
MINIMIZING QUEUEING DELAYS

IN

COMPUTER NETWORKS

NGIN HOON TONG

(B.Eng(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2002

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48645536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgements

I wish to express my gratitude to my supervisor, Dr. Tham Chen Khong, for his

invaluable guidance, support, encouragement, understanding and time, throughout my

studies. He was the one who convinced me to get a doctoral degree and this thesis is a

result of his successful persuasion and mentoring.

My time at the Computer Communication Networks Laboratory had been enjoyable

because of friends and colleagues. This was cut short by departure to complete my

National Service liabilities and subsequently my work commitments. Special thanks

must be given to Mr. Gan Yung Sze and Dr. Jiang Yuming for their simulating

discussions and constructive comments. In particular, Yung Sze has helped to review

many of my earlier paper submissions.

I would like to express my earnest gratitude to my family for their love, support,

and encouragement, without which any of my achievements would not have been pos-

sible. Thanks to my father and mother, whose love and countless sacrifices to raise and

give me the best possible education gave me the strength to overcome any difficulties

necessary to complete this degree. Thanks to my brother and sister for their support

and encouragement. Last but not least, thanks to my dear wife Hsin Ning for her love

ii

and understanding throughout this journey. She was always behind me and gave her

unconditional support even if that meant to sacrifice the time we spent together. I

delicate this thesis to my family.

iii

Contents

Acknowledgements i

Contents iii

Summary ix

List of Figures xi

List of Tables xv

Abbreviations xvi

1 Introduction 1

1.1 The Best-Effort Service Paradigm of the Internet 1

1.1.1 Inefficient Network Resource Utilization 1

1.1.2 Lack of Flow Isolation Between Congestion Responsive Flows and

Congestion Unresponsive Flows 2

1.2 Towards Quality-of-Service Provisioning 3

1.2.1 Resource Reservation . 3

Contents iv

1.2.2 Best-Effort Enhancements . 4

1.3 Contributions . 5

1.3.1 Thesis Scope and Focus . 5

1.3.2 Contributions . 6

1.4 Organization . 8

2 Background 9

2.1 Integrated Services . 10

2.1.1 Resource Reservation Protocol (RSVP) 10

2.1.2 Guaranteed Service . 11

2.1.3 Controlled-Load Service . 11

2.2 Differentiated Services . 12

2.2.1 Premium Service . 14

2.2.2 Assured Service . 15

2.2.3 Reconciling Differentiated Services with Integrated Services . . . 16

2.3 Stateless Core . 16

2.3.1 Guaranteed Service . 18

2.3.2 Service Differentiation for Large Traffic Aggregates 18

2.3.3 Flow Isolation for Congestion Control 18

2.4 Proportional Differentiated Services . 19

2.5 Delay-Rate Differentiated Services . 21

3 Delay-Rate Differentiation Model 23

Contents v

3.1 Background . 23

3.2 PDD, GMQD and DRD . 24

3.3 Generalized Minimum Queueing Delay 30

3.3.1 Fluid GMQD Model . 31

3.3.2 Heavy Traffic Conditions . 32

3.4 Packetized Generalized Minimum Queueing Delay 33

3.4.1 Queue Length based Packetized Generalized Minimum Queueing

Delay . 34

3.4.2 Queueing Delay based Packetized Generalized Minimum Queue-

ing Delay . 36

3.5 Packetized Delay Rate Differentiation 37

3.5.1 Queue Length based Packetized Delay Rate Differentiation . . . 37

3.5.2 Queueing Delay based Packetized Delay Rate Differentiation . . 38

3.6 Simulation Results . 39

3.6.1 Single Node . 39

3.6.2 Multiple Nodes . 43

3.7 Related Work . 45

3.8 Conclusion . 47

4 Achieving Delay Differentiation Efficiently 48

4.1 Background . 48

4.2 Proportional Differentiation Model . 52

4.3 Waiting Time Priority . 54

Contents vi

4.3.1 Algorithm . 54

4.3.2 Workload that must be Transmitted before an Arbitrary Packet

for a Waiting Time Priority Scheduler 55

4.4 Scaled Time Priority . 59

4.4.1 Algorithm . 59

4.4.2 Workload that must be Transmitted before an Arbitrary Packet

for Scaled Time Priority Scheduler 61

4.4.3 Reconciliation between STP and WTP 65

4.4.4 Discussion . 67

4.4.5 Implementation Complexity . 68

4.5 Simulation . 70

4.5.1 Single Node . 70

4.5.2 Multiple Nodes . 74

4.6 Application to QD-PGMQD and QD-PDRD 75

4.7 Related Work . 78

4.8 Conclusion . 79

5 A Control-Theoretical Approach for Achieving Fair Bandwidth Allo-

cations in Core-Stateless Networks 80

5.1 Background . 80

5.2 Stateless Core/ Dynamic Packet State Framework for Providing Flow

Isolation . 83

5.2.1 Objective . 83

Contents vii

5.2.2 Core-Stateless Fair Queueing Framework 84

5.2.3 Rainbow Fair Queueing Framework 86

5.2.4 Discussion . 87

5.3 Control Theoretical Approach . 89

5.3.1 Closed-Loop Dynamics . 89

5.3.2 Steady State Analysis . 92

5.3.3 Stability . 92

5.3.4 Gain Selection . 94

5.3.5 Implementation Issues . 98

5.3.6 Control-Theoretical Approach to CSFQ and RFQ 99

5.4 Simulations . 101

5.4.1 Single Link . 102

5.4.2 Multiple Links . 103

5.4.3 Bursty Cross Traffic . 105

5.5 Related Work . 106

5.6 Conclusion . 110

6 Conclusion and Future Work 112

6.1 Contributions . 112

6.2 Future Work . 114

Bibliography 116

A Proof of Proposition 3.1 127

viii

B Proof of Theorem 3.1 130

B.1 First Stage . 133

B.2 Second Stage . 133

B.3 Extending to Later Stages . 135

C Proof of Theorem 3.2 137

ix

Summary

The current Internet provides a best-effort packet service using the Internet Protocol

(IP). It offers no guarantees on actual packet deliveries and users need not make reserva-

tions before transmitting packets through it. This architecture has been tremendously

successful in supporting data applications as demonstrated by the remarkable growth

of the Internet usage over the last decade. However, as the Internet evolves to become

a global communication infrastructure, two key weakness have become increasingly ob-

vious. Firstly, it is unable to provide service differentiation so that the network can

utilize resources more efficiently to support the many new real-time applications that

have started to proliferate over the Internet. Secondly, there is a lack of flow isola-

tion within aggregated traffic which allows congestion unresponsive flows, such as User

Datagram Protocol (UDP) flows, to squeeze out the congestion responsive ones, such

as Transmission Control Protocol (TCP) flows.

This thesis addresses the key deficiencies of the best-effort paradigm through the

proposal of an original service differentiation framework, called the Delay-Rate Differ-

entiated Services (DRDS). The DRDS framework consists of two portions that provide

delay based service differentiation and flow isolation within best-effort traffic respec-

Summary x

tively.

The first portion addresses the issue of inefficient resource utilization by providing

delay based service differentiation among classes of traffic aggregates. It is based on the

Delay-Rate Differentiation (DRD) model, which refines on the Proportional Delay Dif-

ferentiation (PDD) model, proposed by Dovrolis. The DRD model is a combination of

the PDD model with another proposed model, called the Generalized Minimum Queue-

ing Delay (GMQD) model. The PDD is a model that provides delay-based proportional

differentiation among backlogged service classes traversing a single link. The GMQD is

a model that minimizes the total queueing delay of all backlogged service classes travers-

ing a single link. Depending on traffic load conditions, DRD is able to switch between

PDD and GMQD, thus exploiting the advantages of both models. Two classes of packet

scheduling algorithms emulating GMQD and DRD are also proposed and analyzed. A

novel approximation technique that reduces the computational complexity of one class

of algorithms proposed for GMQD and DRD is subsequently proposed. This technique

reduces the computational complexity of the scheduling algorithms without comprising

on their performance.

The second portion complements the first portion by addressing the issue of conges-

tion responsive flows versus congestion unresponsive flows within each class of traffic

aggregates. A novel control-theoretical approach, which enhances the flow isolation

performance of existing fair queueing algorithms that do not maintain per flow state

information is proposed.

xi

List of Figures

1.1 Overview of the Delay-Rate Differentiated Services Framework. 7

2.1 RSVP Signalling. 11

2.2 (a) A reference stateful network whose functionality is approximated by

(b) a Stateless Core (SCORE) network. In SCORE, only edge routers

perform per-flow management; core routers do not perform per-flow man-

agement. The Dynamic Packet State technique is used to store relevant

state information in the packet header so that core routers do not need

to maintain per-flow state information. 17

2.3 The main components of the packet forwarding engine in the Proportional

Differentiation Model. 20

List of Figures xii

3.1 The average class delays using BPR, QL-PGMQD, QL-PDRD, WTP,

QD-PGMQD, and QD-PDRD for different class load distribution. The

four numbers in each bar denote the fraction of the four classes in the

aggregate packet stream, starting from class 1 up to class 4. The link

utilization is 90%. (a) The simulation results using BPR, QL-PGMQD,

and QL-PDRD. (b) The simulation results for WTP, QD-PGMQD, and

QD-PDRD. 42

3.2 The ratio of average delays between successive classes with different class

load distribution. The four numbers in each bar denote the fraction of

the four classes in the aggregate packet stream, starting from class 1 up

to class 4. (a) The three columns of points in each bar denote, from

left to right, the simulation results for PDD, WTP, and BPR respec-

tively. (b) The three columns of points in each bar denote, from left to

right, the simulation results for GMQD, QD-PGMQD, and QL-PGMQD

respectively. (c) The three columns of points in each bar denote, from

left to right, the simulation results for DRD, QD-PDRD, and QL-PDRD

respectively. 44

3.3 Multiple congested link network configuration. 45

3.4 (a) The ratio of average-delays between successive classes using BPR,

QL-PGMQD and QL-PDRD for class load distribution of r1 = r2 = r3 =

r4 = 0.25r. The weights ratio is wk/wk−1 = 2. (b) The same simulation

using WTP, QD-PGMQD and QD-PDRD. 46

List of Figures xiii

4.1 Time-lines of a tagged packet p and another arbitrary packet q in a WTP

system. 56

4.2 Time-lines of a tagged packet p and another arbitrary packet q in a STP

system. 63

4.3 An example of STP illustrating the effects of parameters T and D on the

workload of each class: (a) when T = 0 and D = 0, (b) when T and D

are optimized. 68

4.4 The ratio of average-delays between successive classes with WTP and

STP for different link utilizations. The traffic load distribution is Class-

1: 40%, Class-2: 30%, Class-3: 20%, Class-4: 10%. 71

4.5 The ratio of average-delays between successive classes for WTP and STP

with different class load distributions. The symbols in this graph are as

in Figure 4.4. The four numbers in each bar denote the fraction of the

four classes in the aggregate packet stream, starting from class 1 up to

class 4. The utilization is 90% in all cases. 73

4.6 Five percentiles of R for four values of the monitoring timescale τ . The

diamonds represent the 50% percentiles (median), the circles represent

the 25% and 75% percentiles, while the squares represent the 5% and

95% percentiles. The ratio of SDPs is 2.0. 74

4.7 R for different number of nodes in a multiple congested nodes network

configuration. The scheduler differentiation parameter is 2.0. 75

5.1 Basic framework on how CSFQ estimates the fair share, α 85

List of Figures xiv

5.2 Overall architecture of SCORE/DPS fair queueing algorithms. 89

5.3 Block diagram of the proposed control system. 91

5.4 The normalized throughput achieved by: (a) each of the 32 UDP flows

sharing a bottleneck link where flow i sends at i times its fair share

(0.3125 Mbps), (b) a TCP flow competing against (N − 1) UDP flows,

each sending at twice their fair share. 104

5.5 (a) Normalized throughput of a UDP flow as a function of the number of

congested links. Cross traffic are UDP sources sending at twice the fair

share. (b) The same plot as (a) but with the UDP flow being replaced

by a TCP flow. 105

5.6 (a) Normalized throughput of a UDP flow going through 5 congested

links. Cross traffic are ON/OFF sources whose average rate is twice the

fair share. The burst and idle times vary between 20 msec to 0.5 sec. (b)

The same plot as (a) but with the UDP flow being replaced by a TCP flow.107

B.1 Overview of the DP’s approach to optimization. 131

xv

List of Tables

2.1 Assignment policy of Differentiated Services code points 13

2.2 Differentiated Services Code Points of Assured Forwarding Per-Hop Be-

haviors . 15

3.1 Notations used in Chapter 3. For simplicity, the notations do not include

the time argument t. 25

3.2 Average class delay for PDD and GMQD when r1 = 4 Mbps, r2 = 3

Mbps, r3 = 2 Mbps, and r4 = 1 Mbps. 28

3.3 Average class delay for PDD and GMQD when r1 = 1 Mbps, r2 = 2

Mbps, r3 = 3 Mbps, and r4 = 4 Mbps. 29

4.1 Notations used in Chapter 4. For simplicity, the notations do not include

the time argument t. 51

5.1 Notations used in Section 5.2. 83

5.2 A comparison of the implementation frameworks of CSFQ and RFQ al-

gorithms . 88

xvi

Abbreviations

ABE Alternative Best-Effort

ADDs Average Drop Distances

AF Assured Forwarding

ATM Asynchronous Transfer Mode

BB Bandwidth Broker

BPR Backlog Proportional Rate

BEDS Best-Effort Differentiated Services

CSFQ Core-Stateless Fair Queueing

DDP Delay Differentiation Parameter

DiffServ Differentiated Services

DP Dynamic Programming

DPS Dynamic Packet State

DRD Delay-Rate Differentiation

DRR Deficit Round Robin

DSCP Differentiated Services Code Point

DS field Differentiated Services Field

Abbreviations xvii

DWFQ Dynamic Weighted Fair Queueing

EF Expedited Forwarding

Ex-VC Extended Virtual Clock

FIFO First-In-First-Out

GMQD Generalized Minimum Queueing Delay

GPS Generalized Processor Sharing

IETF Internet Engineering Task Force

IntServ Integrated Services

JoBS Joint Buffer Management and Scheduling

LIRA Location Independent Resource Allocation

LQ Linear Quadratic

MAN Metropolitan Area Network

MPLS Multi-Protocol Label Switching

PDD Proportional Delay Differentiation

PDM Proportional Differentiation Model

PDRD Packetized Delay Rate Differentiation

PFQ Packet Fair Queueing

PGMQD Packetized Generalized Minimum Queueing Delay

PHB Per-Hop Behavior

PLD Proportional Loss Differentiation

PLR Proportional Loss Rate

PQCM Proportional Queue Control Mechanism

Abbreviations xviii

QD-PDRD Queueing Delay based Packetized Delay Rate Differentiation

QL-PDRD Queue Length based Packetized Delay Rate Differentiation

QD-PGMQD Queueing Delay based Packetized Generalized Minimum

Queueing Delay

QL-PGMQD Queue Length based Packetized Generalized Minimum

Queueing Delay

QoS Quality of Service

RED Random Early Drop

RFQ Rainbow Fair Queueing

RSVP Resource Reservation Protocol

SCORE Stateless Core

SDP Scheduler Differentiation Parameter

SFQ Start-Time Fair Queueing

SQD-PDRD Scaled Queueing Delay based Packetized Delay Rate

Differentiation

SQD-PGMQD Scaled Queueing Delay based Packetized Generalized

Minimum Queueing Delay

STP Scaled Time Priority

TCP Transmission Control Protocol

TDP Time Dependent Priorities

TOS Type-Of-Service

TUF Tag-based Unified Fairness

Abbreviations xix

UDP User Datagram Protocol

VTRS Virtual Time Reference System

WAN Wide Area Network

WTP Waiting Time Priority

1

Chapter 1

Introduction

1.1 The Best-Effort Service Paradigm of the Internet

The current Internet provides a best-effort packet service using the Internet Protocol

(IP) [1]. It offers no guarantees on actual packet deliveries and users need not make

reservations before transmitting packets through it. This architecture has been tremen-

dously successful in supporting data applications as demonstrated by the remarkable

growth of the Internet usage over the last decade. However, as the Internet evolves to

become a global communication infrastructure, two key weakness have become increas-

ingly obvious.

1.1.1 Inefficient Network Resource Utilization

The first key weakness is the inability to provide service differentiation so that the

network can utilize resources more efficiently to support the many new real-time appli-

cations that have started to proliferate over the Internet. These applications, like Inter-

net telephony and distributed interactive online-games, require different service levels

1.1 The Best-Effort Service Paradigm of the Internet 2

due to specific Quality-of-Service (QoS) requirements. Currently, applications with low

QoS requirements, like e-mail, and applications with demanding QoS requirements, like

Internet telephony, get the same QoS treatment in the router queues.

Naturally, network operators can provide an adequate performance to any demand-

ing applications if they over-provisioned their routers and links. However, from an

economic point of view, this means that they are not efficiently utilizing their network

resources. This can be especially significant if the forwarding resources are expensive,

like satellite connections.

On the other hand, when the network operators do not have sufficient forwarding

resources at their routers and links, then only the less demanding applications can

have adequate performance. If users of demanding applications are willing to pay a

substantial premium to network operators who can deliver good performance to their

demanding applications, then it will make good economic-sense for the network opera-

tors to allocate their network resources to these premium-paying users. However, this

is not possible with the existing best-effort paradigm of the Internet.

1.1.2 Lack of Flow Isolation Between Congestion Responsive Flows

and Congestion Unresponsive Flows

The second key weakness is the lack of flow isolation between congestion responsive flows

and congestion unresponsive flows. The current Internet relies heavily on end-hosts im-

plementing end-to-end congestion control mechanisms, in which end-hosts reduce their

transmission rate under network congestion, to prevent network “meltdown”. The most

1.2 Towards Quality-of-Service Provisioning 3

widely utilized form of end-to-end congestion control mechanism is the Transmission

Control Protocol (TCP) [2]. However, not all traffic flows include congestion avoidance

mechanisms, either deliberately or due to incorrect implementation of the congestion

avoidance algorithm. Furthermore, there are other transport layer protocols, like User

Datagram Protocol (UDP) [3] that do not back off under congestion. As a result, these

congestion unresponsive flows tend to use up bandwidth more aggressively, squeezing

out the congestion responsive flows.

This problem of responsive flows versus unresponsive flows was first noted by Nagle

[4], who introduced a fair bandwidth sharing scheduling algorithm to alleviate this

problem. Subsequently, other researchers also realized the importance of providing flow

isolation through fair bandwidth sharing and how it can greatly improve the performance

of end-to-end congestion control algorithms, resulting in the proposal of many Packet

Fair Queuing (PFQ) algorithms [5], [6], [7].

1.2 Towards Quality-of-Service Provisioning

The insufficiencies of the best-effort paradigm have lead to the proposal of other service

paradigms, which can be broadly categorized into the two groups of: resource reservation

and best-effort enhancements.

1.2.1 Resource Reservation

Paradigms proposed under this category differs from the best-effort paradigm in two

fundamental aspects: (1) applications can reserve network resources, like bandwidth,

1.2 Towards Quality-of-Service Provisioning 4

and (2) the network can accept or reject these reservation requests (also known as

admission control) to ensure that a minimum level of service is provided for the reserved

traffic.

To provide for these fundamental changes, a plethora of techniques and mechanisms

have been developed for packet scheduling, buffer management, admission control, and

signaling [8]. These solutions usually require complex signalling and/or state control

mechanisms to manage per flow state information, like in Integrated Services (IntServ)

[9], or aggregated state information, like in Differentiated Services (DiffServ) [10]. While

the proposed solutions are able to provide to a high level of service assurance theoreti-

cally, thus resolving the issues of service differentiation and flow isolation, they are not

widely deployed because the solutions must be implemented on all the network elements

along a flow’s path for them to be effective. In reality, this requirement is almost im-

possible to achieve because a flow will normally traverse across the networks of several

operators before reaching its destination, and it is unrealistic to expect all operators to

have resource reservation compliant network elements.

1.2.2 Best-Effort Enhancements

Instead of having only a single class of best-effort traffic. Several researchers have

proposed to enhance the best-effort service paradigm by having several classes of best-

effort traffic, each with a different service priority. Unlike the previous category, service

differentiation is achieved without resource reservation signalling or admission control.

Therefore, the proposed solutions for best-effort enhancements service models are usu-

1.3 Contributions 5

ally more scalable and simpler to deploy compared to the solutions of the reservation

based service models.

However, these solutions can only provide a relative form of service differentiation

and cannot provide any guarantees or flow isolation within each class of best-effort

traffic. Proponents do not see this as a big disadvantage because in reality the service

guarantees promised by the resource reservation solutions is almost impossible to achieve

due to the need to have all network elements resource reservation compliant. On the

other hand, enhancements to best-effort traffic can be incrementally deployed, the more

routers implementing it, the more effective is the service differentiation.

Another reason for choosing best-effort enhancements over resource reservation is

the desire to maintain the flat rate type of commercial agreement between network

operators and subscribers. The historical study of communications infrastructure has

shown that consumers prefer the simplicity of flat rate pricing and operators offering

such pricing tend to experience better demand than those offering usage-based pricing

[11].

1.3 Contributions

1.3.1 Thesis Scope and Focus

The broad subject of this thesis is on service differentiation in packet networks. Al-

though most of the contributions are applicable to any packet-based network technology,

the communication network platform in focus will be the IP-based Internet platform.

1.3 Contributions 6

Within the subject of service differentiation, the focus is on providing service differen-

tiation and flow isolation within best-effort traffic, which is more scalable and simpler

to deploy than the other reservation based service models because it does not require

signalling, admission control, or bandwidth brokers.

1.3.2 Contributions

Having limited the scope and focus of this thesis, an original service differentiation

framework, called the Delay-Rate Differentiated Services (DRDS), is proposed.

DRDS consists of two major portions (see Figure 1.1):

(1) The first portion addresses the issue of inefficient resource utilization by providing

delay based service differentiation among classes of traffic aggregates. It is based on

the Delay-Rate Differentiation (DRD) model, which refines on the Proportional Delay

Differentiation (PDD) model, proposed by Dovrolis under the Proportional Differenti-

ated Services (PDS) framework [13]. The DRD model is a combination of the PDD

model with another proposed model, called the Generalized Minimum Queueing Delay

(GMQD)1 model [15], [16], [17]. The PDD is a model that provides delay based pro-

portional differentiation among backlogged service classes traversing a single link. The

GMQD is a model that minimizes the total queueing delay of all backlogged service

classes traversing a single link. Depending on traffic load conditions, DRD is able to

switch between PDD and GMQD, thus exploiting the advantages of both models. Two

classes of packet scheduling algorithms emulating GMQD and DRD are also proposed

1Also known as Minimum Potential Delay in [14].

1.3 Contributions 7

Delay-based

Service

Differentiation

Among The

Classes

Stateless

Flow

Isolation

Within

Each

Class

OutputInput

Per Class Logical Queues

Per Flow Traffic

Figure 1.1: Overview of the Delay-Rate Differentiated Services Framework.

and analyzed.

Subsequently, a novel approximation technique that reduces the computational com-

plexity of one class of algorithms proposed for GMQD and DRD is proposed. This

technique reduces the computational complexity of the scheduling algorithms without

comprising on their performance.

(2) The second portion complements the first portion by addressing the issue of con-

gestion responsive flows versus congestion unresponsive flows within each class of traffic

aggregates. A novel control-theoretical approach, which enhances the flow isolation

performance of existing fair queueing algorithms that do not maintain per flow state

information is proposed.

1.4 Organization 8

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 describes the prominent

architectures for achieving Quality of Service (QoS) in IP networks.

