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SUMMARY 

 X-ray crystal structure determination is one of the most powerful methods to 

determine the macromolecular structure and study the relationship between structure 

and function of macromolecules. 

With this method, I have solved the crystal structure of Hex1, the component of 

Woronin body in Neurospora crassa, at 1.8 Å by the MAD method. The Woronin 

body is a dense-core vesicle specific to filamentous ascomycetes where it functions to 

seal the septal pore in response to cellular damage. Previous work showed that the 

Hex1 protein self-assembles to form the solid core of the Woronin body. The structure 

of Hex1 reveals the existence of three intermolecular interfaces that promote the 

formation of a three-dimensional protein lattice. Point mutation of the intermolecular 

contact residues and expression of an assembly-defective Hex1 mutant result in the 

production of aberrant Woronin bodies, which possess a soluble non-crystalline core. 

This mutant also fails to complement Hex1 deletion in Neurospora crassa, 

demonstrating that the Hex1 protein lattice is required for Woronin body function. In 

addition to sharing sequence similarity, the tertiary structure of Hex1 is remarkably 

similar to that of eukaryotic initiation factor 5A (eIF-5A). Thus it suggests that a new 

function of Hex1 has evolved following the duplication of an ancestral eIF-5A gene, 

which may define an important step of fungal evolution. 

 With the X-ray crystallography method, I have also solved the crystal structure 

of the Cdt1 binding domain of Geminin at 2.0 Å. For a cell to survive, the 

chromosome of the cell should be accurately replicated only once and then equally 
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divided to two daughter cells. Very subtle biological switches control these two steps. 

Geminin plays an essential role in controlling the chromosome to replicate only once. 

Before DNA replication, a pre-replication complex (pre-RC) should be formed in a 

stepwise manner. Origin recognition complex (Orc) is always associated with the 

chromatin DNA origin. When cells exit mitosis and enter G1, Cdc6 and Cdt1 will load 

on Orc. Then microchromosome maintenance (MCM) complex will join in to form 

pre-RC and it is the mark of the beginning of S phase. Only the DNA that has been 

loaded with pre-RC, called “licensed”, can be replicated. To achieve the target that 

DNA replicates only once during S phase, Geminin will function to ensure that no new 

pre-RC is formed on an already fired origin. By interacting with Cdt1, Geminin targets 

Cdt1 for degradation. Without Cdt1, MCM will not be able to load to chromatin. Thus 

no PreRC will be formed and a fired origin will not be fired again. Residues 70-152 is 

the functional domain of Geminin that can interact with Cdt1 and also inhibit EBV 

oriP based transient plasmid replication. The crystal structure of Geminin70-152 

clearly reveals amino acids 92 to 152. Amino acids from 70 to 91 are missing in the 

electron density map, which suggests the region may be highly flexible. The fragment 

from amino acid 94 to 150 forms dimerized parallel coiled coil structure. This 

indicates that full length Geminin also forms a dimer. Point mutations of leucine and 

isoleucine residues in the coiled coil domain disrupt dimerized Geminin and also 

abolish its interaction with Cdt1 in vitro and in vivo. This mutant also loses its ability 

to inhibit EBV plasmid replication as well as DNA replication in Xenopus egg extract. 

These data show the coiled coil structure of Geminin is critical for its interaction with 

Cdt1 and inhibits DNA replication. Further experimental data reveal that Geminin 93-

152 is sufficient for Cdt1 interaction, but not sufficient for inhibiting Cdt1’s function. 

Residues 70 to 92 appear to be necessary to inhibit DNA replication. The physical 
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contiguity of residues 70 to 93 with the coiled coil domain might indicate that the 

critical function of this accessory domain may either stabilize the interaction of Cdt1 

with Geminin or make additional contacts with Cdt1 that interfere with whatever 

function is necessary for co-operating with Cdc6 to load the Mcm2-7 helicases. 

Alternatively, this domain of Geminin might have a novel interaction partner. Further 

work on the structure of the Geminin-Cdt1 complex may give us more hints of the 

mechanism. 
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CHAPTER 1 INTRODUCTION ON CRYSTAL STRUCTURE 

DETERMINATION 

1.1 THE HISTORY OF X-RAY CRYSTALLOGRAPHY 

1.1.1 Discovery of X-rays 

 Discovered by German physicist Wilhelm Conrad Roentgen in 1895, X-rays lie 

in the electromagnetic spectrum between ultraviolet and gamma radiation and have 

wavelengths of 0.1-100 Å. They are usually produced by rapidly decelerating fast 

moving electrons and converting their energy of motion into quanta of radiation (Stout, 

1989). When high energy electrons collide with and displace an electron from a low 

lying orbital in a target metal atom, an electron from a higher orbital drops into the 

resulting vacancy, emitting its excess energy as an X-ray photon (Rhodes, 2000). The 

wavelengths (λ) of emission lines are longer for elements of lower atomic number Z. 

For instance, electrons dropping from the L shell of copper (Z = 29) to replace the 

displaced K electrons (L to K or Kα transition) emit X-rays of λ = 1.54 Å. The M→K 

transition produces a nearby emission band (Kβ) at 1.39 Å. For molybdenum (Z = 42), 

λ (Kα) = 0.71 Å and λ (Kβ) = 0.63 Å. 

1.1.2 Application of X-rays to molecular structure determination 

 In 1912, Von Laue’s group discovered X-ray diffraction and this discovery 
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gave rise to the development of a very rich scientific period and created a new 

academic branch – crystal structure determination. One year later, W. L. Bragg 

determined the first structure. From then on, crystal structure determination is broadly 

undertaken on inorganic and organic molecules (Buerger, 1990). Currently, there are 

about 17,000 unique structures of protein, peptide, virus, protein/nucleic acid complex, 

nucleic acid and carbohydrate molecules, all determined by X-ray crystallography, and 

deposited in the Protein Data Bank. This number is increasing day by day. Crystal 

structure determination is definitely the most popular and powerful method to solve  a 

macromolecular structure.  

1.2 X-RAY SOURCES AND DIFFRACTION INSTRUMENTS 

1.2.1 X-ray sources 

 The most commonly used X-rays are produced by bombarding metals (copper 

or molybdenum) with electrons produced by a heated filament and accelerated by an 

electric field. 

 A monochromatic (single wavelength) source of X-rays is desirable for 

crystallography. Mostly, copper and molybdenum are used as the anode material and 

they generate suitable X-rays. Generally, the weaker Kβ radiation is removed. Copper 

radiation is widely used for detection by film, which is more sensitive to Cu Kα than to 

that of molybdenum. Molybdenum, which gives short wavelength X-rays, and hence 

better resolution, are more commonly used when X-rays are detected by scintillation 

counters, as in diffractometers.  
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 There are three common X-ray sources: X-ray tube, rotating anode tube, and 

the particle accelerator that produces synchrotron radiation in the X-ray region. In the 

X-ray tube, electrons from a hot filament (near the cathode) are accelerated by an 

electrical field and collide with a water cooled anode, which is made of the target 

metal. Output from the X-ray tube is limited by the amount of heat, which can be 

dissipated from the anode by circulating water. Rotating anode tubes will generate 

high X-ray output, in which the target is a rapidly rotating metal block. This 

arrangement improves heat dissipation by spreading the electron bombardment over a 

much larger area of metal.  

 Particle accelerators, which are used by physicists to study subatomic particles, 

are the most powerful X-ray sources. In these giant rings, electrons or positrons 

circulate at velocities near the speed of light, driven by energy from radio frequency 

transmitters, and maintained in circular motion by powerful magnets. A charged body 

like an electron emits energy (synchrotron radiation) when forced into circular motion, 

and in accelerators, the energy is emitted as X-rays. Accessory devices called 

“wigglers” cause additional bending of the beam, thus increasing the intensity of 

radiation. Systems of focusing mirrors and monochromators that are tangential to the 

storage ring provide powerful monochromatic X-rays at selectable wavelengths. With 

this principle, the X-ray data that require several hours of exposure using a rotating 

anode source can often be obtained in a few seconds or minutes at the synchrotron 

source. Another advantage is that the wavelength of synchrotron X-rays can be 

selected as needed, which can help to solve the phase problem. 
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1.2.2 Diffraction instruments 

Any X-ray diffraction instrument consists of two main parts: a mechanical part 

for rotating the crystal and a detecting device to measure the position and intensity of 

diffracted beams. 

Formerly, Buerger’s precession camera and Weissenberg’s rotation camera 

were used for collecting data. In both types of camera, X-ray film was used as the 

detector. The precession camera has the advantage of giving an undistorted image of 

the reciprocal lattice. Unit-cell dimensions and symmetry in the crystal can be easily 

derived from the undistorted image. However, the precession camera is not suitable for  

three-dimensional X-ray data collection, because it only records one reciprocal layer 

per exposure. The rotation camera registers data more efficiently, but recognition of 

diffraction spots is more complicated. Data are collected in a contiguous oscillation 

range. Some spots appear partly on one and partly on the next or previous exposures. 

Two “partials” are treated as individual reflections and their intensities are added at a 

later stage. Nevertheless, accuracy in the intensity of reflections is sometimes lower 

than that of fully recorded reflections and for this reason they are completely neglected. 

Superior resolution can be obtained from the fine grain of the photographic film, but 

because processing the film is somewhat cumbersome and time consuming, it is not 

very much used in crystallography nowadays. 

The third class of instrument is a computer controlled diffractometer, which has 

a single counter, normally a scintillation counter. Although the scintillation counter is 

no longer widely used for macromolecular data collection today, the goniostat 

construct is standard in X-ray crystallography. The classical Eulerian geometry 

goniostat has four circles. The X-ray beam, the counter and the crystal lie in a 
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horizontal plane. The crystal is located at the intersection of the circles. To measure the 

intensity of a diffracted beam, the crystal must be oriented such that the diffracted 

beam will also be in the horizontal plane. This orientation is achieved by the rotation 

of the crystal around three axes: φ (phi), ω (omega), and  χ (chi). The counter can be 

rotated in the horizonal plane around the 2θ-axis, which is coincident with, but 

independent of the ω-axis. Data collection is done either with the ω and 2θ axes 

coupled or with the 2θ axis fixed and the crystal scanned by rotation around the ω axis. 

In a kappa geometry goniostat, the equivalent rotation of the crystal is achieved by the 

three axes φ, ω and κ (kappa).  

 Lately, the classical photographic film has been replaced completely by the 

introduction of much faster electronic area detectors and image plates. The basic 

difference between the area detector and photographic film is that area detectors scan 

through a diffraction spot in small intervals (e.g., 0.1°), giving a three-dimensional 

profile of the spot. Area detectors are currently based on either a gas filled ionization 

chamber or an image intensifier, coupled to a video system. The gas filled chambers 

are essentially single photon counting X-ray detectors. In the video based area 

detectors, the diffraction pattern is collected on a fluorescent screen. In another kind of 

area detector the video tube is replaced by a charge coupled device (CCD). They have 

a high dynamic range, combined with excellent spatial resolution, low noise and a high 

count rate. The image plate is used in the same manner as the X-ray film but it has 

several advantages. The image plate is made by depositing a thin layer of inorganic 

storage phosphor on a flat base. Image plates are more sensitive than the X-ray film 

and their dynamic range is much wider (1: 104 – 105). The plate can be erased by 

exposure to intense white light and used repeatedly. It is also highly sensitive to the 
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synchrotron radiation at shorter wavelengths (around 0.65 Å; an advantage of short 

wavelengths is that the absorption of the X-ray beam in a protein crystal becomes 

negligible and no absorption correction is required). The disadvantage of the image 

plate is, like the photographic film, it requires a multistep process: exposure as the first 

step and reading as the second step (Drenth, 1994). 

1.2.3 Data reduction 

 The goal of data collection is to collect a set of consistently measured and 

indexed intensities for as many reflections as possible. The preliminary manipulation 

of these intensities is to convert them to a corrected and more generally usable form. 

This process is named as data reduction. The most important quality derived from the 

intensities is structure factor (structure amplitude |Fhkl|), with the relationship |F| ∝ I1/2. 

 Because of viability in the diffracting power of crystals, intensity of the X-ray 

beam, slow deterioration of the crystal during data collection, and also data maybe 

obtained from more than one crystal, it can not be assumed that absolute intensities are 

consistent from one block of data to the next. An obvious way to obtain this 

consistency is to compare reflections of the same index that were measured from more 

than one crystal and scale the intensities of the two blocks of data so that identical 

reflection are given identical intensities. This process is called scaling. Scaling will 

help generate a list of internally consistent intensities for most of the available 

reflections (Rhodes, 2000; Stout, 1989). 
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1.3 BASIC CONCEPTS OF X-RAY CRYSTALLOGRAPHY 

1.3.1 Unit-cell  

 When molecular substances enter the crystalline state from solution, individual 

molecule adopts one or only a few orientations. Although imaginary, the smallest box 

of definite volume and actual shape can be assumed to pack the molecule or all 

specifically orientated molecules. The crystal is an orderly three-dimensional repetition 

of this box. In crystallography, this identical box is defined as unit-cell (Buerger, 1966). 

 The dimensions of a unit-cell are designated by six parameters, three lengths of 

the edges a, b and c, and three unique interaxial angles α, β and γ. A cell in which a ≠ 

b ≠ c and α ≠ β ≠ γ is known as triclinic while   a = b = c, α = β = γ = 90° is cubic. 

Other unit-cells, monoclinic, orthorhombic, tetragonal, rhombohedral and hexagonal, 

will have a varying degree of arrangements for these parameters. The arrangement of 

symmetry elements (a crystal system) demands a particular unit-cell. If the unit-cell of 

one crystal system has dimensions that mimic a different system, it is purely accidental. 

1.3.2 Lattice, point group and space group 

 For many geometrical purposes, it is convenient to ignore the specific nature of 

the motif and concentrate attention on the geometry of repetition. In these cases it is 

sufficient to consider using a point at the corners or vertices of the unit-cell to 

represent the whole unit-cell. The array of these points is called lattice. There are 14 

basic unit-cells in three dimensions, called Bravais lattices. The Bravais lattices are the 

distinct lattice types which, when repeated can fill the whole space. They can be 

classified as primitive (simple unit-cell), face centered (point at the center of each face), 
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body centered (point at the center of the cell), end centered (point at the center of one 

face) and rhombohedral. Cubic cells can have primitive, body centered and face 

centered lattice; tetragonal cells can have primitive and body centered lattice; 

orthorhombic cells can have primitive, face centered, body centered and end centered 

lattice; hexagonal cell have primitive and rhombohedral lattice; monoclinic cells have 

primitive and end centered lattice while triclinic cells can only have primitive lattice. 

 A molecule follows certain symmetry operation when it is packed into a crystal. 

Beside unit translations along the three unit-cell axes, called three-dimensional 

translation symmetry, other symmetry elements are rotation, reflection, and inversion. 

The combination of these symmetry elements that acts on a unit-cell is commonly 

called crystallographic point group. The simplest point groups are composed of proper 

rotations of the individual n-fold symmetry axis. These are the point groups 1, 2, 3, 4, 

and 6. The total number of crystallographic point groups involving proper rotations is 

11. Point groups also contain improper rotation, which is conformed to one of the six 

general types: n , nn , PII, IPI, IIP, and P/I P/I P/I. There are 21 improper rotations. 

Thus totally, there are 32 crystallographic point groups (Buerger, 1956). 

 Rotation or reflection combined with translation will generate screw or glide 

symmetry, respectively. The combination of points groups, their allowed screw axes 

and glide planes and lattices leads to 230 different ways to combine the allowed 

symmetry operations in crystal, leading to 230 space groups. They were derived almost 

simultaneously by Fedorov (1890) in Moscow, Schoenflies (1891) in Göttingen, and 

Barlow (1894) in London (Buerger, 1990), and tabulated in the International Tables of 

Crystallography (Hahn, 1998). Because only L-amino acids are present in proteins, the 

application of mirror planes and inversion centers would change an L-amino acid to a 
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D-amino acid, not all 230 space groups are allowed and only 65 space groups are 

applicable to protein crystals (McRee, 1999a). 

1.3.3 hkl plane  

 A convenient way to study the crystalline lattice is to use hkl planes. The index 

h gives the number of planes in the set per unit-cell in the X direction, or equivalently, 

the number of parts into which the set of planes cuts the a edge of each cell. Similarly, 

the indices k and l specify how many such planes exist per unit-cell in the Y and Z 

directions. The family of planes having indices hkl are the (hkl) planes. 

1.4 THE DIFFRACTION OF X-RAYS BY CRYSTALS 

1.4.1 Scattering by atoms in a crystal 

 Scattering is interaction between X-rays as electromagnetic waves and 

electrons. If an electromagnetic wave is incident on a system of electrons, the electric 

and magnetic components of the wave exert force on the electrons. This causes the 

electrons to oscillate with the same frequency as the incident wave. The oscillating 

electrons act as radiation scatterers and they emit radiation of the same frequency as 

the incident radiation (Drenth, 1994). 

 The electron cloud of an atom scatters an X-ray beam. The scattering is 

dependent on the number of electrons and their positions in the cloud. The atomic 

scattering factor can be written as a function of 2(sinθ/λ). 

 When a series of wavefronts of X-rays impinges on a row of regularly spaced 
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atoms, each atom produces a new set of spherical wave envelopes around itself, and 

any line-up of envelopes constitutes a combined wave moving in the direction of the 

common tangent. The cooperative combination of scattered wavelets is known as 

diffraction. 

 The combined wave scattered by the crystal can be described as a summation 

of the enormous number of waves, each scattered by one electron in the crystal. This 

may sound intimidating, because a single unit-cell in a protein crystal contains 

approximately 100,000 or more electrons, and there are many unit-cells in a crystal. 

All these waves must be added. With mathematical deduction, the calculation of 

diffracted waves can be simplified. 

1.4.2 Waves and addition 

 E = A cos ωt is normally used to represent an origin wave. A is the amplitude 

of the wave and ω is related to the frequency of the wave. A new wave with the same λ 

and same amplitude but displaced over a distance Z with respect to the original wave is 

described as Enew = A cos (ωt + α) where α is a phase shift and Z corresponds to the 

phase shift 2π (Z/λ) = α. Mathematically:  

A cos (ωt + α) = A cosα cosωt - A sinα sinωt = A cosα cosωt + A sinα cos(ωt +90 ) 

So the wave A cos (ωt + α) can be regarded as being composed of two waves: wave 1 

of amplitude A cosα and phase angle 0° and wave 2 of amplitude Asinα and phase 

angle of 90°. Wave 1 is called the real part and wave 2 the imaginary part of the total 

wave. This can be represented conveniently in an axial system called the Argand 

diagram, in which the real axis is horizontal and the imaginary axis is vertical. To add 
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several waves with different phase angles, add all the real parts and all the imaginary 

parts and it is the same as adding several wave vectors together (Drenth, 1994). 

1.5 BRAGG'S LAW 

1.5.1 Bragg's law 

In Bragg’s model of diffraction as reflection from parallel sets of planes, any of 

these sets of planes can be the source of one diffracted X-ray beam. Bragg showed that 

a set of parallel planes with indices hkl and interplanar spacing dhkl produces a 

diffracted beam when X-rays of wavelength λ impinge on the planes at an angle θ and 

are reflected at the same angle, only if θ meets the condition  

2 dhkl sinθ = nλ. (1.1) 
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Figure 1-1. The condition that produces diffracted rays. sin θ = BC/AB, 

BC = AB sin θ = dhkl sin θ. If the additional distance (2BC) travelled by 

the more deeply penetrating ray R2 is an integral multiple of λ, then 
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rays R1 and R2 interfere constructively. 

