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SUMMARY 
 

Rho GTPases are small molecular switches of 21-25 kDa that cycle between 

GTP-bound active form and GDP-bound inactive form. They control a wide variety of 

signal transduction pathways that regulate cytoskeletal reorganization, leading to 

changes in cell morphology and cell motility. Cdc42, RhoA and Rac1 are among the 

most well-studied members of these small GTPases They are activated by guanine 

nucleotide exchange factors (GEFs) which catalyze the exchange from GDP to GTP 

and inactivated by GTPase-activiting proteins (GAPs) that accelerate GTP hydrolysis. 

In this study, we present the cloning of a novel RhoGAP, BPGAP1 (BNIP-2 and 

Cdc42GAP Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like 

protein subtype-1), its expression and functional characterization in mammalian cell 

signaling. 

Full length BPGAP1 cDNA was isolated by reverse transcription-polymerase 

chain reaction. BPGAP1 is ubiquitously expressed and shares 54% sequence identity 

to Cdc42GAP/p50RhoGAP, one of the first RhoGAPs identified. GTPase assays and 

protein binding assays were carried out to investigate the Rho GTPase interaction and 

activities of BPGAP1 towards Cdc42, RhoA and Rac1 both in vivo and in vitro. 

BPGAP1 selectively enhanced RhoA GTPase activity, but not those of Cdc42 

(excepting in vitro) and Rac1, despite interacting with its GAP domain. In contrast, 

the BCH domain, which is a protein-protein interaction domain, preferentially 

targeted Cdc42. Pull-down and co-immunoprecipitation studies indicated that 

BPGAP1 formed homophilic or heterophilic complexes with other BCH domain 
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containing proteins such as Cdc42GAP, BNIP-2 and itself via its BCH domain and 

could assume an intramolecular interaction between its BCH and GAP domain. 

Furthermore, its proline-rich sequence targeted various SH3 and WW domains 

including p85α, PLC-γ, c-Src and Nedd4. These protein-protein interactions imply the 

involvement of BPGAP1 in multiple cell signaling pathways. 

Fluorescence studies of epitope-tagged BPGAP1 revealed that it induced 

pseudopodia and increased migration of human breast adenocarcinoma (MCF7) cells. 

Formation of pseudopodia required its GAP and BCH domains but not its proline-rich 

region, and was inhibited by co-expression of constitutive active mutant of RhoA 

G14V, dominant negative mutants of Cdc42 T17N or Rac1 T17N. Interestingly, with 

BPGAP1, constitutive active mutant of Cdc42 G12V caused intensed microspikes 

whereas Rac1 G12V induced drastic “neurite-like” feature. However, mutant devoid 

of the proline-rich region failed to confer any increase in cell migration despite the 

induction of pseudopodia.  

Further experiments also showed that BPGAP1 interacted with endogenous 

Nedd4, a ubiquitin ligase, both in vivo and in vitro. Ubiqutination assays showed that 

BPGAP1 was ubiqutinated in the Nedd4-dependent manner. These findings provided 

a possible mechanism for the turn-over of BPGAP1, hence down-regulation of 

signaling induced by BPGAP1. 

The present study reports both the biochemical features and cellular functions 

of BPGAP1, and provides evidence that cell morphology changes and migration are 

coordinated via multiple domains in BPGAP1. The results present a novel mode of 
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regulation for cell dynamics by a RhoGAP protein and its possible involvement in 

multiple signaling pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

LIST OF FIGURES 
 
 
Figure 1.1 Phylogenetic tree of Rho small GTPases subfamily 2
Figure 1.2 The Rho GTPase cycle.  3
Figure 1.3a Rho, Rac, and Cdc42 control the assembly and organization of the 

actin cytoskeleton. 6
Figure 1.3b Activation of Rho, Rac, and Cdc42 by extracellular agonists and the 

regulation on actin cytoskeleton.  6
Figure 1.4 A model for the steps of cell migration.  9
Figure 1.5 Rho GTPases regulate cell dynamics via their down stream effectors 

during cell migration  16
Figure 1.6 Homologous domains in BNIP-2 and Cdc42GAP.  22
Figure 1.7 Summary for regulation and function of Rho GTPase-activating 

proteins.  33
Figure 1.8 Protein degradation by Nedd4 dependent ubiquitination.  47
Figure 2.1 Molecular basics of GTPase activity assays that were performed by 

using Enz-checkTM Phosphate Assay Kit.  63
Figure 2.2 Cells migrate from the upper compartment to the lower compartment 

through a microporous membrane. 67
Figure 3.1 Schematic representation of selected human RhoGAP 

domain-containing preoteins. 70
Figure 3.2 Domain organization of Cdc42GAP-like proteins. 70
Figure 3.3 Molecular cloning of different isoforms of BPGAP family. 72
Figure 3.4 cDNA and protein sequences of BPGAP1.  73
Figure 3.5 Comparison of BPGAP1 with three other putative isoforms derived 

from sequences deposited in GenBank. 75
Figure 3.6 cDNA and protein sequence of BPGAP5. 76
Figure 3.7 BPGAP1 induced cell morphogical changes while BPGAP2 could not. 78
Figure 3.8 Alignment of BPGAP1 with Cdc42GAP protein sequences reveals 

regions of homology and divergence. 80
Figure 3.9 Alignment of BCH domains among BPGAP1, Cdc42GAP, BNIP-2 

and BNIP-Sα. 81
Figure 3.10 Alignment of GAP domains.  82
Figure 3.11 Alignment of the proline-rich regions. 83
Figure 3.12 Expression profiles of BPGAP family cDNAs in various cell lines. 84
Figure 3.13 Expression profiles of BPGAP family cDNAs in various mouse 

organs.  85
Figure 3.14 Expression constructs of BPGAP1 and its protein expression profiles 

in mammalian cells. 86
Figure 3.15 In vitro “Pull-down” of BPGAP1 with other BCH domain containing 

proteins.  88
Figure 3.16 In vitro “Pull-down” of BPGAP1 with other BCH domain containing 

proteins.  88



 xii

Figure 3.17 Intramolecular interaction of BPGAP1.  90
Figure 3.18 In vivo binding of BPGAP1 with itself and other BCH 

domain-containing proteins. 91
Figure 3.19 In vitro GAP assays.  93
Figure 3.20 In vivo GTPase binding assays.  94
Figure 3.21 In vitro binding of BPGAP1 with endogenous Rho GTPases.  96
Figure 3.22 In vitro binding of BPGAP1 with overexpressed Rho GTPases.  96
Figure 3.23 In vivo binding of BPGAP1 with endogenous Rho GTPases.  97
Figure 3.24 In vivo binding of BPGAP1 with overexpressed Rho GTPases.  97
Figure 3.25 BPGAP1 induced pseudopodia. 99
Figure 3.26 BPGAP1 induced pseudopodia via BCH and GAP domains (figure). 100
Figure 3.27 BPGAP1 induced pseudopodia via BCH and GAP domains (diagram). 101
Figure 3.28 BPGAP1-induced morphological changes are protrusions/pseudopodia 

and not retraction fibers.  102
Figure 3.29 BPGAP1-induced pseudopodia involve the regulation of RhoA. 104
Figure 3.30 BPGAP1-induced pseudopodia involve the regulation of Cdc42. 106
Figure 3.31 BPGAP1-induced pseudopodia involve the regulation of Rac1. 107
Figure 3.32 Coexpression of BPGAP1 with Rac1 G12V induced “neurite-like” 

outgrowth of cells. 108
Figure 3.33 Effects of BPGAP1 on cell migration.  110
Figure 3.34 In vitro binding between BPGAP1 and various SH3 domains.  112
Figure 3.35 In vitro binding between BPGAP1 and various WW domains.  112
Figure 3.36 Model for the effects of BPGAP1 on cell dynamics control.  130
Figure 3.37 In vitro binding of BPGAP1 with endogenous Nedd4. 113
Figure 3.38 In vivo binding of BPGAP1 with endogenous Nedd4. 114
Figure 3.39 Nedd4-mediated ubiquitination of BPGAP1. 116
Figure 5.1 Future perspectives for the studies of BPGAP family. 140

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 xiii

LIST OF TABLES 
 
 
Table 1.1 Selected mammalian Rho GTPase-activating proteins.  26
Table 1.2 SH3 domain-containing proteins and their ligand binding motifs.  43
Table 1.3 Classification of WW domains based on their ligand specificity  44
Table 2.1 Primers used for the cloning of BPGAP1 full length, domain and 

mutant constructs. 55
Table 3.1 Structure of BPGAP1 gene locus.  77

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiv

LIST OF ABBREVIATIONS 

 

ANOVA: Analysis of Variance  

Arp2/3: Actin-Related Proteins 2 and 3 

ATP: Adenosine Triphosphate 

BCH domain: BNIP-2 and Cdc42GAP Homology domain 

BNIP-2: BCL2/adenovirus E1B 19kD Interacting Protein 2 

BNIP-S: BNIP-2 Similar 

BPGAP1: BNIP-2 and Cdc42GAP homology (BCH) domain-containing, proline-rich 

and Cdc42GAP-like protein subtype-1 

BSA: Bovine Serum Albumin 

CDART: Conserved Domain Architecture Retrieval Tool 

Cdc42: Cell Division Cycle 42  

EDTA: Ethylenediamine Tetraacetic Acid 

GAP: GTPase-Activating Protein 

GDI: Guanine Nucleotide Dissociation Inhibitor 

GDP: Guanosine Diphosphate 

GEF: Guanine Nucleotide Exchange Factors 

GFP: Green Fluorescent Protein 

GST: Glutathione S-transferase 

GTP: Guanosine Triphosphate 

GTPases: Guanosine Triphosphatases 



 xv

HEPES: 50mm 4-(2-hydroxyethyl)-1-Piperazineethanesulfonic Acid  

MESG: 2-Amino-6-Mercapto-7-Methylpurine Riboside 

mRNA: Messenger RNA 

Nedd4: Neural precursor cell Expressed, Developmentally Down-regulated 4 

PAK: p21-Activated Kinase 

PBD: p21-Binding Domain of PAK1 

Pi: Inorganic Phosphate 

PI3K: Phosphatidylinositol 3’ Kinase 

PLC-γ: Phospholipase C-γ 

PtdIns-(3,4,5)P3: Phosphatidylinositol 3,4,5-Triphosphate 

Rac1: Ras-related C3 Botulinum Toxin Substrate 1 

Ras: Retrovirus Associated Sequence 

RBD: p21-Binding Domain of Rhotekin 

RhoA: Ras Homologous member A 

ROK: Rho Kinase 

RT-PCR: Reverse Transcription-Polymerease Chain Reaction 

SDS-PAGE: Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

Ub: Ubiquitin 

WASP: Wiskott-Aldrich Syndrome Protein 

WAVE: WASP-like Verprolin-homologous protein 

WCL: Whole Cell Lysates 

Wt: Wild type 



 

 

 

Chapter 1 

 

Introduction 

 

 

 

 

 

 



Chapter 1  Introduction 
_____________________________________________________________________        

 1

1.1    Rho GTPases regulate actin cytoskeleton dynamics and cell molitity 

 

Cells undergo dynamic changes as part of their adaptation and response to 

extracellular stimuli. These adaptation and response include their abilities to 

proliferate, differentiate, migrate or execute death (Hall, 1998). Actin cytoskeleton 

reorganization plays an important role in the regulation of cell dynamics in all 

eukaryotic cells. It is a major determinant of cell morphology and polarity. The 

assembly and disassembly of filamentous actin structures provides a driving force for 

dynamic process such as cell motility, phagocytosis, growth con guidance and 

cytokinesis. Rho family of small GTPases Rho, Rac, and Cdc42 play central roles in 

signal transduction pathways that link plasma membrane receptors to the organization 

of the actin cytoskeleton (Hall and Nobes, 2000). They are also the key regulators of 

cell migration, cell cycle progression, vascular transportation, gene transcription, cell 

polarity and microtubule dynamics  (Jaffe and Hall, 2003; Moon and Zheng, 2003). 

Three types of regulators have been identified to control the “on/off” switch of 

GTPases, including guanine nucleotide exchange factors, GTPase-activating proteins 

and guanine nucleotide dissociation inhibitors. Multiple down stream effectors of Rho 

GTPases such as ROK, WASP and WAVE functions to relay signals to actin 

cytoskeleton, thus to regulate cell dynamics and cell migration. 

 

1.1.1 Rho GTPases 

 

Rho GTPases are members of the Ras superfamily of monomeric 21-25 kDa 

GTP-binding proteins. Rho is for “Ras Homology” and GTPases are for “Guanosine 

triphosphatases”. So far, at least 18 different mammalian Rho GTPases have been 
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identified, some with multiple isoforms. They inculde: Rho(A,B,C isoforms), Rac 

(1,2,3 isoforms), Cdc42 (Cdc42Hs, G25K isoforms), Rnd1/Rho6, Rnd2/Rho7, 

Rnd3/RhoE, RhoD, RhoG, TC10, TTF. They share around 50-55% identity to each 

other. Phylogenetic analysis has been done to show their evolutional relationship 

(Figure 1.1). The most extensively characterized members are Rho, Rac and Cdc42 

(Bishop and Hall, 2000; Hall and Nobes, 2000; Wherlock and Mellor, 2002). 

 

 
 
 
Figure 1.1 Phylogenetic tree of Rho small GTPases subfamily (adapted from 
Wherlock and Mellor, 2002). 
 

Rho GTPases are small GTP binding proteins that serve as molecular switches to 

control a wide variety of signaling pathways. They are known principally for their pivotal 

role in regulating the actin cytoskeleton. By switching on a single GTPase, several 

distinct signaling pathways can be coordinately activated. They use a simple biochemical 
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strategy to control complex cellular processes (Figure 1.2). They cycle between two 

conformational states: one bound to GTP which is in the “active state”, the other bound 

to GDP which is in the “inactive state”. In the active (GTP) state, GTPases recognize 

target proteins and generate a response until GTP hydrolysis returns the switch to the 

inactive state (Etienne-Maneville and Hall, 2002). This signaling paradigm has been 

elaborated throughout evolution, which is confirmed in mammalian cells as well as in 

yeast, flies, worms and plants. 

 

 
Figure 1.2 The Rho GTPase cycle. The cycle is between an active (GTP-bound) and 
an inactive (GDP-bound) conformation. The cycle is highly regulated by three classes 
of protein: guanine nucleotide exchange factors (GEFs), GTPase-activating proteins 
(GAPs) and guanine nucleotide exchange inhibitors (GDIs) (adapted from Moon and 
Zheng, 2003). 
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1.1.2 Rho GTPases regulate actin cytoskeleton organization 

 

The actin cytoskeleton regulates a variety of essential biological functions in all 

eukaryotic cells. In addition to providing a structural framework around which cell 

shape and polarity are formed, its dynamic properties provide the driving force for cells 

to move and to divide. Understanding the biochemical mechanisms that control the 

organization of actin is thus a major goal of contemporary cell biology, which also have 

implications for health and disease (Hall, 1998). 

The actin cytoskeleton is composed of actin filaments and many specialized 

actin-binding proteins (Small et al., 1994; Stossel et al., 1993; Zigmond et al., 1996). 

Filamentous actin is generally organized into a number of discrete structures 

including : actin stress fibers which are bundles of actin filaments that traverse the cell 

and are linked to the extracellular matrix through focal adhesions; lamellipodia which 

are thin protrusive actin sheets that dominate the edges of cultured fibroblasts and 

many migrating cells; membrane ruffles observed at the leading edge of the cell result 

from lamellipodia that lift up off the substratum and fold backward; and  filopodia 

which are fingerlike protrusions that contain a tight bundle of long actin filaments in 

the direction of the protrusion. They are found primarily in motile cells and neuronal 

growth cones. Therefore, it is important that the polymerization and depolymerization 

of cortical actin be tightly regulated. In most cases, this regulation of actin 

polymerization is regulated by Rho GTPases, Rho, Cdc42 and Rac.  

Members of the Rho family of small GTPases have been studied as key 

regulators of the actin cytoskeleton.  It is showed that in fibroblasts Rho can be 

activated by the addition of extracellular stimulation such as lysophosphatidic acid 

(LPA), and that activation of Rho causes the bundling of actin filaments into stress 
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fibers and the clustering of integrins and associated proteins into focal adhesions 

complexes (Hall, 1998; Ridley and Hall, 1992; Kozma et al., 1997). Rac can be 

activated by a distinct set of agonist (for example, platelet-derived growth factor or 

insulin), leading to the assembly of a meshwork of actin filaments at the cell periphery 

to produce lamellipodia and membrane ruffles. And activation of Cdc42 is shown to 

trigger actin polymerization to form filopodia or microspikes (Mackay and Hall, 1998; 

Ridley and Hall, 1992; Ridley et al., 1992; Nobes and Hall, 1995; Kozma, 1995; 

Machesky and Hall, 1997). With similar to Rho, the cytoskeletal changes induced by 

Rac and Cdc42 are also associated with distinct, integrin-based adhesion complexes 

(Figure 1.3a; Figure1.3b). Moreover, there is significant cross-talk between GTPases of 

the Ras and Rho subfamilies: Ras can activate Rac, thus Ras induces lamellipodia; 

Cdc42 can activate Rac, therefore filopodia are intimately associated with lamellipodia 

(Nobes and Hall, 1995; Kozma et al., 1995); Rac1 can inactivate RhoA in NIH3T3 

cells resulting in epithelioid phenotype (Sander et al., 2000; Zondag et al., 2000; Evers 

et al., 2000); In contrast, in Swiss 3T3 fibroblasts, Rac1 activates RhoA instead (Ridley 

et al., 1992). 

From the observations above, it can be concluded that members of the Rho 

GTPase family are the key regulatory molecules that link surface receptors to the 

organization of the actin cytoskeleton. And this conclusion is further confirmed in a 

wide variety of mammalian cell types as well as in yeast, flies and worms (Etienne-

Manneville and Hall, 2002). 
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Figure 1.3a Rho, Rac, and Cdc42 control the assembly and organization of the actin 
cytoskeleton. In fibroblast, activation of Rho causes the bundling of actin filaments 
into stress fibers and the clustering of integrins and associated proteins into focal 
adhesions complexes; activation of Rac leads to the assembly of a meshwork of actin 
filaments at the cell periphery to produce lamellipodia and membrane ruffles;  
activation of Cdc42 is shown to trigger actin polymerization to form filopodia or 
microspikes (adapted from Hall, 1998). 
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Figure 1.3b Activation of Rho, Rac, and Cdc42 by extracellular agonists and the 
regulation on actin cytoskeleton. LPA (a major constituent of tissue culture serum) 
can activate Rho, leading to the assembly of actin-myosin stress fibers and associated 
integrin adhesion complexes (focal adhesions). Rac can be activated by PDGF or 
insulin, inducing actin polymerization at the cell periphery causing lamellipodial 
extensions and membrane ruffling activity. Bradykinin activates Cdc42 to produce 
filopodia or microspikes and associated integrin complexes. There is a lot of crosstalk 
within and between the Ras and Rho GTPase families (adapted from Mackay and Hall, 
1998). 
 
 

1.1.3 Rho GTPases regulate cell migration 

 

1.1.3.1 Cell migration 

 

In multicellular organisms, cell migration is essential to normal development, 

and is required throughout life for responses to tissue damage and infection. Cell 

migration also occurs in chronic human diseases; in cancer, atherosclerosis and 

chronic inflammatory diseases such as rheumatoid arthritis, thus preventing the 

migration of specific cell types could significantly inhibit disease progression.  

Cell migration is a multistep process including changes in the cytoskeleton, 

cell-substrate adhesions and the extracellular matrix (Figure 1.4). Many cell types 

migrate as individual cells, involving leukocytes, lymphocytes, fibroblasts and 

neuronal cells, but epithelial cells and endothelial cells often move as sheets or groups 

of cells - for example, in duct development, in healing a wound and in angiogenesis 

(Ridley, 2001; Ridley et al., 2003). 

Cell migration is usually initiated in response to extracellular cues including 

diffusible factors, signals on neighbouring cells, and/or signals from the extracellular 

matrix. These signals then stimulate transmembrane receptors to initiate intracellular 

signaling. Many different intracellular signaling molecules have been implicated in 
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cell migration, including small GTPases, Ca2+-regulated proteins, mitogen activated 

protein kinase (MAPK) cascades, protein kinases C, phosphatidylinositide kinases, 

phospholipases C and D, and tyrosine kinases.  

Rho family GTPases could regulate cell migration as they mediate the 

formation of specific actin cytoskeleton organizations (Van Aelst and D’Souza-

Schorey, 1997; Hall, 1998). Rho proteins have also been found to regulate several 

other processes relevant to cell migration, including cell-substrate adhesion, cell-cell 

adhesion, protein secretion, vesicle trafficking and transcription. 

The actin cytoskeleton is a major determinant of cell morphology and polarity. 

This assembly and disassembly of filamentous actin structures may act as a driving 

force for the dynamic process such as cell migration, phagocytosis, growth cone 

guidance and cytokinesis. Since changes in cell morphology are often associated with 

cell migration as exemplified in macrophage action and in a variety of metastatic 

cancer cells, Rho GTPases are also functioned as the main regulators for cell 

migration (Hall and Nobes, 2000). 

Cell migration requires the asymmetrical organization of cellular activities. It 

can be divided into four mechanistically separate steps: lamellipodium extension, 

formation of new adhesions, cell body contraction, and tail detachment. The front of 

the migrating cell generates protrusive activities, generally associated with the 

extension of a lamellipodium in the direction of cell movement. Meanwhile, the new 

cell adhesion to the extracellular substrate is developed.  But that is not sufficient for 

cell to move. In addition, the cell contractility is also necessary to allow the body and 

the rear of the cell to follow the extending front (Ridley, 2001; Ridley et al., 2003; 

Jaffe and Hall, 2003). 
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Figure 1.4 A model for the steps of cell migration. A migrating cell extends a 
lamellipodium at the front and this extension is stabilized through the formation of 
new adhesions to the extracellular matrix, which is induced by activated Rac and 
Cdc42. Then the activated Rho is required for the control of both the cell body to 
contract and move forward and the tail of the cell to detach from the substratum and 
retracts. Migrating cells also secrete proteases that cut up extracellular matrix proteins, 
and this is important for cell movement (adapted from Ridley, 2001). 
 

1.1.3.2  Role of Rho GTPases in cell migration 

 

1.1.3.2.1 Rac induces lamellipodium extension 

 

Lamellipodium extension involves actin polymerization, and it is widely 

believed that lamellipodia consist of branching filament networks formed through the 

actin-nucleating activity of the Arp2/3 complex (Pollard et al., 2000). Rac is required 

for lamellipodium extension induced by growth factors, cytokines and extracellular 

matrix components, and videomicroscopy experiments show that cells cannot migrate 

if Rac activity is inhibited (Allen et al., 1998; Nobes and Hall, 1999; Knight et al., 

2000). 
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Studies have been focused on the possible mechanism that controls the 

protrusive activity required for cell migration. It has been reported that RacGTP levels 

are the hightest at the leading edge of a migrating cell. Integrin-matix interaction 

probably plays an important role in regulating the activity of Rac (Kraynov et al., 

2000). 

Rac induced actin polymerization and integrin adhesion complex assembly at 

the cell periphery leads to membrane protrusion. This is essential for the migration of 

all cell types based on the current data (Small et al., 2002). As for the biochemical 

mechanism that Rac catalyses actin polymerization, four Rac effectors are implicated 

including IRSp53 (Insulin receptor substrate p53), phosphatidylinositol-4-phosphate 

5-kinase, p65Pak (p21 activated kinase) and LIM kinase. Through these effectors, Rac 

regulates the nucleation of actin polymerization and the formation of new filament 

branches (Condeelis et al., 2001). 

Rac is postulated to act through several downstream targets to regulate F-actin 

accumulation at the leading edge of cells in lamellipodia. It stimulates Arp2/3-

complex-induced actin polymerization by interacting with a complex of IRSp53 and 

WAVE (Wiskott-Aldrich syndrome protein family verprolin-homologous protein) 

proteins. This leads to the formation of a branched filament network, because the 

Arp2/3 complex preferentially nucleates new actin filaments on the sides of existing 

filaments. Rac can also induce actin filament uncapping by generating 

phosphatidylinositol 4,5-bisphosphate locally, generating extra sites for actin 

polymerization. Finally, Rac acts via PAKs to stimulate LIMK, which inhibits cofilin-

induced actin depolymerization, allowing increased accumulation of polymerized 

actin at the leading edge of cells. PAK may also contribute to migration in other ways 

by regulating myosin function and focal complex turnover. Crosstalk of Rac with 
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Cdc42 via IRSp53 and/or PAKs may regulate the level of Rac signalling. 

 

1.1.3.2.2 Cdc42 directs and stablizes Rac activity during cell migration 

 

Cell migration is normally directed and controlled by extracellular stimulation. 

Many cells adopt a polarized morphology with a front and a rear, and then migrate. But 

this is only a transient state, leading to a random migration named Chemokinesis.  The 

stabilization of directional movement named Chemotaxis requires the external cues, 

which is controlled by Cdc42. In the study of macrophage cells moving up a gradient of 

a chemotactic factor, when Cdc42 is inhibited, the macrophage can only migrate in 

random directions. And when Rac is inhibited, all cell movements are inhibited (Allen 

et al., 1998). In this case, Cdc42 maybe function to direct and /or stabilize Rac activity 

at the cell front. 

 

1.1.3.2.3 Rho promotes assembly of actin-myosin filaments cell body contraction  

 

Cell body contraction is dependent on actomyosin contractility (Mitchison and 

Cramer, 1996) and can be regulated by Rho. Rho has been shown to be involved in the 

regulation of cell contractility. In motile monocytes, Rho is responsible for contraction 

and retraction within the trailing cell body, suggesting that RhoGTP is restrictedly 

localized in the cell body while not at the leading edge (Worthylake et al., 2001). 

Rho acts via ROCKs (also known as Rho-kinases) to affect MLC (Myosin 

light chain) phosphorylation, through inhibiting MLC phosphatase and 

phosphorylating MLC (Kaibuchi et al., 1999; Amano et al., 2000). MLC 

phosphorylation is also regulated by MLC kinase (MLCK), which is activated by 
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calcium, and stimulated by the ERK (Extracellular-signal regulated 

kinase) MAPKs (mitogen-activated protein kinase) (Hansen et al., 2000). It is possible 

that ROCKs and MLCK act in the opposite to regulate different aspects of cell 

contractility, because ROCKs seem to be required for MLC phosphorylation 

associated with actin filaments in the cell body, whereas MLCK is required at the cell 

periphery (Totsukawa et al., 2000). 

In a brief, cells move through the polarized and dynamic reorganization of the 

actin cytoskeleton, which involves a protruding force at the front, combined with a 

contractile force in the cell body. This contractile activity leads to retraction of the rear 

of the cell as the adhesions are lost. Rho GTPases are the main regulators to control this 

whole process. Rac regulates actin polymerization at the front to promote protrusion. 

Cdc42 acts at the front to control direction in response to extracellular cues. Rho 

stimulates actin-myosin contraction in the cell body (Etienne-Maneville and Hall, 2002; 

Mackay DJG and Hall, 1998; Hall, 1998; Hall and Nobes, 2000). In conclusion, cells 

move through differentially regulating the activities and localizations of Rho GTPases. 

 

1.1.4 Regulators of Rho GTPases 

 

There are mainly three types of regulators for the “on/off” switch of GTPases. 

Activation of the GTPase, through GDP-GTP exchange, is stimulated by guanine 

nucleotide exchange factors (GEFs), whereas the inactivation is catalyzed by GTPase-

activating proteins (GAPs).  Rho Guanine nucleotide dissociation inhibitor (Rho-GDI) 

stabilize the inactive, GDP-bound form of the protein (Mackay and Hall, 1998; Moon 

and Zheng, 2003; Figure 1.2). 
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1.1.4.1 Guanine nucleotide exchange factors (GEFs) 

 

So far, a large family (>30) of Rho GEFs has been identified, each of which 

shares two common motifs: the Dbl homology domain, which is involved in the 

encoding the catalytic nucleotide exchange activity; and a pleckstrin homology domain, 

which might function to determine subcellular localization. Some GEFs seems specific 

for individual Rho GTPase. For example, Lbc for Rho, Tiam1 for Rac and FGD1 

(faciogenital dysplasia gene product) for Cdc42, whereas others have activities towards 

all the three, e.g. Vav and Dbl (Mackay and Hall, 1998; Van Aelst and D’Souza-

Schorey, 1997; Cerione and Zheng, 1996). 

 

1.1.4.2 GTPase-activating proteins (GAPs) 

 

Numerous GAPs have also been identified. The lifetime of active state is 

determined by the combination of slow intrinsic GTPase activity and the activity of 

GTPase-activaing proteins (GAPs), which can accelerate GTP hydrolysis by up to five 

orders of magnitude (Gamblin and Smerdon, 1998; Gideon et al., 1992; Lamarche and 

Hall, 1994). The RhoGAP family is defined by the presence of a conserved RhoGAP 

domain in the primary sequences that consists of about 150 amino acids and shares at 

least 20% sequence identity with other family members (Moon and Zheng, 2003). More 

comprehensive introduction about RhoGAPs can be referred at Chapter 1.3. 

 

1.1.4.3 Guanine nucleotide dissociation inhibitors (GDIs) 

 
The guanine nucleotide dissociation inhibitors (GDIs) sequester the GDP-bound 

form of Rho GTPases by the formation of a Rho-GDI complexs. The dissociation of the 
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GTPase from the Rho-GDI complex is likely to be another key feature of the activation 

mechanism. GEFs added to a GTPase-GDI complex in vitro are unable to stimulate 

nucleotide exchange, and so a dissociation signal appears to be required. It could even 

be that this is the rate-limiting step for GTPase activation in vivo. GDI may also be 

involved in the regulation of the intracellular localization of Rho GTPases (Moon and 

Zheng, 2003; Mackay and Hall, 1998). 

 

1.1.5 Effectors of Rho GTPases 

 

At least 30 potential effector proteins have been identified that interact with 

members of the Rho family (Bishop and Hall, 2000).  Since the major function of Rho 

GTPases is to regulate the assembly and organization of the actin cytoskeleton, 

effectors involved in the actin reorganization has been well identified. 

 

1.1.5.1 Effectors of Rho 

 

At least two effectors, ROK (Rho kinase) and Dia, are required for Rho-induced 

assembly of stress fibers and focal adhesions (Bishop and Hall, 2000). ROK is a kind of 

Ser/Thr kinase. The activity of ROK is enhanced after binding to the Rho-GTP and 

when expressed in cells, it has been reported to induce stress fibers independent of Rho 

(Mackay and Hall, 1998; Leung et al., 1996; Amano et al., 1997; Ishizaki et al., 1997). 

Two substrates of ROK, Myosin light chain (MLC) and myosin-binding subunit (MBS) 

of MLC phosphatase, are likely to be the key regulators of the formation of actomysin 

assembly and contraction (Amano et al., 1996; Kawano et al., 1999). Another ROK 

target is LIM kinase (LIMK). When LIMK is phosphorylated, it is able to inhibit cofilin, 
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leading to stabilization of filamentous actin structures (Maekawa et al., 1999; Bamburg 

et al., 1999). When ROK alone does not induce correctly organized stress fibres, it has 

been reported that when ROK combined with Dia, another effector of Rho, stress fibres 

are induced (Watanabe et al., 1999; Nakano et al., 1999; Watanabe et al., 1997). Dia 

can interact with the actin monomer binding protein, profilin, and therefore it plays a 

part in linking Rho to the actin cytoskeleton. 

 

1.1.5.2 Effectors of Cdc42 

 

WASP (Wiskott-Aldrich syndrome protein) and N-WASP are both the effectors 

of Cdc42. It was observed that overexpression of N-WASP and Cdc42 induce long 

microspikes, like an exaggeration of Cdc42 activity, indicating that these proteins may 

be involved in the formation of filopodia downstream of Cdc42 (Miki et al., 1998). N-

WASP binds to profilin, and both WASP and N-WASP bind to actin monomers, which 

directly induce actin polymerization (Machesky and Insall, 1998; Miki and Takenawa, 

1998; Suetsugu et al., 1998; Eden et al., 2002). Cdc42 also interacts with two Ser/Thr 

kinases that are involved in actin reorganization and filopodia formation, MRCKs 

α and β.  

 

1.1.5.3 Effectors of Rac 

 

So far, there are several possible targets of Rac which have been implicated in 

actin reorganization including WAVE, PI-4-P5K and PAK and et al. (Bishop and Hall, 

2000). WAVE is for WASP-like Verprolin-homologous protein. It induces actin 

nucleation and polymerization by activating and interacting with its downstream 
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Profilin, G-actin and Arp2/3 complex (Machesky and Insall, 1998; Machesky et al., 

1999; Zigmond et al., 1997; Eden et al., 2002). Rac interacts directly with PI-4-P5K, 

and this interaction is not GTP-dependent (Tolias et al., 1998). Upon the interaction 

and activation of Rac, PIP2 level is increased, capping proteins are released, and finally 

leads to actin-filament assembly (Hartwig et al., 1995; Tolias et al., 2000). PAK 1,2,3 

are Ser/Thr kinase, which are the common target proteins utilized by both Rac and 

Cdc42 in the induction of lamellipodia  and filopodia respectively.  
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Figure 1.5 Rho GTPases regulate cell dynamics via their down stream effectors 
during cell migration (adapted from Van Aelst and Symons, 2002). 
 

1.1.6 The role of Rho GTPases in disease development 

 

The functionality and efficacy of Rho GTPase signaling is critical for various  

biological processes. Due to the integral nature of these molecules, the dysregulation 

of their activities can result in diverse aberrant phenotypes. Dysregulation is based on 

an altered signaling strength at the level of a specific regulator or that of the 
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respective GTPase itself. Alternatively, effector pathways induced by a specific Rho 

GTPase may be under- or over-activated. The steadily growing list of genetic 

alterations that specifically impinge on proper Rho GTPase function corresponds to 

pathological categories such as cancer progression, mental disabilities and a group of 

quite diverse and unrelated disorders (Boettner and Van Aelst, 2002).  

There is a variety of disease-causing mutations in genes that have been 

associated with Rho GTPase signaling by using functional prediction or insights 

obtained by direct biochemical analysis. These include GEFs, GAPs and effector 

proteins that appear to be part of quite diverse signaling networks. Surprisingly, 

aberrations in only a single gene encoding a Rho GTPase itself, namely the RhoH 

gene, have been described to putatively induce lymphoma development (Preudhomme 

et al., 2000; Pasqualucci et al., 2001). Other mutations that may inactivate a Rho gene 

or lead to an overactive version of the resulting protein due to a lack of extensive 

screening or functional redundancy have either escaped detection or simply are lethal. 

This latter possibility is described by the fact that mouse embryos whose Rac1 or 

Cdc42 genes have been deleted by gene-targeted mutation die early in development 

(Sugihara et al., 1998; Chen et al., 2000). It may also reflect the multifunctional 

nature of Rho GTPases. Loss-of-function or constitutive gain-of-function mutations in 

many Rho GTPases thus may interfere with a number of different cellular processes 

(Boettner and Van Aelst, 2002).  

A single Rho GTPase can affect a diverse array of phenomena implicated in a 

cell’s specific biology. In addition, there is also continued speculation that Rho-type 

GTPases need to cycle between their active and inactive states in order to exert their 

complete physiological potential (Symons and Settleman, 2000). On the other hand, it 

is likely that regulators and effectors of Rho GTPases are expressed and act in a more 
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specific manner. Genetic loss-of-function mutations in these regulators or effectors, 

even in form of a germline mutation, may result in a weaker impairment than loss of 

the respective GTPase itself. 

 

1.2 Definition of protein interaction domains 

 

An ever-increasing amount of data suggests that proteins involved in the 

regulation of cellular events such as signal transduction, the cell cycle, protein 

trafficking, targeted proteolysis, cytoskeletal organization and gene expression are 

built in a modular fashion of a combination of interaction and catalytic domains. 

