PLACENTAL ANGIOGENESIS AND IMMUNE-PRIVILEGE IN NORMAL AND PATHOLOGICAL PREGNANCIES

GANGARAJU RAJA SHEKHAR, M.Sc

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF OBSTETRICS & GYNAECOLOGY FACULTY OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE

2003

Dedicated with love to my dearest wife and loving parents

Acknowledgements

I wish to express my profound gratitude and indebtedness to my supervisors Dr.Loganath Annamalai and Associate Professor Ashim Chandra Roy for their constant encouragement, guidance and preceptorship in my research endeavours.

I am grateful to Associate Professor PC Wong, the Head, Department of Obstetrics and Gynaecology for his support and guidance. My deep appreciation also goes to the thesis advisory committee comprising Associate Professors JM Mongelli and Arjit, Biswas for the inspiration, criticism and continued support.

I greatfully acknowledge the National Medical Research Council, Singapore for their financial support in this research project and the Principle Investigators Associate Professors YC Wong and JM Mongelli for their continued support.

In addition, I wish to acknowledge the entire staff of the Obstetrics & Gynaecology Department and Research Laboratory for their support in the course of my research. The assistance rendered by Labour Ward staff of the National University Hospital especially of Ms. Janet Wu in procuring placental specimens used in this study is highly appreciated.

I would also like to thank my research colleagues Drs. Rachana, Roopa, Gauthaman, Nevil, Srilatha, Sivalingam and Rudaba for their help, stimulating discussions and maintaining a cheerful working atmosphere.

I gratefully acknowledge the National University of Singapore for awarding me a postgraduate research scholarship during the period of my candidature.

Last but not the least, I would like to extend my profound sense of gratitude to my beloved wife for her sacrifices, perpetual support, patience and understanding.

iii

Contents

Acknowledgements	iii
List of Publications	xi
List of Abbreviations	xiii
List of Tables	xvi
List of Figures	xvii
Summary	xxi
1. General Introduction	1
1.1 Normal placentation	1
1.1.1 Placental maturation	2
1.1.2 Angiogenesis	4
1.1.2.1 Angiogenesis cascade	6
1.2 Growth factors	7

1.1.2.1 Anglogenesis cascade	0
1.2 Growth factors	7
1.2.1 Vascular endothelial growth factor	9
1.2.2 Placental growth factor	10
1.2.3 Epidermal growth factor	10
1.2.4 Angiopoietins	11
1.2.5 Angiogenin	12
1.2.6 Angiogenic factors in pregnancy	15
1.3 Cell adhesion molecules	16
1.3.1 Functions of CAMs	20
1.3.2 Adhesion receptors as targets for clinical therapy	22
1.3.2.1 Circulating adhesion receptors	22
1.3.2.2 Potential mechanisms utilised in adhesion-based therapies	22
1.3.3 Cell adhesion molecules in placenta	23
1.3.3.1 Intercellular cell adhesion molecule-1 [ICAM-1]	24
1.3.3.2 Intercellular cell adhesion molecule-2 [ICAM-2]	25
1.3.3.3 Vascular cell adhesion molecule-1 [VCAM-1]	25
1.3.3.4 P-selectin	28
1.3.4 Leukocyte-endothelial cell interaction	29

1.4 Immune-privilege in pregnancy	31
1.4.1 Fetus and the placenta as an allograft	31
1.4.2 General mechanism of immune-privilege	32
1.4.2.1 Localized immunosuppressive factors	32
1.4.2.2 Lack of expression of classical MHC molecules	33
1.4.2.3 Expression of HLA-G by trophoblasts	33
1.4.2.4 Expression of Fas/FasL by the trophoblasts	34
1.5 Intrauerine growth retardation (IUGR)	36
1.5.1 Definition	36
1.5.2 Criteria of inclusion	36
1.5.3 Aetiology	37
1.5.4 Role of CAMs and GFs in IUGR	38
1.6 Pre-eclampsia (PE)	39
1.6.1 Definition	39
1.6.2 Criteria of inclusion	40
1.6.3 Aetiology	40
1.6.4 Role of CAMs and GFs in PE	41
1.7 Gestational trophoblastic disease (GTD)	42
1.7.1 Definition	42
1.7.2 Choriocarcinoma	44
1.7.3 Immune-privilege in tumours	45
1.7.4 Fas/FasL pathway	47
1.8 Objectives of the study	50