 Notice that the angle of diffraction θ is inversely related to the interplanar 

spacing dhkl (sinθ is proportional to 1/dhkl). This implies that large unit-cells, with large 

spacing, give small angles of diffraction and hence produce many reflections that fall 

within a convenient angle from the incident beam. On the other hand, small unit-cells 

give a large angle of diffraction, producing fewer measurable reflections. In a sense, 

the number of measurable reflections depends on how many reflections are present in 

the unit-cell. 

 Each set of parallel planes in the crystal produces one reflection. The intensity 

of a reflection depends on the electron distribution along the planes that produce the 

reflection. 

1.5.2 Reciprocal lattice 

 The diffraction pattern consists of reflections (spots) in an orderly array on the 

film and it has a simply inverse relationship with the spacing of unit-cells in the 

crystalline lattice, so the spacing of reflections in the lattice on the film is called 

reciprocal lattice. A reciprocal lattice is generated as explained in Figure 1-2. Take O 

as the origin, through a neighbouring crystal lattice point N, draw one plane each of 

the set (110), (120) and so forth, whose interplanar distances will be d110, d120 and so 

on. From the origin, draw a line normal to the (110) plane. The point at a distance, 

1/d110, on this line will define the reciprocal lattice point 110. Do the same for (120) 

and so on. Note that the points defined by this operation form a lattice, with the chosen 

origin. This new lattice is the reciprocal lattice. If the real unit-cell angles α, β and γ 

are 90°, the reciprocal unit-cell has axes a* lying along the real unit-cell edge with the 
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corresponding length of 1/a. Similarly, the other parameters, b* and c* are defined. If 

the axial lengths are expressed in Angstroms, then the reciprocal lattice spacing is in 

the unit 1/Å or Å-1 (reciprocal Angstroms).  

O

N
b

(110)
(120)

(130)

(010)
110

120

130

140
b*

x

y

 

Figure 1-2. The reciprocal lattice 

 

1.5.3 Bragg's law in reciprocal lattice 

 Reciprocal lattice points give the crystallographer a convenient way to compute 

the direction of diffracted beams from all sets of parallel planes in the crystalline 

lattice (real space). The following geometrical interpretation of diffraction was 

formulated by Ewald. 

 Assume that an X-ray beam (arrow XO in Figure 1-3) impinges on the crystal 

on a plane. Point O is arbitrarily chosen as the origin of the reciprocal lattice. O is also 

the real lattice origin in the crystal. Draw a circle of radius 1/λ with its center C on XO 
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and passes through O. This circle represents the wavelength of X-rays in the reciprocal 

space. Rotating the crystal about O will rotate the reciprocal lattice about O, 

successively bringing the reciprocal lattice points P and P' into contact with the circle. 

Because the triangle PBO is inscribed in a semicircle, it is a right angled triangle and 

sinθ = OP/ BO = OP/ (2/λ).  

 

a*

b*

θ

θ
θ

θ

B
X

C

P

O

P'

R

 

Figure 1-2. Ewald sphere 

Because P is a reciprocal lattice point, the length of line OP is 1/dhkl, where h, k and l 

are the indices of the set of planes represented by P.  So, 1/OP = dhkl and 2dhkl sinθ = λ, 

which is Bragg's law with n = 1.  

 The line defining a reciprocal lattice point is normal to the set of planes having 

the same indices as the point. BP, which is perpendicular to OP, is parallel to the 

planes that are producing the reflection P in Figure 1-3. If we draw a line parallel to 
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BP and passing through C, the center of the circle, this line represents a plane in the set 

that reflects the X-ray beam under these conditions. The beam impinges on this plane 

at an angle θ, reflected at the same angle and diverges from the plane at C by an angle 

2θ, which takes it precisely through the point P. CP gives the direction of the reflected 

ray R. In conclusion, reflection occurs in the direction CP when the reciprocal lattice 

point P comes in contact with this circle. As the crystal is rotated in the X-ray beam, 

all reciprocal lattice points come into contact with this sphere. Each reciprocal lattice 

point produces a beam in the direction of a line from the center of the sphere of 

reflection through the reciprocal lattice point that is in contact with the sphere. 

 This model of diffraction also implies that the directions of reflection, as well 

as the number of reflections, depend only on the unit-cell dimensions, and not on the 

contents of the unit-cell.  

1.6 FOURIER TRANSFORM 

1.6.1 Fourier series 

 Each reflection is the result of diffraction from atoms in the unit-cell. As a 

wave is periodic, according to the Fourier theory, any periodic function can be 

approximated by a series of cosine and sine terms with appropriate coefficients. 

∑
=

+=
n

h
h hxihxFxf

0
)](2sin)(2[cos||)( ππ  (1.1) 

Here )(xf specifies the resulting diffracting wave and it is the sum of n Fourier terms 

or diffraction from n atoms. Each term is a simple wave with its own amplitude |Fh|, its 
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own frequency h, and implicitly, it is own phase αh. Since  

cosθ + isinθ = eiθ (1.2) 

the above Fourier series can be written as  

∑=
h

hxi
h eFxf )(2||)( π  (1.3) 

When the above Fourier series is derived as a three dimensional Fourier series, the 

equation will be  

∑∑∑ ++=
h k l

lzkyhxi
hkl eFzyxf )(2||),,( π  (1.4) 

Here each term in the series is a simple three-dimensional wave whose frequency is h 

in the X direction, k in the Y direction and l in the Z direction. For each possible set of 

value h, k and l, the associated wave has an amplitude |Fhkl|. 

1.6.2 The Fourier transform: general features 

 Fourier demonstrated that for any function f(x), there exists another Function 

F(h) such that  

∫
+∞

∞−
= dxexfhF hxi )(2)()( π  (1.5) 

Where F(h) is called the Fourier transformation (FT) of f(x), and the unit of the 

variable h is the reciprocal of the unit of x. 

 The Fourier transform operation is reversible. That is, the same mathematical 

operation that gives F(h) from f(x) can be carried out in the opposite direction to give 
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f(x) from F(h), if x and h are reciprocal to each other. 

∫
+∞

∞−

−= dhehFxf hxi )(2)()( π   (1.6) 

The above functions f(x) and F(h) are one-dimensional. If stated in three dimensions, 

the Fourier transform would be: 

∫ ∫ ∫ ++=
x y z

lzkyhxi dxdydzezyxflkhF )(2),,(),,( π  (1.7) 

and in turn the reverse Fourier transform is  

∫ ∫ ∫ ++−=
h k l

lzkyhxi dhdkdlelkhFzyxf )(2),,(),,( π  (1.8) 

1.6.3 Electron density as a Fourier series 

 The unit-cell can be represented as an assembly of electron density in several 

defined volume elements. The electron density of each volume element centered at (x, 

y, z) is roughly the average value of ρ(x, y, z) in that region. Smaller the volume 

elements, the more precisely these averages approach the correct value of ρ(x, y, z) at 

all points. In this way, the structure factor Fhkl can be written as: 

∫ ∫ ∫ ++=
h k l

lzkyhxi
hkl dxdydzezyxF )(2),,( πρ  (1.9) 

The electron density is, in turn, the transform of structure factors: 

)(21),,( lzkyhxi

h k l
hkleF

v
zyx ++−∑∑∑= πρ  (1.10) 
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1.6.4 Structure factor as a Fourier series 

 The structure factor is the resultant of n waves scattered in the direction of the 

reflection hkl by the N atoms in the unit-cell. Each of these waves has an amplitude 

proportional to fj, the scattering factor of the atom, and a phase αj with respect to the 

origin of the unit-cell. 

 Crystallographers represent each structure factor as a complex vector. The 

length of this vector represents the amplitude of the structure factor Fhkl, which is 

proportional to (Ihkl)1/2. The phase is represented by the angle α that the vector makes 

with the real axis when the origin of the vector is placed at the origin of the complex 

plane. The structure factor F can be represented as a vector A + iB on this plane, 

Figure 1-4. The projection of F on the real axis is its real part A, a vector of length |A| 

and the projection of F on the imaginary axis is its imaginary part iB, a vector of length 

|B|.  

|A|

Fi |B|
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Figure 1-3. Real and imaginary components of the structure factor 

From above figure: 
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||
||sin

F
B

=α       and      
||
||cos

F
A

=α  (1.11) 

Therefore,  

|A| = |F|cosα      and      |B| = |F|sinα (1.12) 

F = |A| + i|B| = |F|(cosα + isinα) (1.13) 

Expressing the complex terms in parentheses as an exponential, 

αieFF ⋅= ||  (1.14) 

Substituting this expression for Fhkl in equation 1.14 will generate  

∑∑∑ ++−=
h k l

lzkyhxii
hkl eeF

V
zyx hkl )(2||1),,( παρ  (1.15) 

By using α = 2πα' 

∑∑∑ ++−=
h k l

lzkyhxii
hkl eeF

V
zyx hkl )(2'2||1),,( παπρ ∑∑∑ −++−=

h k l

lzkyhxi
hkl

hkleF
V

)'(2||1 απ (1.16) 

The structure factor for the reflection Fhkl can be written as: 

∑
=

++=
n

j

lzkyhxi
jhkl

jjjefF
1

)(2π  (1.17) 

where fj is the scattering factor and (xj, yj, zj) is the fractional coordinates of  the atom j 

in the unit-cell, which establishes the phase of its contribution. 
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1.7 PHASE PROBLEM 

 From the above equation, ρ(x, y, z) is obtained from a Fourier series from 

structure factors. Structure factors describe the diffracted rays that produce the 

measured reflections. The full description of a diffracted ray includes three parameters: 

amplitude, frequency and phase. The amplitude |Fhkl| is proportional to the square root 

of Ihkl, but the phase of Fhkl is not directly obtainable from experimental measurement. 

To compute ρ(x, y, z), we should first solve the phase problem, which is the most 

demanding element of X-ray crystallography. 

1.8 METHODS TO SOLVE THE PHASE PROBLEM 

 Let us restrict ourselves to macromolecular crystallography. Four methods are 

used to solve the phase problem. There are: heavy-atom method (or isomorphous 

replacement method), anomalous scattering method (also called anomalous dispersion), 

molecular replacement method and direct method. All these methods only yield 

estimates of phases, which must be improved before an interpretable electron density 

map can be obtained. Initially, in these methods, phases are estimated for a limited 

number of reflections, and subsequently, phases determination must be extended to 

include as many reflections as possible. 

1.8.1 The heavy-atom method (isomorphous replacement) 

1.8.1.1 The Patterson function 

 In 1935, Patterson published a classical paper, which pointed out that Fourier 
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calculation could be carried out by using the phaseless quantity |F|2 as coefficients. He 

showed that whereas the usual synthesis with F's as coefficients showed the 

distribution of atoms in the cell, the map calculated with |F|2 gave peaks corresponding 

to all of the interatomic vectors. Thus a peak at a point uvw in a Patterson map 

indicates that atoms exist in the crystal at x1, y1, z1 and x2, y2, z2, such that  

u = x 1- x2      v = y1 - y2       w = z1 - z2 

 For a molecule containing N atoms in a unit-cell, the Patterson synthesis will 

show N2 peaks, corresponding to the N possible vectors that can be drawn from each of 

the N atoms. As the great size of origin peaks does not provide useful structural 

information and may cause trouble in scaling the computer output, it is often 

eliminated during the sharpening operation. 

1.8.1.2 Patterson symmetry 

 Although the atomic positions in a real crystal can be distributed in any of the 

230 space groups, vector peaks in the corresponding Patterson map are limited to only 

24 space groups. This simplification reflects the loss of information suffered when 

proceeding from the phased F's to the phaseless |F|2's. The symmetry of the Patterson 

group is often higher than that of the crystal itself.  

 All Patterson maps will be centrosymmetric, regardless of the space group of 

the atomic distribution from which it is derived. Their lattice type is the lattice type of 

the original space group (P, C, F etc.). The Patterson space group is derived from the 

original crystal space group by replacing all translational symmetry elements (screw, 

glides) by their corresponding non-translational elements (axes, mirrors) and by adding 
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a center of symmetry, if it is not already present. 

 The symmetry elements of the crystal space group do not necessarily appear as 

such in the Patterson map. As aptly pointed and named after the discoverer, Harker 

lines and planes correspond to the usually high average intensity of certain regions of 

the reciprocal space group information in the Patterson map. They arise because the 

vectors between corresponding atoms of molecules related by symmetry elements have 

one or two constant coordinates. With the corresponding vectors positions in the 

Harker sections, we will be able to calculate the related atomic positions in the crystal 

(Buerger, 1959). 

1.8.1.3 Heavy-atom derivative preparation 

 The heavier an atom the easier it is to locate by means of the Patterson map and 

the more it tends to determine the phases and intensities of all the reflections. In other 

words, the heavy-atom provides a better phasing model. However, if the atom is too 

heavy compared to other atoms in the structure, its dominance becomes too great and 

the comparison of |Fo| and |Fc| becomes relatively insensitive to the positions of the 

light atoms. Thus the uncertainty in the light atom coordinates increases. The 

reliability of bond length measurements decreases and in extreme cases, the light 

atoms may not be found at all. 

A convenient rule that has been used as a guide in the selection of heavy-atom is  

1/ 22 ≈∑ ∑ lightheavy ZZ  (1.18) 

Note that it is better to err on the side of too light an atom instead of a too heavy-atom 
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(Stout, 1989). 

 In the most common technique, protein crystals are soaked in solutions of 

heavy ions. Several diffraction criteria define a promising heavy-atom derivative. First, 

the derivative crystals must be isomorphic with native crystals, that is, the 

incorporation of a heavy-atom must not disturb the crystal packing or conformation of 

the protein and unit-cell dimensions are not changed too much. The second criterion is 

that there must be measurable changes in a modest number of reflection intensities.  

Finally, the derivative crystal must diffract to a reasonably high resolution (about 3.0 

Å), although it is not necessary to be as high as that of the native data. The phase 

extension step can produce phases for higher angle reflections from good phases of 

reflections at lower angles. Normally, at least two, and often more derivatives are 

required. 

1.8.1.4 Heavy-atom determination 

 The most powerful tool used in determinating the heavy-atom coordinates is 

the Patterson function P(u,v,w), a variation of the Fourier series to compute ρ(x,y,z) 

from structure factors. The coordinates (u,v,w) locate a point in a Patterson map, in the 

same way that coordinates (x,y,z) locate a point in an electron density map. The 

coefficient of each term is the square of one structure amplitude, which is proportional 

to the measured reflection intensity. Thus the Patterson function in general form is: 

∑∑∑ ++−⋅= )(22 ||1),,( lwkvhui
hkl eF

V
wvuP π  (1.19) 

A Patterson map, which is a contour map of P(u,v,w), displays peaks at locations 
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corresponding to vectors between atoms. So there are more vectors between atoms 

than there are atoms, that is, a Patterson map is more complicated than an electron 

density map. But if the structure is simple, with only a few heavy-atoms in the unit-cell, 

the Patterson map may be simple enough to locate the atoms. Thus a difference 

Patterson map, instead of a Patterson map, is used to eliminate the enormous number 

of peaks representing vectors between light atoms in the protein. 

 To obtain the Patterson function solely for the heavy-atoms in derivative 

crystals, a difference Patterson function is constructed. Its coefficients (∆F)2 = (|FPH| - 

|FP|)2, the difference between the structure factor amplitudes with and without the 

heavy-atom reflects the contribution of the heavy-atom alone. The difference Patterson 

function is 

∑∑∑ ++−⋅∆=∆
h k l

lwkvhui
hkl eF

V
wvuP )(221),,( π  (1.20) 

If heavy-atoms bind to the protein at equivalent positions, heavy-atom peaks in the 

Patterson map can be found on the Harker sections. Based on this, the heavy-atoms can 

be located in the unit-cell. The structure factor with both amplitude and phases can be 

calculated with equation (1.17).  

1.8.1.5 Protein phase determination 

 Compare a single reflection of amplitude |FP| in native data and the 

corresponding reflection of amplitude |FPH| from a heavy-atom derivative. The 

difference in the amplitudes (|FPH| - |FP|) is the contribution of the heavy-atom. 
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By vector algebra,   

FPH = FH + FP (1.21) 

For each reflection, we wish to know FP (remember that if we can get the phase 

information of FP, we will be able to calculate  ρ) using 

FP = FPH  - FH (1.22) 

We know |FPH| and |FP| from measuring the reflection intensities IPH and IP, but not 

their phase angles. We will be able to know FH, including its phase angle, after we 

locate the heavy-atom position and calculate its structure factor. Place the vector -FH at 

the origin of the Argand diagram and draw a circle of radius |FPH|, centered at the head 

of the vector -FH, Figure 1-5. All points on this circle will equal |FPH|, that is the head 

of FPH lies somewhere on this circle of radius |FPH|. Now, add a circle of radius |FP| 

centered at the origin. We know that the head of the vector FP lies somewhere on the 

small circle. Equations 1.21 and 1.22 above hold good only at points where the two 

circles intersect. Thus the phase angles of the two vectors a
PF  and b

PF  that terminate at 

the points of intersection of the circles are the only possible phase angles for the 

reflection. One heavy-atom derivative allows us to determine two values for αhkl for 

each reflection hkl. To get the correct solution, a second derivative is used, which will 

agree better with one of the two solutions from the first derivative. In order to resolve 

the phase ambiguity from the first heavy-atom derivative, the second heavy-atom must 

bind at a different site on the protein from the first. If two heavy-atoms bind at the 

same site, the phase of FH will be the same, because the phase of an atomic structure 

factor depends only on the location of the atom in the unit-cell and not its identity. In 
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practice, it often takes three or more heavy-atom derivatives to produce enough phase 

estimates. Obtaining phases with two or more derivatives is called the method of 

multiple isomorphous replacement (MIR). This is the method by which most protein 

structure is determined. When promising phases are available, Fourier synthesis is 

carried out to calculate ρ(x, y, z).  

|FPH
a |-FH

PFa

P
bF

P|F |

 

Figure 1-4. The principle of isomorphous replacement 

1.8.2 The MAD method 

1.8.2.1 Anomalous scattering 

 Recall elements absorb X-rays as well as emit them. The absorption drops 

sharply at wavelengths just below their characteristic emission wavelengths, called an 

absorption edge. This sudden change in absorption as a function of λ is called 

anomalous scattering. An element exhibits anomalous scattering when the X-ray 

wavelength is near the element's absorption edge. As a result of this absorption, 

Friedel's law does not hold (i.e., the reflections hkl and -h-k-l will not have equal 

intensity). 
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 Absorption edges for light atoms in the unit-cell are not near the wavelength of 

X-rays used in crystallography. So carbon, nitrogen and oxygen do not contribute to 

anomalous scattering. However, absorption edges of heavy-atoms are in the 

experimental wavelength range. At the synchrotron, as the wavelength of X-rays is 

tunable, X-ray data can be collected under conditions that maximize the anomalous 

scattering by the heavy-atom. 

1.8.2.2 Extracting phase from anomalous scattering 

 When the X-ray wavelength is near the heavy-atom absorption edge, a fraction 

of the radiation is absorbed by the heavy-atom and reemitted at an altered phase angle. 

At this wavelength, Fhkl ≠F-h-k-l. 

 The effect of anomalous scattering on a given structure factor FPH in the heavy-

atom data is depicted in vector diagrams, Figure 1-6, as consisting of two 

perpendicular contributions, the real ∆Fr and the imaginary ∆Fi. 

