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Summary

Growth in the demand for wideband services such as high-speed internet connection

and high quality video transmission has sparked the need for reliable transmission

at high data rates over wireless channels. To increase the data rate or improve the

link quality, single-carrier frequency-domain equalization (FDE) and space-time

block coding (STBC) have been gaining more and more interests recently. The

objective of this thesis is to exploit the benefits of these two techniques by means

of combining them together. Or more specifically, we investigate FDE schemes for

STBC block transmissions over frequency-selective fading channels. These FDE

schemes can be divided into two categories: the channel estimation based FDE

and adaptive FDE.

For the first category, we present efficient linear and decision-feedback block

equalization schemes according to zero-forcing (ZF) and minimum mean-square

error (MMSE) criteria for STBC systems. Closed form expressions for tap coef-

ficients of these FDE schemes are derived. We also show that our work in FDE

can be readily extended to perform channel estimation. And a training based

frequency-domain channel estimation scheme is proposed, in which training blocks
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can be encoded by the same space-time coder as the data blocks. We examine

the performance of these channel equalization and estimation schemes by applying

them to the EDGE system. Simulation results indicate significant performance im-

provement achieved by STBC-FDE schemes as compared to the single transmitter

case with FDE. Simulation results also demonstrate effectiveness of the frequency-

domain channel estimation scheme.

As for the adaptive version, we present a systematic method of developing

adaptive FDE for STBC transmissions using block adaptive algorithms. This adap-

tive scheme eliminates the need to perform separate channel estimation, i.e., chan-

nel estimation and equalization are performed jointly. Simulations results indicate

that adaptive FDE scheme (based on block recursive least square (BRLS) algo-

rithm) is effective in combating the ISI caused by multipath fading with relatively

lower complexity. We also propose a diversity combining method. This scheme is

implemented in the frequency domain in junction with the adaptive FDE, and can

effectively mitigate the effects induced by channel variations.

In the end, we present our recommendations with regard to the applications

of the above two STBC-FDE categories to practical systems, such as the EDGE

system and broadband wireless access (BWA) systems.
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Chapter 1

Introduction

1.1 Literature Review

Wireless communications have experienced tremendous growth over the latest two

decades, such that the goal for people to access the capabilities of the global net-

work at any time without regard to location and mobility becomes increasingly

achievable [1]. Meanwhile, the growing demand for wideband services such as high-

speed internet connection and high quality video transmission, has further sparked

the need for reliable transmission at high data rates over wireless channels. Un-

fortunately, as opposed to wireline, the wireless environment is quite harsh, and

signals can undergo rapid fluctuations caused by multipath propagation when pass-

ing through wireless channels [2, 3]. Besides, the limited radio spectrum is another

crucial obstacle to wireless communications. Therefore, techniques that can im-

prove the quality and spectral efficiency of wireless communication links become

both increasingly desirable and challenging, and undoubtedly, are of great com-
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mercial interest.

Driven by such growth in demand for wideband services and together with the

up-to-date advancement of semiconductor technology, a variety of efficient commu-

nication techniques along with sophisticated digital signal processing algorithms

have been developed and are still under intensive studies in recent years. Some of

them are equalization, coding, spread spectrum, diversity, multicarrier modulation,

etc. Among these techniques, we are most interested in the two techniques, namely

frequency-domain equalization (FDE)1 and space-time block coding (STBC). In the

remaining part of this section, we will present a brief review of these two techniques.

More detailed explanation can be found in Chapter 3 and Chapter 4, respectively.

Frequency-Domain Equalization

As mobile radio channels are affected by multipath fading, some form of channel

equalization is needed to compensate for the intersymbol interference (ISI). The

traditional approach to compensate for the signal distortion is time-domain equal-

ization, which usually takes the form of an adaptive linear equalizer or a decision-

feedback equalizer (DFE) [4, 7]. The equalizer usually requires a specific algorithm

to compute the tap coefficients to optimize a specified performance metric, and to

adaptively update them according to the time variations in the channel conditions.

However, for the wideband channel characterized by large delay spreads or long im-

pulse response memory, resulting in ISI spanning over many symbol intervals, such

1In this thesis we consider single-carrier systems only, and the term FDE hereafter used

throughout this thesis is assumed for single-carrier systems, unless otherwise stated.
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time-domain equalization approach becomes unattractive because its complexity

grows exponentially with channel memory or it requires very long FIR (finite im-

pulse response) filters to achieve acceptable performance. An alternative approach

is the FDE, which enjoys the primary advantage of a large reduction in the com-

putational complexity due to the use of the computationally-efficient fast Fourier

transform (FFT) [8, 9].

In fact, FDE is not a novel concept, as it has been proposed as early as two

decades ago [10], but has so far been overlooked. Until recently, when analyz-

ing the operation of OFDM (orthogonal frequency division multiplexing), which

is a recognized multicarrier solution to combat delay spread by transmitting in-

formation over a group of low-bit-rate subcarriers, Sari et al., noticed a striking

resemblance to FDE for traditional single-carrier systems [11, 12]. They further

pointed that with FDE, single-carrier (SC) transmission can handle the same type

of channels with similar performance and lower complexity compared to OFDM

signaling. Moreover, the use of single-carrier FDE (SC-FDE) by taking the FFT

of the received signal has several attractive advantages over OFDM [11, 12, 18] :

• Single-carrier modulation has reduced peak-to-average ratio (PAR) require-

ment than OFDM, thereby allowing the use of less costly power amplifiers.

• SC-FDE has the advantage of low sensitivity to nonlinear signal distortion,

and significantly alleviates the carrier synchronization problems of OFDM.

• Channel coding, while desirable, is not essential for SC-FDE to combat

frequency-selectivity, but it is indispensable to non-adaptive OFDM.
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Subsequent to the work of Sari et al. [11, 12], research has been carried out to

further exploit the characteristics of SC-FDE (e.g., [13, 14, 15]) or to look into its

possible application to practical communication systems(e.g., [16, 17, 18]). This

has made the concept of frequency-domain equalization experience a revival in

wireless communications research. Details regarding the implementation of FDE

are available in Section 3.3.

Space-Time Block Coding

Space-time block coding (STBC) is an open-loop transmit diversity technique that

was first proposed by Alamouti [20] for two transmit antennas and was later gener-

alized to an arbitary number of transmit antennas by Tarokh et al. [21]. According

to the Alamouti’s STBC scheme, symbols transmitted from the transmit antennas

are encoded in space and time in a simple manner to ensure that transmissions from

both antennas are orthogonal to each other. Alamouti’s STBC scheme has been

adopted in several third-generation cellular standards (e.g. CDMA2000 [23] and

wideband CDMA [24]) and has been proposed for many wireless applications (e.g.,

[25, 26]) because of its many attractive features including the following [20, 30] :

• It can achieve full diversity at full transmission rate for any (real or complex)

signal constellation.

• It does not require any feedback from the receiver to the transmitter, i.e., the

channel state information (CSI).

• Its computation complexity is similar to maximal-ratio receiver combining
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(MRRC). And maximum likelihood decoding involves only linear processing

at the receiver (due to the orthogonal code structure).

Although the Alamouti-type STBC scheme enjoys the aforementioned advan-

tages, it has also some limitations, for example, its simple decoding rule is valid

only for the assumption of a flat-fading channel. However, when the delay spreads

are significant and the channel becomes frequency selective [2, 3], this assumption

will no longer be justified. Recently, intensive research efforts have been devoted to

the design of space-time block codes (STBCs) for single-carrier transmissions over

frequency-selective fading channels by implementing the Alamouti’s orthogonal sig-

naling scheme at block level instead of symbol level [27, 28, 29, 31]. Description of

these designs will be given in detail in Section 4.3.

1.2 Thesis Outline

This thesis addresses the topic of FDE for space-time block-coded (STBC)2 trans-

missions over frequency-selective fading channels. The objective of our research

is to combine the above-mentioned two attractive techniques together to realize

broadband equalization by exploiting the benefits of both techniques. This thesis

is organized as follows.

Chapter 2 starts with a brief discussion of some properties that characterize

the wireless channels, such as multipath, fading, Doppler, etc. The channel model

2In this thesis we will use the acronym STBC for both space-time block-coding and space-time

block-coded, hopefully without introducing any ambiguity for understanding.
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adopted for our research is also manifested in this chapter, which provides the

necessary background knowledge for the remaining chapters.

Chapter 3 introduces the channel equalization techniques that are commonly

used in practice to combat the multipath induced ISI. Several types of existing

equalization techniques are examined in this chapter. Among them, our emphasis

is placed on the FDE. We elucidate two ever existing FDE methods, with their

respective characteristics elaborated. Moreover, similarities together with the dif-

ferences between these methods are provided in this chapter, too.

Chapter 4 discusses the STBC technique. It begins with a brief review of the

diversity techniques. After that, the Alamouti’s STBC scheme, which is mainly

designed for transmission over frequency-flat fading channels, is introduced. Next,

we present a brief literature review on some existing studies on designing STBC

schemes for single-carrier block transmissions over frequency-selective fading chan-

nels. In the end, the transmission format adopted in our research is described in

detail, which lays the basis for our work in the ensuing chapters.

we acknowledge that there exist two general approaches for designing equal-

izers to compensate for channel distortions [32, 33]. One is to first estimate the

channel impulse response and then design an equalizer based on the estimated chan-

nel; another approach is to do joint channel estimation and equalization given the

received signal. In this thesis, we adopt both approaches to design the frequency-

domain equalizers for STBC transmissions over frequency-selective fading channels,

as detailed below.

Chapter 5 deals with the channel estimation based FDE for STBC transmis-
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sions over multipath fading channels by employing FIR filterbanks, i.e., it follows

the first design approach. At the beginning of this chapter, closed-form solutions

for tap coefficients of the ZF (zero forcing) and MMSE frequency-domain linear

and decision-feedback (DF) FIR filterbank equalizers are derived. After that, a

training-based frequency-domain channel estimation method is proposed for space-

time block multiple-antenna transmissions over frequency-selective fading channels.

Performance of these proposed schemes is then studied via extensive simulations

by applying them to one typical communication system, namely EDGE (enhanced

data rates for global system for GSM evolution) [34]. Discussions and a summary

are presented in this chapter as well.

Adopting the second design approach, Chapter 6 focuses on the adaptive FDE

to realize joint channel estimation and equalization for STBC transmissions over

frequency-selective fading channels. This chapter starts with a detailed treatment

of adaptive FDE for the received distorted data blocks, along with various block

recursive algorithms for updating the equalizer coefficients. After that, a diversity

combining method is proposed for mitigating the detrimental effect introduced by

frequency dispersion of fading channels. As in Chapter 5, performance study of

the proposed schemes is carried out via simulations by applying these schemes

to typical communication systems. We also present our recommendations with

regard to the applications of the above two FDE categories to practical systems.

This chapter ends with a discussion and summary.

Chapter 7 concludes this thesis with a thesis summary, and suggests the pos-

sible directions for future research.
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1.3 Contributions

The overall contribution of this thesis is a systematic development of several practi-

cal state-of-art FDE schemes for STBC transmissions over frequency-selective fad-

ing channels. Simulation results demonstrating the performance of these schemes

when applying to some typical wireless systems in multipath fading environment

are presented. The pros and cons of these schemes are articulated, and recom-

mendations of jointly applying both STBC and FDE to practical systems are also

provided. Some specific contributions of this thesis are summarized as follows.

We categorize the existing FDE techniques into two major classes as well as

point out their similarities and differences in Chapter 3. This work is achieved by a

thorough literature survey, and it proves to be useful as it helps to give the readers

a better comprehension of the existing FDE techniques. And to the best of the

author’s knowledge, similar study does not seem to exist in the literature even at

the time of writing this thesis.

We derive closed-form expressions for tap coefficients of the frequency-domain

ZF and MMSE FIR filterbank linear and nonlinear (DFE) equalizers in Chapter 5

for space-time block multiple-antenna transmissions over frequency-selective fad-

ing channels. We show that these schemes, with comparable complexity, achieve

significant performance improvement over the single transmitter case with FDE.

We propose a training-based channel estimation method in Chapter 5 for

space-time block multiple-antenna transmissions over frequency-selective fading

channels. In this scheme, the training blocks can be encoded by the same space-
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time coder as the data blocks at the transmitter. By exploiting the rich structure

of STBC, this training scheme can be implemented in the frequency domain with

a comparable low complexity.

We present adaptive FDE scheme for STBC transmissions over multipath

channels in Chapter 6, where two unique block adaptive algorithms, namely, BLMS

and BRLS, are employed for adjustment of the equalizer coefficients. This adaptive

FDE scheme, as shown by simulations, obviates the need for separate channel es-

timation, and can realize joint channel estimation and equalization with relatively

lower complexity.

We propose a diversity combining scheme in Chapter 6, where the diversity

branches are combined in the frequency domain in conjunction with the adaptive

FDE. It is shown by simulations that this diversity arrangement can assist the

equalization and efficiently improve the BER performance when the Doppler spread

increases.
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Chapter 2

Wireless Channel Characteristics

Communications over the mobile radio channel face many challenging obstacles

which must be overcome. In this chapter, we will describe a few basic concepts

that concern the wireless propagation channel, where this knowledge is fundamental

to the remainder of this thesis. For a more in-depth discussion about the wireless

environment, readers can refer to [2] or [3].

In a mobile radio environment, the transmitted signal propagates to the re-

ceiver antenna along a number of different paths which arise from reflection, diffrac-

tion and scattering of the radiated energy; this phenomenon is referred to as multi-

path propagation. In general, there exist two types of fading effects that can be used

to characterize the multipath propagation channels, namely large-scale fading and

small-scale fading. Large-scale fading represents the average signal power attenu-

ation or path loss due to mobile movement over large distances (several hundreds

or thousands of meters), while small-scale fading refers to the rapid fluctuations in

signal amplitude and phase that can be experienced as a result of small changes
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(as small as a half-wavelength) in the spatial separation between a transmitter and

receiver.

Since this thesis is mainly focused on mitigating the effects of small-scale fading

by using some sophisticated signal processing techniques, these effects, including

signal fading, delay spread and Doppler spread, will be thereby discussed in this

chapter.

2.1 Signal Fading

Signal fading refers to the rapid variation in received signal strength over very

short travel distances (a few wavelengths) or short time durations (on the order of

seconds). This occurs because in a multipath propagation environment, the signal

received by the mobile at any point in space may consist of a large number of

horizontally travelling plane waves with random amplitudes, phases, delays and

angle of arrivals. These multipath components combine vectorially at the receive

antenna, and can cause the signal received by the mobile to distort or fade.

To characterize the small-scale spatial distribution of the received multipath

signal amplitude, researchers have made enormous field measurements and physical

modelling of the propagation channel. It has been found that in many situations,

the Rayleigh distribution provides a good fit to the signal amplitude measurement

where there is no line-of-sight or dominant path [2, 3]. Here let us denote the

received signal as s(t), which is a composite of all arriving waves. s(t) can be
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expressed as

s(t) = x(t) cos(ωct) − y(t) sin(ωct)

= Re [(x(t) + jy(t)) exp(jωct)]

= Re[r(t) exp(j(ωct + φ))]

where x(t) and y(t) are the in-phase and quadrature components. r(t) denotes the

envelope of the complex signal s(t), and it is related with x(t) and y(t) by

r(t) =
√

x2(t) + y2(t).

If there are a sufficient large number of waves arriving at the receiver, by the

central limit theorem, the in-phase and quadrature components x(t) and y(t) are

independent Gaussian processes with zero means and equal variance σ2. Thus the

probability density function (pdf) of x(t) and y(t) can be written as

f(x) =
1√

2πσ2
exp

[

− x2

2σ2

]

(−∞ < x < ∞)

f(y) =
1√

2πσ2
exp

[

− y2

2σ2

]

(−∞ < y < ∞)

Then the pdf of the envelope r(t), is given by [35]

f(r) =







r

σ2
exp

[

− r2

2σ2

]

(r ≥ 0)

0 (r < 0)

(2.1)

in which 2σ2 is the mean power of the multipath signal before envelope detection.

Equation (2.1) is the Rayleigh density function.

On the other hand, when the line-of-sight paths exist in a multipath envi-

ronment, or when there is a dominant reflected path, the Ricean distribution is a
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statistical characterization of the signal amplitude distribution. The pdf of the the

Ricean distribution is given by

f(r) =







r

σ2
exp

[

−(r2 + A2)

2σ2

]

I0

(
Ar

σ2

)

(r ≥ 0, A ≥ 0)

0 (r < 0)

The Ricean distribution is related to the non-zero mean Gaussian distribution in a

manner similar to the relationship between the Rayleigh and zero mean Gaussian

distributions, the details will not be given here. But it is noteworthy that the

Rayleigh distribution, as compared with the Ricean distribution, usually represents

the pdf associated with the worst case of small-scale fading, since it results from

the absence of LOS (line-of-sight) or dominant component of the received signal

[36]. In this thesis, it is assumed that all small-scale fading follows the Rayleigh

model as described above.

2.2 Delay Spread

When a narrow pulse propagates through a multipath channel, distorted replicas of

the transmitted pulse will arrive at the receiver at various different times, making

the received signal wider in the time domain than the originally transmitted signal

pulse. This phenomenon is referred to as delay spread. The significance of delay

spread depends on the duration of the signal relative to the coherence time of

the channel, hence a quantitative characterization of the severity of channel delay

spread is necessary.