In Chapter 3, an original model for providing delay differentiation, called DRD, is

proposed. The rationale, components, and packet scheduling algorithms for this model

are described and analyzed.

In Chapter 4, a novel approximation technique is proposed to improve the scalability

of one class of packet scheduling algorithms proposed in Chapter 3. This technique is

able to reduce the computational complexity without comprising on the scheduling

performance of the algorithms.

In Chapter 5, the use of a control-theoretical approach that enhances the flow iso-

lation performance of existing core-stateless fair queueing algorithms is proposed and

analyzed.

Finally, Chapter 6 summarizes the conclusions of this thesis and ends with directions

for future work.

9

Chapter 2

Background

The best-effort service model currently used by the Internet has functioned well for

simple applications like web-browsing, e-mail and file-transfer. However, as the Internet

evolves into a global communication infrastructure, more complex service models must

be in place to support applications with specific QoS requirements.

In this chapter, the best-known proposals used to improve the best-effort service

model of today’s Internet: (a) Integrated Services (IntServ) [9], (b) Differentiated Ser-

vices (DiffServ) [10], (c) Stateless Core (SCORE) [12], and (d) Proportional Differenti-

ated Services (PDS) [13], are presented. IntServ and DiffServ are Internet Engineering

Task Force (IETF) recommended standards, while SCORE and PDS are enhancements

that can be deployed over a DiffServ network.

This chapter concludes with a discussion on the relationship between the proposed

Delay-Rate Differentiated Services (DRDS) framework and the above mentioned frame-

works.

2.1 Integrated Services 10

2.1 Integrated Services

IntServ [9] is a per-flow based QoS framework that supports applications with delay and

bandwidth requirements. In addition to Best-Effort Service, two other service models

are defined. They are: (1) Guaranteed Service for applications with fixed delay require-

ments and (2) Predictive Service for applications with probabilistic delay requirements.

In order to achieve QoS guarantees, a signaling protocol for applications to reserve

network resources dynamically, called Resource ReServation Protocol (RSVP) [18], was

invented. Subsequently, the two service models were renamed as Guaranteed Service and

Controlled Load Service in the implementation specifications [19] and [20] respectively.

2.1.1 Resource Reservation Protocol (RSVP)

RSVP [18] uses a receiver-initiated reservation process that can be used for a multi-cast

environment. The signaling process is illustrated in Figure 2.1. The flow source sends

a PATH Message to the receiver specifying the characteristics of the traffic. As the

PATH Message propagates towards the receiver, each router along the way records the

path characteristics of the flow. Upon receiving a PATH Message, the receiver responds

with a RESV Message to request resources for the flow. Depending on the available

network resources, intermediate router along the path can accept or reject the request.

If the request is accepted, link bandwidth and buffer space are allocated to the flow and

related flow state information will be installed in the router. If the request is rejected,

the router will send an error message to the receiver.

2.1 Integrated Services 11

Figure 2.1: RSVP Signalling.

2.1.2 Guaranteed Service

Guaranteed service is aimed to support applications with hard real-time requirements

[19]. Under this service model, a flow can be guaranteed a minimum bandwidth. In

addition, a maximum end-to-end delay can be computed given the traffic arrival process

of the flow. Therefore, Guaranteed Service provides very fine-grained QoS guarantees

and is ideal for real-time applications such as IP telephony.

However, the cost associated with Guaranteed Service is the significant increase in

complexity. Routers need to maintain per-flow forwarding states and perform per-flow

classification, buffer management, scheduling, and admission control. On top of this,

resource reservation during admission control is based on worst-case traffic arrival char-

acteristics and this normally leads to significant under-utilization of network resources.

2.1.3 Controlled-Load Service

Controlled-Load service is aimed to support the broad class of adaptive and real-time

applications [20]. Under this service model, the packet loss is not significantly larger than

2.2 Differentiated Services 12

the basic error rate of the transmission medium, and the end-to-end delay experienced

by a very large percentage of packets does not greatly exceed the end-to-end propagation

delay. The Controlled-Load service is intended to provide better support for a broad

class of applications that have been developed for use in today’s Internet. Among the

applications that fall into this class are video and audio streaming.

The Controlled Load Service trades a lower QoS for a simpler implementation. Al-

though the router still need to perform per-flow admission control, other operations,

like packet classification, buffer management, and scheduling can be greatly simplified.

In summary, compared with the current best-effort Internet, IntServ supports a

wider range of applications with different QoS requirements. Unfortunately, introducing

flow-specific state in routers leads to significant complexity and scalability issues.

2.2 Differentiated Services

To alleviate the complexity issues of Intserv, the Differentiated Services (Diffserv) frame-

work was proposed. The Diffserv architecture differentiates between edge and core

routers. Edge routers maintain per-flow state information and perform per-flow op-

erations like buffer management, scheduling and admission control. The assumption

is that at the network boundary, there are fewer traffic flows, therefore, edge routers

can perform operations at a finer granularity. At the network core, traffic flows are

aggregated. Core routers only need to maintain state information for a few classes of

aggregated traffic flows. As the number of classes defined is small, packet processing can

be efficiently implemented. Hence, this differentiation between edge and core routers

2.2 Differentiated Services 13

Pool Code Point Space Assignment Policy
1 xxxxx0 Standardization
2 xxxx11 Local or Experimental Use
3 xxxx01 Local or Experimental Use (possible standardization)

Table 2.1: Assignment policy of Differentiated Services code points

makes the DiffServ architecture highly scalable.

DiffServ leverages on the relatively unused Type-Of-Service (TOS) byte in IPv4 [21]

and Traffic Class byte in IPv6 [22] for Differentiated Services field (DS field) definition

[23], [24]. Six bits are used for marking a DiffServ Code Point (DSCP), which provides

information about the QoS requested for the packet. Core routers then use this DSCP

to classify and select the per-hop behavior (PHB) the packet experiences at each node.

The remaining two bits are used for Explicit Congestion Notification (ECN) mechanisms

[25].

DiffServ is capable of conveying 64 distinct code points. Presently, the code points

are divided into three code point pools, as illustrated in Table 2.1 [23]. The first pool of

32 code points, “xxxxx0”, is reserved for standardization. The second pool of 16 code

points, “xxxx11”, is reserved for local or experimental use. Finally, the third pool of

16 code points, “xxxx01”, is initially reserved for local or experimental use, but may be

used for standardization purposes in the future if necessary.

14 DSCPs have been defined so far. The best-effort traffic in DiffServ has the

default DSCP of 000000. Besides Best-Effort Service, two other service models and

their corresponding DSCPs have been defined. They are: (1) Premium Service [26] for

applications with low delay requirements and (2) Assured Services [27] for applications

2.2 Differentiated Services 14

with regular bandwidth requirements.

2.2.1 Premium Service

Premium service is aimed to provide the equivalent of a “virtual leased line” and can

be implemented using the Expedited Forwarding (EF) PHB described in [26]1. The

DSCP of EF PHB is 101110. This service model is optimized to provide low delay for

applications that generate fixed peak bit-rate. However, end-user must ensure traffic

conform to its service-profile. Otherwise, out of profile traffic will be down-graded or

dropped. The implementation of Premium service requires admission control, which is

handled by a Bandwidth Broker (BB). Each network domain has a BB with complete

knowledge about the entire domain. To set up a flow across a domain, the BB must

ensure the availability of network resources in its domain before the request is granted.

Premium service is suitable for Internet Telephony or for creating virtual lease lines.

Note that Premium service is able to provide different bandwidth requirements for

different flows only, unlike Guaranteed service of IntServ that is able to provide different

bandwidth and delay requirements for different flows. This is because core routers

in DiffServ handles flow aggregates. Therefore, the only way to meet different delay

requirements for different flows is to guarantee the smallest delay required by all flows.

However, this results in a resource utilization that may be significantly lower than

Guaranteed service under IntServ.

1Note that this document obsoletes original document described in [28].

2.2 Differentiated Services 15

Class 1 Class 2 Class 3 Class 4
Low Drop Precedence AF11 AF21 AF31 AF41

001010 010010 011010 100010
Medium Drop Precedence AF12 AF22 AF32 AF42

001100 010100 011100 100100
High Drop Precedence AF13 AF23 AF33 AF43

001110 010110 011110 100110

Table 2.2: Differentiated Services Code Points of Assured Forwarding Per-Hop Behav-
iors

2.2.2 Assured Service

Assured service is aimed to provide a certain contracted bandwidth “profile” to the

users based on statistical provisioning and is implemented using the Assured Forwarding

(AF) PHBs described in [27]. The 12 DSCPs of the AF PHBs are shown in Table 2.2.

The AF PHBs provide the delivery of IP packets in four independently forwarded AF

classes. Within each AF class, an IP packet can be assigned one of three different levels

of drop precedence. A configurable, minimum amount of forwarding resources (buffer

space and bandwidth) must be allocated to each implemented AF class. Each AF class

may be configured to receive more forwarding resources than the minimum when excess

resources are available.

In this service model, user traffic are monitored at the ingress routers and tagged

as “In” or “Out” according to their service profiles, which is usually defined in terms

of absolute bandwidth and relative loss. Packets are tagged as “In” if the user does

not exceeds its service profile and “Out” otherwise. During congestion, “Out” packets

are dropped first before “In” packets. Based on this service model, different service

2.3 Stateless Core 16

levels such as gold, silver and bronze can be offered. Assured service is suitable for a

wide-range of applications, ranging from low delay applications such as adaptive audio

streaming to high delay applications such as FTP.

2.2.3 Reconciling Differentiated Services with Integrated Services

In summary, DiffServ scales much better than IntServ because it manages traffic at

the aggregate rather than per-flow level. Core routers in the DiffServ region do not

distinguish individual flows. They handle packets according to the DiffServ codepoint

(DSCP) in the IP header packet, eliminating the need for per-flow state and per-flow

processing.

Currently, IntServ and DiffServ are being viewed as complementary technologies

for achieving end-to-end QoS [29]. IntServ can be used at the access networks, while

DiffServ can be used at the metropolitan area networks (MAN) or wide area networks

(WAN). The main benefit of this model is a scalable end-to-end QoS framework, where

explicit reservations can be made at the access network. Border routers between the

IntServ and DiffServ regions may interact with core routers using aggregate RSVP in

the DiffServ region to reserve resources between edges of the region [30].

2.3 Stateless Core

The simplicity of DiffServ is achieved with certain compromises. In order to have the

QoS capabilities of IntServ without compromising on the scalability of DiffServ, Stoica

proposed the Stateless Core (SCORE) architecture [12].

2.3 Stateless Core 17

Core

Router

Core

Router

Edge

Router

Edge

Router

(a) Reference Stateful Network
(a) Reference Stateful Network

(b) SCORE / DPS Network
(b) SCORE / DPS Network

Dynamic

Packet

State

Figure 2.2: (a) A reference stateful network whose functionality is approximated by (b)
a Stateless Core (SCORE) network. In SCORE, only edge routers perform per-flow
management; core routers do not perform per-flow management. The Dynamic Packet
State technique is used to store relevant state information in the packet header so that
core routers do not need to maintain per-flow state information.

The goal of SCORE network, as illustrated in Figure 2.2, is to approximate the

service of a reference stateful network like IntServ. The key technique used to implement

the SCORE network is Dynamic Packet State (DPS). When a packet arrives at the

ingress edge router, some state information is inserted into the header of the packet.

Core routers process each incoming packet based on the state carried in the header of

the packet, updating both its internal state and the state in the header of the packet

before forwarding it to the next hop. By using DPS to coordinate actions of edge and

core routers along the path traversed by a flow, distributed algorithms can be designed

to approximate the behavior of a broad class of stateful networks in which core routers

do not maintain per flow state [12].

In [12], Stoica demonstrated how three important Internet services that previ-

2.3 Stateless Core 18

ously required stateful network architectures can be implemented using his proposed

SCORE/DPS architecture. These services are: guaranteed service, service differentia-

tion for large traffic aggregates, and flow isolation for congestion control.

2.3.1 Guaranteed Service

Stoica demonstrated how a core-stateless version of Jitter Virtual Clock [31] can be

implemented using DPS to provide throughput guarantees and end-to-end delay bound

without per-flow management. Subsequently, Zhang et. al. in [32], [33], generalized

Stoica’s scheme to develop a general core-stateless DPS framework called the Virtual

Time Reference System (VTRS). A scalable bandwidth broker architecture was also

developed based on this VTRS framework [34], [35].

2.3.2 Service Differentiation for Large Traffic Aggregates

Stoica proposed an alternative AF service, Location Independent Resource Accounting

(LIRA) [36], in which the service profile is defined in terms of resource tokens rather

than fixed bandwidth profiles. Unlike Guaranteed service, LIRA is a form of relative

service differentiation that can achieve high network traffic utilization and provide large

spatial granularity service, i.e. service assurance can be defined irrespective of where or

when a user sends its traffic.

2.3.3 Flow Isolation for Congestion Control

Stoica demonstrated how core-stateless flow isolation using DPS can be achieved for

congestion control using his proposed Core-Stateless Fair Queueing (CSFQ) algorithm

2.4 Proportional Differentiated Services 19

[37]. Unlike Guaranteed service and LIRA, this service model does not require any

form of resource reservation and can be seen as a form of “Enhanced Best-Effort”

service. It forms an important component in the SCORE architecture because the

proposed scheduling algorithm can be used to provide flow isolation within the best

effort traffic aggregate. This helps to prevent congestion unresponsive flows, like UDP,

from squeezing out congestion responsive traffic flows, like TCP, when these two types

of traffic are aggregated together in the same service class. Other core-stateless flow

isolation algorithms that have been proposed include Rainbow Fair Queueing (RFQ)

[38] and Tag-based Unified Fairness (TUF) [39], are proposed.

Note that SCORE/DPS is not an IETF recommended standard, but it can be incre-

mentally deployed over a DiffServ network by network operators using Multi-Protocol

Label Switching (MPLS) [12].

2.4 Proportional Differentiated Services

With the exception of the core-stateless flow isolation algorithms proposed under the

SCORE architecture, the other service models presented so far in IntServ, DiffServ

and SCORE require some form of resource reservation. Recently, providing service

differentiation within best-effort traffic has been the object of several contributions,

including Proportional DiffServ (PDS) [13], Alternative Best-Effort (ABE) [40], and

Best-Effort DiffServ (BEDS) [41]. These frameworks do not require resource reservation,

are simpler to implement, and can be used to create a new “Enhanced Best-Effort”

service model within the existing DiffServ architecture. Furthermore, network operators

2.4 Proportional Differentiated Services 20

Per Class Logical Queues

Proportional

Delay

Scheduler

OutputInput

Aggregate

Backlog

Controller

Proportional

Loss Rate

Dropper Drop Signal

Figure 2.3: The main components of the packet forwarding engine in the Proportional
Differentiation Model.

can do flat-rate pricing, which are believed to be the basis for the rapid deployment of

Internet [11], for these service models.

One of the framework that has received significant attention is the PDS proposed

by Dovrolis [13]. PDS is based on the Proportional Differentiation Model (PDM) [42],

which states that class performance metrics based on per-hop queueing delays and

packet drops should be proportional to certain differentiation parameters chosen by the

network operator [13] (see Figure 2.3). Through these differentiation parameters the

network operator can control the relative spacing of the offered classes, based on pricing

or policy requirements.

Under this framework are the Proportional Delay Differentiation (PDD) model and

the Proportional Loss Differentiation (PLD) model. Schedulers approximating the PDD

model that have been studied include Backlog Proportional Rate (BPR) [43], Propor-

tional Queue Control Mechanism (PQCM) [44], Extended Virtual Clock (Ex-VC) [45],

2.5 Delay-Rate Differentiated Services 21

Dynamic Weighted Fair Queueing (DWFQ) [46], and Mean Delay Proportional (MDP)

[47]. While droppers approximating the PLD model that have been studied include

Proportional Loss Rate (PLR) droppers based on Loss History Table [48] and Average

Drop Distances (ADDs) [49].

This framework, however, does not address the issue of flow isolation within each

service class.

2.5 Delay-Rate Differentiated Services

Similar to SCORE/DPS and PDS, DRDS is built upon the DiffServ architecture. It

consists of two portions that addresses service differentiation and flow isolation inde-

pendently.

The first portion of the DRDS focuses on providing delay based service differentiation

for classes of traffic aggregates. It is based on the Delay-Rate Differentiation (DRD)

model, which refines on the Proportional Delay Differentiation (PDD) model, proposed

by Dovrolis under the PDS framework. The DRD model is a combination of the PDD

model with another proposed model, called the Generalized Minimum Queueing Delay

(GMQD) model [15], [16], [17].

In this thesis, packet scheduling algorithms proposed for this portion include Queue

Length based Packetized Delay Rate Differentiation (QL-PDRD), Queueing Delay based

Packetized Delay Rate Differentiation (QD-PDRD), and an efficient approximation to

QD-PDRD called Scaled Queueing Delay based Packetized Delay Rate Differentiation

(SQD-PDRD).

2.5 Delay-Rate Differentiated Services 22

The second portion of DRDS focuses on providing flow isolation within each class of

traffic aggregates. This portion leverages upon the class of core-stateless fair queueing

algorithms proposed under the SCORE/DPS framework. This class of algorithms en-

codes flow rate information onto the packet using the DPS technique so that core routers,

without maintaining per flow state information, are still able to provide approximate

fair bandwidth sharing among the flows within each class.

In this thesis, a novel control-theoretical approach is used to enhance CSFQ [37]

and RFQ [38], resulting in two new and improved algorithms, called Control-theoretical

Approach to CSFQ (CA-CSFQ) [50], [51] and Control-theoretical Approach to RFQ

(CA-RFQ) [51].

23

Chapter 3

Delay-Rate Differentiation Model

This chapter addresses the first portion of the Delay-Rate Differentiated Services

(DRDS) framework, which is to provide delay based service differentiation within best-

effort traffic so as to utilize network resources more efficiently.

3.1 Background

In this chapter, a new approach for providing delay-based differentiated services, called

Delay-Rate Differentiation (DRD), is proposed. DRD refines on the Proportional Delay

Differentiation (PDD) model, proposed by Dovrolis under the Proportional Differenti-

ated Services (PDS) framework [13], by combing PDD with another proposed model,

called the Generalized Minimum Queueing Delay (GMQD)1 model [15], [16], [17]. The

PDD is a model that provides delay based proportional differentiation among backlogged

service classes traversing a single link. While, the GMQD is a model that minimizes the

total queueing delay of all backlogged service classes traversing a single link. Depending

on traffic load conditions, DRD is able to switch between PDD and GMQD, exploit-

1Also known as Minimum Potential Delay in [14].

3.2 PDD, GMQD and DRD 24

ing the advantages of both models. Two Packetized-GMQD (PGMQD) algorithms are

subsequently proposed and modified to become Packetized-DRD (PDRD) algorithms.

The remainder of this chapter is organized as follows. In Section 3.2, DRD is de-

scribed in greater details and issues involved in using this class of algorithms are dis-

cussed. In Section 3.3, GMQD is described and some of its properties analyzed. This

is followed by two proposed Packetized-GMQD (PGMQD) algorithms and their corre-

sponding Packetized-DRD (PDRD) algorithms in Section 3.4 and Section 3.5 respec-

tively. In Section 3.6, simulation results comparing various algorithms are presented.

In Section 3.7, other delay-based differentiation models are discussed. Finally, Section

3.8 concludes this chapter.

3.2 PDD, GMQD and DRD

In this section, the differences between PDD and GMQD are analyzed through an

analytical fluid flow model. DRD, which is able to exploit certain advantages of PDD

and GMQD, is subsequently proposed. Before embarking on the discussion, a summary

list of the notations used throughout this chapter is provided in Table 3.1.

Consider a single node system. The total traffic load is r, the capacity is C, and

the utilization is u = r/C < 1. Assume that the link has adequate buffers to avoid any

packet losses. The system offers N classes of service, which are delay differentiated. If

D̄k is the average queueing delay in class k, then the PDD model requires that

D̄k

D̄l
=

δk

δl
1 ≤ k, l ≤ N (3.1)

3.2 PDD, GMQD and DRD 25

Notation Comments
r total traffic load
C link capacity
u link utilization
N number of service classes in the system
D̄k average queueing delay in class k
δk delay differentiation parameters of class k
rk traffic load in class k
Q̄agg average aggregate backlog
φk service rate of class k allocated by the scheduler
wk weight assigned to class k
pi

k ith packet of service class k
A(pi

k) time packet pi
k reaches its head-of-queue

S(pi
k) start tag of packet pi

k

F (pi
k) finish tag of packet pi

k

Li
k length of packet pi

k

v(t) server virtual time
P i

k priority of packet pi
k

di
k waiting time of packet pi

k

∆t packet inter-arrival time

Table 3.1: Notations used in Chapter 3. For simplicity, the notations do not include
the time argument t.

3.2 PDD, GMQD and DRD 26

where δ1 > δ2 > . . . > δN > 0 are the Delay Differentiation Parameters (DDPs).

Note that class N is the highest priority class with the lowest average delay and

higher priority classes have lower average delays independent of class loads. When the

class load distribution {rl} is given, the average queueing delay in class k under the

PDD constraints is

D̄k =
δkQ̄agg∑N

l=1 δlrl

(3.2)

where Q̄agg =
∑N

l=1 rlD̄l is the average aggregate backlog in the system. This is the

conservation law [52], which states that the Q̄agg is independent of the class load distri-

bution or the scheduling algorithm when the latter is work-conserving and indifferent to

packet size. Q̄agg only depends on the link utilization and on the statistical properties

of the traffic. Note that the implication of the conservation law is that even though a

scheduler can affect the relative magnitude of the class delays, the sum of all rlD̄l has

to be equal to the average aggregate backlog Q̄agg of the system. This however, does

not imply that a scheduler cannot be designed to minimize the sum of all class delays.

Following the above descriptions, if a scheduling algorithm is optimized to minimize

the total weighted queueing delay of all backlogged service classes, then the following

relationship holds

D̄k/rk

D̄l/rl
=

δk

δl
1 ≤ k, l ≤ N (3.3)

This is the GMQD model and the above condition will be derived subsequently during

the discussion on the properties of the GMQD model in Section 3.3.

When the class load distribution {rl} is given, the average queueing delay in class k

3.2 PDD, GMQD and DRD 27

under the GMQD constraints is

D̄k =
δkrkQ̄agg∑N

l=1 δlr
2
l

(3.4)

where Q̄agg =
∑N

l=1 rlD̄l is the average aggregate backlog in the system.

To better illustrate the differences between PDD and GMQD, consider the example

where there are N = 4 classes in the system and Q̄agg = 1 Mbits. δ4 = 1 and other δk

values are set according to δk−1/δk = 2. Now, if r1 = 4 Mbps, r2 = 3 Mbps, r3 = 2

Mbps, and r4 = 1 Mbps, then the average class delay achieved by GMQD is generally

better than PDD (see Table 3.2).

Three observations can be made from this simple example:

(1) Except for the average class delay of the lowest priority class, all the other classes

have lower average class delay when using GMQD. As the lowest priority class is the

group of users who are paying the least for network usage, deteriorating the average

delay of the lowest priority class for the overall improvement in the average delay of

other classes is a reasonable alternative.

(2) Overall, the total average class delay in the system is lower for GMQD.

(3) The ratio of delay differentiation, D̄k−1/D̄k, for GMQD has increased. Consistent

delay differentiation in the system is not comprised, i.e. higher priority classes experi-

enced delay no worse than lower priority classes.