2. Expression and Secretion Profiles of Growth Factors in Early and Late Gestation

Placentae

2.1 Introduction	53
2.2 Materials and methods	54
2.2.1 Patients profile	54
2.2.2 Collection of placental specimens	55
2.2.3 Human chorionic villous explant culture	56
2.2.4 Measurement of soluble growth factors by ELISA	57

	2.2.5 Semiquantitative RT-PCR	57
	2.2.6 Immunohistochemical localization	59
	2.2.7 Confocal immunofluorescence microscopy	60
	2.2.8 Electrophoresis and immunoblot analysis	61
	2.2.9 Statistical analysis	62
2.3	Results	62
	2.3.1 Structural integrity and biochemical viability of explant culture system	62
	2.3.2 Concentrations of GFs in the explant culture media	64
	2.3.3 The mRNA expression for GFs in normal placenta	67
	2.3.4 Localization of angiogenin and P/GF to trophoblast layer of placenta	70
	2.3.5 Human angiogenin translated protein expression	74
2.4	Discussion	74

3. Expression and Secretion profiles of Growth Factors in IUGR & PE place	entae
3.1 Introduction	81
3.2 Materials and methods	82
3.2.1 Patients profile	82
3.2.2 Collection of placental specimens	83
3.2.3 Human chorionic villous explant culture	84
3.2.4 Measurement of soluble growth factors by ELISA	84
3.2.5 Semiquantitative RT-PCR	84
3.2.6 Immunohistochemical localization	84
3.2.7 Confocal immunofluorescence microscopy	84
3.2.8 Electrophoresis and immunoblot analysis	84
3.2.9 Statistical analysis	85
3.3 Results	85
3.3.1 Structural integrity and biochemical viability of explant culture system	85
3.3.2 Concentrations of GFs in the explant culture media	85
3.3.3 Angiogenin immunostaining	89
3.3.4 The mRNA expression profiles of GFs in pathological placenta	89
3.3.5 Human angiogenin translated protein expression	91
3.4 Discussion	94

Expression and Secretion Fromes of CAIVIS in Early & Late Gestation Fla	icentae
4.1 Introduction	100
4.2 Materials and methods	100
4.2.1 Patients profile	100
4.2.2 Collection of placental specimens	101
4.2.3 Human chorionic villous explant culture	102
4.2.4 Measurement of soluble CAMs by ELISA	102
4.2.5 Semiquantitative RT-PCR method for CAMs	103
4.2.6 Immunohistochemical localization	105
4.2.7 Confocal immunofluorescence microscopy	106
4.2.8 Statistical analysis	107
4.3 Results	107
4.3.1 Structural integrity and biochemical viability of explant culture system	107
4.3.2 Concentrations of CAMs in the explant culture media	108
4.3.3 The mRNA expression profiles of CAMs in normal placenta	112
4.3.4 Immunohistochemical localization of CAMs in normal placenta	115
4.4 Discussion	115

4. Expression and Secretion Profiles of CAMs in Early & Late Gestation Placentae

5. Expression and Secretion profiles of CAMs in IUGR & PE placentae

5.1 Introduction	121
5.2 Materials and methods	122
5.2.1 Patients profile	122
5.2.2 Collection of placental specimens	123
5.2.3 Human chorionic villous explant culture	123
5.2.4 Measurement of soluble CAMs by ELISA	123
5.2.5 Semiquantitative RT-PCR method for CAM expression	123
5.2.6 Immunohistochemical localization	124
5.2.7 Confocal immunofluorescence microscopy	124
5.2.8 Statistical analysis	124
5.3 Results	124
5.3.1 Structural integrity and biochemical viability of explant culture system	124
5.3.2 Concentrations of CAMs in the explant culture media between normal	125
term and pathologic placentae	

5.4 Discussion	136
5.3.4 Immunohistolocalization of CAMs in pathologic placentae	134
5.3.3 The mRNA expression profiles of CAMs in pathologic placentae	131

6. Effect of Hypoxia during Pregnancy on Angiogenin and VCAM-1 Expression and Secretion

6.1 Introduction	140
6.2 Materials and methods	142
6.2.1 Cell lines and culture conditions	142
6.2.2 Hypoxic culture	143
6.2.3 Measurement of soluble GFs and CAMs by ELISA	144
6.2.4 RT and real-time quantitative PCR	144
6.2.5 Statistical analysis	145
6.3 Results	145
6.3.1 Validation of hypoxic cultures	145
6.3.2 Concentration of GFs and CAMs released in culture	146
6.3.3 Validation of real-time PCR analysis	150
6.3.4 The mRNA expression of CAMs and GFs subjected to hypoxia	151
6.4 Discussion	159