One prevalent measure for characterizing channel delay spread is the power
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delay profile P (τ). The power delay profile of an environment is obtained through

field measurement by transmitting a short pulse and measuring the received power

as a function of delay τ , at various locations in a small area. These measurements

are then averaged over spatial locations to generate a profile of average received

signal power with respect to the delay. And the span of delay spread is often

manifested as the maximum excess delay, Tm, which is defined as the time difference

between the first path and the last path. Tm is useful when there are only a few

paths. However, with a large number of paths, root-mean-square (rms) delay spread

is more representative of the effect of delay spread on the performance of radio

receivers, and can be used as one qualitative measure of the severity of multipath

propagation. The rms delay spread of a profile, στ , is described as [3]

στ =

√
∫

(τ − τ̄)2P (τ) dτ
∫

P (τ) dτ
, (2.2)

where τ̄ is the mean excess delay of P (τ) and can be computed by

τ̄ =

∫
τP (τ) dτ

∫
P (τ) dτ

. (2.3)

Usually στ can range from 1 to 20 µs in urban environments and from ten to a few

hundred ns in indoor environments.

The rms delay spread στ is closely related to another measure of delay spread

in the frequency domain, which is referred to as the coherence bandwidth. Coher-

ent bandwidth, Bc , represents a frequency range over which frequency components

have a strong potential for amplitude correlation. That is, a signal’s spectral com-

ponents in that range are affected by the channel in a similar manner as, e.g.,

exhibiting strong fading or no fading. There is no exact relationship between Bc
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and στ , but in general the relation can be approximately expressed as

Bc ∼
1

c στ

(2.4)

The constant c varies from to 5 to 50 depending on how strict the coherence band-

width is to be defined, for example, if the frequency correlation is defined above

0.9, c takes the value of 50.

In general, the impact of the delay spread on the performance of digital radio

receivers depends on the relationship between the rms delay spread of the channel

and the symbol period of the digital modulation. More specifically, if the rms delay

spread is much less than the symbol period, the delay spread has little impact on

the performance of the communication system. This condition is often termed flat

fading. In this case, all of the received multipath components of a symbol arrive

within a small fraction of the symbol time duration; hence, the components are

not resolvable. And there is no channel-induced ISI distortion, since the signal

time spreading does not result in significant overlap among neighboring received

symbols.

However, if the rms delay spread is a significant fraction of, or greater than, the

symbol period, the channel delay spread significantly impairs the performance of

the communication system. This condition is often referred to as frequency-selective

fading. It occurs whenever the received multipath components of a symbol extend

beyond the symbol’s time duration, thus causing channel-induced ISI. Therefore,

under such circumstance, some form of equalization is necessary to overcome the

channel distortion. In this thesis, we assume the channel creates frequency-selective
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fading on the received signal.

2.3 Doppler Spread

The relative motion between the transmitter and receiver results in an apparent

shift in the frequency of the received signal. This apparent frequency shift is

called Doppler shift. To analyze this effect, consider the simple one-path scenario

illustrated in Figure 2.1, where the transmitter is assumed to be far away so that

plane wave approximations hold at the receiver location. Assume a mobile moving

X Y
d

v

� �

l�

Figure 2.1: Illustration of Doppler shift

at a constant velocity v, along a path segment having length d between points X

and Y, while the incident wave arrives at an angle of θ with regard to the motion

of the mobile. Then, the difference in path lengths travelled by the wave from the

transmitter to the mobile receiver at points X and Y is given by

∆l = d cos θ = v∆t cos θ (2.5)



2.3 Doppler Spread 17

where ∆t is the time required for the mobile to travel from X to Y. The phase

change in the received signal due to the difference in path lengths is

∆φ =
2π∆l

λ
=

2πv∆t

λ
cos θ (2.6)

where λ is the wavelength of the received signal. Hence, the apparent change in

received signal frequency, or Doppler shift, is given by

fd =
1

2π

∆φ

∆t
=

v

λ
cos θ (2.7)

The maximum Doppler shift will occur when |cos θ| = 1. Define the maximum

positive Doppler shift to be fm, so

fm =
vfc

c
(2.8)

where fc is the carrier frequency, c is the speed of light, and the relationship of

c = fc λ is used.

It is straightforward from Equation (2.7) that the apparent received frequency

will always be in the range of fc ± fm, or the frequency spectrum of the received

signal will be wider than that of the transmitted signal. This phenomenon of carrier

frequency spreading is called Doppler spread. Doppler spread can be quantitatively

characterized by the Doppler spectrum which is the power spectral density of the

received signal. Using the Clarke and Gans model [2], and assuming the signal

power received by a λ/4 antenna arrives uniformly from all incident angles in the

range of [0, 2π), the Doppler spectrum at the receiver is given by

S(f) =
1.5

πfm

√

1 −
(

f − fc

fm

)2
|f − fc| ≤ fm (2.9)
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This spectrum is plotted in Figure 2.2. It should be noted that the Doppler spec-

trum in Equation (2.9) only represents the time variation of a single Rayleigh

distribution path. When delay spread is also involved, each path varies differently

and the resulting channel variations can be complicated.

S
(f

)

 f
c
 − f

m
 f

c
 + f

m
 f

c
 

Figure 2.2: Doppler spectrum corresponding to uniform angle of arrival

Another useful statistical measure for describing the time varying nature of

the channel is the coherent time, Tc , which is defined as the time duration over

which the channel impulse response is essentially invariant. The coherent time Tc

is inversely proportional to the maximum Doppler shift fm. And as a rule of thumb

for modern digital communications, it is approximately given by [2]

Tc =
0.423

fm

(2.10)

The bandwidth of the Doppler spectrum, or equivalently the maximum Doppler
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shift fm, is a statistical measure of the rate of channel variations. When the Doppler

bandwidth is comparable to or greater than the bandwidth of the signal, the chan-

nel variations are as fast or faster than the signal variations. This is referred to as

fast fading. Fast fading describes a condition where the time duration in which the

channel behaves in a correlated manner is shorter compared to the time duration

of a symbol. Therefore, it can be expected that the fading characteristics of the

channel will change significantly while a symbol is sent over the channel, which

leads to distortion of the baseband pulse shape and hence a consequent loss of

signal-to-noise ratio (SNR) that often yields an irreducible error rate.

On the other hand, when the Doppler bandwidth is small compared to the

bandwidth of the signal, the channel variations are slow relative to the signal

variations. This is often termed slow fading. Here the time duration that the

channel behaves in a correlated manner is longer as compared to the time duration

of a transmission symbol. Thus, one can expect the channel state remains as if it is

unchanged during the time in which a symbol is transmitted, and the transmitted

symbols will likely not suffer from the pulse distortion described above. In this

thesis, it will be assumed that the channel is a slow fading channel.

2.4 Summary

In this chapter we presented some typical features that characterize the wireless

channel, including fading, delay spread and doppler spread. We also made clear

the wireless propagation environment that we will consider in this thesis. The
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transmitted signals will experience slow frequency-selective fading; the envelope of

each of the multipath components conforms to the Rayleigh distribution.
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Chapter 3

Channel Equalization Techniques

Time-varying multipath fading causes performance degradation and makes reliable

wireless transmissions a challenge when compared to fiber, coaxial cable, line-of-

sight microwave or even satellite transmissions. As an example, Figure 3.1 high-

lights three major performance categories in terms of bit error rate (BER) versus

Eb/N0 when 16-QAM transmissions propagating through additive white Gaussian

noise (AWGN) channels, flat Rayleigh fading channels and frequency-selective fad-

ing channels1. It is clear that the performance degradation due to fading is too

significant to be overlooked.

However, increasing the quality or reducing the effective error rate in a multi-

path fading channel is extremely difficult. Especially when the channel introduces

signal distortion as a result of multipath fading, the system performance can exhibit

an irreducible error rate, and regardless of how high Eb/N0 is set to, the desired

1Here we use a simple two-ray model with the rms delay spread δτ given by 0.8T , where T

denotes symbol period.
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Figure 3.1: Performance comparison of 16-QAM in AWGN and fading chan-

nels

level of performance can never be achieved. In such cases, the general approach

for improving performance is to use some form of mitigation to remove or reduce

the distortion. Next, one can further ameliorate the effects of fading and strive

to approach AWGN performance by using some form of diversity or coding [37].

In this chapter, we focus on the use of equalization techniques for combating the

effects of signal distortion.

3.1 Linear and Decision-Feedback Equalization

Equalization can be used to compensate for ISI resulting from time-dispersive chan-

nels. According to how the output from an equalizer is used for subsequent control
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(feedback), equalization techniques may be subdivided into two general types —

linear and nonlinear equalization [5]. Linear equalizers usually find its use in ap-

plications where the channel distortion is not too harsh. In particular, the linear

equalizer does not perform well on channels which have deep spectral nulls in their

frequency-response characteristics. In an attempt to compensate for the channel

distortion, the linear equalizer places a large gain in the vicinity of the spectral

null, thereby significantly enhancing the additive noise present in the received sig-

nal. This is the case in multipath fading channels, and as a consequence, linear

equalizers are generally avoided. Instead, nonlinear equalizers are normally adopted

for such hostile environments, and are commonly used in practical wireless systems.
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Figure 3.2: Linear transversal equalizer

Associated with each type of equalizer is one or more structures for imple-

menting the equalizer [5]. Among these structures the simplest is the transversal

(tapped-delay-line or nonrecursive) equalizer [7]. A linear equalizer can be imple-
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mented in such manner as an FIR filter, which is illustrated in Figure 3.2. In

this linear equalizer, the current and past values of the received signal are linearly

weighted by the equalizer coefficients (or tap gains) cn and summed to produce

the output. If the delays and the tap gains are analog, the continuous output of

the equalizer is sampled at the symbol rate and the samples are rendered to the

decision device. This implementation, however, is commonly implemented in the

digital domain where samples of the received digital signal at the symbol rate are

stored in a digital shift register (memory). The output of the transversal filter

before a decision is made can be expressed as

d̂k =
N−1∑

n=0

cnxk−n (3.1)

where xk is the input received signal, and cn represents the complex filter coefficients

or tap weights and d̂k is the output of the equalizer at time index k. The estimate

d̂k is quantized to the nearest (in distance) information symbol to form the decision

symbol d̃k. If d̃k is not identical to the transmitted symbol dk, an error has been

made.

As for nonlinear equalization, several very effective methods have been devel-

oped over these years, including decision feedback equalization (DFE), maximum

likelihood symbol detection and maximum likelihood sequence estimation (MLSE)

[5]. Here we only focus our attention on the DFE method, which is particularly

useful for channels with severe amplitude distortion. The basic idea behind DFE

is that if the values of the symbols already detected are known (past decisions are

assumed to be correct), then the ISI induced by these symbols can be cancelled
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exactly, by subtracting past symbol values with appropriate weighting from the

equalizer output [7]. Similar to linear equalization, the DFE can also be realized

in the direct transversal form, as shown in Figure 3.3. This type of DFE consists

1�
z

1�
z

1�
z

1�
z

	 
 	 


�

	0
c

1
c 2

c
1
b1�Nc

1�
z

1�
z

		2
b

M
b

k
x

1�kx 2�kx 1
�� Nk

x
1

~ 
k
d

2

~ 
k
d

Mk
d
~

k
d̂ k

d
~

Figure 3.3: Decision feedback equalizer

of a feedforward filter and a feedback filter. The forward part is just like the linear

transversal equalizer discussed previously. The feedback filter is driven by decisions

on the output of the detector, and its coefficients can be adjusted to cancel the ISI

on the current symbol from past detected symbols. The equalizer has N taps in the

feedforward filter and M taps in the feedback filter. Its output can be expressed

as:

d̂k =
N−1∑

n=0

cnxk−n +
M∑

m=1

bmd̃k−m (3.2)

where cn and xk are the tap gains and the inputs, respectively, to the forward filter,

bm are the tap gains for the feedback filter, and d̃i(i < k) is the previous decision
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made on the detected signal. That is, once d̂k is obtained by using Equation (3.2),

d̃k is decided from it. Then d̃k along with previous decisions d̃k−1, d̃k−2, . . . are fed

back into the equalizer, and d̂k+1 is obtained using Equation (3.2).

In this thesis, we consider both linear equalization and DFE for the received

signal and both types of equalization are realized in the transversal form as de-

scribed above. Since the signal is collected as a block of symbols other than indi-

vidual symbol upon being received, these linear and decision-feedback equalizers

will be implemented in filterbanks at the receiver. Details about this implementa-

tion will be delineated in Chapter 5.

3.2 Adaptive Equalization

In most communication systems that employ equalizers, the channel characteristics

are unknown a priori, and the channel response is generally random and time-

varying. In such a case, the tap coefficients of the equalizer must be designed to

be adaptively adjustable to the time-varying channel response [4]. Such equalizers

are usually referred to as adaptive equalizers. There are a class of algorithms

that may be used to adaptively adjust the equalizer coefficients according to some

specified performance criterion such as zero-forcing (ZF) or minimum mean square

error (MMSE). These criteria and associated adaptive algorithms will be briefly

reviewed in the following.

According to the ZF criterion, the equalizer coefficients cn, n = 0, 1, · · · , N−1

are chosen to force the samples of the combined channel and equalizer impulse
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response to zero at all except one of the T -spaced sample points in the span of

the equalizer. Such an equalizer is commonly called a ZF equalizer. If we let the

number of coefficients of a ZF equalizer increase without bound, an infinite length

equalizer with zero ISI at the output can be obtained. The frequency response

C(f) of such an equalizer is periodic with a period equal to the symbol rate 1/T

provided that the tap spacing is equal to the symbol duration T . The combined

response of the channel in tandem with the equalizer must satisfy Nyquist’s first

criterion

C(f)H ′(f) = 1, |f | ≤ 1/2T (3.3)

where H ′(f) is the folded frequency response of the channel. Equation (3.3) in-

dicates that an infinite length zero-ISI equalizer is simply an inverse filter which

inverts the folded frequency response of the channel. This infinite length equalizer

is usually implemented by a truncated-length version. However, such an inverse fil-

ter may excessively enhance noise at frequencies where the folded channel spectrum

has high attenuation, and hence is not often used for wireless links [7].

In practice, the criterion most commonly used in optimizing the equalizer

coefficients is the minimization of the mean square error (MSE) between the desired

equalizer output and the actual equalizer output [5], i.e.,

J = E{[dk − cT
k xk]

2}, (3.4)

where ck represents the vector of the equalizer coefficients at time index k, xk is

the signal vector for the signal samples stored in the FIR equalizer at time index

k. The minimization of the MSE results in the optimum Wiener filter solution for
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the coefficient vector, which may be expressed as [4]

copt = R−1p (3.5)

where R is the autocorrelation matrix of the vector of signal samples in the equalizer

at time instant k, i.e., R = E{x∗
kx

T
k }; p is the vector of cross correlations between

the desired data symbol and the signal samples in the equalizer at time index k,

i.e., p = E{dkx
∗
k}.

Alternatively, the minimization of the MSE can be carried out recursively by

use of the stochastic gradient algorithm introduced by Widrow [38]. This algorithm

is more commonly referred to as the least mean square (LMS) algorithm, and may

be computed iteratively by the following equations:

1. Equalizer output :

d̂k = cT
k xk (3.6)

2. Error signal :

ek = dk − d̂k (3.7)

3. Coefficients adaptation:

ck+1 = ck + µ ek x∗

k (3.8)

where ek is the error signal defined as the difference between the kth transmitted

symbol dk and its corresponding estimate d̂k at the output of the equalizer, and µ

is the step size parameter. It is well known that the step size parameter µ controls

the rate of adaption of the equalizer as well as the stability of the LMS algorithm.
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For stability, the value of µ is chosen from [4]

0 < µ <
2

λmax

(3.9)

where λmax is the largest eigenvalue of the signal correlation matrix. A choice of

µ just below the upper limit in Equation (3.9) provides rapid convergence, but

meanwhile it also introduces large fluctuations in the equalizer coefficients during

steady-state operation. These fluctuations constitute a form of self-noise whose

variance increases with an increase in µ. As a consequence, the choice of µ is a

trade-off between rapid convergence and the desirability to keep the variance of

self-noise small.

The convergence rate of the LMS is slow due to the fact that there is only one

single parameter, namely µ to control the rate of adaptation. To achieve faster

convergence, complex algorithms which involve additional parameters are used.

A faster converging algorithm can be obtained if a recursive least squares (RLS)

algorithm is employed for adjustment of the equalizer coefficients. For the linear

FIR equalizer, the RLS algorithm that is obtained for the minimization of the sum

of exponentially weighted squared errors, i.e.,

J =
k∑

n=0

λk−n |dn − cT
k xn|

2
(3.10)

may be expressed as [4]

1. Compute equalizer output :

d̂k = cT
k−1 xk (3.11)

2. Compute error signal :

ek = dk − d̂k (3.12)
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3. Compute Kalman gain vector :

kk =
Pk−1x

∗

k

λ + xT
k Pk−1x

∗

k

(3.13)

4. Update inverse of the correlation matrix :

Pk =
1

λ

[
Pk−1 − kkx

T
k Pk−1

]
(3.14)

5. Update equalizer coefficients :

ck = ck−1 + kk ek (3.15)

= ck−1 + Pk x∗

k ek (3.16)

Here the exponential weighting factor or forgetting factor, λ, is selected to be in

the range of 0 < λ < 1, and provides a fading memory in the estimation of the

optimum equalizer coefficients. Pk is an (N×N) square matrix which is the inverse

of the data autocorrelation matrix:

Rk =
k∑

n=0

λk−n x∗

n xT
n (3.17)

Initially P0 may be selected to be proportional to the identity matrix.