 When data are collected at the wavelength λ1, which is away from the 

absorption edge, there is no anomalous scattering. We use 1λ
PHF  to represent the 

structure factor.  When data are collected at the wavelength λ2 near the absorption edge 

of the heavy-atom, anomalous scattering happens. We use 2λ
PHF  to represent the 

structure factor: 

irPHPH FFFF ∆+∆+= 12 λλ  (1.23) 

At the wavelength λ1, Friedel's law is still good, |Fhkl| = |F-h-k-l|, and αhkl = -α-h-k-l. So 
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−1λ
PHF  is the mirror image of +1λ

PHF  in the real axis. The real contribution +∆ rF  and −∆ rF  

to the reflections of a Friedel pair are, like the structure factors themselves, reflections 

of each other in the real axis. But, the imaginary contribution to +∆ iF  is the inverted 

reflection of −∆ iF . That is, −∆ iF  is obtained by reflecting +∆ iF  in the real axis and 

then reversing its sign or pointing it in the opposite direction. Because of this 

difference between the imaginary contribution to the reflections, −2λ
PHF  is not the mirror 

image of +2λ
PHF . From this disparity between Friedel pairs, the phase information can be 

extracted.  

 The magnitude of anomalous scattering contributions of ∆Fr and ∆Fi for a 

given element are constant (which can be obtained from the International Tables of 

crystallography) and roughly independent of the reflection angle θ. The phases of ∆Fr 

and ∆Fi depend only on the position of the heavy-atom in the unit-cell. If the heavy-

atom is located by Patterson methods, the phases can be computed. Similarly, the 1λ
PHF  

can be solved by a vector diagram, where 

++++ ∆−∆−= irPHPH FFFF 21 λλ  (1.24) 

 To solve this equation, draw the vector +∆− rF  with its tail at the origin and 

draw +∆− iF  with its tail on the head of +∆− rF . With the head of +∆− iF  as the center, 

draw a circle of radius +2λ
PHF , which is the amplitude of the reflection in anomalous 

scattering. The head of the vector lies somewhere on the circle. If the phase is known, 

the head is located. Draw a circle of radius +1λ
PHF  with its center at the origin, 

representing the structure factor amplitude of the same reflection in the non-anomalous 
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scattering data set. The intersecting points will establish the phase of this reflection as 

either Fa or Fb that can meet the vector equation. But with the diagram, we can not tell 

which of the two phases is correct.  

 Remember the Friedel partner of the reflection +2λ
PHF  is not the mirror image of 

−1λ
PHF . This information will help us locate the right phase. As mentioned above, −∆ rF  

equals +∆ rF , −1λ
PHF  equals +1λ

PHF  and −∆ iF  equals +∆− iF . So, the above equation (1.24), 

if replaced by −2λ
PHF , will be  

++−+ ∆+∆−= irPHPH FFFF || 21 λλ  (1.25) 

Another vector diagram can be constructed as discussed next. Place the vectors +∆− rF  

and +∆ iF  head to tail at the origin, and draw a circle of radius || 2−λ
PHF  centered at the 

head of +∆+ iF . Finally, draw a circle of radius +1λ
PHF  centered at the origin. The 

circles intersect at two points giving two solutions of the equation. One of the solutions 

will correspond to Fa in the previous equation, which is the right phase of || 1+λ
PHF . 

Once the phase of FPH is obtained, and FH is known from calculating the heavy-atom 

structure factors after locating the heavy-atom by Patterson methods, the vector FP is 

simply the vector difference of FPH -FH. The phase of this reflection in the native data 

can also be defined.  

 Currently, MAD is the fastest growing method of structure determination in 

macromolecular crystallography. As different wavelength data are collected on a 

single crystal, non-isomorphism is no longer a problem and more accurate estimates of 

phase can be obtained. Also with new generation of  synchrotron radiation, high 
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resolution and accurate data enable enable MAD to work really well and quickly. As it 

is necessary to collect the data with powerful synchrotron source x-ray, the greatest 

impediment of MAD today is access to synchrotron facility for the data collection.  
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Figure 1-5. The principle of anomalous method 

1.8.3 Direct methods 

 The above methods involving heavy-atoms apply to large molecules with 500 

or more non-hydrogen atoms. For small molecules (up to 200 atoms), phases of 

reflections can be determined by ab initio direct methods, which rely on the existence 

of mathematical relationships among certain combinations of phases. With direct 

methods, all that is required is a single set of native diffraction intensities. The direct 

methods use sophisticated probability theory and assumption of approximately equal 

and resolved atoms to estimate reflection phase from measured intensities (Uson, 

1999).  

 The crucial break through of direct method is the introduction of dual space 
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iteration, known as ‘Shake-and-Bake’ (Miller, 1993). Here, starting with random 

atoms with constraints such as the type and number of atoms, consistency with the 

Patterson function and interatomic distance restrictions and so on, phases are 

calculated from the starting atoms and different strategies are applied in the reciprocal 

space to try to improve these phases. Minimization of the minimal function R(φ) and 

the tangent formula (tan φH) are the two most frequently applied strategies.  

 The minimal function is the weighted mean square difference between the 

current and statistically expected cosines of the sums of three phases. For a given set of 

structure factors with random or non-random phases, R(φ) is minimized by a parameter 

shift method; each phase may be shifted once or twice by a given value and the shifted 

phases are adopted if they lead to reduction in the minimal function. Next, a map is 

generated and from the map, atoms are picked. These atoms are then used to calculate 

new structure factors, the phases of which are used as the starting point for a new 

round of minimizing R. The procedure is iterated until convergence. Many runs, each 

using a different starting point in the reciprocal space, are required in order to find the 

right solution. This is the default algorithm in the SnB program (Abrahams, 1998). 

 The tangent formula forms the basis of most conventional direct method 

programs, either to refine all the phases or to derive phases for the remaining 

reflections from the phases that are best determined by the current atoms. This is 

default in the SHELXD program. 

 So far, the direct method has successfully solved the structure of triclinic 

lysozyme with 1000 atoms, which contains no atom heavier than sulphur (Deacon, 

1998). With heavier elements, larger structures (for example, cytochrome c3 with 2024 
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atoms) can be solved (Frazão, 1998). The resolution limit seems to be a tougher barrier 

and structures tend to diffract to lower resolution as they get bigger. Most structures 

solved by the direct method had a resolution of 1.1 Å or better. However, this limit can 

be relaxed if heavy-atoms are present. It can be expected that structures with more 

atoms will become amenable to direct methods as computers become more powerful. 

1.8.4 Molecular replacement: related proteins as phasing models 

 If the structure of a new protein is similar to that of a known protein, the known 

protein can be used as a phasing model to solve the phase problem of the new protein 

without making any heavy-atom derivatives. The method that entails calculating initial 

phases by placing a known protein model in the unit-cell of the new protein is called 

the molecular replacement method. 

1.8.4.1 Isomorphous phasing models 

 If the phasing model and the new protein are isomorphous, for example, small 

ligand is soaked into a protein crystal, the phase from the ligand free protein structure 

can be used directly to compute ρ(x,y,z) for the ligand bound protein crystal (using the 

data of this crystal).  

∑∑∑ −++−=
h k l

lzkyhxinew
hkl

el
hkleF

v
zyx )(2 mod'

||1),,( απρ  (1.26) 

Here amplitude new
hklF  are obtained from the native intensities of the new protein and 

the phases 'modelα  are those of the phasing model. After interactive steps of phase 

improvement, the protein is well placed in the unit-cell and by synthesizing a 
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difference Fourier map, the ligand is easily located in the unit-cell. 

1.8.4.2 Non-isomorphous phasing models 

 If the phasing model is not isomorphous with the desired structure, more work 

needs to be done. In order to use known protein as a phasing model, the structure of 

the model should first be oriented to the structure of the new protein in its unit-cell and 

phases are calculated for the properly oriented model. That is, the best and right 

orientation of the model in the unit-cell of the target protein must be found. 

 The Patterson map from the known structure reveals that the final map is 

independent of the position of the structure in the unit-cell, but only depends on the 

orientation of the structure in the unit-cell. This observation suggests that the Patterson 

map can be used to determine the best orientation of the model in the unit-cell of the 

new protein. That is if the model and the new protein are indeed similar, their same 

orientation will give very similar Patterson maps. So Patterson maps for various model 

orientations are computed and compared with the Patterson map of the target protein. 

By this way, the best orientation of the model can be found, and based on this 

orientation, the best position of the models will be searched. For orientation search, the 

parameter called model Patterson function PModel(u,v,w) is checked to monitor the 

search. A value of zero for PModel means the trial orientation has no peak fit in the 

target protein Patterson map. A high value means that the trial orientation has peaks at 

all locations of peaks in the Patterson map of the target protein, which means this trial 

might be the correct orientation. For position search, the structure factor (Fcalc) of the 

model is calculated and the amplitude is compared with the measured amplitude |Fobs| 

obtained from different intensities of the new proteins. This criterion can be expressed 
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as R factor. 

∑
∑ −

=
||

||||||

obs

calcobs

F
FF

R  (1.27) 

If the observed and calculated amplitude agrees with each other, R is small. For a 

protein, an R value of 0.3 ~ 0.4 for the best placement of phasing model have often 

provided adequate initial estimates of phases. 

1.9 IMPROVEMENT OF ELECTRON DENSITY MAP AND MODEL BUILDING 

 After getting the phase information from one of the above four methods, the 

electron density ρ(x,y,z) can be calculated using equation 1.16. Because the initial 

phases are roughly estimated, the first map may be uninformative and uninterpretable. 

Crystallographers improve the map by an interactive process. 

1.9.1 Weighting factor 

 For each set of phases, a weighting factor that decides the precision of the 

phase is selected. The value of the weighting factor W is between 0 and 1. A Fourier 

term containing a phasing estimate of low reliability will be multiplied by a low 

weighting factor in the Fourier series computation of ρ(x,y,z). This reduces the bias 

from a reflection whose phase is poorly estimated. Conversely, a term containing a 

phase of high reliability will be given full weight (weighting factor of 1.0) in the series: 

∑∑∑ −++−=
h k l

lzkyhxi
obshkl

calc

eFW
v

zyx )(2 '

||1),,( απρ  (1.28) 
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1.9.2 Improving the map 

1.9.2.1 Solvent flattening  

 The first map of acceptable quality will display the protein that is barely 

distinguishable from bulk water. The process that assigns the regions of a protein 

molecules a high value of ρ(x,y,z) and a  low value of ρ for all surrounding areas of 

bulk solvent is called solvent flattening. In practice, the unit-cell is divided into a grid 

of regularly spaced points. At each point, the value of ρ(x,y,z) in the Fo map is 

evaluated. At each grid point, if ρ is negative, it is reassigned a value of zero; if ρ is 

positive, it is assigned a value equal to the average value of ρ within a defined distance 

of the grid point. By this manner, the electron density map will be smoothened. Small, 

random fluctuations in density will be eliminated, and the map is essentially divided 

into two types of region, relatively high density (protein) and relatively low density 

(solvent). The overall amplitude of the map is increased until the ratio of high density 

to low density agrees with the ratio of protein to solvent in the crystal. The contrived 

function ρ(x,y,z) is now used to calculate the structure factor with new phases. Along 

with |Fobs|'s derived from original measured intensities, ρ(x,y,z) is calculated again. If 

the new phase estimates are better, the new electron density map will reveal better 

details by clearly showing the protein-solvent boundary.  

1.9.2.2 Phase extension 

 Generally, in the heavy-atom methods described above, data in the intermediate 

resolution range (up to 3.0 Å) are used.  We will be able to gradually increase the 

number of terms in the Fourier series by adding native intensities with higher 
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resolution than the current model. This process is called phase extension. This work 

must be done gradually and judiciously to avoid introducing any bias. In this manner, 

low resolution phase is improved and phase assignments are extended to a higher 

resolution. 

1.9.2.3 Non-crystallographic symmetry averaging 

 Non-crystallographic symmetry is symmetry that exists locally within the 

asymmetric unit of the crystal. By knowing the symmetry elements, crystallographers 

can produce averaged maps in which noise will tend to cancel out and can be used as 

phase restriction to improve phasing. This method is especially helpful in a system of a 

high degree of symmetry. 

1.9.3 Model building  

 A molecular model must fit realistically with the calculated electron density 

map. A realistic three-dimensional display of the electron density map will allow the 

user to construct and manipulate molecular models to fit the map. Amino acids 

properties, stereochemistry, geometrical constraints of the peptide bond, the dihedral 

angles of the main chain etc. must be well realized during model building. Relatively, 

side chains are less restricted than the main chain. Side chains have preferred rotomer 

positions. During the initial steps of model building, it will be very helpful if large 

secondary structural elements are recognized. Once the secondary structures are known, 

many of the breaks in the density can be confidently assigned based on the constraints 

of secondary structures. Helices are mostly obvious in 5.5 Å maps while β-sheets tend 

to break up at resolution less than 3.0Å. Another milestone in structure determination 

is finding the first match of sequence in the map. As chain termini are often ill-defined, 
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we need a foot-hold for alignment of the sequence where the map is sharp. Often, the 

key is a short stretch of sequence containing several bulky hydrophobic residues. 

Because they are hydrophobic, they are likely to be in the interior where the map is 

clear. From such a foot-hold, detailed model building can begin. Regions that can not 

be aligned with the sequence are often built with polyalanine. In this manner, we build 

as many atoms of the model as possible into the electron density. Using this fitted 

model, new phase are calculated. If the model is correct, the subsequent map 

calculated with the new phase will show additional feature, leading to further 

improvement of the model while wrong model will degrade the map. Iteratively, we 

follow the good sections of the map and add more protein segments and complete the 

model (McRee, 1999a). 

1.9.4 Refinement 

 When the structure nears completion, structure refinement is performed to 

improve the agreement of the model with the original intensity data.  

1.9.4.1 Least-squares methods 

 Commonly, the refinement process consists of a version of least-squares fitting. 

In a simple least-squares method, the aim is to find a function y = f(x) that fits a series 

of observations (x1, y1), (x2, y2).....(xi, yi). The solution to the problem is a function f(x) 

for which the sum of the squares of distances between the data points and the function, 

itself is as small as possible. 

∑ −=
i

iii xfywD 2))((  (1.29) 
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That is, f(x) is the function that minimizes D, the sum of the squared difference 

between observed (yi) and calculated f(xi) values. 

 The differences are squared to make them all positive and prevent a large 

number of random difference add up to drive D toward 0. Wi is an optional weighting 

factor that reflects the reliability of the observation. Normally in statistics, Wi
 is the 

deviation computed from multiple measurements of the same data point (xi, yi). 

1.9.4.2 Crystallographic refinement 

 In the case of crystallography, with the model built from the electron density 

map, we can calculate the structure factor (|Fc|). With all the atoms j, by comparing the 

calculated structure factor (|Fc|) and the observed structure factor |Fo|, we will be able 

to judge whether the model atoms are at right positions. In the least-squares 

terminology, we want to select the atom positions that minimize the square difference 

between corresponding |Fc|'s and |Fo|'s. 

2|)||(|
hklhkl

cohkl FFW∑ −=φ  (1.30)  

φ is the sum of the squares of differences between observed and calculated amplitudes. 

The sum is taken over all reflections hkl in use. Each difference is weighted by the 

term whkl, a number that depends on the reliability of the corresponding measured 

intensity. 

1.9.4.3 Molecular dynamics refinement 

 This approach treats the model as if its energy decreases when its fit to the 
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native crystallographic data improves. In refinement by simulated annealing, the model 

is allowed to move to a high temperature and lifted out of local energy minima. Then, 

the model is cooled slowly to find its preferred conformation at the temperature of 

diffraction data. Throughout the process, the computer is searching for the 

conformation of the lowest energy with the assigned energy is partially dependent on 

agreement with diffraction data. 

1.9.4.4 Additional parameters for refinement 

 Besides the atom positions that are included in refinement, other parameters are 

included as well. One is the temperature factor Bj of an atom j, a measure of how much 

the atom oscillates around the position specified in the model. As atoms are not static 

in the model, they always vibrate around their positions, especially atoms at side chain 

termini. Diffraction is affected by this variation in atomic positions, so it is realistic to 

assign a temperature factor to each atom. 

 Another parameter included in refinement is the occupancy nj of each atom j, a 

measure of the fraction of the atom j that actually occupies the position specified in the 

model. For example, if two conformations occur with equal frequencies, then the 

involved atoms receive occupancies of 0.5 each for their two possible positions. By 

including occupancies among the refinement parameters, estimates of the frequency of 

alternative conformations is obtained, which gives some additional information about 

the dynamics of protein molecules. 

 A least-squares procedure will find the minimum that is nearest the starting 

point, so it is important that the starting model parameters are near the global 

minimum. Otherwise, the refinement will converge into an incorrect local minimum, 
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from which it can not extract itself. The greatest distance from the global minimum 

from which refinement will converge properly is called the radius of convergence. 

Additional constraints and restrains used in the refinement computation will increase 

the radius of convergence and thus increase the probability of finding the global 

minimum. A constraint is a fixed value for certain parameter. We may constrain all 

occupancies to a value to 1.0. A restraint is a subsidiary condition imposed on the 

parameters, such as the condition that all bond lengths and bond angles are within a 

specified range of values. With the help of modern computers, least-squares restraints, 

including bond length, bond angle and conformational energies and energies of non-

covalent interactions are added to the overall energy refinement to find the structure of 

the lowest energy. 

1.10 FINAL STRUCTURE 

 After several rounds of refinement and map fitting, the model is slowly 

converged to the final model. The program for iterative real and reciprocal space 

refinement is monitored by computing the difference between the measured structure 

factor |Fo| and the calculated structure factor |Fc| from the current model. When the 

model converges to the correct model, the difference between measured F's and 

calculated F's will also converge 

∑
∑ −

=
||

||||||

obs

calcobs

F
FF

R  (1.31) 

A desirable target R factor for a protein model should be less than 0.3. Occasionally, 

small and well ordered protein structure may refine to about R = 0.1 
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 In addition to monitoring R as a convergence indicator, various structural 

parameters (like the model is chemically, stereochemically and conformationally 

reasonable) are important. Above geometry is normally checked with program 

Procheck (Laskowski, 1993). In a well refined model, the root mean square (RMS) 

deviation of bond lengths should be no more than 0.02 Å and bond angles is less than 

4°. Also, there should be no D-amino acid, peptide planes are nearly planar, the back 

bone conformational angles φ and ψ fall in the allowed regions and torsional angles in 

side chains lie within a few degrees of stable and staggered conformation.  Then the 

final model is deposited into Protein Data Bank with AutoDep Input Tool 

(http://pdbdep.protein.osaka-u.ac.jp/adit/). 
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CHAPTER 2 HEX1 CRYSTAL LATTICE IS REQUIRED FOR 

WORONIN BODY FUNCTION IN NEUROSPORA CRASSA 

2.1 INTRODUCTION  

2.1.1 Discovery of Woronin body and its function 

 In 1864 Woronin, a Russian mycologist, reported the characteristics of a 

distinct type of organelle in the fungus Ascobolus pulceherrimus (Woronin, 1864). 

This organelle is described as a dense-core vesicle and is generally seen in the vicinity 

of the septal pore, which connects cellular compartments and allows transportation of 

the cytoplasm and subcellular organellels between cells. In the subsequent 135 years, 

this organelle, named as Woronin body by Buller (1933), has been identified in more 

than 50 fungal species. However, their cellular origins and biochemical composition 

have remained obscure. They appear to be restricted to the filamentous Ascomycotina, 

e.g., Neurospora crassa and Aspergillus nidulans, and the Deuteromycotina, 

filamentous fungi in which a sexual stage has not been identified (Markham, 1994; 

Markham and Collinge, 1987). Filamentous Ascomycotina form vast networks of 

hyphae in which the cytoplasm, including large organelles such as nuclei, can flow 

from compartment to compartment, moving though small pores in the septa that 

separate compartments. This type of cellular organization will enable the extremely 

rapid rate of tip extension the filamentous fungi can achieve. However, this mode of 
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cellular organization also carries risks. When hyphae are damaged, the cytoplasm will 

bleed out rapidly. The Woronin body plays an important role in this emergent 

situation. They will detach from the cell membrane and plug the septal pores within a 

few seconds with the help of chitin, see figure 2-1. (Collinge and Markham, 1985). 