Interaction domains drive signaling polypeptides into specific multi-protein 

complexes, and thereby link cell surface receptors to intracellular biochemical 

pathways that regulate cellular responses to external signals. The pathways and 

networks that link receptors to their ultimate targets frequently involve a series of 

protein-protein interactions, which recruit and confine signaling proteins to an 

appropriate subcellular location, and determine the specificity with which enzymes 

interact with their targets, such as the association of protein kinases and their 

substrates. Most of the protein-protein interaction domains are independently folding 

modules of 35-150 amino acids, which can be expressed in isolation from their host 

proteins while retaining their intrinsic ability to bind their physiological partners. 

Their N- and C-termini are usually close together in space, whereas their ligand-

binding surface lies on the outer face of the domain. This arrangement allows the 

domain to be inserted into a host protein while leaving its ligand-binding site to 

engage another polypeptide.  

Protein-protein interaction domains can be divided into different families, 
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based either by sequence or ligand-binding properties. For example, a large number of 

cytoplasmic proteins contain one or two SH2 domains that directly recognize 

phosphotyrosine-containing motifs, such as those found on activated receptors of  

growth factors, cytokines and antigens. SH2 domains commonly recognize 

phosphotyrosine, depending on their different preference for the amino acids 

immediately following the phosphorylated residue, which plays an important role in 

deciding the specificity in signaling by tyrosine kinases. Interaction domains often 

appear repeatedly in different proteins to mediate a particular type of molecular 

recognition, and indeed the human genome is predicted to encode at least 120 SH2 

domains. However, phosphotyrosine-containing motifs are also recognized by a quite 

different class of interaction modules, termed PTB domains, found on docking 

proteins such as the IRS-1 substrate of the insulin receptor. In addition, a growing 

family of interactions domains, including 14-3-3 proteins, FHA domains and WD40-

repeat domains recognize specific phosphoserine/threonine motifs, and thereby 

mediate the biological activities of protein-serine/threonine kinases. Recent data 

suggest that other forms of post-translational protein modification control modular 

protein-protein interactions. For example, acetylation or methylation of lysine 

residues on histones creates binding sites for the Bromo and Chromo domains 

respectively, of proteins involved in chromatin remodeling. Taken together, these 

findings suggest that the dynamic control of cellular behavior exerted by covalent 

protein modifications is mediated by interaction domains, regulating the associations 

of signaling proteins one with another.  

There is a large group of interaction domains (SH3, WW, EVH1) that bind 

proline-rich motifs. Since these complexes are less dependent on post-translational 

modifications, they seem to be constitutive compared to the phospho-dependent 
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interactions involving SH2 domains. Similarly, PDZ domains bind the extreme C-

termini of other polypeptides, such as ion channels and receptors, in a fashion that 

appears important for the localization of their targets to particular subcellular sites, as 

well as for downstream signaling. The interactions discussed above are all related to 

the ability of a folded interaction domain to recognize a short peptide motif. 

Furthermore, a lot of modules form homotypic or heterotypic domain-domain 

interactions. These include PDZ domains, which are rather versatile since they can not 

only form heterodimers but also bind short C-terminal peptide motifs, as well as SAM 

domains.  

In addition to interaction domains that engage specific peptide motifs, a 

growing number of modules have been identified that recognize selected 

phospholipids, such as phosphoinositides (PI). Strikingly, PH domains can bind either 

PI-4,5-P2 or PI-3,4,5-P3, and thereby mediate the effects of lipid kinases and 

phosphatases on cellular function. Such phospholipid-binding domains serve both to 

localize signaling proteins at specific subregions of the plasma membrane, and to 

regulate the enzymatic activities of their host proteins, either directly or by co-

recruitment of another regulatory protein. Modules such as FYVE domains can 

recognize PI-3-P, and may play an important role in the trafficking of proteins within 

the cell.  

Protein interaction domains have two important features. One is the versatility. 

For example, although PTB domains were originally discovered through their ability 

to bind phosphotyrosine in the context of an Asn-Pro-X-Tyr (NPxY) motif which 

forms a β-turn, it appears that many PTB domains recognize NPxY-related peptide 

motifs in a phospho-independent manner. Therefore, PTB domains likely evolved to 

bind unphosphorylated peptides, and have subsequently developed a capacity to 
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recognize phosphotyrosine in a few specific cases. Furthermore, an individual PTB 

domain, such as those from the Numb and FRS-2 proteins, can recognize two 

different peptide ligands. Interestingly, although PTB domains primarily bind peptide 

motifs and PH domains recognize phosphoinositdes, their structural fold are quite 

similiar, which is shared by other interaction domains, including EVH1 domains 

which bind specific proline-rich sequences. It seems that the PH/PTB/EVH1 domain 

fold provides a framework that can be used for multiple distinct types of 

intermolecular interactions. Second, different interaction domains are frequently 

covalently linked within the same polypeptide chain, thus to yield a protein that can 

mediate multiple protein-protein and protein-phospholipid interactions. This modular 

organization of signaling proteins can then localize proteins to the appropriate site 

within the cell, leading to their interactions with cell surface receptors and 

downstream targets. The reiterated and combinatorial use of interaction domains can 

in principle provide a wiring plan that controls and integrates the flow of information 

within the cell (http://www.mshri.on.ca/pawson/domains.html, Tony Pawson research 

on domain). 

Our current study focuses on BPGAP1 (for BNIP-2 and Cdc42GAP 

Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like protein 

subtype-1) which will be described in the subsequent chapters. The various protein 

domains that BPGAP1 contains include the BCH domain, RhoGAP domain and 

proline-rich sequences. 

 

1.3 The BCH domain 

 
BCH domain is one of the protein domains that our group first identified and 

characterized. It is for BNIP-2 and Cdc42GAP Homology. This novel sequence 
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contains about 145 amino acids and was initially shown to be common to two proteins: 

BNIP-2 and Cdc42GAP (Low et al., 1999; 2000a; 2000b; Figure 1.6). 

 

 

  
 
Figure 1.6 Homologous domains in BNIP-2 and Cdc42GAP. Shown are the regions 
of homology between the BNIP-2 and Cdc42GAP proteins. Identical residues are 
denoted by asterisks, and conserved changes are shown by colons. Alignment was 
done using the Blossum 62 matrix of the BLAST (NCBI server) and SIM programs 
(ExPASy server). The area shaded in black in BNIP-2 is an EF-hand domain (adapted 
from Low et al., 1999). 

 

1.3.1 BNIP-2 and Cdc42GAP 

 

BNIP-2 is originally shown to be an interacting protein for both the viral E1B 

p19KDa protein and the Bcl-2 anti-apoptotic protein. It is shown that BNIP-2 could 

be phosphorylated by FGFR-1 in vivo and in vitro (Low et al., 1999). BNIP-2 shares a 

region of homology with the noncatalytic domain of Cdc42GAP, a GTPase-activating 

protein for the small GTP-binding molecule, Cdc42. BNIP-2 and Cdc42GAP could 

directly bind to each other through this homologous region-BCH domain. They also 

compete for the binding to the same target, Cdc42 (Low et al., 2000b). BNIP-2 

stimulates the intrinsic GTPase activity of Cdc42 via a novel arginine-patch motif.  
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Tyrosine phosphorylation of BNIP-2 severely impairs its association with Cdc42GAP 

and its induced GTPase-activating protein–like activity toward Cdc42 (Low et al., 

2000a). 

Cdc42GAP (also known as p50-RhoGAP) is the first identified Rho GTPase-

activating protein. In vitro, Cdc42GAP strongly stimulates the Rho GTPase activity 

towards Cdc42 but is much less effective to other Rho GTPases, which indicated that 

Cdc42GAP is a specific GAP for Cdc42 (Peck et al., 2002; Garrett et al., 1989). 

Cdc42GAP contains a proline-rich sequence which could be the potential target for 

SH3 and WW domain containing proteins. It has been shown that Cdc42GAP binds 

p85α, the regulatory subunit of phosphatidylinositol 3’kinase (PI3K). This interaction 

indicates that Cdc42GAP may function as a link between Cdc42 and other signaling 

pathways (Peck et al., 2002; Barfod et al., 1993; Ridley et al., 1993; Lancaster et al., 

1994). Cdc42GAP also contains a BCH domain. Although it can bind Cdc42, it is 

catalytically inactive (Low et al., 2000a). 

 

1.3.2 The BCH domain, a novel protein-protein interaction domain 

 

BCH domain was first demonstrated as a novel protein-protein interaction 

domain when it was found that BNIP-2 and Cdc42GAP could form homophilic and 

heterophilic complexes via their conserved BCH domains. Molecular modeling of the 

BNIP-2 BCH homodimer complex and subsequent deletion mutagenesis helped to 

identify the region 217 RRKMP 221 as the major BCH interaction site within BNIP-2 

(Low et al., 2000b). Recently, it has been found that most of the BCH domains 

identified could form homophilic and heterophilic complexes with itself or other BCH 

domain containing proteins via the BCH domains. For example: BPGAP1 (reported 
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here) vs. Cdc42GAP, BNIP-2, BNIP-Sα and itself; BNIP-Sα vs. Cdc42GAP, BNIP-2 

and itself (Low et al., 2000b; Zhou et al., 2002). Moreover, extensive database 

searches show that the BCH domain is highly conserved across species from S. 

cerevisiae, P. falciparum, A. thaliana, C. elegans, and H. sapiens. The conservation 

of BCH domain in various species indicates that BCH domain may have very 

important physiological functions (Low et al., 2000b). 

 

1.3.3 BCH domain, a novel apoptosis-inducing sequence in BNIP-Sα 

 

BNIP-Sα and β ( for BNIP-2 Similar) are the two new members of BNIP-2 

family. BNIP-Sα contains the conserved complete BCH domain at its C-terminus.  

And BNIP-Sβ  is an isoform of BNIP-Sα lacks the full BCH domain as a result of an 

alternative RNA splicing that induces a nonsense intron (Zhou et al., 2002).  It was 

shown that BNIP-Sα could induce apoptosis through BCH domain, whereas BNIP-Sβ 

did not have this apoptosis-inducing function because of the truncated BCH domain. 

Deletion studies in the BCH domain of BNIP-Sα were performed to recognize the 

motif that is responsible for BNIP-Sα-induced apoptosis. It was discovered that the 

homophilic interaction of BNIP-Sα via the BCH domains coincides with its apoptotic 

effects, and that the deletion-S mutant (that did not form homophilic complex, motif 

“ATWYVKA”) failed to exert proapoptotic activity whereas deletion mutants of 

region R (motif “RRLRK”) and T (motif “ISLDQVH”) were just as potent as the wild 

type. These reports indicate that BCH domain, at least in BNIP-Sα, represents a novel 

apoptosis-inducing sequence and may play important roles in regulating cell growth 

and development (Zhou et al., 2002). 
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1.3.4 Implication of BCH domain in cytoskeletion organization by targeting Rho        

GTPases 

 

Previous studies of BCH domain have indicated that BCH domains in 

different proteins could confer versatile functions. Therefore, it should be significant 

to discover more potential roles of BCH domains in cell signaling and physiology.  It 

has been shown that BCH domain-containing proteins, BNIP-2 and Cdc42GAP target 

Rho GTPases via their BCH domains. BNIP-2 has been found to regulate cell 

dynamics through targeting Cdc42 (Zhou et al., 2004, manuscript in preparation). 

Therefore, Rho GTPases have emerged as key regulators of the actin cytoskeleton. 

The implication of the interaction between BCH domain of BPGAP1 and Rho 

GTPases in the regulation of cell dynamics will be addressed in subsequent chapters.   

 

1.4 Rho GTPase-activating proteins (GAPs) 

 

The RhoGAP family is defined by the presence of a conserved RhoGAP 

domain in the primary sequences that consists of about 150 amino acids and shares at 

least 20% sequence identity with other family members. The RhoGAP domain is 

distinct from the GAP modules that specifically inactivates other classes of GTPases 

(e.g. Ras, Ran or ARF), and it is sufficient for the binding to GTP-bound Rho proteins 

and accelerating their GTPase activity. So far, over 30 RhoGAPs have been identified 

in Eukaryotes, from yeast to human. Recent human genome analysis has predicted 

that as many as 80 RhoGAPs are in Homo sapiens, while their cellular substrates, the 

Rho family GTPases, only contain 20 members. The overabundance of RhoGAPs 

evidently suggests that each RhoGAP might play a specialized role in regulating 
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individual Rho GAPase activity and in influencing their specific functions (Moon and 

Zheng, 2003; Bernards, 2003; Lamarche and  Hall, 1994). 

 

1.4.1 Overview of human RhoGAP-containing protein families 

 
A number of RhoGAPs are differentially expressed and contain versatile GAP 

specificities and cellular functions (Table 1.1). 

 

Name In vitro 
specificity 

Tissue 
distribution 

Notes 

Bcr Rac and Cdc42 Predominently brain Bcr-Abr oncoprotein in leukemias 
Abr Rac1, Rac2 and 

Cdc42 
Predominently brain Deleted in seven of eight 

informative cases of 
medulloblastoma 

p85α, p85β No activity Ubiquitous An adaptor subunit of PI3K; 
interacts with Cdc42Hs and Rac 

p190RhoGAP RhoA>Rac1 and 
Cdc42 

Ubiquitous A substrates of Src; regulate axonal 
growth and guidance and is required
for normal neural development 

p190-BRhoGAP Rac, Rac1 and 
Cdc42 

Ubiquitous A regulatory molecule of cell and 
organism size by regulating 
RhoGTPase, which modulates 
CREB activity 

p122 RhoGAP/ 
DLC1 

RhoA/ND ND/ubiquitous Interact with and activate PLC-δ1/A 
candidate tumor-suppressor gene 

ARAP1/ARAP3 Cdc42/RhoA, Rac 
and Cdc42 

Ubiquitous, highly 
expressed in brain and 
spleen 

PIP3 dependent ArfGAP activity 

 

Table 1.1 Selected mammalian Rho GTPase-activating proteins (adapted from Moon 
and Zheng, 2003). 
 
 
 

Cdc42GAP is the first RhoGAP protein identified (Barfod et al., 1993; 

Lancaster et al., 1994). It is expressed ubiquitously and is the smallest member of the 

RhoGAP family. Cdc42GAP contains an N-terminal BCH (Sec14-like) domain and 

C-terminal RhoGAP domain. It can stimulate the GTPase activity of Rho, Cdc42 and 

Rac and appears to have approximately equal affinity for the three Rho GTPases. But 
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it has been shown that Cdc42 is its preferred substrate in the in vitro GAP assay. 

Cdc42GAP does not show any differential binding affinity towards GDP-bound and 

GTP-bound forms of the Rho GTPases, while RasGAP shows 100-time greater 

binding affinity towards the GTP-bound form of Ras than for the GDP-bound form 

(Peck et al., 2002; Barfod et al., 1993; Ridley et al., 1993; Lancaster et al., 1994; 

Lamarche and Hall, 1994). Phospholipid affinity chromatography studies have 

recently shown that Cdc42GAP can bind phosphatidylinositol 3,4,5-trisphosphate 

(PtdIns-(3,4,5)P3). It is possible that the interaction of Cdc42GAP with PtdIns-

(3,4,5)P3 involves the BCH (Sec14-like) domain. This interaction might lead to its 

recruitment to the plasma membrane and/or conformational changes that regulate its 

GAP activity. Another notable feature of Cdc42GAP is the proline-rich region 

upstream of GAP domain. Such Proline-rich motifs are thought to be the targets of 

SH3 and WW domains. In facts, Cdc42GAP in vitro binds the SH3 domains of c-src 

tyrosine kinase and p85, the regulatory subunit of phosphatidylinositol 3'-kinase 

(Lamarche and Hall, 1994). And these interactions may be involved in regulating cell 

signaling pathways and protein activities. 

The p190-A RhoGAP was originally identified as a rat p120 RasGAP-

interacting protein (Settleman et al., 1992). In humans, two homologs, p190-A 

RhoGAP and p190-B RhoGAP, contain N-terminal GTPase, and a C-terminal 

RhoGAP domains (Tikoo et al., 2000; Burbelo et al., 1995). In vitro GAP assay 

shows that p190-A has equal GAP activities for Rho, Rac and Cdc42 (Settleman et al., 

1992), while in vivo, it has a preference towards Rho (Ridley et al., 1993).  Its 

RhoGAP activity is regulated by phosphorylation. Upon stimulation by growth factors 

or cell attachment, tyrosine residues in the central portion of p190 are phosphorylated 

by kinases such as Src (Haskell et al., 2001). This phosphorylation induces a 
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conformational change in the p190 molecule that leads to the activation of its GAP 

activity. The activation of the GAP activity decreases Rho GTP levels and inhibits 

signaling to effector proteins, leading to a loss of stress fibers. Mouse knockout 

studies indicate that p190-A mediates Src-dependent adhesion signals involved in 

neuritogenesis through its effect on the intrinsic GTPase activity of Rho. These results 

are consistent with it being the major tyrosine phosphorylated protein in the brain 

(Brouns et al., 2001). Knockout of the mouse p190-B RhoGAP homolog dramatically 

decreases the size of mice, and the effect that appears to be mediated through a 

transcription factor, CREB (cAMP-responsive element (CRE) binding 

protein; Sordella et al., 2002). Cells derived from embryos lacking p190-B RhoGAP 

exhibit excessive Rho activity, are defective for adipogenesis, but undergo 

myogenesis in response to IGF-1 (Insulin-like growth factor) exposure. In vitro, 

activation or Rho-kinase by Rho inhibits adipogenesis and is required for myogenesis. 

The activation state of Rho following IGF-1 signaling is determined by the tyrosine-

phosphorylation status of p190-B RhoGAP and its resulting subcellular relocalization. 

Moveover, adjusting Rho activity is sufficient to alter the differentiation program of 

adipocyte and myocyte precursors (Sordella et al., 2003). 

The p85-α and p85-β proteins are known to function as regulatory subunits for 

the 110kDa catalytic subunit of phosphatidylinositol 3’ kinase, which phosphorylates 

the inositol ring at the 3-position (Skolnik et al., 1991; Otsu et al., 1991). p85-α and 

p85-β subunits are highly homologous proteins containing an N-terminal SH3 domain, 

two SH2 domains and a region partially homologous to the consensus RhoGAP 

domain. Although p85-α does not have catalytic activity towards Rho GTPases 

(Zheng et al., 1993), it can interact with GTP-bound Cdc42 and Rac in vitro and co-

immunoprecipitates with Cdc42 in a GTP-dependent manner (Zhang et al., 1994). 
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Thus p85 subunits may function as adapter proteins to localize phophatidylinositol 

3’kinase activity to sites that active Cdc42 localizes. 

α-chimaerin and β-chimaerin both contain a phorbol ester-C1 binding domain 

and a C-terminal RhoGAP domain, while splice variants of these genes contain 

additional N-terminal SH2 domains. α-chimaerin only has GAP activity toward Rac 

(Diekmann et al., 1991). The C2 sequences in β2-chimaerin, like those in protein 

kinase C member, bind phorbol esters and regulate its accumulation both at the 

plasma membrane and in the perinuclear compartment (Caloca et al., 1999). 

DLC-1, the human analog of the rat p122 protein (Homma and Emori, 1995), 

is frequently deleted in hepatocellular carcinoma (Yuan et al., 1998). The RhoGAP 

domain of DLC-1 is located in its C-terminus and studies with the rat homolog reveal 

RhoGAP activity towards Rho in vitro and in vivo. DLC-1 can also interact and 

activate phospholipase C δ1 activity. Transfection studies indicate that the ability of 

p122 to induce cell detachment is mainly due to its RhoGAP activity (Homma and 

Emori, 1995; Sekimata et al., 1999). 

PSGAP, a protein that interacts with PYK2 and FAD and contains multiple 

domains including a pleckstrin homology (PH) domain, a RhoGAP-activating protein 

domain and a Src homology 3 (SH3) domain. PYK2 interacts with PSGAP SH3 

domain via the carboxyl-terminal proline-rich sequence. PSGAP is able to increase 

GTPase activity of Cdc42 and RhoA in vitro and in vivo. RYK2 can activate Cdc42 

via inhibition of PSGAP-mediated GTP hydrolysis of Cdc42. Moreover, PSGAP is 

localized at cell periphery in fibroblasts in a PH domain-dependent manner. Over-

expression of PSGAP in fibroblasts results in reorganization of cytoskeletal structures 

and changes of cellular morphology, which requires Rho GTPase-activating activity 

(Ren et al., 2001). 
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There are three other proteins that share high homology with PSGAP, GRAF, 

GRAF-2 and Oligophrenin-1. All of them contain a PH domain and RhoGAP domain. 

In addition GRAF and GRAF-2 contain C-terminal SH3 domain. The overall structure 

of PSGAP resembles that of GRAF, and PSGAP shows high homology to GRAF with 

68% identity in amino terminal region, 59% in PH domains, 69% in RhoGAP 

domains and 68% in SH3 domains. GRAF was originally identified as a chicken 

cDNA encoding a protein that specifically interacted with focal adhesion kinase and 

possessed GAP activity for Rho and Cdc42 in vitro (Hildebrand et al., 1996). Human 

GRAF-2, was identified in a yeast two-hybrid screen as being able to interact with the 

Rho effector protein, PKN-β( a novel isoform of PKN; also known as PRK) (Ren et 

al., 2001). In vitro, GRAP-2 can inactivate Cdc42 and Rho but not Rac. Current 

thinking suggests that these molecules may act as adapters to coordinate Rho activity 

with kinase signaling pathways. 

ArhGAP6 was originally identified as a potential cause of microophthalmia 

with lenear skin defects syndrome (MLS) characterized by eye, skin and central 

nervous system malformations for it is found be be commonly deleted in MLS. But 

studies using transgenic mouse suggest that the mutation of ArhGAP6 gene is not 

responsible for MLS.  ArhGAP6 contains a central RhoGAP domain and several 

sequences that can potentially target SH3 domains. ArhGAP6 has activity for RhoA 

but not Rac or Cdc42. But the transfection studies show that it can also regulate actin 

changes independent of the RhoGAP activity (Prakash et al., 2000). 

RICH-1 was identified in a yeast two-hybrid screen using CIP4, a Cdc42 

effector protein as the bait (Richnau et al., 2001). RICH-1 contains an N-terminal 

endopholin homology (EH, EPS15 homology) domain, a RhoGAP domain and 

several C-terminal proline-rich  regions (Farsad et al., 2001).  RICH interacts through 



Chapter 1  Introduction 
_____________________________________________________________________        

 31

its proline-rich region with the SH3 domain of CIP4. In vitro, RICH-1 has GAP 

activity for Cdc42 and Rac but not for RhoA. These in vitro results are consistent with 

the in vivo over-expression experiments: It inhibits Rac-mediated membrane ruffling, 

but has no effect on Rho induced stress fiber formation (Richnau et al., 2001). 

The ARAP subfamily in human is a subclass of Arf GAP-containing proteins, 

including ARAP1, ARAP2 and ARAP3 (Krugmann et al., 2002; Miura et al., 2002). 

All these three ARAP contain five PH domains, an ArfGAP domain and a RhoGAP 

domain (Miura et al., 2002). ARAP1 and ARAP3 have equal GAP activity toward 

Rho, Rac and Cdc42 in vitro. ARAP2 has no GAP activity because it lacks the 

catalytic arginine.  The PH domain in ARAP1 and ARAP3 can interact PtdIns (3,4,5), 

thus increase Arf GAP activity. The ARAPs may function to regulate protein 

trafficking with actin cytoskeletal organization (Krugmann et al., 2002; Miura et al., 

2002). 

BCR contains multiple protein domains including a Dbl domain, a PH domain 

and a C-terminal RhoGAP domain. BCR has GAP activity specifically toward Rac 

(Diekmann et al., 1991; Ridley et al., 1993). The Dbl region of BCR has RhoGEF 

activity for Cdc42 and less for Rac and Rho. Since BCR contains both GAP and GEF 

activities, it may act as regulators of these GTPases (Chuang et al., 1995). ABR 

shares homologies with BCR in its Dbl, PH and RhoGAP domains. It has GAP 

activity for both Rac and Cdc42 (Tan et al., 1993; Heisterkamp et al., 1993).   

Myosin IX class contain a typical myosin-like head domain, as actin binding 

region, IQ-calmodulin binding repeats, a protein kinase C regulatory domain and a 

RhoGAP domain in the C-terminus. Myosin IXb has been identified to have GAP 

activity specifically toward Rho. This GAP activity may be involved in transiently 

inhibiting Rho Activity during the early stage of cell spreading (Wirth et al., 1996; 
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Post et al., 1998). 

MgcRacGAP contains an ERM domain, a protein kinase C-like cysteine-rich 

motif and a RhoGAP domain. MgcRacGAP has equal GAP activities toward Rac1 

and Cdc42, while 30-time less the activity toward RhoA. MgcRacGAP may function 

to regulate the mitotic spindle formation (Toure et al., 1998; Hirose et al., 2001). 

 

1.4.2  Function of Rho GTPase-activating proteins—Negative regulators of Rho 

GTPases 

 

The Rho GTPase-activating proteins (RhoGAPs) are one of the major classes 

of regulators of Rho GTPases found in all eukaryotes that are crucial in cell 

cytoskeletal organization, growth, differentiation, neuronal development and synaptic 

functions (Moon and Zheng, 2003; Figure 1.7). Biochemically the RhoGAP domain 

binds to the GTP-bound Rho proteins and stimulates their intrinsic GTPase activity. 

The mechanism of how RhoGAPs to catalyze the hydrolysis of GTP-bound Rho 

GTPases to GDP-bound Rho GTPases has been well elucidated through the structural 

studies. 
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Figure 1.7 Summary for regulation and function of Rho GTPase-activating proteins. 
Mechanisms of regulation for RhoGAPs include: regulation by phosphorylation, by 
lipid binding, and by protein-protein interaction. RhoGAPs play multiple roles in 
regulating neuronal morphogenesis, cell growth and differentiation, endocytosis and 
tumor suppression (adapted from Moon and Zheng, 2003). 
 
 

1.4.2.1 Structural basis of Rho GTPase-activating reaction  

 

The sequences of RhoGAP domains are different from those of other classes 

of GAPs such as Ras GTPase-activating proteins (RasGAPs), while the tertiary 

folding pattern and the basic GTPase-activating mechanism of the RhoGAP domain 

are similar to that of RasGAP (Bax et al., 1998; Rittinger et al., 1998). The RhoGAP 

domain consists of nine α helices and a highly conserved arginine residue is presented 

in a loop structure (Gamblin and Smerdon, 1998). The RhoGAP domain interacts with 

both the switch I and II region and the P-loop of Rho GTPases that constitute the 

GTP-binding core (Moon and Zheng, 2003). There is a conformational change when 

RhoGAP interacts with Rho GTPases and forms a transitional state (Nassar et al., 



Chapter 1  Introduction 
_____________________________________________________________________        

 34

1998). The catalytic arginine residue or RhoGAP is placed into the active site of Rho 

GTPase and stabilizes charges developed during the formation of this state. The 

arginine would interact with Gln61 of the GTPase, which is responsible for 

positioning a hydrolytic water molecule for catalysis (Moon and Zheng, 2003). 

Stabilization of this glutamine residue restricts the freedom of the water molecule and 

may reduce the energy barrier for GTP hydrolysis (Li et al., 1997; Longenecker et al., 

2000).   

 
1.4.2.2 Role of RhoGAPs in neuronal morphogenesis 

 

Rho GTPases have important physiological roles on the regulation of the actin 

cytoskeleton during neuronal migration, axonal growth and guidance, and formation of 

synapses (Luo et al., 2000). Therefore, regulators of Rho GTPases play key roles in 

neuronal morphogenesis. 

Oligophrenin-1, a RhoGAP family member that is highly expressed in human 

fetal brain was found to be associated with X-linked mental retardation, which 

implicates that RhoGAP may be involved in the regulation of nervous system 

development (Billuart et al., 1998). 

Knockout experiments show that p190 RhoGAP is required for axon 

outgrowth, guidance and fasciculation, and neuronal morphogenesis. It has been 

found that p190 plays a negative role in the regulation of Rho-mediated actin 

assembly within the neuroepithelium; p190 could be an important regulator of Rho-

mediated actin reorganization in neuronal growth cones. Furthermore, p190 appears to 

be one of the major Src kinase substrates in the neuron. These studies implicate p190 

in neuronal development and neuritogenesis by mediating Src-dependent adhesion 

through balancing the Rho GTPase activity (Brouns et al., 2000; 2001). 
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1.4.2.3 Role of RhoGAPs in cell growth and differentiation 

 

The GEFs and effectors of Rho GTPases have been shown to regulate cell 

growth and differentiation (Bishop et al., 2000; Van Aelst et al., 2000; Hall, 2000). 

Recently, RhoGAP are also put into list of the regulators of cell growth and 

differentiation, possibly through their ability to suppress Rho GTPase function.  

Mice lacking p190-B, exhibit a severe reduction in thymus size and axon 

defects in the brain including a severe reduction in the major midline forebrain 

crossing tracts as well as a thinner cortex.  Theses defects are associated with a failure 

in cell differentiation (Sordella et al., 2002). Interestingly, the knockout of p190-B 

shows similar effect on cell growth and differentiation as that of CRE-binding factor 

(CREB). This effect can be attributed to the enhanced Rho activity and its 

downstream Rho-Rho kinase-insulin receptor substrate-CREB signaling chain 

induced by the deletion of p190-B (Sordella et al., 2002). Therefore, p190-B is 

indicated as a regulator of cell differentiation in the thymus and brain, and cell size 

and animal size determination (Moon and Zheng, 2003). 

 

1.4.2.4 Role of RhoGAPs in tumour suppression 

 

Rho family GTPases have been implicated in many aspects of tumorigenesis 

(Sahai and Marshall, 2002). Increasing Rho GTPases expression or activity has been 

associated with multiple human tumour types. Therefore, it is logical to deduce that 

RhoGAPs might be negatively involved in tumour cell growth or progression by 

downregulating Rho GTPases activity. 
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DLC1 (also known as p122 RhoGAP) has been found deleted in 44% of 

primary hepatocellular carcinomas (HCC) and 90% of HCC cell lines (Yuan et al., 

1998). GRAF, a focal adhesion kinase associated RhoGAP, is related with leukaemia. 

Deletion, point mutation and insertion of GRAF have been found in patients (Borkhardt 

et al., 2000). Overexpression of p190 RhoGAP in fibroblasts shows that it might act as 

a tumour suppressor. Either the N-terminal GTP-binding domain or the C-terminal 

RhoGAP domain of p190 repressed Ras-induced transformation, whereas blocking the 

expression of endogenous p190 or applying a mutant of the GTP-binding domain 

induced transformation (Wang et al., 1997; Moon and Zheng, 2003). 

 

1.4.2.5 Role of RhoGAPs in endocytosis 

 

There is evidence that RhoGAP could play a role in this process (Ellis and 

Mellor, 2000). RalBP1, also termed RIP1 or RLIP76, serves as an effector of Ral 

GTPase and contains a RhoGAP domain that is active towards Cdc42 and Rac1 

(Canter et al., 1995; Park and Weinberg, 1995). Two EH (Eps15 homology) domain-

containing proteins, POB (Partner of RalBP1) and Rel (RalBPa-associated Eps-

homology domain), have been found to associate with the C-terminus of RalBP1 

(Ikeda et al., 1998), whereas the N-terminal region of RalBP1 interacts with the 

plasma membrane clathrin adaptor AP2 complex (Yamaguchi et al., 1997; Jullien-

Flores et al., 2000). EH domain-containing molecules are often involved in 

endocytosis. In fact POB has been shown to bind Epsin and Eps15, both of which 

regulate endocytosis of epidermal growth factor (EGF) and insulin receptors 

(Nakashima et al., 1999). Therefore, RalBP1 might have a role in the endocytosis 
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process, although how its RhoGAP activity or the relationship with Rho GTPases fits 

in functionally remains to be seen (Moon and Zheng, 2003). 

 

1.4.3 Regulation of RhoGAPs 

 

1.4.3.1 Regulation by phosphorylation 

 

It is indicated that RhoGAP activities might be modulated by protein kinase. For 

example, the activity of p190 RhoGAP is regulated by Src family tyrosine kinase. 

Activation of Src in cells leads to phosphorylation of two tyrosine residues of p190 

(Roof et al., 1998; Hu and Settleman, 1997). Upon phosphorylation, p190 interacts with 

p120 RasGAP through an SH2 domain-phosphotyrosine interaction. This interaction 

could activate its GAP activity towards Rho and induce disruption of actin stress fibers, 

reduction of focal contacts and impairing the ability of the cell to adhere to fibronectin. 

This cellular effects is similar with that of inactivation of Rho GTPases (Haskell et al., 

2001). 

Recent studies indicate another mechanism of the regulation of p190-B by 

phosphorylation. It is found that upon IGF/Insulin stimulation, p190-B could be 

phosphorylated by the insulin and IGF receptors which are both tyrosine kinases. 

Although the activity of p190-B remains unchanged after being phosphorylated, the 

phosphorylation leads to its subcellular translocation to a lipid raft-enriched plasma 

membrane region, where active GTP bound Rho is localized. Thus the activity of Rho 

GTPases is greatly decreased after the p190-B is translocated to the membrane 

(Sordella et al., 2003). 

 



Chapter 1  Introduction 
_____________________________________________________________________        

 38

1.4.3.2 Regulation by lipid binding 

 

Chimaerin has specific Rho GTPase acitivity towards Rac. It can be regulated in 

vitro by phospholipids through its cysteine-rich (CR) domain. CR domain might also 

act as a phorbol ester/diacylglycerol (DAG) receptor site (Caloca et al., 1997; 1999; 

2001). Interestingly, CR domain inhibits the GAP activity of Chimaerin, suggesting 

that an autoinhibitory mechanism involved which may be through the intramolecular 

interaction between its N-terminus and C-terminal GAP domain. Studies indicates that 

Chimaerin interacts lipids and through its noncatalytic motif and this interaction might 

have regulatory effects on both its intracellular location and biochemical GAP activity 

(Caloca et al., 1997; 1999; 2001). 

 

1.4.3.3 Regulation by protein-protein interaction 

 

CdGAP contains GAP activities towards Cdc42 and Rac1, but not RhoA. There 

are a RhoGAP domain at its N-terminal end and multiple proline-rich motifs at the C-

terminal end. CdGAP can interact through its proline-rich regions with the SH3 domain 

of intersectin which is an endocytic scaffolding protein. This interaction induces the 

inhibition of the GAP activity of CdGAP both in vitro and in vivo. The possible 

mechanism of this inhibition might be: the interaction between CdGAP and intersectin 

induces a conformational change in CdGAP, resulting in the inactivation of GAP 

domain. This case indicates that protein-protein interaction may regulate the GAP 

activity (Jenna et al., 2002). 
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1.4.4 RhoGAP: A signal convergent or divergent point 

 

Normally RhoGAPs contain other functional domains or motifs besides the 

RhoGAP domain. These domains and motifs include protein kinase domain, RhoGEF 

and ArfGAP domains as well as SH2, SH3, PH and CR domains. Therefore the activity 

of RhoGAP domain may be regulated, sometimes be inhibited by the other domains or 

motifs located at the same protein (Moon and Zheng et al., 2003). 

For example, BCR and ABR both contain a Dbl domain, a PH domain and a C-

terminal RhoGAP domain. Dbl and PH domain form a combination that may activate 

Rho proteins as a GEF. Thus BCR and ABR potentially contain both GEF and GAP 

activities (Chuang et al., 1995; Voncken et al., 1995). Another example is the ARAP 

subfamily of RhoGAPs which contain  an ArfGAP domain  that may interact with Ras, 

while also contain an RhoGAP domain. These two domains cooperate in mediating 

cytoskeleton reorganization and cell morphological changes upon interacting with the 

PI3K product, PI(3,4,5)P3. Therefore, ARAPs can potentially initiate multiple signals 

and may regulate the activities of three classes of small GTPases (Krugmann et al., 

2002; Miura et al., 2002). 

 

1.5 Proline-rich sequence, a potential target for SH3 and WW domains 

 

1.5.1 Proline-rich sequences 

 

Proline-rich sequences are often found in many proteins that function as 

docking proteins for signaling modules (MacArthur et al., 1991; Kay et al., 2000). 