The above-described LMS and RLS algorithms are both employed in our ensu-

ing work to adaptively update the equalizer coefficients. However, as the received

symbols are collected in blocks at the receiver, these adaptive algorithms, will be

accordingly implemented in a block level and are hereby called block LMS (BLMS)

and block RLS (BRLS) algorithms. Details about the BLMS and BRLS algorithms

together with their applications in adaptive equalization will be given in Chapter 6.
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3.3 Frequency-Domain Equalization

At the very beginning of this thesis, we have introduced the technique of frequency-

domain equalization (FDE) which offers a large reduction in the computational

complexity. So far there exists a number of literature devoted to the topic of FDE

or its related applications [8]-[19], and the FDE in these various published litera-

ture shares the similarities of using the computationally-efficient FFT operations.

However, after a thorough literature survey, we found that the rationales behind

the available FDE techniques are not exactly the same, and they can be divided

into two unique types. The first type of FDE, in its nature, is a fast (numerically

efficient) implementation of the block-adaptive filter by using well-known frequency

domain overlap-save or overlap-add processing methods [44]. Examples of this type

can be found in [8], [10], [39], [40], etc. The other type is largely based on the im-

portant eigen-decomposition property of circulant matrices [43], and examples are

available in [11], [14], [17], [18], etc. In the following, we will present a description

and comparison of the above-mentioned two FDE methods.

3.3.1 FDE Based on Block-adaptive Filter

The conventional LMS algorithm that was previously introduced in Section 3.2

with application in adaptive equalization usually updates the filter coefficients on

a sample-by-sample basis. As a consequence, this algorithm may seem inadequate

for a block-adaptive filter in which the tap weights are updated after the collection

of each block of data samples, so that adaption of the filter should proceed on a
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block-by-block basis instead. Figure 3.4 depicts the block diagram of such a block-

adaptive filter. As can be seen from this diagram, the incoming data sequence u(n)
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Figure 3.4: Block-adaptive filter (Taken from [42])

is sectioned into L-point blocks by means of a serial-to-parallel converter, and the

blocks of input data so produced are applied to an FIR filter of length M , one

block at at a time.

One generalized form of the LMS algorithm, i.e., block LMS (BLMS) algorithm

can be used to adapt the block-adaptive filter [42]. Using k to denote the block

index, this BLMS recursion is given by

w(k + 1) = w(k) + µ

L−1∑

i=0

u∗(kL + i)e(kL + i). (3.18)

where µ is the algorithm step-size parameter and u(kL+ i) is the column vector of

the input signal. The output produced by the filter in response to the signal vector

u(kL + i) is given by

y(kL + i) = wT (k)u(kL + i) i = 0, 1, . . . , L − 1, (3.19)
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where the filter tap-weight vector, w(k) is held constant for the duration of the

data block. And the error signal

e(kL + i) = d(kL + i) − y(kL + i) i = 0, 1, . . . , L − 1, (3.20)

is obtained by comparing the filter output against the desired response. For the

sake of convenience we rewrite the Equation (3.18) as

w(k + 1) = w(k) + µφ(k). (3.21)

The M -by-1 vector φ(k) is a cross-correlation vector given by

φ(k) =
L−1∑

i=0

u∗(kL + i)e(kL + i)

= AH(k)e(k) (3.22)

where the H on AH(k) signifies the Hermitian transposition (i.e., combined com-

plex conjugation and transposition) of A(k), the L×M data matrix A(k) is defined

by

A(k) = [u(kL),u(kL + 1), . . . ,u(kL + L − 1)]T , (3.23)

and the L × 1 error signal vector e(k) is given by

e(k) = [e(kL), e(kL + 1), . . . , e(kL + L − 1)]T . (3.24)

The computation of the filter output in Equation (3.19) and the estimation of

the gradient in Equation (3.22) are the operations of linear convolution and linear

correlation, respectively, and they also constitute the areas where the computa-

tional burden of the BLMS algorithm lies. Since the FFT algorithm provides a

powerful tool for performing fast convolution and fast correlation [44], we see that
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it is feasible to employ the frequency-domain method for efficient implementation

of the BLMS algorithm. Specifically, rather than performing the adaptation in the

time domain as is done in the conventional LMS algorithm, the filter parameters

are adapted in the frequency domain by using the FFT algorithm. The BLMS al-

gorithm so implemented is referred to as the fast BLMS (FBLMS) algorithm. This

type of adaptive filter is termed frequency-domain adaptive filter (FDAF), and its

application to channel equalization can be referred to as FDE, which is the case in

[39], [40], etc.

According to digital signal processing theory, there exist two well-known tech-

niques for performing a linear convolution using FFT algorithms, and they are

referred to as the overlap-save and overlap-add sectioning methods [44]. However,

the overlap-add method has been found to be computationally less efficient than

the overlap-save method when applied to the implementation of the BLMS algo-

rithm [41]. Also, it is noteworthy that although the filter can be implemented with

any amount of overlap, the use of 50% percent overlap (i.e., block size equal to

the number of weights) is the most efficient. Henceforth, implementation of the

FBLMS algorithm is commonly based on the overlap-save method with 50% over-

lap. Figure 3.5 shows a signal-flow graph representation of the FBLMS algorithm

[9], and it can be seen that this algorithm represents a precise frequency-domain

implementation of the BLMS algorithm. Due to the limited space, details about

the implementation of the FBLMS algorithm as well as the overlap-save method

are not covered here; readers can refer to [8] and [9] for more details.



3.3 Frequency-Domain Equalization 35

Concatenate
two blocks

Old New
u u

Input
u(n)

Output
y(n)U(k)

UH(k)

W(k)ˆ

y(k)
FFT

FFT

IFFT

IFFT

Save
last block

W(k ± 1)

m

y

Discard

..

..

Discard

Delay

Gradient
constraint

Append
zero block

Delete
last block

Insert
zero block

Conjugate

Desired
response

d(n)

E(k)

Error
e(n)

0

0

e

φ

φ

+S

+S

X

X

X
+

-

ˆ

FFT

Figure 3.5: Implementation of the FBLMS algorithm (Taken from [42])

3.3.2 FDE Based on Circulant Matrices

Channel induced ISI is a major performance limiting factor for transmissions over

wireless dispersive media. To mitigate such a a time-domain dispersive effect that

gives rise to frequency selectivity, it proves useful to transmit the data symbols in

blocks [45]. Here we consider single-carrier block transmission over an additive-

noise frequency-selective channel with memory (or channel order) v, and its equal-

ization, as shown later, can be implemented in the frequency domain.
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We assume the channel impulse response (CIR) is constant over a block of

length (N + v), and may be varied from block to block. We also assume that each

)(iT
xData Block

Cyclic
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symbolsv symbolsN

Figure 3.6: CP-based block transmissions

data block of length N � v is preceded by a length-v cyclic prefix (CP) as depicted

in Figure 3.6. The interblock interference (IBI) can be eliminated at the receiver

by discarding the received symbols corresponding to the CP. Hence, out of every

(N + v) received symbols, only N symbols are processed.

Let us define the ith transmitted block to be

x(i) = [x(iN), x(iN + 1), . . . , x(iN + N − 1)]T , (3.25)

and the ith received block as

y(i) = [y(iN), y(iN + 1), . . . , y(iN + N − 1)]T . (3.26)

With symbol rate sampling, let h = [h(0), h(1), . . . , h(v)]T be the equivalent discrete-

time CIR (that includes transmit-receive filters as well as multipath effects). Thus,

the CP insertion at the transmitter together with CP removal at the reciever yields

the following channel input-output relationship in matrix-vector form:

y(i) = Hx(i) + n(i) (3.27)

where n(i) is the corresponding noise vector with a size of N×1. The input symbols

and noise are assumed to be complex, zero-mean, and uncorrelated with variance
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σ2
x and σ2

n, respectively. The N ×N channel matrix H is circulant with its (k, l)th

entry given by h( (k − l) mod N); or looks like
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(3.28)

Since H is a circulant matrix, it can be expressed in terms of its eigenvalues

and associated eigenvectors, i.e., eigendecomposition, as follows [43]

H = FH
NΛFN (3.29)

where FN is the orthonormal discrete Fourier transform (DFT) matrix whose

(k, l)th entry is given by Fk, l = N−1/2exp(−j2πk l/N), where 0 ≤ k, l ≤ N−1; and

Λ is a diagonal matrix with its (k, k) element equal to the kth DFT coefficient of

the CIR , i.e., Λk, k =
∑N−1

n=0 h(n) exp(−j2πn k/N). It is also noteworthy that the

N ×N matrix FN is unitary, i.e., F−1
N = FH

N . The diagonal of Λ contains uniformly

sampled samples of channel frequency response. This implies that when nulls of

the channel frequency response are not sampled, H is full rank and invertible, and

thus the symbol detectability can be guaranteed [45].

After discarding CP at the receiver, the received time-domain block y(i) is

transformed to the frequency domain by means of N -point DFT operations, as

shown in Figure 3.7. Then, based on the eigen-decomposition property of circulant
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matrix H, the input-output relationship can be described as

yF(i) = FNy(i) = FNFH
NΛFNx(i) + FNn(i)

= ΛxF(i) + nF(i) (3.30)

where xF(i) and nF(i) are N -point DFT of x(i) and n(i), respectively. Since

elements in Equation (3.30) are purely expressed in the frequency domain, it is

desirable here to implement equalization in the frequency domain by sample-by-

sample multiplication of the DFT of equalizer response with the DFT of received

signal, rather than convolving the equalizer response with the received signal in time

domain. The MMSE frequency-domain equalizer for this single-carrier transmission

system is represented by the N × N diagonal matrix WMMSE:

WMMSE = ΛH

(

ΛΛH +
1

SNR
IN

)−1

(3.31)

where SNR = σ2
x/σ

2
n. The frequency-domain equalized output, denoted by zF(i) =

WMMSE yF(i), is transformed back to time domain by implementing the operations

of inverse DFT (IDFT). The corresponding output is a N × 1 vector z(i) given by

z(i) = FH
N zF(i) = FH

N WMMSE yF(i)

= FH
N ΛH

(

ΛΛH +
1

SNR
IN

)−1

ΛFNx(i) + ñ(i) (3.32)
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where ñ(i) = FH
NWMMSEFNn(i). Define G = FH

NWMMSEFN , then the G, in

nature, is the equivalent time-domain equalizer, i.e., it estimates x(i) from y(i).

Finally z(i) is rendered to the detector, and hard decisions are made on x(i).

The above explication denotes another type of FDE which is available in [11],

[16], [17], [18] and so on. This type of FDE (hereafter refereed to as Type II),

shares a lot of similarities with the previously described FDE (hereafter refereed

to as Type I) that is based on block-adaptive filter, which includes the following:

• Both types belong to the category of block equalization, i.e., equalization is

carried out on a block-by-block basis, rather than sample-by-sample basis.

• Both types induce redundancy when converting linear convolution (or linear

correlation) to circular convolution, which is essential for the implementation

of FFT. In Type I, the redundancy takes the form of 50% percent overlap;

while Type II relies on the CP which consists of redundant symbols replicated

at the beginning of each transmitted block.

• Both types of FDE utilize FFT to achieve savings in the computational com-

plexity. Although in above description of Type II we state only the use of

orthonormal DFT, it is obvious that this orthonormal DFT can be readily

computed by means of FFT.

• Equalization for either type is performed by element-by-element multiplica-

tion of the transformed input with the frequency-domain equalizer coeffi-

cients. Hard decisions are identically made in time domain, which is different
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from another technique of OFDM where FFT or IFFT operations are also

employed, but decisions are made in the frequency domain.

However, rationales for these two types are quite different. The Type I, as

previously pointed out, is a fast implementation of the block-adaptive filter. This

type of FDE does not require special processing at the transmitter as Type II

does, e.g., block transmissions and appending CP. It works quite similarly with the

ordinary adaptive equalizers, but in a comparatively more efficient way. Therefore,

its emphasis is solely placed on the efficient implementation of block adaptive

filters. The other type of FDE, on the contrary, deploys block transmissions at the

transmitter, and relies on CP to facilitate the construction of a circulant channel

matrix. Then the eigen-decomposition property of circulant matrices is utilized in

conjunction with FFT operations, and as a consequence, frequency equalization

can be applied to the transformed equalizer input. It is obvious that this type of

FDE involves both transmitter design and receiver processing, which is different

from Type I.

In this thesis, we only consider the FDE of Type II. And the FDE hereafter

used in the remaining of this thesis denotes only the Type II.

3.4 Summary

In this chapter, we introduced several different types of equalization methods that

will be covered in the remainder of the thesis, including linear and nonlinear equal-

ization, adaptive equalization and FDE. Among these equalization methods, our
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focus was placed on the FDE. We categorized the FDE techniques that ever ap-

pear in the literature into two types, and their similarities and differences were also

examined in detail.
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Chapter 4

STBC for Fading Channels

Besides implementing equalization to combat the ISI that results from frequency-

selective fading channels, we can further ameliorate the effects of fading and strive

to approach AWGN performance by using some form of diversity or channel coding,

as suggested in [37]. In this chapter, we proceed to discuss space-time block coding

(STBC), a marvellous technique that can provide both diversity and coding gains.

Before our discussion of STBC as well as its application in fading channels, we first

present a brief introduction on the diversity techniques.

4.1 Concept of Diversity

Diversity is a powerful communication technique that can be used to improve re-

ceived signal quality or the link performance in hostile mobile radio environments.

It exploits the random nature of radio propagation by providing the receiver with

independent (or at least highly uncorrelated) renditions of the signal. Concept of
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the diversity is rather simple. If one radio path experiences a deep fade, another in-

dependent path may have a strong signal. Therefore, if the receiver can be supplied

with several replicas of the same information signal transmitted over independently

fading channels, the probability that all the signal components will fade simulta-

neously is reduced considerably. There are several ways in which diversity can be

implemented to provide the receiver with independently fading replicas of the same

information-bearing signal. Some of them are time diversity, frequency diversity

and space diversity.

Time and frequency diversity normally introduce redundancy in time and/or

frequency domain, therefore, they may induce loss in bandwidth efficiency [46].

As for the space diversity, which is usually accomplished by deploying multiple

antennas at the transmitter and/or the receiver, it can reduce the effect of multipath

fading without necessarily sacrificing precious bandwidth resources, and hence is a

practical, effective and widely applied technique for wireless systems. Depending

on whether multiple antennas are used for transmission or reception, space diversity

can be divided into two categories: receive-antenna diversity and transmit-antenna

diversity.

In receive-antenna diversity schemes, multiple antennas separated by a few

wavelengths are employed at the receiver to obtain independent replicas of the

transmitted signal. These signal replicas are then combined according to certain

criteria to combat the loss in SNR. The methods for receiver-antenna diversity

can be classified into distinct categories, and some of them are: selection diversity,

maximal ratio combining and equal gain combining. Details about these methods
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can be found in [2].

In practice, receive-antenna diversity, including the above-mentioned three

schemes, has been deployed in several wireless systems such as GSM and IS-136 to

improve the up-link (from mobiles to base stations) transmissions [47]. However,

due to the cost, size and power limitations of the remote units, diversity techniques

have almost exclusively been applied to base stations to improve their reception

quality [20]. Consequently, the down-link (from base stations to mobiles) becomes

the capacity bottleneck in modern wireless systems This situation has motivated

rapidly growing research efforts on transmit-antenna diversity.

Transmit-antenna diversity deploys multiple antennas at the transmitter and

is suitable for down-link transmission because having even a large number of an-

tennas at base stations can still be feasible and economical. But as opposed to

the frequently used receive-antenna diversity, there have been only a few industrial

applications exploiting transmit diversity [49]. This is partly due to the existence

of two major obstacles to implement transmit diversity [46]: (i) unlike the receiver,

the transmitter does not have instantaneous information about the fading channels;

(ii) the transmitted signals from different antennas will interfere with each other

in space domain before they arrive at the receiver. Hence, to exploit the diversity

from multiple transmissions, transmit diversity schemes must rely on some addi-

tional processing on the signal to be transmitted. So far, a number of transmit

diversity schemes have been proposed, and can be classified into three general cat-

egories: (i) schemes using feedback; (ii) schemes invoking feedforward or training

information; (iii) blind schemes. Details of these schemes can be found in [22] or
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[48].

Recently, Tarokh et al. proposed space-time trellis (STT) coding that can

provide both the diversity advantage of multiple transmit antennas and coding

gains by jointly considering the channel coding, modulation, transmit and receiver

diversity in their designs[22, 48]. STT codes perform quite well at the cost of rel-

atively high complexity. In addressing the issue of decoding complexity, Alamouti

[20] introduced a remarkable transmit diversity scheme which improves the signal

quality at the receiver by simple processing across two antennas at the transmit-

ter. This scheme, together with its improved versions (for block transmissions over

frequency-selective fading channels) will be given in detail in the following sections.
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Figure 4.1: Illustration of the simple two-transmitter STBC scheme
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4.2 STBC for Flat Fading Channels

This section presents the Alamouti’s STBC scheme as defined in [20]. Let us con-

sider the 2-TX 1-RX case. Figure 4.1 shows baseband representation of this scheme.

