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Summary 

Extremely high permeability magnetic materials are essential as sensing elements 

for ultra-weak magnetic field detection sensors. Enhancement in the magnetic 

permeability of sensing elements will result in improvements in sensing performance 

of magnetic sensors. Thus, to obtain super permeability magnetic materials and 

therefore ideal sensing elements, the project focuses on investigations and 

optimization of fabrication processes.  

The investigations were carried out on Ni80Fe20/Cu micro composite wires due to 

near-zero magnetostriction and high initial permeability of Ni80Fe20, and high sensing 

performance arising from wire structures. An extensive literature review was 

conducted. The research approach was considered and implemented. Parametric 

investigations on plating current density, pH value, coating thickness and alloying 

effect of molybdenum were conducted on DC electrodeposited NiFe/Cu composite 

wires. Localized magnetic properties and magnetic domains of DC electrodeposited 

NiFe/Cu composite wires were investigated.  Nanocrystalline grain size of deposited 

NiFe layers was controlled through saccharin addition and plating current 

manipulation.  Effect of imposed longitudinal magnetic field during DC 

electrodeposition was conducted. Properties of annealed wires were characterized to 

obtain optimum annealing conditions. Cold-drawn and magnetron sputtered NiFe/Cu 

composite wires were developed and magnetic properties compared within different 

methods.  

It was revealed that in composite NiFe/Cu wires, there are circular domains with 

alternating left- and right-handled magnetization in adjacent domains, with size of 

circular domains and saturation field dependent on Fe%. A critical value of plating 

current density was found, below which soft magnetic properties decreased and above 
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which soft magnetic properties increased, with increasing current density. Electrolyte 

pH value was found to affect plated layer composition. Coercivity can be in a 

dynamic constant state as the coating thickness varies. Under such circumstance, 

coating thickness has mainly geometrical effect on MI effect of composite wires. The 

magnetic properties of Ni78Fe18Mo4 have been found to be much better than Ni79Fe21. 

The coercivity of nanocrystalline permalloy decreases and MI effect increases as 

grain size decreases from 52 nm to 11 nm. For pulse-reverse electrodeposition, 

reducing anodic current amplitude resulted in lower coercivity and larger MI effect. 

Introducing an off-time period to plating current reduces average crystallite sizes of 

deposited material. An imposed longitudinal magnetic field during electroplating 

makes composition more uniform, enhances uniformity and therefore increases 

magnetic softness. This field shifts the magnetic anisotropy from circumferential to 

longitudinal, with level of anisotropy change proportional to field intensity. For 

furnace annealing, as annealing temperature was increased, reduction in MI% ratio 

and sensitivity as well as increase in coercivity was observed, due to permeability 

decrease that was attributed to grain growth and inter-diffusion, despite stress relief 

effects. For DC joule annealing, the highest MI ratio of 1110% was obtained. For 

cold-drawing of composite wires, ratio of NiFe:Cu has been found to remain 

unchanged. During final anealing, an optimum annealing temperature was found. The 

coercivities of composite wires, fabricated by different methods, decrease as the grain 

size decreases. However, since different deposition methods produce specimens of 

varying level of residual stress and uniformity, the range of the coercivity trends is 

according to the deposition methods used.  
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Chapter 1 Introduction 

___________________________________________________ 
1.1.  Motivation 

In the development of extremely high sensitivity, very weak magnetic field bio-

sensors, extremely magnetically soft materials are essential as sensing elements. At 

sufficiently high sensitivity, these magnetic sensors can be used, with immense effect, 

in magnetoencephalography (MEG) for brain wave monitoring in bio-applications or 

in magnetic signature detection in defense related applications. Composite wires 

Ni80Fe20/Cu have so far displayed promising potential to achieve the extremely high 

sensitivity as required by the sensing element in biosensors. This high permeability 

and high sensitivity properties can be affected by key factors, such as the material 

composition, nanocrystalline grain size, coating thickness, level of residual stress and 

anisotropy. Ni80Fe20 has high initial permeability and near-zero magnetostriction. 

According to the random anisotropy model (RAM), below a critical grain size as the 

nanocrystalline grain size decrease, the coercivity of the ferromagnetic material will 

decrease.  

The careful selection of the fabrication process as well as optimization of the 

process parameters can lead to optimized performance of the sensing elements in 

magnetic sensors. Currently, composite wires can be fabricated by three main 

approaches: namely, electrodeposition, cold-drawing and magnetron sputtering. The 

electrodeposition method is reported to be capable of producing specimens of superior 

material and magnetic properties, although the method faces problems of consistency. 

The sputtering method is capable of depositing uniform layers, but it faces the 

limitation of weak adhesion and high stress of deposited material, leading to the 
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deposition of only very thin (less than 1µm) layers. The cold-drawing method can 

achieve consistent specimens. However, the process requires a long period of 

execution.  

Researches on influence of the synthesis method and parameters on the resulting 

magnetic properties have been virtually non-existent, despite its potential scientific 

and physical impact. This challenge thus leads to the motivation behind this project of 

developing a technology that optimizes the fabrication process technology to achieve 

super permeability NiFe for NiFe/Cu composite wires.  

 

1.2. Objectives of present study 

For the sensing elements in GMI sensor or orthogonal fluxgate sensor, the main 

objective of this project is to develop the fabrication technology of super 

peameabillity NiFe/Cu composite wires, focusing on a nanocrystalline 

electrodeposition approach to deposit super permeability permalloy on micro copper 

wires, as well as other approaches including magnentic field assisted 

electrodeposition of permalloy on copper wires, cold-drawing of NiFe/Cu composite 

wires, and magnetron-sputtering of peramlloy on copper wires, as detailed below: 

1. To investigate localized magnetic properties and magnetic domain of DC 

electrodeposited NiFe/Cu composite wires 

2. To investigate various process parameters in relation to materials and magnetic 

properties of the deposited layer for electrodeposited NiFe/Cu composite wires. 

3. To develop a nanocrystalline deposition technology for electrodeposited NiFe/Cu 

composite wires through manipulation of the plating current waveform: namely, 

direct current electrodeposition, pulsed electrodeposition, pulse-reverse (PR) 

electrodeposition; and the addition of additives such as saccharin.  
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4. To study effects of imposition of a longitudinal magnetic field during 

electrodeposition on resulting material, magnetic properties and magnetic sensing 

performance of electrodeposited NiFe/Cu composite wires.  

5. To investigate effects of post heat treatment (i.e. furnace annealing and DC joule 

annealing) on material and magnetic properties, and magnetic sensing 

performance of electrodeposited NiFe/Cu composite wires. 

6. To explore and develop a cold-drawing technology of NiFe/Cu composite wires. 

7. To fabricate sputtered NiFe/Cu composite wires and compare all the developed 

composite wires in relation to the material and magnetic properties.   

 

1.3. Organisation of Thesis 

In this thesis, the project motivation, the project objectives and the organization 

structure of the thesis are given in Chapter 1. The implications and importance of the 

magnetic sensors, an overview of the current magnetic sensing technology as well as 

an overview of the available sensing elements are given in Chapter 2. Chapter 2 also 

reviews the current technology for various deposition methods, such as 

electrodeposition, cold-drawing and magnetron sputtering. Relevant and important 

magnetic theories are also discussed in this chapter. Chapter 3 describes the proposed 

research approach as well as various fabrication and characterization setups used in 

the study conducted. Chapter 4 describes the conducted investigations on localized 

magnetic properties and magnetic domains of DC electrodeposited NiFe/Cu 

composite wires while Chapter 5 describes the investigations conducted on the 

electrodeposition parameters in relation to material and magnetic properties of the 

deposited NiFe/Cu composite wires. A technology to manipulate the grain sizes of the 

electrodeposited NiFe/Cu through the control of the plating current waveform and the 
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addition of additive saccharin was proposed and investigated. Details of these 

investigations are given in Chapter 6. The influence of an imposed longitudinal 

magnetic field during electrodeposition of the NiFe/Cu ccomposite wires was 

discussed in Chapter 7. Chapter 8 describes the implications of furnace and DC joule 

annealing on material and magnetic properties of electrodeposited NiFe/Cu composite 

wires. Chapter 9 provides a detailed description of the development of cold-drawing 

as an alternative to fabricating NiFe/Cu composite wires as welll as the magnetic 

properties of such composite wires. Chapter 10 describes results on the development 

of magnetron sputtered NiFe/Cu wires and compares such wires with electrodeposited 

wires. Finally, conclusions were given in Chapter 11.  
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Chapter 2 Literature Review 

_____________________________________________________________________ 

 

2.1. Implications of magnetic sensors in defense, bio-medical and other 

industries 

There are a multitude of magnetic sensor applications, many of which are 

encountered in everyday life. Today, no automobile, computer or factory can operate 

efficiently without the help of magnetic sensors. Nearly all applications can be sorted 

into four main categories, with the distinction between the first three categories 

determined by how the sensor is used in relation to the ever-present magnetic field of 

the Earth as well as the sensitivity of the sensor and the fourth category being 

identified as the medical/biological applications [1, 2, 3, 4, 5].  

1) Low-sensitivity application: current sensing: Basically the low sensitivity, 

industrial applications are for magnetic fields greater than the Earth’s magnetic field 

(considered a background nuisance), which varies from 104 to 105 nT. Some major 

applications for such sensors are non-contact switching, alternating current 

measurement, magnetic memory readout and electronic article surveillance [6]. The 

most common sensor is the search-coil magnetometer, hall-effect sensor and the 

magnetometer.  

2) Medium-sensitivity application: magnetic compassing: Sensors under this category 

measure perturbations in the magnitudes and/or direction of Earth’s field due to 

induced or permanent dipoles. Magnetic compassing involves determining the 

orientation of the sensor with respect to the Earth’s magnetic field lines. The magnetic 

field measurements must be projected onto the horizontal plane and this is often 

accomplished by either using gimbal method that allows gravity to orient the sensors 
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with a mechanical system or using tilt sensors and performing the orientation 

electronically. For land navigation, pointing accuracies are also affected by magnetic 

anomalies such as mineral deposits and bridges. Magnetic heading has been a reliable 

measurement for navigation for many centuries. It forms the basis for aviation with 

airport runways named by their magnetic heading. However, using a magnetic 

compass to determine the magnetic heading has some challenges to achieve high 

accuracy. The first main challenge involves developing magnetic field sensors that 

can measure field with absolute accuracy while the second main challenge involves 

developing calibration algorithms that can compensate the magnetic field 

measurements for local variations in Earth’s magnetic field due to nearby noise 

sources such as ferrous metals and electrical currents.  Most common sensors used in 

these applications are the search-coil magnetometer, fluxgate magnetometer and the 

magnetoresistive magnetometer.  

3) High-sensitivity application: magnetic anomaly detection: A heavily researched 

magnetic sensor application is magnetic anomaly detection (MAD), involving 

detecting at some distance away a ferromagnetic object (e.g. mine, ship, tank or 

aircraft) [ 7 ]. The magnetic dipole moment of ferromagnetic objects has two 

contributions. One is a permanent dipole moment. The second contribution is the 

induced magnetic dipole moment of the ferromagnetic material that is the response to 

the Earth’s magnetic field. The induced magnetic dipole is due to the magnetic 

permeability. The total magnetic signature from a vessel or any other object is the 

superposition of these two contributions. Depending on the object and its past history, 

either the permanent moment or the induced moment may dominate or the two 

moments may be comparable to each other. The effect of the two moments 

superimposes to form what is called a magnetic depression in the ambient field. The 
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main distinct advantages of magnetic sensing of objects are that the sensing technique 

is nearly independent of weather conditions, covert, does not need a visual of the 

sensed objects and it is nearly impossible to eliminate the signatures of ferromagnetic 

objects. A major factor in MAD is the detection range. As a ferrous object moves past 

a stationary magnetic sensor, a signature can be recorded. An important consideration 

in MAD is the stability and uniformity of the Earth’s magnetic field. In time tracking 

a magnetic anomaly, it may not be possible to distinguish the anomaly from a time 

variation in the Earth’s magnetic field. In general, there must be relative motion 

between the target and sensor for practical tracking of targets using only frequencies 

of 1 Hz or below. Relative motion is not required if one can detect AC or internal 

motion of ferromagnetic components in targets. High sensitivity magnetometers are 

one of the important research tools used extensively in space exploration [8]. The 

main problems faced in this application are the need for a very large dynamic range as 

well as the need to remove the effect of magnetic fields due to the spacecraft since the 

spacecraft may not be magnetically clean. Some common sensors used are the SQUID 

gradiometer and the optically pumped magnetometer.        

4) Medical/Biological Applications: Magnetic tags can be attached to detect the 

presence of specific molecules. Magnetic microbeads were used as labels in a 

multianalyte biosensor to detect DNA hybridization on a micro-fabricated chip. The 

presence of the beads was detected by giant magnetoresistance (GMR) 

magnetoelectronic sensors embedded in the chip [9]. The motion of body parts such 

as the slight mechanical vibrations of eyelids or the movements of the fingers [10] can 

also be measured using magnetic sensors. Extremely weak magnetic fields generated 

by the brain can also be measured using SQUID [11].  In particular, a protype of a 
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mobile, multichannel magnetoencephalography (MEG) system, named babySQUID, 

for assessing brain functions in newborns and infants [12] has been reported. 

 

2.2. Overview of existing types of magnetic sensors  

Existing magnetic sensing techniques exploit a broad range of ideas and 

phenomena from the field of physics and material science. The working principles of 

the various types of magnetic sensors will be briefly introduced and discussed under 

this section. Currently, magnetic sensors have been broadly classified under two 

categories: vector magnetometers and total field magnetometers.   

There are several problems affecting most vector magnetometers. One key issue is 

the noise problem, particularly the 1 / f noise. Another major problem is that they are 

affected by rotational vibrations.  

1) Search-coil Magnetometer: the operation of this type of magnetometer is based on 

Faraday’s law of induction. If the magnetic flux through a coiled conductor changes, a 

voltage proportional to the rate of change of the flux will be generated between its 

leads. The flux through the coil will change if the coil is in a magnetic field that varies 

with time, if the coil is rotated in a uniform field or if the coil is moved through a non-

uniform field. Typically, a rod of a ferromagnetic material with a high magnetic 

permeability is inserted inside the coil to “attract” the surrounding magnetic field and 

increase the flux density. The signal detected by a search-coil magnetometer depends 

on the permeability of the core material, the area of the coil, the number of turns and 

the rate of change of the magnetic flux through the coil. The frequency response of 

the sensor may be limited by the ratio of the coil’s inductance to its resistance, which 

determines the time it takes the induced current to dissipate when the external 

magnetic field is removed, and in some cases, by the inter-winding capacitance. In 
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practice, the voltage readout electronics can limit both the sensitivity and the 

frequency response of the sensor. This type of sensors can detect fields as weak as 

20fT (2 x 10-5 nT), their useful frequency range is typically from 1 Hz to 1MHz, 

require between 1 – 10 mW of power (consumed in the readout electronics) and are 

very small in size (sensor’s coil length can be from 2 – 50 inch). This type of sensor is 

primarily used in harsh environments where high reliability sensing can be afforded 

such as on aircraft door checks or for indicating the position of slats and landing gear.  

2) Fluxgate magnetometer: This type of sensor consists of a ferromagnetic material 

wound with two coils, a drive and a sense coil. It exploits magnetic induction together 

with the fact that all ferromagnetic materials become saturated at high fields.  When a 

sufficiently large sinusoidal current is applied to the drive coil, the core reaches its 

saturation magnetization once each half cycle. As the core is driven into saturation, 

the reluctance of the core to the external magnetic field being measured increases, 

thus making it less attractive for any additional magnetic field to pass through the core. 

This change is detected by the sense coil. When the core comes out of saturation by 

reducing the current in the drive coil, the external magnetic field is again attracted to 

the core, which is again detected by the second sense coil. Thus, alternate attraction 

and lack of attraction causes the magnetic lines of flux to cut the sense coil. The 

voltage output from the sense coil consists of even-numbered harmonics of the 

excitation frequency. For read-out, the second harmonic is extracted and rectified, 

since the voltage associated with this harmonic is proportional to the external 

magnetic field. The sensitivity of this sensor depends on the shape of the hysteresis 

curve. For maximum sensitivity, the magnetic field B-H curve should be square since 

this produces the highest induced electromotive force (e.m.f.) for a given value of the 

magnetic field. For minimum power consumption, the core material should have low 
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coercivity and saturation values. The sensitivity range is from 10-2 to 107 nT. The 

frequency response of the sensor is limited by the excitation field and the response 

time of the ferromagnetic material and the upper limit on the frequency is about 10 

kHz. The major advantage of fluxgate magnetometers over search coils is their ability 

to precisely measure direct current fields [13, 14]. An example of the application of 

such sensors is an aircraft compass system.    

3) Superconductor Magnetometers: a) Superconducting quantum interference device 

(SQUID) sensors: these sensors are the most sensitive instruments for measuring a 

magnetic field at low frequencies (less then 1 Hz) and the operating principle is based 

on the interactions of electric currents and magnetic fields observed when certain 

materials are cooled below a superconducting transition temperature. At this 

temperature, the materials become superconductors and they lose all resistance to the 

flow of electricity [15]. 

4) Hall Effect Sensor:  as the name suggests, the sensor exploits a physical 

phenomenon (Hall effect) whereby a voltage difference appears across a thin film, 

placed in a strong magnetic field perpendicular to the plane of thin film when an 

electric current is sent along the its length. An electron moving through a magnetic 

field experiences a force (Lorentz force), that is perpendicular both to its direction of 

motion and to the direction of the field. It is the response to this force that creates hall 

voltage. The Hall effect is very minute in metallic conductors but is larger in 

semiconductors. Since there are fewer conduction electrons in a semiconductor, if the 

total current through the semiconductor is similar to that of the metal, the electrons in 

the semiconductor must have a much higher drift velocity than those in the metal. The 

faster the electrons are moving, the stronger the force the electrons will experience 

and the greater the Hall voltage produced at equilibrium. Inexpensive Hall effect 
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sensors are generally made of silicon while more sensitive sensors can be made of III-

V semiconductors (e.g. indium antimonide), which have higher electron mobilities 

than silicon. The silicon sensors have a sensitivity range of 106 – 108 nT and the 

indium antimonide sensors extend the lower limit to 102 nT. Hall effect sensors can 

either measure a constant or a varying field and the upper frequency limit is about 1 

MHz. They are light, occupy a mere 0.1 in2, their power requirement is between 0.1-

0.2 W, and they can be operated over an extremely wide temperature range limited 

only by packaging and lead attachment to the semiconductor. Due to their numerous 

advantages and low costs, Hall effect devices have found hundreds of uses in low 

costs position sensor applications [16].           

5) Magnetoresistive Magnetometer: Magnetoresistance (MR) magnetometers use a 

change in resistance caused by an external magnetic field H. These magnetometers 

are very attractive for low cost applications due to the fact that they are simply 

energized by applying a constant current and the output voltage is a measure of the 

magnetic field [17].  

6) Spin–valve Transistors: Spin-valve transistors are spin-valves sandwiched between 

a pair of semiconductors, one of which is the emitter and the other the collector. The 

current through the device changes as a function of magnetic field. Current changes 

with increasing magnetic field (as large as 200%) have been observed, but at present, 

the output currents are of order microamps and are too small for most sensor 

applications [18].  

7) Giant Magneto-impedance (GMI) Magnetic Sensors: The operation of these 

sensors are based on the phenomenon that impedance of amorphous wires, ribbons 

and nanocrystalline materials decreased sharply in fields less than 50 Oe, due to skin 

depth effect [19,20]. The impedance has been found to be a strong function of both 
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the magnetic field and the magnitude and frequency of the drive current. This effect 

has been termed as giant magneto-impedance effect (GMI) effect.    

8. Magnetodiode: a magnetodiode is essentially a semiconductor diode; or pn junction. 

In a magnetodiode, however, the p region is separated from the n region by an area of 

undoped silicon. The device is fabricated by depositing silicon and then silicon 

dioxide on a sapphire substrate. If a metal contact on the p-doped region is given a 

negative potential, holes in the p-type material and electrons in the n-type material 

will be injected into the undoped silicon. The current is the sum of the holes’ current 

and the electron current. Some of the carriers, particularly those near the interface 

between the silicon and the sapphire, will recombine. The loss of charge carriers 

increases the resistance of the material. In the absence of a field, recombination at 

both interfaces contributes to the resistance. A magnetic field perpendicular to the 

direction of travel of the charge deflects them either down or up, depending on the 

direction of the field. Both holes and electrons are deflected in the same direction 

because they are traveling in opposite directions. Charge carriers near the interface 

between the silicon and the sapphire have a greater tendency to recombine than those 

near the interface between the silicon and the silicon dioxide. Thus, if the magnetic 

field deflects the charge carriers down, the resistance of the material is increased; if it 

deflects them up, the resistance is decreased. The response of a magneodiode to a 

magnetic field is about ten times larger than the response of a silicon Hall-effect 

device.   

9. Magnetotransistors: This sensor is actually an integrated silicon device. If the 

magnetodiode is a version of a pn junction, the magntotansisitor is a version of a npn 

transistor. Like the transistor, it consists of an n-doped emiiter separated from a n-

doped collector by a p-doped base. The difference is that there are two collectors 
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instead of one. In the absence of a magnetic field, equal numbers of charge carriers 

arrive at both collectors. If there is a magnetic field perpendicular to the direction of 

travel of the charge carriers, they are deflected towards one collector or the other, 

depending on the direction of the field. The two-collector voltages are fed to a 

difference amplifier, whose output is proportional to the applied magnetic field. Two 

different effects are used in magnetotransistors to detect magnetic fields: Hall and 

Suhl effects. The  Hall effect has been described earlier while the Suhl effect takes 

place when the Lorentz force is not compensated. An external magnetic field causes a 

change in trajectory of the moving carriers, resulting in a variation in the current 

distributions that is detected between the collector outputs. Although both effects 

occur simultaneously, it is possible to design devices in which one effect is dominant. 

The magnetotransistor is expected to be 100 times more sensitive than the silicon 

Hall-effect device and is based on a standard fabrication technology (i.e. silicon 

substrates).    

Table 1 Table showing sensitivity of different types of sensors with the grey colored 
bars representing current achievable sensitivity range of the sensors and the shaded 
bars depicting potential enhancements.  
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10. Magnetooptical Sensor: This sensor exploits Faraday’s effect, which involves the 

rotation of the plane of polarized light when traveling through a magnetic material 

[21]. This effect is largest in a few crystals when the propagation directions of the 

light, the crystal axis, and the applied magnetic field are all aligned.  

 

2.3.  Overview of different types of magnetic sensing elements   

Weak magnetic field sensors, such as giant magnetoimpedance effect sensors or 

orthogonal fluxgate sensors, essentially utilize soft magnetic sensing elements in their 

systems to pick up signatures from magnetic sources. Beside the electrical output 

circuitry (readout) design and the pick-up coils parameters, the quality of the soft 

magnetic sensing elements greatly affects the performance of the sensors in terms of 

sensitivity, resolution and also the range of sensing.  As such, immense scientific 

interests have been focused on the development of such sensing elements [22, 23, 24, 

25, 26]. 

  

 

 

 

 

 

Fig. 1 Schematic diagram showing structures of (a) an amorphous wire; (b) a 
nanocrystalline composite wire.  

 

To date, research interests and efforts have mainly been focused on two main 

types of sensing elements: 1) amorphous wires and ribbons; and 2) composite wires 

and films. The main differences between the structures of the two types of sensing 
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and/or Co, metalloids like 
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Cr, Al, Cu, Mn, Nb 
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elements are the presence of an insulating layer in the amorphous wires and a non-

magnetic conductive core in the composite wires (Fig. 1). 

For the past two decades, increasing efforts have been placed on developing and 

understanding the mechanisms responsible for the properties of amorphous wires [27,  

28, 29, 30, 31, 32, 33, 34]. Glass-coated amorphous microwires are fabricated either 

by the quenching [28] or drawing [33] technique or a combination of the two 

techniques [34]. These wires typically consist of an amorphous metallic nucleus 

covered by Pyrex-like insulating coating [23]. The general composition of the families 

of rapidly quenched microwires consists of mainly Fe and/or Co (70-80%), metalloids 

like Si and B and sometimes small amounts of other elements such as Cr, Al, Cu, Mn 

and/or Nb in order to improve the mechanical, corrosion resistant or magnetic 

properties. Although prepared already three decades ago, interest has risen, since the 

last decade, with the advancement of the preparation techniques as well as the 

measurement techniques, due to the arising number of technological applications 

derived from their outstanding magnetic properties and small dimensions [35, 36, 37].  

Amorphous magnetic materials are usually produced by rapid quenching 

techniques that lead to rather large frozen-in stresses within the samples. In particular, 

amorphous wires are subjected to radial gradients of temperature, giving rise to a 

complex distribution of internal stresses that leads to a peculiar domain structure, 

known as core-shell structure [28]. This structure consists of a core magnetized along 

the axial direction and an outer shell, whose magnetic moments points either radially 

(for wires with positive magnetostriction) or circumferentially (for wires with 

negative magnetostriction). These stresses determine their magnetic properties [38]. It 

is well known that low-temperature annealing can alter the magnetic properties of the 

as-cast amorphous samples, simply by relaxing the internal stresses. As such, Joule 
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heating, furnace annealing or stress annealing has been extensively employed in 

amorphous materials to improve their soft magnetic characteristics [39, 40, 41, 42]. N. 

Bayri et al. [42] observed a maximum stress-impedance ratio of 255% in the wire 

annealed for 10 mins under an applied tensile stress of 250 MPa. Investigations have 

also been carried out on the magnetoresistance (MR) [43] and magnetoimpedance (MI) 

effect [44, 45, 46, 47, 48, 49]. A maximum MI ratio of 330% at 1MHz ac testing 

current was achieved for Co68.1Fe4.4Si12.5B15 amorphous wires. In particular, 

asymmetric giant magnetic impedance (AGMI) behaviour studies (arising due to a 

crystallized layer created by annealing the wires in open air) have been conducted on 

Co68.18Fe4.32Si12.5B15 amorphous wires [50]. 

As compared to amorphous wires, fewer scientific studies have been conducted on 

composite wires. One of the earlier works on GMI was demonstrated in NiFe-plated 

conductive wires [51]. This approach led to the fabrication of permalloy-copper wire 

composites, prepared by cold-drawing a permalloy-clad Cu rod [52, 53]. Anatoly S. 

Antonov et al. [52] demonstrated the importance of the role of a Cu core and the 

circumference magnetic anisotropy to achieve GMI effect comparable to that found in 

more conventional soft magnetic wires, despite the fact that the properties of the 

measured permalloy were not optimized. It must be noted that the composite wire 

fabrication techniques, namely electroplating and cold-drawing, are versatile, 

providing means of adjusting process parameters that will directly control the 

obtained materials and magnetic properties. However, works by other authors on 

these areas have been few [54, 55].  

Magnetic properties and MI effect of the composite wires have been conducted on 

different types of composite wires [56, 57, 58]. In particular, a MI% ratio of 1200% 

has been achieved for Fe20Ni64Co16/Cu97Be3 microwires at ac testing current 
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frequency of 4 MHz [57] while a MI% ratio of 800%-900% has been achieved for 

Ni69.4Fe22.4Mo8.2/Cu microwires at ac testing current frequency of 2 MHz [58]. 

Theoretical studies on the current distribution in the composite structures have also 

been conducted [59, 60].  

 

2.4.   Magnetic Materials 

2.4.1 Basic Classification of Magnetic Materials 

The origin of magnetism lies in the orbital and spin motions of electrons and how 

the electrons interact with one another. The best way to introduce the different types 

of magnetism is to describe how materials respond to magnetic fields. The magnetic 

behavior of materials can be classified into the following five major groups: 

i. Diamagnetism – a fundamental property of all matter, although it is usually 

weak. It is due to the non-cooperative behavior of orbiting electrons when exposed to 

an applied magnetic field. Diamagnetic materials consist of atoms which have no net 

magnetic moments (all the orbital shells are filled and there are no unpaired electrons). 

However, when exposed to a field, a negative magnetization is produced and thus the 

susceptibility is negative. Some examples of such materials are quartz, calcite, water, 

etc. 

ii. Paramagnetism - Some of the atoms or ions in these materials have a net 

magnetic moment due to unpaired electrons in partially filled orbitals. However, the 

individual magnetic moments do not interact magnetically, and like diamagnetism, the 

magnetization is zero when the field is removed. In the presence of a field, there is 

now a partial alignment of the atomic magnetic moments in the direction of the field, 

resulting in a net positive magnetization and positive susceptibility. In addition, the 

efficiency of the field in aligning the moments is opposed by the randomizing effects 

of temperature. This results in a temperature dependent susceptibility, known as the 
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Curie’s Law. At normal temperatures and in moderate fields, the paramagnetic 

susceptibility is small. Unless the temperature is very low or the field is very high, 

paramagnetic susceptibility is independent of the applied field. Some examples of 

such materials are clay, Fe-rich clay, silicate and carbonate. 

iii. Ferrimagnetism – In ionic compounds, such as oxides, more complex forms 

of magnetic ordering can occur as a result of the crystal structure. One type of 

magnetic ordering is called ferrimagnetism. The magnetic structure is composed of 

two magnetic sublattices separated by oxygen. The exchange interactions are 

mediated by the oxygen anions. When this happens, the interactions are called indirect 

or superexchange interactions. The strongest superexchange interactions result in an 

antiparallel alignment of spins between the two sub-lattice. In ferrimagnets, the 

magnetic moments of the two sublattices are equal and this results in a net magnetic 

moment and is therefore related to ferromagnetism. 

iv. Antiferromagnetism – If the two sublattice moments are exactly equally 

opposite, the net moment is zero. This type of ordering is called antiferromagnetism. 

The clue to antiferromagnetism is the behavior of susceptibility above a critical 

temperature, called the Neel temperature. Above this temperature, the susceptibility 

obeys the Curie-Weiss law for paramagnets but with a negative intercept indicating 

negative exchange interactions. 

v. Ferromagnetism – The atomic moments in these materials exhibit very strong 

interactions. These interactions are produced by electronic exchange forces and result 

in a parallel or antiparallel alignment of atomic moments. Exchange forces are very 

large, equivalent to a field on the order of 1000 Tesla or approximately 100 million 

times the strength of the earth’s field. The exchange force is a quantum mechanical 

phenomenon due to the relative orientation of the spins of two electrons. 
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Ferromagnetic materials exhibit parallel alignment of moments resulting in large net 

magnetization even in the absence of a magnetic field. Two distinct characteristics of 

ferromagnetic materials are their spontaneous magnetization (magnetization inside the 

materials without external application of a magnetic field) and the existence of 

magnetic ordering temperature. Examples of such materials are Fe, Ni, Co and their 

various alloys. These magnetic dipoles are coupled in parallel by the exchange 

interaction (as proposed by Heisenberg) between spins: 

2 .ex ij i jE J s s= −     (1) 

where si and sj being the resultant spin on adjacent atoms i and j, and J denoting the 

inter-atomic exchange and when Jij>0: ferromagnetism, Jij<0: antiferromagnetism, 

Jij<0, si>sj: Ferrimagnetism. The difference in the alignment of magnetic moments for 

the different categories of magnetic materials is given in Fig. 2. 

 

 

 

 

 

 

 

 

  

 

Fig. 2 Schematics showing alignment of magnetic moments for materials that are (a) 
ferromagnetic; (b) anti-ferromagnetic; (c) paramagnetic; (d) ferrimagnetic. 

 

 

(a) (b) 

(d) (c) 
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2.4.2 Ferromagnetic Materials and Their Properties 

  Perhaps the most important class of magnetic materials is the ferromagnets: iron, 

nickel, cobalt and manganese, or their various alloys. These materials exhibit a unique 

magnetic behavior which is called ferromagnetism. Ferromagnetic materials exhibit a 

long-range ordering phenomenon at the atomic level which causes the unpaired 

electron spins to line up parallel with each other in a region called a domain. These 

materials can be permanently magnetized upon the application of an external 

magnetic field.  

The long range order which creates magnetic domains in ferromagnetic materials 

arises from a quantum mechanical interaction at the atomic level. This interaction is 

incredible in that it locks the magnetic moments of neighboring atoms in spite of the 

thermal agitation which tends to randomize any atomic-level order. Sizes of domains 

range from a 0.1millimeter to a few millimeters. When an external magnetic field is 

applied, the domains already aligned in the direction of this field grow at the expense 

of their neighbors. For a given ferromagnetic material the long range order abruptly 

disappears at a certain temperature which is called the Curie temperature for the 

material. 

 

2.4.3 Curie Temperature Tc 

Even though electronic exchange forces in ferromagnets are very large, thermal 

energy eventually overcomes the exchange forces and produces a randomizing effect. 

This occurs at the Curie temperature. When the ferromagnetic materials are heated 

above the Curie temperature, the materials become disordered and thus paramagnetic 

and magnetization of the material will become zero.  
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As the temperature continues to increase, the susceptibility (ratio of magnetization 

to magnetic field) decreases continually according to the Curie-Weiss law for strongly 

paramagnetic substances, except where there is a change in the phase structure of the 

material. The ferromagnetic curie temperatures for Fe, Co and Ni are 1043 K, 1388 K 

and 627 K respectively. 

 

 

 

 

 

 

Fig. 3 Effect of temperature on magnetization. 

 

2.4.4  Magnetic Domains 

The microscopic ordering of electron spins characteristic of ferromagnetic materials 

leads to the formation of regions of magnetic alignment called domains. There is 

already a high degree of magnetization in ferromagnetic materials within individual 

domains, but that in the absence of external magnetic field, those domains are 

randomly oriented. A modest applied magnetic field can cause a larger degree of 

alignment of the magnetic moments with the external field, giving a large 

multiplication of the applied field. An illustration of the domain structure in 

ferromagnetic materials, such as iron, is given in Fig. 4. The microscopic evidence 

about magnetization of ferromagnetic materials in response to an external magnetic 

field may occur more by the growth of the domains parallel to the applied field at the 

Magnetization 
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Ferromagnetic  Paramagnetic  
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expense of other domains rather than the reorientation of the domains themselves (as 

shown in Fig. 5. 

