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SUMMARY 

Ant Colony Optimization (ACO) was first proposed as Ant System (AS) 

by [Dorigo et al., 1991], revised in [Dorigo et al., 1996], as a strain of swarm 

intelligence algorithm, exploiting the foraging behavior of ants. Ants individually 

are sub-intelligent species, but share information using a chemical called 

pheromone that allows the colony to seek out optimal amount of food. ACO had 

efficiently been utilized to solve many NP-hard problems such as the Quadratic 

Assignment Problem (QAP) [Gambardella et al.2, 1999], Traveling Salesman 

Problem (TSP) [Dorigo et al., 1991; Leguizamon and Michalewicz, 1999; Stutzle 

and Dorigo, 1999], Knapsack Problem (KP) [Fidanova1, 2002; Fidanova2, 2002], 

as well as more complex problems extended from these problems. The nature of 

the algorithm is such that it is extremely suited to solve assignment type problems, 

commonly a feature of combinatorial and assignment optimization problems. 

However, for complex problems with increasing number of constraints, ACO by 

itself tend to be less powerful, due in part to redundant solution construction 

cycles. Hence, most implementation of ACO in the literature either breaks down a 

complex problem into smaller parts, or integrates ACO with another local search 

heuristics, most commonly Tabu Search, to achieve results that perform better 

than the individual component algorithms. This motivates a need for an ACO 

software framework. This forms the primary objective of this thesis. By 

examining the logic and operation of ACO, a C++ software framework is 

proposed that is capable of implementation by itself, or integrating with other 

heuristics software framework via a higher level meta-heuristics framework. In 

particular, the concept of reuse is essential, to exploit the similarities of many 



vii 

problems, particular those extended from simpler problems. It is demonstrated 

how instance implementations for the Vehicle Routing Problem with Time 

Window (VRPTW), using generic Traveling Salesman Problem (TSP) 

implementations, are solved, and further extended to solve the Inventory Routing 

Problem with Time Window (IRPTW) with promising results. Aside from the 

software framework, the secondary objective of the thesis explores various factors 

of the ACO algorithm that are exploitable to achieve efficient results for complex 

problems, such as multi-period scheduling problems like IRPTW or the Multi-

Period Multi-Dimensional Knapsack Problem (MPMKP). This allowed the 

development of an ACO scheme that specializes in handling the third dimension 

of most extended problems – time. Results from solving the various problems 

(VRPTW, IRPTW, and MPMKP) are then presented to prove the case. It is 

demonstrated how the framework allowed reuse which saved development time, 

yet providing excellent results by extending implementations solving VRPTW to 

the IRPTW; and the results for MPMKP showed the effectiveness of the proposed 

ACO scheme that is good at handling time notation problems. 
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CHAPTER 1 

Introduction 

The humanly instinctive solution to any arbitrary search or optimization 

problems would be an exhaustive brute-force approach. The discovery of the notion 

of non-deterministic polynomial (NP) completeness in complexity theory [Garey 

and Johnson, 1979] unveils the property that there are many NP-hard search or 

optimization problems whose solutions are easy to verify in polynomial time, but 

computationally intractable to find. Brute-force approach is not feasible in such 

instances under the existing von-Newman machine model. This motivates the 

development of intelligent exact methods able to achieve good results in efficient 

time. 

However, exact methods, while ensuring optimality, are often not feasible or 

practical when solving NP-hard problems, especially those of large problem size. 

This led to the development of meta-heuristics, which manages approximate 

methods (heuristics), to search for optimal solutions. Such approaches have been 

developed to achieve very good results for solving NP-hard problems in record time, 

making industry application, in particular in the field of logistics, very efficient. 

However, most of the best performing meta-heuristics to date had been algorithms 

of the optimization phase using a two-phase approach (construction phase and local 

improvement phase). This motivates a need for a good construction phase algorithm. 

In this research of meta-heuristics, the community has recently progressed to 

a new age. The observation of nature has yielded many interesting algorithms adept 

at solving problems of many types. Nature has many creatures which have existed 

for a long time, based on their ability to survive. In particular interest are creatures 
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of extremely low intelligence, but yet are able to persist. One such survivor is the 

ant, which date back at least 92 million years 

[http://www.antcolony.org/oldest_ant.htm].  

Ant Colony Optimization (ACO) was first proposed by Marco Dorigo in his 

PhD thesis [Dorigo et al., 1991]. It was originally used to solve hard combinatorial 

optimization problems like the Quadratic Assignment Problem (QAP), and the 

Traveling Salesman Problem (TSP). ACO is also capable of solving dynamic 

problems such as network flow in an environment like the Internet. For instance, 

[Schoonderwoerd et al., 1997] developed an ACO algorithm called ABC for routing 

and load balancing in circuit switched telecommunications networks, and [Di Caro 

and Dorigo, 1998] proposed AntNet, another ACO algorithm applied to routing in 

packet switched telecommunications network. As a developing meta-heuristics, 

ACO swiftly achieved recognition when it was shown to be able to achieve 

excellent results for many other problems like the Vehicle Routing Problem with 

Time Window (VRPTW) and the Multi-Dimensional Knapsack Problem (MKP). 

 ACO is inspired by the foraging behavior of an ant colony. ACO is a 

particular class of meta-heuristics derived from nature, amongst other categories 

that include evolutional algorithms, neural networks, and simulated annealing. In 

particular, ACO is a type of swarm intelligence algorithms that had been gaining 

popularity. For instance, there are algorithms of similar classes that follow the 

behavior of bees (Particular Swarm Optimization) [Parsopoulos and Vrahatis, 2002], 

bird flocks (Squeaky Wheel Optimization) [Joslin and Clements, 1999], and even 

mammals like lab rats [Yufik and Sheridan, 2002]. ACO, however, proves to be 

more welcomed in the community, in part due to the algorithm being naturally 

intuitive, easy to understand and implement, but mainly because of the powerful 

http://www.antcolony.org/oldest_ant.htm
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results that have been obtained, especially in collaboration with other established 

local search algorithms like Tabu Search (TS), Genetic Algorithm (GA), Simulated 

Annealing (SA), etc., for more complex problems. This is especially true of 

combinatorial and assignment type problems like TSP, QAP and the sequential 

ordering problem, where ACO outperform all known algorithms on the majority of 

classes in benchmark problems. It should, however, be noted that there are 

differences in the operations of the algorithm as opposed to the way real ants work. 

Regardless, this rest of this thesis will stick to the terminology to properly address 

the community. 

 Colonies of real ants uses a chemical substance called pheromone as they 

traverse to and from the nest and food sources. They lay a higher concentration of 

pheromone on trails which have a correspondingly better quality food (as defined 

by the ants themselves, like more appropriate food type for ants, or larger quantities, 

etc.). Instinctively, the better quality food sources would have more ants traversing 

the route in between. As such, the pheromone laid on the trail would be of a higher 

concentration then otherwise. This pheromone is also the cause of why troops of 

ants tend to travel in a trail rather than haphazardly, which happens only when an 

ant is exploring for food. For most of the time, an ant would exploit a trail with a 

higher concentration of pheromones, since it is more probable to lead to better food. 

This pheromone will also evaporate into the air as time passes, and the ants will 

need to constantly reinforce the pheromone. As the quality of the food sources 

diminished, lesser ants will travel on the route, and hence lesser pheromone.  

Using the pheromone trail as an inspiration for the communication medium, 

ACO is developed which allowed individual ants – corresponding to a single 

optimization agent – to have simple intelligence (and hence simple to understand 



- 4 - 

and implement), but be able to share information which allowed a synergistic effect 

for the entire colony. By exploiting the power of probability common in many 

successful meta-heuristics, ACO allows individual agents to explore and exploit the 

pheromone trails, using the pheromone trail to construct solutions of good quality. 

The soundness in the logic lies in that the ants will have heavy pheromone 

concentration on the best found solution thus far, and then search around the 

neighborhood of this best found solution, which tend to yield improving results. 

However, this usually leads to local optimal which traps the search process, as in 

many other meta-heuristics. The ACO algorithm then deviates from how biological 

ants work by proposing new modifications beyond the ants metaphor. Techniques 

are introduced in the optimization community, such as the concept of using local 

decay to diversify the search, is not what real ants do, among other proposals. 

Hence, technically, real ants do not operate as “optimally”, and there is a wide 

variant, as well as arguable ground on how close the algorithm works according to 

its original inspiring creature.  

These modifications arises because the initial proposal of ACO, Ant System 

(AS), while yielding encouraging initial results, could not compete with the best 

algorithms in the community for most problems like the TSP. However, the 

simplicity but potential of the idea stimulated research that added many variants 

which had to date been used to solve many benchmark problems with good 

performance.  

The recent interest in the community regarding the developing ACO 

motivates this thesis. For instance, there are many specific conferences dedicated to 

ACO [http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html], as well as many 

publications about ACO in logistics and optimization conferences and journals. 

http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html
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Also, due to the nature of randomized solution construction by each ant in an ACO 

iteration, the algorithm can be seen as a type of traditional construction heuristics in 

a typical two phase heuristics. Furthermore, ACO by itself is also quite capable of 

performing optimization, using the pheromone trails. Such flexibility suggests an 

excellent potential for collaboration with other strains of ACO, or with other local 

search heuristics which complements ACO well, and motivates the development of 

a software framework. 