Subsequently, it initiates a sequence of events that ultimately leads to the resealing of 

the plasma membrane and the resumption of polarized growth. This mechanism is 

essential to prevent the loss of the cytoplasm as fungi growing in nature are subject to 

constant physical damage from animals, wind, etc. (Jedd and Chua, 2000; Tenney et 

al., 2000). 

 

Figure 2-1. A Woronin body occluded the septal pore is surroundedby 

chitin soon after wounding of N. crassa mycelia. Arrow indiactes a 

Woronin body that has plugged the septal pore. Upper panel, phase 

contrast; lower panel, chitin staining.Scale bar = 10 µm. (Jedd and 

Chua, 2000) 
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2.1.2 The category of Woronin body 

 Most early information concerning the nature of the Woronin body came from 

microscopic analysis. As the size of the Woronin body is close to the limit of resolution of 

the light mocroscope, it is described as refractile bodies near the septal pore. They fall into 

two structural classes, spheres and hexagonal rods. Early research suggests that the 

hexagonal Woronin body is an ergosterol crystal. But it turned out to be incorrect, as 

specimens of the Woronin body were impervious to solvents that dissolved sterols, but 

disappeared when treated with proteases, which suggests that the core of the Woronin body 

is actually proteinaceous (Hoch and Maxwell, 1974). Furthermore, the typical hexagonal 

Woronin body is identified in ergosterol synthesis defective mutants in Neurospora crassa 

(Armentrout and Maxwell, 1974). In electron micrographs, they are typically identified as 

150 to 500 nm organelles, bound by a single membrane. Normally, three to six copies of the 

Woronin body are present in each cell (Tenney et al., 2000). The Woronin body of N. crassa 

belongs to the hexagonal rod class with a size of 400 x 700 nm, which is slightly larger than 

the septal pore (Trinci and Collinge, 1974). 

2.1.3 Hex1 is responsible for the function of Woronin body 

 There has not been much progress on the biochemical and biosynthesis study 

of the Woronin body until the molecular component of this unusual organelle has 

been identified. In 2000, Jedd and Chua isolated a fraction enriched with the Woronin 

body from N. crassa by sucrose cushion centrifugation and a high salt wash. N-

terminal sequence analysis of an abundant 19 kDa protein showed that it was encoded 

by a gene (GenBank Accession No. AF001033). Jedd and Chua named this gene 

Hex1. Anti-Hex1 antibodies bound uniformly and exclusively to the matrix of the N. 
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crassa Woronin body. Deletion of the Hex1 gene by homologous recombination in N. 

crassa caused the disappearance of the Woronin body. The Hex1 deletion strain was 

capable of producing aerial hyphae and conidia, which shows that Hex1 does not have 

any important role in either vegetative growth or development. But this strain failed to 

seal the septal pore and was defective in the reinitiation of polarized growth, which 

the wild type does when syncytia are severed. Furthermore, the mutant strain extruded 

large puddles of the cytoplasm through the wounded proximal septal pore. These data 

indicate that Hex1 is the major component of the Woronin body and is directly 

responsible for the function of the Woronin body (Jedd and Chua, 2000; Tenney et al., 

2000). 

2.1.4 Woronin body is a new type of peroxisome 

 Because of the size, electron density, and crystalline inclusion, people 

suggested that the Woronin body might be a specialized type of microbody (Wergin, 

1973), while the isolated Woronin body did not show significant catalase activity 

(Head et al., 1989). Latest work by Jedd confirmed the peroxisomal origin of the 

Woronin body with the evidence of antibodies that were directed to the peroxisome 

targeting signal (PTS1) that is present in the N. crassa Woronin body. 

 Peroxisomes were discovered as biochemical entities by De Duve’s group 

(Baudhuin, 1965). They were identified as small sedimentable particles containing 

marker enzymes that distinguished them from other known organelles. They are a 

ubiquitous class of subcellular organelles that carry out diverse functions associated 

with anabolic and catabolic pathways, including peroxide metabolism, the β-oxidation 

of fatty acids and the biosynthesis of phospholipids (Subramani, 1998). There are 
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likely to be at least two pathways for targeting proteins to the peroxisomal matrix, 

both of which require a specific peroxisome targeting signal (PTS) and a cognate 

receptor (Olsen, 1998; Subramani, 1998). PTS1 is a simple tripeptide carboxy-

terminal signal (amino acid sequence S/A/C-K/R/H-L/M) that is sufficient to mediate 

the peroxisomal targeting of reporter proteins (Gould, 1989; Keller, 1991). A second 

signal, PTS2, is found at the amino-terminal ends of proteins, which has a similar 

function (Swinkels et al., 1991). After translation, PTS1- and PTS2-containing 

proteins are recognized by distinct cytosolic receptors that target them to the 

peroxisomal membrane, where the core of the translocation apparatus is located 

(Subramani, 1998; Tabak, 1999). Peroxisomes are tailored to execute functions 

specific to organisms and even tissues. In plants, for example, leaf peroxisomes are 

specialized to participate in photorespiratory reactions, whereas glyoxysomes are 

specialized to function in the β-oxidation of fatty acids (Olsen, 1998). Peroxisomal 

identity seems to be determined by the differential expression of matrix components, 

all of which use similar targeting signals (PTS1 or PTS2). Hence, in plants, 

glyoxysomes and leaf peroxisomes are interconverted, depending on the 

developmental and physiological cues that regulate the expression of their respective 

enzyme constituents. Expressed from the constitutive glyceraldehyde-3-phosphate 

dehydrogenase (GPD) promoter, a GFP–Hex1 fusion protein was localized in a 

punctate pattern, characteristic of peroxisomes. The deletion of Hex1 leucine 176 

(L176 of its PTS1 target signal SRL) altered the C-terminal tri-peptide to the amino 

acid sequence GSR and caused the GFP–Hex1 construct to be present in the 

cytoplasm, as did the deletion of PEX13, which encodes the yeast PTS1-recognition-

factor receptor. Thus, Hex1 PTS1 is a functional peroxisome targeting signal, which 

also confirms that the Woronin body is a special peroxisome. 
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2.1.5 Hex1 has the characteristics of self-assembly 

 The geometric structure of the Woronin body suggests it might be crystalline. 

Hex1 and the Hex1(∆L176) mutant, which alters the PTS1 signal, were overexpressed 

in yeast cells and subsequently examined by thin section electron microscopy. Hex1-

expressing cells produced protein granules that were enclosed by a unit membrane 

and presented hexagonal profiles similar to those of the N. crassa Woronin body. No 

similar structures were observed in strains transfected with either Hex1(∆L176) or an 

empty plasmid. These results show that Hex1 can assemble into hexagonal rods in the 

matrix of the yeast peroxisome. Recombinant Hex1 was seeded onto glass slides at a 

concentration of 1 mg ml–1 and incubated overnight in a humid chamber at room 

temperature. Under these conditions, Hex1 readily produced hexagonal crystals of 

about 10 µm long that could be seen by light microscopy. The N. crassa Woronin 

body has a simple geometric structure that suggests a crystalline composition. Similar 

geometry of Hex1 crystals assembled in vitro also indicates that the Hex1 protein has 

the characteristics of self-assembly (Jedd and Chua, 2000). 

2.2 HEX1 STRUCTURE DETERMINATION 

2.2.1 Purpose of Hex1 structure determination  

 Both the Hex1 crystal and Woronin body have a hexagonal rod profile. As the 

Hex1 protein shows the characteristics of self-assembly, it automatically raises the 

following questions. Does Woronin body formation rely on Hex1 self-assembly? Do 

the Woronin body and Hex1 crystal adopt the same crystalline lattice? What would 

the crystalline lattice be like? To answer all the above questions and understand the 
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relationship between Hex1 assembly and the biological function of the Woronin body, 

we have undertaken the crystal structure determination of Hex1. 

2.2.2 Experimental methods 

2.2.2.1 Expression and purification of native Hex1 

 The full length N. crassa Hex1 gene was subcloned into the pGEX-6p-1 vector 

(Pharmacia) between the EcoRI and BamH1 sites, and the resulting construct (GJP 2-

186) was transformed into the E. coli strain BL21. One colony was used to inoculate 5 

ml LB medium with 100 µg ml-1 Ampicillin and grown at 37 °C at 200 rpm overnight. 

Next morning, this overnight culture was added to 1 liter LB medium with 100 µg ml-

1 Ampicillin and growth was continued at 37 °C, 200 rpm in a INFORS AG CH-4103 

incubator (Botlmingen / Switzerland) until OD600 nm was 0.5. Cells were induced with 

0.2 mM IPTG for 3 hours. The cells were then harvested by centrifuging at 5,000 g 

for 20 minutes using a Sorvall RC 26 Plus centrifuge and Sorvall SLA 1500 superlite 

rotor. The supernatant was carefully removed and the cells were suspended in 10 ml 

lysis buffer A (see Appendix A). The suspension was then passed through a French 

press (SIM-AMINCO spectronic instruments) at 1,000 psi pressure to completely lyse 

the cells. The slurry was then centrifuged at 20,000 g for 30 minutes using a Sorvall 

S-300 rotor. The insoluble portion was pelleted down. The supernatant was carefully 

transferred to a Falcon tube and mixed with 2 ml glutathione sepharose resin 

(Amersham Pharmacia Biotech Inc.), which was prewashed with 40 ml lysis buffer A, 

and incubated at 4 ºC for 30 min to aid the protein bind to the resin. The resin was 

poured to a 20 ml Econo-pac disposable chromatography column (Bio-Rad). The 

column was washed with 40 ml wash buffer B1 four times and 40 ml wash buffer B2 
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 twice. The resin was next washed with 2 ml cleavage buffer C twice and suspended 

in 2 ml cleavage buffer. Hex1 was released from the glutathione sepharose resin by 

cutting off the GST fusion with 80 units of the PreScission protease for each ml of the 

resin by incubating at 4 °C for a period of 12 hours. The protein was then 

concentrated to 3 mg ml-1, frozen with liquid nitrogen and stored at -80 °C for later 

use. Generally, 1 liter culture gave about 2 mg pure Hex1 protein (Figure 2-2). 

 

 

 

 

 

Figure 2-2. Purification of Hex1. Lane 1 is the total lysate. Lane 2 is the 

lysate that does not bind to the glutathione sepharose resin. Lane 3 is the 

wash elution of the resin. Lanes 4 and 5 are the final elution of Hex1 after 

cleaving the GST-fusion tag. 

2.2.2.2   Selenomethionine Hex1 expression and purification  

 One colony from a fresh LB cell plate with 100 µg ml-1 Ampicillin was picked 

and inoculated to 5 ml LB and cultured at 37 °C, 200 rpm overnight. Next morning, 1 

ml overnight culture was gently spinned at 1,300 g for 3 min on an Eppendorf 5145C 

66 
97.4 

45 

31 

21.5 

14.5 

M          1          2         3          4          5 (KDa) 



Chapter 2 Hex1 crystal lattice is required for woronin body function in Neurospora Crassa 
 

 50 

microfuge. The cells were resuspended in 1 ml of M9 medium and pelleted again. The 

pellet was resuspended in  50 ml pre-warmed M9 medium with 100 µg ml-1 

Ampicillin. The culture was grown at 37 °C and 200 rpm until OD600 was about 0.8 (it 

normally took about 12 h). 50 ml of this cell culture was added to 1 L prewarmed M9 

medium with 100 ug ml-1 Ampicillin and continued to grow to an OD600 of 0.6. The 

following amino acids were added, at the given concentrations, to the medium: Lysine, 

Phenylalanine and Threonine at 100 mg L-1; Isoleucine, Leucine and Valine at 50 mg 

L-1; L-selenomethionine at 60 mg L-1. 15 min later, 400 µl of 500 mM IPTG was 

added to the medium to induce protein expression. The cell was continued to grow at 

200 rpm and 37 °C for 6 hours and then harvested by centrifugation at 5,000 g at 4 °C 

for 5 min using a Sorvall RC 26 Plus centrifuge and Sorvall SLA 1500 superlite rotor.  

 The pellet was washed with 100 ml TDE buffer and then resuspended in 10 ml 

TDE buffer. 50µl of 500mM PMSF was then added to the suspension. The cells were 

lysed using a French press, as explained earlier. 1 ml of 10% Triton X-100 was added 

to 10 ml lysed slurry and mixed before incubating on ice for 10 minutes. Other protein 

purification steps were nearly identical to those used for the purification of the native 

protein, except TDET buffer was used as wash buffer. The protein was 95% pure, 

which was adequate for crystallization (Figure 2-3). The purified samples were 

analyzed by electrospray ionization mass spectrometry. The mass of Hex1 and Se-

Hex1 were 19694.46 and 19951.76 Da, respectively. The mass difference clearly 

accounts that all five methionines of Hex1 had been replaced by selenomethionine 

(Coligan et al., 1995). The purified protein was concentrated to 3 mg ml-1 and frozen 

with liquid nitrogen and stored at -80 °C for later use. 



Chapter 2 Hex1 crystal lattice is required for woronin body function in Neurospora Crassa 
 

  51 

 

 

 

 

 

Figure 2-3. Purified selenomethionine Hex1, lane-1. 

 
 

2.2.3     Hex1 crystallization 

2.2.3.1   Native crystal 

 Native crystals were grown at 20 °C by the sitting drop vapour diffusion 

method. 4 µl of the Hex1 protein, at a concentration of 3 mg ml–1, was mixed with an 

equal amount of reservoir buffer consisting of 60 mM Tris (pH 7.5), 210 mM NaCl 

and 30 mM CaCl2. Small crystals were seen after 1 day. 5% (w/v) 2-methyl-2,4- 

pentanediol (MPD) was added to the reservoir 2 days later, which helped the crystal 

grow further to the size of 0.2 x 0.2 x 0.3 mm in one week. The shape of the crystal 

was generally a hexagonal prism, Figure 2-4.111111 
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Figure 2-4. Native Hex1 crystal 

2.2.3.2 Selenomethionine crystal 

 Se-Met derivative crystals were grown by the same procedure. However, Se-

Met crystals could not grow at the same condition that produced the native Hex1 

crystal. Hence, the crystallization condition was re-screened with the Hampton 

screens I and II. Condition 34 of the Hampton screen I gave very tiny crystals. Careful 

optimization of the crystallization condition (by adjusting the salt content and the pH 

of the solution) finally yielded relatively bigger crystals at the condition of 0.1 M 

sodium acetate trihydrate and 2 M sodium formate (pH 7.0). The crystal shape was 

also a hexagonal prism. Compared to the native crystal, Se-Met crystals were smaller 

and they could only grow to 0.05 x 0.05 x 0.10 mm, Figure 2-5. 
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Figure 2-5. Selenomethionine Hex1 crystal 

2.2.4 Hex1 data collection 

 Both the native and Se-met Hex1 crystals were flash frozen with a 

cryoprotectant containing 50% (v/v) mineral oil and 50% paratone (v/v). Diffraction 

data were collected at the beamline X12C, National Synchrotron Light Source, 

Brookhaven National Laboratory (BNL). All diffraction frames were processed with 

DENZO 1.96 and scaled using SCALEPACK (Otwinowski, 1997). The native crystal 

diffracted X-rays to 1.78 Å and the Se-Met crystal diffracted to 2.3 Å. The anomalous 

signal was obvious in the Se-Met crystal data, Table 2-1. 
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Table 2-1 Native and Selenomethionine crystal data 

 

Unit-cell dimensions  a = b = 57.427, c = 196.975 Å, α=β=90°, γ=120° 

Space group      P6522 

Data sets   Edge  Peak  Remote Native 

Wavelength (Å)  0.978707 0.978441 0.93001 0.97863 

Resolution (Å)   50-2.3  50-2.3  50-2.3  99-1.8 

Measured reflections  257,556 237,392 177,070 123,270 

Unique reflections  15,990  15,981  16,348  18,047 

Redundancy   11.9  11.0  7.7  4.3 

Completeness, total/last shell 98.5/99.4 98.3/97.3 98.1/99.4 95.6/85.1 

1Rsym, total/last shell  0.101/0.306 0.095/0.311 0.116/0.370

 0.055/0.159  

 

1Rsym = ∑hkl∑i[|Ii(hkl) – <I(hkl)>| / Ii(hkl)].  

2.2.5 Selenium position determination 

 The structure was determined with the scaled data of the Se-Met Hex1 crystal 
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collected at the remote, peak and inflection wavelengths (at the 3 Å resolution limit) 

using the SOLVE program (Terwilliger, 1999). All the five selenium positions were 

determined. The vectors generated from the heavy-atom positions according to the 

crystal symmetry just fit the peaks of the Harker section in the anomalous difference 

Patterson map generated by Xtalview (McRee, 1999b), which confirmed the solution. 

The statistics of the structure solution are listed in Table 2-2. 
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Table 2-2 SOLVE statistics for selenium determination 

 

Criteria   MEAN  SD  VALUE Z-SCORE 

 Pattersons   0.729  0.500  1.83  2.21     

 Cross-validation Fourier 7.40  9.68  95.3  9.08     

 NativeFourier CC x100 6.75  1.85  21.8  8.15     

 Mean figure of merit x100 -  6.49  55.4  8.53     

 Correction for Z-scores    -6.60     

Overall Z-score value    21.4     

 

 The solution of the heavy-atom positions were also introduced to the program 

VECTORS (the CCP4 package, 1994), and the predicted vector positions correctly fit 

the anomalous difference Patterson map and confirmed that the heavy-atom positions 

were correct. 

2.2.6 Electron density map  

 The five selenium positions were used in the PHASIT module (the PHASES 

package, Furey, 1997) for refinement. First, the phase angles of the reflections upto 
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3.0 Å were calculated. The phasing power of the heavy-atoms using the isomorphous 

component (∆f′) difference between the edge and remote data was 2.64 with a Figure 

of Merit of 0.451 for 6572 reflections. The phasing power of the heavy-atoms using 

the anomalous component (∆f″) difference between the peak and remote data was 

4.28 with a Figure of Merit of 0.522 for 5371 reflections. The solvent content of this 

crystal was 47.24% and the Matthew’s coefficient was 2.34 (Matthews, 1968). The 

phase angle values were improved by minimizing the featureless density of the 

solvent region. 50 cycles of solvent flattening was performed with the DOALL.SH 

script of the PHASES package. An electron density map was calculated using the 

solvent-flattened phases and improvement on the original MAD map was substantial. 

In the core region of protein molecules, some secondary structure elements were 

clearly recognizable. The connectivity of the density was good and chain tracing was 

readily possible. As the Se-Met Hex1 crystal actually diffracted to 2.3 Å, the phases 

were slowly extended to 2.3 Å resolution with the EXTND.SH script of the PHASES 

package. Electron density maps at 3.0, 2.5 and 2.3 Å resolutions were created with the 

GMAP.SH script of the same program.  

The definitions of some of the parameters are given below. 

Phasing power = calc

ob calc

H

PH PH

F

F F−

∑
∑

            ob means observed, calc means calculated. 