7. Effect of Extra Cellular Matrix (ECM) on the Time Dependent Release of

Angiogenin and VCAM-1 in Placentae

7.1 Introduction	167
7.1.1 Integrin receptors	168
7.1.2 Integrin $\alpha_v \beta_3$	168
7.1.3 Role of integrin $\alpha_v \beta_3$ in angiogenesis	169
7.1.4 Integrin $\alpha_5\beta_1$	170
7.1.5 Role of integrin $\alpha_5\beta_1$ in angiogenesis	170
7.1.6 Human Vitronectin	171
7.1.7 Human Fibronectin	172
7.1.8 Effect of Hypoxia on angiogenin and VCAM-1 expression and	
secretion in the presence of VN and FN	172
7.2 Materials and methods	174

7.2.1 ECM coating on cell culture plates (Fibronectin/ Vitronectin)	174
7.2.2 Measurement of soluble angiogenin and VCAM-1 by ELISA	174
7.2.3 RT and real-time quantitative PCR	175
7.2.4 Blockade of angiogenin production using integrin antibodies	175
7.2.5 Effect of Hypoxia on angiogenin and VCAM-1 production in the	
presence of ECM proteins	175
7.2.6 Statistical analysis	176
7.3 Results	176
7.3.1 Concentration of angiogenin and VCAM-1 released by placental	
explants in culture in the presence of ECM	176
7.3.2 Concentration of angiogenin and VCAM-1 released by	
trophoblasts in culture in the presence of ECM	178
7.3.3 Integrin mediated secretion of angiogenin from trophoblasts in	
culture	181
7.3.4 Effect of reduced levels of oxygen (hypoxia) on trophoblast	
secretion of angiogenin in the presence of ECM	181
7.3.5 The mRNA expression of angiogenin and VCAM-1 in the presence	
of ECM	183
7.4 Discussion	189

8. Resistance to Fas-mediated Apoptosis in Gestational Trophoblastic Disease:

Implications in Immune-privilege

196
199
199
199
200
201
202
203
204
205
205

8.2.10 Synergistic effect of TNF- α on Fas-mediated cell death in BeWo	
and NJG cells	206
8.2.11 Quantification of soluble FasL in choriocarcinoma cell culture	
media	207
8.2.12 Statistical data analysis	207
8.3 Results	208
8.3.1 Cytokeratin staining and β-hCG secretion	208
8.3.2 Expression of FasL in BeWo and NJG cells	208
8.3.3 Expression of Fas in BeWo and NJG cells	213
8.3.4 Resistance to Fas mediated cell death of BeWo and NJG cells	214
8.3.5 Expression of endogenous factor inhibitory to Fas signalling in	
BeWo and NJG cells	214
8.3.6 FasL positive choriocarcinoma cells kill lymphocytes	220
8.3.7 Synergistic effect of TNF- α on Fas-mediated cell death in BeWo	
and NJG cells	226
8.3.8 Detection of soluble FasL in BeWo and NJG cell supernatants	226
8.3.9 Suppression of Akt signalling on Fas-mediated apoptosis in BeWo	
and NJG cells	229
8.4 Discussion	229
9. General Discussion	239
10. Bibliography	245
11. Appendix 1	270
12. Appendix 2	288

List of Publications

Peer reviewed papers

- Rajashekhar G, Loganath A, Roy AC, Wong YC. Expression and Localization of Angiogenin in Placenta: Enhanced Levels at Term over First Trimester Villi. *Mol Reprod Dev* 2002; 62:159-66.
- Rajashekhar G, Loganath A, Roy AC, Wong YC. Over-expression and secretion of angiogenin in intrauterine growth retardation placenta. *Mol Reprod Dev* 2003; 64:397-404.
- Rajashekhar G, Loganath A, Roy AC, Wong YC. Expression and Secretion of the Vascular Cell Adhesion Molecule-1 in Human Placenta and its Decrease in Fetal Growth Restriction. *J Soc Gynecol Investig*, 2003a; 10:352-60.
- 4. Rajashekhar G, Loganath A, Roy AC, Mongelli M. Resistance to Fas-mediated cell death in BeWo and NJG choriocarcinoma cell lines: Implications in immune privilege. *Gynecol Oncol*, 2003; 91:101-111.
- Rajashekhar G, Loganath A, Roy AC, Mongelli M. Co-Expression of Fas (APO-1, CD95)/Fas Ligand by BeWo and NJG Choriocarcinoma Cell Lines. *Gynecol Oncol*, 2003; 91:89-100.
- Rajashekhar G, Loganath A, Roy AC, Chong SS, Wong YC. Hypoxia Upregulates Angiogenin Expression and Secretion in Human Placental Trophoblasts. *Placenta* 2003 (Manuscript in preparation).
- Rajashekhar G, Loganath A, Roy AC, Chong SS, Wong YC. Integrin mediated Angiogenin Expression and Secretion in Human Placental Trophoblasts. *Placenta* 2003 (Manuscript in preparation).