The input symbols to the block encoder are divided into groups of two symbols

each. At a given symbol period, two symbols are simultaneously transmitted from

the antennas TX1 and TX2. The signal transmitted from antenna TX1 is s1, and

the signal transmitted from antenna TX2 is s2. In the next symbol period, the

signals −s∗2 and s∗1 are simultaneously transmitted from antennas TX1 and TX2,

respectively. This encoding and transmission process is also shown in Table 4.1.

Table 4.1: Encoding and transmission sequence for STBC

time t time t + T

TX1 s1 −s∗2

TX2 s2 s∗1

Let h1 and h2 denote the channels from the first and second transmit antennas

to the receive antenna, respectively. Assuming the channel fading remains constant

over the corresponding two consecutive symbols, we can write

h1(t) = h1(t + T ) = h1 = |h1|ej θ1 (4.1)

h2(t) = h2(t + T ) = h2 = |h2|ej θ2 (4.2)

where T is the symbol duration. Then the signals received over nondispersive or
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narrow-band channels can be expressed as

x1 = h1s1 + h2s2 + n1 (4.3)

x2 = −h1s
∗

2 + h2s
∗

1 + n2 (4.4)

where x1 and x2 denote the first and second received signals, respectively; n1 and

n2 represent the AWGN and are modelled as i.i.d. complex Gaussian random

variables with zero mean and power spectral density N0/2 per dimension. We

define the received signal vector x = [x1 x∗
2]

T , the code symbol vector s = [s1 s2]
T ,

and the noise vector n = [n1 n∗
2]

T . Then Equation (4.3) and (4.4) can be rewritten

in a matrix form as

x = Hs + n (4.5)

where the channel matrix H is given by

H =




h1 h2

h∗
2 −h∗

1



 (4.6)

and the vector n is a complex Gaussian random vector with zero mean and covari-

ance N0 · I.

Since the channel matrix H is orthogonal, that is

HHH = ρ I (4.7)

where ρ = |h1|2 + |h2|2, then the received signal can be decoupled by premultipli-

cation the Hermitian of channel matrix, and we can obtain

s̃ = HHx

= HHHs + HHn

= ρ s + ñ. (4.8)
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Here s̃ is defined as s̃ = [s̃1 s̃2]
T , where s̃1 and s̃2 are soft decisions for transmitted

signals s1 and s2, respectively. The vector ñ, defined as ñ = HHn, has a zero

mean and covariance ρN0, i.e., the elements of ñ are independent and identically

distributed. Equation (4.8) can be expressed in element form as given by




s̃1

s̃2



 =




h∗

1 h2

h∗
2 −h1








x1

x∗
2





=




h∗

1x1 + h2x
∗
2

h∗
2x1 − h1x

∗
2



 . (4.9)

Equation (4.9) specifically denotes the linear combination performed at the receiver,

which consists of only simple signal processing to extract the signal s1 and s2 from

the received signals x1 and x2, as well as to separate them. It is noteworthy that

such implementation of decoupling the symbols transmitted requires knowledge

of the channel at the receiver. The channel state information can be obtained

by sending training or pilot symbols or sequences for the receiver to estimate the

channel from each of the transmitter antennas to the receive antenna.

The combiner output, i.e., the soft decisions of s̃1 and s̃2, is then passed to

the maximum likelihood detector of Figure. 4.1. Let us define S as the set of all

possible transmitted symbol pairs ŝ = {s1, s2}. Assuming that all symbol pairs

are equiprobable, the maximum likelihood decision rule can be expressed as

ŝ = arg min
ŝ∈S

‖ s̃ − ρ ŝ ‖ . (4.10)

In this case, the diversity order provided by this scheme is 2, which is equal to that

of two-branch of maximal-ratio receive combining (MRRC) scheme [20].
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Above is the example of the encoding and decoding process for Alamouti’s

STBC scheme using only one receiver. However, this example can be readily ex-

tended to an arbitrary number of receivers, as shown in [20]. It can be further

generalized to an arbitrary number of transmit antennas. For discussion about the

generalized STBC schemes, readers can refer to [21].

4.3 STBC for Frequency-Selective Fading Channels

4.3.1 Review of Papers in the Literature

In the last section, we have described the Alamouti’s STBC scheme [20] that using

two transmit and only one receive antenna achieves similar diversity gain at the

subscriber as that can be achieved by using one transmit and two receive antennas.

However, this scheme assumes that there is no ISI in the channel, which will not

be the case if the channel experiences a nonnegligible delay spread, consequently

giving rise to frequency selectivity. Such fact necessitates well designed STBCs for

single-carrier transmissions over frequency-selective fading channels. On the other

hand, since we intend to combine the techniques of STBC and FDE together to

realize broadband equalization by exploiting their benefits, it is desirable if the

STBC scheme could facilitate the implementation of equalization in the frequency

domain. In the following, we present a brief review of some related published

literature on the STBC design for frequency-selective fading channels together with

their possible links to FDE.

Lindskog et al. [27] developed a time-reversal space-time block coding (TR-
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STBC) method which is similar to the Alamouti’s scheme in [20], but can handle

channels with ISI by imposing the Alamouti orthogonal structure at a block and

not at a symbol level. However, in [27], this TR-STBC scheme was not linked to

FDE, as its equalization and decoding were mostly implemented in time domain

rather in frequency domain.

In [28], Vook et al. proposed a simple time-domain transmission scheme which

allows the space-time encoding and decoding to be carried out in the frequency

domain for single carrier systems over high delay spread channels. Two frequency-

domain equalized single-carrier systems were treated in their paper: one has OFDM-

type CP and the other has prefixes consisting of all zero symbols. Their work, to

the best of our knowledge, is the first to combine the SC-FDE with STBC, although

the authors have not explicitly claimed it.

It was Al-Dhahir [29] who first explicitly proposed the idea of single-carrier

frequency-domain equalized space-time block-coding (SC FDE-STBC), i.e., incor-

porating the STBC with SC-FDE to exploit their joint benefits. The algorithm

employed in this FDE technique is based on the MMSE criterion that is the same

as in [28]. The single-carrier system in [29] is cyclic prefixed, which is only one of

the cases described in [28].

Recently, Zhou et al. [31] investigated the design of STBCs for single-carrier

block transmissions in the presence of frequency-selective fading channels. They

proposed novel transmission formats which subsume those in [27], [28], [29], as spe-

cial cases. Their new schemes can be readily applied to single carrier modulation

systems in conjunction with the frequency equalization, similar to those in [28] and
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[29]. Their schemes are also claimed to be capable of achieving a maximum diver-

sity of order NtNr(L + 1) in rich scattering environment, where Nt is the number

of transmit antennas, Nr is the receive antennas, and (L+1) is the number of taps

corresponding to each FIR channel.

As counterparts of orthogonal STBCs [20, 21], but for frequency-selective fad-

ing channels, the schemes in [31] are of special interest due to their smooth linkage

with FDE as well as their generality as compared with those in [27], [28] or [29].

Therefore in this thesis, we adopt the STBC technique in [31] for our transmitter

design. And our ensuing equalization schemes, including the channel estimation

based FDE and the adaptive FDE, are accordingly designed for such space-time

block-coded single-carrier transmissions over frequency-selective fading channels.

4.3.2 STBC Block Transmissions

Now let us describe the transmission formats used in this thesis, together with

some preliminary signal processing techniques at the receiver. The relevant and

effective method of suppressing the ISI will be introduced in the later chapters. It is

also necessary to note that although we adopt the schemes as described in [31], the

transmission signals described here may be slightly different from those in [31] since

we intend to apply them to some existing communication systems. Before beginning

our work, we first introduce some common notations that will be employed in the

context to facilitate our following explanation. We use bold upper case letters to

denote matrices, while bold lower case letters signify column vectors. Superscript

{·}H , {·}∗ and {·}T denote Hermitian, conjugate and transpose, respectively. IK
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denotes the identity matrix of size K × K, 0M×N denotes an all-zero matrix with

size M × N , and FN denotes an N × N orthonormal DFT matrix whose (p, q) th

entry is given by N−1/2exp(−j2πp q/N), where 0 ≤ p, q ≤ N − 1. diag(x) stands

for a diagonal matrix with x on its main diagonal. We use [x]p to denote the p th

entry of a vector x, and [A]p, q to denote the (p, q) th entry of a matrix A.
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Figure 4.2: Single-carrier STBC baseband transceiver model

Figure. 4.2 depicts the baseband representation of the discrete-time equivalent

model of a communication system with two transmit antennas and one receive

antenna. Here we place the emphasis on the 2-TX 1-RX case only, and it in

fact, can be generalized to more than two transmit antennas and multiple receive

antennas; readers are referred to [31].

The information bearing data symbols d(n) are first parsed into N × 1 blocks

d(i) given by

d(i) = [d(iN), d(iN + 1), . . . , d(iN + N − 1)]T , (4.11)
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where the serial index n in d(n) is related to the block index i in d(i) by

n = iN + j, j ∈ [0, N − 1] (4.12)

The blocks d(i) are then precoded by a J × N matrix Θ, whose entries can be in

the complex field. Such precoding yields

s(i) = Θd(i), (4.13)

where s(i) is a J × 1 vector. It is noted here that the linear processing by Θ can

be either redundant when J > N , or nonredundant when J = N . In this thesis,

we consider both redundant and nonredundant cases, as will be described soon.

At the space-time encoder, two consecutive blocks s(2i) and s(2i+1) are taken

as input, and output is a 2J ×2 STBC matrix, as shown in Table. 4.2. Here P is a

Table 4.2: STBC Encoding and block transmission sequence

time slot 2i time slot 2i + 1

TX1 s1(2i) = s(2i) s1(2i + 1) = −Ps∗(2i + 1)

TX2 s2(2i) = s(2i + 1) s2(2i + 1) = Ps∗(2i)

permutation matrix which is drawn from a set of permutation matrices {P(n)
J }J−1

n=0,

with J denoting the dimensionality J×J . Each P
(n)
J performs a reverse cyclic shift

(which depends on the value of n) when applied to an arbitrary J × 1 vector as

given by

a = [a(0), a(1), . . . a(J − 1)]T , (4.14)

and the p th element of P
(n)
J a is expressed as

[P
(n)
J a]p = a((J − p + n − 1) mod J) p ∈ [0, J − 1]. (4.15)
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We consider two important special cases of P
(0)
J (n = 0) and P

(1)
J (n = 1), respec-

tively. The output of P
(0)
J a is:

P
(0)
J a = [a(J − 1), a(J − 2), . . . , a(0)]T , (4.16)

which performs the reverse of a, while P
(1)
J a is:

P
(1)
J a = [a(0), a(J − 1), a(J − 2), . . . , a(1)]T (4.17)

= FH
J FH

J a (4.18)

which corresponds to taking the J-point IFFT twice on the vector a.1 In the above

notation, [27] uses only P
(0)
J , [29] uses only P

(1)
J , and [28] employs both P

(0)
J and

P
(1)
J . But the work in [31] allows the use of any P from the set of {P(n)

J }J−1
n=0, which,

in such sense, can be regarded as a generalized version of that in [27], [28] and [29].

As shown in Table 4.2, at each block transmit time interval i, the block s1(i)

and s2(i) are forwarded to the first (TX1) and second (TX2) antenna, respectively.

Then we have

s1(2i + 1) = −Ps∗2(2i), s2(2i + 1) = Ps∗1(2i), (4.19)

which indicates that each transmitted block from one antennas at time slot 2i + 1

is a conjugate and permuted version of the corresponding transmitted block from

the other antenna at a time slot 2i (with a sign change for the first antenna).

For flat fading channels, symbol blocking is unnecessary because there is no signal

distortion, hence J = N = 1 and P = I1 = 1, and the design in Table 4.2 reduces

to the well known Alamouti’s STBC scheme [20]. However, for frequency-selective

1Proof of this is provided in Appendix A, which is not available in [31].
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multipath channels, the permutation matrix P is of great importance because it,

together with the circulant channel matrix, makes possible the implementation of

FFT as will be clarified later. Then the CP approach which inserts a CP for each

block before transmission is adopted to avoid interblock interference (IBI) in the

presence of frequency-selective multipath channels. The transmission sequences

from both antennas are depicted in Fig. 4.3.
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Figure 4.3: CP-based STBC block transmissions

Now let us consider the multipath channel. Before we elaborate further,

it is necessary for us to make clear some assumptions regarding the channel.

The channel here, is assumed to be frequency-selective, but its response remains

time invariant over the transmission of a STBC burst (consisting of two con-

secutive data blocks), but can vary from burst to burst. That is, the chan-

nel is assumed to be quasi-static. With symbol rate sampling, we define hµ =

[hµ(0), hµ(1), . . . , hµ(v)]T as the equivalent discrete-time channel impulse re-

sponse between the transmit antennas and the single receive antenna, where v is



4.3 STBC for Frequency-Selective Fading Channels 56

the channel order or channel memory. When the length of CP is chosen to be at

least as long as the channel order, the IBI can be avoided at the receiver by simply

discarding the received samples corresponding to the CP. Hence the CP insertion

at the transmitter together with CP removal at the receiver yields the channel

input-output relationship that could be expressed in matrix vector form as

x(i) =
2∑

µ=1

Hµsµ(i) + n(i) (4.20)

where the channel matrix Hµ is circulant matrix with [Hµ]p, q = hµ((p− q) modJ),

and the additive Gaussian noise n(i) is assumed to be white with each element

having zero mean and variance of N0.

In the following, two attractive properties of circulant matrices are presented.

These properties are of special importance to this block-level space-time coding

scheme, and will be exploited at the receiver for both space-time decoding and

equalization.

1. As we have introduced earlier in Equation (3.29) of Section 3.3, circulant

matrices can be diagonalized by FFT operations:

Hµ = FH
J diag(hµF )FJ and HH

µ = FH
J diag(h∗

µF
)FJ (4.21)

where diag(hµF ) is a J × J diagonal matrix with its diagonal given by

hµF = [Hµ(ej0), . . . , Hµ(ej2π(J−1)/J)]T . (4.22)

That is, the p th entry of the vector hµF is the channel frequency response

Hµ(z) =
v∑

l=0

hµ(l)z−l (4.23)

evaluated at the frequency of z = ej2πp/J .
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2. Pre- and postmultiplying the circulant channel matrix Hµ by the permutation

matrix P yields the transpose of Hµ:

PHµP = HT
µ and PH∗

µP = HH
µ . (4.24)

Proof of Equation (4.24) can be found in [31], therefore will not be repeated

here.

In view of the space-time coded blocks satisfying Equation (4.19), now let us

consider two consecutive received blocks, i.e., the (2i) th and (2i + 1) th blocks as

predefined in Equation (4.20):

x(2i) = H1s1(2i) + H2s2(2i) + n(2i) (4.25)

x(2i + 1) = −H1Ps∗2(2i) + H2Ps∗1(2i) + n(2i + 1). (4.26)

Then left-multiplying Equation (4.26) by P, conjugating, and using the Property 2,

we obtain

Px∗(2i + 1) = −HH
1 s2(2i) + HH

2 s1(2i) + Pn∗(2i + 1). (4.27)

Here it is noteworthy that without the permutation matrix P inserted at the trans-

mitter, it would have been impossible to have the Hermitian form of the channel

matrix appearing in Equation (4.27) which can facilitate the frequency-domain

processing of the received blocks.

We make use of the Property 1 by multiplying the blocks x(i) with the FFT

matrix FJ that implements the J-point FFT of the elements in x(i). Let us define
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the following J-point FFT operations:

xF(2i) = FJx(2i), x∗

F(2i + 1) = FJPx∗(2i + 1) (4.28)

nF(2i) = FJn(2i), n∗

F(2i + 1) = FJPn∗(2i + 1). (4.29)

For notational convenience, we use D1 and D2 to denote the diagonal matrices

diag(h1F) and diag(h2F), respectively. Then applying the Property 1 on both

Equation (4.25) and Equation (4.27), we have the blocks in frequency-domain as

given by:

xF(2i) = D1FJs1(2i) + D2FJs2(2i) + nF(2i) (4.30)

x∗

F(2i + 1) = −D∗

1FJs2(2i) + D∗

2FJs1(2i) + n∗

F(2i + 1) (4.31)

It should be noted here that the permutation, conjugation, and FFT operations

on the received block x(i) do not introduce any information loss, and the additive

noises in Equations (4.30) and (4.31) remain white [31]. This is important because

it is the basis that our ensuing work of equalization relies on. We shall further

point that the diagonal of D1 or D2 is of DFT, while the operations of FJs1(i) etc.,

is actually the orthonormal FFT. Although both of them can be realized by FFT,

they are actually different here.

By defining x̄F(i) = [xT
F(2i) xH

F (2i + 1)]T , we can combine Equation (4.30)

and Equation (4.31) together into a single block matrix-vector form, as shown

below

x̄F(i) =




D1 D2

D∗
2 −D∗

1








FJs(2i)

FJs(2i + 1)



 +




nF(2i)

n∗
F(2i + 1)



 (4.32)

where the relationship of s1(2i) = s(2i) and s2(2i) = s(2i+1) have been used from

the transmission design in Table 4.2.
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In the following, we will consider two special schemes: the CP-only scheme

and the ZP-only2 scheme, which are specially important to our ensuing work.