As such, the primary objective of the thesis is to present a software 

framework that provides the guideline for a developer to easily implement ACO. 

There had been ACO algorithm framework proposals [Dorigo and Di Caro, 1999; 

Blum and Dorigo, 2001], but no popular software framework on ACO. This is in 

part due to the difficulty to create a software framework that is to become popular, 

as apparent from the lack of such framework. As such, this framework should also 

be generic enough that it allows easy integration and collaboration with other meta-

heuristics, as the most powerful results in the literature are usually those of hybrid 

techniques.  

Another key factor in the software framework would be re-use, such that 

implementation for one problem can be easily re-cycled to solve similar or extended 

problems. Reusability will significantly reduce the costs of development and 

research. These will contribute to the success of any meta-heuristics framework. By 

allowing ease of use, easy reusability, and easy collaboration with any other 

arbitrary technique, the thesis hopes to present a framework that will be a base 

standard in ACO development. In particular, this thesis demonstrates a powerful 

collaboration with the existing Tabu Search Framework (TSF++) [Wan, 2002; Lau 

et al.1, 2003]. 
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Furthermore, the simplicity in which ACO works further inspires research 

for this thesis. Each agent (artificial ant) has only primitive intelligence (a basic if-

else decision making most of the time, such as “to go here, or there”), but made use 

of a shared medium to communication, thereby achieving synergistic effect that can 

beat the results achieved by another intellectively superior species. The thesis hopes 

to explore certain properties of ACO that makes it powerful, and present schemes 

that exploit these properties that is adept at solving different classes of problems. 

For instance, ACO had also been very successful in solving problems that had 

extended constraints. There are variations of ACO that had solved the VRPTW with 

top results in the literature [Gambardella et al.1, 1999]. Similarly, we see ACO 

proposals in the literature solving the MKP [Fidanova1, 2002; Fidanova2, 2002; 

Leguizamon and Michalewicz, 1999]. Respectively, VRPTW is derived from VRP, 

which in turn is derived from TSP, with additional constraints, as such time window; 

while MKP is a generalization of the 0-1 Knapsack Problem (KP). In the analogy of 

geometry, these extended problems have constraints that correlate in the dimension 

of space (second dimension). This thesis proposes schemes for ACO that is 

conducive to solving a further generalized form of these generic problems, which 

even more closely corresponds to practical scenarios in the industry – time period. 

This dimension correlates to the dimension of time in geometry. Examples of such 

problems are the Inventory Routing Problem with Time Window (IRPTW), 

extended from the VRPTW; and the Multi-Period Multi-Dimension Knapsack 

Problem (MPMKP), both which are examined in this thesis.  

The rest of this thesis is organized as follows. In Chapter 2, we review 

related works in the literature. Chapter 3 provides further background and 

mathematical formulations for the some problems that are examined in this thesis. 
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Chapter 4 provides a detailed examination into the operations of the ACO meta-

heuristics, and how it has the potential to adapt to a software framework. Chapter 5 

demonstrates how the actual ACO software framework is designed, with relations 

to a generic meta-heuristics development framework comprising of other algorithms 

as well. Chapter 6 focuses on the secondary objective of the thesis and presents 

several ACO schemes that can be exploited to improve results according to the 

problems to be solved. Chapter 7 examines the hybridization of ACO with Tabu 

Search and the solution approach to obtain the results to the benchmarks problems 

presented in Chapter 8, which also provides discussions on the results obtained. 

Chapter 9 concludes the thesis. 
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CHAPTER 2 

Literature Review 

 This chapter examines the works in the literature that leads to and including 

the development of ACO. The first section looks at traditional problem solving 

approaches – exact methods – prior to the introduction of meta-heuristics. The 

second section then delves in detail on heuristics and meta-heuristics. This leads to 

the class of meta-heuristics that follow observations of nature, of which include 

ACO, where related works are presented in the third section. The chapter then 

concludes with a section on current meta-heuristics software framework in the 

community. 

 

2.1 Traditional Approaches 

Exact methods are guaranteed to find optimal solution, and for problems of 

polynomial complexity, optimality can be achieved in polynomial time. Some 

popular fundamental exact methods include divide and conquer [Bentley, 1980; 

Knuth, 1968; Knuth, 1973], branch and bound [Narendra and Fukunaga, 1977; 

Nemhauser and Wolsey, 1988; Zhang, 1993; Crowder and Padberg, 1980], cutting 

plane [Applegate et al., 1995; Bahn et al., 1994; Elhedhi and Goffin, 2001; Padberg 

and Grotschel, 1995; Padberg and Rinaldi, 1987; Padberg and Rinaldi, 1990; 

Fleischmann, 1985], branch and cut [Agarwal et al., 1989; Araque et al., 1994; 

Augerat et al., 1995; Crowder and Padberg, 1980; Grotschel and Holland, 1991; 

Junger and Stormer, 1995; Lin and Kernighan, 1973; Naddef and Rinaldi, 2000; 

Ralphs, 2003; Ralphs et al., 2003], and dynamic programming [Bellman, 1957]. 
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Unfortunately, many important combinatorial optimization problems are 

NP-hard in nature. The theory of computational complexity [Garey and Johnson, 

1979; Papadimitriou, 1994] present a rich collection of such problems. It is well-

known that for NP-hard problems, exact methods take an exponential amount of 

computational resources in the worst case, which renders them impractical for 

large-scale instances. Heuristics method then became the feasible way to solve 

complex problems. A heuristics approach tends to be significantly faster and 

provide good solutions. The downside, however, is that they do not guarantee 

optimality. But for most practical application, especially real-time situations, it is 

usually sufficient to obtain near optimal results in the shortest time possible. 

 

2.2 Heuristics Approaches 

 The feasibility of heuristics approach in solving hard problems is a key 

factor in their widespread popularity in the literature, as they strive to discover near 

optimal, and sometimes optimal, solutions to hard problems in record time. The 

word “heuristics” arises from the Greek verb heuriskein, meaning “find” or 

“discover”. Heuristics in current context means “rules of thumb” or techniques that 

improve the average-case performance of a problem-solving task. 

 Meta-heuristics are a further development from heuristics. It literally means 

“heuristics for managing heuristics”, and controls the collaboration of one or more 

heuristics, searching for a better solution than any single heuristics. Meta-heuristics 

focus on what makes a good solution, rather than how to find a good solution. By 

induction, meta-heuristics algorithms are well-suited to solving hard problems too 

complex or time-consuming to solve using traditional approaches, since it is easier 

to define what makes a good solution then how to find one, especially for NP-hard 
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problems. This is especially useful in the earlier part of the solution search to reduce 

the scope of the problem to feasible size (sometimes even small enough to be solve 

using exact methods). 

 

2.2.1 Two-phase approach 

 Classically, most meta-heuristics are either construction algorithms, 

optimization algorithms, or a mix of both (two phase approach), (e.g. [Bentley, 

1980; Gehring and Homberger, 2001; Schulze and Fahle, 1999]). The two types of 

approaches are considerably different. Construction algorithms work on empty or 

partial solution and try to extend them in the best possible way to complete problem 

solutions, while optimization algorithms work on an already completed solution and 

look around the solution space trying to upgrade the quality of the current solution. 

Thus far, better results are achieved with optimization algorithms, mostly in 

conjunction with problem-specific construction algorithms like Tabu Search, 

Simulated Annealing, Genetic Algorithm, etc. However, these algorithms require an 

initial solution, usually provided by construction algorithms like variations of 

Greedy Algorithm adapted to the problem being solved. 

 

2.2.2 Meta-heuristics 

A meta-heuristics is as flexible as the ingenuity of the included heuristics, 

but there are several more popular characteristics of meta-heuristics such as hill-

climbing techniques, iterative improvement heuristics, and knowledge-based search 

methods. These form the basis of many more advanced techniques, including 

guided search like Simulated Annealing (SA) which is inspired from the way metal 

cools; procedures of temporary elimination of backtracking like Tabu Search (TS), 
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and algorithms based on principles of nature and biological evolution, which 

included ACO focused in this thesis, amongst many other methods. These are 

examined in the next subsection.  

By definition, a meta-heuristics can include hybrids of one or more of any 

arbitrary heuristics, meta-heuristics and exact methods. It is observed that many of 

the best solvers for classic hard problems tend to be hybrid methods, such as the 

approaches proposed in [Bent and Hentenryck, 2001; Lau et al.2, 2003; 

Gambardella et al.1, 1999; Gambardella et al.2, 1999]. This arises from the concept 

that each algorithm has their forte and weakness, and it is easy to exploit each 

algorithm separately to achieve optimal effect. The remainder of this section 

provides background on some of the various individual approaches. 

 

Hill-climbing (a.k.a Greedy Algorithm) 

 Hill-climbing techniques in general search for better solutions when given 

an initial solution as a starting point, and are a key ingredient in many other meta-

heuristics. However, it has the downside of being easily trapped in local optimal. 

