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SUMMARY 

Adhesion of polymeric dielectrics to metals is one of the major concerns in the 

microelectronics industry. To improve the surface properties of polyimide (PI) and 

fluorinated polyimide (FPI), molecular redesign and functionalization via graft 

polymerization have been carried out. Surface modification of PI and FPI by UV- or 

plasma-induced graft copolymerization with 1-vinylimidazole (VIDz) and 4-

vinylpyrindine (4VP) was first performed. Chemical composition and surface 

topography of the copolymer were studied by X-ray photoelectron spectroscopy (XPS) 

and atomic force microscopy (AFM), respectively. Electroless plating of copper on 

these surface modified PI and FPI were carried out by a Sn-free process. The T-peel 

adhesion strength of the electrolessly deposited copper with the PI and FPI films was 

depended on the nature of the monomer used and the graft concentration, as well as the 

glow discharge conditions. The T-peel adhesion strength of the electrolessly deposited 

copper with the PI and FPI films were much higher than that of the electrolessly 

deposited copper with the pristine or the Ar plasma-treated PI and FPI films. The high 

adhesion strength between the electrolessly deposited copper and the surface-modified 

PI and FPI films was attributed to the fact that the plasma-polymerized and the UV 

graft-copolymerized chains were covalently tethered on the PI and FPI surfaces, as 

well as the fact that these grafted polymer chains were spatially and reactively 

distributed into the copper matrix.  

The technique of molecular modification by grafting of thermally labile side chains 

was developed for the preparation of nanoporous PI and FPI films with low dielectric 

constants and preserved polyimide backbones. Thermally-induced molecular graft 

copolymerization of AAc or methoxy poly(ethylene glycol) monomethacrylate 

(PEGMA) with the ozone-pretreated poly(amic acid) precursor (PAmA) or FPI in 
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NMP solution was carried out. The resulting PAmA or FPI copolymers with grafted 

AAc and PEG side chains were characterized by elemental analysis, XPS, 

thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). 

Nanoporous low dielectric constant (low-к) PI films were obtained after thermal 

imidization of the PAmA backbones under reduced argon pressure and the subsequent 

thermal decomposition of the side chains in air. The nanoporous PI and FPI films were 

characterized by density measurements, scanning electron microscopy (SEM) and 

dielectric constant measurements. SEM images revealed that the pore size was in the 

range of 30-100 nm. Dielectric constants as low as 2.1 and 1.9 were obtained for the 

resulting nanoporous PI and FPI films, respectively. 

Finally, molecular graft polymerization is also an effective approach for the synthesis 

of stimuli-responsive polymeric materials. New graft copolymers were successfully 

synthesized through molecular graft copolymerization of AAc, 4VP and N-

isopropylacrylamide (NIPAAm) with the ozone-preactivated FPI backbone. The 

membranes prepared from these stimuli-responsive polymeric materials by phase 

inversion exhibited distinctive pH- or temperature-sensitive properties. The flux of 

aqueous solution through the MF membranes prepared from the PAAc-g-FPI or P4VP-

g-FPI copolymers by phase inversion in aqueous media exhibited a pH-dependent 

behavior, but in an opposite manner. The most drastic change in permeation rate was 

observed at solution pH between 1 and 4. For the temperature-sensitive PNIPAAm-g-

FPI MF membranes cast below the lower critical solution temperature (LCST) of the 

NIPAAm polymer (~32°C), the rate of water permeation increased substantially at a 

permeate temperature above 32°C. A reverse permeate temperature dependence was 

observed for the flux of isopropanol through the membrane cast above the LCST of the 

NIPAAm polymer. 
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NOMENCLATURE 
 

α XPS photoelectron take-off angle 

AAc acrylic acid 

AFM atomic force microscopy  

BCB benzocyclobutene 

BE binding energy 

DPPH 2, 2-diphenyl-1-picrylhydrazyl 

DSC differential scanning calorimetry 
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With the development of the microelectronics industry, the feature size of the 

semiconductor devices has become from 1 µm in very large-scale integration (VLSI) 

devices to submicron (~0.18 µm) in giga-scale integration (GSI) devices (Morgen et 

al., 2000). The miniaturizing in device size and the advances in integrated circuit (IC) 

technology have resulted in reduction of the interconnect size and the propagation 

delay, as well as the improvement in the density of the chip circuitry. Since the early 

1950s, polymers have been a key element in the growth of the semiconductor industry 

(Alvino, 1995). These materials range from radiation-sensitive resists used to pattern 

the circuit on chips and boards, to the polymers used both as insulators on chip carriers 

themselves, and as encapsulants for mechanical and corrosion protection of these 

chips.  

In the microelectronics industry, the use of interlayer materials with very low dielectric 

parameters can greatly reduce the resistance-capacitance (RC) time delays, cross-talks, 

and power dissipation in the new generation of high density integrated circuits. In 

addition to exhibiting low dielectric constants, the next generation of interlayer 

dielectrics for sub-micron and nano-level electronics must also satisfy a variety of 

requirements, such as good thermal stability, low moisture absorption, good adhesion 

to semiconductor and metal substrates, and chemical inertness. Historically, ceramic 

materials, such as silicon oxide and silicon nitride, have been used as interlayer 

dielectrics. The major drawback of the ceramic dielectrics is  their high dielectric 

constants, which limit the miniaturization of the IC devices. Recently, the use of 

organic polymers increase continuously, such as polyimides (PIs), 

poly(tetrafluoroethylene) (PTFE), benzocyclobutene (BCB), and parylene, as 

interlayer dielectric due to their low dielectric constants. Among the polymeric 
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dielectric materials, PIs have attracted a great deal of attention due to their combined 

physicochemical, mechanical and electrical properties. The first successful 

interconnect structure of PIs was developed in 1973 by Hitachi Co. (Sato et al., 1973). 

Since then, a large number of studies on PIs in microelectronics have been carried out. 

Besides being used as an interlayer dielectric, PIs have also been used as passivation 

layer, die adhesive, buffer coating, as well as alpha-partical barrier (Bolger, 1984; 

Makino and Works, 1994). On the other hand, however, the conventional PIs with 

dielectric constants (κ) of about 3.1-3.5, are insufficient in meeting the requirement of  

κ<2.5 for the dielectrics of the near future. Attempts have been made to prepare PIs 

with lower dielectric constants (see Chapter 2 below). 

In addition, adhesion of polymeric materials to other substrates, including silicon, 

metal and other polymer layers, plays a very important role in the building of multi-

layer microelectronics device (Morgen et al., 2000). Good adhesion of polymer to 

other substrates is necessary to prevent the moisture by capillary action through the 

interfaces. The interfacial moisture gives rise to the degradation of the adhesion 

strength of polymers to the substrates and, finally, the delamination of polymers from 

the substrates, leading to structural disintegration and immediate device failure. The 

conducting materials most often used in the IC devices are aluminium and copper. 

Copper has a relatively high electric conductivity and other advantages, such as low 

cost, and high thermal conductivity. A serious drawback of copper, however, is its 

poor adhesion to the primary dielectric materials, such as PI. Since adhesion is 

fundamentally a surface phenomenon, often governed by an interphase of molecular 

dimensions, it is possible to modify this near-surface region without affecting the 

desirable bulk properties of the materials to achieve enhanced adhesive properties. 
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Various methods have been developed or proposed to improve the adhesion of PIs 

with copper, as described in detail in Chapter 2. 

Because of their unique physicochemical properties, PIs have also been widely 

investigated as membrane materials during the past decades for proton conducting, 

fouling resistance, gas removal and gas separation applications (Ohya et al., 1996). 

Recently, extensive efforts have been focused on the development of “smart” 

membranes that can regulate the permeability in response to environmental changes, 

such as changes in temperature, pH, ionic strength, etc. Membranes with stimuli-

sensitive properties have been applied in controlled drug delivery, chemical separation 

and bioreactors. Environmental stimuli-sensitive membranes can be prepared by 

grafting of functional polymers or graft copolymerization of functional monomers 

directly onto the existing porous membranes. These approaches, however, may be 

accompanied by changes in membrane pore size and pore size distribution, leading to 

reduced permeability. Furthermore, the extents of grafting on the membrane surface 

and the surfaces of the pores may differ substantially. Accordingly, the strategy of 

molecular or bulk graft copolymerization, followed by phase inversion, to membrane 

fabrication may prove to be particularly useful in certain cases.  

The excellent physicochemical and mechanical properties of PIs make these polymers 

most desirable in application studies. In this dissertation, surface graft polymerization, 

such as UV-induced graft copolymerization and plasma-induced graft 

copolymerization, is explored to improve the adhesion of PI and fluorinated polyimide 

(FPI) with electrolessly deposited copper. The results of implementation of this new 

technique in adhesion enhancement of the PIs and FPIs with copper are evaluated. On 

the other hand, a new method, molecular graft copolymerization was first utilized for 
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the preparation of nanoporous low-k polyimide films and to the preparation of 

polyimide membranes with “smart surface”. Thus, the application of polyimides has 

been further extended. 

 Chapter 2 gives an overview of the related literature. In Chapter 3, electroless plating 

of copper via a tin-free activation process was carried out effectively on two types of 

FPI films modified by UV-induced surface graft copolymerization with N-containing 

monomers, such as 1-vinylimidazole (VIDz) and 4-vinyl pyridine (4VP). The UV-

induced surface graft copolymerization of VIDz and 4VP was carried out on the argon 

(Ar) plasma-pretreated FPI films via a solvent-free process under atmospheric 

conditions. The surface compositions of the modified FPI films were studied by X-ray 

photoelectron spectroscopy (XPS). The adhesion strength of the electrolessly deposited 

copper to the graft-modified FPI films was evaluated by measuring the T-peel 

adhesion strength. The factors that affected the adhesion of the PI/Cu laminate were 

discussed. 

In Chapter 4, surface modification of Ar plasma-pretreated PI (Kapton® HN) and FPI 

films by plasma graft copolymerization with 4VP was carried out. The effects of glow 

discharge conditions on the chemical composition and structure of the plasma-

polymerized 4VP (pp-4VP) films were analyzed by XPS and Fourier transform 

infrared (FTIR) spectroscopy, respectively. The XPS and FTIR results revealed that 

the pyridine groups in the pp-4VP layer could be preserved to a large extent under 

proper glow discharge conditions. The topography of the modified PI and FPI surfaces 

were investigated by atomic force microscopy (AFM). The pp-4VP film with well-

preserved pyridine groups was used not only as the chemisorption sites for the 

palladium complexes (without the need for prior sensitization by SnCl2) during the 
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electroless plating of copper, but also as an adhesion promotion layer to enhance the 

adhesion of the electrolessly deposited copper with the PI  and FPI film.  

Chapter 5 outlines the preparation of low dielectric constant nanoporous PI and FPI 

films. In the first part, thermally-induced molecular graft copolymerization of acrylic 

acid (AAc) or methoxy poly(ethylene glycol) monomethacrylate (PEGMA) with the 

ozone-pretreated poly(amic acid) precursor, poly[N,N’-(1,4-phenylene)-3,3’4,4’-

benzophenonetetra-carboxylic amic acid] or PAmA, in N-methyl-2-pyrrolidone (NMP) 

solution was carried out. The resulting PAmA copolymers with grafted AAc and PEG 

side chains (the PAAc-g-PAmA and PEGMA-g-PAmA copolymers, respectively) 

were characterized by elemental analysis, XPS, thermogravimetric (TG) analysis and 

differential scanning calorimetry (DSC). Nanoporous low-к PI films were obtained 

after thermal imidization of the PAmA backbones under reduced argon pressure and 

the subsequent thermal decomposition of the side chains in air. The nanoporous PI 

films were characterized by density measurements, scanning electron microscopy 

(SEM) and dielectric constant measurements. The densities of the nanoporous films 

were 3-14% lower than the pristine PI films. SEM images revealed that the pore size 

was in the range of 30-100 nm. The nanoporous PI films with dielectric constants as 

low as 2.1 and 2.4, were obtained from the PAAc-g-PAmA and P(PEGMA)-g-PAmA 

copolymer, respectively. In the second part, molecular modification of the ozone-

pretreated FPI via thermally-induced graft copolymerization with AAc was carried out. 

Films of the copolymers were subjected to thermal treatment to decompose the AAc 

polymer (PAAc) side chains, leaving behind nano-sized pores and gaps in a matrix of 

preserved FPI backbones. The nanoporous FPI films were characterized by density, 

SEM and dielectric constant measurements. The nanoporous FPI film having dielectric 
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constant as low as 1.9 was prepared from the PAAc-g-FPI copolymer with an initial 

bulk graft concentration of about 1.67 and a final porosity of about 8%. 

Chapter 6 illustrates that molecular modification is an effective method to prepare 

“smart” polyimide membranes. In the first part, molecular modification of the ozone-

pretreated FPI via thermally-induced graft copolymerization with either AAc or 4VP 

in NMP solution was carried out. The resulting FPI copolymers with grafted AAc and 

4VP side chains (the PAAc-g-FPI and P4VP-g-FPI copolymers, respectively) were 

characterized by FTIR spectroscopy, elemental analysis, TG analysis and DSC. In 

general, the graft concentration increased with the monomer concentration. 

Microfiltration (MF) membranes were prepared from the PAAc-g-FPI or P4VP-g-FPI 

copolymers by phase inversion in aqueous media with pH values ranging from 1.0 to 

6.4. The surface composition of the membranes was characterized by XPS. A 

substantial surface enrichment of the grafted AAc and 4VP polymer was observed for 

the copolymer membranes. The morphology of the MF membranes was studied by 

SEM. The pore sizes of the MF membranes were measured using a Coulter® 

Porometer. The flux of aqueous solutions through the PAAc-g-FPI and P4VP-g-FPI 

MF membranes exhibited a pH-dependent behavior, but in an opposite manner，with 

the most drastic change in permeation rate being observed at solution pH values 

between 1 and 4.  

In the second part of Chapter 6, molecular modification of a FPI via ozone-

pretreatment and thermally-induced graft copolymerization with N-

isopropylacrylamide (NIPAAm) in NMP solution was carried out. The resulting FPI 

with grafted NIPAAm polymer side chains (P(NIPAAm)-g-FPI) were characterized by 
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FT-IR spectroscopy, elemental analysis, TG analysis and DSC. In general, the graft 

concentration increased with the monomer concentration. Microfiltration (MF) 

membranes were prepared from the P(NIPAAm)-g-FPI copolymers by phase inversion 

in water at temperatures ranging from 4°C to 55°C. The surface composition of the 

membranes was characterized by XPS. A substantial surface enrichment of the grafted 

NIPAAm polymer was observed for the copolymer membranes. The surface 

composition, mean pore size and morphology of the membrane varied with the 

temperature of the aqueous coagulation bath. For the copolymer membrane cast below 

the lower critical solution temperature (LCST) of the NIPAAm polymer (~32°C), the 

rate of water permeation increased substantially at a permeate temperature above 32°C. 

For the flux of 2-propanol through the membrane cast above 32°C, a reversed 

permeate temperature dependence was observed.  
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Aromatic polyimides were first produced in 1908 by Marston Bogert (Bogert and 

Renshaw, 1908) through polycondensation of ethers or anhydride of 4-aminophthalic 

acid. In the late 1950’s, high molecular weight products were synthesized by two-stage 

polycondensation of pyromellitic dianhydride with diamines (Andrey, 1965). Since 

then, the interest of researchers in this class of polymers has been growing steadily 

because it possesses a number of valuable physico-mechanical and chemical 

properties, such as excellent thermal stability, low dielectric constant, good mechanical 

strength, etc. (Wilson et al., 1990; Sroog, 1996). 

2.1 Surface Modification of PI Films and Their Relevance to 
Adhesion 

After first commercialized by Dupont Co. (with a trade name of Kapton® HN) in early 

1960s (Sroog et al., 1965), polyimide (PI) has been an important polymer for the 

packaging of microelectronics because of its combined good physicochemical and 

electrical properties. PI has been used extensively as interlayer dielectrics, protective 

overlayers, and alpha-particle barriers in microelectronics devices. The most widely 

used and studied polyimide is poly(pyromellitic dianhydride-co-4,4’-oxydianiline) 

(PMDA-ODA)-derived PI. In an IC device, two interfaces exist between PI interlayer 

dielectric and the metal conductors. PI on metal interface is typically formed by 

depositing the PI precursors, such as poly(amic acid), onto the solid metal surface. On 

the other hand, metal on PI interface is formed by depositing metal thin films onto the 

surface of a fully cured PI substrate. The deposition of metal thin film has been 

achieved by vacuum deposition, plasma deposition, sputtering, electroplating and 

electroless plating from solution (Matienzo and Unertl, 1996). High interaction for the 

two interfaces is necessary for the purpose of the device integration and performance 
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reliability. Compare with other polymeric dielectrics, such as fluoropolymers, the 

adhesion of PI to metals is good, especially in the case of using silane coupling agents 

as adhesion promoter on the metal surface. On the other hand, however, the adhesion 

of metal to PI surfaces has been a constant challenge in the microelectronics industry. 

Copper is the most preferred conductor for high-speed IC devices due to its high 

conductivity. The poor interaction between Cu and the pristine PI surface dictates the 

adhesion promoters between Cu and PI films. 

The formation of chemical bond is the most important way to achieve high interfacial 

adhesion. The first systematic spectroscopic study of interaction of the metal to PI 

surface was reported by Chou and Tang in 1984 (Chou and Tang, 1984). Since then, 

there has been a large number of studies to investigate the interfacial chemistry 

between metal and PI surface. A comprehensive review on this topic has been written 

by Matienzo and Unertl (Matienzo et al., 1996). It was found that the interaction of Cu 

with pristine PMDA-ODA polyimide is very weak (Chou and Tang, 1984). Infrared 

(IR) absorption studies showed that absorption bands associated with the PMDA part 

of the PI are preferentially attenuated but no new or shifted bands were observed 

(Dunn and Grant, 1989), indicating no chemical components formed and, thus, no 

charge transfer interaction happened between Cu and the PI surface. The presence of 

some Cu+ species, though at the level of a few percent of the carbonyl sites, was also 

observed in the interface region (Mack et al., 1990; Pertisin and Pashunin, 1991). 

Unertl and Mack (Unertl and Mack, 1992) have hypothesized that the Cu+ species may 

originate from the interaction with the end groups of the PI molecules, defects, or 

impurities, rather than from the interaction with the PI molecules. The lack of Cu 

interaction with the PI surface has caused a lot of technical problems in the 

microelectronics industry. One example is that Cu atoms and small Cu clusters easily 
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diffuse below the PI surface even at room temperature. The diffusion of Cu atoms into 

the PI films will, thus, increase the dielectric constant of the PI film (Silverman and 

Platt, 1994).  

A variety of different methods have been applied to activate polyimide surfaces and to 

enhance adhesion. In general, these methods can be classified into chemical treatment, 

irradiation treatment, plasma treatment, and graft copolymerization, which have shown 

to be the effective technique for adhesion enhancement of Cu to PI film. Chemical 

treatment of PI is usually accomplished by immersing PI film into a reactive acid or 

base solution. Chemical treatment of PI film via a base solution was first published in 

1971 (Dine-Hart et al., 1971). Dine-Hart et al. successfully used potassium hydroxide 

(KOH) to remove the PI coating. Since then, surface modification of PI surface using a 

strong base solution to improve the adhesion property has attracted extensive research 

interests. A fine review on this topic has been given by Lee and Viehbeck (Lee and 

Viehbeck, 1996). Generally, surface modification of PI film in a base solution is via a 

hydrolysis reaction. The chemical nature of PI surface treated by strong base has been 

investigated by XPS (Lee and Kowalczyk , 1991; Lee and Viehbeck, 1994) and sum-

frequency vibrational spectroscopy (Kim and Shen, 1999). Strong bases, such as 

NaOH, KOH, can be used to open the imide ring. The ring-opening reaction gives rise 

to the formation of carboxylate salt (Lee et al., 1990a; Lee et al., 1990b). The 

subsequent acidification of the base-treated PI film gives rise to the presence of a 

poly(amic acid) layer on the surface. The base treatment of the PI surface has greatly 

improved the adhesion strength of PI to the deposited metals. The adhesion of sodium 

hydroxide-treated PI film to Cu is affected by a lot of factors, including the 

temperature of the etching solution and the etching time of the PI surface. In 

Vorobyova’s work (Vorobyova, 1997), the highest adhesion strength of about 9 N/cm 
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of the electrolessly-deposited Cu to the NaOH-treated PMDA-ODA PI surface was 

obtained at a lower etching temperature (20°C) and a medium etching time (6 min). 

The high adhesion strength of Cu to the chemically treated PI surface is attributed to 

the formation of C-O-M and M-N bonds (M=metal) via the ion-exchange or donor-

acceptor interaction. Apart from using strong base solution to treat the PI surface, 

Baumgartner and Scott (Baumgartner and Scott, 1995) have improved the adhesion 

strength of the electrolessly deposited copper and nickel to a fluorinated PI surface 

modified by CrO3, Ce(SO4)2, (NH4)2Cr2O7, or K2Cr2O7 salts in the sulfuric solutions.  

Irradiation treatments, including the use of ion-beam and excimer laser, have been 

employed to treat the PI surface. The effects of ion-beam treatment on the surface 

chemistry of PI film have been summarized by Lee (Lee, 1996). Generally, irradiation 

treatments result in crosslinking, chain scission, and element ablation. Crosslinking 

effect has caused a significant improvement in electrical conductivity, chemical 

resistant, surface hardness, and wear resistant of the PI film. The surface hardness of PI 

film increased almost 30 times after 1 MeV Ar+ bombardment with a fluence of 

4.7×1019 ions/m2 (Lee et al., 1993). The surface chemistry of PI film was greatly 

influenced by the ion bombardment. Depletion of O and N elements by Ar+ ion-beam 

from the PI surface was confirmed by the XPS results (Karpuzov et al., 1989). The loss 

of oxygen was attributed to the predominant damage of imide rings and the ablation of 

carbonyl groups in the case of Ar+ ion bombardment (Marletta et al., 1989). At low 

doses and energies, carbonyl groups were preferentially sputtered, keeping the rest of 

the molecule intact. Loss of nitrogen was insignificant compared to losses of carbon 

and oxygen. At higher energies and doses, the PI underwent extensive bond scission, 

restructuring of various functional groups and species, together with radical and anion 



 

  14

formation (Sengupta and Birnbaum, 1991). Ion-beam irradiation can also give rise to 

the formation of new chemical bonds on the PI surface, including C-C-C, C-O-C and 

C-N-C (Ektessabi and Hakamata, 2000). The effects of ion bombardment on adhesion 

improvement of copper film to PI film were investigated by Ebe et al. (Ebe et al., 

1997). In their work, copper thin films were evaporated onto polyimide surfaces with 

simultaneous irradiation of Ar+ ions, having energies in the range of 0.5 to 10.0 keV. 

Transmission electron microscopy (TEM) analysis showed that the ion bombardment 

generated the mixed layer which consisted of the PI elements and copper atoms at the 

interface. The thickness of the mixed layers increased with an increase in ion dose and 

ion energy. The peel adhesion tests showed that the Cu film adhesion to PI film was 

dependent on the conditions of the ion bombardment. At low ion energy, the adhesion 

was improved by the formation of the intermixed layer. However, high energy ions, 

which increased the thickness of the intermixed layers, decreased the film adhesion. It 

is revealed that the high energy ions caused the carbonization at the polyimide surfaces, 

which, in turn, decreased the adhesion strength. It was also found by Pappas and 

coworkers (Pappas  et al., 1991) that for PMDA-ODA PI films, exposure to low 

energy Ar+ and/or O2+ ions improved adhesion to the metal overlayer, while for 

BPDA-PDA polyimide, the role of O2+ was more effective. The 90°-peel adhesion 

strength of Cu to the both PI films increased about 2-3 times after ion-beam irradiation. 

Laser technique has been practically used in the microelectronics industry for surface 

ablation of PI films (Pappas, 1989; Lankard and Wolbold, 1992). The principle and the 

effect of laser on the surface properties of the PI film have been reviewed by Pettit 

(Pettit, 1996). Laser treatments give rise to photochemical degradation of the PI 

molecules to generate free radicals (Qin et al., 2000). Atmospheric oxygen sequentially 
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reacts with the produced radicals to form a highly oxidized layer. The formation of 

carbonyl group on the PI surface is enhanced by the heat remaining on the irradiated PI 

surfaces. Adhesion enhancement of Cu to laser-treated surfaces has been reported in 

the literature (Weichenhain et al., 1997; Frerichs et al., 1995). Laser ablation of PI film 

results in the formation of a glassy carbon layer on its surface, especially at near-

threshold fluence (Shafeev and Hoffmann, 1999). Glassy carbon can mediate the 

electroless metal deposition, thus, resulting in a local metallization of the surface. The 

ability of this layer to promote the electroless Cu deposition from the corresponding 

plating solution is a function of laser processing parameters and conditions of 

deposition. 

Plasma treatment is commonly used in the microelectronics industry for cleaning and 

etching purposes. This technique has also been an effective method for the surface 

modification of polymer substrate for adhesion promotion purpose (Chan et al., 1996). 

The effect of plasma treatment on the surface properties of the PI substrate has been 

described by Egitto and Matienzo (Egitto and Matienzo, 1996). Generally, plasma 

treatment of PI film can give rise to the changes in surface hydrophilicity (Katnani et 

al., 1989; Inagaki, et al., 1992) and adhesion property (Inagaki et al., 1994). Plasma 

treatment also gives rise to new functional groups, such as oxygen, nitrogen, and 

fluorine-containing groups, on the PI surface, depending on the gas used (Inagaki, 

1992). The easy and fast operating process makes this technique a very attractive 

method for surface modification of the PI substrates. Rozovskis et al. (Rozovskis et al., 

1994) reported that O2 plasma treatment of PI surface greatly improved the adhesion to 

the electrolessly deposited copper. Adhesion strength of copper to O2 plasma-treated 

PI film is affected by the plasma treatment time. Maximum adhesion strength was 

obtained for polyimide thin films etched in oxygen plasma for 3 min (Nakamura et al., 
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1996). Inagaki et al. (Inagaki et al., 1994) also indicated that the Ar, NO, and NO2 

plasma treatments improved the adhesion of the thermally evaporated copper to the PI 

(Kapton® HN) film. The improvement in adhesion strength was attributable to the 

formation of coordinate bonds between carboxyl groups and copper atoms, and the 

mechanical interlocking by penetration of the copper layer into the deep valleys 

between the protuberances.  

Recently, surface modification via graft copolymerization has shown to be a more 

effective method for adhesion enhancement of copper to PI films (Inagaki, 1995; 

Inagaki, 1996; Ang et al., 1999; Ang et al., 2000) than other traditional surface 

modification approaches. Surface graft copolymerization can be carried out under 

relatively mild conditions. The technique requires only the generation of active 

species, such as peroxides and hydroperoxides, on the substrate to initiate the 

subsequent surface copolymerization. Thus, surface graft copolymerization commonly 

proceeds via the free radical reaction of vinyl or acrylic monomers, although it may 

also proceed via the cationic or anionic mechanism. Through the intelligent choice of 

monomers with appropriate functional groups, new molecular functionalities can be 

incorporated onto the activated PI surfaces. Inagaki et al. (Inagaki et al., 1995) have 

shown that high adhesion strength can be obtained between thermally evaporated 

copper and vinylimidazole graft-modified PMDA-ODA PI film. The high adhesion 

strength was attributed to the formation of N-Cu complexes between the imidazole 

ring and the Cu atoms. The presence of N-Cu complexes was verified by the changes 

in the N 1s core-level spectra of XPS results. Ang et al. (Ang et al., 1999; Ang et al., 

2000) also improved the adhesion of Cu foil to Ar plasma-pretreated PI surface by 

simultaneous lamination and graft copolymerization with vinylimidazole.    
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Plasma polymerization is a unique technique for modifying polymer and other 

substrate surfaces. It allows the direct deposition of a thin polymer film on almost any 

substrate surface, without affecting the bulk properties of the substrate. Most important 

of all, the process is solvent free. For these reasons, plasma polymerization and 

deposition have attracted considerable attention in recent years (Silverstein et al., 1996; 

Ward and short, 1995). Tarducci et al. (Tarducci et al., 2000) deposited glycidyl 

methacrylate (GMA) to the fluoropolymer surface via plasma polymerization and 

deposition technique. The epoxide functional groups in the plasma-deposited GMA 

polymer were nearly fully preserved by using proper deposition conditions. The 

preservation of the epoxide groups was verified by the XPS, TOF-SIMS and FTIR 

results. In a parallel research, GMA is plasma-polymerized and deposited on the 

Si(100) surface with the preservation of a high percentage of the epoxide 

groups(Zhang et al., 2000; Zhang et al., 2001). The plasma-deposited film acts as an 

adhesion promoter to improve the adhesion of thermally-imidized PI and FPI films on 

the silicon substrate. 

2.2 Surface Metallization of Polymer Dielectrics  

Metallization of polymer films has always been of great interest to the 

microelectronics industry. The deposition of metal thin film has been achieved by 

vacuum deposition, plasma deposition, sputtering, electroplating and electroless 

plating from solution (Rye and Ricco, 1998; Mittal, 2001). Electroless plating process 

are used mainly for functional coatings of metals and non-conductors in major 

industries, such as in the fabrication of electronic circuits and interconnections, 

magnetic memory disks and electromagnetic interference shielding. Electroless 

technologies yield alloy deposits with unique mechanical characteristics for wear and 



 

  18

corrosion protection in automotive and aerospace applications, as well as for the 

protection of equipment used in chemical manufacturing, and in oil and gas production 

(Mallory and Hajdu, 1990). 