 

Fig. 4 Domain structures in ferromagnetic materials. 
 

 

 

 
 
 

Fig. 5 Effect of magnetic field on magnetic domains 
 

2.4.4. Hysteresis 

When a ferromagnetic material is magnetized in one direction, it will not relax 

back to zero magnetization when the imposed magnetizing field is removed. It must 

be demagnetized by a field in the opposite direction. If an alternating magnetic field is 

applied to the material, its magnetization will trace out a loop, most commonly named 

as the hysteresis loop (Fig. 6). The lack of retraceability of the magnetization curve is 

the property called hysteresis and it is related to the existence of magnetic domains in 

the materials. Once the magnetic domains are reoriented, it takes some energy to turn 

them back again. This property is useful as a magnetic memory. 

No external field Weak external field Strong external field 
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Fig. 6 Hysteresis Loop 

From the hysteresis loops, the following data can be obtained about the 

ferromagnetic materials.  

a) Remanence value (Mr) – a measurement of the remaining magnetization when the 

driving field is dropped to zero – can be obtained. 

b) Coercive force (Hc) – amount of reverse magnetic field which must be applied to a 

magnetic material to make the magnetization return to zero. 

c) Permeability (μ) – a property of a material that describes the ease with which 

magnetization is established in the material. The value is obtained by the value of 

the slope of the curve at any point on the hysteresis loop (usually from B-H loops). 

d) Maximum amount of useful work – measure of the maximum amount of useful 

work that can be performed by the magnet and the value is represented by (BH)max.  

e) Anistropy – The shape of the hysteresis loop can indicate the anisotropy of the 

measured specimens. If the hysteresis loop obtained is box-shaped, the anisotropy 

should be near longitudinal while if it is rather curvy and round, the anisotropy 

will be circumferential for the case of wires. 

 

Hc 

Mr 
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2.4.5. Factors Affecting Magnetic Quality 

The properties of the magnetic materials depend on chemical composition, 

fabrication techniques, and heat treatment. Some properties, such as saturation 

magnetization, change slowly with chemical composition and are usually unaffected 

by fabrication or heat treatment. However, permeability, coercive force and hysteresis 

loss are highly sensitive and show changes which are extreme among all the physical 

properties, when changes are made in impurities or heat treatment. Saturation 

magnetization, curie point, magnetostriction at saturation and crystal anisotropy 

constant, change only slowly with chemical composition and are usually unaffected 

by fabrication and heat treatment. 

 

2.4.6. Chemical Composition 

Although many elements besides iron are purposely present in magnetic materials, 

nevertheless iron is present as the major constituent in by far the greatest number of 

useful ferromagnetic materials. These may be divided into two classifications: 

Magnetically “soft” materials used in transformers, motors, relays, and other 

electromagnetic apparatus; and magnetically “hard” materials – Permanent Magnets – 

used in loud speaker, relays, telephone receivers, and a variety of other instruments. 

In the magnetically soft materials a substantial portion of the iron is used unalloyed as 

“magnetic iron.” Larger quantities are consumed in the iron-silcon alloys containing 

up to 6% silicon, and smaller amounts in the iron-nickel alloys (Permalloys) and some 

iron-cobalt and iron-cobalt-nickel alloys. The permanent magnet materials include the 

steels containing some essential carbon and the alloying elements cobalt, chromium, 

tungsten, and manganese in various proportion; also the Alnicos containing iron, 

cobalt, nickel and aluminum in various proportions and some times also copper and 
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titanium; and finally iron-cobalt alloys with additions of molybdenum, chromium, 

vanadium, tungsten, and others. The last two classifications, although often referred to 

as steels, do not contain essential carbon and, indeed, carbon is usually harmful; the 

designation “steel” is to be avoided here. 

 

2.4.7. Effects of Impurities 

Impurities, such as oxygen, carbon and sulphur, may seriously affect the aging of 

certain magnetic properties- the coercive force and hysteresis loss of some specimens 

at room temperature. This aging is caused by the precipitation of an impurity such as 

carbon or nitrogen which is present in an amount exceeding its solid solubility The 

effectiveness of hydrogen treatment lies in the fact that magnetic properties are 

affected by small amount of the common impurities only if they are non-metallic in 

character, and that such impurities can be removed by the treatment. These elements 

are probably injurious because they have only limited solid solubility in iron and 

cause dispersion hardening; and they can be removed in a reasonable time because 

they diffuse through the metal and combine with hydrogen at high temperatures. 

Oxygen, carbon and nitrogen are removed in this way more readily than sulphur, and 

carbon is removed probably more readily in moist than in dry hydrogen. Phosphorus 

is not appreciably affected by hydrogen nor does it affect the magnetic properties of 

otherwise pure iron if it is present in small amounts; in iron it may be regarded as 

metallic character as it is indicated by the fact that it forms a solid solution of the 

substitution type when present in amounts less that 1%.  Before a given impurity can 

cease to be harmful it must diffuse through the iron to the surface of the specimen, 

then it must leave the surface either by evaporation or combination in a reasonable 

time when a practically attainable flow of hydrogen or other suitable gas is passed 
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over the surface. The residual impurity must be less than its solid solubility at or 

somewhat above room temperature.  

  

2.4.8. Temperature  

Temperature is one of the important factors beside magnetic field and stress, in 

causing change in magnetization. The greatest influence of temperature is rarely near 

room temperature but rather just below the curie point or near the temperature of a 

phase transformation. At higher temperatures the curves rise more quickly- at lower 

values of H – and then flatten out and saturated at lower inductions. The saturation 

continues to decrease and approaches zero at some temperature called the curie point. 

When a magnetic material is subjected to a high constant field, an increase in 

temperature normally brings about a continuously accelerating decrease in induction; 

the induction comes down abruptly, almost to zero, at the curie point. The curve is 

retraced when the temperature is lowered again. Conversely, when the iron is 

subjected to a weak field, the induction will first increase with increase in temperature 

and, after passing through a maximum, will drop as before to a low value at the curie 

point. In any material which may be called “normal” the curves are likely to have this 

same general character; e.g. the initial and maximum permeabilities first increase and 

then decrease with increasing temperature, and the coercive force and hysteresis loss 

continually decrease. The characteristic maximum in the initial and maximum 

permeabilites, just below the curie point, is associated with the low magnetic 

anisotropy at this temperature.  The change from the ferromagnetic to the 

paramagnetic state is not perfectly sharp, and it is difficult to define and determine the 

curie point exactly. All materials that exhibit ferromagnetism are paramagnetic when 

they are heated above the curie temperature. As the temperature continues to increase, 
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the susceptibility decreases continually according to the Curie-Weiss Law for strongly 

paramagnetic substance, except where there is a change in the phase structure of the 

material. When the saturation magnetization decreases rapidly and finally disappears 

at the curie point, changes becomes evident in other physical properties, e.g. 

resistivity, specific heat, thermal expansivity and elastic constants. 

 

2.4.9. Fabrication Methods (resulting in stressed materials) 

Magnetic materials require a wide variety of modes of fabrication. The methods 

include hot and cold rolling, forging, swaging, drawing, pulverization, 

electrodeposition, and numerous operations such as punching, pressing and spinning. 

Sputtering and pulsed laser deposition, are some of the current methods used to 

produce high quality magnetic materials. Different fabrication or deposition methods 

produce materials of different magnetic properties due to the difference in the induced 

residual stress in the materials and also maybe due to the level of impurities in the 

materials associated to the methods. Materials with near zero magnetostriction 

possess the best magnetic properties. 

 

2.4.10. Heat Treatment 

Some of the most drastic changes in properties occur when the fabrication or heat 

treatment has about a change in structure of the material. High permeability materials 

are annealed primarily to relieve the internal strains introduced during fabrication. 

However, permanent magnet materials are heat-treated to introduce strains by 

precipitating a second phase. Heat treatments are decidedly characteristic of the 

materials and their intended uses. Some common heat treatments for magnetic 

materials are purification, double treatment (may be cooled rapidly to room 
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temperature and reheated to 600°C), bake, air quench, and furnace cool. The purposes 

of these various heating and cooling cycles, and typical materials subjected to them, 

may be listed as follows. 

i. Relief of internal strains due to fabrication or phase changes, e.g. magnetic 

iron. 

ii. Increase of internal strains by precipitation hardening, e.g. Alnico type of 

permanent magnets. 

iii. Purification by contact with hydrogen or other gases, e.g. Silicon-iron 

(cold-rolled), hydrogen-treated iron. 

There are also special treatments, such as those used for “double-treated” Permalloy, 

“magnetic annealed” Permalloy, and Perminvar. Occasionally it is necessary to 

homogenize a material by maintaining the temperature just below the freezing point 

for many hours. Heat treatments also may affect grain size, crystal orientation, or 

atomic ordering [61,62,63].   

 

 2.5. Well-known Magnetic Alloys  

Permalloy is the term for a nanocrystalline magnetic alloy with a composition of 

20% iron and 80% nickel. This material has good magnetic properties like high initial 

permeability, extremely low coercivity and near-zero negative magnetostriction [64]. 

It is used as a high-quality magnetic recording material [65] and is commonly used as 

memory elements in computers [66]. 

Supermalloy is composed of 79% nickel, 4-5% molybdenum, and the rest being 

iron [67]. Molybdenum is added to increase the resistivity of the material and thus, 

reduce eddy current loss. It is a magnetically soft material with high magnetic 

permeability and low coercivity. Resistivity of supermalloy is 0.6 μΩ·m and it is 
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commonly used in manufacturing of components of radio engineering, telephony, and 

telemechanics instruments. 

Mu-metal is a made of 75% nickel, 15% iron, copper and molybdenum. Mu-metal 

is a soft magnetic alloy, having very high magnetic permeability, relatively stable 

crystalline structure with respect to thermal or mechanical treatments, and good 

thermal conductivity [68]. The high permeability makes mu-metals very effective at 

screening static or low-frequency magnetic fields, which cannot be attenuated by 

other methods. Mu-metal is used to shield equipment from magnetic fields, for 

example vacuum chambers for experiments with low-energy electrons and magnetic 

resonance imaging equipment. 

Alcomax is a permanent magnetic material consisting of an alloy of iron, nickel, 

aluminum, cobalt and copper. This material offers the best temperature coefficient 

(0.02% per °C) of all permanent magnets, thus making it an ideal choice when a 

constant field over a wide (-270°C to +500°C) temperature range is required [69]. The 

high nickel content results in good stability against corrosion and oxidation, and this 

metallic composition is also a good electrical conductor. The principal applications of 

alcomax are for triggering of proximity switches such as reeds and Hall effects. Other 

applications include instrumentation and holding magnets. 

Alnico alloys are composed primarily of alloys of aluminum, nickel, and cobalt, 

with the addition of iron, copper, and sometimes titanium. Alnico alloys can be 

magnetized to produce strong magnets with magnetic field strength as high as 0.15 

Tesla at their poles. This material has excellent temperature stability even at 

temperatures up to 550°C and has a Currie temperature of around 800°C. Besides that, 

alnico has high residual induction and relatively high energies [ 70 ].  They are 
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manufactured through either a casting or sintering process. This material is used 

extensively in applications like rotating machinery and sensing devices. 

CuNiFe is an alloy of copper, nickel, iron, and in some cases cobalt. This material 

can be used for making magnets and gives good shape-forming freedom since they 

are wrought metallic material. The alloy has the same linear coefficient of expansion 

of certain types of glass, thus making them an ideal material for the lead out wires in 

light bulbs and thermionic valves. 

 

 2.6. Considerations for High Permeablility Materials 

The fundamental requirements for a high permeability material are: 

1. High saturation magnetization Ms 

2. Very low magnetocrystalline anisotropy energy K1 (or Ku near zero for 

amorphous alloys) 

3. Very low coercivity Hc – so that domain walls are easily nucleated and displaced, 

and this ensures that hysteresis energy losses are small. As such, the materials 

should be as homogenous as possible and free from second phases, inclusions, 

impurities, stress and crystallographic defects. 

4. High curie temperature Tc 

5. High electrical resistivity to minimized energy losses due to eddy currents 

6. Good temperature stability  

 

 2.7. Magnetic Materials Deposition Methods 

2.7.1 Electrodeposition 

2.7.1.1 Background information 
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The birth of electroplating may be considered to have taken place with Volta’s 

discovery of the production of electricity by chemical means in 1799 [ 71 ]. 

Electrolysis was mainly a scientific curiosity until about 1839 when the value of 

electrodeposition for the production of surfaces and objects was announced by several 

workers at about the same time. Just to whom the credit should go to for the discovery 

is a matter of controversy.  

Since then, electrodeposition has, over recent decades, evolved from an art to an 

exact science. This development is seen as responsible for the ever-increasing number 

and widening types of applications of this branch of practical science and engineering. 

Some of the technological areas in which means and methods of electrodeposition 

constitute an essential component include macro and micro electronics development, 

optics, opto-electronics and sensors fabrications. In addition, key industries such as 

automobile industry utilizes this method over other available options (such as 

evaporation, sputtering, chemical vapor deposition (CVD) based on reasons of 

economy and convenience.  

 

2.7.1.2 Atomistic aspects of electrodeposition 

Basically, electrodeposition is the process of producing a coating, usually metallic, 

on a surface by the action of electric current, by placing a negative charge on the 

object to be coated and immersing it into an electrolyte solution that contains the salt 

of the metal to be deposited (with the object to be plated made the cathode of an 

electrolytic cell). In the electrodeposition of metals, generally a metal ion Mz+ is 

transferred from the solution into the ionic metal lattice [71, 72, 73, 74]. A simplified 

atomistic representation of this process is 

Mz+ (solution)  Mz+ (lattice)   (2) 
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This reaction is accompanied by the transfer of z electron from an external electron 

source (e.g. power supply) to the electron gas in the metal M. A metal may be 

considered to be a fixed lattice of positive ions permeated by a gas of free electrons. 

Positive ions are the atomic cores, while the negative charges are the valence 

electrons. The free electrons form what is known as the electron gas in the metal, and 

they move freely through the volume of the metal. Each metal atom thus contributes 

its single valence electron to the electron gas in the metal. Interactions between the 

free electrons and the metal ions are largely responsible for the metallic bond. 

Surfaces may be characterized into ideal and real. Ideal surface exhibit no surface 

lattice defects (vacancies, impurities, grain boundaries, dislocation, etc). Real surfaces 

have a variety of defects. The structure of real surfaces differs from those of ideal 

surfaces by surface roughness. While an ideal surface is atomically smooth, a real 

surface may have defects, steps, kinks, vacancies and clusters of adatoms. 

The atomic processes that make up the electrodeposition process, Eqn. 2, can be 

viewed considering the structure of the initial Mz+ (solution), and the final state, Mz+ 

(lattice). Since metal ions in an aqueous solution are hydrated the surface of the initial 

state in Eqn. 2 should be represented by [M(H20)x]z+. The structure of the final state is 

an M adion (adatom; absorbed ion, atom) at a kink site since it is generally assumed 

that a atoms (ions) are attached to a crystal via a kink site. Thus the final step of the 

overall reaction, Eqn. 2, is the incorporation of the adion in to the kink site. Due to the 

surface inhomogeneity the transition from the initial state Mz- (solution), and the final 

state, Mz+ (kink), may proceed via either of the two mechanisms: (1) step-edge site 

ion-transfer or (2) terrace site ion-transfer; or a combination of the two mechanisms.  

[M(H20)x]z+ (solution)  Mz+ (kink)    (3) 
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2.7.1.3 Faraday’s Law of Electrolysis 

Faraday’s law states that the amount of electrochemical reaction that occurs at an 

electrode is proportional to the quantity of electric charge Q passed through an 

electrochemical cell. 

If the weight of a product of electrolysis is w, then Faraday’s law states that 

.ew Z Q=     (4) 

where Ze is the electrochemical equivalent, the constant of proportionality. Since Q is 

the product of the current I, in amperes, and the elapsed time t, in seconds,  

      .Q I t=                      (5) 

. .W I t Q=     (6) 

The production of one gram equivalent of a product at the electrode, Weq, in a cell 

requires 96,487 coulombs, according to Faraday’s law. Since the coulomb is the 

quantity of electricity transported by the flow of one ampere for one second, therefore 

Faraday constant F is given by:  

196,487AF N e Cmol−= =    (7)  

where NA is Avogadro’s number (6.0225 x 1023 molecules mol-1) and e is the charge 

of a single electron (1.6021 x 10-19 coulombs, C). 

Fraction of a molar (atomic) unit of reaction that corresponds to the transfer of one 

electron, weq,   

/eq wt eW A n=         (8) 

where Awt is the atomic weight of metal deposited on the cathode, and ne is the 

number of electrons involved in the deposition reaction. 

Thus,      / /e eq wt eZ W F A n F= =                   (9) 

Finally,     . ( / ).e wt ew Z Q A n F Q= =        (10) 
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Note: The electrochemical equivalent of a metal M, Ze (M), is the weight in grams 

produced, or consumed, by one coulombs (one ampere second) 

 

2.7.1.4 Current Efficiency 

When two or more reactions occur simultaneously at an electrode, the number of 

coulombs of electricity passed corresponds to the sum of the number of equivalents of 

each reaction. The current efficiency CE of the jth process, namely of any one of the 

simultaneous reactions, is defined as the number of coulombs required for that 

reaction, Qj, divided by the total number of coulombs passed, Qtotal: 

j

total

Q
CE

Q
=       (11) 

An alternative equation defining current efficiency is  

   j

total

w
CE

w
=           (12) 

where wj is the weight of metal j actually deposited and wtotal is that which would have 

been deposited if all the current had been used for depositing the metal j. Thus, in 

general, at a current efficiency under 100%, the remainder of the current is used in 

side processes, such as the reduction of hydrogen and nitrate ions in the example 

above.  

 

2.7.1.5  Deposit thickness predictions  

The deposit thickness may be evaluated by considering the volume of the deposit. 

Since the volume of the deposit V is the product of the plated surface area as, and the 

thickness h, it follows that / sh V a= . The volume of the deposit is related to the 

weight of the deposit w and the density of the deposit d, by the relationship defining 

the density /d w V= . Thus 
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s s

V wh
a a d

= =      (13) 

In the case where it is necessary to calculate the time t (seconds) required to 

obtain the desired deposit thickness h (cm), at a given current density, Faraday’s law 

was introduced in Eqn. 10 and Eqn. 13, giving  

e e

s s s

Z Q Z Itwh
a d a d a d

= = =     (14) 

s

e

ha dt
Z I

=      (15) 

 

2.7.1.6 Effect of additives on electrodeposition 

Affect deposition and crystal building processes as adsorbates (absorbed 

substances) at the surface of the cathode. There are two basic types of absorption: 1) 

chemical adsorption; 2) physical adsorption. In chemical adsorption, the chemical 

attractive forces of adsorption act between the surface and the adsorbate (usually these 

are covalent bonds). Thus there is a chemical combination between the substrate and 

the adsorbate where electrons are shared and/or transferred. New electronic 

configuration may be formed through this sharing of electrons. In physical adsorption, 

the physical forces of adsorption, Van der Waals or electrostatic forces, act between 

the surface and the adsorbate; there is no electron transfer and no electron sharing.  

Absorbed additives affect the kinetics of electrodeposition and the growth 

mechanism by changing the concentration of growth sites on a surface, the 

concentration of adions on the surface, the diffusion coefficient Ddiff, and the 

activation energy of surface diffusion of adions. In the presence of adsorbed additives, 

the mean free path for lateral diffusion of adions is diminished, which is equivalent to 

a decrease in the diffusion coefficient Ddiff of adions. This decrease in Ddiff may result 

in an increase in adion concentration at steady state and thus an increase in the 
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frequency of the two-dimensional nucleation between diffusing adions. Additives can 

also influence the propagation of microsteps and cause bunching and the formation of 

macrosteps. The type of deposit obtained at constant current density may depend on 

the surface coverage of additives.  

 

2.7.1.7  Electrodeposition of alloys 

Alloy deposition is an old art and science as the electrodeposition of individual 

metals (e.g. brass, which is an alloy of copper and zinc). As expected, alloy deposition 

is subjected to the same principles as single metal plating. Progress in both types of 

plating has depended on similar advances in electrodeposition science and technology. 

The subject of alloy electroplating is being dealt with by an increasing number of 

scientific and technical publications. The reason for this is the vastness of the number 

of possible alloy combination and the concomitant possible practical applications. 

Properties of alloys deposits superior to those of single metal electroplates are 

common place and are widely described in the literature. It is recognized that alloy 

deposition often provides deposits with properties not obtained by employing 

electrodeposition of single metals. Alloy deposits can have different properties in 

certain composition ranges relative to the single component metals. They can be 

denser, harder, more corrosion resistant, more protective of the underlying basis metal, 

tougher and stronger, more wear resistant, different (better) in magnetic properties, 

more suitable for subsequent electroplate overlays and conversion chemical 

treatments, and superior in antifriction applications. 

The electrodeposition of an alloy requires, by definition, the co-deposition of two 

or more metals. In other words, their ions must be present in an electrolyte that 

provides a “cathode” film where the individual deposition potentials can be made to 
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be close or even the same. The three main stages in the cathodic deposition of alloys 

(or single metals) are to be recognized:  

1. Ionic migration: the hydrated  ion(s) in the electrolyte migrate(s) toward the 

cathode under the influence of the applied potential as well as through diffusion 

and/ or convention 

2. Electron transfer: At the cathode surface area, the hydrated metal ion(s) enter the 

diffusion double layer where, because of the higher field present, the hydrated 

shell is lost. Then on the cathode surface, the individual ion may be neutralized 

and is absorbed. 

3. Incorporation: The absorbed atom wanders to a growth point on the cathode and 

is incorporated in the growing lattice.  

 

2.7.1.8 Anomalous Deposition 

 The electroplating of Ni-Fe is an example of “anomalous” co-deposition [66, 75, 

76, 77, 78,79], whereby the less noble metal gets deposited preferentially and its 

relative composition in the deposit is higher than that in the electrolyte solution. In 

Ni-Fe alloys the Ni reduction is inhibited in the presence of ferrous ions, while the Fe 

deposition rate is enhanced, comparing to their respective deposition rates in single 

metal electroplating systems. Some researchers have proposed explanations behind 

the co-deposition phenomenon observed in alloys composing of the ferromagnetic 

elements nickel, iron or cobalt.  

 One earlier theoretical explanation is that the formation of Fe(OH)2 on the cathode 

surface function as a selective membrane that permits Fe to be deposited while 

inhibiting Ni reduction. However, this explanation is not very possible, as it does not 

explain how the Fe reduction rate is enhanced. Moreover, the phenomenon was 
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observed by some researchers even at minor hydrogen evolution conditions in which 

Fe(OH)2 is not likely to form. Thus, the implied high pH condition for the 

phenomenon occurrence is not a convincing explanation. [79] 

 Another theoretical explanation, based on compiling experimental investigations 

of the phenomenon by various researchers, is that as a result of hydrogen evolution, 

which is the side reaction of metal reduction of these iron-group alloys at the cathode 

surface, the concentration of protons, H+, is depleted. This leads to the increase in 

local concentration of the hydroxyl ions, OH-. With the increase concentration of OH- 

ions, the formation and adsorption of metal hydroxide ions on the cathode surface 

occurs, suggesting the important role of metal hydrolysis reactions and that Fe(OH)+ 

and Ni(OH)+ are the main reactants in the alloy plating. Since the sequence of the 

competing adsorption ability of metal hydroxide ions is as such: Fe(OH)+ > Co(OH)+ 

> Ni(OH)+, the formation of an Fe(OH)+-enriched adsorption layer on the cathode 

surface aids the subsequent discharge of Fe ion, while inhibiting Ni deposition, as the 

sequence of metals with respect to increasing the equilibrium concentration of 

M(OH)+ in a constant pH plating bath was expected to be: Zn > Fe > Co > Ni. The 

reaction equations involved are as follows [66,75,76,77,78,79]: 

2H2O + 2e-  H2 + 2OH-   (16) 

M2+ + OH-  M(OH)+   (17) 

M(OH)+  M(OH)ads
+   (18) 

M(OH)ads
+ + 2e-  M + OH-     (19) 

where M represent Ni, Fe, Co atoms. 

 The electrodeposition mechanism of Ni-Fe alloys involves the controlling of Ni 

deposition rate by the ion discharge while controlling of Fe deposition rate by the 

transport of ferrous (Fe2+) ions to the electrolyte diffusion layer near the cathode 
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surface. Deposition and dissolution rates of the respective ions depend on the 

composition of the plating bath. In general, changes in composition imply changes in 

the magnetic properties, surface morphology, crystalline arrangement, and deposited 

thickness [66, 76].  

 

2.7.1.9. Current status in DC electrodeposition technology 

As compared to different deposition methods for the composite wire development, 

electrodeposition has always been a well accepted method, due to its relatively higher 

efficiency, easier control and lower cost. The influence of electrodeposition 

parameters on the magnetic properties of coating layer have been previously studied 

[71, 72, 80, 81]. The Ni2+/Fe2+ ratio of the solution, plating temperature, pH value and 

plating current density have been found to exert significant effects on the coating 

composition. There have been studies on the effect of plating current density on the 

composition and grain sizes of the plated layer [71, 72, 82]. However, so far there has 

been no detailed research on the effect of plating current density on the magnetic 

properties of plated material. The circumferential magnetic field, induced by the 

plating current in electrodeposition, affects the magnetic domain structure as well as 

the surface morphology of the plated NiFe layer. This will result in changes in the 

magnetic properties of the plated material. Thus, it is interesting to study the effect of 

current density on the magnetic properties of Ni80Fe20/Cu composite wire. 

While parameters of electroplating, such as current density, plating time and 

formulas of plating solutions have been studied, little has been known about the effect 

of varying pH on the magnetic properties of the plated layer in NiFe electroplating. It 

is known that the pH is vital for electroless plating. However, it is not clear how the 

pH value in the plating solution would play a part in the electroplating of Ni-Fe. For 
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pure nickel deposition, it was reported [73] that excess NH3 (high pH) would lower 

cathode efficiency and embrittle the deposit. Also, if the pH is too high and/or the 

chloride ion concentration is too low, the hydroxide ions might be discharged in 

preference to the dissolution of nickel, and oxygen would be evolved. In addition, due 

to the fact that the anode and cathode efficiencies are not equal, the NiFe 

concentration and pH would slowly increase as the plating proceeds. It is therefore 

interesting to note if such phenomenon would occur in varying the pH of the plating 

solution. It is also worth noting the trend involved for the change in the composition 

as this might enable us to know the interdependence relationship between Ni and Fe.  

Several explanations [77, 81] were used to explain why the composition of NiFe was 

highly dependent on the pH values of the plating solutions. Kieling et al [81] pointed 

out that anomalous co-deposition occurs when the surface pH is high enough to cause 

ferrous hydroxide to be formed. This hydroxide would be absorbed preferentially on 

the electrode and blocks the deposition of Ni. Yin et al [77] pointed out that the 

hydroxide precipitate might act as additional barrier to nickel deposition.  

A critical factor affecting the performance of composite wires is the thickness of 

the magnetic coating layer. Interestingly, Atalay [83] showed that within the studied 

thickness range of 1 – 10 μm of the electrodeposited magnetic layer on 50 μm in 

diameter Cu wires, larger thicknesses resulted in higher MI% ratios.   

It was also discovered that the addition of a trace amount of molybdenum to about 

the permalloy composition [84] would greatly enhance the magnetic properties. There 

have been several reports on the physical and magnetic properties of such NiFeMo 

alloy [85, 86, 87], but there has been no study on the relationship of the synthesis 

parameters with the magnetic properties of the alloy material.  
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Several studies have been conducted on the effect of magnetic field on the grown 

structures [ 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 ]. Through growing fractal 

electrodeposits in different orientations with and without an applied magnetic field, 

J.M.D. Coey et al [88, 89, 95] demonstrated that the magnetic field increases the 

effective diffusion coefficient, thereby promoting mass transport during 

electrodeposition. This effect is well-known as the magnetohydrodynamic (MHD) 

effect. K. Msellak et al [93] showed that the Ni-Fe morphology and chemical 

composition change, due to the enhancement of surface concentration of the inhibiting 

iron species by the MHD convection. Ibro Tabakovic et al [97] observed that external 

magnetic field applied parallel to the cathode affects electrochemical behavior, 

compositrion of NiFe films, stress, magnetic properties, crystalline structure, and 

surface roughness.  

  

2.7.2 Pulse Deposition 

2.7.2.1  Background Information  

In electrolysis, in contrast to chemical synthesis, one can easily control the 

reaction rate of a system by working at a given current density, or easily select the 

magnitude of the driving force for the reaction by adjustment of the electrode 

potential. Modern electronics has greatly enhanced this inherent advantage of 

electrolysis by allowing current or voltage to be applied as almost any function of 

time. Pulse plating takes full advantage of this possibility. Typical waveforms include 

cathodic pulse followed by a period without current and/or by an anodic pulse; DC 

with superimposed modulations; a train of cathodic pulses; square-wave or modified 

sine-wave pulses. It should be noted, however, that owing to the fundamental nature 

of the phenomena involved in the deposition process, one cannot make full use of the 
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range of conditions that would be allowed by modern electronics. There are two main 

limiting factors: 1) the charging of the electrical double layer at the metal-electrolyte 

interface; and 2) the mass transport considerations [98]. 

 

2.7.2.2   Limiting factor 1: capacitance effects 

The electrical double layer at the electrode solution interface can be approximated 

to a plate capacitor with an interpolate distance of a few angstroms and therefore with 

a high capacitance. Charge must be provided to this double layer in order to raise its 

potential to the value required for metal deposition at the rate corresponding to the 

applied current which is supplied by the generator. The electrode behaves like a 

capacitor with a resistance in parallel (Fig. 7), the resistance being a function of the 

current density. The charging of the double layer requires a certain time which 

depends on the current density and on other physico-chemical parameters of the 

system. For practical purposes the charging time should be much shorter than the 

pulse duration, otherwise the current pulse is strongly distorted. Moreover, the time 

required for discharge of the double layer should be much shorter than the off-time 

between two pulses. In an extreme case, where the charging and discharging times of 

the double layer are much longer than the on-time and off-time of the pulse 

respectively, the pulse current is virtually a direct current and the term “pulse plating” 

is hardly applicable. The current required at the beginning of the pulse for charging 

the electrical double layer is not lost for the metal deposition, which the charge is 

recovered at the end of the pulse which the capacitor is discharging. Pulses in a 

frequency range where capacitive effects are relevant do not significantly influence 

the current efficiency, but affect the amplitude of the pulse and hence the energy of 

the electrodeposition reaction.  
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Fig. 7 Equivalent circuit of an electrode 
 

2.7.2.3  Limiting factor 2: mass transport effects 

The limitations of the useful range of pulse conditions due to mass transport effects 

arise from the depletion of cations in the diffusion layer (Fig. 8). In pulse plating with 

short pulse duration, two distinct cathodic diffusion layers can be defined instead of 

one as in DC.  In the immediate vicinity of the cathode the concentration pulsates with 

the frequency of the pulsating current, decreasing during the pulses and relaxing in the 

interval between them. Thus a pulsating layer exists close to the cathode. If the 

duration of the pulse is short, the diffusion layer does not have time to extend very far 

into the solution and in particular does not extend to the region where convention 

takes over mass transport. Therefore the metal deposited during the pulse must be 

transported from the bulk of the solution towards the pulsating diffusion layer by 

diffusion, which means that a concentration gradient also builds up into the bulk of 

the electrolyte. The thickness of this diffusion layer corresponds essentially to that 

which would be established under the same hydrodynamic conditions in DC 

electrolysis. Through this outer diffusion layer cations are also supplied towards the 

cathode during the off-time and it is this supply that allows the relaxation of the 

pulsating diffusion layer during the off-time. The outer diffusion layer is essentially 

stationary. 
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Fig. 8 Concentration profiles of the two diffusion layers in pulse electrolysis at the 
end of a pulse, showing thickness of the pulsating diffusion layer δp and thickness of 
the stationary diffusion layer δs. 
 

The two distinct diffusion layers are related to two kinds of limitation; the 

depletion of the cationic concentration in the pulsating diffusion layer limits the pulse 

current density, and the depletion of the cationic concentration in the outer diffusion 

layer limits the average current density. Since the concentration gradient in the 

pulsating diffusion layer can be very high, increasing with shorter pulse length, the 

pulse current density can reach extremely high values, e.g. up to 10,000 times the 

usual DC values, without decrease of current efficiency because of hydrogen 

evolution. The first limitation due to the mass transport effect in pulse plating is that 

the pulse duration should not exceed the transition time, while the second is that the 

maximum average current density cannot exceed the DC limiting current density. 

 

2.7.2.4   Crystallization 

The crystallization of the electrodeposited metal is a very important step of the 

electrogrowth since it influences directly the structure of the deposit and therefore its 

properties which represent the main interest for the user. The crystallization is the 

process by which the adatoms or adions incorporate in the crystal lattice. 

Crystallization occurs either by the build up of old crystals or the formation and 

distance from cathode X 

C 

0 

concentration 
δp δs 
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growth of new ones. These two processes are in low population of adatoms and low 

over potentials are factors enhancing the build-up of old crystals, while conversely 

low surface diffusion rates, high population of adatoms and high overpotentials on the 

surface enhance the creation of new nuclei. In pulse plating, since the pulse current 

density is usually considerably higher than the corresponding DC density, the 

population of adatoms on the surface during pulse deposition is higher than during 

DC deposition, resulting in an increased nucleation rate and therefore in a finer 

grained structure. Grain refinement in pulse plating is also favored by the 

enhancement of nucleation rates due to high overpotentials which results from high 

pulse current densities. 

Another phenomenon that might occur in pulse plating during the off-period is 

recrystallization. Small grains are thermodynamically less stable than large ones 

because of high surface energy, and as in bubble coalescence, small grains tend to 

recrystallize. For this to occur, the surface should remain active during the off-time. 

Again depending on different absorbed species, the surface may be inhibited, in which 

case no crystallization will occur, and the fine grains obtained during the on-time of 

electrolysis are stabilized.  