For instance, consider Figure 2.1.  
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Point A, B and D are local optimal, and point C is the global optimal. 

Suppose the search start at point X. In most hill-climbing heuristics (in fact, in most 

other heuristics), depending on the function of the graph, the search will end at 

point A, since the search will have no better knowledge of the existence of B, C or 

D. On reaching point A, the function will see only decreasing values no matter 

which way it goes, and hence concluded erroneously it has find optimality. 

Examples of hill-climbing approaches included [Distante and Piuri, 1989; Tomov, 

1994]. 

 

Iterative Improvement 

Iterative improvement heuristics, like hill-climbing, is also another 

fundamental technique applied by many other heuristics. Techniques such as 

bottleneck reduction [Chakradhar and Raghunathan, 1997] improve solutions 

through repeated application of iterations. Iterations allow control over how long to 

repeatedly execute an algorithm. For instance, most of the best meta-heuristics to 

date, like Tabu Search and ACO, uses repeated (similar) iterations to continuity 

attempt to improve the solution. With the inclusion of a variable factor, like the 

pheromone trail in ACO, iterations simplify code and implementation, while 

allowing powerful performance. [Dorn et al., 1994] provides a comparison of 

several iterative improvement techniques for scheduling optimization. 

 

Knowledge-based search 

Knowledge-based search method is also another popular and fundamental 

building block in meta-heuristics, such as the approach in [Jin and Reynolds, 2000] 

used to guide evolutionary search. This characteristics focus on one or more 
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attributes of candidate solution which is defined to be more important than others, 

and search future solution based on this interest. For instance, in the more popular 

version of the classic VRPTW, it is more important to focus on reducing the 

number of vehicles rather than total distance traveled. 

 

2.2.3 Guided search 

This subsection examines three popular guided search techniques employed 

in the literature. In particular, simulated annealing (SA) is first examined; followed 

by Tabu Search, a local search with memory; and finally algorithms that arises as a 

result of biological evolution (Genetic Algorithm) and observations of nature, of 

which ACO has relations to. 

 

Simulated Annealing 

Simulated annealing (SA) guides the search for good solution by allowing 

solutions of lower quality to be temporarily qualified. SA is inspired from the way 

metal cools and freezes into a minimum energy element (annealing process). SA is 

based on the work of [Metropolis et al. 1958], who originally proposed presented 

SA as a method of finding the equilibrium configuration of a collection of atoms at 

a given temperature. [Pincus, 1970] discovered the connection between the 

algorithm of Metropolis and the mathematical minimization, which led [Kirkpatrick 

et al., 1983] to proposed SA as the basis of an optimization technique for 

combinatorial problems. A feature that sets SA aside from the previously mentioned 

techniques in this section is its ability to avoid being trapped in local optimal. As 

mentioned, SA can accept lower quality solution temporarily, and if referencing Fig 

3.1 again, supposed the solution has reached point A, SA may allow the search to 
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continue down the graph towards point B. If the search passes the minimum point 

between point A and B, the normal hill-climbing approach would bring it to the 

higher point  B. The key issue here is to know how much lower quality (“cooling 

schedule”) the search can accept. 

 

Tabu Search 

Tabu Search is another powerful meta-heuristics, proposed by Glover 

[Glover and Laguna, 1997], with many hybrids and techniques. There are several 

TS implementation with excellent results in solving classic problems, such as those 

seen in [Rochat and Taillard, 1995; Taillard et al., 1997]. The overall concept of TS 

differs from SA and GA (Genetic Algorithm, next sub-section), which can be 

classified as “memory-less”, in that it relies on memory to avoid entrapment in 

cycles, by forbidding or penalizing (tabu-ing) moves that takes the solution in the 

next iteration to points in the solution space previously visited. It will be seen later 

that the local decay feature of ACO follows this concept to a less zealous extend. 

Besides the adaptive memory, TS also advocate responsive exploration, which adds 

certain degree of intelligence by giving the search the ability to response to 

differing events. TS employ search strategies which attempt to exploit the key 

mechanism of adaptive memory and responsive exploration. [Aboudi and Jornsten, 

1994; Dammeyer and Voss, 1993] provides more works related to Tabu Search. 

 

Biological Evolution (Darwinian Theory) 

Another recent trend in the logistics and optimization research dwells on 

algorithms based on principles of nature or biological evolution. Darwinian Theory 

[Darwin, 1979] of “the survival of the fittest” and natural selection had inspired 
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techniques such as Genetic Algorithm (GA), in the aim that the survivor in nature 

must follow some optimal or near optimal way (or at least better than the non-

survivors) to sustain existence. Approaches following the concept of biological 

evolution, like GA, are powerful problem-solving methods in which a population of 

candidate solutions “evolves” to get better and better, much like a creature adapting 

to environment. As [Mangano, 1995] summarized, “Genetic Algorithm are good at 

taking large, potentially huge search spaces and navigate them, looking for optimal 

combinations of things, solutions you might not otherwise find in a lifetime”. 

 

Observations of Nature 

 On the other end of this class of algorithms are those following 

observations of nature, in particular swarm creatures like ants [Dorigo and Di Caro, 

1999], bees [Parsopoulos and Vrahatis, 2002], termites [Bonabeau et al., 1997], and 

mammals like birds flocks [Joslin and Clements, 1999], and rats [Yufik and 

Sheridan, 2002]. Of particular interest and performance are the many sub-classes of 

swarm intelligence (SI) [Bonabeau, 1999; Bonabeau and Theraulaz, 2000; 

Hoffmeyer, 1994; Ward, 1998]. SI is a system whereby the collective behaviors of 

low intelligence agents interacting locally with their environment cause coherent 

functional global patterns to become apparent. This allows collective or distributed 

problem solving without centralized control. The particular subclass of swarm 

intelligence dealt with in this thesis is the behavior of ants. 

 

2.3 Ant Colony Optimization 

 Social insects such as ants, bees, termites and wasps exhibit a collective 

problem solving ability [Deneubourg and Goss, 1989; Bonabeau et al., 1997], with 
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particular interest found in the activity of several ant species which are capable of 

selecting the shortest pathway between their nest and food sources [Berkers et al, 

1990]. [Dorigo et al., 1991] introduced the Ant System based on this idea to solve 

TSP. It was further applied to many other problems like the Job Shop Scheduling 

Problem [Colorni et al., 1993], Graph Coloring Problem [Costa and Hertz, 1997], 

Quadratic Assignment Problem [Maniezzo et al., 1994], and also to dynamic 

problems like network flow across a changing environment like the Internet 

[Schoonderwoerd et al., 1997]. 

 Ants lay a chemical (called pheromone) trail as they travel, which attracts 

other ants to follow the same path. The amount of pheromone laid depends on the 

distance of the trail. Intuitively, there will be a higher concentration of pheromone 

on shorter/easier trail. With time, the pheromone trail will also evaporate into the air, 

which allows food sources which had diminished or expired to gradually be ignored. 

[Dorigo et al., 1991; Dorigo et al., 1996; Dorigo et al., 1999] formulated and 

developed the ACO taking advantage of the concept of pheromone trail. While able 

to find solutions fast, the pheromone evaporation also avoided early convergence to 

low quality solutions, yielding excellent results for many classical NP-hard 

combinatorial optimization problems.  

ACO is an adaptive algorithm, and its most powerful implementation so far 

had been in collaboration with other techniques, in part due to its capability to be a 

construction algorithm, but in part also due to certain pitfalls in the algorithm which 

tend to cause solution cycling with increasing iterations. For instance, many of the 

more powerful ACO proposals included a “local search” component, suggesting a 

hybrid approach. In particular, these “hybrids” had been used to solve hard complex 

problems with excellent results such as that of [Gambardella et al.1, 1999] for 
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VRPTW and [Lau et al.2, 2003] for IRPTW, while GA had been proposed by 

[Goldberg, 1989] to evolve the usually hand-tuned ACO parameters to fine-tune 

them for different problem types and instances. 

To date, the results achieved by ACO had proven it to be more than just 

another algorithm. Research Institutes like IRIDIA 

[http://iridia.ulb.ac.be/~mdorigo/ACO/about.html] currently focus much of their 

research on ACO and its derivation, and there are many conferences dedicated to 

ACO only [http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html], as well as 

special proceedings and tracks from other acclaimed logistic and optimization 

conferences. 

 

2.4 Software Framework 

Currently, the community sees a lack of popular and effective meta-

heuristics software framework. A few more recognized or ongoing works included 

OpenTS Framework for Tabu Search, EASYLOCAL++, HOTFRAME, Localizer, 

TSF++, among others. 

OpenTS was the result of an initiative by the Common Optimization 

Interface for Operations Research (COIN-OR) group in IBM. OpenTS is a Java-

based application following an Object-Oriented (OO) style inherent in the Java 

language proposed by [Harder, 2001]. However, OpenTS is limited strictly to Tabu 

Search, and it is complex to integrate other techniques into the engine.  