Electroless metal plating is a non-electrolytic deposition from solution. The basic 

components of an electroless plating solution include a metal salt and a reducing agent. 

An additional requirement is that the solution, although thermodynamically unstable, is 

stable in practice until a suitable catalyzed surface is introduced. Plating is then 

initiated upon the catalyzed surface, and the plating reaction is sustained by the 

catalytic nature of the plated metal surface itself. The history of electroless plating 

began with the discovery by Brenner and Riddell during a series of nickel 

electroplating experiments in 1946 (Brenner and Riddell, 1946). Electroless copper 

plating chemistry was first reported in 1947 by Narcus (Narcus, 1947). The evolution 

of electroless plating during the last 30 years are remarkable. The advantage of 

electroless plating include uniformity of coverage, the possibility of metallizing non-

conductors, and the ability to plate selectively especially when compared with 

electroplating.   

Palladium chemisorption is a determinant step in metallization by the electroless 

plating process. The step establishes strong chemical bonds between the substrate and 

the metallic film. Different methods have been proposed to perform the surface 

activation of polymer substrates for electroless plating (Paunovic and Schlesinger, 

1999). Historically, the most widely used methods for the surface sensitization and 

activation of substrates were the “two-step” process (Pearlstein, 1955) and the “one-

step” activation process (Meek, 1975). In the ‘two-step’ method, the polymer surface 

was first sensitised by SnCl2 and then activated in the PdCl2 solution (Muller and 
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Baudrand, 1971). The ‘one-step’ process, on the other hand, used a mixed SnCl2/PdCl2 

colloidal solution. The mixed SnCl2/PdCl2 solutions are of a great complexity and their 

aging plays a significant effect on the metallization efficiency. It was indicated that the 

complexes formed at the very beginning of the solution mixture are rapidly 

transformed into colloidal particles whose core consists of a metallic alloy (Sn/Pd) 

surrounded by a SnCl2 shell (Jackson, 1990). On the other hand, however, SnCl2 is not 

an active catalyst for electroless plating (Muller and Baudrand, 1971). As a result, the 

growth of the copper deposit was inhibited.  

To avoid the side-effect of the tin atom in the subsequent electroless plating process, a 

tin-free process is preferred. Viehbeck et al. (Viehbeck et al., 1990) described a 

seeding process for activating the surface of polyimide and other electroactive 

polymers. The process consists of reducing electrochemically the outer region of such 

materials when these materials are brought into contact with an electrolyte containing a 

strong organic reducing agent. In this way, the electroactive surface is used to provoke 

electron transfer to metal ions in solution, which caused metals to be deposited at the 

surface. The deposition of such metals renders the polymer surface active towards 

further metal deposition from conventional electroless plating bath. Baum et al. (Baum 

et al., 1991) described a selective process based on the photoreduction in the formation 

of an active palladium catalyst. This process worked well on a variety of dielectric 

materials including PI films when the iron-palladium treated dielectric films are 

irradiated with deep UV lamp (500 W Hg-Xe). On the other hand, Charbonnier et al. 

(Charbonnier et al., 1996) have reported that palladium can be adsorbed directly on the 

nitrogen functional groups of the polymer surfaces generated from N2 or NH3 plasma 

treatment. More recently, several N-containing polymers have been grafted on plasma-

pretreated fluoropolymer surfaces by UV-induced graft copolymerization to the 
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chemisorption of Pd2+, in the absence of prior surface sensitizaition by SnCl2, for the 

electroless plating of copper (Yang et al., 2001). The “Sn-free” process involved 

initially the chemsorption of Pd, in complex form, on the nitrogen sites of the grafted 

polymer. The Pd complex underwent a reduction to Pd metal in the electroless copper 

plating bath prior to the initiation of electroless deposition of copper. 

2.3 Nanoporous Low-k Materials for Microelectronic 
Applications 

In the past few decades, the increasing demands of miniaturization in the 

microelectronics industry has forced continual improvement in the materials that are 

used in the fabrication of semiconductor devices. The use of interlayer materials with 

very low dielectric parameters can greatly reduce the RC time delays, cross-talks, and 

power dissipation in the new generation of high density integrated circuits (Lee et al., 

1995; Maier, 2001). In addition to exhibiting low dielectric constants, the next 

generation of interlayer dielectrics for sub-micron and nano-level electronics must also 

satisfy a variety of requirements, such as good thermal stability, low moisture 

absorption, good adhesion to semiconductor and metal substrates, and chemical 

inertness. Polyimides (PIs) have been widely used as dielectric and packaging 

materials in the microelectronics industry because of their good mechanical, thermal 

and dielectric properties (De Souza-Machado et al., 1996; Auman, 1993). However, 

with dielectric constants (κ) of about 3.1-3.5, the conventional PIs are insufficient in 

meeting the requirement of  κ<2.5 for the dielectrics of the near future (Morgan et al., 

1995).  

Various attempts have been made to prepare PIs with lower dielectric constants. It is 

well known that the incorporation of fluorinated substitutents into polymers decreased 
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the dielectric constant due to the small dipole and the low polarizability of the CF bond 

as well as the increase in free volume, which accompanies the replacement of methyl 

groups by trifluoromethyl groups (Van Krevelen, 1990). An additional positive effect 

of fluorinated substitutes is reduced moisture aborption due to the non-polar character 

of fluorocarbon groups, which further reduces the dielectric constant. A large number 

of fluorinated polyimides have been prepared (Brink et al., 1994; Vora et al., 2001; 

Misra et al., 1992). The modified PIs have dielectric constants in the order of 2.4-3.0 

(Sasaki and Nishi, 1996). However, it is well known that the lowest dielectric constant 

available for fluorinated dense materials is around k~2.1 for PTFE (Teflon) and none 

of the current approaches using dense materials is expected to achieve k values lower 

than that. Furthermore, the preparation of fluorinated polyimide may be limited by 

high cost, reduced mechanical properties, and difficulties in synthesis. There are also 

serious concerns about the effect of fluorinated dielectrics on the interconnect metals 

and metal liners at elevated temperatures. 

An alternative approach toward lowering a polymer’s dielectric constant is to 

introduce nanoscopic porosity into the polymer film. The incorporation of air，which 

has a dielectric constant of about 1, can greatly reduce the dielectric constant of the 

resulting porous structure/material. Porous materials may have dielectric constants in 

the ultra-low-k region. Porosity may be classified as either closed or open cell, the 

latter characterized by interconnected pores. Ideally, the pores of on-chip insulators 

should be closed cell, uniformly distributed and controlled to the nanoscopic level.  

At present, most porous low-k materials are produced using either surfactant-templated 

or sol-gel processes. In the templated approach, the precusor contains a composite of 

thermally labile and stable materials. After film deposition, the thermally liable 
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materials are removed by thermal heating, leaving pores in the dielectric film.  

Polyamide nanofoams are examples which were obtained by this approach (Hedrick et 

al., 1998a). In the sol-gel process, the porous films are formed using hydrolysis and 

polycondensation of alkoxide, such as tetraethoxysilane (TEOS). During the aging 

process, porous network is formed and strengthened while liquid solvent is still present 

in the pores. The solvent is then removed in a subsequent drying process. Aerogels or 

xerogels with SiO2 as matrix with porosities above 90% and dielectric constant close 

to 1 have been reported (Hrubesh et al., 1993; Ramos et al., 1997). However, a large 

volume of solvent must be removed to obtain such extremely porous structures. Since 

the pores must not be interconnected, the diffusion of the solvent has to proceed 

through the matrix material. Control of the process without shrinkage and formation of 

macroscopic cracks is quite difficult. Moreover, high porosity also has adversely 

effects on other important film properties, such as thermal conductivity and stability.  

The approaches to the preparation of porous polyimide (PI) films include microwave 

processing (Gagliani and Supkish, 1979), incorporation of foaming agents (Krutchen 

and Wu,1985) and hollow microspheres (Narkis et al., 1982). However, most of the 

materials prepared by these methods may have large pore sizes and open pore 

structures, which make it unsuitable for microelectronic applications. Therefore, 

control over the pore size, shape, and distribution is critical to obtain porous materials 

with suitable mechanical and electrical properties to withstand the rigorous 

requirement for the production of integrated circuits, especially when the device 

feature size is approaching 100 nm and the film is thin (less than 1 um). Materials with 

homogeneous, nanometer-scaled, closed pores are preferred to preserve electrical and 

mechanical properties. In addition, these nanopores should be randomly distributed to 

ensure that the thin film properties are isotropic. 
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Fine works on the preparation of porous PI films, with pore sizes in the nanometer 

range, by utilizing the block copolymer approach have been reported. To this end, 

block copolymers of PI with poly(methylmethacrylate) (Hedrick et al., 1995b), 

polystyrene (Hedrick et al., 1995a), poly(lactones) (Hedrick et al., 1998b) and 

poly(propylene oxide) (Hedrick et al., 1995a, 1995b) have been prepared. Thermal 

degradation of the labile components in the block copolymers gives rise to the 

nanoporous PI films with low dielectric constants. The exact process for the 

decomposition depends on the nature of the labile blocks. Porosities up to 30% could 

be achieved. The dielectric constant of a PMDA-3FDAm film with 18% porosity was 

reduced to 2.35 from 2.85 for the pristine polyimide film (Hedrick et al., 1998). One of 

the major problems of this procedure is the potential collapse of the pores. This may 

due to the high surface tension of the small pores, and during pore formation because 

of the polar products from the decomposition of the labile blocks, which can plasticize 

the polyimide and hence increase the chain mobility required for collapse. In addition, 

when the temperature used to generate the pores or any processing temperature during 

the interconnect fabrication using such nanoporous films is too close to the glass 

transition temperature of the polyimide phase, softening of the matrix will result in 

collapse due to the surface tension. Hence, further increase of the porosity by the block 

copolymer method is rather difficult. The morphology will change from spherical 

domains to cylinders in a matrix and then to lamellar structure, when the content of the 

minor component is increased. Thus, isolated, non-interconnected pores can no longer 

be expected, as the porosity approaches or exceeds 30%. The exact composition for the 

morphology transition depends on the degree of immiscibility of the two phases, the 

block lengths and block length distributions, as well as the film casting process. 
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2.4 Preparation and Modification of Polymeric 
Microfiltration Membranes 

PIs have also been widely investigated as membrane materials during the past three 

decades for proton conducting, fouling resistance, gas removal and gas separation 

applications (Semenova, 1996; Yamamoto et al., 1990; Eastmond et al., 2002; Shimizu 

et al., 2002), due to their unique physicochemical properties, such as good thermal 

stability, low dielectric constants, excellent mechanical strength, and surface inertness 

(Wilson et al., 1990; Auman, 1993; Ferge, 1993). It was shown that polyimides have 

excellent mass exchange characteristics, which together with their other valuable 

physicochemical properties make them extraordinary materials for separation and 

purification technologies.  

The physical structure and the physical properties of a membrane are directly related to 

the preparation procedures. Various methods have been utilized to prepare polymeric 

microporous membranes such as sintering, stretching, track-etching, and phase 

inversion. Among them, the phase inversion techniques is most widely used, especially 

in the preparation of commercial microfiltration (MF) membranes. Phase inversion is a 

process whereby a homogeneous polymer solution is converted into a three-

dimensional net structrue or gel containing solid polymer areas and voids located in 

between (Kesting, 1985; Strathmann, 1985). A detailed description of the phase 

inversion process can be found in “Basic Priciples of Membrane Technology” 

(Mulder, 1991). The technology for the preparation of PI membrane by phase 

inversion method is complicated. It includes several stages, and changing process 

conditions at these stages can significantly affect the structure and properties of 

resultant membranes. In the most general way, a typical process for preparation of PI 
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membranes by phase inversion involves the following steps: (1) preparation of solution 

of polyimide or poly(amic acid); (2) spreading the polymer solution on a solid surface, 

porous support surface (in this case composite membranes are to be prepared), or 

forming hollow fiber in the form of a stream through a spinneret; (3) solvent 

evaporation; (4) immersion precipitation: choice of the precipitation bath composition 

and temperature, residence time in the bath; (5) eventual post-treatment of the 

membranes, such as drying or annealing. Depending on the rate of polymer 

precipitation, three types of membranes can be obtained: (a) symmetric, with an almost 

even porosity across the membrane cross-section; (b) asymmetric, with a selective thin 

microporous upper layer (skin) on a thicker macroporous globular or spongy sub-layer; 

(c) asymmetric, with large voids and/or finger-like cavities beneath the microporous 

upper layer (Strathmann and Kock, 1977). 

Recently, much attention has been directed to the development of more sophisticated 

membranes that can regulate the permeability in response to environmental changes. 

Porous membranes with signal-responsive “polymer brushes” are advantageous over 

the hydrogel membrane in terms of mechanical strength and quick response to external 

stimuli. Certain polymeric materials are known to change reversibly their 

conformation and phase structures in response to the external chemical or physical 

stimuli, such as changes in pH (Chung et al., 1996; Iwata et al., 1998), ionic strength 

(Nonaka et al., 2003), temperature (Park et al., 1998; Peng and Cheng, 1998), or 

electrical potential (Jaworek et al., 1998). These materials are termed as “smart 

polymers”. Different kinds of changes can be induced by the responses of the smart 

polymers, such as phase, shape, surface energies, permeation rate, reaction rate and 

molecule recognition. For example, Poly(N-isopropylacrylamide) (PNIPAAM) is the 

most widely studied thermo-sensitive polymer (Hirotsu et al., 1987; Ebara et al., 
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2000). It exhibits a lower critical solution temperature (LCST) at around 32°C in 

aqueous solution (Heskins et al., 1968). Below the LCST, it adopts an extended 

random coil conformation. As the temperature is increased, the hydrogen bonds 

weaken, with the concomitant release of water of hydration. The hydrophobic 

interaction tend to overcome the hydrophilic interaction, leading to a coil-to-globule 

transition and finally to phase separation.  

Various types of smart polymeric systems, such as signal-responsive interpenetrating 

polymer network (IPN), polymer gels, and membranes have been devoloped (Ju et al., 

2001; Alvarez-Lorenzo and Concheiro, 2002; Chu et al., 2001). Among them, porous 

membranes with ‘smart polymer brush’ are of particular interest due to their excellent 

mechanical strength and quick response to external stimulus. On the other hand, 

however, permeation of commercial porous membranes are often independent on the 

environment. Therefore, surface or bulk modification of current membranes was often 

used to render them with environmental-responsive properties.  

The well-known surface modification methods include physical adsorption (Brink et 

al., 1993), surface coating (Nunes et al., 1995), and surface grafting (Uchida et al., 

1994; Gancarz et al., 1999). During these processes, stimuli-responsive polymer 

brushes can be chemically-grafted or physically-adsorbed onto solid polymer 

substrates, and the surface film thickness, wettability, or surface charge can then 

change rapidly in response to small changes in stimuli such as solution temperature, 

pH or specific ionic concentrations. These responses is much faster than for solids such 

as hydrogels since the surface coating is very thin. Permeation “switches” can be 

prepared by coating or grafting “smart” polymers onto the surfaces of pores in a 

porous membrane, and stimulating their swelling (to block the pore flow) or collapse 
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(to open the pore to flow). Surface grafting has several advantages over other methods, 

including easy and controllable introduction of graft chains with a high density and 

exact localization of graft chains on the surface with the bulk properties unchanged.  

On the other hand, however, both the surface coating and grafting methods may have 

their own drawbacks. For the coating method, the coated surface layers may be easily 

removed, especially by changes in pH of the solution. Furthermore, surface 

modification of existing membranes by grafting is likely to be accompanied by 

changes in membrane pore size and pore size distribution, leading to reduced 

permeability. In addition, the extents of grafting on the membrane surface and the 

surfaces of the pores may differ substantially. In order to overcome these problems, 

bulk-modified or chain-modified polymer may be used as membrane materials. 

Contrary to surface modification techniques, where the surface composition was 

modified and adapted to a given application by some external treatment such as 

grafting, the preparation of membranes from bulk modified polymers can greatly 

facilitate the control of the pore size, the pore size distribution and the composition of 

the pore surfaces through the control of the copolymer structure and composition.   

Ozone treatment has been widely utilized to generate peroxide and hydroperoxide 

species on polymer chains and surfaces (Fargere et al., 1994; Boutvein et al., 1992; 

Fujimoto et al.,1993; Boutvein et al., 2002). Under thermal induction, these labile 

functional groups undergo decomposition to initiate the free radical graft 

copolymerization of vinyl monomers. Landler and Lebel (Landler and Lebel, 1960) 

used an ozone flow on polystyrene (PS) and succeeded in grafting vinylic monomers. 

Sarraf et al. focused their research on polyethylene (PE) (Sarraf et al., 1984), which 

also gave grafted products with various monomers such as styrene, 
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methylmethacrylate vinyl-chloride, or glycidylmethacrylate. In 1991, poly(vinylidene 

fluoride) (PVDF) was pretreated with ozone to make PVDF/MMA and PVDF/S 

copolymers (Boutevin et al., 1991). After ozonization, the polymer is somewhat 

degraded and the molecular weight is reduced. Infrared spectroscopy shows that the 

presence of carbonyl and ketone groups. In the case of ozonized polymers used for 

grafting, the presence of peroxides and hydroperoxides is controlled. The different 

methods of determining these groups via titration are described in the literature use 

ferrous ion, iodine, or free radicals such as 2,2-diphenyl-1-picrylhydrazil (DPPH) 

(Boutevin et al., 1992; Elmidaoui et al., 1991; Fargere et al., 1994).  
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3.1 Experimental 

3.1.1 Materials 

2,2’-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) was obtained 

from Chriskev, KS, USA. 4,4’-bis(4-aminophenoxy)diphenyl sulfone (p-SED), was 

received from Wakayama Seika Kogyo Co. Ltd., Japan. 2,2’-bis(4-aminophenyl) 

hexafluoro propane (4,4’-6F-Diamine), 1-vinylimidazole (VIDz), 4-vinyl pyridine 

(4VP), N-methyl 2-pyrolidinone (NMP) and methanol were received from Sigma–

Aldrich, Milwaukee, WI, USA. All monomers and solvents were used as received. The 

chemical structures of the VIDz and 4VP are shown below: 

                    VIDz:  
N

N
CH=CH2  

 
 
                     4VP:    

N

CH=CH2

 
 
 

3.1.2 Polymer Synthesis 

The fluorinated polyimides (FPIs) used in this study were synthesized by solution 

condensation polymerization method, utilizing a simplified two-step polymerization 

(Vora et al., 2001; Vora et al., 1990). For example, in the case of synthesis of [6FDA + 

p-SED], a fluoro-polyetherimide based on 2,2’-bis (3,4-dicarboxyphenyl) 

hexafluropropane dianhydride (6FDA) and 4,4’-bis(4-aminophenoxy) diphenyl sulfone 

(p-SED), accurately weighed 0.02 mole of solid 6FDA was added to an equimolar 
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amount of diamine pre-dissolved in NMP to make 20% solid concentration. The 

mixture was stirred under nitrogen at room temperature for over 12 h to make 

fluorinated poly(amic acid) (FPAmA) solution, which was then imidized to form 

fluorinated polyimide (FPI). The cyclization can be achieved by either thermal or 

chemical means. In this work, the chemical imidization were carried out by adding of 

stoichiometric amounts of β-picoline (catalyst) base (pKa=5.6) and acetic anhydride 

(dehydrating agent). Under a nitrogen atmosphere at room temperature, 0.04 mol of β-

picoline was added to the polymeric acid and stirred for 15 min. Then, 0.02 mol of 

acetic anhydride was added drop-wise to the mixture over a period of 10 min. The 

reaction mixture was stirred under nitrogen at room temperature for another 8 h to 

obtain the polyetherimide polymer solution. The polymer was precipitated with 

methanol and dried overnight in an air circulating oven at 100oC. The polymer and a 

small sample of the poly(amic acid) were retained for viscosity measurement. The 

structures of the two FPIs referred in this work as FPI–1, i.e. (6FDA + 4,4-6F 

Diamine) and FPI-2, i.e. (6FDA + pSED), are shown as follows:  
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3.1.3 FPI Film Preparation 

The FPI film was obtained by casting the 15 wt% NMP solution on a glass plate. The 

films were first dried under atmospheric condition at room temperature. They were 

then heated gradually over a period of 4 h in a vacuum oven up to 250°C and then kept 

at 300°C for 1 h. The film was allowed to cool down gradually to room temperature 

over a period of 6 h. The surface of the FPI films was then cleaned with ethanol in an 

ultrasonic water bath for 20 min, followed by drying at 80°C for 6 h under reduced 

pressure.  

3.1.4 Plasma Pretreatment and UV-induced Surface Graft 
Copolymerization 

The FPI films were cut into strips of about 2 × 4 cm2 in size. Argon (Ar) plasma 

pretreatment of the FPI films was carried out in a cylindrical quartz glow discharge 

chamber of about 1,400 cm3 in volume, model SP 100, manufactured by Anatech Inc. 

of Springfield, VA, USA. The glow discharge was produced at an applied frequency of 

40 kHz, a power of 32 W, an Ar pressure of 0.5 Torr and an Ar flow rate of 50 

standard cubic centimeter per min (sccm). The film was placed between two parallel 

plate electrodes of 12 × 8 cm2 in area and 3 cm in separation. It was subjected to the 

glow discharge for a pre-determined period of time. The Ar plasma-pretreated FPI 

films were then exposed to the atmosphere for about 30 min to effect the formation of 

surface peroxides and hydroperoxides (Zhang et al., 2001b) for the subsequent graft 

copolymerization with VIDz or 4VP.  

The UV-induced graft copolymerization was performed via a “solvent-free” process 

under atmospheric conditions. About 0.2 ml of pure VIDz or 4VP monomer was 
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introduced onto the surface of the plasma-pretreated FPI film. The film was then 

sandwiched between two quartz plates. The assembly was subjected to UV irradiation 

for 60 min in a Riko RH 400-10W rotary photochemical reactor, manufactured by 

Riko Denki Kogyo of Chiba, Japan. The reactor was equipped with a 1000 W high-

pressure Hg lamp and a constant temperature bath. All UV-induced graft 

copolymerizations were carried out at a constant temperature of 28°C under 

atmospheric condition. After the surface graft copolymerization, the FPI films were 

washed thoroughly with doubly distilled water for 24 h to remove the residual VIDz or 

4VP homopolymer physically adsorbed in the graft layer.  

3.1.5 Surface Activation and Electroless Plating of Copper on FPI 
Films 

The graft-modified FPI films were activated via immobilization of the Pd catalyst, in 

the absence of prior sensitization by SnCl2 (the Sn-free process), for the electroless 

deposition of copper. The film was immersed in an aqueous solution containing 0.1 

wt% PdCl2 and 1.0 wt% HCl (12M) for 10 min, followed by rinsing thoroughly with 

doubly distilled water. The PdCl2-activated FPI film was then placed in an electroless 

copper plating bath for 15-20 min. The thickness of the deposited copper was 

determined gravimetrically. Typically, a copper layer of about 1 µm was deposited. 

The composition of the solution in the plating bath was as follows: 0.7 wt% 

CuSO4
.5H2O, 2.5 wt% potassium sodium tartrate, 0.4 wt% sodium hydroxide, and 0.4 

wt% formaldehyde (Ebneth, 1993). Copper-plated FPI film was rinsed thoroughly with 

copious amounts of doubly distilled water. It was then subjected to thermal post-

treatment in a vacuum oven at 140°C for about 2 h. Post thermal treatment has been 

known to promote the further interaction of the deposited copper with the graft chain, 

resulting in improved adhesion (Wu et al., 2000). Thermally-treated sample was 
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allowed to cool slowly to room temperature in the vacuum oven over a period of about 

4 h to minimize the thermal stress at the metal-polymer interface. The metallized 

sample was then adhered to a copper sheet backing (0.1 mm in thickness) using a 

commercial epoxy adhesive (Araldite Stand®, from Ciba Specialty Chemicals (UK) 

Ltd., Duxford, England.), subsequently the assembly was thermally cured at 140°C for 

3 h in a vacuum oven prior to the T-peel adhesion strength measurement. 

For comparison purposes, electroless plating of copper was also carried out on the 

pristine FPI and the plasma-pretreated FPI films via the conventional “two-step” 

process (Ebneth, 1993). In this method, the FPI films were first sensitized by 

immersing in an aqueous solution containing 0.3 wt% SnCl2 and 2.5 wt% HCl (12 M) 

for 2 min, followed by rinsing with doubly distilled water. The subsequent processes 

of activation in the PdCl2 solution, electroless copper plating and thermal post-

treatment were similar to those described above for the Sn-free process 

3.1.6 Viscosity Measurements 

 The viscosities of both FPAmAs and FPIs were determined according to ASTM 

2515/D446 using a Schott-Gerate AVS360 Viscometer, DIN Ubbelohde, at 25°C in 

NMP. The viscosities of both FPAmAs were determined at fixed shear rate and 

temperature using a Brookfield Programmable Rheometer Model DV-III (with 

Rheocalc software and Brookfield water bath TC-200/500) at 5 rpm using CP42 

spindle.  About 1 mL of bubble free sample was used. Prior to analysis, sample was 

allowed to reach equilibrium for 1 min before taking reading. An average of 6 readings 

was taken.   
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3.1.7 Thermal Analyses 

Decomposition temperatures (5 wt% loss) of the polymer films were determined using 

a Perkin Elmer TGA-7 system at a heating rate of 10°C/min under a dry nitrogen or air 

atmosphere (10 cc/min). The glass transition temperatures (Tg) of both FPI films were 

determined at a heating rate of 10°C/min and under a flowing nitrogen atmosphere (10 

cc/min), by using a Perkin Elmer DSC-7 Differential Scanning Calorimeter with Pyris 

software. Long-term isothermal, thermo-oxidative stability (TOS) studies of both FPI 

films samples were performed in air for 300 h at 315ºC in a Lenton programmable 

forced air oven with Eurotherm 2408 Temperature controller programmer from Lenton 

Thermal Design, UK. 

3.1.8 Dielectric Constant Measurement 

The dielectric constant (ε) of both FPI films was measured between two-parallel plate 

of the dielectric analyzer (model DEA-2970) from TA Instruments at a frequency of 

10 MHz and at 50 % relative humidity at temperature of 25°C in a flowing nitrogen 

atmosphere condition. 

3.1.9  X-Ray Photoelectron Spectroscopy (XPS) 

XPS measurements were carried out on a Kratos Analytical AXIS HSi spectrometer 

(Kratos Analytical Ltd, Manchester, England) with a monochromatized Al Kα X-ray 

source (1486.6 eV photons). The X-ray source was run at a reduced power of 150 W 

(15 kV and 10 mA). The surface-modified FPI samples were mounted on the standard 

sample studs by means of double-sided adhesive tapes. The core-level spectra were 

obtained at the photoelectron take-off angle (α, with respect to the sample surface) of 
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90o. The pressure in the analysis chamber was maintained at 10-8 Torr or lower during 

each measurement. To compensate for surface charging effects, all binding energies 

(BE’s) were referenced to the C 1s hydrocarbon peak at 284.6 eV. In peak synthesis, 

the line width (full width at half maximum or FWHM) of Gaussian peaks was 

maintained constant for all components in a particular spectrum. Surface elemental 

stoichiometries were determined from the peak area ratios and were accurate to within 

±10 %. 

3.1.10 Atomic Force Microscopy (AFM) 

The topography of the VIDz-g-FPI and 4VP-g-FPI film surfaces were characterized 

using a Nanoscope IIIa atomic force microscope (AFM), manufactured by the Digital 

Instruments Inc., Santa Barbara, CA. In each case, an area of 50 µm × 50 µm was 

scanned using the tapping mode. The drive frequency was 330 ± 50 kHz. The applied 

voltage was between 3.0 ~ 4.0 V, and the drive amplitude was about 300 mV. The scan 

rate was 1.0 Hz. An arithmetic mean of the surface roughness (Ra) was calculated from 

the roughness profile determined by AFM. 

3.1.11 Adhesion Strength Measurements 

The adhesion strength of the electrolessly deposited copper with the various FPI 

substrates was determined by measuring the T-peel adhesion strength. The T-peel 

adhesion strength was measured at 25oC on an Instron model 5544 tensile tester from 

Instron Corp., Canton, MA. All measurements were carried out at a crosshead speed of 

10 mm/min. For each T-peel adhesion strength reported, at least three sample 

measurements were averaged. The values of adhesion strength among these 

measurements usually did not vary by more than ±0.3 N/cm. 
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3.2 Results and Discussion 

The FPI polymers have high glass trasition temperature, excellent thermal properties 

and thermo-oxidative stability (TOS) along with lower dielectric constant (ε<2.8), as 

shown in Table 3.1. The processes of surface modification of FPI film via plasma 

pretreatment and UV-induced graft copolymerization with VIDz or 4VP monomer, the 

surface activation by PdCl2, and the subsequent electroless plating of copper on the 

modified FPI surfaces are illustrated schematically in Figure 3.1. Details of the surface 

modification and electroless deposition processes are described below. 