Proline is involved in the recognition with many important protein-protein interaction 
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modules. It contains several features that distinguish it from the other 19 amino acids 

including: it has an unusual shape of pyrrolidine ring; the conformation of its dihedral 

angles is constrained imposed by the cyclic side chain; it has specific secondary 

structural preferences; its amide nitrogen can be substituted; and it has a relative 

stability of the cis isomer in a peptide bond. The recognition domains of proline-rich 

sequences take use of some combination of these distinctive features of proline, thus 

achieve specific binding to them (Zarrinpar et al., 2003). 

To bind to signaling domains, proline-rich motifs have some specific properties: 

One property is it can form polyproline type II (PPII) helix (MacArthur et al., 1991; 

Williamson et al., 1994; Siligardi et al., 1995). The second unique property is that it is 

the only naturally occurring N-substituted amino acid. The third property is that proline 

also distinguishes from other natural amino acids in its ability to exist stably as a cis 

isomer about the peptide bond (Kay et al., 2000; Petrella et al., 1996). Therefore, a lot 

of chemical properties of proline make it stand out from the other 19 naturally 

occurring amino acids, which are exploited by the proline recognition domains. If the 

property of proline involved in a recognition event is sufficient to distinct among the 

natural 20 amino acids, the interaction doesn’t have to have high affinity to be selective. 

There are plenty of proline-based recognition motifs there for the weak but specific 

interaction in intracellular signaling pathways (Zarrinpar et al., 2003). 

 

1.5.2 Proline recognition domains 

 

Domains that bind proline-rich sequences are important to regulate many 

intracellular signaling complexes and pathways. Proline-rich sequences are very 

important in biology. It has been found that proline-rich sequences are the most 
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common sequence motif in the Drosophila genome and the second most common in the 

Caenorhabditis elegans genome. Domains that have been defined as proline 

recognition domains are mainly including: Src homology (SH3), WW (named for a 

conserved Trp-Trp motif), and Enabled/VASP homology (EVH1) domain (Whisstock 

and Lesk, 1999). 

Proline recognition domains are usually found in some multidomain signaling 

proteins. Through the proline targeted interaction, those proteins are often involved in 

cell growth (Rozakis-Adcock et al., 1993; Lowenstein et al., 1992; Buday et al., 1993), 

cytoskeletal rearrangements (Renfranz et al., 2002; Holt et al., 2001), transcription 

(Sudol et al., 2001), postsynaptic signaling (Ball et al., 2002; Tu et al., 1998) and other 

important cellular processes (Mcpherson et al., 1999). And these interactions can also 

have some regulation functions. These functions are often through autoinhibitory 

interactions by competing binding events (Nguyen and Lim, 1997). 

 

1.5.2.1 SH3 domain 

 

SH3 domain is the first and best characterized proline recognition modules 

(Mayer et al., 2001). It contains about 60 amino acids and normally plays assembly or 

regulatory function in cell signaling pathways. Grb2, which contains SH3 domains, 

plays an assembly role in cell signaling. It is involved in the p21 Ras-dependent growth 

factor signaling pathway (Lowenstein et al., 1992). Grb2 contains a Src homology  

(SH2) domain, flanked with two SH3 domains. Upon growth factor stimulation, 

receptor tyrosine kinases are phosphorylated, which cause the phosphorylation of other 

membrane-associated proteins. Therefore Grb2 is recruited to the membrane by the 

interaction through its SH2 domain to the phosphorylated membrane proteins. The 
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Grb2 SH3 domains bind to proline-rich sequence in SOS, which is a guanine nucleotide 

exchange factor (GEF) for Ras, thus recruiting SOS to the membrane. Since Ras is 

membrane-localized, the translocation of SOS helps to catalyze the cycle from GDP-

bound Ras to GTP-bound Ras. The activation of Ras will stimulate a mitogen-activated 

protein kinase (MAPK) cascade, regulating cell growth and differentiation (Rozakis-

Adcock et al., 1993; Buday et al., 1993). SH3 domain containing proteins play similar 

recruitment roles in a variety of biological processes such as endocytosis (McPherson et 

al., 1999) and cytoskeletal dynamics (Buday et al., 2002). 

SH3 also has regulatory functions. One example is the Src family of tyrosine 

kinase. Src kinases contain an SH2 domain, an SH3 domain and a kinase domain 

(Nguyen et al., 1997; Moarefi et al., 1997). In basal conditions, the kinase domain is 

kept at an inactive conformation through the SH2 and SH3 involved intramolecular 

interaction. When the SH2 or SH3 domain interacts with other partners, the 

autoinhibitory interaction will be disrupted, which induces the activation of the kinase 

domain. The mechanism of this regulatory role is that interactions of SH2 or SH3 

domain with external interacting partners is related with the activation of the kinase, 

which leads to the precise regulatory function (Zarrinpar et al., 2003). 

The basic fold of SH3 domains contains five anti-parallel beta-strands to form 

two perpendicular beta-sheets. The ligand-binding site consists of a hydrophobic patch 

that contains a cluster of conserved aromatic residues and is surrounded by two charged 

and variable loops (Zarrinpar et al., 2003). 

SH3 domains generally bind to proline-rich peptides that form a left-handed poly-

proline type II helix, with the minimal consensus Pro-x-x-Pro (Aasland et al., 2003). 

Each proline is usually preceded by an aliphatic residue. Each of these aliphatic-Pro pairs 

binds to a hydrophobic pocket on the SH3 domain. The detailed requirements of SH3 
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domain binding to its ligand have been examined by numerous approaches including 

phage display combinatorial peptide chemistry, nuclear magnetic resonance and crystal 

structure analysis. From this, two classes of SH3 domains have been defined (Class I and 

Class 2) which recognize RKxxPxxP and PxxPxR motifs respectively (Table 1.2). The 

ligand can, in principle, bind in either orientation (Feng et al., 1994; Lim et al., 1994; 

Lim et al., 1994; Yu et al.,1994). Directionality is conferred by the interaction of the 

Arginine or Lysine residue with the charged outer face of the SH3 domain while the 

tandem prolines bind within two hydrophobic pockets of the SH3 domain. An additional 

non-Pro residue, frequently Arginine, can form part of the binding core and contacts the 

SH3 domain. Such peptides usually bind to the SH3 domain with Kds in the mM range. 

The binding affinity and specificity can be markedly increased by tertiary interactions 

involving loops on the SH3 domain. In a few proteins, SH3 domains have been observed 

to bind in an unconventional non-PxxP manner. In these cases, either an alpha helical 

element or a tandem tyrosine motif interacts with a site on the SH3 domain that is either 

distinct or overlapping with the classical PxxP binding cleft (Wollacott et al., 2001; 

Brannetti et al., 2000; Musacchio et al., 1992; Ren et al., 1993). 

Proteins with SH3 domains Peptide ligand motif 
Src RPLPPLP or PPVPPR 
Yes RxLPxLP 
Lyn RxxRPLPPLPxP 
Abl PPPψPPPPψP 
PI3K RxxRPLPPLPP 
PLCγ PPVPPRP 
Cortactin +PPψPψKP 
p53BP2 RPxψPψR 
Grb2A PLPxLP 
CrkA PxLPx(K/R) 
Amphiphysin I PxRPx(R/H) (R/H) 
Nck, SH3B PxPPxRxxSL 
CAP, SH3C PxPPxRxSSL 

 
Table 1.2 SH3 domain-containing proteins and their ligand binding motifs (adapted 
from Kay et al., 2000). Residues labeled ψ, +, and x correspond to aliphatic (A, I, L, 
V, and P), positively charged (R, K, or H), and any residues, respectively. 
.  
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1.5.2.2 WW domain 

 

WW domains are small 38 to 40 amino acid residue modules that have been 

implicated in binding to proline-rich sequences. WW domain is folded into a three-

stranded β-sheet structure. A flat binding surface for the proline-rich ligand is formed 

by conserved hydrophobic residues. The domain name is derived from two conserved 

tryptophan residues spaced 20 to 22 residues apart within the consensus sequence 

(Sudol and Hunter, 2000). 

WW domains bind protein with the specificity of containing short linear 

sequence motifs. There are mainly four groups of WW domain targeting sequences 

(Table 1.3). Group I binds polypeptides with the minimal core consensus Pro-Pro-X-

Try; Group II is Pro-Pro-Leu-Pro; Group III target polyproline sequences flanked by 

Arg or Lys; Group IV is represented by WW domains which preferentially target 

phosphor-Ser-Pro or phosphor-Thr-Pro containing ligands (Sudol and Hunter, 2000). 

Representative 
Proteins of the Group  

Consensus Sequence of 
the Recognized Peptide 

Abbreviation of the 
Sequence Motif  

Representative Ligands 
(Cognate or Putative)  

Group I  
YAP65, Nedd4/Rsp5p,  
Dystrophin  
 

PPxY  
  

“PY” or “PPxY”  
  
  

PEBP2 transcriptional 
coactivator, ENac 
sodium channels, 
β-Dystroglycan 

Group II  
Formin Binding  
Proteins, FE65  

PPLP usually within 
long  polyproline 
sequences  
  

“PPLP”  
  

Formin, Mena  

“PPR”  
 

Splicing factors: SmB,  
SmB’, U1C, NpwBP  
 

Group III  
Formin Binding 
Proteins,  
Npw38/PQBP-1  

[R]-R/K/x-PP  
or  
PP-R/x-[R]  
  

  
Group IV  
Pin1/Ess1p,  
(Nedd4/Rsp5p)b  
(Prp40p)  

(phospho-S/T)P  
 
  

“(p-S)P or (p-T)P”  
  

RNA Polymerase II 
Cdc25C phosphatase  
 

 

Table 1.3 Classification of WW domains based on their ligand specificity (adapted 
from Sudol and Hunter, 2003). 
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1.5.3 Nedd4, a WW domain-containing protein 

 

1.5.3.1 Ubiquitin system 

 
The selective turnover of many short-lived proteins in eukaryotic cells is 

carried out by the ubiquitin system. In this system, proteins are targeted for 

degradation by covalent ligation to ubiquitin, a highly conserved small protein 

(Sakamoto, 2002; Hershko and Ciechanover, 1998). Ubiquitin-mediated protein 

modification regulates numerous cellular processes including protein turnover and 

trafficking, cell-cycle progression, signal transduction, transcriptional regulation, 

receptor down-regulation, endocytosis and virus budding (Hershko and Ciechanover, 

1998; Harvey et al., 2002). The conjugation of ubiquitin to a protein substrate 

contains multisteps (Hochstrasser et al., 1996; Weissman et al., 2001). In the first step 

that is ATP-dependent, a thioester is formed between the carboxyl terminus of 

ubiquitin and an internal cysteine residue of a ubiquitin-activating enzyme (E1). In the 

second step, the activated ubiquitin is transferred to a specific cysteine of one of 

several ubiquitin-conjugating enzymes (E2). In the third step, E2 enzymes may donate 

ubiquitin directly to protein substrates, leading to branched protein conjugates. 

Through this conjugates, the carboxyl terminus of ubiquitin is linked by an isopeptide 

bond to specific internal lysine residues of target proteins. Substrates can also be 

recognized by associated substrate-recognition proteins named E3 proteins or 

ubiquitin-protein ligases. E3 proteins play a major role in defining the substrate 

specificity of the ubiquitin system. Hect (homologous to E6-Ap Carboxyl terminus) 

domain containing proteins are a major class of E3 protein. For example, Nedd4 

family proteins belong to this class (Huibregtse et al., 1995; Scheffner et al., 1995). 
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1.5.3.2 Nedd4, a ubiquitin ligase 

 

Nedd4 belongs to a family of ubiquitin-protein ligases. Our current study of 

BPGAP1 indicated that Nedd4 is its interacting partner, which will be described later. It 

was originally identified as a developmentally regulated gene and was highly expressed 

in the mouse embryonic central nervous system. Further studies showed that Nedd4 

was widely expressed at varying levels in several embryonic and adult tissues while not 

restricted to the embryonic central nervous system. It contains 2-4 WW domains, a 

carboxyl-terminal Hect domain and in most cases an amino-terminal C2 domain 

(Sakamoto, 2002; Hershko and Ciechanover, 1998). It has been found that the second 

WW domain of mouse Nedd4 can bind Pro-Pro-X-Tyr and p-Ser-Pro/p-Thr-Pro 

containing peptides. 

The Nedd4 family proteins have been implicated in a variety of cellular 

processes including endocytosis, TGF-β (transforming growth factor β) signaling, virus 

budding, transcription and protein trafficking (Huibregtse et al., 1995; Scheffner et al., 

1995). Nedd4 participates in the ubiquitination of several phosphoporteins (Figure 1.8), 

for example, the Cdc25 phosphatase and the Fur4p uracil permease (Marchal et al., 

2000). Nedd4 can also induce ubiquitination of the amiloride-sensitive sodium channel, 

ENaC, in a phosphorylation-independent manner (Chang et al., 2000). 
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Figure 1.8 Protein degradation by Nedd4 dependent ubiquitination. Ubiquitin is 
transferred via E1 and E2 to a cysteine of Nedd4, which binds the target protein. The 
target protein is then ubiquitinated, leading to a rapid degradation by the lysosome.  
 
 

1.6 Cell culture system was used to study the cellular and physiological functions 

of BPGAP1 

 

Appropriate research model must be well-chosen in order to study gene 

functions. Over the last three decades, cell and tissue culture methods have been refined 

and have now become an essential tool in biomedical research. This system is widely 

used because it allows the study of single cellular functions under controlled 

environmental conditions, and it can exclude the influence of other organs and of the 

circulatory and immune system, thus providing the possibility to study direct effects on 

a cell population.  Cell line system also has some advantages such as: it is 
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homogeneous and accessible; it is easy to be transfected; it is convenient to be applied 

for microscope observation for cell morphology and cell migration studies.  

Currently, 293T cell line is widely used in cell signaling and protein function 

studies. Transient transfection into 293T cells is a convenient way to overexpress and 

obtain both cellular and extracellular (secreted or membrane) proteins. 293 is a human 

renal epithelial cell line which is transformed by adenovirus E1A gene product. 293T is 

a derivative which also express SV40 large T antigen, allowing episomal replication of 

plasmids containing the SV40 origin and early promoter region 

(http://cbr.med.harvard.edu/investigators/springer/lab/protocols/jun_293T.html). MCF7 

is human breast adenocarcinoma cell line obtained from a plural effusion described as 

retaining many characteristics of a differentiated mammary epithelium. These cells are 

often used in models of human breast cancer and oestrogen receptor studies. Because of 

their flat cytoplasm, MCF7 cells are often used in various imaging and 

immunofluorescence studies, for example, apoptosis and cell morphology studies 

(http://home.t-online.de/home/I-A-Z/albino.htm). 

 

1.7 Objectives of this study 

 

 The BCH domain has been proved, at least now, as a protein-protein interaction 

domain and apoptosis-inducing domain. Furthermore, it targets Rho GTPases (Zhou et 

al., 2004, manuscript in preparation) and may have significant implications as 

regulatory module in different cell signaling pathways and might be involved in 

different cellular functions. 

The Rho GTPase-activating proteins (RhoGAPs) are one of the major classes 

of regulators of Rho GTPases found in all eukaryotes that are crucial in cell 
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cytoskeletal organization, growth, differentiation, neuronal development and synaptic 

functions. 

In order to understand the specificity versus redundancy nature of the 

RhoGAPs as well as the roles of their various signaling modules, we have set out to 

study novel proteins that harbor the GAP domain together with other protein domains. 

Bioinformatics searches through the human genome public databases revealed a 

striking number of sequences that encode putative GAP proteins and with various 

arrays of domain organizations. One of the family proteins that we are interested in has 

the organization that is similar to that of the Cdc42GAP, yet exhibiting diversed 

sequences in other regions. This family is named BPGAP family and one of its 

member BPGAP1 (for BNIP-2 and Cdc42GAP Homology (BCH) domain-containing, 

Proline-rich and Cdc42GAP-like protein subtype-1) is isolated and identified. Our 

current research focuses on BPGAP1. The overall objective of our research is to 

characterize the roles of different domains of BPGAP1 in regulating its cellular 

functions including to: 

 

z clone the full-length BPGAP1 from mammalian cell lines. 

z identify if there exist other isoforms of BPGAP1. 

z characterize the expression profiles of BPGAP family proteins in different cell 

lines and organs. 

z express BPGAP1 and study its properties of protein interactions and biochemical 

activities. 

z investigate the cellular and physiological functions of BPGAP1 in regulating cell 

dynamics such as cell morphology and cell migration, and  

z elucidate potential mechanisms underlying the observed cellular effects. 
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2.1 Blast search for BPGAP1  

 

To identify novel proteins containing GAP domains, the peptide sequence of 

the rhoGAP domain of p50RhoGAP/cdc42GAP (Genbank accession number: Q07960; 

residues: 260-439) was used as query sequence in the “position-specific interactive 

BLAST” against the current non-redundant sequence as well as human and mouse 

EST databases (http://www.ncbi.nlm.nih.gov/). Progress of the identification was 

described in the text. Multiple sequence alignments were generated using Vector NTI 

suite (InforMax, Inc.) while genome organization of BPGAP1 was analysed using the 

Genomatix online tool, ElDorado (http://www.genomatix.de/).  

 

2.2 RT-PCR cloning of BPGAP1 isoforms and plasmid constructions  

 

RT-PCR (reverse transcription PCR) and normal PCR were used for isolation 

of BPGAP1 and BPGAP2, BPGAP5 cDNAs. Several expression vectors including 

pXJ40 and pGEX4T1 were used for the cloning of BPGAP family members. 

Automatic DNA sequencing was then used for confirming the sequences.  

 

2.2.1 RNA isolation and RT-PCR 

 

           To obtain the full-length cDNA of BPGAP1, total RNA was isolated from 

MCF7 cells using the RNeasy kit (Qiagen) according to the manufacturer’s 

instructions. Spectrophotometric method was used to determine the concentration and 

purity of the RNA. The RNA was stored at -80ºC. 5 µg of this RNA was subjected to 

the first-strand cDNA synthesis with Expand Reverse Transcriptase Kit (Roche 
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Molecular Biochemicals) primed with oligo(dT) (Operon) for 60 mins at 42 °C in a 

total volume of 20 µL.  0.5 µg of this cDNA was then amplified by the high fidelity, 

long-template Taq polymerase enzyme (Roche Molecular Biochemicals) using 

specific primers corresponding to the putative sequence BAA91614. The two primers 

used for PCR in two directions were list at Table 2.1. These PCR primers contained 

HindIII and XhoI restriction sites on the forward and reverse primers, respectively, to 

facilitate their subsequent cloning in the pXJ40 vectors. PCR conditions were as 

following: initial denaturation 94 °C, 2 min; subsequent cycling (30 cycles) at 94 °C, 

10 s; annealing at 50 °C, 30 s;  extension at 68 °C, 2 min; and final extension at 68 °C, 

7 min. The forward PCR primers for the cloning to pGEX4T1 vectors contained 

EcoRI restriction site instead of HindIII, which was listed at Table 2.1. 

 

2.2.2 Cloning of the BPGAP1 constructs 

 

2.2.2.1 Cloning of BPGAP1 deletion fragments 

 

        The full-length PCR products were gel-purified (Qiagen) and cloned into a 

FLAG epitope-tagged, GFP-tagged or HA-tagged expression vector, pXJ40 (Dr. E. 

Manser, Institute of Molecular and Cell Biology, Singapore) and GST-tagged 

expression vector pGEX4T1 respectively. The resulting bacteria colonies were 

screened by double restriction digestion of HindIII/EcoRI and XhoI respectively. 

Sequence unique to BPGAP1 was obtained (Genbank AF544240) and fragments 

encoding its various domains were generated from the full-length template using 

specific primers in a standard PCR and then gel-purified for cloning. The PCR 

primers used for domain fragment amplification for pXJ40 vector cloning were listed 
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at Table 2.1. Of the primers used, BPGAP1 full-length, PC and C fragments share the 

same reverse primers whereas its full-length, NP, NNP fragments share the same 

forward primers. 

 

2.2.2.2 Cloning of BPGAP1 deletion mutants by inverse-PCR 

 

For generation of deletion mutant P1, inverse-PCR was carried out as 

previously described (Low et al., 2000a) to exclude region of interest proline-rich 

sequence. Primers used for this PCR were listed at Table 2.1. The resulting bacteria 

colonies were screened by single restriction digestion with EcoRV. 

 

2.2.2.3 Point mutation by site-directed mutagenesis 

 

Point mutation R232A was performed by site-directed mutagenesis as 

previously decribed (Low et al., 2000a). The primers used were listed at Table 2.1.  

The PCR conditions for temperature cycling were: initial denaturation 95°C, 

30sec; subsequent cycling (12 cycles) at 94 °C, 30 s; annealing at 55 °C, 1 min;  

extension at 68 °C, 2 min; and final extension at 68 °C, 7 min. 

Escherichia coli strain DH5α was used as host for the propagation of the 

clones. Reagents used were of analytical grade, and standard protocols for molecular 

manipulations and media preparation were as described (Sambrook J and Russell DW, 

2001). All plasmids were purified using Qiagen miniprep kit for subsequent use in 

transfection experiments. All the GST-tagged BPGAP1 constructs were got by 

subcloned from FLAG epitope-tagged constructs.  
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2.2.3 Expression vectors 

 

2.2.3.1 pXJ 40 FlAG-tagged and GFP-tagged expression vectors 

 

The pXJ40 FLAG epitope-tagged expression vector is a 4.3 Kb plasmid 

containing a multiple cloning site (MCS), e.g. HindIII, BamHI and XhoI restriction 

sites. The MCS is a flanked by the CMV enhancer and promoter, β-globin intron and 

FLAG epitope-tagged sequence (DYKDDDDK) at the 5’ end, and the SV 40 

polyadenylation signal sequence on the 3’ end. As for the GFP-tagged vector, the 

DNA sequence of green fluorescent protein was fused with the insert sequence at the 

5’ end.  This recombinant DNA is then introduced into cells, which expresses the 

protein of interest as well as the tagged protein. To localize the protein of interest, the 

tag, which is now part of that protein, is localized. These two pXJ40 vectors also 

contain ampicillin resistance genes. T7 primer can be used to sequence the insert 

DNA in the direction from 5’ to 3’. 

 

2.2.3.2 pGEX4T1 

 

The pGEX4T1 vector (Amersham Pharmacia Biotech) is a 4.95 Kb plasmid 

containing a MCS, e.g. EcoRI, BamHI and XhoI. This vector contains the glutathione 

S-transferase (GST) gene from Schistosoma japonicum upstream of the MCS, as well 

as an ampicillin resistance gene. GST fusion proteins can be obtained by cloning the 

gene encoding the protein of interest into the MCS, and purified by conjugated to 

glutathione-sepharose beads. In addition, the pGEX 5’ and 3’ primers can be used to 

sequence the insert DNA. 
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2.2.4 Sequencing the cloned BPGAP1 constructs 

 

For each construct, several clones were chosen and sequenced entirely in both 

directions. Automatic DNA cycle sequencings were performed using the ABI PRISM 

BigDye Terminator Cycle Sequencing kit (Applied Biosystem). The PCR reaction for 

sequencing was set with 4 µL of Terminator Ready Reaction mix, 100ng of plasmid 

DNA template, 2 pmole of primer and H2O to a final volume of 20 µL. Primers used 

for sequencing are T7, pGEX 5’, and specific cloning primers of BPGAP1 indicated 

before. The sequence of T7 and pGEX 5’ were listed at Table 2.1. 

PCR was run for 10 sec at 96°C, 5 sec at 50°C and 4 min at 60°C for 25 cycles. 

The products were precipitated and washed by ethanol and analysed on a Applied 

Biosystems Inc. PRISM TM 377 automated DNA sequencer (PE Applied Biosystems, 

USA). 

 

2.3 Semi-quantitative RT-PCR for gene expression analysis 

 

To distinguish the mRNA expression level of BPGAP1 and Cdc42GAP in 

various cells and tissues, RT-PCR using the oligo-dT primers was employed. Total 

RNA was isolated using the RNeasy kit (Qiagen) from either various cultured cell 

lines or from various organs obtained from a 2-week-old male mouse and primed for 

the first-strand cDNA synthesis as described above. Equal amounts of the reverse 

transcription products were then subjected to PCR amplification for BPGAP1 and 

Cdc42GAP. The full-length PCR products of BPGAP1 were then subjected to internal 

amplification using primers that encompass BPGAP1-specific BCH region that 

contained the unique insertion (see text). The house-keeping gene glyceraldehyde-3-
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phosphate dehydrogenase (GAPDH) was used to normalize the level of expression. 

The results were verified in at least two independent experiments with varying 

numbers of PCR cycles to ensure near-linear amplification.  

 

Primer name Primer sequence 

BCH-F 5’ CCGGGATCCGTTGTCACGTTCAGCTGCTGCCGGATG 3’ 

BCH-R 5’ CCGCTCGAGTCAGAGCTTCTCATCGTACCGCAAAACTTCG 3’

GAP-F 5’ CGGGGATCCCAAGGCGAACTCATCCCCCCTGTGCTGAGG 3’ 

GAP-R 5’ CCGCTCGAGTCACCCAGGTGCCTCCGGGGTGCTGAAG 3’ 

NP-R 5’ GCGCTCGAGTCAATTTTTGTCTTTGAGGTATTGCAG 3’ 

PC-F 5’ GCAGGATCCCAGAGCCTGCACGAGGGCCGGACG 3’ 

∆P1,2-F 5’ CGCGATATCCACACAGCAGTTTGGCGTCAGTC 3’ 

∆P1,3-R 5’ CGCGATATCCGTCCGGCCCTCGTGCAGGC 3’ 

∆P2-R 5’ CGCGATATCGGTGGGAGGCGGCGTC 3’ 

∆P3-F 5’ CGCGATATCAAGACACCACCGCCGC 3’ 

R232A-F 5’ CGAGGGCCTGTTCGCGAGATCCGCCAGC 3’ 

R232A-R 5’ GCTCCCGGACAAGCGCTCTAGGCGGTCG 3’ 

T7 5’ TAATACGACTCACTATAGGG 3’ 

pGEX 5’ 5’ GGGCTGGCAAGCCACGTTTGGTG 3’ 

BPGAP1 FL-F(HindIII) 5’ GCCAAGCTTATGGCTGGCCAGGATCCTGCG  3’ 

BPGAP1 FL-F(EcoRI) 5’ GCCGAATTCATGGCTGGCCAGGATCCTGCG  3’ 

BPGAP1 FL-R 5’ CCGCTCGAGCTAGAGGACGTCTTCTGGCTGCC  3’ 

 
Table 2.1 Primers used for the cloning of BPGAP1 full length, domain and mutant 
constructs. 
 

2.4 Cell Culture and transfection 

 

2.4.1 Cell Culture 

 

 Human breast cancer cells MCF7, human embryonic kidney epithelial cells 

293T, human stomach cancer lines MCN45 and KMN74 were all grown in RPMI 
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1640 medium supplemented with 10% (v/v) fetal bovine serum, 2 mM L-glutamine, 

100 units/ml penicillin, and 100 µg/ml streptomycin (all from Hyclone), and 

maintained at 37 °C in a 5% CO2 atmosphere. Human cervical cancer epithelial HeLa 

cells were grown in Dulbecco’s modified Eagle’s medium (high glucose), whereas 

human colon epithelial HT29 and HCT116 were grown in McCoy’s medium (Sigma). 

 

2.4.2 Spectrophotometric quantitation of plasmid DNA for transfection 

 

The concentration and purity of the plasmid DNA were determined before 

they were used for transfection. Plasmid DNA were isolated from E. coli by using the 

plasmid miniprep kit (QIAGEN). The absorbances of DNA solution at wavelengths of 

260 nm (OD260) and 280 nm (OD280) were measured in quartz cuvettes using a 

spectrophotometer (Spectronic Genesys™ 5 Spectrophotometer). The DNA sample 

was diluted 1:100 with ddH2O so that OD260   fell within 0.2 and 1.0 to ensure that the 

absorbance reading is within the linear range. Taking an absorbance of 1 unit of 

OD260 to be equivalent to 50 µg/ml of double-stranded DNA, the concentration of 

each DNA sample was calculated accordingly, taking into account the dilution factor:  

DNA concentration (µg/ml) = OD260 ×dilution factor (100) ×50 µg/ml 

The ratio of OD260 to OD280 indicated the quality of the DNA sample which 

could be applied for transfection. DNA of good quality should have a reading of 1.7 

to 1.9. Any ratio below 1.7 indicated contamination with proteins and above 1.9 

indicated RNA contamination.  
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2.4.3 Transfection 

 

Cells at 90% confluence in 100-mm plates or 6-well plates were transfected 

with 5 µg or 2 µg of the indicated plasmids using FuGENE 6 Transfection Reagent, 

according to the manufacturer’s instructions (Roche Molecular Biochemicals). The 

steps of transfection for 6-well scale were as following:  

1. Preparation of cells for transfection. Cells were plated one-day before the 

transfection experiment. The appropriate plating density will depend on the growth 

rate and the condition of the cells. Cells that are 50–80% confluency were used on the 

day of the experiment. Most cell lines that are plated at 1–3 x 105 cells in 2 ml in a 35 

mm culture dish (or 6-well plate) will achieve this density after overnight incubation. 

2. Preparation of FuGENE 6 Reagent:DNA complex. In a small sterile tube, 

sufficient serum-free medium was added as diluent for FuGENE 6 Transfection 

Reagent, to a total volume of 100 µL. 3 µL of FuGENE 6 Reagent was added directly 

into this medium. The order of addition is critical. The serum-free medium must be 

pipetted into the tube first and be tapped gently to mix. 2 µg DNA solution (0.02–2.0 

µg/µL) was added to the prediluted FuGENE 6 Reagent. The total volume of DNA 

solution was between 0.5–50 µL. The tube was gently tappted to mix the contents and 

then was incubate for a minimum of 15 minutes at room temperature.  

3. Transfection of cells. The medium of cells were changed with 2 mL serum-

free medium. And then the complex mixture from Step 2 was added to the cells. The 

wells were swirled to ensure even dispersal. After the cells were incubated at 

incubator for 3-6 hours, 2 mL 10% serum medium should be added. Cells were 

incubated at incubator for 24-48 hours and then could be lysed. 
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2.5 Precipitation/“pull-down” studies and Western blot analyses 

 

Control cells or cells transfected with expression plasmids were lysed in 1 mL 

of lysis buffer (150 mM sodium chloride, 50 mM Tris, pH 7.3, 0.25 mM 

ethylenediamine tetraacetic acid (EDTA), 1% (w/v) sodium deoxycholate, 1% (v/v) 

Trition X-100, 50 mM sodium fluoride, 5 mM sodium orthovanadate, and a mixture 

of protease inhibitors (Roche Molecular Biochemicals). The lysates were directly 

analyzed, either as whole-cell lysates (25 µg) or aliquots (500 µg) used in affinity 

precipitation/“pull-down” experiments with various GST fusion proteins (5 µg), as 

previously described (Low et al., 2000a). Samples were run in sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels and analyzed by 

Western blotting with FLAG monoclonal antibody (Sigma), HA monoclonal antibody 

(Sigma) and anti-Nedd4 polyclonal antibody (BD Biosciences Pharmingen) at 1:1000 

to 1:3000 dilution, followed by anti-mouse, anti-rabbit horseradish peroxidase 

secondary antibodies and ECL detection (Amersham Pharmacia Biotech). 

Other plasmids used in the “pull-down” studies were constructs of SH3 

domains (gifts of Dr David Schlaepfer, via Dr Peter Sims, The Scripps Research 

Institute, La Jolla) and WW domains (courtesy of Dr Marius Sudol, Mount Sinai 

School of Medicine, New York) of various proteins as indicated. 

 

2.5.1 Preparation of GST-fusion proteins for “Pull-down” experiments 

 

The genes encoding the protein of interest were cloned into the pGEX4T1 

vector for the production of GST fusion proteins. The constructs were subsequently 

transformed into E. coli. DH5α cells. 5 mL overnight cultures of the transformants 
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obtained were diluted in 250 mL of LB medium containing ampicillin and grown at 

37°C with shaking to 0.3-0.6 at OD600.  0.1 mM IPTG then was added to the culture 

for overnight induction, incubated at room temperature with shaking at 150 rpm. The 

induced E. coli. cells were harvested by centrifugation at 4 °C, frozen at –80 °C for at 

least 30 mins and then thawed on ice. The cells were resuspended in 10 mL of cold 

lysis buffer (10 mL PBS, 1% Triton-X, 1.52 % DTT (w/v), and multiple protein 

inhibitors (Roche Molecular Biochemicals)), and then applied the suspension to 

sonication. Sonication was carried out using intensity input at 3 on a MISONIX 

Sonicator XL 2020 for a total time 3 mins (15 sec for “pulse on” and 30 sec for 

“pause” for each cycle, 12 cycles totally). The sonicated cell lysates were centrifuged 

at 10,000x rpm for 1 h at 4 °C and the supernatant were removed to a new tube. To 

obtain purified GST fusion protein bound to the beads, the supernatant was incubated 

with glutathione-sepharose beads (Amersham Pharmacia Biotech) overnight at 4 °C 

The quality of the GST fusion proteins was verified by Comassie blue staining (0.2 % 

Comassie blue R-250, 40 % Methanol, 10% Acetic acid). 

 

2.6 Co-immunoprecipitation 

 

293T cells were transfected with expression vectors for FLAG-BPGAP1 full 

length alone or together with either HA-BPGAP1, HA-Cdc42GAP, HA-BNIP-2 or 

HA-GTPases. Lysates were immunoprecipitated (IP) with anti-FLAG M2 beads 

(Sigma) and the associated proteins were separated using SDS-PAGE. The anti-

Cdc42, RhoA, Rac1, HA, and Nedd4 antibodies were probed to reveal the binding of 

targets respectively. 
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2.7 Preparations of GST-fusion proteins for in vitro GTPase assay 

 

2.7.1 Approach for the preparation of GST-fusion proteins 

 

         GST fusion proteins were purified using glutathione-agarose beads. In brief, E. 

coli cells were lysed by sonication in a HEPES buffer [50 mM 4-(2-hydroxyethyl)-1- 

piperazineethanesulfonic acid (HEPES), pH 7.5, 150 mM NaCl2, 1 mM EDTA, 

multiple protein inhibitors (Roche Molecular Biochemicals), 0.1% (w/v) β-

mercaptoethanol, and 0.1% (w/v) Triton-100]. Following centrifugation (10,000 rpm, 

30 min, 4°C), the supernatants of lysates were mixed with glutathione-agarose beads 

(Amersham Pharmacia Biotech) and incubated at 4°C for overnight. Beads were 

washed 3 times with 10 mL of HEPES buffer. When needed, fusion proteins were 

eluted with 10 mM glutathione solution in the HEPES buffer. Protein concentrations 

were measured by using Bradford assay (Biorad). 

 

2.7.2 Bradford assay for protein concentration measurement 

 

2.7.2.1 Standard curves 

 

To make the standard curve, dilute the 1mg/ml stock BSA solution in H2O to 2, 

4, 6, 8, 10, 12 µg/mL at the final volume of 800 µL. Add 200 µL concentrated Biorad 

Bradford reagent and incubate at room temperature for 5 minutes, then apply for 

spectrophotometer at A595. 
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2.7.2.2 Determination of protein concentrations  

 

Volume of 1, 2, 3, or 4 µL of concentrated unknown was added to water to 

bring volume up to 800 µL. 200 µL concentrated Biorad Bradford reagent was added 

to the solution made and was incubated at room temperature for 5 minutes, then was 

applied for spectrophotometer at A595. Finally the concentration of the protein can be 

got using the BSA stand curve.         