Figure of Merit = |F(hkl)best|/F(hkl) 

2.2.7 Model building and refinement 

 The final 2.3 Å electron density map was of good quality. Beside the main 
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chain was seen well connected, the side chains were quite obvious. Model building 

was carried out with the program O (Jones, 1991). The skeleton of the density map 

was created with the program GMAP in the PHASES package, which was displayed 

using O. The Cα atoms were positioned using the "baton" option in O, in which the 

baton was pivoted along the skeletonized main-chain density to locate the Cα 

positions. The polyalanine model was generated automatically based on the Cα trace 

model using the fragment-fitting option of O. With the location of seleniums, the 

amino acids Met 164 and Met 168 were first identified as they ought to be fairly close 

in the map. Based on this starting point, alanines were slowly changed to the correct 

residues of the sequence, which yielded the completed model. The 2.3 Å model was 

refined with CNS (Brunger, 1998). This model was used for rigid body refinement 

against the 1.8 Å native data. Iteratively, the 2Fo-Fc and Fo-Fc maps were created to 

find the misfit of the model. Water molecules were picked from the Fo-Fc map at the 

3.0 σ level and checked with the 2Fo-Fc map at the 2.0 σ level. Positional and 

temperature refinement was repeatedly performed until the structure was refined to an 

R-factor of 0.19 and an Rfree of 0.23 using reflections with |F| > 3.0 σ(|F|). The 

geometry of the final model was checked with PROCHECK (Laskowski, 1993) and 

all parameters were within acceptable ranges. The refinement statistics are listed in 

Table 2-3. 
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Table 2-3 Refinement parameters 

 

Resolution range (Å) 8–1.8 (Native) 

Reflections (working/test)        12,202/1,340 

1Rcryst / Rfree
    0.23 / 0.27 (all reflections) 

Rcryst / Rfree [with |F| > 3.0 σ(|F|)] 0.19/0.23 

Asymmetric unit One Hex1 molecule (Mr = 19.694 kDa) 

Final model: 

 Non-hydrogen atoms 1128 

     Waters 331 

Average B-factors (Å2):          

     Protein 20.90 

     Waters 54.82 

R.M.S.D. in bond lengths (Å) 0.005 

R.M.S.D. in bond angles (°) 1.351 
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1R-factor=∑hkl||Fo(hkl)| – |Fc(hkl)|| / ∑hkl|Fo(hkl)|. 

2.3         Hex1 crystal lattice is required for woronin body assembly 

2.3.1       Overall structure of Hex1   

 Hex1 has a two-domain structure consisting of two mutually perpendicular 

antiparallel β-barrels, Figure 2-6. The N-terminal barrel is made by six antiparallel 

strands, β1–β6, formed by residues 32–101. In addition, there is a 310 helix (H1) 

formed by residues 37–40 between α1 and α2. The C-terminal domain of Hex1 forms 

another β-barrel composed of five strands (β7–β11) and two helices (H2 and H3). Both 

the helices are positioned between strands β9 and β10. Helix H2 is an α-helix formed 

by residues 137–145 and H3 is a 310 helix consisting of residues 149–152. Both the N- 

and C-terminal domains have well-defined hydrophobic cores and the region between 

the two domains is also mainly hydrophobic. 

 

 

 

 

 

 

 

 

 

 

 

 

        

    

Figure 2-6. (a) Overall structure of Hex1. (b) Orthongonal view of (a).  
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Pictures are generated with Molscript (Esnouf, 1997) and Raster3D 

(Merritt, 1994).   

2.3.2 Three groups of intermolecular interaction 

 During analysis of the Hex1 crystal lattice, three types of intermolecular 

surface interactions, designated Group I, II and III, were observed, Figure 2-7. 

 Molecules associated by the Group I interaction are related by a 

crystallographic two-fold rotation axis and their interaction is mediated by a central 

pair of salt bridges and a series of central and flanking hydrogen bonds, Figure 2-7a. 

Arg41 forms a salt bridge with Asp44, which is stabilized by a series of contacts with 

His39. The imidazole ring of His39 extends out just above the salt bridge, like a 

‘stabilizing hand’, forming a π -interaction with the Asp44 side chain oxygen (Oδ2). 

Also, the carbonyl oxygen of His39 forms a hydrogen bond with the side chain 

nitrogen of Arg41 (NH1). The ends of the Group I dimer are linked by hydrogen 

bonds with the hydroxyl group and backbone nitrogen of Ser92, forming contacts 

with the backbone nitrogen and side chain oxygen (Oδ1) of Glu121, respectively. In 

addition, the carbonyl oxygen of Ser92 hydrogen bonds with the backbone nitrogen of 

Gln105, Figure 2-7b. 

 Amino acids making the Group II interaction (Figure 2-7c) are found on the 

opposite surface of Hex1 when compared with those determining the Group I 

interaction (compare Figures 2-7 a, c, 2-9). Molecules associated through the Group II 

interaction are related by the 65 screw axis, which generates the overall six-fold 

symmetry of the Hex1 crystal lattice. As in the Group I interaction, this interaction is 

also centered on a pair of salt bridges, which in this case is composed of Arg68 and 
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Glu81 (Figure 2-7c). These bonds are stabilized by two sets of hydrogen bonds: the 

carbonyl oxygen of Ser84 interacts with the side chain nitrogen of Gln49.  

 The Group III interaction is made up entirely of a series of hydrogen bonds 

that link two molecules through an asymmetric interaction (Figure 2-7d). The side 

chain nitrogen of Gln127 forms a hydrogen bond with the carbonyl oxygen of Ile56 

and the backbone nitrogen and carbonyl oxygen of Val125 interact with the Gln134 

side chain through a pair of hydrogen bonds. In addition to the three group contacts 

described above, several water-mediated hydrogen bonds are also observed in the 

Hex1 crystal lattice.  
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Figure 2-7. Intermolecular interactions between Hex1 molecules. The 

left panels show the overall view of interacting molecules and their 

magnified views are shown in the right panels. In each case, one 

molecule is shown in blue and the other in purple. Interacting amino 

acids are labeled. (a) The Group I interaction is composed of the 

central N-terminal salt bridges (upper panel) and the N- to C-terminal 

domain contacts (lower panel). His39 plays a central role in stabilizing 

the salt bridge between Arg41 and Asp44. (b) The Group II interaction 

is localized to the N-terminal domain and centered on salt bridges 

between Arg68 and Glu81. Ser84 and Gln49 form a pair of flanking 

hydrogen bonds. The view of the dimer down the crystallographic c-

axis reveals the 65 screw symmetry. (C) Group III interactions. The C-

terminal amino acids Gln127 and Val125 of one molecule interact with 

N-terminal Ile56 and C-terminal Gln134 of the other molecule, 

respectively. 

2.3.3 Interface of three groups of interaction 

 To prove whether the intermolecular interaction is of biological nature, one 

test is to check the interface of the contact. If the surface of two molecules is within 

0.5 Å distance range, the surface is considered as an interface. Normally, if the 

interface is larger than 500 Å, the interaction is regarded as biological interaction 

(Hendrick and Thornton, 1998). Here in the Hex1 crystal, the Group I, II and III 

interfaces extend  over 1,299, 697 and 515 Å2 of surface area, calculated with Grasp 

(Nicholls, 1991), respectively, which are in the range of those associated with known 

oligomeric interfaces, Figure 2-8.  
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2.3.4 The packing of Hex1 

 Examination of the Hex1 crystal lattice reveals a structural polymer in the 

form of a helical spiral in which individual molecules are associated through 

alternating Group I and Group II interactions (Figure 2-9a). Rotation of the spiral is 

achieved by the crystallographic 65 screw symmetry, which rotates the associated 

molecules by 120° (Figure 2-7c, box). Thus, 12 Hex1 molecules (6 Group II mediated 

rotations) are required for each full turn of the spiral. Group III interaction residues 

are found on the surface of the Group I–Group II spiral (Figure 2-9b, Group III amino 

acids are colored green), where they are presented in 65 screw increments. This allows 

each filament to interact with six identical neighbours, producing the overall six-fold 

symmetry of the Hex1 crystal lattice, which is also seen in the native N. crassa 

Woronin body (Figure 2-9c, inset). Each spiral forms a tunnel with an inner diameter 

of 34 Å (Figure 2-9b). A portion of this tunnel is occupied by residues 1–26 of the 

Hex1 molecule, which are disordered and not visualized in the electron density map. 
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Figure 2-9. Molecular organization of the Hex1 crystal lattice. 

Alternating Hex1 molecules are shown in blue and purple. (a) 

Alternating Group I and Group II interactions (gray arrows, shown in 

the same orientation as in Figure 2-7) produce a coiled filament. The 

twisting of the filament is determined by the 65 screw axis (see Figure 

2-6c, box) and 12 Hex1 molecules are required for one turn of the 

filament. The filament is viewed perpendicular to the c-axis. (b) The 

same coiled filament as in (a), viewed down the crystallographic c-axis. 

Group III interaction residues (green) are found on the filament surface. 

The tunnel in (b) is probably occupied by the first 26 N-terminal amino 

acids, which are missing from the electron density map. (c) Seven 

packed filaments reveal the overall Hex1 crystal lattice, which is 

shown next to a native N. crassa Woronin body (also viewed down the 

crystallographic c-axis, bar = 1 µm).  

2.3.5 Point mutations in Hex1 abort in vitro crystallization 

 To examine the role of crystal contact residues in Hex1 self-assembly, a series 

of mutants were prepared using the Quickchange site directed mutagenesis kit 

(Stratagene), Table 2-4. Their ability to self assemble was examined in vitro. 

Mutations in the π-interaction residue His39 (H39G, Group I) and the hydrogen 

bonding residue Gln127 (Q127A, Group III) abolish the ability of Hex1 to crystallize 

in vitro. In contrast, mutations in two residues that are not involved in intra- or 

intermolecular contacts, Lys143 (K143A, H2) and Arg149 (R149A, H3), do not 

interfere with self assembly (Figure 2-10a). To exclude the possibility that these 

defects in assembly were due to defects in Hex1 folding, these proteins were analyzed 
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by native PAGE. Both the assembly defective mutants, H39G and Q127A, migrated 

similarly to the wild type Hex1 protein in native PAGE (Figure 2-10b), indicating that 

these proteins are properly folded. 

Table 2-4 Primer list 

 

Constructs                                              Primer-sequence 

Hex1-H39G                    CATCCCCTGCCATGGCATCCGCCTCGGC 

Hex1-K143A                  GGAACCGTCTCCAGGCTGCTTTCGAGTCTG 

Hex1-Q127A                  GGCGATGTCAAGGCAAATTTGCCCGTCATTGAC 

Hex1-R149A                   CTTTCGAGTCTGGCGCTGGCTCCGTCCGTG 
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Figure 2-10. Requirement of crystal contact residues for Hex1 self 

assembly in vitro. (a) The indicated recombinant Hex1 proteins were 

examined for their ability to self assemble in vitro. These microcrystals 

are viewed perpendicular to the crystallographic c-axis. (b) The same 

proteins used for (a) were subjected to native PAGE. The increased 

mobility of the K143A and R149A mutant proteins is due to the change 

in their net charge. 
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2.3.6 Point mutations in Hex1 abort Woronin body formation 

The mutation constructs H39G, K143A, Hex1 and empty vector were 

transformed to the N. crassa Hex1 deletion strain (∆Hex1:hph pan-2 pyr-4) by 

electroporation (http://www.brinkmann.com/ELEC_appl_neurospora.asp) and 

selected on minimal medium lacking pantothenate. The levels of Hex1 and mutant 

protein expression in these strains were examined by western blotting and determined 

to be equal for the strains shown. Expression of Hex1 or Hex1-K143A resulted in the 

production of the Woronin body with characteristic geometry, which could be 

observed at the cell periphery by light microscopy (Figure2-11a). In contrast, 

expression of Hex1-H39G (Group I mutant) resulted in the production of aberrant 

spherical Woronin bodies (Figure 2-11a). Electron microscopy further demonstrated 

that the Hex1-H39G Woronin body core is spherical and enclosed by a unit 

membrane (Figure 2-11d). Thus, the H39G mutation interferes with the intra-

peroxisomal assembly of Hex1 but not with the PTS-1 mechanism of peroxisomal 

import. To further demonstrate the defective core assembly in the H39G mutant, cell 

extracts from Hex1 and Hex1-H39G expressing cells were treated with detergent to 

remove the Woronin body membrane and then subjected to differential centrifugation 

(Figure 2-11e). Wild type Hex1 readily sediments, suggesting it is a large and stable 

complex. In contrast, the Hex1-H39G mutant protein failed to sediment, confirming 

that it is either soluble or forms relatively small complexes. To assess the ability of 

these vesicles to substitute for Woronin body function, aerial hyphae, which extrude 

the protoplasm and produce fewer conidia (spores produced from aerial hyphae) in the 

absence of Woronin bodies (empty vector, Figure 2-11b, c) is examined. The 

expression of Hex1 or Hex1-K143A suppressed both the protoplasmic bleeding and 

conidiation defects of the deletion strain. However, the Hex1-H39G mutant was 
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unable to suppress either of these defects (Figure 2-11b, c). Thus, the H39G mutation 

interferes with normal Hex1 self-assembly (Figure2-11a, d, e) and abolishes Hex1 

function (Figure 2-11b, c) even though Woronin bodies can grow to their normal size 

(Figure 2-11a, d). 
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Figure 2-11. Requirement of crystal contact residues for Hex1 

function. (a) Light microscopic examination of N. crassa transformants 

expressing the indicated proteins. Bar = 1 µm. (b) Microscopic 

examination of aerial hyphae and protoplasmic bleeding of cells grown 
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on solid medium. Bar = 1 mm. (c) Conidiation in the indicated strains 

grown on solid medium for 1 week. Values are the average of three 

independent measurements. (d) Representative Woronin bodies from 

the indicated strains visualized by electron microscopy. Arrows show 

the unit membrane of the vesicle. Bar = 100 nm. (e) Differential 

centrifugation of whole cell extracts from Hex1 and Hex1-H39G 

expressing cells. Extracts were centrifuged at the indicated centrifugal 

forces for 2 min and fractions were separated into pellet (P) and 

supernatant (S) fractions, which were analyzed for the distribution of 

Hex1 by western blotting.  

2.4 EVOLUTIONARY ORIGIN OF HEX1 

2.4.1 Hex1 structure homologs 

 Submission of the Hex1 coordinates to the Dali server (Holm and Sander, 

1999) identified eIF-5A from Pyrobaculum aerophilum (PDB entry 1BKB, Peat, 1998) 

as a structural homolog of Hex1 (with a Z-score of 10). Comparison of the Hex1 

structure with that of eIF-5A from P. aerophilum and Methanococcus jannaschii 

(Kim, 1998) reveals that these proteins share a similar structural organization (Figure 

2-12). The N-terminal residues 27-102 of Hex1 aligns well with that of eIF-5A from 

P. aerophilum when compared using the SSAP server of CATH (Orengo, 1997; Pearl, 

2000) with 19% sequence identity and 83% structural overlap with a score of 88.72. 

When fit with the corresponding region of eIF-5A, the N-terminal residues 33–85 of 

Hex1 superimpose with an r.m.s. deviation of 2.1 Å. A similar analysis shows that the 

C-terminal residues 103-173 of Hex1 are also homologous to the corresponding 
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region of eIF-5A. An SSAP search shows that 83% of these equivalent fragments 

could overlap and 15% of the sequence is identical, with a total score of 87.47 (Figure 

2-12). In addition to the structural homology described above, Hex1 shows sequence 

similarity to the human eIF-5A protein,  gi:9966867, blastp E-value = 3e –08, 26% 

identity, 52% similarity (Jedd and Chua, 2000). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-12. Overall structures of (a) Hex1 and eIF-5A protein from (b) P. 

aerophilum and (c) M. jannaschii. The three structures are depicted in the 

same orientation. All three proteins are composed of two mutually 

perpendicular antiparallel β-barrels. The N-terminal barrel is shown in 

green and the C-terminal region in brown. 

 

a b c 
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                            * 
Nc_Hex1   1            GYYDDDAHG HVEADAAPRA TTGTGTGSAS QTVTIPCHHI 
Pa_eIF5A  1                                      MKWVM STKYVEAGEL 
Mj_eIF5A  1                                         MP GTKQVNVGSL 
 
    

 
            *  *    +       -                 +             +  +   
Nc_Hex1  41 RLGDILILQG RPCQVIRIST SAA----TGQ HRYLGVDLFT KQLHEESSFV 
Pa_eIF5A 16 KEGSYVVIDG EPCRVVEIEK SKTGKHGSAK ARIVAVGVFD GGKRTLSLPV 
Mj_eIF5A 13 KVGQYVMIDG VPCEIVDISV SKPGKHGGAK ARVVGIGIFE KVKKEFVAPT 

 
 

         
                 *             *                    *    - -       
Nc_Hex1  87 SNPAPSVVVQ TMLGPVFKQY RVLDMQD-G- SIVAMT-ETG DVKQNLPVID 
Pa_eIF5A 66 --------DA QVEVPIIEKF TAQILSVSGD VIQLMDMRDY –KTIEV---- 
Mj_eIF5A 63 --------SS KVEVPIIDRR KGQVLAIMGD MVQIMDLQTY –ETLEL---- 

    
 

                   
                                -                                                                                                                  
Nc_Hex1  134 QSS-LWNRLQ KAFESGRGSV RVLVVSDHGR EMAVDMKVVH GSRL 
Pa_eIF5A 103 ---PMKYVEE EAKGRLAPGA EVEVWQILDR YKIIRVKG  
Mj_eIF5A 100 -----PIPEG IE--GLEPGG EVEYIEAVGQ YKITRVIGGK 

 

Figure 2-13. Alignment of the sequence of N. crassa Hex1 (Nc_Hex1) with 

that of eIF-5A from P. aerophilum (Pa_eIF5A) and M. jannaschii 

(Mj_eIF5A). The alignment is generated according to the SSAP output, as 

well as visual comparison. Secondary structure elements are boxed in green 

(helices) and highlighted in yellow (strands). Conserved residues are in red, 

and residues involved in the Hex1 Group I, Group II and Group III 

interactions are marked with asterisks, plus and minus symbols, 

respectively. The residues involved in forming salt bridges are underscored. 

The highly conserved lysine residue that is modified to hypusine in eIF-5A 

proteins is highlighted in cyan and the peroxisome targeting signal (PTS-1) 

of Hex1 is boxed in purple.  
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2.4.2 eIF-5A 

 eIF-5A is unique in that it is the only cellular protein so far known to contain 

the amino acid hypusine. Hypusine is formed through a spermidine-dependent 

posttranslational modification of eukaryotic initiation factor 5A (eIF-5A) at a specific 

lysine residue. The reaction is catalyzed by deoxyhypusine synthase (DHS) and 

deoxyhypusine hydroxylase (Xu, 2001). This modification is necessary for eIF-5A’s 

activity.  

 eIF-5A was initially identified as a putative translation initiation factor based 

on its ability to stimulate methionyl puromycine synthesis under in vitro condition, 

but this has been questioned according to the fact that a similar effect on translation is 

not observed in situ (Wang, 2001). 

 Later work discloses that the interaction of eIF-5A with the Rev trans-

activator protein of HIV mediates the transport of unspliced or incompletely spliced 

viral mRNA across the nuclear envelope (Schatz, 1998). In particular, the inhibition 

of eIF-5A blocked the nuclear export of nuclear export signals (NESs) derived from 

the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas 

the nucleocytoplasmic translocation of the protein kinase inhibitor-NES was 

unaffected (Elfgang, 1999). The immunofluorescence and immunogold electron 

microscopy study demonstrates that eIF-5A accumulates at nuclear pore-associated 

intranuclear filaments in mammalian cells and Xenopus oocytes. It interacts with the 

general nuclear export receptor CRM1. Furthermore, microinjection studies in 

somatic cells reveal that eIF-5A is transported from the nucleus to the cytoplasm 

which demonstrate that eIF-5A is a nucleocytoplasmic shuttle protein (Rosorius, 

1999). In vitro binding studies demonstrate that eIF-5A is required for the efficient 
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interaction of Rev-NES with CRM1/exportin1 and eIF-5A interacts with the 

nucleoporins CAN/nup214, nup153, nup98, nup62 as well as nuclear actin (Hofmann, 

2001). 

 eIF-5A has also been proposed to play a role in mRNA decay by acting 

downstream of decapping (Zuk, 1998). A recent report shows that DHS mRNA and 

eIF-5A mRNA show a parallel increase in abundance in senescing tissues and 

environmentally stressed tomato leaves and exhibiting programmed cell death, 

thereby suggesting the roles of eIF-5A in apoptosis (Wang, 2001). 

