fit (i.e., RA = RD) 

condition but do not provide predictions concerning the two no-fit conditions, namely, the cases of 

under-fit and over-fit (Junglas and Watson 2003). The resource-matching theory compensates for 

this limitation in the cognitive fit theory and the task-technology fit paradigm by offering more 

detailed and systematic predictions about the under-fit (i.e., RA < RD) and over-fit (i.e., RA > RD) 

conditions in addition to the ideal-fit situation. Furthermore, the resource-matching theory is 

applicable to the online decision-aiding context because Decision Support Systems (DSS), if 

provided appropriately, could be used to match the working memory and computational capacities 

of humans (i.e., resources available) to the needs of the decision environment (i.e., resources 

required) by increasing or decreasing the information processing capacity of a consumer (Eom 

2003; Sharda, Barr and McDonnell 1988; Todd and Benbasat 1999). We will next review some of 

the key DSS studies through the theoretical lens of resource-matching. 

There is no dearth of empirical evidence demonstrating that the right combination of decision tools 

and decision-making outperforms unaided humans (Lilien, Rangaswamy, Bruggen and Starke 

2004). For instance, Haübl and Trifts (2000) examined two aids: one that assists in screening 
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alternatives and one that rearranges alternatives to make the evaluation of alternatives easier. 

Their study found that the provision of an aid that supports screening and/or rearrangement of 

alternatives significantly improves the quality of the decisions made. A more recent study by 

Montgomery and his colleagues (2004) showed that by reducing the cognitive effort associated 

with evaluating the alternatives, decision aids induce consumers to search for more information 

and commit to purchases. Using the resource-matching theoretical lens, we proffer that the 

provision of appropriate decision aid that supplements the cognitive resources of the consumers to 

match those required to accomplish the decision choice task (i.e., RA = RD), would lead to a better 

decision outcome. 

Conversely, according to the resource-matching theory the provision of a decision aid that is overly 

sophisticated and affords excessive cognitive resources for a given task (i.e., RA > RD) could 

result in two possible outcomes: 1) the decision maker employs the surplus resources to engage in 

idiosyncratic and less task-related elaboration of the decision-making issues, leading to poorer 

decision performance (Anand and Sternthal 1989; Keller and Block 1997), or 2) the abundance of 

cognitive resources may result in decision makers being more inclined to exhibit cognitive laziness 

by blindly following the decision aid’s recommendations (Chenoweth, Dowling and Louis 2004). For 

instance, in a study that compared the decision outcomes between the provision of non-automated 

aid and automated aid, users with the automated aid underperformed in terms of the number of 

decision errors compared with those with a non-automated one (Skitka et al. 1999). Similarly, 

contrary to expectations, interactive (user-inputted attribute importance weights) decision aids were 

found to lead to lower decision quality than passive (using equal attribute importance weights by 

default) decision aids (Olson and Widing 2002). 
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In the same vein, when cognitive resources are insufficient to meet the cognitive demands of the 

task due to the under-provision of decision support (i.e., RA < RD), the problem of information 

overload ensues (Peracchio and Meyers-Levy 1997). Insufficient cognitive resources may result in: 

1) limited information processing, which could result in consumers abandoning the procurement 

(Anderson 2003), or alternatively, 2) individuals may cope with such situations by adopting 

simplified decision strategies, such as heuristic processing that reduce the information considered 

when making decisions (Payne, Bettman and Johnson 1993). 

The question that emerges from this analysis is what types of decision aiding features would 

enhance performance through the matching of the cognitive resources required and those that are 

available? Based on a series of studies conducted by Payne and his colleagues (1993) who have 

applied the concept of cognitive effort to understand human decision-making behavior, they 

suggested that decision performance could vary according to the types of decision strategies that 

consumers are induced to adopt. The choice of decision strategies (i.e., their cognitive response) 

depends on the nature of the decision aid and the information load that exist in the decision 

environment. Toward this end, a decision aid could result in consumers achieving better decision 

performance if it facilitates the use of appropriate decision strategies to meet the cognitive 

demands of the task (Edwards and Fasolo 2001). For instance, normative decision strategies (e.g., 

compensatory decision strategies or more complex non-compensatory strategies) that traditionally 

demand substantial cognitive resources to be executed could be facilitated by decision aids that 

offload the cognitively demanding and menial processes from the consumers. Conversely, when 

the specific aids provided do not induce the adoption of appropriate decision strategies, a 

significantly poorer performance when compared to their absence might occur (Todd and Benbasat 

1999, 2000). The conflicting findings about how decision aids affect decision performance in the 



 

  66 

last few decades lend support to this conjecture (Eom 2003; Skitka et al. 1999). Given the crucial 

role of decision strategies in determining the quality of decision-making, it is important to examine 

the decision aids in terms of the strategies they facilitate. 

C.3 DECISION STRATEGIES AND DECISION AIDS 
When using decision aids, consumers typically initiate the decision-making process by establishing 

a list of minimally acceptable product attribute level(s) that an alternative must possess in order to 

be considered further as a possible choice (Olson and Widing 2002; Edwards and Fasolo 2001; 

Todd and Benbasat 1999, 2000). This process of delineating such attribute levels and filtering 

alternatives that fail to meet the criteria is known as screening. The screened alternatives are then 

assessed carefully to make a choice, and this process is known as evaluation (Edwards and 

Fasolo 2001; Alba, Lynch, Weitz, Janiszewski, Lutz, Sawyer, and Wood 1997). 

When a consumer engages in screening, he is likely to expend conscious cognitive effort to 

eliminate undesirable alternatives using non-compensatory strategies (Bettman, Luce and Payne 

1988), which implies that the screening is based on the cutoff point of the most important 

attribute(s) and information related to the other attributes would be ignored. Non-compensatory 

strategies are broadly classified into two types: single-attribute screening, i.e., strictly involving only 

one attribute, or multiple-attribute screening, i.e., involving one or more attributes (Payne et al. 

1993). A consumer who adopts a single-attribute non-compensatory strategy, such as 

Lexicographic (LEX), chooses the most important attribute and executes the cutoff. As a 

consequence, alternatives with attribute-values that are best for the most important attribute are 

presented. A consumer would then evaluate whether or not the reduced set of alternatives allows 

him/her to make a choice. If another screening attempt is needed, the consumer then determines 
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which of the remaining attributes is the most important. The second step is repeated until no further 

screening is needed. 

A consumer who adopts multiple-attribute non-compensatory strategies, in comparison, would 

utilize one or more attributes simultaneously for screening. Two such decision strategies are the 

elimination-by-aspect (EBA) and the majority of confirming dimensions (MCD) strategies. EBA 

removes alternatives if at least one attribute value fails to meet the minimum acceptable level, and 

MCD chooses those alternatives that are acceptable on the largest number of attributes. It is 

important to note that EBA could also function as a single-attribute based, non-compensatory 

decision strategy, depending on its usage. For instance, a consumer could start by delineating only 

one attribute at the first screening attempt (e.g., warranty of at least two years for a mini audio 

system), which is equivalent to adopting single-attribute screening. However, if subsequent 

screening attempts are delineated based on the previous screening criteria (e.g., warranty of at 

least two years and at least the inclusion of an analog tuner for the mini audio system), then one is 

deemed to use multiple-attribute screening. Similar to a single-attribute non-compensatory 

strategy, alternatives that do not meet the specified threshold values of all the attributes will be 

discarded. After this attempt is completed, the consumer then assesses whether additional 

simplification is desirable, and another set of cutoffs can be selected to eliminate more alternatives 

in subsequent attempts, and so on (Payne et al. 1993). The use of MCD, in contrast, would often 

involve more than one attribute per screening attempt. Regardless of whether one would use EBA 

or MCD, a consumer could select many attributes simultaneously without knowing the combined 

impact of the cutoffs on the number of alternatives that will survive (Bettman et. al.1998).  

Based on the above discussion of the types of non-compensatory strategies, different decision 

strategies are characterized based on either single-attribute or multiple-attribute screening 
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capabilities, namely: 1) screen alternatives with a restricted single-attribute for each screening 

attempt, and 2) screen alternatives with one or more attributes for each screening attempt. We 

label these as Low Screening Support (LSS) and High Screening Support (HSS), respectively.  

Consumers who engage in alternative evaluations often employ more cognitively-demanding 

compensatory strategies in order to increase the accuracy of their final choice (Bettman et al. 1998; 

Payne et al. 1993). Using compensatory strategies, consumers first define the importance of each 

attribute and then compute a weighted score for each alternative based on the inputted attribute 

importance. The alternative with the highest score is selected. The benefit of the compensatory 

strategy is that it facilitates, for the consumer, the selection of an alternative that is good from an 

overall perspective. Two strategies that best represent compensatory-based processing are the 

equal weighting (EQW) and weight additive (WADD) strategies. EQW assigns equal weight to all 

attributes and chooses the alternative with the highest score, while WADD derives a weighted 

score for each alternative based on the user-inputted weights of importance and then selects the 

alternative with the highest score.  

The literature suggests that, in general, utilizing a decision aid that supports evaluation would first 

entail reducing (i.e., screening) the large number of alternatives using a non-compensatory 

decision strategy and then switch to a more elaborated, compensatory strategy to evaluate the 

remaining alternatives (Van, Paluchowski, and Beach 1992; Malhotra 1982). Consequently, we 

conceptualize a third form of decision aid, labeled Weight Evaluation Support (WES), that has the 

capability to use information about the consumers’ utility function to screen a large number of 

alternatives and to evaluate remaining alternatives based on the attribute importance weights 

(Haübl and Murray 2003).  
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While we have used decision strategies to theoretically motivate the selection of the types of 

decision aids to be studied in this research, it is important to note that the decision strategy chosen 

by the decision-makers is based on the joint consideration of the information load in the decision 

environment (i.e., the cognitive resources demanded) and the cognitive support afforded by the 

decision aids (i.e., the cognitive resources available). For instance, in a high information load 

environment, a decision-maker equipped with a WES may be inclined to adopt a compensatory 

decision strategy, which would otherwise not be adopted if he were not to have a WES, because a 

compensatory decision strategy is cognitively inhibiting (Todd and Benbasat 1999). If a decision-

maker is not provided with any decision aid or with a simplistic one like LSS in such an 

environment, he might very well simply adopt the satisfactory and less demanding lexicographic 

strategy. Table 1 highlights the decision strategies that could be induced from the availability of 

each decision aid. 

Table 1: Characteristics of Decision Aids and Induced Decision Strategies 
 Low 

Screening 
Support 

(LSS) 

High Screening 
Support (HSS) 

Weight 
Evaluation 

Support (WES) 

Non-compensatory based Decision Strategies Supported (screening support) 
Single attribute-based screening (i.e., delineation of ONLY 1 attribute criterion per screening attempt) 
Lexicographic (LEX) 
Chooses alternatives that are best on most important 
attributes 

√ √ √  

 
Multiple attribute-based screening (i.e., delineation of 1 or more attribute(s) criteria per screening attempt) 
Elimination-by-Aspect (EBA) 
Removes alternatives  with at least one attribute value that 
fails to meet the minimum acceptable level 

 √ √ 

    
Majority Confirming Dimensions (MCD) 
Chooses alternatives that are acceptable on the largest 
number of attributes 

 √ √ 

    
Compensatory-based Decision Strategies Supported (evaluation support) 
Equal-Weighting (EQW) 
Assigns equal weight to all attributes and chooses 
alternative with highest score 

  √  
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Weight-Additive (WADD) 
Derives a weighted score for each alternative based on the 
inputted attribute importance and selects the alternative 
with the highest score 

  √ 

C.4 HYPOTHESIS DEVELOPMENT: IMPACT OF DECISION AIDS 
As depicted in Figure 1, we seek to assess the impact of different levels of decision support, 

characterized by screening and evaluation support, on decision performance within the context of 

product attribute-load. The theory which guides this research has three propositions:  

1. where a decision aid renders cognitive resources to match those demanded for the 

task environment (RA = RD), a consumer will process more information which will lead 

to enhanced decision performance;  

2. where a decision aid renders cognitive resources that exceed what is needed (RA > 

RD), a consumer could engage in less task-related elaboration leading to detrimental 

decision performance, such as poorer decision quality; and  

3. where a decision aid renders cognitive resources that fall short of those needed (RA < 

RD), a consumer could either engage in i) simplistic heuristic decision strategy leading 

to detrimental decision performance, or ii) invest additional effort within manageable 

levels, to process more information to yield better decision performance. 

Figure 1: Research Framework 

 Decision Outcome Decision Process Decision Context 

Decision Aid 
• LSS 
• HSS 
• WES 

Attribute Load 
• Low (5 attributes) 
• High (15 attributes) 

Decision Process 
• Decision Time 
 

Subjective Evaluation of 
Decision Process 
• Perceived System 

Quality 

Decision Outcome 
• Decision Quality 
 

Subjective Evaluation of 
Decision Outcome 
• Perceived Decision 

Quality 
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In line with the taxonomy proposed by Lilien et al. (2004), we assess the decision performance of 

consumers who use decision aids based on two criteria - the decision process and the decision 

outcome - for which both objective and subjective evaluations are included. The decision process, 

which involves the screening and the evaluation of product information to arrive at a choice, is 

characterized by the decision time and the perceived system quality (Sharda et al. 1998). The 

decision time is an objective indicator of the amount of effort exerted to process information before 

a decision is made (Roberts and Lattin 1997). The perceived system quality, a subjective indicator, 

reflects the degree to which the consumer perceives during the decision-making process that the 

decision aid to be capable of assisting him/her in reaching a decision (DeLone and McLean 1992).  

The decision outcome is manifested by two variables: observed decision quality and perceived 

decision quality. The common approach to assessing decision quality objectively is to determine 

whether the alternative chosen is a non-dominated option (Haübl and Trifts 2000; Olson and 

Widing 2002). An alternative dominates another if it has at least one product attribute that is 

superior while none of its other attributes are inferior (Payne et al. 1993). A non-dominated 

alternative is hence, one that is not dominated by any other alternative. This binary approach of 

defining decision quality, however, does not take into consideration the distance between the 

chosen alternative and the non-dominated alternative (Bettman et al. 1998). Our study addresses 

this concern by assigning a utility value ( jπ ) to each alternative (see the Research Methodology 

section for more details). The perceived decision quality is a subjective indication of how a 

decision-maker perceives his decision to be accurate, correct, precise and reliable (Mennecke and 

Valacich 1998). 
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Before proceeding to the formulation of hypotheses, we stress that as decision support increases 

from LSS to HSS to WES, user control afforded by these aids also increases, making it easier for 

the consumer to remove inferior alternatives and make comparisons (see Table 1). However, 

because LSS and HSS differ in the number of attributes supported for each screening attempt (i.e., 

single only versus single/multiple attribute-based screenings) while HSS and WES differ in the 

provision of assigning importance weights to attributes (i.e., no weight assignments versus user-

inputted weight assignments), we decided to develop and test our hypotheses by comparing the 

differences that arise when utilizing LSS vis-à-vis HSS (screening support) and those that arise 

from utilizing HSS vis-à-vis WES (evaluation support) under varying product attribute-load 

environments in a dyadic fashion in order to provide a comparison based on the absence or 

presence of one decision support feature at a time. 

C.4.1 SCREENING SUPPORT: LSS VERSUS HSS 
A consumer who utilizes LSS would adopt the single-attribute non-compensatory strategy (i.e., 

LEX), which chooses the most important attribute as a basis to perform the cutoff or elimination of 

alternatives. The consumer will evaluate the remaining alternatives and decide whether or not to 

make a choice. If the consumer is not satisfied with the set of alternatives and deems that another 

screening attempt is needed, he then determines which of the remaining attributes could be the 

most important. Note that LSS would re-screen the original choice set during the new n+1th attempt 

rather than those alternatives left from the nth screening attempt. In this way, consumers using LSS 

are likely to repeat the screening process several times to identify the most critical attribute for 

screening alternatives (Payne et al. 1993). In contrast, HSS allows consumers to define any 

number of attributes to simultaneously serve as the cutoff criteria in each screening attempt. 

Depending on the number of attributes selected for screening, the decision strategies employed 

could vary. For instance, if consumers screen alternatives using only one attribute at a time, HSS 
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functions exactly like LSS, thus inducing LEX processing. If multiple attributes were chosen instead 

of those used for screening, the EBA strategy would be induced. When consumers screen 

alternatives using all attributes at once, they are said to be employing MCD. 

We posit that in a high product attribute-load condition, consumers with HSS would achieve 

better decision performance than those using LSS in terms of decision time, perceived system 

quality, decision quality, and perceived decision quality. Consumers using LSS, which restricts 

each screening attempt to one attribute criterion, lack the ability to screen off a large number of 

inferior (i.e., lower quality) alternatives. They need to expend a great deal of cognitive resources 

and effort to process the large number of product attributes and screen the resultant large number 

of alternatives. Clearly, LSS is inadequate to support their decision-making tasks as the cognitive 

resources and mental efforts demanded by consumers in a high product load condition are very 

high (i.e., RA < RD). Consequently, this causes consumers a high degree of cognitive difficulty to 

accomplish the decision-making task.  

Even if the consumers employing LSS were to exert more effort in screening and scanning, the 

limited single-attribute screening facility of LSS would lead to a large resultant set of alternatives 

that has a smaller share of non-dominated alternatives (or a good set of alternatives of higher utility 

value). Faced with these larger resultant sets of alternatives that have a large number of attributes, 

consumers again have to exert greater cognitive effort to visually inspect and compare these 

alternatives to arrive at a choice, which should translate into longer decision time. This would 

indicate a scarcity of available cognitive resources relative to required cognitive resources 

(Peracchio and Meyers-Levy 1997). Hence, owing to the limitations of human information 

processing capabilities and the low support provided by LSS, the likelihood of the consumers 

making an inferior choice is very high.  
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Thus, when the cognitive resources available fall short of the cognitive resources demanded (i.e., 

RA < RD), decision performance should deteriorate. In line with the resource-matching theory, 

consumers involved in cognitive resource-demanding tasks (i.e., RA < RD) are also likely to have 

less confidence in the decision outcomes (Anand and Sternthal 1989). Moreover, in addition to 

experiencing a shortfall in cognitive resources support, large resultant sets of alternatives, and 

longer processing and evaluation times, consumers with LSS would also feel that they have less 

control over the decision process, which will negatively influence their perceived system quality.  

In contrast, because HSS permits the specification of multiple criteria for each screening attempt, 

HSS affords consumers greater flexibility, ease, and control to remove a large number of less 

attractive alternatives from the overall choice set. This advantage is particularly significant in 

dealing with product alternatives that have a large number of attributes. With better support 

provided by HSS for the high product attribute-load task, consumers would enjoy comparatively 

higher cognitive resources than those with LSS. By specifying multiple attribute criteria at each 

screening, consumers with HSS should be able to eliminate inferior alternatives to arrive at both a 

high quality consideration set and a better decision more quickly than those using LSS (Haübl and 

Trift 2000). While HSS may not fully overcome the high cognitive load associated with evaluating 

the alternatives, it still reduces the gap between the available and required cognitive resources. 

Since HSS provides better decision support to overcome the cognitive overload and facilitates 

greater control over the decision process, consumers using HSS should experience better decision 

performance in terms of decision time and decision quality, and perceive higher system quality and 

decision quality than those using LSS in the high product attribute-load condition. 

However, in a low product attribute-load condition, we expect consumers using LSS to attain 

better decision performance than those using HSS in terms of decision quality and perceived 
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decision quality only. Consumers using LSS may be able to identify alternatives of higher utility 

value when inspecting the returned alternatives due to a lower demand for cognitive resources 

associated with the lower product attribute-load (i.e., having fewer numbers of attributes to 

consider). Payne et al. (1993) observed that consumers who adopt LEX (induced by LSS) could 

still identify higher quality alternatives compared to those who adopt other non-compensatory 

strategies (e.g., EBA and MCD), if they perceive the cognitive efforts to be manageable and are 

willing to exert effort. In our context, a goal-oriented task to select a non-dominated product was 

used and the cognitive effort demanded in the low product attribute-load condition is much less 

than that demanded in the high attribute-load environment, and should fall within the consumers’ 

level of available cognitive resources. Hence, we argue that consumers would be inclined to 

expend more time and effort to identify better alternatives.  

When there is a better match between cognitive available resources and cognitive resources that 

are demanded, consumers experience a higher level of motivation and self-regulation and will 

spend more time and effort on the decision-making task, thus leading to a higher level of decision 

accuracy and perceived decision quality (Peracchio and Meyers-Levy 1997). However, because 

more time and effort will be spent on the decision-making task, consumers are unlikely to perceive 

LSS as a high system quality product compared to HSS.  

In fact, compared to LSS, the use of HSS in a low product attribute-load condition may lead to a 

poorer decision performance for two reasons. First, consistent with the resource-matching theory, 

consumers are likely to be distracted from the real task at hand (i.e., evaluating the alternatives) 

and engage in more idiosyncratic and task-distanced activities (e.g., excessive manipulation of the 

HSS screening features) when they have more cognitive resources (that are afforded by HSS ) 

than needed in a low product attribute-load environment. More specifically, owing to the ease of 
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screening afforded by HSS, consumers could become engaged in trying out different combinations 

of multiple attribute criteria and expending less cognitive effort on evaluating the resultant sets of 

alternatives. That is, as argued earlier, the abundance in cognitive resources (i.e., RA > RD) may 

result in consumers being more inclined to exhibit cognitive laziness when performing decision-

making tasks (Chenoweth et al. 2004). Such an allocation of cognitive resources could lead to poor 

decision quality. This conjecture is in accordance with the stream of empirical evidence from prior 

studies indicating that the provision of more decision-aiding features does not necessarily benefit 

the quality of the decision (e.g., Silver 1991; Schwartz 2004). Second, HSS may also imbue 

consumers with overconfidence in the aid, leading to less evaluation time spent, and unwarranted 

effort minimization and reliance on the HSS to make decisions (Skitka et. al. 1999). Because of the 

sophistication of HSS and its ability to reduce consumers’ time and cognitive effort, the system 

quality of HSS will be perceived as high. Hence, we posit: 

H1a(i): Using HSS will lead to lower decision time compared to using LSS in high 

product attribute-load condition. 

H1a(ii): Using HSS will lead to lower decision time compared to using LSS in low 

product attribute-load condition. 

H1b(i): Using HSS will lead to higher perceived system quality compared to using LSS 

in high product attribute-load condition. 

H1b(ii): Using HSS will lead to higher perceived system quality compared to using 

LSS in low product attribute-load condition. 

H1c(i): Using HSS will lead to higher decision quality compared to using LSS in high 

product attribute-load condition. 

H1c(ii): Using HSS will lead to lower decision quality compared to using LSS in low 

product attribute-load condition. 
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H1d(i): Using HSS will lead to higher perceived decision quality compared to using 

LSS in high product attribute-load condition. 

H1d(ii): Using HSS will lead to lower perceived decision quality compared to using 

LSS in low product attribute-load condition. 

C.4.2 EVALUATION SUPPORT: HSS VERSUS WES 
WES differs from HSS by providing the capability to perform additional compensatory computations 

of the attractiveness of the alternatives that are extracted based on the screening capability of the 

HSS (Lilien et al., 2004). Hence, WES (relative to HSS) assigns an overall attractiveness score to 

each alternative (that has passed the initial screening) in a ranked order that allows consumers to 

quickly identify those alternatives that best meet their expectations.  Compared to HSS, we thus 

posit that WES renders a higher supply of cognitive resources to better match the demanding 

cognitive needs of a high product attribute-load condition but not in a low product attribute-

load condition where the cognitive demands are much lower.  