EASYLOCAL++ is another OO framework proposed by [Gaspero and 

Schaerf, 2000], but in C++, for the development and analysis of local search 

algorithms. It is more generic than OpenTS in that it integrates many local search 

techniques like TS, SA, and local search. ACO, however, is not part of 

http://iridia.ulb.ac.be/~mdorigo/ACO/about.html
http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html
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EASYLOCAL++. EASYLOCAL++ and OpenTS, however, both do not provide 

some form of centralized control mechanism nor library to support development of 

advanced search strategies. 

To acknowledge this problem, [Fink et al., 1998] proposed the Heuristics 

OpTimzation FRAMEwork (HOTFRAME) to provide a set of ready-to-use 

software components for heuristics search, in addition to a reliable architecture for 

placing the components. HOTFRAME is an ongoing project and to-date had 

variants of Tabu Search and Simulated Annealing. However, HOTFRAME is 

somewhat complex and documentation is not readily available currently. 

Less relevant to the framework context, but related nonetheless, [Michel and 

Van Hentenryck, 1999] proposed an attempt to support the implementation of local 

search via the use of a modeling language Localizer close to the informal 

descriptions in scientific papers. While providing ease of configuration, a user must 

provide Localizer the formulation, albeit of any local search, to construct an 

algorithm. This differs from the work afore-mentioned which provides a 

constructed framework, whereby the usage is simpler since the user only had to 

implement specific (and algorithm specific) interfaces/classes. 

Another framework that provides centralized control is TSF++ [Wan, 2002]. 

By allowing flexible components and an architectural base, as well as an easily 

extensible library of components, TSF++ proved effective for most situations. 

However, like OpenTS, TSF++ comprises only of Tabu Search and currently is 

under development to become a sub-component of a higher level framework, of 

which the ACO framework proposed in this thesis is another sub-component.  

Furthermore, while there had been ACO algorithmic framework [Dorigo 

and Di Caro, 1999; Blum and Dorigo, 2001], the community appears to lack a 
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popular ACO software framework, in part due to the variation of ACO that can be 

implemented. As a developing algorithm, an ACO framework needs to be flexible 

to allow different schemes, both present and still un-thought of, that exploits 

properties of the algorithm, without limiting it. 
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CHAPTER 3 

Problem Definition 

 This chapter presents the formulation and mathematical interpretation for 

the classical problems examined with regards to this thesis. In particular, the 

Traveling Salesman Problem (TSP), the Vehicle Routing Problem (with Time 

Window) (VRPTW), the Inventory Routing Problem (with Time Window) 

(IRPTW), the Multi-Dimensional Knapsack Problem (MKP), and the Multi-Period 

Multi-Dimensional Knapsack Problem (MPMKP) are considered.  

 The choice of TSP, VRPTW, and IRPTW is a generalization of many real-

world optimization problems, which tend to have multiple objectives and 

constraints. For instance, the IRPTW considers inventory costs across multiple 

period of VRPTW, which in turn is the VRP extended with time window, which in 

turn is extended with optimal fleet (vehicles) size objective from the classic and 

NP-hard TSP. Similarly, the MPMKP is MKP fixated with multiple periods, and the 

MKP is an extended case of the 0-1 Knapsack Problem. The extensions of NP-hard 

problems with more constraints and objectives provide increasing approximate 

analogy to practical application, increasing the value of solving these problems 

optimally. As such, these problems are chosen to demonstrate the power of re-use in 

the framework in solving similar or extended instances of a problem. By logic of 

induction, the ACO framework would be applicable for re-use in other problems as 

long as a solution can be formulated for the base problem. 

 Furthermore, the thesis looked at the more complex IRPTW and MPMKP, 

both of which are multiple time-period problems. As computing power and 

algorithmic strength improve, the community had gradually shifted to increasingly 
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complex problem instances, and one current trend is a focus on the “third-

dimension” extensions of multiple time-periods with constraints binding between 

time periods. By providing an ACO solution to both problems, this thesis also 

presents a scheme of ants conducive to solving problems with time-period 

constraints. 

 

3.1 Traveling Salesman Problem (TSP) 

The Traveling Salesman Problem is a classic NP-hard problem, and the 

mathematical basis related to TSP was treated as earlier as the 1800s by the Irish 

mathematician Sir William Rowan Hamilton and the British mathematician Thomas 

Penyngton Kirkman. [Held and Karp, 1969] provides a look at the TSP and the 

related Capacited Minimum Spanning Tree, while [Biggs et al., 1976] provides 

discussion on the works on the afore-mentioned mathematicians. The development 

of the general form of TSP, as well as other classic combinatorial optimization 

problems, is studied by [Schrijver]. While the problem was well-known, there 

appears a lack of reference in the literature to earlier work, and it was not until 1954 

that the most popular TSP definition came from [Dantzig et al., 1954].  

TSP definitions for general and variant forms of the problems are easily 

available. In the context of this thesis, TSP is defined as follows: 

 

 

 

 

Let 

G = (V,A) be a graph, 
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where  V{ v1, v2, ... , vn } be a set of cities (vertex set), and 

A = { (vi,vj) : vi,vj ∈ V, i ≠ j } be the edge set, 

C(r,s) = C(s,r) be a cost measure associated with edge (r,s) w.r.t. A. 

 

A tour is defined as a Hamiltonian circuit passing exactly once through each 

point in V. The TSP objective is to find a tour of minimum costs/distance. 

For the interested reader, full historical mathematical formulations of TSP 

can be found at [http://rodin.wustl.edu/~kevin/dissert/node11.html], and [Finke et 

al., 1984; Lawler et al., 1985; Naddef and Rinaldi, 1991; Naddef and Rinaldi, 1993] 

provides more readings on the problem. 

 

3.2 Vehicle Routing Problem (with Time Window) (VRPTW) 

The Vehicle Routing Problem [Toth and Vigo, 2002] is a generic class of 

complex combinatorial optimization problems extended from the TSP and the Bin 

Packing Problem (BPP), and was first formulated by [Dantzig and Ramser, 1959]. 

The VRP is a generalization of the TSP, with additional m constraints, the m-TSP, 

inductively making VRP NP-hard. Inversely, the TSP is the VRP with one un-

capacitated vehicle (which is the elementary version of VRP, the Capacitated 

Vehicle Routing Problem – CVRPT), no depot, and customers with no demand. 

Such observation inspired some approach to solving VRP using a divide and 

conquer method to break VRP into several Multiple TSP (MTSP, a TSP with m 

identical duplicated origin and m salesman) (e.g., [Bullnheimer et al., 1997]). VRP 

and its variations had been well examined and solved using various techniques from 

exact methods (e.g., [Baldacci et al., 1999; Balinski and Quandt, 1964; Christofides 

and Eilon, 1969; Christofides et al., 1981; Cook and Rich, 1999; Cullen et al., 1981; 

http://rodin.wustl.edu/~kevin/dissert/node11.html
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Fisher, 1988; Fisher and Jaikumar, 1981; Foster and Ryan, 1976; ]), to heuristics 

and meta-heuristics (e.g., [Braysy, 2001; Chiang and Russell, 1997; Cordeau et al., 

2000; Gillet and Miller, 1974; Rousseau et al., 1999]). 

A popular and important variant to the VRP, the Vehicle Routing Problem 

with Time Windows (VRPTW), introduce additional constraints to the original 

definition, specifying that each costumer must be served within a specific time 

window. Other variants of the problem are multi-depot, fixed routes, fixed areas, etc. 

Such variants are formulated as they better approximate practical scenarios. 

This thesis in particular looks at VRPTW, which is defined as follows: 

Let  

G = (V, A) be a graph, 

 where  V = {v0, v1, … , vn} is the vertex set, and 

A = {(vi, vj) | vi, vj ∈ V, i ≠ j} is the edge set. 

 

This definition is similar to the TSP definition. The difference is in the 

additional constraints. The depot vertex v0, has m identical vehicles, each with a 

maximum load capacity Q and a maximum route duration D. The remaining vertex 

vi є V represent customers to be serviced, each with a non-negative demand qi, a 

service time si, and a service time window comprised of a ready time ri and a due 

time li. A waiting time wi is incurred if customer i is serviced before its ready time. 

Each edge (vi, vj) has an associated non-negative costij, interpreted as the travel time 

tij between location i and j. A complete tour is defined by the order in which the n 

customers are serviced by m vehicles, and the objective of VRPTW is to determine 

a complete tours starting and ending at the depot, such that each customer is visited 

exactly once within its time window, the total demand of any vehicle route does not 
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exceed Q, the duration of any vehicle route does not exceed D and the total cost of 

all routes is minimized. 

Due to the number of constraints in the problem, there are many definitions 

on the problem optimality. A widely debated factor is whether to consider distance 

or number of vehicles as the primal optimality factor, with more researchers 

focusing on the latter as the primary factor with the former as the secondary factor, 

due in part to the challenge among the community in solving [Solomon, 1987] 

benchmark test cases. [Larsen, 1999; Mester, 2002; Mester and Braysy, 2002] 

provides further references on the VRPTW. 