2.4.3 Difference between Hex1 and EIF-5A  

 The function of Hex1 is clearly distinct from that of eIF-5A. First, Hex1 does 

not contain the highly conserved lysine that is modified to the amino acid hypusine, 

which is required for eIF-5A function (Schnier, 1991). Second, Hex1 does not 

complement a yeast eIF-5A mutant (Jedd and Chua, 2000). Third, unlike the eIF-5A 

proteins, Hex1 is targeted to peroxisomes, where it self assembles into the dense core 

of the Woronin body (Jedd and Chua, 2000). The combination of sequence and 

structural homology between Hex1 and eIF-5A proteins strongly suggests that Hex1 

evolved via the duplication of an ancestral eIF-5A gene, followed by the acquisition 

of new functions. Purified mammalian eIF-5A exists as a dimer in solution and can 

reversibly associate to form tetramers and hexamers (Chung, 1991). However, eIF-5A 

crystal structures do not provide any evidence for such oligomerization (Kim, 1998; 

Peat, 1998). Thus, if eIF-5A self-assembles, it is probably through interactions 

distinct from those that mediate Hex1 assembly.  
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2.4.4 Selected Hex1 residues are highly conserved in eIF-5A 

Comparison of the Hex1 group interaction residues with the analogous 

residues in eIF-5A proteins reveals that one of two residues associated with Group I 

and Group II salt bridges is invariably found in eIF-5A proteins (Figure 2-14). In 

addition, four out of seven intermolecular hydrogen bonds involve glutamine residues, 

and, in all cases, these correspond to conservative substitutions in the eIF-5A 

sequences, further suggesting an ancestral link between these two proteins. Finally, 

major structural differences between Hex1 and eIF-5A correspond to the extension of 

the loop between β5 and β6 and an extension of the C-terminal α-helix, H2. In both 

cases, these extensions contain residues, Ser92 in the case of the N-terminal loop 

(Figure 2-7a) and the nearby Gln134 in the case of α-helix H2 (Figure 2-7d) that 

participate in interactions. Thus, Hex1 self-assembly probably evolved through the 

exploitation of pre-existing residues, conservative amino acid substitution and 

changes in the length of secondary structural elements. 
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Figure 2-14. I, II, III alignment of N. crassa Hex1 (Nc_Hex1) crystal 

contact residues (Group I: His39, Arg41, Asp44, Ser92, Gln105, 

Glu121; Group II: Gln49, Ser61, Arg68, Glu81, Ser84; Group III: 

Ile56, Val125, Gln127 and Gln134) with Hex1 proteins from other 

Euascomycetes (Bc_Hex1, Botrytis cinerea; An_HexA, Aspergillus 

nidulans; Mg_Hex1, Magnaporthe grisea) and the eIF-5A consensus 

sequences (Con_eIF-5A: N-terminal domain, pfam02869; C-terminal 

domain, pfam02187), as well as eIF-5A from N. crassa (Nc_eIF-5A; 

NCBI protein database entry gi:409567) and human (Hs_eIF-5A; 

gi:9966867). Residues shown are taken directly from a ClustalW 

alignment (http://clustalw.genome.ad.jp/) of the indicated proteins with 

N. crassa Hex1. Identical residues are shaded in black, and conserved 

residues are in yellow. The identity of the interaction Groups (I, II, and 

III) is shown above each block of sequence alignment. The red bar 

indicates salt bridge residues associated with the Group I and Group II 

interactions.  
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2.4.5 Evolutionary relationship between Hex1 and eIF-5A 

 Ascomycetes with filaments and complex reproductive structures were present 

400 million years ago (Taylor, 1999), implying an ancient origin of Woronin bodies. 

Woronin bodies and Hex1 have been reliably observed only in Euascomycetes 

(Markham and Collinge, 1987) where they are functionally (Jedd and Chua, 2000; 

Tenney et al., 2000) and physically (Markham and Collinge, 1987; Momany et al., 

2002) associated with the septal pore. Euascomycetes form a clade within the 

ascomycetes. That is, they are all descendents of a single common ancestor and that 

ancestor did not give rise to any of the other ascomycetes (for example, S. cerevisiae 

and S. pombe, Berbee, 2001). Neither S. pombe 

(http://www.sanger.ac.uk/Projects/S_pombe/) nor S. cerevisiae (http://genome-

www.stanford.edu/Saccharomyces/) genome appears to contain Hex1 orthologs. This 

suggests that Woronin bodies arose in the ancestral euascomycetes. The restricted 

distribution of Hex1, its key role in a process characteristic of euascomycetes and 

evidence that it arose via gene duplication support the long held belief that such 

duplications and the consequent acquisition of new protein function may lead to key 

innovations underlying evolutionary success (Ohno, 1970). 

2.5 DISCUSSION 

 Hex1 is the main component of the Woronin body and the crystal of Hex1 

shares the same hexagonal prism profile as the native Woronin body, which leads to 

the question whether the Hex1 lattice shares the same lattice as the Woronin body? 

Several lines of evidence suggest that the Hex1 crystal lattice is a valid structural 
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model of the Woronin body core. Group I and Group II interactions are both centered 

around a bidentate arrangement of salt bridges that have been observed at 

oligomerization interfaces and are unlikely to occur in random crystal packing 

contacts. The Group I, II and III interfaces bury 1,299, 697 and 515 Å2 of surface 

area, respectively, which are in the range of those associated with known oligomeric 

interfaces (Hendrick and Thornton, 1998). In addition, random crystal contact 

residues tend not to be conserved, whereas those associated with protein 

oligomerization are conserved (Elcock, 2001; Valdar, 2001). Sequence alignment of 

Hex1 orthologs reveals a high level of crystal contact conservation (Figure 2-14). 

Finally, a mutation that abolishes Hex1 crystallization also abolishes Hex1 function 

(Figure 2-11b, c) while not interfering with protein folding (Figure 2-11e) or vesicular 

targeting (Figure 2-11a, d). The mutants study shows that a Hex1 crystal lattice is 

absolutely required for Woronin body function in N. crassa.  

The Hex1-H39G mutant, which abolishes the Hex1 crystal lattice, shows the 

Woronin body without a solid core. Why does the Woronin body require a solid core? 

Intercellular translocation of the protoplasm through septal pores is a common feature 

of fungal cells. Microscopic examination of living Hex1 mutant hyphae shows that a 

single damaged hypha can extrude many cell equivalent of the protoplasm and large 

organelles such as vacuoles by distorting their shape as they pass through the septal 

pore. These observations suggest the presence of intra-cellular turgor pressure and in 

this case, only a dense-core vesicle is capable of sealing the septal pore. 

Magnaporthe grisea is an ascomycetous fungus that causes the devastating 

blast disease in graminaceous hosts like rice, wheat, barley and millet. Similarily, a 

mutation in the Magnaporthe grisea Hex1 homolog has also resulted in disruption of 

self-assembly of woronin body as well as the morphological and functional defects in 



Chapter 2 Hex1 crystal lattice is required for woronin body function in Neurospora Crassa 
 

 83 

appressoria (infectious structures), which finally delayed host penetration and 

subsequently disrupts invasive hyphal growth in planta. (Soundrararajan, 2004) 

According to the high homology and the conservation of all the contact residues 

between Magnaporthe grisea Hex1 and Neurospora crassa Hex1, it can be expected 

that Magnaporthe grisea woronin body share the samilar crystal lattice and interface. 

So chemical designed to disrupt the intermolecular interaction would has good 

commercial potential to combat the devastating blast disease in rice, wheat, barley and 

millet. 

 Although no evidence shows that eIF-5A can form a similar oligomer as Hex1, 

as seen from its crystal structure, the capacity that eIF-5A exists as a dimer and can 

reversibly form tetramers and hexamers may provide a rationale for an evolutionary 

selection of eIF-5A as a precursor to Hex1. EIF-5A self assembly might be enabled 

following its peroxisomal targeting, which is expected to significantly concentrate this 

normally cytoplasmic protein. Thus, peroxisome targeted eIF-5A may have assembled 

into a primitive Woronin body core. More work is necessary at the functional and 

structural level by expressing variant eIF-5A proteins in yeast and Hex1 mutant fungi 

to test the above idea. 
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CHAPTER 3 DIMERIZATION OF GEMININ COILED COIL 

REGION IS NEEDED FOR ITS FUNCTION IN CELL CYCLE 

3.1 INTRODUCTION  

3.1.1 Discovery of Geminin 

Geminin cDNA was discovered by looking for proteins that were degraded by 

mitotic, but not interface of Xenopus laevis egg extracts. In synchronized HeLa cells, 

this 25 kDa protein is absent during G1 phase, accumulates during S, G2 and M phases, 

and disappears at the time of the metaphase-anaphase transition (McGarry and 

Kirschner, 1998). A second Geminin cDNA was isolated from a screening procedure 

designed to identify proteins that affected Xenopus embryotic development. Its 

overexpression will expand the neural plate at the expense of the adjacent neural crest 

and epidermis (Kroll et al., 1998). As the proteins encoded by the above two cDNAs 

are 89% identical at the amino acid level, the protein was named Geminin after Gemini, 

which means “twins” in Latin. The protein has a calculated molecular mass of about 25 

kDa, but they migrate aberrantly on polyacrylamides gels with apparent molecular 

mass of about 35 kDa (McGarry and Kirschner, 1998). 

3.1.2 Role of Geminin in DNA replication 

Every proliferating eukaryotic cell is faced with the prospect of having to copy 
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accurately and precisely its entire DNA in only a few hours during the cell cycle. 

Either incomplete replication or overreplication would cause cell death, or even worse, 

cause cancer in humans. To accomplish this process in the allotted time, eukaryotic 

cells have developed a ‘divide and conquer’ strategy. Unlike prokaryotic cells, 

eukaryotic genomes are replicated from multiple replication origins distributed along 

their chromosomes. Each replication origin is only responsible for the replication of a 

relatively small portion of the genome. This strategy allows the rapid replication of 

large genomes but brings with it a serious book-keeping problem. How can the cell 

keep track of all these origins, ensuring that each one fires efficiently during S phase 

while also ensuring that no origin has fired more than once? To cope with this, 

eukaryotic cells have evolved a remarkable molecular switch. Cyclin-dependent kinase 

and Geminin play key roles in the switch (Diffley, 2001). 

Before eukaryotic DNA replicates, pre-replication complexes (pre-RCs) must 

be assembled at the replication origins in a reaction known as “licensing”. Pre-RC 

assembles in a stepwise manner: origin recognition complex (ORC), a sequence-

specific DNA binding protein complex, binds first and remains bound to origins during 

most or all of the cell cycle. The onset of S phase appears to be controlled by six 

proteins (MCM 2-7) that form MCM (minichromosome maintenance) complex. As 

cells exit from mitosis, the MCM complex interacts with chromatin and licenses DNA 

for replication. The fact that MCM family members have weak helicase activity shows 

that the complex is likely to open up chromatin and provide access for the enzymes 

that replicate DNA. The loading of MCM proteins onto chromatin is a key step in 

controlling the initiation of DNA replication. MCM loading requires initiating factor 

Cdc6/18 (Cdc6 is in Saccharomyces. cerevisiae, and Cdc18 is in Schizosaccharomyces 

pombe), which accumulates in the nucleus as cells exit mitosis and enter G1. Another 
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initiating factor, Cdt1, is expressed when cells exit mitosis. Furthermore, it can form a 

complex with Cdc6/18. When Cdc6 or Cdt1 is depleted, MCM will not be able to load 

on the chromosome. Pre-RCs can only assemble at origins during a short period of the 

cell cycle between the end of mitosis and G1 phase. This temporal separation of pre-

RC assembly and origin activation is a key feature of the switch because it ensures that 

new pre-RCs are unable to assemble on the origins that have already been fired. Thus, 

origins can fire just once in each cell cycle (Lygerou and Nurse, 2000). 

There are at least two mechanisms identified on how DNA licensing is 

prevented after S phase. Cyclin dependent kinases (Cdks) are central to this regulation. 

Cdks are essential for triggering the initiation of DNA replication from origins that 

contain pre-RCs. At the same time, Cdks appear to play a direct role in preventing the 

assembly of new pre-RCs. In budding yeast, for example, Cdks target Cdc6 for SCF-

dependent, ubiquitin-mediated degradation and trigger the export of the Mcm2-7 

complex from the nucleus (Diffley, 2001). In mammalian cells, Cdc6 is 

phosphorylated by CDK2 and exported from the nucleus (Petersen, 1999; Saha, 1998). 

Because Cdk activity remains high from the onset of S phase until the end of the 

following mitosis, re-licensing of origins cannot occur until the beginning of the next 

cell cycle. 

Another key regulator is Geminin. Working as a substrate of anaphase 

promoting complex/cyclosome (APC/C), Geminin is present in the cell nucleus from S 

phase until mitosis and is ubiquitinated and degraded as cells complete mitosis. The 

degradation requires a destruction box near its amino-terminus. The addition of 

Geminin to an in vitro replication assay containing Xenopus egg extracts blocks the 

association of MCM proteins with G1 chromatin, thereby inhibiting DNA replication. 



Chapter 3 Dimerization of Geminin coiled coil region is necessary for its function in Cell cycle 
 
 

 87 

The addition of Geminin blocks the initiation of DNA replication at the same stage as 

does the depletion of Cdt1 from Xenopus extracts. These findings were extended by 

the evidence that Geminin stably interacts with Cdt1 in Xenopus and human cells 

(Wohlschlegel et al., 2000; Tada et al., 2001). Geminin could therefore be important 

for repressing DNA licensing until the cell division is complete. Geminin is present in 

S phase cells where it may bind to and inactivate Cdt1 to ensure that DNA replication 

is not reinitiated at the origins that have just replicated. Geminin also accumulates in 

the nucleus of G2 cells, and could act redundantly to ensure the inhibition of S phase if 

licensing factors were to become inappropriately expressed in G2 cells. Geminin may 

also be important after DNA damage, halting S phase to give cells enough time to 

repair their DNA, figure 3-1 (Lygerou and Nurse, 2000). 

Geminin does not only inhibit eukaryotic cell replication, but also inhibit the 

replication of cancer causing virus – Epstein-Barr virus (EBV) in eukaryotic cells. 

EBV, a 165 kb double stranded DNA virus of Herpes virus family, can replicate as an 

episome in latently infected cells. About 90% human B cells or epithelia cells are 

latently infected by EBV. This virus is highly related to carcinomas and 

lymphoproliferative diseases in immunosuppressed patients. Plasmids bearing the oriP 

replicator of EBV can not replicate in ∆/-Orc2 cell, where the Orc2 protein level is 

decreased about 90% compared to a normal cell. Reintroduction of Orc2 can rescue 

this defect. Interestingly, Geminin can efficiently inhibit the replication of this EBV 

plasmid. These data suggest that eukatyotic cellular replication initiation proteins are 

necessary to support EBV replication from oriP. Geminin based agents show some 

potential to be used to treat and prevent EBV-associated neoplasias (Dhar et al., 2001).  
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Figure 3-1. Role of Geminin in DNA replication 

3.1.3 Role of Geminin in Neuron Differentiation 

Besides the important role that Geminin plays in the cell cycle, it is also found 

to expand the neural plate at the expense of the adjacent neural crest and epidermis in 

Xenopus embryos when overexpressed. Maternal Geminin mRNA is found throughout 

the animal hemisphere from the oocyte through the late blastula. The misexpression of 

Geminin in the gastrula ectoderm suppresses BMP4 expression, the gene that promotes 

epidermial differentiation and blocks neural differentiation in ectoderm of both 

vertebrate and invertebrate, and converts prospective epidermis into neural tissue. 

Dominant negative Geminin lacking the neuralizing domain suppresses neural 

differentiation, and when misexpressed dorsally, produces islands of epidermal gene 

expression within the neurectodermal territory. This effect can be rescued by the 

coexpression of full length Geminin. Thus, Geminin seems to play an early role in 

establishing a neural domain during gastrulation in Xenopus embryo development 
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(Kroll et al., 1998). 

Besides being present in Xenopus, a homolog of Geminin is also present in 

Drosophila. Like Xenopus Geminin, Dm Geminin also shows characteristics as a 

neural differentiation factor. The ectopic expression of Dm Geminin in the embryo can 

also induce some cells to ectopically differentiate as neural cells (Quinn et al., 2001). 

3.1.4 Role of Geminin in apoptosis 

 Upon overexpression of Dm Geminin in Drosophila embryos, cells entering 

mitosis are arrested in metaphase and then undergo apoptosis (Quinn et al., 2001). 

When non-degradable Geminin (the destructive box of Geminin is mutated) is 

overexpressed in U2OS cell, cells show an early S phase arrest with high cyclin E and 

undetectable cyclin A levels. Consistent with high p53 and Cip1/Waf1 levels, profound 

loss of phosphorylated Rb and Ser15 of p53 being phosphorylated in Geminin 

overexpressed cells, it is indicated that the overexpression of Geminin has activated the 

ataxia telangiectasia mutated (ATM) protein and ATM and Rad3-related protein 

(ATR) checkpoint pathways. Down regulated cyclin A results in the induction of 

Cip1/Waf1 which in turn blocks further S phase progression and eventually triggers 

apoptosis (Shreeram et al., 2002). 

3.1.5 Geminin depletion cause G2 phase arrest in Xenopus development 

Embryos in which Geminin is knocked out by the antisense technique can 

complete early cleavage divisions normally but are arrested in G2 phase immediately 

after midblastula transition. This arrest requires Chk1, the effector kinase of the DNA 

replication/DNA damage checkpoint, as the overexpression of dominant negative 
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Chk1 can bypass the arrest. This result indicates that Geminin has an essential function 

and the loss of this function prevents entry into mitosis by a Chk1-dependent 

mechanism. Thus, Geminin may be required to maintain the structural integrity of the 

genome or it may directly down regulate Chk1 activity (McGarry, 2002). 

3.1.6 Behaviour of endogenous Geminin 

Geminin interacts with a DNA replication initiation factor, Cdt1, to suppress 

the initiation of DNA replication in a Xenopus egg extract based cell-free system, 

leading to the expectation that the protein acts as an inhibitor of cell proliferation. 

Immunohistochemistry and immunoblotting for Geminin, however, reveal that the 

protein is expressed specifically in proliferating lymphocytes and epithelial cells. 

Geminin is widely expressed in several malignancies and the number of Geminin-

expressing cells is directly proportional to cell proliferation. Therefore, instead of 

being a suppressor of cell proliferation, Geminin expression is positively correlated 

with cell proliferation. Consistent with this observation, the transient overexpression of 

wild type Geminin in cancer cells in culture did not produce a cell cycle block. Only 

the expression of destruction box mutated Geminin, which is more stabilized, can 

arrest cells at the G1-S transition (Wohlschlegel et al., 2002). 