 

2.8 In vitro GTPase activity assay 

 

GTPase activity assays were performed by using Enz-checkTM Phosphate 

Assay Kit. Molecular Probes EnzChek® Phosphate Assay Kit (E-6646, Molecular 

Probes) provides a fast and sensitive spectrophotometric method for the quantitation 

of inorganic phosphate (Pi) in solution, including Pi released from enzymatic 

reactions. This kit enables continuous assay of reactions that generate Pi such as those 

catalyzed by ATPases and GTPases. The EnzChek phosphate assay is based on a 

method originally described by Webb (Webb, 1992).  In the presence of Pi, the 

substrate 2-amino-6-mercapto-7-methylpurine riboside (MESG) is converted 

enzymatically by purine nucleoside phosphorylase (PNP) to ribose 1-phosphate and 2-

amino-6-mercapto-7-methylpurine (Figure 2.1). Enzymatic conversion of MESG 

results in a spectrophotometric shift in maximum absorbance from 330 nm for the 

substrate to 360 nm for the product. Sensitivity of the assay is in the range of 2 to 150 

µM Pi (2 to 150 nanomoles Pi in a 1 mL volume), and the reaction can be performed 

over a pH range of 6.5 to 8.5, with the proper controls. 
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To monitor the rate of the phosphate release from GTP hydrolysis by 

recombinant Cdc42, RhoA or Rac1 (pGEX plasmids of these and Cdc42GAP are gifts 

of Dr A. Hall, University College London, United Kingdom) in the presence of GST 

control or GST-BPGAP1 full-length, domains or its mutant. For these assays, we used 

a previously described protocol (Wu et al., 2000) with some modifications.  In brief, 

0.5 nmol of purified GST-BPGAP1 full-length, domains or mutant proteins (in a 

volume of 15 µL), was mixed with 10 µL of 0.2mM GTP, 0.2 mL of 2-amino-6-

mercapto-7-methylpurine ribonucleoside, 10 µL (1 unit) of purine nucleotide 

phosphorylase, and 0.78 mL of HEPES buffer (pH 7.5). The cuvette was immediately 

placed in the spectrophotometer to monitor absorbance at 360 nm, A360. Meanwhile, 

10 µL of 1 M MgCl2 solution was added to 0.25 nmol of eluted GST-Cdc42, GST-

RhoA and GST-Rac1 fusion proteins and incubated for 10 minutes at room 

temperature. When the first multiple turnover reached an equilibrium at A360, the 

second mixture of small GTPase solution was added to initiate the reaction. The 

reading at A360 was recorded every 10 seconds.  

 

2.9 In vivo GTPase activity and binding assay 

 

GTP-bound Cdc42, Rac1, or RhoA was determined by specific binding to the 

p21-binding domain of PAK1 (GST-PBD; Bagrodia et al., 1995) or rhotekin (GST-

RBD; Ren et al., 1999) (all kindly provided by Dr Simone Schoenwaelder, Monash 

University, Australia).  In brief, cell lysates expressing HA-tagged wild-type small 

GTPases (Cdc42, Rac1, or RhoA) with or without FLAG-tagged BPGAP1 were 

incubated with 5 µg of recombinant GST-PBD or GST-RBD conjugated with 

glutathione-sepharose beads for 1 h at 4°C, washed with buffer (50 mM HEPES, pH 
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7.4, 150 mM sodium chloride, 1.5 mM magnesium chloride, 5 mM ethylene glycol-

bis-(2-aminoethyl)-tetraacetic acid, 10% (v/v) glycerol, 1% (v/v) Triton X-100, a 

mixture of protease inhibitors and 5 mM sodium orthovanadate) and separated on 

SDS-PAGE. Bound Cdc42, Rac1, or RhoA was analyzed by Western blotting using 

anti-HA antibodies (Roche Molecular Biochemicals). Whole-cell lysates were also 

analyzed for the presence of expressed Cdc42, Rac1, RhoA, and BPGAP1 for 

normalization. For detecting binding of endogeneous Rho GTPases, the following 

antibodies were used: polyclonal anti-Cdc42 (Santa Cruz), polyclonal anti-RhoA and 

monoclonal anti-Rac1 (both from Upstate Biotechnology). 

 

 

Figure 2.1 Principle of GTPase activity assays. The assays were performed using 
Enz-checkTM Phosphate Assay Kit. Enzymatic conversion of 2-amino-6-mercapto-7-
methylpurine riboside (MESG) to ribose 1-phosphate and 2-amino-6-mercapto-7-
methylpurine by purine nucleoside phosphorylase (PNP).The accompanying change 
in absorption at 360 nm allows quantitation of inorganic phosphate (Pi) consumed in 
the reaction (Adapted from Molecular probes products information). 
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2.10 Immunofluorescence 

 

2.10.1 Indirect immunofluorescence by confocal microscope 

 

Cells were seeded on coverslips in 6-well plates, transfected with various 

expression constructs for 16-20 h, and then stained for immunofluorescence detection 

as previously described (Lim et al., 2000). Briefly, the cells were washed with cold 

phosphate-buffered saline supplemented with 10 mM calcium chloride and 10 mM 

magnesium chloride (PBSCM) and fixed with cold 3% paraformaldehyde in PBSCM 

for 30 min at 4 °C. The fixed cells were washed twice with PBSCM, twice with 

PBSCM containing 50 mM NH4Cl, and twice again with PBSCM. For cell 

permeabilization, cells on the coverslips were incubated with 0.1% saponin (Sigma) 

in PBSCM at room temperature for 15 min. The primary antibody for single was 

diluted to 1 mg/100 ml in FDB (7% (v/v) fetal bovine serum, 2% (w/v) bovine serum 

albumin in PBSCM), and each coverslip was incubated with 100 ml of diluted 

antibody for 1 h at room temperature. The coverslip was then washed three times for 2 

min in 0.1% saponin-containing PBSCM before incubation with secondary antibodies. 

After the final wash (five times in 0.1% saponin containing PBSCM), each coverslip 

was prepared for microscopic examination by applying mounting medium (Crystal 

Mount, Biomeda). Fluorescent images were taken with a confocal laser microscopy 

system (Fluoview, FV300, Olympus). FLAG-tagged or HA-tagged proteins were 

detected with monoclonal anti-FLAG, followed by Texas Red® dye-conjugated rabbit 

anti-mouse IgG (Jackson ImmunoResearch). For cells co-expressing GFP-tagged 

recombinants and HA-tagged proteins, HA-tagged constructs were detected with 

polyclonal anti-HA, followed by Texas Red® dye-conjugated goat anti-rabbit IgG.  
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2.10.2 Direct fluorescence by the expression of GFP-tagged contructs 

 

For direct fluorescence, cells were seeded on coverslips in 6-well plates, 

transfected with various GFP-tagged expression constructs for 16-20 h. The 

morphology of cells was examined directly under a fluorescent microscope as 

previously described (Zhou et al., 2002). The percentage of cells exhibiting 

pseudopodia in the presence of various GFP constructs (from experiment B above) 

were determined and represented as a bar graph. Results are averages +/- half the 

ranges for two determinations that are representative of at least three separate 

experiments. 

 

2.11 Cell measurement 

 

MCF7 cells were transfected with GFP control or GFP-tagged BPGAP1 

fulllength, NP, and PC domains. After 20 h, the longest diameter (LD) and shortest 

diameter (SD) that bisected the center of cells and perpendicular to each were 

measured (Maddox and Burridge, 2003). The total cell areas and the length of the cell 

protrusion (PT) were also measured after image capturing as previously described and 

analysed using the Leica IM 1000 software. Measurements were means and standard 

deviations from three separate experiments, each time with at least 30 different cells. 

Statistical comparison was made using ANOVA (StatsDirect). P values of <0.01 

indicate significant difference compared with the vector control. 
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2.12 Cell migration assay 

 

           The ability of cells to migrate through coated filters was measured with a 

modified Boyden chamber (24-well Transwell, Corning Costar; 8 µm pore size) as 

previous described (Koo et al., 2002). The lower surface of the filters was coated with 

0.5 µg fibronectin (Sigma) as a chemoattractant. MCF7 cells transiently transfected 

with GFP vector, GFP-BPGAP1 full-length, different fragments or mutants were 

seeded at a density of 3 x 105 cells in 100 µL RPMI with 0.2 % BSA. The lower 

compartment was added with 600 µl of RPMI containing 10 % FBS. After incubation 

for 1 day at 37 °C in 5 % CO2, the cells that did not penetrate the filters were 

completely wiped off with cotton swabs, and the cells that had migrated to the lower 

surface of the filter were fixed with methanol and counted (Figure 2.2). Three 

independent experiments were performed for each experimental condition. The data 

were represented as the means of three independent experiments with standard 

deviations indicated. Statistical comparison was made using ANOVA (StatsDirect). P 

values of <0.01 indicate significant difference compared with the vector control. 
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Figure 2.2 Cells migrate from the upper compartment to the lower compartment 
through a microporous membrane (Adapted from Products introduction of Corning 
and Transwell, New York). The ability of cells to migrate through coated filters was 
measured with a modified Boyden chamber. The lower surface of the filters was 
coated with 0.5 µg fibronectin (Sigma) as a chemoattractant. Cells were seeded at a 
density of 3 x 105 cells in 100 µL RPMI with 0.2 % BSA at the upper compartment. 
The lower compartment was added with 600 µl of RPMI containing 10 % FBS. After 
incubation for 1 day at 37 ºC in 5 % CO2, some cells at the upper compartment 
migrate to the lower compartment. 
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2.13 Ubiquitination assay 

 

293T cells were transfected with FLAG-BPGAP1, HA-Ub, T7-Nedd4 (either 

wild-typed (Wt) or catalytically inactive (CS) mutant) as previously described (Pham 

and Rotin, 2001). This Nedd4 CS mutant carries a point mutation of the conserved 

Cys (Cys to Ser) of the HECT domain and is unable to transfer ubiquitin and hence 

catalytically inactive. Lysate from the transfected cells (WCL) were 

immunoprecipitated with anti-FLAG M2 beads to precipitate BPGAP1 and 

immunoblotted with anti-HA antibodies to detect ubiquitinated BPGAP1 (BPGAP1-

UB). Corresponding lysates were immunoblotted with either anti-T7 antibodies 

(Novagen) to verify expression of Nedd4 or anti-FLAG antibodies to verify 

expression of BPGAP1. Expression of ubiquitin were examined with anti-HA 

antibody. The T7 tagged Nedd4 (Wt) and Nedd4 (CS) plasmids were gifts of Dr. 

Daniela Rotin, Hospital for Sick Children, University of Toronto, Toronto). 
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3.1 Identifying novel GTPase-activating proteins 

3.1.1 Bioinformatics was used to identify novel GTPase-activating proteins from 

database 

 

 To identify novel GTPase-activating proteins (GAPs) encoded in the human 

genome, and to gain an insight on how they might regulate various cellular processes 

through their various protein modules, we undertook bioinformatics approach and 

employed the Conserved Domain Architecture Retrieval Tool (CDART) 

(http://www.ncbi.nlm.nih.gov/BLAST/) with the well characterised GAP domain of 

Cdc42GAP/p50RhoGAP as the query sequence. We have identified in silico many 

classes of proteins across species that harbor the homologous GAP domain together 

with other unique signaling protein domains. Some of them include the Pleckstrin 

Homology domain (ASAP-1), Src Homology-3 domain (p85α), Fes/CIP4 Homology 

domain (srGAP2), Rho guanine nucleotide exchange factor domain(BCR), and the 

p21 Rho-binding domain (Myosin IXb).(Figure 3.1) One of these classes is 

represented by several putative members that resemble the organisation of the 

Cdc42GAP protein. They are typified by the presence, at the proximal N-terminus, of 

the newly identified BNIP-2 and Cdc42GAP Homology (BCH) / Sec14p-like domain 

that we first described in the BNIP-2 family (Low et al., 1999; 2000a; 2000b) and a 

well conserved GAP domain at its distal C-terminus. Present in between these two 

domains is a stretch of proline-rich moiety (Figure 3.2). 
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Figure 3.1 Schematic representation of selected human RhoGAP domain-containing 
preoteins. Domain name abbreviations: FCH, Fes/CIP4 homology; SH3, Src 
homology 3; SH2, Src homology 2; RBD, Ras binding domain; IQ, Calmodulin-
dependent motif; C1, cysteine-rich phorbol ester binding; PH, pleckstrin homology; 
C2, calcium-dependent lipid binding.  
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure3.2 Domain organization of Cdc42GAP-like proteins. From its proximal N-
terminus to the distal C-terminus, it contains BCH domain, proline-rich region(P) and 
RhoGAP domain (GAP). 
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3.1.2 Cloning of BPGAP family members 
 

A putative RhoGAP-like protein (Database accession number: BAA91614) 

which contains BCH domain, GAP domain and Proline-rich sequence in between was 

blasted out. Based on the predicted open reading frame of this putative protein, 

several conserved primers were designed and used in reverse-transcription based PCR 

to isolate the full length cDNA from human MCF7 cells. The PCR products were 

used for molecular cloning. When clones were screened using restriction digest, three 

deferent clones of different sizes of inserts were obtained (Figure 3.3). When they 

were applied for sequencing, we found one unique sequence of cDNA identified (1.3 

Kb) (Figure 3.4) which codes for a protein that differs from BAA91614 by lacking 31 

amino acids (Figure 3.5; upperline). The protein also differs at the N-terminus, from 

two putative proteins encoded from the same human ARHGAP8 locus (Genbank 

accession numbers: Q9NSGO and AF195968). Despite using primers specific to those 

variants, we had not identified the full contigs for such transcripts in all samples 

examined thus far. Many classes of GAPs have been identified from the human 

genome and labeled ARHGAP1-12. However, they are not related to each other as 

each one carries different types and numbers of other associated protein domains. To 

provide meaningful reference to the specific subclass of GAP with its unique domain 

organisation, we propose to name this family of proteins BPGAPs (for BCH domain-

containing, Proline-rich and Cdc42GAP-like proteins) with their notable three-domain 

organization. We named this novel protein BPGAP1 (for BCH domain-containing, 

Proline-rich and Cdc42GAP-like protein, subtype 1; GenBank accession number: 

AF544240) 
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Figure 3.3 Molecular cloning of different isoforms of BPGAP family. Three isoforms 
of BPGAP family, BPGAP5, BPGAP2 and BPGAP1 (lane1 to lane3) respectively, 
were double-digested with HindIII and XhoI. M, maker. 
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1         ATGGCTGGCCAGGATCCTGCGCTGAGCACGAGTCACCCGTTCTACGACGTGGCCAGACAT 
1          M  A  G  Q  D  P  A  L  S  T  S  H  P  F  Y  D  V  A  R  H   
  
61        GGCATTCTGCAGGTGGCAGGGGATGACCGCTTTGGAAGACGTGTTGTCACGTTCAGCTGC 
21         G  I  L  Q  V  A  G  D  D  R  F  G  R  R  V  V  T  F  S  C   
  
121       TGCCGGATGCCACCCTCCCACGAGCTGGACCACCAGCGGCTGCTGGAGTATTTGAAGTAC 
41         C  R  M  P  P  S  H  E  L  D  H  Q  R  L  L  E  Y  L  K  Y   
  
181       ACACTGGACCAATACGTTGAGAACGATTATACCATCGTCTATTTCCACTACGGGCTGAAC 
61         T  L  D  Q  Y  V  E  N  D  Y  T  I  V  Y  F  H  Y  G  L  N   
  
241       AGCCGGAACAAGCCTTCCCTGGGCTGGCTCCAGAGCGCATACAAGGAGTTCGATAGGAAA 
81         S  R  N  K  P  S  L  G  W  L  Q  S  A  Y  K  E  F  D  R  K   
  
301       TACAAGAAGAACTTGAAGGCCCTCTACGTGGTGCACCCCACCAGCTTCATCAAGGTCCTG 
101        Y  K  K  N  L  K  A  L  Y  V  V  H  P  T  S  F  I  K  V  L   
  
361       TGGAACATCTTGAAGCCCCTCATCAGTCACAAGTTTGGGAAGAAAGTCATCTATTTCAAC 
121        W  N  I  L  K  P  L  I  S  H  K  F  G  K  K  V  I  Y  F  N   
  
421       TACCTGAGTGAGCTCCACGAACACCTTAAATACGACCAGCTGGTCATCCCTCCCGAAGTT 
141        Y  L  S  E  L  H  E  H  L  K  Y  D  Q  L  V  I  P  P  E  V   
  
481       TTGCGGTACGATGAGAAGCTCCAGAGCCTGCACGAGGGCCGGACGCCGCCTCCCACCAAG 
161        L  R  Y  D  E  K  L  Q  S  L  H  E  G  R  T  P  P  P  T  K   
  
541       ACACCACCGCCGCGGCCCCCGCTGCCCACACAGCAGTTTGGCGTCAGTCTGCAATACCTC 
181        T  P  P  P  R  P  P  L  P  T  Q  Q  F  G  V  S  L  Q  Y  L   
  
601       AAAGACAAAAATCAAGGCGAACTCATCCCCCCTGTGCTGAGGTTCACAGTGACGTACCTG 
201        K  D  K  N  Q  G  E  L  I  P  P  V  L  R  F  T  V  T  Y  L   
  
661       AGAGAGAAAGGCCTGCGCACCGAGGGCCTGTTCCGGAGATCCGCCAGCGTGCAGACCGTC 
221        R  E  K  G  L  R  T  E  G  L  F  R  R  S  A  S  V  Q  T  V   
  
721       CGCGAGATCCAGAGGCTCTACAACCAAGGGAAGCCCGTGAACTTTGACGACTACGGGGAC 
241        R  E  I  Q  R  L  Y  N  Q  G  K  P  V  N  F  D  D  Y  G  D   
  
781       ATTCACATCCCTGCCGTGATCCTGAAGACCTTCCTGCGAGAGCTGCCCCAGCCGCTTCTG 
261        I  H  I  P  A  V  I  L  K  T  F  L  R  E  L  P  Q  P  L  L   
  
841       ACCTTCCAGGCCTACGAGCAGATTCTCGGGATCACCTGTGTGGAGAGCAGCCTGCGTGTC 
281        T  F  Q  A  Y  E  Q  I  L  G  I  T  C  V  E  S  S  L  R  V   
  
901       ACTGGCTGCCGCCAGATCTTACGGAGCCTCCCAGAGCACAACTACGTCGTCCTCCGCTAC 
301        T  G  C  R  Q  I  L  R  S  L  P  E  H  N  Y  V  V  L  R  Y   
  
961       CTCATGGGCTCTCTGCATGCGGTGTCCCGGGAGAGCATCTTCAACAAAATGAACAGCTCT 
321        L  M  G  S  L  H  A  V  S  R  E  S  I  F  N  K  M  N  S  S   
  
1021      AACCTGGCCTGTGTCTTCGGGCTGAATTTGATCTGGCCATCCCAGGGGGTCTCCTCCCTG 
341        N  L  A  C  V  F  G  L  N  L  I  W  P  S  Q  G  V  S  S  L   
  
1081      AGTGCCCTTGTGCCCCTGAACATGTTCACTGAACTGCTGATCGAGTACTATGAAAAGATC 
361        S  A  L  V  P  L  N  M  F  T  E  L  L  I  E  Y  Y  E  K  I   
  
1141      TTCAGCACCCCGGAGGCACCTGGGGAGCACGGCCTGGCACCATGGGAACAGGGGAGCAGG 
381        F  S  T  P  E  A  P  G  E  H  G  L  A  P  W  E  Q  G  S  R   
  
1201      GCAGCCCCTTTGCAGGAGGCTGTGCCACGGACACAAGCCACGGGCCTCACCAAGCCTACC 
401        A  A  P  L  Q  E  A  V  P  R  T  Q  A  T  G  L  T  K  P  T   
  
1261      CTACCTCCGAGTCCCCTGATGGCAGCCAGAAGACGTCTCTAG 
421        L  P  P  S  P  L  M  A  A  R  R  R  L  *   
 
 
Figure 3.4 cDNA and protein sequences of BPGAP1. Depicted is the unique coding 
region and the translated protein sequence for BPGAP1 cDNA (accession number: 
AF544240) isolated by RT-PCR from MCF7 cells. 
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   BPGAP1    (1) -------------------------------------------------- 
   BPGAP3    (1) -------------------------------------------------- 
   BPGAP2    (1) -------------------------------------------------- 
   BPGAP4    (1) MRTLRRLKFMSSPSLSDLGKREPAAAADERGTQQRRACANATWNSIHNGV 
                                                                 
   BPGAP1    (1) -------------------------------------------------- 
   BPGAP3    (1) ---------------------------------------------MVILR 
   BPGAP2    (1) -------------------------------------------------- 
   BPGAP4   (51) IAVFQRKGLPDQELFSLNEGVRQLLKTELGSFFTEYLQNQLLTKGMVILR 
                                                               
   BPGAP1    (1) -------------------------------------------------- 
   BPGAP3    (1) DKIRFYE------------------------------------------- 
   BPGAP2    (1) -------------------------------------------------- 
   BPGAP4  (101) DKIRFYEGQKLLDSLAETWDFFFSDVLPMLQAIFYPVQGKEPSVRQLALL 
                                               
   BPGAP1    (1) -------------------------------------------------- 
   BPGAP3    (1) -------------------------------------------------- 
   BPGAP2    (1) -------------------------------------------------- 
   BPGAP4  (151) HFRNAITLSVKLEDALARAHARVPPAIVQMLLVLQGVHESRGVTEDYLRL 
                                                               
   BPGAP1    (1) -------------------------------------------------- 
   BPGAP3    (1) ------------------------------ELQRDKAAAAAVLGAVRKRP 
   BPGAP2    (1) -------------------------------------------------- 
   BPGAP4  (201) ETLVQKVVSPYLGTYGLHSSEGPFTHSCILELQRDKAAAAAVLGAVRKRP 
                                                               
   BPGAP1    (1) ----MAGQDPALSTSHPFYDVARHGILQVAGDDRFGRRVVTFSCCRMPPS 
   BPGAP3   (33) SVVPMAGQDPALSTSHPFYDVARHGILQVAGDDRFGRRVVTFSCCRMPPS 
   BPGAP2    (1) ----MAGQDPALSTSHPFYDVARHGILQVAGDDRFGRRVVTFSCCRMPPS 
   BPGAP4  (251) SVVPMAGQDPALSTSHPFYDVARHGILQVAGDDRFGRRVVTFSCCRMPPS 
                                               
   BPGAP1   (47) HELDHQRLLEYLKYTLDQYVENDYTIVYFHYGLNSRNKPSLGWLQSAYKE 
   BPGAP3   (83) HELDHQRLLEYLKYTLDQYVENDYTIVYFHYGLNSRNKPSLGWLQSAYKE 
   BPGAP2   (47) HELDHQRLLEYLKYTLDQYVENDYTIVYFHYGLNSRNKPSLGWLQSAYKE 
   BPGAP4  (301) HELDHQRLLEYLKYTLDQYVENDYTIVYFHYGLNSRNKPSLGWLQSAYKE 
                                                                
   BPGAP1   (97) FDR-------------------------------KYKKNLKALYVVHPTS 
   BPGAP3  (133) FDR-------------------------------KYKKNLKALYVVHPTS 
   BPGAP2   (97) FDRKDGDLTMWPRLVSNSKLKRSSHLSLPKYWDYRYKKNLKALYVVHPTS 
   BPGAP4  (351) FDRKDGDLTMWPRLVSNSKLKRSSHLSLPKYWDYRYKKNLKALYVVHPTS 
                                                                
   BPGAP1  (116) FIKVLWNILKPLISHKFGKKVIYFNYLSELHEHLKYDQLVIPPEVLRYDE 
   BPGAP3  (152) FIKVLWNILKPLISHKFGKKVIYFNYLSELHEHLKYDQLVIPPEVLRYDE 
   BPGAP2  (147) FIKVLWNILKPLISHKFGKKVIYFNYLSELHEHLKYDQLVIPPEVLRYDE 
   BPGAP4  (401) FIKVLWNILKPLISHKFGKKVIYFNYLSELHEHLKYDQLVIPPEVLRYDE 
  
   BPGAP1  (166) KLQSLHEGRTPPPTKTPPPRPPLPTQQFGVSLQYLKDKNQGELIPPVLRF 
   BPGAP3  (202) KLQSLHEGRTPPPTKTPPPRPPLPTQQFGVSLQYLKDKNQGELIPPVLRF 
   BPGAP2  (197) KLQSLHEGRTPPPTKTPPPRPPLPTQQFGVSLQYLKDKNQGELIPPVLRF 
   BPGAP4  (451) KLQSLHEGRTPPPTKTPPPRPPLPTQQFGVSLQYLKDKNQGELIPPVLRF 
                                                                
   BPGAP1  (216) TVTYLREKGLRTEGLFRRSASVQTVREIQRLYNQGKPVNFDDYGDIHIPA 
   BPGAP3  (252) TVTYLREKGLRTEGLFRRSASVQTVREIQRLYNQGKPVNFDDYGDIHIPA 
   BPGAP2  (247) TVTYLREKGLRTEGLFRRSASVQTVREIQRLYNQGKPVNFDDYGDIHIPA 
   BPGAP4  (501) TVTYLREKGLRTEGLFRRSASVQTVREIQRLYNQGKPVNFDDYGDIHIPA 
                                                                
   BPGAP1  (266) VILKTFLRELPQPLLTFQAYEQILGITCVESSLRVTGCRQILRSLPEHNY 
   BPGAP3  (302) VILKTFLRELPQPLLTFQAYEQILGITCVESSLRVTGCRQILRSLPEHNY 
   BPGAP2  (297) VILKTFLRELPQPLLTFQAYEQILGITCVESSLRVTGCRQILRSLPEHNY 
   BPGAP4  (551) VILKTFLRELPQPLLTFQAYEQILGITCVESSLRVTGCRQILRSLPEHNY 
                                                                
   BPGAP1  (316) VVLRYLMGSLHAVSRESIFNKMNSSNLACVFGLNLIWPSQGVSSLSALVP 
   BPGAP3  (352) VVLRYLMGFLHAVSRESIFNKMNSSNLACVFGLNLIWPSQGVSSLSALVP 
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   BPGAP2  (347) VVLRYLMGFLHAVSRESIFNKMNSSNLACVFGLNLIWPSQGVSSLSALVP 
   BPGAP4  (601) VVLRYLMGFLHAVSRESIFNKMNSSNLACVFGLNLIWPSQGVSSLSALVP 
                                                                
   BPGAP1  (366) LNMFTELLIEYYEKIFSTPEAPGEHGLAPWEQGSRAAPLQEAVPRTQATG 
   BPGAP3  (402) LNMFTELLIEYYEKIFSTPEAPGEHGLAPWEQGSRAAPLQEAVPRTQATG 
   BPGAP2  (397) LNMFTELLIEYYEKIFSTPEAPGEHGLAPWEQGSRAAPLQEAVPRTQATG 
   BPGAP4  (651) LNMFTELLIEYYEKIFSTPEAPGEHGLAPWEQGSRAAPLQEAVPRTQATG 
                                
   BPGAP1  (416) LTKPTLPPSPLMAARRRL 
   BPGAP3  (452) LTKPTLPPSPLMAARRRL 
   BPGAP2  (447) LTKPTLPPSPLMAARRRL 
   BPGAP4  (701) LTKPTLPPSPLMAARRRL 
 
 
Figure 3.5 Comparison of BPGAP1 with three other putative isoforms derived from 
sequences deposited in GenBank. Regions predicted to be encoded by alternative 
RNA splicing are highlighted in black and gray. The upperline represents unique 
difference among the BCH domain of BPGAP isoforms. BPGAP2, BPGAP3 and 
BPGAP4 are derived from BAA91614, AF195968 and Q9NSG0 respectively. 
Mutation F324S present in BPGAP1 could be due to polymorphism. 
 

 

We also found one sequence of the clones, which is 1.4 Kb in length, encodes 

the protein sequence of BAA91614 except several point mutations. It was named 

BPGAP2. 

The cDNA sequence of the third clone was found to be the smallest compared 

with BPGAP1 and BPGAP2. Although its cDNA sequence encodes a larger GAP 

domain than BPGAP1 and BPGAP2, its BCH domain appeared to be of smaller size 

than that of BPGAP1. When we compared its cDNA sequence with that of BPGAP1 

using Pairwise BLAST, an 88 bp region of BPGAP1 from the 81-168nt, 19 bp ahead 

of the N-terminal section of the BCH domain was found to be missing (Figure 3.6). 

Analysis of the translated sequence showed that this has led to the introduction of a 

stop codon at the 85nt. The pairwise BLAST results also revealed a 51 bp sequence 

that is unique to its GAP domain and absent in BPGAP1. It was named BPGAP5. 
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1 ATG GCT GGC CAG GAT CCT GCG CTG AGC ACG  
1    M  A   G   Q   D   P   A   L   S   T   
  
31  AGT CAC CCG TTC TAC GAC GTG GCC AGA CAT 
11   S   H   P   F   Y   D   V   A   R   H   
 
 
61  GGC ATT CTG CAG GTG GCA GGG GAT GAC CGC  
21   G   I   L   Q   V   A   G   D   D   R     
 
 

91  TTT GGA AGA CGT GTT GTC ACG TTC AGC TGC 
31   F   G   R   R   V   V   T   F   S   C  
 
 

121 TGC CGG ATG CCA CCC TCC CAC GAG CTG GAC  
41   C   R   M   P   P   S   H   E   L   D   
 
 

151 CAC CAG CGG CTG CTG GAG TA TTT GAA GTA C 
51   H   Q   R   L   L   E   V  F   D   V    
 
 

181 AC ACT GGA CCA ATA CGT TGA  
61  Q   T   G   P   I   R   *    
 
 
 
Figure 3.6 cDNA and protein sequence of BPGAP5. Compared with BPGAP1, its 
cDNA sequence has a deletion (red color) of an 88 bp region (from the 81-168nt), 
which leads to an movement of the open reading frame (under line) and a stop codon 
(*). 
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Genomic sequence analysis revealed that BPGAP1 is encoded by 11 exons 

from chromosome 22q13.3 (Table 3.1). Efforts are underway to isolate the full 

contigs for other putative isoforms, BPGAP3 (AF195968) and the longest subtype, 

BPGAP4 (Q9NSGO). It is believed that these isoforms could be derived from 

alternative RNA splicing of the same gene. A mouse homolog with 88 % similarity to 

human BPGAP1 was also identified from the genome database (encoded by accession 

NP_082731 or AI430858).  

 

 
 
Table 3.1 Structure of BPGAP1 gene locus. BPGAP1 sequence was mapped to 
ARHGAP8 gene locus (NT_011522) using the Genomatix online tool, ElDorado 
(http://www.genomatix.de/) with its exon and intron positions indicated.  bps, 
basepairs. 
 
 

Preliminary morphological studies were performed and we found expression 

of BPGAP1 full-length in MCF7 cells induced drastic morphological changes while 

expression of BPGAP2 could not (Figure 3.7). Further work was then focused on 

BPGAP1. We sought to understand how BPGAP1 regulates cellular processes via 

these protein domains.   
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Figure 3.7 BPGAP1 induced cell morphogical changes while BPGAP2 could not. 
MCF7 cells transfected for 16h with GFP expression plasmids for BPGAP1 full-
length, BPGAP2 full-length or GFP vector alone were visualized for GFP expression 
by direct fluorescence detection.  
 

 

3.1.3 Sequence comparison between BPGAP1 and Cdc42GAP 
 

Comparing to Cdc42GAP, BPGAP1 displays unique divergence at various 

regions. Notably, the BPGAP1 has a much shorter sequence at the N-terminus but a 

much longer carboxyl tail than Cdc42GAP (Figure 3.8). To understand the degree of 

similarity or divergence for the BCH and GAP domains, more detailed comparisons 

were made with similar domains found in other proteins.  

Firstly, the BCH domain of BPGAP1 is more closely related to that of 

Cdc42GAP (84% similarity) and notably it lacks the 4-amino acid residues (E/RSSQ/I) 

(amino acid 43-44 of BPGAP1) found in between two highly conserved prolines of 

the corresponding BCH domains in BNIP-2 and BNIP-S (Figure 3.9).  

Secondly, the GAP domain of the BPGAP1 shares highest degree of 

homology with that of Cdc42GAP (Figure 3.10), and by lesser extents to the other 

GAPs. More importantly, BPGAP1 contains an invariant arginine at residue 232. This 

BPGAP1 FLGFP vector BPGAP2 FLBPGAP1 FLBPGAP1 FLGFP vectorGFP vector BPGAP2 FLBPGAP2 FL
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residue in other functional GAPs is known as “arginine finger” and shown to be 

critical for acting as a catalytic residue in-trans (Nassar et al., 1998; Gamblin et al., 

1998; Fidyk and Cerione, 2002).  