Specifically, in the high product attribute-load condition, WES, which facilitates efficient 

discrimination among alternatives with respect to their subjective utilities, requires less cognitive 

effort (i.e., screening attempts) from consumers to eliminate inferior alternatives and identify 

superior ones (Haübl and Trifts 2000). Moreover, insofar as consumers could offload the effort of 

the scanning and consideration of the tradeoffs among all available alternatives, they would 

experience less choice uncertainty (Hauser and Wernerfelt 1990), use less time to derive a choice 

and yet achieve a higher quality decision with greater confidence (Song et al. 2007; Payne et al. 

1993) compared to consumers using HSS. Even though HSS facilitates multiple-attribute based 

screening, consumers using HSS would nevertheless encounter significant cognitive load in 

evaluating the resultant sets of alternatives, a task that WES facilitates through compensatory-

based evaluations. Essentially, the use of WES renders a higher supply of cognitive resources to 
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the consumers to match what is required in the high attribute-load environment (Mantel and 

Kellaris 2003). Consumers using WES should thus attain better decision performance in terms of 

decision time and accuracy, and perceive a higher level of system quality and decision quality than 

those using HSS. 

In a low product attribute-load condition, following the reasoning used when comparing LSS and 

HSS, because of the sophistication of WES due to its compensatory evaluation capability, and 

hence its ability to reduce consumers’ time and cognitive effort, the system quality of WES will be 

perceived as higher than that of HSS. However, we do not expect significant differences between 

HSS and WES in terms of decision performance. Our reasoning for this prediction is as follows. 

Recall that when formulating hypothesis H1, we had provided the reasons as to why in a low 

product attribute-load condition, HSS represents a case where RA > RD. Clearly, in the same 

condition, this is also true for WES. Therefore, in a low attribute-load condition, both HSS and WES 

provide an abundance of cognitive resources (i.e., RA > RD) hence the deterioration in 

performance expected due to this criterion (i.e., proposition #2 stated in the beginning of the 

“hypotheses” development section), applies to both of these decision aids. Furthermore, another 

reason for not expecting performance differences is that with only five attributes to evaluate across 

the resultant consideration sets in the low product attribute-load condition, consumers with HSS 

could compensate for the lack of compensatory evaluation function in WES by engaging in a 

mental assessment of the alternatives, which may not be as cognitively taxing as in the case of a 

high (15) product attribute-load condition (Eom 2003). Hence, we hypothesize:  

H2a(i): Using WES will lead to lower decision time compared to using HSS in high 

product attribute-load condition. 
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H2a(ii): Using WES will lead to lower decision time compared to using HSS in low 

product attribute-load condition. 

H2b(i): Using WES will lead to higher perceived system quality compared to using 

HSS in high product attribute-load condition. 

H2b(ii): Using WES will lead to higher perceived system quality compared to using 

HSS in low product attribute-load condition. 

H2c(i): Using WES will lead to higher decision quality compared to using HSS in a high 

product attribute-load condition. 

H2c(ii): Using WES will lead to no significant difference in decision quality compared to 

using HSS in a low product attribute-load condition. 

H2d(i): Using WES will lead to higher perceived decision quality compared to using 

HSS in a high product attribute-load condition. 

H2d(ii): Using WES will lead to no significant difference in perceived decision quality 

compared to using HSS in a product attribute-load condition. 

C.5 RESEARCH METHODOLOGY 
A 3 (LSS, HSS and WES) x 2 (low and high attribute-load) factorial experimental design was 

employed to investigate the main and interaction effects of decision aids and product attribute-load 

on consumer decision performance in a multi-alternative, multi-attribute, purchasing decision-

making context. The decision aid was operationalized using LSS, HSS and WES. Product attribute-

load was operationalized using five (low) and 15 (high) product attributes. The rationale behind the 

delineation of the number of product attributes is that providing 10 or more product attributes tends 

to decrease human ability in processing drastically (Malhotra 1982). Table 2 describes the 

operationalization of the dependent variables.  
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It is important to note that decision quality is operationalized by assigning a utility value ( jπ ) to 

each alternative. The utility value, jπ , of each alternative for a given product brand is calculated 

as 
1

1 k

K

j

k

Xπ
=

= −∑ , where [ / ]*kk k kX l L MAX= , signifying the difference in ranked value for an 

attribute k of alternative j against that of the non-dominated alternative. kL  refers to number of 

ranked levels for attribute k (e.g., 3 levels for warranty: 1-year, 2-year, 3-year). kl  represents the 

ranked level of the attribute k with zero value for highest rank and so on (relative to the non-

dominated alternative). For instance, an alternative j with a 2-year warranty will have kl =1 when 

compared to a non-dominated alternative with 3-year warranty. 1/k KMAX = , which represents 

the maximum amount each attribute can contribute towards the utility of an alternative with k 

attributes. It is imperative to note that, any attribute value on the non-dominated alternative is at 

least as good as in any other alternative corresponding attribute values thus gets a score of 0. In 

other words, the non-dominated alternative has a utility value of 1.0 (i.e., 
1

0k

K

k
X

=

=∑ ) and the others 

will have utility values below 1.0 since 
1

0k

K

k
X

=

>∑ .  

To illustrate, we refer to Table 3, which depicts two sets of five alternatives for two fictitious brands, 

namely Sierra and JohnSteel, in the low product attribute-load condition of 5 attributes 

( 1/ 5kMAX = ), with attributes of price (differing in $5 scalar between two attribute levels), warranty 

(1, 2 and 3 years), CD type (repeat; repeat, shuffle; repeat, shuffle and programmable), system 

(basic; mini hi-fi; mini-theater) and tuner (no; analog; digital). In the experiment to be reported later, 

there were 6 brands of 20 alternatives each, with one non-dominated alternative in each brand 

category ( 1.0π = ). To compute the utility value for the Sierra AV-2003 model, for example, we 

need to compare the product attribute values of the AV-203 model against those of the non-
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dominated alternative AV-402 model. The Sierra AV-402 model has the following attribute values: 

price ($554.03), warranty (2 years), CD type (repeat), system (mini-theater) and tuner (digital). 

Comparatively, the Sierra AV-203 model has the following attribute attributes: price ($559.19), 

warranty (2 years), CD type (repeat), system (mini-theater) and tuner (no). The Sierra AV-203 

model is inferior to the Sierra AV-402 model in terms of price by 1 level ( 1X  = [1 / 3] * (1/5) = 0.07) 

and tuner by 2 levels ( 5X  = [2 / 3] * (1/5) = 0.13), yielding a utility value ( jπ  ) of 0.80 (1.0 – 0.07 

– 0.13).  

Table 2: Operationalization of Dependent Variables 
Dependent variable Operational measure 

Decision time Time taken to make a decision. 

Decision quality Decision quality has a scale from 0 to 1.Six brands per product category are available. 
Within each brand, there are 20 alternatives and only one alternative is non-dominated 
while the other 19 are dominated. For each of the dominated alternatives, distance from 
the non-dominated alternative is computed with the non-dominated alternative having a 
quality of 1.0. Across brands, none of the non-dominated alternatives is dominated. 

Perceived decision quality 

(Cronbach’s Alpha = .855) 

1. I believe I have made the best choices at this website. 
2. I would make the same choices if I had to do it again. 
3. I believe I have selected the best models for both products. 

Perceived system quality 

(Cronbach’s Alpha = .832) 

1. The function provided by the tool is what I would need to make decisions. 
2. The tool has helped me in making good decisions. 
3. The tool is one of the best ways to accomplish the tasks assigned. 

 
Table 3. Illustration of Decision Quality Computation 

Price($) Warranty CD type System Tuner 

Brand Model Value X1 Value X2 Type X3 Type X4 Type X5 jπ  

Sierra AV-402 * 554.03 - 2 years - Repeat - Mini-theater - Digital - 1.00 

Sierra AV-405 559.04 0.07 2 years 0.00 Repeat 0.00 Mini-theater 0.00 Digital 0.00 0.93 

Sierra AV-605 559.03 0.07 2 years 0.00 Repeat 0.00 Mini hi-fi 0.07 Digital 0.00 0.87 

Sierra AV-203 559.19 0.07 2 years 0.00 Repeat 0.00 Mini-theater 0.00 No 0.13 0.80 

Sierra AV-404 564.02 0.13 1 years 0.07 Repeat 0.00 Mini-theater 0.00 No 0.13 0.67 

……… 
JohnSteel J-310R * 607.48 - 3 years - Repeat, shuffle, 

programmable 
- Basic - Digital - 1.00 

JohnSteel J-506V 607.49 0.00 2 years 0.07 Repeat, shuffle, 
programmable 

0.00 Basic 0.00 Digital 0.00 0.93 

JohnSteel J-203Q 612.00 0.07 3 years 0.00 Repeat, shuffle 0.07 Basic 0.00 Digital 0.00 0.87 

JohnSteel J-503W 607.80 0.00 2 years 0.07 Repeat, shuffle 0.07 Basic 0.00 Analog 0.07 0.80 

JohnSteel J-410V 617.00 0.13 2 years 0.07 Repeat 0.13 Basic 0.00 Digital 0.00 0.67 

D – Difference in the attribute value of the alternative relative to the same attribute in the non-dominated alternative with each ↓ 
symbolizing a level difference; * - Non-dominated alternative. 
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C.5.1 EXPERIMENTAL PROCEDURES 
One-hundred and fifty-six undergraduate Information Systems students enrolled in an advanced 

Management of Information Systems (MIS) course, participated in the experiment. This sample 

size provides an acceptable level of a statistical power (0.8) with an effect size of 0.5 at a two-tailed 

5 percent significance level (Sawyer and Ball 1981). Participants were recruited through electronic 

mail and advertisements. Their average age was 22.0 years, and 80 of them were females 

(51.3%). As part of their degree requirements and coursework, all participants had web-surfing and 

computing experience. They were randomly assigned to one of the six treatments to minimize the 

effects of individual differences on the outcomes. As a result, there were 26 participants per 

treatment group. The participants were told explicitly that their task was to select any of the best 

alternatives in two product categories. In order to ensure experimental realism, the participants 

were told that they would be paid a fixed participation incentive and a variable performance-based 

incentive. The computation of the variable incentive was based on the decision quality, i.e., utility 

value of the alternative identified, and the level of difficulty in completing the two decision tasks. On 

an average, each participant was paid US$10 for an hour’s work.  

Participants were first given the scenario of moving to a new home, and primed to shop at a 

website for two household products: a washing machine and a mini audio system. This setup is 

consistent with most experimental studies on information seeking and decision-making behavior 

(Haübl and Trifts 2000) and is necessary to induce mundane realism9. The two product categories 

were chosen because they represent household items familiar to the participants who may have 

                                                      

9 Mundane realism refers to the degree to which the experiment resembles real-life application of the decision aids 
(Neuman 2006). 
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had experience in relocation (e.g. moving from home to hostels), or whose families own or might 

have purchased a new home, etc. We made sure that our participants were familiar with the two 

products by thoroughly briefing them about the attributes of each product, and, furthermore, to 

minimize ambiguity in interpreting product attributes, descriptions and value levels of the attributes 

were provided in a help file for their easy reference. The participants were asked to rate their levels 

of knowledge and familiarity with the two products.  

In each product category, there were six fictitious brand names, with each brand having 20 

alternatives, culminating in a total of 120 alternatives. All participants, irrespective of the 

experimental treatment, faced the same 120 alternatives. As proposed by Haübl and Trifts (2000), 

the alternatives in each category were created by manipulating the combinations of attribute 

levels10. Each alternative was described using five product attributes in the case of the low product 

attribute-load and an additional 10 product attributes in the case of the high product attribute-load 

treatment. For each product category, six non-dominated alternatives—one for each of the six 

brands—were created. Each non-dominated alternative in its respective brand category dominated 

the remaining 19 alternatives, and parity among the non-dominated alternatives across brands was 

upheld (Haübl and Trifts 2000). No alternative emerged as the best in terms of all its attribute 

values. This design ensures that participants would evaluate each alternative carefully to identify 

the higher quality alternatives. 

The participants were given a tutorial on the use of system features to conduct product 

comparisons in order to make a choice. The participants first had a trial session, where they 

                                                      

10 The list of 120 alternatives for each product category can be furnished on request. 
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attempted to select the best possible choice out of several alternatives of a fictitious product. They 

were asked to provide their demographic information and rate their online buying experience, 

computer literacy level, web-surfing proficiency, and product category knowledge level. This was 

done for the purpose of conducting a control check.  

The participants were then presented with two different product categories, and the sequence of 

the product purchase (i.e., washing machine or mini audio system) was randomly determined by 

the computer system. As in Haübl and Trifts (2000), the participants were told to choose the best 

alternative for each product category. Depending on the treatment condition, a participant was 

presented with the LSS, HSS or WES decision support aid. Figure 2 depicts screenshots of the 

three decision-aiding experimental implementations in the low product attribute-load condition. The 

participants in the LSS condition (see Figure 2a) started by selecting one attribute for screening 

and then deciding on the associated cutoff attribute value, (e.g., at least 2 years of warranty). The 

LSS would then present the alternatives that meet the defined attribute-cutoff criterion. In contrast, 

participants with HSS were able to define more than one attribute value criterion per screening 

attempt. For instance, Figure 2b depicts the screening criteria of at least: 1) 2 years of warranty, 2) 

repeat and shuffle functions for CD, and 3) the analog tuner. For the WES condition, participants 

could not only define the attribute criteria but also delineate the relative importance of the attributes 

(i.e., attribute with a 7-point weight indicated as most important). For instance, as depicted in 

Figure 2c, participants with WES could define screening criteria of: 1) at least 2 years of warranty 

and 2) at least a mini hi-fi system; and evaluate the alternatives based on the delineated 

importance for the warranty attribute (7-point weight attribute being the highest) and the hi-fi 

system (the highest being a 3-point weight). Figure 2d presents the screenshots of the results 

returned from a set of search criteria. It was observed that in the WES condition, the rating column 
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displayed depicts the degree of attractiveness of the alternative as it was computed based on the 

attribute importance delineated in Figure 2c. The participants would then need to evaluate the list 

of the alternatives presented and determine whether a purchase should be made. 

Figure 2. Sample Screenshots of the Experiment 
(a) LSS  

 

(b) HSS 

 
(c) WES 

 

(d) Sample Result Display (WES) 

 
 

At the end of each purchase, participants were asked to indicate their level of perceived decision 

quality. After completing both the purchase tasks, the system prompted the participants to provide 

feedback on task meaningfulness and perceived system quality. The whole experiment was 

completed within three days, and the model names of the non-dominated alternatives were 

changed prior to the commencement of each session. A “double-blind” research assistant (who 

was not aware of the research objectives) was recruited to serve as the administrator of the 

experiment. 
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C.6 RESULTS 
C.6.1 CONTROLS AND MANIPULATION CHECKS 
Individual characteristics, such as age, gender, experience and the skills of participants, which 

could potentially affect decision-making approaches and outcomes, were controlled by means of 

randomization. Further control checks indicated no significant differences among participants in all 

six treatments in terms of gender, age, online buying experience, surfing experience, and computer 

skills. Control over participant characteristics through randomization appeared successful. 

Manipulation checks were also conducted to ensure that our manipulation of decision aids and 

product attribute-load were successful. Decision aid manipulation was checked by asking the 

participants to rate on a 7-point Likert scale how easy it was for them to reduce the number of 

alternatives using the system. A one-way analysis of variance comparing the mean ratings 

obtained for the LSS, HSS and WES conditions (i.e., 4.68, 5.08 and 5.45, respectively) yielded a 

highly significant result (F = 4.73, p < .01). All pair-wise differences in the means were also highly 

significant, which suggest that our manipulation of decision aids was successful. The product 

attribute-load manipulation check was also conducted by asking the participants to rate on a 7-

point Likert scale their ability to consider as many product attributes as possible before making a 

purchase decision. Comparing the means ratings obtained for the low and high product attribute-

load conditions (i.e., 5.33 and 4.75 respectively) yielded a highly significant result (t = -.2458, p < 

.05). Perceptions on task meaningfulness were also significantly different from the neutral value of 

4 (mean = 5.36, t = 21.509, p < .01), which suggests that experimental realism is not a problem. 

Table 4 provides the descriptive statistics of the dependent variables. 
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Table 4: Means (Standard Deviations) of Dependent Variables 
Process measures Outcome measures 

Product 
Attribute-
load 

Decision 
aid 

Decision time 

(in minutes) 

Perceived system 
quality 

Decision quality Perceived decision 
quality 

LSS 9.027 (4.796) 4.039 (.958) .858 (.231) 5.212 (1.054) 

HSS 7.992 (5.318) 4.808 (1.297) .676 (.364) 4.404 (.955) 

Low 

WES 5.931 (3.137) 6.308 (.679) .707 (.368) 4.519 (.727) 

LSS 10.563 (5.490) 3.269 (1.185) .609 (.333) 4.308 (.981) 

HSS 7.949 (4.838) 5.077 (1.093) .669 (.341) 4.827 (1.024) 
High 

WES 6.381 (2.784) 6.115 (1.306) .814 (.270) 5.289 (1.016) 

 

C.6.2 HYPOTHESIS TESTING 
All statistical tests were conducted at the 5% level of significance. Before conducting the 

MANCOVA test, we need to perform three tests on the data. First, we examined the normality of 

the three dependent variables, namely decision time, decision quality and perceived decision 

quality. Normality tests include the skewness and kurtosis tests. Our tests suggest that decision 

quality (Skewness Z = -.724; Kurtosis Z =-.973) and perceived decision confidence (Skewness Z = 

.088; Kurtosis Z = .334) have skewness and kurtosis values near the normal range of -3 to 3, which 

are deemed acceptable (Hair, Anderson, Tatham and Black 1998). However, decision time 

(Skewness Z = 1.507; Kurtosis Z = 3.603) yields the Kurtosis Z value to be beyond the normal 

range of -3 to 3. Square-root transformation was performed on decision time. After the 

transformation, decision time satisfy the normality test (Skewness Z = .625; Kurtosis Z = .448). 

Second, we used the Bartlett’s test for sphericity, which examines the correlations among the three 

dependent variables (i.e., perceived learning difficulty, decision time and perceived decision 

confidence) and determines whether significant intercorrelation exists. The results indicated the 

existence of significant intercorrelations (χ2 = 314.657, p < .01). Third, we tested whether the data 

conforms to assumption of the homogeneity of the variance-covariance matrices among the 
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groups. The Bartlett-Box’s M test, which focuses on assessing the overall equivalence of the 

variance-covariance matrices, was adopted The M test reveals significant (Box’ M = 55.702, p < 

.01), which is deemed to be acceptable for MANCOVA to be conducted. 

In light of this finding, and to control for experiment-wide error rate and the possible influence of 

product knowledge on dependent variables, the Multivariate Analysis of Covariance (MANCOVA) 

was first applied on the three dependent variables, namely decision time, decision quality and 

perceived decision quality. The perceived system quality was omitted from the MANCOVA test 

because the measure was captured at the end of the experiment as opposed to the other three 

measures that were captured after each purchase task. The results reveal the main effects for 

decision aid (Pillai’s Trace = .138, F = 7.508, p < 0.01, power = 1.00) and the interaction effects for 

decision aid * information load (Pillai’s Trace = .167, F = 9.179, p < 0.01, power = 1.00), with 

product knowledge (Pillai’s Trace = .012, F = 1.230, p > .1, power = .329) and decision sequence 

(Pillai’s Trace = .019, F = 1.928, p > .1, power = .496) as insignificant covariates. As no significant 

effects were detected for product knowledge and decision sequence, they were omitted from 

subsequent statistical tests involving the dependent variables. 

Further univariate tests using ANOVA were run separately for each of the dependent variables. 

Table 5 summarizes the univariate test results. We observe significant main effects for decision 

aids on decision time and perceived system quality, and significant interaction effects on decision 

quality and perceived decision quality (Table 5). Each of the significant interaction effects was 

further examined using the method of simple effects analysis (Keppel 1991). In line with the 

formulation of hypotheses comparing differences in the usage of LSS vis-à-vis HSS (screening 

support; H1), with those of HSS vis-à-vis WES (evaluation support; H2) under varying attribute-load 

environments, subsequent data analyses were conducted by splitting the dataset into four 
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categories (i.e., LSS versus HSS in low and high product attribute-load conditions and HSS versus 

WES in low and high product attribute-load conditions). 

Table 5: Univariate Tests (ANOVA) 
Process measures Outcome measures 

Source of variation 
Decision time Perceived system 

quality 
Decision quality Perceived decision 

quality 

Decision aid F = 18.204, p < .01 F = 69.272, p < .01 F = 2.017, p > .10 F = 2.320, p = .10 

Attribute-load F = 2.390, p > .10 F = 1.692, p > .10 F = 1.864, p > .10 F = .773, p > .10 

Decision aid * Attribute-load F = .602, p > .10 F = 2.867, p < .10 F = 8.236, p < .01 F = 21.745, p < .01 

 

C.6.2.1 Evaluating Screening support: LSS versus HSS 
Process measures: H1a posits that HSS participants would spend less time on decision-making 

than LSS participants in both high and low product attribute-load environments. As predicted, our 

results show a main effect of decision aid on the amount of time spent (F = 18.204, p < .01). 

Comparing the means of decision time, we observe that HSS users spent significantly less time to 

make decisions than those with LSS (i.e., main effect: meanHSS = 7.970, meanLSS = 9.795; t = 

2.569, p < .05). LSS’s drawback of not being able to assist consumers in reducing the number of 

alternatives for evaluation by specifying multiple attribute values at each screening resulted in 

longer decision making time, a problem that was exacerbated with an increase in product attribute-

load. Hence, H1a(i) and H1a(ii) are supported. Similarly, H1b suggests that users of HSS would 

perceive higher system quality than users of LSS in both high and low product attribute-load 

environments. The lower amount of effort and time spent by HSS users in comparison to LSS 

users led them to perceive significantly higher perceived system quality across both high and low 

information loads (i.e., main effect: meanHSS = 4.942, meanLSS = 3.654; t = 5.636, p < .01). Hence, 

H1b(i) and H1b(ii) are supported. 
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Outcome measures: H1c and H1d posit that compared to LSS participants, HSS participants 

would attain and perceive lower decision quality in the low product attribute-load condition but 

higher decision quality in the high product attribute-load condition. The results show that HSS 

participants fared significantly worse than LSS participants in terms of decision quality in the low 

product attribute-load condition (t = 4.307, p < .01) but they did not perform significantly better than 

LSS participants when product attribute-load was high (t = 1.294, p > .10), although the effects 

were in the right direction. Hence, H1c(ii) is supported but H1c(i) is not supported. As predicted in 

H1d, HSS participants perceived lower decision quality than LSS participants in the low product 

attribute-load condition, but perceived higher decision quality than LSS participants in the high 

product attribute-load situation, despite their not attaining significantly higher decision quality than 

their LSS counterparts. Table 6 lists the results of the simple effect analyses. 

Table 6: Simple Effect Analyses of Decision Aid * Information Load for LSS versus HSS 
Data Split by Information Load 

Low High 
Dependent variable Hypothesis Result Hypothesis Result 

                      LSS versus HSS 

H1c: Decision 

quality 

(ii) HSS < LSS t = 4.307, p < .01 

Supported 
(i) HSS > LSS t = 1.294, p > .10 

Not Supported 

H1d: Perceived 
decision quality 

(ii) HSS < LSS t = 4.095, p < .01 

Supported 
(i) HSS > LSS t = 2.641, p = .01 

Supported 

 

C.6.2.2 Assessing Evaluation Support: HSS versus WES 
Process measures: H2a posits that compared to HSS participants, WES participants would spend 

less time on decision-making in both high and low product attribute-load conditions. The results 

provide empirical support to this hypothesis by showing that WES participants consistently took 

less time to complete the decision-making tasks than HSS participants in both product attribute-
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load conditions (i.e., main effect: meanWES = 6.156, meanHSS = 7.970; t = 3.157, p < .01). Hence, 

H2a(i) and H2a(ii) are supported. Similarly, H2b posits that compared to HSS participants, WES 

participants would perceive higher system quality in both high and low product attribute-load 

conditions. Because WES participants expended less time and effort in making decisions than HSS 

participants, WES users reported higher perceived system quality in both product attribute-load 

conditions (i.e., main effect: meanWES = 6.212, meanHSS = 4.942; t = 5.789, p < .01). Hence, H2b(i) 

and H2b(ii) are also supported. 