Conference papers

 Rajashekhar G, Loganath A, Roy AC, Ng SC. Matrix metalloproteinase Genes in Human Placentation: A Bioinformatic Approach. 2nd Combined Annual Scientific meeting, SSBMB-BRETSS-SSMB, Singapore, September 8-9, 2000. Abstract p12.

- Rajashekhar G, Loganath A, Roy AC, Wong YC. Gestation-dependant Differential Secretion of sICAM-1, sVCAM-1 and Angiogenin by Placental Explants in Culture. 5th NUH-NUS ASM, Singapore, June 29-30. Abstract p61.
- Rajashekhar G, Loganath A, Roy AC, Wong YC. Localization, expression and secretion of angiogenin in the normal human placenta. First Singapore Angiogenesis/Anti-angiogenesis Symposium, Singapore, November 23-24, 2001. Oral presentation #7, p40.
- Rajashekhar G, Loganath A, Roy AC, Mongelli M. Apoptosis-regulating Proteins in Human Trophoblastic Choriocarcinoma Cell lines: Implications for Immuneprivilege. 41st Annual Meeting, The American Society for Cell Biology, Washington DC, USA, December 8-12, 2001. *Mol Biol Cell* 2001; 12 Suppl: A130.
- Rajashekhar G, Loganath A, Roy AC, Wong YC. Enhanced Secretion and Expression of Angiogenin by Intrauterine Growth Retarded Placenta. 42nd Annual Meeting, The American Society for Cell Biology, San Francisco, CA, USA, December 14-18, 2002. *Mol Biol Cell* 2002; 13 Suppl: A2996.
- Rajashekhar G, Loganath A, Roy AC, Wong YC. Enhanced Expression and Secretion of Angiogenin in Intrauterine Growth Retardation Placentae. 4th Singapore Congress in O&G incorporating 1st Singapore-Malaysia Conference in O&G, Singapore. January 16-18, 2003. Sing J Obstet & Gynae 2003; 34 Suppl 1: P13.
- Rajashekhar G, Loganath A, Roy AC, Mongelli M. Resistance to Fas-mediated apoptosis in Gestational Trophoblastic Disease: Implications for Immuneprivilege. *Molecular Mechanisms of Apoptosis*, Keystone Symposium, Banff, Calgary, Canada. Poster # 315: Session 3, February 8-11, 2003.

List of Abbreviations

А	Absorbance
A/R	Anoxia/Reoxygenation
Ab	Antibody
ANG	Angiogenin
ANOVA	Analysis of variance
AP-1	Activation protein complex-1
APS	Ammonium persulphate
ATCC	American type culture collection
bFGF	Basal fibroblast growth factor
ВНК	Baby hamster kidney
BLAST	Basic local alignment search tool
BM	Basement membrane
BMG	Beta-2 microglobulin
bp	Base pairs
Bp	Blood pressure
BSA	Bovine serum albumin
CAM	Cell adhesion molecule
cDNA	Complimentary deoxy ribonucleic acid
СНО	Chinese hamster ovary
CHX	Cycloheximide
CO_2	Carbon dioxide
C _P	Crossing point
CRP	Complement regulatory proteins
CSF-1	Colony stimulating factor-1
CTB	Cytotrophoblast
CTL	Cytotoxic lymphocytes
CV	Coefficient of variation
DAB	3.3-diaminobenzadine
DEPC	Diethyl pyrocarbonate
DISC	death-inducing signalling complex
DMEM	Dulbecos modified eagles medium
DMSO	Dimethyl sulphoxide
dNTP	Deoxy nucleotide tri phosphate
dsDNA	Double stranded deoxy ribonucleic acid
DTT	Dithiothreitol
E/T ratio	Effector to target ratio
ECM	Extracellular matrix
EDTA	Ethylene diamine tetra acetate
EGF	Epidermal growth factor
ELISA	Enzyme linked immunosorbent assay
Fas	CD-95 or APO-1. Fas receptor
FasL	Fas ligand
FCS	Fetal calf serum
FGF	Fibroblast growth factor
FITC	Fluorescein isothiocyanate
FLIP	Flice like inhibitory protein
FN	Fibronectin
FT	First trimester
g	Gram
g	Relative centrifugal force
G3PDH	Glyceraldehyde 3 phosphate dehydrogenase
GF	Growth factor
GTD	Gestational trophoblastic disease
	*