Lastly, BPGAP1 possesses several more proline residues in the proline-rich 

sequence as well as an additional short stretch of proline-rich sequence at the distal 

carboxyl end (Figure 3.10, 3.11). The longer polyproline region of BPGAP1 is very 

similar to those identified in RNB6, extensin-like, ena-VASP-like and cdc-related 

proteins, which could imply some common regulatory mechanism among all these 

proteins. The two proline-rich regions of BPGAP1 could comprise more than one 

putative binding sites for either SH3 or WW domains (Macias et al., 2002; Sudol and 

Hunter, 2000; Figure 3.11). The sequence of amino acids 183 PPRP 186, 186 PPLP 189, 

419 PTLP 422, 422 PPSP 425 tally with the consensus SH3 domain binding sites “PxxP”, 

while the sequence of amino acids 182 PPPRPPLP 189, 182 PPPR 185, 181 TP182, 424 SP 425 

contain the features of group 2,3,4 WW domain bind sites respectively. Therefore, 

BPGAP1 might have multiple interacting partners though these binding sites. 
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BPGAP1      (1) ----------------------------------------MAGQDPALST 
Cdc42GAP    (1) MDPLSELQDDLTLDDTSEALNQLKLASIDEKNWPSDEMPDFPKSDDSKSS 
 
BPGAP1     (11) S----------HPFYDVARHGILQVAGDDRFGRRVVTFSCCRMPPSHELD 
Cdc42GAP   (51) SPELVTHLKWDDPYYDIARHQIVEVAGDDKYGRKIIVFSACRMPPSHQLD 
 
BPGAP1     (51) HQRLLEYLKYTLDQYVENDYTIVYFHYGLNSRNKPSLGWLQSAYKEFDRK 
Cdc42GAP  (101) HSKLLGYLKHTLDQYVESDYTLLYLHHGLTSDNKPSLSWLRDAYREFDRK 
 
BPGAP1    (101) YKKNLKALYVVHPTSFIKVLWNILKPLISHKFGKKVIYFNYLSELHEHLK 
Cdc42GAP  (151) YKKNIKALYIVHPTMFIKTLLILFKPLISFKFGQKIFYVNYLSELSEHVK 
 
BPGAP1    (151) YDQLVIPPEVLRYDEKLQSLHEGRTPPPTKTPPPRPPLPTQQFGVSLQYL 
Cdc42GAP  (201) LEQLGIPRQVLKYDDFLKSTQKSPATAPKPMPP-RPPLPNQQFGVSLQHL 
 
BPGAP1    (201) KDKN-QGELIPPVLRFTVTYLREKGLRTEGLFRRSASVQTVREIQRLYNQ 
Cdc42GAP  (250) QEKNPEQEPIPIVLRETVAYLQAHALTTEGIFRRSANTQVVREVQQKYNM 
 
BPGAP1    (250) GKPVNFDDYGDIHIPAVILKTFLRELPQPLLTFQAYEQILGITCVESSLR 
Cdc42GAP  (300) GLPVDFDQYNELHLPAVILKTFLRELPEPLLTFDLYPHVVGFLNIDESQR 
 
BPGAP1    (300) VTGCRQILRSLPEHNYVVLRYLMGSLHAVSRESIFNKMNSSNLACVFGLN 
Cdc42GAP  (350) VPATLQVLQTLPEENYQVLRFLTAFLVQISAHSDQNKMTNTNLAVVFGPN 
 
BPGAP1    (350) LIWPSQGVSSLSALVPLNMFTELLIEYYEKIFSTPEAPGEHGLAPWEQGS 
Cdc42GAP  (400) LLWAKDAAITLKAINPINTFTKFLLDHQGELFPSPDPSGL---------- 
 
BPGAP1    (400) RAAPLQEAVPRTQATGLTKPTLPPSPLMAARRRL 
Cdc42GAP  (440) ---------------------------------- 
 
 
Figure 3.8 Alignment of BPGAP1 with Cdc42GAP protein sequences reveals regions 
of homology and divergence. The sequence alignments were performed using Vector 
NTI Suite. Residues that are totally conserved in all members are shaded black, those 
that are conserved in most of the members are in drak gray while the significant but 
least conserved ones are in light gray shading. GenBank accession numbers used for 
alignments above are human BPGAP1 (AF544240), human Cdc42GAP (Q07960).  
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  BNIP-2-BCH   (167) --------------IVVFAVCFMPESSQPNYRYLMDNLFKYVIGTLELLV
  BNIP-S-BCH   (113) --------------VILFASCYLPRSSIPNYTYVMEHLFRYMVGTLELLV
  BPGAP1-BCH    (34) --------------VVTFSCCRMPPSHELD----HQRLLEYLKYTLDQYV
Cdc42GAP-BCH    (72) --------------IIVFSACRMPPSHQLDT---HSKLLGYLKHTLDQYV
 
  
  BNIP-2-BCH   (204) AENYMIVYLNGATTRRKMPSLGWLRKCYQQIDRRLRKNLKSLIIVHPSWF
  BNIP-S-BCH   (150) AENYLLVHLSGGTSRAQVPPLSWIRQCYRTLDRRLRKNLRALVVVHATWY
  BPGAP1-BCH    (66) ENDYTIVYFHYGLNSRNKPSLGWLQSAYKEFDRKYKKNLKALYVVHPTSF
Cdc42GAP-BCH   (105) ESDYTLLYLHHGLTSDNKPSLSWLRDAYREFDRKYKKNIKALYIVHPTMF
  
  BNIP-2-BCH   (254) IRTLLAVTRPFISSKFSQKIRYVFNLAELAELVPMEYVGIPECIKQVDQE
  BNIP-S-BCH   (200) VKAFLALLRPFISSKFTRKIRFLDSLGELAQLISLDQVHIPEAVRQLDRD
  BPGAP1-BCH   (116) IKVLWNILKPLISHKFGKKVIYFNYLSELHEHLKYDQLVIPPEVLRYDEK
Cdc42GAP-BCH   (155) IKTLLILFKPLISFKFGQKIFYVNYLSELSEHVKLEQLGIPRQVLKYDDF
  
  BNIP-2-BCH   (304) LNGKQDEPKNEQ 
  BNIP-S-BCH   (250) LHGSGGT----- 
  BPGAP1-BCH   (166) L----------- 
Cdc42GAP-BCH   (205) ------------   
 
 
 
Figure 3.9 Alignment of BCH domains among BPGAP1, Cdc42GAP, BNIP-2 and 
BNIP-Sα. The sequence alignments were performed using Vector NTI Suite. 
Residues that are totally conserved in all members are shaded black, those that are 
conserved in most of the members are in drak gray while the significant but least 
conserved ones are in light gray shading. GenBank accession numbers used for 
alignments above are BPGAP1 (AF544240), human Cdc42GAP (Q07960), human 
BNIP-2 (U15173), human BNIP-Sα (NM_138278). 
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    BPGAP1    (209) ----------IPPVLRFTVTYLREKG-LRTEGLFRRSASVQTVREIQRLY
  Cdc42GAP    (260) -----------PIVLRETVAYLQAHA-LTTEGIFRRSANTQVVREVQQKY
p115RhoGAP    (521) EKFIQSSGQPVPLVVESCIRFINLNG-LQHEGIFRVSGAQARISEIRDAF
p190RhoGAP   (1269) --------KPIPLFVEKCVEFIEDTG-LCTERLYRVSGNKTDQENIQKQF
p122RhoGAP    (653) --------QPLPQSIQQAMRYLRNHC-LDQVGLFRKSGVKSRIQALRQMN
p200RhoGAP     (35) ---------EVPQVLQSCTAFIERYG--IVDGIYRLSGVASNIQRLRHEF
     PSGAP    (398) -------------ILRKCISAVETRGHINDQGLYRVVGVSSKVQRLLSML
  
    BPGAP1    (248) NQG-------KPVNFDDYGDIHIPAVILKTFLRELPQPLLTFQAYEQILG
  Cdc42GAP    (298) NMG-------LPVDFDQYNELHLPAVILKTFLRELPEPLLTFDLYPHVVG
p115RhoGAP    (570) ERGED-----PLEKGCTVHDLDSVAGVLKLYFRSLEPPLFPLDMFNELLA
p190RhoGAP   (1310) VQD-H-----NINLVSMEVTVNAVAGALKAFFADLPDPLIPYSLHPELLE
p122RhoGAP    (694) ESAEDN-------VNYEGQSAYDVADMLNRNFRD-PEPLMTNKFSEPSMQ
p200RhoGAP     (74) DSEHVP----DLTKEPYVQDIHSVGSLCKLYFRELPNPLLTYQLYEKFSD
     PSGAP    (435) MDVKMCNDELDLENSADWAEVKTVTSALKQYLRSLPEPLMTYELHRDFIV
                    
    BPGAP1    (291) ITCVESSLRVT-GCRQILRSLPEHN-YVVLRYLMGSLHAVSRESIFNKMN
  Cdc42GAP    (341) FLNIDESQRVVPATLQVLQTLPEEN-YQVLRFLTAFLVQISAHSDQNKMT
p115RhoGAP    (515) SAELEVVGERVEPVSHLLFKLPRPV-LVVLRYLFTFLNHLAQYSDENMMD
p190RhoGAP   (1354) AAKIPDKTERLHALKEIFVKKFHPVNYDVFRYVITHLNRVSQQHKINLMT
p122RhoGAP    (736) IYQYVPKDQRLQAIKAAIMLLPDEN-REVLQTLLYFLSDVTAAVKENQMT
p200RhoGAP    (120) AVSAATDEERLIKIHDVIQQLPPPH-YRTLEFLMRHLSLLADYCSITNMH
     PSGAP    (485) PAKSGSPESRVNAIHFLVHKLPEKN-KEMLDILVKHLTNVSSHSKQNLMT
                                                              
    BPGAP1    (339) SSNLACVFGLNLIWPS-------QGVSSLSALVPLNMFTELLIEYYE---
  Cdc42GAP    (390) NTNLAVVFGPNLLWAK-------DAAITLKAINPINTFTKFLLDHQGELF
p115RhoGAP    (664) SYNLAVCFGPTLLPVP-------AGQDPVALQGRVNQLVQTLILQP----
p190RhoGAP   (1404) ADNLSICFGQPLMRPD-------LKSMEFLSTTKIHQSVVETFIQQ----
p122RhoGAP    (785) PTNLAVCLAPSLFHLN---------------TLKRENSSPRVMQRK----
p200RhoGAP    (169) AKNLAIVWAPNLLRSKQIESACPFSGTAAFMEVRIQSVVVEFILNHV---
     PSGAP    (534) VANLGVVFGPTLMRPQ-------EETVAAIMDLKFQNIVVEILIE-----
                    
    BPGAP1    (378) ------- 
  Cdc42GAP    (433) PSPDPSG 
p115RhoGAP    (702) ------- 
p190RhoGAP   (1442) ------- 
p122RhoGAP    (816) ------- 
p200RhoGAP    (215) ------- 
     PSGAP    (571) -------

    BPGAP1    (209) ----------IPPVLRFTVTYLREKG-LRTEGLFRRSASVQTVREIQRLY
  Cdc42GAP    (260) -----------PIVLRETVAYLQAHA-LTTEGIFRRSANTQVVREVQQKY
p115RhoGAP    (521) EKFIQSSGQPVPLVVESCIRFINLNG-LQHEGIFRVSGAQARISEIRDAF
p190RhoGAP   (1269) --------KPIPLFVEKCVEFIEDTG-LCTERLYRVSGNKTDQENIQKQF
p122RhoGAP    (653) --------QPLPQSIQQAMRYLRNHC-LDQVGLFRKSGVKSRIQALRQMN
p200RhoGAP     (35) ---------EVPQVLQSCTAFIERYG--IVDGIYRLSGVASNIQRLRHEF
     PSGAP    (398) -------------ILRKCISAVETRGHINDQGLYRVVGVSSKVQRLLSML
  
    BPGAP1    (248) NQG-------KPVNFDDYGDIHIPAVILKTFLRELPQPLLTFQAYEQILG
  Cdc42GAP    (298) NMG-------LPVDFDQYNELHLPAVILKTFLRELPEPLLTFDLYPHVVG
p115RhoGAP    (570) ERGED-----PLEKGCTVHDLDSVAGVLKLYFRSLEPPLFPLDMFNELLA
p190RhoGAP   (1310) VQD-H-----NINLVSMEVTVNAVAGALKAFFADLPDPLIPYSLHPELLE
p122RhoGAP    (694) ESAEDN-------VNYEGQSAYDVADMLNRNFRD-PEPLMTNKFSEPSMQ
p200RhoGAP     (74) DSEHVP----DLTKEPYVQDIHSVGSLCKLYFRELPNPLLTYQLYEKFSD
     PSGAP    (435) MDVKMCNDELDLENSADWAEVKTVTSALKQYLRSLPEPLMTYELHRDFIV
                    
    BPGAP1    (291) ITCVESSLRVT-GCRQILRSLPEHN-YVVLRYLMGSLHAVSRESIFNKMN
  Cdc42GAP    (341) FLNIDESQRVVPATLQVLQTLPEEN-YQVLRFLTAFLVQISAHSDQNKMT
p115RhoGAP    (515) SAELEVVGERVEPVSHLLFKLPRPV-LVVLRYLFTFLNHLAQYSDENMMD
p190RhoGAP   (1354) AAKIPDKTERLHALKEIFVKKFHPVNYDVFRYVITHLNRVSQQHKINLMT
p122RhoGAP    (736) IYQYVPKDQRLQAIKAAIMLLPDEN-REVLQTLLYFLSDVTAAVKENQMT
p200RhoGAP    (120) AVSAATDEERLIKIHDVIQQLPPPH-YRTLEFLMRHLSLLADYCSITNMH
     PSGAP    (485) PAKSGSPESRVNAIHFLVHKLPEKN-KEMLDILVKHLTNVSSHSKQNLMT
                                                              
    BPGAP1    (339) SSNLACVFGLNLIWPS-------QGVSSLSALVPLNMFTELLIEYYE---
  Cdc42GAP    (390) NTNLAVVFGPNLLWAK-------DAAITLKAINPINTFTKFLLDHQGELF
p115RhoGAP    (664) SYNLAVCFGPTLLPVP-------AGQDPVALQGRVNQLVQTLILQP----
p190RhoGAP   (1404) ADNLSICFGQPLMRPD-------LKSMEFLSTTKIHQSVVETFIQQ----
p122RhoGAP    (785) PTNLAVCLAPSLFHLN---------------TLKRENSSPRVMQRK----
p200RhoGAP    (169) AKNLAIVWAPNLLRSKQIESACPFSGTAAFMEVRIQSVVVEFILNHV---
     PSGAP    (534) VANLGVVFGPTLMRPQ-------EETVAAIMDLKFQNIVVEILIE-----
                    
    BPGAP1    (378) ------- 
  Cdc42GAP    (433) PSPDPSG 
p115RhoGAP    (702) ------- 
p190RhoGAP   (1442) ------- 
p122RhoGAP    (816) ------- 
p200RhoGAP    (215) ------- 
     PSGAP    (571) -------  

 
 
                                                                             
Figure 3.10 Alignment of GAP domains among BPGAP1, Cdc42GAP, PSGAP, 
p115RhoGAP, p122RhoGAP, p190RhoGAP and p200RhoGAP. Arrow indicates the 
invariant “arginine-finger” necessary for its GAP function. The sequence alignments 
were performed using Vector NTI Suite. Residues that are totally conserved in all 
members are shaded black, those that are conserved in most of the members are in 
drak gray while the significant but least conserved ones are in light gray shading. 
GenBank accession numbers used for alignments above are BPGAP1 (AF544240), 
human Cdc42GAP (Q07960), mouse PSGAP (NP_084389), human p190RhoGAP 
(NP_001164), mouse p115 RhoGAP (NP_619536), mouse p122RhoGAP/DLC1 
(NP_056617), human p200RhoGAP (NP_055530). 
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        BPGAP1   (176) PPPTK-TPPPR-PPLP 
 CDC2-related   (538) PLPT-TTPPPQTPPLP 
Ena-VASP-like   (190) PPPT—-TPPP—-PPLP 
         RNB6   (190) PPPTGSTPPPP-PPLP 
 
 

BPGAP1 PPPTKTPPPRPPLP

WW (II)

SH3

176 189 PTLPPSP419 425

WW (IV) SH3

WW (IV)

BPGAP1 PPPTKTPPPRPPLP

WW (II)

SH3

176 189 PTLPPSP419 425

WW (IV) SH3

BPGAP1 PPPTKTPPPRPPLP

WW (II)

SH3

176 189 PTLPPSP419 425

WW (IV) SH3

WW (IV)

BPGAP1 PPPTKTPPPRPPLP

WW (II)

SH3

176 189 PTLPPSP419 425

WW (IV) SH3
 

 
 

Figure 3.11 Alignment of the proline-rich regions of BPGAP1, RNB6, Extensin-like 
protein PRP5, Ena-VASP-like protein and Cdc2-related kinase 7. Indicated are 
putative targets for SH3 and WW domains based on consensus binding motifs. The 
sequence alignments were performed using Vector NTI Suite. Residues that are 
totally conserved in all members are shaded black, those that are conserved in most of 
the members are in drak gray while the significant but least conserved ones are in 
light gray shading. GenBank accession numbers used for alignments above are rat 
RNB6 (NM_024147), mouse Ena-VASP-like isoform (AF279662), human CDC2-
related protein kinase 7 (NM_016507). 
 
 

3.2 Expression profile of BPGAP1 

 

To gain an insight into the potential cellular function(s) of BPGAP1, we 

examined the general expression profile of BPGAP1. Various human cell lines were 

maintained in the presence of serum and RNA isolated for the semi-quantitative 

approach of RT-PCR using gene-specific primers. In strong contrast to Cdc42GAP 

whose expression was restricted to most cells of epithelial origin such as breast cancer 

MCF7, servical cancer HeLa, and kidney 293T, the expression of BPGAP1 appeared 

more ubiquitous (Figure 3.12). The full-length PCR products of BPGAP1 were then 

subjected to internal amplification using primers that encompass BPGAP1-specific 

BCH region that contained the unique insertion. Two bands were amplified with the 

sizes of around 400bp and 500bp respectively, indicating there were at least two 
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different isoforms of BPGAP1 containing different BCH domains in the full-length 

PCR products (Figure 3.12). BPGAP isoforms are also expressed ubiquitously in 

various mouse organs as shown in Figure 3.13. Similarly, BPGAP1 expression can be 

detected in all mouse tissues/organs tested, including the lung, liver, heart, kidney, 

brain and testis. Interestingly, two bands were amplified in the mouse organs whereas 

only one band appeared in the PCR product from Swiss 3T3 cell line, indicating that 

there were at least two isoforms of BPGAP family members in different mouse tissues. 

 

 
 
 
 
 
Figure 3.12 Expression profiles of BPGAP family cDNAs in various cell lines.Cells 
were grown in appropriate media containing 10% serum and total RNA isolated for 
semi-quantitative RT-PCR to detect the expression of BPGAP isoforms as described 
in “Materials and Methods”. Expression of Cdc42GAP and GAPDH were analysed 
for comparison and normalization of samples respectively. M, markers 
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Figure 3.13 Expression profiles of BPGAP family cDNAs in various mouse organs. 
Total RNA was isolated from various organs as indicated from a two-week-old mouse 
for semi-quantitative RT-PCR to detect the expression of BPGAP isoforms as 
described in “Materials and Methods”. Primers for the fulllength BPGAP1 were used 
for the PCR. M, markers 
 

 

3.3 Multiple interacting partners of BPGAP1 

 

In order to understand the specificity versus redundancy nature of the 

BPGAP1 as well as the roles of their various signaling modules, the binding repertoire 

of the various protein domains it harbors was studied. 

 

3.3.1 Protein expression of the domains of BPGAP1 in mammalian cells 
 

 For binding and functional studies, various deletion constructs were made as 

FLAG epitope-tagged recombinant that would express fragments of proteins that 

contain either the BCH, proline-rich sequence or GAP domains: NNP fragment 

contains BCH domain; NP fragment contains both BCH domain and proline-rich 

sequence; PC fragment contains both proline-rich sequence and GAP domain; C 

fragment contains GAP domain (Figure 3.14). 
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Cells were transfected with these constructs, lysed and analysed for their 

expression by Western blot as described in “Materials and Methods”. Figure 3.14 

shows that full-length and deletion mutants all expressed equally well and were 

suitable for subsequent GST “pull-down” experiments or cellular studies. It also 

showed that the relative molecular masses of BPGAP1 full length (FL), NNP, NP, PC 

and C were around 48, 18, 23,29,25 KD respectively as predicted. 

 

 
 
 
Figure 3.14 Expression constructs of BPGAP1 and its protein expression profiles in 
mammalian cells. Various expression constructs were tagged with FLAG epitope as 
indicated: NNP(N-terminus, non-proline region; amino acid 1-167), NP (N-terminus, 
with proline; amino acid 1-206), PC (Proline-containing carboxyl end; amino acid 
168- 433) and C (Carboxyl end without proline; amino acid 207-433). Cells were 
transfected with plasmids expressing these domains and analysed for their expression 
by anti-FLAG Western blot analyses. Same regions were also tagged with either GST 
or GFP for use in subsequent experiments. 
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3.3.2 BPGAP1 forms homophilic/heterophilic interactions via BCH domain 

3.3.2.1 In vitro “Pull Down”  

 

We recently showed that BCH domain confers a novel protein interaction 

domain (Low et al., 1999; 2000a; 2000b). To test whether BPGAP1 could indeed 

interact with other BCH domain-containing proteins, the lysates of 293T cells 

transfected with FLAG-BPGAP1 and its fragments plasmids were subjected to “pull-

down” with GST recombinants of the full-length Cdc42GAP or BNIP-2, or their 

respective BCH domains. Bound BPGAP1 fragments were resolved in SDS-PAGE 

and determined by anti-FLAG Western blot analyses. Figure 3.15 shows that full-

length BPGAP1 was a target of Cdc42GAP or its BCH domain, but it failed to 

interact with BNIP-2 full-length or its BCH domain in vitro. Interestingly, when 

fragment NP that contains the BCH domain of BPGAP1 was used, BNIP-2 full-length 

or its BCH domain could now form a heterophilic partner with this fragment. 

Furthermore, the interaction with Cdc42GAP or its BCH domain was also enhanced. 

Under all this experimental condition, the fragment C that carried the GAP domain 

(but without BCH domain) did not bind to any of the GST recombinants at all.  

To further confirm these interactions, the reciprocal “pull-down”s were 

performed. Cdc42GAP and BNIP-2 were expressed as FLAG-tagged proteins in the 

mammalian cells and subjected to GST-BPGAP1 binding. Figure 3.16 shows that, as 

expected, FLAG-Cdc42GAP was precipitated by GST-BPGAP1. In contrary to the 

inert status of FLAG-BPGAP1 towards GST-BNIP-2 (Figure 3.16), the GST-

BPGAP1 was reactive towards FLAG-BNIP-2. Likewise, full-length BPGAP1 and its 

BCH domain could also be precipitated with GST-BPGAP1.  
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Figure 3.15, 3.16 In vitro “Pull-down” of BPGAP1 with other BCH domain 
containing proteins. GST-recombinants of various proteins were prepared as agarose 
beads and used for “pull-down” assays using cell lysates expressing FLAG-tagged 
proteins as indicated in separate experiments. Beads were then washed and processed 
for Western blot analyses using FLAG antibodies as described in “Materials and 
Methods”. BPGAP1 is shown to be involved in either homophilic or heterophilic 
binding to other BCH domain-containing proteins.Blots were stripped and stained 
with amido black to reveal equal loading of GST-recombinants. WCL, whole-cell 
lystaes. 
 
 
 
 

PD: GST- BPGAP1 FL

GST

50KD

37KD
25KD

Whole cell lysates

FLAG:
Cdc4

2G
AP

BNIP-2

BPGAP1 F
L

BPGAP1 N
P

BPGAP1 C

FLAG:
Cdc4

2G
AP

BNIP-2

BPGAP1 F
L

BPGAP1 N
P

BPGAP1 C

PD: GST- BPGAP1 FL

GST

50KD

37KD
25KD

Whole cell lysates

FLAG:
Cdc4

2G
AP

BNIP-2

BPGAP1 F
L

BPGAP1 N
P

BPGAP1 C

FLAG:
Cdc4

2G
AP

BNIP-2

BPGAP1 F
L

BPGAP1 N
P

BPGAP1 C



Chapter 3   Results 
_____________________________________________________________________  

89
 

These results indicate that BPGAP1 can form heterophilic complex with 

Cdc42GAP more readily than it can with BNIP-2. The lack of binding of full-length 

BPGAP1 to BNIP-2 was probably due to the fact that when expressed in mammalian 

host, BPGAP1 could assume some modifications or conformational changes that 

selectively reduce its binding capacity to BNIP-2. One such mechanism is via the 

intramolecular interaction.  

To test this hypothesis, full-length, the NP fragment and C fragment of 

BPGAP1 were subjected to their respective GST-recombinants to cross-examine their 

ability to bind to adjacent domains in the same protein. Figure 3.17 shows that the 

GST-BPGAP1 fragment C bound weakly to the full-length molecule but strongly to 

the FLAG-tagged NP fragment that contained the BCH domain. However, it did not 

bind to itself at all. Likewise, GST-NP fragment failed to interact with the full-length, 

but it bound very strongly to itself or to the FLAG-tagged C fragment. Interestingly, 

the BPGAP1-C fragment did not bind to Cdc42GAP or BNIP-2 at all (compare with 

Figure 3.15).  

Taken together, these results are consistent with the notion that BPGAP1 

could assume at least three different conformations for binding- the homophilic 

interaction via its own BCH domain, heterophilic interaction between its BCH domain 

and other similar BCH domains, or it could exist in an intramolecular interaction 

manner between its N-terminus that contains the BCH domain and the C-terminus that 

harbors the GAP domains. 
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Figure 3.17 Intramolecular interaction of BPGAP1. GST-recombinants of various 
proteins were prepared as agarose beads and used for “pull-down” assays using cell 
lysates expressing FLAG-tagged proteins as indicated. Beads were then washed and 
processed for Western blot analyses using FLAG antibodies as described in 
“Materials and Methods”. BPGAP1 is shown to be involved in intramolecular 
interaction. Blots were stripped and stained with amido black to reveal equal loading 
of GST-recombinants. WCL, whole-cell lystaes. 
 
 

3.3.2.2 In vivo Co-immunoprecipitation  
 

To further study the interactions between BPGAP1 with itself and the other 

BCH domain-containing proteins Cdc42GAP and BNIP-2 in vivo, co-

immunuprecipitation was performed. Consistent with our observation in vitro, HA-

tagged BPGAP1, Cdc42GAP and BNIP-2 could also be co-immunoprecipitated with 

FLAG-tagged BPGAP1 when co-expressed in vivo (Figure 3.18). These results 

confirmed that BPGAP1 could interact with other BCH domain-containing proteins 

not only in vitro but also in vivo. 
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Figure 3.18 In vivo binding of BPGAP1 with itself and other BCH domain-containing 
proteins. Cells were cotransfected with plasmids expressing FLAG-tagged full-length 
BPGAP1 and Hatagged full-length BPGAP1, Cdc42GAP or BNIP-2. Lysates were 
immunoprecipitated (IP) with anti-FLAG M2 beads and the associated proteins were 
separated on SDS-PAGE, and probed with HA antibody as described in “Materials 
and Methods”. Expression of HA-tagged BPGAP1, Cdc42GAP and BNIP-2, and 
FLAG-tagged BPGAP1 were verified by anti-HA (third panel) or anti-FLAG (fourth 
panel) Western analyses of the whole cell lysates (WCL). Equal loading of anti-
FLAG M2 beads is shown by applying the IP blot with anti-FLAG antibody (second 
panel).  
 
 

3.4 BPGAP1 targeted Cdc42, RhoA and Rac1 differentially via their BCH and 

GAP domains  

 

With the conserved GAP domain that includes the invariant arginine finger 

motif (Figure 3.10), BPGAP1 was predicted to bind and confer catalysis towards the 

GTP hydrolysis of certain Rho GTPases.  To examine this, in vitro and in vivo 

GTPase activity assays were performed. 
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3.4.1 GAP activity in vitro and in vivo 
 

3.4.1.1 In vitro GAP activity assay 
 

For the in vitro GTPase activity assays, purified recombinant of GST-RhoA, 

Cdc42 or Rac1 were loaded with GTP and the level of GTP hydrolysis determined in 

the absence or presence of BPGAP1 full-length, its deletion mutants NP, PC or the 

site-directed mutagenesis mutant R232A, using the enzyme-coupled 

spectrophotometric assays (Wu et al., 2000) as described in “Materials and Methods”. 

The release of Pi catalyzed by the GAP activity was measured by the product 

concentration after it reacted with the substrate MESG. And the product concentration 

could be measured by spectrophotometric assay at A360. We found that after the 

initiation of the reaction, the increasing value of A360 is linear and proportional to the 

time in one minute, whereas the value will not increase one minute later. It was 

demonstrated that the reaction occurred in one minute. The GAP activities were 

indicated by the rate of A360 inclination in one minute compared with that of the 

control.  Figure 3.19 shows that BPGAP1 augmented GTPase activity of Cdc42 and 

RhoA in vitro, by 7-fold and 2.5-fold respectively. In contrast, it showed no activation 

towards Rac1. These effects were mediated via its GAP domains, as evidenced by the 

same magnitude of activation from the PC fragment (that carried the GAP domain) 

and the lack of effect from the NP fragment that carried the BCH, but devoid of the 

GAP domain. Cdc42GAP was used as the positive control. Furthermore, such 

activation was abrogated after introducing a mutation R232A at the invariant arginine 

residue (see Figure 3.10). 
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Figure 3.19 In vitro GAP assays. Purified Cdc42, RhoA or Rac1 were loaded with 
GTP and their GTPases activity determined in the absence or presence of Cdc42GAP, 
BPGAP1 full-length or mutants using an enzyme-coupled assay as described in 
“Materials and Methods”. The activity was expressed as fold over the control using 
GST alone. Results are means ± S.D. of three replicate determinations. 
 

 

3.4.1.2 In vivo GAP activity assay 
 

To compare the significance of such differential activity in vitro, we next 

examined how the activity of the Rho GTPases inside the cells could be regulated by 

BPGAP1 in vivo. Cells were cotransfected with HA-tagged Cdc42, RhoA or Rac1 

together with either the vector control or FLAG-BPGAP1. The activity of these 

GTPases in vivo was then determined by their magnitude of binding to the respective 

effector domains, as described in “Materials and Methods”. Figure 3.20 shows that in 

vivo, RhoA binding to its effector domain, hence its activity was reduced in the 

presence of BPGAP1. In contrast, the existing activity of Cdc42 and Rac1 were not 

affected, and at times they seemed to be modestly increased instead.  
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Figure 3.20 In vivo GTPase binding assays. Cells were transfected with HA-tagged 
wildtype Cdc42, RhoA or Rac1 in the presence of either the vector control or FLAG-
tagged BPGAP1. Cell were lysed and incubated with GST-PBD or GST-RBD 
immobilized on beads to assess the ability of BPGAP1 in down-regulating GTPase 
pathway as described in “Materials and Methods”. Bound GTPases were resolved on 
SDS-PAGE and detected by immunoblotting with HA-antibody (top panel). 
Expression of BPGAP1 and GTPases were verified by anti-FLAG (second panel) or 
anti-HA (third panel) Western analyses of the whole cell lysates (WCL) respectively. 
Equal loading of GST fusion proteins is shown in the bottom panel. 
 

Such discrepancies between in vitro and in vivo activities could be due to one 

or more of the several reasons, including (i) the presence of multiple domains in 

BPGAP1 that only exert its unique properties in vivo, and (ii) the likelihood of 

BPGAP1 being present in different subcellular compartments.  

 

3.4.2 Interactions between BPGAP1 with Rho GTPases 

 

Next, we examined more closely the binding status of both overexpressed and 

endogenous Rho GTPases to BPGAP1. Figure 3.21 and Figure 3.23 shows that 

endogenous Cdc42, despite their very low expression level (detectable in the whole 
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cell-lysate only upon prolonged exposure of film), could be greatly precipitated by 

BPGAP1 both in vitro and in vivo.  

Interestingly, the endogenous RhoA was not readily bound by BPGAP1 unless 

its level was elevated by overexpression (Figure 3.22). Consistent with this was the 

observation that endogenous RhoA could be co-immunoprecipitated with 

overexpressed BPGAP1 (Figure 3.23) and this level of interaction was further 

increased when RhoA itself was also overexpressed (Figure 3.24).  

Similar to the Cdc42, endogenous and overexpressed Rac1 interacted strongly 

with BPGAP1 in either the “pulldown” or co-immunoprecipitation assays (Figures 

3.21-3.24).  

Given that BPGAP1 could associate with Cdc42GAP strongly inside the cells, 

there still exists the possibility that some of these Rho GTPases might interact 

indirectly with BPGAP1 via Cdc42GAP. Taken together, our results confirm that 

BPGAP1 regulates RhoA, but not Cdc42 or Rac1 activities in vivo and that it still 

retained its ability to form a complex with Cdc42 and Rac1. 
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Figure 3.21 In vitro binding of BPGAP1 with endogenous Rho GTPases. GST 
recombinant of BPGAP1, its domains or GST control were used for “pulldown” 
assays using normal cell lysates as described in ‘Materials and Methods”. Beads from 
the “pull-down” experiments were washed and processed for Western analyses using 
anti-Cdc42, anti- RhoA or anti-Rac1 antibodies. Blots were stripped and stained with 
amido black to reveal loading of GST-recombinants. Under this level of film exposure, 
the endogenous level of Cdc42 was too low to be detectable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3.22 In vitro binding of BPGAP1 with overexpressed Rho GTPases. Cells 
were transfected with HA-tagged Cdc42, RhoA or Rac1 and lysed for “pulldown” 
assays with either the GST control or GST-recombinant of BPGAP1. Bound proteins 
were detected with anti-HA antibodies while GST staining reveals equal loading of 
samples. 
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Figure 3.23 In vivo binding of BPGAP1 with endogenous Rho GTPases. Cells were 
transfected with expression vectors for fulllength FLAG-tagged BPGAP1 and FLAG 
vector control. Lysates were subjected to immunoprecipitation (IP) with anti-FLAG 
M2 beads and the associated proteins were separated on SDS-PAGE, and probed with 
anti-Cdc42, anti-RhoA or anti-Rac1 antibodies to reveal the binding of targets. Arrow 
indicates the light chain of the antibody. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.24 In vivo binding of BPGAP1 with overexpressed Rho GTPases. Cells 
were transfected with expression vectors for full-length FLAGtagged BPGAP1 or 
FLAG vector control, together with either HA-tagged Cdc42, RhoA or Rac1. Lysates 
were subjected to immunoprecipitation (IP) with anti-FLAG M2 beads and the 
associated proteins were separated on SDS-PAGE, and probed with anti-HA 
antibodies to reveal the binding of targets. Expression of HA-tagged GTPases and 
FLAG-tagged BPGAP1 were verified by anti- HA (third panel) or anti-FLAG (fourth 
panel) Western analyses of the whole cell lysates (WCL) respectively. Equal loading 
of anti-FLAG M2 beads is shown by applying the IP blot with anti-FLAG antibody 
(second panel). NT is for non-transfection control. 
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3.5 BPGAP1 induced pseudopodia in epithelial cells 

 

To further understand the physiological significance of BPGAP1 interaction 

via its different domains, we set out to investigate their role(s) in regulating one of the 

key biological responses elicited by Rho GTPases, i.e the control of cell dynamics. 

We specifically wished to elucidate how BPGAP1 would affect the morphology as 

well as the migration potentials of the target cells, and to examine whether changes in 

cell morphology alone is directly linked and sufficient to induce cell migration. 

 

3.5.1 Indirect immunofluorescence showed that expression of BPGAP1 could 

induce cell protrusions 

 

We had chosen to use the human breast epithelial cancer cells MCF7 as the 

model because of its relative ease in transfection, and in monitoring of its cell 

morphology. MCF7 cells are  non-metastatic with minimal cell migration. MCF7 cells 

were transfected with expression plasmids of either FLAG-tagged BPGAP1, or vector 

control. Sixteen hours after the transfection, samples were processed for indirect 

immunofluoroscence as described in “Materials and Methods”.  Figure 3.25 shows 

that while control cells with vector alone exhibited regular cuboidal feature of an 

epithelium and with diffused staining of the tag peptide, the expression of BPGAP1 

was shown to be mainly localised in the cytosol and it induced unique long and short 

protrusions (collectively referred as pseudopodia) in the transfected cells (arrows). 
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FLAG-BPGAP1 vectorFLAG-BPGAP1 vector

 
Figure 3.25 BPGAP1 induced pseudopodia. MCF7 cells were transfected with 
FLAG-tagged expression plasmids for BPGAP1 full-length or control vector. Cells 
were then fixed, permeabilized and incubated with anti-FLAG monoclonal, followed 
by Texas Red dye-conjugated rabbit anti-mouse IgG for immunofluorescence 
detection as described in “Materials and Methods”. Arrows indicate pseudopodia 
formation. Bar, 10 μm. 
 
 

3.5.2 Direct fluorescence by GFP expression 
 

 To further confirm such observations and to monitor the dynamics directly 

without resorting to fixing the cells, we opted for direct fluorescence with green-

fluorescent protein (GFP) fusion of BPGAP1 and its various deletion mutants (refer to 

Figure 3.14).  

A quantitative measure of the cell dynamics could be performed by identifying 

certain types of changes in cell morphology and their relative percentages determined 

(Figures 3.26 and 3.27). MCF7 cells expressing the vector control were mostly 

cuboidal in shape and less than 5% of them had some background with irregular 

shapes including short protrusions. However, when expressed, full-length GFP-

BPGAP1 again induced pseudopodia in almost 60% of the transfected cells, a unique 
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feature that was normally typified by long projections of more than 30 micron from 

the opposing ends of the cell bodies, accompanied by occasional branchings off the 

main pseudopods (Figure 3.26). Interestingly, when fragments NNP (with BCH, but 

without proline-rich region) or NP (with BCH and proline-rich region) were tested, 

long pseudopodia were no longer observed. Instead, between 25% to 30% of the 

transfected cells caused many shorter protrusions (less than 10 micron) with 

“mircospike-like” features surrounding the cell peripheries. In comparison, the 

presence of the GAP domain in the PC fragment was sufficient to cause mainly long, 

and very few short pseudopodia. This was further supported by the R232A inactive 

GAP mutant that when expressed, resulted in the features resemblance to that induced 

by the NNP or NP fragments alone. In contrast, deletion of the entire proline-rich 

region (amino acids 176- 189; see Figure 3.11) of BPGAP1 (P1 mutant) did not affect 

the overall formation of protrusions by the cells.  

GFP Vector BPGAP1 FL BPGAP1 NNP BPGAP1 NP

BPGAP1 R232ABPGAP1 PC BPGAP1 P1

GFP Vector BPGAP1 FL BPGAP1 NNP BPGAP1 NPGFP VectorGFP Vector BPGAP1 FLBPGAP1 FL BPGAP1 NNPBPGAP1 NNP BPGAP1 NPBPGAP1 NP

BPGAP1 R232ABPGAP1 R232ABPGAP1 PCBPGAP1 PCBPGAP1 PC BPGAP1 P1BPGAP1 P1  
 
Figure 3.26 BPGAP1 induced pseudopodia via BCH and GAP domains. MCF7 cells 
transfected for 16h with GFP expression plasmids for BPGAP1 full-length, domains, 
mutants, or GFP vector alone were visualized for GFP expression by direct 
fluorescence detection. The yellow appearance was due to increased exposure set to 
allow better detection of pseudopodia. Arrows indicate features described in the text. 
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Figure 3.27 BPGAP1 induced pseudopodia via BCH and GAP domains. The 
percentage of cells exhibiting pseudopodia in the presence of various GFP constructs 
(from experiment B above) were determined and represented as a bar graph. Results 
are averages +/- half the ranges for two determinations that are representative of at 
least three separate experiments. * indicates only short pseudopodia. All difference 
are significant at p<0.01 vs GFP vector control. 

