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(i) Batch 9 Biofilms treated with 0.5 mg/l Cl2 + 40μg/l Ag+  

 
Figure 4.20 Biofilm structure with testing agents (continued) 

 

 
Figure 4.21 Epifluorescence microscopy image of biofilms in control reactor 

(batch 3 day 26) 
Upper arrow: over exposure area (one foreign cell); lower arrow: under exposure 
area 
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4.4.3.2 Biofilm physiology 

Eifluorescence microcopy with LIVE/DEAD kit was selected and improved to 

analysis live ratio of bacteria. However, due to the foreign species’ invasion (refer 

to section 4.3.3), there was heavy bias of the live/dead ratio during observation. As 

noted by Lawrence et al. (2002), staining of natural (heterogeneous) assemblages 

of bacteria with the LIVE/DEAD BacLight probe can give variable results due to 

differences in cell membrane permeability. During the experimental period, 

foreign species might reflect much stronger fluorescence than the target species 

(figure 4.21) and this would influence the analysis. According to above discussion, 

the further analysis of live ratio was omitted. 

 

4.4.4 Summary 

In section 4.4, three testing agents, e.g. free chlorine, monochloramine, and the 

combination of free chlorine and silver ion, showed various biofilm control 

abilities in the experimental reactors at different dosages. The free chlorine – silver 

ion combination showed superiest efficiency among the testing agents both on 

biofilm disinfection and biofilm removal. SEM pictures illustrated the biofilm 

structure could be affected by the testing agents: free chlorine could react with 

EPS, and the cell tended to live individually with less matrix; monochloramine had 

a less reacting potential which led to a culture with plenty of embedding EPS; the 

silver ion, which could help detach the cells from biofilm matrix, resulted cell 

holes on the biofilm mats.  
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TCC was not very sensitive and accurate in this section and probably due to the 

relatively low content of the sample. The LIVE/DEAD method for biofilm 

physiology was unsuccessful and mainly due to the existing of species diversity. 

 

4.5 Biofilm control with high slug dose (HSD) strategies 

The alternative HSD strategies were applied in the last two batches (batches 10 

and 11) to evaluate biofilm control abilities. In this section, the results of three 

HSD strategies were presented and compared with the one of previous Continuous 

strategy with equivalent chlorine Dosage (CD) (table 4.13).  

 

Table 4.13   The HSD biofilm control strategies 
 

 HSD1 HSD2 HSD3 CD 
Dose type High slug High slug High slug Continuous 
Chemical Chlorine (free) Chlorine (free) Chlorine (free) Chlorine (free) 

Dosing duration 30 min 10 min 6 hr / 
period 24 hr 8 hr 12 hr / 

Dosing conc. 48 mg/l 48 mg/l 2 mg/l 1 mg/l 
Equivalent 
continuous 

dosing conc. 
1 mg/l 1 mg/l 1 mg/l / 

 

4.5.1 Strategies’ disinfecting efficiency  

Figure 4.22 showed the profiles of bacteria population in the reactors during the 

batches. Overall, no matter what strategy applied, both biofilm and suspended 

bacteria had a continuous decrease potential.  
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(a) Biofilm bacteria 
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(b) Suspended bacteria 
 
 

Figure 4.22   Bacteria population treated with testing strategies 
Note: Samples were taken throughout the idling phase in each sampling day and 

the curves presented had eliminated the time scale. Sampling day 1 was the 
first day when chlorine was applied (the 9th day of the batch), sampling day 2 
was the 16th day of the batch, sampling day 3 was the 23rd day of the batch. 
Detection limit: 1.11 log(CFU/cm2) for biofilm bacteria; 1.00 log(CFU/ml) 
for suspended bacteria. 
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Table 4.14 Biofilm population treated by testing strategies 
 

Strategy Day 0 Sampling day 1 Sampling day 2 Sampling day 3 
HSD1 6.24 5.66 ~ 6.01 2.97 ~ 4.24 <1.11 ~ 3.13 
HSD2 5.88 4.90 ~ 5.27 <1.11 ~ 2.04 <1.11 ~ 1.92 
HSD3 5.65 2.73  ~ 4.29 <1.11 ~ 3.31 <1.11 ~ 2.01 
CD 6.31 4.23 3.53 1.71 

Note: Unit – log(CFU/cm2) 
         Detection limit – 1.11 log(CFU/cm2) 
         Day 0 was the day before testing strategies were started. 
 