CP-only
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Figure 4.4: The CP-only scheme with Θ = IN and P = P
(1)
J

We use CP-only to denote the block transmissions without precoding, i.e., Θ = IN ,

J = N , and s(i) = d(i). Additionally we specifically use the permutation matrix P

as P
(1)
J . For this special case, we depict the transmission blocks from both antennas

in Figure 4.4. Equation (4.26) can be rewritten as

x(2i + 1) = −H1P
(1)
J s∗2(2i) + H2P

(1)
J s∗1(2i) + n(2i + 1).

= −
[
FH

J D1FJ

] [
FH

J FH
J s∗2(2i)

]
+

[
FH

J D2FJ

] [
FH

J FH
J s∗1(2i)

]
+ n(2i + 1)

= −FH
J D1 [FJs2(2i)]

∗ + FH
J D2 [FJs1(2i)]

∗ + n(2i + 1) (4.33)

where for the second equality, we rely on both the Property 1 and Equation (4.18),

and for the third one, we note that FJ is a unitary symmetric matrix. To obtain

2Here ZP is the abbreviation of Zero Padding.
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the FFT processed blocks similar as in Equation (4.31), it is obvious that we need

only conjugation, and FFT operation on the received blocks x(2i + 1), obviating

the need for permutation operation. This benefit owes to Equation (4.18).

This CP-only scheme was also introduced in [28] and [29]. In this thesis, this

scheme is mainly used for the training-based channel estimation as will be covered

in the next chapter.

ZP-only

The CP-only scheme that we just discussed can be regarded to have linear nonre-
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Figure 4.5: The ZP-only scheme with Θ = [IT
N 0T

v×N ]T and P = P
(N)
J

dundant precoding due to J = N . Now let us consider another case with redundant

precoding where J > N . The precoder Θ is defined as

Θ = [IT
N 0T

v×N ]T , (4.34)

where Θ is a J × N matrix, and J = N + v. Such precoding on data blocks d(i)

yields J × 1 symbol blocks s(i) as given by

s(i) = Θd(i) =
[
dT (i) 0T

v×1

]T
. (4.35)
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This type of precoding corresponds to append each data block d(i) with v zeroes.

As for the permutation matrix, we fix P = P
(N)
J . Then we have

P
(N)
J s(i) =

[

[P
(0)
N d(i)]T 0T

v×1

]

, (4.36)

which implies that this permutation operation does not change the original position

of the data block and zero block, and the data block is time reversed. The presence

of these padding zero blocks in Equations (4.35) and (4.36) can avoid IBI as their

length is equal to the channel order v. Therefore, the following CP-insertion op-

eration at the transmitter can be removed; or from another point of view, we can

regard the zero block from previous block as the CP for the current block. We term

this special scheme as ZP-only, and the resulting transmission format is illustrated

in Figure 4.5. In this thesis, this ZP-only scheme is adopted for data transmission

format as will be detailed in the next chapter.

4.4 Summary

This chapter examined the technique of STBC. We started with a brief introduction

of the diversity techniques, and it is followed by a description of Alamouti’s STBC

scheme, which is mainly designed for frequency flat fading channels. After that, we

proceeded to the block STBC scheme that was proposed recently in the literature

(a short literature review was also provided) for frequency-selective fading channels.

This scheme is of interest as it can provide diversity gains as the Alamouti’s original

scheme does, and may facilitate the implementation of FDE, hence is adopted in

our work for transmitter design. Additionally, we also introduced two specific block
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STBC schemes: CP-only and ZP-only, which will be used in our ensuing work for

data transmission and channel estimation, respectively.
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Chapter 5

Channel Estimation Based FDE

for STBC Transmissions

In the last chapter, we introduced the STBC block transmissions designed for

multipath fading channels. Whereas, such transmitter design, if considered alone,

cannot provide a satisfactory or AWGN-like performance since the ISI in the re-

ceived signals have not yet been removed. As a result, some form of mitigation

methods, such as equalization, remains necessary at the receiver to further improve

the link quality, as we previously discussed in Chapter 3.

In this chapter, we proceed to the development of equalization schemes for

STBC transmissions over multipath fading channels. Or specifically, we will look

into some frequency-domain block equalization schemes implemented using FIR

filterbanks. These schemes are developed to optimize the performance according

to some specified criterion such as ZF or MMSE criterion. And knowledge of the

channel is assumed to be fully known at the receiver. That is, these equalization



5.1 Linear and Nonlinear ZF Equalization 64

schemes need to perform channel estimation. Training based channel estimation is

developed in this chapter.

5.1 Linear and Nonlinear ZF Equalization

Before our discussion on the FDE schemes, we introduce some preliminary pro-

cessing blocks at the receiver, which can facilitate our development of equalization

schemes. We reproduce here the result of Equation (4.32) from the last chapter:

x̄F(i) =




D1 D2

D∗
2 −D∗

1








FJs(2i)

FJs(2i + 1)



 +




nF(2i)

n∗
F(2i + 1)



 (5.1)

where D1 and D2 are both J × J diagonal matrices. Let us define

D =




D1 D2

D∗
2 −D∗

1



 (5.2)

and it is easy to verify that D is orthogonal, i.e.,

DHD = I2 ⊗ D2
12 (5.3)

where ⊗ denotes Kronecker product, and D12 is a J × J diagonal matrix with its

nonnegative diagonal entries given by

D12 = [DH
1 D1 + DH

2 D2]
1/2. (5.4)

To decouple the frequency-domain data block x̃F(i) as well as to keep the

resulting noise remaining white, we can multiply x̃F(i) by a special unitary matrix

DU which is given by

DU = D(I2 ⊗ D12
−1). (5.5)
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Here we assume h1 and h2 do not share common zeros on the FFT grids, so that

D12 is full rank and invertible. Then the unitary matrix DU can be constructed as

in Equation (5.5), we have

DH
U DU = I2J and DH

U D = I2 ⊗ D12. (5.6)

Multiplying Equation (5.1) by DH
U , we obtain

ȳF(i) = DH
U x̄F(i)

=




D12FJs(2i)

D12FJs(2i + 1)



 + DH
U




nF(2i)

n∗
F(2i + 1)



 (5.7)

The resulting noise is given by

η̄F(i) =
[
ηT
F(2i), ηT

F(2i + 1)
]T

(5.8)

= DH
U

[
nT
F(2i), nH

F (2i + 1)
]T

,

and it is easy to verify that η̄F(i) is still white since its autocorrelation matrix is

diagonal. This decoupling process, in fact, performs the role of STBC decoder, as

illustrated in Figure 5.1. We can simplify Equation (5.7) in subblock form:

yF(i) = D12FJs(i) + ηF(i). (5.9)

Then the problem of developing FDE schemes for such STBC block transmissions

is reduced to designing equalization schemes for the above subblock yF(i).

We also need to note here that, in the remaining of this thesis, the ZP-

only scheme, as described in Chapter 4, is adopted as the transmission format

for information-bearing data signals; that is, we have

s(i) = Θd(i) =
[
dT (i) 0T

v×1

]T
, (5.10)
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where the precoder Θ is defined as Θ = [IT
N 0T

v×N ]T . So recovery of symbol

block d(i) is equivalent to the recovery of s(i). d̂(i) can be obtained by a simple

implementation of ZP removal on ŝ(i). Now let us proceed to the equalization

schemes based on Equation (5.9). This section covers block equalizers based on

the ZF criterion, where both linear equalizer and decision-feedback equalizer are

investigated.

5.1.1 Linear ZF equalization

)(ix
FFT

STBC

Decoder

)(i
F
x )(ˆ is)(i

F
y
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Figure 5.1: The linear filterbank equalizer

The J × J matrix D12, as defined in (5.4), is a full-rank matrix with nonnegative

diagonal entries, and FJ is also full rank, then we can easily verify that D12FJ is also

full rank and invertible. Based on Equation (5.9), there exists a ZF solution GZF

that can offer almost perfect recovery of s(i) in noise free or high SNR environments;

that is

s(i) = ŝ(i) = GZF [D12FJs(i)] . (5.11)

where GZF is a J × J matrix, denoting a FIR linear filterbank. Recovery of s(i)

from the decoupled subblock yF(i) can also be regarded as a least-squares problem

with the cost function given by

J(ŝ(i)) = ‖yF(i) − D12FJ ŝ(i)‖2 (5.12)
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where ‖·‖2 denotes the squared Euclidean norm, viz., ‖a‖2 = aHa =
∑K

k=1 |a(k)|2.,

and a(k) stands for the k-th entry of the K × 1 vector a.

According to [52], when D12FJ has full rank, there is a unique solution ŝ(i)

minimizing the cost function J(ŝ(i)) that can be expressed as

ŝ(i) = GZFyF(i) = GZFD12FJs(i) + GZF ηF(i).

where ŝ(i) is the equalized block, and GZF is the equalizer which can be formulated

as

GZF = (D12FJ)+

= (FH
J DH

12D12FJ)−1FH
J DH

12 = F−1
J D−1

12 (5.13)

The above expression for GZF indicates that operation of GZF actually consists of

two steps: firstly, multiplying the equalizer input yF(i) by D−1
12 ; secondly, trans-

forming the equalized output that is in frequency domain form, back to time do-

main by means of IFFT operations. Figure 5.1 depicts the structure of this linear

filterbank equalizer, where G is replaced by GZF under the ZF criterion.

5.1.2 ZF-DFE

Previously in Chapter 3, we have pointed out that, the linear ZF equalizers can

excessively enhance noise at frequencies where the folded channel spectrum has high

attenuations, because they don’t take into account the noise at the receiver. That

is the same situation for the linear ZF equalizer GZF that we have just introduced.

The BER performance, in fact, can be further improved. One possible way is to
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employ some other optimization criterions instead of the ZF one, for example, the

MMSE criteria where the channel noise is considered and performance improvement

can be expected (especially at low SNR). We will explain this MMSE criterion

in detail in the next section, together with the linear and nonlinear equalizers

that are developed based on it. Another possible way is to design nonlinear
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Figure 5.2: The decision feedback filterbank equalizer

equalizers rather than linear ones, for example, the decision-feedback equalizer. In

the following, we develop the decision-feedback equalization scheme that remains

based on the ZF criterion, namely, ZF-DFE.

Figure. 5.2 illustrates the structure of the decision-feedback equalizer, which

consists of three parts:

1. The feedforward filterbank denoted by the J×J matrix W, which is expected

to eliminate ISI from future symbols within the current block.

2. The decision making device, which may take the form of a slicer or quantizer.

3. The feedback filter denoted by the J × J matrix B, which is expected to

eliminate ISI from past symbols within the current block.

Let us define the feedforward filterbank output as z(i), and the difference between
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feedforward filterbank output and feedback filterbank output as s̃(i). Both z(i)

and s̃(i) are J × 1 vectors, as specified respectively by

z(i) = [z(iJ), z(iJ + 1), . . . , z(iJ + J − 1)]T

s̃(i) = [s̃(iJ), s̃(iJ + 1), . . . , s̃(iJ + J − 1)]T (5.14)

From Figure 5.2, we may conclude the following input-output relationships:

z(i) = WyF(i) = WD12FJs(i) + WηF(i) (5.15)

s̃(i) = z(i) − Bŝ(i) (5.16)

ŝ(i) = Q(s̃(i)) (5.17)

where Q represents the slicer or quantizer used by the decision device. Our problem

now, is reduced to find solutions for the feedforward matrix W and the feedback

matrix B, given the input blocks yF(i). Before tackling this problem, let us consider

several special requirements imposed by such ZF block decision-feedback equalizer.

Firstly, we consider requirement of the ZF optimization criterion. By such

criterion, we mean that when there is no noise, and the past decisions are assumed

to be ideally correct, the decision statistic should be equal to the transmitted data,

i.e.,

s̃(i) = ŝ(i) = s(i). (5.18)

From Equation (5.18), we can relate Equations (5.15) and (5.16) by

s(i) = WD12FJs(i) − Bŝ(i)

=⇒ WD12FJ = B + IJ . (5.19)
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Secondly, we consider the noise at the input of the decision device, which can

be expressed as v(i) = WηF(i) under the assumption of correct past decisions.

Then the covariance matrix of v(i) is given by:

Rvv = E
{
[WηF(i)][WηF(i)]H

}
= WRηηW

H

where Rηη = E{ηF(i)ηH
F (i)}. In general, the noise at the input of the decision

device v(i) is not white. Whitening the noise is one approach to improve the BER

performance [53], which can be accomplished by properly selecting W such that

WRηηW
H = VJ (5.20)

here VJ is a J × J diagonal matrix.

Thirdly, we explore successive cancellation at the feedback filterbank B. By

successive cancellation we mean that for each block indexed by i, the J-th entry

or the last symbol s(iJ + J − 1) is recovered first. Its estimate, ŝ(iJ + J − 1),

is used as the input to a one-tap filter; output of the filter is removed from the

z(iJ +J − 2) so that the (J − 1) th entry or the second last symbol s(iJ +J − 2) is

recovered. After that, both estimates ŝ(iJ + J − 1) and ŝ(iJ + J − 2) are rendered

to a two-tap filter; output of the filter is removed from the corresponding entry

in z(i) so that the relevant symbol is recovered. This procedure is carried out

until all the symbols of the same block i have been recovered. Accordingly, the

tap number of each feedback filter is increased until it reaches (J − 1). Figure 5.3

shows the simplified diagram of the feedback filterbank structure, where the tap

delay between neighboring taps is omitted here. To make possible such successive

cancellation, the feedback matrix B needs to be strictly upper triangular.
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Figure 5.3: The structure of the feedback filterbank with J = 6

Therefore, our design of ZF-DFE scheme should satisfy the above three re-

quirements. Let us consider the first requirement as expressed in Equation (5.19).

Since D12FJ is full rank, using Equation (5.19), the feedforward matrix W can be

solved:

W = (B + IJ)(D12FJ)−1. (5.21)

Substituting the result into Equation (5.20), we have

(D12FJ)HR−1
ηη (D12FJ) = (B + IJ)H

V
−1
J (B + IJ) (5.22)

Previously we have pointed that after the implementation of decoupling, the result-

ing noise vector ηF(i) remains white. Let us define Rηη = IJ
1, then Equation (5.22)

changes to

(D12FJ)H(D12FJ) = (B + IJ)H
V

−1
J (B + IJ), (5.23)

1Here we don’t take into account of the noise power by simply defining it as unity. Actually

it can be specified as other values, which may result in slight difference in the following Cholesky

factorization.
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and the (D12FJ)H(D12FJ) can be reformulated as

(D12FJ)H(D12FJ) = FH
J D2

12FJ . (5.24)

Since D2
12 is a J × J diagonal matrix with nonnegative diagonal entries, here we

can construct a J × J circulant matrix H with its first column equal to the J-

point IDFT 2 of the diagonal entries of D2
12. According to the eigendecomposition

property of circulant matrices [50], we have

D2
12 = FJHFH

J (5.25)

Substituting Equation (5.25) into Equation (5.24), we get

(D12FJ)H(D12FJ) = FH
J FJHFH

J FJ = H.

Hence Equation (5.23) can be rewritten as

H = (B + IJ)H
V

−1
J (B + IJ).

As stated in the third requirement, the feedback equalization matrix B should

be strictly upper triangular, then matrix (B + IJ) is upper triangular with unit

diagonal. Now let us consider the Cholesky factorization of the circulant matrix

H:

H = L
H

VL

where L is an upper triangular matrix with unit diagonal, and V is a diagonal

matrix. Since H is Toeplitz (because it is circulant), its Cholesky factorization can

be obtained by using Schur algorithm [51] to achieve reduction in complexity.

2It is noted that the operation here is IDFT, rather than orthonormal IDFT as described by

FH

N
.
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By setting B+ IJ = L, and using Equation (5.21), we obtain the solutions for

both B and W:

B = L − IJ

W = L(D12FJ)−1. (5.26)

It is easy to verify that WWH = V
−1, which indicates that the noise at the input of

the decision device is decorrelated or whitened. With the help of Equation (5.13),

the feedforward filterbank W in Equation (5.26) can be written as

W = (B + IJ)GZF = LGZF ,

which implies that the feedforward filter is the linear ZF filter followed by (B+ IJ)

that takes into account the feedback filterbank B.

5.2 Linear and Nonlinear MMSE Equalization

5.2.1 Linear MMSE equalization

In this section we consider the block equalizers based on the MMSE criterion, which

minimize the mean square error E{‖ŝ(i)−s(i)‖2}. We consider the linear equalizer

first, and its structure is depicted in Figure 5.1. The equalizer G, in fact, belongs

to a special category of optimum linear filters known as Wiener filters. The cost

function can be written as a function of the equalizer G:

J(G) = E{‖ŝ(i) − s(i)‖2}
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The equalizer output is given by ŝ(i) = GyF(i) = GD12FJs(i) + GηF(i). we can

rewrite the cost function as

J(G) = E{‖(GD12FJ − IJ)s(i) + GηF‖2}

= E
{

Tr{[(GD12FJ − IJ)s(i) + GηF ] [(GD12FJ − IJ)s(i) + GηF ]H}
}

By setting gradient of the cost function to zero, i.e.,

∇GJ(G) = 0,

and solving for G, we can obtain the MMSE solution

GMMSE = Rss(D12FJ)H [Rηη + (D12FJ)Rss(D12FJ)H ]−1, (5.27)

where Rss = E{s(i) sH(i)} and Rηη = E{ηF(i) ηH
F (i)} are correlation matrices for

symbol vector s(i) and noise vector ηF(i), respectively. The noise vector ηF(i),

as we pointed out at the beginning of this chapter, remains white; by defining its

variance as σ2
η, we obtain Rηη = σ2

ηIJ . As for the symbol vector s(i), we assume

it to be white with variance σ2
s , and we have Rss = σ2

sIJ . Also noting that D12

is a J × J diagonal matrix with nonnegative diagonal entries, we can simplify

Equation (5.27) to

GMMSE = F−1
J D12(D

2
12 + IJ/SNR)−1

where SNR is defined as SNR = σ2
s/σ

2
η. This linear MMSE equalizer GMMSE can

reduce to the linear ZF equalizer GZF by simply setting σ2
η = 0.