 

3.3 Inventory Routing Problem with Time Window (IRPTW) 

The Inventory Routing Problem with Time Window (IRPTW) follows as a 

natural extension from the VRPTW, with the additional constraint over multiple 

time-periods, which better reflect practical scenarios of a known future period 

planning. Despite the complexity, literature survey showed that IRPTW can be 

solved optimally if major restrictions are imposed. [Carter et al., 1996] proposed a 

Lagrangean heuristic to solve a single-supplier, single-warehouse instance of the 

problem, but it is sensitive to the values of several parameters where there are no 

good heuristics for setting them, and is unable to guarantee feasibility. [Chan et al., 

1998] modeled a single-item, constant demand distribution system and presented 

worst case as well as probabilistic bounds. However, it is doubtful that any of the 

asymptotically optimal heuristic proposed will perform well for realistic problems 

with time-varying demand due to the unrealistic assumption on demand. [Campbell 

et al., 1998] proposed a computationally intensive integer programming approach to 

a similar problem. [Lau et al., 2000; Lau et al., 2002] proposed a divide and 
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conquer approach of decomposing IRPTW into two sub-problems, then defined an 

interface to allow the two corresponding algorithms to collaborate in a master-slave 

fashion and provided a proof of convergence. This approach is unable to guarantee 

feasibility, when the output of the first module is infeasible for the second; and the 

quality of solution is necessarily low, since there is no provision for an iterative 

improvement heuristics. This approach is improved upon by [Lau et al.2, 2003] 

which is derived as a product of this thesis, and is the implementation used to obtain 

the results presented in Chapter 7 for this problem. 

IRPTW is defined as follows: 

Given 

 S: set of suppliers 

 R: set of retailers 

 J: set of items 

 T: consecutive days in the planning period {1,2,…,n} 

 Dijt: demand of retailer I for item j on day t 

 Qv: vehicle capacity 

 Qw: warehouse storage capacity 

 Qi: storage capacity of retailer i 

 Wi: time window of retailer i 

 Cj: inventory holding cost per unit item j per day at the warehouse 

 Cij: inventory holding cost per unit item j per day at retailer i 

 Bij: backlog cost per unit item j per day at retailer i 

Tik: transportation cost incurred by visiting retailer i followed by k on 

the same route 

and 
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 G = (V,A,T) is a multi-period graph 

where  V = (v1,v2,…,vi,…,vm) is the vertex set, and 

A = {(vi, vj) | vi, vj ∈ V, i ≠ j} is the edge set, and 

T : as defined above 

 

Output the following: 

[1] The distribution plan denoted by 

xsjt: integral flow of amount of item j from supplier s to 

warehouse on day t, and 

xijt: integral flow amount of item j from the warehouse to retailer 

i on day t 

[2] The set of daily transportation routes Φ, which carry the flow amounts in 

(1) from the warehouse to the retailers such that the sum of the following 

linear costs is minimized: 

(a) inventory cost at the warehouse (Cj) 

(b) inventory cost at the retailer (Cij) 

(c) backlog cost (Bij) 

(d) transportation cost from the warehouse to the retailers (Tik) 

 

Work arising from this thesis improves upon the work of [Lau et al.1, 2002], 

by decomposing IRPTW into VRPTW and the Dynamic Lot-sizing Problem (DLP), 

and in conjunction with the Tabu Search Framework (TSF++) [Wan, 2002; Lau et 

al.1, 2003], presented a powerful algorithm for the IRPTW [Lau et al.2, 2003]. 
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3.4 Multi-Dimensional Knapsack Problem (MKP) 

The Multi-Dimensional Knapsack Problem is an extension of another classic 

NP-hard problem, the 0-1 Knapsack Problem (KP). Every resource has a cost and 

value, so it becomes a decision to seek the maximum value for a given cost. The 

typical formulation in practice is the 0-1 Knapsack problem, where each item must 

be selected entirely or not at all (hence 0 or 1). This property makes the knapsack 

problem hard, as a simple greedy algorithm can find the optimal selection if objects 

can be subdivided arbitrarily. This NP-hard property has inspired use of problem as 

the underlying basis of cryptography systems. However, the simple knapsack 

system was broken using polynomial time algorithms by [Shamir, 1982], the 

Graham-Shamir system by [Adleman, 1983], and the iterated knapsack by [Brickell, 

1984] who exploited the singular use of modular multiplication as the only method 

being used to hide the knapsack. These do not suggest that NP-hard problems are 

solvable, but that the knapsack problem holds some property allowing a backdoor 

approach to solving the problem. The polynomial time solution relies on the 

existence of a particular class of knapsack problems which can be solved trivially, 

and extrapolated to a harder problem. MKP, however, is not extensible from these 

classes of problems. 

 

 

 

 

MKP is defined as follows: 

Given 
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   xj ∈ {0,1}  j = 1,2,…,n 

 Assuming pj > 0   for all j ∈ J 

   ∑ =
≤≤

n

j ijiij rcr
1

 for all i ∈ I and j ∈ J 

 

For the 0-1 Knapsack Problem, m=1. If m is greater than 1, than the problem 

becomes the m-dimensional knapsack problem. This result to this problem is not 

presented in this thesis, but it exists to provide the fundamental basis for the next 

problem, the MPMKP. 

[Shih, 1979] presented a branch and bound algorithm for the MKP. Another 

branch and bound algorithm was developed by [Gavish and Pirkul, 1985] where 

various relaxations of the problem were used, their algorithm was compared with 

the exact algorithm of [Shih, 1979] and was found to be faster by at least one order 

of magnitude. Other previous exact algorithms, with only limited success reported, 

include the dynamic programming based methods. 

[Loulou and Michaelides, 1979] presented a greedy-like method based on 

[Toyoda, 1975] primal heuristic. [Balas and Martin, 1980] used linear programming 

by relaxing the integrality constraints and heuristically setting the fractional 

solution to become integral while maintaining feasibility. [Pirkul, 1987] presented a 

heuristic algorithm which makes use of surrogate duality. Freville and Plateau 

(1994) presented an efficient preprocessing algorithm for the MKP.  [Freville and 

Plateau, 1997] presented a heuristic for the special case, the bidimensional knapsack 
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problem, their heuristic incorporated a number of components including problem 

reduction, a bound based surrogate relaxation and partial enumeration. 

 

3.5 Multi-Period Multi-Dimensional Knapsack Problem (MPMKP) 

The motivation for the MPMKP arises from a business practice known as 

the available-to-promise capacity, which basically is a supplier’s ability to 

“promise” to match real-time customer requests with available items for all items 

over a certain planning horizon of multiple periods. This available-to-promise 

problem is modeled as a specifically becoming the MPMKP. Like IRPTW, 

MPMKP impose a late penalty cost (equivalent to the holding cost of IRPTW) if 

request cannot be satisfied in a certain period, or corresponding a decreasing profit 

with each period that the request is unfulfilled. 

In a practical available-to-promise application, it is often more useful for 

vendors to be able to make quick decisions for the availability to promise to their 

customers than find optimal solutions over a long time. Global optimality usually 

takes too long, given the NP-hard nature of the problem. The objective of this 

problem then is to find heuristic approaches to get a near-optimal solution fast, to 

allow vendor to make quick decisions in offering availability-to-promise capability. 

There is currently limited work on MPMKP, but the multiple time periods in 

this period inspires the study of this problem with respect to other similar multiple 

time-period problems like the IRPTW, which increases the number of constraints 

with respect to multiple time-periods. 

MPMKP is defined as follow: 

Given 

 T: number of periods in the planning horizon 
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 N: total number of requests over the planning horizon 

 M: total number of items 

 tj: prescribed period where request j  is due to be fulfilled 

 aij: order size for item i in request j 

 bi t: incoming quantity of item I at the beginning of period t 

 pjt: net profit if request j is fulfilled in period t 

for 1 ≤ j ≤ N, 1 ≤ i ≤ M and 1 ≤ t ≤ T 

Assume 

All requests from customer and quantity of restock are known at the 

beginning of each period. 

Then 

 Maximize ∑∑
= =

=
N

j

T

t
jtjt xpZ

1 1
 

 Subject to 1,
1

−
=

+=+∑ tiit

N

j
itjtij sbsxa  

i
N

j jij cxr ≤∑ =1
   

   xj ∈ {0,1}  j = 1,2,…,n 

 Assuming pj > 0   for all j ∈ J 

   ∑ =
≤≤

n

j ijiij rcr
1

 for all i ∈ I and j ∈ J 

 

In the context of this thesis, the profit function pjt of any request j is a 

concave function with respect to t and partial delivery is not allowed (which is 

extended from the requirement in the 0-1 Knapsack Problem causing the problem to 

be hard). Furthermore, it can be seen that when T=1, the MPMKP is reduced to the 
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MKP. Similarly, if T=1 and M=1, the MPMKP is further reduced to the 0-1 

Knapsack Problem. 
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CHAPTER 4 

Ant Colony Optimization 

This chapter introduces the Ant Colony Optimization meta-heuristics and its 

algorithmic structure. The observations from this chapter will demonstrate the 

potential to adapt into a generic software framework presented in the next chapter. 

 

4.1 The Ants Metaphor 

As already mentioned, ACO is based on the behavior of real ant colonies. 