hCG	Human chorionic gonadotropin
HELLP	Haemolysis elevated liver enzymes and low platelet counts
HEPES	(N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid])
HIF-1	Hypoxia inducible factor-1
HIV-1	Human immunodeficiency virus-1
HLA-G	Human leukocyte antigen-G
hPL	Human placental lactogen
HRP	Horse radish peroxidase
HSRRB	The health science research resources bank
HTLV-1	Human T-cell leukaemia virus type 1
HUVEC	Human umbilical vein endothelial cells
Ну	Нурохіа
ICAM-1	Intercellular adhesion molecule
IgCAM	Immunoglobulin cell adhesion molecule
IGF-1	Insulin like growth factor-1
IHC	Immunohistochemistry
IL	Interleukin
INF-y	Interferon-gamma
IU '	International units
IUGR	Intrauterine growth retardation
kDa	Kilo dalton
kg	Kilogram
1	Litre
LFA-1	Leukocyte function-associated antigen-1
M	Molar
mAb	Monoclonal antibody
Mac-1	also known as CD11b/CD18
MFI	Mean fluorescence intensity
mg	Milligram
MgCl	Magnesium chloride
MHC	Major histocompatibility gene complex
mIU	Milli international units
mM	Millimolar
mmHg	Millimeter mercury
mmol	Millimole
MMP	Matrix metallo proteinase
MOPS	[3-(N-morpholino)-propanesulfonic acid]
mRNA	Messenger ribonucleic acid
MTT	(3-[4 5-Dimethylthiazol-2-yl]-2 5-diphenyltetrazolium bromide)
MI	Methlumbelliferone
MUP	A-methylumbelliferyl phosphate
MW	Molecular weight
n	Number
	Neuronal cell adhesion molecule
NE 12P	Nuclear factor kappa P
NF-KB	Nuclear factor kappa B
ng NK	Natural killer
	Natural tarm
	Normai term
02 °C	Dagua Calaina
	Deglee Celsius Drobobility
Г » Л h	Pitobability
PAU	Polycional antibody
PAUE	Polyaci ylamide gel electrophoresis
LD2 LD2	Phosphale bullered saline
PCK	Polymerase chain reaction
PE	Pre-eciampsia

PECAM	Platelet endothelial cell adhesion molecule
pg	Picogram
PGE ₂	Prostaglandin E_2
PI	Propidium iodide
PlGF	Placental growth factor
pmol	Picomole
pO2	Partial pressure of oxygen
PS	Phosphotidylserine
RGD	Arg-Gly-Asp
RGDS	Arg-Gly-Asp-Ser
RNA	Ribonucleic acid
rpm	Revolutions per minute
Ř PMI	Roswell park memorial institute
RT	Reverse transcriptase (enzyme)
RT-PCR	Reverse transcription-Polymerase chain reaction
RV	Reaction vessel
SCID	Severe combined immunodeficient
SD	Standard deviation
SDS	Sodium dodesyl sulphate
SEM	Standard error of mean
SGA	Small for gestational age
STB	Syncytiotrophoblast
TBS	Tris buffered saline
TEMED	N,N,N',N'-Tetramethylethylenediamine
TGF-β1	Transforming growth factor-beta 1
TNF-α	Tumor necrosis factor-alpha
tPA	Tissue plasminogen activator
TTBS	Tween-tris buffered saline
U	Units
V	Volts
v/v	Volume/volume
VCAM-1	Vascular cell adhesion molecule-1
VEGF	Vascular endothelial growth factor
VLA-4	Very Late Antigen-4 (also known as CD49d/CD29)
VN	Vitronectin
w/v	weight per volume
wk	Week
v	Years
ß	Beta
ug	Microgram
o 11	Microlitre
uM	Micromolar
μινι	