The equalizer GMMSE can be realized in the form of linear filterbank. Or

alternatively, we can divide it into two parts, similar with the ZF equalizer GZF .
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The first part is D12(D
2
12 + IJ/SNR)−1, which is a J × J diagonal matrix, and can

be readily implemented by a filter. This part actually constitutes the frequency-

domain equalization. The second part is related to F−1
J , which is a J-point IFFT

transform.

5.2.2 MMSE-DFE

Structure of the MMSE decision-feedback equalizer is also depicted in Figure 5.2,

which is the same as the ZF decision-feedback equalizer. And the input-output

relationships of Equations (5.15), (5.16), and (5.17) also apply here. Since we take

into account the noise here, the input to the decision device, s̃(i), will not be simply

assumed equal to the transmitted data s(i). Instead, we define

e(i) = s̃(i) − s(i)

as the performance measure of this DF equalizer, where e(i) is specified by

e(i) = [e(iJ), e(iJ + 1), . . . , e(iJ + J − 1)]T .

We still keep the assumption of correct past decisions. Then by using the input-

output relationships in Equations (5.15)-(5.17), we have

e(i) = WyF(i) − (B + IJ)s(i). (5.28)

Our problem now, is to find solutions for the feedforward matrix W and the feed-

back matrix B that can minimize the mean square error E{‖e(i)‖2}, given the

input data blocks yF(i), input symbol correlation Rss and the noise correlation
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Rηη. The feedback filter matrix B should be strictly upper triangular as illus-

trated in Figure 5.3, so that successive cancellation can be carried out.

Our first step is to obtain the matrix W that minimizes E{‖e(i)‖2} by fixing

the feedback matrix B. Applying the orthogonality principle to Equation (5.28),

we find that e(i) should be orthogonal to yF(i), i.e.,

E{e(i)yH
F (i)} = 0J×J

=⇒ WE{yF(i)yH
F (i)} = (B + IJ)E{s(i)yH

F (i)} (5.29)

In view of the fact that the noise vector ηF(i) is independent of the transmitted

data s(i), by using Equation (5.9), we can obtain

Rsy = E{s(i)yH
F (i)}

= E{s(i)[D12FJs(i) + ηF(i)]H}

= Rss(D12FJ)H = RH
ys (5.30)

and

Ryy = E{yF(i)yH
F (i)}

= (D12FJ)Rss(D12FJ)H + Rηη

= Rϑϑ + Rηη (5.31)

The Rϑϑ in Equation (5.31) is defined as Rϑϑ = (D12FJ)Rss(D12FJ)H . From

Equations (5.29), (5.30) and (5.31), we have

W = (B + IJ)RsyR
−1
yy

= (B + IJ)Rss(D12FJ)H [(D12FJ)Rss(D12FJ)H + Rηη]
−1 (5.32)
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which actually links the feedforward and feedback filterbanks together. Quite sim-

ilar with the ZF-DFE we have previously developed, the feedforward filterbank W,

with the help of GMMSE in Equation (5.27), can be simplified as

W = (B + IJ)GMMSE,

which indicates that the feedforward filter is the linear MMSE filter followed by

(B + IJ) that relates the feedforward and feedback filterbanks.

Our next step is to whiten the noise at the input of the decision device, which

is similar with what we have done in the development of ZF-DFE. By substituting

the W of Equation (5.32) into Equation (5.28), e(i) can be rewritten as

e(i) = (B + IJ)RsyR
−1
yy yF(i) − (B + IJ)s(i)

= (B + IJ)ε(i) (5.33)

where ε(i) is defined as

ε(i) = RsyR
−1
yy yF(i) − s(i).

Then the covariance of e(i) can be expressed as

Ree = E{e(i)eH(i)} = (B + IJ)E{ε(i)εH(i)}(B + IJ)H . (5.34)

Thus, to obtain the covariance of e(i), we have to solve the covariance of ε(i) in

advance.

Let Rεε = E{ε(i)εH(i)}. By applying the results in Equations (5.30) and
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(5.31), we may write

Rεε = E{[RsyR
−1
yy yF(i) − s(i)][RsyR

−1
yy yF(i) − s(i)]H}

= RsyR
−1
yy E{yF(i)yH

F (i)}R−H
yy RH

sy − RsyR
−1
yy E{yF(i)sH(i)}

−E{s(i)yH
F (i)}R−H

yy RH
sy + E{s(i)sH(i)}

= Rss − RsyR
−1
yy Rys

= Rss − Rss(D12FJ)H [Rηη + (D12FJ)Rss(D12FJ)H ]−1

·(D12FJ)Rss (5.35)

Here we can make use of the matrix inversion lemma, which is given by

(A − CB
−1

D)−1 = A
−1 + A

−1
C(B − DA

−1
C)−1

DA
−1

where A, B, C, and D are matrices with compatible dimensions and the necessary

inverses exist. We first make the following identifications:

A = R−1
ss , B = Rηη, C = (D12FJ)H , D = −(D12FJ),

Then, substituting these definitions into the matrix inversion lemma, we get

Rεε = [R−1
ss + (D12FJ)HR−1

ηη (D12FJ)]−1 (5.36)

Hence the covariance matrix Ree can be reformulated as:

Ree = (B + IJ)[R−1
ss + (D12FJ)HR−1

ηη (D12FJ)]−1(B + IJ)H . (5.37)

Since E{‖e(i)‖2} = tr{Ree}, the minimization of mean square error is equiv-

alent to minimizing the trace of Ree, with the constraint that (B + IJ) is upper
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triangular with unit diagonal. Now we consider the Cholesky factorization of R−1
εε ,

that is

R−1
ss + (D12FJ)HR−1

ηη (D12FJ) = L
H

VL, (5.38)

where L is a J × J upper triangular matrix with unit diagonal, and V is a J × J

diagonal matrix. Let us define Rηη = σ2
ηIJ , Rss = σ2

sIJ and SNR = σ2
s/σ

2
η. Using

the relationship (D12FJ)H(D12FJ) = H that we have developed in ZF-DFE, we

can reformulate Equation (5.38) as

1

σ2
s

IJ +
1

σ2
η

H = L
H

VL,

or the scale version

1

SNR
IJ + H = L

H
VL,

where the factor σ2
η has been absorbed in V . As H is Toeplitz, the Cholesky

factorization here can be implemented by means of Schur algorithm [51], so that

the reduction in computational complexity can be achieved.

By setting

B = L − IJ , (5.39)

and substituting Equation (5.38) into Equation (5.52), we have

Ree = V
−1. (5.40)

As V is diagonal, the noise at the input of decision device is white, hence the

subsequent symbol-by-symbol detection can be implemented in the optimal sense.

After solving B from Equation (5.39), the feedforward matrix W can be readily

obtained by submitting B into Equation (5.32), or expressed as W = LGMMSE.
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5.3 Training-Based Frequency-Domain Channel

Estimation

In the last two sections, we have discussed linear and nonlinear (DFE) equalization

schemes based on both ZF and MMSE criteria to combat ISI for STBC block

transmissions over multipath fading channels. These schemes, as noted in our

elaboration, are developed under two essential assumptions regarding the channel.

One is the quasi-static assumption; that is, the channel is assumed to be constant

over the transmission of a STBC burst (consisting of two data blocks). The other

one is that the channel state information (CSI) is available beforehand at the

receiver. Therefore, some form of channel estimation must be employed to acquire

the CSI before implementation of those various equalization schemes.

There are two classes of methods available for the receiver to acquire the CSI

[55]: training method which is based on training symbols that are known a priori

to the receiver; and blind method that relies only on the received symbols to

acquire CSI blindly. In this section we consider only the training-based method,

because it decouples symbol detection from channel estimation, and thus can be

easily incorporated with our afore-developed equalization schemes. In addition,

our proposed channel estimation scheme is of interest because it is implemented in

frequency domain rather than in time domain, which is different from some existing

channel estimation schemes (see, e.g., [54] - [58]) for STBC or multiple-antenna

transmissions. In the following, we formulate this training-based channel estimation

problem for the 2-TX 1-RX scenario. Such analysis can also be generalized to
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multiple transmit and receive antennas.

Let us define Nb × 1 vectors s1 and s2 to be training blocks, as specified by

s1 = [s1(0), s1(1), . . . , s1(Nb − 1))]T

s2 = [s2(0), s2(1), . . . , s2(Nb − 1))]T ,

where Nb denotes the block length and should be greater than the channel order

v, i.e., Nb ≥ v + 1. In our scheme, elements of the training blocks s1 and s2,

belong to the same alphabet A of size Nb (as will be examined later); that is, s1

and s2 can be exactly the same, or their only difference may be arrangement of

these training symbols. s1 and s2 are encoded in space and time at the transmitter

as those information blocks, but by using the CP-only scheme rather than the

ZP-only scheme, as we have mentioned previously in Section 4.3. Their encoding

and transmission formats are illustrated in Figure 5.4. Then the two consecutive

TX2

CP T

1s CP

CP CP

TX1

the (2i)th block the (2i+1)th block

v v
b
N

b
N

vN
b >

T

2s

H

N
b

][ 2

)1(
sP?

H

Nb
][ 1

)1(
sP

Figure 5.4: Transmission formats for training sequences
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received blocks x1, x2 are given by

x1 = H1s1 + H2s2 + n1 (5.41)

x2 = −H1P
(1)
Nb

s∗2 + H2P
(1)
Nb

s∗1 + n2. (5.42)

where H1 and H2 are channel matrices with the size of Nb×Nb; n1 and n1 are Nb×1

noise vectors. According to Equation (4.33), for this CP scheme, Equation (5.42)

can be reformulated as

x2 = −FH
Nb

D1 [FNb
s2]

∗ + FH
Nb

D2 [FNb
s1]

∗ + n2. (5.43)

Here D1 and D2 are both Nb ×Nb diagonal matrices with their diagonals given by

h1F and h2F , respectively. h1F and h2F are similar with what we have previously

defined in Chapter 4. The only difference is their size: in Chapter 4, they are J ×1

vectors, here they denote Nb × 1 vectors. It is noteworthy that channel orders for

both h1 and h2 are also equal to v; that is, they have both v + 1 tap-weights to be

estimated.

Applying the orthonormal DFT FNb
on Equations (5.41) and (5.43), we can

obtain

x1F = D1s1F + D2s2F + n1F (5.44)

x2F = −D1s
∗

2F + D2s
∗

1F + n2F (5.45)

with help of the following definitions:

x1F = FNb
x1, s1F = FNb

s1, n1F = FNb
n1

x2F = FNb
x2, s2F = FNb

s2, n2F = FNb
n1.



5.3 Training-Based Frequency-Domain Channel Estimation 83

Using the diagonal property of D1 and D2, we can rewrite Equations (5.44) and

(5.45) as

x1F = S1Fh1F + S2Fh2F + n1F (5.46)

x2F = −S∗

2Fh1F + S∗

1Fh2F + n2F (5.47)

where S1F = diag{s1F} and S2F = diag{s2F}. Or by defining xF = [xT
1F xT

2F ]T ,

we can write the above frequency domain input-output relationship into a single

block matrix-vector form:

xF =




S1F S2F

−S∗
2F S∗

1F





︸ ︷︷ ︸

SF




h1F

h2F





︸ ︷︷ ︸

hF

+




n1F

n2F





︸ ︷︷ ︸

nF

(5.48)

We further define SF , hF and nF as shown above, then Equation (5.48) reduces to

xF = SFhF + nF . (5.49)

Hence, our problem of estimating h1 and h2 changes to estimating their frequency-

domain counterparts from xF . This problem, similar with our afore-introduced

linear ZF equalization, can be solved by using the least-squares method. Or in

other words, we need to find the least-squares solution which minimize the cost

function defined by

J(ĥF) = ‖xF − SF ĥF‖2.

Assuming that SF is full rank3, the unique least-squares solution, ĥF , can be

3This is a valid assumption as we can select appropriate training sequences to make sure there

are no zeros appearing on their FFT grids.
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expressed as

ĥF =




ĥ1F

ĥ2F



 = (SH
FSF)−1SH

FxF . (5.50)

It is easy to verify that SF is orthogonal, and SH
FSF is diagonal and satisfies

SH
FSF = I2 ⊗ [SH

1FS1F + SH
2FS2F ]. (5.51)

Then the operations in Equation (5.50) consist of only some linear processing,

thus can be executed with relatively low computational complexity. Upon solving

the estimates ĥ1F and ĥ2F from Equation (5.50), we can easily obtain their time-

domain counterparts by simply implementing a Nb-point IDFT operation on them.

As for the training sequence in s1 or s2, ideally, it should have equal or nearly

equal magnitude for all FFT grids, and should have impulse-like autocorrelation as

well as zero cross correlation, so that each frequency component of the channel is

ensured to be probed uniformly to provide the frequency-domain channel estimate.

In fact, our adoption of the CP-only scheme also conforms to this requirement,

because if the ZP-only scheme is used instead, those padding zeroes will be involved

in the FFT transformation together with the training symbols, and some low values

are expected to appear on the FFT grids, hence making the channel estimation

inadequate. The Chu sequences [59] are suitable for the above requirements, which

belong to the alphabet A = {ak|k = 0, 1, · · · , Nb − 1}. And ak is expressed as

ak =







exp

{

i
Mπk2

Nb

}

, when Nb is even

exp

{

i
Mπk(k + 1)

Nb

}

, when Nb is odd

where M is relatively prime to Nb.
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Now let us examine some performance measures of the channel estimation.

One of them is the estimation error; here we define it in the frequency domain, as

given by eF = hF − ĥF . Then the covariance of eF can be expressed as

ReF = E{eFeH
F } = (SH

FSF)−1SH
FRnFSF(SH

FSF)−1 (5.52)

where RnF = E{nFnH
F }. As the orthonormal IDFT operations on the received

blocks do not color the additive noise [31], we may let RnF = σ2
nI2Nb

, and Equa-

tion (5.52) changes to

ReF = σ2
n(SH

FSF)−1 (5.53)

Making use of the result in Equation (5.51), we can write the frequency-domain

channel estimation mean square error (MSE) ε2
F as

ε2
F = E{‖eF‖2} = Tr{ReF}

= 2σ2
n · Tr

{
(SH

1FS1F + SH
2FS2F)−1

}

=

Nb∑

i=1

2σ2
n

|s1F(i)|2 + |s2F(i)|2 (5.54)

where s1F(i) and s2F(i) are elements of s1F and s1F , respectively.

5.4 Simulation Results and Discussion

In this section, we investigate the performance of above-introduced FDE and chan-

nel estimation schemes with application to one typical system - EDGE. EDGE

(enhanced data rates for GSM evolution) is a digital mobile phone technology that

achieves a significant increase in bit rate over its second-generation predecessors

GSM and TDMA/136 by applying the modulation format 8-ary phase shift keying
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(8-PSK) instead of binary Gaussian minimum shift keying (GMSK) which is used

in GSM [34]. The EDGE system is currently being deployed to provide an evo-

lutionary path for delivering third-generation services in existing spectrum band,

therefore, there is great interest in evaluating its performance under various prac-

tical techniques, such as the work in [30] and [61]; that is the reason why here we

take it as a case study.

Our simulations focus on the special case of 2-TX 1-RX, as it conveys the

essential concepts of STBCs, and is sufficient for examining the effectiveness of

these FDE schemes. We assume that the total transmitted power from the two

antennas is the same as the transmit power from the single transmit antenna. In

our simulations, we normalize the average energy of the symbols transmitted from

each antenna to one, and meanwhile double the noise variance (compared with the

1TX scenario), so that the SNR for both 2TX and 1TX cases are comparable.

Guard zeros

N

Data Subblock Training Subblock

N)(2
b
Nv @

vNJ AB
vNJ AB

Figure 5.5: Modified burst format for EDGE

We consider 8-PSK modulations without channel coding deployed at the trans-

mitter. The GSM 05.05 EQ wireless channel model [60], which is frequency-selective

with channel memory v equal to 3, is adopted in our simulations for the equaliza-
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tion test. We deploy the ZP-only scheme as data transmission format, which may

result in slight changes to the original EDGE burst structure. The modified burst

structure is depicted in Figure 5.5, and the transmission format for training sub-

block can be found in Figure 5.4. Here we still assume block fading: the channel

fading gains are constant over one burst (including both data and training sub-

blocks), and are independent from burst to burst. The data subbock length, N ,

is set to 61, hence we have the FFT size J as J = N + v = 64. In all simulation

results, the BER curves are plotted as a function of Eb/N0.
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Figure 5.6: BER performance of ZF FDE schemes for STBC transmissions

over EDGE EQ channel. Perfect CSI is assumed at the receiver.