Real ants are creatures lacking in the normal visual and audio sense utilized by 

other species. Despite that, ants are able to find the shortest path from a food source 

to their nest. Their primary sense is via their feelers, in particular to sense for the 

presence or absence of a chemical call pheromone which they can give out as they 

travel, much like the naturally secreted hormones of certain mammals. Ants follow, 

based on probability, pheromone that were previously deposited by other ants. 

Figure 4.1, extracted from [Dorigo et al., 1996], provides the classic demonstration 

of such a phenomenon. 
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Figure 4.1: Real ants finding shortest path 

 In Figure 4.1(A), ants arrive at a decision point in which they have to decide 

whether to take the upper or lower path. Ants that originate from the left are labeled 

LX, and ants that came from the right labeled RX. At this stage, the choice is totally 

random, which statistically which imply that half of the ants will take the upper path, 

and the other half taking the lower path, as in Figure 4.1(B). However, since the 

lower path is shorter than the upper path, it can be expected that an ant will 

complete the path faster, hence implying that the pheromone trail on the path will 

be laid faster, as seen in Figure 4.1(C), where the dashed lines are roughly 

proportional to the amount of pheromone laid on the trail. As time passes, the 

difference in the pheromone level on the two paths will become significant enough 

to influence the random choice as ants come to the decision point. Ants will be 

attracted to the higher concentration of pheromone on the lower trail, as seen in 

Figure 4.1(D), which in turn causes a positive feedback effect. As more time passes, 

all ants will be using the shorter path. Real ants stimulate a fast and complete 

convergence to a solution. However, pheromone evaporates into the surrounding 
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gradually. Hence, suppose that an even shorter path should suddenly appear. The 

evaporation of the trail will ensure that the ants on the existing path are not 

prevented from shifting to the new (better) path, though sometimes the 

concentration may be so high that this does not occur (akin to being trapped in local 

optimal). However, it is noted that that the reason why ants find the shortest path in 

Figure 4.1 is (1) the concurrent activity of many ants and (2) two-way traffic in the 

network (or one way traffic with return trip). 

 

4.2 Algorithmic Structure 

 Following the observation of real ants in the previous section, this section 

presents the specific algorithmic structure relevant to the ACO meta-heuristics. 

Figure 4.2 reflects an improved ACO algorithmic framework modified from 

[Dorigo and Di Caro, 1999]. 

Procedure: ACO_meta_heuristics() 
 While (termination-criterion-not-satisfied) 
  Schedule_activities 
   Ants_generation_and_activity() 
   Global_Pheromone_Update 
   Pheromone_Evaporation 
   Daemon_actions() 
  end Schedule_activities 
 end While 
end Procedure 
 
Procedure: Ants_generation_and_activity() 

Schedule_creation_of_new_ant() 
 While (available_resources) 
  New_active_ant() 
 end While 
end Procedure 
 
Procedure: New_active_ant() 
 Initialize_ant(); 
 M = obtain_ant_shared_memory() 
 While (current_state != target_state) 
  A = read_local_ant_routing_table 
  P = compute_transitional_probablities(A,M) 
  Next_state = apply_ant_decision_policy(P) 
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  Move_to_next_state(next_state) 
  Next_state = perform_local_search_improvement 
  If (online_step-by-step_pheromone_update) 
   Local_pheromone_Update 
  end If 
 end While 
 If (online_delayed_pheromone_update) 
  Foreach visited_arc do 
   Local_Pheromone_Update 
  end Foreach 
 end If 
end Procedure 

Figure 4.2: ACO algorithmic framework 

Figure 4.2 depicted the ACO algorithmic framework. The main procedure 

ACO_meta_heuristics performs the iterative improvement steps bounded by the 

termination_criteria. Usually, this is in the form of a fix amount of real/cpu time or 

number of iterations. This main procedure spawns a single iteration of ants activity, 

specified by procedure Ants_generation_and_activity(), which simply organized the 

activities of individual ants in the iteration. Each ant activity is defined by 

procedure New_active_ant(). Each ant then decides on the path to take. 

The algorithmic framework in Figure 4.2 is the definitive ACO framework 

in the literature. Despite this work, there is no software framework, due in part to 

the flexibility of the ACO algorithm in adapting to different situations. Each 

guideline in the algorithmic framework hence can be implemented in many 

different ways. 

  

4.3 Standard Features of ACO 

This section examines the standard features of ACO common to an 

arbitrarily generic ACO implementation. These features form the fundamental rules 

and propositions by which the ACO software framework will be built upon. 
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4.3.1 Transitional Probabilities 

To decide on which path to take, each ant considers two main factors.  First, 

the ant considers the natural judgment on whether to take the trail, specified by the 

local heuristics. The second factor to consider is the current concentration of 

pheromone on the specific trail in consideration. Each of these factors are assigned 

a weight, respectively α and β for the local heuristics and pheromone trail. In 

particular, the probability of moving from node r to node s is given generally by 








∈

= ∑
∈

otherwise

rJsif
srsr

srsr
srp

k

rJu
k

k

0

)(
)],(.[)],([

)],(.[)],([

),(
)(

βα

βα

ητ
ητ

  ………. (1) 

where  τ(r,s) = pheromone for moving from node r to node s 

η(r,s) = local heuristics for moving from node r to node s 

i.e., ants decide a path out of m path using two main factors – local heuristics and 

pheromone trail. 

 

4.3.2 Local heuristics composition 

There are instances of problems, especially those of increased complexity 

that a single local heuristics does not suffice. For instance, there had been 

implementations of VRPTW with multiple combined local heuristics [Bullnheimer 

et al., 1997]. In such instances, τ(r,s) from equation (1) can be formulated as 
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j

jsrsr
1

)],([),( αττ      ………. (2)  

where  αj ≥ 0 and symbolize the weights of the local heuristics 

i.e., local heuristics can be a composite of many separate heuristics. 
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4.3.3 Default Pheromone Value 

The pheromone trail τ  should be initialized to be fixed value across of the 

trails prior to being used, and the value it is initialized to, τ0, is usually given by a 

generic “baseline” solution to the problem. This solution can be evaluated using any 

construction algorithm like Greedy Algorithm, or even ACO itself (using a generic 

pheromone trail initialized to any arbitrary value). τ0 is a function of this initial 

solution. 

i.e., there should be a default baseline pheromone value, τ0. 

 

4.3.4 Exploration and Exploitation 

The probabilities derived from equation (1) and (2) can be utilized in any 

ways that meets the need of the problem in question. In particular, works in the 

literature used mainly two main ways – exploration and exploitation. Exploration is 

the process whereby the ant decides which path to take based on the concentration 

probabilities calculated. Hence, there is a higher chance of taking a path with higher 

calculated probabilities. Exploitation is the decision of taking the path with the 

highest calculated probability. This decision is performed based on a probability 

factor q0, the exploitation factor, or the probability that the move under decision 

will be exploited.   

Suppose there are k possible nodes to be chosen for the next node s. Let pi (1 

≤ i ≤ k) denote the transition probability to move to node i. Let pmax denote the 

maximum probability among all the possible moves. Then, the following procedure 

is used to determine the next node.  
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generate a random number rE/E between 0 and 1 

if ( rE/E ≥ q0 ) // i.e. explore   

generate another random number r (0 ≤ r ≤ 1) 

choose s to be the node i s.t. Σi
j=1 pj ≤ r ≤ Σi+1

j=1 pj………. (3) 

else  // i.e. exploit 

choose s to be the node with the highest probability pmax 

     

 At this point, the ant would have decided on the next move to take from the 

current state, and perform the updates necessary to effect this move, i.e., ants can 

use the pheromone trail in different ways. 

 

4.3.5 Local Pheromone Decay/Deposit 

After each move is completed, the ant may choose to perform a local 

pheromone decay or deposit. If no such action is performed, each of the ants in the 

iteration will be non-collaborative and use only the pheromone trail at the beginning 

of the iteration. While there are implementations without local pheromone updates 

with good results, it was generally found that local pheromone update improves 

solution quality. The logic is that unlike real-ants, the solver of an optimization 

problem need to traverse the best path once to record it, and implement other ways 

to enforce this knowledge (global pheromone update). Meanwhile, it is necessary to 

search as much of the solution space as possible, and in most cases, it is better to 

lower the pheromone concentration from a taken trail, so that other ants may try the 

path less trodden, which allows search around the neighborhood of a good solution 
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as well as prevent solution cycling. There are many formulas (if implemented) for 

local pheromone update, but generally, 

0.),().1(),( τρτρτ ll srsr +−←     ………. (4) 

 where  τ0 represents the default pheromone level 

   ρl represents the local decay factor 

Local pheromone update can be performed in two ways. The first, step-by-

step update, is performed as each ant takes a move. The nature of this process 

makes it more suited for a parallel implementation. The second, online-delayed 

pheromone update, is performed as each ant completes a solution build, and is more 

suited for a serial implementation. 

i.e., ants may optionally decay or deposit on the pheromone trail in the local 

context. 