 

2.7.2.5.  Pulsed current vs pulsed voltage 

Electrolysis can be controlled by regulation of either current or voltage. In current 

regulation mode, the reaction rate is kept constant and the potential varies as a 

function of time. In voltage regulation, the driving force for the reaction is kept 

constant and the reaction rate varies as a function of time. The advantages and 

disadvantages of these two modes of electrolysis are briefly discussed here for pulse 
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plating. In current regulation, the average deposition rate can be very simply derived 

from the following equation: 

( )
on

m p
on off

Tj j
T T

=
+

    (20) 

while in voltage regulation the average deposition rate can be predicted only from 

computations of a speculative nature. The main advantage of voltage regulation is a 

better control of the current efficiency and of alloy composition. High over potentials 

resulting from excessive concentration depletions are avoided. However, from a 

practical point of view, regulation of pulsed voltage is very difficult to achieve. A 

third reference electrode should be added to the system to regulate the pulsed voltage. 

Moreover, to get instantaneously a given potential at the electrode, the current should 

start theoretically from an infinite value, which is obviously not feasible because of 

apparatus limitations. On the other hand, at the end of a pulse, for instantaneous 

reestablishment of the starting potential (which might be the rest potential of the 

system), some metals should be re-dissolved; hence a constant voltage pulse requires 

a short inversion of current at the end of the pulse, which might not be desirable. 

Furthermore, passivation may occur during the inversion. For most applications, 

current regulation is more preferred.  

 

2.7.2.6   Pulse reverse 

As the name implies, the main purpose of inverting the current from cathodic to 

anodic during a short fraction of the total period is to remove metal preferentially 

from areas that tend to overplate during the cathodic part of the cycle. It is thus 

possible to considerably retard the development of dendrite formation or to improve 

the plating thickness distribution over complicated shapes. Changes in deposit 

structure, mainly grain size, can also be achieved because of forced nucleation at each 
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new cathodic pulse. It is clear that from adsorption-desorption as well as 

recrystallization phenomenon will be quite different from those in pulse plating. It 

should be pointed out that pulse reverse is usually applied when the deposit is easily 

soluble in the electrolyte, otherwise passivation can occur. Sometimes, as in 

palladium deposition, the purpose of inverting the current is to remove co-deposited 

hydrogen. In most cases, the objective of the application of pulse reverse is to 

improve the plating thickness distribution. Areas exposed to concentrations of current 

density are preferentially plated in the cathodic cycle, but for the same reason, metal 

is preferentially removed in the anodic cycle.  

To take full advantage of pulse reverse, the anodic current density should be 

adjustable independently of the cathodic current density. The reason for this is to 

increase the dissolution rate of peaks by applying very high anodic current densities, 

but for short time durations. It is obvious that the balance of electrical charges over a 

total period should remain cathodic. The manufacture of power supplies offering this 

capability involves complications, but this remains, nevertheless, an important 

requirement.  

 

2.7.2.7 Current status in pulsed and PR electrodeposition technology 

Extensive researches have been carried out since the last decade on the synthesis 

processes and applications of nanocrystalline materials due to their excellent 

enhanced mechanical and chemical properties. Much attention has been devoted on 

the synthesis techniques [23, 24, 81, 99] as the optimization of these techniques can 

greatly enhance the properties of the synthesized materials.  

The electrodeposition mechanism of Ni-Fe alloys involves the controlling of Ni 

deposition rate by the ion discharge while controlling of Fe deposition rate by the 
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transport of ferrous (Fe2+) ions to the electrolyte diffusion layer near the cathode 

surface. Deposition and dissolution rates of the respective ions depend on the 

composition of the plating bath. In general, changes in composition imply changes in 

the magnetic properties, surface morphology, crystalline arrangement, and deposited 

thickness. [66, 75] 

Reducing the grain size has been reported to greatly increase the mechanical 

strength of the materials [100]. The decrease in grain size has also been reported to 

result in an enhancement in the magnetic permeability of the magnetic materials. 

According to the random anisotropy model [101] (RAM), magnetic properties can be 

drastically improved when the grain size is decreased below the critical magnetic 

interaction exchange length, which was calculated to be 270 nm for Ni80Fe20. 

Pulse-reverse electrodeposition has been reported to produce specimens of 

excellent magnetic properties [98]. The introduction of an off-time period in the 

electrodeposition current waveform in pulse electrodeposition was reported to result 

in specimens of smaller grain sizes [98]. The absorption of inhibiting species during 

the off-time blocks growth centers of the cathode and thus forces the system to create 

new nuclei at each new pulse.  There have been several previous studies on the 

method of pulse-reverse electrodeposition [75, 76] but there have not been a detailed 

study on the effect of pulse-reverse electrodeposition with off-time on the resulting 

grain sizes of the deposited material.  

 

2.7.3 Cold-drawing 

Cold-drawing is a metal forming technique which involves pulling wires through 

successive dies at temperatures below the material’s recrystallization temperatures. 
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The diameter of the wire is reduced every time the wire goes through a die (See Fig. 

9). 

 

Fig. 9 Diagram of cold-drawing of wire. 
 

In commercial practice, drawing stress is restricted to approximately 60% of the 

flow stress of the product, which restricts diameter reduction to 35% in most cases. 

Drawing stress FD can be determined by Eqn. 21 [102]: 

             
(21) 

 

where α = approach angle, 

  μf = friction coefficient,  
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  where k = strength constant, 

   ε = energy per unit volume, and 

   n = strain hardening exponent. 
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2.7.3.1 Current status in cold-drawing technology 

Cold-drawing is one of the most common metal forming processes. It is 

considered to be one of the most effective and flexible methods to improve surface 

finish and obtain precise dimension and specified mechanical properties. Furthermore, 

it was postulated that cold-drawn wires have good mechanical and electrical 

properties as there is a uniform distribution of fine filaments [103]. 

However, during the cold-drawing process, residual stresses are induced in the 

wire, which can affect the functional properties of the finished product, such as a 

change in dimension during cutting and heat treatment. Axial tensile stresses induced 

in the surface can also decrease the fatigue strength of the final product. Finite 

element simulations were performed on cold-drawn wires [104], in order to study the 

influence of bearing geometry on the residual stress-state. Besides that, utility 

programs for the cold-drawing process are also being developed [105]. This shows the 

importance of such method, hence the need to optimize the various parameters. 

The possibility of using cold-drawn wires as soft magnetic materials has been 

studied. MI effect has been measured in commercial HyMu80® permalloy wires of 

composition Ni80Mo4.2Febal, subjected to annealing and cold-drawing [106]. The outer 

diameter of 44µm was reached and the largest MI ratio of 150% is found, at a 

frequency of 3 MHz, and its respective coercivity is 30 A/m (0.38 Oe).  

Pure wire drawing has long been looked into and cold-drawn copper wires as thin 

as 18µm can be easily bought from the market. Cold-drawing, an inexpensive 

technique, can also be used to produce composite wires consistent in material 

composition and mechanical properties [107]. 

Antonov et al. [52] fabricated NiFe/Cu composite wires by a modified cold-drawn 

technique. The minimal outer diameter reached of the wire is 49µm. It was found that 
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the amplitude of the MI effect is significantly larger than that of NiFe wires without 

Cu inner core. The composite wires exhibit soft magnetic behavior. The MI effect of 

the wire is about 100%, and the coercivity does not exceed 0.8 Oe. 

 

2.7.3.2 Annealing Process 

As a result of cold-working, the hardness, tensile strength and electrical resistance 

increases, but the ductility of the material decreases. There is also an increase in the 

number of dislocations and distortions in the crystal structure, resulting in the strain 

hardening effect. Energy used to cold-work the material is most often dissipated as 

heat, but a certain amount of energy is stored as internal energy associated with the 

lattice defects caused by the deformation. It is thus, crucial to restore the ductility and 

relief the high internal stress of the material by annealing, to facilitate further draws 

before the material fails.    

The annealing process can be categorized into three stages namely recovery, 

recrystallization and grain growth [108], as shown in Fig. 10. 

Recovery occurs at low temperatures, where the temperature is insufficient to 

cause changes in microstructures and mechanical properties. The primary purpose of 

this stage is to stress relief the cold-worked material, to prevent stress corrosion 

cracking and to minimize distortions produced by residual stresses. This low 

temperature treatment in the recovery range is also known as stress relief annealing or 

process annealing. 

In the recrystallization temperature range, new undeformed crystals appear in the 

microstructure. The cold-worked structure gradually gets replaced with strain-free 

grains. During the recrystallization stage, tensile strength and hardness significantly 

decreases while ductility is greatly increased.   
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Fig. 10 Annealing processes and its effects on brass. 
 

The grain growth stage of annealing is characterized by a slower rate of decrease 

of tensile strength and hardness compared to the recrystallization stage. However, 

there is a significant growth of the grain boundaries and restoration of the original 

grain size when further heat is supplied to the material. 

 

2.7.3.3 Intermediate Annealing 

Intermediate annealing is often conducted on materials that would be subjected to 

further cold-work as it improves the ductility of the semi-finished material to enable 

subsequent cold-working without breakages. Annealing is done at a relatively low 

temperature, just above recrystallization temperature, to reduce the incidence of scale 

oxidation. Recrystallization temperature of a metal is the temperature at which the 

metal reaches complete recrystallization in 1 hour. It is estimated to be around half to 

one-third of the absolute melting point of metals. The melting points and 

recrystallization temperatures of elements involved in the specimen concerned are 

indicated in below Table 2 [109].  
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Table 2 Melting points and recrystallization temperatures of elements in composite 
wire. 
 

Material Melting point (°C) Recrystallization temperature (°C) 

Nickel 1455 370 

Iron 1538 450 

Copper 1085 120 

 

It was determined that the annealing temperature is 550°C, which is about half 

of the lowest melting point of the three elements involved. 

 

2.7.3.4  Post Treatment 

To improve the sensitivity of the sensors, one of the methods is to improve the 

permeability of the ferromagnetic deposited material of the composite wire. Material 

composition, grain size and amount of residual stress are some crucial factors 

affecting the permeability of magnetic materials. As such, the GMI effect of 

composite wires may be enhanced, by improving its soft magnetic properties through 

suitable heat treatment, which releases residual stresses in the ferromagnetic coating 

layer [110,111]. 

Over the last decade, considerable research has been done regarding Permalloy/Cu 

wires. As compared to hard magnets, a soft magnet that has higher permeability will 

have a lower coercivity and hence, higher sensitivity. Such aspects can be improved 

by modifying the hysteresis, which is related to anisotropy of the wires, through field 

annealing [112]. It is also observed that the magnetic homogeneity of layers improved 

near annealing temperature of 200ºC and inter-diffusion observed at above 250ºC, 
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with the Ni content observed to diffuse preferentially to copper layer above the 

critical temperature [113, 114]. 

Post heat treatment is an essential post synthesis process that is vital in improving 

the properties of the as-cast specimens. As such, the understanding and optimization 

of the annealing process is critical. Thus, this work is directed to investigate the effect 

of furnace annealing parameters as well as joule heat annealing in relations with the 

resulting magnetic properties of Ni80Fe20/Cu wires. In this study, furnace annealing 

will be conducted on electrodeposited Ni80Fe20/Cu specimens. The materials 

(composition and, surface roughness and grain size) and magnetic properties 

(sensitivity, coercivity and magneto-impedance effect) will then be characterized 

accordingly. 

 

2.7.4 Magnetron Sputtering 

Magnetron sputtering has developed rapidly over the last decade to the point 

where it has become established as the process of choice for the deposition of a wide 

range of industrially important coatings. The driving force behind this development 

has been the increasing demand for high-quality functional films in many diverse 

market sectors. 

Sputtering is accomplished by applying a voltage between the target (or cathode) 

material and the substrate to be sputtered in a vacuum chamber containing a 

sputtering gas. The function of the gas is to provide a medium in which a glow 

discharge can be initiated and maintained to continuously supply bombarding 

particles. Usually, argon (Ar) is used as working gas due to its low cost and large 

atomic mass, leading to good sputtering yields. When the voltage between the 

substrate and target exceeds a threshold value, stable glow discharge appears. In the 
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presence of negative potential, free electrons are accelerated and ionize the gas atoms 

(plasma is obtained). The target, which has a negative potential would attract the 

argon ions. Argon ions would be accelerated towards the target material and as a 

result, the target materials are displaced and transferred to the substrate. Secondary 

electrons are also emitted from the target surface as a result of the ion bombardment, 

and these electrons play an important role in maintaining the plasma [115].  

 

 

 

  

 

 

 

 

 

 

 

 
Fig. 11 Schematic diagram showing mechanism of sputtering. 

 

The basic sputtering process has been known for many years and many materials 

have been successfully deposited using this technique. However, the process is 

limited by low deposition rates, low ionization efficiencies in the plasma, and high 

substrate heating effects. These limitations have been overcome by the development 

of magnetron sputtering, and more recently, unbalanced magnetron sputtering.  

 
Vacuum system 

Working gas 

Sputtering Target 

 
 

 
Power 
Supply 

Rotating substrate 

+ 

Plasma Sputtered atoms 
Incident ion 

Reflected ions 
& neutral

Secondary 
electrons 

+ 
+ + 



Chapter 2 Literature Review 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 56 

Magnetrons make use of the fact that a magnetic field configured parallel to the 

target surface can constrain secondary electron motion to the vicinity of the target. 

The magnets are arranged in such a way that one pole is positioned at the central axis 

of the target and the second pole is formed by a ring of magnets around the outer edge 

of the target [116]. Trapping the electrons in this way substantially increased the 

probability of an ionizing electron-atom collision occurring.  The increase ionization 

efficiency of a magnetron results in a dense plasma in the target region. This, in turn, 

leads to increase ion bombardment of the target, giving higher sputtering rates and, 

therefore, higher deposition rates at the substrate. In addition, the increased ionization 

efficiency achieved in the magnetron mode allows discharge to be maintained at 

lower operating pressures (typically, 10-3 mbar, compared to 10-2 mbar) and lower 

operating voltages (typically, -500 V, compared to -2 to -3 kV) than is possible in the 

basic sputtering mode.  

The differences in design between a conventional magnetron and an unbalanced 

magnetron are only slight. However, the difference in performance between the two 

types of magnetron is very significant. In a conventional magnetron, the plasma is 

strongly confined to the target region. A region of dense plasma typically extends 

some 60 mm from the target surface. Films grown on substrates positioned within this 

region will be subjected to concurrent ion bombardment, which, as mentioned earlier, 

can strongly influence the structure and properties of the growing film. Substrates 

placed outside this region, however, will lie in an area of low plasma density. 

Consequently, the ion current drawn at the substrate (typically, < 1 mA/cm2) is 

generally insufficient to modify the structure of the film. The energy of the 

bombarding ions can be increased by increasing the negative bias applied to the 

substrate. However, this can lead to defects in the film and increased film stress, and 
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therefore, be detrimental to the overall film properties. Thus, it is difficult to deposit 

fully dense films on large or complex components using conventional magnetrons. 

 

  

 

 

 

 

 

 

Fig. 12 Schematic representation of the plasma confinement observed in conventional 
and unbalanced magnetrons [116]. 
 

In an unbalanced magnetron, the outer ring of the magnets is strengthened relative 

to the central pole. In this case, not all the field lines are closed between the central 

and outer poles in the magnetron, but some are directed towards the substrate, and 

some secondary electrons are able to follow these field lines. Consequently, the 

plasma is no longer strongly confined to the target region, but is also allowed to flow 

out towards the substrate.  Thus, high ion currents can be extracted from the plasma 

without the need to externally bias the substrate. It was Windows and Savvides who 

first systematically varied the magnetic configuration of an otherwise conventional 

magnetron [117, 118]. They, and other researchers, have subsequently shown that 

substrate ion current densities of 5mA/cm2 and greater, i.e., approximately an order of 

magnitude higher than for a conventional magnetron, can be routinely generated when 

using an unbalanced magnetron [116, 118]. A comparison between the plasma 

confinement obtained in different magnetron modes is shown schematically in Fig. 12.  
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Thus, in addition to providing a high flux of coating atoms (as compared to a basic 

sputtering source), an unbalanced magnetron also acts as a very effective ion source. 

Furthermore, the ion current drawn at the substrate is directly proportional to target 

current. Deposition rate is also directly proportional to target current. As a result, the 

ion-to-atom arrival ratio at the substrate remains constant with increasing deposition 

rate [119]. The design of unbalanced magnetron discussed above was termed ‘type-2’ 

by Windows and Savvides. However, they also considered the opposite case ‘type-1’, 

where the central pole was strengthened relative to the outer pole. In this case, the 

field lines, which do not close in on themselves, are directed towards the chamber 

walls and the plasma density in the substrate region is low.  

Despite the benefits offered by unbalanced magnetrons, it is still difficult to 

uniformly coat complex components at acceptable rates from a single source. 

Therefore, in order to commercially exploit this technology, multiple magnetron 

systems have been introduced. In a multiple magnetron system, the magnetic arrays in 

adjacent magnetrons can be configured with either identical, or opposite magnetic 

polarities. In the former case the configuration is described as ‘mirrored' and in the 

latter case ‘closed field', and both configurations are shown in Fig. 13. In the mirrored 

case, the field lines are directed towards the chamber walls. Secondary electrons 

following these lines are lost, resulting in a low plasma density in the substrate region. 

Conversely, in the closed field configuration, the field lines are linked between the 

magnetrons. Losses to the chamber walls are low and the substrate lies in a high 

density plasma region. Operating in the closed field mode results in an ion-to-atom 

ratio incident at the substrate some 2-3 times greater than that obtained under the 

same conditions in the mirrored, or single unbalanced magnetron configurations [120]. 
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Also, the influence of the closed magnetic field on the ion-to-atom ratio becomes 

more marked as the distance from the target increases. 

 

Fig. 13 Dual unbalanced magnetron configurations [119]. 
 

The sputtering process has been extensively used to deposit ultra thin films with 

the sputtering parameters intensively investigated in relation to the materials [121,122] 

and magnetic properties of the deposited materials [123,124, 125, 126, 127]. A 

microstructure zone diagram was obtained by John A. Thornton [121, 122] showing 

the relationship between the substrate temperature and coating temperature, argon 

pressure and the type of sputtered microstructures obtained (Fig. 14). Granular 

structure is affected by the adatom mobility on the substrate. When sputtering at low 

substrate temperatures Ts and high Ar pressure PAr, the adatoms have low atomic 

mobility and the films consist of columns separated by voids as shown in Zone 1. As 

the adatom mobility increases with increasing Ts and decreasing PAr, the films become 

denser as shown in Zone T. With further increase of Ts, grain growth occurs and the 

dense films have rough surfaces as shown in Zone 2 where the surface diffusion 

dominates. In Zone 3, volume diffusion dominates and the grains become larger.  

Coercivity Hc of Mo-permalloy was found to increase with rising preheating 

temperature [128]. High effective permeability can be acquired at low argon pressure, 
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adequate preheating temperature, and bias voltage. The coercivity of Co films was 

also found to increase directly with sputtering pressure up to about 10mTorr [126]. 

The quality of the sputtered seed layer has been found to influence the property of the 

layer above [129]. 

 

 

 

 

 

 
 
Fig. 14 Microstructure zone diagram for metal films deposited by magnetron 
sputtering, where Ts denotes the substrate temperature and Tm denotes the coating 
material melting point [122].  
 

2.8 Magnetic Theories 

2.8.1 Domain Wall Theories 

A remarkable property of ferromagnetic materials is not so much that they have a 

spontaneous magnetization, but rather that their magnetization can be influenced by 

the application of very low magnetic fields. Even the earth’s field (50μT) can cause 

magnetization changes even though the inter-atomic exchanges force that is 

responsible for the spontaneous magnetization are equivalent to a field of about 

1000T, almost 100 million times greater than the earth’s field. 

What allows this to occur is the fact that the sample is actually composed of small 

regions called magnetic domains, within each of which the local magnetization is 

saturated but not necessarily parallel. Domain are small (1-100 microns), but much 

larger than atomic distances. Consider a large single crystal and assuming the crystal 

is uniformly magnetized, and hence a single domain. Surface charges will from on the 
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ends due to the magnetization and are themselves a second source of a magnetic field 

(the demagnetizing field). The energy associated with the surface charge distribution 

is called the magnetostatic energy. This is just the volume integral of the field over all 

space. The magnetostatic energy can be approximately halved if the magnetization 

splits into two domains magnetized in opposite directions. This brings the positive 

and negative charges closer together, thus decreasing the spatial extent of the 

demagnetizing field. This subdivision into more and more domains cannot continue 

indefinitely since the transition region between domains (domain wall) requires 

energy to be produced and maintained. Eventually an equilibrium number of domains 

will be reached for a given particle size, i.e. total energy = magnetostatic energy + 

wall energy.   

 

 

 

 

 

 

 

 

 

Fig. 15 Domain formation for (a) single domain; (b) multidomain. 
 

Domain walls are interfaces between regions in which the magnetization has 

different directions. Within the wall, the magnetization must change direction from 

that in one domain to that in the other domain. Domain walls have a finite width that 

is determined principally by the exchange and magnetocrystalline energy [130].  
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Considering a domain wall in which the magnetization changes by 180°. The change 

in magnetization within the wall can be gradual as in Fig. 16(a) or abrupt in Fig. 16(b). 

In the case of a wide wall in Fig. 16(a), there have been suggestions of two possible 

types of domain wall, namely: the Neel wall (where magnetization of wall is in the 

place of a material) and the Bloch wall (where magnetization of wall is perpendicular 

to the plane of the material).  The exchange energy acts to keep spins parallel and can 

be kept small if the 180° rotation takes place gradually, over many atomic units. Thus, 

the exchange energy is small in Fig. 16(a) but large in Fig. 16(b). However, the spins 

within the wall are no longer aligned along an easy axis of magnetization. This 

produces an anisotropy energy, which is high in (a) but low in (b).  

 

 

 

 

 
Fig. 16 Schematics showing two different types of domain wall: (a) wide domain wall; 
(b) thin domain wall. 

 
 

The exchange energy tends to make the wall as wide as possible whereas the 

anisotropy tends to make the wall as thin as possible. As a result of this competition 

between the exchange energy and anisotropy energies, the domain wall has a finite 

width (in the order of 100 nm) and surface energy. The interplay between long range 

and short range effects results in the domain states being grain-size dependent. In 

addition, the number of domains for a given grain size depends on the magnitudes of 

the exchange, magnetocrystalline, and saturation magnetization. These factors are in 

turn dependent on temperature as well as composition. Hence, domain states in 

(a) (b) 

Wide wall 

Thin wall 
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different magnetic materials will have different grain size dependence. The domain 

states will also vary with temperature for a single grain size. As a rule of thumb, the 

larger the grain size, the more domains it contains.  

The energy of this domain wall can be estimated. Assuming that the 

magnetization rotates by an angle δθ in a distance a (Fig. 17), until θ reaches of ± 1
2

π  

on either side of the plane x = 0, and beyond that, it remains constant. The region in 

which θ varies is the domain wall. As in this case, the wall separates two domains 

magnetized in opposite directions (i.e. a 180° wall). Denoting the width of the wall by 

wwall, if the wall extends over N inter-atomic distances, then  

wallw Na=      (22) 

and 

N
πδθ =       (23) 

 
In a unit volume of material, the number of pairs of neighboring magnetic 

moments at an angle δθ to each other is 1/a3. Hence,  

2
2

3 ( )e
mE
a

β δθ=      (24) 

where β is a positive constant for ferromagnetism and m is the length of the magnetic 

moments. Hence, using Eqn. 22 and Eqn. 24 and writing exchange constant Aconst = 

βm2/a (only for simple cubic crystals), the exchange energy per unit volume inside the 

domain wall is  

2

2 2
const

e
AE
a N

π
=       (25) 

Assuming that the two domains are magnetized in easy directions such that there 

is no anisotropy energy associated with the domains, there is however some 

anisotropy energy associated with the wall, since the magnetization in the wall is in 
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general not parallel to an easy direction. As a rough approximate, the anisotropy 

energy per unit area of wall can be assumed to be:  

a KNaγ =       (26) 

where K is the anisotropy constant. The width of the wall, i.e. the value of N, will 

adjust itself to make the total energy per unit area a minimum. 

2
const

e a
A KNa

Na
πγ γ γ= + = +      (27) 

 

 

 

 

 

 

 

 

Fig. 17 Schematics showing the rotation of the magnetic moments of atoms along the 
x axis. 

 

Hence dγ/dN = 0, which gives 

2

2 0constA Ka
N a

π
− + =     (28) 

Rearranging Eqn. 28: 

1
2( )constAN

a K
π

=      (29) 

Substituting Eqn. 29 into Eqn. 27, the wall energy unit area can be calculated to be: 

y 

x 

z 

a 

θ δθ 

m
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1
22 ( )constA Kγ π=      (30) 

In a typical material, Aconst ≈ 10-11 Jm-1 and K is of the order of 103-105 Jm-3. This 

shows that wwall is of the order of 100 nm, which is a few hundred inter-atomic 

distances. Now, the observed size of domains is usually much larger than this, which 

explains why magnetic materials are subdivided into domains within which the 

magnetization is uniform, rather than the magnetization rotating slowly throughout 

the specimen. With the earlier mentioned for Aconst and K, γ can be estimated to be of 

the order of 10-3 Jm-2 and it must be emphasized that this domain wall energy is not a 

separate type of energy. This clearly showed that the exchange and anisotropy 

energies are normally concentrated in the domain walls.  

In many materials, domain walls move reversibly in very small applied fields. In 

other words, the walls are displaced by a small amount when the field is applied, but 

return to their original positions when the field is removed. In larger magnitude of the 

fields, this motion becomes irreversible – the walls do not return to their original 

positions even when the field is removed. This is because the energy of the domain 

walls is not constant, but instead varies in an irregular manner because of non-

homogeneities in the specimen, such as inclusions of a second phase, dislocations, 

grain boundaries, internal stresses, groups of point defects or impurity atoms, voids, 

etc. In reality, when a wall moves, it encounters obstacles distributed randomly 

throughout the specimen, and therefore parts of the wall are retarded while other parts 

bulge forward. Hence, it is therefore not usually possible to represent the wall energy 

as a simple function of one variable or even three variables.   
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2.8.2 Magnetization Rotation 

For the case in which the magnetization rotates coherently (i.e. it remains uniform 

even while it is rotating), the theory is well understood [131,132,133]. The simplest 

case is that of a uniformly magnetized (ellipsoid shape) particle with a positive 

uniaxial anisotropy Ku (Stoner-Wohlfarth rotation model). The anisotropy energy Ea 

of such a non-interacting particle can be written as:  

2sina uE K V ϕ=     (31) 
 
where V is the volume of the particle, and ϕ is the angle between the magnetization M 

and some fixed direction in the particle [131].  

 

 

 

 

 

 

 

 

 

Fig. 18 Magnetization curves for prolate spheroids, calculated from the model by 
Stoner and Wohlfarth [132] 
 

 

The magnetic hysteresis properties of ellipsoidal single-domain particles with 

uniaxial shape anisotropy have been investigated in detail by Stoner and Wohlfarth 

[132], who showed that for a prolate ellipsoid of revolution there are only two stable 

positions of the magnetization vector, i.e. parallel to the long easy axis of 
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magnetization. According to the model, as θ increases, the coercivity decreases, and 

for  θ = 90°, it is zero (Fig. 18). The largest coercivity, at θ = 0°, can be shown to be 

2Ku/μ0Ms. In the case when the anisotropy is due to the crystal structure, this 

maximum coercivity is referred to as the anisotropy field Hk, because it is the field 

needed to rotate the magnetization from an easy to a hard direction.  

 

2.8.3 Random Anisotropy Model (RAM) 

Classical rule of soft magnetic engineering states that, soft magnetic properties of 

polycrystalline magnets deteriorate with decreasing grain size [134]. However, this 

rule seems to be at odds with the phenomenon displayed by the novel nanocrystalline 

materials. As a matter of fact, this rule only applies as long as the grain diameter is 

larger than the ferromagnetic exchange length Lex. Otherwise, the magneto-crystalline 

anisotropy K1 of the grains is suppressed due to the smoothing part of ferromagnetic 

exchange interaction. This mechanism seems to provide the basis for the soft 

magnetic properties of the nanocrystalline structure [135]. This mechanism resembles 

much the case of amorphous alloys where atomic-scale local anisotropies are 

randomly averaged out so that there would be no anisotropy net-effect on the 

magnetization process. The degree to which this mechanism is effective has been 

successfully addressed by Alben et al. [ 136 ] in terms of the so-called random 

anisotropy model.  

The magnetic properties of an assembly of small grains depend strongly on the 

counterplay of local magnetic anisotropy energy and ferromagnetic exchange energy 

[101]. For large grains, the magnetization can follow the easy magnetic directions in 

the single grains. Thus, the magnetization process is determined by the magneto-

crystalline anisotropy K1 of the crystallites.  However, for very small grains, 
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ferromagnetic exchange interaction further forces the magnetic moments to align 

parallel and thus impeding the magnetization to follow the easy direction of each 

individual grain. As a consequence, the effective anisotropy for the magnetic behavior 

is an average overall several grains and thus reduced in magnitude. The dividing line 

between these two cases is given by the ferromagnetic exchange length Lex: 

1/exL A K=       (32) 

where A denotes the exchange stiffness that is a basic parameter in domain wall 

theory, representing a characteristic minimum scale over which the magnetization can 

vary appreciably. 

 

 

 

 

 

 

 

 

 

Fig. 19 Schematic representing the random anisotropy model, for grains embedded in 
an ideally soft ferromagnetic matrix. The double arrows indicate the randomly 
fluctuating anisotropy axis, the hatched area represents the ferromagnetic correlation 
volume determined by the exchange length 1/ 2( / )exL A K= . 

 

In order to interpret the behavior of the magnetic properties for very small grain 

sizes, the random anisotropy model, originally proposed by Alben et al. [136] for 

amorphous ferromagnets, was used. The proposed idea [101,137] starts from an 

assembly of ferromagnetically coupled grains of size D and volume fraction νcr with 

Lex D 

K1 
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magneto-crystalline anisotropies K1 oriented at random, as depicted in Fig. 19.  

 The effective anisotropy affecting the magnetization process results from 

averaging over the total number of grains 3( / )G cr exN L Dν=  within the volume 

3
exV L= of the exchange length. For a finite number of grains N, there will always be 

some easiest direction determined by statistical fluctuations. As a consequence, the 

resulting anisotropy density K  is determined by the mean fluctuation amplitude of 

the anisotropy energy of the N grains, i.e.  

3/ 21
1( )cr

cr
exG

K DK K
LN

υ υ≈ =     (33) 

In turn, the exchange length Lex is related self-consistently to the average anisotropy 

by substituting K  for K1 in Eqn. 33, i.e.  

ex
AL
K

=       (34) 

This renormalization of Lex results from the counterplay of anisotropy and exchange 

energy as magneto-crystalline anisotropy is suppressed by exchange interaction in the 

scale on which exchange interactions dominate expands at the same time. Thus, the 

local anisotropies are averaged out even more effectively. Combining, Eqn. 33 and 

Eqn. 34 yields:  

4
2 6 2 61

1 3( ) .cr cr
ex

KDK K D
L A

υ υ≈ =    (35) 

which holds as long as the grain size D is smaller than the exchange length Lex. It 

should also be noted that this result is essentially based on statistical and scaling 

arguments and therefore not limited to the case of uniaxial anisotropies, but also holds 

for cubic or other symmetries. The most significant feature of the above analysis is 

the strong variation of K  with the sixth power D6 of the grain size. If coercivity Hc 
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and initial permeability μi, are related to K  using the results for coherent spin 

rotation [61]: 

   
4 6 2

1
3

.
.

cr
c c c

s s

K K DH p p
M M A

ν
= ≈     (36) 

2 2 3

4 6 2
0 0 1

.
.

s s
i

cr

M M Ap p
K K Dμ μμ

μ μ ν
= ≈    (37) 

where Ms denotes the saturation magnetization, pc and pμ denotes dimensionless pre-

factors that are close to unity. Accordingly, the sensitive grain size dependence of K  

should be also reflected in the soft magnetic properties. It should also be noted that 

the above results for Hc and μi are not bound to the case of coherent magnetization 

rotation, in the regime D << Lex, but can also be derived, assuming domain wall 

pinning as the prevailing magnetization mechanism.  

In the case of large grains, if the grain size exceeds the exchange length, the 

effective anisotropy K for the magnetization process is given by the 

magnetocrystalline anisotropy K1 itself. For exD L= , coercivity and permeability 

approach their maximum or minimum value, respectively given by:  

   1
c c

s

KH p
M

=      (38) 

2

0 1

s
i

Mp
Kμμ

μ
=      (39) 

Finally, if the grain size exceeds the domain wall width, 1/ 2
1( / )wall exw L A Kπ π= = , the 

magnetization process is determined by domain wall pinning at the grain boundaries. 

For that case, theory predicts [101]: 
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1

.c c
s

AK
H p

M D
=     (40) 

2

0 1

.s
i

M Dp
AKμμ

μ
=     (41) 

The theoretical predictions for very small grains and large grains can be verified and 

reflected accurately in the experimental results obtained in [101], as shown in Fig. 20.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 20. Grain size and coercivity Hc for various soft magnetic metallic alloys [101]. 
 

2.8.4 Single Domain 

As the grain size decreases, a critical size will be reached where the grain can no 

longer accommodate a wall. Below this critical size, the grain contains a single-

domain, which is uniformly magnetized to its saturation magnetization. It is an 

energetically easy process to change the magnetization of a multi-domain grain since 

the transition of the domain wall can be accomplished in relatively low fields. Thus, 
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the multi-grains are magnetically soft with low values of coercivities and remanence. 

However, the only way to change the magnetization of a single-domain grain is to 

rotate the magnetization, an energetically difficult process. Thus, single-domain 

grains are magnetically hard and have high coercivities and remanence. The critical 

size for single-domain behavior depends on several factors, including the saturation 

magnetization and the shape of the grain. The single-domain and multi-domain 

transition size can be determined either through theoretical calculations [61] or 

through experimental determinations [138, 139,140].  The critical diameter DC for 

which the multi-domain structure becomes single-domain can be estimated from the 

balance between the energy to form a single wall and the alternative magnetostatic 

energy as  

( )1/ 2 29 /(2 )c sd AK Mπ=    (42) 
 
where Aconst  and K are the exchange and the anisotropy constants respectively [Error! 