3.2.1 Surface Composition of the Pristine and Surface-modified FPI 
Films  

Figure 3.2 shows the respective wide scan and C 1s core-level spectra of the pristine 

FPI-1 and FPI-2 film surfaces (part (a) and part (b), respectively), and the 60-s argon 

plasma pre-treated FPI-1 and FPI-2 films after air exposure (part (c) and part (d), 

respectively). The C 1s core-level spectra of both types of pristine FPI films can be 

curved-fitted with five peak components, having binding energies (BE’s) at 284.6 eV 

for the C-H species, at 285.8 eV for the C-O and C-N species, at 288.4 eV for the 

N(C=O)2 species, at 291.1 eV for the π-π* shakeup satellite, and at 292.8 eV for the 

CF3 species (Moulder et al., 1992; Zhang et al., 2000). Due to the difference in the 

chemical structure of the two types of FPI films, as shown in Section 3.1.1, the FPI-1 

film has a higher fluorine concentration than the FPI-2 film. It can be verified from 

Figure 3.2 that the peak intensity of the CF3 species in the pristine FPI-1 C 1s spectrum 

is higher than that in the pristine FPI-2 spectrum. An additional peak component with a 
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Table 3.1 Properties of the Fluorinated Polyimides 

 
 

TGA (oC) 
(5% Weight Loss)

 
Polymers 

 
Bulk Visc. 

(cPs)  

 
FPAmA 

Inh.[η] 
(dl/g) 

 
FPI 

Inh.[η] 
(dl/g) 

 
DSC 

Tg (oC) 
In Air       In N2 

 
Char Yield 

(%)  

 
TOS 

(% Weight 
Loss) 

 
Film 

Thickness 
(mm) 

 
Dielectric 
Constant a 
(10 MHz) 

FPI-1 5167 0.80 0.78 293 520      555 54.5 2.1 1.1 3.10 

FPI-2 11200 1.40 1.07 244 544      561 51.6 2.3 1.0 2.74 
  
                     a. Measured as per ASTM D-150-81 method. 
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Figure 3.1 Schematic diagram illustrating the processes of Ar plasma pretreatment and UV-induced graft copolymerization of FPI with VIDz 
to form the VIDz-g-FPI surface and 4VP to form a 4VP-g-FPI surface, and the activation of the modified FPI surface via the Sn-
free process for the subsequent electroless deposition of copper to form a copper/FPI assembly. 
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Figure 3.2 XPS wide scan and C 1s core-level spectra of (a) the pristine FPI-1 
surface, (b) the pristine FPI-2 surface, (c) the FPI-1 surface subjected to 
60 s of Ar plasma pretreatment. (d) the FPI-2 surface subjected to 60 s of 
Ar plasma pretreatment. 
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BE at 287.4 eV and attributable to the C=O species is found in the Ar plasma 

pretreated FPI surfaces. The peak component is different from the carbonyl structure 

of the imide group in the dianhydride structure. The presence of the C=O species in the 

plasma pretreated FPI surfaces is attributable to the oxidation in air of the active 

species on the FPI surface induced by the plasma pretreatment, as is also the case of 

peroxide and hydroperoxide formation shown in Figure 3.2. Furthermore, in 

comparison with the wide scan spectra of the pristine FPI surfaces, an increase in 

intensity of the O 1s peak component is observed in the wide scan spectra of the Ar 

plasma pretreated FPI films. The above results suggest that plasma pretreatment, 

followed by air exposure, gives rise to an oxidized surface.  

The effects of Ar plasma pretreatment and subsequent air exposure on the surface 

[O]/[C] and [F]/[C] ratios of the FPI films, as determined from the O 1s, C 1s and F 1s 

core-level spectral area ratios, are shown in Figure 3.3. It can be observed that the 

[O]/[C] ratios of the two types of FPI surfaces increase sharply with the Ar plasma 

pretreatment time during the first 30 s of plasma pretreatment. The increase in the 

oxygen concentration on the FPI surfaces with the plasma pretreatment time is 

consistent with the fact that a longer plasma pretreatment time will lead to the 

formation of more active species on the FPI surface. The observations are in agreement 

with the results reported in the literature for the Ar plasma pretreatment of other 

fluoropolymer surfaces (Wu et al., 1999; Da et al., 1991). The [O]/[C] ratio for each 

FPI films approaches an asymptotic value at Ar plasma pretreatment times above 30 s. 

This observation suggests that prolonged Ar plasma pretreatment does not introduce 

more oxygen species on the FPI surfaces, probably due to the onset of the etching 

effect of the plasma. On the other hand, however, the [F]/[C] ratio of both types of the 
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FPI surface does not change after the Ar plasma pretreatment. Ar plasma pretreatment 

of the FPI surfaces, followed by air exposure, results in the formation of oxidized 

carbon species. These results suggest that oxidation of the FPI surface from Ar plasma 

pretreatment involves mainly the scission of the C-H bonds. The formation of the 

peroxide and hydroperoxide species on the FPIs have been quantitatively determined 

by reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH). They can be utilized to 

initiate the subsequent UV-induced surface free radical graft copolymerization. 
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Figure 3.3 Effect of Ar plasma pretreatment time on the [O]/[C] and [F]/[C] ratios 
of the FPI film surfaces. 
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3.2.2 Electroless Deposition of Copper on FPI Films Modified by 
Surface Graft Copolymerization with VIDz: the Cu/VIDz-g-FPI 
Assemblies 

Figure 3.4 shows the wide scan and N 1s core-level spectra of the pristine FPI-1 and 

FPI-2 film (Part (a) and Part (b), respectively), and the 60-s Ar plasma pretreated and 

air-exposed FPI-1 and FPI-2 surfaces after having been subjected to UV-induced graft 

copolymerization with VIDz for 60 min (the VIDz-g-FPI-1 and VIDz-g-FPI-2 

surfaces, Part (c) and Part (d), respectively). The N 1s core-level spectrum of the 

pristine FPI film has only one peak component with the BE at about 400.5 eV, which 

is associated with the imide or -N(C=O)2 species (Zhang et al., 2001b). However, the 

N 1s core-level spectra of the VIDz-g-FPI-1 and VIDz-g-FPI-2 films consist of three 

species. The peak component with the lower BE of 398.5 eV is associated with the 

imino species (=N-), and that at the higher BE of 400.3 eV with the amino species (-

N<), of the imidazole ring (Han et al., 1998). The latter component overlaps with that 

of the imide nitrogen at the BE of 400.5 eV. Due to the small difference (~0.2 eV) in 

BE, the -N< and -N(C=O)2 species cannot be resolved unambiguously. The two 

species are represented by a single peak component at the BE of about 400.4 eV. The 

presence of the grafted VIDz polymer on the FPI surface can thus be deduced from the 

new imino component which has appeared in the N 1s core-level spectrum of the VIDz 

graft-copolymerized FPI film. Based on the chemical structure of the VIDz, the 

theoretical ratio of the imino and amino species should be 1:1. The apparently higher 

concentration of the amino species in Figures 3.4(c) and 3.4(d) is attributable to the 

contribution of the -N(C=O)2 from the underlying FPI substrate. The relative low 

intensity of the -N(C=O)2 species on the VIDz-g-FPI surface suggests that the 

thickness of the grafted VIDz polymer layer is approaching the probing depth of the 

XPS technique (~7.5 nm in an organic polymer matrix (Tan et al., 1993)). 
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Figure 3.4 XPS wide scan and N 1s core-level spectra of (a) the pristine FPI-1 
surface, (b) the pristine FPI-2 surface, (c) the 60 s Ar plasma-pretreated 
FPI-1 films after UV-induced graft copolymerization with VIDz for 60 
min, and (d) the 60 s Ar plasma-pretreated FPI-2 films after UV-induced 
graft copolymerization with VIDz for 60 min. 
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The Ar plasma pretreatment time of the FPI surface affects the graft concentration, and 

thus the adhesion strength of the resulting Cu/FPI assemblies, as shown in Figure 3.5. 

The surface graft concentration is defined as the number of repeat units of the graft 

chain per repeat unit of the substrate chain. Thus, the surface graft concentrations are 

determined from the curve-fitted N 1s peak area ratios of the imine ( -N= ) and imide 

(-N(C=O)2) components, associated, respectively with the graft and the substrate 

polymers. The graft concentration is thus expressed as the 2[-N=]/[-N(C=O)2]PI ratio. 

The factor 2 in the numerator is introduced to account for the fact that there are two 

functional –N(C=O)2 groups in every repeat unit of the PI molecule. The number of 

the –N(C=O)2 species contributed by the PI substrate is deduced from the N 1s 

spectrum by subtracting the peak area of the imine species –N= of the grafted VIDz 

polymer from the area of the peak component arising from the combined contribution 

of the -N(C=O)2 and –N< species, as each VIDz unit contains equal numbers of –N= 

and –N< species. Taking into account of the fact that the [O]/[C] ratio increases with 

the Ar plasma pretreatment time of the FPI film, the graft concentrations of the VIDz-

g-FPI surfaces exhibit a similar dependence on the Ar plasma pretreatment time of the 

FPI films. The adhesion of the electrolessly deposited copper on the FPI substrate 

reaches about 9.5 N/cm at an Ar plasma pretreatment time of about 60 s and a fixed 

UV graft-copolymerization time of 60 min. This T-peel adhesion strength is much 

higher than that obtained for the electrolessly deposited copper on the pristine FPI film 

or the 60-s Ar plasma pretreated FPI film, which have T-peel adhesion strengths of 

only about 0.5 N/cm and 2 N/cm, respectively. Thus, the effective contribution of the 

grafted VIDz polymer to the adhesion enhancement of the electroless deposited copper 

onto the FPI films is ascertained. The electrolessly deposition of copper to the surface- 
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Figure 3.5 Effect of Ar plasma pretreatment time of the FPI film on the T-peel 
adhesion strength of the Cu/VIDz-g-FPI assemblies, and on the surface 
graft concentration of the VIDz polymer. 
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modified FPI surface can be carried out by the one-step, Sn-free process. On the other 

hand, however, electroless deposition of copper on the pristine or plasma pretreated 

FPI surface can only be carried out by the conventional “two-step” method. The tin 

chloride used in the two-step method is not an active catalyst for electroless plating 

(Da et al., 1991; Tan et al., 1993). It can also be observed in Figure 3.5 that the 

increase in adhesion strength coincides approximately with the increase in graft 

concentration for both types of the VIDz-g-FPI surfaces. The fact suggests that a graft 

chain-induced adhesion mechanism is operative. The adhesion of the electrolessly 

deposited copper to the graft-modified FPI surface can be described in terms of the 

microscopic interactions at the metal/graft polymer interface or interphase, and is 

related to the sum of all the intermolecular interactions (Pritchart, 1983). The 

imidazole rings of the grafted VIDz chains on the PI film undergo charge transfer and 

the formation of the coordinate complexes with the electrolessly deposited copper 

(Inagaki et al., 1996; Xue et al., 1988). The spatial distribution of the graft chains, and 

thus the imidazole rings, on the FPI film surface dictates the formation of an interphase 

consisting of an interpenetrating network of the graft chains in the metal matrix. 

3.2.3 Electroless Deposition of Copper on FPI Films Modified by 
Surface Graft Copolymerization with 4VP: the Cu/4VP-g-FPI 
Assemblies 

The respective wide scan and N 1s core-level spectra of the 60-s Ar plasma pretreated 

FPI-1 and FPI-2 films after having been subjected to UV-induced graft 

copolymerization with 4VP for 60 min (the 4VP-g-FPI surfaces) are shown in Figure 

3.6. The presence of the grafted 4VP polymer on the FPI surface can be deduced from 

the N 1s peak component at the BE of 398.5 eV, attributed to the imino species (=N-) 

of the 4VP polymer (Zhang et al., 2001b). The highest BE peak component at about 

400.5 eV is assigned to the –N(C=O)2  species of the FPI substrate (Zhang et al., 
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2001b; Yang et al., 2001). An additional peak component appears at the BE of about 

399.5 eV, which may be due to the partially protonation or the hydrogen bonding of 

the nitrogen in the 4VP polymer. The formation of hydrogen bonding between the 

pyridine ring and other polymers has been reported (Zhou et al., 1997; Ruokolainen et 

al., 1998; Huang et al., 2000). The presence of only a weak –N-(C=O)2 component in 

the N 1s core-level spectra suggests that the thickness of the grafted 4VP polymer on 

both FPI films is approaching the probing depth of the XPS technique (about 7.5 nm 

for an organic matrix (Tan et al., 1993). 

The dependence of the graft concentration and the T-peel adhesion strength of the 

electrolessly deposited copper with the corresponding 4VP-g-FPI film on the Ar-

plasma pretreatment time of the FPI surface is shown in Figure 3.7. The concentration 

of the surface-grafted pp-4VP is expressed as the 2[(-N=)+(-N<)]/[–N-(C=O)2 ]PI ratio, 

as each 4VP unit contains one –N= group. The increases in graft concentration and T-

peel adhesion strength with the Ar-plasma pretreatment time is also observed in the 

present work. T-peel adhesion strength above 9 N/cm can be achieved for the 

electrolessly deposited copper with the 4VP-g-FPI substrate involving the 60-s Ar 

plasma pretreated FPI and 60 min of UV graft copolymerization time. The adhesion 

strengths are much higher than those of the assemblies involving the pristine FPI film 

and the FPI film with 60-s of Ar plasma pretreated alone, obtained from the two-step 

activation method. Thus, the effective contribution of the grafted 4VP polymer in 

improving the adhesion of FPI with electrolessly deposited copper is ascertained. In 

the case of the Cu/4VP-g-FPI assembly, the nitrogen atoms in the pyridine rings of the 

grafted 4VP polymer can interact with the electrolessly deposited copper to form the 

Cu-N bonds (Lyons et al., 1988), which accounts for the strong adhesion of the metal 

to the polymer substrate.  
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Figure 3.6 XPS wide scan and N 1s core-level spectra of (a) the 60 s Ar plasma 
pretreated FPI-1 films after UV-induced graft copolymerization with 
4VP for 60 min, and (b) the 60 s Ar plasma pretreated FPI-2 films after 
UV-induced graft copolymerization with 4VP for 60 min. 
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Figure 3.7 Effect of Ar plasma pretreatment time of the FPI film on the T-peel 
adhesion strength of the Cu/4VP-g-FPI assemblies, and on the surface 
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3.2.4 Surface Topography of the Modified FPI Films 

The changes in surface topography of the FPI films after modification by plasma 

pretreatment and by UV-induced graft copolymerization with VIDz and 4VP are 

studied by atomic force microscope (AFM). The AFM images of a pristine FPI-1 film 

surface, a 60 s Ar plasma pretreated FPI-1 surface, a VIDz-g-FPI-1 surface (graft 

concentration=15.6) and a 4VP-g-FPI-1 surface (graft concentration=22.3) are shown 

in Figures 3.8(a) to 3.8(d), respectively. The root mean square surface roughness 

value, Ra, of the pristine FPI-1 film surface is about 1.18 nm. Under the mild glow 

discharge conditions used for surface activation, the Ra value did not change 

appreciably after the Ar plasma pretreatment. The roughness of the 60-s Ar plasma 

pretreated FPI-1 surface is about 1.02 nm. However, the Ra values of the VIDz-g-FPI-1 

and 4VP-g-FPI-1 film surfaces increase to about 2.7 nm and 7.1 nm, respectively. As 

shown in Figures 3.8(c) and 3.8(d), the graft-copolymerized VIDz or 4VP on the FPI-1 

film surface exists as a distinctive overlayer. The rougher surface topography of the 

VIDz-g-FPI-1 and 4VP-g-FPI-1 films presumably will also facilitate the spatial 

interactions of the grafted VIDz or 4VP chains with the incoming metal atoms during 

the subsequent surface activation and electroless plating processes. 

3.2.5 Failure Mode of the Electrolessly Deposited Copper on the 
Graft-modified FPI Films 

In the investigation of metal/polymer adhesion, a study of the locus of failure is 

expected to be informative. In the present work, the failure mode of the Cu/FPI 

interfaces obtained from the electroless deposition of Cu onto the graft-modified FPI 

surfaces was investigated by analyzing the composition of the delaminated surfaces 

using XPS. Figure 3.9 shows the respective wide scan and C 1s core-level spectra of 
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Figure 3.8  Atomic force microscope (AFM) images of (a) the pristine FPI-1 surface, (b) the 60 s Ar plasma pretreated FPI-1 surface, (c) the 
VIDz-g-FPI-1 surface(Ar plasma pretreatment time was 60 s, UV graft copolymerization time was 60 min), and (d) the 4VP-g-
FPI-1 surface (Ar plasma pretreatment time was 60 s, UV graft copolymerization time was 60 min).  
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Figure 3.9 XPS wide scan and C 1s core-level spectra of (a) the pristine FPI-1 
surface, the delaminated (b) Cu surface and (c) FPI-1 surface from a 
Cu/VIDz-g-FPI-1 assembly; the delaminated (d) Cu surface and (e) 
FPI-1 surface from a Cu/4VP-g-FPI-1 assembly. (The T-peel adhesion 
strengths for the two assemblies were 9.5 and 9.1 N/cm, respectively). 
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the pristine FPI-1 film (Figure 3.9(a)), and the delaminated FPI-1 film and Cu surface 

from a Cu/VIDz-g-FPI-1 assembly having a T-peel adhesion strength of 9.5 N/cm 

(Figures 3.9(b) and 3.9(c)). The wide scan spectra of the delaminated FPI-1 surface 

and Cu surface are grossly similar to that of the pristine FPI-1 film (Figure 3.9(a)). No 

Cu or Pd signal is detected in the wide scan spectrum of the delaminated FPI-1 surface, 

while a strong fluorine and nitrogen signal is observed in the delaminated copper 

surface. Furthermore, the respective C 1s core-level line shapes of the delaminated Cu 

and FPI-1 surfaces closely resemble that of the pristine FPI-1 film. These facts readily 

suggest that the assembly has delaminated by cohesive failure inside the FPI-1 

substrate. On the other hand, a weak Cu 2p signal is discernible in the wide scan 

spectrum of the delaminated copper surface, suggesting that the failure locus in the 

FPI-1 film is slightly less than the probing depth of the XPS technique (~7.5 nm in an 

organic matrix (Tan et al., 1993).  

The failure mode of the Cu/4VP-g-FPI-1 assembly having a T-peel adhesion strength 

of about 9.1 N/cm was also investigated by examining the chemical compositions of 

the delaminated FPI-1 and copper surfaces. Similar to the delamination results of the 

Cu/VIDz-g-FPI-1 assembly, the wide scan and C 1s core-level spectra of both 

delaminated surfaces (Figures 3.9(d) and 3.9(e)) are again grossly similar to that of the 

pristine FPI-1 surface. No Cu signal is discernible in the wide scan spectrum of the 

delaminated FPI-1 surface, while strong F 1s and N 1s signals are present in the wide 

scan spectrum of the delaminated Cu surface. Again, a weak Cu 2p peak component is 

also discernible in the wide scan spectrum of the delaminated copper surface. These 

results suggest that the Cu/4VP-g-FPI-1 assembly has failed cohesively inside the FPI-

1 film, within a depth comparable to the probing depth of the XPS technique. A similar 

failure mode has been reported for the adhesion of the electrolessly deposited copper 
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onto the surface of the modified fluoropolymer film from remote hydrogen plasma 

treatment (Inagaki et al.,1999). The surface topography of the 4VP-g-FPI film (graft 

concentration=22.3) before and after electroless plating of copper, as well as that of the 

delaminated FPI and copper surface from the corresponding assembly, are shown in 

Figure 3.10. The Ra of the 4VP-g-FPI film surface is about 7.1 nm. The roughness of 

the surface after copper plating is about 25.6 nm. The result suggests that the 

electroless plated copper forms a uniform layer on the FPI surface. However, the Ra 

value of the delaminated FPI film and copper surface increases to about 280 nm and 

250 nm, respectively, as shown in Figures 3.10(c) and 3.10(d). This result is consistent 

with the mechanism of cohesive failure inside the FPI substrate to result in the highly 

rough delaminated surfaces. 

The distinct cohesive failure inside the FPI substrate testifies to the presence of strong 

interactions of the Pd catalyst and the electrolessly deposited copper atoms with the 

nitrogen moieties of the grafted VIDz or 4VP chains. The extents of these interactions 

are further augmented by the spatial distribution of the graft chains on the FPI surface 

and inside the copper matrix.  
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Figure 3.10 AFM images of the 4VP-g-FPI-1 (graft concentration=22.3) (a) before  and (b) after the electroless plating of copper . The AFM 
images of the delaminated FPI-1 and copper surface are shown in (c) and (d) , respectively. 
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3.3 Conclusion  

Surface modification of Ar plasma-pretreated FPI films was carried out via UV-

induced graft copolymerization with 1-vinylimidazole (the VIDz-g-FPI surface) and 4-

vinylpyridine (the 4VP-g-FPI surface) under atmospheric conditions and in the 

absence of an organic solvent. The VIDz-g-FPI and 4VP-g-FPI surfaces could be 

activated by PdCl2 in a simple one-step, Sn-free process for the electroless deposition 

of copper. The surface composition of the graft-copolymerized FPI film was analyzed 

by XPS. In all cases, the adhesion strength between the electrolessly deposited copper 

and the surface-modified FPI film increased with the graft concentration. T-peel 

adhesion strength above 9 N/cm was obtained for the electrolessly deposited copper on 

the surface-modified FPI films. The adhesion strengths were much higher than that of 

the electrolessly deposited copper on the pristine, or the Ar plasma-pretreated FPI 

surfaces using the conventional “two-step” activation method. The mode of adhesion 

failure of the electrolessly deposited copper on the graft-modified FPI film was 

cohesive in nature. The good adhesion strength of the electrolessly deposited copper 

could be attributed to the synergistic effect of strong interaction between the grafted 

VIDz and 4VP polymer with the metal atoms, the spatial distribution of the graft 

chains into the metal matrix, and the fact that the graft chains were covalently tethered 

on the PI surface. 
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4.1 Electroless Plating of Copper on PI Films Modified 
by Plasma Graft Copolymerization with 4-Vinylpyridine 

4.1.1 Experimental 

4.1.1.1 Materials 

The polyimide (PI) film used in this study was purchased from the Du Pont Chemical 

Co. as Kapton® HN in rolls of 40 mm in width and 75 µm in thickness. The surface of 

the PI films was cleaned with acetone immersing in an ultrasonic water bath for 20 

min and then dried at 80°C under reduced pressure. The monomer, 4-vinylpyridine 

(4VP), used for surface graft copolymerization was obtained from the Aldrich 

Chemical Co. of Milwaukee, WI, USA. The chemical structure of PI (Kapton® HN) is 

as follows: 

         

 

 

 

 

4.1.1.2 Plasma Graft Copolymerization of 4VP on PI Films: the pp-4VP-PI Films 

The plasma polymerization system was manufactured by Samco International of 

Kyoto, Japan (Model Samco BP-1). The physical geometry of the system has been 

described previously (Yang et al., 2000). The radio-frequency (RF) generator supplied 

power from 0 to 200 W and was operated at a frequency of 13.56 MHz. The plasma 

deposition was performed between two circular parallel plate electrodes of 10 cm in 

diameter in a Pyrex® bell-jar chamber of about 6,000 cm3 in volume. The PI samples 

were placed on the ground electrode, which was about 2.8 cm away from the biased 
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electrode. The 4VP monomer at 5ºC was introduced into the deposition chamber by 

the argon carrier gas flowing through a thermostated monomer reservoir. All the gas 

lines were thermally insulated. The monomer-carrier gas mixture was then allowed to 

flow evenly into the reactor from a distributor in the upper electrode. In all cases, the 

carrier gas stream was assumed to be saturated with the 4VP monomer, as dictated by 

the partial pressure of the latter. The system pressure was varied between 25 Pa and 

200 Pa, while the gas flow rate was fixed at 20 standard cubic centimeter per min 

(sccm). For deposition on all the PI film surfaces, the plasma polymerization time was 

fixed at 60 s. Prior to the plasma polymerization and deposition, the PI substrates were 

pretreated or pre-activated by Ar plasma for 30 s at a RF power of 70 W, a system 

pressure of 100 Pa and an Ar flow rate of 20 sccm. The graft-modified surfaces were 

referred to as the pp-4VP-PI surfaces. Each pp-4VP-PI film was immersed in a large 

volume of ethanol at 40oC with continuous stirring for at least 12 h to remove the 

residual monomer and homopolymer. 

4.1.1.3 X-Ray Photoelectron Spectroscopy (XPS) 

The surface composition of the samples was determined by XPS, the procedures were 

the same as those described in Section 3.1.9.  

4.1.1.4 Fourier Transform Infrared (FTIR) Spectroscopy 

Samples for FTIR spectroscopic measurements were obtained by direct plasma 

polymerization and deposition of 4VP on the surface of a freshly pressed KBr disc for 

about 5 min. The spectra were recorded on a Bio-Rad FTIR spectrophotometer (Model 

FTS135) under ambient conditions. Typically, 16 scans with a resolution of 8 cm-1 

were accumulated to obtain one spectrum. 
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4.1.1.5 Atomic Force Microscopy (AFM) 

The topography of the pp-4VP-PI surfaces were characterized on a Nanoscope IIIa 

atomic force microscope (AFM), as described in Section 3.1.10. 

4.1.1.6 Electroless Deposition of Copper on the pp-4VP-PI Films 

The graft-modified PI films were activated via immobilization of the Pd catalyst, in the 

absence of prior sensitization by SnCl2 (the Sn-free process), for the electroless 

deposition of copper. The film was immersed in an aqueous solution containing 0.1 

wt% PdCl2 and 1.0 wt% HCl (12M) for 10 min, followed by rinsing thoroughly with 

doubly distilled water. The surface-activated PI film was then placed in an electroless 

copper plating bath for 15-30 min. The electroless deposition of copper usually 

commenced after about 10 min. The composition of the solution in the plating bath 

was the same as in Section 3.1.5. The copper-plated PI films were then rinsed 

thoroughly with copious amounts of doubly distilled water. The thickness of the 

electrolessly deposited copper was determined gravimetrically. Typically, a copper 

layer of about 1 µm was deposited.  

4.1.1.7 Adhesion Strength Measurements 

The adhesion strength of the electrolessly deposited copper with the PI substrates was 

determined by measuring the T-peel adhesion strength. The procedures of T-peel 

adhesion strength measurements were the same as those described in Section 3.1.11. 
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4.1.2 Results and Discussion 

The processes of surface pretreatment, plasma graft copolymerization of 4VP on the PI 

surface (the pp-4VP-PI surface), and the subsequent electroless deposition of copper 

on the pp-4VP-PI surface are illustrated schematically in Figure 4.1. The details of 

each process are discussed below. 

4.1.2.1 Effect of Ar Plasma Treatment on the Surface Composition of the PI Films 

Figure 4.2 shows the respective wide scan and C 1s core-level spectra of the pristine PI 

film surface (Figure 4.2(a)) and the 20-s Ar plasma-treated PI films at the RF powers 

of 5 W (Figure 4.2(b)) and 120 W (Figure 4.2(c)), after air exposure. The C 1s core-

level spectrum of the pristine PI film can be curved-fitted with four peak components, 

having binding energies (BE’s) at 284.6 eV for the C-H species, at 285.6 eV for the 

CH-N and CH-C(O) species, at 286.4 eV for the C-O species, and at 288.5 eV for the 

N(C=O)2 species (Zhang et al., 2001b; Moulder, 1992). Ar plasma treatment of PI film, 

followed by air exposure, resulted in the formation of two additional carbon species at 

the BEs of 287.5 eV and 289.3 eV. These two peak components are attributable, 

respectively, to the C=O species, which is different from the carbonyl structure of the 

imide group in the pyromellitic dianhydride chain, and to the carboxyl species, as 

shown in Figures 4.2(b) and 4.2(c). The presence of the carbonyl and carboxyl species 

on the plasma-treated PI surface is attributable to the oxidation in air of the active 

species on the PI surface induced by the argon plasma treatment. In agreement with the 

results reported in the literature (Zhang et al., 2001b; Yang et al., 2001), an increase in 

the [O]/[C] ratio is observed upon increasing the input RF power used for the treatment 

of  the PI surface. 
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Figure 4.1 Schematic diagrams illustrating the processes of Ar plasma pretreatment, plasma polymerization and deposition of 4VP, and the 
electroless deposition of copper onto the 4VP plasma graft-copolymerized PI surface. 
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Figure 4.2 XPS wide scan and C 1s core-level spectra of (a) the pristine PI surface, 
and the PI surfaces after (b) 5 W and (c) 120 W of Ar plasma treatment 
for 30 s, followed by air exposure. 
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The increase in the oxygen concentration on the PI surface with the input RF power is 

consistent with the fact that a higher RF power will lead to the formation of more 

active species on the PI surface. This result is also in agreement with those commonly 

observed for other polymer surfaces after Ar plasma treatment and air exposure (Wu et 

al., 1999). For the plasma system used in this work and at a fixed treatment time of 30 

s, the [O]/[C] ratio increases with the input RF power and reaches an  asymptotic value 

at the input RF power of 70 W. Further increase in the RF power, however, does not 

result in the introduction of more oxygen-containing species, as the etching effect of 

the plasma treatment becomes predominant. Thus, the Ar plasma pretreatment of the 

PI films is fixed at 70 W for 30 s in the present study.  