Figure 5.6 and Figure 5.7 depict the BER performance corresponding to the
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Figure 5.7: BER performance of MMSE FDE schemes for STBC transmis-

sions over EDGE EQ channel. Perfect CSI is assumed at the receiver.

FDE schemes (including linear equalization (LE) and DFE) based on ZF criterion

and MMSE criterion, respectively. The CSI is assumed to be perfectly known at

the receiver. For the DFE, we depict its performance with both ideal feedback

(assuming correct past decisions) and practical feedback (using actual past deci-

sions). Additionally, for the purpose of performance comparison, we also depict the

BER performance of frequency-domain ZF-LE (MMSE-LE)4 for single transmitter

case in Figure 5.6 (Figure 5.7). From these two figures, we have some common

observations; we list some of them in the following, together with our explanation.

4Expression of frequency-domain linear equalizer for such single transmitter case can refer to

Equation (3.31) in Chapter 3.
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• Performance of LE with STBC, either based on ZF criterion or MMSE crite-

rion, is superior to that of the corresponding LE for single transmitter case.

The diversity gain introduced by STBCs may account for such performance

improvement.

• The DFE achieves a substantial improvement in BER performance over its

linear counterpart, even without the assumption of ideal decision feedback.

That is due to the existence of the feedback equalization matrix B, which

eliminates the residual ISI from past decisions.

• Performance of the DFE with ideal decision feedback is close to its counter-

part with actual decision feedback. That is because:

1. Implementation of successive cancellation at the feedback filterbank is

confined to one data subblock, so that decision errors do not carry on

from block to block, and catastrophic error propagation can be mini-

mized.

2. As we adopt ZP-only scheme as data transmission format, the padding

zeros at the end of each data block are actually known to the receiver,

and can be regarded as pilot symbols (assuming perfect synchroniza-

tion), therefore, the successive cancellation in each data subblock can

always begin with correct decision feedback.

For the convenience of investigating the effect of criterion choice on the equal-

ization performance, we plot the BER performance curves of those FDE schemes
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Figure 5.8: Performance comparison of FDE schemes based different opti-

mization criteria: ZF and MMSE

based on both ZF and MMSE criteria in one figure, i.e., Figure 5.8. As for the

LE scheme, we observe that performance of MMSE-LE is superior over that of

the ZF-LE, which verifies our early assertion that performance improvement can

be expected by using MMSE criterion instead of ZF criterion to design the linear

equalizer. But for the DFE scheme, as shown in Figure 5.8, we cannot tell the dif-

ference between them for the application mentioned, since the performance curves

of the ZF-DFE and MMSE-DFE nearly overlap each other.

We also investigate the performance of our proposed training-based frequency-

domain channel estimation scheme. In our simulations, we choose the Chu se-
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quences [59] as the training sequence. The length of training sequence Nb, in our

simulations, is set to v + 1 = 4, which is the minimum length to estimate this

EDGE EQ channel. The training blocks between two consecutive data subblocks,

as shown in Figure 5.5. Such placement retains the relative positions for data sym-

bols and training symbols in the original EDGE burst structure. Figure 5.9 depicts
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Figure 5.9: BER performance of ZF FDE schemes for STBC transmissions

over EDGE EQ channel. Training based channel estimation is adopted.

performance corresponding to the ZF DFE schemes based on the estimated chan-

nel; Figure 5.10 depicts the MMSE version with channel estimation. Comparing

Figure 5.9 and Figure 5.10 with Figure 5.6 and Figure 5.7, respectively, we observe

that our estimation scheme, at its worst, incurs about 3dB penalty for inaccurate

channel estimation.
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Figure 5.10: BER performance of MMSE FDE schemes for STBC transmis-

sions over EDGE EQ channel. Training based channel estimation is adopted.

Our schemes, including equalization schemes and channel estimation scheme,

can also be applied to some broadband wireless systems with comparable compu-

tational complexity, e.g., the BWA (broadband wireless access) systems that are

under intense research and standardization for application in local and metropoli-

tan area networks [62]. Such BWA systems can offer bit rates of tens of megabits

per second or more, but operate on NLOS conditions in which severe multipath is

encountered and the resulting ISI may span up 100 or more symbols.

However, wee need to point out that, the DFE schemes, either under ZF or

MMSE criterion, although achieve substantial performance improvement over LE
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schemes, they are more suitable for applications with relatively small size blocks.

That is because in the FDE scheme, to obtain the feedback matrix B, we need

implement the matrix Cholesky factorization, which requires relatively high com-

putations, especially when the data size is very large.

Our simulations, in fact, do not reflect the effect of channel variations on the

BER performance, as we assume block fading and the fading changes independently

from one burst to another. However, in practice, the channel frequency dispersion,

or Doppler spread does affect the design of data block size, as well as the selection

of equalization schemes.

5.5 Summary

In this chapter, we focused on the channel estimation based FDE for STBC trans-

missions over multipath fading channels. We developed linear and nonlinear (DFE)

FDE schemes based on ZF and MMSE criteria. Closed form expressions for com-

puting tap weights of these equalization schemes, especially the ZF-DFE and

MMSE-DFE, are derived in this chapter. We also proposed a training based

frequency-domain channel estimation method, in which the training blocks are

encoded by the same space-time coder as the data blocks. We evaluated our equal-

ization and estimation schemes by applying them to the EDGE system. Simu-

lation results indicate significant performance improvement as compared to the

single transmitter case with FDE, as well as effectiveness of our channel estimation

method.
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Chapter 6

Adaptive FDE for STBC

Transmissions

Those equalization schemes developed in Chapter 5, either linear or nonlinear,

unanimously require the CSI available beforehand at the receiver. As a result, some

form of channel estimation must be performed before implementation of the channel

equalization, such as the the training-based frequency-domain channel estimation

which was also proposed for application in Chapter 5. Whereas, as we earlier

mentioned in Chapter 1, there exists one alternative equalization method that

can obviate the need for channel estimation; that is, the adaptive equalization.

In Chapter 3, we have introduced the basic concept of adaptive equalization as

well as some commonly used algorithms that update the equalizer coefficients.

In this chapter, we will pursue adaptive FDE for the STBC transmissions over

multipath fading channels, which realizes joint channel estimation and equalization.

Additionally a diversity combining scheme is proposed in this chapter as well.
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6.1 Adaptive Linear Equalization

By defining sF(2i) = FJs(2i) and sF(2i + 1) = FJs(2i + 1), we can rewrite Equa-

tion (4.32) in Chapter 4 as

x̄F(i) =




D1 D2

D∗
2 −D∗

1





︸ ︷︷ ︸

D




sF(2i)

sF(2i + 1)





︸ ︷︷ ︸

s̄F(i)

+




nF(2i)

n∗
F(2i + 1)





︸ ︷︷ ︸

n̄F(i)

(6.1)

With above definitions of D, s̄F(i) and n̄F(i), we can further simplify Equation (6.1)

to

x̄F(i) = Ds̄F(i) + n̄F(i),

where it is noteworthy that the noise vector n̄F(i) remains white. At this point,

the equalization problem can be reformulated as to recovering s̄F(i) from x̄F(i).

Or specifically speaking, we first obtain the frequency estimates of the symbol

blocks. Next we can transform these estimates back to the time domain for symbol

detection by use of the IDFT operations. That is, the implementation of IDFT

is explicitly separated from the equalization and the equalization operates in two-

blocks level rather than in one-block (or subblock) level. However, this method,

in its nature, is still the same as those linear FDE schemes (inclusive of ZF and

MMSE) that we have developed in Chapter 5.

Let s̆F(i) = [ŝT
F(2i) ŝT

F(2i + 1)]T denotes frequency domain estimates of the

data blocks, and it can be expressed as

s̆F(i) = ḠF x̄F(i) (6.2)

where ḠF is a 2J×2J matrix, representing the frequency-domain equalizer. Simply

following the procedure that we adopted in Chapter 5 when developing the linear
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FDE schemes, we can formulate the equalizer ḠF as

ḠF = (DHD + I2J/SNR)−1DH

or the unfolded version

ḠF =




(D2

12 + IJ/SNR)−1 0J×J

0J×J (D2
12 + IJ/SNR)−1








D∗

1 D2

D∗
2 −D1





=




G1F G2F

G∗
2F −G∗

1F





where G1F and G2F are defined by

G1F = (D2
12 + IJ/SNR)−1D∗

1 and G2F = (D2
12 + IJ/SNR)−1D2.

It is easy to verify that both G1F and G2F are J ×J diagonal matrices. We define

their diagonal vectors as g1F and g2F , respectively; that is

G1F = diag{g1F} and G2F = diag{g2F} (6.3)

We expand Equation (6.2) as below




ŝF(2i)

ŝF(2i + 1)



 =




G1F G2F

G∗
2F −G∗

1F








xF(2i)

x∗
F(2i + 1)



 . (6.4)

Let us define

XF(2i) = diag{xF(2i)} and XF(2i + 1) = diag{xF(2i + 1)}. (6.5)

By applying Equation (6.3), Equation (6.4) can be reformulated as




ŝF(2i)

ŝ∗F(2i + 1)





︸ ︷︷ ︸

~sF(i)

=




XF(2i) X∗

F(2i + 1)

−XF(2i + 1) X∗
F(2i)





︸ ︷︷ ︸

UF(i)




g1F

g2F





︸ ︷︷ ︸

wF(i)

. (6.6)
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or the simplified version

~sF(i) = UF(i)wF(i) (6.7)

where ~sF(i) is a 2J × 1 vector containing estimates of the (2i)th data block and

conjugate of the (2i + 1)th block; UF(i) ia an orthogonal matrix with the size

2J × 2J , which is made up of the frequency transform of two consecutive received

data blocks; wF(i) is a 2J × 1 vector that contains the elements of g1F and g2F .

Comparing Equation (6.2) and Equation (6.7), we may observe an interesting

phenomenon that the 2J×2J equalization matrix ḠF in Equation (6.2) reduces to a

2J×1 equalizer vector wF(i) in Equation (6.7). This transform largely owes to the

orthogonal property of STBCs, and it enables the equalization to be implemented

by a single filter. Moreover, Equation (6.7) also suggests that such equalization

can be performed adaptively by using some form of block adaptive algorithms to

update wF(i).

In the following, we proceed to the development of adaptive FDE for STBC

block transmissions over multipath fading channel, and two specific block recur-

sive algorithms, BLMS and BRLS, will be examined with their application to the

equalization. However, we need to point out that, the adaptive FDE that we use

here should not be regarded the same as the Type I method of FDE that we for-

merly described in Chapter 3, even though both of them employ adaptive filter and

block recursive algorithms. The frequency-domain characteristic of this adaptive

equalization, in fact, attributes to the circulant property of the channel matrix

Hµ together with the specially designed permutation matrix P as explained in

Chapter 4.
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6.1.1 BLMS Algorithm
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Figure 6.1: Block diagram of the adatpive FDE

Figure 6.1 depicts block diagram of the adaptive FDE1. UF(i) denotes the data

matrix, each of its row can be regarded as a single input data block to the filter

at a specific time. The equalizer output is the product of the data matrix and

the equalizer coefficients, as shown in Equation (6.7). The filter output , ~sF(i), is

transformed back to time domain by means of IFFT operations, and then rendered

to a decision-making device for detection.

The error signal, eF(i), is generated by comparing the equalizer output with

the desired response which varies in the definition with respect to the operating

modes. Usually there are two modes that an adaptive filter work in: training mode,

and decision directed mode. At startup, the equalizer operates in the training mode,

where training blocks are sent from the transmitter to make the filter converge. The

1Detailed structure of this adaptive equalizer is not shown in Figure 6.1; readers can refer to

the linear transversal equalizer in Chapter 3.
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desired response, in fact, is already available at the receiver, as defined by

s′

F(i) =




sF(2i)

s∗F(2i + 1)



 =




FJs(2i)

F∗
Js

∗(2i + 1)





After achieving convergence, the equalizer switches to the decision directed mode,

where frequency transform of previous decisions are used to update the equalizer

coefficients for tracking the channel variation. Under this mode, the desired re-

sponse is expressed as

~s ′

F(i) =




s̃F(2i)

s̃∗F(2i + 1)



 =




FJ ŝF(2i)

F∗
J ŝ

∗
F(2i + 1)





The equalizer coefficients can be updated according to the BLMS algorithm

that we have covered earlier in Chapter 3. Compared with the classical LMS algo-

rithm, BLMS has the advantage of substantially reduced computational complexity,

since the tap weights, e.g., in this scenario, is updated every two received blocks,

rather than every recited symbol. Details regarding the BLMS algorithm will not

be given here; readers can refer to [41] or [42]. We express the coefficients updating

formulae as below:

1. Equalizer output:

~sF(i) = UF(i)wF(i) (6.8)

2. Error signal:

eF(i) =







s′
F(i) − ~sF(i), Training mode

~s ′
F(i) − ~sF(i), Decision directed mode

(6.9)
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3. Coefficients adaptation:

wF(i + 1) = wF(i) + µUH
F (i)eF(i) (6.10)

where µ denotes the step size.

The BLMS algorithm, similar with its step-by-step counterpart, is slow in the

convergence rate, since there is only one single parameter, i.e., µ, to control the rate

of adaption, as can be seen from Equation (6.10). To achieve faster convergence, we

can resort to another algorithm, namely, BRLS algorithm, which involves additional

parameters in adapting the equalizer coefficients, at a block level too.

6.1.2 BRLS Algorithm

The BRLS algorithm, also known as SU-RLS (subsampled-updating RLS) algo-

rithm, is a block-exact version of the classical RLS algorithm. As for details about

this algorithm, readers can refer to [63]. With a slight modification, this BRLS

algorithm can be applied here to iteratively update the equalizer coefficients, as

formulated in the following steps:

1. Compute equalizer output:

~sF(i + 1) = UF(i + 1)wF(i) (6.11)

2. Compute error signal:

eF(i+1) =







s′
F(i + 1) − ~sF(i + 1), Training mode

~s ′
F(i + 1) − ~sF(i + 1), Decision directed mode

(6.12)
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3. Compute Kalman gain matrix:

C(i + 1) = P(i)UH
F (i + 1); (6.13)

Z(i + 1) = λI2J + UF(i + 1)C(i + 1); (6.14)

K(i + 1) = C(i + 1)Z−1(i + 1) (6.15)

4. Update inverse of the correlation matrix:

P(i + 1) =
1

λ
[P(i) − K(i + 1)UF(i + 1)P(i)] (6.16)

5. Update equalizer coefficients:

wF(i + 1) = wF(i) + K(i + 1)eF(i + 1) (6.17)

= wF(i) + P(i + 1)UH
F (i + 1)eF(i + 1) (6.18)

where eF(i + 1) is the a priori error vector; K(i + 1) denotes the Kalman gain;

P(i + 1) represents the inverse correlation matrix; λ is the forgetting factor that is

set based on the channel variation. Initial values of the wF(0) and P(0) are given

by

wF(0) = 02J×1; P(0) = (1/δ)I2J , (6.19)

where δ is a small value.

Substituting Equation (6.15) into Equation (6.16), we can reformulate P(i+1)

as

P(i + 1) =
1

λ

[

P(i) − P(i)UH
F (i + 1)UF(i + 1)P(i)

λI2J + UF(i + 1)P(i)UH
F (i + 1)

]

. (6.20)

Comparing Equation (6.18) with Equation (6.10), we can observe that the BRLS

algorithm adopts a matrix, rather than a single parameter to control the rate
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of adaption. Such fact, to a certain extent, explains why the BRLS algorithm

can achieve a quick convergence as compared to the BLMS algorithm. However,

the quick convergence achieved by the BRLS algorithm, is at the cost of a heavy

increase in computational complexity. Due to the existence of matrix inversion,

calculation of the inverse correlation matrix P(i+1), as shown in Equation (6.20),

requires quite a number of computations, which accounts for a majority of the

computational complexity increase. A fast version of the BRLS algorithm, namely

FSU-RLS (fast subsampled-updating RLS) algorithm [63], can be used to achieve

some complexity reduction by using FFT in computations. But here, by exploiting

the special structure of the STBCs instead, we can achieve a substantial reduction

in the complexity; such complexity reduction method is also available in [64]. We

explain it in the following.

As we pointed out before, the data matrix UF(i) that is given by

UF(i) =




XF(2i) X∗

F(2i + 1)

−XF(2i + 1) X∗
F(2i)



 (6.21)

is a 2J × 2J orthogonal matrix, we have

UH
F (i)UF(i) = I2 ⊗ XF(i) (6.22)

where XF(i) is a J × J diagonal matrix as defined by

XF(i) = XF(2i)X∗

F(2i) + XF(2i + 1)X∗

F(2i + 1).

By using Equation (6.22) and following the definition of the inverse correlation

matrix, we may induce that P(i + 1) is a 2J × 2J diagonal matrix with the form

of

P(i + 1) = I2 ⊗ P (i + 1), (6.23)
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where P (i+1) is also a diagonal matrix with size of J×J . Clearly Equation (6.23)

holds true at the initialization, where P(0) = (1/δ)I2J and P (0) = (1/δ)IJ . Then

we have

UH
F (i + 1)UF(i + 1)

[
λ I2J + UF(i + 1)P(i)UH

F (i + 1)
]−1

= I2 ⊗
{
XF(i)[λ IJ + P (i)XF(i)]−1

}
,

= I2 ⊗ [λ IJX
−1
F

(i) + P (i)]−1 (6.24)

Let us define

Ω(i + 1) = [λ IJX
−1
F

(i) + P (i)]−1.