 

3.5.3 BPGAP1-induced cell protrusion was NOT due to cell body retraction 
 

To confirm that the formation of protrusions induced by BPGAP1 was not the 

result of cell body retraction or shrinkage (yielded as retraction fibers), various 

parameters for cell dimensions were also measured as described in “Materials and 

Methods”. These include the longest diameter (LD) and the shortest diameter (SD) 

that bisected the center of cells and perpendicular to each other, the total areas of the 

cell bodies and also the average lengths of long pseudopods (Figure 3.28). The results 
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show that when compared to the GFP control, BPGAP1 full-length, NP or PC mutants 

all induced similar morphological changes without changes in the total cell areas, the 

longest or the shortest diameters, indicating that there was no cell shrinkage or 

retraction. Instead, they only caused the lengthening of pseudopodia. 

Taken together, these results suggest that BPGAP1 induces unique 

pseudopodia formation mainly via the GAP domain and BCH domain independently 

of the proline-rich region. Induction of pseudopodia by BPGAP1 was also observed in 

293T and Hela cells. 

 

* Significant difference from control. p<0.01
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Figure 3.28 BPGAP1-induced morphological changes are protrusions/pseudopodia 
and not retraction fibers. MCF7 cells were transfected with expression plasmids for 
GFP tagged BPGAP1 full-length, NP, and PC domains or GFP vector control. After 
the transfection for 20h, the total cell areas, LD (the longest diameter that goes 
through the center of cells, showed by the bold line), SD (the shortest diameter that 
goes through the center of cells, showed by the gray line) and PT (the lengths of 
protrusion) were measured and analysed as described in “Materials and Methods”. 
Measurements are means +/- standard deviations for 30 determinations. Results are 
representative of three separate experiments. Statistical comparison was made using 
ANOVA (StatsDirect). * indicates significant difference at p<0.01 when compared 
with the vector control. 
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3.6 BPGAP1-induced pseudopodia involve inactivation of RhoA but activation of 

pathways downstream of Cdc42/Rac1. 

 

Since BPGAP1-induced pseudopodia required its GAP domain and the BCH 

domain, and that in vivo BPGAP1 inactivated only the RhoA but not Cdc42 and Rac1 

(Figure 3.20), we postulated that such formation of pseudopodia would involve 

inactivation of RhoA but not the inactivation of Cdc42 or Rac1. Furthermore, 

activation of RhoA could inhibit such process whereas persistent activation of Cdc42 

or Rac1 might potentiate morphological changes elicited by BPGAP1. To test these 

two hypotheses, cells were cotransfected with BPGAP1 along with either the wildtype, 

constitutive active or dominant negative mutants of the RhoA, Cdc42 and Rac1 

respectively. Indirect immunofluorescence studies using confocal microscopy shows 

that expression of wildtype or G14V constitutive active mutant of RhoA could indeed 

prevent pseudopodia formation whereas its dominant negative mutant T19N did not 

affect such process (Figure 3.29).  
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Figure 3.29 BPGAP1-induced pseudopodia involve the regulation of RhoA. MCF7 
cells were cotransfected for 16h with GFP expression plasmid for BPGAP1 full-
length and HA-tagged expression plasmids for wild-type, constitutive active or 
dominant negative mutants of RhoA. 
 
 

In contrast, wildtype or G12V mutant of Cdc42 allowed propagation of cell 

shapes that saw many more short protrusions with branching formed whereas the 

T17N negative mutant of Cdc42 completely blocked BPGAP1’s effect (Figure 3.30). 

As for Rac1, expression of the wildtype Rac1 ensured persistence of the lamellipodia 

despite the presence of BPGAP1. However, when present together with BPGAP1, its 

G12V constitutive active mutants resulted in very extensive and thin pseudopodia, 

resemblance the general features for a “neurite-like” outgrowth (Figure 3.31). 

Intriguingly, in these structures, there were various sprouting of “sub-branches” at 
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quite regular intervals while the main pseudopods appeared to contact the similar 

structures from adjacent cells. Unlike Cdc42 T17N, the Rac1 T17N could only block 

the formation of long pseudopodia, with remnant short protrusions still seen in certain 

cells. In order to understand the mechanism of the “neurite-like” induction by active 

Rac1 and BPGAP1, Rac1 G12V mutant was coexpressed with the NP domain 

(containing the BCH domain) or the PC domain (with GAP domain) of BPGAP1 

followed by confocal microscopic examination. Figure 3.32 shows that BCH domain 

together with the Rac1 G12V resulted in extensive pseudopods with clear “nodule-

like” structures (Inset (i)) whereas the GAP domain caused similar extensive 

pseudopods but with lesser extents of “nodule-like” structures (Inset (ii)). These 

drastic morphological changes provide strong evidence that BCH and GAP domain 

are indeed involved in the concerted regulation of cell dynamics possibly involving 

many other downstream effectors of Cdc42 and Rac1 without directly affecting the 

intrinsic GTPase activity of Cdc42 or Rac1 per se.   
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Figure 3.30 BPGAP1-induced pseudopodia involve the regulation of Cdc42. MCF7 
cells were cotransfected for 16h with GFP expression plasmid for BPGAP1 full-
length and HA-tagged expression plasmids for wild-type, constitutive active or 
dominant negative mutants of Cdc42. 
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Figure 3.31 BPGAP1-induced pseudopodia involve the regulation of Rac1. MCF7 
cells were cotransfected for 16h with GFP expression plasmid for BPGAP1 full-
length and HA-tagged expression plasmids for wild-type, constitutive active or 
dominant negative mutants of Rac1. 
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Figure 3.32 Coexpression of BPGAP1 with Rac1 G12V induced “neurite-like” 
outgrowth of cells. MCF7 cells were cotransfected for 16h with GFP expression 
plasmid for BPGAP1 FL, NP or PC domains and HA-tagged expression plasmids for 
constitutive active mutants of Rac1 (G12V) and then monitored for cell dynamics 
changes as described above. Result for the full-length (FL) is essentially the same as 
in Fig. 6C. Inset (i) and inset (ii) are magnified images to highlight distinctive 
miscroscopic features described in text. Arrows indicate “nodule-like” structure. 
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3.7 BPGAP1 promotes cell migration via coupling of BCH and GAP domains 

with the proline-rich region. 

 

While BPGAP1 induces drastic changes in cell morphology, it remains a key 

question as to what are the physiological outcomes that might accompany such effects. 

Changes in cell morphology are often associated with cell motility as exemplified in 

macrophages and in numerous metastatic cancer cells (Evers et al., 2000; Wittmann 

and Waterman-Storer, 2001). We went on to examine if induction of pseudopodia in 

MCF7 cells were indeed necessary for their ability to promote cell migration and to 

test if this event was directly linked to cell motility, at least within the context of 

BPGAP1 effect. 

 Cells were transfected with either the vector control or plasmids encoding 

either full-length, NP, or PC domain of BPGAP1 or the P1 mutant. Transfected cells 

were monitored for their potential to migrate across the modified Boyden chamber 

towards fibronectin-coated surfaces, as described in the “Materials and Methods”.  

Fig. 3.33 shows that around 45% of the cells transfected with the full-length BPGAP1 

had migrated to the fibronectin-coated surfaces, two-fold more than the control cells, 

whereas NP or PC domains did not elicit any significant increase in their migration 

potential despite the induction of pseudopodia (compare to Figure 3.26 and 3.27). 

This implies that BCH or GAP domains alone, despite their positive effects on 

morphological changes, is not sufficient to propagate cell migration. Interestingly, the 

“P1” mutant, despite having the intact BCH and GAP domains and the ability to 

induce morphological changes, had failed to confer any increase in the cell migration.  

These results indicate that cell morphological changes induced by BPGAP1 

through the BCH and GAP domains, are required but still not sufficient for mediating 

cell migration. It required further input of signals via the proline-rich sequence. The 
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significance of the interplay between BCH domain, GAP domain and proline-rich 

sequence in regulating cell dynamics will be discussed later. 

 

 
 
 
Figure 3.33 Effects of BPGAP1 on cell migration. MCF7 cells were transfected with 
either GFP vector control or GFP fusion of BPGAP1 full-length (FL), NP, PC or 
proline-deletion mutant (P1), and seeded on special chamber for 24 h to monitor their 
effects on cell migration, as described in “Materials and Methods”. Cells that had 
migrated through the pores in the filter were scored by microscopy visualisation and 
expressed as percentage over the total transfected cells. Results are means ± S.D. of 
three independent experiments performed in duplicates. * indicates p<0.01 vs GFP 
control. 
 

3.8 Interaction of BPGAP1 with Nedd4, a ubiquitin ligase, indicates the possible 

turnover of BPGAP1-induced cell signaling 

 
3.8.1 BPGAP1 has multiple interacting partners via its proline-rich region 

 

 BPGAP1 contains two polyproline sequences. One is between the BCH 

domain and GAP domain, the other is at the C-terminus. When these two proline-rich 

sequences were analyzed, we found several consensus binding sites of SH3 and WW 
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domains inside the two polyproline sequences (Figure 3.11). Therefore, we examined 

how the proline-rich region of BPGAP1 could serve as a ligand for some selective 

SH3 or WW domains in vitro. Lysates expressing FLAG-tagged BPGAP1 full-length 

were subjected to GST “pull-down” with the SH3 domains (Figure 3.34) or WW 

domains (Figure 3.35) of various signaling proteins. The binding profile reveals that 

SH3 domain of p85 regulatory subunit of phosphatidylinosotol 3-Kinase, c-Src and 

phospholipase C-γ (PLC-γ) as well as the WW domains of FE65 (a nuclear protein 

that regulate transcription), Yes-associated protein (YAP, a transcriptional co-

activator) and NEDD4-III, all exhibited strong binding to BPGAP1 whereas the 

NEDD4-I and NEDD4-II fragments interacted less strongly. Based on our studies, 

BPGAP1 was mainly expressed in cytosol (Figures 3.25 and 3.26), which implied that 

the possibilities of the interactions between BPGAP1 with FE65 and YAP in the cells 

are very low.  

Nedd4, as a ubiqutin ligase, facilites the degradation of target proteins, thus 

induces the turn over of the cell signaling of the target proteins. Our studies have 

addressed the cellular and physiological functions of BPGAP1. However, there must 

exist “on/off” switches for every signaling pathway which will take the protein 

functions under control. Protein degradation thus may play an important role in 

turning off these signaling pathways in which BPGAP1-induced cell signaling might 

also be included. We next focused on the interaction of Nedd4 and BPGAP1 and the 

implication of this interaction on the BPGAP1 degradation.  
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Figure 3.34 In vitro binding between BPGAP1 and various SH3 domains. GST-
recombinants of various proteins were prepared as agarose beads and used for “pull-
down” assays using cell lysates expressing FLAG-tagged BPGAP1. Beads were then 
washed and processed for Western blot analyses using FLAG antibodies as described 
in “Materials and Methods”. BPGAP1 is shown to be involved in binding to selective 
SH3 domains. Blots were stripped and stained with amido black to reveal equal 
loading of GST-recombinants. p85, regulatory subunit of phosphatidylinositol 3-
Kinase; PLCγ, phospholipase Cγ. WCL, whole-cell lystaes. 
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Figure 3.35 In vitro binding between BPGAP1 and various WW domains. GST-
recombinants of various proteins were prepared as agarose beads and used for “pull-
down” assays using cell lysates expressing FLAG-tagged BPGAP1. Beads were then 
washed and processed for Western blot analyses using FLAG antibodies as described 
in “Materials and Methods”. BPGAP1 is shown to be involved in binding to selective 
WW domains. Blots were stripped and stained with amido black to reveal equal 
loading of GST-recombinants. YAP,Yes-associated protein; NEDD4I, WW domain-1 
of NEDD4 (amino acid 218-252); NEDD4II, WW domain-2 of NEDD4 (amino acid 
375-408); NEDD4III, WW domain-3 of NEDD4 (amino acid 448-481). WCL, whole-
cell lystaes. 
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3.8.2 BPGAP1 interacted with Nedd4 
 

To investigate the possible interaction between BPGAP1 and Nedd4 in vitro 

and in vivo, both “Pull-down” and co-immunoprecipitation were performed.  

Untransfected 293T cells lysates were subjected to “pull-down” with GST 

recombinants of the full-length BPGAP1. Endogenous Nedd4 bound by GST-

BPGAP1 was applied for SDS-PAGE and the anti-Nedd4 antibody was used to 

recognize the Nedd4. Figure 3.37 shows that BPGAP1 interacted with endogenous 

Nedd4 in vitro. To confirm this interaction in cells, co-immunoprecipitation was also 

performed. Consistent with our observation in vitro, BPGAP1 also interacted with 

endogenous Nedd4 in vivo (Figure 3.38). Interestingly, the interaction between 

BPGAP1 and endogenous Nedd4 in vivo is much stronger than that in vitro, indicating 

some post-translational modification may be involved to facilitate this interaction. 
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Figure 3.37 In vitro binding of BPGAP1 with endogenous Nedd4. GST recombinants 
of BPGAP1 or GST control were used for “pulldown” assays using normal cell 
lysates as described in ‘Materials and Methods”. Beads from the “pull-down” 
experiments were washed and processed for Western analyses using anti-Nedd4 
antibodies. Blots were stripped and stained with amido black to reveal loading of 
GST-recombinants. 
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Figure 3.38 In vivo binding of BPGAP1 with endogenous Nedd4. Cells were 
transfected with expression vectors for fulllength FLAG-tagged BPGAP1 and FLAG 
vector control. Lysates were subjected to immunoprecipitation (IP) with anti-FLAG 
M2 beads and the associated proteins were separated on SDS-PAGE, and probed with 
anti-Nedd4 antibodies to reveal the binding of targets.  
 
 

3.8.3 BPGAP1 was ubiquitinated 
 

To test whether the interaction of Nedd4 and BPGAP1 would promote 

ubiquitination of BPGAP1, we studied Nedd4-mediated ubiquitination of BPGAP1. 

We first tested if BPGAP1 becomes ubiquitinated in 293T cells. FLAG-BPGAP1 was 

co-transfected with HA-ubiquitin (HA-Ub) into 293T cells, BPGAP1 was then 

immunoprecipitated from transfected cells using anti-FLAG M2 beads and 

subsequently immunoblotted with anti-HA antibodies to detect conjugation of HA-Ub. 

As shown in Figure 3.39, a high molecular weight smear representing ubiquitinated 

BPGAP1 (BPGAP1-Ub) is apparent in cells expressing BPGAP1 and HA-UB (lane 

4), which indicates that BPGAP1 was being targeted for degradation by covalent 

ligation to ubiquitin. 

To test whether Nedd4 is the E3 involved or responsible for the ubiquitination 

of BPGAP1, we overexpressed T7-Nedd4, either with wild-type Nedd4 (wt) or 

catalytically inactive Nedd4 (CS) mutant, bearing a Cys to Ser mutation at the Hect 
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domain, with FLAG-BPGAP1 and HA-Ub and analyzed the extent of BPGAP1 

ubiquitination in these cells. As seen in Figure 3.39, overexpression of Nedd4 (wt) 

(lane2) led to a marked increase in BPGAP1 ubiquitination. In contrast, 

overexpression of Nedd4 (CS) completely abolished ubiquitination of BPGAP1 

(lane3). All the ubiquitination we mentioned above is poly-ubiquitination which can 

lead to protein degradation. Interestingly, a band around 55 kDa (lane 3) was pulled 

down when Nedd4 (CS) was overexpressed with BPGAP1 and ubiquitin, indicating 

the possible mono-ubiquitination.  

 These results suggest that Nedd4 is the ubiquitin ligase responsible for 

ubiquitination of BPGAP1 and that the Nedd (CS) mutant is acting in a dominant 

negative fashion to inhibit ubiquitination of BPGAP1 by blocking endogenous Nedd4. 

Interaction between BPGAP1 and Nedd4 leads to the ubiquitination of 

BPGAP1 in an E3 ligase (Nedd4) dependent manner, which suggests a possible 

mechanism of the turnover of BPGAP induced cell signaling. 
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Figure 3.39 Nedd4-mediated ubiquitination of BPGAP1. 293T cells were transfected 
with the indicated plasmids (FLAG-BPGAP1, HA-Ub, T7-Nedd4, either wild-typed 
(Wt) or catalytically inactive (CS) mutant). Lysate from the transfected cells (WCL) 
were immunoprecipitated with anti-FLAG M2 beads to precipitate BPGAP1 and 
immunoblotted with anti-HA antibodies to detect ubiquitinated BPGAP1(BPGAP1-
UB). Corresponding lysates were immunoblotted with either anti-T7 antibodies to 
verify expression of Nedd4 or anti-FLAG antibodies to verify expression of BPGAP1. 
Ubiquitinated BPGAP1 as a smear of high molecular weight bands. Expression of 
ubiquitin, BPGAP1 and Nedd4 were examined with anti-HA, anti-FLAG and anti-T7 
antibodies. 
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4.1 Significance of multi-domain organization 

 

BPGAP1 is a multi-domain containing protein with a BCH domain, proline- 

rich regions and a RhoGAP domain. Multi-domain organization is common among 

proteins. Beside the RhoGAP domain, RhoGAP family members typically contain 

other functional motifs including catalytic domains, protein-protein interaction 

domains, etc. For example, BCR contains both a kinase domain and a RhoGEF 

domain aside from the RhoGAP domain (Chuang et al., 1995; Diekmann et al., 1991); 

ARAP-1 contains an ArfGAP domain (Krugmann et al., 2002; Miura, et al., 2002); 

some other proteins contain protein-protein interaction domains such as SH2, SH3 

and protein-lipid adaptor modules such as PH and CR domains (Moon and Zheng, 

2003). 

The activity of RhoGAP domain may be regulated by the other functional 

domains located at the same RhoGAPs. Sometimes RhoGAP domain cooperates with 

other domains for the same cellular function. ARAP subfamily of RhoGAPs is a good 

example that shows cooperative interplay of multifunctional domains. ARAP contains 

both a ArfGAP domain that is active towards the Arf GTPases and a RhoGAP domain. 

These two domains appear to cooperate in mediating cytoskeleton rearrangement and 

cell morphological changes in response to PI 3-kinase (Krugmann et al., 2002; Miura 

et al., 2002). In some other cases, the function of RhoGAP domain is inhibited by 

other domains of the same protein, thus RhoGAPs might catalyze enzymatic reactions 

other than the stimulation of GTP hydrolysis of Rho proteins and sometimes even 

activate Rho protein signaling. BCR is such an example to show us the opposite 

functions between RhoGAP domain and other domains at the same protein. Both 

BCR and ABR contain a RhoGEF domain and a RhoGAP domain. Therefore, 
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potentially they can activate and inactivate the Rho GTPases at the same time. And 

the RhoGAP activities of BCR and ABR might thus be inhibited under some cellular 

conditions (Chuang, 1995; Diekmann, 1991). 

BPGAP1 can potentially regulate several signaling pathways through 

interacting with various interacting partners via its multiple protein domains. Also, 

our current study shows that both BCH domain and GAP domain are involved in the 

regulation of cytoskeleton organization through differentially targeting Rho GTPases. 

We have yet to see if multi-domain organization of BPGAP1 is also required for other 

cellular functions in addition to cell migration. Interestingly, we observed that there 

were intramolecular interaction between BCH domain and GAP domain, 

homophilic/heterophilic interactions and interactions between the proline-rich regions 

of BPGAP1 with other interacting partners such as PI3K. Therefore, some signaling 

pathways might be regulated by BPGAP1 through these protein interactions, which is 

yet to be investigated. 

 

4.2 Significance of different splicing variants of BPGAP families  
 

To date, we have uncovered and characterized at least one member of the 

BPGAP family. Its wide distribution in tissues suggests that it could play a very 

common cellular function such as the control of cell morphology and cell motility as 

shown in the current study. However, based on our cloning results and bioinformatics 

analyses of various EST and putative/uncharacterized sequences, there exist at least 

four more closely-related members, namely BPGAP2 to BPGAP5. Interestingly, 

when compared to BPGAP1, both BPGAP2 and BPGAP4 were identified to have an 

insertion of 31 amino acids in their BCH domain whereas BPGAP4 has an even 

longer extension at the N-terminal sequence (Figure 3.5). BPGAP3 on the other hand, 
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has the same BCH domain as BPGAP1 but possesses two smaller but distinctive parts 

of the N-terminus in BPGAP4. BPGAP5 has a 88 bp deletion at its N-terminus, 

therefore the sequence became out of frame, introducing a stop codon subsequently. It 

is anticipated that these are alternatively spliced variants of BPGAP1, but we have yet 

to investigate the cellular functions of each of these members. For example, we might 

study if the other members of BPGAP family, such as BPGAP2, could form 

homophilic or heterophilic interactions through their respective BCH domains as did 

BPGAP1.  

It is suggested that different types and proportions of alternatively spliced 

variants can provide environmental cues to modulate various cellular behaviors 

(Schwarzbauer, 1991). Our preliminary results show that expression of BPGAP2 did 

not induce cell protrusions/pseudopodia as did BPGAP1. It is interesting to see what 

effect the insertion within the BCH domain will have on its interactions with other 

BCH domains, other small GTPases as well as in regulating its full-length activity.  

 

4.3 Divergent functions of BCH domains in different proteins 

 

We hypothesize that BCH domains from different proteins carry unique 

biochemical properties, substrate specificity and cellular functions. For examples, we 

first characterized the BCH domain of BNIP-2 protein being able to confer GAP-like 

activity towards Cdc42 via a novel arginine-finger motif (Low et al., 2000a) whereas 

the homologous BCH domains in Cdc42GAP (Low et al., 2000a) as well as BPGAP1 

(current study) failed to display this activity due to the lack of this motif in the domain. 

We have also identified that the BCH domain of BNIP-Sα is a very potent inducer of 

apoptosis (Zhou et al., 2002) that does not interact with Cdc42 but interacting with 
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other small GTPases, whereas the BCH domain of BNIP-2 induces cell extensive 

structures via targeting Cdc42 (Zhou et al., 2004, manuscript in preparation).  

The BCH domain of BPGAP1 is more closely related to that of Cdc42GAP 

(84% similarity) and it lacks the 4-amino acid residues (E/RSSQ/I) uniquely found in 

the corresponding BCH domains of BNIP-2 and BNIP-S (61% and 54% similarity, 

respectively). We are now testing to see if this and other regions could potentially 

serve to confer functional specificity in the subclasses of BCH domain.  

We noticed the considerable homology between the BCH domain and the 

lipid-binding domain Sec14p of the phosphatidylinositol transfer protein (NP_013796) 

and propose that some of these members could still retain their ability to bind to this 

non-peptide substrate. Phospholipid affinity chromatography studies indicate that 

Cdc42GAP can bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns (3,4,5)P3). The 

interaction between Cdc42GAP and PtdIns (3,4,5)P3 likely involves the BCH domain, 

resulting in its recruitment to the plasma membrane and conformational changes that 

regulate its GAP activity (Krugmann, 2002).  The properties and their functional 

significance for various BCH or Sec14p-containing proteins in terms of lipid binding 

remain to be investigated. 

 

4.4 Post-translational modification and intramolecular interaction regulate the 

conformation and function of BPGAP1 

 

Our results show that BPGAP1 can form homophilic/heterophilic interactions 

with other BCH domain containing proteins such as BNIP-2 and Cdc42GAP. 

Interestingly, in the in vitro “pull down” assay, GST fusion protein of BNIP-2 did not 

pull down BPGAP1 expressed in the mammalian cells, whereas in the contrary, the 
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GST-BPGAP1 was reactive towards FLAG-BNIP-2. The lack of binding of BPGAP1 

to BNIP-2 was probably due to the fact that when expressed in mammalian host, 

BPGAP1 could assume some modifications or conformational changes that 

selectively reduce its binding capacity to BNIP-2. 

One possible mechanism to regulate the interaction between BPGAP1 and 

BNIP-2 is through post-translational modification such as phosphorylation. In vitro 

binding assay shows that BPGAP1 interacts with the SH3 domains of some protein 

kinases such as c-Src and PI3K which might phosphorylate BPGAP1, thus further 

modify its conformation or activity. Studies on other RhoGAPs show similar 

regulatory mechanism. For example, p250RhoGAP is tyrosine phosphorylated by 

Fyn , a member of the Src-family protein tyrosine kinases which plays important roles 

in both neurons and oligodendrocytes. This phosphorylation appears to enhance the 

interaction between p250GAP and Fyn. Tyrosine phosphorylation of p250GAP by 

Fyn would regulate its RhoGAP activity, subcellular localization, or interactions with 

other proteins, leading to morphological and phenotypic changes of oligodendrocytes 

(Taniguchi et al., 2003). 

In addition, intramolecular interaction between the BCH domain and GAP 

domain might play an important role in regulating the binding profile and the activity 

of BPGAP1. BPGAP1 could form “Close” or “Open” states through intramolecular 

interation. Like p85, the regulatory subunit of PI3K which can also form 

intramolecular interaction between its phosphorylated Tyrosine (688) and its N-

terminus SH2 domain, leading to relief of the inhibitory activity of p85 on p110, the 

catalytic subunit of PI3K, thus regulating the signaling pathways of PI3K (Cuevas, 

2001; Zhang et al., 1994). It will be a challenge to uncover the regulation of 

intramolecular interaction and its roles in BPGAP functions. To the end, motifs must 
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be found if this intramolecular interaction is direct binding or indirect which might be 

though the common interacting partners of both BCH domain and GAP domain. 

 

4.5 BPGAP1 may function as an adapter protein through its interaction with 

multiple interacting partners 

 

It has been shown that BPGAP1 targets a variety of signaling proteins through 

its multiple protein domains. Though its BCH domain, it can interact with BNIP-2 

and Cdc42GAP; through its proline-rich sequence, it targets several WW domain and 

SH3 domain containing proteins such as NEDD4, p85α, c-Src, etc. It can also target 

Rho GTPases through both its BCH domain and GAP domain. Thus, potentially 

BPGAP1 may function as an adapter protein that co-localizes different signaling 

proteins together to facilitate their interactions and functions.   

A member of RhoGAP-containing protein familiy, p85 has been reported to 

have such a function as an adapter protein. p85 can interact with GTP-bound Cdc42 

and Rac in vitro and co-immunoprecipitates with Cdc42 in a GTP-dependent manner. 

Therefore, p85 may acts as an adapter protein to localize PI3K acitivty to the sites of 

Cdc42 activation. According to our results, BPGAP1 can interact with both Cdc42 

and p85α, and this interaction might lead to these three proteins to form a complex. 

This may provide a new model for the regulation of the PI3K and Cdc42 activities. 

 

4.6 GTPase activity of BPGAP1  
 

BPGAP1 shows different GTPase activities towards Rho GTPases in vivo and 

in vitro. In vivo, it only has activity toward RhoA, whereas in vitro it has high GTPase 

activity toward Cdc42, lesser to RhoA, but none to Rac1. Some other Rho GTPase 
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activating proteins also differentially regulate Rho GTPase activities in vivo and in 

vitro. For example, p190-A has equal GAP activity for Rho, Rac and Cdc42 in vitro, 

but demonstrates a preference for Rho in vivo (Settleman et al., 1992).  

This different GTPase activities regulation in vivo and in vitro might be caused 

by post-translational modification in vivo or the involvement of other protein domains 

that BPGAP1 harbors, such as BCH domain.  

Phosphorylation could play an important role in regulating the GTPase 

activities of BPGAP1. An example of the role of phosphorylation in GTPase activity 

is p190RhoGAP. The RhoGAP activity of p190-A RhoGAP is regulated by 

phosphorylation. Upon stimulation by growth factors or cell attachment, tyrosine 

residues in the central portion of p190 are phosphorylated by kinases such as Src 

(Haskell et al., 2001). This phosphorylation causes a conformational change in the 

p190 molecule resulting in the activation of its GAP activity. BPGAP1 contains 

several consensus phosphorylation motifs that potentially can be recognized by 

several protein kinases. For example, both 379 KIFS 382 and  418 KPT 421 coincide the 

consensus recognition motifs of protein kinase C, whereas  14 RVVT 17  and  84 KPS 86  

are the potential phosphorylation sites of calmodulin-dependent protein kinase II and 

cGMP-dependent protein kinase respectively. An example for the consensus tyrosine 

kinase recognition motif is 56 EYL 58, which might be phosphorylated by epidermal 

growth factor receptor kinase. Future investigation will be performed to test if 

BPGAP1 can be phosphorylated and if the phosphorylation induces any 

conformational or functional changes. 

 It has been known that BCH domain also targets Rho GTPases. Both the BCH 

domains in BNIP-2 and in BPGAP1 can interact with Cdc42. Therefore in BPGAP1, 

BCH domain and GAP domain may compete the interaction with Rho GTPases, 
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leading to the involvement of BCH domain in the regulation of the GAP activities. 

BCH domain might be involved in the regulation of GAP activity through other ways 

such as homophilic and heterophilic interactions with other BCH domain containing 

protein or intramolecular interactions. It has been previously identified that at least in 

the BNIP-2 protein, there exits a unique motif in its BCH domain that binds and 

negatively regulates the activity of Cdc42GAP expressed in the cells (Low et al., 

2000a). But, it remains to be seen if BPGAP1 homophilic complex has different 

binding and activity towards specific Rho small GTPases.  

The ability of BCH and GAP domains of BPGAP1 in mediating different 

extents of pseudopodia and their differential binding to members of Rho GTPases are 

intriguing, especially in light of these two domains being quite diverged in their 

primary protein sequences. We have seen that the BCH domain of BPGAP1 could 

interact with Cdc42 very strongly (Figure 3.21) than it would with Rac1 or RhoA. In 

contrast, although RhoA is the substrate of BPGAP1 in terms of the GTPase activity 

in vivo and in vitro, the interaction between RhoA and BPGAP1 is not strong. It 

appears that in vivo RhoA can undergo rapid turnover of binding and dissociation 

from the GAP domain (kind of “kiss-and-run” scenario) whereas Cdc42 or Rac1 

which are not the substrates, are not released from the complex upon their binding.  

 

4.7 Both BCH domain and GAP domain are needed for BPGAP1-induced short 

and long pseudopodia 

 

Our current studies show that BPGAP1 plays an important role in regulating 

cell dynamics. Biochemical and cellular functions of its three proteins domains, 

namely BCH domain, proline-rich region and the GAP domain were delineated either 
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singly, in combination or as a whole-protein under in vitro and in vivo conditions. We 

have uncovered that BCH and GAP domains induced short and long pseudopodia 

respectively that were subsequently needed to trigger cell migration only when 

coupled to its proline-rich region. 

 

4.7.1 Regulation of the interaction between BPGAP1 and Rho GTPases 

 

Interactions between BPGAP1 with Rho GTPases are regulated by both its 

BCH domain and its GAP domain. So far, we are not clear if Rho GTPases interact 

with BCH domain at the same binding site as with the GAP domain. If the binding 

sites are different, these separate interactions might facilitate and strengthen the whole 

protein to interact with Rho GTPases, whereas if the binding sites are the same, their 

relationship might be competitive rather than cooperative. Meanwhile this interaction 

is regulated by other factors such as the intramolecular interaction between 

themselves and the homophilic and heterphilic interactions with other modules. All 

these multiple factors might contribute to the interaction of BPGAP1 protein as a 

whole.   

Interestingly, there has been a recent report of an Arabidopsis RhoGAP, 

termed RopGAP (Wu et al., 2000; Yang, 2002) that utilized Cdc42/Rac-interactive 

binding motif adjacent to its GAP domain to facilitate both the binding of RopGAP to 

Rop (Rho equivalents in plants) as well as the formation of transitional state of the 

Rop during the GTP hydrolysis. While these two classes of proteins seem to share a 

common strategy of “recruiting” small GTPases, their specific targets and 

consequences are clearly different. 
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To fully understand how this mechanism would operate, one needs to identify 

all necessary interacting motifs by mutational studies for all known interacting 

partners of BPGAP1, including itself (via BCH or GAP domains), other BCH-domain 

containing proteins as well as the small GTPases. This will allow us systematically 

and progressively delineate their actual involvements. 

 

4.7.2 BPGAP1 induces short and long pseudopodia through differentially 

regulating Rho GTPases 

 

These observations of the interaction between BPGAP1 and Rho GTPases 

raise the question as to whether such differential binding properties in both adjacent 

domains can account in part, if not entirely, for the observed changes in morphology 

induced by BPGAP1. Indeed, one could argue that BPGAP1 can interact with 

different pools of GTPases in the cells at any one time – the equilibrium of which 

would result in the cellular features seen. These issues were partly resolved by the co-

expression studies with either the constitutively active or dominant negative mutants 

of small GTPases. 

Indeed, our results demonstrate that BPGAP1-induced pseudopodia formation 

could be completely blocked by the dominant negative mutants of Cdc42 and partially 

inhibited by dominant negative mutants of Rac1 (affecting only the long pseudopodia). 

However, it was unaffected by the corresponding mutant of RhoA (Figrues 3.29-3.31). 

Conversely, RhoA activation inhibited formation of long pseudopodia whereas 

activating Cdc42 or Rac1 potentiated the cell shape changes further, in particularly, 

the drastic “neurite-like” outgrowth feature seen with Rac1 G12V. Furthermore, this 

feature could be associated with extensive branching off the existing protrusions and 
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with an apparent “nodule” appearance, as conferred by BCH or GAP domains. In this 

regard, it is possible that Cdc42 or/and Rac1 could be recruited to BPGAP1 for other 

cellular component(s) to interact with, so as to further propagate the Cdc42/Rac1 

signaling needed in causing those pseudopodia. This is supported by the observation 

that despite Cdc42 or Rac1 intrinsic activities not being affected (Figure 3.20), the 

morphological changes induced by BPGAP1 still required the execution of 

Cdc42/Rac1 pathways, as shown by the strong inhibition from their dominant 

negative mutants but potentiation by their constitutive active counterparts. Work is 

currently underway to test this hypothesis further.  

However, we cannot exclude the possibility that overexpression of Rac1 

dominant negative mutant T17N may lead to nonspecific effect in blocking the 

BPGAP1-induced pseudopodia formation. It was reported that overexpression of 

Rac1 T17N could induce some nonspecifice effect (Wennerberg et al., 2002). The 

inhibition of BPGAP1 induced pseudopodia caused by Rac1(17N) may have blocked 

some yet undiscovered GTPases. Therefore, the same experiment with the better 

control of the period of expression time (shorter time) and the expression level 

(regulatable level) should be performed to further confirm the role of Rac T17N in the 

inhibition of BPGAP1-induced cell pseudopodia.   

These results strongly indicate the involvement of BPGAP1 in differentially 

regulating distinctive pathways of Rho GTPases that could have important 

physiological bearings, including cell migration featured in this study. The current 

model where BPGAP1 regulates cell dynamics via two discrete domains of BCH and 

GAP that are adjacent to each other also represents a novel combination and mode of 

regulation for GAP proteins. 
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4.7.3 BPGAP1 induces drastic “neurite-like” structure upon Rac1 activation 

 

The revelation that either BCH or the GAP domain could separately induce 

very similar and drastic “neurite-like” outgrowth upon Rac1 activation represent 

another novel and intriguing feature of BPGAP function (Figures 3.31 and 3.32). The 

only difference appears to be on the existence of “nodule-like” structures along the 

“neurite-like” extensions elicited by BCH domain. While these observations support 

the involvement of BPGAP1 in Rac1 pathway, it remains to be seen whether the full-

length protein could also exert this effect in certain cellular condition(s) or cell types 

that are yet to be identified. While the actual molecular mechanism awaits further 

investigation, the disposition of these features could hint towards the likely 

involvement of Arp2/3 complex in inducing cellular branching and extensions. 