Outcome measures: H2c and H2d suggest that compared to HSS participants, WES participants 

would achieve and perceive higher decision quality in the high product attribute-load environment 

but not in the low product attribute-load environment. The results (see Table 7) show that WES 

participants did better than HSS participants in the high product attribute-load environment (t = 

2.388, p < .05) but did not significantly out-perform HSS participants in the low product attribute-

load environment (t = .431, p > .10). Likewise, WES participants also perceived higher decision 

quality than HSS participants in the high product attribute-load environment (t = 2.307, p < .05) but 

not in the low product attribute-load condition (t = -.693, p > .10). According to Sawyer and Ball 

(1981, p. 278), “any credible decision to ‘accept the null hypothesis’ of no effect must be 

accompanied by a highly powered research design that reveals only a very small effect size”. Since 

the observed effect sizes in our highly powered research design are only 0.085 and 0.136 for 

decision quality and perceived decision quality, respectively -- which are very small -- we are 

confident that the decision quality and the perceived decision quality of WES participants did not 

differ significantly from those of HSS participants in the low product attribute-load condition. Hence, 

H2c(i), H2c(ii), H2d(i) and H2d(ii) are supported. 
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Table 7: Simple Effect Analyses of Decision Aid * Information Load for HSS versus WES 
Data Split by Information Load 

Low High 
Dependent variable Hypothesis Result Hypothesis Result 

HSS versus WES 
H2c: Decision 
quality 

WES = HSS t = .431, p > .10 
Supported 

WES > HSS t = 2.388, p < .05 
Supported 

H2d: Perceived 
decision quality 

WES = HSS t = -.693, p > .10 
Supported 

WES > HSS t = 2.307, p < .05 
Supported 

 

C.7 DISCUSSION 
The aim of this study is to improve our understanding of how consumers would utilize online 

decision aids of varying sophistication and features, and how their use affects decision 

performance under different information environments. Our basic proposition, which draws upon 

the resource-matching theory (Mantel and Kellaris 2003; Peracchio and Meyers-Levy 1997; Anand 

and Sternthal 1989), is that, all other things being equal, if a decision aid facilitates the match 

between the cognitive resources available and those required for the decision task, decision 

performance should improve. However, when a decision aid renders cognitive resources that 

exceeded or fall short of those demanded, decision performance should deteriorate. 

Our findings provide strong empirical support for the resource-matching theory. To gain further 

insights into what drives the performance of the decision aids, we have also examined the number 

of screening submissions made by LSS, HSS and WES participants in our log file. WES, which 

encompasses the multi-attribute screening feature and the weight computation and evaluation 

feature, yields the best performance in terms of decision time (6.381 minutes) and decision quality 

(.814) in the high product attribute-load environment. WES participants engaged in 14.52 

screening submissions, but used the least time in making the best decision compared to LSS and 

HSS participants, probably because of the rank-ordered nature of the resultant sets of alternatives. 

Clearly, WES has rendered a high supply of cognitive resources to the participants to enable them 
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to meet the demanding cognitive needs associated with the screening and the evaluation of 

alternatives in a high product attribute-load context. In contrast, in the high product attribute- load 

environment, LSS with only a single-attribute screening feature yields the worst performance in 

terms of decision time (10.563 minutes) and decision quality (.609). Our results show that LSS 

participants made only 4.48 screening submissions compared to 16.75 and 14.52 screening 

submissions made by HSS and WES participants, respectively. Since the decision times taken by 

LSS participants were very lengthy, their low number of screening submissions would imply that 

that they were relying on heuristic and visual processing (i.e. trying to identify the key attributes and 

make a choice through visual inspection) instead of abandoning the task of information processing 

when they encountered situations where the cognitive resources available to them fell short of 

those that were demanded, i.e., when RA < RD (Payne et al. 1993). The heuristic decision strategy 

supported obviously did not help the LSS participants to achieve a better decision quality.  

LSS, the most simplified tool, yields the best decision quality in the low product attribute-load 

environment, albeit with the worst decision time. In our setup in which the participants were asked 

to identify the non-dominated product, LSS participants were somehow motivated to supplement 

the cognitive resources supplied by LSS with their own efforts to arrive at a better decision, as 

evident by their lengthy decision time (9.027 minutes), high number of screening submissions 

(8.63), and hence a long evaluation time per submission (9.027 ÷ 8.63 = 1.046 minutes). 

Comparatively, HSS participants used a shorter time (7.992 minutes) but engaged in a higher 

number of screening attempts (14.17) than LSS participants. However, HSS participants fared 

worse than LSS participants in decision quality (.676), probably because HSS participants “played 

around” with the HSS tool more frequently and engaged in less information processing and 

evaluation per submission (7.992 ÷ 14.17 = 0.564 minutes). Despite being provided with the most 
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sophisticated tool, WES participants used only a very short time (5.931 minutes) and submitted 

only 5.88 screening attempts to achieve a decision quality of only .707. As the resultant sets of 

alternatives for WES are rank-ordered, the long evaluation time per submission (5.932 ÷ 5.88 = 

1.008 minutes) taken by WES participants in the low product attribute-load environment suggests 

that they were focusing on idiosyncratic and less task-related elaboration of the decision-making 

issue. These behavioral consequences of using HSS and WES in the low product attribute-load 

condition coincide with the theoretical explanations offered by the resource-matching theory for the 

situation when the cognitive resources available to the consumers exceed those required by the 

task environment (Anand and Sternthal 1989; Chenoweth et al. 2004). 

There are a few interesting observations that arise from these findings. First, based on decision 

quality, it appears that HSS is a dominated decision tool in both information environments; it is 

neither suitable in the high product attribute-load environment nor appropriate in the low product 

attribute-load situation. Second, perceived system quality does not necessarily correlate with 

perceived decision quality, contrary to some prior studies, which imply that effort induced by poor 

decision support would result in negative effects  toward the decision-making outcome (Lilien et al. 

2004). In our study, among the three categories of participants, LSS participants had the highest 

perceived decision quality despite having the lowest perceived system quality in the low product 

attribute-load environment, which suggests that they valued the additional efforts they invested in 

the decision-making task to supplement the lack of decision support they obtained from LSS. The 

positive relationship between perceived system quality and perceived decision quality, however, 

holds in the high product attribute-load environment. In light of these observations, it is therefore 

important for IS researchers to be circumspect about the relationships between perceived system 

quality and user perceptions. Third, while the sophistication of the decision aids has a 
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straightforward association with process performance (i.e., decision time and perceived system 

quality), its impact on decision outcomes is contingent on the information environment in which it is 

being deployed as well as how it is being used by the decision makers. This is in line with the 

general thesis of DSS that decision aids are agents of change (based on the features they contain) 

that influence the decision-making process (Todd and Benbasat 1999; Silver 1991) by reducing or 

inducing appropriate cognitive resources associated with screening and evaluating the alternatives 

(Montgomery et al. 2004). 

C.7.1 LIMITATIONS 
Our research findings come with some caveats. Most importantly, the context in which this 

research was conducted may limit the external validity of our study. First, this study has examined 

the effects of decision aids in the context of a goal-driven setting (i.e., to identify a non-dominated 

product). Given that the behavioral consequences of using decision aids in other settings might be 

different, we feel that an examination of other task environments, decision contexts, and individual 

characteristics would be valuable. For example, factors such as consumer characteristics (e.g., 

window shoppers versus goal-driven buyers; prior product knowledge and experience), framing 

effects, biases (e.g., choice shifts and hindsight bias), task and problem definition, amount of risk 

(e.g., decision accountability) and incentives (e.g., decisions on high-risk but high-return products 

such as shares versus low risk and low returns products such as government bonds) associated 

with the purchase, consumer confidence, and trust in the integrity of the aid, these could all alter 

the results (Payne et al. 1993).  

Our choice of mini-audio systems and washing machines as products may also limit the external 

validity of our findings. While we believe the participants were familiar with both products, and extra 

effort was devoted to explain the product attributes prior to the experiment, some student 
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participants might still have trouble relating to the products and comprehending the issues involved 

in choosing these products. To the extent that the nature of the products could affect the 

willingness and involvement level of decision makers in the task execution (Swaminathan 2003), 

further experiments should be conducted to include other products (e.g., digital cameras) to insure 

the robustness and validity of  these findings. 

The way in which we conceived the highest decision quality (i.e., a participant should choose a 

non-dominated alternative among all others) may pose a problem to WES participants. While WES 

participants using WES were informed to select the best alternative that is superior in at least one 

attribute while not being inferior in any other attributes to others (Payne et al. 1993), it is plausible 

that some of these participants might still have evaluated the alternatives based on their individual 

preferences for certain attributes, which might potentially have skewed the overall values 

generated. Since the subjective utility of different alternatives may differ across individuals, further 

research should examine decision quality with the use of HSS and WES based on stated 

individuals’ attribute preferences. 

We have tested our hypotheses using 120 alternatives per product. In situations involving more 

than 120 alternatives, it is plausible that consumers using LSS may experience greater cognitive 

difficulty in processing the product information and hence obtain poorer decision quality even in the 

low product attribute-load environment. Although it is not common to find more than 200 

alternatives per product in one merchant’s product database, it might be prudent for future 

research to replicate our study using a larger product database. 

C.7.2 THEORETICAL AND PRACTICAL IMPLICATIONS 
This study contributes to several schools of literature. First, this study constitutes one of the first 

attempts to employ and extend resource-matching theory into the IS discipline with the aim of 
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understanding the effects of online decision aids on individual decision performance. By marrying 

the streams of resource-matching and decision support literature, we have demonstrated that the 

resource-matching theory could complement the traditionally-adopted theories of cognitive-fit and 

task-technology fit (Vessey 1991; Goodhue and Thompson 1995) by providing clear predictions of 

the under-fit (i.e., RA < RD) and over-fit (i.e., RA > RD) conditions in addition to the ideal-fit (i.e., 

RA = RD) condition. Additionally, this study also offers a nuanced understanding of the effects of 

decision aids on decision-making performance and helps to reconcile the two conflicting views of 

DSS in the extant literature. Specifically, we show that the effectiveness of online decision aids in 

helping consumers choose the best product is contingent on whether these aids facilitate the 

matching of the cognitive resources available to the cognitive resources required in the task 

environment. Where the decision aids render cognitive resources to match those demanded in the 

task environment, consumer will process more information, and consequently, decision 

performance will be enhanced; where the decision aids render cognitive resources that exceed 

those needed, consumers will engage in less task-related elaboration of decision-making issues to 

the detriment of decision performance (Silver 1991); and where the decision aids render cognitive 

resources that fall short of those needed, consumers will either employ a simplistic heuristic 

decision strategy to the detriment of decision performance or invest additional efforts in information 

processing to attain a better decision performance if they perceive the additional investments to be 

manageable. As such, DSS can lead to either greater information processing or effort minimization, 

depending on whether there is a match or mismatch in cognitive resources available to the 

consumers and those demanded in the task environment.  

Second, our study also adds to existing DSS literature (see Xiao and Benbasat 2007) by providing 

a more granular testing and evaluation of the decision aids features in multiple information 
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environments. Our literature review is consistent with the observations of some scholars who have 

noted that many prior DSS studies seldom clearly delineate the specific design functionality (Eom 

2003; Silver 1991; Todd and Benbasat 1999), making it difficult to attribute decision performance to 

specific features of the decision aids (Hevner, March, Park and Ram 2004). Others have evaluated 

the effectiveness of decision aids in a simplistic fashion such as comparing the performance of 

consumers in a “with or without DSS” environment (e.g., Haübl and Trifts 2000). In this study, we 

went beyond the “availability/absence of DSS” design; we derived the decision aids (i.e., LSS, 

HSS, and WES) to be tested in multiple information environments (i.e., low and high product 

attribute-load conditions) from the decision-making stages (van Zee et al. 1992) and decision 

strategies literature (e.g., Edwards and Fasolo 2001; Payne et al. 1993); described how they are 

likely to be used, and discussed the cognitive and psychological mechanisms under-girding their 

impacts on consumer decision process and performance (see sections 2, 3 and 4). To our best 

knowledge, studies assessing screening and evaluation capabilities in high and low product 

attribute-load environments are still sorely lacking. For instance, a recent study by Song et al. 

(2007) only evaluated the effects of decision aids characterized by non-compensatory strategies, 

compensatory strategies, and a hybrid of decision strategies, on subjective evaluation measures, 

such as decision satisfaction, without explicit consideration of information load. Most prior DSS 

studies that did consider information load examined the impact of decision aids on decision 

performance in an environment where information load was manipulated by a change in the 

number of alternatives provided (e.g., Haübl and Trifts 2000; Todd and Benbasat 2000, 1999) 

rather than by a change in the number of attributes to be considered, which is of more relevance 

and importance in an online electronic commerce context. 
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Third, our study complements the consumer behavioral decision-making research studies that are 

concerned with the management and impact of information load as characterized by product 

attribute-load. While there are some consumer behavioral decision-making research studies that 

have investigated information load by varying the number of product attributes, few have examined 

this aspect of consumer decision-making in a decision support technologies-enabled decision 

environment. Furthermore, even the few consumer research studies that focused on varying the 

number of product attributes have reported equivocal results. Some (e.g., Malhotra 1982; Keller 

and Staelin 1987) have found deterioration in decision performance with an increase in the number 

of attributes while others (e.g., Russo 1977) have discerned an enhancement in decision 

performance enabled by the “informativeness” of a bigger group of attributes (see Bettman et al. 

1998 for a detailed review). Our study demonstrates that if an appropriate decision aid is used to 

“manage” a high product attribute-load, it can enhance the consumer decision-making performance 

substantially. 

Our study also provides some practical implications for online merchants and product information 

brokers (e.g., comparison-shopping websites). The Internet is replete with examples of online 

merchants and product information brokers providing decision aids to consumers without 

considering the type of product they are searching for. For a simple product with few descriptive 

attributes, providing an overly sophisticated decision aid such as WES may result in the consumers 

not choosing the highest quality product whose profit margin is likely to be the biggest11. 

Conversely, for a complex product with several attributes, offering a simplistic tool such as LSS or 

HSS may result in consumers choosing a low quality product with a low profit margin at best, or 

                                                      

11 Product quality has been found to be positively correlated with profit margin (see Philips, Chang and Buzzell 1983). 
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abandoning the cognitively debilitating search, evaluation and purchase process at worst. 

Additionally, as in our case, we feel that online merchants and product information brokers can 

benefit from logging the usage and effects of the decision aids they provide to develop a better 

understanding of consumer behavior and choice.  

C.8 CONCLUSION 
As the dust from the dot-com bust settles and as computer and Internet penetration intensifies 

inexorably around the world (especially in China, India and emerging economies), electronic 

commerce has the potential to grow exponentially. For instance, it is projected that sales from 

China’s electronic-commerce alone may reach $2.5 billion in 2010, which is more that triple that in 

200612. Among other technological developments such as Web 3.0, decision aids have perhaps 

the greatest potential to facilitate and realize this growth in electronic commerce. However, without 

a careful understanding of how these decision aids influence consumer decision-making and 

performance, it is plausible that the growth may be stunted or remain lackluster at best. This study 

took a modest step toward developing a theoretically sound understanding of how decision aids 

affect consumer decision-making and performance, and in doing so, we hope to help online 

merchants and consumers gain maximum value from electronic commerce, and thereby contribute 

to its growth. 

 

 

                                                      

12 Source: http://seattletimes.nwsource.com/html/businesstechnology/2003735845_amazon06.html [last visited: June 
29, 2007] 
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D. ESSAY THREE 
DECISION DIFFICULTY AND RECOMMENDATION AGENT: AN 
ARCHITECTURAL DESIGN FRAMEWORK 
 
D.1 INTRODUCTION 
The consumer decision-making process can be complicated and is important to both consumers 

and merchants (Payne, Bettman and Johnson 1993). Consequently, the study of how to assist a 

consumer in completing the individual as well as a series of decision-making stages has been a 

focal area of research for the past two decades (Butler and Highhouse 2000; Bettman, Luce and 

Payne 1998). Among many research initiatives, a pertinent and enduring concern that spans 

across three of the five stages13 (i.e., product information search, alternative evaluation and choice 

selection), is how to assist a consumer to address the problem of decision-difficulty (Anderson 

2003; Dhar 1997). 

Decision-difficulty refers to the complexities encountered by a consumer during the purchase 

expedition that starts from the moment he realizes a desire or need for a particular product 

(Anderson 2003; Dhar 1997). Decision-difficulty could be experienced during the stages of 

information search, alternative evaluation and choice selection. For instance, prior studies have 

highlighted that a consumer could encounter difficulty: 1) when learning about a new product or 

service (Hoeffler 2003); 2) when eliciting preferences (Kardes, Cronley and Kim 2006) and 

evaluating the enormous number of product alternatives (Bettman et al.1998); and 3) when making 

an explicit decision to select one alternative and forgo all others (Schwartz 2004). It is to be noted 

                                                      

13 The other two stages are need recognition and post-purchase evaluation (Blackwell, Miniard, and Engel 2001). 
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that the other two stages of the decision-making process, i.e., the need recognition and the post-

purchase evaluation stages, are beyond the scope of our focused issue on decision-difficulty as 

need recognition is ex-ante while post-purchase evaluation is ex-post to a consumer’s purchase 

expedition; and hence, consumers in these two stages are less prone to suffer from decision-

difficulty (Anderson 2003; Bettman et al. 1998). 

When a consumer faces difficulties during decision-making, he has an inclination to exhibit 

purchase-avoidance behavior14, a tendency to postpone committing to a purchase or to seek a less 

painful way out that involves no action or no change (i.e., abandoning the inclination of committing 

to a purchase), despite having the need to consume the product/service (Anderson 2003). Such an 

inclination creates a devastating obstruction to Internet commerce; for example, an online 

manifestation of purchase-avoidance behavior is the shopping cart abandonment rate, which 

hovers at a disturbingly high level of around 70 percent even today15 (Mummalaneni 2005). 

A widely proposed technological solution to addressing decision-difficulty is to put in place an 

appropriate decision aid, such as the Recommendation Agent (RA), to support stages of the 

decision-making process (Edwards and Fasolo 2001; Haübl and Trifts 2000; Alba, Lynch, Weitz, 

Janiszewski, Lutz, Sawyer, and Wood 1997). The RA is an online decision-aiding tool that assists a 

                                                      

14 It is to be noted that in addition to decision difficulty, there are others reasons proffered for purchase avoidance 
behavior, including doubt on the authenticity of the procuring website (i.e., trust), unreliable or insufficient payment 
options, lack of transparency in shipping charges, and difficulties in screening and evaluating the sheer number and 
complexity of product offers (Kim and Benbasat 2006; Mummalaneni 2005). However, given our primary focus is on 
addressing decision difficulty with the prospect of lower decision avoidance propensity it is beyond the scope and not in 
accordance with the objective of the article to explore all factors leading to purchase avoidance behavior. 

 
15 Cherkassky, I. “Improving the E-Tail Shopping Experience, E-Commerce, 2006 [url: 
http://www.redorbit.com/news/technology/443549/improve_the_etail_shopping_experience/index.html; last accessed: 
September 05, 2007] 
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consumer to search for, evaluate, and choose suitable purchase options in the electronic 

marketplace (Xiao and Benbasat 2007). While several researchers and website developers have 

provided variations of RAs (e.g., Häubl and Murray 2003; Grenci and Todd 2002), most of these 

solutions are somewhat disparate and piecemeal in nature, addressing only fractional stages of the 

consumer decision-making process. For instance, some studies focus on the alternatives 

evaluation stage, such as automating and embedding various decision strategies in RAs  to 

minimize cognitive effort (Aksoy, Bloom, Luri, and Cooil 2006; Tan 2003) or the use of 

collaborative-based and content-based filtering to recommend product options (Adomavicius and 

Tuzhilin 2005; Ariely, Lynch and Aparicio 2004), while others address general issues such as the 

trustworthiness of these RAs when making a choice (Wang and Benbasat 2007; Xiao and 

Benbasat 2007).  

Hence, the purpose of this article is to introduce a unified design framework for an RA with which 

designers are encouraged to provide a host of system features to provide informed guidance for 

online consumers in accomplishing purchase expedition. The focus on the decision-making stages 

of information search, alternative evaluation, and choice selection is also in accordance with the 

literature in consumer decision-making (Payne et al. 1993) and decision support systems (Eom 

2003), which collectively suggest that decision aids are best and most aptly deployed in these 

decision-making stages. 

The article proceeds as follows. We first draw on the literature in consumer psychology and 

decision-making to identify the underlying causes of decision-difficulty and then establish the 

theoretical linkages between decision-difficulty in each of the three stages of decision-making and 

consumer purchase-avoidance behavior. We next define the recommendation agent (RA) as an 

online Information Technology (IT) artifact that assists an online consumer in: 1) learning about the 



 

  104 

products, 2) eliciting preferences and evaluating the product offered, and 3) making an explicit 

choice based on product recommendation. With a good theoretical understanding of decision-

difficulty and a nuanced appreciation of the current knowledge of RA, we propose a unified design 

framework for an RA that seeks to assist consumers in alleviating decision-difficulty, thereby 

leading to lower purchase-avoidance behavior. Specifically, a set of propositions relating to seven 

proposed RA design artifacts (i.e., preference learning, preference discovering, preference framing, 

option framing, decision strategy-based screening, decision guidance, and RA personalization) is 

set forth in this paper. Based on these propositions, we lay down a clear research agenda for 

examining the relationships between RA design features and decision-difficulty. This study, in 

particular, contributes to theory building surrounding the effectiveness of RA and in general, 

enriches the literature on decision support systems with theoretical underpinnings from consumer 

psychology and decision-making. 

D.2 DECISION DIFFICULTY AND PURCHASE-AVOIDANCE 
Purchase-avoidance builds on the principle that in every decision that we make, there is always an 

implicit option of not committing to a purchase (Anderson 2003; Dhar 1997). For instance, you may 

spend your weekend afternoons surfing the Internet to look at new electronic gadgets or to 

compare expenses like phone services, car loans and insurance quotes across merchants. When 

you spot a product or service of interest, the first decision you have to make is to either act on the 

opportunity or decide not to procure (at least for the moment). The latter refers to inaction inertia – 

a tendency not to make a purchase decision despite more attractive alternatives appearing (Butler 

and Highhouse 2000) - or choice deferral – a tendency not to choose for the time being (Tversky 

and Shafir 1992).  
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An intuitive theoretical justification for purchase-avoidance behavior is that the tendency to avoid 

making explicit purchase commitments can be perceived to be a natural human behavior for two 

reasons. First, making choices is considered an “abnormal” course of action because when a 

human being does nothing or takes “no action”, psychologists and biologists would interpret that 

such a person is resting or conserving energy for future needs (Dhar 1997). However, making 

explicit choices or purchases would require exertion of energy (costs) to deviate from the “no 

action” state. Indeed, theoretical justifications, such as the Expected Utility Theory (Rabin 2000), 

could be easily used to explain a consumer’s decision to (or not to) deviate from the “no action” 

state: none of the alternatives in the choice set are sufficiently attractive for a consumer to select 

them. 

Second, a consumer may decide not to choose when the decision to be made is viewed as difficult. 