We can easily verify that [λ IJX
−1
F

(i)+P (i)] is a diagonal matrix with size of J×J ,

and so is Ω(i + 1). Hence, the computation of Ω(i + 1) turns to be quite simple,

and a lower computational complexity can be achieved here.

Substituting Equation (6.24) into Equation (6.20), we obtain

P(i + 1) = I2 ⊗
{
λ−1[P (i) − P (i)Ω(i + 1)P (i)]

}
,

P (i + 1) = λ−1[P (i) − P (i)Ω(i + 1)P (i)].

And the coefficients adaption equation changes to

wF(i + 1) = wF(i) +




P (i + 1) 0J×J

0J×J P (i + 1)



 UH
F (i + 1)eF(i + 1). (6.25)

It is clear that computation of the inverse correlation matrix P(i + 1) has been

simplified a lot, as the matrix inversion in P(i+1) requires only simple processing at

the receiver. Therefore, the BRLS algorithm, with its application to this scenario,

can be implemented at a lower computational complexity that is even comparable

to the classical LMS schemes.
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6.2 Adaptive FDE With Diversity Combining

The adaptive FDE schemes developed in the last section is effective in combating

the multipath fading in wireless environments with small channel variation or high

block-to-block fading2 correlation, as will be shown in our simulation results. But

as the frequency dispersion or Doppler spread increases3, the BER performance

will incur distinct degradation, even making the link unusable, as also shown by

the simulation results. This is due to the inability of these recursive algorithms

in tracking faster channel variations. In [64], Younis et al proposed some possible
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Figure 6.2: The structure of adaptive FDE with diversity combining

solving methods, such as using smaller data block or retraining more. Whereas,

these methods, when applied to those channels with large delay spread, may lower

the system throughput. Here we propose a method of incorporating the adaptive

FDE with diversity combining to mitigate the detrimental effect introduced by

2We assume block fading ; for details, readers can refer to Chapter 4.
3We assume channels experience slow fading, even under such increase in the Doppler shift.
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frequency dispersion of fading channels. The diversity combining employed here

is different from those commonly used receive diversity schemes, as the combined

branches are in the frequency domain rather in the time domain.

Figure 6.2 depicts the block diagram of adaptive FDE with diversity combin-

ing. There are m branches arranged at the receiver. The received data blocks at

each branch are transformed to the frequency domain by using FFT. The data ma-

trix is formed according to Equation (6.21), and then weighted by respective filter

coefficients. Each filter output is combined with outputs of the other branches. The

combining output is transformed back to the time domain by means of IFFT, and

rendered to a slicer or quantizer for decision-making. The error signal, is generated

by comparing the equalizer output with the desired response, and transformed to

frequency domain to adapt the coefficients of each equalizers according to some

specific recursive algorithms.

This diversity arrangement can assist the equalization and improve the BER

performance, because it is unlikely that all the m branches will experience a deep

fade at the same FFT grid. This concept, actually we have introduced earlier in

Chapter 4. Each branch at the receiver needs to be separated from each other

sufficiently so that the signals they receive are independent or highly uncorrelated.

As both transmit diversity and receive diversity are employed here, this system

actually comes out to be a MIMO (multi-input-multi-output) system. And the

wireless environment is MIMO frequency-selective fading channels.
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6.3 Simulation Results and Discussion

In this section, we provide simulation results for the adaptive FDE scheme. Here

we still focus on the STBC scheme with two transmit antennas and one receive

antenna (unless we specified it purposely). The overall transmitter power is the

same as for a single transmit antenna (normalized to one), i.e, the the transmission

power at each transmit antenna is normalized and multiplied by a factor 1/2. This

is slightly different from what we have used in the last chapter, but both approaches

are equivalent in the sense of SNR, and consequently the results are comparable.

For all results we consider 8-PSK modulations without channel coding. And

the GSM 05.05 EQ wireless channel model [60] with channel order v = 3 is still

employed in our simulations for equalization test. We deploy the ZP-only scheme as

data transmission format. The burst structure follows the frame format as shown

in Figure 4.5, which is different from the one that we have used in Chapter 5 (as

illustrated in Figure 5.5). This is because the adaptive equalization eliminates the

need for additional channel estimation by implementing the channel estimation and

equalization jointly.

Block fading is still assumed in our simulations; but the channel fadings are

no longer independent from burst to burst, instead, they are correlated in the time

domain. That is, the Doppler spread is introduced in the simulations, which may

affect performance of the adaptive FDE, as will be shown later. To generate the

correlated Rayleigh fading, the simulator as depicted in Figure 6.3 is adopted in

our simulations, where fd denotes the maximum Doppler frequency shift. Detailed
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Figure 6.3: Frequency-domain implementation of a correlated Rayleigh fading

simulator at baseband

steps regarding implementing the simulator can be found in [2]. As in this thesis,

only slow fading is considered, and block fading is assumed, therefore, the rate of

fading in the Monte Carlo simulations can be determined by fdT = fd/fb, where T

and fb denotes the burst period and burst rate, respectively. A larger value of fdT

implies faster fading and vice versa. In our simulations, the data subbock length,

N , is set to 61, therefore the burst length 2J or 2(N + v) is equal to 128.

We first present a comparison of the ensemble-average error performance of the

BLMS algorithm to the BRLS algorithm with fdT = 0.0001 and Eb/N0 = 15 dB,

as shown in Figure 6.4. We used µ = 0.12 and λ = 0.95 for the BLMS and BRLS

algorithms, respectively. The BRLS algorithm reaches a MSE of less than 16dB
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Figure 6.4: Comparison of the learning curves of the BLMS and BRLS algo-

rithms. 2TX, 1RX; J = 64, v = 3, N = 61; fdT = 0.0001; Eb/N0 = 15 dB; µ =

0.12; λ = 0.95.

within a few bursts (less than 5), while the BLMS takes a number of (more than

30) bursts to reach the same performance. The BRLS algorithm outperforms the

BLMS algorithm in both the rate of convergence and excess MSE with comparable

complexity, hence is more appropriate for practical applications. Hereafter in our

simulations, we adopt only the BRLS algorithm, and use 5 bursts for equalizer

training, and 45 bursts for data transmission.

Figure 6.5 shows the BER performance of the adaptive FDE with regard to

different Doppler spread. For the convenience of comparing, we also plot the BER
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Figure 6.5: BER performance of the adaptive FDE with three different

doppler spread. 2TX 1RX; J = 64, v = 3, N = 61; λ = 0.8, 0.7, and 0.5 for

fdT = 0.0003, 0.003, and 0.006, respectively.

performance of MMSE-DFE and MMSE-LE (assuming ideal knowledge of CSI) in

the same figure. It is clear that when the channel correlation is high, the BER

performance is quite good, or even comparable with performance of the MSE-

DFE. But as the Doppler spread increases, the BER performance degrades rather

observably, which is even inferior to that of the MMSE-LE. We can further predict

that, if the Doppler spread continues to increase, the link, even with the presence

of adaptive FDE, may become unusable.

We also investigate the performance of our proposed frequency domain diver-
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Figure 6.6: BER performance comparison of adaptive FDE with and without

diversity combining, with regard to three different doppler spread. J = 64, v =

3, N = 61; λ = 0.8, 0.7, and 0.5 for fdT = 0.0003, 0.003, and 0.006, respectively.

sity combining scheme in junction with the adaptive FDE to combat the effect

induced by channel variations. The simulation results are presented in Figure 6.6,

where 2 receiver antennas are used with compared to the case of single receive

antenna. It is clear that the performance improvement due to diversity combin-

ing is significant. We take the case of fdT = 0.006 as an example; by fixing the

BER at 10−3, we observe that the diversity combining (2RX) outperforms the non-

combining (1RX) by about 6dB. Additionally, Figure 6.7 presents the comparison

of learning curves for the diversity combining scheme (2RX) and non-combining
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scheme (1RX). It is obvious that by using diversity combining at the receiver,

the learning curves become smoother, and the excess MSE is also reduced. The

adaptive FDE as well as the diversity combining scheme, can also apply to the

broadband wireless systems, such as the BWA [62]. We present the simulation

results in Figure 6.8, where J = 512, N = 449, v = 63, and a uniform power delay

profile is adopted. The performance improvement due to diversity combining is

also substantial.
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Figure 6.7: Comparison of the learning curves of the adaptive FDE with and

without diversity combining, with regard to three different doppler spread.

J = 64, v = 3, N = 61; Eb/N0 = 12 dB; λ = 0.7 and 0.4 for fdT = 0.003 and 0.006,

respectively.

In our Monte-Carlo simulations, we have not specified the actual Doppler
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Figure 6.8: BER performance comparison of adaptive FDE with and without

diversity combining, with regard to two different doppler spread. J = 512, v =

63, N = 449; λ = 0.7, and 0.5 for fdT = 0.002, and 0.005, respectively.

frequency or the mobile speed; instead, we only used the fdT to denote the Doppler

spread. Now let us consider some typical systems. Here we still take the EDGE

system as a case study, whose symbol rate is 271 kb/s. As we have 128 symbols in

one burst, the burst rate is about 2117 bursts/s. Then fdT = 0.006 corresponds to

the mobile speed of 15 km/h. Such speed, in reality, may appear rather slow. If the

speed increases, the Doppler spread will increase accordingly, finally making the

adaptive equalizer unable to track the changes of the channel impulse response.

Therefore, the adaptive FDE, although enjoys the advantage of low complexity,
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may not appear suitable to those systems that operate in the environments with

relatively high Doppler spread, such as the EDGE system. For the EDGE system,

it is more appropriate to employ the FDE schemes (especially the DFE) that we

developed in the last chapter for two main reasons:

1. Only slight changes need to be carried out to the original burst structure,

and the relative positions of data blocks with regard to training blocks are

still retained.

2. The use of FD DFE (either ZF or MMSE) can achieve significant improvement

in performance over linear equalizers at a cost of comparable complexity

increase, because the data subblock size is not so large.

On the other hand, the adaptive FDE schemes, together with the frequency-

domain diversity combining, is suitable to those systems with large delay spread

but relatively small Doppler spread, for example, the BWA systems [62]. Using the

adaptive FDE scheme can achieve a satisfactory BER performance with relatively

low computational complexity as compared to those training-based FDE schemes,

because only linear processing is involved in the computations.

6.4 Summary

In this chapter, we presented the adaptive FDE scheme that is based on the BLMS

or BRLS recursive algorithms. This adaptive scheme obviates the need for distinct

channel estimation, and realizes joint channel estimation and equalization. Simu-

lations results indicated the adaptive FDE scheme (based on BRLS) to be effective
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in combating the ISI caused by multipath fading with relatively lower complexity.

We also proposed a diversity combining method which is implemented in the fre-

quency domain to mitigate the detrimental effect induced by channel variations.

It was shown by simulations that this diversity combining scheme can efficiently

ameliorate the BER performance when the Doppler spread increases. Finally, we

presented our recommendations about applications of both training based FDE

schemes and the adaptive FDE schemes to practical communication systems.
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Chapter 7

Conclusion

7.1 Thesis Summary

This thesis develops FDE schemes for STBC transmissions over frequency-selective

fading channels. Our objective is to exploit benefits of the two techniques: FDE

and STBC, by combining them together with application to typical communication

systems.

To have a better understanding of these two techniques of FDE and STBC,

we presented detailed descriptions about them in Chapter 3 and Chapter 4, respec-

tively. In Chapter 3, based on our thorough literature survey, we categorized the

FDE techniques that ever appear in the literature into two types: FDE based on

block adaptive filter and FDE based on circulant matrices. We further pointed out

the similarities and differences between these two types. The first type is actually a

fast implementation of the block adaptive filter; while the second type is to use the

eigen-decomposition property of circulant matrices, and usually necessitates some
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form of transmitter design to construct such circulant matrices. In this thesis, we

considered only the second type of FDE.

The STBC technique was discussed in Chapter 4. We focused on the block

STBC scheme that was proposed recently in the literature for frequency-selective

fading channels. This block scheme is of interest as it can provide diversity gains

as the Alamouti’s original scheme does, and may facilitate the implementation of

FDE, hence was adopted in our work for transmitter design. Additionally, we also

introduced two specific block STBC schemes: CP-only and ZP-only, which were

chosen in our work for data transmission and channel estimation, respectively.

In this thesis, we have investigated two FDE schemes for STBC transmissions

over multipath fading channels: the channel estimation based non-adaptive version

and the adaptive version. In Chapter 5, we focused on the nonadaptive version,

where we developed both linear and nonlinear (DFE) STBC-FDE schemes ac-

cording to the ZF and MMSE optimizing criteria. Closed form expressions for tap

coefficients of these equalization schemes, especially the ZF-DFE and MMSE-DFE,

were derived. We also indicated that our work in FDE can be readily extended to

perform channel estimation, and hereby we proposed a training based frequency-

domain channel estimation method, in which training blocks can be encoded by the

same space-time coder as the data blocks. Performance of the channel equalization

and estimation schemes was examined by applying them to the EDGE communi-

cation system. Simulation results indicated significant performance improvement

archived by these STBC-FDE schemes as compared to the case of single transmit-

ter with FDE. Simulation results also demonstrated effectiveness of the frequency-
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domain channel estimation scheme, which, at its worst, incurs about 3 dB SNR

performance penalty for inaccurate channel estimation.

Chapter 6 presented the adaptive FDE scheme that is based on the BLMS

or BRLS recursive algorithm. This adaptive scheme eliminates the need for dis-

tinct channel estimation by performing channel estimation and equalization jointly.

Simulations results showed that the adaptive FDE scheme (based on BRLS algo-

rithm) is effective in combating the ISI caused by multipath fading with relatively

lower complexity. We also proposed a diversity combining method which is im-

plemented in the frequency domain to mitigate the detrimental effect induced by

frequency dispersion of the channel impulse response. It was indicated by simula-

tions that this diversity combining scheme, in conjunction with the adaptive FDE,

can efficiently ameliorate the BER performance as the Doppler spread increases.

Our recommendations were put forward in the end for the applications of

both training based FDE and adaptive FDE schemes to practical communication

systems. That is, the training based FDE schemes are more appropriate for those

systems with small delay spread (small block size) and relatively high Doppler

spread, such as the EDGE system; the adaptive FDE scheme, on the other hand,

is suitable to those systems with large delay spread (large block size) and relatively

low Doppler spread, such as the BWA systems.
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7.2 Future Work

Based upon our work presented in this thesis, there are a few possible research

topics lying ahead of us, as listed in the following:

• Throughout this thesis, the block fading is assumed, so that the orthogonality

of STBC can be ensured. However, this assumption may not be justified in the

case of rapidly varying multipath fading channel. Under such circumstance,

how to design the equalization schemes to combat both the multipath fading

as well as the loss in orthogonality of STBC comes to be a possible future

research topic.

• In Chapter 6, we considered only the adaptive linear equalizer. In fact, it is

possible to use an adaptive DFE instead to combat the multipath fading. But

how to design the feedforward and feedback filters as well as the recursive

algorithms to adapt them, is a challenging topic because a tradeoff should be

reached between the performance improvement and complexity increase.

• As FDE and STBC can also be jointly applied to CDMA system (e.g., [65]),

these various DFE schemes presented in this thesis, including the channel

estimation based schemes and adaptive scheme, can be readily extended to

CDMA system, which is an interesting research topic worthwhile being looked

into.
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Appendix A

Proof of P
(1)
J a = FH

J FH
J a

FJ denotes an symmetric J × J orthonormal DFT matrix whose (p, q) th entry is

given by J−1/2exp(−j2πp q/J), where 0 ≤ p, q ≤ J − 1. FJ is unitary transforma-

tion, that is, F−1
J = FH

J = F∗
J . So when

√
J FJ operates on a column vector (e.g.,

a) of length J , the result is a column vector (e.g., aF) containing the DFT of the

original vector, i.e.,

√
JFJa = aF

where a = [a(0), a(1), . . . a(J − 1)]T , is the same as we have introduced in earlier

context.

According to the complex-conjugate property of DFT [6], when implementing

DFT on the conjugate of a, we have

√
JFJa

∗ = a∗

F((−k))J = a∗

F(J − k), 0 ≤ k ≤ J − 1, (A.1)

where a∗
F((−k))J is the circular reverse of a∗

F . Conjugate of Equation (A.1) is given
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by

(
√

JFJa
∗)

∗

=
√

JFH
J a = aF((−k))J = aF(J − k), 0 ≤ k ≤ J − 1,

Then applying the IDFT operation, i.e., 1√
J
F−1

J , on aF((−k))J , we can get

1√
J
F−1

J (aF(J − k)) = a((−k))J (A.2)

=
1√
J
F−1

J

√
JFH

J a = FH
J FH

J a (A.3)

In Equation (A.2) we directly apply the time-reversal property of DFT as described

in [6]. From Equations (A.2) and (A.3), we can summarize that

a((−k))J = FH
J FH

J a. (A.4)

Since a((−k))J = [a(0), a(J − 1), a(J − 2), . . . , a(1)]T and P
(1)
J a = [a(0), a(J −

1), a(J − 2), . . . , a(1)]T , we may conclude that

P
(1)
J a = FH

J FH
J a. (A.5)