For biofilm bacteria (table 4.14), at sampling day 1, the decreases of the HPC were 

correlated with the exposure periods: the CD and HSD3 strategies were more 

successful than HSD1 and HSD2 strategies. Since sampling day 1 was the next 

day after chlorine was applied, the dosing duration, not the dosage, seemed to be 

more important for the initial disinfection of intact biofilms. At sampling day 2, 

though the CD strategy could control the population, the superior of the HSD 

strategies began to emerge. The population decreased with HSD1 strategy was 

similar with CD strategy, whereas the population decreased with HSD2 and HSD3 

strategies were about 2 log lower. After 2 weeks, all the populations with HSD 

strategies touched the detection limit at sampling day 3, however, a certain range 

of recovery occurred during the interim. HSD1 strategy, with the longest idling 

period, resulted the highest population recovery at the end of each period; and the 

HSD2 and HSD3 with relatively shorter idling periods resulted less recovery. 

 

Table 4.15 Suspended population treated by testing strategies 
 

Strategy Day 0 Sampling day 1 Sampling day 2 Sampling day 3 
HSD1 7.16 2.56 ~ 5.68 1.00 ~ 3.85 1.00 ~ 4.18 
HSD2 5.05 1.00 ~ 5.19 1.00 ~ 2.04 1.00 
HSD3 5.35 1.00 ~ 4.71 1.00 ~ 5.08 1.00 

CD 5.48 1.00 1.88 1.00 
Note: Unit – log(CFU/ml) 
         Detection limit – 1.00 log(CFU/ml) 
         Day 0 was the day before testing dose strategies were started. 
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For suspended bacteria (table 4.15), all the HSD strategies and CD strategy could 

achieve satisfactory disinfecting efficiencies. All the suspended population 

decreased to lower than 10 CFU/ml (detection limit) sooner or later during the 

experimental period. Only the HSD1 strategy got a 4.18 log recovery in the 

sampling day 3, mainly due to the long idling period (23.5 hr). There were no 

significant suspended population recoveries with other strategies, whose dosing-

off period could be up to 7.7 hr. 

 

4.5.2 Strategies’ biofilm removal efficiency  

4.5.2.1 Biofilm coverage 

Figure 4.23 showed the biofilm coverage profiles with the testing strategies and 

table 4.16 gave the details data. A decreasing coverage potential could be found 

over the time, which indicated that these strategies had the ability to detach the 

biofilms from the slide surface. 

 

Table 4.16 Biofilm coverage of the samples treated with testing strategies 
 

Sampling day 1 Sampling day 2 Sampling day 3  Day 0 
Start End Start End Start End 

HSD1 6.73±4.62 9.96±5.05 3.78±1.91 2.11±1.71 2.69±2.26 1.21±0.67 1.71±2.66 
HSD2 6.15±2.71 9.63±6.90 12.66±5.93 3.92±3.27 3.29±2.60 4.22±1.98 5.28±2.42 
HSD3 7.08±5.17 5.84±4.95 5.91±3.86 0.52±0.38 1.68±1.14 2.70±2.31 1.52±1.55 

CD 13.80 5.28 4.79 2.07 
Note: Unit –  biofilm coverage percentage (%); 
        “Start” and “End” denoted the start and end of non-dosing phase, 

respectively; 
         Day 0 was the day before testing strategies was started. 
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Figure 4.23   Biofilm coverage treated with testing strategies. 

Note: Samples were taken throughout the idling phase in each sampling day and 
the curves presented had eliminated the time scale. Sampling day 1 was the 
first day when chlorine was applied (the 9th day of the batch), sampling day 2 
was the 16th day of the batch, sampling day 3 was the 23rd day of the batch. 
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Figure 4.24   Biofilm TCC level treated with testing strategies 
Note: Samples were taken throughout the idling phase in each sampling day and 

the curves presented had eliminated the time scale. Sampling day 1 was the 
first day when chlorine was applied (the 9th day of the batch), sampling day 2 
was the 16th day of the batch, sampling day 3 was the 23rd day of the batch. 