Bookmark not defined.].  

 

2.8.5 Superparamagnetism 

As grain size continues to decrease within the single domain range, another 

critical threshold is reached, at which remanence and coercivity go to zero. When this 

happens, the grain becomes superparamagnetic, a phenomenon by which magnetic 

materials may exhibit a behavior similar to paramagnetism at temperatures below the 

curie or the Neel temperature. Normally, coupling forces in magnetic materials cause 

the magnetic moments of neighboring atoms to align, resulting in very large internal 

magnetic fields. At temperatures above the curie temperature (or the Neel temperature 

for antiferromagnetic materials), the thermal energy is sufficient to overcome the 

coupling forces, causing the atomic magnetic moments to fluctuate randomly. Since 
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there is no longer any magnetic order, the internal magnetic field no longer exists and 

the material exhibits paramagnetic behavior.  

Superparamagnetism occurs when the material is composed of very small 

crystallites (usually in the region of 1-10 nm). In this case even though the 

temperature is below the curie or Neel temperature and the thermal energy is not 

sufficient to overcome the coupling forces between neighboring atoms, the thermal 

energy is sufficient to change the direction of magnetization of the entire crystallite. 

The resulting fluctuations in the direction of magnetization cause the magnetic field to 

average to zero. The material behaves in a manner similar to paramagnetism, except 

that instead of each individual atom being independently influenced by an external 

magnetic field, the magnetic moment of the entire crystallite tends to align with the 

magnetic field.  

The energy required to change the direction of magnetization of a crystallite is 

called the crystalline anisotropy energy and depends both on the material properties 

and the crystallite size. As the crystallite size decreases, so does the crystalline 

anisotropy energy, resulting in a decrease in the temperature at which the material 

becomes superparamagnetic. 

 

2.8.6 Magneto-impedance (MI) Effect 

The magneto-impedance (MI) effect can be observed in soft magnetic metals, and 

generally consists of the change of the AC impedance, Z R iX= + , where R is the 

resistance (real part) and X is the reactance (imaginary part) when subjected to a static 

magnetic field, H0 [141]. The MI ratio Z
Z

Δ  is usually defined as  

      0 max

max

( ) ( ) (%)
( )

Z H Z HZ
Z Z H

−Δ =            (43) 
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where Z is the impedance modulus and Hmax is the maximum measuring field at which 

the specimen is considered to be magnetically saturated. In general, when the MI ratio 

is above 100%, the term giant magneto-impedance (GMI) effect is used instead. It has 

been reported that maximum GMI ratios of up to 600% have been achieved by 

amorphous microwires, at frequencies around 1 MHz for maximum applied fields 

Hmax in the order of hundreds of Oe [142], and maximum GMI ratios of up to 1200% 

have been achieved by nanocrystalline composite wires at similar testing conditions 

[142].   

In general, the complex impedance of a linear electronic element at the circular 

frequency ω is given by:  

( ) /ac acZ U I R iXω = = +     (44) 

where Iac is the harmonic current with frequency ω flowing through the element and 

Uac is the harmonic voltage of the same frequency, measured between its terminals. 

However, it must be noted that Eqn. 44 is not fully applicable to ferromagnetic 

conductors because such materials are usually not linear as Uac is generally not 

proportional to Iac and it is not a harmonic function of time (it contains higher order 

harmonics) [ 143 , 144 ]. Only under certain circumstances the ferromagnetic 

conductor can be considered as a linear element and can be approximated using the 

procedure for the calculation of complex impedance. Although the definition of GMI 

ratio ΔZ/Z (the ratio ΔZ/Z linearly depends on Z ) is widely used and useful for 

quantifying the huge attained variations of impedance, the definition by means of the 

ratio of Z/RDC (where RDC is the DC resistance of the sample) should be a better 

choice due to the shortcomings of the earlier simpler definition.  The shortcomings 

include: (i) the information about the phase shift is lost; (ii) it depends on the 

ambiguously chosen Hmax since the specimen might be apparently magnetically 
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saturated does not necessarily mean that GMI is also saturated; (iii) the ratio ΔZ/Z is 

rather sensitive to how much of the measuring circuit is included in Z(Hmax) .  

Beside the magnitude and direction of the applied DC field, the main parameter 

determining GMI is the frequency of the driving current that generates the circular 

AC driving magnetic field. Depending on this frequency, approximately three main 

regions can be roughly defined.   

 

A. Very low frequency regime (frequency range of 1-10 kHz)  

In this frequency regime, the driving current simply generates a circumferential 

time dependent magnetic field. Such a field causes a circular magnetic flux change 

and generates a longitudinal electric field that in turn gives rise to an inductive voltage 

across the specimen. In other words, the inductive voltage is determined by the 

internal inductance Li that in turn depends on the spatial distribution of the transverse 

permeability within the specimen. Thus, when a time varying current is flowing 

through a ferromagnetic wire, an AC voltage Uac appears between the ends of the wire. 

This total voltage is the complex sum of a resistive voltage UR and an inductive 

voltage UL: 

ac R L dc ac i acU U iU R I i L Iω= + = +      (45) 

where RDC is the DC resistance of the sample. When an external DC magnetic field H0 

is applied, both the circular component of magnetization and the circular permeability 

changes, giving rise to a large change in Uac. The complex impedance of the specimen 

is defined as the ratio between Uac and the driving current Iac, i.e. 

ac
dc i

ac

UZ R i L
I

ω= = +       (46) 
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It can thus be concluded that at very low frequencies, the field dependence of 

impedance is attributed to its inductive part, that is simply proportional to the 

circumferential permeability μφ(I, Hext,f). Therefore, at very low frequencies, the 

change of the material’s impedance is exclusively attributed to the magneto-inductive 

effect arising from the circular magnetization process [145]. Due to large Barkhausen 

jumps in the domain wall motion, the inductive voltage UL can be very far from the 

harmonic waveform, especially for high amplitudes of driving current. This allows for 

easy distinguish of the resistive and inductive components of the total voltage Uac [44].  

In the range of frequencies typical of the magneto-inductive effect, simple 

experimental setup can be used. It is even possible to use the regular four probe 

method with an AC current source for the probe current and a measurement 

performed with a conventional lock-in amplifier. If phase information is not necessary, 

a simple AC voltmeter or oscilloscope can be used to measure the voltage drop across 

the magneto-inductive element.  

  

B.  Low and intermediate frequency regimes (frequency range of 10kHz to a few 

hundreds MHz) 

The changes of complex impedance in the moderate frequency range, induced by 

magnetic field, were first identified as the GMI effect. This phenomenon was soon 

explained in terms of classical skin effect in magnetic conductors with a large 

effective permeability and its strong dependence on the magnitude of external DC 

magnetic field [146]. Therefore, the explanation of GMI response of a particular 

sample is equivalent to the understanding of the dependence of its permeability on the 

external magnetic field and frequency. In the classical description of skin depth, the 

permeability is considered as a scalar quantity. In real ferromagnetic materials, the 
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situation is much more intricate. Magnetic induction B and magnetic field H are 

usually not parallel and the relationship between them is not linear. Thus, the AC 

permeability is generally a complex tensor that depends on a number of parameters 

such as frequency f, magnetic field H, amplitude of the AC magnetic field associated 

to the driving current, anisotropies, stress distribution and the domain structure in the 

specimen.  

 

 

 

 

 
 
 

Fig. 21 Schematic to the definition of impedance. 
 

The skin effect, which is responsible for GMI at medium and high frequencies, is 

a phenomenon well described by the classical electrodynamics [147] many years ago. 

As a consequence of induced eddy currents, the high frequency AC current is not 

uniformly distributed in the conductor volume but is confined to a shell close to the 

surface, with depth 2 /δ ρ ωμ=   (where ω is the circular frequency, ρ the resistivity 

and μ the magnetic permeability). 

Let us assume an infinite straight conductor (satisfying the Ohm’s Law e= ρj, 

where e is the AC electric field vector, ρ is the resistivity and j is the AC current 

density vector) with a uniform cross section of the area q (see Fig. 21). The 

impedance Z measured between two points at the distance L is given by the formula. 

q Iac 
z 

Uac 

L 
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( ) ( )z zac L L

ac z zq q

e S dz j S dzUZ
I j dq j dq

ρ= = =∫ ∫
∫ ∫ ∫ ∫

    (47) 

where jz and ez = ρjz are the amplitudes of longitudinal components of AC current 

density and electric field respectively. The symbol S refers to the surface of 

conductor. If the current density jz is independent of coordinate z one gets from Eqn. 

47. 

( )z

dc z q

j SZ
R j

=                                                 (48) 

where RDC = pL/q is the DC resistance and q  denotes the average value over the 

cross section q. As can be seen, the ratio Z/RDC is given by ratio of the current density 

at the surface to its average value. 

Using the Ampere’s law
C

I hdl= ∫  , where C is the contour of the area q, the total 

current is given by Iac = Ihφ (S), where hφ (S) is the circumferential component 

(tangential to the surface and perpendicular to z) of AC magnetic field on the surface 

and I is the length of the contour C. In metals, the relationship between the tangential 

components of e and h at the surface can be described by the 2x2 surface impedance 

tensor ζ
∧

 [147]: 

( ) ( )t te S n h Sζ
∧

= ×                      (49) 

where n is the normal vector of the surface (directed outside the conductor). Using 

Eqn. 47 and Eqn. 49 one gets the relation between Z and the surface impedance. 

( )z
z

hLZ zz
l hφ

φ

ζ ζ= −                (50) 

  In the case of special symmetry, when the surface impedance tensor is diagonal 

or the axial component h is zero, the 2nd term on the right side vanishes and the 
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impedance is proportional to the surface impedance zzξ . The off-diagonal component 

zφξ is responsible for “cross-magnetization” and asymmetric GMI. The impedance 

shown above was derived under the assumption of an infinitely long conductor. In a 

closed measuring circuits, the “external” self-inductance Le of the conductor, which is 

related to the magnetic energy stored in the circuit (outside the conductor volume) 

[147] should be added to the impedance Z. The self-inductance Le, however, is not an 

intrinsic property of the conductor and depends on the particular geometry of the 

measuring circuit. If it is properly determined, it can be included into the impedance 

of the measuring circuit itself.  

The very essence of GMI lies in the fact that in extremely soft magnets, the skin 

effect appears at frequencies several orders of magnitude lower than those expected 

for a non-magnetic conductor with equivalent conductivity. Besides that, GMI 

requires a high efficiency of the static fields to modify the AC permeability, the skin 

depth and consequently the impedance. Moreover, in ferromagnetic metals, the AC 

permeability is not isotropic. It depends on the orientation of both the AC and DC 

magnetic fields as well as on the magnetic and shape anisotropies of the sample. 

Therefore the AC permeability, which takes part in GMI, is the effective transverse 

permeability μt. In summary, to observe GMI, the transverse permeability μt (H, f) (or 

circumferential permeability μφ in the case of cylindrical geometry) has to be large 

enough and must be significantly modified by the static field.  

Generally, both the domain wall motion and magnetization rotation contribute to 

the effective transverse permeability [148]: 

( ) ( )t t rot t dwμ μ μ= +      (51) 

where μt(rot) and μt(dw) are the corresponding contributions to the effective transverse 

permeability. At relatively low frequencies (<1 MHz), both contributions are effective 
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in the transverse magnetization process. At relatively higher frequencies, the domain 

wall motion is strongly damped by eddy currents and the magnetization rotation 

dominates the process. Both contributions for the magnetization process can be 

accurately separated by means of complex permeability formalism, as employed by 

Valenzuela et al in soft magnetic amorphous wires [149, 150, 151]. 

Special care must be taken to ensure the correct measurement of the driving 

current amplitude while measuring MI effect in the moderate frequency range. There 

is a need for impedance match over all connections. As the frequency is increased, 

this impedance match becomes critical to ensure the power delivery to the MI element. 

Samples leads can produce the unbalancing of the whole impedance and thus special 

care should be taken for them. Another possibility (which works for a limited range of 

frequencies) is to use a relay to measure a voltage drop across a series resistor and 

adjust the current flowing through the sample for each frequency and field value. In 

this case, a perfect impedance match is less important once the actual current value is 

measured, although cables with higher characteristic impedance, e.g. oscilloscope 

probes, are needed. The careful choice of the relay is also crucial.   

 

C. High frequency regime (frequency range in the order of GHz) 

Although ferromagnetic resonance (FMR) is usually studied in saturated 

specimens placed in a cavity subjected to a microwave excitation at about 9 GHz (X-

band) or higher, it is now widely accepted that the GMI effect is a fingerprint of FMR, 

even in the low frequency ranges [152, 153, 154]. Therefore, the description of MI 

should take into account the dynamical effects on the magnetization, related to FMR. 

The basic conditions to obtain the resonance are: (i) presence of an effective static 

field Heff(0) that fixes the spin orientation and (ii) presence of a component of AC 
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magnetic field h perpendicular to the static field. This field may exhibit either planar 

symmetry, for film conductors, or circumferential symmetry, for wires. Close to the 

resonance, h supplies energy to compensate the losses associated to the interaction of 

the rotating magnetic moments with the surrounding medium, thus maintaining the 

magnetization precession. The FMR regime results in drastic changes of magnetic 

permeability with frequency and/or field, with this behaviour being reflected in the 

impedance as well. At resonance, a small change in the static magnetic field results in 

a large change of the impedance.  

At frequencies above 10 MHz, where the electromagnetic radiation becomes 

important, the use of microwave lines and cavities is recommended. In most cases, in 

order to facilitate the experimental methods, the coaxial line technique (for wires) 

[155, 156] and the stripline cavity technique (for films and ribbons) [157, 158] are 

used. The theoretical description of GMI in the high frequency regime is based on the 

simultaneous solution of the Landau-Lifshitz and Maxwell equations, which shows 

that the maximum theoretical GMI ratio is determined by minimum skin depth that is 

achieved for the FMR resonance condition [152]. However, this will not be further 

discussed in this review as the bulk of the studies were based on measurements of 

impedance at low and intermediate frequency regimes.  

 

2.9. Summary 

To explain for the signifance of the project objectives, an overview of magnetic 

sensors applications was described, with the classification of such applications carried 

out according to the sensitivity of the sensors. As implicated from the earlier sub-

chapters, successful development of high sensitivity magnetic sensors can potentially 

enhance the performance of existing applications as well as open up new applications. 
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An extensive review on the existing sensor technology as well as the available sensing 

elements revealed that composite wires development are a relatively new technology 

and is potentially beneficial to the high sensitivity of the magnetic sensors. 

Furthermore, no reported work was carried out in research areas related to the project 

objectives.  

Reviews on relevant magnetism and magnetic material theories, such as domain 

theory, random anisotropy model (RAM), giant magneto-impedance (GMI) effect, 

superparamagnetism, provide the author with a strong foundation on which the 

research approach was designed and implemented to achieve the established project 

objectives. In particular, based on the basis that: 1) the permeability increases greatly 

with decreasing grain size as the grain size are below the exchange length; 2) that 

there must be a lower bound below which the permeability drops rapidly due to 

superparamagnetism, it will be extremely beneficial for the magnetic properties of the 

composite wires if the nanaocrystalline grain sizes of the deposited magnetic material 

are to be reduced. 
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Chapter 3 Research Approach and Experimental Setups 

 

 

3.1. Research Approach  

In order to fulfill the objectives, which is to develop super permeability 

Ni80Fe20/Cu composite wires, the effect of the synthesis process parameters on the 

resulting properties of the wire specimens has to be investigated. Thus, this 

investigation essentially involves several synthesis and characterizing methods and 

setup. This chapter discusses the fabrication methods as well as the setup used to 

develop composite wires, namely electrodeposition, cold-drawing and magnetron 

sputtering. The characterization methods and equipment were also described in this 

chapter. 

Fig. 22 shows the flowchart of the fabrication and characterization steps for the 

composite wires. The Ni80Fe20/Cu composite wires specimens were developed using 

three different synthesis methods, in order to compare the properties of the wires from 

different methods. These wire specimens were then characterized according to the 

following material properties: 1) surface smoothness using scanning electron 

microscopy (SEM); 2) coating thickness using SEM, since the total thickness of the 

wire can be obtained from the SEM pictures and the Cu core diameter is known; 3) 

average nanocrystalline grain size using X-ray diffraction (XRD) and transmission 

electron microscopy (TEM). In the case of average grain size measurement, XRD has 

been widely used in this study. However, this method only provides calculated values 

of the average crystallite size and this calculated value has to be calibrated using TEM, 

since TEM provides pictures of the actual grains, despite showing unclear grain 



Chapter 3 Proposed Research Approach and Experimental Setups 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 84 

boundaries. The main disadvantage associated to the use of TEM is the extremely 

long hours used for the preparation of the specimens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 22 Flowchart showing the fabrication and characterization methods for the 
composite wires specimens. 
 

The magnetic properties of the specimen wires were also measured and 

characterized. These magnetic characterizations include: 1) hysteresis loop using 

vibrating specimen magnetometer (VSM) and the inductance method, displaying the 

Electrodeposition  Cold-
drawing  

Magnetron 
Sputtering 

Scanning Electron 
Microscopy (SEM)  

Energy Dispersive X-
Ray (EDX)  

X-Ray Diffraction 
(XRD)  

Transmission Electron 
Microscopy (TEM)  

Magneto-impedance (MI) 
Effect Testing Setup 

Vibrating Specimen 
Microscopy (VSM)  

Materials Development 
Processes 

Surface profile, wire 
thickness measurement 

Material composition 
measurement 

MI ratio 
measurement 

Hysteresis loops 
measurement 

Average grain 
size measurement 

Development of Micro 
Composite Magnetic Wires  

Sensitivity Testing  
Setup 

Inductance Method 
Setup 

Sensing 
Performance 

Magneto-optical Micro-
magnetometer Setup 

Localized 
magnetic 
properties 

& magnetic 
domain  



Chapter 3 Proposed Research Approach and Experimental Setups 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 85 

values of saturation magnetization and coercivity; 2) magneto-impedance (MI) effect 

using MI effect setup.  

 
3.2. Materials development and fabrication processes 

3.2.1. Electrodeposition  

Electrodeposition process essentially involves the flow of current in the electrolyte 

solution from the anode to the cathode, leading to the anomalous co-deposition of Ni-

Fe on the cathode. Some characteristic reaction equations occurring during the 

deposition process include: 

Ni2+ +2e- → Ni      (52) 

Fe2+ + 2e- → Fe     (53) 

Ni2+ +2OH- → Ni(OH)2     (54) 

H2O → H+ + OH-     (55) 

H+ +H+ → H2     (56) 

where Eqn. 52 and Eqn. 53 are the reactions occurring at the cathode and are 

responsible for the deposition of the ferromagnetic alloy, Eqn, 54 is the reaction 

causing the deposition of ferromagnetic alloy Ni-Fe to be of a anomalous nature and 

Eqn. 55 and Eqn. 56 showing the reactions occurring in the chemical electrolyte 

solution resulting in hydrogen gas evolution during electrodeposition. 

In this process, a copper wire of 20µm in diameter was fixed to the centre of a 

stainless steel plating cell (counter electrode) and cleansed in diluted 20% 

hydrochloric acid (HCl) and distilled water. The wire, together with the cell, is then 

submerged in an electrolyte solution (Watts-type) with the concentration listed in 

Table 3. 
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 Potassium hydroxide pellets, dissolved in distilled water, was used to maintain 

the pH value of the electrolyte solution throughout the plating process. For NiFe 

electrodeposition, pH value was maintained at around 3.4. Plating was carried out at a 

constant temperature of 55°C by means of a water bath. The plating current was fixed 

at 1 mA, which means the current density J was 2 A/dm2. A schematic diagram of the 

electrodeposition process is presented in Fig. 23.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23 (a) Schematic diagram for electrodeposition for wires; (b) Photograph 
showing the equipment involved in the electrodeposition for wires.  
 
 
 
 
 
 

 

 

 

Fig. 24 SEM Picture of the copper wire, displaying the surface smoothness of the wire. 
 

For NiFeMo electrodeposition, plating was carried out at the deposition time of 5 

minutes and the current of 6 mA, with ultrasonic agitation. The electrolyte solution 
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was maintained at a pH of 3.0 at room temperature. The cold-drawn copper wires 

used in the electrodeposition of wires were obtained from Tanaka Electronics. The 

surface smoothness of the wire is shown in Fig. 24.  

 
Table 3 Chemical concentration for NiFe  and NiFeMo electrolyte plating bath. 

 
 

 

 

 

 

 

 

 

 

 

 

For NiFe electrolyte solution, the chemicals FeSO4.7H2O and NiSO4.6H2O are the 

main sources of Fe2+ and Ni2+ ions in the electrolyte solution. NiCl2.6H2O provides 

Ni2+ ions and Cl- ions to the solution. The presence of Cl- ions in the solution 

improves the throwing power of the solution. Boric acid (H3BO3) was added to the 

solution as a pH buffer element, i.e. to maintain consistant pH value of the solution 

throughout the plating process. Saccharin was included in the solution as a class one 

brightener in order to obtain deposited layers of smaller average grain sizes. When a 

current is passed through the plating cell, a potential difference is induced between the 

plating cell and the cathode (the wire to be electrodeposited) and causes a flow of ions 

towards the cathode.  The rate of deposition is dependent on the deposition parameters: 

Chemical Name / 

Formula 

Concentration For 

NiFe Plating 

Concentration for 

NiFeMo Plating 

FeSO4.7H2O Varied Varied 

NiSO4.6H2O 125 g/L 108.53 g/L 

NiCl2.6H2O 20 g/L - 

H3BO3 40 g/L - 

Saccharin 6 g/L 3 g/L 

Na2MoO4.2H2O - 15.5 g/L 

Sodium Chloride - 10 g/L 

Citric Acid - 66 g/L 
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current densities, deposition time, deposition temperature, pH value and the presence 

of additives.   

 

 

 

 

 

 

 

 

 

 

Fig. 25 Schematic Diagram of the Electrical Circuit Setup 

 

For DC and pulsed electrodeposition, the current waveform was supplied by 

commercially available current source (Advantest R6145 DC Voltage Current Source 

and Advantest R6243 DC Voltage Current Source). For pulse-reverse 

electrodeposition, the pulse-reverse current was supplied by customized electrical 

circuit. The electrical circuit setup basically consisted of relays, diodes and the 

adaptor card linked to the Labview Software in the computer. Each current source was 

link to a relay that was connected to the adaptor card which sent out voltage pulse (0V 

or +5V) to control the switching of the relays, allowing the current sources to be 

activated at the required time. The voltage pulse signals sent out by the adaptor card 

was in turn controlled by the data input into the Labview Software. Diodes were used 
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to ensure current flowing only in one direction. The current waveforms were 

monitored through the Agilent 54622D Mixed Signal Oscilloscope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 26 (a) Schematic Diagram of the Setup for Electrodeposition of Thin Films; (b) 
Photograph showing setup for thin film electrodeposition  

 

In order to carry out XRD measurements of the electrodeposited layer, thin films 

have to be deposited, using a customized electrodeposition setup for thin films as 
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shown in Fig. 26. With the help of the temperature controller with the attached 

cartridge heater and sensor, the temperature of the plating solution was maintained at 

55 ْC, as with the setup for wire plating. The inclusion of the air pump into the electro-

deposition setup allows for a more uniform distribution of the ions concentration in 

the solution and also aids in preventing heat localization. The back and fro motion of 

the cathode rocker helps to remove the hydrogen bubbles on the deposited surface, 

hence creating the “wetting” effect of the substrate  This ensures that nickel 

deposition can be carried out smoothly. In the thin film setup, in order to maintain a 

current density of 2 A/dm2, current was determined to be 80.9 mA. Plating time was 

fixed at 64 minutes and pH of the solution at 3.4. 

 

3.2.2. Cold-drawing 

3.2.2.1. Cold-drawing Die 

One of the most important design considerations in cold-drawing process is that of 

the design dies. Fig. 27 shows the cross section of dies used. It has an approach half 

angle and back relief half angle of 7.5o. The approach length is maintained at 20% of 

the original diameter of the wire such that wire will not be deformed too rapidly. Hard, 

strong, wear resistant materials such as tungsten carbide, cemented carbide, and 

hardened alloy steel are commonly used as dies for wire drawing. 

 

 

 

 

 

Fig. 27 Cross section of die used in drawing process. 



Chapter 3 Proposed Research Approach and Experimental Setups 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 91 

In this project, synthetic diamond dies are used. However, the high cost, 

brittleness, lack of tensile strength and toughness of this material implies it can only 

be used as inserts, with a tougher material supporting it. Fig. 28 shows the dies used 

in this project, comprising synthetic diamond insert supported by tungsten carbide. 

 

 

 

 
 
 

 

 

Fig. 28 Photograph showing the 86 drawing dies used in the process. 

   

3.2.2.2.  Drawing Equipment - Modified Tensometer Setup 

The modified tensometer (shown in Fig. 29) was used in the cold-drawing process. 

It consist of a die holder to house the dies, wire clamp to attach the specimen for the 

drawing process, as well as spindle for rough and fine turning to translate the 

rotational motion into linear translation of the clamp, thus provided the drawing force 

for the wires. 

In order to reduce the amount of human intervention and effort required to draw 

the wires, the spindle was replaced by an automated system as shown in Fig. 30. A 

connector was fabricated out of aluminum to connect the tensometer to the motor.  In 

order to mount the motor at a specific height, a labjack was purchased to fix the 

motor’s position. However, due to the speed of the rotational motion, it was critical to 

fix the platform firmly to the workbench so as to reduce vibrations which could have 
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negative effects on the drawing of the wires. Hence, 2 G-clamps were used to fix the 

platform to the workbench. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 29 The modified tensometer. 
 

 

 

 

 

 

 

 
 
 

Fig. 30 Implementation of motor to automate drawing process. 
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3.2.2.3. Fabrication of Initial 3 mm in Overall Diameter Ni80Fe20/Cu Composite   

             Rod 

Ni80Fe20 rods of 3 mm in outer diameter and 40mm in length were cut out from 

commercially available Ni80Fe20 sputtering targets (of purity 99.95%) by wire-cut 

electrical discharge machining (EDM). Wire-cut EDM is an intricate way of 

machining metal parts which are impossible to produce with conventional machining 

techniques.  A hole of diameter 2.5mm (and 2mm) and 10 mm in depth was then 

drilled on one end of the rod. Cu rods of diameter 2.5mm (and 2 mm) were then press 

fitted into the hole in the Ni80Fe20 rods. In order to achieve a good fit of the 2 

materials, slight hammering was done. The final step of the fabrication involved filing 

the end of the composite rod with Cu to remove excess material. The final dimensions 

of the fabricated composite rods are shown in Fig. 31.     

  

 

 

 

 

 

Fig. 31 Schematic diagram of fabricated composite rod. 
 

As shown in Fig. 31, the front portion was to be thinned down by grinding (either 

with a grinding wheel or sandpaper) to enable passage of that particular portion of the 

rod to pass through the die and be held by the wire clamp. The structure of the rods 

was designed such that the front potion consisted of only pure Ni80Fe20 due to this 

reason. In the absence of the pure Ni80Fe20 region, Cu will eventually be exposed after 

consecutive grinding.  The tensile strength of pure copper is less than that of Ni80Fe20 
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and hence more susceptible to fracture if the clamping is carried out at the exposed Cu 

portion. It is thus necessary to have a region of pure Ni80Fe20 to facilitate the drawing 

process. 

 

3.2.2.4. Cold-drawing Procedures 
 
Using the manufactured Ni80Fe20/Cu rods (3 mm in diameter), the following 

described procedures were adopted to reduce the rods to an eventual diameter of 34 

μm. A flow chart depicting the various steps was shown in Fig. 32.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32 Flowchart of experimental procedures. 
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At each individual draws, the initial portion of pure Ni80Fe20 region was thinned 

down. The bench grinder can be used for grinding for the first 27 draws as the 

diameter was still significant and thus can withstand fracture. Furthermore, there were 

great amounts of materials to be removed and would be time consuming to do so 

manually. However, after the 27th draw, the diameters of the rods were reduced to 

0.751 mm and thus too delicate to be thinned down by the bench grinder. Hence the 

process was replaced by the manual grinding with sandpaper. The grinded wire can 

then be placed through the die, clamped and cold-drawn. This step can be repeated 9 

times before an intermediate annealing has to be carried out, after which, cold-

drawing of the wires can resume. As the end of the 82 draws, a final annealing was 

carried out. The details of the intermediate and final annealing setup were provided in 

the later section of this chapter.  

Intermediate annealing was done on the wires after every 9 draws to restore the 

material’s ductility and release the residual stress induced by strain hardening. This 

intermediate annealing process facilitates subsequent cold-drawing. The total 

percentage cold-work, as defined as (Eqn. 57) after 9 draws is around 58-62%, where 

Ai and Ao are the cross sectional areas of the composite wires before and after each 

cold draw, respectively. 

     
     (57) 

 

It had been suggested that the percent cold-work should be below 85-95%. Hence 

annealing after every 9 draws should be adequate as percent cold-work is less than the 

suggested value, even after giving a safety factor of around 1.5.  

The wires were annealed at 550oC in argon atmosphere for 1 hour each time in the 

furnace shown in Fig. 33(a). The heating curve of this annealing process is shown in 
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Fig. 33. The rate of oxidation of materials increases rapidly with increase in 

temperature. Hence, in order to prevent oxidation, the specimens were left in the 

furnace overnight in argon atmosphere to ensure that they are totally cooled down to 

room temperature before they were removed from the furnace. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 33 Graph of annealing temperature against annealing time. 
 

3.2.3. Magnetron Sputtering Setup 

In this project, some Ni80Fe20/Cu composite wires (described in Chapter 10) were 

fabricated using the magnetron sputtering system (Denton Discovery 80 System). 

This system (Fig. 34a) is equipped with three circular magnetron cathode guns, 

enabling it to sputter three different material layers on a single substrate. The 

sputtering mode that was used for this project is the DC sputtering mode. 

For all the samples obtained in this project, samples generally go through a pre-

process treatment before being sputtered with permalloy. This treatment consists of 

pickling the wires with diluted hydrochloric acid, ethanol rinsing and ending with a 

final rinse using distilled water. Acid pickling was used to remove all traces of oxides 

on the surface of the wire while ethanol’s function was to remove all traces of oil and 

grease on the wire. The usage of distilled water was to remove all the chemicals used 

in the pre-process treatment. After the pre-process treatment, the samples are 
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immediately mounted onto the wire holders before placing it in the deposition 

chamber. After the chamber is closed, the vacuum pump is turned on till the vacuum 

conditions are reached. During this time, deposition parameters are entered into the 

system. When the targeted vacuum conditions are obtained, the deposition process 

begins. When the deposition is completed, the sample is removed for characterization. 

It should be noted at this point of time that along with the wire samples, a glass 

substrate is also placed inside the chamber so that XRD can be carried out on the 

deposited layer to determine its grain size.  

  

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 34 Photographs showing (a) The Denton Discovery 80 system; (b) wire fixture 
for 180° rotation; (c) wire fixture for 90° rotation. 
 
 
 
3.2.4. Post Annealing Setup 

3.2.4.1. Furnace Annealing Setup 

The setup for furnace annealing consists of a tube furnace, an argon tank and a 

bottle of water.  The furnace is capable of heating up to a temperature of 1200ºC and 

will be used in this study to vary the annealing temperature and duration. Unless 

otherwise stated, the annealing duration will be 1 hour, with heating and cooling rate 

at 10ºC/min. The argon gas will be turned on 1 hour prior to annealing to purge any 

(a) (b) 

(c) 
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impurities and ensure constant flow of noble gas during annealing. Specimens to be 

annealed will be placed on a ceramic tray and be positioned at the center of the tube 

furnace to ensure even heat distribution throughout the entire wire. Fig. 35(a) shows a 

picture of the furnace used in this project. It consists of an inlet and outlet for the 

argon gas which flows continuously throughout annealing so as to prevent possible 

oxidation of the wire. The furnace has an in-built programming device used to control 

the rate change of temperature, holding temperature and holding time of the heating 

and cooling process. Initial temperature calibration of the furnace showed that the 

actual heating temperature was 20°C higher than the displayed value on the display 

screen, at temperatures below 700°C.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 35 (a) Photograph showing furnace used in the project; and (b) schematic 
diagram showing furnace annealing setup. 

 

3.4.2.2. DC Joule Annealing Setup 

The argon gas cylinder is connected to a flow meter, which regulates the argon 
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gas flow into the annealing chamber via gas inlet and the gas outlet is in turn 

connected to a beaker of water by a plastic tube. The function of the beaker of water is 

to prevent back flow of pressure and acts as an indicator that signifies purging is 

taking place when air bubbles are seen upon gas flow. The arrangement is illustrated 

in Fig. 36. The annealing chamber is electrically connected in series with a DC power 

source and an ammeter. The annealing chamber is the working platform whereby DC 

annealing takes place. The composite wire is soldered onto a PCB board, which has 

two wires at each +/- terminal, before it is placed into the annealing chamber. At the 

electrical contacts, only one wire from each terminal is being used and DC current 

flows into one red wire, through the composite wire before flowing out from one 

black wire back to the power source. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 36 Schematic representation of the DC joule annealing setup. 
 

 

Once the set-up for argon gas purging and DC annealing are in place, the first step 

is the purge the annealing chamber with argon gas, thus: 
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i. Turn on flowmeter and purge the annealing chamber with argon gas for 10 

minutes. 

ii. Turn off flowmeter and switch on power supply. Adjust the current from 0 to 

100mA. DC anneal the composite wire at this designated current for 1 minute. 

iii. After switching off the power supply, turn on the flowmeter to air-cool the 

composite wire for another 1 minute. 

iv. Repeat step 1-3 for 200mA, 300mA and 400mA for each sample. 