In other words, when a consumer has to make a judgment of the worthiness of a purchase, he or 

she must have a certain degree of certainty in making a judgment based on personal knowledge 

about the product, on fondness for the product, and the actual monetary value of the option’s 

benefits. However, it is contested that preference elicitation and decision-making often entail 

substantial ambiguities and uncertainties, i.e., cognitive difficulty (Bettman et al. 1998). Specifically, 

a consumer who encounters difficulty is likely to exhibit ambiguity aversion in which he or she 

prefers known probability distributions such as “no action”, over uncertain probability distributions, 

such as an option’s benefits (Fox and Tversky 1995; Curley, Yates and Abrams 1986). For 

instance, in an experiment conducted on 120 executives, Sawers (2005) observed that participants 

facing more difficult decisions reported a higher level of anxiety and had a greater desire to 

postpone making the decision than participants facing less difficult decisions. However, when the 

participants were provided with a decision aid that assisted them to reduce the level of difficulty, 
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they reported a lower desire to postpone making the decision than participants without the decision 

aid. 

Furthermore, according to the Dissonance Theory, a consumer experiences emotional discomfort 

(e.g., unpleasant psychological tension) when he or she has to forgo valued benefits to resolve the 

negative emotions experienced during decision-making (Festinger 1957). Simple disagreements 

between choice attributes (i.e., emotional difficulty), in terms of which alternative yields the highest 

utility value, could elicit negative emotional feelings as they require a consumer to give up attempts 

to maximize some valued goals such as price, for other goals, such as safety (Tversky and Shafir 

1992). Such negative effects could increase the propensity of purchase-avoidance as, very often, a 

consumer chooses to adhere to the inactive inertia not because none of these options is more 

preferred, but as a way to resolve a difficult decision (Dhar and Simonson 2003). 

With the knowledge of purchase-avoidance and an awareness that decision-difficulty could lead to 

purchase-avoidance behavior, the question to ask next is: What are the sources of decision 

difficulties that result in purchase-avoidance? 

D.2.1 PURCHASE-AVOIDANCE 
Purchase-avoidance builds on the principle that in every decision that we make, there is always an 

implicit option of not committing to a purchase (Anderson 2003; Dhar 1997). For instance, you may 

spend your weekend afternoons surfing the Internet to look at new electronic gadgets or to 

compare expenses like phone services, car loans and insurance quotes across merchants. When 

you spot a product or service of interest, the first decision you have to make is to either act on the 

opportunity or decide not to procure (at least for the moment). The latter refers to inaction inertia – 

a tendency not to make a purchase decision despite more attractive alternatives appearing (Butler 
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and Highhouse 2000) - or choice deferral – a tendency not to choose for the time being (Tversky 

and Shafir 1992).  

An intuitive theoretical justification to purchase-avoidance behavior is that the tendency to avoid 

making explicit purchase commitments can be perceived to be a natural human behavior for two 

reasons. First, making choices is considered an “abnormal” course of action because when a 

human being does nothing or takes “no action”, psychologists and biologists would interpret that 

such a person is resting or conserving energy for future needs (Dhar 1997). However, making 

explicit choices or purchases would require exertion of energy (costs) to deviate from the “no 

action” state. Indeed, theoretical justifications, such as the Expected Utility Theory (Rabin 2000), 

could be easily used to explain a consumer’s decision to (or not to) deviate from the “no action” 

state: none of the alternatives in the choice set are sufficiently attractive for a consumer to select 

them. 

Second, a consumer may decide not to choose when the decision to be made is viewed as difficult. 

To explain, when a consumer has to make judgment of the worthiness of a purchase, he or she 

must have a certain degree of certainty in making a judgment based on personal knowledge about 

the product, on fondness for the product, and the actual monetary value of the option’s benefits. 

However, it is contested that preference elicitation and decision-making often entail substantial 

ambiguities and uncertainties, i.e., cognitive difficulty (Bettman et al. 1998). Specifically, a 

consumer who encounters difficulty is likely to exhibit ambiguity aversion in which he or she prefers 

known probability distributions such as “no action”, over uncertain probability distributions, such as 

an option’s benefits (Fox and Tversky 1995; Curley, Yates and Abrams 1986). For instance, in an 

experiment conducted with 120 executives, Sawers (2005) observed that participants facing more 

difficult decisions reported a higher level of anxiety and had a greater desire to postpone making 
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the decision than participants facing less difficult decisions. However, when the participants were 

provided with a decision aid that assisted them to reduce the level of difficulty, they reported a 

lower desire to postpone making the decision than participants without the decision aid. 

Furthermore, according to the Dissonance Theory, a consumer experiences emotional discomfort 

(e.g., unpleasant psychological tension) when he or she has to forego valued benefits to resolve 

the negative emotions during decision-making (Festinger 1957). Simple disagreements between 

choice attributes (i.e., emotional difficulty), in terms of which alternative yields the highest utility 

value, could elicit negative emotional feelings as they require a consumer to give up attempts to 

maximize some valued goals such as price, for other goals, such as safety (Tversky and Shafir 

1992). Such negative effects could increase the propensity of purchase-avoidance as, very often, a 

consumer chooses to adhere to the inactive inertia not because none of these options is more 

preferred but as a way to resolve a difficult decision (Dhar and Simonson 2003). 

With the knowledge of purchase-avoidance and that decision difficulty could lead to purchase-

avoidance behavior, the question to ask next is: What are the sources of decision difficulties that 

result in purchase-avoidance? 

D.2.2 DECISION DIFFICULTY 
Decision-difficulty is defined as the degree to which a decision-maker experiences complexity 

during three stages of decision-making process, consisting of information search, alternative 

evaluation and choice selection (Anderson 2003; Luce, Bettman and Payne 2001; Dhar 1997). Our 

review of extant literature suggests that various sources of decision-difficulty emerge during 

different stages of the decision-making process. Table 1 summarizes the six causes of decision 

difficulties, namely knowledge uncertainty, preference uncertainty, choice conflict, need for 

justification, information structure load, and decision style (Anderson 2003; Bettman et al. 1998).  
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Generally,, decisions become more difficult: 1) as the product becomes more unfamiliar to the 

consumer, i.e., knowledge uncertainty emerges during the information search stage; 2) as the 

degree of conflict (i.e., mismatch) between the initial-thought preference and options available, 

(i.e., preference uncertainty), increases and as the need to trade-off attribute values among the 

alternatives, (i.e., choice conflict), increases during the alternative evaluation stage; 3) as the need 

to provide compelling reasons to choose an alternative over the rest, (i.e., need for justification), 

increases during the choice selection stage; and 4) as the amount of information, (i.e., information 

structure load), increases and as the decision styles vary across individual consumers across the 

stages. It is imperative to highlight that the six sources of decision difficulties are not mutually 

exclusive but, rather, interrelated, such as birds to bats. Hence, it is plausible that a consumer 

could encounter similar sources of decision-difficulty in more than one decision-making stage, such 

as choice conflict, information structure load and decision style. 

Table 1. Sources of Decision Difficulty and Consumer Decision-making 
Consumer decision-making process stages 

Decision difficulties 
Information Search Alternative 

Evaluation 
Choice selection 

1. Knowledge uncertainty √   
2. Preference uncertainty  √  
3. Choice conflict  √ √ 
4. Need for justification   √ 
5. Information structure load √ √ √ 
6. Mismatch in decision style √ √ √ 
 

D.2.2.1 Information search 
Information search refers to a consumer’s search for information, which can occur internally and 

externally. A consumer engages in internal search when recalling information about 

products/services from memory and this is determined by the consumer’s existing knowledge 

about the products and his ability to retrieve relevant product information. External search occurs 
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when a consumer gathers information through personal interaction, such as word-of-mouth 

communication, and accessing online information, such as an Internet search (Moorthy, Ratchford 

and Talukdar 1997). 

Knowledge uncertainty denotes a state of mind of being unsure whether the decision-maker has 

personally acquired adequate knowledge of the product to elicit a preference based on product 

knowledge in order to identify and evaluate the choice set. In other words, knowledge uncertainty 

refers to “uncertainty regarding what is known about the alternatives (products)” (Urbany, Dickson 

and Wilkie 1989, pp. 208). While the acquisition of more information could alleviate knowledge 

uncertainty to a certain extent, it may not be able to address decision problems faced during the 

alternative evaluation stage. For instance, decision problems characterized by options within a 

product category could have: 1) highly complex attribute values such as aesthetics, or 2) 

alternatives that are from multiple product categories such as cinema and musical shows. Under 

these two decision conditions, comparison and evaluation of the alternatives and attributes in a 

standardized manner would not be appropriate (Johnson 1984). For instance, when confronted 

with alternatives of non-comparable attributes (e.g., television resolution and camera screen 

resolution), consumers are no longer able to adopt the strategies (e.g., additive difference and 

elimination by aspects) that compare alternatives directly with attributes.  

Furthermore, the inclusion of multiple product categories would further add to the knowledge 

demand for consumers. In this light, consumers would have to research the ways in which the 

individual products are evaluated and search for substituting strategies of comparison. Making 

decisions under such cognitively-demanding conditions could arouse doubts (and negative 

emotions) about the relevance of the information and the accuracy of choices made. If the overall 
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costs and uncertainty are high, there is very little motivation for consumers to select any option 

(Anderson 2003). 

D.2.2.2 Alternative evaluation 
With the gathered product information, a consumer proceeds to the alternative evaluation, during 

which a consumer would delineate the criteria for retrieval and evaluation. Alternative evaluation is 

characterized by: 1) the elicitation of preference and 2) the evaluation of the options. In relation to 

decision-difficulty, they correspond to preference uncertainty in elicitation and the degree to which 

a consumer faces conflicting options. 

Preference uncertainty: Prior research on preference construction indicates that preference is 

constructed while interacting with the information environment (Punj and Stewart 1983); hence, 

preference thus elicited is unstable and can be easily changed by small changes in the decision-

making context (Bettman et al. 1998). When these changes lead to a mismatch between the initial 

preference constructed and the options presented (i.e., during the alternative evaluation stage), 

consumers are forced to readjust their preferences; and when consumers do this, they may no 

longer be able to provide stable assessments and hence suffer from preference uncertainty, i.e., a 

mental state of being unsure of the options that best meet the goals or criteria of a consumer 

(Hoeffler 2003). For instance, a choice involving making trade-offs on key attribute dimensions can 

cause high levels of preference uncertainty and arouse negative emotions (Shafir, Simonson, and 

Tversky 1993). The evaluation of product features forces a consumer to consider his preferences 

with respect to the options available more carefully, in an attempt to reduce anticipated regret. 

When the consumer identifies more conflicts between goals and options during the evaluation, 

uncertainty increases (Dhar 1997). The decision-maker may give up or postpone choice if he fails 

to find a dominant structure for a hopeful option. Evidently, preference uncertainty, caused by 
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choice sets with options showing small differences in attractiveness, often leads to decisional 

conflict that precedes purchase-avoidance (Anderson 2003) 

Choice conflict: Discussion on the decision-difficulty factors leading to purchase-avoidance has 

thus far mainly focused on the approach-avoidance conflict that involves alternatives of both 

attractive and unattractive features (Chatterjee and Heath 1996). Two additional forms of choice-

conflict, which make evaluation and selection of the alternatives difficult, are the approach-

approach conflict (decisions based on attractive alternatives) and avoidance-avoidance conflict 

(decisions based on unattractive alternatives). For instance, an approach-approach conflict could 

have one deciding whether to go for a movie or go out to play; while an avoidance-avoidance 

conflict would have one deciding whether to endure a painful toothache or to visit a dentist for a 

tooth extraction. Research on choice conflict in general indicates that approach-approach conflicts 

are often resolved with little cognitive and emotional difficulty, whereas the contrary is true of 

avoidance-avoidance conflicts and approach-avoidance conflicts (Schneider 1992). Dhar and 

Nowlis (1999) observed that purchase-avoidance is less likely in approach-approach conflicts than 

in avoidance-avoidance conflicts. This observation supports their conjecture on the importance of 

the overall attractiveness of all the available alternatives in influencing consumers’ preferences. 

D.2.2.3 Choice selection 
Based on the evaluation of the available alternatives, a consumer makes an explicit choice 

selection. A critical factor influencing a decision to be made is the presence of sufficient reasons 

motivating a consumer to procure, which is commonly termed as justification. Justification, or the 

need to provide reasons, can have important effects on a consumer’s decisions. When a consumer 

needs an explanation for his decision, he is particularly susceptible to effects on choice and 

judgment that operate through the manipulation of the salient reasons for preference (Anderson 
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2003). Building on this accountability conception, researchers have posited that the need to 

provide reasons forces a consumer to weigh the ease of justification more heavily and this leads to 

a search for good reasons to use as justification when making a decision (Simonson 1992). For 

instance, Simonson and Nowlis (2000) observed that when subjects were told to provide 

justifications for their decisions, the focus of their decision process shifted from the choice of good 

options to the choice of good reasons. However, an underlying assumption of that study and many 

related ones is that a consumer is always able to find reasons for supporting his decisions. As it 

happens, the context in which options are situated could make identification of reasons and 

justifications difficult (Tversky and Shafir 1992). Particularly, the number of potential reasons for 

making a particular choice, the ratio of reasons for selecting one option over another, the saliency 

of reasons, and the subtlety of differences among those reasons, could all increase decision-

difficulty that precedes choice deferral and inaction inertia (Anderson 2003). 

D.2.2.4 Across stages of decision-making 
We have so far identified four sources of decision-difficulty through different stages of the decision-

making process. Two sources of decision-difficulty that span across the three stages are 

information structure load and decision style. The former characterizes the difficulty entailed by the 

decision environment and the latter denotes the differences across individual consumers. 

Information structure load: Information overloading has been an enduring concern for consumers 

and a problem for system designers (Payne et al. 1993). Specifically, it is observed that providing 

too much information to consumers could lead to dysfunctional consequences on decision 

performance (Jacoby 1984). In other words, a consumer’s information processing performance, in 

terms of the cognitive ability to process increasing amounts of information, deteriorates on reaching 

the optimal information processing level (Schroder, Driver and Streufert 1967). Traditional research 
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on information load defines load as the number of alternatives and the number of attributes 

describing the alternatives. A simple illustration would be when during the information search 

stage, a consumer could encounter lesser difficulty in learning about an USB flash drive, which has 

less than 10 attributes (e.g., capacity) as opposed to a HDTV product, which has over 25 attributes 

(e.g., contrast ratio, resolution, rear and front connector types). In recent years, researchers have 

added another dimension to the definition of information load. According to Lurie (2004), the 

amount of information load could be better reflected by the information structure – number of 

alternatives, number of attributes describing each alternative, the number of different attribute 

levels associated with each attribute and the attribute levels distributed across the alternatives. 

With respect to the attribute level distribution, Lurie (2004) notes that one could suffer from 

information overload when attribute levels are evenly distributed across the presented alternatives. 

For instance, during the alternative evaluation stage, a consumer could experience difficulty when 

a RA that presents 50% of alternatives with three-year warranties and 50% of the remaining 

alternatives with one-year warranties compared to another RA that presents 90% of alternatives 

with three-year warranties and 10% of alternatives with one-year warranties. This is because the 

consumer with the former RA would have to gain more product information to determine whether 

one should focus on warranty as the determining factor of the purchase. This information structural 

view is analogous to the contrast effect that dictates the relative attractiveness of each option 

within the set of alternatives presented (Mandel and Johnson 2002). To the extent that more 

competing options are present, the difficulty of processing and evaluating the options should 

increase. 

Decision style:  Research on decision style, which is defined as “the selection among alternative 

courses of action” (Henderson and Nutt 1980 pp. 371), has informed us that consumers could 



  

 115 

respond differently even for the same given task. The underlying premise of the decision style 

research is that consumers could process information and arrive at a decision in different manners 

depending on individual personal characteristics (Benbasat and Taylor 1978). It is observed that 

different decision-making styles could be deduced depending on the type and approach towards 

information search, the number and type of preferences elicited, and the use of reasoning (e.g., 

analytic or heuristic approaches) in evaluating and choosing among alternatives (Lynsonski, 

Durvasula and Zotos 1996; Eisenhardt and Zbaracki 1992). For instance, decision-makers in 

general could: 1) be analytic, i.e. systematic in analyzing a problem and deriving a set of alternative 

courses of actions, or heuristic, i.e. rely on common sense and intuition when solving a problem 

(Huysman 1970); 2) adopt perceptive versus receptive styles during information gathering and 

intuitive versus systematic styles during information evaluation (McKenney and Keen 1974); and 3) 

exhibit directive, analytical, conceptual and behavioral (Rowe and Mason 1987). In relation to 

consumer decision-making, Sproles and Kendall (1986) posit that consumer decision styles could 

differ along eight dimensions: 1) perfectionism or high quality consciousness, 2) brand or price-

equal-quality consciousness, 3) novelty or fashion consciousness, 4) recreational and hedonistic 

shopping consciousness, 5) price or value-for-money consciousness, 6) impulsiveness, 7) 

confusion due to excessive choices, and 8) habitual or brand-loyal orientation. Notwithstanding the 

various classifications and categorizations of decision styles, the general premise deduced from 

this field of research is that a consumer could have a preferred mental model that governs the 

decision-making process so as to arrive at a decision (Sproles and Kendall 1986). Leading from 

this, a consumer could experience decision-difficulty when there is a mismatch between the 

preferred decision style and the decision-making environment (Shiloh, Koren and Zakay 2001; 

Vessey 1991) and that the consumer fails to adjust to the environment (Payne et al. 1993), which 

could in turn lead to choice deferral and inaction inertia (Anderson 2003). 
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With the knowledge of the six decision difficulties, the next natural question to ask is: what is the 

existing knowledge gained regarding RA implementation in addressing the decision difficulties 

faced by consumers? 

D.3 RESEARCH ON RECOMMENDATION AGENT 
The RA presents a consumer decision-making problem that has been traditionally studied by 

computer scientists (Adomavicious and Tuzhilin 2005). The interest of these scientists lies in the 

technical challenges of constructing intelligent agents that are equipped with the ability to learn and 

represent knowledge as well as to communicate with other agents (Montgomery, Hosanagar, 

Krishnan and Clay 2004). The consumer-centric aspect of designing an RA, such as in the arena of 

addressing decision-difficulty, has often been neglected. Studies more closely related to our 

interest, particularly in Information Systems (IS) and adjacent disciplines such as consumer 

psychology and decision-making, build on the notion that a consumer suffers from cognitive 

limitation (Eom 2003) and that the RA uses the preference information elicited by the consumer to 

filter product options and propose suggestions (Xiao and Benbasat 2007; Haübl and Murray 2003; 

Grenci and Todd 2002; Haübl and Trifts 2000). In other words, rather than flooding consumers with 

an overwhelming plethora of product offers and information (i.e. information overloading), an RA 

could be designed to use information about the consumers’ preferences to identify a small subset 

of alternatives that are more likely to interest them (Smith 2002; Ansari, Essegaier and Kohli 2000). 

There are two general forms of RAs in terms of filtering and recommending product options: 

collaborative-based or content-based. In the collaborative-based approach, the construction of a 

consumer’s preference model is based on the indicated preferences provided by that consumer, 

and the preferences indicated by other consumers, represented as a set of rated items (Ariely et al. 

2004). The collaborative-based RA first utilizes the indicated preferences of the consumers to 
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profile the consumers and offer the alternatives according to a set of predefined profiles (Middleton, 

Shadbolt and de Roure 2004). The RA then recommends alternatives that likeminded consumers 

have rated highly, and that the target consumer has not rated. The alternative referred to here can 

be a product type or a specific product brand (Dastani, Jacobs, Jonker and Treur 2005; Herlocker, 

Konstan, Terveen and Riedl 2004). The underlying intuition of having a collaborative-based RA is 

that an item is perceived to be of interest to a consumer if other consumers of similar inclinations 

are keen on that item too. A group of consumers who rate items similarly are deemed as sharing 

like-minded preferences or interests. The quality of the recommendations by such an RA improves 

as the number of consumers and the number of rated items increases (Herlocker, Konstan, 

Terveen and Riedl 2004). Conversely, if new items are not rated by other consumers previously, it 

may not be able to recommend them to a consumer.  

In comparison, a content-based RA builds on the preference model constructed by asking the 

consumers about the properties and attribute values of the items, such as a notebook with at least 

1GB RAM memory (Balabanović and Shoham 1997). More importantly, a content-based RA offers 

recommendations solely based on a profile built up by analyzing a consumer’s elicited preferences 

and criteria for an item and/or the content of the items which that consumer has rated in the past. 

Regardless of whether the RA implementations are collaborative-based or content-based, the 

applied techniques in designing the agent mainly draw from work on machine-learning to learn a 

consumer’s preferences (Terveen and McDonald 2005) and on information retrieval to recommend 

items that consumers may be interested in (Salton 1989). This study focuses on content-based 

RAs. 

One of the earliest academic investigations of the content-based RA in addressing the information 

overloading problem is the work by Haübl and Trifts (2000), which they refer to as the RA. The 



 

  118 

authors examine two aiding features of the RA16: one that assists in screening alternatives, and 

another one that rearranges alternatives to make evaluation easier. The adopted theoretical 

underpinning is the decision-making principle that dictates that when using decision aids, such as 

RAs, consumers typically initiate the decision-making process by establishing a list of minimally 

acceptable product attribute level(s) that an alternative must possess in order to be considered 

further as a possible choice, known as screening (Olson and Widing 2002; Edwards and Fasolo 

2001). The screened alternatives are then assessed carefully to make a choice, and this process is 

known as evaluation (Edwards and Fasolo 2001; Alba et al. 1997). The study shows that the 

provision of aid that supports screening and/or evaluation of alternatives significantly improves the 

quality of the decision made (Haübl and Trifts 2000). This view is supported by Montgomery and 

his colleagues (2004) who conjecture that by reducing the cognitive effort associated with 

evaluating the alternatives, decision aids could substantially increase consumers’ propensity to 

increase the search for more information and commit to purchases. Other studies have also 

reported similar findings (see Xiao and Benbasat 2007; Smith 2002). 

This collection of extant studies mainly examines the impact of RAs, or decision aids in general, by 

manipulating information load by a change in the number of alternatives available to choose from 

(e.g., Todd and Benbasat 2000, 1994), and not by a change in the number of attributes used to 

describe the alternatives. Such manipulation may not be aligned to the online shopping context 

where consumers often delineate their preferences in terms of product attributes, such as what 

threshold values to specify or what weights to assign to each attribute, when using RAs. For 

                                                      

16 Due to the numerous RA implementations, many researchers use different terms such as recommender systems, 
recommendation systems, comparison-shopping agent, shopping agent, pricebot and shopbot. In the case of Haübl 
and Trifts (2000), the authors labeled RA as an online decision aid. In accordance with Xiao and Benbasat (2007), their 
study assumes these terms to be synonyms of RA.  
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instance, in a comprehensive review of the existing studies on RAs, Xiao and Benbasat (2007, 

table 5, pp. 146) identified three general forms of RA implementations based on product attributes 

(e.g., compensatory versus non-compensatory). Furthermore, the number of alternatives in an 

online environment tends to be very large, which makes it more challenging for consumers to 

immediately engage in alternative-based evaluation (Swaminathan 2003) without first conducting 

some attribute-based eliminations and repeating such attribute-based eliminations until the 

resulting number of alternatives after screening is deemed to be small and manageable. Towards 

this end, the ease of eliciting preferences could be affected by the number of attribute levels 

associated with each attribute, as we reviewed earlier. Hence, there remains a lack of sufficient 

knowledge of RAs in addressing the information structure load (e.g., the attribute aspect) of 

decision-difficulty. 