Arp2/3 complex is a stable assembly of two actin-related proteins, Arp2 and Arp3, 

with five novel subunits. Biochemical and microscopic studies show that Arp2/3 

complex caps pointed ends and initiates growth in the barbed direction as 70 degree. 

And it has been proved that Arp2/3 functions as a nucleator of actin filaments upon 

preexisting filaments such as dendritic nucleation (Pollard and Borisy, 2003). It will 

be interesting to further investigate if the Arp2/3 complex would indeed involve in 

BPGAP1/Rac-induced “neurite-like” structure. 

 

4.8 BPGAP1-induced cell pseudopodia is not due to cell retraction 

 

Our study shows that expression of BPGAP1 induces long and short 

pseudopodia of epithelial cells. These long and short pseudopodia are considered to 

be the cell elongation and protrusion. One may argue that these pseudopodia might 
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not be cell elongation, but caused by cell retraction. Expression of some RhoGAP 

proteins can lead to cell area changes. For example, in the early stage of cell 

spreading, cells expressed wild-type p190 RhoGAP become larger in the area, 

whereas the cells area become smaller when mutant p190RhoGAP whose catalytic 

Arginine motif mutated is expressed. In order to confirm if BPGAP1 induced 

pseudopodia are caused by cell elongation or cell retraction, the cells area are 

measured in our study. The results demonstrate that there is no difference between the 

cells area of BPGAP1 transfected cells and the control cells, indicating BPGAP1 

induced cell pseudopodia are elongation. 

 

4.9 Roles of domains in the BPGAP1-induced cell migration 
 

4.9.1 BPGAP1 facilitates cell migration through differentially regulating the Rho 

GTPases activities 

 

Rho GTPases clearly play an key role in regulating actin assembly and 

disassembly, further inducing cell migration. It has been concluded that Rac, through 

its ability to promote actin polymerization at the cell periphery, provides the driving 

force for the protrusive activity required for cell migration, whereas Cdc42 appears to 

direct and stabilizes Rac activity at the cell front during cell migration. The activation 

of both Rac and Cdc42 facilitates the cell migration. The role of Rho in cell migration 

is not very clearly studied so far. It is reported that RhoGTP is excluded from the 

leading edge of the migrating cells (Worthylake, 2001), suggesting the inactivation of 

Rho at the cell periphery of cell migration direction where active Rac and Cdc42 

localize. 
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Our current study has added BPGAP1 to the increasing list of proteins that 

regulate cell morphology and cell motility. Despite various input signals, all stimuli 

seem to converge to the Rho small GTPases that in turn activate or inactivate the 

distinctive pathways through a battery of specific regulators (Bishop and Hall, 2000; 

Narumiya et al., 1997). They can either be the effectors that transmit and execute the 

signal downstream of activated pathways, or a regulator that control the event by 

affecting the status of the upstream signals. In this regard, we believe that BPGAP1 

could serve both functions in a concerted manner- it could inactivate RhoA signaling 

via the GAP domain and yet facilitating the execution of Cdc42/Rac1 pathway 

probably directly through its BCH domain (since Cdc42 binds to this very strongly) or 

through its GAP domain where Rac1 and Cdc42 are also shown to interact despite not 

being the substrates (Figure 3.36). In addition, there are some related reports 

indicating that inactivation of Rho induces the activation of Cdc42 and Rac1 directly 

(Cox et al., 2001). Therefore differential regulation of the activities of Rho GTPases 

is required for BPGAP1 induced cell migration. Cdc42 and Rac1 are in the inactive 

states whereas Rho is in the active state during BPGAP1 induced cell migration, 

which is consistent with our observation of cell pseudopodia formation. 
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Figure 3.36 Model for the effects of BPGAP1 on cell dynamics control. The three 
separate domains, BCH, proline-rich and GAP domains of BPGAP1 coordinately 
regulate distinctive yet concerted pathways in cell dynamics control. Its GAP domain 
specifically inactivates RhoA pathway and induces long pseudopodia whereas the 
BCH domain leads to the formation of short pseudopodia via a mechanism that is yet 
to be identified. Formation of pseudopodia can be inhibited at different points by 
mutants of Rho GTPases as indicated. It is believed that the GAP domain can cross-
talk to the BCH domain as exemplified by the ability of both domains to separately 
induce similar “neurite-like” features when Rac1 is active. Collectively, both BCH 
and GAP domains, but not the proline-rich region, confer unique pseudopodia which 
are necessary but not sufficient to exert cell migration in the absence of a functional 
proline-rich region. It is therefore likely that protein(s) that harbor the proline-
targeting domains such as SH3 or WW domains is/are involved in linking cell 
morphological changes to its migration. 
 
 
4.9.2 The contribution of proline-rich region to the BPGAP1 induced cell 
migration 
 

Although proline-rich region of BPGAP1 seems not involved in BPGAP1 

induced cell morphological changes, our results show that deletion of this sequence 

does inhibit the BPGAP1 induced cell migration. There are two possible mechanisms 

hypothesized. Firstly, we know this proline-rich sequence is localized between the 
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BCH and GAP domains and may act as “a bridge” of the whole protein structure. 

Deletion of this region may change structure of the protein, thus influence the 

functions of BCH and GAP domains. Although this influence might not be involved 

in the BPGAP1 induced pseudopodia, it may cause other cell physiological changes. 

The influence of deletion of proline-rich sequence on the function and activity of 

BCH and GAP domains is to be discovered. Secondly and more possible, proline-rich 

sequence may facilitate this cell morphological changes by interacting with other 

proteins. Either this interaction may cause conformational changes or potentiate 

BPGAP1 to be involved in some signaling pathways is considered. 

It is interesting to note that the proline-rich region of BPGAP1 is very similar 

to those identified in RNB6 and ena-VASP-like and could comprise more than one 

putative binding sites for either SH3 (Macias et al., 2002) or WW (Sudol and Hunter, 

2000) domains (Figure 3.11). This could point to some common regulatory 

mechanism among all these proteins. Incidentally, RNB6 and ena/VASP-like protein 

are members of the Ena/VASP family proteins that are associated with microfilaments, 

adherents type cell matrix and cell-cell junctions, and highly dynamic membrane 

regions (Bear et al., 2000; 2002). Given the complex nature of the proline-rich region 

and the likelihood of this being a target(s) for several SH3 and/or WW domain-

containing proteins (some of this have already been tested, see Figure 3.34 and 3.35), 

identifying the real interacting partner(s) that mediate this process remains a 

challenging but exciting prospect for future work. 

 

4.9.3 BPGAP1-induced cell migration requires the interplay of multi-domains 
 

Our results here indicate that cell morphological changes induced by BPGAP1 

through the BCH and GAP domains are required but still not sufficient for mediating 
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cell migration. It requires an additional input from the proline-rich region that 

specifically couples the control of cell movement to the morphological changes that 

precede the event. This stringent requirement of multi-domain interplay is different 

from several other RhoGAPs whose function was predominantly dependent upon the 

functional GAP domains. For example, overexpression of the p190RhoGAP’s wild-

type GAP domain alone decreased RhoA activity, promoted the formation of 

membrane protrusions, and enhanced motility (Arthur and Burridge, 2001). Likewise, 

DEF1/ASAP1 (the GAP for ADP-ribosylation factor-1, ARF-1) enhanced cell 

motility via a GAP-dependent mechanism (Furman, 2002) but another ArfGAP 

protein, ARAP1 (which also includes a rhoGAP domain besides the ArfGAP domain) 

utilizes it RhoGAP domain to cause cell rounding independently of the other domains 

(Miura et al., 2002). In addition, the rhoGAP domain of p122RhoGAP could only 

induce an extensive cell rounding and detachment of adherent cells (Sekimata et al., 

1999).  Our study provides a novel mechanism of the cell regulation through a multi-

domain RhoGAP. 

 

4.10 BPGAP1 is ubiquitinated in a Nedd4-dependent manner 
 

4.10.1 Binding motifs of BPGAP1 with Nedd4 
 

Our study shows that BPGAP1 can interact with endogenous Nedd4 both in 

vivo and in vitro, leading to the ubiquitination of BPGAP1 in a NEDD4 dependent 

manner. Overexpression of the Nedd4(CS) mutant impaired ubiquitination of 

BPGAP1,indicating that the mutant Nedd4 acts in a dominant negative fashion 

towards the endogenous Nedd4. These results therefore suggest that Nedd4 is likely 

the E3 ligase involved in the regulation of ubiquitination of BPGAP1.  
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Nedd4 contains a C2 domain, three or four WW domains and a ubiquitin 

ligase HECT domain. The WW domains mediate binding to target proteins, usually 

by associating with their PY motifs (PPxY) (Kikonyogo et al., 2001; Staub et al., 

1996). BPGAP1 does not contain PY motif, suggesting that there might be other 

binding sites in BPGAP1 with Nedd4. BPGAP1 has two poly proline-rich sequences 

which potentially encode three types of consensus WW domain binding sites. Further 

mutation and deletion studies are needed to address the binding motifs of Nedd4. And 

some other methods such as co-immunofluorescence may also be applied to address 

the cellular and physiological significance of the interaction between BPGAP1 and 

Nedd4. 

 

4.10.2 Nedd4 (CS) mutant inhibits the polyubiquitination of BPGAP1  

 

Our current studies show that wild type Nedd4 mediated the 

polyunbiquitination of BPGAP1, whereas overexpression of Nedd4 (CS) mutant 

completely abolished ubiquitination of BPGAP1 (Figure 3.39). Interestingly, we 

found that a band around 55 kDa (Figure 3.39) was pulled down when Nedd4 (CS) 

was overexpressed with BPGAP1 and ubiquitin, which might be caused by mono-

ubiquitination. Monoubiquitination is a modification that is not linked to protein 

degradation (Moren et al., 2003). Instead of sending proteins to their death through 

the proteasome, monoubiquitylation regulates processes that range from membrane 

transport to transcriptional regulation (Hicke, 2001; Haglund et al., 2002). 

Monoubiquitylation is involved in at least three distinct cellular functions:  histone 

regulation, endocytosis and the budding of retroviruses from the plasma membrane 

(Hicke, 2001).  Nedd4, as an E3 ubiquitin ligase, accepts ubiquitin from the E2 to 
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form a ubiquitin-thioester intermediate with the HECT active cysteine. It can also 

mediate monoubiquitination, but might interact with ubiquitin with different binding 

motifs (Hicke, 2001; Polo et al., 2002). This may explain why it is possible that 

Nedd4 (CS) mutant could mediate monoubiquitination after inhibiting 

polyubiquitination. 

 

4.10.3 Not all the BPGAP1 expressed might be ubiquitinated 

 

Interesting, in ubiquitination assay, FLAG-BPGAP1 was coexpressed with 

Nedd4 (wt) and ubiquitin, BPGAP1 was then immunoprecipitated from transfected 

cells using anit-FLAG M2 beads and subsequently immunoblotted with anti-HA 

antibodies to detect conjugation of HA-Ub. As shown in Figure 3.39, a high 

molecular weight smear representing ubiquitinated BPGAP1 (BPGAP1-Ub) is very 

apparent. However, when this blot was applied to anti-FLAG antibody to detect the 

FLAG-BPGAP1 that was pulled down, we found there were not detectable high 

molecular weight smear, whereas only one band about 48 kDa which coincides with 

the size of unconjugated BPGAP1. Probably, it is because only small amount of 

BPGAP1 that was expressed was conjugated to ubiqutin and was ubiquitinated 

subsequently. Most of the BPGAP1 that was expressed might be regulated differently 

or form complexes with other partners. This small amount of conjugated BPGAP1 

was undetectable. This phenomenon was also described by previous reports (Wong et 

al., 2002; Pham and Rotin, 2001).  
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4.10.4 Implications of the turn-over of BPGAP1 signaling in human disease 

 

The functionality and efficacy of Rho GTPase signaling is essential for a 

variety of biological processes. Due to the integral nature of these molecules, the 

dysregulation of their activities can result in diverse aberrant phenotypes. 

Dysregulation can be based on an altered signaling strength on the level of a specific 

regulator or that of the respective GTPase itself. Alternatively, effector pathways 

emanating from a specific Rho GTPase may be under- or overactivated (Boettner and 

Van Aelst, 2002). Dysregulation of Rho GTPases activities is involved in various 

disease processes such as cancer progression, mental disabilities and other disorders. 

As a regulator of Rho GTPases, both the turn on and turn-over of BPGAP1 

cell signaling are very critical in maintaining the normal cycling of Rho GTPases. 

Protein degradation is one of the tactics employed by the cell for irreversibly 

inactivating proteins. In eukaryotes, ATP-dependent protein degradation in the 

cytoplasm and nucleus is carried out by the 26S proteasome. Most proteins are 

targeted to the 26S proteasome by covalent attachment of a multi-ubiquitin chain. The 

rapid degradation of protein regulators is especially important when the regulator 

should act for a short period of time (Hershko and Ciechanover, 1998). 

Our research discovered that BPGAP1 could be ubiquitinated in a Nedd4 

dependent manner, which provides a possible mechanism for the turn-over of 

BPGAP1 signaling. The normal activity of BPGAP1 thus can be under control to 

avoid the dysregulation of Rho GTPases, which may induce a plethora of human 

diseases. 
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5.1 Conclusions 

 

In this study, we report the cloning of BPGAP families (for BCH 

domain-containing, Proline-rich and Cdc42GAP-like proteins) and the functional 

characterization of BPGAP1 which shares high degree of homology with Cdc42GAP 

and contains multiple protein domains. BPGAP1 forms homophilic and heterophilic 

complexes with itself, Cdc42GAP and BNIP-2 via their homologous BCH domains. 

We show that BPGAP1 differentially modulates RhoA, Cdc42 and Rac1 signaling 

pathway by a mechanism that requires cooperation between the BCH and GAP 

domain. When expressed in non-metastatic human breast epithelial cancer cell lines 

MCF7 cells, BPGAP1 induces cell protrusions/pseudopodia that required its GAP 

activity as well as the BCH domain, but not the proline-rich sequence. However, the 

proline-rich region is required for ensuring cell migration following the 

morphological changes induced by both GAP and BCH domains. These results 

indicate the unique interplay by different domains of BPGAP1 in exerting cell 

dynamics and confirm that changes in cell morphology is a prerequisite but not 

necessarily the only determinant for cell migration – it requires the input of other 

factor(s) as well. The interaction between BPGAP1 and Nedd4, a ubqitination ligase, 

indicates a possible mechanism of the turnover of BPGAP1 induced cell signaling.  

 

5.2 Future perspectives 
 

Our current studies have characterized both the biochemical features and 

cellular functions of BPGAP1. Meanwhile, preliminary results and reliable clues have 

been raised for the future investigation related to the BPGAP family proteins. 

First of all, our current study shows that BPGAP1 targets a variety of 
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interacting partners through it multiple protein domains. Most interestingly, we find 

Rho GTPases can be targeted by both BCH domain and GAP domain, and these two 

domains can even form intramolecular interaction themselves. Therefore, it is a 

challenge to uncover the regulation of all these protein-protein interactions and their 

significance in cell signaling.  

To fully understand how this mechanism would operate, one needs to identify 

all necessary interacting motifs by mutational studies for all known interacting 

partners of BPGAP1, including itself (via BCH or GAP domains), other BCH-domain 

containing proteins as well as the small GTPases. This will allow us systematically 

and progressively delineate their actual involvements. 

To date, we have characterized BPGAP1 of the BPGAP family. However, 

based on our molecular cloning results and bioinformatics analyses of various EST 

and putative/uncharacterized sequences, there exist at least four more closely-related 

members namely BPGAP2 to BPGAP5. Interestingly, when compared to BPGAP1, 

both BPGAP2 and BPGAP4 were identified to have an insertion of 31 amino acids in 

their BCH domain whereas BPGAP4 has an even longer extension at the N-terminal 

sequence. Our preliminary results have shown that expression of BPGAP2 can not 

induce cell pseudopodia/ protrusions as that of BPGAP1. Therefore, it is potentially 

interesting to see what effect the insertion within the BCH domain will have on its 

interactions with other BCH domains, other small GTPases as well as in regulating its 

full-length activity. 

Small interfering RNAs (RNAi) is a broadly applicable method for gene 

silencing in vitro. It has rapidly become a well recognized tool for characterizing the 

functions of a variety of genes. Moreover, RNA interference using short dsRNA 

oligonucleotides will permit to decipher the functions of genes which are only 
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partially sequenced (http://www.eurogentec.be). RNAi will therefore become 

inevitable in studies such as: inhibition of gene expression at the post-transcriptional 

level in eucaryotic cells; development of the RNAi technology for use in 

post-implantation embryos; application as a therapeutic principle to yield RNA-based 

drugs to treat human diseases (http://www.eurogentec.be). Studies using RNAi 

experiments, may also help elucidate the in vivo function of RhoGAP proteins. This 

method has been used to examine RhoGEF functions (Peck et al., 2002). For our 

future studies, RNAi may be applied to investigate the functions of BPGAP family.  

Genetically altered mice, such as knockout mice and transgenic mice, are used 

increasingly as tools to define or clarify the in vivo function of molecules that have 

been studied in vitro. The phenotypes of a mutant mouse can be studied at many levels 

from biochemistry to cell biology to systems physiology to behavior. One of the 

advantages of a mutant mouse that survives to adulthood is that the effect of a single 

gene alteration on a complex behavior can be studied (Picciotto and Wickman, 1998). 

For example, the role of many signal transduction pathways in learning and memory 

has been investigated using mutant mice. Gene knockouts in mice, such as those for 

BCR (Voncken  et al., 1995), p190-A (Billuart et al., 2001), and p190-B (Sordella et 

al., 2002) may play an important role in studying the normal in vivo function of 

RhoGAP domain-containing proteins (Peck et al., 2001). This also might be involved 

in our future studies of BPGAP families. 

BPGAP1, as a regulator of Rho GTPases, may also play important role in 

development biology. Currently, we are using the mice as the model to study the 

expression profiles at different development stages. 

Various forms of GAPs proteins have been identified to regulate cell 

morphology but little is known about the coupling of cell morphology to cell 
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migration via their protein domains in cis. BPGAP1 provides an example for such an 

intricate process. With the wider applications of bioinformatics for data-mining, more 

sophisticated tools available for real-time imaging of protein-protein interaction and 

cell dynamics in vivo (Van Roessel and Brand, 2002), more established proteomics 

tools for rapid identification of novel interacting partners (Blagoev et al., 2003), as 

well as good animal model systems (Figure 4.1), one could foresee an increasing 

number of multi-domain proteins to be uncovered for molecular dissection and 

functional characterization in cell dynamics control. Then, we will have a better 

understanding on the significance of multi-domain GAPs in controlling the specificity, 

redundancy and regulation, and their roles in normal and pathophysiological 

situations. 

 

 

 

 

 

 

 

  

 

Figure 5.1 Future perspectives for the studies of BPGAP family. 
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RhoA, Cdc42, and Rac1 are small GTPases that regu-
late cytoskeletal reorganization leading to changes in
cell morphology and cell motility. Their signaling path-
ways are activated by guanine nucleotide exchange fac-
tors and inactivated by GTPase-activating proteins
(GAPs). We have identified a novel RhoGAP, BPGAP1
(for BNIP-2 and Cdc42GAP Homology (BCH) domain-
containing, Proline-rich and Cdc42GAP-like protein
subtype-1), that is ubiquitously expressed and shares
54% sequence identity to Cdc42GAP/p50RhoGAP. BP-
GAP1 selectively enhanced RhoA GTPase activity in
vivo although it also interacted strongly with Cdc42 and
Rac1. “Pull-down” and co-immunoprecipitation studies
indicated that it formed homophilic or heterophilic
complexes with other BCH domain-containing proteins.
Fluorescence studies of epitope-tagged BPGAP1 re-
vealed that it induced pseudopodia and increased mi-
gration of MCF7 cells. Formation of pseudopodia
required its BCH and GAP domains but not the proline-
rich region, and was differentially inhibited by coex-
pression of the constitutively active mutant of RhoA, or
dominant negative mutants of Cdc42 and Rac1. How-
ever, the mutant without the proline-rich region failed
to confer any increase in cell migration despite the in-
duction of pseudopodia. Our findings provide evidence
that cell morphology changes and migration are coordi-
nated via multiple domains in BPGAP1 and present a
novel mode of regulation for cell dynamics by a RhoGAP
protein.

Cells undergo dynamic changes as part of their adaptation
and response to stimuli. These include their abilities to prolif-
erate, differentiate, or execute death. Many of these processes
are controlled by a series of signaling events relayed via a
cascade of molecular interaction that are normally associated
with the enzymatic or structural modifications of target pro-
teins. Furthermore, there exist various checkpoints that serve
to fine-tune the amplitude, duration, as well as the integration
of such circuitry response.

One of the relatively well characterized signaling circuits in
eukaryotic system is the Ras small GTP-binding protein

(GTPase) superfamily (1–3) that binds and slowly hydrolyzes
GTP to GDP, which is still bound to the proteins. The GTP-
bound form assumes an active conformation that allows inter-
action with downstream effectors, thus the “on-switch,”
whereas its conversion to the GDP-bound form keeps the pro-
teins in an “off-switch” mode and renders the GTPase inactive.
The balance of these two forms determines the final execution
of the pathway. This is regulated by two other important
classes of proteins, one that helps enhance its GTPase activity,
termed GTPase-activating proteins (GAPs)1 and the other,
termed guanine nucleotide exchange factors (GEFs) that acti-
vate the protein by catalyzing its exchange of GDP for GTP.

Many members of the small GTPases have already been
identified, and they can further be subdivided into various
families or subfamilies according to the similarities in their
primary sequences. Members from different families exhibit
diverse functions ranging from the control of intracellular traf-
ficking to cytoskeletal rearrangements and cell cycle progres-
sion. The degree of specificity is further extended to even
closely related members within the same families. For exam-
ple, in the Rho family, the Cdc42 plays an important role in the
formation of filopodia, whereas RhoA and Rac1 activation re-
sults in the formation of stress fibers and membrane ruffles
respectively (4). In addition, there is a hierarchy of network in
certain cell types where activation of one member can affect the
activity of another. For example, activation of Cdc42 leads to
filopodia formation, which could in turn activate Rac1 (5, 6),
whereas Rac1 activation leads to inactivation of RhoA in
NIH3T3 resulting in the epithelioid phenotype (7–9). In con-
trast, in Swiss 3T3 fibroblasts, Rac1 activates RhoA instead
(10). With an increasing number of known GTPases, there
remain key questions as to how each one of them can be
regulated by their GEFs, GAPs, or other regulators in vivo.

The human genome is predicted to encode at least 50 mem-
bers of the GAP family (11, 12). Current data show that various
GAP domains exhibit overlapping substrate specificity both in
vitro and in vivo but all involve a common mechanism of action
by utilizing an “arginine-finger” motif in trans to stabilize the
transition state of GTP hydrolysis (13, 14). For example, the
p50RhoGAP (also known as Cdc42GAP) (15, 16) and
p122RhoGAP (17) bind and inactivate mainly Cdc42 and RhoA,
respectively. In comparison, p200RhoGAP targets RhoA and
Rac1 but not Cdc42 (18) while p115RhoGAP confines its action
mainly to RhoA (19). Therefore, it appears that there is no
specific GAP for a single GTPase. Instead, there exists a GAP
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that recognizes more than one GTPase, and a single GTPase
can be a target of multiple GAPs. The molecular basis for such
distinctive or overlapping recognition profile remains to be
understood. Furthermore, most of these GAPs possess multiple
signaling modules that could couple their activities to other
signaling pathways. This could have far reaching consequences
for the regulation of Rho and other small GTPase signals, and
remains to be seen how, where, and when any subsets or
combinations of these cellular counterparts will co-exist and
exert their effects.

In order to understand the specificity versus redundancy
nature of the RhoGAPs as well as the roles of their various
signaling modules, we have set out to study novel proteins that
harbor the GAP domain together with other protein domains.
Bioinformatic searches through the human genome public da-
tabases revealed a striking number of sequences that encode
putative GAP proteins and with various arrays of domain or-
ganizations. One of the family proteins that we are interested
in has the organization that is similar to that of the Cdc42GAP,
yet exhibiting diversed sequences in other regions. Here we
report the cloning and functional characterization for such a
member in this family that harbors (from the proximal N
terminus) a BNIP-2 and Cdc42GAP Homology (BCH)/Sec14p-
like domain that we first described (20–23), a proline-rich
sequence, and a functional GAP domain. We showed that BP-
GAP1 differentially modulates RhoA, Cdc42, and Rac1 signal-
ing pathway by a mechanism that required cooperation be-
tween the BCH and GAP domain. When expressed in non-
metastatic human breast epithelial cancer cell lines MCF7
cells, BPGAP1 induced cell protrusions/pseudopodia that re-
quired its GAP activity as well as the BCH domain, but not the
proline-rich sequence. However, the proline-rich region was
required for ensuring cell migration following the morphologi-
cal changes induced by both GAP and BCH domains. These
results indicate the unique interplay by different domains of
BPGAP1 in exerting cell dynamics and confirm that changes in
cell morphology is a prerequisite but not necessarily the only
determinant for cell migration, it requires the input of other
factor(s) as well. Our findings also emphasize the need to
address functions of distinct protein domains in various
RhoGAP families in order to have a better understanding of
their physiological functions and regulation.

MATERIALS AND METHODS

Bioinformatics—To identify novel proteins containing GAP domains,
the peptide sequence of the RhoGAP domain of p50RhoGAP/Cdc42GAP
(GenBankTM accession number: Q07960; residues: 260–439) was used
as query sequence in the “position-specific iteractive BLAST” against
the current non-redundant sequence as well as human and mouse EST
databases (www.ncbi.nlm.nih.gov/). Progress of the identification was
described in the text. Multiple sequence alignments were generated
using Vector NTI suite (InforMax, Inc.).

RT-PCR Cloning of BPGAP1 Isoforms and Plasmid Construc-
tions—To obtain the full-length cDNA of BPGAP1, total RNA was
isolated from MCF7 cells using the RNeasy kit (Qiagen) according to
the manufacturer’s instructions. 5 �g of this RNA was subjected to the
first-strand cDNA synthesis with Expand Reverse Transcriptase Kit
(Roche Applied Science) primed with oligo(dT) (Operon) for 60 min at
42 °C in a total volume of 20 �l. 0.5 �g of this cDNA was then amplified
by the high fidelity, long-template Taq polymerase enzyme (Roche
Applied Science) using specific primers corresponding to the putative
sequence BAA91614. PCR conditions were: initial denaturation 94 °C, 2
min; subsequent cycling (30 cycles) at 94 °C, 10 s; annealing at 50 °C,
30 s; extension at 68 °C, 2 min; and final extension at 68 °C, 7 min.
These PCR primers contained HindIII and XhoI restriction sites on the
forward and reverse primers, respectively, to facilitate their subsequent
cloning. The full-length PCR products were gel-purified (Qiagen) and
cloned into a FLAG epitope-tagged or GFP-tagged expression vector,
pXJ40 (Dr. E. Manser, Institute of Molecular and Cell Biology, Singa-
pore). Sequence unique to BPGAP1 was obtained (GenBankTM

AF544240), and fragments encoding its various domains were gener-

ated from the full-length template using specific primers in a standard
PCR and then gel-purified for cloning. For each construct, several
clones were chosen and sequenced entirely in both directions using the
ABI PRISM BigDye Terminator Cycle Sequencing kit (Applied Biosys-
tem). All plasmids were purified using Qiagen miniprep kit for subse-
quent use in transfection experiments. For generation of deletion mu-
tants, inverse-PCR was carried out to exclude region of interest
whereas point mutation R232A was performed by site-directed mu-
tagenesis as previously described (21). Escherichia coli strain DH5�
was used as host for the propagation of the clones. Reagents used were
of analytical grade, and standard protocols for molecular manipulations
and media preparation were as described (24).

Semi-quantitative RT-PCR—To distinguish the mRNA expression
level of BPGAP1 and Cdc42GAP in various cells and tissues, RT-PCR
using the oligo-dT primers was employed. Total RNA was isolated using
the RNeasy kit (Qiagen) from either various cultured cell lines or from
various organs obtained from a 2-week-old male mouse and primed for
the first-strand cDNA synthesis as described above. Equal amounts of
the reverse transcription product were then subjected to PCR amplifi-
cation for BPGAP1 and Cdc42GAP. The full-length PCR products of
BPGAP1 were then subjected to internal amplification using primers
that encompass BPGAP1-specific BCH region that contained the
unique insertion (see text). The housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used to normalize the level of
expression. The results were verified in at least two independent ex-
periments with varying numbers of PCR cycles to ensure near-linear
amplification.

Cell Culture and Transfection—Human breast cancer MCF7, human
embryonic kidney epithelial cells 293T, human stomach cancer lines
MCN45 and KMN74 were all grown in RPMI 1640 medium supple-
mented with 10% (v/v) fetal bovine serum, 2 mM L-glutamine, 100
units/ml penicillin, and 100 �g/ml streptomycin (all from Hyclone), and
maintained at 37 °C in a 5% CO2 atmosphere. Human cervical cancer
epithelial HeLa cells were grown in Dulbecco’s modified Eagle’s me-
dium (high glucose), whereas human colon epithelial HT29 and
HCT116 were grown in McCoy’s medium (Sigma). Cells at 90% conflu-
ence in 100-mm plates or 6-well plates were transfected with 5 or 2 �g
of indicated plasmids using FuGENE 6 transfection reagent, according
to the manufacturer’s instructions (Roche Applied Science).

Precipitation/Pull-down Studies and Western Blot Analyses—Control
293T cells or cells transfected with expression plasmids were lysed in 1
ml of lysis buffer (150 mM sodium chloride, 50 mM Tris, pH 7.3, 0.25 mM

EDTA, 1% (w/v) sodium deoxycholate, 1% (v/v) Trition X-100, 50 mM

sodium fluoride, 5 mM sodium orthovanadate, and a mixture of protease
inhibitors (Roche Applied Science)). The lysates were directly analyzed,
either as whole cell lysates (25 �g) or aliquots (500 �g) used in affinity
precipitation/pull-down experiments with various GST fusion proteins
(5 �g), as previously described (21). Samples were run in SDS-PAGE
gels and analyzed by Western blotting with FLAG monoclonal antibody
(Sigma).

Immunofluorescence—Cells were seeded on coverslips in 6-well
plates, transfected with various expression constructs for 16–20 h, and
then stained for immunofluorescence detection as previously described
(25). Fluorescent images were taken with a confocal laser microscopy
system (Fluoview, FV300, Olympus). FLAG-tagged proteins were de-
tected with monoclonal anti-FLAG, followed by Texas Red® dye-conju-
gated rabbit anti-mouse IgG (Jackson ImmunoResearch). For cells co-
expressing GFP-tagged recombinants and HA-tagged proteins, HA-
tagged constructs were detected with polyclonal anti-HA, followed by
Texas Red® dye-conjugated goat anti-rabbit IgG. For cells expressing
only GFP-tagged recombinants, the morphology of cells was examined
directly under a fluorescent microscope after the transfection for 16–20
h as previously described (23).

Preparation of GST Fusion Proteins—GST fusion proteins were pu-
rified using glutathione-agarose beads. In brief, E. coli cells were lysed
by sonication in a HEPES buffer, pH 7.5, 150 mm NaCl2, 1 mM EDTA,
multiple protein inhibitors (Roche Applied Science), 0.1% (w/v) �-mer-
captoethanol, and 0.1% (w/v) Triton-100). Following centrifugation
(10,000 rpm, 30 min, 4 °C), the supernatants of lysates were mixed with
glutathione-agarose beads (Amersham Biosciences) and incubated at
4 °C for overnight. Beads were washed three times with 10 ml of
HEPES buffer. When needed, fusion proteins were eluted with 10 mM

glutathione solution in the HEPES buffer. Protein concentrations were
measured by using Bradford assay (Bio-Rad).

In Vitro GTPase Activity Assay—GTPase activity assays were per-
formed with the Enz-checkTM Phosphate Assay kit (E-6646, Molecular
Probes) to monitor the rate of phosphate release from GTP hydrolysis
catalyzed by recombinant Cdc42, RhoA, or Rac1 (pGEX plasmids of
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these and Cdc42GAP are gifts from Dr. A. Hall, University College
London, United Kingdom) in the presence of GST control or GST-
BPGAP1 full-length, domains, or its mutant. For these assays, we used
a previously described protocol (26) with some modifications. In brief,
0.5 nmol of purified GST-BPGAP1 full-length, domains, or mutant
proteins (in a volume of 15 �l), was mixed in a cuvette with 10 �l of 0.2
mM GTP, 0.2 ml of 2-amino-6-mercapto-7-methylpurine ribonucleoside,
10 �l (1 unit) of purine nucleotide phosphorylase, and 0.78 ml of HEPES
buffer (pH 7.5). The cuvette was immediately placed in the spectropho-
tometer to monitor absorbance at 360 nm (A360). 10 �l of 1 M MgCl2
solution was added to 0.25 nmol of eluted GST, GST-Cdc42, GST-RhoA,
or GST-Rac1 fusion proteins and incubated for 10 min at room temper-
ature. When the first multiple turnover reached an equilibrium at A360,
the second mixture of small GTPase solution was added to initiate the
reaction. The reading at A360 was recorded every 10 s.

In Vivo GTPase Activity and Binding Assay—GTP-bound Cdc42,
Rac1, or RhoA was determined by specific binding to the p21-binding
domain of PAK1 (GST-PBD) (27) or rhotekin (GST-RBD) (28) (all kindly
provided by Dr. Simone Schoenwaelder; Monash University, Australia).
In brief, cell lysates expressing HA-tagged wild-type small GTPases
(Cdc42, Rac1, or RhoA) with or without FLAG-tagged BPGAP1 were
incubated with 5 �g of recombinant GST-PBD or GST-RBD conjugated
with glutathione-Sepharose beads for 1 h at 4 °C, washed with buffer
(50 mM HEPES, pH 7.4, 150 mM sodium chloride, 1.5 mM magnesium
chloride, 5 mM EGTA, 10% (v/v) glycerol, 1% (v/v) Triton X-100, a
mixture of protease inhibitors and 5 mM sodium orthovanadate) and
separated on SDS-PAGE. Bound Cdc42, Rac1, or RhoA was analyzed by
Western blotting using anti-HA antibodies (Roche Applied Science).
Whole cell lysates were also analyzed for the presence of expressed
Cdc42, Rac1, RhoA, and BPGAP1 for normalization. For detecting bind-
ing of endogeneous Rho GTPases, the following antibodies were used:
polyclonal anti-Cdc42 (Santa Cruz Biotechnology), polyclonal anti-
RhoA, and monoclonal anti-Rac1 (both from Upstate Biotechnology).

Co-immunoprecipitation—293T cells were transfected with expres-
sion vectors for FLAG-BPGAP1 full length alone or together with either
HA-BPGAP1, HA-Cdc42GAP, HA-BNIP-2 or HA-GTPases. Lysates
were immunoprecipitated (IP) with anti-FLAG M2 beads (Sigma) and
the associated proteins separated on SDS-PAGE, and probed with anti-
Cdc42, RhoA, Rac1, or HA antibodies to reveal the binding of targets.

Cell Measurement—MCF7 cells were transfected with GFP control or
GFP-tagged BPGAP1 full-length, NP, and PC domains. After 20 h, the
longest diameter (LD) and shortest diameter (SD) that bisected the
center of cells and perpendicular to each were measured (29). The total
cell areas and the length of the cell protrusion (PT) were also measured
after image capturing as previously described and analyzed using the
Leica IM 1000 software. Measurements were means and S.D. from
three separate experiments, each time with at least 30 different cells.
Statistical comparison was made using ANOVA (StatsDirect). p values
of �0.01 indicate significant difference compared with the vector
control.