List of Tables

Table	Title	Page
1.1	Properties of angiogenin	13
1.2	Integrins and their ligands	19
1.3	Approaches to the therapeutic modulation of adhesion receptor function	23
1.4	Adhesion molecules involved in leukocyte-endothelial cell interaction	31
1.5	Mechanisms for escape from apoptosis	50
2.1	Characteristics of women participating in the study.	55
2.2	Sensitivity of the various GF ELISA kits	57
2.3	GF primer sequences and PCR conditions	59
2.4	Antibodies used in immunohistochemical localization	61
3.1	Characteristics of women participating in the study.	83
4.1	Characteristics of women participating in the study.	101
4.2	Sensitivity of the various CAM ELISA kits	103
4.3	CAM primer sequences and PCR conditions	104
4.4	Antibodies used in Immunohistochemical localization	106
4.5	Summary of statistical comparison of CAMs expression profiles	
	between FT and term placental tissues	111
5.1	Characteristics of women participating in the study.	122
5.2	Summary of statistical comparison of CAMs expression profiles	
	between normal term, IUGR and PE placental tissues	136
7.1	Effect of ECM on the secretion of angiogenin in trophoblast cells	180
7.2	Effect of anti-integrins on the secretion of angiogenin in trophoblast	
	cells	181
7.3	Effect of Hypoxia on the secretion of angiogenin in trophoblast cells	183
8.1	Immunohistochemical antibodies.	201
8.2	Primer sequences and PCR conditions.	204

List of Figures

Figure	Title	Page
1.1	Schematic representation of trophoblast invasion of spiral arteries showing both interstitial and endovascular pathways.	3
1.2	Placental maturation	5
1.3	Angiogenesis cascade.	8
1.4	Illustration of the postulated mechanism of neutrophil adhesion and transmigration across an endothelial cell layer.	30
1.5	Diagram illustrating the immune-privilege mechanism involving Fas/FasL pathway.	48
2.1	Release of β -human chorionic gonadotrophin (β -hCG) by FT and term placental explants	63
2.2	Soluble levels of GFs in normal placentation.	65
2.3	Soluble levels of GFs in trophoblast cultures	66
2.4	Expression of mRNA for GFs in normal pregnancy as determined by reverse transcription polymerase chain reaction (RT-PCR).	68
2.5	Expression index for GFs in normal pregnancy.	69
2.6	Immunohistochemical localization of angiogenin in FT placental villi	71
2.7	Immunohistochemical localization of angiogenin in term placental villi	72
2.8	Immunohistochemical localization of PlGF in normal placental villi	73
2.9	Immunoblot analysis of human angiogenin protein in FT and term placental villi.	75
3.1	Soluble levels of GFs in pathological placentae (Angiogenin)	87
3.2	Soluble levels of GFs in pathological placentae (PlGF)	88
3.3	Immunohistochemical localization of angiogenin in normal term and IUGR placentae	90

3.4	Expression of mRNA for GFs in pathological pregnancy as determined by reverse transcription polymerase chain reaction (RT-PCR).	92
3.5	Expression index for GFs in pathological placentae.	93
3.6	Immunoblot analysis of human angiogenin protein in normal term and IUGR placental villi.	95
4.1	Soluble levels of CAMs in normal placentation (ICAM-1 and ICAM-2)	109
4.2	Soluble levels of CAMs in normal placentation (VCAM-1 and P-selectin)	110
4.3	Expression of mRNA for CAMs in normal pregnancy as determined by reverse transcription polymerase chain reaction (RT-PCR).	113
4.4	Expression index for CAMs in normal pregnancy.	114
4.5	Immunohistolocalization of VCAM-1 in normal placentae	116
5.1	Soluble levels of CAMs in pathological placentae (ICAM-1).	126
5.2	Soluble levels of CAMs in pathological placentae (ICAM-2).	127
5.3	Soluble levels of CAMs in pathological placentae (VCAM-1).	129
5.4	Soluble levels of CAMs in pathological placentae (P-selectin).	130
5.5	Expression of mRNA for CAMs in pathological pregnancy as determined by reverse transcription polymerase chain reaction (RT-PCR).	132
5.6	Expression index for CAMs in pathological placentae.	133
5.7	Immunohistolocalization of VCAM-1 in IUGR placentae	135
6.1	Soluble levels of VCAM-1 and Angiogenin in placental explants subjected to hypoxia.	148
6.2	Angiogenin in trophoblast cultures under hypoxia.	149
6.3	Screen shot of real-time PCR analysis showing a typical run.	152
6.4	Specific amplification of angiogenin.	153
6.5	Angiogenin efficiency curve.	154