4.1.2.2 Structure and Composition of the 4VP Plasma Graft-Copolymerized PI 
Surfaces (the pp-4VP-PI Surfaces) 

Figure 4.3 shows the respective FTIR spectra of the 4VP monomer (Figure 4.3(a)), and 

the plasma-polymerized 4VP on KBr discs at the RF powers of 5 W (Figure 4.3(b)) 

and 180 W (Figure 4.3(c)). For comparison purpose, the FTIR spectrum of the 4VP 

homopolymer is also shown in Figure 4.3(d). The 4VP monomer displays 

characteristic vibration absorption bands of the pyridine ring at the wavenumbers of 

1410 cm-1 and 1597 cm-1 (Fochler et al.,1985).  Thus, the pp-4VP layers deposited 

under the low and high RF powers (Figures 4.3(b) and 4.3(c), respectively) contain the 

same pyridine functional groups as that of the 4VP monomer, albeit the relative 

absorbance of the two adsorption bands varies somewhat with the RF power. For the 

FTIR spectra of the two pp-4VP samples, the absence of the CH=CH2 out-of-plane 

bending absorptions at 1857 cm-1 and 927 cm-1, the substantial decrease in the 

CH=CH2 out-of-plane twisting absorption at 993 cm-1 and stretching 
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Figure 4.3 FTIR spectra of (a) the 4VP monomer, the pp-4VP films on KBr disc 
deposited at the input RF powers of (b) 5 W and (c) 180 W, and (d) the 
4VP homopolymer. 
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absorptions at 3070 cm-1 and 2988 cm-1, and the increase in –CH2 stretching 

 absorptions at 2931 cm-1 indicate that the plasma polymerization of 4VP has 

proceeded mainly through the vinyl group of the main chain (Lin et al., 1991). For the 

pp-4VP layer deposited at the high RF power of 180 W, the –CH3 stretching 

absorption bands in the 2968 cm-1 and 2875 cm-1 region are also enhanced. The 

appearance of these absorption bands suggests that free methyl groups are formed in 

the plasma polymerization and are incorporated into the pp-4VP film. In addition, new 

minor bands at 2217 cm-1 (-C≡N group) and 2171 cm-1 (–N-C≡N group) (Ellaboud et 

al., 1996) are discernible, as shown in Figure 4.3(c). The appearance of these two 

species suggests that the pyridine groups of the pp-4VP film have partially undergone 

ring-opening reactions under the high RF power. The opening of the pyridine rings is 

further indicated by the reduction in 1410 cm-1 to 1597 cm-1 absorption band intensity 

ratio. It is also useful to compare the FTIR spectra of pp-4VP to that of the 4VP 

homopolymer. The FTIR spectrum of poly(4-vinylpyridine) (P4VP) (a commercial 

product of Polyscience Inc., Warrington, PA) is shown in Figure 4.3(d). The 

absorption bands at 2217 cm-1 (-C≡N group), 2171 cm-1 (–N-C≡N group) and 1634 cm-

1 (non-ring -C=N groups) are not discernable, indicating that the polymerization of 

4VP has proceeded mainly through the vinyl groups.  

The pp-4VP-PI surfaces were also analyzed by XPS. As a reference, the wide scan and 

N 1s core-level spectrum of the pristine PI and the 4VP homopolymer are shown in 

Figure 4.4(a) and Figure 4.4(b), respectively. For the pristine PI surface, the N 1s core-

level spectrum consists of a main peak component at the BE of about 400.5 eV, 

attributable to the-N-(C=O)2 species. On the other hand, however, the N 1s core-level 

spectrum of the 4VP homopolymer consists of a main peak component at the BE of  
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Figure 4.4 XPS wide scan and N 1s core-level spectra of (a) the pristine PI surfaces, 
(b) the pristine P4VP surface, and (c) the pp-4VP-PI surface prepared at 
the input RF power of 70 W. 
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398.4 eV, attributed to the –N= species. Figure 4.4(c) shows the wide scan and N 1s 

core-level spectra of the pp-4VP-PI film prepared at the input RF power of 70 W. 

Before plasma polymerization and deposition, the PI surface was pretreated by Ar 

plasma at 70 W for 30 s to introduce the active sites on the PI surface to enhance the 

interaction with the pp-4VP layer. The presence of the pp-4VP on the PI surface can be 

deduced from the appearance of the new peak components with the BE at about 398.4 

eV and 399.4 eV, associated with the imine species (-N=) and the hydrogen-bonded 

imine species, respectively. The formation of hydrogen bonding between the pyridine 

ring and other polymers has been reported (Zhou et al., 1997; Ruokolainen et al., 

1998). The presence of only a weak –N-(C=O)2 component in the N 1s core-level 

spectrum and a weak O 1s signal in the wide scan of Figure 4.4(c) suggests that the 

thickness of the pp-4VP polymer is approaching the probing depth of the XPS 

technique (about 7.5 nm for an organic matrix (Tan et al., 1993)). 

4.1.2.3 The Process of 4VP Plasma Polymerization and Deposition 

The process of plasma polymerization is relatively complicated. The atomic 

polymerization mechanism appears to be a reasonable concept for plasma 

polymerization (Iriyama and Yasuda, 1992). Thus, plasma polymerization differs 

significantly from the conventional ionic or radical polymerization. To achieve the 

plasma state of atoms and molecules, appropriate ionization energy at a low pressure is 

required. The process of plasma polymerization includes the fragmentation of 

monomer molecules, the formation of active species (radicals or ions), the 

recombination of the active fragments between themselves and with the activated sites 

of the substrates to result in polymer grafting and deposition. The deposition process, 

nevertheless, is accompanied by other non-desirable side reactions, such as 

crosslinking and substrate ablation. For the application of the deposited film as an 
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adhesion promoter, for example, in microelectronics packaging, the retention of the 

functional group during the plasma polymerization process is the most important issue. 

To preserve the pyridine functional groups in the plasma polymerized 4VP (pp-4VP) 

films, the polymerization should proceed via the activation of the carbon-carbon 

double bonds instead of the pyridine rings. Based on the FTIR and XPS results, a 

plausible mechanism of activation for the 4VP monomer during the deposition of pp-

4VP films is illustrated schematically in Figure 4.5. The bond dissociation energies for 

the various linkages in organic molecules are listed in Table 4.1. Among them, the π 

bond of the C=C double bond has the lowest activation energy of about 267 kJ/mol 

(rough estimate from the difference between the dissociation energies of the C=C and 

C-C bonds). The two plausible reaction schemes, arising from different bond scission 

mechanisms, will give rise to the pp-4VP films of different chemical composition and 

structure. The bond scission mechanisms, in turn, are governed by the glow discharge 

conditions. At the low RF power, activation occurs mainly at the π bond of the vinyl 

group, as the π bond has the lowest bond energy. Under this condition molecular 

arrangement of the activated species results predominantly in a plasma polymer, which 

has similar chain structure as that of the 4VP homopolymer (Reaction Scheme I, 

Figure 4.5). With the increase in RF power, the 4VP plasma contains more active 

species and radicals, which come from the excitation of the carbon-carbon π-bonds, as 

well as the C-H bond scission and the pyridine ring-opening (Reaction Scheme II, 

Figure 4.5). Reactions involving the various active species and excited states result in a 

deposited pp-4VP film which is structurally more disordered. Thus, it is possible to 

achieve an optimum processing condition, by controlling the energy and concentration 

of the radical species and activated gaseous molecules, for the preparation of pp-4VP 

film that retains a high proportion of the pyridine functional group. 
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Figure 4.5 The plausible processes of molecular rearrangement of the activated 4VP 
molecules and radicals during the 4VP plasma polymerization process. 
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Table 4.1 Bond Dissociation Energies for Some Covalent Bonds 

Bond π bond of C=C C-C C-H C-N C=N 

Bond Energy 
(kJ/mol) 

267 351 414 305 614 

 
 

4.1.2.4 Effect of Plasma Parameters on the Chemical Composition of the pp-4VP-
PI Surfaces 

It is well known that the operating conditions, such as the type of monomer, flow rate, 

system pressure, and RF power, affect the nature of plasma and the plasma-deposited 

polymer (Yasuda and Hirotsu, 1978; Yang et al,2000). Figure 4.6 shows the 

concentration of the grafted pp-4VP on PI surface as a function of two plasma 

variables. The concentration of the grafted pp-4VP is defined as the number of repeat 

units of the graft chain per repeat unit of the substrate chain. Thus, the surface 

concentration of the grafted material is determined from the N 1s peak component area 

ratios of the imine (-N=), the hydrogen-bonded imine, and the [-N-(C=O)2] species. 

The first two components are associated with the pp-4VP layer, while the last 

component with the PI substrate. The three N 1s peak components are denoted as N1, 

N2 and N3, respectively. The concentration of the surface-grafted pp-4VP is thus 

expressed as the 2[N1+N2]/[N3] ratio. The factor 2 in the numerator is introduced to 

account for the fact that there are two functional [-N-(C=O)2] groups in every repeat 

unit of the PI molecule.  

Figure 4.6(a) shows the dependence of the 4VP polymer graft concentration of the pp-

4VP-PI surface on the input RF power. The 4VP plasma polymerization and 

deposition were carried out on the 70 W Ar-plasma pretreated PI surfaces at a fixed Ar 

carrier gas flow rate of 20 sccm, a system pressure of 100 Pa, and a monomer 
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Figure 4.6 The dependence of the graft concentration of the pp-4VP-PI films on the 
plasma (a) input RF power; and (b) system pressure. 
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temperature of 5 ºC. The graft concentration of the pp-4VP-PI surfaces increases with 

the input RF power up to the RF power of about 70 W, above which the graft yield 

tends to decrease gradually. The variations in graft concentration of the pp-4VP-PI 

surface with the plasma power are attributable to the difference in bond scission 

mechanism in the plasma polymerization process. A popular controlling parameter, or 

the W/FM ratio, where W, F, and M are the input RF power, the monomer molar flow 

rate, and the molecular weight of the monomer, respectively, proposed by Yasuda and 

Hirotsu (Yasuda and Hirotsu, 1978), has been widely used to correlate the 

characteristics of the plasma and the deposited films. Taking into account the W/FM 

parameter, different input RF power will give rise to different energy per 4VP unit. As 

the input RF power is increased, the plasma polymerization is transformed from an 

energy-deficient state to a more energetic state. More energy per unit mass of the 

monomer is available at the high RF power, leading to the generation of more active 

species and to an increase in the deposition rate of the pp-4VP layer. As a result, the 

graft concentration increases with the increasing of the input RF power. On the other 

hand, however, further increase in the input RF power will result in the more extensive 

fragmentation of the 4VP molecules, as well as in the more extensive etching of the PI 

surface. Under these conditions, the efficiency of the pp-4VP deposition on the PI 

substrate is reduced.  

The dependence of the 4VP polymer graft concentration of the pp-4VP-PI surface on 

the system pressure is shown in Figure 4.6(b). The 4VP plasma polymerizations were 

carried out on an Ar-plasma pretreated PI surface at an input RF power of 70 W, an Ar 

carrier gas flow rate of 20 sccm, and a monomer temperature of 5 ºC. The graft 

concentration of the 4VP polymer on the pp-4VP-PI surface decreases with the 

increase in system pressure. The increase in system pressure, as regulated by the 
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throttle valve, results in an increase in monomer concentration (partial vapor pressure) 

in the plasma chamber, and is equivalent to an increase in flow rate (F) of the 

monomer. Taking into account of the W/FM ratio, the energy per unit mass of the 

monomer molecules decreases with the increase in system pressure. The decrease in 

energy per unit mass of the 4VP molecules results in a decrease in the polymerization 

and deposition rate, leading to a decrease in the surface graft concentration of the 4VP 

polymer.  

4.1.2.5 Surface Topography of the pp-4VP-PI Film 

The surface topography of the plasma deposited polymer films is strongly dependent 

on the glow discharge conditions. The changes in surface topography of the PI 

substrates after modification by plasma graft copolymerization with 4VP are studied 

by atomic force microscopy (AFM). Figure 4.7 shows the AFM images of the pristine 

PI (Figure 4.7(a)) and the pp-4VP-PI surfaces prepared under the RF power of 5 W 

(Figure 4.7(b)) and 70 W (Figure 4.7(c)). The pp-4VP is deposited as a uniform layer 

over the entire PI surface, confirming the advantage of surface modification by plasma 

polymerization. The root mean square surface roughness (Ra) of the pristine PI surface 

is about 1.5 nm [Figure 4.7(a)]. The deposited pp-4VP layer gives rise to a rougher PI 

surface. For the pp-4VP-PI surface prepared at a lower RF power, the Ra value 

increases slightly to about 1.9 nm [Figure 4.7(b)]. However, for the pp-4VP-PI surface 

prepared at high RF power, the roughness is increased substantially to about 7.2 nm 

[Figure 4.7(c)]. The increase in surface roughness probably arises from the aggregation 

of the grafted 4VP polymer chains on the PI surface due to the limited miscibility of 

the graft and the substrate chains at the surface. The rougher surface topography of the 

modified PI surface facilitates the interlocking with the eletrolessly deposited copper. 



 

 76

1 2 3 
4 

µm

Z

1 2 3 
4 

µm

Z

1 2 3 
4 

µm 

Z

Figure 4.7 AFM images of (a) the pristine PI surface, and the pp-4VP-PI surfaces 
prepared at the RF powers of (b) 5 W and (c) 70 W. 
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4.1.2.6 Adhesion Strength of the Electrolessly Deposited Copper with the pp-4VP-
PI Films 

The adhesion of the electrolessly deposited copper to the PI surface is the primary 

concern in the preparation of the Cu/PI systems. The adhesion of the electrolessly 

deposited copper to the various PI substrates was evaluated by measuring the T-peel 

adhesion strength. The Pd in the Pdº state has been considered as the catalyst for the 

electroless metal deposition process. In this study, the pp-4VP-PI surfaces were 

activated either via the Sn-free process or via the conventional two-step process. In the 

“two-step” method, the polymer surface was first sensitized by SnCl2, then activated in 

the PdCl2
 solution. SnCl2 is the reducing agent that supplies electrons for the reduction 

of Pd2+ to Pd metal. On the other hand, however, during the Sn-free activation process, 

the palladium catalyst is attached on the pp-4VP-PI surface as a Pd-N complex (Pd* in 

Figure 4.1). The formation of the Pd-N complex has been described earlier (Zhang et 

al., 2001b; Charbonnier et al., 1996). A [Pd]/[N] ratio in the range of 0.25 to 0.4 is 

obtained for the pp-4VP-PI surface. The results of adhesion strength are shown in 

Table 4.2. For comparison purpose, the electroless copper deposition was also carried 

out, via the “two-step” activation process, on the pristine, as well as on the 5 W and 70 

W Ar plasma-treated PI surfaces. Electroless copper deposition cannot be carried out 

via the Sn-free process on these surfaces. It can be observed from Table 4.2 that, 

regardless of the activation method used, the adhesion strength of the electrolessly 

deposited copper to the graft-modified PI surface is always much higher than that of 

the electrolessly deposited copper to the pristine PI film or the Ar plasma-treated PI 

film. An adhesion strength as high as 6.8 N/cm can be achieved for the electrolessly 

deposited copper to the pp-4VP-PI surface using the Sn-free activation method. This 

adhesion strength represents about 13.4-fold, 3.2-fold and 2.6-fold increases, 

respectively, over those of the assemblies involving the pristine, the 5 W and the 70 W 
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Ar plasma-treated PI surfaces obtained from the two-step activation method. Thus, the 

effective contribution of the deposited pp-4VP polymer in simplifying the electroless 

deposition and in improving the adhesion of the electrolessly deposited copper to the 

PI film is ascertained.  

Table 4.2 Effect of Surface Modification of PI Film on the Adhesion of 
the Electrolessly Deposited Copper 

 

Surface Treatment of PI Film Activation Method T-Peel Adhesion 

Strength (N/cm) 

Pristine PI Film Two-step Processa 0.5 

Ar Plasma treatment at 5 Wc Two-step Process 2.1 

Ar Plasma treatment at 70 Wc  Two-step Process 2.6 

pp-4VP-PI deposited at the RF 

power of 70Wd 
Two-step Process 7.8 

pp-4VP-PI deposited at the RF 

power of 70Wd 
Sn-free Processb 6.8 

  

 a. Sensitization in SnCl2 solution for 2 min, followed by activation in PdCl2 for 10 min.  
  b. Direct activation in PdCl2 solution for 10 min.  

       c. Ar plasma treatment time = 30 s.  
  d. Plasma pretreatment of the PI film at 70 W for 30 s, monomer temperature = 5°C. 

 

The adhesion strength of the electrolessly deposited copper with the pp-4VP-PI surface 

activated by the one-step process is somewhat lower than that of the electrolessly 

deposited copper with the corresponding pp-4VP-PI surface activated by the two-step 

process. This phenomenon can be attributed to the difference in the electroless metal 

deposition time required to achieve the same metal thickness in both processes. The 

electroless metallization on the pp-4VP-PI surface activated by the Sn-free process 

was carried out in the copper plating bath for about 30 min to obtain the desirable 
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thickness of the metal film (about 100 nm in thickness, as determined gravimetrically). 

However, only about 5 min are required to achieve the similar film thickness on the 

pp-4VP-PI surface activated by the two-step process. The difference in deposition 

times could be explained by the long incubation period required for the initiating of the 

copper deposition in the one-step process. Longer immersion time in the alkaline 

plating bath probably will give rise to the formation of a weak boundary layer in the PI 

film (Vorobyoba et al., 1997), which, in turn, will lower the adhesion strength with the 

electrolessly deposited copper. Nevertheless, the two-step activation process involving 

SnCl2 is comparatively more complicated.  

The adhesion strength of the electrolessly deposited copper with the graft-modified PI 

surface can be described in terms of the microscopic interactions between the copper 

atoms and the pp-4VP chains at the metal/pp-4VP interface and in the metal matrix. 

The spatial distribution of the graft chains, and thus the pyridine rings, on the PI film 

surface, as well as the formation of the Pd-N complex, dictate the formation of an 

interphase consisting of an interpenetrating network of the grafted chains in the copper 

matrix or layer.  For the copper metallized pp-4VP-PI surface, the nitrogen atom in the 

pyridine rings of the pp-4VP-PI surface can interact directly with the copper atoms to 

form the Cu-N bonds (Charbonnier et al., 1996), which accounts in part for the 

enhanced adhesion of the metal to the PI surface. 

The input RF power during the plasma polymerization affects the thickness of the 4VP 

polymer deposit on the PI surface (see Figure 4.6(a)). The graft concentration, in turn, 

affects the adhesion strength of the electrolessly deposited copper to the graft-modified 

PI surface. Figure 4.8 shows this dependence versus the input RF power used for the 

graft copolymerization. It can be observed that both the adhesion strength and the graft 
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concentration (see Figure 4.6(a)) of the 4VP polymer increase with the RF power up to 

about 70 W and then decrease gradually. The variation in adhesion strength coincides 

approximately with the variation in graft concentration of the pp-4VP-PI film. The 

phenomenon further testifies to the fact that a graft chain-induced adhesion mechanism 

is operative.  

Figure 4.8 Effect of the input RF power on the T-peel adhesion strength of the 
electrolessly deposited copper with the pp-4VP-PI surface. 
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4.1.2.6 Adhesion Failure Mode of the Electrolessly Deposited Copper with the pp-
4VP-PI Films 

In the investigation of metal/polymer adhesion, a study of the locus of failure is 

expected to be informative. In the present work, the locus of the adhesion failure of the 

electroless deposited copper with the pp-4VP-PI films was investigated by analyzing 

the composition of the delaminated surfaces using XPS. As a reference, the wide scan, 

C 1s and N 1s core-level spectra of the pristine P4VP homopolymer surface are shown 

in Figure 4.9 (a). Figure 4.9 also shows the wide scan, C 1s and N 1s core-level spectra 

of the delaminated PI film side (part(b)) and the Cu surface side (part(c)) from an 

assembly involving the electrolessly deposited copper on the pp-4VP-PI film and 

having a T-peel adhesion strength of about 7 N/cm. The compositions of the opposite 

part of the Cu/pp-4VP-PI assembly differ from one another. The N 1s core-level 

spectrum of the delaminated PI and Cu surfaces can be curved-fitted with three peak 

components, having BEs at 398.4 eV for the –N= species, at 399.4 eV for the 

hydrogen-bonded imine species, and at 400.5 eV for the –N-(C=O)2 species. The –N-

(C=O)2 species is the dominant component in the N 1s core-level spectrum of the 

delaminated PI surface. On the other hand, however, the –N= species and the 

hydrogen-bonded imine species are the major components in the N 1s core-level 

spectrum of the delaminated Cu surface. No Cu or Pd signal is discernible in the wide 

scan spectrum of the delaminated PI surface. Furthermore, the –N-(C=O)2 peak 

component is rather prominent in the C 1s core-level spectrum of the delaminated PI 

surface. The peak intensity of the -N-(C=O)2 component, however, is substantially 

reduced in the C 1s core-level spectrum of the delaminated Cu surface. These 

observations readily suggest that the Cu/pp-4VP-PI assembly has failed in a mixed 

mode at the pp-4VP and the PI interface. In addition, the presence of copper signals in 
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Figure 4.9 XPS wide scan, C 1s and N 1s core-level spectra of (a) the pristine P4VP 
surface, and the delaminated (b) PI and (c) Cu surfaces from a Cu/pp-
4VP-PI assembly having a T-peel adhesion strength of about 7 N/cm. 
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the wide scan spectrum of the delaminated Cu surface suggests that the failure locus 

above the copper surface is slightly less than the probing depth of the XPS technique 

(~7.5 nm in an organic matrix).  

4.1.3 Conclusion 

Thin 4-vinylpyridine (4VP) polymer films were deposited, via plasma graft 

polymerization of 4VP, on the Ar plasma pretreated PI film surfaces. XPS and FTIR 

results revealed that the pyridine functional groups of the plasma-polymerized 4VP 

(pp-4VP) could be retained to a large extent under proper glow discharge conditions. 

The grafted pp-4VP layer on the PI surface was used not only as chemisorption sites 

for the palladium complex during the Sn-free activation process, but also as an 

adhesion promotion layer for the electrolessly deposited copper on the PI surface (the 

Cu/pp-4VP-PI assembly). The T-peel adhesion strength between the electrolessly 

deposited copper and the pp-4VP-PI surface could reach about 7 N/cm. This adhesion 

strength was much higher than that of the electrolessly deposited copper on the pristine 

and the Ar plasma-treated PI surfaces using the conventional “two-step” activation 

method. The strong adhesion of the electrolessly deposited copper could be attributed 

to the strong interaction of the pyridine functional groups of the plasma polymerized 

4VP with palladium and copper, and to the spatial distribution of the grafted 4VP 

polymer chains on the PI surface and into the metal layer. XPS results suggested that 

the adhesion failure of the electrolessly deposited copper with the pp-4VP-PI films 

occurred near the pp-4VP/PI interface. 
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4.2 Electroless Plating of Copper on FPI Films Modified by 
Plasma Graft Copolymerization of 4-Vinylpyridine 

4.2.1 Experimental 

4.2.1.1 Materials 

The fluorinated polyimides (FPIs) used in this study were (6FDA+4,4-6F Diamine) 

and (6FDA+p-SED), the former was based on 2,2’-bis(3,4-dicarboxyphenyl) 

hexafluoropropane dianhydride and 2,2’-bis(4-aminophenyl) hexafluoropropane, and 

the latter was based on 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride 

and 4,4’-bis(4-aminophenoxy) diphenyl sulfone. The structures of the two FPI samples 

are shown in Section 3.1.2. The two FPIs are referred to as FPI-1 and FPI-2, 

respectively, in this work. The 4-vinyl pyridine (4VP) monomer used for surface graft 

copolymerization were obtained from the Aldrich Chemical Co. of Milwaukee, WI, 

USA.  

4.2.1.2 Plasma Graft Copolymerization of 4VP on FPI Films: the pp-4VP-FPI 
Films 

Plasma graft copolymerization of 4VP on FPI films was carried out in the system 

manufactured by Samco International of Kyoto, Japan (Model Samco BP-1). The 

plasma polymerization precedures were the same as those described in Section 4.1.1.2.  

4.2.1.3 Electroless Deposition of Copper on the Surface Modified FPI Films 

The graft-modified FPI films were activated via immobilization of the Pd catalyst, in 

the absence of prior sensitization by SnCl2 (the Sn-free process), for the electroless 

deposition of copper. The processes of the electroless plating of copper for pp-4VP-

FPI films were the same as those described in Section 4.1.1.6.  
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4.2.1.8 Surface Characterization by XPS 

The surface composition of the samples was determined by X-ray photoelectron 

spectroscopy (XPS). The procedures were the same as those described in Section 3.1.9.  

4.2.1.7 Adhesion Strength Measurements 

The adhesion strength of the electrolessly deposited copper with the various FPI 

substrates was determined by measuring the T-peel adhesion strength. The procedures 

of T-peel adhesion strength measurements were the same as those described in Section 

3.1.11. 
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4.2.2 Results and Discussion 

The processes of surface pretreatment, plasma graft copolymerization of 4VP on the 

FPI surface (the pp-4VP-FPI surface) and the subsequent electroless deposition of 

copper on the FPI surface were the same as those described in Figure 4.1. The details 

of each process are discussed below. 

4.2.2.1 Effect of Ar Plasma Treatment on the Surface Composition of the FPI 
Films 

The C 1s core-level spectrum for both types of pristine FPI films can be curved-fitted 

with five peak components, having binding energies (BE’s) at 284.6 eV for the C-H 

species, at 285.8 eV for the C-O and C-N species, at 288.4 eV for the N(C=O)2 

species, at 291.1 eV for the π-π* shake-up satellite, and at 292.8 eV for the CF3 species 

(Moulder et al., 1992; Zhang et al., 2000). Due to the difference in chemical structure 

for the two types of the FPI films (see Section 3.1.2), the FPI-1 film have a higher 

fluorine concentration than the FPI-2 film. The relative peak intensity of the CF3 

species in the C 1s spectrum of the pristine FPI-1 film is higher than that of the pristine 

FPI-2. An additional peak component with a BE at 287.4 eV, attributable to the C=O 

species, is found in the Ar plasma treated FPI surfaces. The peak component is 

different from the carbonyl structure of the imide group in the dianhydride structure. 

The appearance of the C=O species in the plasma-treated FPI surfaces is attributable to 

the oxidation in air of the active species on the FPI surface induced by the plasma 

treatment, as is also the case of peroxide and hydroperoxide formation shown in Step 1 

of Figure 4.1. Furthermore, in comparison with the wide scan spectra of the pristine 

FPI surfaces, an increase in intensity of the O 1s peak component is observed in the 

wide scan spectra of the Ar plasma-treated FPI films. The above results suggest that 

the radicals induced by Ar plasma treatment can react with oxygen and moisture in air 
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to give rise to an oxidized surface. As will be shown later, these active species 

generated by the Ar plasma pretreatment can also help to enhance the interaction of the 

subsequently plasma-polymerized 4VP film with the FPI surface. 

4.2.2.2 Composition of the 4VP Plasma Graft-Copolymerized FPI Surfaces (the 
pp-4VP-FPI Surfaces) 

The composition of the pp-4VP-FPI surfaces was investigated first by XPS. As a 

reference, the wide scan and N 1s core-level spectrum of the pristine FPI-1 and FPI-2 

are shown in Figure 4.10 (a) and Figure 4.10 (b), respectively. For the pristine FPI 

surface, the N 1s core-level spectrum consists of a main peak component at the BE of 

about 400.5 eV, attributable to the-N-(C=O)2 species (Zhang et al., 2001b). On the 

other hand, however, the N 1s core-level spectrum of the 4VP homopolymer consists 

of a main peak component at the BE of 398.4 eV, attributed to the –N= species (Yang 

et al., 2001). Figures 4.10 (c) and 4.10(d) show the wide scan and N 1s core-level 

spectra of the pp-4VP-FPI-1 and pp-4VP-FPI-2 films prepared at the input RF power 

of 70 W. Prior to plasma polymerization and deposition, the FPI surface was pretreated 

by Ar plasma at 70 W for 60 s to introduce the active species on the FPI surface to 

enhance the interaction with the pp-4VP layer. The presence of the pp-4VP on the FPI 

surfaces can be deduced from the appearance of the new peak components with the 

BEs at about 398.4 eV and 399.4 eV, associated with the imine species (-N=) and the 

hydrogen-bonded imine species, respectively, of the 4VP polymer. The formation of 

hydrogen bonding between the pyridine ring and other polymers has been reported 

(Zhou et al., 1997; Ruokolainen et al., 1998). The presence of only a weak –N-(C=O)2 

component in the N 1s core-level spectrum and a weak O 1s signal in the wide scan of 

Figure 3(c) suggests that the thickness of the pp-4VP polymer is approaching the 

probing depth of the XPS technique (about 7.5 nm for an organic matrix).  
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Figure 4.10 XPS wide scan and N 1s core-level spectra of (a) the pristine FPI-1 
surface, (b) the pristine FPI-2 surface, (c) the pp-4VP-FPI-1 surface 
and (d) the pp-4VP-FPI-2 surface prepared at the input RF power of 70 
W. 