In addition to RA research to address the information overloading problem, an increasing amount 

of literature from the decision-making discipline suggests that an RA could possess not only the 

capacities to screen and present a list of items but also to guide consumers in choice-making. For 

instance, it is suggested that an RA could “guide” consumers to: 1) evaluate unfamiliar products 

together with the familiar (Cooke, Sujan, Sujan, and Weitz 2002); 2) render an attribute more 

prominent by explicitly including it in the recommendation (Haübl and Murray 2003); 3) decrease 

price sensitivity through lowering the search costs for quality information (Diehl, Kornish and Lynch 

2003); 4) engage in more systematic decision-making processes and better match their 

preferences by controlling the information flow (Ariely 2000); and 5) discover new products or 

generate demand for unfamiliar products through providing personalized offers (Tam and Ho 

2005). 
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At the same time, researchers have also defined the boundary within which an RA could be 

deployed. For instance, an RA is: 1) observed to possess a greater impact on consumer behavior 

under conditions of high product risk (Swaminathan 2003); 2) evaluated more favorably for search 

goods than experience goods (Aggarwal and Vadyanathan 2005); 3) assessed less positively 

when the unsolicited recommendation or advice contradicts consumer’s initial impressions 

(Fitzsimons and Lehmann 2004); 4) better received by consumers when the recommendations are 

more transparent (Sinha and Swearingen 2002); and 5) perceived to be more useful if the RA 

provided takes into consideration the consumer’s characteristics, such as frequency of purchase 

and perceived risk (Sproule and Archer 2000).  

Essentially, relating these studies to decision-difficulty, we could conjecture that an RA could 

alleviate preference uncertainty and choice conflict to a certain extent by providing guidance and 

restricting the evaluation to the few recommended alternatives that are highly correlated with 

consumers’ overall elicited preferences (Tan 2003). Towards this end, it is plausible that an RA 

could induce consumers to make decisions in accordance with the intention of the agent should 

appropriate features be built into the RA (Diehl et al. 2003; Haübl and Murray 2003). However, 

when such intent is perceived to contradict with the consumers’ initial impressions of RA usage, a 

behavioral backlash of ignoring the agent’s recommendations may result (Haübl and Murray 2006; 

Fitzsimons and Lehmann 2004). Leading from this, the question to ask is how an RA could be 

designed to minimize the behavioral backlash? A solution to this could be to design an RA that is 

able to better support the consumer decision-making process by alleviating all the six identified 

sources of decision-difficulty (Anderson 2003; Edwards and Fasolo 2001). 
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D.4 PROPOSED RA DESIGN 
Table 2 depicts our proposed unified RA design framework that encapsulates seven system 

features - product learning, preference discovering, preference framing, option framing, decision-

strategy-based screening, decision guidance, and personalization – to address the identified roots 

of decision-difficulty. Specifically, we anchor on the consumer decision-making process model to 

envision an RA to assist consumers in accomplishing three stages of decision-making process - 

information search, alternative evaluation, and choice selection (Blackwell et al. 2001; Doyle and 

Thomason 1999; Payne et al. 1993). Specifically, we posit that an RA could be designed to allow a 

consumer to: 1) gain adequate knowledge and information about the product, i.e., the information 

search stage; 2) use the acquired product knowledge to elicit preferences and to screen and 

evaluate alternatives, i.e., the alternative evaluation stage; 3) make explicit decisions on whether to 

and which alternative to acquire, i.e., the choice selection stage; and 4) address the information 

overloading problem and enable the consumer to gain greater confidence when interacting with an 

RA that personalizes information and services to his decision style (Xiao and Benbasat 2007; 

Montgomery et al. 2004; Murthi and Sarkar 2003). 

It is essential to note that some of these features, (e.g., decision strategy-based screening), are 

implicit in previous work; and we are simply presenting them and examining their consequences. 

Other features, (e.g., preference discovering and framing), are derived from our experience with 

RAs and our intuitions about the prolific research directions to pursue. They are also motivated by 

our perusal of the relevant purchase-avoidance and decision-difficulty literature. It is hoped that 

these seven features embrace the issues we deem most important, capture our intuitions about 

how RA design should progress and serve to articulate interesting research directions that are 

worthy of attention. Our most ambitious objective is to create the research agenda in the field of RA 

design. We aim to stimulate discussion and identify opportunities for researchers who are keen to 
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explore this field. The following discussions of each of the seven traits of RA provide the context for 

our research agenda. 

Table 2. RA Features and Sources of Decision Difficulty 
Information search    

Alternative evaluation      
Choice selection    

System features 

Knowledge 
uncertainty 

Preference 
uncertainty 

Choice 
conflict 

Need for 
justification 

Information 
structure 

load 

Decision 
style 

1. Product learning √    √  
2. Preference discovery  √   √  
3. Preference framing  √     
4. Decision strategy based 

screening 
 √    √ 

5. Option framing   √    
6. Decision guidance    √   
7. Personalization      √ 
 
D.4.1 INFORMATION SEARCH 
Information search is often driven by a consumer’s lack of sufficient product knowledge and 

characterized by the process of learning about a product. Research on product learning can be 

generally separated into direct and indirect experiences. A direct experience is derived from the 

actual product contact, such as putting on a new dress at the boutique; whereas indirect 

experience can be generated through advertising, reading magazines, surfing the Internet, and 

word-of-mouth dissemination. For the reason that this article focuses on RA design, our discussion 

shall revolve around the issue of product learning and visualization through indirect experience. 

Studies related to product learning and visualization share a common objective of providing 

consumers with a virtual product experience that enables potential consumers to learn about a 

product (Li, Daugherty and Biocca 2003). Such an experience can be built through the use of 

stimuli to induce desired product affordances, which in turn lead to product visualization. Product 

affordance refers to the real and perceived cues that are available to direct consumers in 

interacting with a product during inspection (Norman 1998). According to Norman (1998), when we 
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are presented with a product, we often attempt to formulate preliminary judgment of a product and 

how this product can be utilized or evaluated. For instance, a consumer inspecting an unfamiliar 

PDA, may automatically press on the silver button to power up the PDA without anyone indicating 

to him the purpose of the button. Such affordance is born of a natural and intuitively derived set of 

rules and actions that guides consumers, though such judgments may not be accurate all the time. 

Germane to the issue of product affordance and learning are the questions of how the set of rules 

is cognitively derived by consumers when facing a new product and what cues and/or information 

should be provided to induce product learning. 

Two theoretical perceptions of human learning could shed light on the preceding questions. The 

first comprises the category-learning theories that collectively posit that when an unfamiliar product 

is encountered, a consumer has a high tendency to associate that unfamiliar stimulus with the most 

similar product category encountered previously (Ashby and Maddox 2005). Such association 

allows a consumer to quickly formulate an initial set of rules and interpretations of the newly-

encountered product. To achieve this association, a consumer first determines which region the 

product is in (e.g., home electronics or entertainment electronics), and then forms associations of 

that product within that region, according to the Decision Bound Theory (Ashby 1992). Should 

more than one similar product category within that region be retrieved from memory, the new 

product is mapped to the category that has the highest sum of attribute similarities, according to 

the Exemplar Theory (Nosofsky 1986).  

Applying the category-learning theories to our context, we conjecture that for an RA to support new 

product learning and visualization, it ought to be equipped with the capacity to first assist a 

consumer to associate the product with a category that is most familiar among average consumers. 

Such association could be formed through analogy (Gregan-Paxton, Hibbard, Brunel and Azar 
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2002). For instance, suppose one is interested in acquiring new software that allows one not only 

to download images and videos from the Internet but also to view and read the downloaded 

content. One way one can learn about the software is to relate that software to a physical video 

recorder. Using the knowledge one has acquired about the video recorder, one can relate the 

software to the video recorder which allows one, as a consumer, to both store and retrieve the 

media content. Extending this understanding, one could also be aware that the amount of content 

that both recording devices could store depends on the available capacity. For instance, you are 

interested in acquiring a new convergent device such as a PDA phone. One way to learn about this 

new category of device is to relate it to common and familiar usage scenarios of more traditional 

devices such as the ordinary PDA and the mobile phone. To illustrate further, you could visualize 

yourself recording an appointment on an ordinary PDA and making a phone call on a mobile 

phone. Using such knowledge, you can relate to the new PDA phone as if you were performing the 

two familiar tasks on a single device. Knowledge gained through analogy could further your 

understanding of the new product category (Gregan-Paxton et al. 2002). Hence, we posit that the 

difficulty of learning about an unfamiliar product can be alleviated if consumers are offered a 

comparison of the new product to something more familiar. Analogy allows the consumers to 

transfer some basic knowledge from one domain to the one that is targeted, thereby leading to the 

construction of the mental representation for the product and for the initial information to be 

incorporated into that representation (Gregan-Paxton and John 1997).  

Proposition 1.1.1: Allowing consumers to relate a new product to existing familiar 

products will reduce decision-difficulty due to knowledge uncertainty, thereby leading to a 

decrease in the propensity for purchase-avoidance.  
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Proposition 1.1.2: Seeking to relate a new product to the existing stored memory of a 

familiar product (category) through analogy can lead to reduced decision-difficulty in 

learning about a product. 

It must be noted that Proposition 1.1.2 does not imply that the RA must always provide analogical 

product learning for all consumers. In fact, providing such product learning to consumers who are 

already knowledgeable about the new product may be counterproductive as it adds on 

unnecessary cognitive load to process the analogy. Furthermore, if the analogy contradicts the 

consumer’s prior understanding of the new product, it may also result in undue emotional difficulty. 

Either way, decision-difficulty is likely to increase. Exactly how the RA should determine whether 

analogical product learning should be provided is the subject of RA personalization; and thus at 

this point we shall defer the discussion. At present, the more interesting question to ask is:  How 

should the RA provide analogical product learning?  

Returning to our previous example on the PDA phone, we suggest that the RA could pose a series 

of usage questions pertaining to ordinary PDAs and mobile phones in order to stimulate the 

association with the PDA phone. For instance, an RA could ask the consumers whether they prefer 

to use a built-in keypad, touch screen or stylus for inputting the telephone numbers on a mobile 

phone; or activating the address book functionality on an ordinary PDA so as to elicit consumers’ 

preferences for the type of input mechanism supported by the PDA phone. Such a mechanism falls 

into the realm of the need-based RA which we will discuss in greater detail in the preference-

framing section. At this juncture, it suffices to state our suggestion of a personalized RA that offers 

a hybrid of feature-based and basic need-based preference elicitation to guide consumers in initial 

product learning. We will discuss this suggestion in much greater detail when we propose RA 

personalization design in Section 4.4. 
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The second theoretical reference originates from the Feature Integration Theory (Quinlan 2003), 

which dictates that the perception of an object (i.e., a product) is shaped by two mental processing 

stages. Processing at the initial stage is pre-attentive, where individual product attributes are coded 

independently and in parallel, based on the information provided (i.e., content) and the way in 

which such information is provided (i.e., text, image or voice). The output of this stage is the array 

of product features and attributes (Treisman and Gelade 1980). This theory, however, does not 

indicate specifically how the location of any given attribute is specified within the memory of this 

array. 

Based on the initially-built impression of the various product attributes, a consumer proceeds to the 

second stage: cross-attribute processing and linking. At this stage, a consumer will combine 

constituent product attributes to form a conjunction of features known as a master map of 

locations. Such a map allows a consumer to “activate” particular nodes within the map. Expressly, 

through either the application of focused attention or by presenting a particular object that is related 

to the product of interest (Treisman and Schmidt 1982), a consumer could be led by external aids 

to “trigger” stored product feature information and associated preferences. Essentially, the extent to 

which a consumer initially forms an impression of the various product attributes and features and 

subsequently links all these features into a cognitive map for retrieval, determines the outcome of 

product learning (i.e., how it is stored in the memory) and visualizing (i.e., how it is retrieved from 

memory). The question to ask next is: What features could an RA offer? 

To answer this question, we need to first understand the cognitive load inherited from learning. 

According to the Cognitive Load Theory (Leahy and Sweller 2005), there are three primary forms of 

cognitive loads that could affect learning performance. The first type, intrinsic cognitive load, refers 

to the inherent difficulty of processing the information. It is often dictated by the number of learning 
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elements (i.e., simplest form of information) and the interactivity among the elements that needs to 

be simultaneously processed. It may be cognitively more difficult as the number of product 

attributes and the level of attribute increases. For instance, the digital camera has the optical zoom 

and digital zoom as one of many product attributes while the optical zoom comprises 2x, 3x, 4x, 5x, 

6x, 7x or even higher levels of attributes. Intrinsic cognitive load is immutable. As opposed to 

intrinsic cognitive load, extraneous cognitive load and germane cognitive load can be altered by an 

RA designer.  

Extraneous cognitive load is usually undesirable for it is produced by external cues that do not 

serve to enhance learning performance. Such a load is often induced through an instructional 

format or a procedure of learning (Chandler and Sweller 1991). For instance, presenting a 

consumer with a list of product feature definitions as opposed to offering a consumer a typical 

example of a product may alter extraneous cognitive load. The germane cognitive load refers to the 

cognitive effort necessary to process and construct a mental schema of the product. This is similar 

to cross-attribute processing and linking in the Feature Integration Theory (Quinlan 2003). It is 

suggested that when a consumer imagines a product, he processes and constructs the relevant 

schemas in working memory, which facilitates subsequent retrieval for preference elicitation. 

Leading on from the Cognitive Load Theory (Leahy and Sweller 2005), which states that intrinsic 

cognitive load is not alterable, we could propose that a RA designer could assist a consumer in 

yielding better learning performance through limiting the extraneous cognitive load while promoting 

a certain degree of the germane cognitive load. Specifically, the presence of external aid in an RA 

may help a consumer not only to reduce the difficulty of completing the whole learning process, but 

as well to trigger the elicitation of preferences associated with the product. Two primary modes of 

RA feature supports could be explored. The first is in line with the discursive (symbolic or linguistic) 
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information processing paradigm (Foxall, Goldsmith, and Brown 1998) which dictates that an RA 

could be designed to match the users’ procurement goals through the support of cognitive 

elaboration (i.e., reading, interpreting and storing the product information in memory for future use) 

to yield favorable product learning outcomes.  

However, from the perspective of imagery information processing, an RA that evokes mental 

images (i.e., through a video) could yield more favorable product-learning performance. This is 

seen for example, in the transportation-imagery model by Green and Brock (2002). Specifically, 

according to the principle of imagery information processing (MacInnis and Price 1987), knowledge 

about a product is stored or represented as images. Imagery is a form of representing information 

in which it denotes the process by which sensory information is encoded and represented in 

working memory. For instance, when we think of a PDA, we often picture the shape, size, color and 

appearance of a PDA (i.e., in pictorial form) rather than in descriptive words (e.g., the processing 

speed, the dimensions in centimeters). This imagery view shares a similarity with the perspective 

of motor resonance which dictates that consumers are able to acquire better understanding of a 

product when they are able to mentally simulate its usage through observing others’ actions such 

as from a video, and predicting their own actions, in other words, from personal usage (Zwaan and 

Taylor 2006; Cooper, Tindall-Ford, Chandler and Sweller 2001). 

While both forms of information processing can be supported by an RA and occur concurrently, it is 

unclear from the two perspectives whether an RA that promotes cognitive elaboration or one that 

supports imagination would lead to better performance (Schlosser and Shavitt 2002). To explore 

further, we referenced the study by Leahy and Sweller (2005). Through a series of experiments, 

the authors observed that when participants first encountered a complex and unfamiliar set of 

information, those who were requested to study the information outperformed those who were told 
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to imagine. In other words, support for discursive information processing outperformed support for 

imagery information processing. However, when participants were able to gain preliminary 

understanding of the information, those told to imagine outperformed those who were told to 

continue to study. In other words, support for imagery information processing outperformed support 

for discursive information processing.  

Relating the findings of the Leahy and Sweller (2005) study to our context, we posit that a 

personalized RA that entails a hybrid model of learning support could be offered.  When a 

consumer has little prior knowledge of a product, he should be encouraged to first read and 

understand a product through discursive information processing, and when such preliminary 

understanding is yielded, the consumer could then be encouraged to engage in imagery 

information processing. This view shares similarity with the findings of Tindall-Ford and her 

colleagues (1997), where they observed that the use of dual-mode presentation (e.g., through 

auditory text and visual diagrams) can lead to a better learning outcome compared to the single-

modality format (e.g., through visual text and visual diagrams). It is further noted that when such 

supports are facilitated, a consumer may overcome the limited working memory to process 

complex product information (Leahy and Sweller 2005). Essentially, when a consumer is able to 

better learn about and visualize a product, knowledge uncertainty is lowered, resulting in a lower 

propensity for purchase-avoidance. 

Proposition 1.2: Different information processing supports could offer different phases 

of learning. Consumers could develop initial appreciation of a product through discursive 

information processing and subsequently construct a complete understanding of a 

product through imagery information processing. This approach of offering personalized 

learning support should lead to reduced difficulty in learning about a product or to 

reduced knowledge uncertainty. 
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D.4.2 ALTERNATIVE EVALUATION 
Based on the acquired product information, a consumer would delineate the criteria (or 

preferences) for retrieval and evaluation of product alternatives. The notion of preference elicitation 

has received a fair measure of attention in consumer behavior literature (e.g., Aggarwal and 

Vaidyanathan 2005; Ariely et al. 2004; Haübl and Murray 2003, 2006; Ariely 2000). The theoretical 

underpinning of preference elicitation research is the Behavioral Decision Theory (Einhorn and 

Hogarth 1981), which posits that a consumer’s preferences are often ill-defined initially, and are 

constructed through his interaction with the information environment, rather than retrieved from a 

pre-existing list of preferences and values from his memory (Haübl and Murray 2003; Bettman et 

al. 1998). In this section, we propose three RA features: preference discovery, preference framing 

and decision strategy based screening.  

D.4.2.1 Preference discovery 
In the information search stage, we focus our discussion on proposing RA design to assist a 

consumer to learn about a problem. Notwithstanding the attempt to foster product learning through 

virtual experience, it is observed that inconsistency in preference elicitation and choice-making 

may still persist even when the effects of learning, satiation or change in taste are controlled 

(Tversky 2004). In other words, the mere presence of an environment that promotes learning may 

not be sufficient in addressing the issue of preference uncertainty. To address this concern, a 

significant cohort of standard preference models advocates the revision of the models and 

developing elicitation methods that incorporate appropriate controls that address the anomalies 

observed. In our view, knowledge gained from this field of research could enhance the design of an 

RA in many ways. Here, we propose several theoretical directions in which an RA designer could 

venture in future.   



  

 131 

The first approach as posited in the Construal Level Theory (Trope and Liberman 2003) is to have 

a good level of the abstractness of consumers’ mental representations within the targeted 

temporal, spatial or sensory distance from the purchase task. According to the Construal Level 

Theory (Trope and Liberman 2003), mental space is a facet of psychological distance along 

temporal, spatial or sensory dimensions. Psychological distance affects the way consumers 

interpret and represent information, for example, psychologically-distant products are represented 

more by their general, essential and prototypical features, i.e., high level construals, while 

psychologically-near products are represented in terms of their specific, incidental,  and unique 

features, i.e., low-level construals (Henderson, Fujita, Trope and Liberman 2006).  

High-level construals are often characterized by abstract product schemas that convey the general 

and essential features of the product (Trope and Liberman 2000). However, low-level construals 

are often denoted by the contextual and incidental details of the product. To illustrate, the action of 

using an MP3 player can be mentally represented as being entertained (a high-level construal) or 

as pressing buttons (a low-level construal). It is posited that when products are perceived to be 

psychologically closer to the consumer (i.e., internalized), preference uncertainty is reduced, while 

preference stability and preference-behavior consistency increase due to clearer and more precise 

formulated product schemas (Kardes, Cronlet, and Kim 2006). 

In order for the products to be perceived as being psychologically closer to the consumer (i.e., in 

terms of relatedness), the RA could offer simulated product search and evaluation exercises, which 

ease the difficulty of constructing preferences (Urban, Qualls, Weinberg, Dohlmann and Chicos 

1997). Hoeffler (2003), for instance, proposes the concept of letting the consumers mentally 

simulate using the products in some existing usage scenarios. The author observes that 

encouraging consumers to mentally simulate how the product fits into existing usage scenarios 
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helps consumers to better identify and articulate their preferences, leading to lower preference 

uncertainty and higher preference stability. The rationale is that mental simulation brings the 

product closer to the actual usage of the product on the part of consumers. It is the usage that 

determines the value of a product rather than the product attributes themselves. Particularly, 

consumers often form preferences for a product that are not based on every single product 

attribute but on a subset of the whole collection of attributes that interests them. A paper by Jiang 

and Benbasat (2004) illustrates this point. The authors posit the provision of both visual and 

functional control to be important for electronic products. Visual control enables consumers to 

manipulate the product images (e.g., view the product from different angles) and functional control 

affords consumers to explore the different features of the products, thus enabling consumers to 

learn more about a product. They observed that the provision of both controls increases the 

perceived diagnosticity – the extent to which a consumer judges the shopping experience to be 

helpful when evaluating and learning about a product. It is believed that the increase in 

diagnosticity of the product could facilitate better understanding of the product (Li et al. 2003). 

Mental simulation could be achieved through prompting consumers to supply information about 

how they would use the product (Grenci and Todd 2000). Such mental simulation could alleviate 

the influence of complex information structure in addition to preference uncertainty and knowledge 

uncertainty. This is because by mentally simulating product usage, one is able to focus on the 

necessary and desired product attributes, thereby reducing the amount of attribute information to 

be considered. Essentially, the provision of an RA feature that guides the consumers in simulating 

the use of the product could potentially reduce preference uncertainty and the complex product 

information structure inherited from a product. 
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Proposition 2.1: Allowing consumers to simulate the use of a product will lower 

decision-difficulty due to preference uncertainty, and channel the focus of preference 

discovery towards usage, thereby alleviating information overload for consumers due to 

a complex product information structure. Hence, the result is a decrease in the 

propensity for purchase-avoidance. 

The underlying assumption that the provision of an RA feature encourages mental simulation is 

based on the understanding that consumers have abstract knowledge (high-level construal) of a 

product’s usage. Thus, through mental simulation, the RA could direct consumers to articulate 

more concise and consistent preferences, which define the search criteria. However, it is plausible 

that such abstract levels of preference knowledge may not be congruent with what is provided 

commercially. For instance, you may envision a need for a PDA of a relatively large memory 

capacity that allows you to store a large number of movies. However, such a requirement may not 

be satisfactorily met by those currently available in the market. Moreover, the demand for a larger 

memory capacity may lead to a higher price tag which the consumer may not find affordable. When 

such situations are encountered, it is imperative that consumers be cautioned with respect to the 

appropriate search criteria definition.  

A way to address this concern is to provide instantaneous feedback and suggestions to consumers 

during preference elicitation. Specifically, if there is an external aid that engages the consumers in 

an iterative process of refinement of preferences, and which offers feedback on the consequences 

of the actions (i.e., preferences are elicited), such interaction with the external tool may induce 

appropriate behavior (i.e., reduce decision-difficulty in our context). The inclusion of such an 

information aiding feature is particularly beneficial in a situation where the product is new to a 

consumer, and articulating realistic preferences and criteria for evaluating the alternatives would be 

a cognitively-demanding task. Indeed, when facing a new product, one must first have the baseline 
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knowledge or experience in the same or a related product domain to understand what the product 

is and what can be offered by the market. To this end, an information aid could be applied in 

several ways. Before examining two such instances, we first state a general proposition on the key 

concept highlighted above: 

Proposition 2.2.1: Consumers could be offered a repertoire of feedback-related 

supports to govern the elicitation and refinement of preferences leading to reduced 

decision-difficulty, thereby resulting in a lower propensity for purchase-avoidance. 

The first approach is to make it easier to input the preference parameters without considerable 

mental deliberation. Iyengar and Lepper (2000), for instance, observed that the provision of a 

default option could serve as a quick way of addressing decision-difficulty. Extending this 

argument, we could posit that the provision of default preferences could reduce the difficulty of 

delineating preferences and reducing preference uncertainty, thereby leading to a lower propensity 

for purchase-avoidance. By providing a default option, a consumer could use this option as a 

standard or benchmark with which to evaluate other options of different attribute values. In 

summary, the inclusion of default preferences could decrease the level of difficulty in eliciting 

preferences, leading to a lower propensity for purchase-avoidance. Pursuing this argument, we 

propose that: 

Proposition 2.2.2: An RA could provide a default option for each product attribute to 

alleviate decision-difficulty due to preference uncertainty, thereby leading to a lower 

propensity for purchase-avoidance. 