6.6	Internal control BMG efficiency curve.	155
6.7	Expression index for angiogenin in hypoxic placentae (A) and trophoblast cells (B) in culture.	157
6.8	Expression index for VCAM-1 in hypoxic placentae (A) and trophoblast cells (B) in culture.	158
7.1	Soluble levels of VCAM-1 and angiogenin in placental explants in the presence of ECM.	177
7.2	Soluble levels of angiogenin in conditioned media of trophoblast cultures in the presence of ECM.	179
7.3	Angiogenin secretion is integrin mediated.	182
7.4	Effect of hypoxia on angiogenin secretion in trophoblast cells in the presence of ECM.	184
7.5	Expression index for angiogenin and VCAM-1 in placentae in the presence or absence of ECM.	186
7.6	Expression index for angiogenin in trophoblast cells in the presence of ECM with or without hypoxia.	187
7.7	Expression index for VCAM-1 in trophoblast cells in the presence of ECM with or without hypoxia.	188
7.8	Hypothetical model of angiogenin expression in trophoblast cells and its role in placental angiogenesis.	194
8.1A	Characterization of NJG choriocarcinoma cell line.	209
8.1B	Characterization of BeWO and NJG choriocarcinoma cell lines.	209
8.2	Immunohistochemical localization of FasL in BeWo (Column A) and NJG (Column B) choriocarcinoma cell lines.	210
8.3	Immunohistochemical localization of Fas in BeWo (Column A) and NJG (Column B) choriocarcinoma cell lines.	210
8.4	Semi quantitative RT-PCR assay of FasL and Fas mRNA in BeWo and NJG choriocarcinoma cell lines.	211
8.5	Immunoblot analysis of FasL protein in BeWo and NJG choriocarcinoma cell lines.	211
8.6	Flow cytometric analysis of Fas receptor expression in BeWo and	212

NJG choriocarcinoma cell lines.

8.7A	Fas-mediated apoptosis in choriocarcinoma cell lines in the absence of cycloheximide.	215
8.7B	Fas-mediated apoptosis in choriocarcinoma cell lines in the presence of cycloheximide.	216
8.7C	Fas-mediated apoptosis in HeLa cell line in the absence of cycloheximide.	217
8.7D	Fas-mediated apoptosis in HeLa cell line in the presence of cycloheximide.	218
8.7E	Fas-mediated apoptosis in Jurkat cell line in the absence of cycloheximide.	219
8.8	Semi quantitative RT-PCR assay for mRNA expression of cFLIP in BeWo and NJG choriocarcinoma cell lines.	221
8.9A	Flow cytometric analysis of FasL-mediated apoptosis of Jurkat cells in co-culture with choriocarcinoma cell lines.	222
8.9B	Flow cytometric analysis of FasL-mediated apoptosis of Jurkat cells in co-culture with HeLa cell lines.	223
8.9C	Flow cytometric analysis of FasL-mediated apoptosis of NJG cells in co-culture with Jurkat cell line.	224
8.9D	Flow cytometric analysis of FasL-mediated apoptosis of Jurkat cells in co-culture with choriocarcinoma cell lines.	225
8.9E	Flow cytometric analysis of FasL-mediated apoptosis of Jurkat cells in co-culture with choriocarcinoma cell lines (neutralization with FasL).	225
8.10	Synergistic effect of TNF- α on mRNA expression of Fas in BeWo and NJG choriocarcinoma cell lines.	227
8.11	Fas-mediated cell death in BeWo and NJG choriocarcinoma cells: Suppression of Akt signalling.	228
8.12	Hypothetical representation of immune-privilege in choriocarcinoma cells.	236
11.1	Schematic representation of blotting stacks during protein electro blotting transfer.	279
11.2	Pro-OX 110 In-vitro hypoxic chamber.	286