In general, we can have the following proposition:

Proposition 3.1. Given δk−1/δk ≥ 2 for 1 < k ≤ N , δ1 = +∞ (assuming the lowest

priority class is for best effort traffic) and r1 > r2 > . . . > rN , GMQD is able to provide

3.2 PDD, GMQD and DRD 28

k δk rk (Mbps) dk (msec)
PDD GMQD

1 8 4 163.27 184.97
2 4 3 81.63 69.364
3 2 2 40.82 12.121
4 1 1 20.41 5.7803

Total 15 10 306.12 282.24

Table 3.2: Average class delay for PDD and GMQD when r1 = 4 Mbps, r2 = 3 Mbps,
r3 = 2 Mbps, and r4 = 1 Mbps.

lower average class delay for all classes in the system with the exception of the lowest

priority class when compared with PDD.

The proof of the above Proposition is given in Appendix A. Note that the underlying

assumption for a successful implementation of PDD and GMQD is a pricing scheme that

makes higher priority classes more costly (or more usage-restricted) than lower priority

classes. Otherwise, everyone will use the highest priority class and the model will not be

effective. Past studies on the pricing of interactive computer services [53], [54], suggest

that the pricing differences between one service class from another must be substantial,

at around a factor of 2. Therefore, network operators are most likely to set δk+1/δk ≥ 2.

In addition, the most practical or most frequently experienced scenario based on this

pricing model will be r1 > r2 > . . . > rN .

If the class load distribution is equal among the four classes, then the performance

of PDD and GMQD are identical.

On the other hand, if the class load is distributed such that r1 < r2 < . . . < rN , then

the average class delay of the highest priority class may be longer when using GMQD

3.2 PDD, GMQD and DRD 29

k δk rk (Mbps) dk (msec)
PDD GMQD

1 8 1 307.69 137.93
2 4 2 153.85 137.93
3 2 3 76.92 103.45
4 1 4 38.46 68.966

Total 15 10 576.92 448.28

Table 3.3: Average class delay for PDD and GMQD when r1 = 1 Mbps, r2 = 2 Mbps,
r3 = 3 Mbps, and r4 = 4 Mbps.

(see Table 3.3). However, note that the total average class delay in the system remains

lower for GMQD.

Summarizing the above discussion. Under a pricing scheme that makes higher pri-

ority classes more costly (or more usage-restricted) than lower priority classes, the most

frequently experienced traffic scenario will be r1 > r2 > . . . > rN . During such a traffic

scenario, GMQD is able to provide lower average class delay than PDD for all, except

the lowest priority class. In addition, consistent delay differentiation is also not com-

prised. However, during other traffic conditions, GMQD may not be able to provide

consistent delay differentiation, unlike PDD.

In view of the above, the DRD model is proposed. For DRD, differentiation is based

on

D̄k/φk

D̄l/φl
=

δk

δl
1 ≤ k, l ≤ N (3.5)

where φl is the service rate of class l allocated by the scheduler.

When the class load distribution {rl} is given, the average queueing delay in class k

3.3 Generalized Minimum Queueing Delay 30

under the DRD constraints is

D̄k =
δkφkQ̄agg∑N

l=1 δlφlrl

(3.6)

Note that DRD is equivalent to PDD when φ1 = φ2 = . . . = φN , and equivalent to

GMQD when φl = rl for all classes in the system.

To enjoy the best of both worlds, DRD must be able to provide: (a) consistent

delay differentiation among classes independent of the class load distribution and (b)

lower average class delay than PDD for all, except the lowest priority class independent

of traffic conditions. Following the same derivation used in Appendix A, the above

criterias can be met by setting φk = max(rk, φk+1), where φN+1 = 0 and φk is computed

sequentially from the highest priority class (class N) to the lowest priority class (class

1).

In the next section, GMQD is discussed in greater detail. This is followed by 2 pro-

posed Packetized-GMQD algorithms in Section 3.4, before deriving their corresponding

Packetized-DRD algorithms in Section 3.5.

3.3 Generalized Minimum Queueing Delay

In this section, Generalized Minimum Queuing Delay (GMQD) is described in detail.

GMQD can be defined as an idealized algorithm that minimize the total queuing delay

of all backlogged service classes traversing a single switching node.

3.3 Generalized Minimum Queueing Delay 31

3.3.1 Fluid GMQD Model

GMQD is a work-conserving server that may operate at a fixed or variable rate C(t).

Let φk(t) and Qk(t) be the service rate and backlog of class k at time t respectively,

where k = 1, 2, . . . , N . Therefore, a GMQD server serving N classes is defined as one

where the sum of weighted queueing delay

N∑

k=1

Qk(t)wk

φk(t)
(3.7)

is minimized by varying the φk values at time t, where wk is the weight assigned to class

k.

As the server is work-conserving, the sum of total service rates is always given by

N∑

k=1

φk(t) = C(t) (3.8)

at time t.

Theorem 3.1. The service rate φk(t) of service class k in a GMQD server at time t is

given by

φk(t) =

√
Qk(t)wk∑N

l=1

√
Ql(t)wl

C(t) (3.9)

where Qk(t) is the amount of class k backlog in bits at time t, wk is the weight assigned

to class k and C(t) is the bandwidth of the server at time t.

The proof derived using Dynamic Programming (DP) [55] can be found in Appendix

B2. This theorem gives the exact service rates of each class required to minimize the

2Alternatively, the Lagrange Multiplier [56] method can be used to derive the proof.

3.3 Generalized Minimum Queueing Delay 32

total weighted queueing delay. However, for implementation purposes, only a relative

value is required for the computation of φl.

Corollary 3.1. A GMQD server can be implemented by varying φk according to

φk(t) =
√

Qk(t)wk (3.10)

where Qk(t) is the amount of flow k backlogged in bits at time t and wk is a real number

denoting the weight assigned to class k.

Proof: From Theorem 3.1, divide the service rates of classes k and l to obtain

φk

φl
=

√
Qkwk

Qlwl
,

φk = K
√

Qkwk, (3.11)

where K = φl/
√

Qlwl is a constant of proportionality that every φk can be expressed

in terms of, for k = 1, 2, . . . , N . As the φk value for every class k in the system can be

expressed in terms of the same K multiplied by its
√

Qkwk value, it is sufficient to use

relative values in the implementation of a rate based scheduler. The proof completes.

2

Note that the expression in Corollary 3.1 does not require any information from the

other classes. This result will be used in Section 3.4 in the design of a packet emulation

of GMQD called Queue Length based Packetized GMQD (QL-PGMQD).

3.3.2 Heavy Traffic Conditions

The performance of GMQD under limiting heavy traffic conditions (see equation (3.3)),

i.e. when the total traffic load r =
∑N

k=1 rk tends towards the link capacity C, is derived.

3.4 Packetized Generalized Minimum Queueing Delay 33

Theorem 3.2. Given an N service classes GMQD system with a work-conserving server

operating at fixed rate C. When the total traffic load conforms to
∑N

k=1 rk = C, the

average backlog Q̄k and average queueing delay D̄k eventually converges to:

Q̄k =
Q̄agg

∑N
l=1

(
wk
wl

)(
r̄l
r̄k

)2 (3.12)

D̄k =
Q̄agg

r̄k
∑N

l=1

(
wk
wl

)(
r̄l
r̄k

)2 . (3.13)

where Q̄agg =
∑N

l=1 rlD̄l is the average aggregate backlog in the system.

The proof of the above theorem can be found in Appendix C.

Dividing the average queueing delay for two classes, resulting in

D̄k/r̄k

D̄l/r̄l
=

wl

wk
(3.14)

where the DDPs ratio is the inverse of the weights ratio, i.e.

δk

δl
=

wl

wk
(3.15)

Note that combining equation (3.14) and (3.15) will result in equation (3.3).

An alternative implementation of PGMQD based on the use of average queueing

delay will be proposed in Section 3.4.2.

3.4 Packetized Generalized Minimum Queueing Delay

GMQD is an idealized discipline that does not transmit packets as entities. It assumes

that the server can serve multiple service classes simultaneously and that the traffic is

infinitely divisible. In this section, packet emulations of GMQD are studied. The first

3.4 Packetized Generalized Minimum Queueing Delay 34

one is similar to Packet Fair Queueing (PFQ) algorithms [5], [6], [7], [57], [58], while

the next is similar to the Time Dependent Priorities (TDP) [59] scheme, also known as

Waiting Time Priorities (WTP) [43].

3.4.1 Queue Length based Packetized Generalized Minimum Queue-

ing Delay

The main idea behind Queue Length based Packetized Generalized Minimum Queueing

Delay (QL-PGMQD) is to use the Generalized Processor Sharing (GPS) model [5],

[60], with the modification that the service rate of each service class is proportional

to the square root of the weighted backlog of the service class (see Corollary 3.1).

To better estimate the normalized amount of service time received by each class, the

average normalized service rates value for every [A(pi
k), A(pi+1

k)] time interval is used.

Specifically, the proposed QL-PGMQD algorithm is defined as:

(1) The ith packet, pi
k of service class k on reaching the head of a First-In-First-Out

(FIFO) queue at time A(pi
k) is stamped with a start tag S(pi

k) and a finish tag, F (pi
k),

which are determined as:

S(pi
k) = max(F (pi−1

k), v(A(pi
k))) (3.16)

F (pi
k) = S(pi

k) +
2Li

k√
Qk(A(pi

k))wk +
√

Qk(A(pi+1
k))wk

(3.17)

where Li
k is the length of pi

k, wk is the weight of class k, Qk(t) is the number of bits

backlogged in class k at time t and S(p0
k) = 0.

(2) The server virtual time v(t) is initially set to zero. During a busy period, v(t) is

3.4 Packetized Generalized Minimum Queueing Delay 35

defined to be equal to the start tag of the packet in service at time t.

(3) Packets are serviced in increasing order of their start tags. Any ties are broken

arbitrarily.

(4) At the end of a busy period, the server virtual time, v(t) together with the start

and finish tags of every class are re-initialized to zero.

Note that scheduling for QL-PGMQD is based on the “smallest start tag first” policy

because the finish tag F (pi
k) can only be computed at A(pi+1

k) (refer to equation (3.17)).

In terms of implementation complexity, one source of complexity for QL-PGMQD is

the sorted priority list operations used to locate the packet with the smallest start tag.

Depending on the sorted list algorithm used, the complexity can range from O(log2N)

for an exact sorted priority list implementation to O(1) for an approximate implemen-

tation [61], [62].

The other source of complexity lies in the need to do a floating point square root

operation for tag computation. A commercially available Pentium III processor takes

around 40 clock cycles and 80 clock cycles to execute a double precision floating point

division and double precision extended square root operation respectively. Hence, it

can be concluded that the time required for executing one QL-PGMQD tag com-

putation (involving one floating point division and one square root) is around three

times the amount of time required for executing one tag computation of a conventional

fair queueing algorithm (involving one floating point division) such as Start-Time Fair

Queueing (SFQ) [63], [64]. Note that the overhead associated with one floating point

addition/subtraction is small compared with one floating point division (or square root)

3.4 Packetized Generalized Minimum Queueing Delay 36

because one addition/subtraction operation can be issued every clock cycle.

3.4.2 Queueing Delay based Packetized Generalized Minimum Queue-

ing Delay

An alternative implementation of GMQD is to schedule packets based on priorities

computed using the delay expression derived in Theorem 3.2. Specifically, Queueing

Delay based Packetized Generalized Minimum Queueing Delay (QD-PGMQD) is defined

as follows:

(1) The priority of the ith packet, pi
k of service class k is computed based on

P i
k =

di
kwk

rk
(3.18)

where P i
k and di

k is the priority and waiting time of packet pi
k respectively. wk is the

weight assigned to class k and rk is the exponential moving average rate of class k

computed using:

rnew
k = (1− e−∆t/τ)/∆t + e−∆t/τrold

k (3.19)

where ∆t is the packet inter-arrival time, and τ is a constant3.

(2) Packets are serviced in increasing order of their priority tags. Any ties are broken

arbitrarily.

For QD-PGMQD, the priority tags of all the head of queue packets have to be com-

puted each time a new packet reaches its head of the queue leading to a computational

complexity of O(N), where N is the number of service classes in the system. This may

3A good discussion on what value to set for τ can be found in [12].

3.5 Packetized Delay Rate Differentiation 37

be difficult to implement for systems with many classes but feasible for DiffServ if we

assume eight classes or less [13].

3.5 Packetized Delay Rate Differentiation

In this section, two Packetized DRD (PDRD) algorithms, called Queue Length based

Packetized Delay Rate Differentiation (QL-PDRD) and Queueing Delay based Packe-

tized Delay Rate Differentiation (QD-PDRD), are proposed. Both PDRD algorithms

are extensions of the two PGMQD algorithms proposed in Section 3.4.

3.5.1 Queue Length based Packetized Delay Rate Differentiation

The main concepts behind Queue Length based Packetized Delay Rate Differentiation

(QL-PDRD) is based on QL-PGMQD. Specifically, the proposed QL-PDRD algorithm

is defined as:

(1) The ith packet, pi
k of service class k on reaching the head of a First-In-First-Out

(FIFO) queue at time A(pi
k) is stamped with a start tag S(pi

k) and a finish tag, F (pi
k),

which are determined as:

S(pi
k) = max(F (pi−1

k), v(A(pi
k))) (3.20)

F (pi
k) = S(pi

k) +
2Li

k

φk(A(pi
k)) + φk(A(pi+1

k))
(3.21)

where

φk(t) = max(
√

Qk(t)wk,
√

Qk+1(t)wk+1) (3.22)

3.5 Packetized Delay Rate Differentiation 38

Li
k is the length of pi

k. wk is the weight of class k. φk(t) is the service rate allocated

to class k at time t. Qk(t) is the number of bits backlogged in class k at time t and

S(p0
k) = 0. Note that the max(.) term in equation (3.22) is used to account for the

rk−1 ≤ rk traffic condition and QN+1(t)wN+1 = 0.

(2) The server virtual time v(t) is initially set to zero. During a busy period, v(t) is

defined to be equal to the start tag of the packet in service at time t.

(3) Packets are serviced in increasing order of their start tags. Any ties are broken

arbitrarily.

(4) At the end of a busy period, the system’s virtual time, v(t) together with the start

and finish tags of every class are re-initialized to zero.

Once again, the scheduling for QL-PDRD is based on the “smallest start tag first”

policy because the finish tag F (pi
k) can only be computed at A(pi+1

k) (refer to equation

(3.21)).

The implementation complexity is in the same order as QL-PGMQD, which are

limited by the sorted priority list operations used to locate the packet with the smallest

start tag and the square root computation.

3.5.2 Queueing Delay based Packetized Delay Rate Differentiation

An alternative implementation of DRD is to schedule packets based on priorities com-

puted using packet delay. Specifically, Queueing Delay based Packetized Delay Rate

Differentiation (QD-PDRD) is defined as follows:

(1) The priority of the ith packet, pi
k of service class k is computed sequentially from

3.6 Simulation Results 39

class k = N to class k = 1 based on

P i
k =

di
kwk

φk
(3.23)

where

φk = max(rk, φk+1) (3.24)

and φN+1 = 0. P i
k and di

k is the priority and waiting time of packet pi
k respectively.

wk is the weight assigned to class k. φk is the service rate assigned to class k and rk is

the exponential moving average rate of class k, computed using the same equation as

equation (3.19).

(2) Packets are serviced in increasing order of their priority tags. Any ties are broken

arbitrarily.

The complexity of QD-PDRD is O(N), which is in the same order as QD-PGMQD

and WTP, because the priority tags of all the head of queue packets have to be computed

each time a new packet reaches its head of the queue.

3.6 Simulation Results

For purpose of comparison, the simulation scenarios and parameters are similar to that

of [43].

3.6.1 Single Node

In this section, simulations are used to evaluate the performance of BPR, WTP (TDP),

QL-PGMQD, QD-PGMQD, QL-PDRD and QD-PDRD from a single node perspective.

3.6 Simulation Results 40

The effects of different class load distributions on the long term average delay differ-

entiation and the performance of each algorithm transiting from different class load

distributions are investigated.

The simulation scenario is a scheduler that is loaded with traffic from N = 4 sources.

In all cases, packet inter-arrivals follow a Pareto distribution with a shape parameter

α = 1.9. The packet length distribution is the same for all classes, where 50% of

the packets are 40 bytes, 35% are 550 bytes, and 15% are 1500 bytes, giving a good

representative of the majority of the packets seen in the Internet [65]. The bandwidth of

the network links is 51.84 Mbps. The link utilization u = r/C used is 0.9. The weights

of each class will be chosen as wk/wk−1 = 2.

Note that the class of DRD algorithms is based on the assumption that δ1 = +∞.

If δ1 is not significantly larger than other δ terms, then based on the derivation used

in Appendix A an additional φ1 = max
[
max(r1, φ2), φ2 +

PN
l=3 δlrl(φ2−φl)

δ1r1

]
condition is

required. This additional condition is used in this simulation scenario because δ1 = 8 is

not significantly larger than δ2 = 4.

Figure 3.1 shows the average class delays using BPR, QL-PGMQD, QL-PDRD,

WTP, QD-PGMQD, and QD-PDRD for five different class load distribution. Each

point in these figures is obtained from averaging over ten simulation runs with different

random number generator seeds, each run being of 100 sec duration. The results are seg-

regated into two groups: Figure 3.1(a) shows the results of the class of “Queue Length”

based algorithms (BPR, QL-PGMQD, and QL-PDRD), while Figure 3.1(b) shows the

results of the class of “Queueing Delay” based algorithms (WTP, QD-PGMQD, and

3.6 Simulation Results 41

QD-PDRD).

From the results, it can be seen that similar to the BPR and WTP algorithms, the

QL-PDRD and QD-PDRD algorithms are able to achieve consistent delay differentia-

tion, where higher priority classes consistently achieve better delay than lower priority

classes independent of the five different load distributions. Furthermore, the QL-PDRD

and QD-PDRD algorithms are able to provide lower average class delay for all classes

with the exception of the lowest priority class (i.e. class 1) when compared with the

BPR and WTP algorithms respectively. This is achieved independent of the five differ-

ent load distributions and without significant deterioration of the average delay of the

lowest priority class. Therefore, these results showed that DRD is able to maintain the

consistent delay differentiation characteristics of PDD, while exploiting the total delay

minimization characteristics of GMQD to provide better overall average class delays

than PDD.

Figure 3.2 shows the ratio of the average delays between successive classes using

the same set of results. The results are segregated into three groups: Figure 3.2(a)

shows the results of the PDD algorithms, Figure 3.2(b) shows the results of the GMQD

algorithms, and Figure 3.2(c) shows the results of the DRD algorithms. For comparison,

three columns of data points are plotted for each class load distribution: the first column

of points denote the results of the ideal fluid flow models, the second column of points

denote the results of the class of “Queueing Delay” based algorithms, and the last

column of points denote the results of the class of “Queue Length” based algorithms.

From the results, it can be seen that the class of “Queueing Delay” based algorithms,

3.6 Simulation Results 42

(a)

1

10

100

1000

70% 75% 80% 85% 90% 95% 100%

Class Load Distributions

A
ve

ra
g

e
D

el
ay

BPR, Class 1

QL-PGMQD, Class 1

QL-PDRD, Class 1

BPR, Class 2

QL-PGMQD, Class 2

QL-PDRD, Class 2

BPR, Class 3

QL-PGMQD, Class 3

QL-PDRD, Class 3

BPR, Class 4

QL-PGMQD, Class 4

QL-PDRD, Class 4

40
-3

0-
20

-1
0

30
-1

0-
20

-4
0

25
-2

5-
25

-2
5

20
-4

0-
10

-3
0

10
-2

0-
30

-4
0

(b)

1

10

100

1000

70% 75% 80% 85% 90% 95% 100%

Class Load Distributions

A
ve

ra
g

e
D

el
ay

WTP, Class 1

QD-PGMQD, Class 1

QD-PDRD, Class 1

WTP, Class 2

QD-PGMQD, Class 2

QD-PDRD, Class 2

WTP, Class 3

QD-PGMQD, Class 3

QD-PDRD, Class 3

WTP, Class 4

QD-PGMQD, Class 4

QD-PDRD, Class 4

40
-3

0-
20

-1
0

30
-1

0-
20

-4
0

25
-2

5-
25

-2
5

20
-4

0-
10

-3
0

10
-2

0-
30

-4
0

Figure 3.1: The average class delays using BPR, QL-PGMQD, QL-PDRD, WTP, QD-
PGMQD, and QD-PDRD for different class load distribution. The four numbers in each
bar denote the fraction of the four classes in the aggregate packet stream, starting from
class 1 up to class 4. The link utilization is 90%. (a) The simulation results using BPR,
QL-PGMQD, and QL-PDRD. (b) The simulation results for WTP, QD-PGMQD, and
QD-PDRD.

3.6 Simulation Results 43

such as WTP, QD-PGMQD, and QD-PDRD, is less dependent on the load distribution

and is able to achieve the delay differentiation ratios close to the values specified by

the ideal fluid flow models. On the other hand, the class of “Queue Length” based

algorithms, such as BPR, QL-PGMQD, and QL-PDRD, is more dependent on the load

distribution. These results indicate that the class of “Queueing Delay” based algorithms

have better performance than the class of “Queue Length” based algorithms. This better

performance, however, comes at the expense of greater computational complexity.

3.6.2 Multiple Nodes

In this experiment, the focus is on the end-to-end performance of the packet flows. The

issue here is whether local class-based relative differentiation can lead to consistent end-

to-end flow-based relative differentiation. This set of simulations will only evaluate the

six algorithms for the weights ratio wk/wk−1 = 2. Figure 3.3 shows the network topol-

ogy, which is a typical multiple congested nodes network configuration. The number

of nodes varies from 1 to 5. The input traffic at the first node is generated by N = 4

sources and traverses all nodes in the network configuration. The traffic characteristics

and class load distribution is the same as that of the previous experiments. At each

node, cross-traffic that are generated from P = 4 sources are included. Their traffic

characteristics and class load distribution follows that of the input traffic sources. The

link utilization is u = 90% with the aggregate cross-traffic load taking up 70% of the

total traffic at each link. The bandwidth of the network links is 51.84 Mbps. In order

to examine the effectiveness of the relative delay differentiation, only the queueing de-

3.6 Simulation Results 44

(a)

0

0.5

1

1.5

2

2.5

70% 75% 80% 85% 90% 95% 100%

Class Load Distributions

A
ve

ra
g

e
D

el
ay

 R
at

io
 f

o
r

S
u

cc
es

si
ve

 C
la

ss
es

class 1 over 2

class 2 over 3

class 3 over 4

10
-2

0-
30

-4
0

20
-4

0-
10

-3
0

25
-2

5-
25

-2
5

30
-1

0-
20

-4
0

40
-3

0-
20

-1
0

(b)

-4

-2

0

2

4

6

8

10

70% 75% 80% 85% 90% 95% 100%

Class Load Distributions
A

ve
ra

g
e

D
el

ay
 R

at
io

 f
o

r
S

u
cc

es
si

ve
 C

la
ss

es

class 1 over 2

class 2 over 3

class 3 over 4

10
-2

0-
30

-4
0

20
-4

0-
10

-3
0

25
-2

5-
25

-2
5

30
-1

0-
20

-4
0

40
-3

0-
20

-1
0

(c)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

70% 75% 80% 85% 90% 95% 100%

Class Load Distributions

A
ve

ra
ge

 D
el

ay
 R

at
io

 fo
r

S
uc

ce
ss

iv
e

C
la

ss
es

class 1 over 2

class 2 over 3

class 3 over 4

10
-2

0-
30

-4
0

20
-4

0-
10

-3
0

25
-2

5-
25

-2
5

30
-1

0-
20

-4
0

40
-3

0-
20

-1
0

Figure 3.2: The ratio of average delays between successive classes with different class
load distribution. The four numbers in each bar denote the fraction of the four classes in
the aggregate packet stream, starting from class 1 up to class 4. (a) The three columns
of points in each bar denote, from left to right, the simulation results for PDD, WTP,
and BPR respectively. (b) The three columns of points in each bar denote, from left to
right, the simulation results for GMQD, QD-PGMQD, and QL-PGMQD respectively.
(c) The three columns of points in each bar denote, from left to right, the simulation
results for DRD, QD-PDRD, and QL-PDRD respectively.