The second approach is to provide information cues to reflect the possible returned set of 

alternatives based on different preference criteria. The rationale is simple: a consumer often faces 

the predicament of over-specifying the criteria, leading to the presentation of very few alternatives; 
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or under-specifying the criteria and resulting in the extraction of overwhelming alternatives 

(Schwartz 2004). The former option fails to satisfy the natural quest for choice assortments while 

the latter may result in choice-overloading. By offering an instant estimation of the number of 

products to be returned from the search based on different input criteria, a consumer could adjust 

his search criteria way before the results are presented; thereby leading to the lower formation of 

negative emotions resulting from either over- or under-specifying the preferences (Aaker and Lee 

2001). This proposition rests on the principle of flow experience which dictates that every piece of 

information a consumer processes is evaluated to determine if it threatens his procurement goal 

(i.e., need for assortment or need for minimizing of evaluation effort). When information supports a 

consumer procurement objective, a consumer is more likely to experience positive emotions during 

the whole procurement process (Ciskszenthmihalyi 1990). Furthermore, the provision of an instant 

information cue could allow a consumer to adjust his preferences to what can be offered, thereby 

leading to lower difficulty of preference elicitation and a lower propensity for purchase-avoidance. 

Proposition 2.2.3: An RA could provide instant information cues, such as the estimation 

of the number of alternatives associated with different search criteria prior to the 

submission of search criteria, to alleviate decision-difficulty due to information structure; 

thereby leading to a lower propensity for purchase-avoidance. 

D.4.2.2 Preference Framing 
We have thus far proposed two features that an RA could offer – a default option and result set 

information cues. However, these two features may not be adequate to address two fundamental 

issues of how preferences are elicited in a conventional shopping environment: 1) the tendency to 

articulate preferences based on needs rather than product attributes; and 2) the inclination to elicit 

trade-offs between product attributes.  
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The initial formation of purchase intent is motivated by needs. Indeed, it is often the case that 

consumers may recognize the need to procure a product but they are unable to determine the 

specific product features required (Bettman et al. 1998). For instance, one may visualize a need for 

a laptop so that one can work while one travels. Yet, one may not be capable of delineating what is 

desired (e.g., the minimum acceptable weight, the battery life, the processor speed, the memory 

size, hard disk size). In this regard, the traditional approach of attribute-based preference elicitation 

may not be feasible. An attribute-based preference elicitation method denotes the declaration of 

the set of preferences for a product (e.g., weight of less than 2.0kg for a laptop and a duo-core 

processor). It is believed that even if consumers understand their need for certain attributes, they 

might not understand the process required to configure the correct solution or to make the best 

product choice (Grenci and Todd 2002). For instance, consumers may not be able to define the 

criteria involving inter-related attributes such as the weight and durability of a backpacking tent 

(Haübl and Murray 2003).  

To address this concern, researchers have advocated the use of a need-based RA, which presents 

product features based on the needs instead of product attribute values (Grenci and Todd 2002). In 

a need-based RA, the agent will either use a set of rules to interpret customer-specific information 

or intentions and formulate a recommended product configuration, or translate customer-specified 

preferences into alternative product configurations (Grenci and Todd, 2002). Need-based RAs can 

link customers’ personal needs to product attribute configuration, thus facilitating customers’ 

expression of their information needs and making the rationale of the need-based RAs easy to 

understand. In this regard, need-based RAs could alleviate the difficulty of eliciting preferences, or 

preference uncertainty. 
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In delineating the applicability of need-based RAs, some researchers observe that a need-based 

RA is preferred over an attribute-based RA when consumers are novices at using the product 

(Stolze and Nart 2004). Explicably, Felix and his colleagues (2001) have demonstrated that, for 

consumers with little product knowledge, it could be particularly problematic to use an attribute-

based RA if they seek to receive recommendations only based on their personal needs and 

expected use of the product. Conversely, for expert consumers, the use of an attribute-based RA 

could lead them to better elicit preferences since they would have the knowledge capacity to 

mentally convert the needs into well-defined preference criteria (Grenci and Todd 2002). While 

such cognitive mapping of needs to attributes requires additional effort, the ease of evaluating the 

product alternatives presented could compensate for the further effort. (Spiekermann and Parachiv 

2002). Indeed, it is imperative to note that the alternatives presented only contain product attributes 

and their associated values. The consistency in both the attribute-based preference elicitation and 

attribute-based comparisons of the returned alternative methods in an RA could better assist the 

expert consumers in making a procurement decision. 

Proposition 3.1: The choice of the preference elicitation method could depend on the 

extent of a consumer’s acquisition of product knowledge. Consumers who are new to a 

product could prefer the need-based elicitation approach; however, as their knowledge 

and experience of a product increases, they could prefer the attribute-based elicitation 

method. Matching consumers with the appropriate preference elicitation method could 

reduce the difficulty of articulating preferences (i.e., preference uncertainty), leading to a 

lower propensity for purchase-avoidance. 

Another concern with respect to the traditional preference elicitation method is that it focuses more 

on capturing singular attribute preferences (Doyle and Thomason 1999), for example, “I prefer a 

perfume with a refreshing scent.” than generic tradeoff preferences such as “I prefer a perfume 
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with a refreshing fragrance than one with a fruity scent.” To the extent that elicitation of tradeoff 

preferences is another common form of expressing preferences, an essential requirement of an RA 

is to facilitate a consumer in facing and delineating trade-offs. 

When confronted with a tradeoff decision that has to be made, a consumer may adopt one of the 

two coping strategies: (1) problem-focused coping involving direct actions intended to improve the 

situation of eliciting preferences; and (2) emotion-focused coping involving indirect actions intended 

to minimize experienced negative emotion through changes in the amount or content of thought 

about the preference elicitation situation (Anderson 2003; Folkman and Lazarus 1980). The former 

coping strategy, comparatively, is more desirable as the latter coping strategy often leads to 

purchase-avoidance or poorer decision-performance resulting from the use of the non-

compensatory decision strategy (Folkman and Lazarus 1980). In a non-compensatory strategy, a 

good value on one attribute cannot make up for a poor value on another (Bettman et al. 1998).  

Whether a consumer chooses the problem-focused coping strategy often depends on the degree 

of conflict (i.e., negative correlation) between attribute values which a consumer has to resolve 

(Payne et al. 1993). A significant degree of negative correlation between attribute values is 

generally associated with decision-difficulty and indecision (Hogarth 1987). Some researchers 

observe that decision-makers use more trade-off confronting processing strategies when decision-

conflict increases; presumably because such a strategy tends to lead to higher decision-accuracy 

compared to trade-off avoidance (i.e., non-compensatory) strategies (Payne et al. 1993). 

However, other researchers argue that merely requesting or even encouraging the consumer to 

recognize the need to delineate trade-offs may not lead to the adoption of a problem-focus coping 

strategy. One promising technique proposed by Luce and her colleagues (2001), is to alter the 

presentation of decision attributes such that a consumer is either more comfortable with the 
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delineation of preferences or is at least less motivated to choose a trade-off avoiding a coping or 

compensatory decision strategy. Particularly, conflict between highly important core values is both 

cognitively and emotionally costly, and  publicly making trade-offs between attributes with links to 

such values is considered to be both distressing and embarrassing (Tetlock 1991).  

To address this problem, an RA could reframe the trade-off problem by allowing a consumer to 

trade-off core attribute values against less valued attributes (Janiszewski, Silk and Cooke 2003). 

The agent could subsequently compute the relative weight of the core attributes. Viscusi, Magat 

and Huber (1987), for instance, suggest the use of risk comparisons in order to generate a 

willingness to pay for risk reduction. Particularly, they advocate that respondents are more 

emotionally comfortable when comparing one risk (e.g., from a car accident) to another (e.g., from 

food poisoning) rather than trying to set a price (utility level) directly for either risk. Such a method 

could reduce preference uncertainty by facilitating the adoption of a problem-focused (i.e., 

compensatory) coping strategy in preference elicitation, thereby leading to a lower purchase-

avoidance propensity.  

Proposition 3.2: The framing of trade-offs of important core attribute values against 

less valued attributes could result in consumers being more willing to confront trade-off 

preferential problems, resulting in lower decision-difficulty arising from preference 

uncertainty. A lower propensity for purchase-avoidance is the result. 

D.4.2.3 Decision-strategy-based screening 
Once a consumer gains sufficient knowledge of a product and is aware of his own preferences, he 

will need to devise the decision strategy towards screening and extracting the product information. 

A decision strategy is a sequence of mental and effector (actions on the environment) operations 

used to transform an initial state of knowledge into a final-goal state of knowledge where the 

decision-maker views the particular problem as solved (Payne et al. 1993). It is imperative to note 
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that screening is a continuation of the previous preference framing referred to previously and it is 

conceptualized as part of RA support for preference elicitation. 

Decision strategies can be separated into two main categories: compensatory and non-

compensatory. Consumers employing non-compensatory strategies typically do not consider 

tradeoffs between attributes, i.e., a positive value of one attribute cannot compensate for a 

negative value of another attribute. Furthermore, alternatives are usually eliminated once negative 

information about them is obtained. Decision strategies such as elimination-by-aspect, 

lexicographic and satisfying heuristics are some of the most frequently discussed non-

compensatory strategies. Conversely, consumers employing compensatory strategies typically 

assign a relative importance to each product attribute and then compute an overall value for each 

alternative based on the impact of the relative weights of each product attribute. The alternative 

with the best value is often selected. These strategies are of an analytical nature and require 

significant amounts of mental and cognitive effort in order to yield an accurate result. Whilst using 

non-compensatory strategies requires less effort, compared to choosing one of many alternatives, 

existing research indicates that compensatory strategies should lead to a better, more accurate, 

and higher quality choice. Where a decision involves the examination of a large amount of data, 

compensatory strategies carry too high a cognitive cost, and non-compensatory strategies have 

emerged as the choice (Bettman et al. 1998; Payne et al. 1993). Commonly studied compensatory 

strategies include the weight-additive rule, the equal-weight heuristic, and the additive difference 

rules. 

As none of the above-mentioned strategies have been able to yield high accuracy (i.e., the best 

choice made) with little effort, consumers often have had to make explicit tradeoffs between result 

accuracy (by adopting compensatory strategies), and effort requirement (by adopting non-
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compensatory strategies) as in Johnson and Payne (1985). To elaborate, the basic premise of the 

effort-accuracy framework is that people tend to prefer choices with high levels of accuracy that 

also require less effort. However, strategies yielding higher decision accuracy (i.e., choosing the 

best product option in our context) often require more effort. Therefore, a person’s strategy 

selection is the result of a compromise between the desire to make the most correct decision and 

the desire to minimize effort, which is commonly termed as effort-accuracy trade-off (Posavac, 

Herzenstein, and Sanbonmatsu 2003; Swait and Adamowicz 2001). It is assumed that the choice 

of the decision strategy is based on a careful evaluation and computation of utility derived from the 

attributes of alternatives available, rather than from the decision strategies available (Payne et al. 

1993; Malhotra 1982). 

Examining the effects of adopting decision-strategies on decision performance, Payne and his 

colleagues (1993), in particular, suggested that decisional support (facilitated by technology such 

as an RA) could be provided to facilitate a decision-maker’s adoption of  the “divide-and-conquer” 

approach when dealing with complex decision tasks involving large quantities of product 

information. This view has gathered much empirical support (Edwards and Fasolo 2001). For 

instance, researchers observe and propose that consumers could harness the availability of online 

decision aids (e.g., RAs) to screen and evaluate product offers from many online merchants 

(Edwards and Fasolo 2001; Haübl and Trifts 2000). Looking beyond the consumer shopping 

context, we do observe companies making use of decision aids to manage, screen, and select 

from among the large quantity of options for other decision tasks, e.g., job applicants17 and 

technology to embrace (Klein and Beck 1987). 

                                                      

17 http://www.wsjclassroomedition.com/archive/03feb/CARE.htm (last visited: May 5, 2006) 
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Relating to our context, an RA could be designed to facilitate the adoption of decision strategies in 

two ways. First, an RA could induce consumers to employ more cognitively-demanding 

compensatory strategies in order to examine individual alternatives more closely. Using 

compensatory strategies, a consumer defines the importance of each attribute. An RA then 

computes a weighted score for each alternative based on the importance of the indicated attribute. 

The alternative with the highest score is recommended. The benefit of the compensatory strategy 

is that it facilitates the consumer’s selection of an overall excellent alternative. Two strategies that 

best represent compensatory-based processing are: 1) equal weighting, which involves assigning 

equal weights to all attributes and choosing the alternative with the highest score; and 2) weight 

additive, in which a weighted score for each alternative based on the indicated attribute’s 

importance is given and the alternative with the highest score is selected. 

Second, an RA could support a consumer in eliminating options that are less likely to be 

considered for procurement. RA decision support begins with a consumer establishing a (list of) 

minimum product attribute(s) of acceptable level(s) that an alternative must possess to be 

considered further for as a choice (Chen, Iyer and Padmanabhan 2002; Olson and Widing 2002; 

Todd and Benbasat 2000, 1994). The process of delineation of minimum attribute-acceptable 

levels and the filtering of alternatives that have failed the criteria is known as screening. The 

screened alternatives are then assessed carefully to make a choice, and this process is known as 

evaluation (Edwards and Fasolo 2001; Alba et al. 1997). 

Comparing the compensatory and non-compensatory approaches, we posit that the extent of the 

criteria to be input into the RA before further screening or weight computation could be performed, 

would affect the choice of the RA features. Particularly, since RA features that adopt non-

compensatory strategies would eliminate options that have failed the threshold, users could feel 
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more at ease with delineating fewer attribute criteria per submission. Comparatively, since RA 

features with compensatory strategies would be able to compute more accurate scores of the 

options with more criteria and weights entered, it could exert pressure on the users to delineate 

more attempts per submission. In this regard, when consumers have only a set of vague 

preferences, the use of an RA that supports a non-compensatory decision strategy could be a 

better choice. Conversely, when a specific criterion is defined, the use of an RA supporting 

compensatory-based decision strategy could be a better fit. 

Proposition 4.1: Consumers developing more abstract dictation of preferences would 

tend to prefer an RA-supporting, non-compensatory decision strategy. However, if a 

specific criterion is primed and defined, consumers would prefer an RA-supporting 

compensatory decision strategy. Matching consumers with the appropriate decision 

strategy afforded by an RA could lower the decision-difficulty due to decision style 

preference, leading to a lower propensity for purchase-avoidance. 

When a consumer engages in screening, he is likely to expend conscious cognitive effort to 

eliminate undesirable alternatives using non-compensatory strategies (Bettman et al. 1998). By 

definition, the use of non-compensatory strategies implies that the definition of the cutoff point 

should focus on the most important attribute(s) and the information about the other attributes would 

hence be ignored. Non-compensatory strategies identified by researchers could be broadly 

classified into two types which could be supported by an RA, i.e., single-attribute or multiple-

attribute screening (Payne et al. 1993). 

A consumer who adopts the single-attribute non-compensatory strategy would choose the most 

important attribute. He or she then evaluates whether the reduced number of alternatives allows 

the decision-maker to make a choice. If another screening attempt is needed, the consumer then 

determines which of the remaining attributes is the most important. The second step is repeated 
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based on the resultant set of alternatives from previous screenings until no further screening is 

needed.  In choice-making, two approaches are used: 1) lexicographic, i.e., choosing the 

alternative that is best on the most important attribute, and 2) elimination-by-aspect, i.e., removing 

alternatives with at least one attribute value that fails to meet the minimum acceptable level 

(Bettman et al. 1998). 

With a non-compensatory strategy that utilizes multiple attributes, such as that based on a majority 

of confirming dimensions (MCD), a consumer chooses the alternatives that are acceptable on the 

largest number of attributes. Hence a consumer would select more than one attribute 

simultaneously without knowing the combined impact of the cutoffs on the number of surviving 

alternatives. Similar to the single-attribute non-compensatory strategy, alternatives that do not 

meet the specified threshold values of all the attributes will be discarded. After this attempt is 

completed, the consumer then assesses whether additional simplification is desirable, and another 

set of cutoffs can be selected to eliminate more alternatives in subsequent attempts, and so on 

(Payne et al. 1993). 

In terms of cognitive processing demand, multi-attribute screening affords consumers greater 

flexibility in controlling and choosing the amount of information than single-attribute screening 

does. Intuitively, by allowing consumers to increase the number of attributes in the screening 

criteria, multi-attribute screening requires less effort and fewer cognitive resources from consumers 

to arrive at a more accurate decision than does single-attribute screening. However, it is plausible 

that defining multiple screening criteria per attempt may be cognitively and emotionally difficult. 

Comparatively, single-attribute-based screening is more structured and the cognitive effort 

demanded for delineating screening criteria could be more structured and progressive in nature. In 

this regard, the level of cognitive dissonance experienced by consumers using the single-attribute 
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screening feature is lower (Todd and Benbasat 1994), thereby reducing the propensity for 

purchase-avoidance due to cognitive-difficulty. 

Proposition 4.2: Providing single-attribute screening features could result in 

consumers engaging in slow but progressive refinement of the elimination criteria, 

leading to lower decision-difficulty in eliciting preferences (i.e., lower preference 

uncertainty), thereby leading to a lower propensity for purchase-avoidance, compared 

to providing multi-attribute screening features. 

D.4.3 CHOICE SELECTION 
RA support for the choice selection decisional stage focuses on assisting a consumer in assessing 

the set of alternatives generated by the matching support. We earlier proposed the application of 

option framing and decision guidance that could serve to lower two forms of decision-difficulty, 

namely choice conflict and need for justification, which could in turn influence the propensity for 

purchase-avoidance. 

D.4.3.1 Option framing 
One of the values of an RA is that it allows for revision of preferences after receiving a preliminary 

set of alternatives. Besides iteratively using the preference elicitation tools such as preference 

discovering and preference framing, and relying on decision-strategy-based screening, consumers 

could add (remove) alternatives to (from) the consideration set (the choice set). Choice set denotes 

the general set of alternatives that a consumer is faced with while consideration set refers to the 

specific set of alternatives that a consumer has viewed just before making a decision. The 

mechanism of adding and removing alternatives is similar to that of the shopping cart in online 

websites except that, in this context, the list of options is not an aggregated purchase list but rather 

consists of options that are further extracted for subsequent evaluation of purchases.  
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Prior research on the addition of alternatives to a consideration set or subtraction of alternatives 

from an original choice set has been limited. Among the few, a significant proportion of such 

research has focused on the formation of product bundling, such as a car audio system and 

reverse sensors) as in Chakravarti, Krish, Paul and Srivastava (2002). While these studies focus 

on the creation of product bundling and features, and there is little conflict among the options as a 

consumer could procure the whole set of options as a whole; in our view, product bundling can be 

equally applicable to our context, i.e., there is a high degree of conflict among the options as a 

consumer can only choose one rather than all options ultimately. This is because the theoretical 

justifications are independent of the specific decision-making context and if our conjecture is 

correct, it could suggest that option framing may be a potentially powerful feature of an RA. 

Within this field of research, scholars articulate that the number of alternatives remaining in the set 

tends to be larger for consumers using exclusion (i.e., removing alternatives from the choice set) 

than for those using an inclusion (i.e., extracting alternatives from choice sets to form consideration 

sets) strategy. For example, Levin and his colleagues (2001) observed that when participants were 

given the description of a number of job applications, fewer applications were screened when 

participants were asked to exclude applicants from further consideration than when participants 

were asked to include applications for further consideration. 

The consistent observations from prior studies could be explained by loss aversion. Participants 

who were under the exclusion treatment were more likely to be more sensitive to the utility losses 

incurred by deleting an option than consumers in the inclusion condition that was characterized by 

gains in utility when adding an option. Hence, it is believed that consumers engaged in inclusion 

would perceive the task of creating a consideration set to be less difficult than those who engaged 

in exclusion of alternatives. This is because exclusion induces a higher level of conflict in the 



  

 147 

consumer’s mind than does inclusion. When a consumer faces a choice that entails a desired 

option, exclusion may create a conflict between utility loss (fewer choices) and effort gain (less 

cognition effort needed to make a choice later on). In contrast, inclusion creates a conflict between 

utility gain (more choices) and effort loss (more effort needed to make a choice later on). 

Differential loss aversion suggests that a consumer is more sensitive to utility losses (Botti and 

Iyengar 2004). Therefore, a consumer may perceive it to be more difficult and, hence, has a higher 

propensity for purchase-avoidance under an exclusion condition versus an inclusion condition, as 

they face utility loss decisions in the former condition.   

Proposition 5.1: Providing an alternative-based inclusion-screening feature in the 

consideration set will lead to reduced decision-difficulty in evaluating the choice sets 

arising from choice conflict, thereby leading to a lower propensity for purchase-

avoidance, compared to providing an alternative-based exclusion-screening feature.  

Despite the provision of the alternative-based inclusion-screening or exclusion-screening feature, it 

is observed that the addition (or removal) of an alternative to the choice set could still make a 

consumer’s choice difficult to justify due to the degree of conflict generated by the choice set 

(Tversky and Shafir 1992). Specifically, the availability of competing alternatives of comparable 

attractiveness could induce cognitive and emotional difficulties because it fails to present an 

instantaneous reason to include or exclude an alternative for further evaluation. What our research 

implies is that when consumers face multiple alternatives of comparable quality, they will suffer 

from decision-difficulty and therefore the likelihood of purchase among the alternatives is reduced. 

Prior research examining the influence of attributes on consumer decision-making indicates that 

the way alternatives are represented (e.g., via attributes) and the comparison process is conducted 

(e.g., inclusion versus exclusion) influences the choices made (Houston, Sherman and Baker 
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1991). For instance, consumers tend to find it easier to compare alternatives with attributes that are 

related to common aspects (i.e., alignable differences) compared to situations where alternatives of 

attributes are unique to individual options i.e., non-alignable differences (Dhar and Sherman 1996; 

Mantel and Kardes 1999; Slaughter and Highhouse 2002). On their part, Zhang and Fitzsimons 

(1999) advocated that aligned differences could induce a perception of a greater amount of 

information processed. However, non-alignable differences among attributes could induce 

consumers to fail to perceive a thorough evaluation of alternatives, leading to reduced chances of 

learning the value of the alternatives presented. This could suggest that an RA needs to be 

designed to facilitate comparison of alternatives based on attributes that are aligned. Such 

facilitation could serve to mitigate decision-difficulty arising from a complex information structure. 

Proposition 5.2: Presenting attributes of alignable differences will allow a consumer 

to experience reduced decision-difficulty in evaluating the choice set (i.e., choice 

conflict), thereby resulting in a lower propensity for purchase-avoidance, compared to 

providing attributes of non-alignable differences. 

D.4.3.2 Decision guidance 
The Regret Theory (Loomes and Sugden 1987) predicts that a decision-maker is more likely to 

choose the default choice, i.e., opt for purchase-avoidance, when he expects not to learn the 

outcome of the decision than when he expects he will. More generally, the tendency to be risk 

averse will vary, depending on whether or not feedback is expected on foregone options (Bell 

1983). In Bell’s terms (1983), the amount a decision-maker is willing to forego in order to avoid 

feedback (i.e., actual outcome after decision is made) on foregone alternatives is referred to as 

“regret premium”. However, when the decision outcome can be altered (i.e., made reversible), a 

consumer is less likely to experience emotional difficulty when making a choice (Tsiros and Mittal 

2000). In this sense, “bringing forward” the feedback could not only condition the decision-maker 
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into reducing the anticipated regret due to a high level of uncertainty but also align the goals with 

what the environment can offer (Anderson 2003). For this reason, an RA could alleviate decision-

difficulty by providing appropriate decisional guidance in the form of feedback, during the decision-

making process. 