Summary

Development of the haemochorial placenta involves the invasion of extravillous trophoblast cells into the uterine wall and subsequent remodelling of the uteroplacental vessels. Although myometrial invasion by cytotrophoblast cells is a crucial step in early placentation, the mechanisms underlying this pivotal process, essential for pregnancy maintenance, are incompletely understood. We hypothesized that fetal cytotrophoblast invasion of the uterus requires the synergistic modulation by both cell adhesion and angiogenesis, two processes which are essential for haemochorial placentation. In this regard, we have demonstrated for the first time presence of a potent angiogenic factor, angiogenin in placenta throughout gestation (Rajashekhar et al., 2002). Our finding of the enhanced expression of this pivotal angiogenic factor at term compared in with first trimester (FT) chorionic villi is in accordance with that of the exponential increase in fetal growth during the third trimester when a dramatic rise in the growth of the placental bed occurs (Ahmed and Perkins, 2000). Further to this observation, investigation of the placenta from patients with intrauterine growth retardation (IUGR) revealed over-expression and secretion of this pivotal angiogenic molecule. The enhanced angiogenin production which could be attributed to the ability to circumvent the poor oxygenation resulting from defective fetoplacental blood flow by autoregulation could serve as positive feed back control to induce angiogenesis (Rajashekhar et al., 2003). To understand the molecular mechanism of this overexpression and its association with hypoxia, term placental explants in culture when subjected to hypoxia showed increased expression of angiogenin thus providing a direct evidence for compensatory rise for this angiogenic factor in conditions associated with deficient oxygen supply. Moreover, the extracellular matrix (ECM) proteins in vitro amplified the production of angiogenin release from trophoblasts in culture as well as its mRNA transcripts, thus providing evidence that the interactions occur among cell adhesion molecules and angiogenic growth factors. In addition, angiogenin production was reduced by compounds that interfere with integrin function, such as anti-integrin antibodies, suggesting an important role of ECM binding in the regulation of angiogenin release. This synergy between cell adhesion molecules and angiogenic growth factors could have a key role in cellular invasion and migration, processes that are essential for angiogenesis and subsequent placental growth.

Pre-eclampsia (PE) and IUGR have been attributed to a failure of trophoblast invasion which leads to underperfusion of the uteroplacental bed. The interaction between maternal leukocytes and decidual cells with the invading trophoblast is thought to be established by cell adhesion molecules. In this context, the vascular cell adhesion molecule-1 (VCAM-1), which is a member of the immunoglobulin gene superfamily has been reported to play a proangiogenic role in inducing chemotaxis of human endothelial cells *in vitro* that is essential for angiogenesis and subsequent placental development. We hypothesized that a failure of normal placentation with dysregulation of VCAM-1, the marker of endothelial activation might explain the aetiology of late onset IUGR (>32 weeks of gestation). In this study therefore, using placental explant cultures and RT-PCR, we determined the expression and secretion profiles of this pivotal cell adhesion molecule during the course of gestation and compared it with pregnancies complicated by IUGR. A decrease in mRNA expression and secretion of VCAM-1 in the term chorionic villi over the FT placenta occurred which was further decreased in IUGR placenta, suggesting that the diminished levels of VCAM-1 might contribute to the pathological state.

In addition to the key regulatory agents discussed above, expression profiles of other growth factors including placental growth factor, epidermal growth factor as well as cell adhesion molecules like intercellular adhesion molecules (ICAM-1, -2, -3), P-selectin and VE-cadherin in normal and pathological pregnancies were studied. The results of this study indicated a higher mRNA expression of ICAM-2 and P-selectin at term than FT samples, and their decrease in PE and IUGR. P/GF showed higher levels at FT than term placenta, the concentrations of which were further decreased in PE and IUGR. In conclusion, the pathological pregnancy could be attributed to a defective expression and secretion of cell adhesion molecules and growth factors.

In a bid to understand the hitherto undescribed molecular mechanism(s) for the survival and proliferation of malignant trophoblasts in the gravid uterus (Gestational Trophoblastic Disease, GTD), we have documented the co-expression of Fas and FasL in choriocarcinoma, and hypothesized a role for these malignant trophoblasts in immune-privilege. Using the wellcharacterized choriocarcinoma cell line, BeWo and the uterine choriocarcinoma cell line, NJG, we provided evidence that the Fas receptors are down regulated and show resistance to Fasmediated apoptosis. This could be attributed to the presence of a short-lived endogenous inhibitor like cFLIP as demonstrated by the RT-PCR method. In addition, co-culture of these choriocarcinoma cells, which express functional FasL, was noted to induce apoptosis in Fassensitive lymphocytic Jurkat cells, suggesting that these tumour cells possess the capacity to evade immune attack thereby imparting immune-privilege. In conclusion, the data suggest that choriocarcinoma cells could evade immune attack by downregulating the Fas receptor and killing the lymphocytes through expression of FasL. Investigations on such molecular mechanisms might provide greater insight into the mechanisms associated with tumour survival and offer possible therapeutic approaches in the treatment of GTD.