 

3.3. Materials Properties Characterization Setup 

3.3.1. Scanning Electron Microscopy (SEM) 

The surface of the plated wires was examined by using JEOL Scanning Electron 

Microscopy (SEM) at varing magnifications. The thickness of the deposited layer of 

the Ni-Fe/Cu composite wire samples was obtained by measuring the external 

diameter of the plated wires using SEM, subtracting from it the copper core diameter; 

and halving the calculated value. Fig. 37 is a typical SEM picture of the composite 

wire specimen. 

 

 

 

 

 
 
 
 
 
 
 

Fig. 37 Typical SEM picture of composite wire specimen. 
 



Chapter 3 Proposed Research Approach and Experimental Setups 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 101 

A schematic representation of the scanning electron microscope with which 

surfaces are studied is shown in Fig. 38. The electrons are accelerated in a potential 

difference, typically of the order of 10-20 keV, and the magnetic lenses form an 

electron spot of a size of the order of a few nm. When the energetic electrons hit the 

surface under investigation, secondary electrons are emitted (SE), some incident 

electrons are being backscattered (BSE), x-rays are emitted (X) and a current is 

measured to the sample (SC and EBIC). A deflection coil system scans the focused 

electron beam in a raster across the surface. In synchronism with this is an electron 

beam of a separate cathode-ray tube (CRT) scanned over the screen, while the 

intensity of the CRT is modulated by one of the signals SE, BSE, X, or SC and EBIC 

to form an image of the surface. 

 

 

 

 

 

 

 

 
 
 
 
Fig. 38 (a) Photograph showing SEM/EDX system; (b) Schematic presentation of a 
scanning electron microscope. 
 
 

In a typical SEM, electrons are thermionically emitted from a tungsten or 

lanthanum hexaboride (LaB6) cathode and are accelerated towards an anode; 

alternatively electrons can be emitted via field emission (FE). The electron beam, 

(a) (b) 
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which typically has an energy ranging from a few hundred eV to 50 keV, is focused 

by one or two condenser lenses into a beam with a very fine focal spot sized 1 nm to 5 

nm. The beam passes through pairs of scanning coils in the objective lens, which 

deflect the beam in a raster fashion over a rectangular area of the sample surface. As 

the primary electrons strike the surface, they are inelastically scattered by atoms in the 

sample. Through these scattering events, the primary electron beam effectively 

spreads and fills a teardrop-shaped volume, known as the interaction volume, 

extending from less than 100 nm to around 5 µm into the surface. Interactions in this 

region lead to subsequent emission of electrons, which are then detected to produce an 

image. X-rays, which are also produced by the interaction of electrons with the 

sample, may also be detected in an SEM equipped for energy dispersive X-ray 

spectroscopy or wavelength dispersive X-ray spectroscopy. 

The most common imaging mode monitors low energy (<50 eV) secondary 

electrons. Due to their low energy, these electrons originate within a few nanometers 

from the surface. The electrons are detected by a scintillator-photomultiplier device 

and the resulting signal is rendered into a two-dimensional intensity distribution that 

can be viewed and saved as a digital image. This process relies on a raster-scanned 

primary beam. The brightness of the signal depends on the number of secondary 

electrons reaching the detector. If the beam enters the sample perpendicular to the 

surface, then the activated region is uniform about the axis of the beam and a certain 

number of electrons "escape" from within the sample. As the angle of incidence 

increases, the "escape" distance of one side of the beam will decrease, and more 

secondary electrons will be emitted. Thus steep surfaces and edges tend to be brighter 

than flat surfaces, which results in images with a well-defined, three-dimensional 

appearance. Using this technique, resolutions less than 1 nm are possible. 
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In addition to the secondary electrons, backscattered electrons can also be detected. 

Backscattered electrons may be used to detect contrast between areas with different 

chemical compositions. These can be observed especially when the average atomic 

number of the various regions is different. 

 

3.3.2 Energy Dispersive X-ray (EDX) 

The composition data of the samples are measured using EDX. The JEOL SEM 

machine used for surface topography and thickness analysis can also operate as an 

EDX machine. The EDX attachment comprises of Lithium drifted Silicon (SiLi) 

detector protected with a Beryllium (Be) window, and is to function in a liquid 

nitrogen atmosphere. In this case, X-rays are also emitted, on top of BE and SE, when 

incident electrons of the electron beam are scanned across the sample surface. In case 

when the SE gets knocked out of the orbit, a vacancy is created and an electron from 

other shells with higher energy can come to occupy the vacancy at this lower energy 

shell. As such, there would be emission of energy in the X-ray range. 

This low intensity emitted X-rays, which are generated in a region about 2 

microns in depth, are unique to the element of the sample. A photoelectron is 

produced when the X-ray photon hits the detector and causes electron-hole pair to 

form as it moves through the semiconductor that is polarized by high voltage, causing 

these electrons and holes to be attracted to the opposite ends of the detector, resulting 

in a current pulse. The amount of the current pulse generated is controlled by the 

quantity of electron-hole pair, which in turn is determined by the energy of the X-ray. 

Thus, the X-ray energy spectrum of the scanned area can be obtained, indicating the 

elemental composition of the sample. The limitations of the EDX are that it has a 



Chapter 3 Proposed Research Approach and Experimental Setups 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 104 

maximum error of approximately ±1% and that elements with atomic number smaller 

than Boron are difficult to identify using this method. 

 

3.3.3. X-Ray Diffraction (XRD) 

Diffraction occurs as waves interact with a regular structure whose repeat distance 

is about the same as the wavelength. When certain geometric requirements are met, 

X-rays scattered from a crystalline solid can constructively interfere, producing a 

diffracted beam. In 1912, W. L. Bragg recognized a predictable relationship among 

several factors [159].  

1. The distance between similar atomic planes in a mineral (the inter-atomic 

spacing), which is known as the d-spacing and measured in angstroms.  

2. The angle of diffraction, theta and measured in degrees. For practical reasons the 

diffractometer measures an angle twice that of the theta angle. The measured 

angle is named ‘2-theta’.  

3. The wavelength of the incident X-radiation, symbolized by the Greek letter 

lambda.  

  

 

 

 

Fig. 39 Bragg’s Law 
 

X-ray diffraction technique had its beginnings in von Laue’s discovery in 1912 

that crystals diffract x-rays, the manner of the diffraction revealing the structure of the 

crystal. Since then, XRD technique has been used for several purposes. The technique 

is commonly used for phase identification (search/match), investigation of high/low 

λ 

a θ θ 
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temperature phases, solid solutions and determinations of unit cell parameters of new 

materials. In this project, XRD diffraction patterns were recorded using a Philips 7000 

diffractometer (Fig. 40) with Cu Kα radiation. θ-2θ scans were performed at 2°min-1. 

For example, Fig. 41 shows measured XRD spectra of NiFe/Cu composite thin films 

obtained by electrodeposition. The XRD spectra show a FCC Cu layer (with lattice 

constant a = 0.355 nm) and also a FCC NiFe layer (with lattice constant a = 0.362 nm) 

on top. The determination of the material crystallinity can also be achieved by the 

XRD. The crystallinity parts give sharp narrow diffraction peaks and the amorphous 

component gives a very broad peak. The ratio between these intensities can be used to 

calculate the amount of crystallinity in the material. Stress analysis of the materials 

can also be achieved by XRD. The basic principles of stress analysis by the x-ray 

diffraction are based on measuring angular lattice strain distributions, that is, a 

reflection at high 2-Theta is chosen and the change in the d-spacing with different 

orientations of the sample is then measured. Using Hooke’s law the stress can be 

calculated from the strain distribution.  

 

 

 

 

 

 

Fig. 40 Photographs showing (a) Philips 7000 diffractometer; (b) measurement stages 
in the diffractometer. 

 

Another use of XRD is the estimation of the nanocrystalline grain sizes of the 

measured materials using the equation (Scherrer Formula): 

(a) (b) 
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0.9
cosbB

t
λ
θ

= ,     (59) 

where Bb = broadening of diffraction line measured at half its maximum intensity 

(radians) and t = diameter of crystal particle. Note that Bd is essentially zero when 

particle size exceeds about 1000 angstroms. Using Warren’s method to determine Bd 

from the measured breadth BM of the diffraction line, the value of B can be obtained 

by the equation: 

2 2 2
d M SB B B= −     (60) 

where BM is the broadening of diffraction line for the measured specimen and BS is the 

broadening of diffraction line for the standard. 

 

 

 

 

 

 

 

 

 

Fig. 41 XRD data of NiFe/Cu composite thin film. 
 

3.3.4. Transmission Emission Microscopy (TEM) 

The transmission electron microscope is an optical analogue to the conventional 

light microscope. It is based on the fact that electrons can be ascribed a wavelength 

(of the order of 2.5 pm) but at the same time interact with magnetic fields as a point 

charge. A beam of electrons is applied instead of light, and the glass lenses are 
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replaced by magnetic lenses. The lateral resolution of the best microscopes is down to 

atomic resolution. A picture and schematic presentation of the microscope is shown in 

Fig. 42. With an electron gun, an electron beam is formed, which is accelerated by an 

electric field formed by a voltage difference of, typically, 200 kV. By condenser 

lenses, the electron beam is focused to a spot of the order of 1 mm on the thin film to 

be investigated. The first image, which is formed by the objective lens, is magnified 

typically x25, and the following lenses give a final magnification of the image of 

more than x106. In addition to thin-sample images, electron diffraction patterns can 

also be formed on the final image screen. The electron rays corresponding to bright 

field imaging and (selected area) diffraction are shown in the left and right drawings 

of Fig. 42b, respectively. In bright field imaging, the image of a thin sample is formed 

by the electrons that pass the film without diffraction, the diffracted electrons being 

stopped by a diaphragm. In the corresponding dark field imaging mode, a diffracted 

beam is used for imaging. 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 42 (a) Picture showing a TEM; (b) Schematic presentation of a TEM. 
 

(a) (b) 
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The microstructure, e.g. the grain size, and lattice defects are studied by use of the 

image mode, while the crystalline structure is studied by the diffraction mode. In 

addition, the chemical composition of small volumes, for example grain boundaries, 

can be obtained by detection of x-rays emitted from the film. Samples for electron 

microscopy in form of films mounted on fine-meshed grids are required to be very 

thin. In case near-atomic resolution is required film thicknesses have to be limited to a 

few tens of Å. Therefore, the quality of the electron microscopy work is sometimes 

limited by the thinning-down procedure as structural changes may occur during the 

thinning 

 

 

 

 

 

 

 

 

 

Fig. 43 Pictures showing (a) 3 mm hole puncher; (b) hand grinding set; (c) dimple 
grinder; (d) ion milling. 

 

It must be noted that immense efforts have to be been placed in the preparation of 

the specimens for Transmission Emission Microscope (TEM), so that pictorial data of 

the structure and grain size can be obtained.  The preparation steps involve: 1) 

producing 3mm in diameter specimens (composite thin films) using a 3 mm hole 

puncher; 2) hand grinding the specimen to 100µm in thickness by the TEM 

(c) (d) 

(b) (a) 
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preparation disc grinder; 3) creating a dimple on the surface of the grinded specimens 

by means of a dimple grinder; and 4) creating a tiny hole at the center of the created 

dimple in order to obtain thickness of <100 nm at near hole region. The pictures of the 

TEM preparation equipment used were given in Fig. 43. 

Fig. 44(a) shows the plot obtained by tabulating the number of grains for different 

grain size diameter for the observed electrodeposited NiFe layer. The average value of 

the grain size was then presented in the grain size studies in Chapter 6.  Fig. 44b 

shows the TEM pictures obtained. 

 

 

 

 

 

 

 

 

Fig. 44 (a) Plot showing tabulated no. of grains for different grain size diameter for 
the observed NiFe layer, with in set picture showing diffracted pattern of NiFe; (b) 
TEM pictures of measured grains. 

 

3.4. Magnetic Properties Characterization Setup 

3.4.1 Vibrating Specimen Magnetometer (VSM) Setup 

Hysteresis loops (in the longitudinal and perpendicular directions) were derived 

from the Vibrating Specimen Magnetometer (VSM). In this instrument, an external 

magnetic field is provided by an electromagnet. This magnetic field magnetizes the 

sample which is mounted to a glass rod attached to a mechanical resonator vibrating 

up and down at a fixed frequency of ω, as shown in Fig. 45. As the sample moves, its 
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magnetic field, which is proportional to its magnetic moment, M, alters the magnetic 

flux through the coils, dM/dt. This induces a current directly proportional to dM/dt, 

which can be amplified and detected using lock-in amplifiers. 

Once the hysteresis loop of magnetic moment against applied field was plotted, 

the coercivity of the specimen would be the value of the applied field to demagnetize 

the specimen to zero magnetic moment.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 45 Vibrating Specimen Magnetometer setup. 
 

3.4.2. Inductance Method Testing Setup 

Fig. 46 shows the schematic diagram of the setup that was used to carry out 

measurements that enable the tabulation of the circumferential coercivity. 

The (NiFeMo) wire sample of resistance Rw was mounted on a PCB strip and 

connected in the circuit with a resistor of known value Ro. By setting an appropriate 

frequency using the function generator, an alternating current was passed through the 

wire. A varying magnetic field and thus, induced voltage Vind was generated. By 

 

Pick-up coils

Sample 

ω 



Chapter 3 Proposed Research Approach and Experimental Setups 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 111 

saving the readings of V1 and V2 on the oscilloscope, and processing the data as shown 

by the following formula, a graph of magnetic flux density B against applied field H 

(hysteresis loop in the circumferential axis) can be plotted and the circumferential 

coercivity value can thus be found. Fig. 47 illustrates some of the symbolic 

dimensions of the NiFeMo wire used in the tabulation process.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 46 Schematic diagram for circumferential coercivity testing 
 

 

 

 

 

 
 
Fig. 47 Schematic representation defining dimensional parameters used in tabulation 
of circumferential coercivity.   
 

With reference to Fig. 47, the voltage across the measured composite wire and the 

resistor V1 is given by: 

1 0( )w indV I R R V= + +    (61) 

The voltage across the resistor V2 can be approximated by: 
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2 0V IR=     (62) 

Equating both equations:  

2
1 2

0

( )ind w
VV V V R
R

= − −    (63) 

Since /B Aφ=  and ind
dV
dt
φ

= − (where φ is the magnetic flux and A is the area of 

magnetic field), therefore  

1

1 1( ) ( )indB V dt V t
A t l

= = ∑ Δ∫    (64) 

The hysteresis loops (circumferential direction) can then be plotted using the 

tabulated value of B and H (i.e.
2

IH
rπ

= ). 

 

3.4.3. Magneto-impedance (MI) Effect Testing Setup  

Magnetic properties, such as the magnetic anisotropy of the plated wires from 

electroplating with and without the longitudinal magnetic controlling field, were 

determined by the magneto-impedance (MI) effect of the sample wires. An ac current 

was passed through the Ni-Fe/Cu composite wire and a circumference magnetic field 

around the wire was induced. By varying the external magnetic field (by changing the 

DC current through the Helmholtz coils), the magneto-impedance measurements were 

carried out using a precision impedance analyzer (HP4294A).  

The RMS value of the AC driving current was kept constant at 10 mA, and its 

frequency ranged from 100 kHz to 50 MHz.  The relative change of impedance ratio 

is defined in Eqn. 43. A typical MI curve of a tested specimen composite wire is given 

in Fig. 49. 
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Fig. 48 (a) Photograph showing magneto-impedance (MI) measurement setup; (b) 
schematic diagram of MI measurement. 

 

                

 

 

 

 

 

 

 

Fig. 49 A typical MI curve of composite wire. 
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3.4.4. Sensitivity Setup 

In order to effectively evaluate the performance of the composite wires as sensing 

elements in magnetic sensors, the composite wires has to be placed inside the 

orthogonal fluxgate sensor circuit  (Fig. 50) to measure the overall sensitivity of the 

sensor.  

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 50 (a) Schematic diagram showing orthogonal fluxgate sensor setup; (b) 
photograph showing the testing circuit, including PCB and pick-up coil; (c) 
photograph showing orthogonal fluxgate sensor setup. 
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mm in diameter solenoid of known number of turns. An alternating current will be 

passed through the wire using a function generator and the induced voltage, which 

arises from the change of flux ( dV
dt
φ

= − ), will be monitored using an oscilloscope 

that is connected to the solenoid. The magnitude of the alternating current (input) is 

fixed at 50mV. The frequency of the function generator is adjusted to produce a sine 
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wave with peak amplitude in the first and second harmonics. The graph of output 

voltage against the external field is plotted. From the graph, the gradient of the curve 

gives us the sensitivity (dV/dH), and the sensitivity values obtained are subsequently 

plotted against the external field. 

 

3.4.5. Magneto-optical Micro-magnetometer Setup 

The study of the micromagnetic structure (equilibrium distribution of the 

magnetization) of the composite NiFe/Cu wire samples of 15 mm length was carried 

out using a magneto-optical micro-magnetometer having a surface sensitivity of about 

15 nm of thickness depth and a spatial resolution of up to 0.3 μm. The alternating 

magnetic field H of the frequency f = 80 Hz was applied parallel to the wire length L. 

By scanning the light spot of 1 μm diameter along the wire length L, the distributions 

of magnetization components (both parallel M|| and perpendicular M⊥ to the applied 

magnetic field) and also local magnetization curves were measured by the means of 

the Transverse Kerr effect (TKE) δ. Actually, dependencies of δ(L, H)/δS ∝ M(L, 

H)/MS were found. Here δS is TKE at M = MS, where MS is the saturation 

magnetization. The measurements of the magnetization distributions were performed 

in the central portion of the studied samples to minimize the influences of edge effects 

(in particular, variations of local demagnetising factors) by using a half-wave 

sinusoidal magnetic field. 
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Chapter 4 Localized Magnetic Properties and Magnetic Domains of 

DC Electroplated NiFe/Cu Composite Wires 

___________________________________________________________ 

4.1. Localized magnetic properties and magnetic domains of electrodeposited 

NiFe/Cu composite wires 

The typical magnetization curves, δ(H)/δS ∝ M||(H)/MS, observed for the central 

and edge microparts of the samples with CFe = 20.5 and 23.3 %, were shown in Fig. 

51. Analogous curves were obtained for the sample with other values of CFe. 

Experimental data analysis showed that the magnetization curves of the central and 

edge microparts differ strongly. This greatly demonstrates the influence of variations 

of local demagnetising factors on local magnitudes of the saturation field HS. 

Moreover, it was found that the values of HS depend on Fe% in the NiFe layer. For 

illustration, Fig. 52 displays the dependence of HS of the central wire microparts on 

Fe%. In Fig. 52, the increase of HS is observed at CFe = 26.8 %. This experimental 

fact cannot be explained by MS variations with varying value of CFe. It is known [61] 

that with increasing CFe (from 19% to 27%) in NiFe alloys, the value of MS changes 

by about 10 % (see insert in Fig. 52) while the magnitude of HS ∝ K/MS (K is a 

constant of magnetic anisotropy) increases approximately by three times. As 

previously reported, the studied wires possess nanocrystalline structures. In agreement 

with the random anisotropy model [101], the effective constant of magnetic 

anisotropy of nanocrystalline materials decreases with decreasing grain size, D. It was 

found that the grain size D of NiFe layer increases with enlarging value of CFe. So, the 

revealed dependence of HS on CFe can be attributed to structural changes of the wires. 
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Fig. 51 The near-surface local magnetization curves observed along the central and 
edge microparts of composite NiFe/Cu wires with (a) CFe = 20.5%; and (b) 23.3%, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 52 Dependence of local values of the saturation field on Fe% in the NiFe layer 
observed for the central microparts of composite NiFe/Cu wires. 
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noted that TKE is proportional to the magnetization component perpendicular to the 

plane of the light incidence. Thus, the measurements of the distributions of M║(L) and 
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M⊥(L) were respectively performed in the transverse and longitudinal wire 

orientations with respect to the plane of the light incidence. Fig. 53 shows the 

distributions of M║(L) and M⊥(L) observed in the wires with CFe = 19.3 and 26.8 %. 

In Fig. 53, the near-surface local magnetization components, that were parallel to H, 

were observed to possess the same sign, and those, that were perpendicular to H, have 

oscillatory, alternating-sign behaviour. The measurements of Polar Kerr effect also 

showed that the magnetization component, that is perpendicular to the wire surface, 

Mn, is absent. Analogous data were obtained for all studied samples. The alternating-

sign distributions of the magnetization are possible when the magnetization of 

different microparts has ±θi angle orientation with respect to L, and the magnetization 

reversal of these microparts realizes by means of a rotation of local magnetization 

vectors. Thus, the obtained experimental data indicate that there are near-surface 

circular domains in the studied wires, and the magnetization in the adjacent domains 

points in opposite (±θi with respect to L) directions. It was found that the value of θ is 

about 75 – 80o. The detections of both the component M║ and M⊥ show that there is 

the curling mode of the magnetization reversal in the examined samples. 

 

 

 
 

 

 
 
 
Fig. 53 The typical distributions of M║(L) and M⊥(L) observed in the wires with CFe = 
26.8 and 19.3 %: (a) and (b), respectively. 
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It is evident that the distance between zero magnitudes on the alternating-sign 

curves M⊥(L) corresponds to the width W of the circular domains. It was revealed that 

the value of W decreases with increasing CFe. In particular, for the wires with CFe = 

19.3 and 26.8 %, W is about 10 and 8 microns respectively. The discovered variations 

of W can also be ascribed to variations of the effective constant of magnetic 

anisotropy of the wires. 

 

4.2. Summary 

The results revealed, by using a magneto-optical micro-magnetometer, that in the 

near-surface range of the composite NiFe/Cu wires, there are circular domains with 

alternating left- and right-handled magnetization in adjacent domains. The size of the 

circular domains and also the saturation field were found to depend on Fe% in the 

NiFe layers. This was attributed to variations of the effective constant of magnetic 

anisotropy, which was caused by structural changes of the wires. The magnetic-field 

behaviour of the magnetization components parallel and perpendicular to the 

magnetic field applied along the wire length shows that there is the curling mode of 

the magnetization reversal in the examined wires. 
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Chapter 5 Investigation of Electroplating Parameters in relation to 

Magnetic Properties and Sensing Performance of NiFe/Cu Composite 

Wires 

___________________________________________________ 

5.1. Investigating the Current Density J Effect  

In order to investigate the effect of plating current density J on the magnetic 

properties of plated NiFe in electroplating of NiFe/Cu composite wires, specimens of 

the same composition and thickness have to be obtained.  

Since plating current density greatly affects the composition of the deposited layer 

as well as the deposition rate, there was a need to alter the electrolyte solution 

concentration and the plating time to compensate for changes in the composition and 

thickness due to varying current densities in order to conduct an unbiased study. This 

was achieved by increasing the Fe2+ concentration and reducing the plating time for 

higher plating current densities.     

 

 

 

 

 

 

 

 

 
 
Fig. 54. Amount of FeSO4.7H2O and the deposition time required to achieve 
permalloy composition and of 2μm thickness under different current densities. 
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Fig. 54 shows in order to maintain the required NiFe composition ratio of 80:20, 

the required amount of FeSO4.7H2O in the plating solution has to be increased 

exponentially with increasing plating current density. Fig. 54 also shows that in order 

to achieve a plated Ni80Fe20 layer of 2 µm thickness, the plating time has to be 

decreased linearly with increasing plating current density. 

 

 

 

 

 

 

 

 

 

Fig. 55 Effect of current density on the MI ratio of the plated wire, showing a 
decreasing trend with current density in the lower range till a turning point of J = 
2A/dm2, and then an increasing trend with current density in the higher range. 

 

With reference to the above trends, Ni80Fe20/Cu composite wire samples were 

produced under a range of values of plating current density. The current density J was 

varied from 0.6 to 8 A/dm2. It must be noted that the composition and thickness of the 

deposited layer was fixed to be the same, in order to compare the wires. The magnetic 

properties, in terms of the magneto-impedance (MI) effect, for each of these samples 

were tested. Since the MI effect is related to the magnetic permeability variations of 

the plated NiFe layer, and that the magnetic permeability is a comprehensive measure 

of the soft magnetic properties of the material, the soft magnetic properties of the 

plated samples under different plating current density can be compared using the 
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maximum MI effect ratios of the wire samples.  This is shown in Fig. 55, where the 

maximum MI effect ratios for the Ni80Fe20/Cu composite wires plated under a range 

of current density (from J = 0.6 A/dm2 to J = 8 A/dm2) are presented. It can be seen 

that the maximum MI ratio decreased with increasing plating current density initially 

till the current density reached 2 A/dm2, and then increased with further increases in 

current density.  

 

 

 

 

 

 

 

Fig. 56 MI ratio curve at different current densities (a) 0.6A/dm2 (b) 1.4A/dm2. 
 

A current passing through the wire under plating would generate a circumferential 

induced magnetic field of flux density Bc around the wire. Since the length of the wire 

(8 cm) is much larger than its radius (~10μm), and the plated layer at two ends was 

not under consideration, the circumferential field generated by the plating current at 

the plating surface can be calculated using: 

r
I

Bc π
μ
2

0=                                                       (65) 

where μ0 is the permeability in vacuum, r is the distance from the center of the core. 

Hence, Bc increases linearly with the plating current density. During plating, a higher 

current density would generate a stronger circumferential magnetic field around the 

wire. In the presence of a stronger circumferential magnetic field around the wire, the 
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magnetic domains in the deposited NiFe layer will have a closer alignment to the 

circumferential direction. A greater circumferential anisotropy will in turn result in 

improved circumferential permeability since it takes less energy to realign the 

magnetic domains circumferentially. This enhanced circumferential permeability will 

result in increased sensitivity of the plated NiFe layer in response to the external 

magnetic field and thus result in higher MI effect of the composite wire.    

Fig. 56 (a) and (b) show the MI ratio curves for wires plated with current densities 

J = 0.6 A/dm2 and 1.4 A/dm2 respectively. The single-peak MI curves shown in Fig. 

56a indicates dominantly longitudinal anisotropy while the double-peak MI curves 

shown in Fig. 56b, indicates dominantly circumferential anisotropy in the plated wires. 

There results show a transition of anisotropy of the plated wire from longitudinal to 

circumferential as the plating current density increased from J = 0.6 A/dm2 to J = 1.4 

A/dm2. As the plating current density was increased, the induced circumferential 

magnetic field also increased, leading to the anisotropy of the wires becoming 

dominantly more circumferential.  

When saccharin was added to the electrolyte solution for the electrodeposition of 

the NiFe layer, the crystalline grain size is about 20 nm. With higher plating current 

densities, more inhibiting species such as hydrogen may be adsorbed on the surface at 

a given instant. This may reduce the surface diffusion length of the metal adatoms, 

which in turn may lead to a higher nucleation density and, consequently, smaller 

crystalline grains and lower surface roughness.  

Crystals grow based on the mechanism described here. The Fe2+ or Ni2+ ions will 

be absorbed onto the metal lattice surface as adatoms in the reactions as described in 

Eqn. 52 and 53. These adatoms will move across the surface to an area (surface 

diffusion) where the surface energy is the lowest and join the metal lattice surface 
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(Fig. 57a). Note these adatoms can still move into the aqueous solution but this is 

inhibited by the repulsive charges in the ions in the solution. The crystals will grow 

outwards and sidewards (nucleation) due to the joining of atoms from the aqueous 

solution or from the adatoms that diffuse to it on the surface (Fig. 57b). The crystal 

will continue to propagate in size till it encounters another growing crystal and the 

boundaries between the two crystals forms the grain boundaries (Fig. 57c). 

 

 

 

 

 

 

 

 

              

 

 

 

 

 

Fig. 57 Crystal nucleation process occurring at deposition times (a) time = x; (b) time 
= y; (c) t = z; where x<y<z. 
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that are still in the Nernst diffusion layer solution and near the cathode (wire), will 

inhibit this phenomenon because of repulsive forces (of the same charges). Depending 

on the current densities used, there will be many nucleation sites occurring along the 

surface of the wire and the grains will propagate till they reach other grains of 

opposing growth direction and thus lead to the formation of grain boundaries.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 58 Electrodepostion process mechanism at different deposition times: (a) time = 
w; (b) time = x; (c) time = y; (d)time = ;  where w<x<y<z. 

 

A crystal consists of several grains and a grain consists of several cells that have 

atoms that are arranged, which in this case, from XRD results, in a face-centered 

cubic (FCC) structure. As shown in Fig 58a - Fig. 58d, nucleation sites occur on the 

surface of the wire under deposition. These nucleation sites will grow outwards and 

sidewards by “absorbing” adatoms by surface diffusion. This growth will continue 

until it encounters an opposite growth of another grain and the boundaries of the 

grains are called the grain boundaries. Thus, it can be clearly seen that in order to vary 

the sizes of the grains, the number of nucleation sites occurrence must also be varied. 
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High surface diffusion rates, low population of atatoms and low overpotentials (low 

current densities) are factors enhancing the build-up of crystals while conversely low 

surface diffusion rates, high population of adatoms, and high overpotentials (high 

current densities) on the surface enhance the creation of new nuclei. Surface diffusion 

rates are influenced not by electrical parameters but possibly by the presence of the 

absorbed organic additives, e.g saccharin. The prescence of these organic additives 

lowers the surface diffusion rates and great details will be given on the mechanism of 

these additives in Chapter 6. 

From Fig. 59, it can be seen that the grain size was reduced as the current density 

was increased from 2 to 20 A/dm2. As a result, the soft magnetic properties can be 

improved, because for nanocrystalline NiFe electrodeposition, as far as the crystalline 

grain sizes are smaller than the ferromagnetic exchange interaction length (and larger 

than superparamagnetic size), smaller grain size will result in higher permeability or 

softer magnetic properties [101]. 

 

 

 

 

 

 

 

 
Fig. 59 (a) Variation of grain size against current density J; (b) TEM picture of 
measured specimen. 
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According to the results shown in Fig. 55, it seems that when the plating current 

density is lower than a critical value (2 A/dm2 in the present tests), the stress induction 

dominates the overall effect. Therefore, when current density is lower than 2 A/dm2, 

lower plating current density will result in larger MI effect ratio of the plated NiFe/Cu 

wire. As the plating current density is higher than the critical value, the induced 

circumferential magnetic field and crystalline grain size reduction dominate the 

overall effect. Hence, higher plated current density resulted in larger MI effect ratios 

of the plated NiFe/Cu wire.  

This phenomenon can also be evidently seen in Fig. 60 which displays the trend of 

the material’s coercivity in relation to the plating current densities. The coercivity is 

the highest for plating current density of 2 A/dm2. The trend is similar to that of GMI 

effect. 

 

 

 

 

 

 

 

 

 

 
 
Fig. 60 The hysteresis loops of the wires plated under a range of current densities 
from J = 0.6 A/dm2 to 8 A/dm2, showing an increasing trend of coercivity with 
increasing the current density in the lower range till a turning point of J = 2A/dm2, 
and then an decreasing trend with increasing current density in the higher range (see 
the inset).  
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5.2. Investigating the pH Value Effect  

In this study, the current density J was maintained constant at 2 A/dm2.  The 

plating time was 5 minutes for all the samples, resulting in the plated layer 

thicknesses for all the wires to be about 1 μm. 

Fig. 61 shows the average Fe content percentage of the plated layer in variation 

with the pH value of the plating solution. The Fe percentage showed an overall 

increasing trend against the variation of the pH value from 2.5 to 4.5, although there 

was a slight drop of the Fe percentage when the pH was raised from 3.5 to 4. Values 

of pH greater than 4.5 were not used as the deposition of metals would not be as good 

as those plated at a more acidic condition. Instability of the plating solution might also 

arise due to the overwhelming presence of OH- ions.  It should be noted that the 

composition of the plating solution might be altered during electroplating, thus 

affecting the concentration of Ni and Fe ions. The increase of Fe percentage with 

increasing the pH in plating solution could be due to the chemical equilibrium 

favoring the deposition of Fe at higher pH values, when the concentration of 

hydroxide ions is in higher concentration. Reduction of Fe (III) to Fe (II) in the 

plating solution might also be more favorable at higher pH values.  

Fig. 61 inset shows the magneto-impedance (MI) in variation with an external 

magnetic field for NiFe electroplated wires from plating solutions of different pH 

values, ranging from 2.4 to 4.5. The MI testing current and frequency were 20 mA 

and 50 MHz, respectively. A positive increase in MI ratio was observed for all the 

samples.  Sample plated using a pH value of 3 exhibited the highest increase in MI 

ratio, about 85% at 12.5 Oe.  However, the two samples plated at pH values of 2.5 and 

3.5, respectively, showed the smallest increase in the MI ratio, around 5% at 12.5 Oe.  
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It should be noted that the sample plated at a pH value of 4.5 exhibited the highest 

sensitivity against the external magnetic field.  

 

 

 

 

 

 

 

 
 
 
Fig. 61 Fe content varying with pH value of electrolyte. The inset graph displays the 
MI effect curves for the plated wires under different pH value at 50MHz testing 
frequency. 

 

 

 

 

 

 

 

 

Fig. 62 MI curves measured at 1 MHz. 
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measure the MI ratios under different testing frequencies. Fig. 62 shows the MI 
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values of 4 and 4.5 had their MI ratios increased to a peak at the lower field, then 

decreased at the higher field.  On the other hand, sample plated at a pH value of 3 

behaves anomalously and had its MI ratio decreased at the lower field, then increases 

to a peak at the higher field.  

Fig. 63 shows the MI curves measured at 100 kHz. The MI ratios for all samples 

decreased with increasing the magnetic field.  The largest decrease in the MI ratio was 

found on sample plated at a pH value of 3. The sample plated at a pH value of 4.5 

exhibited the highest sensitivity. The difference of the magnetic properties in terms of 

the MI behavior can be explained by permeability and magnetization process changes 

due to the anisotropy. First of all, the composition is an important factor to affect the 

shape and size of MI. The soft magnetic property is good for Fe-Ni alloys only if their 

composition ratio is very near 80%:20%. Since the composition is close to the ideal 

composition, the sample displays high MI ratio and high sensitivity. Secondly, at low 

frequency, domain displacement dominants the magnetization process, the 

permeability decrease with respect to the external field. At high frequency, the 

domain wall movement was damped, the moment rotation dominants the 

magnetization process. The permeability increases with the increasing of the external 

field till to their anisotropy field. 