 



ANALYSIS AND CONTROL OF BIOFILMS IN A MODEL DRINKING WATER SYSTEM 

 113 

At sampling day 1, HSD1 and HSD 2 strategies resulted a sudden increase of 

biofilm coverage (from 6.73% to 9.96% and from 6.15% to 9.63%, respectively) at 

the dosage stop point and the coverage fluctuation were more poignant than the 

counterparts with HSD3 and CD strategies. At sampling day 2, the fluctuations of 

biofilm coverage with all strategies were insignificant. At sampling day 3, HSD1, 

HSD3, and CD strategies could control the biofilm coverage at 1.21 – 2.70%, and 

the difference among them was insignificant. However the HSD2 strategy only 

inhibited the biofilm coverage at 4.22 – 5.28%, which presented a poorer 

efficiency. 

 

4.5.2.2 Total carbohydrates content (TCC) 

Figure 4.24 showed the biofilm TCC level profiles with the testing strategies and 

table 4.17 gave the detail data. 

Table 4.17 TCC level of the biofilm samples treated with testing strategies 
 

Strategy Day 0 Sampling day 1 Sampling day 2 Sampling day 3 
HSD1 0.96 0.32 ~ 1.70 0.42 ~ 4.07 1.97 ~ 4.34 
HSD2 2.04 0.25 ~ 4.24 0.96 ~ 6.23 2.61 ~ 3.12 
HSD3 2.48 0.79 ~ 2.95 0.52 ~ 5.25 1.87 ~ 3.22 

CD 9.30 3.40 6.04 5.07 
Note: Unit –  μg glucose per cm2 

         Day 0 was the day before testing strategies were started. 
 

 

From TCC results, it could be seen that the potentials were not as clear as those in 

biofilm coverage or HPC results and the behaviors of TCC with each HSD 

strategies were similar: The average of TCC levels at sampling day 1 were similar 

with day 0; At sampling day 2, all the TCC shifted to a higher level compared with 

sampling day 1 and the fluctuations were also significant; At sampling day 3, the 

TCC level slightly decreased and the fluctuations were kept in a narrow range. For 
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CD strategy, the TCC level also followed the trend mentioned above except for the 

fluctuation.  

 

The above phenomena indicated that the first high slug dose (whichever HSD 

strategies) had little effects on the carbohydrate levels of the biofilms (even TCC 

at the starting points of sampling day 1 decreased, the recoveries were achieved 

soon), but after about 1 week of treatment, the biofilms were stimulated to produce 

more carbohydrate to avoid the chemical detachment. However, after 2 weeks of 

treatment, the HSD strategies would achieve better TCC control effects than the 

CD strategy. Some mechanisms might be developed by the biofilms to prevent the 

lose of TCC and the overproduction of  TCC as well. 

 

For all testing strategies, though there were only little effects on TCC at the first 

sample day, sudden TCC decreases at the starting point were noted. Meanwhile at 

this point sudden increases of biofilm coverage by HSD1 and HSD2 strategies 

while only slight change in cases of HSD3 and CD strategies (figure 4.24) were 

also observed before. An assumption was that the initial acute doses (a high 

concentration of chlorine, e.g. HSD1 and HSD2 strategies) could decompose the 

heavy biofilm matrix (small TCC values) but make the cells-mat thinner with 

wider distribution (large biofilm coverage); the initial mild doses (a low 

concentration and long duration, e.g. HSD3 and CD strategies) could not only 

decompose the biofilm matrix but also inhibit the extent of biofilm coverage.  
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4.5.3 Biofilm structure  

 

 

 
Figure 4.25 Biofilm structure treated with HSD1 strategy 

 

Figure 4.25 showed the biofilms structures under HSD1 strategy. Figures 4.25 (a), 

(b) and (c) were taken from the first sampling day. On the 9th day intact biofilms 

before strategy was applied seemed to be health and prosperous like the ones 

growing in control reactors (a). After the first 30 minutes treatment with a dosage 

of 48mg/l, the biofilms structure was neglectfully effected (b). At this time, some 

cells might have been hurt or already died; however, the exterior morphology was 

unchanged. The influence on structure could be easily observed in (c), where the 

(a)                                                     (b) 
 
 
 
 
 
 
 
 
(c)                                                     (d)  
 
 
 
 
 
 
 
 
(e)                                                     (f) 
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biofilms had been treated after a whole day (one period) from beginning of the 

first HSD. Some cells lysed and only some residuals could be found. For the 

survivors, the cell wall became rough and heavy, most likely combined with EPS, 

as the resistance system probably had been triggered. Figures 4.25 (d), (e), and (f) 

were taken from the 3rd sampling day, when the biofilms had been treated with the 

HSD of free chlorine for about 2 weeks. There were only few survival biofilm 

bacteria existing (d). The biofilm matrix structure had changed a lot ((e) and (f)) 

compared with not only the intact ones, but also the counterparts with continuous 

dose strategies. The matrix seemed to be a net instead of a mat. The significant 

difference of the biofilms structure indicated the HSD strategies could facilitate 

alternative biofilm control mechanisms against the continuous dose strategies.  