Decision guidance refers to the means by which an RA “enlightens or sways its users as they 

structure and execute their decision-making process that is, as they choose among and use the 

system’s functional capabilities” (Silver 1991, pp. 157).  A variety of structural designs for 

decisional guidance is available (see for example Montazemi, Wang, Nainar, and Bart 1996; Silver 

1991). The focus of our study is to build on the concept of decisional guidance (Silver 1991), 

distinguished by suggestive guidance (what to do, what input values to use) and informative 

guidance (provision of pertinent information without suggesting the course of action). Additionally, it 

proposes the provision of feedback to reduce preference uncertainty and assist the formation of 

reasons for decisions. The feedback proposed here is somewhat different from the system 

feedbacks proposed in DSS literature (Silver 1991). In our study, the outcome feedback includes 

the simulation of what would be the experienced regret if a consumer chooses to forego an 

alternative. In relation to the concept of decisional guidance, this form of feedback corresponds to 

informative guidance.  

To illustrate, consider a situation where a consumer is facing two options: (1) a cheap and slow 

processing laptop, and (2) an expensive and fast processing laptop. The two alternatives with 

conflicting attributes require the decision-maker to make explicit trade-offs. It may subsequently be 

difficult for a consumer to decide which laptop to purchase. However, if the RA could further 

include information such as expert rating that rates the second option more favorably and 

justification (i.e., reason) that explicitly states that the first option has a higher defective rate, then 
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the added information heightens the contrast between the two options and provides sufficient 

reasons for selecting one over the other. In this sense, the RA reduces the anticipated regret of 

choosing the second option, and thereby, leads to a lower propensity to avoid making an explicit 

choice. 

Proposition 6.1: The inclusion of feedback will reduce decision-difficulty in choice 

selection due to choice conflict and the need for justification, thereby leading to a 

reduced propensity for purchase-avoidance. 

The provision of justification or explanation can be considered from two theoretical perspectives 

(Silver 1991; Payne et al. 1993). The system either provides knowledge and explanations 

necessary for the user to carry out his or her task; or alternatively, the system carries out some 

action and then explains the need and reason for the action the system itself has chosen for the 

user. The latter role of explanation is applicable in the context of an RA in which it solicits 

consumers’ preferences and executes the particular decision strategy to generate a set of 

recommendations matching the consumers’ preferences. The RA then explains the reasons for 

making the recommendations. Dhaliwal and Benbasat (1996) proposed that explanations were 

provided so that users could learn from the system. Wang and Benbasat (2007) further add that 

explanations enhance consumers’ initial trusting beliefs and acceptance. Explanations play a 

teaching role in an RA by assisting the consumers to learn about how available products match 

their preferences, and thereby allowing consumers to make educated purchase decisions. 

There are generally three dimensions to the generation of an explanation: 1) generating an 

explanation’s basic content, 2) responsiveness, and 3) human-computer interface 

(Chandrasekaran, Tanner and Josephson 1989). The first dimension is concerned with generating 

an information structure containing elements that make up an explanation and is considered to be 
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the most important dimension. In addition, explanation content can be put together in a way known 

as introspection (Chandrasekaran et al. 1989). The term introspection refers to: 1) the examination 

of a record of its own problem-solving activity and picking up appropriate traces containing 

information for user query; or 2) retrieval of knowledge-based portions used in making the decision. 

Basing the explanation content on introspection of the system’s own problem-solving behavior, 

several researchers have proposed different taxonomies of explanation types (Chandrasekaran et 

al. 1989; Ye and Johnson, 1995; Gregor and Benbasat 1999). The various taxonomies are listed in 

Table 3. Moreover, Gregor and Benbasat (1999) have also provided two additional classifications 

of explanations: (1) Presentation format – text-based and multimedia; (2) Provision mechanism – 

user-invoked, automatic and intelligent. 

Here, we will focus our discussion on Justification (JUST) and Strategic (STRG) explanations, 

based on the Gregor and Benbasat (1999) classifications, which are the latest and most 

comprehensive18. JUST refers to the provision of short descriptive explanations to justify 

recommendations, while STRG denotes the presentation of a single piece of aggregated 

information to represent a high level strategy. We reasoned that these two explanation types are 

most relevant with respect to the design of an RA from the consumers’ perspective of choice 

selection. Specifically, the explanations offered serve to assist the consumers in evaluating the 

alternatives presented. JUST is one of the more popular explanation types used by commercial RA 

                                                      

18 One could wonder why the other two forms of explanations (i.e., Type I and Type IV) are not explored. We believe 
that providing mere definitional information to explain the various attributes of the product (i.e., Type IV) may be 
insufficient, while articulating the series of steps taken by the RA to generate its recommendation (i.e., Type I) may be 
unnecessarily complex and extraneous to the evaluation of the alternatives. Hence, trace and terminological 
explanations are unlikely to provide much assistance to consumers in evaluating the RA’s recommendations.  
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implementations such as Yahoo! and SmartSort, while explanations such as numeric-ranking or 

star-rating STRGs are present in almost every online shopping website. We suggest that 

processing a single piece of aggregated information for STRG, be it a numerical ranking or starred 

rating, requires a much lower level of cognitive effort than JUST because such a simple piece of 

factual information can be more readily elaborated on and understood by consumers. JUST 

requires the reading of a paragraph of textual information followed by an in-depth elaboration in 

order to relate to the actual values of product attributes. The immediate line of reasoning may be 

unclear to the consumers and thus could add a cognitive burden to them, leading to a higher level 

of decision-difficulty. 

Table 3. Taxonomies of Explanation Types 
Authors Taxonomy 

Chandrasekaran et 
al. (1989) 

Type 1 – Explaining why certain decisions were or were not made (portions of data in a particular case 
relate to knowledge for making specific decisions or choices). 

Type 2 – Explaining knowledge-based elements (for example, justifying a system’s compiled 
knowledge by linking it to the indepth knowledge from which it was derived. 

Type 3 – Explaining the problem-solver’s control behavior and problem-solving strategy. 

Ye and Johnson 
(1995) 

Trace or Line of Reasoning – Refers to a record of the inferential steps taken by an expert system to 
reach a conclusion. 

Justification – Explicit description of the causal argument or rationale behind each inferential step 
taken by the expert system. 

Strategy – High-level goal structure that determines how the expert system uses its domain 
knowledge to accomplish a task. 

Gregor and Benbasat 
(1999) 

Type I – Trace or line of reasoning. 

Type II – Justification or support 

Type III – Control or strategic. 

Type IV – Terminological, supplies definitional or terminological information. 

The next logical question to ask would be: Under what conditions should a STRG or JUST 

explanation be provided, respectively? The Resource-Matching Theory (Anand and Sternthal 

1989), which explains and predicts the utilization of cognitive resources in an information-

processing task, provides a plausible theoretical explanation for this crucial question. The theory 
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posits that when there is congruence between the cognitive resources required and those made 

available, information elaboration and processing are enhanced, thus leading to an increase in 

persuasion. This proposition has found support in many empirical studies (Keller and Block 1997; 

Peracchio and Meyers-Levy 1997; Meyers-Levy and Peracchio 1995; Anand and Sternthal 1990). 

The intuition of the Resource-Matching Theory and the findings from extant literature with respect 

to RA explanation provision is best summarized in Figure 1. 

Figure 1. RA Explanation Provision from the Resource Matching Perspective. 

 

If a consumer makes available low cognitive resources for an online shopping task, then the RA 

could only effectively reduce decision-difficulty if the explanation provided to guide the consumer is 

processed adequately, i.e., it is one that requires only low cognitive resources; and this is when we 

suggest STRG to be a suitable candidate. This condition is represented by point EQ1 in Figure 1. 

One could then deduce that if the consumer makes available high cognitive resources, he would 

definitely be able to process STRG and thus the level of decision-difficulty and the propensity for 

purchase-avoidance should also be reduced. However, this is less likely to be the case as the 

consumer is likely to redirect the surplus cognitive resources to activate personal or idiosyncratic 

associations which are likely to limit persuasion (Anand and Sternthal 1989). For instance, the 

Persuasion 

High EQ1 EQ2 

GT1 

LT1 

Cognitive resources made available by consumers to 
process explanation 

High Low 

Cognitive resources required for 
processing explanation High 

Low 
Low 
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consumer might use the excess resources to relate the list of alternatives presented in the result 

set with his prior knowledge of the product category and thus override the recommendations of the 

RA; or alternatively, to relate the current recommendations of the RA with past opinion agreement, 

resulting in non-acceptance of the current recommendations (Gershoff, Mukherjee and 

Mukhopadhyay 2003). These two scenarios are likely to complicate the decision-making process 

since the consumer ends up having to consider information beyond those provided by the RA. 

Thus, if the consumer makes available high cognitive resources, the RA should “fit“ the consumer’s 

ability by providing an explanation that requires a high quantity of resources for processing, (which 

is what JUST does), so as to reduce both decision-difficulty and the propensity for purchase-

avoidance. 

Consistent with the resource-matching perspective (Anand and Sternthal 1989), enhanced 

persuasion will increase the appropriateness, consistency and effectiveness of the RA explanation 

(Komiak and Benbasat 2004), thus resulting in higher acceptance of the explanation by consumers 

(Jiang, Klein and Vedder 2000). It then follows that the consumer is also more likely to accept the 

recommendation of the RA and make a purchase decision (Gregor and Benbasat 1999). We thus 

propose the following: 

Proposition 6.2.1: Providing explanations that “fit” the cognitive ability of the 

consumer will lead to greater effectiveness in evaluating the choice set due to reduced 

decision-difficulty and higher persuasion, thereby leading to a reduced propensity for 

purchase-avoidance. 

Proposition 6.2.2:  Providing STRGs (JUST) with low (high) cognitive ability to 

consumers will lead to a lower (higher) propensity for purchase-avoidance. 
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D.4.4 SYNTHESIZED SUPPORT 
With the knowledge acquired on the six RA traits, the next step is to delineate a set of RA traits that 

could cater to varying consumer needs. We, hence, propose RA personalization, which 

synthesizes the supports for information search, alternative evaluation and choice selection. 

Within the field of RA-assisted online shopping, current commercial implementations of decision 

aids are too rigid to provide this personalization. For instance, most of the existing RA 

implementations, such as mySimon, offer a single interface and common set of functionalities to all 

consumers. Furthermore, there is limited guidance on how consumers could and should go about 

selecting an appropriate type of RA for their individual decision styles. This form of non-

customizable RA could plausibly contribute to decision-difficulty from two perspectives. From the 

cognitive perspective, a rigid RA is unable to adequately assist consumers in processing a large 

quantity of product information (i.e., decision-difficulty due to information structure overloading). 

Consequently, consumers are forced to exert additional cognitive effort to manually perform certain 

unsupported processes such as product learning; or to bridge the inherent incompatibility of the 

decision aid provided, such as an incompatible preference elicitation mechanism. From the 

emotional perspective, a rigid RA does not understand the unique decision styles of different 

individuals, and thus the functionalities provided may not meet the expectations of the consumers. 

This could trigger counter-intuitiveness in the interaction between the consumer and the rigid RA, 

thus inducing negative affect, such as distress (Fitzsimons and Lehmann 2004). A plausible 

resulting scenario could be that the consumer develops suspicions on the ability of the RA to 

provide recommendations, thus increasing decision-difficulty. Ultimately, a rigid RA is likely to 

reduce the satisfaction of consumers (Fitzsimons and Lehmann 2004). 

Extant literature has generally agreed that the RA is capable of reducing the cognitive effort that 

arises from making purchase decisions (Haübl and Trifts 2000), thereby helping consumers to 
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overcome their cognitive resource constraints (Simon 1955). However, the implicit assumption 

underlying both the theoretical perspective of the RA and the practitioner’s viewpoint is that most 

users are equal in most aspects, for example, in cognitive ability. Unfortunately, this hidden 

assumption has not been adequately addressed. We reason that this assumption is not pragmatic 

and in fact contains an inherent deficiency. Hence, one of the key objectives of our paper is to 

propose how the RA can be made more flexible to achieve personalization for most individual 

consumers. 

While a flexible decision aid has numerous advantages, we ought to exercise caution when 

designing the extent to which consumers may benefit from a personalized RA, since veering to the 

other extreme also results in disadvantages. Most notably, the personalization tools may become 

overly-complex for consumer use, resulting in non-usage of the RA altogether (Manber, Patel and 

Robison 2000). To avoid this situation, we argue that only essential aspects of the RA, i.e. those 

that could effectively lower the other five types of decision-difficulty, should be considered for 

personalization. 

The ability to personalize the RA injects a level of enhanced flexibility for a consumer. By affording 

consumers with both greater flexibility and a greater degree of control in their interaction with the 

RA (Brusilovsky and Tasso 2004), their personal needs can be better met, thus resulting in a 

positive effect on trust and personal satisfaction (West, Ariely, Bellman, Bradlow, Huber, Johnson, 

Kahn, Little and Schkade 1999) as well as in reduced perceived financial and socio-psychology 

risks, for example (Spiekermann and Paraschiv 2002). Towards this end, prior personalization 

researchers indicate that when users have personalized access to information (i.e., when 

generated content matches their tastes and preferences), then they are able to engage in more 

intense retrieval of associated materials in memory by stimulating stronger and more memorable 
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encoding (Miller and Kulhavy 1991). In this regard, personalization may not only build stronger 

associations related to the task, but in the process, it may also ease the intrinsic cognitive load 

imposed by the task (Lopez and Sullivan 1992). This view is in accordance with the Cognitive Load 

Theory (Leahy and Sweller 2005).  

Prior RA research has suggested that future research in this domain should focus on providing new 

capabilities that assist users to process the recommendations provided by an RA (Riedl and 

Dourish 2005). Such capabilities will involve new algorithms, and more importantly, new interfaces 

for exposing the capabilities enabled by these new algorithms (Riedl and Dourish 2005). For 

instance, researchers have examined current state-of-the-art recommendation technologies such 

as social navigation (Svensson, Höök and Cöster 2005) and social matching (Terveen and 

McDonald 2005) to understand their design and feasibility. Our current proposition on RA 

personalization differs slightly but yet complements this line of thought. First, we have already 

addressed the searching, browsing and understanding of RA recommendations by proposing 

features such as preference discovery, preference framing, decision strategy based screening and 

decision guidance. An important but missing piece in the jigsaw puzzle is refining the interaction 

process between a consumer and the RA so that the capabilities enabled by these new features 

can be effectively consumed, resulting in reduced decision-difficulty. Second, we do not propose 

any new algorithms but rather we build on and advocate the correct usage of existing RA 

technologies. Thus, we connote that the correct RA technologies should be provided for the correct 

users. Third, consistent with the advocation of Riedl and Dourish (2005) that research in RA 

interfaces will provide higher economic marginal returns, we suggest that a revamp of the current 

RA interfaces through the introduction of personalization is in order. In summary, an RA with a 

correct set of features that matches the needs and abilities of each user can overall enhance the 
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online shopping experience. However, we caution that any customization of the RA interfaces must 

be done systematically and support the RA’s fundamental objective of reducing decision-difficulty 

rather than to add any unnecessary cognitive load. 

Theoretical support for RA personalization can be found in the work of Zmud (1979) on how 

individual differences affect the success of Management Information Systems (MIS). In the same 

paper, Zmud suggests a cognitive-influences path involving individual differences, cognitive 

behavior, MIS design characteristics, and MIS success. Individual differences such as decision 

style, personality and demographic/situational variables are conjectured to affect the behavior of 

decision-makers. Since decision aids are provided to overcome limitations inherent in human 

cognition (Haübl and Trifts 2000) and to ensure that available information is sensed and used; their 

design is dependent upon the cognitive behavior of the decision-maker. More precisely, it has been 

suggested that decision aids designed to direct the decision-maker's behavior and to provide 

support for decision strategies are likely to improve decision performance. Consistent with this 

argument, an MIS designed with quantitative models, graphical reports, color-coded graphics and 

multi-line graphs has been found to improve decision performance; while format improvements 

have led to increased MIS usage (Eom 2003). 

The implications of the cognitive path influences of Zmud (1979) can be analyzed from the three 

aspects of individual differences, namely, level of product knowledge, experience in preference 

dictation and cognitive ability, which are most relevant to consumers engaging in RA-assisted 

online shopping tasks. We posit that these three differences have a non-trivial impact on the 

cognitive behavior of consumers. For instance, in our previous discussion on Proposition 1.1.2 we 

argued that allowing consumers with low product knowledge to relate a new product with an 

existing familiar product through the provision of analogical product-learning can reduce decision-
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difficulty. This implies that consumers with low product knowledge are likely to have higher 

information requirements through exposure to additional information on familiar products. On the 

contrary, consumers with high product knowledge do not need this requirement. In accordance with 

the cognitive path influences (Zmud 1979), different RA features must be provided to these two 

groups of consumers in order to ensure the successful application of an RA. Specifically, 

consumers with low product knowledge need to be given an analogical product learning aid, while 

those with high product knowledge do not. To achieve such RA design characteristics, the RA must 

be personalized, based on the three aspects of individual differences (e.g., decision style). 

Agarwal and Prasad (1999) have also proposed and found empirical support for a theoretical 

model that posits the relationship between individual differences and technology acceptance to be 

mediated by perceived usefulness and perceived ease-of-use. The individual-differences variables 

selected represent traits that could potentially interfere (positively or negatively) with their 

acceptance of the new technology: We build on this observation by arguing that insofar as 

consumers differ in their level of product knowledge, and their experience in preference dictation 

and cognitive ability to process information, an RA that is designed to match the cognitive 

characteristics of a consumer in reducing decision-difficulty could induce higher perceived 

usefulness and perceived ease-of-use. This line of reasoning is consistent with the prediction on 

the MIS success of the cognitive path influences (Zmud 1979). We thus propose that RA 

personalization is an important design trait in reducing the overall decision-difficulty of consumers: 

Proposition 8.1: RA personalization allows the correct design traits to be provided 

for individual consumers. Since each design trait is designed to reduce a particular 

aspect of decision-difficulty; RA personalization can reduce the overall decision-

difficulty encountered by different individuals, thereby leading to a lower propensity 

for purchase-avoidance. 



 

  160 

We shall now examine three detailed propositions on how RA personalization could be plausibly 

operationalized. To personalize an RA based on the level of product knowledge, an RA needs to 

delineate the knowledge level for each new product category that a consumer enquires about. For 

a new product category, the RA could pose a series of questions to derive a mean score used for 

determining the product knowledge level. Two approaches may be feasible. First, a product-

specific approach could pose a series of usage or feature questions pertaining to a particular 

product category. Returning to our earlier analogy of the PDA phone, an example of a usage 

question could be: “Do you know how to make a phone call to a contact whose phone number is 

stored in the PDA address book?” An example of a feature question could be: “Do you know that a 

PDA phone does have a scheduler function?” Second, a generic approach could incorporate an 

instrument scale for measuring a participant’s product class knowledge, such as that developed by 

Smith and Park (1992), in which an “I feel very knowledgeable about this product” ranking denotes 

good product knowledge. The RA needs to remember this mean score for future use should the 

consumer enquire about the same product category. However, the RA should also permit a 

consumer to change the score by amending his responses to the personalization questions. Based 

on the product knowledge mean score, the RA can then decide whether analogical product 

learning support should be offered (see Proposition 1.1.2) and/or whether the need-based or 

attribute-based preference dictation method should be feasible (see Proposition 3.1). 

Proposition 8.1.1: Personalization of an RA through a consumer’s product 

knowledge level enables the RA to provide the appropriate product learning and 

preference framing features to reduce the associated decision-difficulty (i.e., 

knowledge uncertainty and preference uncertainty), thereby leading to a lower 

propensity for purchase-avoidance. 
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Personalization of an RA based on cognitive ability can be accomplished by using a questionnaire-

type instrument scale such as the one developed by Cacioppo, Petty and Kao (1984), which 

measures a person’s tendency to engage in and enjoy challenging information processing, i.e., one 

requiring cognition. Based on the consumer’s response, the RA can determine whether strategic or 

justification explanation should be provided in the RA’s recommendations. The consumer is 

allowed to change his responses to the questionnaire. Alternatively, the RA could move a step 

further by observing the consumer’s usage of the RA and his purchasing behavior, over a period of 

time. For instance, if the time spent evaluating justification explanation is excessively long, this may 

indicate that the consumer may be unable to process the information provided. Furthermore, if the 

consumer disregards the RA recommendations by choosing an alternative that deviates remotely 

from the consumer’s expressed preferences, then this may also indicate that the decision-guidance 

provided is not being utilized effectively. Either way, the RA can learn to recognize such patterns 

and offer to provide the other explanation type to the consumers. It seems plausible for 

personalization to enable a smart learning RA rather than the current run-of-the-mill types. 

Proposition 8.1.2: Personalization of an RA through a consumer’s cognitive ability 

enables the RA to provide the suitable decision-guidance features to reduce the 

associated decision-difficulty (i.e., need for justification), thereby leading to a lower 

propensity for purchase-avoidance. 

Personalizing the RA based on the consumer’s degree of preference dictation could prove 

problematic because it might overlap his level of product knowledge, since a consumer with higher 

product knowledge can be expected to have a clearer expectation of the desired criteria and 

articulate his preference for a wider range of attributes. Additionally, it could also confound one’s 

cognitive ability to analyze the criteria of multiple attributes concurrently, versus analyzing single 

attributes sequentially. Thus, it is entirely plausible for the RA to infer the preference dictation from 
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the first two customizations. For instance, the RA could assume abstract (specific) preference 

dictation should the consumer possess low (high) product category knowledge and low (high) 

cognitive ability. A direct approach would be for the RA to ask the consumer if he prefers or is able 

to evaluate a single attribute sequentially or multiple attributes concurrently. In any case, the RA 

could render an appropriate preference elicitation from two options: a compensatory or non-

compensatory interface (Payne et al. 1993). As is possible with cognitive ability, the RA can 

attempt to learn the consumer’s usage and learning behavior and counter-offer with the other 

interface, if necessary. 

Proposition 8.1.3: Personalization of an RA through a consumer’s degree-of-

preference elicitation enables the RA to provide the proper decision-strategy-based 

screening features to reduce the associated decision-difficulty (i.e., preference 

uncertainty and information structure load), thereby leading to a lower propensity for 

purchase-avoidance. 

We will next examine the plausibility of hybridization, a form of personalization, of the product 

learning and preference-framing design traits. We have suggested previously during our discussion 

of Proposition 1.1.2 that a plausible way of implementing analogical product learning is by asking 

the consumer a series of usage questions pertaining to the specific product category. This is very 

similar to how a need-based RA’s functions (Grenci and Todd 2002). In other words, regardless of 

the base type of the RA, the elements of a need-based RA can be used jointly. Furthermore, we 

also posited in Proposition 3.1 that consumers with little or no knowledge of a product category 

should be provided with a need-based RA while those who are already familiar with the product 

category should be provided with a feature-based RA. Hence, another way of achieving RA 

personalization is to incorporate both need-based and feature-based methods, but offer only one to 

each individual consumer depending on his level of expertise for a product. 
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Proposition 8.2.1: RA personalization achieved through the hybrid use of need-

based and feature-based methods, either jointly or alternatively, depending on a 

consumer’s level of product knowledge could yield lower decision-difficulty due to 

preference uncertainty, thereby leading to a lower propensity for purchase-

avoidance. 

We next examine hybridization of alternative screening mechanisms. In our previous discussion on 

Proposition 4.1, we argued that consumers with abstract preference-dictation should be provided 

with a non-compensatory decision strategy while those with specific preference-dictation should be 

provided with a compensatory decision strategy (Payne et al. 1993). Since this is independent of 

the preference elicitation mechanism, elements of compensatory RA and non-compensatory RA 

can be used alternatively. 