(a)Pristine FPI-1 

(b)Pristine FPI-2 

(c) pp-4VP-FPI-1 

(d) pp-4VP-FPI-2 
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 4.2.2.3 Effect of Input RF Power on the Chemical Composition of the pp-4VP-
FPI Surfaces 

Figure 4.11 shows the dependence of the 4VP polymer graft concentration of the pp-

4VP-FPI surface on the input RF power. The 4VP plasma polymerization and 

deposition were carried out on the 70 W Ar-plasma pretreated FPI-1 and FPI-2 

surfaces at a fixed Ar carrier gas flow rate of 20 sccm, a system pressure of 100 Pa, 

and a monomer temperature of 5ºC. The concentration of the grafted pp-4VP is 

defined as the number of repeat units of the graft chain per repeat unit of the substrate 

chain. Thus, the surface graft concentration are determined from the N 1s peak 

component area ratios of the imine (-N=), the hydrogen-bonded imine, and the [-N-

(C=O)2] species. The first two components are associated with the pp-4VP layer, while 

the last component with the FPI substrate. The concentration of the surface-grafted pp-

4VP is thus expressed as the 2[(-N=)+(-N<)]/[–N-(C=O)2]PI ratio. The factor 2 in the 

numerator is introduced to account for the fact that there are two functional [-N-

(C=O)2] groups in every repeat unit of the FPI molecule. It can be observed from 

Figure 4.11 that the graft concentration of the pp-4VP-FPI-1 and pp-4VP-FPI-2 

surfaces increases with the input RF power up to the RF power of about 70 W, above 

which the graft yield tends to decrease gradually. The variations in graft concentration 

of the pp-4VP-FPI-1 and pp-4VP-FPI-2 surfaces with the plasma power are 

attributable to the difference in bond scission mechanism in the plasma polymerization, 

which have been illustrated in Section 4.1.2.4.  

4.2.2.4 Adhesion Strength of the Electrolessly Deposited Copper on the pp-4VP-
FPI Films: the Cu/pp-4VP-FPI Assemblies 

The adhesion of the electrolessly deposited copper to the FPI surface is the primary 

concern in the preparation of the Cu/FPI systems. The adhesion of the electrolessly 

deposited copper to the various FPI substrates was evaluated by measuring the T-peel  
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adhesion strength. The Pd metal has been known to serve as a catalyst for the 

electroless metal deposition process. In this study, the pp-4VP-FPI surfaces were 

activated via the Sn-free process (in the absence of prior sensitization by SnCl2). For 

comparison purpose, the electroless copper deposition was also carried out, via the 

“two-step” activation process, on the pristine, as well as the 70 W Ar plasma-treated 

FPI-1 and FPI-2 surfaces. Electroless copper deposition cannot be carried out via the 

Sn-free process on these surfaces. Adhesion strength of about 4.8 N/cm and 4.3 N/cm 

are achieved with an input power of 70 W for the electrolessly deposited copper to the 

pp-4VP-FPI-1 and pp-4VP-FPI-2 surfaces, respectively, using the Sn-free activation 

method (Figure 4.11). These adhesion strength values are much higher than that of the 

electrolessly deposited copper with the pristine or Ar plasma-treated FPI-1 and FPI-2 

films. Thus, the effective contribution of the deposited pp-4VP polymer in simplifying 

the electroless deposition process and in improving the adhesion of the electrolessly 

deposited copper to the FPI film is ascertained. 

The variation in adhesion strength coincides approximately with the variation in graft 

concentration of the pp-4VP-FPI-1 and pp-4VP-FPI-2 films. The phenomenon further 

testifies to the fact that a graft chain-induced adhesion mechanism is operative. 

Furthermore, the adhesion results also indicate that the electrolessly deposited copper 

with both types of the pp-4VP-FPI surfaces show similar adhesion characteristics. This 

fact suggests that the difference in molecular structure of the FPI substrates, such as 

the number of –CF3 groups, has almost no effect on the adhesion strength of the 

resulting Cu/pp-4VP-FPI assemblies prepared from the FPI substrates modified by the 

present surface functionalization technique.   
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4.2.2.5 Failure Modes of the Electrolessly Deposited Copper with the pp-4VP-FPI 
Films 

In the present work, the locus of the adhesion failure of the electrolessly deposited 

copper with the surface modified FPI films is also investigated by analyzing the 

composition of the delaminated surfaces using XPS. As a reference, the wide scan, C 

1s and N 1s core-level spectra of the pristine P4VP homopolymer are shown in Figure 

12(a). Figure 12 also shows the wide scan, C 1s and N 1s core-level spectra of the 

delaminated Cu surface (part (b)) and the delaminated FPI-1 film (part(c)) from an 

assembly involving the electrolessly deposited copper on the pp-4VP-FPI-1 film and 

having a T-peel adhesion strength of about 4.5 N/cm. The composition of the 

delaminated FPI surface and Cu surface from the Cu/pp-4VP-FPI -1 assembly are 

grossly similar with each other. The N 1s core-level spectrum of the delaminated FPI-1 

surface and Cu surface can be curved-fitted with three peak components, having BEs 

at 398.5 eV for the –N= species, at 399.5 eV for the hydrogen-bonded imine species, 

and at 400.5 eV for the –N-(C=O)2 species. The hydrogen-bonded imine species is the 

dominant component in the N 1s core-level spectra of the delaminated FPI-1 and Cu 

surfaces. No Cu or Pd signal is discernible in the wide scan spectrum of the 

delaminated FPI-1 surface. Furthermore, the –CF3 peak component is rather prominent 

in the C 1s core-level spectrum of the delaminated FPI-1 surface. The peak intensity of 

the –CF3 component, however, is substantially reduced in the C 1s core-level spectrum 

of the delaminated Cu surface. These observations readily suggest that the Cu/pp-4VP-

FPI-1 assembly has failed in a mixed mode at the pp-4VP and the FPI-1 interface. In 

addition, the presence of copper signals in the wide scan spectrum of the delaminated 

Cu surface suggests that the failure locus above the copper surface is slightly less than 

the probing depth of the XPS technique (~7.5 nm in an organic matrix). The distinctive 
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Figure 4.12 XPS wide scan, C 1s and N 1s core-level spectra of (a) the pristine 4VP 
homopolymer surface, the delaminated (b) Cu and (c) FPI-1 surfaces 
from a Cu/pp-4VP-FPI-1 assembly having a T-peel adhesion strength of 
about 4.5 N/cm. 
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      Delaminated Cu Surface
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cohesive failure inside the FPI substrate testifies to the presence of strong interactions 

of the Pd catalyst and the electrolessly deposited copper atoms with the nitrogen 

moieties of the grafted 4VP chains. The extents of these interactions are further 

augmented by the spatial distribution of the graft chains on the FPI surface and into the 

copper matrix. 

4.2.3 Conclusion 

Thin 4-vinylpyridine (4VP) polymer films could be reactively deposited, via plasma 

graft polymerization of 4VP, on two types of the Ar plasma-pretreated FPI film 

surfaces. XPS and FTIR results revealed that the pyridine functional groups of the 

plasma-polymerized 4VP (pp-4VP) could be retained to a large extent under proper 

glow discharge conditions. The grafted pp-4VP layer on the FPI surface was used not 

only as chemisorption sites for the palladium complex during the Sn-free activation 

process, but also as an adhesion promotion layer for the electrolessly deposited copper 

on the FPI surfaces (the Cu/pp-4VP-FPI assembly). The T-peel adhesion strength of 

the electrolessly deposited copper with the pp-4VP-FPI-1 and pp-4VP-FPI-2 surfaces 

reached about 4.5 N/cm. These adhesion strength values were much higher than those 

of the electrolessly deposited copper with the pristine and the Ar plasma-treated FPI 

surfaces. The high adhesion strength of the electrolessly deposited copper was 

attributed to the strong interaction of the pyridine functional groups of the plasma 

polymerized 4VP with palladium and copper, and the spatial distribution of the grafted 

4VP polymer chains on the FPI surfaces and into the metal matrix. 
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5.1 Nanoporous Low-к Polyimide Films Prepared from 
Poly(amic acid)s with Grafted Poly(acrylic 
acid)/Poly(ethylene glycol) Side Chains 

5.1.1 Experimental 

5.1.1.1 Materials  

The poly(amic acid) precursor, poly[N,N’-(1,4-phenylene)-3,3’4,4’-

benzophenonetetra-carboxylic amic acid] (PAmA), was obtained from Aldrich 

Chemical Co. in powder form and was used as received. Ethanol, N-methyl-2-

pyrrolidone (NMP), acrylic acid (AAc) and methoxy poly(ethylene glycol) 

monomethacrylate (PEGMA) (MW=300) were obtained from Sigma-Aldrich 

Chemical Co. The AAc monomer was purified by vacuum distillation before use. The 

chemical structures of PAmA, AAc and PEGMA are shown as follows: 

PAmA:   

AAc: 

PEGMA:  

 

5.1.1.2 Preparation of Nanoporous PI Films 

The graft copolymers were performed by thermally-induced molecular graft 

copolymerization of AAc or PEGMA, with the ozone pre-activated PAmA in NMP 

solution at 60°C for 3 h and under an argon atmosphere. The monomer and about 50 

ml of the 2 wt% NMP solution of the pre-activated PAmA were introduced into a 3-
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necked round bottom flask equipped with a thermometer, a condenser, and a gas line. 

The AAc and PEGMA monomer concentrations were varied from 0.01 g/ml to 0.06 

g/ml. The reaction mixture was saturated with purified argon for 30 min under stirring. 

The reactor flask was then placed in a thermostated water bath at 60°C to initiate the 

graft copolymerization. A constant flow of argon was maintained during the thermal 

graft copolymerization. After the reaction time for 3 h, the reactor flask was cooled in 

an ice bath. The AAc graft-copolymerized PAmA (PAAc-g-PAmA), or the PEGMA 

graft-copolymerized PAmA (P(PEGMA)-g-PAmA), was precipitated in excess 

ethanol. After filtration, the copolymer was further purified by stirring for 48 h in 

copious amounts of ethanol at room temperature to remove the residual AAc or 

PEGMA homopolymer. The copolymers were then dried by pumping under reduced 

pressure for subsequent characterization and processing.  

Nanoporous PI films were prepared by a two-step process. Initially, a thin film was 

obtained by casting a 20 wt% NMP solution of the respective copolymer on a polished 

silicon substrate (Si(100) wafer). Each film was heated initially in a vacuum oven at 

90°C for 1 h under atmospheric pressure. It was then heated, sequentially, at 150°C for 

1 h, at 200°C for 1 h, at 250°C for 0.5 h and final at 300°C for 10 min, in a vacuum 

oven pre-purged with argon. The film was allowed to cool down gradually to room 

temperature over a period of 6 h. The second step involved the thermolysis and 

removal of the grafted side chains (AAc or PEGMA polymer chains), by heating the 

copolymer film at 250°C for 12 h in air, yielding the nanoporous PI film. The 

processes of ozone pre-activation, thermal-induced grafting, and nanoporous film 

preparation are illustrated schematically in Figure 5.1.  

 



 

 

98

 
PAAc or 
P(PEGMA)
Side Chain

PAmA Main Chain 

Ozone Pretreatment 
Thermal Graft 
Copolymerization 

O O 

O

NMP Solution 
of Copolymer Solvent Removal 

Thermal Imidization 
     (300°C in Ar) 

Side Chain  
Decomposition 
(250°C in Air) 

Nanoporous PI Film 

O⎯OH O O

O⎯OH

PAAc-g-PI Film or 
P(PEGMA)-g-PI FIlm 

Film Casting 

Figure 5.1 Schematic illustration of the processes of thermally-induced graft copolymerization of AAc and PEGMA with the ozone-
preactivated PAmA backbone and the preparation of a nanoporous PI film. 
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5.1.1.3 Elemental Analysis 

The carbon, nitrogen and hydrogen elemental contents of the pristine PAmA and the 

copolymer samples were determined using a Perkin-Elmer 2400 elemental analyzer.  

5.1.1.4 Density Measurement 

Film density was measured using a top-loading electronic Mettler Toledo balance 

equipped with a density kit and according to the Archimedean principle. The sample 

was weighed in air and in doubly distilled water at room temperature.  

5.1.1.5 Surface Characterization by XPS 

The surface composition of the samples was determined by X-ray photoelectron 

spectroscopy (XPS). The procedures were the same as those described in Section 3.1.9.  

5.1.1.6 Thermal Analyses 

The thermal properties of the homopolymer and copolymer samples were measured by 

both thermogravimetric (TG)   analysis and differential scanning calorimetry (DSC). 

For the TG analysis, the polymer samples were heated up to 900°C at a heating rate of 

10°C/min under a dry nitrogen atmosphere in a Du Pont Thermal Analyst 2100 system, 

equipped with a TGA 2050 thermogravimetric thermal analyzer. For the DSC analysis, 

the spectra were recorded on a DSC 822e (Mettler Toledo Co., Switzerland) at a 

heating rate of 10°C/min and under a nitrogen atmosphere. The software for data 

processing allowed the automatic subtraction of the baseline and the normalization of 

the thermogram for sample weight. 
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5.1.1.7 Scanning Electron Microscopy (SEM)  

The morphology of the cross-section of the nanoporous PI films was studied by 

scanning electron microscopy (SEM), using a JEOL 6320 electron microscope. The 

cross-section of the film was mounted on the sample stud by means of a double-sided 

adhesive tape. A thin layer of palladium was sputtered onto the cross-sectional surface 

prior to the SEM measurement. The SEM measurements were performed at an 

accelerating voltage of 15 kV.  

5.1.1.8 Dielectric Constant Measurements 

The dielectric constant (к) of the PI films was measured on a RF 

impedance/capacitance material analyzer (Hewlett Packard Model 4291B) at the 

frequency of 1 MHz under ambient conditions. The consistency of the к values 

obtained was constantly checked by making reference measurements on dielectric 

polymer films with well-characterized low dielectric constants, such as the 

poly(tetrafluoroethylene) (PTFE) films, under similar conditions. 
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5.1.2 Results and Discussion 

5.1.2.1 Characterization of PAmA with PAAc and P(PEGMA) Side Chains  

Direct oxidation of polymers by ozone is a well-known method for introducing 

peroxide and hydroperoxide species onto polymer chains and surfaces for the 

subsequent functionalization, such as graft polymerization (Kang and Zhang, 2000; 

Fargere et al., 1994). Under thermal induction, the peroxide functional groups undergo 

decomposition to initiate the free radical graft copolymerization of vinyl monomers. 

The amount of peroxides introduced by ozone treatment can be regulated by the 

polymer concentration, ozone treatment temperature, ozone concentration and ozone 

treatment time. In this study, the ozone concentration was fixed at 0.027 g/L under an 

O3/O2 mixture flow rate of 300 L/h and a temperature of 25°C for every 50 ml of 2 

wt% PAmA solution. Previous study (Wang et al., 2003) performed under similar 

conditions had shown that the increase in peroxide concentration of PI leveled off at an 

ozone treatment time of about 15 min. Thus, the ozone pretreatment time was fixed at 

15 min in the present study. 

For the graft copolymerization of AAc and PEGMA with PAmA in NMP solution, the 

monomer feed ratio can be used to regulate the graft concentration of the resulting 

graft copolymer. The bulk graft concentration of the copolymers is defined as the 

number of AAc or PEGMA repeat units in the graft chains per repeat unit of the 

PAmA main chain. It can be calculated from the ([C]/[N])bulk molar ratio by taking into 

account of the carbon stoichiometries of the graft and the main chains, and the carbon 

to nitrogen ratio of the PAmA main chain. Thus, the bulk graft concentrations, or the 

([PAAc]/[PAmA])bulk and ([P(PEGMA)]/[PAmA])bulk molar ratios, can be calculated, 

respectively, from the following relationships: 
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([PAAc]/[PAmA])bulk = 2([C]- (23/2)[N])bulk/3[N]bulk 

([P(PEGMA)]/[PAmA])bulk = 2([C]- (23/2)[N])bulk/14[N]bulk 

in which the factor 23/2 accounts for the fact that there are 23 carbon atoms and 2 

nitrogen atoms per repeat unit of the PAmA chains, while the factors 3 and 14 account 

for the fact that there are 3 carbon atoms in each AAc unit and 14 carbon atoms in each 

PEGMA unit. The dependence of the bulk graft concentration of the PAAc-g-PAmA 

and P(PEGMA)-g-PAmA copolymers on the respective monomer to PAmA molar 

feed ratio used for graft copolymerization is summarized in Table 5.1. It can be seen 

from Table 5.1 that, for both copolymers, the graft concentration increases with the 

increase in monomer feed ratio. 

5.1.2.2 Thermal Properties of the PAAc-g-PAmA or P(PEGMA)-g-PAmA 
Copolymers 

Thermal stability is one of the unique properties of PIs. The thermal properties of the 

graft copolymers were studied by thermogravimetric(TG) analysis in nitrogen and in 

air, and by differential scanning calorimetry (DSC) in nitrogen. Figure 5.2 shows the 

respective TGA curves (in nitrogen) of the pristine PAmA (Curve 1), the PAAc-g-

PAmA copolymer with bulk graft concentration of 0.62 (Curve 2), the P(PEGMA)-g-

PAmA copolymer with bulk graft concentration of 0.90 (Curves 3), the AAc 

homopolymer (Curve 4) and the PEGMA homopolymer (Curve 5). The corresponding 

TGA curves in air for the AAc homopolymer (Curve 6) and PEGMA homopolymer 

(Curve 7) are also shown for comparison purpose. The temperature for the onset of 

decomposition of the AAc homopolymer decrease from about 280°C in nitrogen to 

only about 200°C in air. A similar decrease in the decomposition temperature is 

observed for the PEGMA homopolymer in air. In comparison with the pristine PAmA, 

PAAc and P(PEGMA) homopolymers, the copolymer samples exhibit an intermediate 
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weight loss behavior and undergo a two-step degradation. The onset of the first major 

weight loss occurs in the temperature range of 300°C-310°C, which corresponds to the 

decomposition of the AAc or the PEGMA side chains of the copolymer in nitrogen. 

The second major weight loss begins at about 510°C, which coincides with the 

decomposition temperature of the PAmA main chain. For TGA carried out in air, the 

temperature for the onset of the first major weight loss decrease to the range of 250°C-

270°C for the two graft copolymers. The TGA curves also indicate that the extent of 

weight loss in the copolymer during the first stage of thermal decomposition is 

approximately equal to the AAc or PEGMA polymer content in the copolymer. The 

glass transition temperatures (Tg’s), obtained from DSC analysis, of the pristine PAmA 

and the PAAc-g-PAmA and P(PEGMA)-g-PAmA copolymers of different graft 

concentrations are also shown in Table 5.1. Polyimides are well-known for their good 

thermal stability and high Tg’s. The pristine PAmA has a Tg of about 317°C. The Tg of 

the graft copolymer decreases with the increase in graft concentration. Graft 

copolymerization with AAc or PEGMA reduces the structural rigidity of PAmA and 

increases the molar free volume of the polymer, resulting in the lowering of Tg.  
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      Table 5.1 Characteristics of the PAAc-g-PAmA and P(PEGMA)-g-PAmA Copolymers and the Resulting Nanoprous PI Films  
 

PAAc-g-PAmA and P(PEGMA)-g-PAmA PI and Nanoporous PI Films 
Element Composition 

Before Thermal 
Decomposition 

(wt%) 

After Thermal 
Decomposition 

(wt%) 

Weight Loss 
After 

Thermal 
Decomp. 

(%) 

Density 
(g/cm3) 

Porosity
 
 

PAmA Samples 
Monomer Molar 

Feed Ratio 
[AAc]/[PAmA] 

or 
[PEGMA]/[PAmA]

Bulk Graft 
Concentration[a] 
[PAAc]/[PAmA] 

or 
[P(PEGMA)]/[PAmA]

Glass 
Trans. 
Temp.  
(°C) 

C N C N    
Pristine PAmA --- --- 317 70.05 7.11 -- -- -- 1.43 --- 
PAAc-g-PAmA 3 0.32 315 68.18 6.52 67.62 7.16 2.9 1.39 3% 
PAAc-g-PAmA 6 0.54 313 67.82 6.40 67.48 7.11 3.7 1.37 4% 
PAAc-g-PAmA 12 0.62 311 67.73 6.39 66.78 7.01 6.5 1.33 7% 
PAAc-g-PAmA 18 0.70 310 67.59 6.31 67.43 7.10 7.2 1.31 9% 
P(PEGMA)-g-PAmA 0.8 0.91 312 67.37 6.28 67.17 6.80 2.8 1.34 6% 
P(PEGMA)-g-PAmA 1.5 1.09 309 65.69 5.72 67.22 6.65 4.2 1.31 8% 
P(PEGMA)-g-PAmA 3 1.32 307 65.32 5.08 66.99 5.98 6.3 1.28 10% 
P(PEGMA)-g-PAmA 4.5 1.35 305 64.72 5.01 67.04 5.87 7.6 1.23 14% 

       

               a. Defined as the number of repeat units of the graft chain per repeat unit of the PAmA main chain. 
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Figure 5.2 TGA curves of (1) the PAmA homopolymer, (2) the PAAc-g-PAmA 
copolymer (bulk graft concentrations=0.62), (3) the P(PEGMA)-g-
PAmA copolymer (bulk graft concentration=0.90), (4) the AAc
homopolymer, and (5) the PEGMA homopolymer in nitrogen. The 
weight loss behavior of the AAc and PEGMA homopolymer in air is 
shown by Curve 6 and Curve 7, respectively. 
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5.1.2.3 Characterization of the Nanoporous PI films 

After solvent removal and imidization, the nanoporous PI film was generated by 

subjecting the copolymer film to the subsequent thermal treatment in air to decompose 

the labile side chain. The basic requirement for the grafted side chains is that they must 

undergo a controllable and quantitative degradation into low molecular weight 

products, which can diffuse readily through the PI matrix. On the other hand, the 

grafted side chains must also possess sufficient thermal stability during the solvent 

removal and the thermal imidization. In the present study, the copolymers films were 

cured at 300°C for 10 min under reduced argon pressure to complete the imidization. 

Under an inert atmosphere, PAAc and P(PEGMA) are thermally stable up to about 

300°C. This thermal stability allows the imidization of PAmA to PI without any 

appreciable decomposition of the graft chains. Both FTIR and XPS results show that 

under these conditions, the imidization is complete without any appreciable loss of the 

grafted PAAc or P(PEGMA) components. On the other hand, however, in the presence 

of air or oxygen, the decomposition temperature of PAAc or P(PEGMA) decreases 

substantially. TGA results indicate that the decomposition of the AAc homopolymer 

starts at about 180°C, while that of the PEGMA homopolymer at about 200°C, in air. 

Thus, the formation of the nanoporous PI structure can be accomplished by the 

subsequent heat treatment of the film at 250°C in air to decompose the PAAc or 

P(PEGMA) side chains. The selection of the thermal decomposition temperature and 

conditions is important. The temperature should be sufficiently high to decompose the 

labile side chains, but below the Tg of the PI to avoid the collapse of the porous 

structure. After thermal treatment of the imidized PI films at 250°C in air for 12 h, no 

AAc segments were discernible, while residual PEGMA segments and fragments were 
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retained in the resulting nanoporous PI films, as indicated by the subsequent TGA, 

XPS (see Figure 5.3 below) and elemental analyses (see Table 5.1). 

Density measurements were used to characterize the formation of the porous structure. 

As shown in Table 5.1, the density of the nanoporous PI films prepared from the 

PAAc-g-PAmA copolymers decreases from 1.43 to 1.31, as the porosity increases to 

9%. In the case of the PI films prepared from the P(PEGMA)-g-PAmA copolymers, a 

density as low as 1.23 was obtained from the thermal decomposition of a copolymer 

having a molar graft concentration of 1.35. It can also be seen from Table 1 that with 

the decomposition of the AAc or PEGMA side chains, the nitrogen content of the films 

is increased. The fact that the nitrogen content of the P(PEGMA)-g-PI (imidized 

P(PEGMA)-g-PAmA) samples after thermal decomposition is still substantially below 

that of the pristine PI suggests that the thermal decomposition of the PEGMA side 

chains is not complete. 

The decomposition of the grafted PAAc or P(PEGMA) side chains is also verified by 

the XPS results. Figure 5.3 shows the C 1s core-level spectra of the pristine PI film 

(part (a)), the PAAc-g-PI (imidized PAAc-g-PAmA, bulk graft concentration=0.62) 

film before and after side chain decomposition(part (b) and part (c), respectively), and 

the P(PEGMA)-g-PI (imidized P(PEGMA)-g-PAmA, bulk graft concentration=0.91) 

film before and after side chain decomposition(part (d) and part (e), respectively). The 

C 1s core-level spectrum of the pristine PI film (Figure 5.3(a)) can be curved-fitted 

with four peak components, having binding energies (BE’s) at 284.6 eV for the C-H 

species, at 285.6 eV for the C-N species, at 287.4 eV for the C=O species, and at 288.4 

eV for the N-(C=O)2 species (Zhang et al., 2000). The O-C=O species of the grafted 

PAAc chains have a C 1s peak component at the BE of about 288.3 eV (Briggs, 1998). 
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The BE of the O-C=O species and that of the N-(C=O)2 (imide) species of PI cannot be 

resolved clearly. The two species are represented by a single peak component at the 

BE of about 288.3 eV. The presence of the grafted AAc polymer on PI is readily 

indicated by the increase in intensity of the peak component at 288.3 eV (Figure 

5.3(b)). The slight increase in intensity of the peak component at 287.4 eV (the C=O 

species) probably arises from the contribution of the oxidized carbon species produced 

during the ozone pretreatment and the thermal imidization. On the other hand, the 

decomposition of the grafted PAAc side chain is indicated by the decrease in intensity 

of the peak component at 288.3 eV, as shown in Figure 5.3(c). In the case of the 

(PEGMA)-g-PI copolymer, the presence of the grafted PEGMA polymer on PI can be 

deduced from the substantially increase in intensity of the C 1s peak component at the 

BE of 286.2 eV, attributable to the C-O species of the PEGMA side chain (Figure 

5.3(d)). Similarly, the decomposition of the PEGMA side chains is indicated by the 

substantial reduction in intensity of the C-O peak component after the thermal 

treatment (Figure 5.3(e)). The persistence of a high BE tail in the C 1s core-level 

spectrum of Figure 5.3(e) suggests the incomplete thermal decomposition of the 

PEGMA side chains, consistent with the elemental and TG analysis results of the 

P(PEGMA)-g-PI samples after thermal decomposition. 



 

 109

 

Figure 5.3 XPS C 1s core-level spectra of (a) the pristine PI film, the PAAc-g-PI 
film (imidized PAAc-g-PAmA, bulk graft concentration=0.62) (b) 
before and (c) after side chain decomposition, and the P(PEGMA)-g-
PI film (imidized P(PEGMA)-g-PAmA, bulk graft 
concentration=0.91) (d) before and (e) after side chain 
decomposition. 
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It is important to control the pore size and pore size distribution for preparing porous 

materials with suitable mechanical and electrical properties. In this study, the 

nanoporous structure of the PI films was confirmed by SEM at a magnification of 

50,000. The SEM images (cross-sectional view) of the pristine PAAc-g-PI and the 

P(PEGMA)-g-PI copolymer films are shown in Figures 5.4(a) and 5.4(b), respectively. 

The nanoporous PI films prepared from the corresponding PAAc-g-PI and 

P(PEGMA)-g-PI copolymer films are shown in Figures 5.4(c) and 5.4(d). The 

nanoporous films were obtained from the samples that had been fully imidized, 

followed by side-chain decomposition at 250°C in air for 12 h. The SEM images in 

Figures 5.4(c) and 5.4(d) reveal the formation of the randomly distributed nanopores in 

the PI matrix. The dark areas are the voids created from degradation and removal of 

the PAAc or PEGMA side chains. The average size of the pores is in the range of 30 to 

100 nm. The pores are irregularly in shape and show a small degree of interconnection. 

During the imidazation and thermal degradation processes, microphase separation of 

the degraded side chains and their fragments probably had occurred in the polymer 

film, resulting in the formation of the nanoporous morphology.  

The dielectric constant (к) of the resulting nanoporous PI film is of the primary 

concern. For the nanoporous PI film, the ultimate dielectric constant is governed by the 

intrinsic dielectric constant of the PI matrix and the morphology and porosity of the 

porous structure. Figure 5.5 shows the dielectric constant (at 1 MHz) of the pristine PI 

film and the nanoporous PI films, prepared from the PAAc-g-PAmA and P(PEGMA)-

g-PAmA copolymers, as a function of porosity of the films. The к value of the pristine 

PI film is 3.5 under ambient conditions. As anticipated, all the nanoporous films 

exhibit considerable lower dielectric constants. For films prepared from both types of 
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the copolymers, the к value decreases with the increase in porosity. A dielectric 

constant of about 2.1 is obtained for the nanoporous PI film prepared from the PAAc-

g-PAmA copolymer with a bulk graft concentration of about 0.7 and a porosity (after 

thermal decomposition) of about 9%. This dielectric constant is comparable to that of 

the very inert poly(tetrafluoroethylene) (PTFE). Similarly, a к value of about 2.4 is 

achieved for the film prepared from the P(PEGMA)-g-PAmA copolymer with a bulk 

graft concentration of about 1.35 and a porosity (after thermal decomposition) of about 

14%. The higher dielectric constant, in spite of the increase in porosity, for the PI film 

from the P(PEGMA)-g-PAmA copolymer is probably due to the incomplete 

decomposition of the PEGMA side chains. Nevertheless, the dielectric constants of the 

nanoporous films are all substantially lower than that of the PI homopolymer film. 