 

4.5.4 Summary 

On summary, the HSD2 and HSD3 strategies could achieve better disinfection 

results than HSD1 and CD strategies, based on the considerations of highest HPC 

decreased and the lowest recovery thereafter. The population recovery 

phenomenon indicated that an appropriate dosing sequence would be required for 

HSD strategy, especially in the idling period when the agent was not available. For 

biofilm removal, all the HSD strategies presented better TCC control abilities than 

the CD strategy, while the HSD1, HSD3 and CD strategies achieved similar 

biofilm coverage control and all of them were better than HSD 2 strategy. The 

SEM showed the biofilm structure, especially for the biofilm matrix, was 

significantly affected via HSD strategies. 
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CHAPTER 5 CONCLUSIONS  

AND RECOMMENDATIONS 

5.1 Conclusions 

From the results presented and discussed herein, conclusions are drawn as 

followings. 

1. From the biofilms survey in a local drinking water system, it was noted high 

HPC values (3~4 log CFU/cm2) were found at some sites which indicated the 

possibility of the biofilms growth. The consumed chlorine, but not residual 

chlorine, was more correlated with biofilm bacteria population. The carbon 

source was most likely to be the controlling nutrition parameter for biofilm 

growth in this study. 

 

2. A procedure for LIVE/DEAD assay of mono-layer P. fluorescens biofilms was 

recommended: 15-min of incubation period with the dye (50 μl/225 mm2, 

SYTO 9 12 μM and PI 60 μM) followed by quick (in minutes) observation 

under fluorescence in moisture. Results also showed the kit was very sensitive 

to detect the viability of chlorine affected biofilms. 

 

3. The free chlorine – silver ion combination showed best efficiency among three 

test agents (free chlorine, monochloramine, and free chlorine – silver ion 

combination). For biofilm disinfection, 4.51 and 3.84 log CFU/cm2 reduction 

with a Cl2 – Ag+ concentration of 1.0 mg/l – 40 μg/l and 0.5 mg/l – 40 μg/l, 

respectively were achived. For biofilm removal abilities, 82.77%, 90.74%, and 

75.62% biofilm coverage reduction with a Cl2 – Ag+ concentration of 2.0 mg/l 
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– 40 μg/l, 1.0 mg/l – 40 μg/l and 0.5 mg/l – 40 μg/l, respectively were obtained. 

Free chlorine was better for biofilm disinfection and biofilm removal than 

monochloramine at same dosage, however, the biofilm resistance factor of 

monochloramine was smaller than that of free chlorine. 

 

4. For high slug dose strategies, the HSD 3 strategy (dosing 2 mg/l free chlorine 

for 6 hours and idling for 6 hours) was able to control the biofilms population 

within <1.11 ~ 2.01 log(CFU/cm2), the suspended bacteria population below 

1.00 log(CFU/ml), the biofilm coverage within 1.52 ~ 2.70%, and the TCC 

within 1.87 ~3.22 μg glucose/cm2 after 2-week treatment, respectively. It was 

better than other HSD strategies and equivalent continuous dosing strategy 

based on both biofilm disinfection and biofilm removal abilities. It is important 

to design a HSD schedule in practical operation to achieve high biofilm control 

performance without compromising with bacteria recovery in the idling phase. 

The significant difference of the biofilms structure observed from SEM 

indicated the HSD strategies could facilitate alternative biofilm control 

mechanism against the continuous dosing strategy. 

 

5.2 Recommendations 

Due to time and manpower limitation, this study is only a primary study on 

biofilm control. Therefore, the following recommendations are made for further 

studies. 

1. Annular reactor is good for biofilm development and analysis. However, if 

mono-species biofilms is anticipated, a hermetic environment should be 

provided to locate the equipments.  
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2. Less health effect biotic control strategy is the target of drinking water 

disinfection. Different less harmful agents (like enzyme) and efficient 

alternative operations (like slug dosing) could be the candidates for further 

study.  
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