 

 

 

 

 

 

 
Fig. 63 MI curves measured at 100 kHz. 

0 2 4 6 8 10 12
-20

-15

-10

-5

0

f=100kHz
i=20mA

 

 

pH
 2.5
 3.0
 3.5
 4.0
 4.5

M
I (

%
)

H (Oe)



Chapter 5 Investigation of Plating Parameters  
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 131 

5.3. Investigating the Coating Thickness tFM Effect  

In this study, the plating current density J used was 2 A/dm2. The 

electrodeposition time was varied from 3 - 60 mins to obtain deposited layers of a 

range of thickness. The composition ratio of Ni80Fe20 was controlled by adjusting 

Ni2+/Fe2+ ion ratio of the electrolyte solution.  

In order to confirm the existence of a composition distribution across cross-

section of the wire in the radial direction, composite wires were electrodeposited 

using a single solution at different deposition times to obtain specimens of different 

tFM. Using EDX, the surface Fe% was measured. As shown in Fig. 64, as tFM was 

increased from 1 – 12 μm, the surface Fe concentration decreased from 28% to 18%, 

suggesting a distribution of composition across the radial direction of the wire. This 

distribution may arise from the inability of the electrolyte solution to replenish Fe2+ 

ions fast enough at the Nernst layer, thus eclipsing the effect due to decreasing plating 

current density as tFM increases during the electrodeposition process. This distribution 

of composition increased as tFM was increased. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 64 Surface Fe% variations with coating thickness. 
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synthesized. It must be noted that the composition of the Ni-Fe layer was fixed at 

80:20 by the manipulation of the electrodeposition electrolyte. From observations 

using SEM, the surface smoothness and thickness uniformity improved significantly 

with increasing thickness (Fig. 65). The improved uniformity will result in an 

enhancement of the soft magnetic properties of the ferromagnetic layer [161] such as 

a decrease in coercivity. 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 65 SEM photos of composite wires of coating thickness (a) 1 μm; (b) 1.5 μm ; (c) 
4.45 μm ; (d) 10.2 μm. 

 

During electrodeposition, the plating current was held fixed at 1 mA throughout 

the entire process. Thus, the plating current density decreases as the volume of Ni-Fe 

increased during the plating process. The calculated decrease in current density with 

increasing tFM is shown in Fig. 66. The decrease of plating current density with 

increasing tFM will lead to an increase of the average grain size of the Ni80Fe20 layer 

with increasing tFM (see inset of Fig. 66).  
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Fig. 66 Calculated plating current density with coating layer thickness. The inset 
shows the effect of current density on average grain size.  
 

 

 

 

 

 

 

 

 

 

Fig. 67 Variation of coercivity Hc with coating thickness. Inset shows hysteresis loop 
of specimen with tFM at 1.5 μm.  

 

Increasing tFM will increase the composition distribution across the radial 

direction, increase the average grain size of the deposited layer and enhance the 

uniformity of the layer.  The increasing distribution of composition will cause the 

value of magnetostriction to deviate from zero, resulting in an increase in coercivity. 
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Increasing grain sizes will result in increased coercivity when the size is below the 

critical interaction length [101]. The enhanced uniformity will cause the coercivity to 

decrease. These effects balanced each other and thus the coercivity of the deposited 

layer changes insignificant over a range of tFM (Fig. 67).  Note that the surface 

composition of the specimen wires measured for the coercivity (Fig. 67) and 

magneto-impedance effect (Fig. 68) were ensured to be Ni80Fe20 by EDX. This 

composition was achieved by the manipulation of the electrolyte concentration in the 

electrodeposition process. The inset graph in Fig. 67 shows the hysteresis loop of the 

specimen with tFM at 1.5μm, displaying a low coercivity value of 0.2 Oe. 

 

 

 

 

 

 

 

 

 

Fig. 68 Variation of maximum MI% with coating thickness at 1 MHz testing 
frequency. Inset graph shows the MI% variation with external field for specimen with 
tFM of 2.3 μm for different frequencies. 

 

As shown in Fig. 68 the max. MI% initially increases as tFM is increased till a 

critical range of 4-9 μm and later decreases with further increase in tFM. The trend of 

maximum MI ratio over tFM was probably mainly due to the coating thickness 

variation. Note that coercivity and permeability has an inverse relationship with each 

other [101]. In the absence of an externally applied field, the skin depth δ in the 
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ferromagnetic layer is lower than its thickness at sufficiently high frequencies [162]. 

Thus, almost all the alternating current will be flowing in the outer Ni-Fe layer and 

the resistance (and thus impedance) is sufficiently high. Due to the influence of the 

externally applied field, the effective transverse permeability μt decreases, resulting in 

an increase in the skin depth in the outer Ni-Fe layer and impedance decrease. Thus, 

the alternating current can also flow in the inner Cu core. As a result, the resistance of 

the wire decreases and the ratio Z/Z0 increases.  Thus, for a given frequency of the 

alternating current, there is an optimum value of tFM at which the variation of the wire 

impedance is the maximum. Outside this critical range, the maximum MI% ratio will 

deteriorate drastically. When δ is thicker than or near tFM, most of the alternating 

current will flow in the inner core with or without the presence of an applied magnetic 

field.  When δ is smaller than tFM, even when the maximum reference magnetic field 

is applied, most of the alternating current will flow in the outer Ni-Fe shell in any 

situation. Both situations will result in low MI% ratios.  

 
 

 

 

 

 

 

 

 

 

Fig. 69 Maximum MI frequency dependence on coating thickness 
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Furthermore, as shown in Fig. 69, as the coating thickness was increased from 

1μm to 12μm, the frequency at which max MI occurs drastically reduced from 750 

kHz to 100 kHz. This trend is most probably due to changes in the skin depth δ as the 

effective critical frequency of skin effect ω is qualitatively described as  

2

2

φ

ω
μ σ δ

=      (66) 

where σ is the conductivity,  and μφ is the circumferential permeability of the 

composite wire. 

 

5.4. Investigating the Alloying Effect of Molybdeum  

 

 

 

 

 

 

 

 

 

 

Fig. 70 Effect of variation of FeSO4·7H2O, NiSO4·6H2O, Na2MoO4.2H2O in the 
electrolyte on the plated layer composition.  
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the plated layer has to be known. The concentration of FeSO4·7H2O, NiSO4·6H2O and 

Na2MoO4.2H2O was varied individually in the electrolyte solution with other 

synthesis parameters being held fixed, and the dependency of the composition ratios 

on the concentration is displayed in Fig. 70. It can be observed that as the amount of 

FeSO4.7H2O and NiSO4·6H2O in the electrolyte increased, Fe % and Ni% in the 

plated layer increased accordingly, with very negligible effect on the Mo%. The Mo% 

in the plated layer can only be significantly controlled by the variation of the chemical 

Na2MoO4.2H2O. 

 

 

 

 

 

 

 

 

 

 
 
Fig. 71 Effect of the Mo% for Ni78FeMo specimens on the circumferential and 
longitudinal coercivity. 
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the circumferential coercivity decreased. On the whole, the longitudinal coercivity 

values were lower than that in the circumferential direction. This suggests that it is 

easier to demagnetize and magnetize the wire specimens along the longitudinal axis 

than along the circumferential direction. The wire specimen with plated layer of 

composition ratio Ni78Fe18Mo4 was found to possess the lowest longitudinal and 

circumferential coercivity values of 0.88 Oe and 1.04 Oe, respectively. Fig. 72 shows 

the hysteresis loop of the wire specimen with the plated layer having composition of 

Ni78Fe18Mo4. The low coercivity, and thus high permeability, of Ni78Fe18Mo4 can be 

attributed to two main factors, namely, the near-zero magnetostriction as achieved by 

the composition ratio of Ni:Fe and the effect of addition of molybdenum. 

 

 

 

 

 

 

 

 
 
 
 

Fig. 72 Hysteresis loop of Ni78Fe18Mo4 plated layer. 
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Ni78FeMo batch. This suggests that the coercivity of NiFeMo is also dependent on the 

composition ratio of Ni:Fe, other than the addition of molybdenum.  

 

 

 

 

 

 

 

  

 
 
 

Fig. 73 Effect of Mo% for Fe22NiMo specimens on circumferential coercivity. 
 

The MI effect curves for the different composition ratios are presented in Fig. 74. 
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Ni79Fe21 (having the ratio of iron to nickel of 0.25), was found to obtain zero 

magnetostriction which gives rise to its high permeability. For the batch of Ni78FeMo 

wires, the ratio of iron to nickel was between 0.23 and 0.26 whereas for the Fe22NiMo 

batch of wires, the ratio was between 0.29 and 0.30. This shows that by keeping the 

ratio of Fe:Ni closer to the region of 0.25, despite addition of molybdenum, 

permeability is generally higher as indicated in Fig. 75 and Fig. 76.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 74 MI effect curves for (a) Ni78Fe20Mo2, (b) Ni78Fe19Mo3, (c) Ni78Fe18Mo4, (d) 
Fe22Ni76Mo2, (e) Fe22Ni75Mo3, and (f) Fe22Ni74Mo4. 
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Fig. 75 Variation of peak field intensity against the Mo% for Ni78FeMo. 
 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 76 Variation of peak field intensity against the Mo% for Fe22NiMo. 
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it can be observed that both the circumferential coercivity and the peak field intensity 

of supermalloy Ni78Fe18Mo4 were significantly lower than that of permalloy Ni79Fe21. 

This drastic enhancement in magnetic permeability can be mainly attributed to the 

beneficial effect of the addition of molybdenum.  

The addition of a few percentage of molybdenum inhibits development of the 

undesirable short and long–range crystallographic order [84]. As such, the domains 

can be easily aligned to the direction of the applied external magnetic field, giving 

rise to high permeability. Furthermore, the molybdenum ions also act as electron-

scattering centers and therefore increase the electrical resistivity. When electrical 

resistivity increases, eddy currents will be reduced. This reduction in eddy currents 

enhances the permeability of the material as the magnetic field produced by these 

internal eddy currents in the coating layer normally acts in opposition to the applied 

magnetic field and have the effect of reducing the internal flux density. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

C
irc

um
fe

re
nt

ia
l C

oe
rc

iv
ity

 (O
e)

Types of Material 

Supermalloy
Ni78Fe18Mo4

Permalloy
Ni79Fe21

1.0375

2.3875

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.6077

 

 

P
ea

k 
Fi

el
d 

In
te

ns
ity

 (O
e)

Types of Material 

Supermalloy
Ni78Fe18Mo4

Permalloy
Ni79Fe21

0.8

 
(a)       (b) 

Fig. 77 Comparison between supermalloy and permalloy in: (a) circumferential 
coercivity, and (b) peak field intensity. 
 

5.5. Summary 

In this chapter, the influence of the electroplating parameters was investigated in 

relation to the resulting magnetic properties of the electrodeposited NiFe/Cu wires.   
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1. The effect of plating current density J on the magnetic properties of plated 

material in the electroplating of NiFe/Cu composite wires has been studied 

through experiments. The results showed that the soft magnetic properties (as 

indicated by the maximum MI ratios and coercivity of the plated Ni80Fe20/Cu 

composite wires) of the plated NiFe varies with plating current density 

significantly. A critical value of plating current density J of 2 A/dm2 was found, 

below which the soft magnetic properties decreased with increasing current 

density and above which the soft magnetic properties increased with increasing 

current density. The results also showed that plating current density affects the 

magnetic anisotropy of the plated wire.  

2. The pH value of the electroplating solution affects the composition of plated layer 

in NiFe plating. The Fe percentage generally increases as the pH value increases 

from 2.5 to 4.5. The magnetic property of the plated layer in terms of MI ratio 

depends directly on the composition of plated layer rather than the pH value of 

plating solution. 

3. The magnetic properties of the deposited material in variation with thickness tFM 

of deposited layer have been investigated. The results showed that thickness 

affects composition of the deposited material, which makes coercivity increase 

with increasing thickness. It also affects the average grain size of e deposited 

material, which causes coercivity to increase with increasing thickness. It further 

affects the uniformity of deposited material, which causes coercivity to decrease 

with increasing thickness. As a combined effect of thickness on the magnetic 

properties of the deposited material, the coercivity of the material can be in a 

dynamic constant state as thickness varies. Under such circumstances, the 

thickness has mainly geometrical effect on the MI effect of the composite wire. 
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4. Various composition ratios of NiFeMo/Cu wire samples have been developed by 

DC electrodeposition through the variation of electrolyte solution concentration. It 

has been found that at the composition of Ni78Fe18Mo4, the material alloy is 

magnetically softest, as indicated by the lowest longitudinal and circumferential 

coercivity of 0.88 Oe and 1.04 Oe, respectively, and also by the lowest peak field 

intensity of 0.80 Oe in the MI effect curve obtained. The magnetic properties of 

the supermalloy Ni78Fe18Mo4 has also been compared with permalloy Ni79Fe21 and 

found to be much better than that of permalloy. 
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Chapter 6 Development of a Nanocrystalline Deposition 

Technology for Super Permeability Permalloy for NiFe/Cu 

Composite Wires  

_____________________________________________________________________ 

 

In this chapter,  different techniques are employed to manipulate the grain size for 

the electroplated composite wires; including using additivities such as saccharin and 

changing the electrodeposition current waveform, so as to deposite NiFe layers of 

varying average grain size. The difference in the average grain sizes by changing the 

electrodeposition current waveform was due to the mechanisms occurring during the 

introduction of off-time and anodic current IA.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 78 Different Electrodeposition Current Waveforms. 
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For DC electrodeposition, the deposition cathodic current was fixed at 1 mA. The 

positive cathodic current was fixed at 1 mA, while the negative anodic current IA was 

maintained at 0 mA for pulse electrodeposition and 0.1 mA for pulse-reverse 

electrodeposition. The duty cycles of both the electrodeposition pulsed current and 

pulse-reverse current were fixed at 50% and the frequencies were fixed at 1 Hz, but 

the total number of electrodeposition cycles used for pulse-reverse electrodeposition 

was varied according to the anodic current, in order to obtain similar thickness for 

comparisons. An off-time period was also introduced into the pulse-reverse 

electrodeposition current waveform and the differences in the electrodeposition 

current waveforms used are shown in Fig. 78. 

 

6.1. Theoretical predictions of the upper and lower bound of nanocrystalline 

grain size   

 According to the random anisotropy model (RAM) (Chapter 2.5.3), within a 

range of nanocrystalline grain size, when the grain size is decreased, the magnetic 

properties, in terms of permeability or coercivity, are enhanced significantly. This 

range of grain size, however, is material specific. However, the values of the upper 

and lower bound of this range of grain size can be estimated theoretically.  

The upper bound of this range for Ni80Fe20 (permalloy) can be predicted using 

RAM. For permalloy, K1 = 0.35x103 J/m3, A = 26x10-12 J/m. Thus, the upper bound 

can be estimated to be about 
1

270ex
AL nm
K

= ≈ . 

During these measurements, the lower bound of the nanocrystalline grain sizes, at 

which superparamagnetism occurs will be obtained. Superparamagnetism occurs in 

very small crystallite size whereby because of the size, the crystalline anisotropy 
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energy and thus temperature of occurrence of superparamagnetism is significantly 

reduced. Thermal energy is enough to change the magnetization of entire crystallite, 

causing magnetic field to average to zero and the occurrence of superparamagnetism. 

Based on the Heisenberg Uncertainty Principle, 

0/p h δΔ =       (67) 

where h = hp / 2π, hp is the planck constant, δ0 is the critical grain size and Δp is the 

uncertainty momentum. The energy fluctuations is given by  

2 2 2
0 0( ) / 2 / 2e ep m h mε δΔ = Δ ≈    (68) 

where me is the mass of electron. At Curie temperature (Tc), the maximum 

exchange energy is given by  

3
max /ex lE V aεΔ =      (69) 

where Eex is the exchange energy, V is the volume of body and al is the lattice 

constant. At the Curie temperature (Tc), the exchange energy fluctuations are 

equivalent to the thermal energy fluctuations. Thus,  

3
max /B c lK T V aεΔ =      (70)  

where KB is the Boltzmann constant and V/ la 3 is equivalent to a value near 1.  Thus,  

max B CK TεΔ =       (71) 

Equating Eqn. 68 and Eqn. 71 and substituting the values of h  = 1.05 x 10-34 J.s, me = 

9.1093897 x 10-31 kg, KB = 1.380658 x 10-23 J/K, and Tc for permalloy = 850K, the 

predicted nanocrystalline superparamagnetic grain size is approximated to be of the 

value of about 1.4 nm. However, since this model does not consider other factors such 

as the level of residual stress of the specimens, the accurate range of 

superparamagnetism grain sizes will be still in the region of 2-10 nm.  
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6.2. Effect of Addition of Saccharin on the grain size 

Saccharin (C7H5NO3S) (Fig 79), a first class brightener, is well known to be 

efficient in Watts and sulphamate nickel plating baths as well as in copper 

electroplating baths. Those in the first class have two functions: firstly they provide 

bright plating over a bright substrate (though not able to build lustre) and furthermore 

they permit the second class of brighteners to be present over a wide range of 

concentrations. Brighteners of the second class are used to build mirror-like lustre on 

platings, but suffer most from the fact that, in the absence of a first class brightener, 

they can often induce excessive brittleness and stress in the deposit.  

 

 

 

 

Fig. 79 Chemical structure of saccharin 

 

In this experiment, the amount of saccharin added to the electrolyte solution was 

varied with the rest of the deposition parameters fixed to investigate its effect on the 

chemical composition and thickness of the deposited layer.  It is well known that 

brighteners, such as saccharin, have the property of grain refinement of the deposits 

and it is well accepted that additives inhibit surface diffusion of adatoms towards 

preferential growth centers and favorize the density of grain precursors, therefore 

promoting nucleation and reducing the grain size [163,164,165,166,167].  

As shown in Fig. 80, a potential difference causes a flow of the positively charged 

ions towards the wire surface but is inhibited by the large molecules of saccharin. 

Saccharin molecules will eventually eventually be pushed towards the wire surface by 

C

S
N

O O

H 

O



Chapter 6 Development of a Nanocrystalline Deposition Technology 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 149 

the ions. At the plated surface, saccharin molecules presence inhibit surface diffusion 

of adatoms. However, these adatoms will join the metal lattice at the voids beneath 

the molecules and eventually push the  saccharin molecules outwards into the solution. 

 
(a)Time=W  (b) Time=X  (c)Time=Y           (d)Time =Z 

Fig. 80 Saccharin refinement process (whereby Time=W<X<Y<Z) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 81 Effect of saccharin on deposited layer thickness 
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However, the addition of saccharin results in differences in the composition of the 

deposited layer (Fig. 81), no significant difference in the thickness of the deposited 

layer has been observed (Fig. 82) and thus must be compensated by an increase in the 

electrolyte solution concentration of FeSO4.7H2O.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 82 Effect of saccharin on chemical composition 
 

The grain sizes of specimen composite wires using DC electrodeposition, without 

saccharin and with saccharin, were found to be 21.5nm and 51.4nm respectively.  

Results showed that the addition of saccharin to the electrolyte solution improved the 

deposited layer’s magnetic performance from 58.4% to 248.6%. 

 

6.3. Effect of pulse plating duty cycle on grain size and magnetic properties  

Pulse deposition parameters consist of the pulse current density ip, the current that 

flows during the off-time ioff, the duty cycle γ and the pulse frequencyν. For one cycle, 

duty cycle is defined as the ratio of on-time to the period, i.e. 
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where ton is the amount of on-time  and toff is the amount of off-time in a single period 

cycle tpp. The pulse frequency ν is simply the inverse of the pulse period cycle, ν = 1 / 

tpp.  

 

 

 

 

 

 

Fig. 83 Pulsed Current Waveform 
 

 

 

       

 
 
 
 
 
 

 
 
 
 

Fig. 84 Effect of duty cycle on Fe% of plated layer. 
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nucleation sites. When there are more nucleation sites, it would mean that there will 

be less growing space thus it results in a smaller grain size in the deposited layer.  

   

 

 

 

 

 

 

 

Fig. 85 Effect of duty cycle on thickness of plated layer. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 86 Plot showing the concentration of required electrolyte concentration and 
plating time to achieved permalloy composition and 2.5μm thickness 
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In order to make comparisons between the wire samples for different grain sizes, 

the relationships of the pulsed current duty cycle and the chemical composition and 

thickness were investigated and shown in Fig. 84 and Fig. 85 respectively.   

The increases in Fe% of the coating layer due to variations in the duty cycle were 

probably due to the occurring phenomenon: the displacement reactions taking place 

during the pulse off-time, due to a similarity between the chemical reactivity of both 

elements: 

Ni2+ + Fe → Fe2+ + Ni                                              (73) 

Using the relationships in Fig. 84 and Fig. 85, the electrolyte solution 

concentration and the plating time was altered to obtain specimens of the same 

permalloy compositions and (2.5μm) thickness (Fig. 86). 

 

 

 

 

 

 

 

 

Fig. 87 Variation of grain sizes with pulse plating duty cycle. 
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promoting nucleation and reducing the grain size. In pulse plating, the grain size of 

the plated material was found to be dependent on the duty cycle, as shown in Fig. 87. 

In pulse plating with saccharin, it appears that the optimum value for the duty cycle is 

at 50% for which the grain size reached the minimum. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 88 Typical MI ratio curve of pulse plated composite wires for different testing 
frequencies.  
 

 

 

 

 

 

 

 

 

 
Fig. 89 Variation of the maximum MI ratio with crystalline grain size of the 
permalloy coating. 
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The magnetic permeability of the plated materials of different nanocrystalline 

grain sizes in the composite wires was estimated through the measuring of the MI 

ratios of the wires. The results are shown in Fig 88 and Fig 89. As shown in Fig 89, 

the permeability of the permalloy increases as the grains size decreases. This can be 

explained by the random anisotropy model [101] for small grain size ferromagnetic 

materials, in which the grain sizes are smaller than the ferromagnetic exchange 

interaction length Lex = 270 nm for Ni80Fe20.  

 

6.4. Comparison of different electrodeposition methods  

Fig. 90 a and 90b show the typical SEM pictures of Ni80Fe20/Cu composite wire 

made by DC conventional plating and pulse plating, respectively. It can be observed 

that the surface from pulse plating is much smoother than that from DC conventional 

plating, indicating a better uniformity as a result of smaller grain size. 

 

 

 

 

 

 
 
Fig. 90 Typical SEM pictures of the wire samples: (a) from DC plating without 
saccharin; (b) from pulse plating with saccharin. 

 

Fig. 91 shows the grain size in variation with plating parameters. The grain size 

was reduced from 52 nm to 15 nm as a result of change from DC plating without 

saccharin to DC plating with saccharin added. The grain size was further reduced 

from 15 nm (DC plating with saccharin) to 11 nm by pulse plating with saccharin. 
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Pulse plating affects the reaction kinetics in two ways. First, the abrupt changes in 

the applied current density at both the beginning and the end of a pulse cause a change 

in the state of the electrical double layer. The charge and discharge of the electrical 

double layer affect the faradic current which governs the rate of plating. Second, the 

change in the surface concentration of the metal ions influences both the kinetics and 

the structural aspects of plating system. A decrease in grain size by application of a 

pulse current has often been reported in the literatures. The pulse current density has 

an impact on the grain size. The duty cycle of the pulse current affects the material 

composition. 

 

 

 

 

 

 

 

Fig. 91 The grain size in variation with plating method. 
 

Saccharin, being a well-known brightener, is used to refine the grains of the 

deposits by inhibiting surface diffusion of adatoms towards preferential growth 

centers and thus promoting nucleation, exists as molecules in the electrolyte solution. 

When a current passes through the wire, the potential difference setup causes the Fe2+ 

and Ni2+ to be moved towards the wire surface. At the same time, the saccharin 

molecules were also being “pushed” to the wire surface by the moving ions. At the 

surface, the saccharin molecules inhibit surface diffusion of the adatoms. The 

subsequent adatoms will join the metal lattice at the voids beneath the saccharin 
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molecules, pushing the saccharin molecules outwards eventually back into the 

electrolyte solution. Thus, saccharin acts for refining the grain size in plating. 

 

 

 

 

 

 

 

 

 
Fig. 92 Hysteresis loops of samples from DC with and without saccharin and pulse 
plating with saccharin. 
 

The magnetic properties of the plated permalloy were greatly changed as the grain 

size was reduced. Fig. 92 shows the hysteresis loops of the samples from DC plating 

with and without saccharin and pulsed plating with saccharin. The coercivity of the 

plated permalloy decreased rapidly from 250 A/m to 80 A/m as the grain size was 

reduced from 15 nm to 11 nm, in the same trend as that of Fe-based nanocrystalline 

materials [23]. The coercivity of samples from DC plating without saccharin could 

not be measured due to the limitation of the instrument used, which could not reach 

magnetization saturation within the applied external field of about 400 A/m. The 

experimental result is in good agreement with the random anisotropy model. 

The effect of grain size on the magnetic properties of nanocrystalline permalloy 

was further investigated by testing the MI effect of the Ni80Fe20 /Cu composite wire 

sample from different plating processes. As shown in Fig. 93, the MI% increased 

from 65.23% for sample from DC plating without saccharin to 120% for sample from 
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DC plating with saccharin added. Since for the wires all other conditions were 

controlled to be the same, it should be the decrease of the grain size that caused the 

increase in the permeability of the Ni80Fe20 and thus the increase in the MI effect ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 93 MI effect ratio varying with the grain size. 
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As grain size was further decreased from 15 nm (from DC plating with saccharin) to 

11 nm (from pulse plating with saccharin), the MI% was further increased 

significantly to 376%. The MI values were for permalloy as-plated to study the 

influence of crystal grain size and therefore, could not be the optimum values. For 

other materials reported in the literature, such as for Fe73.5Cu1Nb3Si13.5B9, 

Fe4.9Co71.8Nb0.8Si7.5B15, and Co68.1Fe4.4Si12.5B15, the MI ratios were reported to be up 

to 150% [168], 180% [169], and 300% [169], respectively. However, for these 

materials there have been no reported results showing the MI ratios in variation with 

the grain size. 

 

6.5.  Effect of PR anodic current on material and magnetic properties 

6.5.1. Theoretical analysis on the working current efficiency  

According to Faraday’s law, the amount of electrochemical reaction that occurs at 

an electrode is proportional to the quantity of electric charge Q passing through an 

electrochemical cell. If the weight of a product of electrolysis is w, then Faraday’s law 

states that 

totw Z Q= ×         (74) 

where Z is the electrochemical equivalent, the constant of proportionality. Since Q can 

be written as:      

totQ Idt= ∫         (75) 

For pulse-reverse electrodeposition (Fig. 94), the electrodeposition current can be 

given by:   
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1 2

0 1

t t

C A
t t

Idt N I dt I dt
⎡ ⎤

= × −⎢ ⎥
⎣ ⎦

∫ ∫ ∫        (76) 

where N is the number of cycles for the total electrodeposition time, Ic is the 

magnitude of the positive pulse (cathodic) current and IA is the magnitude of the 

negative pulse (anodic) current in the period time of t2 – t0, where IC > IA. The total 

deposited weight of material can then be given by:  

1 2

0 1

( / )
t t

wt e C A
t t

w A n F N I dt I dt
⎡ ⎤

= × × −⎢ ⎥
⎣ ⎦
∫ ∫               (77) 

where Awt is the atomic weight of metal deposited on the cathode, and n is the number 

of electrons involved in the deposition reaction and F is the Faraday constant. The 

volume V of the deposited material can be given as:  

/V w d=         (78) 

where d is the density of deposited material, Ni80Fe20 in this case. The volume V of 

the deposited material on wires can also be given as:   

2 2( )a bV r r lπ= −     (79) 

where br  is radius of the inner core, ar is the total radius of the composite wire, l is the 

length of the deposited wire.  The thickness of the coating layer is given as:  

        FM a bt r r= −              (80) 

 

 

 

 

 

 
Fig. 94 Schematics representation of pulse-reverse electrodeposition current 
wavefrom. 
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Equating Eqn. 79 and Eqn. 80, and Eqn. 81 can be simplified as:  

     2( )FM b b
wt r r

d lπ
= + −            (81) 

Assuming the same current efficiency for both the removal and deposition process, 

the working current efficiency can be given as:  

exp exp

exp exp

( )

( )

( 2 )
( 2 )

current
theortheor

b

theor theor b

Idt w
wIdt

t t r
t t r

η = =

+
=

+

∫
∫           (82) 

where texp is the experimental thickness of the deposited layer and ttheor is the 

calculated thickness at working current efficiency 100%.  

 

6.5.2. Working current density  

In order to obtain an optimum value of the anodic current IA, the effect of the 

anodic current on the magnetic properties in terms of magnetoimpedance (MI) effect 

has to be studied. The compositions of the NiFe layers have to be fixed at the 

permalloy composition and the thicknesses of the coating layer have to be equal. The 

effect of IA on the composition and the thickness of the coating layer were 

investigated. In an electrolyte solution of fixed concentration, a layer of NiFe was 

deposited onto copper wires by pulse-reverse electrodeposition with varying anodic 

current IA, ranging from 0.1 - 0.9 mA, for the same electrodeposition time of 6 min.  

Fig. 95 (a) shows the effect of the anodic current IA on the Fe% of the coating 

layer. This decreasing trend of Fe% against IA could be due to decreasing in the 

thickness [66] as investigations revealed that the Fe% remains unchanged if the 

thickness is controlled to be unchanged by the manipulation of the electrodeposition 

time. Fig. 95 (b) displays the trend of coating thickness with anodic current IA. The 
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coating thickness decreased with increasing IA as the amount of materials removed 

during each plating cycle was increased. The dotted line in Fig. 95a displays the 

calculated values of the coating thickness at the working current efficiency of 100%, 

using Faraday’s law of electrolysis. The pulse-reverse electrodeposition system was 

found to have high working current efficiency and it was calculated to be about 87%.  

 

 

 

 

 

 

 

 

Fig. 95 Effect of anodic current IA on the (a) Fe% (b) coating thickness. 
 
 

6.5.3. Grain size enlargement effect 

Fig. 96 displays the effect of IA on the average grain size of the Ni80Fe20 deposited 

layer. The average grain sizes increases from 11 nm to 23.8 nm when IA was increased 

from 0.1 mA to 0.9 mA. In the case of a direct current, the saccharin molecules are 

“pushed” to the wire surface by the moving ions upon the imposition of a current. At 

the surface, the saccharin molecules inhibit surface diffusion of the adatoms. The 

subsequent adatoms will join the metal lattice at the voids beneath the saccharin 

molecules, pushing the saccharin molecules eventually back into the electrolyte 

solution. Hence, the addition of saccharin in the electrolyte solution reduces the 

average grain sizes of the deposits. For pulse electrodeposition (IA = 0), inhibiting 
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species are absorbed onto the surface to inhibit grain growth during the off-time. 

However, when ⎜IA ⎜> 0 and as IA increases, less saccharin molecules will be present 

at the wire surface during the electrodeposition process due to the alternating plating 

current to inhibit surface diffusion of adatoms. This results in the average grain sizes 

increasing with increasing IA, which may be considered as a side effect of pulse-

reverse electrodeposition.  

 

 

 

 

 

 

 

 

Fig. 96 Effect of anodic current IA on the average grain size of the Ni80Fe20 layer. 

 

6.6.  Effect of PR anodic current on magnetic properties 

The MI effect graphs of the specimens wires obtained for IA = 0.1, 0.3, 0.5, 0.7 mA 

are presented in Fig. 97. All the MI effect curves displayed double-peaks phenomenon 

at high testing frequencies, strongly suggesting anisotropies of the specimens to be 

closer to the circumferential direction. It was also observed that the anisotropic field Hk 

increased as the anodic current IA was increased, most probably due to the induced 

magnetic field generated by the anodic current. As shown in Fig. 98(a), the peak MI% 
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mainly affected by the geometry as well as the magnetic permeability of the specimen. 
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In this case, since the thickness of the studied specimen wires was fixed constant at 1.35 

μm through the manipulation of the electrodeposition time, therefore the observed 

effect could be inferred to be mainly due to permeability changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 97 MI effect curves for pulse-reverse electrodeposited specimens: (a) IA = 0.1mA; 
(b) IA = 0.3mA; (c) IA = 0.5mA; (d) IA = 0.7mA; at constant coating thicknesses 1.35 
μm. 
 

This change in permeability can be further confirmed, as shown in Fig. 98 (b), which 
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coercivity and permeability. This strongly indicates that increasing the anodic current 

greatly deteriorates the permeability of the magnetic layer.  

Fig. 99 compares the hysteresis loops and coercivities of the samples at IA = 0.1 

mA and 0.7 mA. At IA = 0.1 mA, the coercivity was 0.13 Oe and at IA = 0.7mA, the 

coercivity was 1.54 Oe, showing a significant difference. 

 

 

 

 

 

 

Fig. 98 Effect of anodic current IA on: (a) peak MI ratio%, (b) coercivity 
  

The observed relationship between the magnetic properties and the magnitude of IA 
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nanocrystalline grain sizes of the deposited material. The SEM photos of the plated 

specimens of constant thickness are shown in Fig. 100, strongly suggesting that 
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increases as IA decreases.  During the application of the anodic current, the specimen 

surface becomes the anode, repelling the Fe2+ and Ni2+ cations towards the cathode. 

Dissolution takes place and results in the deposited NiFe dissolving back into the 

electrolyte solution in their initial ionic states. Uneven plated protruding peaks, which 
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Fig. 99 (a) Hysteresis loops of specimens, comparing IA = 0.1mA and 0.7mA; (b) 
Close-up of the hysteresis loops 
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nucleations. Subsequent addition of these adatoms joins deposited crystalline lattice at 

the voids beneath the saccharin molecules, which eventually push the saccharin 

molecules back into the electrolyte solution. On the contrary, during the application of 

IA, Ni2+ and Fe2+ ions near the surface (anode) are repelled away, at the same time 

dragging the larger saccharin molecules along. As IA increases, Ni2+ and Fe2+ ions 

drift further away from the wire surface during application of IA, bombarding and 

dragging the saccharin molecules further away from the wire surface as well. 