3.7 Related Work 45

0 1 2 ... N

Cross-traffic

Reference Flow

Source

Cross-traffic Cross-traffic Cross-traffic

Switch Switch Switch Switch

4 Sources 4 Sources 4 Sources 4 Sources

Reference Flow

Sink

Cross-traffic

Sink

Cross-traffic

Sink

Cross-traffic

Sink

Cross-traffic

Sink

Figure 3.3: Multiple congested link network configuration.

lays are considered. Propagation and transmission delays are ignored because they are

common to all packets.

Figure 3.4 shows the ratio of the average delays between successive classes in multiple

congested nodes network configuration. The class load distribution is chosen as r1 =

r2 = r3 = r4 = 0.25r. From the results of Figure 3.4(a), the performance of BPR, QL-

PGMQD and QL-PDRD are comparable. Similarly, from the results of Figure 3.4(b),

the delay performance of WTP, QD-PGMQD and QD-PDRD are also comparable.

Another observation is that for all six algorithms, the deviations from the weights ratio

reduces as the number of nodes that the input traffic traverse increases. Therefore, this

study shows that local class-based relative differentiation leads to consistent end-to-end

flow-based relative differentiation.

3.7 Related Work

Other relative differentiation models that differ slightly from PDM have also been stud-

ied and proposed. Bodamer [66] extends on PDD to propose a scheduler that pro-

3.7 Related Work 46

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5

Number of Nodes

A
v
e
ra

g
e
 D

e
la

y
 R

a
ti

o
 f

o
r

S
u

c
c
e
s
s
iv

e
 C

la
s
s
e
s

BPR: class 1 over 2

BPR: class 2 over 3

BPR: class 3 over 4

QL-PGMQD: class 1 over 2

QL-PGMQD: class 2 over 3

QL-PGMQD: class 3 over 4

QL-PDRD: class 1 over 2

QL-PDRD: class 2 over 3

QL-PDRD: class 3 over 4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5

Number of Nodes

A
v
e
ra

g
e
 D

e
la

y
 R

a
ti

o
 f

o
r

S
u

c
c
e
s
s
iv

e
 C

la
s
s
e
s

WTP: class 1 over 2

WTP: class 2 over 3

WTP: class 3 over 4

QD-PGMQD: class 1 over 2

QD-PGMQD: class 2 over 3

QD-PGMQD: class 3 over 4

QD-PDRD: class 1 over 2

QD-PDRD: class 2 over 3

QD-PDRD: class 3 over 4

Figure 3.4: (a) The ratio of average-delays between successive classes using BPR, QL-
PGMQD and QL-PDRD for class load distribution of r1 = r2 = r3 = r4 = 0.25r. The
weights ratio is wk/wk−1 = 2. (b) The same simulation using WTP, QD-PGMQD and
QD-PDRD.

vides proportional delay violation probabilities among classes in the system. Another

interesting framework is proposed by Christin and Liebeherr, called Joint Buffer Man-

agement and Scheduling (JoBS) [67]. JoBS combines both link scheduling and queue

management in a single algorithm. Furthermore, it is able to offer relative and absolute

guarantees on both delay and loss. Heuristics are used to modify service rates so that

all QoS constraints can be met. If this is not possible, then packets are dropped. Re-

cently, the same authors also presented a quantitative assured forwarding service based

on linear feedback control theory [68]. Unfortunately, these alternative models come at

the price of additional complexity.

3.8 Conclusion 47

3.8 Conclusion

This chapter presents a new model for providing delay based differentiation, called

Delay-Rate Differentiation (DRD) model. DRD is based on PDD and GMQD. It exploits

the advantage of PDD and GMQD by taking on the characteristics of either model

depending on traffic load conditions. Two classes of packet scheduling algorithms are

subsequently proposed to emulate GMQD and DRD, one based on “Queue Length” and

the other based on “Queueing Delay”.

48

Chapter 4

Achieving Delay Differentiation
Efficiently

In Chapter 3, it was demonstrated that the class of Queueing Delay based packet

scheduling algorithms has better performance compared to the class of Queue Length

based packet scheduling algorithms, but comes at the expense of computational com-

plexity. In this chapter, a novel approximation technique is proposed to improve the

scalability of this class of Queueing Delay based packet scheduling algorithms. This

reduction in complexity is achieved without comprising on the scheduling performance

of the algorithms.

4.1 Background

Under the framework of DiffServ, Dovrolis presented the Proportional Differentiation

Model (PDM) [42] and found the Waiting Time Priority (WTP) scheme [43] to be a

suitable scheduling algorithm to achieve proportional delay differentiation (PDD). In

the WTP algorithm, the service priority of a packet in queue i at time t is given by

pi(t) = di(t)wi, where di(t) is the waiting time of the packet at time t and wi is the

4.1 Background 49

weight of the delay class. The complexity of WTP scheduler is O(N), where N is the

number of service classes in the system, because the priority for every backlogged class

has to be calculated each time a new packet reaches its head-of-queue. In addition, tag

comparisons among all backlogged classes are required to identify the highest priority

packet to schedule.

The main contribution of this paper is our proposed Scaled Time Priority (STP)

scheme [69], [70], [71], which is an efficient approximation to WTP. Specifically, STP

is able to provide near proportional delay at a complexity of O(1), which is lower than

the O(N) complexity of WTP. The advantage of STP over WTP is most significant

and apparent in a high-speed system with many service classes. DiffServ uses six bits

of the IPv4 or IPv6 header to convey the Differentiated Services Codepoints (DSCPs),

which selects a Per-Hop Behavior (PHB) [23], [24]. This translates to a maximum of

26 = 64 possible DSCPs. Presently, only 14 DSCPs have been defined: one for Default

Best Effort traffic [23], twelve for Assured Forwarding traffic [27], and one for Expedited

Forwarding traffic [26]. Network operators, therefore, have the freedom to customize

the other DSCPs to meet their own requirements. With WTP, providing PDD for a

large number of classes is difficult due to its O(N) complexity. In [13], N was assumed

to be eight or less, making the associated implementation complexity surmountable.

However, with the simplicity of STP, network operators can have greater freedom to

deploy fine granularity PDD over a greater number of service classes.

Another important contribution of this chapter is the derivations of the workload

that must be transmitted before an arbitrary packet for WTP and STP schedulers,

4.1 Background 50

where workload is defined as the transmission time of all traffic in the scheduler that

must be transmitted before a certain packet of interest. The derived workload allows

one to quantify the exact schedulability conditions of a scheduling algorithm given the

traffic arrival characteristics [61], [62]. In the past, the O(1) RPQ+ algorithm used a

similar workload derivation to establish that it can efficiently approximate the O(log2N)

complexity Earliest Deadline First (EDF) algorithm [72]. In this chapter, the derived

workload for the WTP scheduler will be used as the reference for providing PDD. The

derived workload for the O(1) complexity STP scheduler is then compared with O(N)

complexity WTP to establish that both algorithms are comparable.

The rest of the chapter is organized as follows. In Section 4.2, PDM is discussed in

greater detail. In Section 4.3, WTP is described and the workload transmitted before an

arbitrary tagged packet using the WTP scheduler is derived. In Section 4.4, the proposed

STP algorithm is described and the workload transmitted before an arbitrary tagged

packet using a STP scheduler is derived. Subsequently, the differences between WTP

and STP are reconcilied. In Section 4.5, simulations are used to evaluate the algorithms.

In Section 4.6, the same method used in simplifying WTP is applied to Queueing Delay

based Packetized Generalized Minimum Queueing Delay (QD-PGMQD) and Queueing

Delay based Packetized Delay Rate Differentiation (QD-PDRD). In Section 4.7, STP is

compared with other related work, before concluding in Section 4.8.

Before embarking on the discussion, a summary list of the notations used throughout

this chapter is provided in Table 4.1.

4.1 Background 51

Notation Comments
di average waiting time of departed (non-dropped) packets for class i
δi delay differentiation parameters of class i
li average packet loss rate for class i
σi loss differentiation parameters of class i
wi scheduler differentiation parameter of class i or the weight assigned to

class i
pi service priority of class i
N number of service classes in the system
P number of disjoint priority classes in the system
Ci priority class i
Aj [t, t + τ] total session j traffic that arrives to the scheduler in the time interval

[t, t + τ]
tp time tagged packet from session j in class Cp arrives at the scheduler
tp + δp time tagged packet from session j in class Cp starts to depart from the

scheduler
tp + τp arbitrary time between t and tp + δp

Bj backlog in the scheduler from session j
tp + τ̂p last time before tp that the scheduler does not contain packets that are

to be transmitted before the tagged packet
R(tp + τ̂p) remaining transmission time of packet transmitted at time tp + τ̂p

D parameter used to scale the waiting time of packet in the Scaled Time
Priority algorithm

T parameter used to scale the time the packet reaches its head-of-queue
in the Scaled Time Priority algorithm

tp + hp time tagged packet from session j in class Cp reaches its head-of-queue
∆q−p time difference between packets from priority classes q and p reaching

their respective head-of-queues
φi service rate of class i allocated by the scheduler
∆t packet inter-arrival time

Table 4.1: Notations used in Chapter 4. For simplicity, the notations do not include
the time argument t.

4.2 Proportional Differentiation Model 52

4.2 Proportional Differentiation Model

There are several ways to provide relative differentiated services. For example, the

differentiation can be strictly based on pricing (like Paris Metro Pricing [53]), or on

capacity provisioning (like Weighted Fair Queueing and its variants [5], [6], [7], [57], [58],

[64], [73]). However, these mechanisms cannot provide consistent differentiation between

classes especially for traffic patterns that are bursty over a wide range of timescales.

Other mechanisms like strict prioritization can provide consistent class differentiation

that does not depend on load variations, but do not allow network operators to adjust

the quality spacing between classes.

In view of the above, Dovrolis proposed the Proportional Differentiation Model

(PDM) [42]. PDM has two key features:

(1) Predictability, in the sense that the differentiation is consistent (i.e. higher classes

are better, or at least no worse) and independent of the variations of the class loads,

and

(2) Controllability, meaning that the network operators are able to adjust the quality

spacing between classes based on their selected criteria.

The PDM states that certain class performance metrics, related to the per-hop

queueing delays and packet drops, should be proportional to the corresponding differen-

tiation parameters that the network operator chooses [13]. Through these differentiation

parameters the network operator can control the relative spacing (ratio) of the offered

classes, based on pricing or policy requirements. Specifically, let di be the average queue-

ing delay of the departed (non-dropped) packets. The proportional delay differentiation

4.2 Proportional Differentiation Model 53

(PDD) model requires that the class average delays are spaced as

di

dj
=

δi

δj
1 ≤ i, j ≤ N (4.1)

The parameters δi are the Delay Differentiation Parameters (DDPs), and they are

ordered so that higher classes provide lower delays, i.e., δ1 > δ2 > . . . > δN > 0.

Schedulers approximating the PDD model that have been studied include Backlog Pro-

portional Rate (BPR) [43], Proportional Queue Control Mechanism (PQCM) [44], Ex-

tended Virtual Clock (Ex-VC) [45], Dynamic Weighted Fair Queueing (DWFQ) [46],

and Mean Delay Proportional (MDP) [47]. Providing PDD efficiently is the focus of

our study in this chapter.

Similar to equation (4.1), let li be the average loss rate for class i, that is the long-

term fraction of class i packets that have been dropped. The PDM in the case of packet

drops requires that class loss rates are spaced as

li
lj

=
σi

σj
1 ≤ i, j ≤ N (4.2)

The parameters σi are the Loss rate Differentiation Parameters (LDPs), and they are

also ordered as σ1 > σ2 > . . . > σN > 0. Droppers approximating the PLD model

that have been studied include Proportional Loss Rate (PLR) droppers based on Loss

History Table [48] and Average Drop Distances (ADDs) [49]. PLD will not be considered

in this thesis.

Note that the PDM must be strongly coupled with a pricing or a policy-based

scheme to make higher classes more costly (or more usage-restricted) than lower classes.

Otherwise, everyone will use the highest class and the model will not be effective.

4.3 Waiting Time Priority 54

4.3 Waiting Time Priority

4.3.1 Algorithm

The Waiting Time Priority (WTP) algorithm was first studied by L. Kleinrock in 1964

[59], with the name Time Dependent Priorities (TDP). It was later used by Dovrolis as

an effective means to achieve the PDD model. WTP is a priority scheduler in which

the priority of a packet increases proportionally with its waiting-time. The algorithm

for WTP can be defined as:

(1) All packets on arrival at the scheduler is timestamped with an arrival tag equal to

its arrival time.

(2) Whenever a packet reaches its head-of-queue, the priority for every backlogged queue

i at time t has to be computed as

pi(t) = di(t)wi (4.3)

where di(t) is the waiting-time of the packet at time t and wi is the Scheduler Differenti-

ation Parameter (SDP) that determines the rate with which the priority of the packets

of a certain class increases with time.

(3) The scheduler then chooses the packet with the largest priority tag for service. Ties

are arbitrarily broken.

From the description above, it is clear that the complexity of WTP is O(N), where N

is the number of classes in the system. This is because the priority for every backlogged

class has to be calculated each time a new packet reaches its head-of-queue.

4.3 Waiting Time Priority 55

In addition, it can be shown that under heavy traffic conditions, the DDP ratios

(defined in Section 4.2) tends to the inverse of the corresponding SDP ratios [43], that

is

di

dj
→ δi

δj
=

wj

wi
1 ≤ i, j ≤ N (4.4)

Next, WTP is analyzed in greater detail and the workload that must be transmitted

before an arbitrary packet for a WTP scheduler is derived. This derived workload

allows one to quantify the exact schedulability conditions of WTP and will be used as

the reference for providing PDD. The derivation follows that of [61], [62], which uses a

general traffic arrival characteristics. A similar analysis was done by Kleinrock assuming

Poisson arrivals to derive the average delay of classes in a TDP (or WTP) system [52].

Dovrolis later extended on this work to show that proportional delay can be achieved

for Poisson arrivals under heavy traffic conditions [13].

4.3.2 Workload that must be Transmitted before an Arbitrary Packet

for a Waiting Time Priority Scheduler

The scheduler is assumed to be empty at time 0 and the transmission rate of the

scheduler is normalized for simplification of notation. Sessions submitting traffic to a

WTP scheduler are further assumed to be grouped into P disjoint priority classes C1,

C2, . . ., CP , arranged in ascending priority order, where CP has a higher priority than

CP−1 and so on.

For a given session j in class Cp, let Aj [t, t+ τ] denote the total session j traffic that

arrives to the scheduler in time interval [t, t+τ] measured in terms of transmission time

4.3 Waiting Time Priority 56

Figure 4.1: Time-lines of a tagged packet p and another arbitrary packet q in a WTP
system.

of the link. Note that no assumption is made regarding the traffic arrival characteristics

for Aj [t, t + τ]. Besides Poisson arrivals, other traffic models [5], [72], [74], can also be

substituted into Aj [t, t + τ] to derive different workload conditions.

Without loss of generality, assume that a tagged packet from session j in class Cp

arrives to a WTP scheduler at time tp and starts to depart from the scheduler at time

tp + δp. Defining tp + τp as an arbitrary time between tp and tp + δp, where the tagged

packet is in the queue of class Cp. The expression W p,tp(tp + τp), which represents

the total transmission time of all traffic in the scheduler at time tp + τp that must be

transmitted before the tagged packet can depart, will be derived.

Consider an arbitrary class Cq and determine the time intervals for which packet

arrivals from sessions j ∈ Cq have higher priority than the tagged packet. Figure 4.1

shows an illustration of the time-lines of a tagged packet p and another arbitrary packet

q in a WTP system. We start by first assuming that the transmission of a packet can

be preempted at any time by a packet arrival with higher precedence. Two cases have

to be considered: sessions from the same class as the tagged packet (q = p) and sessions

4.3 Waiting Time Priority 57

of different priority classes from the tagged packet (q 6= p).

(a) q = p: Since all packets from class Cp are transmitted in First-In-First-Out

(FIFO) order, all packets from sessions in Cp that arrive in the time interval [0, tp] will

be transmitted before the tagged packet.

(b) q 6= p: For a different priority class Cq with q 6= p, the packets transmitted

before the tagged packet are those that satisfy the following condition:

τqwq > δpwp (4.5)

where τq is the amount of time spent by an arbitrary packet in the queue of class Cq.

Note that the time the tagged packet starts to depart from the scheduler tp + δp

is also the last time tag computations and comparisons are made involving the tagged

packet. Therefore, tq + τq = tp + δp, implying that

tq < tp + δp − δp
wp

wq

Consequently, all packets from sessions in Cq that arrive in the time interval [0, tp +(1−
wp

wq
)δp] will be transmitted before the tagged packet.

Note also that for higher (lower) priority class Cq with q > p (q < p) and wq > wp

(wq < wp), the resulting time interval is greater (smaller) than [0, tp], the corresponding

time interval for Cp. In addition, q = p implies that wq = wp. Therefore, the time

interval [0, tp + (1− wp

wq
)δp] is the general form for both cases of q = p and q 6= p.

The interval shown above describe the traffic transmitted before the tagged packet,

but these intervals assume that the transmission of a packet can be interrupted and

preempted. In particular, consider a scenario where at some time prior to the arrival

4.3 Waiting Time Priority 58

of the tagged packet at time tp, there are no packets in the scheduler with arrival

times included in the intervals described above. Since the WTP scheduler is work-

conserving, some packets which are not included in the intervals described above may

be transmitted before the tagged packet. Next, such a non-preemption is accounted for

in order to accurately quantify the traffic to be transmitted before the tagged packet.

Define tp− τ̂p to be the last time before tp that the WTP scheduler does not contain

packets that are to be transmitted before the tagged packet. Note that such a time is

guaranteed to exist since the scheduler is assumed to be empty at time 0. If Bj(t) is

used to denote the backlog in the WTP scheduler from session j ∈ Cq at time t, then

τ̂p can be written directly from the intervals above as follows:

τ̂p = min{z |
p∑

q=1

∑

j∈Cq

Bj(tp − z) +

P∑

q=p+1

∑

j∈Cq

Bj(min{tp − z, tp + (1− wp

wq
)δp}) = 0, z ≥ 0} (4.6)

Note that min{tp− z, tp +(1− wp

wq
)δp} is considered for packets from sessions in priority

classes greater than p because tp + (1− wp

wq
)δp is smaller than tp.

By definition of time tp − τ̂p, the traffic transmitted by the WTP scheduler dur-

ing the interval [tp − τ̂p, tp + δp] is limited to packets with arrival times during the

intervals specified above and the remaining transmission time of some other packet in

transmission at time tp − τ̂p, which is denoted by R(tp − τ̂p).

Finally, an expression for W p,tp(tp + τp) can be written, i.e. the workload in the

scheduler at time tp + τp that will be transmitted before the tagged packet from class

4.4 Scaled Time Priority 59

Cp with arrival time tp is completely transmitted. This expression is given as follows:

For all τp, 0 ≤ τp ≤ δp,

W p,tp(tp + τp) =
P∑

q=1

∑

j∈Cq

Aj [tp − τ̂p, tp + (1− wp

wq
)δp] +

R(tp − τ̂p)− (τ̂p + τp) (4.7)

The first term on the right hand side of equation (4.7) accounts for the arrival

intervals of all P disjoint priority classes in the system that were derived previously,

while the term R(tp − τ̂p) is the remaining transmission time of the packet transmitted

at time tp − τ̂p. Since by choice of τ̂p, the packet scheduler is continuously backlogged

for the entire interval [tp − τ̂p, tp + τp], the final term accounts for the total workload

transmitted during the interval.

4.4 Scaled Time Priority

In this section, the Scaled Time Priority (STP) scheduler is introduced and the workload

transmitted before an arbitrary packet for this scheme is derived. The expression derived

above for the WTP algorithm will then be compared with that of STP, so that an

evaluation of the two schemes can be made. The intuition behind STP and a discussion

on its implementation complexity will also be provided.

4.4.1 Algorithm

The proposed Scaled Time Priority (STP) algorithm can be described as follows:

(1) Each packet on arrival at the scheduler is timestamped with an arrival tag equal to

4.4 Scaled Time Priority 60

its arrival time.

(2) A packet on reaching its head-of-queue i at time t has its priority computed as:

pi(t) =
di(t)wi + D

t + T
(4.8)

where di(t) is the waiting-time of the packet at time t, wi is the Scheduler Differentiation

Parameter (SDP) that determines the rate with which the priority of the packets of a

certain class increases with time, D and T are two parameters used to scale the waiting-

time of the packet and time the packet reaches its head-of-queue respectively. It will be

shown later in Section 4.4.3 that the condition for STP to approximate WTP can be

reduced to:

min

∣∣∣∣∣
P∑

i=1

(
Twi

D
− 1)

∣∣∣∣∣ (4.9)

where T and D are chosen to satisfy the T >> ti + hi and D >> hiwi conditions

respectively. ti is the arrival time of the packet to the STP scheduler and ti + hi is the

time the packet reaches its corresponding head-of-queue.

(3) The scheduler then chooses the packet with the largest priority tag for service. Ties

are broken arbitrarily.

(4) Timer of the scheduler resets t = 0 at the end of each busy period so that pi(t) will

not gradually tend to zero as t keeps increasing.

From the above description, it is clear that the computational complexity of STP

is O(1) because only the new packet that reaches its head-of-queue requires priority

computation. The priorities of other head-of-queue packets that had arrived before this

new packet do not require re-computation. This is the key difference between STP and

4.4 Scaled Time Priority 61

WTP because for WTP the priorities of all head-of-queue packets in the system needs

to be re-computed each time a new packet reaches its head-of-queue.

The intuition behind equation (4.8) of STP may not be clear, in Section 4.4.4, it will

be shown why having t in the denominator of equation (4.8) alone, without parameters

T and W , is sufficient to provide approximate WTP performance. Subsequently, it will

be shown why including parameters T and W lead to performance enhancements.

4.4.2 Workload that must be Transmitted before an Arbitrary Packet

for Scaled Time Priority Scheduler

All the assumptions laid down in the Section 4.3.2 remain valid. In addition, it is

assumed that the tagged packet from session j in class Cp reaches its corresponding

head-of-queue at time tp + hp, where tp + hp is a value that lies between its arrival time

tp and its departure time tp + δp. Figure 4.2 shows the time-lines of a tagged packet p

and another arbitrary packet q in a STP system, where

∆q−p = tq + hq − (tp + hp) (4.10)

∆q−p is the time difference between packets from priority classes q and p reaching

their respective head-of-queues. In a STP system, this can also be interpreted as the

time difference between priority calculations of packets from priority classes q and p.

However, this interpretation is not applicable in a WTP system because there is no

time difference between priority calculations of different classes, i.e. priorities of all

head-of-queue packets in the system needs to be re-computed each time a new packet

reaches its head-of-queue. Note that tp +hp +∆q−p is limited by tp +δp because priority

4.4 Scaled Time Priority 62

comparisons are only meaningful when the tagged packet is still within the system.

Following the same approach as that described in Section 4.3.2, we first assume that

the transmission of a packet can be preempted at any time by a packet arrival with

higher precedence. Once again, we consider the two cases under STP: sessions from the

same class as the tagged packet (q = p) and sessions of different priority classes from

tagged packet (q 6= p).

(a) q = p: Since all packets from class Cp are transmitted in FIFO order, all packets

from sessions in Cp that arrive in the time interval [0, tp] will be transmitted before the

tagged packet.