 

4.3.6 Global Pheromone Decay/Deposit 

While the local pheromone update may be optional, the global pheromone 

update that occurred at the end of an iteration is compulsory. The justification for 

such an action is by counter-intuition. Suppose there is no pheromone update. Then, 

each ant will repeatedly find the same probabilities on all the moves. The only 

variable then is the random choice. While this progresses the solution, it does so 

very gradually. Furthermore, there tend to be an excessive amount of solution 

cycling due to the constant nature of the probabilities. This completes the intuition 

that the pheromone trail should be updated. 

Global pheromone update can be done in several ways. Some 

implementations proposed using the trail from all the ants in the iteration, others 
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advocate using only the best route in the iteration, and most suggest using the best 

route found so far. Generally, 

),(.),().1(),( srsrsr gg τρτρτ ∆+−←    ………. (5) 

 where  ρg represents the global decay factor 

i.e., ants must deposit on the pheromone trail in the global context. 

 

4.3.7 Pheromone Evaporation  

In synch with global pheromone update is the optional pheromone evaporation. One 

idea is to use additional reinforcement for unused movements, with equation (6), 

while other approaches perform a simple evaporation on all trails with equation (7), 

for all i and j: 

0.),(),( τρττ ejiji +←      ………. (6) 

),().1(),( jiji e τρτ −←      ………. (7) 

 where  ρe represents the evaporation factor 

i.e., ants may optionally perform decay evaporation for additional reinforcement on 

unused trails. 

 

4.4 Observations on ACO implementations 

 The previous section provides the proposition assumed to be valid in the 

complete operations of ACO. The rest of this section presents observations from 

work in the literature as well as a result of the development of this thesis that assists 

in the development of the software framework. 

 

4.4.1 Pheromone Trails 
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 From the formulation of the ACO algorithm above, there are a few 

parameters relevant to any arbitrary ACO implementation. Primarily, the 

pheromone trail τ is a compulsory factor, as well as an optional initial value for the 

pheromone trail τ0. However, the optimal construct of τ is specific to the problem or 

the definition of the implementer. For instance, the typical implementation of ACO 

has the pheromone trail as the edges between all nodes in the problem, such as in 

TSP, VRPTW, etc. The pheromone trail is a very importantly component of the 

ACO algorithm (as much as the local heuristics function) that directly influenced 

the effectiveness of the algorithm in solving a problem. A study on the pheromone 

trail and its relation to performance can be found in [Dorigo and Gambardella, 

1997]. 

 

4.4.2 Fundamental ACO parameters 

 Other parameters included the weights value of α and β, as well as the 

inclusive subsets of these weights in the case of section 4.3.2. [Dorigo, 1991] found 

from experimental results that good values of α and β (for TSP at least) are 1 and 5 

respectively. A greater weight is usually placed on the local heuristics (affected by 

β) to prevent fast convergence to local optimal. Another argument for a larger β is 

also given by section 4.4.4 below. 

 Another key parameters in the ACO algorithm is the decay factors ρ. These 

factors are generally a floating point value between 0 and 1, to signify the 

percentage of decay/evaporation (0 means no decay, 1 means complete decay). 

Decay factors can be subdivided into three separate parameters (local decay, global 

decay, and evaporation), although most classic ACO uses the same value for them. 



- 42 - 

 Exploration or exploitation is another important factor in the ACO algorithm. 

A complete exploitation reduce the algorithm simply to the power of the local 

heuristics, in most cases just a greedy approach. Exploration allows an opportunity 

to search around the best found solution, a technique that works often in non-linear 

problems, such as the classes of problem (combinatorial optimization problems) 

dealt with here. The decision of exploration or exploitation is defined by the factor 

q0, the exploitation factor, which is a floating point value between 0 and 1. When q0 

is 0, the ants explore all the time; when q0 is 1, exploitation occurs all the time. 

 

4.4.3 Number of ants 

 There are many arguments on the optimal number of ants, num_ants, in the 

literature. In particular, the two most commonly argued value for this parameter is a 

constant value (e.g., 10) or n (problem size) [Bullnheimer et al., 1997; Dorigo et al., 

1996]. While this parameter will be implementation specified in the framework, it is 

the author’s opinion that a constant number of ants is a better figure for most 

problems from experimental observations. Furthermore, choosing n will increase 

the computational complexity of the problem by another factor of n. Based on x 

iterations and n2 for the probability calculation as well as move1 choosing a constant 

number of ants give O(xn2), whereas n ants gives O(xn3), hardly an efficient 

approach. However, the value of the pheromone decay and collaboration might 

compensate for the computational complexity, and allow the search for a better 

solution to be found in significantly less iterations. Hence, both arguments are valid, 

and the decision on the value should be up to the implementer. 

                                                 
1  It is possible to reduce this time complexity to log(n) with optimized implementation 
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Figure 4.3: Change in pheromone trail 

 

Consider Figure 4.3, extracted from [Dorigo and Gambardella, 1997] to 

provide for this observation. BE represents the pheromone trail average with 

increasing iterations when exploiting the Best Edges found so far, while UE defines 

the Uninteresting Edges, which are edges that have not participated in the best 

found solutions. UE also defines the cut off point given by the initially found and 

lower bound value τ0.  ϕ1τ0  represents the average pheromone level at the end of 

each iteration (before global pheromone update is applied). Hence, assuming that 

the generic pheromone update formulas from equation (4) is applied in the 

implementation, 

01 .),().1(),( τρτρτ +−← − srsr ii     ………. (8) 

è 001 )1.()1).(,(),( τρτρττ +−−−← ii
i srsr   ………. (9) 

 where  τ1(r,s) = ϕ2τ0 

   τi(r,s) = ϕ1τ0 

 i = approximate number of ants that update edges  

(hence affecting a graph change as seen in Figure 4.3) 
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 è 1)1()1.(21 +−−−← ii ρρϕϕ     ………. (10) 

 Since the best edges are chosen with probability ≥ q0, then  

i ≈ m.q0       ………. (11) 

where  m = optimal number of ants 

 è 
)1log(.

)1log()1log(

0

21

ρ
ϕϕ

−
−−−

=
q

m     ………. (12) 

 Equation (12) showed that the optimal number of ants is a function of ϕ1 

and ϕ2. The difficulty, however, is that ϕ1 and ϕ2 are reliant on the structure of the 

pheromone trail as well being problem specific.  

 

4.4.4 Importance of local heuristics function 

 Experimental results from many implementations of ACO showed that the 

local heuristics is a key deciding factor in the effectiveness of the algorithm. This 

point alone makes ACO an excellent candidate for a software framework 

accommodating other heuristics. This is also the reason why ACO performs well 

when collaborating with other local search heuristics. ACO provides a communicate 

medium (pheromone) for a synergistic effect to take place, while the power of the 

entire algorithm is dependent on the local heuristics function. 

 Some simple and effective algorithm for the local heuristics function 

included Greedy Algorithm, which is the main local heuristics algorithm used in 

many ACO implementations. Other effective techniques included collaborating 

with advanced techniques like Tabu Search, Simulated Annealing, etc. It is also 

from this observation that β is usually given a higher weight, as the local heuristics 

performs the main guidance for the progress of the algorithm. The pheromone trail 
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(defined by α), will accumulate with increasing ants and iteration to influence the 

local heuristics. 

 

4.4.5 Parallel vs. Serial implementation 

 It is obvious that ACO, being an agent-based (each ant being an agent) 

algorithm, is excellent when using a parallel implementation. However, most ACO 

performances were compared using a serial implementation, enhancing its 

importance to the community. A generic ACO software framework will provide the 

guideline for implementation of either implementation. 

 

4. 5 Hypothesis of ACO 

 The previous section provides the fundamental observations that are obvious 

and obtainable from results and literature survey. The remainder of this section 

provides hypothesis on the performance of ACO for different and hard scenarios, as 

well as suggest solutions appropriately. 

 

4.5.1 Large problem instance 

 From the algorithmic structure of ACO seen in Figure 4.2 earlier, as well as 

the O notation discussed in section 4.4.3, it is seen that ACO is hardly an efficient 

algorithm, at O(xn3) at best, with a typical O(xn2) for a constant number of ants. 

This suggested that with increasing n, ACO poses a problem. The workaround to 

this is to attempt to ensure that ACO is able to find a good solution in a minimal 

amount of iterations. Also, the implementer should note to reduce computational 

requirements as much as possible. The key to this workaround lies in the 
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pheromone trail structure (for the inner-most loop performance), and the local 

heuristics (to find a good solution fast). 

 

4.5.2 ACO solution cycles with increasing iteration 

Another problem with ACO is due to the exploitation performed by ants. 

The probability of this action is determined directly by the value of the exploitation 

factor q0. A low q0 influences the algorithm to explore more often, but if the value 

is too low, the search tends to be too erratic and unguided, despite the pheromone 

trail. Hence, the suggested value for q0 is usually on the higher end of the 

probability scale (0.7-0.9). A high exploitation q0 however, has two main pitfalls. 