Recombinant and endogenous forms of Xenopus Geminin behave differently 

from one another such that a significant proportion of endogenous Geminin escapes 

proteolysis upon exit from metaphase. During late mitosis and early G1, the surviving 

population of endogenous Geminin does not associate with Cdt1 and does not inhibit 

licensing. Following nuclear assembly, Geminin is imported into nuclei and becomes 

reactivated to bind Cdt1. This reactivated Geminin provides the major nucleoplasmic 
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inhibitor of origin re-licensing during late interphase. Since the initiation of replication 

at licensed origins depends on the nuclear assembly, results suggest an elegant and 

novel mechanism for preventing the re-replication of DNA in a single cell cycle 

(Hodgson et al., 2002). 

3.1.7 Domain organization of Geminin 

Geminin shows pleiotropic effects when overexpressed. This 25 kDa protein 

plays key roles in the inhibition of DNA replication and induction of the uncommitted 

embryonic cell to differentiate neurons. How does this protein have two distinct 

functions?  

Originally, previous work suggests that the structure of Geminin consist three 

parts, Figure 3-2. In human Geminin (HGeminin), amino acids 23 to 31 form the 

destruction box, 31 to 79 form the potential neuralization domain and 112 to 146 make 

the coiled coil domain with five heptad repeats that bind to Cdt1 and inhibits DNA 

replication (Thepaut et al., 2002). 

23 31 79 112 146

RRTLKMIQP

destruction box domain

potential neuralization domain

five coiled-coil domains - DNA replication inhibition
 

Figure 3-2. Domain organization of Human Geminin. 
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3.2 CRYSTAL STRUCTURE DETERMINATION OF GEMININ 

3.2.1 Full length Geminin purification and Crystallization  

 Full length human Geminin was cloned into the pET-14b vector between the 

Nde1 and BamH1 sites with six histidines expressed at the N-terminus of the protein. 

The vector was transformed into BL21-DE3 cells. One colony was picked and used for 

the inoculation of 5 ml LB with 100 µg/ml Ampicillin for 16 h at 37 °C, 200 rpm. 5 ml 

of the overnight culture was added to 1 L LB with 100 µg/ml Ampicillin and continued 

to grow until OD600 was 0.6. Cells were induced to express His-Geminin with 1 mM 

IPTG. The cells were harvested after 3 hours by centrifugation at 6,000g for 10 min. 

The cell pellet was suspended in 10 ml lysis buffer D. The suspended slurry was 

passed through a French press for complete cell lysis. The lysate was then centrifuged 

at 20,000g for 30 min. to remove cell debris. The supernatant that contained His-

Geminin was carefully decanted to a fresh 50 ml Falcon tube and then loaded to a 20 

ml Econo-pac disposable chromatography column (Bio-Rad) with 3 ml pre-washed 

packed bead and mixed using a rotor wheel for 30 min. at 4 °C. The column was 

washed with 100 ml wash buffer E. The protein was eluted from the beads with 5 ml 

elution buffer F. As the protein eluted from Ni-NTA contained a small amount of DNA 

and traces of proteases might be wrapped inside, full length Geminin showed slow 

degradation. Hence, the fraction was further passed through a Hitrap-Q column 

(Amersham Pharmacia Biotech AB) to get rid of DNA, at 0.5 ml/min with FPLC (Bio-

Rad). The column was first washed with 5 ml low salt solution, followed by 20 ml 

high salt solution, and again 5 ml low salt solution. Protein fractions were collected at 

0.5 ml/tube with fraction collectors (Bio-Rad) and pure fractions were pooled together 

and concentrated to about 5 ml. The concentrated protein was further passed through a 
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Sephadex-200 column at 0.5 ml/min with FPLC to get rid of the traces of other 

contaminating proteins. The column was then washed with wash buffer G and 0.5 ml 

fractions were collected. The purity of the protein fraction was checked by running 

15% SDS-PAGE gel (Figure 3-3a). The fractions which were pure enough for 

crystallization were pooled together and concentrated to 17 mg/ml and check with 

Bradford protein assay (Bradford, 1976). The protein was then aliquoted in 30 µl per 

tube, flash frozen with liquid nitrogen and stored at –80 ºC for later use. The protein 

was set up for crystallization with the Hampton Screen kit I and II by the hanging drop 

vapour diffusion method. Some tiny and bad quality crystals were obtained (Figure 3-

3b). Further optimization of the crystallization condition was not successful. 
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Figure 3-3. (a) Gel filtration fraction tube from sephadex-200. (b). Poor 

quality crystals of Geminin. 

3.2.2    Identification of Cdt1 binding domain of Geminin 

3.2.2.1   Past work on the domain study 

 Several truncated Xenopus Geminin constructs were made by McGarry 

(McGarry and Kirschner, 1998). According to the DNA replication test of those 

constructs, Geminin with the deletion of first 80 amino acids at the N-terminus can still 

inhibit DNA replication, while chopping off amino acids after residue 160 of the 

Geminin protein will not affect Geminin function (Figure 3-4). 
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Figure 3-4. Half life and DNA replication percentage of different 

Geminin mutants. The small square indicates the destruction sequence 

RRTLKVIQP, and the large rectangle indicates the predicted coiled coil 

region. The name of each mutant indicates whether the deletion is from 

the N or C terminus and the amino acid at which the deletion ends for 

an N mutant or where it starts for a C mutant. The half-life of each 

construct was measured with 35[S]methionine labeled Geminin, 

incubated with the mitotic extract. Proteins were detected by 

electrophoresis and autoradiography. The percentage of control DNA 

replication occurring in the presence of each mutant (50–64 mg/ml) is 

also indicated. (McGarry and Kirschner, 1998). 

3.2.2.2 Cdt1 binding study 

 Based on the fact that Geminin prevents DNA replication by interacting with 

Cdt1 and inhibits its function, proteins of the same constructs were translated by TNT 

Coupled Reticulocyte Lysate System (Promega) and then used to test Cdt1 binding 

ability (Figure 3-5). Besides N80 and C160 that bind to Cdt1, N100 can also bind to 
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Cdt1. According to McGarry’s result, N80 can inhibit DNA replication while N100 

can not, the result indicates that amino acids from 80-100 are critical for the inhibition 

of DNA replication, while the fragment 100-160 of Xenopus Geminin may be the 

minimum fragment required for binding Cdt1.  

 

Figure 3-5. INPUT lane is the total IVT translation. GST lane is the 

IVT translated protein that binds to the GST bead. Cdt1 lane is the IVT 

translated protein that binds to the GST Cdt1 bead. 

 The sequence alignment of Xenopus Geminin with Human Geminin indicates 

that the equivalent segments of 80-160 and 100-160 of Xenopus Geminin are segments 

70-152 and 93-152, respectively, in Homo Sapiens Geminin. The wheat germ extract 

IVT (Promega) translation proteins of these two segments were also used to test the 

Cdt1 binding ability as well (Figure 3-6). The result shows that both HGeminin70-152 

and HGeminin 93-152 can bind to HCdt1. 
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Figure 3-6. INP lane is the total IVT translation. GST lane is the IVT 

translated protein that binds to the GST-bead. Cdt1 lane is the IVT 

translated protein that binds to the GST-Cdt1 bead. 

3.2.2.3 Function test of Geminin70-152 

 The transient replication of episomes based on oriP of Epstein Barr virus in 

mammalian cells is dependent on the components of Pre-RC and inhibited by the over-

expression of Geminin (Chaudhuri, 2001; Dhar et al., 2001; Schepers, 2001). 

Furthermore, a bacterially produced plasmid is methylated on both strands of DNA and 

is susceptible to digestion by DpnI. Since mammalian cells lack the dcm methylase, 

strands of DNA produced in mammalian cells are not methylated, so that the 

appearance of a DpnI resistant plasmid in mammalian cultures is indicative of the 

replication of the bacterial plasmid. The ability of replication inhibition of 

HGeminin70-152 and HGeminin 93-152 is carried out by our collaborator with the 

above system. Constructs pEBG-HGeminin70-152 and pEBG-HGeminin93-152 were 

co-transfected with the Epstein Barr virus (EBV) plasmid p367 to the HCT116 cell line. 
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Assay of the transient replication of plasmid p367 was done as described (Dhar et al., 

2001). The result shows that pEBGHGeminin70-152 successfully inhibits EBV DNA 

replication while pEBGHGeminin93-152 can not (Figure 3-7).  

 

Figure 3-7. (a) HGeminin70-152 can inhibit Epstein Barr Virus oriP 

mediated replication whereas HGeminin 93-152 can not. Plasmids for 

GST (lane 3), GST-Geminin with the destruction box deleted [Gem (D), 

lane 4], GST-Geminin70-152 (lane 5) and GST-Geminin 93-152 (lane 6) 

were co-transfected with plasmid p367 in the HCT116 cell line and 

DpnI resistant p367 DNA was detected by southern blot. (b) Western 

blot analysis to show the expression of different constructs used in (a). 

Transfected cell lysates are after SDS-PAGE and anti-GST western blot. 

a 

b 
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Loading order in lanes 1-6 is the same as in (a). 

3.2.3 Expression and purification of Geminin70-152 

3.2.3.1 Expression and purification of Geminin70-152 

 The human Geminin70-152 fragment was amplified by PCR from full length 

Geminin and cloned into the pET28a vector between the BamH1 and Not1 sites. 5 ml 

LB with 25 µg/ml Kanamycin was inoculated with BL21::pET28a-Geminin70-152 and 

grown overnight at 200 rpm 37 °C. In the next morning all 5 ml culture was added to 1 

Liter LB with 25 µg/ml Kanamycin and allowed to grow at 200 rpm 37 °C till OD 600 

was 0.4 ~0.6. The protein was induced with 1 mM IPTG. Three hours later the cells 

were harvested by spinning at 6,000 g for 10 min. The cell pellet was resuspended in 

10 ml lysis buffer H. The suspended slurry was passed through a French Press for 

complete lysis. The lysate was cleared by spinning at 20,000 g for 30 minutes. 3 ml of 

the Ni-NTA beads were pre-washed with 60 ml lysis buffer H to get rid of ethanol and 

the supernatant from bacterial lysates bound at 4 °C for 30 min. The beads were 

washed with 100 ml wash buffer I. Finally, the protein was eluted with 5 ml elution 

buffer J. 1 mM DTT and 1 mM EDTA were added to the eluted protein, which was 

pure enough for setting up for crystallization. The protein was concentrated to 14 

mg/ml, frozen with liquid nitrogen and stored at –80 °C freezer for later use, Figure 3-

8. 



Chapter 3 Dimerization of Geminin coiled coil region is necessary for its function in Cell cycle 
 
 

 100 

 

Figure 3-8. Native HGeminin70-152 purification. M is the marker. 

Lane 1 is the portion of the lysate that does not bind to the Ni-NTA 

beads. Lane 2 is the flow through after washing the Ni-NTA beads. 

Lane 3 is the insoluble portion of the total lysate. Lane 4 is the elution 

fraction after purification.  
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3.2.3.2 Expression and purification of Geminin70-152 containing selenium  

 One colony of fresh Geminin70-152 containing bacteria was inoculated to 5 ml 

LB with 25 µg/ml Kanamycin and grown overnight at 37 °C, 200 rpm. In the next 

morning the cells were gently spinned down at 1,300 g for 3 minutes, the pellet was 

washed twice with minimum medium M9 and added to 50 ml of the same, pre-warmed 

medium. The bacteria were allowed to grow at 37 °C 200 rpm until OD600 was 0.6 

(about 8 h). The 50 ml culture was added to 1 L pre-warmed M9 medium and 

continued to grow until the cells reached OD600 of 0.6 to 0.9, which normally took 

about 24 hours. At this point, amino acids: lysine, phenylalanine, and threonine at 100 

mg/l, isoleucine, leucine and valine at 50 mg/l and L- selenomethionine at 60mg/l were 

added to the culture. Fifteen minutes later, 400 µl of 500 mM IPTG was added to the 

culture to induce Geminin expression and the culture was harvested 6 h later. 

 The method of selenomethionine protein purification was the same as that of 

native Geminin70-152. The mass of the purified protein was checked with Liquid 

Chromatography Mass Spectrometer API300 (MDS SCIEX). The mass of Geminin70-

152 and selenium substituted Geminin70-152 are 13,163 Da and 13,394 Da, 

respectively. The mass difference suggests that all five methionines in Geminin70-152 

were replaced by selenomethionine (Coligan et al., 1995). The pure Selenium 

Geminin70-152 protein was concentrated to 14 mg/ml and flash frozen with liquid 

nitrogen before storage at –80 °C, Figure 3-9. 
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 Figure 3-9. Selenomethionine HGeminin70-152 purification. M is the 

marker. Lane 1 is the total cell lysate. Lane 2 is the soluble fraction. Lane 3 

is the insoluble fraction. Lane 4 is the portion that can not bind to the Ni-

NTA bead. Lane 5 is the final elution of HGeminin70-152 

selenomethionine protein. 

 

3.2.4 Crystallization of native and selenomethionine Geminin70-152 

Both native and selenium HGeminin70-152 proteins were set up for 

crystallization with the Hampton Screen kit by the hanging drop vapour diffusion 

method. 1 µl of the protein was mixed with equal amount of reservoir buffer. Both 

native HGeminin70-152 and selenium HGeminin70-152 crystals appear at the same 

condition consisting of 50 mM Tris HEPES (pH 8.5), 500 mM NaCl, 5% glycerol. 

Three days later, native HGeminin70-152 crystal could grow to 0.15 x 0.10 x 0.10 mm 

(Figure 3-10a) and selenium HGeminin crystal grew to 0.50 x 0.05 x 0.05 mm (Figure 

3-9b).  
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Figure 3-10. (a) HGeminin70-152 and (b) Selenium HGeminin70-152 

crystal. 

3.2.5 Crystal data collection and processing 

All crystals were cut to a proper size about 0.3 X 0.05 X 0.05 mm with micro-

tools (Hampton Research). The crystals were flash frozen with liquid nitrogen in a 

cryoprotectant containing 50% (v/v) mineral oil and 50% paratone. Data for both 

native and selenomethionine crystals were collected at the beamline X12B, National 

synchrotron Light Source, USA. The native HGeminin70-152 crystal could diffract X-

rays to a resolution of 2.0 Å, while the selenium HGeminin70-152 crystal diffracted X-

ray to 3.0 Å. All diffraction frames were processed with DENZO 1.96 and scaled using 

SCALEPACK (Otwinowski, 1997).  

Both crystals belong to the orthorhombic space group P212121 and have unit-

cell parameters a = 37.16 Å, b = 94.46 Å, c = 102.56 Å, Table 3-1. There are two 

molecules in the asymmetric unit. The solvent content is 65.3%. 

a b 



Chapter 3 Dimerization of Geminin coiled coil region is necessary for its function in Cell cycle 
 
 

 104 

Table 3-1 Native and Selenomethionine crystal data 

Spacegroup:      P212121 

Unit-cell:   a = 37.16 Å, b = 94.46 Å, c = 102.56 Å 

    α = β = γ = 90° 

    Se-edge Se-peak Se-remote Native 

Wavelength (Å)  0.9789  0.9783  0.9611  0.9782 

Resolution (Å)   2.8  2.8  2.8  2.0 

No. of reflection  667,899 663,322 770,237 536,955 

Unique reflections  9,950  10,061  10,535  25,309 

Completeness (%)  99.7  99.7  99.2  99.7 

Rsym    0.102  0.102  0.118  0.085 
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3.2.6 Model building and refinement 

 Two of the five selenium positions in each protein chain were determined by 

the MAD method with the SOLVE program, using 3.5 Å data (Terwilliger, 1999). The 

figure of merit of the solution was 0.69. Phases were calculated with the PHASIT 

module of the PHASES package, using 4.0 Å MAD data (Furey, 1997). To reduced 

featureless densities of the solvent, the phases were improved with 50 cycles of solvent 

flattening using the doall.sh script in the PHASES package. The electron density map 

calculated from the solvent flattened phases showed substantial improvement. The map 

was clear enough to show two long coiled coils. Phases were slowly extended to 

reflections upto resolution 3.0 Å with the extnd.sh script of the PHASES package. 

Electron density maps at various resolution limits were calculated and displayed in O 

(Jones, 1991) for model building. Side chains were well resolved in the 3.0 Å map and 

the selenium positions were recognized as Met151 of the parallel coiled coils. The 

structure was manually built by fitting in amino acids from the C-terminus to the N-

terminus. The electron density before amino acid 92 was not clear. The determined 

structure was then fitted onto 2.0 Å native data by doing rigid body refinement with 

the CNS package (Brunger, 1998). The model was slowly refined by adjusting the 

improper regions according to the 2Fo-Fc and Fo-Fc maps and performing positional 

and temperature refinement, until the final R-factor reached 0.216 (Rfree = 0.239). The 

geometry of the molecule was judged to be well within acceptable limits when checked 

by PROCHECK (Laskowski, 1993). The refinement parameters are tabulated in Table 

3-2. 
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Table 3-2 Refinement parameters 

Phasing power:  

 Dispersive Acentrics 3.67 

   Anomalous acentrics 5.93 

 Mean figure of merit (F.O.M) 0.762 

Refinement parameters: 

 Resolution range (Å) 8–2.0 (Native) 

 Reflections (working/test)        18,192/1,966 

 Rcryst / Rfree
    0.216 / 0.239 (All reflections) 

 Asymmetric unit Two his-Geminin70-152 molecule (Mr = 13.2 kDa) 

Final model: 

 Non-hydrogen atoms 1034 

     Waters 120 

Average B-factors (Å2):          

 Protein 35.6
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 Waters 73.45 

R.M.S.D. in bond lengths (Å) 0.005 

R.M.S.D. in bond angles (°) 0.90 
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3.3 STRUCTURE OF GEMININ COILED COIL DOMAIN  

3.3.1  The overall structure of Geminin coiled coil domain  

 The experimentally phased electron density clearly revealed residue 92-152. 

Amino acid 94 to amino acid 150 forms a continuous parallel coiled coil with another 

molecule. A pseudo 2-fold axis relates the subunits of the dimer. The overall structure 

of the peptide is a typical coiled coil with two extended α-helices that pack together in 

a left handed superhelix, forming a twisted elliptical cylinder, ~ 90 Å long and ~ 25 Å 

wide (Figure 3-11 a). The average distance between the helical axes is 10.4 Å.  

 N-terminal residues 70-91 were not visible in the electron density map, 

calculated at different ranges of resolution. To determine whether these residues were 

lost by proteolysis, SDS-PAGE (Figure 3-11 b) and Mass Spectroscopy were used to 

analyze the Geminin70-152 peptide in the crystals.  The mass of the peptide in the 

Geminin70-152 crystal was 13162.64 Da and that in the Selenium Geminin70-152 

crystal was 13394.44 Da, suggesting that the crystallized peptides were intact without 

any degradation. Therefore, the region immediately N-terminal to the coiled coil 

domain of Geminin is either unstructured or forms an ensemble of structures that are 

statically disordered in the crystal. This region is necessary for the inhibition of DNA 

replication and may only be stabilized by interacting with Cdt1. 
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a 

 

b 

 

Figure 3-11. (a) The structure of Geminin92-152. (b) No degradation of 

HGeminin70-152 during crystallization. M is the marker. Lane 1 is the 

purified HGeminin70-152 protein. Lane 2 is the HGeminin70-152 

crystal. Lane 3 is the Selenium HGeminin70-152 protein. Lane 4 is the 

Selenium HGeminin70-152 crystal. 

CN 
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3.3.2 Inter-subunit interactions of the Geminin coiled coil domain 

Although the Cdt1 interacting domain of Geminin has the structure of a typical 

coiled coil, the sequence of the interacting surface is rather unusual. Coiled coil 

proteins are characterized by a repeating pattern of seven residues, (abcdefg)n, with 

hydrophobic amino acids predominating at positions a and d of the heptad repeat 

(Burkhard, 2001). The a and d positions define a stripe of residues along the side of an 

α-helix that is buried by packing the two α-helical subunits together. In the coiled coil, 

the side chains of residues at a and d (the knobs) are inserted into spaces (the holes) 

between the side chains of the apposing α-helix to create a “knobs into holes” packing 

of residues at the dimer interface. That is the side-chains are idealized into uniform 

knobs which are then made to pack into the holes (the spaces between knobs) of the 

adjacent helix. (Crick, 1953).  