Saccharin molecules act as surface inhibitors that prevent surface diffusion of 

adatoms by lowering surface diffusion rate. Hence, as less saccharin molecules are 

present at the surface, crystallization in terms of grain growth is promoted instead of 

grain nucleation. 

  

  

Fig. 100 SEM photos of specimens with: (a) IA = 0.1 mA, (b) IA = 0.3 mA, (c) IA = 0.5 
mA, (d) IA = 0.7 mA. 

 

a) a) b) 

c) d) 
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The pulse-reverse deposited composite wires were then compared with those from 

direct current electrodeposition and pulse electrodeposition, with similar thickness 

and composition of the deposited layer. The MI% values were 168%, 39% and 159% 

for pulse reverse, DC and pulse eletrodeposited samples. Pulse-reverse 

electrodeposited wires possess the highest peak MI%, followed by those from pulse 

electrodeposition and direct current electrodeposition. Pulse electrodeposited wires 

had the smallest average grain size of 11 nm, followed by direct current 

electrodeposited wires and pulse-reverse electrodeposited wires.  

Although the average grain sizes of the pulse-reverse electrodeposited wires are 

the largest, the uniformity of the specimens across the entire length of the wires, in 

terms of composition and thickness, has been the best. EDX measurements had been 

taken across the entire length of the wires and the composition and thickness readings 

have been found to be more uniform as compared to specimens from the other two 

methods. The high MI% ratio could be due to high uniformity of the pulse-reverse 

electrodeposited specimens. The results indicate that the more dominant factor 

affecting the magnetic properties of the specimens is the uniformity of the deposited 

layer, rather than the grain size of the deposited material.  

 

6.7. Comparison of PR method on other methods in terms of materials and 

magnetic properties  

Fig. 101 shows the XRD patterns of the samples Ni80Fe20/Cu electrodeposited 

under different current waveforms. It should be noted that the manipulation of the 

concentration of the Ni2+/Fe2+ ions in the electrolyte were carried out in order to 

obtain 80:20 for the Ni:Fe composition. As shown in Fig. 101, there was no phase 

change and an fcc phase can be observed in both the Ni80Fe20 and Cu layers of all the 
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samples.  

  

 

 

 

 

 

 

 

 

 

 

Fig. 101  XRD data obtained for electrodeposited Ni80Fe20/Cu specimens from 
different methods. 
 

Fig. 102 shows the average crystallite sizes of specimens from the 4 different 

electrodeposition methods. As given Fig. 102, specimens from DC electrodeposition, 

whereby a static electropotential difference is kept between the electrodes throughout 

the electrodeposition process, yielded an average crystallite size of 16 nm. Specimens 

produced using pulse electrodeposition (IA = 0), whereby the electropotential field 

generated is more dynamic, yielded a lower average crystallite size of 15 nm. Pulse 

electrodeposited specimens have lower average crystallite size than that of DC 

electrodeposition due to the presence of the off-time interval. During the off-time 

period in each plating cycle, blocking of growth centers of the cathode most probably 

occurred, as a result of adsorption of inhibiting species. Saccharin, which is a type of 

inhibiting species, is viewed as dirt that interfere the reaction sites, either by creating 
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disorder in the incorporation of adatoms into the lattice by being adsorbed on active 

sites or inhibiting surface diffusion of adatoms towards growing centres. The 

governing reason is not in terms of chemical reactions, but the mere physical ability 

of saccharin to be attached on the electrode surface and its relative size to block out 

the active sites, decreasing the rate of electrode reactions. This promotes nucleation at 

the start of each new pulse cycle. 

  

  

 

 
 
 
 
 
 
 
 
 
Fig. 102 Average crystallite size of specimens from different electrodeposition 
methods. 

 

Specimens from PR electrodeposition, which also involves a dynamic 

electropotential field, were found to possess the largest crystallite sizes of about 17nm. 

When IA > 0 and as IA increases, less saccharin molecules will be present at the wire 

surface during the electrodeposition process to inhibit surface diffusion of adatoms. 

This is due to the influence of IA on the ion movements of Fe2+ and Ni2+. The 

application of IA resulted in the dissolution of deposited NiFe off the specimen’s 

surface and the drifting of the cations away from the specimen’s surface. Such ion 

movements bombard and drag the larger saccharin molecules along their motion path, 

resulting in a decrease in saccharin population at the surface and hence the promotion 
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of crystallite growth instead of crystallite nucleation, which are 2 competing 

crystallite crystallization mechanisms.  

Despite the largest crystallite size produced, the leveling of the deposited layer as 

a result of selective dissolution of surface peaks formed from the uneven distribution 

of cathodic current due to uneven initial surface profile or surface defects present, 

contributed to uniformity of the deposited layer. Hence, good quality of magnetic 

properties can be possibly produced. It was also clearly evident from Fig. 102 that 

with the introduction of an off-time period in each electroplating cycle in the PR 

electrodeposition current waveform, the resulting average crystallite sizes of the 

specimens decreased from 17 nm to 14nm. The off-time interval in PR 

electrodeposition is believed to have the same function and effect as that present in 

pulse electrodeposition, by refining the grains of the layer of leveled coated surface 

after the application of IA, and before the deposition of the next layer of the magnetic 

material. It must be noted that the effect of electrodeposition methods on average 

grain size was not obvious and significant as the coating thickness was at 0.9 μm and 

not large. Thus, the trend of grain size with electrodeposition methods will be more 

distinct when the coating thickness is increased.  

As an indirect indication of the effect of different deposition methods on the grain 

size of deposited layer, especially in the PR electrodeposition with and without off-

time, the magnetic properties of the deposited layer, in terms of the magneto-

impedance (MI) effect of the deposited wire samples, were examined. Fig. 103 shows 

the magneto-impedance (MI) effect of the specimens from PR electrodeposition with 

and without off-time. The peak MI% was observed to increase by over 15% for the 

specimen from PR electrodeposition with off-time than the specimen from the process 
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without off-time. This could be attributed to the grain size reduction from 17 nm to 14 

nm due to the introduction of off-time in the PR electrodeposition. 

  

 

 

 

 

 

 

 

Fig. 103 MI effect curves of the specimens with the deposited thickness at about 
0.9μm from pulse-reverse Electrodeposition, (a) without off-time; (b) with off-time.  

 

6.8. Summary 

Grain size manipulation was successfully carried out by altering the plating current 

waveform, i.e. DC plating, pulse plating and pulse reverse plating, and also by 

varying the various process parameters.  

1) The upper and lower limits of the nanocrystalline grain size are theoretically 

estimated to be between 270 nm and 10 nm separately. Within this range, grain 

size reduction will benefit greatly magnetic properties.   

2) The relationship of the pulse plating parameter duty cycle was investigated in 

relation to the composition, thickness and the grain size of the coating layer. At 

duty cycle 50%, the grain size was found to be the smallest.  

3) Nanocrystalline permalloy of grain sizes ranging from 52 nm to 11 nm was 

developed, with the grain size controlled by using different electroplating 

methods—DC plating without saccharin added, DC plating with saccharin added, 
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or pulse plating with saccharin added. The coercivity of nanocrystalline 

permalloy decreases rapidly as grain size decreases in the range of 52 nm to 11 

nm, which is consistent with the trend of nanocrystalline Fe-based materials in 

variation the grain size, and can be explained by the random anisotropy model. 

The MI effect ratio increases greatly as the grain size of permalloy in the 

Ni80Fe20/Cu composite wire was reduced in the range from 52 nm to 11 nm. 

4) Pulse-reverse (PR) electrodeposited Ni80Fe20/Cu composite wires have been 

developed to investigate the key characteristics of pulse-reverse electrodeposited 

permalloy, namely the current working efficiency, anodic current, grain size 

variation and the resulting magnetic properties and MI effect. The theoretical 

calculations and experimental results showed that the working current efficiency 

of the PR electrodeposition for permalloy is high, up to 87% in the present case 

studied. With the introduction of an anodic current, the deposited permalloy was 

found to be better in uniformity, which resulted in higher peak MI% ratio of the 

deposited Ni80Fe20/Cu composite wires, despite the associated side effect in 

enlarging grain size. It has also been found from this study that the magnetic 

properties of PR electrodeposited NiFe/Cu composite wires vary significantly 

with magnitude of anodic current. Within the tested range of the present study, 

smaller amplitude of anodic current resulted in lower coercivity of deposited 

material and higher MI effect of the NiFe composite wires. Such a relationship 

could be due to the nanocrystalline grain size and uniformity of the deposited 

NiFe in relation to the anodic current magnitude in pulse reverse 

electrodeposition, in which, smaller anodic current magnitude resulted in smaller 

average grain size and better uniformity.    
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5) Ni80Fe20/Cu composite wires of a variety of nanocrystalline crystallite sizes have 

been developed using 4 different electrodeposition methods. The difference in 

electrodeposition methods lies in plating current waveforms: DC, pulse 

electrodeposition, PR electrodeposition and PR electrodeposition with off-time. 

When applied, different electropotential field patterns were created across the 

electrodes, resulting in different movements of Fe2+ and Ni2+ ions, and hence the 

movements and population of crystallite refiner, saccharin molecules, on the 

specimen surface. Therefore, the manipulation of the competing crystallization 

mechanisms: crystallite growth and nucleation, to control the nanocrystalline 

crystallite sizes of coated Ni80Fe20. Other than the influence over the crystallite 

size produced, IA also has the effect of producing more uniform coated layer 

through leveling of surface peaks found on the deposited layer as a result of 

uneven deposition. Introducing an off-time period to the PR electrodeposition 

current waveform was found to reduce the average crystallite sizes of the 

resulting deposited material, a similar effect observed in the off-time present in 

pulse electrodeposition. The comparison of the resultant crystallite size was 

made and the order was observed to be (in descending crystallite size): PR with 

off-time electrodeposition, pulse electrodeposition, DC electrodeposition and PR 

electrodeposition. The magneto-impedance (MI) effect of the specimens 

produced by pulse-reverse electrodeposition with off-time was higher than those 

produced by PR electrodeposition without off-time, due to the grain size 

reduction caused by the off-time.  
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Chapter 7 Magnetically Controlled Electroplating of 

NiFe/Cu Composite Wires 

_____________________________________________________________________ 

  

The NiFe/Cu composite wire specimens were produced by electroplating Ni80Fe20 

on a Cu wire of 20 μm in diameter and with and without the imposed longitudinal 

magnetic field. The current density J was maintained constant at 2 A/dm2.  

 

 

 

 

 

 

 

 

 

 
Fig. 104 Schematic diagram of the magnetic controlled electroplating set-up. 

 

The external magnetic field applied in the electroplating process was produced by 

a current driven solenoid, which was formed by 0.8mm diameter copper wires coiling 

around the beaker holding filled with the electrolyte solution and the plating cell (Fig. 

104). A current was passed though the solenoid to generate a longitudinal magnetic 

field around the wire under electroplating. The magnitude of the current was varied 

from 0A, 0.5A, 1.5A, 2.0A, 2.5A to obtain a range of the magnetic controlling field 

PPllaattiinngg  CCeellll 

WWaatteerr  BBaatthh 

EElleeccttrroollyyttee  SSoolluuttiioonn 

WWiirree  UUnnddeerr  
PPllaattiinngg 

MMaaggnneettiicc  FFlluuxx  LLiinneess

SSoolleennooiidd  
CCuurrrreenntt SSoouurrccee

PPllaattiinngg  CCuurrrreenntt  
SSoouurrccee 

SSoolleennooiidd  CCooiillss



Chapter 7 Magnetically Controlled Electroplating of NiFe/Cu Composite Wires 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 176 

strength up to 400 Oe. The plating cell was carefully positioned such that it was at the 

centre of the solenoid. 

The solenoid coil generates an external magnetic field when a DC current is 

passed through it and the magnetic flux is longitudinal at the centre of the plating cell 

and parallel to the wire under deposition. The maximum magnetic field strength H at 

any point along the centre of the solenoid in the field (Fig. 104) can be approximated 

by   

           (83) 

where nt is the turn density, i.e. nt = N / L (number of turns divided by the length of 

the solenoid), I is the magnitude of the current flowing through the solenoid and b is 

the number of layers and  

                222cos
rl

zl
+

−
=θ  , 221cos

rz
z
+

=θ   (84) 

where l is the length of the solenoid and r is the radius of the solenoid.  

 

 

 

 

 

 

 

 

 

 

Fig. 105. Magnetic field strength calculation schematics. 
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7.1. Effect of longitudinal magnetic field on material properties  

The compositions of the Ni80Fe20 layers plated under different controlling 

longitudinal magnetic fields and plating times were measured by EDX. It was found 

that the composition does not vary with the magnetic field. This can be seen from Fig. 

106, in which at the same plating time of 3 minutes the variations of Fe percentage of 

the plated material against the magnetic controlling field remained almost constant as 

the magnetic controlling field was increased from 0 to 450 Oe. The slight fluctuations 

in the composition were most probably due to some other unknown factors that 

affected the electroplating process as well as measurement errors.   

Fig. 106 also shows that the variation of the Fe percentage in the material 

deposited by magnetic controlled plating was much smaller compared to that from 

plating without magnetic controlling field.  

 

 

 

 

 

 

 

 

 
Fig. 106 Variation of Fe percentage against magnetic controlling field at the equal 
plating time of 3 minutes. 

 

The results show that the controlling longitudinal magnetic field has no significant 

effect on the plated layer thickness. The slight fluctuation of plated layer thickness in 

Fig. 108a when the magnetic field was varied from 0 to 450 Oe should be due to 
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measurement errors or other unknown factors. The lack of correlation between 

thickness and the applied magnetic field  can be explained by the analysis on the 

Lorentz forces acting on the Ni2+ and Fe2+ ions near the electrode surface under a 

combination of electrical and  magnetic fields: 

cl BvqBvqEqF ×+×+=     (85) 

where q  is the electrical charge, v  is its velocity, E  is the electrical field, lB and cB  

are the imposed longitudinal field and the circumferential magnetic field induced by 

the plating current (Fig. 107). The vector directions of the two latter terms are 

perpendicular to the direction of motion of the ions; and will not change the 

magnitude of the velocity. Hence the plating rate is not affected by the longitudinal 

magnetic controlling field.  

 

 

 

 

 

 

 

 

 

Fig. 107 Force diagram on an ion in magnetic controlled electrodeposition. 
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magnetic field, as shown in Fig 109. These can be explained by mass transfer effects 

in the deposition of Ni2+ and Fe2+ ions where the imposed longitudinal magnetic field 

aligns the magnetic moment of the Ni2+ and Fe2+ ions, resulting in preferred NiFe 

growth orientation and microstructure uniformity.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 108  (a) Plated layer thickness varying against the magnetic controlling field at 
plating time 3min.; (b) Plated layer thickness varying against the plating time at 
magnetic controlling field strength of 400Oe. 
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Fig. 109 SEM views for (a) the wire plated for 3 minutes without magnetic 
controlling field; (b) the wire plated for 3 minutes with a magnetic controlling field of 
157Oe; (c) the wire plated for 5 minutes without magnetic controlling field; (d) the 
wire plated for 5 minutes with a magnetic controlling field of 400 Oe. 
 

7.2. Effect of longitudinal magnetic field on magnetic properties 

Fig. 110 and Fig. 111 show the MI ratio tested at 1MHz and 50 MHz, respectively, 

for the wires from electroplating under varying longitudinal magnetic field, ranging 

from 0 to 400 Oe.  At low testing frequency, such as 1 MHz (see Fig. 110), single 

peak MI ratios in variation with the external magnetic field (the maximum MI ratio 

occurs at 0 external magnetic field) was observed for all the samples.  The sample 

plated under the longitudinal magnetic field 235 Oe exhibited the highest MI ratio, 

about 380%.  However, at high testing frequency, such as 50 MHz (see Fig. 111), 

most of the samples exhibit double-peak MI ratios in variation with the external 

magnetic field (Hex = ±Hp), the GMI ratio increases initially with Hex to a peak and 
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then falls with further increase of the field. However, the samples plated under 

stronger longitudinal magnetic field still exhibit single-peak MI ratios in variation 

with the external field. According to the results from high frequency testing as shown 

in Fig. 111, for the samples plated under strong longitudinal magnetic field, the MI 

ratios monotonically decrease with increasing of the external field Hex.  

 

 

 

 

 

 

 

 

 

Fig. 110 GMI response of the composite wires plated under different intensities of 
longitudinal magnetic field, tested with 1MHz ac current. 

 

The difference of the magnetic properties in terms of the MI curves can be 

explained by the magnetic anisotropy of the plated layer in variation with the 

magnetization process changes. First of all, at low testing frequency, such as at below 

the relaxation frequency of domain wall motion, domain displacement dominants the 

magnetization process, the total circumferential permeability monotonically decrease 

with respect to the external field. Therefore, the MI ratios of all samples decreased 

with the external magnetic field, Hex, as shown in Fig. 110.  

With the increase of MI testing frequency, in the plated layer the domain wall 

movements were nearly damped, the moment rotations thus dominated the 
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magnetization process. Therefore, the circumferential permeability increases with 

increasing external field until reaching the anisotropy field. After reaching the 

maximum value of the circumferential permeability, the dynamic circumferential 

permeability will decrease with increasing Hex, till its saturation state.  

 

 

 

 

 

 

 

 

 
Fig. 111 GMI response of the composite wires plated under different intensities of 
longitudinal magnetic field, tested with 50MHz ac current. 

 

According to the above described results on the MI curves tested at high 

frequency, the anisotropy variation of the plated layer can be predicted. Under 

conventional electroplating without a longitudinal magnetic controlling field, the 

anisotropy of the plated layer should generally be circumferential due to 

circumferential magnetization made by the electroplating current in the Cu core. The 

variation of the circumferential permeability μc with the external field strength Hex can 

be calculated by considering the simplest model of an uniaxial single domain. Fig. 

112 shows the schematic diagram for the rotational magnetization in the plated layer. 

The composite wire with an ac current i is under an external magnetic field Hex along 

the wire axis direction, which magnetizes the plated layer. Supposing the easy axis 
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makes an angle kθ  with the circumferential direction and ch~  is the circumferential 

field produced by the current through the wire.  

 

 

 

 

 

 

 

 
Fig. 112 Schematic diagram for the rotational magnetization of a composite wire in 
MI effect test.  
 

The free energy of this system is   

)cos(~)sin(sin 2
kcskexs hMHMKE θθθθθ +−+−=                           (86) 

where K and θ are the anisotropy constant and the angle between easy axis and 

magnetization Ms, respectively. The equilibrium angle is determined by minimizing 

the free energy,  
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Then, considering the moment rotation, the circumferential susceptibility can be 

obtained: 
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where sk MKH /2= and kex HHh /= , respectively. This analysis applies to ribbon 

or thin film structure composite wires [170]. 

Using Eqn. 87 and Eqn. 89, the field dependence of the circumferential 

permeability (μc=1+χc) for some given values of angle kθ  can be calculated, as shown 

Fig. 112. For small values of kθ , the permeability exhibits double peak MI ratios when 

kex HH ±= . As kθ  increases, the value of h at the peak decreases and the peak 

eventually disappears with further increasing of kθ  over 60°, showing a monotonic 

decrease in circumferential permeability with h.  

 

 

 

 

 

 

 

 

 

 
Fig. 113 Field dependence of the circumferential susceptibility at different anisotropy 
angles. 

 

According to the simulation results as showing in Fig. 113, the MI ratio of the 

composite wire plated without longitudinal magnetic field should be the largest 
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was not the case due to effect of the plated layer composition deviation and 

uniformity. It is important to note that not all the samples were having the NiFe 

composition ratio as 80:20. Those samples plated without a longitudinal magnetic 

controlling field were having the composition deviate slightly from 80:20. Also, as 

can be observed from Fig. 109, the plated layer of the sample from plating without 

longitudinal magnetic controlling field is less uniform compared to those plated under 

longitudinal magnetic field. These could result in less softness of the plated NiFe 

layer which made the MI ratios lower. 

 

 

 

 

 

 

 

 

 

Fig. 114 Frequency dependence of the maximum of the GMI ratio of NiFe/Cu 
composite wires electroplated under different intensities of longitudinal magnetic 
field.  
 

Fig. 114 shows the frequencies dependence of MI ratios of the samples plated 

under different intensity of the longitudinal magnetic controlling field. It can be seen 

that each sample had a maximum MI ratio at a critical testing frequency. Such a 

critical frequency varies with the wire samples plated under different level of the 

longitudinal magnetic field. The higher values of the critical frequency correspond to 
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anisotropy produced by plating under strong longitudinal controlling field. 

Theoretically [171], the largest MI ratio appears when the skin effect depth δ is equal 

to a certain value, a. If the current goes through only the Cu core, a = r, where r is the 

radius of the Cu core. For composite wire made by electroplating, the current goes 

through the Cu core as well as the plated NiFe layer, then a = r′, where r′ > r, and the 

skin effect depth  

φωσμ
δ 2

=  = r′                                                   (90) 

where ω is the circular frequency, σ is the conductivity,  and μφ is the circumferential 

permeability of the composite wire. For the samples under testing, r′ is a constant. 

Therefore, the increase of the critical testing frequency should be a result of decrease 

in the circumferential permeability, which was caused by the changing of anisotropy 

from circumferential to longitudinal in plating under the influence of the longitudinal 

field. This result is consistent with the simulation results as shown in Fig. 113.  

 

7.3. Summary 

The effects of an applied longitudinal magnetic field during the electroplating of 

NiFe/Cu composite wires on the composition, microstructure and magnetic properties 

of the plated layer have been investigated. The results showed that:   

1. The imposed longitudinal magnetic field during electroplating makes the 

composition of the material more uniform, which has less variation compared to 

that in conventional plating without the controlling magnetic field. 

2. The longitudinal controlling magnetic field has no obvious effect on the plating 

rate in terms of the thickness of plated layer. 
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3. The longitudinal magnetic field in composite wire plating makes the crystals in 

plated layer pack more orderly. This enhances the uniformity of plated material 

and therefore increases the magnetic softness of plated material.  

4. The longitudinal magnetic field shifts the magnetic anisotropy of the plated 

composite wire from circumferential to longitudinal. The level of the anisotropy 

change is proportional to the intensity of the longitudinal magnetic field during the 

plating process. The variation of the anisotropy from circumferential to 

longitudinal, for composite wires plated under a range of longitudinal magnetic 

field, exhibit a variation from double peak MI ratio curve to single peak MI ratio 

curve in MI effect testing at high frequency of the testing current.     

5. The critical MI effect frequency for a plated composite wire, at which the 

maximum MI ratio occurs, increase with increasing longitudinal magnetic field 

intensity, imposed during plating. This is due to the decrease of circumferential 

permeability of plated layer in response to the increase of intensity of the 

longitudinal magnetic field in the composite wire plating.  
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Chapter 8 Post Heat Treatment of Electroplated NiFe/Cu 

Composite Wires 

_____________________________________________________________________ 

 

Annealing is an essential post process that determines the quality of the composite 

wires. As such, it is important to investigate and optimize the annealing parameters in 

relation to the material and magnetic properties.  In this chapter, furnace annealing 

and DC joule annealing was carried out on the composite wires and the influence of 

the various annealing parameters on the magnetic properties as well as sensing 

performance were investigated. 

 

8.1. Furnace annealing of NiFe/Cu wires 

 

Fig. 115 Schematic Diagram of Furnace Setup 
 

The setup for furnace annealing consists of a tube furnace, an argon tank and a 

bottle of water (Fig. 115). The furnace is capable of heating up to a temperature of 
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1200ºC and will be used in this study to vary the annealing temperature and duration. 

Unless otherwise stated, the annealing duration will be one hour, with heating and 

cooling rate at 10ºC/min. The argon gas will be turned on 1 hour prior to annealing to 

purge any impurities and ensure constant flow of noble gas during annealing. 

Specimens to be annealed will be placed on a ceramic tray and be positioned at the 

center of the tube furnace to ensure even heat distribution throughout the entire wire.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 116 Charts showing radial composition distribution of composite wires annealed 
at (a) 210 °C; (b) 350 °C; (c) 550 °C. 
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To investigate the radial composition distribution of the composite wires, the 

annealed composite wires were embedded in epoxy resin and the cross sections of the 

wires were mechanically and chemically polished to allow for EDX measurements to 

be conducted on the cross sections of the wires.  

EDX measurements on the composite wire annealed at 210 °C displayed no inter-

diffusion of Ni or Cu, as shown in Fig. 116a. However, when the composite wire was 

annealed at 350 °C, a small amount of Ni was observed within the outer boundary of 

Cu core, as presented in Fig. 116b. This amount of Ni was observed to increase, in Fig. 

116c, when the annealing temperature was increased to 550 °C. Traces of Cu were 

also observed in the NiFe coating level.  

   

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 117 SEM pictures showing surfaces of (a) as-plated NiFe/Cu composite wire and 
wires annealed at (b) 210 °C; (c) 250 °C; (d) 350 °C; (e) 450 °C; (f) 550 °C; (g) 750 
°C; (h) 950 °C; (i) 1050 °C 

 

In addition to the inter-diffusion effect, surface particle sizes were also observed to 

increase with increasing annealing temperatures, resulting in the increase in surface 

(d)  (f)  
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roughness. The SEM photos showing the differences in surface morphology of the as-

plated composite wires and also wires annealed at increasing temperature can be seen 

in Fig. 117. In particular, above recrystallization temperature of 550 °C, very rough 

surfaces of the composite wires can be observed (Fig. 117g, Fig. 117h, Fig. 117i), as 

compared to ultra-smooth surface of the as-plated wire (Fig. 117a).      

Average grain sizes of thin films annealed at 210 °C, 350 °C, 550 °C and 750 °C 

were also measured using XRD. The values of the average grain sizes were calculated 

using Scherrer’s formula (Eqn. 59). At 210 °C, no significant change in average grain 

size was observed. Fig. 118 shows the percentage increase in average grain sizes at 

different annealing temperatures. The increasing trend is similar to that obtained by F. 

Ebrahimi [172]. The mechanisms of grain growth are different at high and low 

temperatures. Grain growth at low temperature takes place via atomic movement 

within grain boundaries while lattice diffusion dominates grain growth at high 

temperatures.  

 

 

 

 

 

 

 

Fig. 118 Chart showing percentage changes in average grain size with annealing 
temperature. 

 

Fig. 119 shows the percentage change in coercivity Hc with annealing temperatures. 
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to Hc. However, above that temperature, Hc was observed to drastically increase. 

Since high permeability materials have low Hc [101], therefore it can be inferred that 

as temperature increases, permeability decreases. This decrease in permeability, with 

increasing annealing temperature, can be attributed to the domination of inter-

diffusion, surface roughening and grain growth effects, despite the obvious stress 

relief effects. According to the random anisotropy model (RAM), grain growth in the 

nano-size region, below the critical exchange length Lex for the material, will result in 

an increase in coercivity which corresponds to a decrease in permeability [101]. For 

Ni80Fe20, Lex was calculated to be at about 270 nm. 

 
 
 
 
 
 

 

 

 

 

 

 

Fig. 119 Plot showing percentage increase in coercivity with annealing temperature. 
Inset graph displays the zoom-in of hysteresis loops at different annealing 
temperatures. 
 

The effect of annealing temperature on the MI effect of composite wires was shown in  

Fig. 120. With increasing annealing temperature, reduction in MI ratio increased. 

Since MI effect is greatly affected by the geometrical factor as well as the transverse 

permeability, the reduction is, in this case, largely due to permeability effect as the 

200 400 600 800 1000 1200

0

200

400

600

800

 

%
 C

ha
ng

e 
in

 C
oe

rc
iv

ity

Annealing Temperature/ 
o
C

-160-120-80 -40 0 40 80 120160

-0.2

0.0

0.2

 450oC
 750oC
 1050oC

M
om

en
t/ 

em
u

 Field/ Oe



Chapter 8 Post Heat Treatment of Electroplated NiFe/Cu Composite Wires 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 193 

composite wires under study are similar in geometry.  The reduction in permeability 

also resulted in the decrease in sensitivity, as observed in Fig. 124. 

 

 

 

  

 

 

 

 

 

Fig. 120 Plot showing percentage reduction in MI ratio with annealing temperature. 
Inset graph displays the MI curve of as-plated composite wire. 

 

The annealed specimens were then placed in the orthogonal fluxgate sensor circuit 

and their performance as sensing elements in the sensor was measured in terms of 

sensitivity. The values of sensitivity (mV/Oe) were obtained from the plot of voltage 

signal V versus applied field H.  

 

 

 

 

Fig. 121 Schematic diagram showing the directions of the various magnetic properties 
vector acting on the composite wire.  
 

It is known that the voltage signal V arises from a change of flux φ over time t, i.e.  
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dV
dt
φ

= −      (91) 

Since .B sφ =  where s is the cross-sectional area of the wire (Fig. 121), the magnitude 

of V can then be expressed as function of flux density B and t: 

( . ) .d d B s dBV s
dt dt dt
φ

= = =     (92) 

Since 0 ( )B M Hμ= +  and M Hχ= where μ0 is the permeability of free space, M is 

the magnetization of the material (the magnetic dipole moment per unit volume, 

measured in A/m) and H  is the applied field in the direction of the length of the wire, 

therefore  

B Hμ≈      (93) 

where 0 (1 )μ χ+  is the relative permeability.  

Simplifying Eqn. 91:  

( )dH dV s H
dt dt

μμ= +     (94) 

Since the testing field is static, therefore 0dH
dt

= . It must be noted that the induced 

magnetic field by the alternating current through the wire is in the circumferential 

direction and thus not considered under this equation.  

Thus, Eqn. 93 can be further simplified as:  

. . dV s H
dt
μ

=      (95) 

Using Eqn. 94, sensitivity S can be expressed as:  

( )( )
d V d HS H

dtdH
μ

= ∝     (96) 
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Since μ is a function of both H and t, there must exist a certain relationship between 

the two parameters. Thus, it can be argued that the sensitivity trends will most likely 

follow those of μ with H , although the magnitudes will be entirely different.  

For wires with different anisotropies, the general hysteresis loops are entirely different 

as given Fig. 122.  

 

 

 

 

 

Fig. 122 Hysteresis loops of wires with (a) circumferential (out of plane) anisotropy; 
(b) longitudinal (in plane) anisotropy). 
 

Therefore, since permeability is actually the gradient of the plot of B  vs Hext 

(hysteresis loops), the following relationship of μ and H can be inferred and shown in 

Fig. 123 below. Thus, sensitivity is believed to follow such trends.   

 

 

 

 

 

 

Fig. 123 Plot of permeability μ against Hext for wires with (a) circumferential 
anisotropy; (b) longitudinal anisotropy. 

 

As seen in Fig. 124, there is a negative percentage change in sensitivity with 

increasing TA. This implied that sensitivity dropped upon annealing for duration of 

(a) B  

Hext 

(b) B

Hext 

(a) (b) 

Hext 

μ 

Hext 

μ 



Chapter 8 Post Heat Treatment of Electroplated NiFe/Cu Composite Wires 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 196 

one hour at increasing TA, with the reduction rate reaching a maximum of over 99% at 

750°C. During annealing, it can be observed that the resultant anisotropy direction of 

the wires was changed to a direction closer to the longitudinal direction and stress is 

relieved in the wire during the process. Although this may be advantageous to the 

sensitivity of the sensor [173], the permeability of the sensor was reduced in the 

process due to inter-diffusion and grain growth [101]. A change in composition at the 

surface was also noted after annealing, even at 210 °C.  From Fig. 124, considering 

the decreasing trend in sensitivity with increasing TA, it appears that the detrimental 

effect of inter-diffusion and grain growth, which leads to a reduction in magnetic 

properties, outweighs the benefits brought about by the longitudinal anisotropy and 

stress relief.  

 
 

 

 

 

 

 

 

Fig. 124 Plot showing percentage reduction in sensitivity with annealing temperature. 
 

8.2. DC joule annealing of NiFe/Cu wires 

All the composite wire samples with 15 mm in length were annealed using a DC 
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300 400 500 600 700 800

-100

-90

-80

-70

 

%
 C

ha
ng

e 
in

 S
en

si
tiv

ity

Annealing Temperature/ OC 



Chapter 8 Post Heat Treatment of Electroplated NiFe/Cu Composite Wires 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 197 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 125 MI ratio in variation with an external magnetic field for electroplated wire 
without and with the DC joule annealing: (a) without annealing; (b) with the DC joule 
annealing. 

 

Significant differences between the GMI effects in electroplated composite 

NiFe/Cu wires without and with DC joule annealing can be seen from Fig. 125, where 

(a) and (b) show the MI effect curves tested under different AC driving frequencies 

for wires with 15 mm in length without and with DC Joule annealing, respectively. 

Fig. 125a shows that in the wire without DC Joule annealing, the MI ratio in variation 

with the external magnetic field depended on the driving frequency of the AC current 
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that the MI ratio in variation with the external magnetic field depended on the driving 

frequency of the AC in GMI effect test. At the AC driving frequency of 4MHz, the 

maximum MI ratio was 1110%, which was a 74% increase compared to the maximum 

MI ratio in the wire without annealing.  

 

 

 

 

 

 

 

 

Fig. 126 The effect of annealing current density on the MI ratio of DC Joule annealed 
electroplated composite wire in variation with an external magnetic field. 
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Fig. 127, Fig. 128 shows that the anisotropy field strength of the annealed magnetic 

coated layer reached the minimum under the annealing current density 7.2×108 A/m2. 

As the annealing current density was further increased from 7.2×108 A/m2, the MI 

ratio of the annealed wire dropped drastically (Fig. 127), and the anisotropy field 

strength increased (Fig. 128). A larger value of Hk deteriorated the soft magnetic 

properties, which leaded to the smaller MI ratio.  

 

 

 

 

 

 

 

Fig. 127 The effect of the annealing current density on the maximum MI ratio in the 
DC Joule annealed electroplated composite wires. 
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circumferential permeability decreased with the increase in Hext, till its saturation state. 

This also agreed well with the results of the MI tested at high frequencies, as shown in 

Fig. 125. 