Proposition 8.2.2: RA personalization achieved through the hybrid use of 

compensatory and non-compensatory methods alternatively allows the best of each 

method to be provided for consumers, thus reducing decision-difficulty due to 

preference uncertainty and information structure load, and thereby leading to a lower 

propensity for purchase-avoidance. 

Finally, we reason that the best features of each RA method can only be effective in reducing 

decision-difficulty if they are correctly provided to consumers based on their individual differences, 

e.g., decision styles. On the one hand, providing a “full featured” RA that allows the consumers to 

mix and match those features that they want without appropriate guidance is likely to cause 

unnecessary confusion and complications in the use of the RA, and may require additional 

cognitive effort to figure out a set of RA features that the consumers perceives to be appropriate for 

themselves, but which may in reality be sub-optimal. On the other hand, we suggest that RA 

personalization on an appropriate level of product knowledge, experience in preference-dictation 
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and cognitive ability, can all provide the correct guidance discussed in our propositions for RA 

personalization. 

Proposition 8.2.3: RA personalization enables effective and efficient hybridization 

to provide a set of RA features that can best reduce decision-difficulty due to 

decision styles, thereby leading to a lower propensity for purchase-avoidance. 

D.5 DISCUSSION AND IMPLICATIONS 
We have at this stage built on consumer psychology and decision-making literature, particularly, in 

the areas of decision-difficulty and purchase-avoidance, as well as on existing DSS studies, to 

present a framework governing RA design, leading us to propose a set of theory-based 

propositions. The propositions provide answers to an important yet often overlooked question of 

how an RA could be designed to offer informed guidance and recommendations to consumers in 

constructing preferences and choosing an alternative rather than avoiding making a purchase 

commitment (e.g., shopping cart abandonment). This question should be of interest to academic 

researchers, RA and general consumer-based decision-aiding designers, as well as current and 

future RA providers. Before we proceed to delineate the boundary of the RA framework which 

serves as providing suggestions for further exploration, and to discuss the implications of this study 

for research and practice, it is imperative that we first review the existing RA implementations with 

our set of design propositions in mind. 

D.5.1 EXISTING RA IMPLEMENTATIONS 
In an exciting and promising recent development, some limited but recognizable aspects of the 

hitherto proposed RA features are available commercially (see Table 4). Exploring them is a good 

way to further theorize the proposed seven traits of an RA, which are oriented towards improving 

the next generation of commercial RAs. 



  

 165 

Most of the commercial RAs have chosen to focus on decision strategy based screening and 

option framing which could be of fundamental functionality. In decision strategy based screening, 

most RAs have opted for a non-compensatory decision-strategy, resembling an elimination-by-

aspect approach using a single-attribute screening mechanism. An exception is PriceGrabber.com 

which also offers the majority of confirming dimensions using multi-attribute screening. Another 

notable example that is a departure from mainstream RAs is Yahoo! SmartSort, which offers a 

lexicographic variant, and also a non-compensatory decision strategy, using multi-attribute 

screening. The trend towards non-compensatory strategy is consistent with the prediction of 

Proposition 4.1, provided the main target participants of the shopping websites are casual 

shoppers with abstract preferences dictation, while the use of single-attribute screening supports 

Proposition 4.2. In the case of option framing, we note that the majority of commercial RAs 

incorporate inclusion-screening in the form of side-by-side comparisons or what has been more 

formally termed comparison matrices (Haübl and Trifts 2000) in addition to presenting attributes of 

alignable differences, albeit mixed with attributes of non-alignable differences. Hence, this 

development also provides support for Propositions 5.1 and 5.2, respectively. 

While features of product learning, preference discovery, preference framing and decision 

guidance have been partially implemented, we reason that the current state-of-the-art commercial 

RAs have not fully exploited the potential benefits of these four design traits. Out of the 15 websites 

reviewed, only CNET Shopper.com provides both discursive and imagery information processing. 

An additional seven websites provide only text-based product buying guides. However, both 

Shopping.com and Yahoo! SmartSort merely provide links to external guides. Analogical product 

learning support is clearly absent.  
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In terms of preference discovery, we observe that two-thirds of the surveyed websites implement 

instant information cues by displaying the number of items that will be returned to the user if a 

particular filter link is clicked on. Further, only NetMarket and PCFinder (Xiao, Aïmeur and 

Fernandez 2003) attempt to provide default options to guide users, although it should be noted that 

NetMarket only provides very few default options, limited in terms of price range and manufacturer. 

Product stimulation is not available on any of the surveyed RAs. For preference framing, all the 

RAs either implement need-based or attribute-based preference elicitation methods. However, 

none of them implements the framing of more important attributes against less valued attributes. 

Finally, 10 out of the 15 RAs provide strategic explanations in various formats, such as star ratings. 

Of the 10 RAs that provide strategic explanation, only Yahoo! SmartSort provides additional 

justification-explanation. Unfortunately, Yahoo! SmartSort merely shows both types of explanations 

without attempting to “fit” each of them to the user with the correct cognitive ability. Given that 

these four design traits are still not widely implemented commercially, it is necessary to test 

Proposition Sets 1, 2, 3 and 6 empirically to determine their practical implications. 

The remaining design trait, RA personalization, is yet to be implemented in existing commercial 

RAs. The only exception we observe that resembles RA personalization is Price Grabber, which 

provides a basic and advanced filtering mechanism for users to choose from. The default basic 

option is simply the non-compensatory single-attribute based, filtering link mechanism found in 

most RAs while the advanced option offers a multi-attribute checkbox filtering mechanism. This 

limited ability to personalize the RA roughly translates into personalization which is based on the 

degree of preference dictation as stated in Proposition 8.1.3. However, an important distinction 

between our proposition and Price Grabber’s implementation is that Price Grabber does not 

provide any guidance for choosing between the basic and the advanced options. The resulting 
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deficiency from such an explicit choice of RA interface may inject unnecessary confusion in the 

user, thus triggering unwarranted negative affection with the RA. Whilst it is entirely possible that 

users find such an explicit choice flexible and convenient, our basic position remains that the next 

generation RA should be “smart” enough to understand the needs, and in this case the degree of 

preference dictation, and provide the correct interface customized to the user’s cognitive behavior. 

This, we argue, should be achieved in a subtle and/or non-obtrusive manner.  

Furthermore, RA personalization through a hybrid use of need-based/feature-based and/or 

compensatory/non-compensatory approaches, is not observed in any of the current commercial 

RAs despite suggestions by numerous researchers (Stolze and Nart 2004; Adomavicius and 

Tuzhilin 2005). The implication of the lack of such a feature is non-trivial. Specifically, an RA that 

provides only a particular preference elicitation mechanism or decision-strategy may limit its 

usefulness to a specific subset of customers out of all potential visitors to the websites. For 

instance, a novice shopper may find a feature-based RA unhelpful in helping him to find the 

desired products, resulting in purchase-avoidance as suggested in Proposition 3.1. Hence, to 

ensure that the deployed RA can capture maximum potential revenue, appropriate personalization 

service through offering hybrid features should be applied. 

The review of current commercial RAs as reflected in Table 4 suggests that much more research is 

needed to advance our understanding of an effective RA design framework that can more 

effectively assist consumers to make purchases. While design traits such as decision strategy 

based screening and option framing have adequate support, further theorizing is required before 

we can empirically test new propositions such as RA personalization. To this end, the unified RA 

framework proposed in this paper serves as an excellent guide. 
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D.5.2 BOUNDARY 
While we have proposed a rather exhaustive set of RA features, we feel we cannot embed some 

areas of research into the agent design framework as we seek to keep our conceptual framework 

manageable. In this light, it is imperative that we first highlight the potential limitations in the 

proposed agent design framework before evaluating the current RA implementations against the 

proposed RA features, and discussing the implications of our research. Towards this end, two 

areas of research pose challenges to our agent framework: decisions involving multiple entities and 

preferences over time. 

Research in consumer behavior and social psychology indicates that people seldom make 

decisions in isolation. They interact with others, who themselves have different decision strategies 

and preferences. Particularly, shopping is one such activity with a very high need for social 

interaction. People like to shop with friends and close ones in a social and collaborative 

environment, rather than in isolation. While socializing may be one reason for shopping 

collaboratively, there might be several others. People may shop together when the consumption of 

the product is not at the individual-level, such as the purchase of a living room sofa set (Corfman 

and Lehmann 1987); when the purchase is associated with significant financial resource 

commitment, such as acquiring a house; or when it is one with social implications such as 

accountability; and even when the product familiarity is low (Anderson 2003).  

Regardless of the motivation behind shopping collaboratively, research in consumer behavior 

indicates that those who shop in groups may cover larger areas of stores, purchase more, and 

spend more money than when shopping alone (Sommer, Wynes, and Grinkley 1992). It is also 

observed that in many cases, the mere expectation of talking to others about products and their 

consumption experience can influence attitudes towards the product and induce preference shifts 
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(Schlosser and Shavitt 2002). Conversely, a consumer may defer buying decisions when there is 

no one to seek reassurance and advice from, regarding potential purchases.  

While the proposed features allow consumers to simulate the use of the product, (i.e., preference 

discovering), and include additional information (e.g., expert rating) and guidance (decisional-

guidance) which could alleviate the need for assurance (Ariely et al. 2004), they fail to meet the 

very basic requirement of any kind of collaborative activity – to communicate. In this regard, our 

agent framework should be extended to address the principles governing the need of the consumer 

to communicate and seek social assurance, that is, acknowledgement and approval from shopping 

partners (Tetlock 1991).  

However, depending on the magnitude of such needs and the intrusiveness of the communication 

mode, such as prominently displaying additional information in an attempt to sway the consumer’s 

preference for a particular product, individuals may choose to ignore the social needs and focus on 

addressing their internal needs. To some extent, some consumers may even choose to ignore 

certain information or contradict the recommendations given (Fitzsimons and Lehmann 2004). 

Indeed, the desire for autonomy and freedom of choice is sufficiently prevailing to precipitate the 

paradoxical moment at which results are judged not by whether the objective is met, but by the 

manner in which they are attained. 

A second area of research that presents a challenge to our framework is the consumption choices 

that have consequences over time. For instance, Simonson (1990) observes that consumer choice 

could be influenced by whether a consumer simultaneously chooses to procure multiple items in a 

category for sequential consumption or sequentially makes the same number of choices over a 

period of time. Particularly, choices made simultaneously increase the amount of choice variety. In 

addition, Simonson and Winer (1997) stress that when the number of items to be purchased within 
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a product category increases, consumers would have a higher propensity to acquire items that they 

would not have purchased when procured in a smaller quantity.  In another example illustrating the 

consequences of time on purchase decision, Wertenbroch (1998) observes that consumers do 

exhibit a propensity to rationalize their purchase quantities, such as buying a pack rather than a 

box of cigarettes each time, despite the presence of quantity discounts. 

These two areas of research -- social needs and preferences over an extended time -- reveal gaps 

in our framework that are not filled. In both cases, perceptual principles such as the need for 

opinions from close ones during shopping, and the making of simultaneous or sequential 

purchases, seem intertwined to a certain extent. Thus, extended research that further develops 

these aspects of agent design is needed. 

D.5.3 IMPLICATIONS FOR RESEARCH 
This study contributes to several streams of literature. First, prior studies have provided variations 

of online RAs to address the decision-difficulty problem (e.g., Häubl and Murray 2003; Grenci and 

Todd 2002), most of these solutions are somewhat disparate and piecemeal in nature, addressing 

only partial stages of the online consumer decision-making process. Furthermore, no study on RAs 

has formally examined decisional-support in the context of decision-difficulty and purchase-

avoidance. This study has contributed to the cumulative knowledge by postulating ways in which 

RAs could be designed to assist consumers in alleviating purchase-avoidance through reducing 

decision-difficulty. In this regard, we have incorporated and extended the current state of our 

knowledge on consumer behavior literature to embrace agent design. 

Second, much of prior research in consumer behavior has focused on the cognitive aspects of 

decision-making and many of the previous DSS and Human-Computer Interaction (HCI) studies, 

particularly those on RAs, attempt to develop and evaluate different underlying algorithms that 



  

 171 

address these cognitive difficulties (Xiao and Benbasat 2007). Our research has attempted to 

establish the notion of decision-difficulty as a composite of cognition and emotion, and further 

related decision-difficulty to purchase-avoidance. To this end, we have formalized six factors of 

decision-difficulty, which are considerably relevant to decision-aiding research and could further 

inform researchers who are embarking on consumer-based decision-support study. 

Third, presented through the supports for three stages of the consumer decision-making process 

(Black et al. 2001), we have proposed a unified blueprint for an RA framework (see Figure 1) that 

encompasses more than 20 propositions concerning RA design. Our study draws mainly from 

behavioral theories which are highly relevant yet rarely applied in IS and HCI literature, such as the 

Feature Integration Theory (Quinlan 2003), the Construal Level Theory  (Trope and Liberman 

2003) and Category Learning Theories (Ashby and Maddox 2005), and we use these theories to 

relate them to existing DSS empirical studies. To this end, our study constitutes one of the first 

attempts to propose a set of theoretical-driven propositions governing RA design. By integrating 

the various streams of behavioral literature and decision-support literature, our study provides a 

nuanced understanding of the limitations of current RA implementations, introduces potential future 

RA design features, and offers a slew of research opportunities. 

Fourth, this study also implicitly derives four underlying principles of RA design: 

a. Consumers must find it easy to learn and articulate their preferences. Consumers often 

shop for products without well-constructed preferences (Bettman et al. 1998). Hence, they 

often seek to learn about a particular product type (acquiring product knowledge), the options 

offered, and their own preferences by interacting with an RA. However, unless the RA gains 

sufficient knowledge about consumers’ preferences, it will not be able to accurately model their 

preferences and hence provide appropriate product information and guidance. This 
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predicament has raised the question of how the RA should help consumers to learn about 

themselves and at the same time surface their inner, unrevealed preferences. To our 

knowledge, many previous studies (e.g., Haübl and Trifts 2000; Grenci and Todd 2000) suffer 

from the implicit assumption that consumers would learn about their preferences as they scroll 

through product attributes and specify their preferences. We explicitly violate this assumption 

by questioning how an RA could be used to alleviate knowledge uncertainty (i.e., a state of 

mind when a consumer is unsure of the knowledge to identify and evaluate the product 

options) and preference uncertainty (i.e., a state of mind of when a consumer is unsure 

whether he prefers one product option to another). In reviewing extant consumer psychology 

literature, we propose the inclusion of a preference discovery feature using a default option 

and simulating the use of a product to address the issue of knowledge uncertainty. In addition, 

we suggest solving the problem of preference uncertainty with a feature of preference framing 

that encourages consumers to make explicit tradeoffs between attributes such as pricing and 

safety. 

b. Consumers must perceive it to be undemanding to further reduce the choice sets 

derived from the learning stage. Consumers often suffer from information structure overload 

in which they might not be cognitively capable to process all the product options extracted 

(Iygengar and Lepper 2000). Particularly, when the information structure is complex, the 

amount of effort to evaluate individual extracted options could be overwhelming. Hence, 

consumers often revert to purchase-avoidance (Anderson 2003) or adopt simplifying heuristics 

(Bettman et al. 1998; Payne et al. 1993). A milestone paper on screening is by Haübl and Trifts 

(2000) who observe that the inclusion of screening and comparison features could have a 

positive impact on both the quality and efficiency of purchase decisions. Building on this 

observation, we propose the inclusion of multiple-attribute screening (non-compensatory) and 
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the addition of inclusion-screening from an option framing feature (compensatory) to reduce 

the size of the choice set. There are three distinctive differences between our research and 

studies such as that of Haübl and Trifts (2000). First, they focus on a problem-focus coping 

strategy in which consumers do not have a ‘no-choice’ option, i.e., of not making a choice. 

Previous research on no-choice options suggests that consumers might behave differently 

when they are aware of the presence of such options (Dhar and Simonson 2003; Dhar 1997). 

This study does explicitly take the no-choice option into consideration. Second, Haübl and 

Trifts (2000) only seek to highlight the positive aspects of screening features without explicitly 

considering the different impacts of varying screening features that are non-compensatory in 

nature. This study classifies screening features according to the number of attributes available 

for each screening attempt. Third, our study proposes both non-compensatory and 

compensatory approaches toward reducing the sizes of the choice sets as opposed to the 

mainly non-compensatory strategy of Haübl and Trifts (2000). 

c. Consumers must recognize the best matching option without suffering from extensive 

choice conflicts. Our review of previous consumer psychology and decision-making literature 

suggests that consumers often abandon the initial purchase intention through the lack of 

convincing reasons for justifying a purchase (Anderson 2003; Simonson 1990). This study 

proposes a decision-guidance approach. Decision-guidance explicitly offers external 

informational and suggestive guidance to assist consumers to make informed decisions. In our 

knowledge, no previous research has made a similar combination of propositions on 

technological feature design. We are confident that this feature could address cognitive 

difficulty in evaluating options and emotional difficulty in finding sufficient justifications for 

making a purchase. 
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d. Consumers must feel comfortable with the use of an RA. To achieve this objective, we 

propose RA personalization. There are three main categories pertaining to previous research 

on personalization. The first category emphasizes the application of personalization technology 

and its commercial values, and includes studies which show the usage of personalization 

agents in the area of information dissemination (Leob 1992; Light and Maybury 2002) and 

search engines (Manber et al. 2000). The second category stresses privacy issues arising from 

personalization (Kobsa 2002; Stewart and Segars 2002).  The third category focuses on the 

generation of personalized content derived from data-mining technologies based on 

customers’ transactions (Perkowitz and Etzioni 2000; Eirinaki and Vazirgiannis 2003). 

Research in this area has concentrated on computational procedures to sort out transactions 

and personal profiles, and builds and adds onto the extant body of personalization literature by 

proposing that a hybrid model that takes into consideration learning, matching and evaluation 

supports could potentially alleviate decision-difficulty. To this end, we have proposed several 

ways of integrating RA features, which are yet to be explored theoretically. 

D.5.4 IMPLICATIONS FOR PRACTICE 
In addition to the theoretical contributions of the normative agent design prescriptions, we have 

presented summaries and propositions that may offer prescriptive guidelines to practitioners 

concerning the implementation of an RA. Particularly, RAs could be implemented within an online 

storefront managed by a merchant or an intermediary that seeks to assist consumers in sourcing 

for the best products available in the market. In this light, the implications of our research should be 

informative to both merchants and intermediate service providers. 

For the merchants, this paper proposes the inclusion of a default option which could address the 

difficulty of preference elicitation, which in turn could influence the propensity for purchase-
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avoidance (e.g., shopping cart abandonment). In many in-store purchases, merchants could utilize 

an in-house RA to present consumers with a default option. This default option should generate an 

initial reference or anchor point that could subsequently be used to manage how consumers 

articulate their preferences (e.g., the minimum attribute values for screening), especially for 

unfamiliar products. Extending this notion of providing a default option further, merchants could 

utilize the recommendation to invoke consumer interest in a product by framing a default option 

that provides a satisfactory product choice (a reference option) and subsequently present them 

with a slightly better option (core option). The default option, in this case, serves as the initial 

anchor point for evaluating the other options in the choice set. 

Upon the completion of the preference elicitation, the RA would then search for and extract product 

options that satisfy the articulated preferences. The next task is to further reduce the choice set to 

a smaller consideration set. With respect to this matching process, most of the existing RAs often 

rely on the use of an attribute-screening feature. In addition, as we proposed in our discussion on 

the propositions, merchants and service providers could further broaden the shopping cart concept 

by explicitly providing the inclusion-screening feature that allows consumers to “co-opt” product 

options.  To the extent that people tend to be more sensitive to utility losses incurred by deleting an 

option, it is plausible that the inclusion-screening feature could alleviate such concerns. Indeed, 

inclusion creates a conflict between utility gain and effort loss that is more tolerable and acceptable 

compared to exclusion that entails decision conflict between utility loss and effort gain. 

Our review also presents managerial guidance to RA service providers, i.e., the intermediaries. We 

propose that the context in which options are evaluated could significantly influence consumers’ 

perceived decision-difficulty, which in turn might affect consumers’ propensity for purchase-

avoidance. Presenting consumers with a large number of alternatives, for instance, might not be to 
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their advantage, as they have to make explicit tradeoffs among the attributes when determining 

which option to choose. To this end, a larger tradeoff size increases decision-difficulty by 

intensifying the approach-avoidance conflicts of attribute tradeoffs (e.g., brand and price) as 

reported by Chatterjee and Heath (1996). Service providers could reduce decision-difficulty by 

altering the presentation of attributes that consumers are more comfortable with by delineating 

preferences. We proposed that an RA could reduce such difficulty by framing trade-offs of 

important core attributes against less valued attributes (Janiszewski et al. 2003). The agent can 

subsequently compute the importance of the core attributes.  

Conversely, service providers could also discourage consumers from delineating preferences that 

could induce future regrets -- such as acquiring a poorly serviced car at a relatively low price but 

later regretting the excessive repair and maintenance costs -- by explicitly framing the trade-offs of 

certain attributes to be more cognitively difficult or emotionally laden. To the extent that the 

existence of the service providers depends on customer satisfaction both during and after a sale, it 

is imperative that they should be cautioned on how attribute tradeoffs are framed. 

D.6 CONCLUSION 
Electronic commerce is at an important defining moment currently. As the dust from the dot-com 

bust settles, as computer and Internet penetration is increasing inexorably around the world, 

electronic commerce has the potential to grow exponentially beyond our imagination. Among many 

technological developments, such as Web 3.0, the RA has perhaps the greatest potential to 

facilitate and realize this growth in electronic commerce. The purpose of this article is, hence, to 

present readers with a progressive view of how RAs could be built and designed. Towards this 

end, we have proposed a conceptual model delineating the relationship between decision-difficulty 

and purchase-avoidance, and identified six factors related to decision-difficulty. Building on this 
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conceptual model, we further propose a research framework demarcating seven RA design 

artifacts in alleviating decision-difficulty. 

Although the studied approaches and problems represent a diversity of contributions from multiple 

disciplines, many of our theoretical-based propositions towards designing an agent inform us about 

the central problems associated with online shopping. Towards this end, we anticipate that a broad 

array of intriguing research opportunities and solutions remain on how an RA, (i.e., a 

Recommendation Agent, and not a Restricted Agent), could be designed to address these 

challenges. From this perspective, we would like to emphasize that our research is not restricted to 

RA design, but also delves insightfully into decision-aiding design in general, given the enormous 

number of online decision contexts in which RAs can be deployed and used. Indeed, 

understanding consumer decision processes and how technology could be designed to address 

problems faced by consumers such as decision-difficulty, will continue to be a major focus of IS. 

Hence, this study hopes to provide the rallying call for more efforts to be devoted to this area of 

research.
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Table 4. Review of Commercial RA Implementations 
 PL PD PF DSS OF DG RAP 
CNET Shopper.com        

DealTime        

Froogle        

MSN Shopping        

Price Grabber        

Buyer Zone (buyerzone.com)        

AOL Shopping        

BizRate        

Expedia.com        

mySimon        

NetMarket        

Shopping.com        

PCFinder        

Amazon        

Yahoo! SmartSort        
PL – Product Learning (e.g. analogical, discursive or imagery); PD – Preference Discovery (e.g. product learning, default options or instant information cue); PF – Preference 
Framing (e.g. need-based, feature-based or framing of important attributes against less valued); DSS – Decision Strategy based Screening (e.g. compensatory, non-
compensatory or single attribute screening); OF – Option Framing (e.g. inclusion screening or presenting attributes of alignable differences); CC – Choice Composition (e.g. 
branded product); DG – Decision Guidance (e.g. Inclusion of feedback or explanation that fits the cognitive ability of consumers); RAP – RA Personalization (e.g. product 
knowledge level, cognitive ability or degree of preference dictation).        
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