Cell Migration Assay—The ability of cells to migrate through coated
filters was measured with a modified Boyden chamber (24-well Tran-
swell, Corning Costar; 8-�m pore size) as previous described (30). The
lower surface of the filters was coated with 0.5-�g fibronectin (Sigma) as
a chemoattractant. MCF7 cells transiently transfected with GFP vec-
tor, GFP-BPGAP1 full-length, different fragments, or mutants were
seeded at a density of 3 � 105 cells in 100 �l of RPMI 1640 with 0.2%
bovine serum albumin. The lower compartment was added with 600 �l
of RPMI 1640 containing 10% fetal bovine serum. After incubation for
1 day at 37 °C in 5% CO2, the cells that did not penetrate the filters
were completely wiped off with cotton swabs, and the cells that had
migrated to the lower surface of the filter were fixed with methanol and
counted. Three independent experiments were performed for each ex-
perimental condition. The data were represented as the means of three
independent experiments with S.D. indicated. Statistical comparison
was made using ANOVA (StatsDirect). p values of �0.01 indicate
significant difference compared with the vector control.

RESULTS

Identifying Novel GTPase-activating Proteins—To identify
novel GTPase-activating proteins (GAPs) encoded in the hu-
man genome and to gain an insight on how they might regulate
various cellular processes through their various protein mod-
ules, we undertook bioinformatics approach and employed the
Conserved Domain Architecture Retrieval Tool (CDART)

(www.ncbi.nlm.nih.gov/BLAST/) with the well characterized
GAP domain of Cdc42GAP/p50RhoGAP as the query sequence.
We have identified in silico many classes of proteins across
species that harbor the homologous GAP domain together with
other unique signaling protein domains. Some of them include
the Pleckstrin homology domain, Src homology-3 domain, Fes/
CIP4 homology domain, Rho guanine nucleotide exchange fac-
tor domain, and the p21 Rho binding domain. One of these
classes is represented by several putative members that resem-
ble the organization of the Cdc42GAP protein. They are typi-
fied by the presence, at the proximal N terminus, of the newly
identified BNIP-2 and Cdc42GAP homology (BCH)/Sec14p-like
domain that we first described in the BNIP-2 family (20–23)
and a well conserved GAP domain at its distal C terminus.
Present in between these two domains is a proline-rich moiety.
Based on the predicted open reading frame from one of the
putative sequences deposited, BAA91614, several conserved
primers were designed and used in reverse-transcription-based
PCR to isolate the full-length cDNA from human MCF7 cells.
Interestingly, one unique sequence of cDNA was repeatedly
identified (Fig. 1A), which codes for a protein that differs from
BAA91614 by lacking 31 amino acids (Fig 1B, upper line). The
protein also differs at the N terminus, from two putative pro-
teins encoded from the same human ARHGAP8 locus (Gen-
BankTM accession numbers: Q9NSG0 and AF195968). Despite
using primers specific to those variants, we had not identified
the full contigs for such transcripts in all samples examined
thus far. Many classes of GAPs have been identified from the
human genome and labeled ARHGAP1–12. However, they are
not related to each other as each one carries different types and
numbers of other associated protein domains. To provide mean-
ingful reference to the specific subclass of GAP with its unique
domain organization, we propose to name this family of pro-
teins BPGAPs (for BCH domain-containing, proline-rich, and
Cdc42GAP-like proteins) with their notable three-domain or-
ganization. We further sought to understand how one novel
member we identified here, BPGAP1 (GenBankTM accession
number: AF544240), regulates cellular processes via these pro-
tein domains. Efforts are underway to isolate the full contigs
for other putative isoforms, BPGAP2 (represented by
BAA91614), BPGAP3 (AF195968), and the longest subtype,
BPGAP4 (Q9NSG0). It is believed that these isoforms could be
derived from alternative RNA splicing of the same gene. A
mouse homolog with 88% similarity to human BPGAP1 was
also identified from the genome data base (encoded by acces-
sion NP_082731 or AI430858).

Compared with Cdc42GAP, BPGAP1 displays unique diver-
gence at various regions. Notably, the BPGAP1 has a much
shorter sequence at the N terminus but a much longer C tail
than Cdc42GAP (Fig. 2A). To understand the degree of simi-
larity or divergence for the BCH and GAP domains, more
detailed comparisons were made with similar domains found in
other proteins. The BCH domain of BPGAP1 is more closely
related to that of Cdc42GAP (84% similarity) (Fig. 2B) while its
GAP domain also shares the highest degree of homology with
that of Cdc42GAP (Fig. 2C). More importantly, BPGAP1 con-
tains an invariant arginine at residue 232 (Fig. 2C, indicated
by an arrow). This residue in other functional GAPs is known
as an “arginine finger” and shown to be critical for acting as a
catalytic residue in-trans (13, 14, 31). In addition, BPGAP1
possesses several more proline residues in the proline-rich
sequence, which is very similar to those identified in RNB6,
ena-VASP-like and cdc-related proteins (Fig. 2D). It could com-
prise more than one putative binding sites for either the Src
homology 3 or WW domains (32, 33), the physiologic target(s) of
which remains to be identified.
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BPGAP1 Forms Homophilic and Heterophilic Complex with
BCH-containing Proteins—To gain an insight into the potential
cellular function(s) of BPGAP1, we examined the general ex-
pression profile of BPGAP1 and the binding repertoire of the
various protein domains it harbors. Various human cell lines
were maintained in the presence of serum and RNA isolated for
the semi-quantitative approach of RT-PCR using gene-specific
primers. In strong contrast to Cdc42GAP whose expression was
restricted to mostly cells of epithelial origin such as breast
cancer MCF7, cervical cancer HeLa, and kidney 293T, the
expression of BPGAP1 appeared more ubiquitous (Fig. 3A).
Similarly, BPGAP1 expression can be detected in all mouse
tissues/organs tested, including the lung, liver, heart, kidney,
brain, and testis (data not shown).

For binding and functional studies, various deletion con-

structs were made as FLAG epitope-tagged recombinant that
would express fragments of proteins that contain either the
BCH, proline-rich sequence, or GAP domains. Cells were trans-
fected with these constructs, lysed, and analyzed for their ex-
pression by Western blot as described under “Materials and
Methods.” Fig. 3B shows that full-length and deletion mutants
all expressed equally well and were suitable for subsequent
GST “pull-down” experiments or cellular studies. We recently
showed that BCH domain confers a novel protein interaction
domain (20–23). To test whether BPGAP1 could indeed inter-
act with other BCH domain-containing proteins, the lysates
were subjected to pull-down with GST recombinants of the
full-length Cdc42GAP or BNIP-2, or their respective BCH do-
mains. Bound BPGAP1 fragments were resolved in SDS-PAGE
and determined by anti-FLAG Western blot analyses. Fig. 3C

FIG. 1. Cloning of BPGAP1. A, depicted is the unique coding region and the translated protein sequence for BPGAP1 cDNA (accession number:
AF544240) isolated by RT-PCR from MCF7 cells. B, comparison of BPGAP1 with three other putative isoforms derived from sequences deposited
in GenBankTM. Regions predicted to be encoded by alternative RNA splicing are highlighted in black and gray. The upper line represents unique
differences among the BCH domain of BPGAP isoforms. BPGAP2, BPGAP3, and BPGAP4 are derived from BAA91614, AF195968, and Q9NSG0,
respectively. The mutation F324S present in BPGAP1 may be due to polymorphism.
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shows that full-length BPGAP1 was a target of Cdc42GAP or
its BCH domain, but it failed to interact with BNIP-2 full-
length or its BCH domain in vitro. Interestingly, when frag-
ment NP that contains the BCH domain of BPGAP1 was used,
BNIP-2 full-length or its BCH domain could now form a het-
erophilic partner with this fragment. Furthermore, the inter-
action with Cdc42GAP or its BCH domain was apparently
enhanced. These results indicate that BPGAP1 can form a
heterophilic complex with Cdc42GAP more readily than it can
with BNIP-2. Under these experimental conditions, the frag-
ment C that carried the GAP domain (but without the BCH
domain) did not bind to any of the GST recombinants. To
further confirm these interactions, the reciprocal pull-downs
were performed. Cdc42GAP and BNIP-2 were expressed as
FLAG-tagged proteins in the mammalian cells and subjected to
GST-BPGAP1 binding. Fig. 3D shows that, as expected, FLAG-
Cdc42GAP and BNIP-2 were precipitated by GST-BPGAP1.
Likewise, full-length BPGAP1 and its BCH domain could also
be precipitated with GST-BPGAP1. Consistent with this is our
observation that HA-tagged BPGAP1, Cdc42GAP, and BNIP-2
could also be co-immunoprecipitated with FLAG-tagged BP-
GAP1 when co-expressed (Fig. 3E). These results confirmed
that BPGAP1 could interact with other BCH domain-contain-
ing proteins in vitro and in vivo.

BPGAP1 Targets RhoA, Cdc42, and Rac1 Differentially via
Their BCH and GAP Domains—With the conserved GAP do-
main that includes the invariant arginine-finger motif (Fig.
2C), BPGAP1 was predicted to bind and confer catalysis toward
the GTP hydrolysis of certain Rho GTPases. To examine this, in
vitro and in vivo GTPase activity assays were performed. For
the in vitro GTPase activity assays, purified recombinant of
GST-RhoA, Cdc42, or Rac1 were loaded with GTP and the level
of GTP hydrolysis determined in the absence or presence of
BPGAP1 full-length or its deletion mutants using the enzyme-
coupled spectrophotometric assays (26) as described under
“Materials and Methods.” Fig. 4A shows that BPGAP1 aug-
mented GTPase activity of Cdc42 and RhoA in vitro, by 7-fold
and 2.5-fold, respectively. In contrast, it showed no significant
activation toward Rac1 GTPase activity. These effects were
mediated via its GAP domains, as evidenced by the same mag-
nitude of activation from the PC fragment (that carried the
GAP domain) and the lack of effect from the NP fragment that
carried the BCH, but devoid of the GAP domain. Furthermore,
such activation was abrogated after introducing a mutation
R232A at the invariant arginine residue (see Fig. 2C).

To compare the significance of such differential activity in
vitro, we next examined how the activity of the Rho GTPases
inside the cells could be regulated by BPGAP1 in vivo. Cells
were cotransfected with HA-tagged Cdc42, RhoA, or Rac1 to-
gether with either the vector control or FLAG-BPGAP1. The
activity of these GTPases in vivo was then determined by their
magnitude of binding to the respective effector domains, as
described under “Materials and Methods.” Fig. 4B shows that
in vivo, RhoA binding to its effector domain (RBD) was reduced
in the presence of BPGAP1. In contrast, the binding status of
Cdc42 and Rac1 to their effector domain (PBD) remained un-
affected, and at times they seemed to be modestly increased
instead. These results indicate that BPGAP1 exerts its GAP

significant but least conserved ones are in light gray shading. Gen-
BankTM accession numbers used for all alignments above are human
BPGAP1 (AF544240), human Cdc42GAP (Q07960), human BNIP-2
(U15173), human BNIP-S� (NM_138278), mouse PSGAP (NP_084389),
human p190RhoGAP (NP_001164), mouse p115 RhoGAP (NP_619536),
mouse p122RhoGAP/DLC1 (NP_056617), human p200RhoGAP
(NP_055530), rat RNB6 (NM_024147), mouse Ena-VASP-like isoform
(AF279662), and human CDC2-related protein kinase 7 (NM_016507).

FIG. 2. Analyses of BPGAP1 domains. A, alignment of BPGAP1
with Cdc42GAP protein sequences reveals regions of homology and
divergence. B, alignment of BCH domains among BPGAP1, Cdc42GAP,
BNIP-2, and BNIP-S�. C, alignment of GAP domains among BPGAP1,
Cdc42GAP, PSGAP, p115RhoGAP, p122RhoGAP, p190RhoGAP and
p200RhoGAP. Arrow indicates the invariant arginine-finger necessary
for its GAP function. D, alignment of the proline-rich regions of BP-
GAP1, RNB6, Ena-VASP-like protein, and Cdc2-related kinase 7. All
sequence alignments were performed using Vector NTI Suite. Residues
that are totally conserved in all members are shaded black, those that
are conserved in most of the members are in dark gray while the
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activity on RhoA, but not on Cdc42 or Rac1 in vivo. Next, we
examined more closely the binding status of endogenous Rho
GTPases to the full-length, BCH, and GAP domains of BP-
GAP1. Fig. 4C shows that endogenous Cdc42, despite their very
low expression level (detectable in the whole cell lysate only
upon prolonged exposure of film), could be greatly precipitated
by BPGAP1. Interestingly, the endogenous RhoA was not
readily bound by BPGAP1 unless its level was elevated by
overexpression (Fig. 4D). Consistent with this was the obser-
vation that endogenous RhoA could be co-immunoprecipitated
with overexpressed BPGAP1 (Fig. 4E), and this level of inter-
action was further increased when RhoA itself was also over-
expressed (Fig. 4F). Similar to the Cdc42, endogenous and
overexpressed Rac1 interacted strongly with BPGAP1 in either

the pull-down or co-immunoprecipitation assays (Fig. 4, C–F).
Given that BPGAP1 could associate with Cdc42GAP strongly
inside the cells, there still exists the possibility that some of
these Rho GTPases might interact indirectly with BPGAP1 via
Cdc42GAP. Taken together, our results confirm that BPGAP1
regulates RhoA, but not Cdc42 or Rac1 activities in vivo and
that it still retained its ability to form a complex with Cdc42
and Rac1.

BPGAP1 Induces Pseudopodia via Its BCH and GAP Do-
mains—To further understand the physiological significance of
BPGAP1 interaction via its different domains, we set out to
investigate their role(s) in regulating one of the key biological
responses elicited by Rho GTPases, i.e. the control of cell dy-
namics. We specifically wish to elucidate how BPGAP1 would

FIG. 3. BPGAP1 expression and its multiple interacting partners. A, cells were grown in appropriate media containing 10% serum and
total RNA isolated for semi-quantitative RT-PCR to detect the expression of BPGAP1 as described under “Materials and Methods.” Expression of
Cdc42GAP and GAPDH were analyzed for comparison and normalization of samples respectively. M, markers. B, various expression constructs
were tagged with FLAG epitope as indicated: NNP (N terminus, non-proline region; amino acids 1–167), NP (N terminus, with proline; amino acids
1–206), PC (proline-containing carboxyl end; amino acids 168- 433), and C (carboxyl end without proline; amino acids 207–433). Cells were
transfected with plasmids expressing these domains and analyzed for their expression by anti-FLAG Western blot analyses. Same regions were
also tagged with either GST or GFP for use in subsequent experiments. C and D, GST recombinants of various proteins were prepared as agarose
beads and used for pull-down assays using cell lysates expressing FLAG-tagged proteins as indicated in separate experiments. Beads were then
washed and processed for Western blot analyses using FLAG antibodies as described under “Materials and Methods.” E, in vivo binding of BPGAP1
with itself and other BCH domain-containing proteins. Cells were cotransfected with plasmids expressing FLAG-tagged full-length BPGAP1 and
HA-tagged full-length BPGAP1, Cdc42GAP, or BNIP-2. Lysates were immunoprecipitated (IP) with anti-FLAG M2 beads, and the associated
proteins were separated on SDS-PAGE and probed with HA antibody (IB) as described under “Materials and Methods.” Expression of HA-tagged
BPGAP1, Cdc42GAP, and BNIP-2, and FLAG-tagged BPGAP1 were verified by anti-HA (third panel) or anti-FLAG (fourth panel) Western
analyses of whole cell lysates (WCL). Equal loading of anti-FLAG M2 beads is shown by applying the IP blot with anti-FLAG antibody (second
panel).
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affect the morphology as well as the migration potentials of the
target cells, and to examine whether changes in cell morphol-
ogy alone is directly linked and sufficient to induce cell
migration.

We had chosen to use the human breast epithelial cancer
cells MCF7 as the model because of its relative ease in trans-
fection, monitoring of its cell morphology and it is non-meta-
static with minimal cell migration. MCF7 cells were trans-
fected with expression plasmids of either FLAG-tagged
BPGAP1, or vector control. Sixteen hours after the transfec-

tion, samples were processed for indirect immunofluorescence
as described under “Materials and Methods.” Fig. 5A shows
that while control cells with vector alone exhibited regular
cuboidal feature of an epithelium and with diffused staining of
the tag peptide, the expression of BPGAP1 was shown to be
mainly localized in the cytosol and it induced unique long and
short protrusions (collectively referred as pseudopodia) in the
transfected cells (arrows). To further confirm such observations
and to monitor the dynamics directly without resorting to fix-
ing the cells, we opted for direct fluorescence with green fluo-

FIG. 4. Effects of BPGAP1 on Rho GTPase activity and their binding in vitro and in vivo. A, in vitro GAP assays. Purified Cdc42, RhoA,
or Rac1 were loaded with GTP and their GTPase activity determined in the absence or presence of Cdc42GAP, BPGAP1 full-length or mutants
using an enzyme-coupled assay as described under “Materials and Methods.” The activity was expressed as fold over the control using GST alone.
Results are means � S.D. of three replicate determinations. B, in vivo GTPase binding assays. Cells were transfected with HA-tagged wild-type
Cdc42, RhoA, or Rac1 in the presence of either the vector control or FLAG-tagged BPGAP1. Cell were lysed and incubated with GST-PBD or
GST-RBD immobilized on beads to assess the ability of BPGAP1 in down-regulating GTPase pathway as described under “Materials and Methods.”
Bound GTPases were resolved on SDS-PAGE and detected by immunoblotting with HA-antibody (top panel). Expression of BPGAP1 and GTPases
were verified by anti-FLAG (second panel) or anti-HA (third panel) Western analyses of the whole cell lysates, respectively. Equal loading of GST
fusion proteins is shown in the bottom panel. C, in vitro binding of BPGAP1 with endogenous Rho GTPases. GST-recombinant of BPGAP1 or GST
control were used for pull-down assays using normal cell lysates as described under “Materials and Methods.” Beads from the pull-down
experiments were washed and processed for Western analyses using anti-Cdc42, anti-RhoA, or anti-Rac1 antibodies. Blots were stripped and
stained with Amido Black to reveal loading of GST-recombinants. Under this level of film exposure, the endogenous level of Cdc42 was too low to
be detectable. D, in vitro binding of BPGAP1 with overexpressed Rho GTPases. Cells were transfected with HA-tagged Cdc42, RhoA, or Rac1, and
lysed for pull-down (PD) assays with either the GST control or GST-recombinant of BPGAP1. Bound proteins were detected with anti-HA
antibodies while GST staining reveals equal loading of samples. E, in vivo binding of BPGAP1 with endogenous Rho GTPases. Cells were
transfected with expression vectors for full-length FLAG-tagged BPGAP1 and FLAG vector control. Lysates were subjected to immunoprecipitation
with anti-FLAG M2 beads and the associated proteins were separated on SDS-PAGE, and probed with anti-Cdc42, anti-RhoA, or anti-Rac1
antibodies to reveal the binding of targets. Arrow indicates the light chain of the antibody. F, in vivo binding of BPGAP1 with overexpressed Rho
GTPases. Cells were transfected with expression vectors for full-length FLAG-tagged BPGAP1 or FLAG vector control, together with either
HA-tagged Cdc42, RhoA, or Rac1. Lysates were subjected to immunoprecipitation with anti-FLAG M2 beads, and the associated proteins were
separated on SDS-PAGE and probed with anti-HA antibodies to reveal the binding of targets. Expression of HA-tagged GTPases and FLAG-tagged
BPGAP1 were verified by anti-HA (third panel) or anti-FLAG (fourth panel) Western analyses of the whole cell lysates, respectively. Equal loading
of anti-FLAG M2 beads is shown by applying the immunoprecipitation blot with anti-FLAG antibody (second panel). NT, non-transfection control.
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rescent protein (GFP) fusion of BPGAP1 and its various dele-
tion mutants (refer to Fig. 3B). A quantitative measure of the
cell dynamics could be performed by identifying certain types of
changes in cell morphology and their relative percentages de-
termined (Fig. 5, B and C). MCF7 cells expressing the vector

control were mostly cuboidal in shape and less than 5% of them
had some background with irregular shapes including short
protrusions. However, when expressed, full-length GFP-BP-
GAP1 induced pseudopodia in almost 60% of the transfected
cells, a unique feature that was normally typified by long

FIG. 5. BPGAP1 induces pseudopodia via BCH and GAP domains. A, MCF7 cells were transfected with FLAG-tagged expression plasmids
for BPGAP1 full-length or control vector. Cells were then fixed, permeabilized, and incubated with anti-FLAG monoclonal, followed by Texas Red
dye-conjugated rabbit anti-mouse IgG for immunofluorescence detection as described under “Materials and Methods.” Arrows indicate pseudopodia
formation. Bar, 10 �m. B, MCF7 cells transfected for 16 h with GFP expression plasmids for BPGAP1 full-length, domains, mutants, or GFP vector
alone were visualized for GFP expression by direct fluorescence detection. The yellow appearance was due to increased exposure set to allow better
detection of pseudopodia. Arrows indicate features described in the text. C, percentage of cells exhibiting pseudopodia in the presence of various
GFP constructs (from experiment B above) were determined and represented as a bar graph. Results are averages � half the ranges for two
determinations that are representative of at least three separate experiments. Asterisk indicates only short pseudopodia. All differences are
significant at p � 0.01 versus GFP vector control. D, BPGAP1-induced morphological changes are protrusions/pseudopodia and not retraction
fibers. MCF7 cells were transfected with expression plasmids for GFP-tagged BPGAP1 full-length, NP, and PC domains or GFP vector control.
After the transfection for 20 h, the total cell areas, LD (the longest diameter that goes through the center of cells, showed by the bold line), SD (the
shortest diameter that goes through the center of cells, showed by the gray line), and PT (the lengths of protrusion) were measured and analyzed
as described under “Materials and Methods.” Measurements are means � S.D. for 30 determinations. Results are representative of three separate
experiments. Statistical comparison was made using ANOVA (StatsDirect). Asterisk indicates significant difference at p � 0.01 when compared
with the vector control.
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projections of more than 30 micron from the opposing ends of
the cell bodies, accompanied by occasion branching off the main
pseudopods (Fig. 5B). Interestingly, when fragments NNP
(with BCH, but without proline-rich region) or NP (with BCH
and proline-rich region) were tested, long pseudopodia were no
longer observed. Instead, between 25 and 30% of the trans-
fected cells caused many shorter protrusions (less than 10
micron) with “microspike-like” features surrounding the cell
peripheries. In comparison, the presence of the GAP domain in
the PC fragment was sufficient to cause mainly long, and very
few short pseudopodia. This was further supported by the
R232A inactive GAP mutant that when expressed, resulted in
the features resemblance to that induced by the NNP or NP
fragments alone. In contrast, deletion of the entire proline-rich
region (amino acids 176–189; see Fig. 2D) of BPGAP1 (P1
mutant) did not affect the overall formation of protrusions by
the cells. To confirm that the formation of protrusions induced
by BPGAP1 was not the result of cell body retraction or shrink-
age (yielded as retraction fibers), various parameters for cell
dimensions were also measured as described under “Materials
and Methods.” These include the LD and the SD that bisected
the center of cells and perpendicular to each other, the total
areas of the cell bodies and also the average lengths of long
pseudopods (Fig. 5D). The results show that when compared
with the GFP control, BPGAP1 full-length, NP or PC mutants
all induced similar morphological changes without changes in
the total cell areas, the longest or the shortest diameters,
indicating that there was no cell shrinkage or retraction. In-
stead, they only caused the lengthening of pseudopodia. Taken
together, these results confirm that BPGAP1 indeed induces
unique pseudopodia formation via the BCH and GAP domains
independently of the proline-rich region. Induction of pseudop-
odia by BPGAP1 was also observed in 293T and HeLa cells
(data not shown).

BPGAP1-induced Pseudopodia Involve Inactivation of RhoA
but Activation of Pathways Downstream of Cdc42/Rac1—Since
BPGAP1-induced pseudopodia required its GAP domain and
the BCH domain, and that in vivo BPGAP1 inactivated only
the RhoA but not Cdc42 and Rac1, we postulated that such
formation of pseudopodia would involve inactivation of RhoA
but not the inactivation of Cdc42 or Rac1. Furthermore, acti-
vation of RhoA could inhibit such process whereas persistent
activation of Cdc42 or Rac1 might potentiate morphological
changes elicited by BPGAP1. To test these two hypotheses,
cells were cotransfected with BPGAP1 along with either the
wild type, constitutively active, or dominant negative mutants
of the RhoA, Cdc42, or Rac1. Indirect immunofluorescence
studies using confocal microscopy shows that expression of wild
type or G14V constitutively active mutant of RhoA prevented
the formation of long pseudopodia with some short protrusions
still remained detectable. However, its dominant negative mu-
tant T19N did not affect any of the process (Fig. 6A). These
results are consistent with the earlier observations that GAP
domain mediated long pseudopodia and its absence or its inac-
tive arginine mutant resulted in only the short pseudopodia
(see Fig. 5, B and C). Consistent with the requirement of the
inactivation of RhoA was the loss of stress fibers detectable by
phalloidin staining for the filamentous actin in cells expressing
BPGAP1 (data not shown).

In contrast, wild type or G12V mutant Cdc42 allowed prop-
agation of cell shapes that saw many more short protrusions
with branching formed, whereas the T17N negative mutant of
Cdc42 completely blocked the effect of BPGAP1 (Fig. 6B). As for
Rac1, expression of the wild-type Rac1 ensured persistence of
the lamellipodia despite the presence of BPGAP1. However,
when present together with BPGAP1, its G12V constitutive

active mutants resulted in very extensive and thin pseudopo-
dia, resemblance the general features for a “neurite-like” out-
growth (Fig. 6C). Intriguingly, in these structures, there were
various sprouting of “sub-branches” at quite regular intervals
while the main pseudopods appeared to contact the similar
structures from adjacent cells. Unlike Cdc42 T17N, the Rac1
T17N could only block the formation of long pseudopodia, with
remnant short protrusions still seen in certain cells. In order to
understand the mechanism of the neurite-like induction by
active Rac1 and BPGAP1, Rac1 G12V mutant was coexpressed
with the NP domain (containing the BCH domain) or the PC
domain (with GAP domain) of BPGAP1 followed by confocal
microscopic examination. Fig. 6D shows that BCH domain
together with the Rac1 G12V resulted in extensive pseudopods
with clear “nodule-like” structures (inset (i)) whereas the GAP
domain caused similar extensive pseudopods but with lesser
extents of “nodule-like” structures (inset (ii)). These drastic
morphological changes provide strong evidence that BCH and
GAP domain are indeed involved in the regulation of cell dy-
namics possibly involving many other downstream effectors of
Cdc42 and Rac1 without directly affecting the intrinsic GTPase
activity of Cdc42 or Rac1 per se.

BPGAP1 Promotes Cell Migration via Coupling of BCH and
GAP Domains with the Proline-rich Region—While BPGAP1
induces drastic changes to cell morphology, it remains a key
question as to what the physiological outcomes that might
accompany such effects. Changes in cell morphology are often
associated with cell motility as exemplified in macrophage ac-
tion and in numerous metastatic cancer cells (8, 34). We went
on to examine if induction of pseudopodia in MCF7 cells were
indeed necessary for their ability to promote cell migration and
to test if this event was directly linked to cell motility, at least
within the context of BPGAP1 effect. Cells were transfected
with either the vector control or plasmids encoding either full-
length, NP, or PC domain of BPGAP1 or the P1 mutant. Trans-
fected cells were monitored for their potential to migrate across
the modified Boyden chamber toward fibronectin-coated sur-
faces, as described under “Materials and Methods.” Fig. 7
shows that around 45% of the cells transfected with the full-
length BPGAP1 had migrated to the fibronectin-coated sur-
faces, 2-fold over the control cells, whereas NP or PC domains
did not elicit any significant increase in their migration poten-
tial despite the induction of pseudopodia (compare with Fig. 5,
B and C). These results imply that BCH or GAP domains alone,
despite their positive effects on morphological changes, is not
sufficient to propagate cell migration. Interestingly, the “P1”
mutant, despite having the intact BCH and GAP domains and
the ability to induce morphological changes, had failed to con-
fer any increase in the cell migration. These results indicate
that cell morphological changes induced by BPGAP1 through
the BCH and GAP domains, are required but still not sufficient
for mediating cell migration. It required further input of sig-
nals via the proline-rich sequence. The significance of the in-
terplay between BCH domain, GAP domain and proline-rich
sequence in regulating cell dynamics is discussed below.

DISCUSSION

The current studies described the identification and charac-
terization of BPGAP1, a novel Cdc42GAP/p50RhoGAP-like
protein that plays an important role in regulating cell dynam-
ics. Biochemical and cellular functions of its three protein do-
mains, namely BCH domain, proline-rich region, and the GAP
domain were delineated either singly, in combination or as a
whole protein under in vitro and in vivo conditions. We discov-
ered that BCH and GAP domains induced short and long pseu-
dopodia, respectively, that were subsequently needed to trigger
cell migration only when coupled to its proline-rich region.

Concerted Regulation of Cell Dynamics by BPGAP1 45911



The ability of the BCH and GAP domains of BPGAP1 in
mediating different extents of pseudopodia is intriguing and it
potentially involves different mechanisms. Although BPGAP1

functions biochemically as a GAP for RhoA in vitro and in vivo,
it also targets Cdc42 and Rac1. These observations raise the
possibility that despite not being the substrates, Cdc42 and

FIG. 6. BPGAP1-induced pseudopodia involve differential regulation of Rho GTPases. MCF7 cells were cotransfected for 16 h with GFP
expression plasmid for BPGAP1 full-length and HA-tagged expression plasmids for wild-type, constitutively active, or dominant negative mutants
of either RhoA (A), Cdc42 (B), or Rac1 (C). Cells were then fixed, permeabilized, and incubated with anti-HA polyclonal antibodies, followed by
Texas Red dye-conjugated goat anti-rabbit IgG (red) for fluorescence detection as described under “Materials and Methods.” Merged signals are
presented as overlaid staining (yellow). GFP controls did not result in any perturbation to the cell dynamics under all these studies (data not
shown). D, MCF7 cells were cotransfected for 16 h with GFP expression plasmid for BPGAP1 FL, NP, or PC domains and HA-tagged expression
plasmids for constitutively active mutants of Rac1 (G12V) and then monitored for cell dynamics changes as described above. Result for the
full-length (FL) is essentially the same as in C. Inset (i) and inset (ii) are magnified images to highlight distinctive miscroscopic features described
in text. Arrows indicate nodule-like structure.
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Rac1 could still be involved in BPGAP1 signaling. Indeed, our
results demonstrated that BPGAP1-induced pseudopodia for-
mation could be completely blocked by the dominant negative
mutants of Cdc42 and partially inhibited by dominant negative
mutants of Rac1 (affecting only the long pseudopodia). How-
ever, it was unaffected by the corresponding mutant of RhoA
(Fig. 8). Conversely, RhoA activation inhibited formation of
long pseudopodia whereas activating Cdc42 or Rac1 potenti-
ated the cell shape changes further, in particularly, the drastic
neurite-like outgrowth feature seen with Rac1 G12V. Further-
more, this feature could be associated with extensive branching
off the existing protrusions and with an apparent “nodule”
appearance, as conferred by BCH or GAP domains. In this
regard, it is possible that Cdc42 or/and Rac1 could be recruited
to BPGAP1 for other cellular component(s) to interact with, so
as to further propagate the Cdc42/Rac1 signaling needed in
causing those pseudopodia. Work is currently under way to test
this hypothesis further. These results strongly indicate the
involvement of BPGAP1 in differentially regulating distinctive
pathways of Rho GTPases that could have important physio-
logical bearings, including the cell migration featured in
this study.

The current model where BPGAP1 regulates cell dynamics
via two discrete domains of BCH and GAP that are adjacent to
each other also represents a novel combination and mode of
regulation for GAP proteins. Analysis through Conserved Do-
main Architecture Retrieval Tool at NCBI showed that such
unique combination of BCH with GAP domains are also con-
served in several proteins from various eukaryotic organisms,
including the Caenorhabditis elegans, Anopheles gambiae,
Plasmodium falciparum, Drosophila melanogaster, zebrafish
Danio rerio, but not in plants.2 To date, we have discovered and
characterized at least one member of the BPGAP family. Its
wide distribution in tissue suggests that it could play a very
common cellular function such as the control of cell morphology
and cell motility as shown in the current study. However, based
on our bioinformatics analyses of various EST and putative/

uncharacterized sequences, there exist at least three more
closely related members, namely BPGAP2 to BPGAP4, all ex-
pected to be derived through alternative RNA splicing. It re-
mains to be seen how such sequence variations might influence
the properties of these isoforms.

Various GAP proteins have been identified to regulate cell
morphology but little is known about the coupling of cell mor-
phology to cell migration via their protein domains in cis.
BPGAP1 provides an example for such an intricate process.
With multiple signaling modules, BPGAP1 is poised to target
different classes of signaling molecules and thus could play a
pivotal role in the integration of several signaling events. In-
deed, our results here indicate that cell morphological changes
induced by BPGAP1 through the BCH and GAP domains are
required but still not sufficient for mediating cell migration. It
requires an additional input from the proline-rich region that
specifically couples the control of cell movement to the morpho-
logical changes that precede the event (Fig. 8). This stringent
requirement of multi-domain interplay is different from several
other RhoGAPs whose function was predominantly dependent
upon the functional GAP domains. For example, overexpres-
sion of the p190RhoGAP wild-type GAP domain alone de-
creased RhoA activity, promoted the formation of membrane
protrusions, and enhanced motility (35). Likewise, DEF1/
ASAP1 (the GAP for ADP-ribosylation factor-1, ARF-1) en-
hanced cell motility via a GAP-dependent mechanism (36) but
another ArfGAP protein, ARAP1 (which also includes a
rhoGAP domain besides the ArfGAP domain) utilizes its
RhoGAP domain to cause cell rounding independently of the
other domains (37). In addition, the RhoGAP domain of2 B. C. Low, unpublished results.

FIG. 7. Effects of BPGAP1 on cell migration. MCF7 cells were
transfected with either GFP vector control or GFP fusion of BPGAP1
full-length (FL), NP, PC, or proline-deletion mutant (P1), and seeded on
special chamber for 24 h to monitor their effects on cell migration, as
described under “Materials and Methods.” Cells that had migrated
through the pores in the filter were scored by microscopy visualization
and expressed as percentage over the total transfected cells. Results are
means � S.D. of three independent experiments performed in dupli-
cates. Asterisk indicates p � 0.01 versus GFP control.

FIG. 8. Model for the effects of BPGAP1 on cell dynamics con-
trol. The three separate domains, BCH, proline-rich, and GAP domains
of BPGAP1 coordinately regulate distinctive yet concerted pathways in
cell dynamics control. Its GAP domain specifically inactivates RhoA
pathway and induces long pseudopodia whereas the BCH domain leads
to the formation of short pseudopodia via a mechanism that is yet to be
identified. Formation of pseudopodia can be inhibited at different points
by mutants of Rho GTPases as indicated. It is believed that the GAP
domain can cross-talk to the BCH domain as exemplified by the ability
of both domains to separately induce similar neurite-like features when
Rac1 is active. Collectively, both BCH and GAP domains, but not the
proline-rich region, confer unique pseudopodia, which are necessary but
not sufficient to exert cell migration in the absence of a functional
proline-rich region. It is therefore likely that protein(s) that harbor the
proline-targeting domains such as SH3 or WW domains is/are involved
in linking cell morphological changes to its migration.
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p122RhoGAP could only induce an extensive cell rounding and
detachment of adherent cells (38).

It is also interesting to note that the proline-rich region of
BPGAP1 is very similar to those identified in RNB6 and ena-
VASP-like and could comprise more than one putative binding
sites for either SH3 (32) or WW (33) domains (Fig. 2D). RNB6
and ena/VASP-like protein are members of the Ena/VASP fam-
ily proteins that are associated with microfilaments, adherents
type cell matrix and cell-cell junctions, and highly dynamic
membrane regions (39, 40). Given the complex nature of the
proline-rich region and the likelihood of this being a target(s)
for several SH3 and/or WW domain-containing proteins, iden-
tifying the real interacting partner(s) that mediate this and
other biological processes remains a challenging but exciting
prospect for future work. This will help elucidate the functional
significance of BPGAP1 in controlling the specificity, redun-
dancy, and regulation of small GTPase signaling in cell dynam-
ics control.
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