(b) q 6= p: In a STP system, a packet q that reaches its corresponding head-of-queue

at time tq + hq will have a priority given by (see equation (4.8)):

hqwq + D

tq + hq + T

Note that the amount of time spent waiting in the scheduler by packet q dq(t) at the

time of priority computation, i.e. t = tq + hq, is always equal to hq for a STP scheduler

because packet q is assumed to arrive at time tq. The priority of the tagged packet takes

a similar form. Therefore, for a priority class Cq with q 6= p, packets transmitted before

the tagged packet are those that satisfy the following condition:

hqwq + D

tq + hq + T
>

hpwp + D

tp + hp + T
(4.11)

From equation (4.10):

tq = tp + hp + ∆q−p − hq

4.4 Scaled Time Priority 63

Figure 4.2: Time-lines of a tagged packet p and another arbitrary packet q in a STP
system.

< tp + (hp + ∆q−p)−
[
(
tq + hq + T

tp + hp + T
)(

hpwp + D

wq
)− D

wq

]

= tp + (hp + ∆q−p)− (1 +
∆q−p

tp + hp + T
)(

hpwp + D

wq
) +

D

wq

= tp + (1− wp

wq
)(hp + ∆q−p) +

wp

wq
(hp + ∆q−p)−

(1 +
∆q−p

tp + hp + T
)(

hpwp + D

wq
) +

D

wq

= tp + (1− wp

wq
)(hp + ∆q−p) +

wp

wq
∆q−p − ∆q−p

wq
(

hpwp + D

tp + hp + T
)

= tp + (1− wp

wq
)(hp + ∆q−p) +

wp

wq
∆q−p(

tp + T −D/wp

tp + hp + T
) (4.12)

Since hp + ∆q−p ≤ δp, therefore, all packets from sessions in Cq that arrive in the

time interval [0, tp + (1 − wp

wq
)δp + wp

wq
∆q−p(

tp+T−D/wp

tp+hp+T)] will be transmitted before the

tagged packet.

Again, note that for higher (lower) priority class Cq with q > p (q < p) and wq > wp

(wq < wp), the resulting time interval is greater (smaller) than [0, tp], the corresponding

time interval for Cp. In addition, q = p implies that wq = wp and ∆q−p = 0. Therefore,

the time interval [0, tp + (1− wp

wq
)δp + wp

wq
∆q−p(

tp+T−D/wp

tp+hp+T)] is the general form for both

cases of q = p and q 6= p.

4.4 Scaled Time Priority 64

Next, the earlier assumption that the transmission of a packet can be interrupted and

preempted is accounted for in order to accurately quantify the traffic to be transmitted

before the tagged packet. Again defining tp − τ̂p to be the last time before tp that the

STP scheduler does not contain packets that are to be transmitted before the tagged

packet and Bj(t) as the backlog in the STP scheduler from session j ∈ Cq at time t,

then:

τ̂p = min{z |
p∑

q=1

∑

j∈Cq

Bj(tp − z) +

P∑

q=p+1

∑

j∈Cq

Bj(min{tp − z, tp + (1− wp

wq
)δp +

wp

wq
∆q−p(

tp + T −D/wp

tp + hp + T
)}) = 0, z ≥ 0} (4.13)

Denoting R(tp − τ̂p) as the remaining transmission time of some other packet in trans-

mission at time tp − τ̂p, the expression for W p,tp(tp + τp), can now be written as:

For all τp, 0 ≤ τp ≤ δp,

W p,tp(tp + τp) =
P∑

q=1

∑

j∈Cq

Aj [tp − τ̂p,

tp + (1− wp

wq
)δp +

wp

wq
∆q−p(

tp + T −D/wp

tp + hp + T
)] +

R(tp − τ̂p)− (τ̂p + τp) (4.14)

The first term on the right hand side of equation (4.14) accounts for the arrival intervals

of all P disjoint priority classes in the system that were derived previously, while the

R(tp − τ̂p) term is the remaining transmission time of the packet transmitted at time

4.4 Scaled Time Priority 65

tp − τ̂p. Since by choice of τ̂p, the packet scheduler is continuously backlogged for the

entire interval [tp− τ̂p, tp+τp], the final term accounts for the total workload transmitted

during the interval.

4.4.3 Reconciliation between STP and WTP

Taking W p,tp(tp + τp) derived for WTP as the reference (see equation (4.7)), we can see

that the performance of STP comes closest to WTP when the arrival intervals of STP

P∑

q=1

∑

j∈Cq

Aj [tp − τ̂p, tp + (1− wp

wq
)δp +

wp

wq
∆q−p(1− hp + D/wp

tp + hp + T
)]

tend towards the arrival intervals of WTP

P∑

q=1

∑

j∈Cq

Aj [tp − τ̂p, tp + (1− wp

wq
)δp]

Note that wp

wq
∆q−p(1− hp+D/wp

tp+hp+T) can either be a positive or negative value. Therefore,

for STP to come closest to WTP, we need to minimize this term for all P classes in the

system:

min

∣∣∣∣∣∣

P∑

p=1

P∑

q=1

wp

wq
∆q−p(1− hp + D/wp

tp + hp + T
)

∣∣∣∣∣∣
(4.15)

This condition can be further simplified by choosing parameters T and D to satisfy

T >> tp + hp and D >> hpwp respectively:

min

∣∣∣∣∣∣

P∑

q=1

P∑

p=1

∆q−p

wq
wp(1− D

Twp
)

∣∣∣∣∣∣
(4.16)

Note that the resulting D/T ratio ensures that the values chosen for both D and T can

be large because for a particular end result, D will always be a multiple of the T value

chosen.

4.4 Scaled Time Priority 66

Further note that ∆q−p can be replaced by a worst-case |∆q−p|max term. From

equation (4.10),

|∆q−p|max = |tq + hq|max − |tp + hp|min

= |tq + hq|max

<
hqwqT

D
(4.17)

Based on the initial assumption that the scheduler is empty at time 0 (see Section

4.3.2), both (tp + hp) and (tq + hq) must be equal or greater than zero. A possible

|tp + hp|min = 0 scenario occurs when a tagged packet p arrives at time tp = 0 and

reaches its head-of-queue at time tp + hp = 0. Based on this scenario, the maximum

(tq +hq) value that an arbitrary packet q can possess, for it to be still transmitted before

the tagged packet p, can be derived from equation (4.11).

Substituting equation (4.17) into equation (4.16),

min

∣∣∣∣∣∣

P∑

q=1

hq

P∑

p=1

(
Twp

D
− 1)

∣∣∣∣∣∣
(4.18)

Note that the worst-case hq is restricted by (B − 2Lmin)/C, where B is the buffer of

the scheduler, Lmin is the minimum packet length that the tagged packet p and the

arbitrary packet q can possess, and C is the link capacity.

As the value of hq cannot be affected by the design parameters T and D, the con-

dition for STP to approximate WTP reduces to:

min

∣∣∣∣∣∣

P∑

p=1

(
Twp

D
− 1)

∣∣∣∣∣∣
(4.19)

This is the same condition described earlier in the STP algorithm (see Section 4.4.1).

4.4 Scaled Time Priority 67

In Section 4.5, specific implementations making use of equation (4.19) are shown.

Extensive simulations are then conducted to show that STP is a good emulation of

WTP.

4.4.4 Discussion

In this section, we will provide additional insights into the STP algorithm. We start by

showing how having t in the denominator of equation (4.8) alone without the parameters

T and D is sufficient to provide approximate WTP performance. Next, we will show

why including parameters T and D leads to performance enhancements in terms of

approximating WTP more closely.

The effects of having t in the denominator of equation (4.8) alone without the pa-

rameters T and D can be easily derived from the workload expression of equation (4.14).

Note that this is equivalent to having T = 0 and D = 0, resulting in:

W p,tp(tp + τp) =
P∑

q=1

∑

j∈Cq

Aj [tp − τ̂p,

tp + (1− wp

wq
)δp +

wp

wq
∆q−p(

tp
tp + hp

)] +

R(tp − τ̂p)− (τ̂p + τp) (4.20)

From equation (4.20), we can see that WTP performance is achieved when tp = 0 and

a good emulation can also be achieved when tp << hp. Unfortunately, the value of tp

will be significant under bursty traffic conditions with long busy periods. Assuming a

positive ∆q−p value, the case where T = 0 and D = 0 will result in greater workload for

all classes in the system (see Figure 4.3(a)).

4.4 Scaled Time Priority 68

Figure 4.3: An example of STP illustrating the effects of parameters T and D on the
workload of each class: (a) when T = 0 and D = 0, (b) when T and D are optimized.

On the other hand, when T and D are optimized using equation (4.19), the workload

deviations between WTP and STP are minimized for all classes in the system (see Figure

4.3(b)), thereby making the performance of STP closer to WTP. Note that unlike the

case where T = 0 and D = 0, the workload of lower priority classes will be smaller

compared to WTP, thus equalizing the larger workload of higher priority classes.

4.4.5 Implementation Complexity

The scheduling complexity of an algorithm consists of two key components:

(1) the complexity involved in computing the priority tags, and

(2) the complexity involved in identifying the highest priority head-of-queue packet to

service.

4.4 Scaled Time Priority 69

For WTP, the tag computation component has a complexity of O(N) because the

priority for every backlogged class has to be calculated each time a new packet reaches

its head-of-queue. Identifying the highest priority head-of-queue packet to schedule

requires N − 1 comparisons because all N priority tags have different values after each

round of tag computations. Therefore, the overall complexity of WTP is O(N).

For STP, the tag computation component has a complexity of O(1), which is a

reduction in complexity when compared with WTP. Identifying the highest priority

head-of-queue packet to schedule can also be implemented with O(1) complexity in the

following two ways:

(1) If the number of service classes is small, then parallel hardware comparators can be

used to identify the highest priority head-of-queue packet to schedule;

(2) Alternatively, a O(1) complexity approximate sorted priority queue, like RPQ+ [62],

can be used.

Note that DiffServ implies that we are dealing with traffic aggregates making ap-

proximate scheduling acceptable. Therefore, the performance advantage from using

a O(log2N) complexity exact sorted priority queue is marginal over a O(1) complexity

approximate sorted priority queue. Hence, we can conclude that the overall complexity

of STP is O(1).

DiffServ uses six bits of the IPv4 Type-of-Service or the IPv6 Traffic Class octet to

convey the DSCPs, which selects a PHB [23], [24]. This translates to a maximum of

26 = 64 possible DSCPs. Presently, only 14 DSCPs have been defined: one for Best

Effort traffic [23], twelve for Assured Forwarding traffic [27], and one for Expedited

4.5 Simulation 70

Forwarding traffic [26]. Network operators, therefore, have the freedom to customize

the other DSCPs to meet their own requirements. For example, network operators

can deploy fine granularity PDD by setting SDPs according to si+1/s1 = 2i (where

1 ≤ i < N and s1 = 1) instead of si/si−1 = 2, resulting in N = 32 for sN = 62.

With WTP, this implementation is difficult due to its O(N) complexity. Hence, the

simplicity of the O(1) complexity STP gives it the scalability unmatched by WTP,

providing network operators greater implementation freedom to deploy fine granularity

PDD over a greater number of service classes.

4.5 Simulation

4.5.1 Single Node

In this section, extensive simulations similar to [43] are used to evaluate how closely STP

emulates WTP from a single node perspective. The effects of different link utilization

by aggregate load and of different class load distributions on the long term average

delay differentiation are first investigated. The performance of WTP and STP in short

timescales are investigated subsequently.

The simulation scenario is a WTP/STP scheduler that is loaded with traffic from

P = 4 sources. In all cases, packet inter-arrival times follow a Pareto distribution with

a shape parameter α = 1.9. The packet length distribution is the same for all classes,

where 50% of the packets are 40 bytes, 35% are 550 bytes, and 15% are 1500 bytes,

giving a good representation of the majority of the packets seen in the Internet [65].

4.5 Simulation 71

(a) Scheduler Differentiation Parameters = 2.0

0

0.5

1

1.5

2

2.5

65% 70% 75% 80% 85% 90% 95% 100%

Link Utilization

A
v
e
ra

g
e
 D

e
la

y
 R

a
ti

o
 f

o
r

S
u

c
c
e
s
s
iv

e
 C

la
s
s
e
s

WTP: class 1 over 2

WTP: class 2 over 3

WTP: class 3 over 4

STP: class 1 over 2

STP: class 2 over 3

STP: class 3 over 4

(b) Scheduler Differentiation Parameters = 4.0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

65% 70% 75% 80% 85% 90% 95% 100%

Link Utilization

A
v
e
ra

g
e
 D

e
la

y
 R

a
ti

o
 f

o
r

S
u

c
c
e
s
s
iv

e
 C

la
s
s
e
s

WTP: class 1 over 2

WTP: class 2 over 3

WTP: class 3 over 4

STP: class 1 over 2

STP: class 2 over 3

STP: class 3 over 4

Figure 4.4: The ratio of average-delays between successive classes with WTP and STP
for different link utilizations. The traffic load distribution is Class-1: 40%, Class-2:
30%, Class-3: 20%, Class-4: 10%.

The class load distribution in most cases is set to: Class 1: 40%, Class 2: 30%, Class

3: 20%, Class 4: 10%, unless otherwise stated. The bandwidth of the network links is

51.84 Mbps. SDPs will be chosen such that wi/wi−1 = 2 or wi/wi−1 = 4. To minimize

∑P
p=1

∑P
q=1

wp

wq
(1 − D

Twp
), (1) D = 375 sec and T = 100 sec for SDPs chosen such

that wi/wi−1 = 2, and (2) D = 2125 sec and T = 100 sec for SDPs chosen such that

wi/wi−1 = 4.

Link Utilization by Aggregate Load

Figure 4.4 shows the ratio of the average delays between successive classes in moderate

and heavy load conditions. Each point in these figures is obtained from averaging over

ten simulation runs with different random number generator seeds, with each run being

of 100 sec duration. The SDPs were chosen such that wi/wi−1 = 2 for Figure 4.4(a)

4.5 Simulation 72

and wi/wi−1 = 4 for Figure 4.4(b). From the results, STP is better than WTP at

providing a consistent proportional delay differentiation between successive classes for

link utilization less than 90%. However, WTP becomes slightly superior when link

utilization equals or exceeds 90%.

Class Load Distribution

Figure 4.5 shows the ratio of the average delays between successive classes in seven

different class load distribution cases. The simulation methodology follows that of the

previous section. The SDPs were chosen such that wi/wi−1 = 2 for Figure 4.5(a) and

wi/wi−1 = 4 for Figure 4.5(b). The link utilization is 90% in all cases. The results show

that both WTP and STP schedulers are able to provide good delay differentiation,

almost independent of the class load distribution. The results in Figure 4.5(a) show

that both WTP and STP schedulers are able to provide delay differentiation close to the

specified ratio, independent of the class load distribution. The results in Figure 4.5(b),

although less precise, show that the performance of WTP and STP are comparable.

Short Timescale Behaviour

The previous two experiments are based on measurements of long-term average delays.

In this experiment, the ability of WTP and STP schedulers to provide proportional

delay differentiation in short timescales are investigated. The measurements of the ratio

of average delays between successive classes are made in consecutive time-intervals of

length τ , where τ is the monitoring timescale. The four τ values used in this experiment

4.5 Simulation 73

(a) Scheduler Differentiation Parameters = 2.0

0

0.5

1

1.5

2

2.5

- - - - - - - -

Class Load Distributions

A
ve

ra
g

e
D

el
ay

 R
at

io
 f

o
r

S
u

cc
es

si
ve

 C
la

ss
es

25
-2

5-
25

-2
5

10
-4

0-
40

-1
0

5-
45

-4
5-

5

50
-3

0-
15

-5

5-
15

-3
0-

50

60
-2

0-
10

-1
0

10
-1

0-
20

-6
0

(b) Scheduler Differentiation Parameters = 4.0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

- - - - - - - -

Class Load Distributions

A
ve

ra
g

e
D

el
ay

 R
at

io
 f

o
r

S
u

cc
es

si
ve

 C
la

ss
es

25
-2

5-
25

-2
5

10
-4

0-
40

-1
0

5-
45

-4
5-

5

50
-3

0-
15

-5

5-
15

-3
0-

50

60
-2

0-
10

-1
0

10
-1

0-
20

-6
0

Figure 4.5: The ratio of average-delays between successive classes for WTP and STP
with different class load distributions. The symbols in this graph are as in Figure 4.4.
The four numbers in each bar denote the fraction of the four classes in the aggregate
packet stream, starting from class 1 up to class 4. The utilization is 90% in all cases.

are 100, 1000, 10000 and 100000 µsec. At the end of the simulation run, the ratios of

average delays between successive classes for each interval is computed, and averaged

over all pairs of classes to get a single measure R. When one or more classes are not

active in a certain time interval, the ratios of average delays of the active classes are

normalized in the computation of R.

Figure 4.6 shows five percentiles (5%, 25%, 50%, 75% and 95%) of the ratio values

obtained from all the different monitoring timescale τ . The SDPs used are chosen such

that wi/wi−1 = 2 and the link utilization is 90%. From the results, both schedulers are

able to provide proportional delay differentiation in the range of 25% and 75%, even

for the smallest monitoring timescale. The performance improves as the monitoring

time-interval increases.

4.5 Simulation 74

0

0.5

1

1.5

2

2.5

10 100 1000 10000 100000 1000000

Monitoring Timescale (micro-second)

A
ve

ra
g

e
D

el
ay

 R
at

io
 R

 f
o

r
S

u
cc

es
si

ve
 C

la
ss

es

WTP STP

WTP STP

WTP STP

WTP STP

Figure 4.6: Five percentiles of R for four values of the monitoring timescale τ . The
diamonds represent the 50% percentiles (median), the circles represent the 25% and
75% percentiles, while the squares represent the 5% and 95% percentiles. The ratio of
SDPs is 2.0.

4.5.2 Multiple Nodes

In this experiment, the focus is on the end-to-end performance of the packet flows. The

issue here is whether local class-based relative differentiation can lead to consistent end-

to-end flow-based relative differentiation. The network topology is the same as Figure

3.4. The number of nodes is varied from 1 to 5. The input traffic at the first node is

generated by P = 4 sources and traverses all nodes in the network configuration. The

traffic characteristics and class load distribution are the same as that of the previous

experiments. At each node, cross-traffic that are generated from C = 4 sources are

included. Their traffic characteristics and class load distribution follows that of the

input traffic sources. The SDPs are chosen such that wi/wi−1 = 2. The link utilization

is 90% with the aggregate cross-traffic load taking up 70% of the total traffic in each

link. The bandwidth at each network link is 51.85 Mbps. In order to examine the

4.6 Application to QD-PGMQD and QD-PDRD 75

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5

Number of Nodes

A
ve

ra
g

e
D

el
ay

 R
at

io
 f

o
r

S
u

cc
es

si
ve

 C
la

ss
es

WTP: class 1 over 2

WTP: class 2 over 3

WTP: class 3 over 4

STP: class 1 over 2

STP: class 2 over 3

STP: class 3 over 4

Figure 4.7: R for different number of nodes in a multiple congested nodes network
configuration. The scheduler differentiation parameter is 2.0.

effectiveness of the relative delay differentiation, propagation and transmission delays,

which are common to all packets, are and focus on queueing delays.

Figure 4.7 shows the ratio of the average delays between successive classes in mul-

tiple congested nodes network configuration. Once again the performance of STP and

WTP are comparable. It is interesting to observe that as the number of nodes tra-

versed by the input traffic increases, the deviations from the SDP ratio reduces for both

STP and WTP. In summary, STP is an excellent approximation of WTP because their

performance are comparable under all circumstances.

4.6 Application to QD-PGMQD and QD-PDRD

Referring to equations (3.1), (3.3), and (3.5), it is apparent that the differentiation

models for PDD, GMQD, and DRD share a similar form. This similarity in form is also

4.6 Application to QD-PGMQD and QD-PDRD 76

apparent for the class of Queueing Delay based packet scheduling algorithms designed

for PDD, GMQD, and DRD, which are WTP (see equation (4.3)), QD-PGMQD (see

equation (3.18)), and QD-PDRD (see equation (3.23)) respectively. Given this similar-

ity, the same method used in deriving STP for WTP can be extended to QD-PGMQD

and QD-PDRD algorithms. The simplification of QD-PGQMD and QD-PDRD will

be called Scaled QD-PGMQD (SQD-PGMQD) and Scaled QD-PDRD (SQD-PDRD)

respectively.

The algorithm for SQD-PGMQD can be defined as follows:

(1) All packets on arrival at the scheduler is timestamped with an arrival tag equal to

its arrival time.

(2) A packet on reaching its head-of-queue i at time t has its priority computed as:

pi(t) =
di(t)wi/ri(t) + D

t + T
(4.21)

where di(t) is the waiting-time of the packet at time t, wi is the SDP that determines

the rate with which the priority of the packets of a certain class increases with time,

and ri(t) is the exponential moving average of class i computed using

rk(t) = (1− e−∆t/τ)/∆t + e−∆t/τrk(t−∆t)

where ∆t is the packet inter-arrival time, and τ is a constant.

T and D are two parameters used to scale the waiting-time of the packet and time

the packet reaches its head-of-queue respectively. The condition for SQD-PGMQD to

approximate QD-PGMQD is:

min

∣∣∣∣∣
P∑

i=1

wi(1− D

Twi
)

∣∣∣∣∣ (4.22)

4.6 Application to QD-PGMQD and QD-PDRD 77

(3) The scheduler then chooses the packet with the largest priority tag for service. Ties

are arbitrary broken.

(4) Timer of the scheduler resets t = 0 at the end of each busy period so that pi(t) will

not gradually tend to zero as t keeps increasing.

Similarly, the algorithm for SQD-PDRD can be defined as follows:

(1) All packets on arrival at the scheduler is timestamped with an arrival tag equal to

its arrival time.

(2) A packet on reaching its head-of-queue i at time t has its priority computed as:

pi(t) =
di(t)wi/φi(t) + D

t + T
(4.23)

where di(t) is the waiting-time of the packet at time t, and wi is the SDP that determines

the rate with which the priority of the packets of a certain class increases with time.

φi(t) = max(ri(t), φi+1(t))

where φN+1(t) = 0.

ri(t) is the exponential moving average of class i computed using

rk(t) = (1− e−∆t/τ)/∆t + e−∆t/τrk(t−∆t)

where ∆t is the packet inter-arrival time, and τ is a constant.

T and D are two parameters used to scale the waiting-time of the packet and time

the packet reaches its head-of-queue respectively. The condition for SQD-PDRD to

approximate QD-PDRD is:

min

∣∣∣∣∣
P∑

i=1

wi(1− D

Twi
)

∣∣∣∣∣ (4.24)

4.7 Related Work 78

(3) The scheduler then chooses the packet with the largest priority tag for service. Ties

are arbitrary broken.

(4) Timer of the scheduler resets t = 0 at the end of each busy period so that pi(t) will

not gradually tend to zero as t keeps increasing.

4.7 Related Work

Besides WTP, other more recent schedulers that approximate the PDD model have

been proposed. Mean-Delay Proportional (MDP) [47] is an algorithm that uses esti-

mate of average class queueing delay instead of actual waiting time of packets wi(t) for

scheduling. In [13], Dovrolis proposed another WTP-extension, called Hybrid Propor-

tional Delay (HPD). HPD uses a combination of waiting-time of class i packet wi(t)

and average delay of departed class i packets d̄i(t) to determine the priority of a given

packet. However, both algorithms are more computation intensive than WTP.

Another less computation intensive way of achieving proportional delay is to adjust

service rate allocations based on the backlog of each class. The Backlog-Proportional

Rate (BPR) [43], Proportional Queue Control Mechanism (PQCM) [44], Extended Vir-

tual Clock (Ex-VC) [45] and Dynamic Weighted Fair Queueing (DWFQ) [46] are some

algorithms that make use of this method. They differ only in the specific method used

to calculate the service rates. However, these methods are generally more susceptible

to class load variations [13].