Before undergoing the DC joule annealing, the plated layers of the composite wire 

samples contain residual stresses induced by the electrodepositing process. In 

annealing at the initial annealing current densities of 2.4×108 A/m2 and 4.8×108 A/m2, 

it was conjectured that there were tremendous inertia for the magnetic domains to 

rotate from their initial local anisotropy orientations to the circumferential anisotropy 

as induced by the annealing current. As a result of this magnetic hardening, a larger 

crystalline magnetic anisotropy k, was needed to rotate the domains, which were 

frozen in their initial directions, along the easy axis to the circumferential direction. 

This magnetic hardening also leaded to a slight drop in the MI ratio.  

 

 

 

 

 

 

 

 

Fig. 128 The effect of the annealing current density on the anisotropy field strength, 
Hk, of the DC Joule annealed electroplated composite wires. 
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of magnetostriction as well as a lower constant of crystalline magnetic anisotropy for 

the ferromagnetic coating layer of the composite wire. The enhancement of the softer 

magnetic properties thus increased the MI ratio. Furthermore, the rotational factor of 

the magnetic susceptibility could be increased as the magnetocrystalline anisotropy 

constant k, magnetostriction constant λs and level of stresses in the material were   

decreased. This is precisely why heat treatment has long been recognized as an 

important tool for the improvement of magnetic properties of NiFe alloys [174].  

 

 

 

 

 

 

 

 
 
 
 
Fig. 129 The effect of the annealing current density on the frequency dependence of 
the MI ratio of the DC joule annealed electroplated composite wires.  
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might have caused the decay of the MI ratio by altering the magnetic properties of 

magnetic coating layer. It was reported [114] that at 250oC or above, Ni atoms 

preferentially diffuse into the Cu layer, thus increasing the resistivity of the material.  

Fig. 129 displays the MI frequency spectrum of the composite wires before and 

after DC joule annealing at annealing current density ranging from 2.4 to 9.6×108 

A/m2. For all the wires with length of 15 mm in the MI testing it was observed that 

the maximum MI ratio increased with the increase of the AC driving frequency up to 

the highest, and then decreased with further frequency increases. For the wires 

annealed with the current density 4.8×108 A/m2 or lower, the maximum MI ratios 

peaked at 2 MHz. For the wire annealed was at the current density 7.2×108 A/m2, the 

maximum MI ratios peaked at 4 MHz. The maximum MI ratios of the wire annealed 

with current density 9.6×108 A/m2 shows no obvious peak. 

The respective upward and downward trends of the MI ratio in variation with the 

driving frequency can be explained by the circumferential permeability variation. At 

low frequency, the domain wall displacement dominated the magnetization. With the 

increase in the driving frequency, the dynamic permeability increased. At the 

frequency higher than the relaxation value, the magnetization processes was replaced 

by moment rotation, and the permeability dropped as a result of damping to the 

domain wall displacement.   

The maximum MI ratio appears when the circumferential permeability has begun 

to decrease. It was normally believed [171] that the maximum MI ratio for such 

composite wires would appear at the condition when the skin penetration depth δ was 

of order of the dimensional size of the ferromagnetic materials. In this way if the 

conductivity of the NiFe layer was much larger than that of the copper core, the 

dimensional size was the radius of the copper core, and the same applied to the wires 
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with and without annealing. However, the present results show that the optimum 

frequency shifted with the annealing parameters, which indicates the variation of the 

skin depth δ with the annealing parameters, because 

ϕωσμ
δ 2

= ,                             (90) 

where ω is the angular frequency, σ is the conductivity, and μϕ is the maximum 

differential circumferential permeability of the composite wire. The shifting of the 

optimum frequency could be due to variation of the magnetic permeability and 

conductivity of the ferromagnetic layer. Another possible effect might come from the 

domain structure change during the annealing process. 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 130 The percentage increment in the MI ratios of single step annealed composite 

wire and stepped annealed wire. 
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annealing current density from 2.4 to 9.6 ×108 A/m2 at the step of 2.4×108 A/m2 and 

the subsequent measurement of the MI ratio of the wire. In the single step annealing, 

5 composite wires of the same plated layer composition and thickness were used to 

test the effects of 4 levels of annealing current densities on the MI ratios of the wires. 

As shown in Fig. 130, in both the single step annealing and stepped annealing, the MI 

ratio of the annealed wire increased with increasing annealing current density, before 

it reached the maximum. However, stepped annealed wires had much higher MI ratio 

increments compared to the single step annealed wires. The MI ratio increments for 

wires annealed at the current density 7.2×108 A/m2 was 42% for stepped current 

annealing and 6% for single step annealing. Hence, stepped current annealing can be 

concluded to be the better technique in achieving higher MI ratio. A possible reason 

could be that it was easier for the electroplated material to release its internal stresses 

after the smaller current density annealing. 

 

 

 

 

 

 

 

 

Fig. 131 Effect of the cooling time in the DC Joule annealing on the percentage 
increment in the MI ratio of the DC Joule annealed composite wires.    
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at an annealing current density of 7.2×108 A/m2 for 1 minute. Subsequently, for the 

first sample, the annealing current was stopped immediately, and for the second and 

third samples the current was reduced gradually to zero during 30 and 60 minutes, 

respectively. It was found that the MI ratio of the annealed wire increased almost 

linearly with the increase in the cooling time, as shown in Fig. 131. This can be 

explained by the better stress minimization of lower cooling rate in the annealing 

processes.  

 

8.3. Summary 

1. As the annealing temperature was increased from 210°C-1050°C, a general 

reduction in MI% ratio and sensitivity as well as an increase in coercivity was 

observed. This trend was due to a decrease in permeability that was attributed to 

grain growth and inter-diffusion between the two layers, despite the effects of 

stress relief. At high annealing temperatures, especially above the recrystallization 

temperature of 550°C, the degradation of the magnetic properties was more 

pronounced. Significant grain growth can also be observed with increasing 

annealing temperature. Inter-diffusion was observed. In particular, obvious 

diffusion of nickel into copper was observed at 350 °C and 550 °C, with traces of 

copper detected along the radial direction of the cross-section, right up to the 

surface. 

2. A DC Joule annealing method has been developed and tested for the enhancement 

of the GMI effect of electroplated NiFe/Cu composite wires. The results showed 

that the annealing makes great improvement on the MI ratio of the composite 

wires. The highest MI ratio of 1110% has been obtained, which was a 74% 

increase compared to the maximum MI ratio in the wire without annealing. The 
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optimum conditions for the annealing method have also been studied. The results 

showed that for the tested wire samples there was an optimum annealing current 

density, at which the annealed wire has the highest MI ratio. The optimum AC 

driving frequency for the composite wire GMI sensor was found to be a function 

of the annealing current density which varies with the magnetic permeability and 

conductivity of the plated ferromagnetic layer. In terms of the increment in the MI 

ratio of the annealed wires, it has been found that stepped annealing is better than 

single step annealing and the MI ratio increment increases almost linearly with the 

cooling rate in the annealing. 
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Chapter 9 Development of NiFe/Cu Micro Composite Wires 

by Cold-drawing 

_____________________________________________________________________ 

 

Another approach taken by the author to develop NiFe/Cu composite wires was by 

the method of cold-drawing. The cold-drawing setup was developed and the details 

were given in Chapter 3. In cold-drawing, several issues need to be investigated. In 

particular, the effect of drawing on the NiFe:Cu ratio and the influence of the final 

annealing temperature have to be investigated. As such, the details of such studies 

were given in this chapter.  

 

9.1. Effect of drawing on the NiFe:Cu ratio 

Fig. 132 shows the value of the overall wire diameter and the inner copper core 

diameter at each draw from the 10th to the 50th draws. As can be observed in Fig. 133, 

the diameter of the copper core as well as the overall wire diameter decreases 

proportionally with respect to each other and the ratio of the diameter of copper core 

to that of the overall wire remains relatively unchanged at around 0.66 throughout the 

entire drawing process, which could be due to the extremely large frictional force at 

the permalloy layer/copper core interface. This observed phenomenon is of paramount 

importance as this means that the desired final diameter ratio of the composite wire 

can be easily predicted from the initial diameter ratio before drawing.  
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Fig. 132 Overall cold-drawn wire diameter and inner copper core diameter variations 
from 10th to 50th draws (the inset graph shows the ratio of diameter of copper core to 
that of overall wire).  
 

 

 

 

 

 

 

 

Fig. 133 Typical pictures of the cross-section of cold-drawn Ni80Fe20/Cu wire at 
different draws. 
 

9.2. Phenomenon observed during drawing 

9.2.1. Protrusion / Sinking-in effect at early draws 
 

After the first draw, a substantial amount of Cu was observed to be protruding 

from Ni80Fe20 layer (Fig. 134). This protrusion effect was observed to be more 
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pronounced for the composite wires with the thickness ratio of 1:10:1 than those with 

the thickness ratio of 1:4:1. However, after the first draw, the amount of protrusion 

decreased, eventually leading to a slight sinking-in effect of the Cu. This phenomenon 

is mostly likely due to the initial slipping of the two layers as well as the initial 

manufacturing defects, leading the occurrence of voids in the composite wires. After 6 

draws, this effect was observed to diminish and the changes became unobservable. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 134 Side view of two wires of thickness ratio of 1:10:1 after the first draw, 
showing protrusion. 

   

9.2.2. Theoretical predictions of length  

As mentioned previously, the ratio of Ni80Fe20 to Cu is observed to be constant 

after draws. This can be applied to the conservation of volume to predict the length of 

the microwires after draws. The lengths of the microwires were measured after each 

draw to verify this. As shown in Fig. 135, there is insignificant difference between the 

theoretical lengths of the wires (calculated using the rule of the conservation of 

volume as represented by (Eqn. 97)) and the experimental lengths measured after 

every draw.  

2 2

2 2
o i

o i
d dL Lπ π⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (97) 

The maximum deviation of the actual values from the theoretical values is 13% 

and 9% for wire (a) and (b) respectively, which may be due to dimensional inaccuracy 

Protrusions 
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during the fabrication stage and also due to errors in the measurement technique. This 

trend for the first 27th draws reflects on the trends in the drawing process for 

subsequent draws. Hence, we can conclude that the conservation of volume is 

applicable for the prediction of the length of the microwires for all the draws.  

 

 

 

 

 

 

 

 

 

Fig. 135 Experimental and theoretical values of the length of two wire (a) and (b), 
each with thickness ratio 1:4:1. 
 

9.3. Effect of final annealing on magnetic properties, MI effect & maximum 

sensitivity 

Final annealing at different annealing temperatures: 550oC, 650oC, 750oC, 

850oC, 950oC was conducted on the composite wire samples of diameter 34 µm and 

thickness ratio 1:4:1. Fig. 136 shows the MI effect curves at different annealing 

temperatures. All the MI effect curves show single-peak curves, indicating 

dominantly longitudinal anisotropies of the composite wires.   

The longitudinal anisotropies arise due to the nature of the cold-drawing process 

in which wires were drawn through the drawing dies, with the wires repeatedly drawn 

in the direction in line with the axis of the wire, causing the grains to become 

elongated. Annealing was essential in this process to release the residual stress 

induced during the cold-drawing process. 
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Fig. 136 MI effect curves of the 34 μm diameter composite wires at different 
annealing conditions:  (a) without annealing, (b) annealed at 550°C, (c) annealed at 
650°C, (d) annealed at 750°C, (e) annealed at 850°C, and (f) annealed at 950°C. 
 

The release of residual stress is evident from the enhancement of MI effect, as shown 

in Fig. 136 (a) and (b). However, as annealing temperature was changed to 950oC, MI 

ratio drops drastically to merely 0.6%. Typical features of the MI curve were also not 

observable at temperatures above 950oC. This can be attributed to the fact that 

annealing temperature had risen to a point too close to the melting point of the metals. 
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This will inevitably lead to changes and degradation in the structure of the composite 

wires, leading to the loss of the MI effect. 

 

 

 

 

 

 

 

 

 

Fig. 137  Effect of annealing temperature on the peak MI% ratio (the inset graph 
displays the effect of annealing temperature on the peak frequency). 

 

As shown in Fig. 137, as annealing temperature was increased, the magnitude of 

the MI effect initially increased from 60.4% at 550°C to 113.9% at 650°C and then 

decreased drastically to 0.60% at 950°C. There appears an optimum temperature 

range at around 650°C. At elevated annealing temperatures above 850°C, the 

magnitudes of the MI effect of the composite wires were observed to be extremely 

low. It must also be noted that peak frequency of the specimens annealing at different 

annealing temperature increases with increasing annealing temperature. This increase 

could be due to the occurrence of inter-diffusion between the two layers, causing a 

shift in the boundary of the magnetic and conductive layer and also a change in the 

value of skin depth.  Correspondingly, as shown in Fig. 138, the coercivities of the 

magnetic layer were observed to increase with increasing annealing temperature, 
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strongly suggesting that the permeability of the magnetic layer was decreased with 

increasing annealing temperature.  

 

 

 

 

 

 

 

 

 
 
 
Fig. 138 Hysteresis loops for different annealing temperatures (the inset graph shows 
a zoom-in view of the hysteresis loops). 

 

With increasing annealing temperature, from the shape of the hysteresis loops, the 

resultant anisotropy of the composite wires was also observed to be less longitudinal 

and more circumferential with increasing annealing temperature. This change in 

anisotropy may be caused by the recrystallization of the Ni80Fe20 grains and thus the 

magnetocrystalline anisotropy of the wires.   

The results from surface morphology studies as well as compositional 

measurements pointed to several possible reasons for the decline in the permeability 

of the magnetic layer and the MI effect. As shown in Fig. 139, the average particle 

sizes of the magnetic layer were observed to increase gradually and then drastically at 

annealing temperatures above 750°C. Thus, the surface roughness of the wires 

increased. This strongly indicated a great increase in the average grain sizes of the 

magnetic layer. When the average grain size is below the exchange interaction length 

-1000 -500 0 500 1000

-1.0

-0.5

0.0

0.5

1.0

-40 -20 0 20 40

-0.03

0.00

0.03

 

 

 550oC
 750oC
 950oCN

or
m

al
iz

ed
 M

om
en

t (
em

u)

Field (Oe)

 N
or

m
al

iz
ed

 M
om

en
t (

em
u)

 

 

 Field (Oe)



Chapter 9 Development of Micro Wires by Cold-drawing 
___________________________________________________________________________________ 

___________________________________________________________________________________ 
 214 

Lex, which was calculated to be 270nm for Ni80Fe20, coercivity increases as the 

average grain size increases [101]. Thus, it is postulated that the increasing average 

grain size of the magnetic layer is one of the contributions to the trends presented in 

Fig. 137 and Fig. 138. Furthermore, surface and cross-sectional compositional 

measurements have revealed an interesting phenomenon.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 139 SEM photos of the 34 µm diameter wire at different annealing conditions: (a) 
without annealing, (b) annealed at 550°C, (c) annealed at 650°C, (d)  annealed at 
750°C, (e) annealed at 850°C, and (f) annealed at 950°C.  
 

Surface composition measurements revealed that the average Ni% decreased with 

increasing temperature (Fig. 140). It was reported [117] that above the annealing 

temperature of 250ºC, diffusion between the NiFe and Cu layers starts to occur. Cross 

sectional composition measurements displayed the occurrence of inter-diffusion of Ni 

(e) 
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and Cu atoms between the magnetic and conductive layer, with the diffusion rate 

extremely high at the elevated high annealing temperatures. The cross-sectional 

distribution of the composition of the 34 μm in diameter composite wires before and 

after annealing (at 850°C) as well as the SEM photos of the cross-sections can be seen 

in Fig. 141. It should be noted that the diffusion rate was so high at 850°C that the 

boundary between Ni80Fe20 and Cu layer became unclear, as compared to that of the 

specimen before annealing.  

 

 

 

 

 

 

 

 
Fig. 140 Plot showing the (surface) variations of average Ni% with annealing 
temperature 
 

Fig. 142 displays the effect of annealing temperature on the maximum sensitivity 

of the annealed composite wires as sensing elements in orthogonal fluxgate sensors. 

The maximum sensitivity was observed to initially increase, from 10 mV/Oe to 53.5 

mV/Oe, till an annealing temperature of 750°C and then decreases drastically to 1 

mV/Oe at 950°C. The initial increase in maximum sensitivity could be attributed to 

the increase in permeability due to stress release. However, at annealing temperatures 

were between 650°C and 750°C, the effect of the deviation of composition (from the 

ideal composition of permalloy), caused by the inter-diffusion of the magnetic and 
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conductive layer, as well as the effect of grain growth occurring during annealing 

overcome that of stress release, causing a decline in  permeability. Thus, the 

maximum sensitivity of the composite wires annealed at temperatures of 750°C - 

950°C decreased.  

 

 

 

 

 

 

 

 

 

 

Fig. 141 Plot showing the composition distributions over the cross-sections of 
composite wires (from centre of wire) with and without annealing: a) without 
annealing, b) annealed at 850°C; SEM photos showing cross-section views of the 
wires with and without annealing: c) without annealing, d) annealed at 850°C. 

 

 

 

 

 

 

 

 

Fig. 142 Graph of maximum sensitivity of the wire in variation with the annealing 
temperature. 
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9.4. Summary 

Cold-drawn NiFe wires of 34 μm in diameter have been successfully developed. The 

process consists of 82 draws, intermediate annealing after every nice draws and a final 

annealing at the end of the draws.  

1. The ratio of NiFe:Cu has been found to remain relatively unchanged. This is of 

paramount importance as the thickness of the composite wire layers can be 

controlled. 

2. During drawing, the following phenomenon has been observed: A) a considerable 

amount of Cu protruded from the Ni80Fe20 after the first draw. The protrusion later 

sunk back after subsequent draws at a reduced rate and then became unobservable 

after 6 draws; B) with the ratio of diameter of Cu core to the overall diameter 

remaining relatively unchanged, the prediction of the final length and diameter of 

the microwires can be facilitated by the theory of conservation of volume. 

3. The effect of the annealing temperature, ranging from 550oC to 950oC, on the 

magnetic properties and sensing performance has been investigated. The results 

showed that the material permeability initially increased as the annealing 

temperature increased, till the temperature reached a critical value, and then 

decreased drastically with further increase in the annealing temperature. The 

initial increase in permeability could be attributed to the benefits of stress release, 

while the later decrease in permeability could be attributed to increasing inter-

diffusion rate between the Ni80Fe20 and Cu layers with increasing annealing 

temperature.  
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Chapter 10 Deposition Methods on Magnetic Properties of 

NiFe/Cu Composite Wires 
_____________________________________________________________________ 

The Ni80Fe20/Cu composite wire specimens in this study were developed mainly 

by two deposition methods: 1) magnetron sputter deposition; and 2) electrodeposition. 

For magnetron sputtering, each sputtering process lasted for 100 s. The base pressure 

for the sputtering is approximately 2.5×10-6 torr. The deposition pressure is around 7 

mTorr. The deposition power was set to be 200 W. The sputtered specimens were 

then annealed under various annealing temperature to obtain a range of 

nanocrystalline grain sizes. For electrodeposition, the process was carried out at the 

plating current density J of 2 A/dm2 and at a deposition time of 3 minutes for direct 

current electrodeposition and 6 minutes for pulse and pulse reverse electrodeposition 

for 50% duty cycle. The plating time was manipulated in order to obtain deposited 

layers of similar thickness.  

    

10.1. Nanocrystalline Permalloy by Sputter Deposition 

Nanocrystalline Ni80Fe20/Cu specimens were made by magnetron sputter 

deposition and the specimens were then annealed at temperatures from 100°C to 

500°C. The average grain sizes of the Ni80Fe20 layer increased from 7 nm to 25 nm as 

the annealing temperature was increased from 100°C to 500°C, as shown in Fig. 143. 

More energy is available at higher annealing temperature to overcome the threshold 

energy level for crystallite size growth. The XRD spectra of the specimens under 

different annealing temperatures, as shown in the inset graph in Fig. 143, displays the 

narrowing of the peaks with increasing annealing temperature.   
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Fig. 143 Increase of average crystallite size with increasing annealing temperature. 
The inset graph gives the XRD spectra of specimens under different annealing 
temperature, showing texture orientation.  

  

 

 

 

 

 

 

 

 

 
Fig. 144 Increase of longitudinal and perpendicular coercivity with increasing 
annealing temperature.  
 

The coercivities of the specimens were then measured in the longitudinal and 

perpendicular directions. Apparently, the coercivity (longitudinal and perpendicular) 

increased as the annealing temperature increased, as shown in Fig. 144. The 
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experimental result is in good agreement with the random anisotropy model [101].  As 

the grain size was smaller than the ferromagnetic exchange interaction length, 270 nm 

in the case of permalloy, the coercivity decreased as the grain size decreased.  

 

10.2. Nanocrystalline Permalloy by Electrodeposition  

Ni80Fe20 specimens were developed by direct current electrodeposition, pulsed 

electrodeposition and pulsed reverse electrodeposition. Most of the electrodeposition 

processes were carried out with the addition of saccharin in the electrolyte solution as 

permalloy from such electroplating baths was found to possess much smaller grain 

sizes. Saccharin, being a well-known brightener, is used to refine the grains of the 

deposits by inhibiting surface diffusion of adatoms towards preferential growth 

centers and thus promoting nucleation. The electrodeposition current waveform of 

each method is shown in Fig. 145. Pulsed electrodeposition was carried at 50% duty 

cycle while pulsed reverse electrodeposition was also carried out at 50% duty cycle 

but with an anodic current IN for improved smoothness.  

 

 

 

 

 

 
Fig. 145 Electrodeposition current waveform of various electrodeposition methods. IA 
denotes anodic current (negative current). 

 

The specimens from different electrodeposition methods were then measured 

under XRD and the average crystallite sizes were calculated. As shown in Fig. 146, 

the addition of saccharin into the electrolyte solution decreased the average grain size 
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of the permalloy layer from 51.7 nm to 14.8 nm. Saccharin exists as molecules in the 

electrolyte solution, inhibits surface diffusion of the adatoms at the surface and 

promotes nucleation. The pulse plated (or pulsed electrodeposition) specimens have 

been found to possess the smallest average grain size because of the presence of the 

off-time. Blocking of growth centers of the cathode occurs during the off-time as a 

result of absorption of inhibiting species [99]. This forces the system to create new 

nuclei at each new pulse.  Fig. 146 also shows that introducing a seeded Cu layer 

below the Ni80Fe20 layer lowers the average grain size from 14.8 nm to 12.6 nm.  

 

 

 

 

 

 

 

 

Fig. 146 Variation of crystallite sizes with different synthesis methods. 
 

Pulsed reverse plated specimens possess Ni80Fe20 layers of average grain size of 20 

nm, which was slightly larger than direct current electrodeposition with saccharin 

added. The reduction of the saccharin effect could be due to the changing polarity of 

the cathodic and anodic current. This reduces the possibility for the saccharin 

molecules to be at the surface of the deposited layer, limiting the surface diffusion of 

adatoms.  

Fig. 147 shows the coercivity of the specimens developed by using different 
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nanocrystalline grain size below the ferromagnetic exchange length. The only 

exceptions are the direct current plated specimens with seeded Cu layer. The 

deposited layer could be slightly inhomogeneous because of the introduction of the 

seeded layer. In the overall trend, the coercivity results correspond well with the 

crystallite size results.   

 

 

 

 

 

 

 

 
Fig. 147  Variation of coercivity of specimens from different electrodeposition 
methods. 
 

10.3. Variation of Magnetic Properties with Crystallite Size  
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the effects of the crystallite size on coercivity, regardless of the thickness factor. 
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were observed to possess coercivity in the range less than 5 Oe.  This may be largely 

due to the level of residual stress being higher in the sputtered specimens than that in 

the electrodeposited specimens.     

 

 

 

 

 

 

 

 

 

 

Fig. 148 Variation of coercivity with crystallite sizes for different synthesis methods. 
 

10.4. Summary  

Permalloy layer of Ni80Fe20/Cu with the nanocrystalline grain sizes ranging from 52 

nm to 7 nm have been developed by using magnetron sputtering and different 

electrodeposition methods, including direct current electrodeposition with and without 

saccharin added, pulsed electrodeposition, pulsed reverse electrodeposition with 

saccharin added and the introduction of a Cu seeded layer. The results showed that 

apparently, the coercivity decreases as the grain size decreases. However, since 

different deposition methods produce specimens of varying level of residual stress 

and uniformity, the range of the coercivity trends is according to the deposition 

method used.  
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Chapter 11 Conclusions and Recommendations 

_____________________________________________________________________ 

 

11.1. Conclusions 

In this study, research and development have been conducted on the fabrication 

technology for super permeability NiFe/Cu composite wires for micro magnetic 

sensor applications. The following conclusions can be drawn: 

1. Magneto-optical micro-magnetometer studies revealed that in near-surface range 

of DC electrodeposited NiFe/Cu wires, there are circular domains with alternating 

left- and right-handled magnetization in adjacent domains, with the size of circular 

domains and the saturation field Hs found to be dependent on Fe% in the NiFe 

layers. This was attributed to variations of the effective constant of magnetic 

anisotropy K, caused by structural changes of the wires. The magnetic-field 

behaviour of the magnetization components, parallel and perpendicular to the 

magnetic field applied along the wire length, shows that there is the curling mode 

of the magnetization reversal in the examined wires. 

 

2. The influence of the electroplating parameters was investigated in relation to the 

resulting magnetic properties of DC electrodeposited NiFe/Cu wires.   

a) The effect of plating current density J on the magnetic properties of the plated 

material in electroplating of NiFe/Cu composite wires has been studied and 

the results showed a critical value of plating current density J of 2A/dm2 was 

found, below which soft magnetic properties decreased with increasing current 

density and above which soft magnetic properties increased with increasing 

current density. The results also showed that plating current density affects the 

magnetic anisotropy of plated wires.  
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b) Electrolyte pH value was found to affect the composition of plated layer in 

NiFe plating. The Fe% generally increases as pH value increases from 2.5 to 

4.5. The magnetic property of plated layer, in terms of MI ratio, depends 

directly on the composition of plated layer rather than the electrolyte pH value. 

c) The magnetic properties of deposited material in variation with thickness tFM 

of deposited layer have been investigated. The results showed that thickness 

affects composition of deposited material, which makes coercivity increase 

with increasing thickness. It also affects average grain size of deposited 

material, which makes coercivity increase with increasing thickness. It further 

affects uniformity of the deposited material, which causes coercivity decrease 

with increasing thickness. As a combined effect of thickness on the magnetic 

properties of deposited material, the coercivity of the material can be in a 

dynamic constant state as the thickness varies. Under such circumstances, the 

thickness has mainly geometrical effect on the MI of the composite wire. 

d) The alloying effect of molybdenum has been investigated. It has been found 

that at the composition of Ni78Fe18Mo4, the material alloy is magnetically 

softest, as indicated by the lowest longitudinal and circumferential coercivity 

of 0.88 Oe and 1.04 Oe, respectively, and also by the lowest peak field 

intensity of 0.80 Oe in the MI effect curve obtained. The magnetic properties 

of Ni78Fe18Mo4 have been found to be better than Ni79Fe21. 

 

3. A nannocrystalline electrodeposition technology has been developed, in which the 

grain size manipulation of the NiFe layer has been successfully carried out by two 

main approaches: 1) addition of additive saccharin; 2) altering the plating current 
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waveform, i.e. DC plating, pulse plating and pulse reverse plating, and also by 

varying the various process parameters.  

a) The upper and lower limits of the nanocrystalline grain size have been 

theoretically estimated to be between 270 nm and 10 nm separately. Within 

this range, grain size reduction will benefit greatly magnetic properties.   

b) The effect of the pulse plating parameter duty cycle on the composition, 

thickness and the grain size of the coating layer was investigated. At duty 

cycle 50%, average grain size has been found to be the smallest.  

c) Nanocrystalline permalloy of grain sizes ranging from 52 nm to 11 nm has 

been developed, with the grain size controlled by using different electroplating 

methods—DC plating without saccharin added, DC plating with saccharin 

added, or pulse plating with saccharin added. The coercivity of nanocrystalline 

permalloy decreases rapidly and the MI effect ratio increases greatly as grain 

size decreases from 52 nm to 11 nm. This can be explained by the random 

anisotropy model.  

d) Pulse-reverse electrodeposited Ni80Fe20/Cu composite wires have been 

developed. The theoretical calculations and experimental results showed that 

the working current efficiency of the pulse-reverse electrodeposition for 

permalloy is high, up to 87% in the present case studied. With the introduction 

of an anodic current, the deposited permalloy was found to be better in 

uniformity, which resulted in higher peak MI% ratio of Ni80Fe20/Cu wires, 

despite associated side effect of grain size enlargement. Within the tested 

range of the present study, smaller anodic current amplitudes resulted in lower 

coercivity of deposited material and higher MI effect of NiFe composite wires.  
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e) Ni80Fe20/Cu composite wires of a variety of nanocrystalline crystallite sizes 

have been developed using 4 different electrodeposition methods. The 

difference in electrodeposition methods lies in the current waveforms: DC 

electrodeposition, pulse electrodeposition, PR electrodeposition and PR 

electrodeposition with off-time. Introducing an off-time period was found to 

reduce average crystallite sizes of deposited material. The comparison of the 

resultant crystallite size was made and the order was observed to be (in 

descending crystallite size): PR electrodeposition with off-time, pulse 

electrodeposition, DC electrodeposition and PR electrodeposition. The 

magneto-impedance (MI) effect of the specimens produced by PR 

electrodeposition with off-time was higher than those produced by PR 

electrodeposition without off-time, due to grain size reduction caused by the 

off-time.  

 

4. The effects of an applied longitudinal magnetic field in the electroplating of 

NiFe/Cu composite wires on composition, microstructure and magnetic properties 

of the plated layer have been investigated.    

a) The longitudinal magnetic field in electroplating makes the composition of 

plated material more uniform. 

b) The longitudinal controlling magnetic field was found to have no obvious 

effect on plating rate in terms of thickness of plated layer. 

c) The longitudinal magnetic field in the composite wire plating makes the 

crystals in the plated layer pack more orderly, which enhances uniformity of 

plated material and therefore increases magnetic softness of plated material.  
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d) The longitudinal magnetic field shifts the magnetic anisotropy of plated 

composite wire from circumferential to longitudinal, with the level of the 

anisotropy change proportional to the longitudinal magnetic field intensity. 

The variation of the anisotropy from circumferential to longitudinal for 

composite wires plated under a range of longitudinal magnetic field exhibit a 

variation from double peak MI ratio curve to single peak MI ratio curve in MI 

effect testing at high frequency of the testing current. 

e) The critical MI effect frequency for a plated composite wire, at which the 

maximum MI ratio occurs, increase with increasing intensity of the 

longitudinal magnetic field.  

 

5. The influence of annealing (furnace annealing and DC joule annealing) was 

investigated in relation to the magnetic properties of NiFe/Cu composite wires.   

a) As the annealing temperature was increased from 210°C-1050°C, a general 

reduction in MI% ratio and sensitivity as well as an increase in coercivity was 

observed. This trend was due to a decrease in permeability that was attributed 

to grain growth and inter-diffusion between the two layers, despite stress relief 

effects. At high annealing temperatures, especially above the recrystallization 

temperature of 550°C, degradation of magnetic properties was more 

pronounced. Significant grain growth can also be observed with increasing 

annealing temperature. Inter-diffusion was observed and in particular, obvious 

diffusion of nickel into copper was observed at 350 °C and 550 °C, with traces 

of copper detected along the radial direction of the cross-section, right up to 

the surface. 
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b) A DC Joule annealing method has been developed and tested. The results 

showed that the annealing causes great improvement on MI ratio of composite 

wires. The highest MI ratio of 1110% has been obtained. The results showed 

that for the tested wire samples there was an optimum annealing current 

density, at which the annealed wire has the highest MI ratio. The optimum AC 

driving frequency for the composite wire GMI sensor was found to be a 

function of the annealing current density which varies with the magnetic 

permeability and conductivity of the plated ferromagnetic layer. In terms of 

the increment in MI ratio of the annealed wires, it has been found that stepped 

annealing is better than single step annealing and the MI ratio increment 

increases almost linearly with the cooling rate in the annealing. 

 

6. Cold-drawn NiFe wires of 34 μm in diameter have been successfully developed. 

The process consists of 82 draws, intermediate annealing after every nice draws 

and a final annealing at the end of the draws.  

a) The ratio of NiFe:Cu has been found to remain relatively unchanged.  

b) During drawing, the following phenomenon has been observed: A) a 

considerable amount of Cu protruded from the Ni80Fe20 after the 1st draw. The 

protrusion later sunk back after subsequent draws at a reduced rate and then 

became unobservable after 6 draws; B) with the ratio of diameter of Cu core to 

the overall diameter remaining relatively unchanged, the prediction of the final 

length and diameter of the microwires can be facilitated by the theory of 

conservation of volume. 

c) Investigations of the effects of the annealing temperature, ranging from 550oC 

to 950oC, on the magnetic properties and sensing performance revealed that 
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the material permeability initially increased as annealing temperature was 

increased, till the temperature reached a critical value, and then decreased 

drastically with further increases in the annealing temperature.  

7.  Permalloy layer of Ni80Fe20/Cu with the nanocrystalline grain sizes ranging from 

52 nm to 7 nm have been developed by using magnetron sputtering and different 

electrodeposition methods, including direct current electrodeposition with and 

without saccharin added, pulsed electrodeposition, pulsed reverse 

electrodeposition with saccharin added and the introduction of a Cu seeded layer. 

The results showed that apparently, the coercivity decreases as the grain size 

decreases. However, since different deposition methods produce specimens of 

varying level of residual stress and uniformity, the range of the coercivity trends is 

according to the deposition method used.  

 

11.2. Recommendations 

1. Currently, the author does not have access to magnetostriction measurement 

equipments and as such, the magnetostriction of the developed magnetic materials 

cannot be characterized. This is a pity as magnetostriction measurement is the 

primary characterization of magnetic materials. As such, it is recommended that 

magnetostriction measurements be carried out on the composite wires.  

2. In pulse plating, ultra-fast pulses (e.g. nano-second, pico-second) in the current 

waveform should be used to fabricate composite wires and studies should be 

conducted to investigate the effect of such ultra-fast pulses on the deposited 

structures. 
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