Graft copolymerization with AAc or PEGMA reduces the structural rigidity and the 

intermolecular packing density of the PI chains and, thus, increases the molar free 

volume of the polymer. Subsequent thermal decomposition of the grafted AAc or 

PEGMA side chains introduces the nano-voids. The synergistic effect arising from the 

increase in molar free volume of the polymer and the formation of nano-voids in the 

film has given rise to a significant decrease in the dielectric constant of the material. In 

fact, the observed lowering of the dielectric constant is greater than that predicted by a 

linear rule-of-mixtures model or the Maxwell-Garnett approximation (Carter et al., 

2001). Presumably the dielectric constants for both types of the PI films in Figure 5.5 

could be further reduced through the further increase in porosity of the films (or the 

further increase in graft concentration of the PAmA copolymers). However, further 

increase in porosity of the film above 15% will result in a marked increase in pore size, 

as well as a marked deterioration in mechanical properties (for example, a more than 

50% decrease in tensile strength), of the film. 
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Figure 5.4 SEM cross-sectional images of (a) the PAAc-g-PI film (bulk graft 
concentration=0.32), (b) the P(PEGMA)-g-PI film (bulk graft 
concentration=0.91), and the nanoporous PI film prepared from (c) the 
PAAc-g-PAmA copolymer and from (d) the P(PEGMA)-g-PAmA. 
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Figure 5.5 Dielectric constant of the nanoporous PI film as a function of porosity. 
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5.1.3 Conclusion 

Poly(amic acid) (PAmA) precursors with grafted AAc or PEGMA side chains have 

been successfully prepared. Nanoporous low-к PI films were obtained after thermal 

imidization of the PAmA backbones in an inert atmosphere and thermal decomposition 

of the side chains in air. The densities of the nanoporous films so-formed were 3-14% 

lower than that of the pristine PI film. SEM images revealed that the pore sizes were in 

the order of 30-100 nm. The dielectric constant of the nanoporous PI films decreased 

with the increase in graft concentration of the side chains, and thus the porosity of the 

PI films. Dielectric constant as low as 2.1 and 2.4 were obtained for the nanoporous PI 

films prepared form the PAAc-g-PAmA and P(PEGMA)-g-PAmA copolymer, 

respectively. Thus, molecular modification by grafting of thermally labile side chains 

is a relatively simple and effective approach for the preparation of nanoporous PI films 

with low dielectric constants and preserved PI backbones. 



 

 115

5.2 Nanoporous Ultra-Low-к Films Prepared from 
Fluorinated Polyimide with Grafted Poly(acrylic acid) Side 
Chains 

5.2.1 Experimental 

5.2.1.1 Materials 

The fluorinated polyimide (FPI) used in this study was 2,2-bis(3,4-dicarboxyphenyl) 

hexafluoropropane dianhydride+4,4’-bis(4-aminophenoxy) diphenyl sulfone and was 

synthesized by step reaction polymerization, as described in Section 3.1.1.2. The 

chemical structures of FPI were also shown in Section 3.1.1.2 (FPI-2).  

5.2.1.2 Ozone Treatment of FPI  

The FPI powder was first dissolved in NMP to achieve a concentration of 75 g/L. A 

continuous stream of O3/O2 mixture was bubbled through the solution at 25°C. The 

O3/O2 mixture was generated from an Azcozon RMU16-04EM ozone generator. The 

gas flow rate was adjusted to 300 L/h to give rise to an ozone concentration of about 

0.027 g/L of the gaseous mixture. A treatment time was fixed to about 5 min to 

achieve the desired content of peroxides (see below). After the ozone treatment, the 

polymer solution was cooled in an ice bath.  

5.2.1.3 Graft Copolymerization of AAc with FPI: The PAAc-g-FPI Copolymer 

The functional copolymer was prepared by thermally-induced molecular graft 

copolymerization of AAc with the ozone pre-activated FPI in NMP solution at 60°C 

for 3 h and under an argon atmosphere. Then the monomer and about 50 ml of the FPI 

solution were introduced into a 3-necked round bottom flask equipped with a 

thermometer, a condenser, and a gas line. The AAc monomer concentrations was 

varied from 0.03 g/ml to 0.21 g/ml. The final volume of each reaction mixture was 
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adjusted to 50 ml. The solution was saturated with purified argon for 30 min under 

stirring. The reactor flask was then placed in a thermostated water bath at 60°C to 

initiate the graft copolymerization reaction. A constant flow of argon was maintained 

during the thermal graft copolymerization. After reaction time for 3 h, the reactor flask 

was cooled in an ice bath and the AAc graft-copolymerized FPI (PAAc-g-FPI) was 

precipitated in excess ethanol. After filtration, the copolymer was further purified by 

stirring for 48 h in copious amounts of ethanol at room temperature. The precipitation 

and exhaustive washing ensured the complete removal of the residual AAc 

homopolymer. The copolymer were then dried by pumping under reduced pressure for 

subsequent characterization.  

5.2.1.4 Preparation of Nanoprous FPI films  

Nanoporous PI films were prepared by a two-step process. Initially, a thin film was 

obtained by casting a 20 wt% NMP solution of the respective copolymer on a polished 

silicon substrate (Si (100) wafer). Each film was heated initially in a vacuum oven at 

90°C for 1 h under atmospheric pressure. It was then heated, sequentially, at 150°C for 

1 h, at 200°C for 1 h, at 225°C for 5 h, in a vacuum oven pre-purged with argon. The 

film was allowed to cool down gradually to room temperature over a period of 6 h. 

The second step involved the thermolysis and removal of the grafted PAAc side 

chains, by heating the copolymer film at 250°C for 12 h in air, yielding the nanoporous 

FPI film. The processes of ozone pre-activation, thermal-induced grafting, and 

nanoporous film preparation are illustrated schematically in Figure 5.6.  

5.2.1.5 Elemental Analysis 

The carbon, nitrogen and hydrogen elemental contents of the pristine FPI and the 

copolymer samples were determined same as described in Section 5.1.1.3. The fluorine 
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contents, on the other hand, were determined by the SchÖniger combustion method 

(Walton, 1964).  

5.2.1.6 Density Measurement 

The procedures for density measurement of the pristine FPI and the nanoporous FPI 

films were the same as those described in Section 5.1.1.4.  

5.2.1.7 Surface Characterization by XPS 

The surface composition of the samples was determined by X-ray photoelectron 

spectroscopy (XPS). The prodedures were the same as those described in Section 

3.1.9.  

5.2.1.8 Thermal Analyses 

The thermal properties of the homopolymer and copolymer samples were measured by 

both thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 

The procedures were the same as those described in Section 5.1.1.6. 

5.2.1.9 Scanning Electron Microscopy (SEM)  

The morphology of the cross-section of the nanoporous FPI films was studied by 

scanning electron microscopy (SEM). The procedures were the same as those 

described in Section 5.1.1.7.  

5.2.1.10 Dielectric Constant Measurements 

The prodedures of dielectric constant (к) measurement were the same as those 

described in Section 5.1.1.8. 



 

 

118

PAAc 
Side  
Chain

FPI Main Chain 

Ozone Pretreatment 
Thermal Graft 
Copolymerization 

O O 

O

NMP Solution 
of Copolymer 

Solvent Removal 
(225°C in Ar) 

Side Chain  
Decomposition 
(250°C in Air) 

Nanoporous FPI Film 

O⎯OH O O

O⎯OH 

PAAc-g-FPI Film 

Film Casting 

Figure 5.6 Schematic illustration of the process of thermally-induced graft copolymerization of AAc with the ozone-preactivated FPI 
backbones and the preparation of a nanoporous FPI film. 
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5.2.2 Results and Discussion 

5.2.2.1 Characterization of the PAAc-g-FPI Copolymers 

Ozone treatment is a well-known method for introducing peroxide and hydroperoxide 

groups onto polymer chains and surfaces for the subsequent functionalization, such as 

graft copolymerization. Under thermal induction, the peroxide groups undergo 

decomposition to initiate the free radical graft copolymerization of vinyl monomers. 

Since ozone treatment of the FPI is also accompanied by degradation and scission of 

the polymer chains, the ozone pretreatment time was fixed at 5 min under the 

conditions (Wang et al., 2003) that give rise to 1.3 ×10-5 moles of peroxides per gram 

of the FPI. The bulk graft concentration of the PAAc-grafted FPI (PAAc-g-FPI) 

copolymers is defined as the number of the AAc repeat units in the graft (side) chains 

per repeat unit of the FPI main chain. Thus, the bulk graft concentration, or the 

([PAAc]/[FPI])bulk molar ratio, can be calculated from the C and N elemental 

composition and the following relationship: 

([PAAc]/[FPI])bulk = 2([C]- (43/2)[N])bulk/3[N]bulk 

in which the factor 43/2 accounts for the fact that there are 43 carbon atoms and 2 

nitrogen atoms per repeat unit of the FPI chains, while the factor 3 accounts for the 

fact that there are 3 carbon atoms in each AAc unit. The data in Table 5.2 show that 

the bulk graft concentration of the PAAc-g-FPI copolymer increases with increasing 

AAc monomer to FPI molar feed ratio used for graft copolymerization.  
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Table 5.2 Characteristics of the PAAc-g-FPI Copolymers and the Nanoporous FPI Films  

PAAc-g-FPI  Copolymer FPI and Nanoporous FPI Films  
 

FPI Samples Monomer Molar 
Feed Ratio 

[AAc]/[FPI] 

Bulk Graft 
Concentration[a] 
[PAAc]/[FPI] 

 

Glass Transition 
Temperature (Tg) 

(°C) 

Density 
(g/cm3) 

Porosity Dielectric 
Constant 

(at 1 MHz) 

Pristine FPI --- --- 293 1.47 --- 3.1 
PAAc-g-FPI Copolymer 12 0.68 290 1.43 3% 2.8 
PAAc-g-FPI Copolymer 35 0.99 287 1.40 5% 2.6 
PAAc-g-FPI Copolymer 47 1.58 286 1.38 6% 2.2 
PAAc-g-FPI Copolymer 58 1.67 284 1.36 8% 1.9 

 
                         a. Defined as the number of repeat units of the graft chain per repeat unit of the FPI main chain and determined from the elemental C and N composition. 
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The thermal properties of the graft copolymers were studied by thermogravimetric 

(TG) analysis and differential scanning calorimetry (DSC). Figure 5.7 shows the TG 

analysis curves of the pristine FPI (Curve 1) in nitrogen, the PAAc-g-FPI copolymers 

with graft concentrations of 0.68 and 1.67 (Curves 2 and 3, respectively) in nitrogen, 

and the AAc homopolymer (PAAc) in nitrogen and in air (Curves 4 and 5, 

respectively). The PAAc have a thermal decomposition temperature of about 280°C in 

an inert atmosphere and only about 200°C in air. The pristine FPI homopolymer has a 

decomposition temperature of about 560°C in nitrogen and 544°C in air (Vora et al., 

2001). On the other hand, however, the copolymer samples exhibit intermediate weight 

loss behavior and undergo a two-step degradation. The onset of the first major weight 

loss at about 280°C corresponds to the decomposition of the PAAc side chains in the 

copolymers. The second major weight loss begins at about 560°C, which coincides 

with the decomposition temperature of the FPI main chain. The TG analysis curves 

also indicate that the extent of weight loss of the copolymers during the first stage of 

thermal decomposition is approximately equal to the AAc polymer content in the 

respective graft copolymer. The relative small weight loss of the copolymers during 

the first stage of thermal decomposition is consistent with the fact that the molecular 

weight of the AAc repeat unit is much lower than that of the FPI repeat unit. Table 5.2 

also shows the glass transition temperature (Tg), measured by DSC in nitrogen, of the 

pristine FPI and the PAAc-g-FPI copolymers of different graft concentrations. The 

pristine FPI has a Tg of about 293°C. Graft copolymerization with AAc reduces the 

structural rigidity and increases the molar free volume of the FPI. As a result, the Tg of 

the graft copolymer decreases with the increase in graft concentration. 
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Figure 5.7 TG analysis curves of: (1) the FPI homopolymer, the PAAc-g-FPI 
copolymers with graft concentrations of (2) ([PAAc]/[FPI])bulk=0.68, (3) 
([PAAc]/[FPI])bulk=1.67, and the AAc homopolymer (4) in nitrogen and 
(5) in air. 
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5.2.2.2 Characterization of the Nanoporous Films 

The generation of nanoporous FPI film was accomplished by subjecting the copolymer 

film to thermal treatment in air to decompose the labile PAAc side chains. The 

copolymers films were heated first at 225°C for 5 h under argon to remove the NMP 

solvent. Under vacuum or in an inert atmosphere, PAAc are thermally stable up to 

about 280°C. This thermal stability allows the completely removal of the NMP solvent 

in an inert atmosphere without any appreciable decomposition of the graft chains. 

TGA results indicate that the decomposition of PAAc starts at only about 200°C in air. 

Thus, the formation of the nanoporous FPI structure can be accomplished by the 

subsequent heat treatment of the film at 250°C in air for 14 h to decompose the PAAc 

side chains. The selection of the thermal decomposition temperature and conditions is 

important. The temperature should be sufficiently high to quantitatively decompose the 

labile side chains, yet below the Tg of the FPI (or the graft copolymer) to avoid the 

collapse of the porous structure. The FPI has a Tg of 293°C and all the PAAc-g-FPI 

copolymers used in this study have Tg’s above 280°C (Table 5.2). Finally, the FT-IR 

spectra of the nanoporous FPI films are almost identical to that of the pristine FPI film, 

indicating that the FPI backbones remain intact during the thermal decomposition of 

the PAAc side chains. 

Figures 5.8 show the SEM images (cross-sectional view, magnification=50,000×) of 

the PAAc-g-FPI copolymer film (graft concentration=0.68) before (part 3(a)) and after 

(part 3(b)) thermal treatment at 250°C in air. The SEM image in Figure 3(b) reveals 

the formation of randomly distributed nano-pores in the FPI matrix. The dark areas are 

the voids left behind by the degraded PAAc phase. The irregularly shaped pores have 

sizes substantially below 100 nm.   
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(a)

(b)

Figure 5.8 SEM cross-sectional images of the PAAc-g-FPI copolymer film (bulk graft 
concentration=0.68), (a) before and (b) after thermal treatment in air at 
250°C for 14 h to form the nanoporous structure. 
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 Density measurements were used to characterize the porosity of the films. As shown 

in Table 5.2, the density of the nanoporous FPI films prepared from the PAAc-g-FPI 

copolymers decreases from 1.47 to 1.36, as the porosity increases to 8%. The porosity 

of the nanoporous FPI films increase with the increase in the graft concentration of the 

PAAc-g-FPI copolymers. However, further increase in graft concentration to above 

2.0, and thus the resulting porosity to above 15%, is accompanied by a marked 

deterioration in mechanical properties of the film, for example, a more than 50% 

decrease in tensile strength. 

The dielectric constant of the resulting nanoporous FPI film is governed by the 

intrinsic dielectric constant of the FPI matrix and the morphology (porosity) of the 

porous structure. Table 5.2 shows the dependence of the dielectric constant (at 1 MHz) 

of the nanoporous FPI film on the porosity of the film. The dielectric constant of the 

pristine FPI film is about 3.1 under ambient conditions. As anticipated, all the 

nanoporous FPI films exhibit considerably lower dielectric constants and the dielectric 

constant decreases with the increase in porosity. A dielectric constant of about 1.9 is 

obtained for the nanoporous FPI film prepared from the PAAc-g-FPI copolymer with 

an initial bulk graft concentration of about 1.67 and a final porosity of about 8%. This 

dielectric constant is even lower than that of the poly(tetrafluoroethylene) film (к~2.1) 

(Kang and Zhang, 2000). Graft copolymerization with AAc reduces the structural 

rigidity and the intermolecular packing density of the FPI chains and, thus, increases 

the molar free volume of the polymer. As a result, the dielectric constant decreases 

significantly, especially, after the decomposition of the grafted AAc side chains to 

form the nano-voids.  
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5.2.3 Conclusion 

Nanoporous low-к FPI films (with к < 2) were obtained by thermal decomposition of 

the grafted AAc side chains on the FPI backbones in air. SEM images revealed that the 

pore size was in the range of 30-100 nm. The dielectric constant of the nanoporous FPI 

film can be varied by varying the graft concentration of the labile side chains. 

Dielectric constant as low as 1.9 was obtained for the resulting nanoporous FPI films. 

Thus, molecular modification by grafting of thermally labile side chains is a relatively 

simple and effective approach to the preparation of nanoporous FPI films with low 

dielectric constants and a well preserved FPI backbone structure. 
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6.1 pH-Sensitive Fluorinated Polyimides with Grafted Acid 
and Base Side Chains 

6.1.1 Experimental 

6.1.1.1 Materials 

The fluorinated polyimide (FPIs) used in this study was 2,2-bis(3,4-dicarboxyphenyl) 

hexafluoropropane dianhydride and 4,4’-bis(4-aminophenoxy) diphenyl sulfone 

(6FDA+p-SED).  The structure of the FPI was shown in Section 3.1.1.2 (FPI-2). 

Acrylic acid (AAc) and 4-vinylpyridine (4VP) monomers were obtained from Aldrich 

Chemical Co. and were purified by vacuum distillation before use.  

6.1.1.2 Ozone Treatment of FPI  

The procedure for ozone treatment of FPI was the same as that described in Section 

5.2.1.2. After the ozone treatment, the polymer solution was cooled in an ice bath. The 

polymer solution was poured into an excess volume of ethanol to obtain the solid 

polymer precipitate. 

6.1.1.3 Determination of Peroxides Concentration by Reaction with DPPH  

About 100 mg of the ozone-treated FPI sample was dissolved in 10 ml of NMP, 

containing 6 mg of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The solution was purged 

with purified argon for about 45 min. The reaction mixture was then placed in a 

thermostated oil bath at 110°C for 30 min, followed by cooling in an ice bath. The 

ozone-activated FPI was precipitated in 90 ml of pure isopropanol. After 30 min, the 

solution was filtered and the residual DPPH concentration was determined from the 

absorption intensity at 520 nm by UV-visible absorption spectroscopy. A calibration 

curve was obtained using DPPH solutions of known concentrations. The peroxide and 

hydroperoxide content was equal to half of the concentration of the reacted DPPH 
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radicals since each peroxide and hydroperoxide group gives rise to two free radicals 

upon decomposition. The number of moles of peroxides (including hydroperoxides) 

per gram of the ozone-treated FPI can be determined from the following equation 

(Fargere et al., 1994):  

                           [Peroxides]= [(C○-C) ×100]/(2 ×1000 ×394.33 ×m) 

where C○ and C are the initial and final DPPH concentrations in g/L, respectively, and 

m is the weight of the ozone-treated FPI sample in gram. The factor 394.33 arises from 

the molecular weight of DPPH. 

6.1.1.4 Graft Copolymerization of AAc and 4VP with FPI: The PAAc-g-FPI and 
P4VP-g-FPI Copolymers 

The functional copolymer was prepared by thermally-induced molecular graft 

copolymerization of AAc or 4VP with the ozone pre-activated FPI in NMP solution at 

60°C for 3 h and under an argon atmosphere. The procedures of grafting 

copolymerization were the same as those described in Section 5.2.1.3.  

6.1.1.5 Preparation of Microfiltration (MF) Membranes  

MF membranes were prepared by phase inversion in aqueous media. The FPI 

homopolymer or the copolymer powders were dissolved in NMP at room temperature. 

The polymer or copolymer solution was cast onto a glass plate. After allowing 

exposure in air for a brief period of time, the glass plate was immersed in the casting 

bath. The temperature of the aqueous medium in the casting bath was maintained at 

25°C. Each membrane was left in the bath for about 20 min after separation from the 

glass plate. It was then extracted in a second bath of double-distilled water at 70°C for 

30 min. Such a heat treatment was commonly performed during the fabrication of 
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commercial membranes in order to refine the pore size distribution (Strathmann and 

Kock, 1977). The purified membranes were dried under reduced pressure for 

subsequent characterization. The processes of ozone preactivation, thermally induced 

graft copolymerization, and MF membrane preparation are illustrated schematically in 

Figure 6.1. 

6.1.1.6 Gel Permeation Chromatography (GPC) 

The molecular weight of the FPI homopolymer and the ozone-treated FPI samples was 

measured by gel permeation chromatograph (GPC) on a Hewlett Packard MSD series 

1100 high pressure liquid chromatograph (HPLC), equipped with a PL-gel Mixed-C 

column. Tetrahydrofuran (THF) was used as the eluent at a flow rate of 1.0 ml/min at 

25°C. The molecular weight calibration was carried out using the polystyrene (PS) 

standards. 

6.1.1.7 Fourier Transform Infrared Spectroscopy (FTIR) Measurements 

FTIR spectra of thin copolymer films cast from tetrahydrofuran (THF) solutions were 

obtained on a Bio-Rad FTIR spectrophotometer (Model FTS135) under ambient 

conditions. Typically, 16 scans at a resolution of 8 cm-1 were accumulated to obtain 

one spectrum. 

6.1.1.8 Thermal Analyses 

The thermal properties of the homopolymer and copolymer samples were measured by 

both thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). 

The procedures were the same as those described in Section 5.1.1.6.  
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Figure 6.1 Schematic illustration of the processes of thermally-induced graft copolymerization of AAc and 4VP with the ozone-preactivated 
FPI backbone and the preparation of the PAAc-g-FPI and P4VP-g-FPI MF membranes by phase inversion. 
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6.1.1.9 Elemental Analysis 

The carbon, nitrogen, hydrogen and fluorine elemental contents of the pristine FPI and 

the PAAc-g-FPI and P4VP-g-FPI copolymer samples were determined using the same 

procedures as those described in Section 5.2.1.5.  

6.1.1.10 XPS Measurements 

The surface composition of the samples was determined by X-ray photoelectron 

spectroscopy (XPS), the procedures were the same as those described in Section 3.1.9.  

6.1.1.11 Water Contact Angle Measurements 

Static water contact angles of the pristine FPI, the ozone-treated FPI, the PAAc-g-FPI 

and the P4VP-g-FPI films cast from THF solutions were measured at 25°C and 50% 

relatively humidity by the sessile drop method, using a 3 µL water droplet in a 

telescopic goniometer (Model 100-00-230, Rame-Hart, Mountain Lakes, NY, USA). 

The telescope with a magnification power of 23 was equipped with a protractor of 1 

degree graduation. For each sample, at least five measurements on different surface 

locations were averaged. The angles reported were reliable to ±3°.  

6.1.1.12 Morphology and Pore Size of the MF Membranes 

The surface morphology of the MF membranes was studied by scanning electron 

microscopy (SEM), using a JEOL 6320 electron microscope. The procedures were 

same as described in Section 5.1.1.7. The pore sizes of the PAAc-g-FPI and the P4VP-

g-FPI membranes were measured using a Coulter® Porometer II apparatus, 

manufactured by Coulter Electronics Ltd., UK. ‘POROFIL’ (the pore wetting liquid 

for the Coulter® Porometer instrument) was used as the wetting agent. 
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6.1.1.13  Measurements of the pH-Dependent Solution Flux Through the MF 
Membranes 

The PAAc-g-FPI or P4VP-g-FPI MF membrane was preconditioned by immersing in 

an aqueous solution of a prescribed pH value prior to being mounted on the 

microfiltration cell (Toyo Roshi UHP-25, Tokyo, Japan). An aqueous solution of the 

same prescribed pH value and a fixed ionic strength (I =0.2 mol/L) was added to the 

cell. The ionic strength of the solution was kept constant by the addition of acetic acid 

and sodium acetate.  The flux was calculated from the weight of solution permeated 

per unit time and per unit area of the membrane surface under a fixed N2 pressure head 

of 0.4 kg/cm2. 
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6.1.2 Results and Discussion 

6.1.2.1 Ozone Pretreatment of the FPI in NMP Solution 

Ozone treatment has been widely utilized to generate peroxide and hydroperoxide 

species on polymer chains and surfaces (Boutevin et al., 2002; Fujimoto et al., 1993). 

Under thermal induction, these labile functional groups undergo decomposition to 

initiate the free radical graft copolymerization of vinyl monomers. The amount of 

peroxides introduced by ozone treatment can be regulated by the polymer 

concentration, ozone treatment temperature, ozone concentration and ozone treatment 

time. In this study, the ozone concentration was fixed at 0.027 g/L under an O3/O2 

mixture flow rate of 300 L/h and a temperature of 25°C. The peroxide contents of the 

ozone-treated FPI samples, in mol per gram of the activated FPI and determined from 

the DPPH assay, are shown in Table 6.1. It can be seen that the peroxide concentration 

increases with the increase in ozone treatment time. A 5 min ozone treatment time 

under the present experimental conditions could lead to a peroxide content of about 1.3 

×10-5 mol per gram of FPI. The increase in the peroxide concentration is also 

consistent with the corresponding increase in the elemental [O]/[C] ratio, as 

determined from the O 1s and C 1s XPS core-level spectral area ratio of the samples. 

Ozone treatment can also introduce other polar groups, such as carbonyl and hydroxyl 

groups, into the polymer chains. The water contact angle data suggest that the film cast 

from the ozone-treated FPI were less hydrophobic than that cast from the pristine FPI. 

Since ozone treatment of the FPI is also accompanied by degradation and scission of 

the polymer chains, as indicated by the decrease in molecular weight of the polymer 

(Table 6.1), the ozone pretreatment time is fixed at 5 min in the present study. 
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      Table 6.1 Peroxide Content, Water Contact Angle and Molecular Weight of the Pristine and Ozone-treated FPI 
 

FPI Samples Peroxides Contenta) 

(mol/g of FPI) 
Molecular Weightb) Water Contact Anglec) 

(± 3°) 
[O]/[C] Ratiod) 

Pristine FPI film ---- 1.79×105 88 0.148 

2-min Ozone-treated FPI 0.7×10-5 1.70×105 83 0.151 
5-min Ozone-treated FPI 1.30×10-5 1.56×105 78 0.158 
15-min Ozone-treated FPI 1.42×10-5 1.11×105 71 0.159 
30-min Ozone-treated FPI 1.45×10-5 9.75×104 62 0.160 
45-min Ozone-treated FPI 1.72×10-5 8.23×104 58 0.170 
60-min Ozone-treated FPI 1.75×10-5 7.93×104 51 0.174 

 

                a. Determined from reaction with DPPH. 
                b. Determined by GPC. 
                c. The films were cast from THF solutions. 
                d. Determined from the corrected O 1s and C 1s XPS core-level spectral area ratio of the respective sample. 
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6.1.2.2 Bulk Graft Concentrations of the PAAc-g-FPI and P4VP-g-FPI 
Copolymers  

For the graft copolymerization of AAc and 4VP with FPI in solution, the monomer 

feed ratio can be used to regulate the graft concentration of the resulting graft 

copolymer. Elemental analysis was employed to determine the bulk content of 

elemental carbon and nitrogen. The bulk graft concentration of the copolymers is 

defined as the number of AAc or 4VP repeat units in the graft chains per repeat unit of 

the FPI main chain. In the case of the PAAc-g-FPI copolymer, the ([C]/[N])bulk ratio 

increases with the AAc monomer feed ratio. The bulk graft concentration can be 

calculated from the ([C]/[N])bulk molar ratio by taking into account of the carbon 

stoichiometries of the graft and the main chains, and the carbon to nitrogen ratio of the 

FPI main chain. Thus, the bulk graft concentration or the ([PAAc]/[FPI])bulk molar 

ratio can be calculated from the following relationship: 

                      ([PAAc]/[FPI])bulk = 2([C]- (43/2)[N])bulk/3[N]bulk 

in which the factor 43/2 accounts for the fact that there are 43 carbon atoms and 2 

nitrogen atoms per repeat unit of the FPI chains, while the factor 3 accounts for the 

fact that there are 3 carbon atoms in each AAc unit. 

In the case of the P4VP-g-FPI copolymer, the ([N]/[F])bulk ratio increases with the 4VP 

monomer feed ratio. The bulk graft concentration can be calculated from the 

([N]/[F])bulk molar ratio by taking into account of the nitrogen stoichiometries of the 

graft and the main chains, and the nitrogen to fluorine ratio of the FPI main chain. 

Thus, the graft concentration or the ([P4VP]/[FPI])bulk molar ratio can be calculated 

from the following relationship: 
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                                ([P4VP]/[FPI])bulk = 6([N]-[F]/3)bulk/[F]bulk 

in which the factor 3 accounts for the fact that there are 2 nitrogen atoms and 6 

fluorine atoms per repeat unit of the FPI chains. 