The oligomeric state of a bundle of α-helices is strongly influenced by the 

shapes of the nonpolar side chains at the a and d positions of the constituent helices. 

The d positions are normally depleted of β-branched residues and leucine is often 

prominently featured at this position. In contrast, there is an abundance of β-branched 

residues like isoleucine or valine at the a position (Harbury et al., 1993, 1994). The 

side chains of the residue pairs at the a position extend toward the opposite sides of the 

dimer and pack with their Cα-Cβ bonds aligned in a parallel orientation. The β-methyl 

groups of isoleucine or valine side chains are readily accommodated in the dimer 

interface by this parallel packing. The perpendicular packing at position d instead 

points the Cα-Cβ bonds of interacting residues toward the dimer interface, resulting in 

less space for the β-methyl group of isoleucine or valine that usually occupies this 

position (Chang, 2003). 
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Although the Geminin coiled coil exhibits the usual knobs into holes packing at 

the dimer interface, its amino acid sequence does not conform to the consensus for 

coiled coil dimers (Figure 3-12b). Instead of β-branched amino acids occupying the a 

position, five out of seven amino acids are unbranched amino acid. There are two 

asparagines, one alanine, one leucine and one serine. Although nonpolar amino acids 

usually occupy the d position, two positively charged amino acid, Arg106 and Lys127 

are present at this position in the Geminin coiled coil. The polar atoms of the side 

chains from Arg106 and Lys127 point away from the dimer interface and towards 

solvent with the carbons of the side chain providing the interaction surface. Previous 

work suggests that buried polar residues in coiled coils can be the important 

determinants of structural uniqueness, influencing both oligmeric states and strand 

orientation (Akey et al., 2001), and contributing considerably to the stability of coiled 

coils (Burkhard, 2001). Beside an alanine, a bulky amino acid,  Trp99, is present in the 

d position (Figure 3-12c). Such a bulky residue is very rare in the interface of 

homodimers, because large residues (such as Phe, Tyr and Trp) could produce packing 

constraints in the interface (Figure 3-12a, b; O'shea, 1991). The existence of positively 

charged and bulky amino acids may destabilize the interface and suggests the 

possibility that the dimerization state of Geminin may be reversible in vivo in different 

physiological conditions. 

 Consistent with the previous data that charged residues are frequently observed 

at the e and g positions of coiled coils, residues occupying the e and g positions in 

Geminin are mainly charged. Four of seven residues at the g position are glutamic 

acid. In the e position, there are five positively charged residues and one negatively 

charged residue. These charged residues contribute to the stability of the coiled coil 

structure by forming broad ranges of intermolecular and intramolecular interaction. 



Chapter 3 Dimerization of Geminin coiled coil region is necessary for its function in Cell cycle 
 
 

 112 

His121 Nε2, Asp128 Oδ1, Lys135 Nζ of one chain and Glu116 Oε2, Lys127 Nζ, 

Glu130 Oε2 of the other chain form three pairs of salt bridges, respectively. These 

interactions greatly stabilize the dimer structure (Figure 3-12b). 
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Figure 3-12. (a) The residues of the seven-heptad repeats of the 

Geminin coiled coil, assigned according to the crystal structure. 

Residues at the a and d positions are colored red. (b) A helical wheel 

representation of the repeated sequence of the Geminin coiled coil, 

highlighting the a and d positions at the center of the dimer interface. 

The positions of the heptad repeat are labelled a-g. Salt bridges between 

the two chains are represented by green dashed line. The positively 

charged residues are in blue while the negative charged residues are in 

red. (c) Stereo view of Trp99 located at the interface of the dimeric 

coiled coil. The 2Fo-Fc electron density map is contoured at the 1.0σ 

level in O. 

3.3.3 Surface of Geminin coiled coil 

 Although there are totally 16 positively charged residues and 14 negatively 

charged residues in the HGeminin92-152 sequence, the surface potential of the 

structure is mainly negative. In addition, near the N-terminus, Lys105, Arg106, 

Arg107 and Lys108 of the parallel coiled coil chains form a positively charged collar. 

The surface after this positively charged collar to the C-terminal end is highly 

negatively charged (Figure 3-13a, b). Such a distinctive charge surface of the Geminin 

coiled coil indicates that interaction between Geminin and Cdt1 may be based on 

strong electrostatic interaction.  
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Figure 3-13. Electrostatic surface potential of Geminin92-152. (a) and 

(b) are the front and back views of one chain. The positively charged 

collar region is highlighted by the rectangular box. The dark red region 

indicates a potential of less than -10 kT/e, while dark blue indicates 

greater than 10 kT/e. The electrostatic potentials were calculated by 

GRASP (Nicholls, 1991). 

N N

C C

a b 



Chapter 3 Dimerization of Geminin coiled coil region is necessary for its function in Cell cycle 
 
 

 116 

3.4 DIMERIZATION OF GEMININ THROUGH ITS COILED COIL DOMAIN IS 

NECESSARY FOR ITS FUNCTION 

3.4.1 Dimerization of Geminin through coiled coil region is necessary for 

its interaction with Cdt1 in vitro and in vivo 

 Based on the parallel coiled coil structure of HGeminin70-152, mutant 

Geminin LZ, in the Leucine Zipper residues that are located at the interface of the 

coiled coil, was generated by using the Quickchange site directed mutagenesis kit 

(Stratagene). In this mutant, Leu120, Ile124, Ile131 and Leu134 are changed to 

alanines. Geminin LZ can not form a dimer as wild type Geminin(Figure 3-14c). At 

the same time, it also fails to interact with Cdt1. However, with the point mutation of 

four glutamic acid residues (residues 116, 123, 130 and 137) to alanines, Geminin 

EtoA’s still retain their ability to interact with Cdt1 in vitro (Figure 3-14a). 

 To demonstrate that these results were relevant in vivo, wild type Geminin and 

Geminin LZ were expressed as GST fusion derivatives by transient transfection of 

human 293T cells. An HA epitope tagged Cdt1 was expressed in the same cells by 

cotransfection. Purification of Geminin from these cells by affinity with glutathione 

sepharose beads revealed the preferential binding of HA tagged Cdt1 with wild type 

Geminin relative to Geminin LZ in cell extracts (Figure 3-14b). The GST epitope tag 

itself is known to form homodimers. Thus, the failure of GST-Geminin LZ to associate 

with Cdt1 indicates that the specific motif generated by the parallel coiled coil 

structure is necessary for Geminin to interact with Cdt1.  
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Figure 3-14. (a) Intact coiled coil domain of Geminin is required for 

Cdt1 interaction in vitro. Pull-down of His6-Geminin WT or mutants on 

GST-Cdt1 beads, followed by SDS-PAGE of bound proteins and 

immunoblot with anti-His antibodies. The input lanes are shown on the 

left. The forms of Geminin used were: WT (lanes 1, 8), LZ (lanes 2, 9), 

EtoA (lanes 3, 10), 70-152 (lanes 4, 11), 93-152 (lanes 5, 12), N114, 

(peptide after amino acid 114 is deleted, lanes 6, 13) and C115 (peptide 

before amino acid 115 is cut off, lanes 7, 14). The bottom panel shows 

a 

b 

c 
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the presence of GST-Cdt1 in all the lanes. (b) In vivo interaction of 

Cdt1 with Geminin WT or Geminin LZ. 293T cells were transfected 

with HA-Cdt1 and GST-Geminin WT or GST-Geminin LZ. Input lanes 

show the expression of all the proteins whereas the pull down lanes 

show the proteins that are associated with glutathione agarose beads. 

Top: immunoblot with anti-HA and bottom: immunoblot with anti-

GST. (c) Gluteraldehyde crosslinking of Geminin WT and Geminin LZ. 

1 µg of each protein with equal amount of BSA was crosslinked by 

gluteraldehyde (concentrations at the top) and analyzed by 10% SDS-

PAGE, followed by immunoblotting with anti His antibody. 
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3.4.2 Mutant Geminin LZ can not inhibit DNA replication in Xenopus egg 

extracts  

Xenopus egg extracts can replicate sperm chromatin DNA when the two are 

incubated together. The incorporation of radioactive dNTP into sperm chromatin is 

followed by the electrophoresis of the products and autoradiography (Figure 3-15a). 

Quantitation of the replication products by Image-Quant analysis revealed that the 

addition of even 100 ng of wild type Geminin inhibited the replication reaction while 5 

times as much Geminin LZ had no effect on the replication reaction (Figure 3-15b). 

Wild type Geminin associates with chromatin when it inhibits the replication reaction 

(Hodgson et al., 2002). Geminin LZ does not associate with the chromatin fraction 

(Figure3-15c), suggesting that the association of Geminin with chromatin might be 

mediated through its interaction with Cdt1 through its dimerization motif. 
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Figure 3-15. (a) Geminin LZ does not inhibit replication in Xenopus 

replication assay: Xenopus egg extracts were incubated with different 

amounts of Geminin WT or Geminin LZ, followed by the addition of 

sperm chromatin and α32PdATP. The reaction mixtures were incubated 

at the room temperature before the addition of stop buffer at times 

indicated on top. Geminin WT inhibited the replication reaction at all 

concentrations whereas Geminin LZ did not have any effect on 

replication. “*” indicates the replication products. (b) Graphical 

representation of Xenopus replication assay: The bands corresponding 

to the replication products were analyzed by Phosphor imager and the 

relative intensities of the bands normalized using Image Quant 

a 

b 

c 
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software. The relative units of replication are plotted against time. (c) 

Geminin LZ is not loaded on chromatin: Xenopus egg was extract 

incubated at room temperature for 40 min in the presence of 2 µg of 

each protein (His6-Geminin WT or LZ) and sperm chromatin and 

centrifuged through a sucrose cushion. The input mixtures and 

chromatin pellets were analyzed by SDS-PAGE and immunoblot with 

anti-His antibody.  
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3.4.3 Geminin LZ can not inhibit replication of EBV plasmid  

The transient replication of episomes based on oriP of Epstein Barr virus in 

mammalian cells is dependent on components of pre-RC and inhibited by the over-

expression of Geminin (Dhar et al., 2001). The same assay was performed with wild 

type Geminin and selected mutant derivatives (Figure. 3-16a). Cotransfection of the 

oriP based plasmid (p367) along with plasmid pEBG overexpressing wild type 

Geminin repressed the appearance of DpnI resistant replicated plasmid. In contrast, 

Geminin LZ failed to suppress the replication of the p367 plasmid. Quantitation and 

normalization of replication data using phosphorimager showed that Geminin WT 

inhibited oriP replication to less than fifty percent while Geminin LZ had no effect 

(Figure 3-16b). Thus, mutant Geminin that fails to interact with Cdt1 also fails to 

suppress the replication of episomes in mammalian cells.  
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Figure 3-16. (a) Geminin LZ does not inhibit Epstein Barr Virus oriP 

mediated replication in a transient replication assay: Southern blot to 

detect DpnI resistant p367 DNA that has replicated in HCT116 cells 

following co-transfection of 2 µg of p367 and 4 µg of a plasmid 

expressing GST (lane 3), GST-Geminin WT (lane 4) or GST-Geminin-

LZ (lane 5). Lanes 1 and 2 contain p367 mixed with mock transfected 

HCT116 DNA. (b) Quantitation of EBV replication assay: The bands 

corresponding to the DpnI sensitive and DpnI resistant digestion 

products were analyzed by Phosphor imager and the relative intensity of 

the resistant band was calculated for each lane using Image Quant 

software. The replication efficiency in each lane was plotted relative to 

the baseline in lane 3 (pEBG).  

a 

b 
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3.4.4 Geminin LZ fails to block the cell cycle 

 Transient overexpression of wild-type Geminin in cancer cells in culture did 

not produce a cell cycle block. However, a point mutation in the destruction box of 

Geminin (L26A), results in a protein that is stabilized in G1 and arrests cells at the G1-

S transition (Shreeram et al., 2002; Wohlschlegel et al., 2002). The L26A and LZ 

mutations were combined to form Geminin L26A-LZ that is stable in G1. U2OS cells 

were co-transfected with a plasmid encoding farnesylated-GFP (Clontech) and any one 

of the following plasmids: pEBG-Geminin WT, pEBG-Geminin L26A, pEBG-

Geminin LZ and pEBG-Geminin L26A-LZ. All the proteins were expressed following 

transfection as shown in Figure 3-17a. Cell cycle profiles of the GFP positive cells 

showed that pEBG-Geminin L26A blocked the cells in G1 but pEBG-Geminin L26A-

LZ failed to do so (Figure 3-17b). 
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Figure 3-17. L26A-LZ Geminin does not block chromosomal 

replication. (a) Expression of GST Geminin in U2OS cells. Whole cell 

extracts prepared from U2OS cells transfected with pEBG (lane 1), 

pEBG Geminin wt (lane2), pEBG Geminin L26A (lane 3), pEBG 

Geminin LZ (lane 4) and pEBG Geminin L26A-LZ (lane 5) were 

immunoblotted with anti-GST antibody. “*” indicates the GST Geminin 

band and “NS” stands for he Non-specific cross-reactive band as a 

loading control. (b) The effect of overexpression of wild type and 

a 

b 
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mutant Geminin on cell cycle progression. U2OS cells were co-

transfected with plasmids encoding farnesylated GFP and different 

forms of Geminin. The cell cycle profiles of GFP positive (transfected) 

and negative (untransfected) cells were determined 72 hours post 

transfection by propidium iodide staining and FACS analysis.  



Chapter 3 Dimerization of Geminin coiled coil region is necessary for its function in Cell cycle 
 
 

 127 

3.5 DISCUSSION 

The crystal structure shows that Human Geminin 94-150 forms a parallel coiled 

coil dimer. Geminin is known to interact with Cdt1 and inhibit the DNA replication 

initiation process at exactly the step that requires Cdt1. Now, it is further understood 

that Geminin associates with itself through the coiled coil domain and the integrity of 

this coiled coil domain is essential for interaction with Cdt1. Point mutations in the 

leucine zipper (Geminin-LZ), which is critical in the hydrophobic interaction of the 

coiled coild structure, disrupts the dimerization and also abolishes its interaction with 

Cdt1. Point mutation of four glutamic acid residues (Geminin EtoA) retains the ability 

to interact with Cdt1 in vitro. Two deletion mutants (Geminin N114 and Geminin 

C115) that lack an intact coiled coil domain also fail to interact with Cdt1 (Figure 3-

14a). Together, these observations suggest that the coiled coil domain of Geminin is 

essential for Cdt1 binding. 

Besides being unable to form a dimer and interact with Cdt1, Geminin-LA also 

has lost the ability of inhibiting DNA replication in Xenoupus egg extract, EBV oriP 

based transient plasmid replication and cellular chromosomal replication. Combined 

with the evidence that monomeric Geminin fails to load on chromatin, it suggests that 

dimerization and interaction with Cdt1 is critical for the initial association of Geminin 

with chromatin and furthermore carry out Geminin’s function. Since the depletion of 

Cdt1 also decreases the association of Geminin on chromatin (Gillespie, 2001), it is 

likely that the Geminin dimer interacts with Cdt1 to be loaded on chromatin where 

they interfere with Mcm2-7 loading, and thus disrupt the formation of the pre-

replication complex.  
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Although the coiled coil domain of Geminin is necessary and sufficient for 

binding Cdt1, it is not sufficient to inhibit DNA replication. An additional region, 

residues 70-93, appears to be necessary for inhibiting DNA replication. The physical 

contiguity of residues 70-93 with the coiled coil domain might indicate that the critical 

function of this accessory domain may either stabilize the interaction with or make 

additional contacts with Cdt1 that interfere with whatever function is necessary for co-

operating with Cdc6 to load the Mcm2-7 helicases. Alternatively, this domain of 

Geminin might have a novel interaction partner to help to carry out the work of 

dislodging the Mcm complex, which may be illustrated by conventional co-

immunoprecipitation experiments. A targeted search of cellular proteins that are 

capable of interacting with this short portion of Geminin will help to distinguish 

between these possibilities. Overexpression of Geminin can selectively inhibit the 

replication of EBV based episomes while sparing the replication of cellular 

chromosomes (Dhar et al., 2001). It raised the possibility that a short peptide from 

Geminin could be developed for the purpose of eliminating EBV based episomes from 

EBV associated neoplasias where the virus and the viral oncogene is usually 

maintained without integration into the host chromosome. The fact that Geminin70-

152 can inhibit EBV replication as full length Geminin shows that it is possible to 

design a peptide that can inhibit EBV replication, but such a peptide must have at least 

the coiled coil domain and an additional Cdt1 inhibitory domain of 23 residues (70-93) 

for its function. Further work on the Geminin70-152 and Cdt1 complex will definitely 

present more details.
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APPENDIX A  MEDIUM AND SOLUTION 

1) Lysis buffer A 

50 mM Tris (pH 7.0), 150 mM NaCl, 1 mM EDTA and 1 mM dithiothreitol (DTT) 

2) Wash buffer B1  

10 mM Tris (pH 7.5), 150 mM NaCl, 1% Triton X-100 

3) Wash buffer B2  

10 mM Tris (pH 7.5), 150 mM NaCl 

4) Cleavage buffer C  

50 mM Tris (pH 7.0), 150 mM NaCl, 1 mM EDTA, 1 mM DTT 

5) M9 minimum medium 

To 750 ml sterile deionized H2O add  

5X M9 salts 200 ml 

20% glucose 20 ml 

1M MgSO4 2 ml 
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1M CaCl2 100 ul 

0.5% Thiamine 100 µl 

add DH2O to 1 L. Sterilize the solution with 0.22 µm filter (Corning) 

5X M9 salts 

Dissolve Na2HPO4 34 g, KH2PO4 15 g, NaCl 2.5 g, NH4Cl 5 g in 1 liter DH2O. Divide 

the solution to 200 ml per bottle. Autoclave for 15 min at 15 psi on liquid cycle. 

6) TDE buffer 

10 mM Tris (pH 7.5), 150 mM NaCl, 10 mM DTT, 1mM EDTA 

7) TDET buffer 

10 mM Tris (pH 7.5), 150 mM NaCl, 10 mM DTT, 1 mM EDTA, 1% Triton X-100 

8) Lysis buffer D 

50 mM Tris (pH 8.0), 150 mM NaCl, 0.01% NP40, 1mM PMSF 

9) Wash buffer E 

50mM Tris (pH 8.0), 150 mM NaCl, 20 mM imidazole, 1 mM PMSF 

10) Elution buffer F 

50 mM Tris (pH 8.0), 150 mM NaCl, 500 mM imidazole, 1 mM PMSF 
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11) Low salt solution 

50 mM Tris (pH 8.0), 50 mM NaCl 

12) High salt solution 

50 mM Tris (pH 8.0), 1 M NaCl 

13) Wash buffer G 

50 mM Tris (pH 8.0), 150 mM NaCl, 1mM DTT, 1mMEDTA 

14) lysis buffer H  

50 mM Tris (pH 8.5), 500 mM NaCl, 10% glycerol, 1 mM PMSF 

15) Wash buffer I  

50 mM Tris (pH 8.5), 500 mM NaCl, 10% glycerol, 1 mM PMSF, 20 mM imidazole 

16) Elution buffer J  

50 mM Tris (pH 8.5), 500 mM NaCl, 10% glycerol, 1 mM PMSF, 500 mM imidazole 
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