4.8 Conclusion 79

4.8 Conclusion

This chapter presents a novel method for simplifying some algorithms that provide

delay differentiation. A new scheduling algorithm called Scale Time Priority (STP)

that can efficiently approximate Waiting Time Priority (WTP) is proposed. By de-

riving the workload that must be transmitted before an arbitrary packet for WTP

and STP schedulers, the less computationally intense STP is shown to be a good ap-

proximation to WTP. Specifically, STP is able to provide near proportional delay at

a complexity of O(1), which is lower than the O(N) complexity of WTP, where N

is the number of service classes in the system. This same method was subsequently

applied to simplify Queueing Delay based Packetized Generalized Minimum Queueing

Delay (QD-PGMQD) and Queueing Delay based Packetized Delay Rate Differentiation

(QD-PDRD).

80

Chapter 5

A Control-Theoretical Approach
for Achieving Fair Bandwidth
Allocations in Core-Stateless
Networks

This chapter describes the second portion of the Delay-Rate Differentiated Services

(DRDS) framework, which is to provide flow isolation within a class of aggregated best-

effort traffic flows so that congestion unresponsive flows, like User Datagram Protocol

(UDP), do not squeeze out congestion responsive flows, like Transmission Control Pro-

tocol (TCP).

5.1 Background

Until recently, fair bandwidth allocations were best achieved using per-flow queueing

mechanisms like Weighted Fair Queueing [57] and its many other variants [5], [6], [7],

[75]. In Weighted Fair Queueing, each flow has its own First-In-First-Out (FIFO) queue.

Packets are transmitted using an approximate bit-by-bit round-robin discipline. These

5.1 Background 81

proposed mechanisms are usually based on a stateful network architecture, i.e. a network

in which every router maintains per flow state. In addition, most of these mechanisms

require per-flow queueing. As there can be a large number of flows in the Internet, the

complexity required to implement these mechanisms severely limits their deployment

over high speed backbone core routers. Furthermore, there is the need for complex

algorithms to set and preserve the consistency of states across the network, making

robustness a lot harder to achieve.

In order to reduce this complexity of doing per-flow queueing and maintaining per-

flow state information new algorithms have been introduced. Stoica et al [37] was the

first to propose a fair queueing scheduling algorithm that does not require per-flow

state information, called Core-Stateless Fair Queueing (CSFQ). CSFQ is based on the

Stateless Core (SCORE) architecture [12], which is similar to the Differentiated Services

(Diffserv) architecture [10].

In CSFQ, packets are labelled with their flow arrival rate at the edge, and they

are dropped probabilistically when their arrival rate exceeds the fair share estimated

by the core routers. Through extensive simulations, CSFQ was found to approach the

fairness of Deficit Round Robin (DRR) [75] and offer significant improvements over

FIFO and Random Early Drop (RED) [76]. Besides the CSFQ framework, the other

major framework for achieving fair bandwidth sharing in a SCORE/DPS network is the

Rainbow Fair Queueing (RFQ) algorithm [38]. In RFQ, packets of each flow are divided

into a set of “color” layers at the edge and they are dropped if their “color” label is

greater than the color threshold value determined at the core routers. Unfortunately,

5.1 Background 82

the methods used by CSFQ and RFQ in their respective fair share and color threshold

estimation are rather ad-hoc in nature and require additional logic for saturated traffic

conditions [37], [38]. In particular, CSFQ has been shown to perform badly under bursty

cross-traffic [38], [39].

The main contribution of this chapter is the use of a control-theoretical approach

for fast and robust computation of the fair share or color threshold value [50], [51]. The

use of a control-theoretical approach is appealing as it can leverage on the concepts

found in control theory to produce stable and robust systems. In particular, it has

been found that with proper modelling, the resultant system can exhibit stable, robust,

good transient and steady state behavior. For the purpose of illustration, the Linear

Quadratic (LQ) control method from optimal control theory is applied to modifications

of CSFQ and RFQ. Simulations are then used to show the superior performance of this

approach as compared to the original CSFQ scheme. Note that besides the LQ control

method, other control algorithms can also be used. However, the focus here is not on

evaluating the comparative performance of various control algorithms.

This chapter is structured as follows: In Section 5.2, the process on achieving fair

bandwidth sharing in the SCORE/DPS architecture is described. This is followed by

details on how CSFQ and RFQ achieves fair bandwidth sharing. In Section 5.3, the

control-theoretical model of the proposed system and the key implementation issues

involved are discussed. In Section 5.4, the system is evaluated through simulations.

Some related works are discussed in Section 5.5 before the conclusion in Section 5.6.

5.2 Stateless Core/ Dynamic Packet State Framework for Providing Flow Isolation 83

Notation Comments
C link capacity
N number of flows
ri rate of flow i
wi the weight assigned to flow i
rfair fair share rate
∆t packet inter-arrival time
α estimate of fair share rate
F̂ estimate of aggregate traffic acceptance rate
CT color threshold value

Table 5.1: Notations used in Section 5.2.

5.2 Stateless Core/ Dynamic Packet State Framework for

Providing Flow Isolation

5.2.1 Objective

The SCORE network deals with traffic aggregates at the core routers and does not need

to perform per-flow state management. It makes use of DPS to achieve a functional

approximation of a stateful network. The primary objective of SCORE/ DPS fair

queueing algorithms is therefore to provide flow isolation without the need to provide

or maintain per flow state information. In other words, the objective is to achieve max-

min fairness [77] with minimum implementation complexity. To achieve this objective,

these algorithms make use of the following idea: Consider a link with capacity C serving

N number of flows with rates given as r1, r2, ..., rN (see Table 5.1). Assume weights wi

are assigned to different flows, such that a flow assigned a weight of 2 will get twice as

much bandwidth compared to a flow with weight 1. Max-min fairness is then achieved

5.2 Stateless Core/ Dynamic Packet State Framework for Providing Flow Isolation 84

when the fair share rfair is the unique solution to

C =
N∑

i=1

wi min(
ri

wi
, rfair) (5.1)

Note that when congestion occurs, weighted flow rates ri/wi above rfair will be con-

strained to rfair, while weighted flow rates ri/wi equal or below rfair remain unchanged.

On the other hand, when C ≥ ∑N
i=1 ri, all flows can pass through unconstrained and

rfair becomes equal to the highest weighted flow rate.

5.2.2 Core-Stateless Fair Queueing Framework

To facilitate the following discussion, consider how CSFQ achieves the above objective.

CSFQ does it through the following four steps:

(1) When a flow arrives at the edge of the network, its rate r is estimated by exponential

averaging calculated as:

rnew = (1− e−∆t/τ)/∆t + e−∆t/τrold (5.2)

where ∆t is the packet inter-arrival time, and τ is a constant1.

(2) The edge router then labels each packet of the flow with a state value that is

proportional to this estimated rate. Due to the need to represent a large range of

flow rates with a limited number of state values, a non-linear representation is used to

limit the error of representation to a fixed range. For CSFQ, a simple floating point

representation consisting of mantissa and exponential component is used [12].

(3) Inside the network, packets from different flows are interleaved together. Core

1A good discussion on what value to set for τ can be found in [12].

5.2 Stateless Core/ Dynamic Packet State Framework for Providing Flow Isolation 85

Fair Share αα

Output Link
Capacity C

A
gg

re
ga

te
 T

ra
ff

ic
A

cc
ep

ta
nc

e
R

at
e

F

αα00αα11
αα22

ααfinal

Figure 5.1: Basic framework on how CSFQ estimates the fair share, α

routers use FIFO queueing and do not keep per-flow state. At the network core, each

router estimates a fair share rate α by approximating the aggregate traffic acceptance

rate F of the router using a linear function that intersects the origin with a slope of

F̂ /αold, yielding

αnew = αold
C

F̂
(5.3)

where F̂ is the estimated aggregate traffic acceptance rate computed using exponential

averaging.

(4) When congestion occurs, packets of every flow i in the system are dropped with

probability

Prob = max(0, 1− α

ri/wi
) (5.4)

where ri and wi denote respectively the rate and weight of flow i found in the header

of the packet. Finally, packets are relabelled using the minimum of the incoming flow

rate and the router’s estimated fair share rate α.

Steps (3) and (4) illustrates how max-min fairness is achieved using the CSFQ

algorithm. When F is larger than C, α will be reduced due to the C/F̂ ratio (see

5.2 Stateless Core/ Dynamic Packet State Framework for Providing Flow Isolation 86

equation (5.3)), leading to a higher packet dropping probability for flows with r/w

larger than α (see equation (5.4)). On the other hand, when F is smaller than C,

α will be increased, thereby reducing the packet dropping probability. Therefore, the

process of adjusting α so that F converges to C leads to max-min fairness because F =

∑N
i=1 wi min(ri

wi
, α) (see equation (5.1)). Figure 5.1 illustrates how α will eventually

converge to αfinal = rfair for the case when F is larger than C.

The method used in CSFQ for estimating fair share α is simple but does not function

well when the aggregate incoming traffic is bursty [38], [39]. In fact, in order to minimize

the negative effects of buffer overflow, Stoica included a simple heuristic whereby each

time the buffer overflows, α is decreased by a small fixed percentage, taken to be 1%

in his simulations [37]. In addition, to avoid over-correction, it is ensured that during

consecutive updates α does not decrease by more than 25%. The CSFQ algorithm is

therefore, unable to quickly and robustly compute α for very bursty traffic, which is

crucial for achieving max-min fairness.

5.2.3 Rainbow Fair Queueing Framework

Besides the CSFQ framework, the other major framework is the Rainbow Fair Queueing

(RFQ) algorithm [38]. Specifically, RFQ achieves max-min fairness through the follow-

ing three steps:

(1) As in CSFQ, when a flow arrives at the edge of the network, its rate is estimated

by exponential averaging.

(2) The edge router then divides the flow into many thin layers where each layer is as-

5.2 Stateless Core/ Dynamic Packet State Framework for Providing Flow Isolation 87

signed a state value. The number of layers is proportional to the flow rate. A non-linear

rate representation which is similar, but not identical, to CSFQ is used here [38].

(3) Inside the network, packets from different flows are interleaved together to form a

single aggregated flow with many different layers. Core routers use FIFO queueing and

maintain a color threshold CT value, whereby packets with state values higher than

CT are discarded. At the first occurrence of congestion, traffic discarding starts with

packets having the highest state value. In other words, CT starts with the highest

flow rate in the router. If congestion persists, CT is decreased and more packets are

discarded until there is no more congestion. In this way, core routers discard the layers

in a top down manner and because the layering is done proportionally to the flow rate,

the algorithm approximates that of a fair queueing system. On the other hand, when

the link is under-utilized, CT is increased to allow more traffic to pass through.

In essence, under the RFQ scheme, CT is adjusted to drive F to C (see Section

5.2.2) in order to achieve max-min fairness.

5.2.4 Discussion

A comparison between the CSFQ and RFQ implementation frameworks is presented in

Table 5.2. As mentioned in [38], the layering method in RFQ has several advantages

over CSFQ. Firstly, packet re-labelling inside the core is not required because the packet

header keeps its label value throughout the lifetime of the packet inside the core. Sec-

ondly, input rate estimation at the core router, which is required in CSFQ algorithm [37]

is not required for RFQ, further reducing core router complexity. Finally, preference for

5.2 Stateless Core/ Dynamic Packet State Framework for Providing Flow Isolation 88

CSFQ Framework RFQ Framework
Rate estimation at ingress Exponential averaging Exponential averaging
Label/state information Explicit rate of the flow Color layers that the

packets belong to
Packet dropping algorithm Controlled by fair share Controlled by color

threshold
Packet re-labelling Required Not required
Input rate estimation at core Required Not required
Ability to express preference No Yes
for certain packets

Table 5.2: A comparison of the implementation frameworks of CSFQ and RFQ algo-
rithms

more important packets can be expressed using the RFQ framework.

The overall architecture of SCORE/DPS fair queueing algorithm is shown in Figure

5.2. The portion that needs to be highlighted is the packet dropping algorithm at the

core router, which corresponds to steps (3) and (4) of the CSFQ algorithm described

in Section 5.2.2 and step (3) of the RFQ algorithm described in Section 5.2.3. The

packet dropping algorithm describes the process for adjusting α or CT in order to

achieve max-min fairness. As discussed earlier, the methods used by CSFQ and RFQ

are rather ad-hoc in nature and require additional logic for saturated traffic conditions.

In particular, CSFQ has been shown to perform badly under bursty cross-traffic [38],

[39]. More importantly, note that the key α or CT computation process can be based

on a closed-loop rate-based scheme if α or CT is adjusted based on the feedback of past

F values and buffer occupancy values of the system. Control-theoretical approaches

can, therefore, be readily applied to this closed-loop rate-based system. This forms the

basis of the work which will be described in the rest of this chapter.

5.3 Control Theoretical Approach 89

Flow N

Σ

Controller for
estimating fair
share or color

threshold

Observer

Exponential
Averaging

Explicit Rate/Color
Layer Labelling

Exponential
Averaging

Explicit Rate/Color
Layer Labelling

Flow 1 . . .

Core Router

Edge Router

Packet
Dropper

Figure 5.2: Overall architecture of SCORE/DPS fair queueing algorithms.

5.3 Control Theoretical Approach

In this section, the discrete time control model of the proposed system is described,

before the Linear Quadratic control method, from optimal control theory, is applied to

it. Implementation issues will also be discussed.

5.3.1 Closed-Loop Dynamics

Assume a system whereby the traffic and buffer occupancy are sampled and updated

at periodic intervals T . Let F (n) denote the aggregate traffic accepted during the nth

timeslot. In addition, let Q(n) denote the buffer occupancy of the FIFO queue at the

beginning of the nth timeslot. The closed loop dynamics of the proposed system is

5.3 Control Theoretical Approach 90

therefore, given by

F (n + 1) = SatCin
0



F (n)−

J∑

j=0

λj(Q(n− j)−Q0)

−
K∑

k=0

µkF (n− k)

}
(5.5)

Q(n + 1) = SatB0 {Q(n) + F (n)− ψ} (5.6)

where

Satab (x) =





b if x < b

a if x > a

x otherwise

(5.7)

The other parameters involved in the computations above are:

(1) Update/sampling period T : this corresponds to the duration of a single timeslot,

where computations of F and Q are done periodically.

(2) Buffer threshold Q0: this is the buffer occupancy value that the controller tries to

achieve and corresponds to the desired steady state buffer occupancy value. In general,

Q0 is chosen to satisfy two objectives, it must be small enough to minimize queueing

delay but large enough to ensure full utilization of the link capacity.

(3) Cin: this is the maximum aggregate traffic that can be accepted in a single timeslot.

(4) Feedback control gains λj and µk: these values will be determined later using the

LQ algorithm. It will be shown from steady state analysis that λj and µk must satisfy

the following requirements:

J∑

j=0

λj 6= 0,
K∑

k=0

µk = 0

5.3 Control Theoretical Approach 91

Feedback
Controller

Packet
Dropper

Buffer
Q(n)F(n)

1 X Time
Delay

ϕ

-

Qo

-

K X Time
Delay

1 X Time
Delay

J X Time
Delay

Figure 5.3: Block diagram of the proposed control system.

(5) J and K are non-negative integers. It will be shown later from stability analysis

that J = 1 and K = D, where D × T is the maximum feedback delay of the system.

(6) Buffer size B: this is used to impose bounds on the buffer size of the switch.

(7) Traffic service rate ψ: this denotes the aggregate traffic serviced during a single

timeslot. ψ is assumed to be a constant equal to the output link capacity multiplied by

T . Note that if high priority traffic that has to be serviced first is considered, then ψ

will be a variable time function. However, since ψ can also be considered as an input to

the system (as indicated in equation (5.6)), a stable closed loop system will imply that

this system is able to track any variation to the value of ψ.

The block diagram of the system is illustrated in Figure 5.3.

5.3 Control Theoretical Approach 92

5.3.2 Steady State Analysis

Next, establish the steady state conditions of the system. Let Fs and Qs be the steady

state values corresponding to equations (5.5) and (5.6) under the assumption that the

input traffic is constant. Therefore,

Fs = SatCin
0



Fs −

J∑

j=0

λj(Qs −Q0)−
K∑

k=0

µkFs



 (5.8)

Qs = SatB0 {Qs + Fs − ψ} (5.9)

resulting in

Fs = ψ for 0 ≤ Qs ≤ B and 0 ≤ Fs ≤ Cin (5.10)

Qs = Q0 −
∑K

k=0 µk∑J
j=0 λj

Fs for 0 ≤ Qs ≤ B (5.11)

To ensure that Qs = Q0 for non-zero Fs, the constraint
∑K

k=0 µk = 0 is included, which

in other words mean µK = −∑K−1
k=0 µk. In addition,

∑J
j=0 λj 6= 0 is required to ensure

the stability of the system.

5.3.3 Stability

With the closed-loop dynamics and steady state conditions in place, the asymptotic

stability properties of the closed loop system is analyzed next by removing the saturation

non-linearity of equations (5.5) and (5.6). This results in

F (n + 1) = F (n)−
J∑

j=0

λj(Q(n− j)−Q0)−
K∑

k=0

µkF (n− k) (5.12)

Q(n + 1) = Q(n) + F (n)− ψ (5.13)

5.3 Control Theoretical Approach 93

One of the earliest analysis of the above closed-loop system was given in [78], where

a long proof was used to establish that asymptotic stability can be achieved if J = 1

and K = D are chosen. D is a non-negative integer, where D × T corresponds to the

maximum delay lag that a traffic source takes to react to feedback given by the switch,

i.e. maximum feedback delay. Viewed in another way, F (n), F (n−1), · · · , F (n−D) are

all the previously sampled rate information that will influence future buffer occupancy

behavior Q(m) for m > n.

Converting equations (5.12) and (5.13) into the state-space vector form,

X(n + 1) =




1 0 1 0 · · · 0

1 0 0 0 · · · 0

−λ0 −λ1 1− µ0 −µ1 · · · −µD

1 0 · · · 0

.
...

1 0




X(n) +




−1

0

0

0

...

0




ψ (5.14)

5.3 Control Theoretical Approach 94

where

X(n) = [(Q(n)−Q0), Q(n− 1)−Q0), F (n), · · · , F (n−D)]′

with the prime symbol (′) denoting the transpose operator.

It was also shown in [78] that (D + 2) of the (D + 3) poles of this closed-loop

system can be placed at will within the unit circle by an appropriate choice of the gains

λ0, λ1, µ0, · · · , µD, with the remaining pole placed at 0. Note that all poles must lie

within the unit circle for stability reasons.

5.3.4 Gain Selection

An alternative approach that provides an easier way of computing the feedback con-

troller gains and to balance between the speed of convergence and magnitude of the

state variables is based on the Linear Quadratic (LQ) control method [79], [80].

Given a system with state space model:

Z(n + 1) = AZ(n) + BV (n) (5.15)

the LQ design problem involves solving the control function V (n) that minimizes the

cost function:

L =
∞∑

n=0

[
Z
′
(n)W1Z(n) + V

′
(n)W2V (n)

]
(5.16)

where W1 and W2 are the design parameters of the LQ control problem that allow

different emphasis to be placed on the states and inputs. The first term on the right

is the cost associated with state deviation, while the second term is the cost associated

5.3 Control Theoretical Approach 95

with inputs to the system. Note that both W1 and W2 must be symmetric and positive

definite.

The optimal solution to the minimization problem, obtained using dynamic pro-

gramming [80] is

V (n) = −HZ(n)

where

H = W2 + (B
′
SB)−1B

′
SA

and S is the solution of the following matrix equation known as the Riccati equation:

A
′
SA− S −A

′
SB(W2 + B

′
SB)−1B

′
SA + W1 = 0

The vector of closed-loop poles using the LQ algorithm are the eigenvalues of the

matrix A − BH. Note that the resulting system is stable even if the actual feedback

delay deviates slightly from D.

Next, convert the dynamic equations (5.12) and (5.13) into a form suitable for the

LQ algorithm. Taking into account µK = −∑K−1
k=0 µk, where K = D, equation (5.12)

can be converted into:

F (n + 1) = F (n)−
1∑

j=0

λj(Q(n− j)−Q0)−
D−1∑

k=0

µk(F (n− k)− F (n−D))

F (n + 1)− F (n + 1−D) = [F (n)− F (n−D)]−

[F (n + 1−D)− F (n−D)]−

5.3 Control Theoretical Approach 96

1∑

j=0

λj(Q(n− j)−Q0)−

D−1∑

k=0

µk(F (n− k)− F (n−D)) (5.17)

Similarly, equation (5.13) can be converted into

Q(n + 1)−Q0 = Q(n)−Q0 + F (n)− ψ +

Q(n)−Q0 − [Q(n− 1)−Q0 + F (n− 1)− ψ]

= 2[Q(n)−Q0]− [Q(n− 1)−Q0] +

[F (n)− F (n−D)]− [F (n− 1)− F (n−D)] (5.18)

The state-space vector representation of equations (5.17) and (5.18) is

Y (n + 1) =




2 −1 1 −1 0

1 0 0 0 0

0 0 1 0 −1

1 −1

. . .
...

1 −1




Y (n) +




0

0

1

0

...

0




U(n) (5.19)

where

Y (n) = [(Q(n)−Q0), (Q(n− 1)−Q0), F (n)− F (n−D), · · · ,

F (n−K)− F (n−D)]′

5.3 Control Theoretical Approach 97

U(n) = −
1∑

j=0

λj [Q(n− j)−Q0]−
D−1∑

k=0

µk[F (n− k)− F (n−D)]

= −GY (n)

G = (λ0, λ1, µ0, µ1, · · · , µD−1)

For the proposed system, state information is sampled periodically at the core router.

The packet dropper, that controls the incoming traffic at the core router, is therefore

able to react quickly based on state information obtained one timeslot away. Making

the assumption that negligible delay uncertainty is introduced by the sampler, D = 1

can be chosen without the fear of feedback delay deviation affecting system stability.

This greatly simplifies the system, resulting in

Z(n + 1) =




2 −1 1

1 0 0

0 0 0




Z(n) +




0

0

1




V (n) (5.20)

where

Z(n) = [(Q(n)−Q0), (Q(n− 1)−Q0), F (n)− F (n− 1)]′

V (n) = −
1∑

j=0

λj [Q(n− j)−Q0]− µ0[F (n)− F (n− 1)]

= −HZ(n)

H = (λ0, λ1, µ0)

5.3 Control Theoretical Approach 98

The LQ control method can now be readily applied to the above form.

5.3.5 Implementation Issues

The design parameters of the LQ control problem are the weighting matrices W1 and

W2 in the cost function L. W1 is a (3×3) matrix, while W2 is a scalar because V (n) is a

scalar in the proposed system. For high-speed implementations, a look-up table can be

used to store the pre-computed values of feedback gains as a function of pre-determined

weighting matrices W1 and W2. To construct the look-up table, choose the W1 values

and vary W2 to generate different gains. Good examples of W1 values are diagonal

matrices with zero elements at all positions except for:

(a) W1(1, 1) = 1, which emphasizes on reducing the deviation Q(n)−Q0.

(b) W1(1, 1) = 1 and W1(2, 2) = 1, which emphasizes on reducing the deviations Q(n)−

Q0 and Q(n− 1)−Q0.

(c) W1(1, 1) = 1 and W1(3, 3) = 1, which emphasizes on reducing the deviations Q(n)−

Q0 and F (n)− F (n− 1).

(d) W1(1, 1) = 1, W1(2, 2) = 1 and W1(3, 3) = 1, which emphasizes on reducing the

deviations Q(n)−Q0, Q(n− 1)−Q0 and F (n)− F (n).

Note that emphasizing on reducing the deviation Q(n) − Q0 is important because it

reduces buffer overflow. In addition, an appropriate Q0, like 10% to 20% of total buffer

size, can help ensure good link utilization.