For graft copolymerization, the monomer feed ratio is an important parameter that can 

be used to regulate the graft concentration. Figure 6.2 shows the dependence of the 

bulk graft concentration of the PAAc-g-FPI copolymer (part (a)) and the P4VP-g-FPI 

copolymer (part (b)) on the respective monomer to [FPI] molar feed ratio used for graft 

copolymerization. For both copolymers, the graft concentration increases with 

increasing monomer concentration used for graft copolymerization.  

6.1.2.3 FTIR Spectroscopy of the PAAc-g-FPI and P4VP-g-FPI Copolymers 

The chemical structures of the FPI and the PAAc-g-FPI and P4VP-g-FPI copolymers 

were first studied by FTIR spectroscopy. The absorption bands associated with the 

imide ring and linkage of FPI at 1730 cm-1 (symmetrical C=O stretching), 1376 cm-1 

(C-N stretching), and 1063 cm-1 and 744 cm-1 (imide ring stretching) are present in all 

the copolymer samples (Vora et al., 2001). Comparing the FTIR spectra of the PAAc-

g-FPI copolymers with that of the pristine FPI, the absorption band of the copolymer 

samples at 1718 cm-1, attributable to the O-C=O stretching vibration, must be 

associated with the grafted AAc chains (Moharram et al., 2002). Since the 

concentration of a functional group is directly proportional to the absorption band area 

in the FTIR spectrum, the ratio of the absorption band area at 1718 cm-1 to those at 

1376 cm-1 and 1063 cm-1 (the characteristic absorption bands of the FPI) is directly 

related to the bulk graft concentration of the AAc side chains in the corresponding 
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Figure 6.2 Effect of monomer molar feed ratio on the bulk graft concentration of (a) 
the PAAc-g-FPI copolymers and (b) the P4VP-g-FPI copolymers. 
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AAc-g-FPI copolymer. In the case of the P4VP-g-FPI copolymers, a new absorption 

band at 1410 cm-1, attributable to the pyridine ring group, is discernable. The 

intensities of the absorption bands at 1730 and 1410 cm-1 increase with the increase in 

the respective AAc to FPI and 4VP to FPI monomer feed ratio. Therefore, the FTIR 

data suggest that the graft concentration increases with the increase in the AAc or 4VP 

monomer to FPI molar feed ratio used for graft copolymerization. This result is in 

good agreement with that obtained from the elemental analysis. 

6.1.2.4 Thermal Stability of the PAAc-g-FPI or P4VP-g-FPI Copolymers 

Figure 6.3 shows the respective TG analysis curves of the pristine FPI (Curve 1), the 

PAAc-g-FPI and P4VP-g-FPI copolymers of different graft concentrations (Curves 2 

to 5), the AAc homopolymer (Curve 6) and the 4VP homopolymer (Curve 7). In 

comparison with the pristine FPI, AAc and 4VP homopolymers, the copolymer 

samples exhibit an intermediate weight loss behavior and undergo a two-step 

degradation process. The onset of the first major weight loss occurs at the temperature 

which corresponds to the decomposition of the PAAc or the P4VP segments in the 

copolymers. The second major weight loss begins at about 560°C, which coincides 

with the decomposition temperature of the FPI main chain. The TG analysis curves 

also indicate that the extent of weight loss of copolymers during the first stage of 

thermal decomposition is approximately equal to the AAc or 4VP polymer content in 

the respective graft copolymer. The relative smaller weight loss of the copolymers 

during the first stage of thermal decomposition is consistent with the fact that the 

molecular weight of the FPI repeat unit is substantially higher than that of the AAc or 

4VP repeat unit. Furthermore, the fact that the temperature for the onset of the major 

weight loss in the copolymer is substantial high than the decomposition temperature of 

the PAAc or P4VP homopolymer suggests that the graft chains have been stabilized 
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through covalent bonding to the FPI backbones. They may also have been partially 

imidized into the FPI structure at elevated temperatures. 

Table 6.2 shows the glass transition temperature (Tg), obtained from DSC, of the 

pristine FPI and the PAAc-g-FPI and P4VP-g-FPI copolymers of different graft 

concentrations. In the present study, the pristine FPI has a Tg of about 284°C. Graft 

copolymerization with AAc or 4VP reduces structural rigidity of the FPI and increases 

the molar free volume of the polymer, resulting in the lowering of Tg. It can also be 

seen in Table 6.2 that the Tg of the graft copolymer decreases with the increase in graft 

concentration. Only the Tg of the FPI backbone is discernible in the DSC curves of the 

graft copolymers. This phenomenon is probably associated with the fact that FPI is the 

major phase in each copolymer, arising from the large disparity in molecular sizes 

between the FPI and the AAc (or 4VP) repeat units. 

6.1.2.5 Water Contact Angles of the PAAc-g-FPI and P4VP-g-FPI Copolymer 
Films 

The pristine FPI film is hydrophobic, with a water contact angle of about 88°. A 

substantial decrease in water contact angle of the FPI films is achieved through graft 

copolymerization with AAc or 4VP. The contact angle is reduced to about 60° for 

copolymer films with ([PAAc]/[FPI])bulk=1.67 or ([P4VP]/[FPI])bulk=1.77 (Table 6.2). 

This phenomenon is attributable to the hydrophilic nature of the grafted AAc or 4VP 

polymer side chains. Thus, as shown in Table 6.2, the water contact angle of the 

PAAc-g-FPI or P4VP-g-FPI films decreases with the increase in the AAc or 4VP 

polymer graft concentration. 
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Figure 6.3 TG analysis curves of: (1) the FPI homopolymer, the PAAc-g-FPI 
copolymers with graft concentrations of (2) ([PAAc]/[FPI])bulk=0.68, (3) 
([PAAc]/[FPI])bulk=1.67, the P4VP-g-FPI copolymers with graft 
concentration of (4) ([P4VP]/[FPI])bulk=0.41, (5) 
([P4VP]/[FPI])bulk=1.77, (6) the AAc homopolymer and (7) the 4VP 
homopolymer. 

0 200 400 600 800 1000

0

20

40

60

80

100

120

(7)

(6)

(5)
(3)

(4)

(2)
(1)

 
Temperature

W
ei

gh
t R

em
ai

nn
in

g 
(%

)

(°C) 



 

 

142

Table 6.2 Physicochemical Properties of the FPI, PAAc-g-FPI and P4VP-g-FPI Copolymers 

 

FPI Samples 

Molar Feed Ratio

[AAc]/[FPI] or 

[4VP]/[FPI] 

Graft Concentration 

([PAAc]/[FPI])bulk or 

([P4VP]/[FPI])bulk 

Grafted Chain 
Length 

(DP) a) 

Molecular 
Weight of the 
Grafted Chain 

Glass Transition  

Temperature (Tg)b)

  (°C) 

Water Contact 
Anglec) 

( ± 3° ) 

1. Pristine FPI  --- --- --- --- 293 88 

2. PAAc-g-FPI Copolymer 12 0.68 62 4464 287 79 

3. PAAc-g-FPI Copolymer 35 0.99 90 6480 282 67 

4. PAAc-g-FPI Copolymer 47 1.38 126 9072 279 65 

5. PAAc-g-FPI Copolymer 58 1.67 153 11016 276 63 

6. P4VP-g-FPI Copolymer 8 0.41 37 3922 289 67 

7. P4VP-g-FPI Copolymer 24 0.83 76 8056 285 63 

8. P4VP-g-FPI Copolymer 40 1.49 136 14416 281 61 

9. P4VP-g-FPI Copolymer 56 1.77 162 17172 277 59 
      

                         a. Average degree of graft polymerization (DP) was estimated from the peroxide concentration of the 5 min ozone-treated FPI and the graft concentration. 
                         b. Determined by differential scanning calorimetry (DSC). 
                 c. The films were cast from tetrahydrofuran (THF) solutions. 
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6.1.2.5 Surface Composition of the MF Membranes Prepared from the PAAc-g-
FPI and P4VP-g-FPI Copolymers 

After the PAAc-g-FPI and P4VP-g-FPI MF membranes had been fabricated by phase 

inversion in water (pH=6.4) and at room temperature from 10 wt% NMP solutions of 

the respective copolymers, the surface composition and morphology of the membranes 

were investigated by XPS. 

Figure 6.4 shows the respective C 1s and N 1s core-level spectra of the pristine FPI 

membrane surface (part (a)), the PAAc-g-FPI membrane surfaces with bulk graft 

concentration of 0.68 and 1.67 (part (b) and part (c), respectively), and the P4VP-g-FPI 

membrane surfaces with bulk graft concentration of 0.83 and 1.49 (part (d) and part 

(e), respectively) . The C 1s core-level spectrum of the pristine FPI membrane can be 

curved-fitted with five peak components, having binding energies (BE’s) at 284.6 eV 

for the C-H species, at 285.8 eV for the C-O and C-N species, at 288.4 eV for the 

N(C=O)2 species, at 291.1 eV for the π-π* shakeup satellite, and at 292.8 eV for the 

CF3 species (Beamson and Briggs, 1992). The O-C=O species of the grafted PAAc 

polymer chains have a C 1s peak component BE at about 288.5 eV. The BE’s of the O-

C=O species and the imide –N-(C=O)2 species cannot be resolved clearly. The two 

species are represented by a single peak component at the BE of about 288.4 eV. The 

increase in AAc polymer graft concentration with the AAc to FPI molar feed ratio is 

readily indicated by the steady increase in the intensity ratio of the O-C=O species to 

the CF3 species. 

The N 1s core-level spectrum of the pristine FPI membrane shows only one peak 

component at the BE of 400.5 eV, attributable to the –N(C=O)2 (imide) species. The 

presence of the grafted 4VP polymer on FPI can be deduced from the N 1s peak 
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(b) PAAc-g-FPI 
([PAAc]/[FPI])bulk=0.68

(c) PAAc-g-FPI 
([PAAc]/[FPI])bulk=1.67 

(d) P4VP-g-FPI 
([P4VP]/[FPI])bulk=0.83
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([P4VP]/[FPI])bulk=1.49 
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Figure 6.4 XPS C 1s and N 1s core-level spectra of (a) the pristine FPI membrane, 
the PAAc-g-FPI membranes with bulk graft concentrations of (b) 0.68
and (c) 1.67, and the P4VP-g-FPI membranes with bulk graft 
concentrations of (d) 0.83 and (e) 1.49 (Membranes cast by phase 
inversion in water (pH=6.4) at 25°C from 10 wt% NMP solutions). 
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component at the BE of 398.5 eV, attributable to the imine species (=N-) of the 4VP 

polymer (Zhang et al., 2001b). An additional peak component appears at the BE of 

about 399.5 eV, which may be attributed to the partially protonated or hydrogen-

bonded nitrogen in the 4VP polymer. The formation of hydrogen bonding between 

poly(vinylpyridine)s and other polymers has been reported (Ruokolainen et al., 1998). 

The increase in graft concentration with the 4VP to FPI molar feed ratio is readily 

indicated by the steady increase in the ratio of the =N- and –N-H species to the –

N(C=O)2 species. Thus, the XPS results are in good agreement with those obtained 

from the elemental analysis and FTIR spectroscopy. 

The surface graft concentrations of the PAAc-g-FPI and P4VP-g-FPI MF membranes 

were determined from the XPS derived carbon, nitrogen and fluorine atomic ratios. 

Figure 6.5 shows the dependence of the surface graft concentration of the PAAc-g-FPI 

MF membrane (part (a)) and P4VP-g-FPI MF membrane (part (b)) on the respective 

monomer to FPI molar feed ratio used for graft copolymerization. The surface graft 

concentration of each copolymer membrane increases almost linearly with the 

respective monomer to FPI molar feed ratio. Comparing the surface [C]/[N] and 

[N]/[F] ratios (determined by XPS) in Figure 6.5 with the bulk composition 

(determined by elemental analysis) in Figure 6.2, it is obvious that the surface [C]/[N] 

and [N]/[F] ratios, and thus the graft concentrations, are considerably higher than the 

corresponding bulk ratios. This phenomenon arises mainly from the enrichment of the 

AAc and 4VP side chains at the outermost surface during the course of membrane 

formation by phase inversion in the aqueous medium. For multicomponent polymer 

systems (including copolymers and polymer blends), surface enrichment of the 

hydrophilic components arising from interaction with the environments occurs readily 

(Hester et al.,1999; Chen and Hong, 2002). 
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Figure 6.5 Effect of the monomer molar feed ratio on the surface graft concentration 
of (a) the PAAc-g-FPI MF membranes and (b) the P4VP-g-FPI MF 
membranes, cast at 25°C via phase inversion in water (pH=6.4) from 10
wt% NMP solutions.
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6.1.2.6 Surface Morphology of the PAAc-g-FPI and P4VP-g-FPI MF Membranes 

The surface morphology of the PAAc-g-FPI and P4VP-g-FPI MF membranes was 

studied by SEM at a magnification of 2000×. Figure 6.6 shows the SEM images of the 

respective MF membranes cast by phase inversion at 25°C in water from 10 wt% NMP 

solutions of the pristine FPI powders, the PAAc-g-FPI copolymers with bulk graft 

concentrations of 0.68, 1.38 and 1.67, and the P4VP-g-FPI copolymers with bulk graft 

concentrations of 0.41 and 1.49. The SEM images reveal that the membranes cast from 

the NMP solutions of the graft copolymers have a higher porosity than that cast from 

the pristine FPI, and that the porosity increases with the graft concentration of the AAc 

or 4VP polymer in the copolymer. In the presence of high concentrations of the 

hydrophilic AAc or 4VP polymer side chains, surface enrichment of the AAc or 4VP 

polymer takes place during phase inversion in water to maximize the interfacial 

interaction between the pore surface and water, resulting in an increase in porosity and 

pore size of the membrane. Since the interfacial interaction are dictated by the surface 

graft concentration of the AAc or 4VP polymer side chains, mass migration of the 

AAc or 4VP polymer side chains in the MF membrane with a high graft concentration 

readily give rise to larger pores or higher porosity during phase inversion. 

6.1.2.7 Pore Sizes of the PAAc-g-FPI and P4VP-g-FPI MF Membranes 

The mean pore size and pore size distributions of various PAAc-g-FPI and P4VP-g-

FPI MF membranes cast from NMP solutions and under different conditions, such as 

different bulk graft concentrations, different copolymer concentrations of the cast 

solutions, and different pH values of the casting bath, were measured on the Coulter® 

Porometer II instrument, using the commercial ‘POROFIL’ fluid as the wetting agent. 

The pore size distributions of the PAAc-g-FPI and P4VP-g-FPI MF membranes cast 
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under different conditions are shown in Table 6.3. The data indicate that the mean pore 

size of the MF membrane increases with the graft concentration of the AAc or 4VP 

side chains in the copolymer.  

The dependence of the pore sizes of the PAAc-g-FPI and P4VP-g-FPI MF membranes 

on the pH of the aqueous casting bath is also shown in Table 6.3. The pore size of the 

 PAAc-g-FPI MF membrane decreases with the decrease in pH of the casting bath. 

Thus, a lower proton concentration of the casting bath will lead to a larger pore size. 

The phenomenon probably arises from the enhanced interaction of the carboxylic acid 

groups with the aqueous medium at a high pH to give rise to the extensive formation of 

the carboxylic anions (see below). On the other hand, however, the pore sizes of the 

P4VP-g-FPI MF membrane increase with the decreasing pH of the casting bath. The 

observation indicates that a high proton concentration in the casting bath will lead to a 

large pore size. The phenomenon probably arises from the interaction between the 

pyridine groups on the pore surfaces and the protons in the aqueous solution. The 

extent of protonation and hydrogen bonding of the pyridine ring is enhanced at a low 

pH of the casting bath. The pore sizes of the PAAc-g-FPI and P4VP-g-FPI MF 

membranes are also dependent on the concentrations of the copolymer in the casting 

solution, as shown in Table 6.3. The pore sizes decrease drastically with the increase in 

concentrations of the PAAc-g-FPI or P4VP-g-FPI copolymer in the casting solution. 

At low concentration, the extraction of the solvent from the bulk and at the 

copolymer/non-solvent interface is facilitated. As a result, larger pore sizes are 

obtained for the resulting MF membranes cast from the copolymer solutions of lower 

concentrations. 
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(a) Pristine FPI Membrane (b)  PAAc-g-FPI Membrane 
      ([PAAc]/[FPI])bulk=0.68 

(c)  PAAc-g-FPI Membrane 
      ([PAAc]/[FPI])bulk=1.38 

(d)  PAAc-g-FPI Membrane 
      ([PAAc]/[FPI])bulk=1.67 

(e)  P4VP-g-FPI Membrane 
      ([P4VP]/[FPI])bulk=0.41 

(f)  P4VP-g-FPI Membrane 
      ([P4VP]/[FPI])bulk=1.49 

Figure 6.6   SEM images of the MF membranes cast at 25°C by phase inversion in 
water (pH=6.4) from 10 wt% NMP solutions of (a) the pristine FPI, 
the PAAc-g-FPI copolymers with bulk graft concentrations of (b) 
0.68, (c) 1.38,  (d) 1.67, and the P4VP-g-FPI copolymers with bulk 
graft concentrations of (e) 0.41 and (f) 1.49. 
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Table 6.3 Pore Size Distribution a) of the PAAc-g-FPI and the P4VP-g-FPI MF Membranes b) 

(the data in bold and italic are for the P4VP-g-FPI copolymer) 
 

Molar Feed 
Ratio 

Bulk Graft 
Conc. of 

Copolymers 

pH Value of 
Casting Bath 

Concentration of 
Cast Solution 

(wt%) 

Min. Pore Size 
(µm) 

Max. Pore Size 
(µm) 

Mean PoreSize 
(µm) 

(a) Effect of Bulk Graft Conc. on the Pore-Size Distribution 
12/8 0.68/0.41 6.4 10 0.21/0.25 0.38/0.72 0.29/0.29 
35/24 0.99/0.83 6.4 10 0.22/0.24 2.33/1.98 0.41/0.43 
47/40 1.38/1.49 6.4 10 0.16/0.29 3.62/3.49 0.45/0.63 
58/56 1.67/1.77 6.4 10 0.25/0.20 3.18/4.19 0.69/0.82 

                    (b) Effect of pH Value of the Casting Bath on the Pore-Size Distribution 
35/56 0.99/1.77 4.9 12 0.31/0.35 2.33/1.04 0.38/0.39 
35/56 0.99/1.77 3.1 12 0.18/0.41 0.64/4.19 0.28/0.50 
35/56 0.99/1.77 2.0 12 0.22/0.50 1.72/2.84 0.27/0.64 
35/56 0.99/1.77 1.0 12 0.18/0.53 1.13/4.33 0.25/0.67 

(c) Effect of Solution Conc. on the Pore-Size Distribution 
12/8 0.68/0.41 6.4 7 0.37/0.44 2.17/3.84 0.77/0.93 
12/8 0.68/0.41 6.4 10 0.21/0.25 0.38/0.72 0.29/0.29 
12/8 0.68/0.41 6.4 15 0.12/0.12 0.35/0.40 0.16/0.17 

 

             a. These pore sizes were measured on the Coulter® Porometer II which utilized a liquid displacement technique. 
             b. Membranes were cast from NMP solutions of the PAAc-g-FPI and P4VP-g-FPI copolymers at 25°C in aqueous media. Porous membranes cannot be cast from 

the pristine FPI by the present phase inversion technique. 
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6.1.2.8 pH-Dependent Flux of Aqueous Solutions Through the PAAc-g-FPI and 
P4VP-g-FPI MF Membranes 

The pH-dependent flux of aqueous solutions through the pristine FPI, the PAAc-g-FPI 

and the P4VP-g-FPI membranes is shown in Figure 6.7. It is clear that the permeability 

of aqueous solutions through the pristine FPI MF membranes is marginal and pH-

independent (Curves 5). The low permeability arises from the low porosity of the 

membrane. On the other hand, however, the flux of the aqueous solution through the 

PAAc-g-FPI and P4VP-g-FPI MF membranes exhibits a pH-dependent behavior, but 

in an opposite or complementary manner. The permeation rate of the aqueous solution 

through the PAAc-g-FPI membrane decreases with the increase in pH of the solution 

from 0.5 to 6.4 (Curves 1 and 2), while the permeation rate of the aqueous solution 

through the P4VP-g-FPI membrane increases with the increase in solution pH from 0.5 

to 6.4 (Curves 3 and 4), with the most drastic change in permeation rate being 

observed between pH 1 and 4. Furthermore, the pH-sensitivity of the flux through both 

types of membranes is enhanced by the increase in graft concentration. The pH-

dependent flux of the aqueous solutions through the two types of membranes at pH 

between 0.5 and 6.4 are completely reversible. These results suggest that both the 

extent of interaction with the aqueous environment and the conformation of the graft 

chains vary, reversibly, with the pH of the solution to control the effective pore size of 

the membrane.  

The change in permeability in response to the change in solution pH can be attributed 

to the change in conformations of the graft chains on the membrane surface, especially 

on the pore surfaces and in the sub-surface region of the pores. Due to the non-

ionizablity of the polymer chains in the pristine FPI membranes, the polymer chain 
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Figure 6.7 pH-dependent permeability of aqueous solutions through the pristine FPI,
the PAAc-g-FPI and the P4VP-g-FPI MF membranes. Curves 1 and 2
are obtained from flux through the PAAc-g-FPI MF membranes with 
graft concentrations or ([PAAc]/[FPI])bulk=0.99 and 1.67, respectively. 
Curves 3 and 4 are obtained from flux through the P4VP-g-FPI MF 
membranes with graft concentrations or ([P4VP]/[FPI])bulk=0.83  and 
1.77, respectively. Curve 5 is obtained from the flux through the pristine
FPI membrane. 
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conformation and the membrane pore dimension will remain constant at all pH values. 

On the other hand, as a weak acid (pKa=4.3), the carboxylic groups of the grafted AAc 

polymer side chains can be ionized or deprotonated to become negatively charged. 

With the increase in pH of the casting solution, most of the carboxylic groups are 

transformed into carboxylic anions. Strong electrostatic repulsion among the 

carboxylic anions, together with their strong interaction with the aqueous solution, 

forces the AAc polymer side chains to adopt a highly extended conformation. The 

extension of the AAc polymer side chains into the pores and in the sub-surface region 

of the pores reduces the effective dimension of the pores. As a result, the permeability 

of the aqueous solution through the MF membrane is reduced. On the other hand, the 

AAc polymer chains assume a coil or globule conformation under the low-pH 

conditions. As a result, steric obstruction to the pores of the membrane is substantially 

reduced and the permeation rate increases. This mechanism is termed the “through-

pore mechanism” and has been studied by Israels et al. (Israels et al., 1994), using a 

two-dimensional self-consistent mean-field (SCF) theory.  

On the other hand, as a weak base, the pyridine groups of the grafted 4VP side chains 

are protonated or become complexed in an acid solution. The resulting ionic character 

and the electrostatic repulsion among the positively charged pyridinium nitrogen atoms 

overcome the hydrophobic interactions among the alkyl segments of the chains. The 

uncoiling of the polymer side chains and their interactions with the aqueous solution at 

a low pH value lead to an extended conformation in the surface and sub-surface region 

of the pores. As a result, the effective pore dimension, and thus the permeability of the 

aqueous solution through the MF membrane, is reduced. The charge transfer 

interaction of the 4VP polymer with protonic acids has been reported earlier (Liu et al., 
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1999). Thus, the P4VP-g-FPI MF membranes from the FPI with grafted base polymer 

side chains complement the PAAc-g-FPI MF membranes from the FPI with grafted 

acid polymer side chains in regulating the flux of the aqueous solutions in the pH 

range of 0.5 to 6.4. 

6.1.3 Conclusion 

PAAc-g-FPI and P4VP-g-FPI copolymers were successfully synthesized through 

thermally-induced molecular graft copolymerization of the respective AAc and 4VP 

monomer with the ozone-preactivated FPI backbones in NMP solutions. The MF 

membranes prepared from the respective PAAc-g-FPI and P4VP-g-FPI copolymers by 

phase inversion in water showed enrichment of the AAc and 4VP side chains in the 

surface region. The mean pore size of both the PAAc-g-FPI and P4VP-g-FPI MF 

membranes increased with the increase in graft concentration and the decrease in 

concentration of the casting solution. The mean pore sizes of the PAAc-g-FPI MF 

membranes also increased with the increase in pH of the casting bath. An opposite 

behavior was observed for the P4VP-g-FPI MF membranes. The flux of aqueous 

solutions through the PAAc-g-FPI and P4VP-g-FPI MF membranes exhibited a strong 

but opposite dependence on the solution pH in the pH range of 0.5 to 6.4. The pH-

dependent flux behavior arose from the interaction of the grafted chains on the pore 

surface and sub-surface region with the aqueous solution.  
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6.2 Synthesis and Characterization of Fluorinated Polyimide 
with Grafted Poly(N-isopropylacrylamide) Side Chains and 
the Temperature-sensitive Microfiltration Membranes  

6.2.1 Experimental 

6.2.1.1 Materials 

The fluorinated polyimide (FPI) used in this study was 2,2-bis(3,4-dicarboxyphenyl) 

hexafluoropropane dianhydride+4,4’-bis(4-aminophenoxy) diphenyl sulfone. The N-

isopropylacrylamide (NIPAAm) monomer was obtained from Aldrich Chemical Co. 

The solvent, N-methyl-2-pyrrolidone (NMP), was obtained from Merck Chemical Co.  

The chemical structure of the NIPAAm is shown below. 

 

 

 

6.2.1.2 Ozone Treatment of FPI  

The procedure for ozone treatment of FPI was the same as that described in Section 

5.2.1.2. A treatment time of about 5 min was chosen to obtain optimum content of 

peroxides (Wang et al., 2003). After the ozone treatment, the polymer solution was 

cooled in an ice bath.  

 6.2.1.3 Graft Copolymerization of NIPAAm with FPI: the P(NIPAAm)-g-FPI 
Copolymer 

The functional copolymer was prepared by thermally-induced molecular graft 

copolymerization of NIPAAm with the ozone pre-activated FPI in NMP at 60°C for 6 

h and under an argon atmosphere. The monomer and about 20 ml of the FPI solution 

were introduced into a 3-necked round bottom flask equipped with a thermometer, a 
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N
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H CH3

CH3

NIPAAm: 



 

 156

condenser, and a gas line. The NIPAAm monomer concentrations were varied from 

0.01 g/ml to 0.16 g/ml. The final volume of each reaction mixture was adjusted to 50 

ml. The solution was saturated with purified argon for 1 h under stirring. The reactor 

flask was then placed in a thermostated water bath at 60°C to initiate the graft 

copolymerization reaction. A constant flow of argon was maintained during the 

thermal graft copolymerization process. After the reaction time of 6 h, the reactor flask 

was cooled in an ice bath and the NIPAAm graft-copolymerized FPI (P(NIPAAm)-g-

FPI) was precipitated in excess amount of doubly distilled water. After filtration, the 

copolymer was further purified by stirring for 48 h in copious amounts of doubly 

distilled water at room temperature. The precipitation and exhaustive washing process 

ensured the complete removal of the residual monomer and homopolymer. The 

copolymers were then dried by pumping under reduced pressure for subsequent 

characterization.  

6.2.1.4 Preparation of Microfiltration (MF) Membranes  

MF membranes were prepared by phase inversion in aqueous media from a NMP 

solution containing 10 wt% FPI homopolymer or P(NIPAAm)-g-FPI copolymer. The 

polymer or copolymer solution was cast onto a glass plate. After allowing exposure in 

air for a short time, the glass plate was immersed in a bath of doubly distilled water 

(non-solvent). The temperature of the water in the casting bath was varied from 4°C to 

55°C. Each membrane was left in the bath for 20 min after separation from the glass 

plate. The purified membranes were dried under reduced pressure for subsequent 

characterization.  
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6.2.1.4 Infrared Spectroscopy Measurements 

Fourier transform infrared (FTIR) spectra of the FPI and the P(NIPAAm)-g-FPI 

copolymers, dispersed in KBr, were obtained on a Bio-Rad FTIR spectrophotometer 

(Model FTS135) under ambient conditions. The procedure was the same as that 

described in Section 6.1.1.7. 

6.2.1.5 Thermal Analyses 

The thermal properties of the homopolymer and copolymer samples were measured by 

both thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). 

The procedures were the same as those described in Section 5.1.1.6. 

6.2.1.6 Water Contact Angle Measurements 

Static water contact angles of the pristine FPI and the P(NIPAAm)-g-FPI films cast 

from THF solutions were measured at 27°C and 60% relatively humidity by the sessile 

drop method, using a 3 µL water droplet in a telescopic goniometer (Model 100-00-

230, Rame-Hart, Mountain Lakes, NY, USA). The procedures were the same as those  

described in Section 6.1.1.11.  

6.2.1.7 Elemental Analyses 

The carbon, nitrogen, hydrogen and fluorine elemental contents of the pristine FPI and 

the P(NIPAAm)-g-FPI copolymer samples were determined using a Perkin-Elmer 

2400 element analyzer. The procedures were the same as those described in Section 

5.2.1.5. 
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6.2.1.8 XPS Measurements 

The surface composition of the samples was determined by XPS. the procedure was 

the same as that described in Section 3.1.9.  

6.2.1.9 Morphology and Pore Size of the MF Membranes 

The surface morphology of the MF membranes was studied by scanning electron 

microscopy (SEM), using a JEOL 6320 electron microscope. The membranes were 

mounted on the sample studs by means of double-sided adhesive tapes. A thin layer of 

gold was sputtered on the sample surface prior to the SEM measurement. The SEM 

measurements were performed at an accelerating voltage of 15 kV. 