The values of W2 are selected based on the output response that the control system

produces. Note that making W2 smaller decreases the penalty on V (n), resulting in an

5.3 Control Theoretical Approach 99

increase in the magnitude of V (n). Since V (n) = F (n + 1)− F (n), this means that F

will change faster, resulting in faster convergence. In general, faster convergence leads

to a greater oscillatory transient response. Hence, the desired output response of the

control system is limited in range.

Another issue is the slow response of the control algorithm that occurs when there is

a lack of incoming traffic for an extended period of time. In order to address this issue,

the concept of virtual queue (V Q) is included in the implementation. Specifically, V Q

works as follows:

(a) When the buffer occupancy is greater than one packet, V Q is equal to the actual

queue length.

(b) When the buffer occupancy is less than or equal to one packet, V Q is computed by

subtracting any excess bandwidth from the previous V Q value.

Note that a threshold of one packet is used in step (a) because the sampled queue value

will not be zero if there is a packet currently being served, even when there is little

incoming traffic. The V Q concept results in a larger error term (V Q(n) − Q0) when

there is a lack of incoming traffic for an extended period of time, thereby addressing the

issue of slow response of the control algorithm.

5.3.6 Control-Theoretical Approach to CSFQ and RFQ

The steps involved when the proposed control-theoretical approach is applied to the

packet dropping algorithm of CSFQ (steps (3) and (4) described in the CSFQ framework

of Section 5.2.2) and RFQ (step (3) described in the RFQ framework of Section 5.2.3) are

5.3 Control Theoretical Approach 100

now described. The modification of CSFQ and RFQ will be called Control-theoretical

Approach to CSFQ (CA-CSFQ) and Control-theoretical Approach to RFQ (CA-RFQ)

respectively.

The packet dropping algorithm of CA-CSFQ involves the following steps:

(1) Choose W1 and W2.

(2) Obtain the pre-computed feedback gains λ0, λ1, µ0 from the look-up table.

(3) The fair share α is computed using:

αnew = αold −
1∑

j=0

λj [V Q(n− j)−Q0]− µ0[F (n)− F (n− 1)] (5.21)

Equation (5.21) is modified from the last row of equation (5.20). Note that the aggregate

traffic F consists of traffic flows with rates less than or equal to α. Therefore, F is a

continuous, non-decreasing, concave, and piecewise-linear function of α. Hence, α can

be adjusted based on the feedback values of F and V Q.

(4) When congestion occurs, packets of every flow i in the system are dropped with

probability

Prob = max(0, 1− α

ri/wi
) (5.22)

where ri and wi denote respectively the rate and weight of flow i, which are contained

in the header of the packet.

Similarly, the packet dropping algorithm of CA-RFQ will involve the following steps:

(1) Choose W1 and W2.

(2) Obtain the pre-computed feedback gains λ0, λ1, µ0 from the look-up table.

5.4 Simulations 101

(3) The color threshold CT is computed using:

CTnew = CTold −
1∑

j=0

λj [V Q(n− j)−Q0]− µ0[F (n)− F (n− 1)] (5.23)

which is similar to the CA-CSFQ algorithm.

(4) When congestion occurs, packets belonging to layers higher than the dCT e will be

dropped, where dCT e is the round-up integer value of CT .

Note that the an integer dCT e value is required for RFQ because packets are discarded

in a layered fashion, unlike in CSFQ where packets are dropped probabilistically.

5.4 Simulations

In the following section, the proposed approach is illustrated with examples and their

performance evaluated using simulations. Specifically, the performance of DRR, RED

and CSFQ are compared with CA-CSFQ and CA-RFQ.

Deficit Round Robin (DRR) [75] is an efficient implementation of WFQ that has a

complexity of O(1). In DRR, queues are served in a weighted round robin fashion and a

packet is dropped from the longest queue when the buffer is full. DRR requires per-flow

queueing and is used as the benchmark for fair bandwidth sharing.

Random Early Drop (RED) is one of the most well-known algorithm for buffer

management. In RED, all flows shared a single First-In-First-Out (FIFO) queue. The

RED algorithm consist of two parts: (a) in the first part, RED estimates the time-

average queue size using exponential moving average. (b) in the second part, RED drops

packets probabilistically based on the time-averaged queue size. The probability of drop

5.4 Simulations 102

increases linearly from zero to maxp (maximum dropping probability) as the average

queue size grows from minth (minimum threshold) to maxth (maximum threshold).

In the simulations, the output link capacity C is set at 10 Mbps and the link buffer

size is set at 64 Kbytes. The packet size is fixed at 1 Kbytes. For CA-RFQ, the non-

linear encoding algorithm proposed by Cao in [38] with parameters a = 3, b = 32 and

P = 65 Mbps is used. For CA-CSFQ and CA-RFQ, Q0 is set at 20% of link buffer size

B, ψ at C and T at 1 msec. Detailed descriptions of other simulation parameters of

CSFQ can be found in [37].

The cost function chosen for CA-CSFQ and CA-RFQ is

L =
∞∑

n=0

[
(Q(n)−Q0)2 + V 2(n)

]

This simple cost function emphasizes only on the input V (n) and on reducing the

deviation Q(n) −Q0. Note that with Q0 = 0.2B, an emphasis on Q(n) −Q0 will help

ensure that there is no buffer overflow and full link utilization.

Solving the cost function above yields a feedback vector H given by

H = [1.4731,−1.0891, 1.0891].

5.4.1 Single Link

The first network topology considered is a simple multiple input, single output case.

In the first experiment, 32 UDP flows sharing a single bottleneck link with each flow

having equal weight are used. Each flow sends at 10i/32 Mbps, where i ∈ (1...32) is the

flow number. During the 10 seconds simulation, each UDP flow has an infinite amount

of data to transmit and hence the link is severely congested. Under max-min fairness,

5.4 Simulations 103

each flow should achieve an average throughput of 0.3125 Mbps. The results in Figure

5.4(a) show that while DRR gives almost perfect bandwidth sharing among contending

flows, RED cannot ensure fair sharing. In comparison, CSFQ, CA-CSFQ and CA-RFQ

all have comparable performance that are slightly inferior to DRR but much better than

RED.

In the second experiment, the performance of a TCP flow competing against a set

of (N − 1) non-reactive UDP flows transmitting at twice their fair share is evaluated.

Figure 5.4(b) shows the normalized throughput achieved by the TCP flow over the

10 seconds simulation time. The results show that the flow isolation abilities of both

CA-CSFQ and CA-RFQ are comparable: they perform slightly better than CSFQ and

significantly out-perform RED. For DRR (as observed in [37], [76]), the TCP flow’s flow

is significantly affected by the limited buffer share when there are more than 22 flows.

5.4.2 Multiple Links

Next, the performance of CA-CSFQ and CA-RFQ over multiple links are evaluated.

The network topology is the same as Figure 3.4. The number of nodes varies from 1 to

5. The output link capacity remains unchanged at 10 Mbps with propagation delay 1

msec. At each of the nodes, five cross-traffic flows carrying UDP traffic at an average

of 4 Mbps each are connected. In the first experiment, the reference flow is a UDP flow

transmitting at 4 Mbps. Figure 5.5(a) shows the normalized throughput. DRR has the

best performance, while CSFQ, CA-CSFQ and CA-RFQ have comparable performance

which are slightly inferior to DRR. RED has the worst performance.

5.4 Simulations 104

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 T
hr

ou
gh

pu
t/F

ai
r S

ha
re

Flow ID i

(a)

drr
red
csfq
ca−csfq
ca−rfq

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 T
hr

ou
gh

pu
t/F

ai
r S

ha
re

Total Number of Flows N

(b)

drr
red
csfq
ca−csfq
ca−rfq

Figure 5.4: The normalized throughput achieved by: (a) each of the 32 UDP flows
sharing a bottleneck link where flow i sends at i times its fair share (0.3125 Mbps),
(b) a TCP flow competing against (N − 1) UDP flows, each sending at twice their fair
share.

5.4 Simulations 105

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 T
hr

ou
gh

pu
t/F

ai
r S

ha
re

Number of Congested Links

(a)

drr
red
csfq
ca−csfq
ca−rfq

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 T
hr

ou
gh

pu
t/F

ai
r S

ha
re

Number of Congested Links

(b)

drr
red
csfq
ca−csfq
ca−rfq

Figure 5.5: (a) Normalized throughput of a UDP flow as a function of the number of
congested links. Cross traffic are UDP sources sending at twice the fair share. (b) The
same plot as (a) but with the UDP flow being replaced by a TCP flow.

In the second experiment, the reference flow was changed to a TCP flow. Figure

5.5(b) shows the normalized bandwidth share it receives. The results show that the

performance of CA-CSFQ and CA-RFQ are comparable, but slightly better than CSFQ.

On the other hand, RED fails to protect the TCP flow.

5.4.3 Bursty Cross Traffic

In the last set of experiments, the effects of bursty cross-traffic sources is evaluated. The

simulations use the same topology as Figure 3.4, but the UDP sources that form the

5.5 Related Work 106

cross traffic are now replaced with ON/OFF sources. The burst (ON) and idle (OFF)

time periods are both exponentially distributed with the same average chosen between

20 msec and 0.5 sec. The average intensity of cross traffic remains unchanged from the

previous set of simulations, that is, the ON/OFF sources send at 4 Mbps during the

ON period. In addition, only the results for SCORE/DPS algorithms CSFQ, CA-CSFQ

and CA-RFQ will be compared.

Note that the ability of the algorithms to quickly respond to a burst or drop in

traffic conditions actually shows how responsive the algorithms are to transient load

variations. By measuring the performance of each algorithm for different ON/OFF

periods, the control responsiveness of each algorithm over a range of bursty conditions

can be established.

The results in Figure 5.6 showed that as the ON/OFF time periods reach the critical

100 msec, the performance of CSFQ becomes seriously affected. The reason is that the

fair share estimation algorithm in CSFQ is unable to compute the correct fair share

value quickly. In comparison, both CA-CSFQ and CA-RFQ are still able to achieve a

reasonable normalized throughput.

5.5 Related Work

There are several rate-based flow control systems proposed in the literature of network

Quality-of-Service (QoS) management, with the better known systems being those pro-

posed for the Available Bit Rate (ABR) service category in Asynchronous Transfer Mode

(ATM) networks [81]. The ABR congestion control adopted a closed-loop rate-based

5.5 Related Work 107

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 T
hr

ou
gh

pu
t/F

ai
r S

ha
re

Average burst/idle duration of ON/OFF traffic sources

(a)

csfq 5 links
ca−csfq 5 links
ca−rfq 5 links

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 T
hr

ou
gh

pu
t/F

ai
r S

ha
re

Average burst/idle duration of ON/OFF traffic sources

(b)

csfq 5 links
ca−csfq 5 links
ca−rfq 5 links

Figure 5.6: (a) Normalized throughput of a UDP flow going through 5 congested links.
Cross traffic are ON/OFF sources whose average rate is twice the fair share. The burst
and idle times vary between 20 msec to 0.5 sec. (b) The same plot as (a) but with the
UDP flow being replaced by a TCP flow.

5.5 Related Work 108

scheme, consisting of sending feedback packets back to the traffic source for rate control

based on past flow rate values or past buffer occupancy values, or a combination of the

two sets of values. In the past few years, these systems have been studied extensively

with a recent emphasis on the use of a control theoretical approach [79], [82], [83].

There are however, two key differences between this proposed system and that of an

end-to-end rate-based flow control system, such as the ATM ABR congestion control

systems mentioned above:

(1) Firstly, the proposed system involves only one incoming traffic source because the

SCORE network architecture aggregates all traffic at the core routers. On the other

hand, ABR congestion control system requires per-flow state management of multiple

traffic sources.

(2) Secondly, the proposed control systems are localized at the core routers. Feedback

values used are obtained from the periodic sampling of F and buffer occupancy, which

eliminates uncertain feedback delay and results in a more robust system. On the other

hand, the end-to-end flow control system of ABR traffic involves the uncertain feedback

delay due to the round-trip time of the feedback resource management cells [81]. This

delay is normally very significant and can be uncertain resulting in stability issues.

Presently, besides CSFQ and RFQ, TUF [39] is the only other well-known SCORE/DPS

fair queueing algorithm. TUF follows the same implementation framework of RFQ but

uses a different rate representation and packet dropping algorithm. For the packet

dropping algorithm, TUF discards the packet with the highest tag when the buffer is

full. However, the complexity of searching the packet with the highest tag increases

5.5 Related Work 109

linearly with the queue size. Depending on the size of the buffer, this search process

may be more computationally intensive when compared to CSFQ, RFQ and the pro-

posed CA-CSFQ and CA-RFQ. Note that TUF’s packet dropping algorithm can also be

replaced with the proposed system. Another aspect of TUF is that it takes into account

the congestion responsive nature of flows and adjusts loss rates such that the average

rates are equal. Unfortunately, this requires fairly accurate mathematical models of

the end-to-end congestion responsive nature of traffic flows, which may not be readily

available.

Another algorithm that aims to achieve the same objective is CHOKe (CHOose and

Keep or responsive flows, CHOose and Kill for unresponsive flows) [84]. CHOKe is

essentially an extension of RED [76] and like RED, CHOKe maintains two threshold

values, minth (minimum threshold) and maxth (maximum threshold) for the compu-

tation of drop probability. When the average queue size is bigger than minth, each

arriving packet is compared with a randomly selected packet in the buffer. If they have

the same flow identifier, then both packets are dropped. Otherwise, only the arriving

packet is considered for dropping, with a probability that depends on the average queue

size. This drop probability is computed exactly as in RED. However, a comparison of

simulation results of CHOKe [84] with the other SCORE / DPS fair queueing algo-

rithms like CSFQ [37], RFQ [38] and TUF [39] showed that the flow isolation properties

of CHOKe is significantly worse. The main reason is that CHOKe was meant for the

simpler DiffServ [10] architecture that do not require an addition DPS packet label.

Therefore, CHOKe works at a much coarser granularity and is unable to emulate the

5.6 Conclusion 110

performance of SCORE / DPS algorithms.

Recently, Hollot et. al. [85] did a control-theoretical analysis of the RED system

and demonstrated that RED becomes less stable as the number of sessions decreases

and the average session round trip time increases. He subsequently proposed the use of

a proportional-integral controller to rectify this stability issue [86].

Athuraliya et. al. [87] also proposed a new active queue management algorithm,

called Random Exponential Marking (REM), which measures congestion by a price

quantity instead of a performance measure such as loss or delay. The price updating

function, which is similar to equation (5.12), is computed based on a weighted function

of the mismatches between the actual backlog and the desired backlog, and between

the incoming traffic rate and link service rate. This price is then used to determine a

dropping or marking probability. REM was shown to achieve high link utilization with

negligible delays and buffer overflow regardless of the number of flows. However, REM

does not address isolation issues between TCP and UDP flows.

5.6 Conclusion

This chapter presents a formal method for designing the packet dropping component

of SCORE/DPS fair queueing algorithms, such as CSFQ and RFQ. Using a control

theoretical approach, a generic control system is developed for the SCORE/DPS fair

queueing core router dynamics. In particular, it is demonstrated how an optimal control

approach can be used to design a stable system that allows for arbitrary control of the

core router’s performance. Compared to the original CSFQ and RFQ algorithms, the

5.6 Conclusion 111

resulting controller is simpler because there is no need to apply additional logic for

saturated traffic conditions. Simulation results have been presented to show that the

resulting controller yields better results than the original CSFQ algorithm.

112

Chapter 6

Conclusion and Future Work

In this chapter, this thesis is concluded by summarizing the contributions made and

proposing some directions for future work.

6.1 Contributions

The main objective of this thesis is to develop a service differentiation architecture for

the Internet that can resolve the two key insufficiencies of the current best-effort service

paradigm: (a) Inefficient network resource utilization due to the lack of service differen-

tiation and (b) Congestion unresponsive flows squeezing out congestion responsive flows

due to the lack of flow isolation.

To keep the proposed architecture scalable and simple to implement, deploy and

manage, a best-effort enhancement approach was adopted over a resource reservation

approach. Another motivation is to maintain the flat rate type of commercial agree-

ment between network operators and subscribers, widely believed to be the key factor

underlying the rapid deployment of the Internet over the last few years.

The proposed Delay-Rate Differentiated Services (DRDS) architecture is one

6.1 Contributions 113

that meets all the above requirements. It is built upon the IETF recommended DiffServ

architecture and consists of two portions.

The first portion of the DRDS focuses on providing delay based service differentia-

tion for classes of traffic aggregates. A Delay-Rate Differentiation (DRD) model, which

refines on the Proportional Delay Differentiation (PDD) model, proposed by Dovrolis

under the Proportional Differentiated Services (PDS) framework [13], is proposed. The

DRD model is a combination of the PDD model with another proposed model, called

the Generalized Minimum Queueing Delay (GMQD) model. Several packet schedul-

ing algorithms emulating GMQD [15], [16], [17], and DRD are proposed and analyzed.

For GMQD, two Packetized GMQD (PGMQD) algorithms, called Queue Length based

Packetized Generalized Minimum Queueing Delay (QL-PGMQD) and Queueing Delay

based Packetized Generalized Minimum Queueing Delay (QD-PGMQD), are proposed.

For DRD, two Packetized DRD (PDRD) algorithms, called Queue Length based Pack-

etized Delay Rate Differentiation (QL-PDRD) and Queueing Delay based Packetized

Delay Rate Differentiation (QD-PDRD), are proposed.

From the simulation results, it was demonstrated that the class of Queueing Delay

based packet scheduling algorithms, WTP, QD-GMQD and QD-PDRD, has better per-

formance compared to the class of Queue Length based packet scheduling algorithms,

BPR, QL-GMQD and QL-PDRD, but comes at the expense of computational complex-

ity. To resolve this complexity issue, a novel approximation technique is demonstrated

through the proposal of Scaled-Time Priority (STP) [69], [70], [71], which is an efficient

approximation to Waiting Time Priority (WTP) [43]. The same technique is subse-

6.2 Future Work 114

quently used to simplify QD-PGMQD and QD-PDRD, resulting in Scaled QD-PGMQD

(SQD-PGMQD) and Scaled QD-PDRD (SQD-PDRD).

The second portion of DRDS focuses on providing flow isolation within each class

of traffic aggregates. This portion leverages upon the class of core-stateless fair queue-

ing algorithms proposed under the Stateless Core (SCORE) framework. Under this

framework, Stoica proposed the Core-Stateless Fair Queueing (CSFQ) [37]. Unfortu-

nately, CSFQ is known to perform badly under bursty traffic conditions, which can

be attributed to its ad-hoc fair share estimation method. In view of this, a control-

theoretical approach for fast and robust computation of the fair share value is proposed.

This approach is used to enhance CSFQ [37] and its variant, Rainbow Fair Queueing

(RFQ) [38], resulting in two new and improved algorithms, called Control-theoretical

Approach to CSFQ (CA-CSFQ) [50], [51] and Control-theoretical Approach to RFQ

(CA-RFQ) [51].

6.2 Future Work

In this section, three possible extensions to this thesis are explored.

(1) Loss Differentiation. This thesis focused only on delay differentiation. A possible

extension will be to enhanced the proposed DRD model with a loss differentiation com-

ponent [48], [49].

(2) Coordinated end-to-end multi-hop scheduling. Recently, several researchers have

proposed schedulers that are capable of doing coordinated multi-hop scheduling, whereby

downstream nodes have an opportunity to make up for excessive latencies due to con-

6.2 Future Work 115

gestion at upstream nodes and vice versa [88], [89]. These algorithms exploit inter-node

coordination to improve the end-to-end performance of traffic flows, and consequently,

improve the efficiency and utilization of the network at large. Therefore, another pos-

sible improvement will be to design coordinated PGMQD and PDRD algorithms.

(3) End-to-end Feedback. CSFQ, RFQ, TUF, CA-CSFQ and CA-RFQ provide ap-

proximate local max-min fairness, but do not provide global max-min fairness [77]. A

possible improvement to the proposed CA-CSFQ and CA-RFQ algorithms is to incor-

porate end-to-end feedback mechanisms [90]. It has been shown that enhancing CSFQ

with end-to-end feedback mechanisms can lead to better network resource utilization

and achieve approximate global max-min fairness.

116

Bibliography

[1] J. Postel, Internet Protocol, IETF RFC 791, DARPA, Sep 1981.

[2] V. Jacobson, Congestion Avoidance and Control, Proc. ACM SIGCOMM, pp 314-

329, Aug 1988.

[3] J. Postel, User Datagram Protocol, IETF RFC 768, Information Sciences Institute,

Aug 1980.

[4] J. Nagle, On packet switches with infinite storage, IEEE Trans. Communications,

Vol 35, No. 4, pp 435-438, Apr. 1987.

[5] A.K.J. Parekh, R. Gallager, A Generalized Processor Sharing Approach to Flow

Control in Integrated Services Networks: The Single Node Case, IEEE/ACM

Trans. on Networking, Vol 1, No. 3, pp 344-357, June 1993.

[6] S.J. Golestani, A Self-Clocking Fair Queuing Scheme for Broadband Applications,

Proc. IEEE INFOCOM, 1994.

[7] J.C.R. Bennett and H. Zhang, Hierarchical Packet Fair Queueing Algorithms,

IEEE/ACM Trans. on Networking, Vol. 5, No. 5, Oct 1997.

Bibliography 117

[8] V. Firoiu, J-Y.L. Boudec, D. Towsley and Z.L. Zhang, Theories and Models for

Internet Quality of Service, Proc. IEEE, Aug 2002.

[9] R. Braden, D. Clark and S. Shenker, Integrated Services in the Internet Architec-

ture: An Overview, IETF RFC 1633, Jun 1994.

[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, An Architecture

for Differentiated Services, IETF RFC 2475, Dec 1998.

[11] A.M. Odlyzko, Internet pricing and the history of communications, Computer Net-

works, Elsevier Science, Vol. 36, pp 493-517, 2001.

[12] I. Stoica, Stateless Core: A Scalable Approach for Quality of Service in the Internet,

PhD. Dissertion, CMU-CS-00-176, 2000.

[13] C. Dovrolis, Proportional Differentiated Services for the Internet, PhD. Dissertion,

2000.

[14] L. Massoulie, J. Roberts, Bandwidth sharing: objectives and algorithms, Proc.

IEEE INFOCOM, 1999.

[15] H. T. Ngin, C. K. Tham and W. S. Soh, A Multirate Scheduling Algorithm using

Dynamic Programming for ATM Networks, Proc. IEEE APCC/ICCS’98, vol. 1,

pp. 97-102, Nov 1998.

[16] H. T. Ngin, C. K. Tham and W. S. Soh, Generalised Minimum Queuing Delay:

An Adaptive Multi-rate Service Discipline for ATM Networks, Proc. IEEE INFO-

COM’99, vol. 1, pp. 398-404, Mar 1999.

Bibliography 118

[17] C. K. Tham, R. A. Lou and H. T. Ngin, Minimum Queuing Delay: An Adaptive

Algorithm for Scheduling in a Dynamic Job Shop, Proc. IEEE IECON’99, Nov

1999.

[18] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, Resource ReSerVation

Protocol (RSVP)–Version 1 Functional Specification, IETF RFC 2205, Sep 1997.

[19] S. Shenker, C. Partridge and R. Guerin, Specification of Guaranteed Quality of

Service, IETF RFC 2212, Sep 1997.

[20] J. Wroclawski, Specification of the Controlled-Load Network Element Service,

IETF RFC 2211, Sep 1997.

[21] P. Almquist, Type of service in the internet protocol suite, IETF RFC 1349, Jul

1992.

[22] S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, IETF

RFC 2460, Dec 1998.

[23] K. Nicholas, S. Blake, F. Baker and D. Black, Definition of the differentiated ser-

vices field (DS field) in the IPv4 and IPv6 headers, IETF RFC 2474, Dec 1998.

[24] D. Grossman, New Terminology and Clarifications for Diffserv, IETF RFC 3260,

Apr 2002.

[25] K. K. Ramakrishnan, Sally Floyd, and D. Black, The addition of explicit congestion

notification (ECN) to IP, IETF RFC 3168, Sep 2001.

Bibliography 119

[26] B. Davie, A. Charny, J.C.R. Bennett, K. Benson, J.Y. Le Boudec, W. Courtney,

S.Davari, V.Firoiu and D. Stiliadis, An Expedited Forwarding PHB (Per-Hop Be-

havior), IETF RFC 3246, Mar 2002.

[27] J. Heinanen, F.Baker, W.Weiss and J. Wroclawski, Assured Forwarding PHB

group, IETF RFC 2597, Jun 1999.

[28] V. Jacobson, K. Nichols and K. Poduri, An Expedited Forwarding PHB, IETF

RFC 2598, Jun 1999.

[29] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie,

J. Wroclawski and E. Felstaine, A Framework for Integrated Services Operation

over DiffServ Networks, IETF RFC 2998, Nov 2000.

[30] F. Baker, C. Iturralde, F. Le Faucheur and B. Davie, Aggregation of RSVP for

IPv4 and IPv6 Reservations, IETF RFC 3175, Sep 2001.

[31] I. Stoica and H. Zhang, Providing Guaranteed Services Without Per Flow Man-

agement, Proc. ACM SIGCOMM, Aug 1999.

[32] Z.L. Zhang, Z. Duan and Y.T. Hou, Virtual Time Reference System: A Unifying

Scheduling Framework for Scalable Support of Guaranteed Services, IEEE J. Select.

Area Commun, Special Issue on Internet QoS, Vol. 18, No. 12 pp 2684-2695, Dec

2000.

[33] Z.L. Zhang, Z. Duan and Y.T. Hou, Fundamental Trade-offs in Aggregate Packet

Scheduling, Proc. IEEE ICNP, Nov 2001.

Bibliography 120

[34] Z.L. Zhang, Z. Duan, L. Gao and Y.T. Hou, Decoupling QoS Control from Core

Routers: A Novel Bandwidth Broker Architecture for Scalable Support of Guaran-

teed Service, Proc. ACM SIGCOMM, Aug 2000.

[35] Z.L. Zhang, Z. Duan and Y.T. Hou, On Scalable Design of Bandwidth Brokers,

IEICE Trans. Commun, Vol. E84-B, No. 8, Aug 2001.

[36] I. Stoica and H. Zhang, LIRA: An Approach for Service Differentiation in the

Internet, Proc. NOSSDAV, Jun 1998.

[37] I. Stoica, S. Shenker and H. Zhang, Core-Stateless Fair Queueing: Achieving Ap-

proximate Fair Bandwidth Allocations in High Speed Networks, Proc. ACM SIG-

COMM, Sep 1998.

[38] Z.R. Cao, Z. Wang and E. Zegura, Rainbow Fair Queueing: Fair Bandwidth Sharing

Without Per-Flow State, Proc. IEEE INFOCOM, 2000.

[39] A. Clerget and W. Dabbous, TUF: Tag-based Unified Fairness, Proc. IEEE INFO-

COM, 2001.

[40] P. Hurley and J.-Y. L. Boudec, P. Thiran, and M. Kara, ABE: Providing a Low-

Delay Service within Best Effort, IEEE Network Magazine, Vol. 15, No. 3, May

2001.

[41] V. Firoiu, X. Zhang and Y. Guo, Best Effort Differentiated Services: Trade-off

Service Differentiation for Elastic Applications, Proc. IEEE ICT, Jun 2001.

Bibliography 121

[42] C. Dovrolis and P. Ramanathan, A Case for Relative Differentiated Services and

the Proportional Differentiation Model, IEEE Network, Oct 1999.

[43] C. Dovrolis, D. Stiliadis and P. Ramanathan, Proportional Differentiated Services:

Delay Differentiation and Packet Scheduling, Proc. ACM SIGCOMM, Sep 1999.

[44] Y. Moret and S. Fdida, A proportional queue control mechanism to provide differ-

entiated services, Proc. ISCIS, Oct 1998.

[45] M. Tufail, G. Jennes and G. Leduc, A scheduler for delay-based service differenti-

ation among AF classes, Proc. IFIP TC6 ICBC, pp. 93-102, Nov 1999.

[46] C.C. Li, S.L. Tsao, M.C. Chen, Y. Sun and Y.M. Huang, Proportional Delay

Differentiation Service Based on Weighted Fair Queueing, Proc. IEEE ICCCN,

Oct 2000.

[47] T. Nandagopal, N. Venkitaraman, R. Sivakumar and V. Bharghavan, Delay Dif-

ferentiation and Adaptation in Core Stateless Networks, Proc. IEEE INFOCOM,

Mar 2000.

[48] C. Dovrolis and P. Ramanathan, Proportional Differentiated Services, Part II: Loss

Rate Differentiation and Packet Dropping, Proc. IWQoS, Jun 2000.

[49] U. Bodin, A. Jonsson and O. Scheln, On Creating Proportional Loss-Rate Differ-

entiation: Predictability and Performance, Proc. IWQoS, pp. 372-386, Jun 2001.

Bibliography 122

[50] H. T. Ngin and C. K. Tham, A Control-Theoretical Approach for Fair Share Com-

putation in Core-Stateless Networks, Proc. IEEE QoFIS/ICQT 2002, Springer-

Verlag LNCS, Berlin Heidelberg New York, Oct 2002.

[51] H. T. Ngin and C. K. Tham, A Control-Theoretical Approach for Achieving Fair

Bandwidth Allocations in Core-Stateless Networks, Computer Networks, Elsevier

Science, Vol. 40, No. 6, pp. 727-741, Dec 2002.

[52] L. Kleinrock, Queueing Systems Volume II: Computer Applications, John Wiley

and Sons, 1976.

[53] A. Odlyzko, Paris Metro Pricing: The Minimalist Differentiated Services Solution,

Proc. IWQoS, Jun 1999.

[54] W.A. Gale and R. Koenker, Pricing interactive computer services, Computer Jour-

nal, Vol. 27, No. 1, pp 8-17, Oct 1984.

[55] R. Bellman, Dynamic Programming. Princeton University Press, Princeton, NJ,

1957.

[56] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Method. Aca-

demic Press, NY, 1982.

[57] A. Demers, S. Keshav and S. Shenker, Analysis and simulation of a fair queueing

algorithm, Proc. ACM SIGCOMM, Sep. 1989, pp.1-12.

[58] J.C.R. Bennett and H. Zhang, WF2Q: Worst-Case Fair Weighted Fair Queuing,

Proc. IEEE INFOCOM, April 1996.

Bibliography 123

[59] L. Kleinrock, A Delay Dependent Queue Discipline, Nav. Res. Log. Quart. 11, pp.

329-341, 1964.

[60] A.K.J. Parekh, R. Gallager, A Generalized Processor Sharing Approach to Flow

Control in Integrated Services Networks: The Multiple Node Case, IEEE/ACM

Trans. on Networking, Vol 2, No. 2, pp 137-150, April 1994.

[61] J. Liebeherr, D. Wrege and D. Ferrari, Exact Admission Control for Networks with

a Bounded Delay Service, IEEE/ACM Trans. Networking, Vol. 4, No. 6, Dec 1996.

[62] D. Wrege, J. Liebeherr, A Near-Optimal Packet Scheduler for QoS Networks, Proc.

IEEE INFOCOM, 1997.

[63] P. Goyal, H. M. Vin, H.C. Cheng, Start-Time Fair Queuing: A Scheduling Algo-

rithm for Integrated Services Packet Switching Networks, IEEE/ACM Trans. on

Networking, Vol. 5, No. 5, pp 690-703, October 1997.

[64] P. Goyal, Packet Scheduling Algorithms for Integrated Services Network, Ph.D

Dissertation, Univ. of Texasat Austin, Dep. Computer Sci., Aug 1997.

[65] S. McCreary and K.C. Claffy, Trends in Wide Area IP Traffic Patterns: A View

from Ames Internet Exchange, http://www.caida.org/outreach/papers/, 27 Sep

2000.

[66] S. Bodamer, A Scheduling Algorithm for Relative Delay Differentiation, Proc. IEEE

HPSR, Jun 2000.

Bibliography 124

[67] J. Liebeherr and N. Christin, Rate Allocation and Buffer Management for Differ-

entiated Services, Computer Networks, Elsevier Science Vol. 40(1), Special Issue

on the New Internet Architecture, pp. 89-110, Sep 2002.

[68] N. Christin, J. Liebeherr, and T. Abdelzaher, A quantitative assured forwarding

service, Proc. IEEE INFOCOM, Jun 2002.

[69] H. T. Ngin and C. K. Tham, Achieving Proportional Delay Differentiation Effi-

ciently, Proc. IEEE ICON 2002, pp. 27-30 Aug 2002.

[70] H. T. Ngin and C. K. Tham, Achieving Proportional Delay Differentiation Effi-

ciently, Computer Communications, Elsevier Science, Vol. 27, No. 2, pp. 153-161,

Feb 2004.

[71] H. T. Ngin and C. K. Tham, Scaled Time Priority: An Efficient Approximation to

Waiting Time Priority, to appear in Computer Networks, Elsevier Science.

[72] D. Ferrari and D. Verma, A scheme for real-time channel establishment in wide-

area networks, IEEE J. Select. Area Commun, Vol. 8, No. 3, pp 368-379, April

1990.

[73] T. Stoica, H. Zhang, T.S. Eugene Ng, A Hierarchical Fair Service Curve Algorithm

for Link-Sharing, Real-Time and Priority Services, Proc. ACM SIGCOMM, 1997

[74] E. Knightly and H. Zhang, Traffic Characterization and Switch Utilization Using

Deterministic Bounding Interval Dependent Traffic Models, Proc. IEEE INFO-

COM, pp. 1137-1145, Apr 1995.

Bibliography 125

[75] M. Shreedhar and G. Varghese, Efficient Fair Queueing Using Deficit Round Robin,

Proc. ACM SIGCOMM, Sep. 1995.

[76] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoid-

ance, IEEE/ACM Trans. Networking, Vol. 1, pp 397-413, Aug 1993.

[77] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 1987.

[78] L. Benmohamed and S.M. Meerkov, Feedback control of congestion in packet

switching networks: The case of a single congested node, Control Group Rep. CGR-

93-15, Univeristy of Michigan, Nov 1993.

[79] L. Benmohamed and Y.T. Wang, A Control-Theoretical ABR Explicit Rate Algo-

rithm for ATM Switches with Per-VC Queueing, Proc. IEEE INFOCOM, 1998.

[80] B.D.O. Anderson and J.B. Moore, Optimal Control: Linear Quadratic Methods,

Prentice-Hall, N.J., 1990.

[81] The ATM Forum Traffic Management Working Group, Traffic Management Spec-

ification, Version 4.0, The ATM Forum, Apr 1996.

[82] E. Altman, T. Basar and R. Srikant, Robust Rate Control for ABR Sources, Proc.

IEEE INFOCOM, Mar 1998.

[83] A. Kolarov and G. Ramamurthy, A Control-Theoretical Approach to the Design of

an Explicit Rate Controller for ABR Service, IEEE/ACM Trans. Networking, Vol.

7, No. 5, pp. 741-753, Oct 1999.

Bibliography 126

[84] R Pan, B. Prabhakar and K. Psounis, CHOKe A stateless active queue management

scheme for approximating fair bandwidth allocation, Proc. IEEE INFOCOM, Mar

2000.

[85] C. Hollot, V. Misra, D. Towsley and W. Gong, A Control Theoretic Analysis of

RED, Proc. IEEE INFOCOM, pp. 1510-1519, Apr 2001.

[86] C. Hollot, V. Misra, D. Towsley and W. Gong, On Designing Improved Controllers

for AQM Routers Supporting TCP Flows, Proc. IEEE INFOCOM, Apr 2001.

[87] S. Athuraliya, V.H. Li, S.H. Low and Q.H. Yin, REM: Active Queue Management,

IEEE Network, pp 48-53, May/Jun 2001.

[88] M. Andrews and L. Zhang, Minimizing end-to-end delay in high-speed networks

with a simple coordinate schedule, Proc. IEEE INFOCOM, Mar 1999.

[89] C. Li and E. W. Knightly, Coordinated Multihop Scheduling: A Framework for

End-to-End Services, IEEE/ACM Trans. Networking, Vol. 10, No. 6, pp 776-789,

Dec 2002.

[90] C. Albuquerque, B. J. Vickers and T. Suda, Network Border Patrol, Proc. IEEE

INFOCOM, Mar 2000.

127

Appendix A

Proof of Proposition 3.1

Proposition 3.1. Given δk−1/δk ≥ 2 for 1 < k ≤ N , δ1 = +∞ and r1 > r2 > . . . > rN ,

then

δkQ̄agg∑N
l=1 δlrl

<
δkrkQ̄agg∑N

l=1 δlr
2
l

for k = 1 (A.1)

and

δkQ̄agg∑N
l=1 δlrl

>
δkrkQ̄agg∑N

l=1 δlr
2
l

for k = 2, . . . , N (A.2)

Proof: For the proof of equation (A.1), the following condition is required

δkQ̄agg∑N
l=1 δlrl

<
δkrkQ̄agg∑N

l=1 δlr
2
l

for k = 1 (A.3)

This is equivalent to showing:

N∑

l=1

δlr
2
l < r1

N∑

l=1

δlrl (A.4)

As r1 > r2 > . . . > rN , therefore, the above condition is always true.

128

For the proof of equation (A.2), the following condition is required

δkQ̄agg∑N
l=1 δlrl

>
δkrkQ̄agg∑N

l=1 δlr
2
l

for k = 2, . . . , N (A.5)

This is equivalent to showing:

N∑

l=1

δlr
2
l − ri

N∑

l=1

δlrl > 0 for k = 2, . . . , N (A.6)

Consider the left-hand term, as r2 > r3 > . . . > rN ,

N∑

l=1

δlr
2
l − rk

N∑

l=1

δlrl >
N∑

l=1

δlr
2
l − r2

N∑

l=1

δlrl

> δ1r1(r1 − r2) +

δ3r3(r3 − r2) + . . . +

δNrN (rN − r2)

> (δ3 + . . . + δN)rN (rN − r2) +

δ1r1(r1 − r2)

> δ2rN (rN − r2) +

δ1r1(r1 − r2)

> 0

The following points must be noted in the above derivation:

(1) The combined value of the negative terms δ3r3(r3 − r2) + . . . + δNrN (rN − r2) is

greater than (δ3 + . . . + δN)rN (rN − r2) because r2 > r3 > . . . > rN .

129

(2) The summation of the geometric progression

δ3 + . . . + δN = δN

(
δ2
δN
− 1

δN−1

δN
− 1

)

< δN

(
δ2

δN
− 1

)

< δ2

< δ1

because δk−1/δk ≥ 2.

(3) rN (rN − rN−2) is a negative term and r1(r1 − r2) is a positive term. As δ1 is a

positive infinite value, δ2rN (rN − r2) + δ1r1(r1 − r2) will always be greater than zero.

Hence, the proof completes.

2

130

Appendix B

Proof of Theorem 3.1

Proof: Before the start of the proof, a few notations are defined first.

λk: available bandwidth at the kth stage.

gk: return function for session k.

g∗k: optimal return at the kth stage.

where k = 1, 2, . . . , N .

The theorem is proved using Dynamic Programming (DP), which is an inductive

approach. A brief overview of how DP is done is described here for the reader’s con-

venience. Referring to Figure B.1, the proof using DP is usually done in stages. A N

dimensional problem in this case is broken up into N parts. It starts by finding the

optimal return at the first stage, which is actually the optimal return for a single session.

This solution is usually trivial.

Moving on to the second stage, the problem faced becomes two dimensional because

it now consists of two sessions. At this stage, DP makes use of a transition function and

131

Session 1
1λ

Stage 1

Session 2
2λ

Stage 2

Session NNλ

Stage N

Figure B.1: Overview of the DP’s approach to optimization.

a recursive formula to convert this two dimensional problem into a single dimensional

problem. This simplifies the problem and makes it easier to obtain the optimal return

at the second stage. Note that the optimal return at the second stage is the optimal

return over two sessions, and not the optimal return for the second session only. In

addition, the available bandwidth at the second stage is the total amount of bandwidth

available to both the first and second sessions.

Similarly, at the third and later stages, the same procedure described earlier can be

used recursively to reduce the dimensionality of the problem into a more manageable one

dimensional problem. In other words, DP is a problem solving approach that recursively

breaks a single N dimensional problem into N single dimensional problems. These N

single dimensional problems are usually easier to solve.

The objective in GMQD is to minimize the total weighted queueing delay for all

sessions in one server. Hence, the objective function is

min

[
Q1(t)w1

φ1(t)
+

Q2(t)w2

φ2(t)
+ · · ·+ QN (t)wN

φN (t)

]
(B.1)

132

subject to the constraints that

(1) all service rates must be greater than or equal to zero and

(2) the sum of service rates is equal to the bandwidth of the server, C(t).

However, as GMQD is a fluid flow model, it is sufficient to consider the system at

a single point in time. This formally reduces the objective function to

min

[
Q1w1

φ1
+

Q2w2

φ2
+ · · ·+ QNwN

φN

]
(B.2)

subject to the constraints

φ1, φ2, . . . , φN ≥ 0 (B.3)

and

N∑

l=1

φl = C, l = 1, 2, . . . , N. (B.4)

The first constraint, equation (B.3) is due to the fact that it is impossible to allocate

negative service rates to any session. Similarly, the second constraint, equation (B.4) is

due to the fact that the total service rates cannot exceed the bandwidth of the output

link.

The transition function of this DP solution is an equation that relates the amount

of resources (bandwidth) available at a particular stage to the amount of resources

available and used up at the previous stage. In this case, it is

λl−1 = λl − φl, l = 1, 2, . . . , N. (B.5)

The recursive formula of this DP solution is an equation that relates the optimal

return at a particular stage to the optimal return at the previous stage. In this case, it

B.1 First Stage 133

is

g∗k(λk) = min
0≤φk≤λk

[gk(φk) + g∗k−1(λk − φk)] (B.6)

Both the transition function and the recursive formula are used to simplify expres-

sions obtained in the subsequent derivations during the transition from one stage to

another.

B.1 First Stage

First, consider the case where there is only one connected session to the output link.

The optimal return function for the single session scenario is given as

g∗1(λ1) = min
0≤φ1≤λ1

(
Q1w1

φ1
) (B.7)

Since the objective is to minimize the queueing delay of only one session, the obvious

way is to allocate all the available bandwidth to that session That is φ1 = λ1.

B.2 Second Stage

The next scenario is to minimize the total weighted queueing delay for two sessions.

According to Bellman’s principle of optimality [55], an optimal policy is made up of

optimal sub-policies. Therefore, the optimal total return at the second stage is obtained

by minimizing the sum of the return for the second session and the optimal return at

the first stage. Hence,

g∗2(λ2) = min
0≤φ2≤λ2

[g2(φ2) + g∗1(λ1)] (B.8)

B.2 Second Stage 134

There are three things to note here:

(1) g2(φ2) is the return function for the second session, given by Q2w2

φ2
. It is not the

return function at the second stage, which is the total return for both the first and the

second session.

(2) g∗1(φ1) is the optimal return function at the first stage, obtained when solving equa-

tion (B.7).

(3) Finally, the first session’s service rate, φ1 is the remainder of whatever bandwidth

not taken up by the second session, i.e. φ1 = λ1 = λ2 − φ2. This is the transition

function shown in equation (B.5). With this transition function, the two dimensional

problem can be reduced to a single dimensional problem, which is easier to solve.

g∗2(λ2) = min
0≤φ2≤λ2

[
Q2w2

φ2
+ g∗1(λ2 − φ2)]

= min
0≤φ2≤λ2

[
Q2w2

φ2
+

Q1w1

(λ2 − φ2)
] (B.9)

Let

G∗
2(λ2) =

Q2w2

φ2
+

Q1w1

(λ2 − φ2)
. (B.10)

To minimize G∗
2(λ2) equate its first order differential to zero.

∂G∗
2(λ2)

∂φ2
=

Q1w1

(λ2 − φ2)2
− Q2w2

φ2
2

(B.11)

= 0

Solve for φ2 and after simplification

φ2 =
√

Q2w2√
Q1w1 +

√
Q2w2

λ2 (B.12)

B.3 Extending to Later Stages 135

Note that when solving the above quadratic equation, equation (A.11), the positive root

for r2 is taken.

To ensure that the solution found is a minimum, the second order differential is

taken,

∂2G∗
2(λ2)

∂φ2
2

=
2Q1w1

(λ2 − φ2)3
+

2Q2w2

φ3
2

> 0

which is greater than 0 because 0 ≤ φ2 ≤ λ2. Hence, the solution for φ2 is a minimum.

Making use of the transition function, φ1 = λ1 = λ2−φ2, the value for φ1 is obtained.

φ1 =
√

Q1w1√
Q1w1 +

√
Q2w2

λ2 (B.13)

Dividing equation (B.12) by equation (B.13) and

φ2

φ1
=

√
Q2w2

Q1w1
(B.14)

Substitute into g∗2(λ2) at equation (B.9) and the optimal return function at the second

stage becomes

g∗2(λ2) =
(
√

Q1w1 +
√

Q2w2)2

λ2
(B.15)

B.3 Extending to Later Stages

Using the above procedure to recursively reduce the dimensions of the objective function,

the optimal service rates and return functions can be obtained for the third, fourth and

B.3 Extending to Later Stages 136

later stages. Hence, by induction, at the N th stage, the optimal service rate for session

k and the optimal return function are given respectively by

φk =
√

Qkwk∑N
l=1

√
Qlwl

λN (B.16)

g∗N (λN) =
(
∑N

l=1

√
Qlwl)2

λN
(B.17)

where λN = C. Include the time variable, t back into equations (B.16) and (B.17), and

the proof is complete.

2

137

Appendix C

Proof of Theorem 3.2

Proof: From Theorem 3.1, the service rate of session k, φk(t) is given by

φk(t) =
C

√
Qk(t)wk∑N

l=1

√
Ql(t)wl

, k = 1, 2, . . . , N. (C.1)

Given
∑N

k=1 rk = C and assuming the stable convergence of the adaptive GMQD system,

then φ̄k → r̄k at steady state. Therefore,

r̄k =
C

√
Q̄kwk∑N

l=1

√
Q̄lwl

, k = 1, 2, . . . , N. (C.2)

Dividing between two arbitrary sessions, k and l to obtain

r̄k

r̄l
=

√
Q̄kwk

Q̄lwl
, l = 1, 2, . . . , N.

Square both sides and rearrange the terms to obtain,

Q̄l =
(

wk

wl

) (
r̄l

r̄k

)2

Q̄k, l = 1, 2, . . . , N.

Sum up Ql for every session to obtain

N∑

l=1

Q̄l =

[(
wk

w1

)(
r̄1

r̄k

)2

+
(

wk

w2

)(
r̄2

r̄k

)2

+ · · ·+
(

wk

wN

)(
r̄N

r̄k

)2
]

Q̄k (C.3)

138

Rearranging the terms to give

Q̄k =
Q̄agg

∑N
l=1

(
wk
wl

)(
r̄l
r̄k

)2 (C.4)

where

Q̄agg =
N∑

l=1

Q̄l

Since φ̄k → r̄k at steady state, DSS
k is therefore, given by

D̄k =
Q̄k

r̄k

=
Q̄agg

r̄k
∑N

l=1

(
wk
wl

)(
r̄l
r̄k

)2 (C.5)

This completes the proof.

2