The pore sizes of the P(NIPAAm)-g-FPI membranes were measured using a Coulter® 

Porometer II apparatus, manufactured by Coulter Electronics Ltd., UK.  

6.2.1.10 Measurements of the Temperature-Dependent Flux Through the MF 
Membranes 

Distilled water and 2-propanol were used to study the dependence of permeation rate 

on temperature. The NIPAAm-g-FPI MF membrane was mounted on the 

microfiltration cell (Toyo Roshi UHP-25, Tokyo, Japan). The micro-filtration cell 

containing the permeate solution was kept in a thermostated water bath for at least 20 

min before the flow was initiated. The temperature of permeate was checked by a 

thermometer installed at the outlet of the filtration cell. The flux was calculated from 

the weight of solution permeated per unit time and per unit area of the membrane 

surface under a fixed N2 pressure head of 0.4 kg/cm2.  
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6.2.2 Results and Discussion 

6.2.2.1 Bulk Graft Concentration of the P(NIPAAm)-g-FPI Copolymers 

For the graft copolymerization of NIPAAm with FPI in solution, the monomer to 

polymer feed ratio can be used to regulate the graft concentration of the resulting graft 

copolymer. The bulk contents of nitrogen and fluorine were determined by elemental 

analysis. The bulk graft concentration of the copolymers is defined as the number of 

the NIPAAm repeat units in the graft chains per repeat unit of the FPI main chain. 

Hence the bulk graft concentration can be calculated from the ([N]/[F])bulk molar ratio 

by taking into account of the nitrogen stoichiometries of the graft and the main chains, 

and the fluorine to nitrogen ratio of the FPI main chain. Thus, the bulk graft 

concentration or the ([P(NIPAAm)]/[FPI])bulk molar ratio can be calculated from the 

following relationship: 

([P(NIPAAm)]/[FPI])bulk = 6([N]-[F]/3)bulk/[F]bulk 

in which the factor 1/3 accounts for the fact that there are 2 nitrogen atoms and 6 

fluorine atoms per repeat unit of the FPI chains. 

Figure 6.8 shows the dependence of the bulk graft concentration of the P(NIPAAm)-g-

FPI copolymer on the NIPAAm to FPI molar feed ratio used for graft 

copolymerization. Thus, the graft concentration increases with increasing monomer 

concentration. The average length of the graft chains for each copolymer sample, 

estimated from the peroxide and graft  concentration, is shown in Table 6.4. 
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Figure 6.8 Effect of the monomer molar feed ratio on the bulk graft 
concentration of the P(NIPAAm)-g-FPI copolymer. 
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6.2.2.3 FTIR Spectroscopy of the P(NIPAAm)-g-FPI Copolymers 

The chemical structures of the FPI and P(NIPAAm)-g-FPI copolymers were studied by 

FTIR spectroscopy. The absorption bands associated with the imide ring and linkage 

of FPI at 1730 cm-1 (symmetrical C=O stretching), 1376 cm-1 (C-N stretching), and 

1063 cm-1 and 744 cm-1 (imide ring stretching) are present in all the copolymer 

samples (Vora et al., 2001). Comparing the FTIR spectra of the P(NIPAAm)-g-FPI 

copolymers with that of the pristine FPI, the absorption band of the copolymer samples 

at 1645 cm-1and 1548 cm-1, attributable, respectively, to the secondary amide C=O 

stretching and N-H stretching of the amide (O=C-NH) groups of the grafted NIPAAm 

chains, are present in all the P(NIPAAm)-g-FPI samples (Chen et al., 1998). In 

addition, with the increase in NIPAAm to FPI molar feed ratio, the intensity of the 

absorption bands at 1645 and 1548 cm-1 is enhanced, suggesting an increase in 

concentration of the grafted NIPAAm side chains. Therefore, the FTIR data suggest 

that the graft concentration increases with the increase in NIPAAm to FPI molar feed 

ratio used for graft copolymerization. This result is in good agreement with that 

obtained from the elemental analysis. 

6.2.2.4 Thermogravimetric Analyses of the P(NIPAAm)-g-FPI Copolymers 

The thermal properties of the graft copolymers were studied by thermogravimetric 

(TG) analysis. Figure 6.9 shows the TG analysis curves of the pristine FPI (Curve 1), 

the P(NIPAAm)-g-FPI copolymers of different graft concentrations (Curves 2 to 6) 

and the NIPAAm homopolymer (Curve 7). The P(NIPAAm)-g-FPI samples show 

intermediate weight loss behavior in comparison to that of the pristine FPI and that of 

the NIPAAm homopolymer. A distinct two-step degradation process is also observed 

for the copolymers. The onset of the first major weight loss at about 375°C 
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Figure 6.9 TG analysis curves of (1) the FPI homopolymer, the P(NIPAAm)-g-FPI 
copolymers with bulk graft concentrations of  (2) 0.61, (3) 0.75, (4) 
0.91, (5) 1.38, (6) 1.87, and (7) the NIPAAm homopolymer. 
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corresponds to the decomposition of the NIPAAm polymer segments. The second 

major weight loss begins at about 560°C, which coincides with the decomposition 

temperature of the FPI main chain. The TG analysis curves also indicate that the extent 

of weight loss in each copolymer during the first stage of thermal decomposition is 

approximately equal to the NIPAAm polymer content in the graft copolymer. 

Table 6.4 shows the glass transition temperature (Tg), obtained from DSC, of the 

pristine FPI and the P(NIPAAm)-g-FPI copolymer of different graft concentrations. A 

similar trend has been observed as in the case of PAAc-g-FPI and P4VP-g-FPI, which 

was shown in Table 6.2. The Tg of the P(NIPAAm)-g-FPI copolymer is reduced to 

about 281°C for copolymers with a bulk graft concentration, or 

([P(NIPAAm)]/[FPI])bulk ratio, of 1.87 (see Table 1). Graft copolymerization with 

NIPAAm reduces the structural rigidity of the FPI and increases the molar free volume 

of the polymer, resulting in the lowering of Tg. It can also be seen from the data in 

Table 1 that the Tg of the graft copolymer decreases with the increase in graft 

concentration.  

6.2.2.5 Water Contact Angles of the P(NIPAAm)-g-FPI Copolymer Films 

The pristine FPI film is hydrophobic, with a water contact angle of about 88°. A 

substantial decrease in water contact angle of the FPI films is achieved through graft 

copolymerization with NIPAAm. The contact angle is reduced to about 40° for the 

copolymer film with a bulk graft concentration, ([P(NIPAAm)]/[FPI])bulk, of 1.87 

(Table 1). This phenomenon is attributable to the hydrophilic nature of the grafted 

NIPAAm polymer side chains below its LCST. Thus, as shown in Table 1, the water 

contact angle of the P(NIPAAm)-g-FPI film decreases with the increase in NIPAAm 

polymer graft concentration. 
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Table 6.4 Physicochemical Properties of the FPI and P(NIPAAm)-g-FPI Copolymers 

 

FPI Samples 

Molar Feed Ratio 

[NIPAAm]/[FPI] 

Graft Concentration 

([P(NIPAAm)]/[FPI])bulk

Graft Chain 
Length (DP)a) 

Glass Transition 
Temperature b) (°C)

Water Contact 
Anglec) ( ± 3° ) 

1. Pristine FPI  --- ---- ---- 293 88 

2. P(NIPAAm)-g-FPI Copolymer 4 0.61 56 290 78 

3. P(NIPAAm)-g-FPI Copolymer 8 0.75 69 289 67 

4. P(NIPAAm)-g-FPI Copolymer 22 0.91 83 287 61 

5. P(NIPAAm)-g-FPI Copolymer 37 1.38 126 283 55 

6. P(NIPAAm)-g-FPI Copolymer 60 1.87 171 281 40 

 
                         a. The average degree of graft polymerization (DP) and the number of grafts per FPI chain were estimated from the peroxide concentration of the 5-min ozone-

treated FPI and the graft concentration. (Mn of FPI ~1.56×105)  

                 b. Determined by differential scanning calorimetry (DSC). 

                 c. The films were cast from THF solutions. 
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6.2.2.6 Surface Composition of the MF Membranes Prepared from the 
P(NIPAAm)-g-FPI Copolymers 

Figure 6.10 shows the respective wide scan and N 1s core-level spectra of the 

membranes prepared from pristine FPI and the P(NIPAAm)-g-FPI copolymers of 

different graft concentrations. All the membranes were cast in doubly distilled water at 

27oC. In the case of the pristine FPI, the N1s core level spectrum can be curve-fitted 

with a single peak component, with binding energy (BE) at 400.5 eV, attributable to 

the –N(C=O)2- (imide) species (Zhang et al. 2000). The presence of the grafted 

NIPAAm polymer on FPI can be deduced from the N 1s peak component at the BE of 

399.6 eV, attributable to the amide (CONH) species in the NIPAAm polymer 

(Beamson and Briggs, 1992). The increase in graft concentration with the NIPAAm to 

FPI molar feed ratio is readily indicated by the steady increase in the ratio of the 

(CONH) species to the –N(C=O)2 species. It can also be verified from the wide scan 

spectra that the intensity of the F 1s signal decreases, while that of the N 1s signal 

increases, with the increase in graft concentration. Thus, the XPS results are in good 

agreement with those obtained from the FTIR spectroscopy and elemental analysis. 

The surface graft concentrations of the P(NIPAAm)-g-FPI MF membranes prepared by 

the phase inversion method are determined from the [N]/[F] ratio (determined by 

XPS), or the ([N]/[F])surface ratio, and the nitrogen and fluorine stoichiometries of the 

graft and the main chains. Figure 6.11 shows the dependence of the surface graft 

concentration of the P(NIPAAm)-g-FPI MF membrane, cast at 27oC, on the NIPAAm 

to FPI molar feed ratio used for the thermally induced graft copolymerization. The 

surface graft concentration of each copolymer membrane increases almost linearly 

with the monomer to FPI molar feed ratio. Comparing the surface [N]/[F] ratio 



 

 166

100 400 700 1000 396 398 400 402 404

(a)

 

Wide Scan

 

 

 

Binding Energy (eV) 

 

  
-N(C=O)

N 1s

 

 

 

 

(c)

 

 

 

 

O=C-NH

  

 In
te

ns
ity

 (A
rb

. U
ni

ts
)

(b)

 

 

 

Pristine FPI 

P(NIPAAm)-g-FPI 

P(NIPAAm)-g-FPI 

Figure 6.10 XPS wide scan and N 1s core-level spectra of (a) the pristine FPI 
membrane, and the P(NIPAAm)-g-FPI membranes with bulk graft 
concentrations of (b) 0.61 and (c) 1.38 (Membranes cast by phase 
inversion in water at 27°C from 10 wt% NMP solutions).  
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Figure 6.11 Effect of the monomer feed ratio on the surface graft concentration of 
the P(NIPAAm)-g-FPI MF membrane, cast at 27°C via phase 
inversion in water from 10 wt% NMP solutions. 
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in Figure 6.11 with the corresponding bulk ratio (determined by elemental analysis) in 

Figure 6.8, it is obvious that the surface [N]/[F] ratio is considerably higher than the 

corresponding bulk ratio. This phenomenon arises mainly from the enrichment of the 

NIPAAm side chains at the surface and near-surface region during the course of 

membrane formation by phase inversion in the aqueous medium. For multicomponent 

polymer systems (including copolymers and polymer blends), surface enrichment of 

the hydrophilic components arising from interaction with the environments occurs 

readily (Hester et al., 1999). 

6.2.2.7 Surface Morphology of the P(NIPAAm)-g-FPI MF Membranes 

The surface morphology of the P(NIPAAm)-g-FPI MF membranes was studied by 

SEM. Figure 6.12 shows the SEM images of the MF membranes cast by phase 

inversion at 27°C in water from 10 wt% NMP solutions of the pristine FPI powders, 

and the P(NIPAAm)-g-FPI copolymers with bulk graft concentrations of 0.75, 0.91 

and 1.38. The SEM images reveal that the membranes cast from the NMP solutions of 

the graft copolymers have a higher porosity than that cast from the pristine FPI, and 

that the porosity increases with the graft concentration of the NIPAAm polymer in the 

copolymer. In the presence of high concentrations of the NIPAAm polymer side 

chains, surface enrichment of the NIPAAm polymer takes place during phase inversion 

in water to maximize the interfacial interaction between the pore surface and water, 

resulting in an increase in porosity and a decrease in pore size of the membrane. 

The dependence of the membrane morphology and surface composition on the 

temperature of the aqueous casting bath is also investigated. The SEM images, 

obtained at a magnification of ×5000, for MF membranes cast by the phase inversion 

technique at 4, 27, 32, and 55oC from a 10 wt% NMP solution of the P(NIPAAm)-g-
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FPI copolymer (bulk graft concentration of 1.38) are shown in Figure 6.13. At casting 

temperatures below the LCST (~32oC) of the NIPAAm polymer, no obvious difference 

in pore size distribution and porosity can be observed in the SEM. On the other hand, 

for membranes cast at temperature above LCST of the NIPAAm polymer, the pore size 

distribution becomes less uniform. The porosity decreases and the mean pore size 

increases. As for the surface composition of the membrane, the 

([P(NIPAAm)]/[FPI])surface ratio, or the [N]/[F]surface ratio,  decreases with the increase 

in the membrane casting temperature, with the most drastic increase being observed at 

casting temperature near the LCST (Figure 6.14). The phenomena are consistent with 

the change in chain conformation and orientation at the surface near the LCST of the 

NIPAAm polymer.  

6.2.2.8 Pore Sizes of the P(NIPAAm)-g-FPI MF Membranes 

The mean pore size and pore size distribution of various P(NIPAAm)-g-FPI MF 

membranes cast from NMP solutions and under different conditions, such as different 

bulk graft concentrations, different copolymer concentrations of the casting solutions, 

and different temperatures of the casting bath, were measured on the Coulter® 

Porometer II instrument. The pore size distributions of the P(NIPAAm)-g-FPI MF 

membranes cast under different conditions are shown in Table 6.5. In agreement with 

the SEM results for the copolymer membranes, the data in Table 6.5 suggest that the 

mean pore size of the membrane decreases with the increase in bulk graft 

concentration of the membrane. 
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Figure 6.12 SEM images of the MF membranes cast at 27°C via phase inversion in 
water from 10 wt% NMP solutions of (a) the pristine FPI, and the 
P(NIPAAm)-g-FPI copolymers with bulk graft concentrations of (b) 0.75,
(c) 0.91,  (d) 1.38. 

 

(a) Pristine FPI Membrane (b) FPI-g-P(NIPAAm) Membrane 
     ([NIPAAM]/[FPI])bulk=0.75 

(c) FPI-g-P(NIPAAm) Membrane 
      ([NIPAAM]/[FPI])bulk=0.91

(d) FPI-g-P(NIPAAm) Membrane 
     ([NIPAAM]/[FPI])bulk=1.38 
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Figure 6.13 SEM images of the P(NIPAAm)-g-FPI (bulk graft concentration=1.38) 
MF membranes cast by phase inversion from 10 wt% NMP solutions at 
nonsolevent (water) temperatures of (a) 4°C, (b) 27°C, (c) 32°C and (d) 
55°C. 

 

(a) FPI-g-P(NIPAAm) Membrane
(Cast at 4oC in water) 

(b) FPI-g-P(NIPAAm) Membrane 
(Cast at 27oC in water) 

(c) FPI-g-P(NIPAAm) Membrane 
(Cast at 32oC in water) 

(d) FPI-g-P(NIPAAm) Membrane 
(Cast at 55oC in water) 
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Table 6.5 Pore Size Distribution a) of the P(NIPAAm)-g-FPI MF Membranes b) 

 
Molar Feed 

Ratio 
Bulk Graft Conc. 

of Copolymer 
Temperature of 

Casting Bath (°C) 
Concentration of 

Cast Solution (wt%)
Min. Pore Size 

(µm) 
Max. Pore Size 

(µm) 
Mean PoreSize 

(µm) 
(a) Effect of Bulk Graft Concentration on the Pore-Size Distribution 

4 0.61 27 10 0.11 2.25 0.52 
8 0.75 27 10 0.12 2.12 0.51 
22 0.91 27 10 0.19 2.10 0.49 
37 1.38 27 10 0.20 1.90 0.45 
60 1.87 27 10 0.31 1.60 0.41 

(b) Effect of the Temperature of Casting Bath on the Pore-Size Distribution 
37 1.38 4 10 0.16 0.87 0.27 
37 1.38 20 10 0.17 1.00 0.38 
37 1.38 27 10 0.20 1.90 0.45 
37 1.38 32 10 0.19 1.92 0.61 
37 1.38 55 10 0.21 2.15 0.67 

(c) Effect of the Concentration of Casting Solution on the Pore-Size Distribution 
60 1.87 27 7 0.58 2.89 0.55 
60 1.87 27 10 0.31 1.60 0.41 
60 1.87 27 15 0.22 0.64 0.25 

 
                  a. These pore sizes were measured on the Coulter® Porometer II which utilized a liquid displacement technique. 
                  b. Membranes were cast from NMP solutions of the P(NIPAAm)-g-FPI copolymers in doubly distilled water.  
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Figure 6.14 Effect of the coagulation water bath temperature on the surface 
graft concentration and mean pore size of the P(NIPAAm)-g-
FPI MF membrane. (Bulk graft concentration=1.38, from 10 
wt% NMP solutions) 
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The dependence of membrane pore size distribution on the non-solvent (water) 

temperature of the casting bath is also shown in Table 6.5. The mean pore size 

increases with casting temperature. In the vicinity of the LCST (32oC) of the NIPAAm 

polymer, the most drastic change in mean pore size is observed. The change in mean 

pore size in response to the change in membrane casting temperature may be attributed 

to the change in conformation of the NIPAAm polymer side chains on the surface 

(especially on the pore surfaces) of the P(NIPAAm)-g-FPI MF membrane. When the 

membrane is cast at temperature below the LCST, the NIPAAm polymer side chains 

are hydrophilic and assume a highly extended conformation. This conformation leads 

to a delayed demixing between the solvent (NMP) and the water.  According to the 

model given by Smolder et al (Smolders et al., 1992), the loss of solvent is greater than 

the influx of water. This will lead to a smaller mean pore size of the membrane. On the 

other hand, when the casting temperature is above the LCST, the NIPAAm polymer 

side chains associate hydrophobically to form excessively compact molecular 

structures on the surface, leading to instantaneous demixing. Larger pores are formed 

due to the diffusional flow which helps to develop a higher solvent concentration in the 

nuclei of the polymer lean phase present in the proceeding coagulation front (Boom et 

al., 1992). The data in Figure 6.14 indicate that the surface graft concentration 

decreases with the increases in the temperature of the casting bath, while the mean 

pore size increases with the increase in casting temperature. The effect of the 

temperature of the casting solution on the membrane characteristics is less pronounced 

when compared to that of the temperature of the coagulation bath, since the volume of 

the latter is present in large excess. The pore size distribution of the P(NIPAAm)-g-FPI 

membrane can also be manipulated through the changes in solution concentration of 

the P(NIPAAm)-g-FPI copolymer used for casting. The results are also shown in Table 
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6.5. The membranes were cast from 7, 10 and 15 wt% NMP solutions of the 

P(NIPAAm)-g-FPI copolymer (bulk graft concentration=1.87) at 27oC. With the 

increase in solution concentration from 7 to 15 wt.%, the mean pore size of the 

membrane decreases by more than half. The above results suggest that from the 

regulation of the solution concentration of the copolymer, the graft concentration or 

the casting temperature, the pore size and porosity of the membranes cast by the phase 

inversion technique can be controlled to a certain extent. The graft copolymer 

approach to membrane preparation is thus more versatile than that of modification of 

the existing membranes by surface graft copolymerization or grafting.  

6.2.2.9 Temperature-Dependent Flux of Aqueous Solution through the 
P(NIPAAm)-g-FPI MF Membranes 

The temperature-dependent flux of aqueous solutions through the pristine FPI and the 

P(NIPAAm)-g-FPI MF membranes was investigated and the results are shown in 

Figure 6.15. The permeability of water through the pristine FPI MF membranes was 

very low and temperature independent (Curve 6). The low permeability is due to the 

low porosity of the membrane. The permeability of water through the P(NIPAAm)-g-

FPI MF membranes cast at temperatures above the LCST (Curves 4 and 5) also 

exhibits a temperature-independent behavior. These copolymer membranes exhibit the 

same permeation behavior for water as that of the hydrophobic pristine FPI membrane 

because the NIPAAm side chains associate hydrophobically on the membrane surface 

(including the pore surfaces). Furthermore, the pore-sizes of these two membranes are 

probably too large to exhibit any significant sensitivity toward permeate temperature. 

On the other hand, however, the rate of water flux through the P(NIPAAm)-g-FPI MF 

membranes, cast at temperatures below the LCST, increases with the increase in 
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permeate temperature from 4oC to 55oC, with the most drastic increase being observed 

at the permeate temperature around 32oC (Curves 1, 2 and 3). 

The temperature-dependent permeation rate results from the change in conformation of 

the NIPAAm polymer side chains on the surface and sub-surface region of the 

P(NIPAAm)-g-FPI MF membrane. The surface (in particular, the pore surface) of the 

membrane was enriched with the grafted NIPAAm chains during the phase inversion 

process. When the NIPAAm polymer side chains are solvated, they do not dissolved 

into the solution since the NIPAAm chain ends are covalently tethered to the FPI 

backbone. At permeate temperatures below the LCST of the NIPAAm polymer, the 

grafted NIPAAm chains extend into the pores and reduce the permeation rate of the 

aqueous solution. On the other hand, at permeate temperatures above the LCST, the 

grafted NIPAAm polymer chains shrink and associate hydrophobically on the 

membranes and pore surfaces, resulting in the opening of the pores of the membrane 

and, thus, an increase in permeation rate. The temperature-dependent changes in 

permeation rates are completely reversible at permeate temperatures between 4oC and 

55oC. This phenomenon suggests that the conformation of the graft chains and the 

extent of interaction with the aqueous environment vary reversibly with the permeate 

temperature to control the effective pore size of the membrane. 

For the P(NIPAAm)-g-FPI MF membranes cast at temperatures above the LCST of the 

NIPAAm polymer, the flux of the organic solvent, 2-propanol, also exhibits a 

temperature-dependent behavior, as shown in Figure 6.16. The temperature-dependent 

flux of 2-propanol through the P(NIPAAm)-g-FPI membrane is also reversible. This 

phenomenon arises from the dependence of the extent of interaction between the 
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Figure 6.15 Temperature-dependent permeability of water through the 
P(NIPAAm)-g-FPI (bulk graft concentration=1.38) and the pristine 
FPI membrane. Curve 1 (membrane cast at 4oC), Curve 2 
(membrane cast at 20oC) and Curve 3 (membranes cast at 27oC) are 
obtained from the water fluxes through the three P(NIPAAm)-g-FPI 
MF membranes cast at temperatures below the LCST. Curve 4 
(membrane cast at 32oC) and Curve 5 (membrane cast at 55oC) are 
obtained from the water fluxes through the two copolymer 
membranes cast at temperatures above the LCST. Curve 6 is 
obtained from the flux through the pristine FPI membrane. The 
temperature-dependent flux behaviors (Curves 1, 2 and 3) are 
completely reversible.
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Figure 6.16 Reversible temperature-dependent flux of 2-propanol through the 
P(NIPAAm)-g-FPI MF membrane (bulk graft concentration=1.38) 
cast at 55oC from a 10 wt% solution. 
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permeate and the polymer side chains on the permeate temperature. For the membrane 

cast at a temperature above the LCST, the membrane and pore surfaces are enriched by 

the hydrophobic conformation of the NIPAAm polymer side chain. During the flux of 

2-propanol at temperatures above 32oC, the enriched hydrophobic microstructure of 

the pore surfaces interacts favorably with the organic solvent. The graft chains are 

solvated, and the flux through the pores is hindered. At permeate temperatures below 

32oC, the change in conformation of the grafted NIPAAm chains and the reduced 

interaction of 2-propanol with the grafted NIPAAm chains on the pore surfaces result 

in the opening of the membrane pores. An increase in permeation rate of the organic 

solvent is observed. Thus, the LCST of the NIPAAm polymer in 2-Propanol appears to 

be very close to that of the NIPAAm polymer in water. The above results on the 

temperature-dependent flux of water and 2-isopropanol suggest that the grafted 

NIPAAm polymer side chains on the membrane pore surface and sub-surface region 

can act as temperature sensors and valves to regulate the effective pore dimension, and 

thus the filtration rate, of the membrane for aqueous solutions and certain organic 

solvents. 
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6.2.3 Conclusion 

P(NIPAAm)-g-FPI copolymers were successfully synthesized through the thermally-

induced molecular graft copolymerization of NIPAAm monomer with the ozone-

preactivated FPI backbones in NMP solutions. The mean pore size of the P(NIPAAm)-

g-FPI MF membrane increased while the surface graft concentration decreased at 

higher temperature of the casting bath. The flux of water and 2-isopropanol through 

the P(NIPAAm)-g-FPI MF membrane exhibited a strong dependence on the casting 

temperature of the membrane and the permeate temperature in the temperature range 

of 4oC to 55oC. The temperature-dependent flux behavior arose from the interaction of 

the grafted chains on the pore surface and sub-surface region with the permeate. The 

present study has shown that molecular functionalization by graft copolymerization 

prior to membrane fabrication is a relatively simple and effective approach to the 

preparation of FPI-based MF membranes with well-controlled pore size, uniform 

surface composition (including the composition of pore surface), and temperature-

responsive properties. These physicochemical and morphological characteristics of the 

pores can be further modified through a simple change in the membrane casting 

temperature. Thus, the application of fluorinated polyimides as membrane materials 

has been further extended. 
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CHAPTER 7 

 CONCLUSION 
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Surface graft copolymerization has been shown to be an effective technique for surface 

functionalization of various substrates relavant to microelectronics. Surface graft 

copolymerization was successfully carried out via (i) the UV-induced graft 

copolymerization and (ii) plasma-induced graft copolymerization and deposition. In 

particular,  surface modification of Ar plasma-pretreated FPI films was carried out via 

UV-induced graft copolymerization and plasma-induced graft copolymerization with 

some N-containing monomers, such as 1-vinylimidazole (VIDz) and 4-vinylpyridine 

(4VP). The grafted VIDz or 4VP polymer layer on the PI and FPI surface was used not 

only as chemisorption sites for the palladium complex during the Sn-free activation 

process, but also as an adhesion promotion layer for the electrolessly deposited copper 

on the PI and FPI surfaces. The T-peel adhesion strength for the electrolessly deposited 

Cu on the graft-modified PI (FPI) surfaces are much higher than that on the pristine 

and the Ar plasma pre-treated PI (FPI) surfaces. The good adhesion strength is 

attributable to the synergistic effect of strong interaction between the grafted 4VP and 

VIDz polymer with the palladium and copper atoms, the spatial distribution of the 

grafted 4VP and VIDz chains into the metal matrix, and the fact that the graft chains 

were covalently tethered on the PI (FPI) surface.  

Secondly, molecular modification by grafting of thermally labile side chains is a 

relatively simple and effective in the preparation of nanoporous PI (FPI) films with 

low dielectric constants and preserved PI backbones. Nanoporous low-к PI(FPI) films 

were obtained after thermal imidization of the PAmA with PAAc or P(PEGMA) side 

chains in an inert atmosphere, followed by thermal decomposition of the side chains in 

air. The densities of the nanoporous films were 3-14% lower than that of the pristine 

film. SEM images revealed that the pore sizes were in the order of 30-100 nm. The 
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dielectric constant of the nanoporous PI(FPI) films decreased with the increase in graft 

concentration of the side chains, and thus the porosity of the films. Dielectric constant 

as low as 2.1 and 1.9 were obtained, respectively, for the nanoporous PI and FPI films 

prepared from this technique.  

Finally, molecular functionalization by graft copolymerization was also shown to be an 

effective approach to prepare “smart” membranes with well-controlled pore size, 

uniform surface composition (including the composition of pore surface), and pH- or 

temperature-responsive properties. PAAc-g-FPI, P4VP-g-FPI and P(NIPAAm) 

copolymers were successfully synthesized through thermally-induced molecular graft 

copolymerization of the respective AAc, 4VP and NIPAAm monomer with the ozone-

preactivated FPI backbones in NMP solutions. The MF membranes can be prepared 

from the respective PAAc-g-FPI, P4VP-g-FPI and P(NIPAAm) copolymers by phase 

inversion in water. The MF membranes prepared from the respective copolymers of 

different graft concentrations showed enrichment of the AAc, 4VP, and NIPAAM 

functional chains in the surface region. The flux of aqueous solutions through the 

PAAc-g-FPI and P4VP-g-FPI MF membranes exhibited a strong but opposite 

dependence in the pH range of 0.5 to 6.4. On the other hand, the flux of water and 2-

isopropanol through the FPI-g-P(NIPAAm) MF membrane exhibited a strong 

dependence on the casting temperature of the membrane and the permeate temperature 

in the temperature range of 4oC to 55oC. Thus, the application of polyimides as 

membrane materials has been further extended. 
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