First, it could cause the solution to converge too fast to escape local optimal, and 

secondly, the algorithm might cycle through the same solutions, especially with 

increasing iterations, due to the positive reinforcement of the pheromone trail. This 

observation suggests that it is advantageous to gradually modify the exploitation 

factor q0 if the solution is not improving after a fixed number of iteration to counter 

the positive reinforcement. With a good value of q0, it is also true that when this 

observation occurs, the search has reached local optimal, since there is no 

neighboring moving that can improve the solution. Hence, it is also a feasible 

approach to provide a temporary radical shift to q0. No work in the literature has 

applied such either of these two approaches nor stated such an observation. 

 

4.5.3 ACO works better with other local search, and vice versa 

 Section 4.4.4 stated that ACO worked better with local search. This is 

especially true for extended problems with multiple constraints and dimensions. 

The key reason for this is due to the general performance of the ACO algorithm, 
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stated by sections 4.3.3 and 4.5.1. In such instances, a good approach is to apply 

another good heuristics into either an inner loop of the algorithm, or apply ACO as 

a powerful construction algorithm, by limiting the number of iterations to a 

practical value. As such, to accommodate these sufficiently complex problems, the 

ACO software framework should allow easy collaboration with other techniques in 

any portion of the algorithm. In addition, many other local search heuristics, e.g., 

Tabu Search, which operates mainly as an optimization phase algorithm, is better 

able to achieve good results with a correspondingly good initial solution provided 

by the construction phase algorithm. ACO potentially provides such an algorithm. 

 

4.5.4 ACO is an effective construction phase algorithm 

 Since ACO operates by allowing each ant to construct a solution, 

this hypothesis is trivial. This nature of ACO causes it to escape from the ease by 

which many other heuristics get trapped in local optimal, but it also increases the 

computational intensity of the algorithm. Regardless, it is this nature that enables 

ACO to be an excellent construction phase algorithm, and especially if placed in 

collaboration with other local search heuristics. 
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CHAPTER 5 

Software Framework 

This chapter capitalized on the observations and hypothesis from the 

previous chapter to present the ACO framework. In particular, the first section 

presents the Meta-Heuristics Development Framework (MDF), an over-seer meta-

heuristics framework that integrates any heuristics and allows collaboration 

between the algorithms. A brief introduction to the other algorithms existing in 

MDF is given, with particular emphasis on the ACO framework component (ACF), 

the gist of the thesis.  

 

5.1 Meta-Heuristics Development Framework 

Solving planning and scheduling problems using meta-heuristics has 

become popular, mainly due to the ineptitude of exact methods in producing quality 

solutions for large problem sizes. In particular, recent researches had revealed many 

new innovative techniques, evolution of existing algorithms and hybridization of 

one or more such meta-heuristics. The maturity and popularity of these techniques 

brings about rapid growth of differing approaches which shared many similarities. 

This diffusion, while healthy for seeding new ideas into the community, is met with 

such diversity in implementation that renders experimental benchmarking difficult. 

This elevates a need to develop a generic framework that provides some basis for 

comparison and collaboration of existing and newly developed techniques. For the 

framework to be appealing to the community, it should offer code reusability, 

thereby reducing development time on one hand, as well as flexibility for 
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researchers to effectively inject algorithmic strategies that are peculiar to their 

proposed ideas. A collaboratively result of this thesis yields a high level framework, 

the Meta-heuristics Development Framework (MDF), designed to meet those goals. 

MDF presents a model to facilitate multi-algorithm inter-operability. This nature of 

MDF does not require that each algorithmic engine be as generic as possible. While 

it is advantageous that each is a specific lower level algorithm framework, if 

implementations of similar algorithm must be varied, there can be framework for 

variations of the same algorithm in the framework. 

The sections that follow present the overview of MDF, as well as the 

individual framework for ACO, TS, and SA, which are by no means the limitations 

of which algorithm can be integrated, but rather a sample of currently existing 

components. 

 

5.2 Overview of Framework 

This section presents the general concepts of the MDF framework, depicted 

by Figure 5.1. MDF uses abstraction and inheritance as the primary mechanism to 

build adaptable components or interfaces. The general behavior of local search is 

factored out and grouped into generic interfaces, thus rendering the framework to be 

robust yet flexible. These common interfaces include Solution, Objective Function, 

Move, Constraint and Neighborhood Generator. The Solution is used as a 

representation for the problem output. The Objective Function evaluates the 

objective value of solution. The Move translates a Solution object into a new 

solution while the Constraint checks on the degree of violation. Finally, the 

Neighborhood Generator generates a list of feasible neighbors through the Move 

and Constraint interfaces. Each of these generic interfaces makes no assumption on 



- 50 - 

any specific meta-heuristic or the problem that it is acting. For example, the 

solution interface did not restrict developers to any formulation or data structures. 

Rather, the framework manipulates the solution indirectly through compulsive 

virtual methods and inheritance behaviors. MDF also includes an Engine interface 

that outlines the rudimentary controls performed by the any meta-heuristic 

applications. Some of these controls include Iterations-To-Go, Start-Solving, Stop-

Solving, and Stopping criteria. 

 

Figure 5.1: Architecture of MDF 

MDF also includes a Switch Box, a Control Mechanism and a Strategy 

Software Library (SSL). The Switch Box consists of a set of switches used to operate 

the framework engine. The maximizing control is an essential control for all derived 

frameworks and is used to determine if the search is performing maximization or 

minimization. The strength of MDF lies in the inclusion of the Event Controller, 

which allows adaptive control over the search sequence, thus giving developers the 
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ability to guide the framework engine. The Event Controller uses an Event interface 

that is used to define a situation that may be experienced in the search. Some 

examples are new best-found solutions, series of non-improving solutions and no 

feasible solution found. As the search procedures of each meta-heuristic approach 

are different, the Event Controller varies across each derived framework. 

The SSL is used to facilitate the development of algorithmic strategies. SSL 

has a set of generic components that offers a quick and easy means to deploy their 

strategies. Some of these components include a fundamentally useful functions such 

as a Percentage Random Generator that randomly generate a floating float value 

between 0 and 1, a Permutation Generator that returns a permutated set over a 

given set of objects and a Elite List data structure that is used with the Event 

Controller to collect solutions whose objective value are above a user-specified 

threshold. These components also provide a means for the developers to collect 

useful search information such as information regarding Recency and Frequency of 

partial solutions [Glover and Laguna, 1997]. 

 

5.3 Ant Colony Framework (ACF) 

This section presents the Ant Colony Framework (MDF-ACF) based on the 

generic ant colony framework (Figure 4.2) with potential extensions built into 

consideration via the event controller interface, allowing for most known 

implementations of ACO, as shown in Figure 5.2. MDF-ACF is twofold; it aims to 

serve both as an ACO software framework by itself, as well as being a component 

engine of MDF. 
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Figure 5.2: Ant Colony Framework architecture (in the context of MDF) 

 

MDF-ACF Parameters Interface 

ACO works mainly using parameters tuning, where one of the key factors 

affecting the effectiveness of an implementation is the values of the parameters. As 

such, this interface is concerned mainly with these necessary parameters inherent in 

ACO. In particular, there is the following:  

a) size of problem,  

b) number of ants,  

c) decay factors (local decay, global decay, evaporation),  

d) exploitation factor (q0). 

As with any other interfaces in the framework, the implementer can extend 

this interface to include additional parameters such as power of elitist ants, value of 

α (weight of pheromone trails), value of β (weight of local heuristics), etc. The 

weights are not included in the parameter base interface since the implementer is 
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free to design his own vector of power values, such as when there are multiple local 

heuristics being used in the implementation (as specified in section 4.3.2). 

 

MDF-ACF Pheromone Interface 

Another key component of ACO is the pheromone trails. This interface 

enforces this requirement by requiring the implementer to state how the pheromone 

trail is structured. 

 

MDF-ACF EventController 

The EventController class is a key class in allowing flexible implementation. 

Besides generic events which are placed throughout the engine, this interface also 

requires the user’s implementation for how the engine should perform certain 

actions, in particular the following related to the ACO algorithm: 

a) local pheromone update,  

b) global pheromone update,  

c) pheromone evaporation,  

d) when to stop an iteration or active ant,  

e) how to calculate the probability for a node,  

f) where is the starting location for a new active ant, and  

g) what to do when a new current or best solution is found.  

These presents the possibilities to code many proposed ACO 

implementations, as well as allow hybrid techniques to be inserted into appropriate 

places in the ACO execution, such as running another local search algorithm after 

finding a best solution to optimize this solution locally. 
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5.4 Tabu Search Framework (TSF) 

MDF-TSF is improved from TSF++ [Wan, 2002; Lau et al 1, 2003] and 

inherits the fundamental architecture of MDF with the addition of TabuList and 

AspirationCriteria interfaces, an MDF-TSF EventController and a tabu search 

engine. The tabu search engine uses the set of interfaces to epitomize the routine 

tabu search procedures. Furthermore, it also exploits the EventController to 

adaptively guide the search in accordance to events experienced during the search. 

As such, the MDF-TS have more potential than a simple tabu search 

implementation and yet remain as a black box that can allow great flexibility to 

both developers and researchers alike. 

 

MDF-TSF TabuList Interface 

The adaptive memory is the key component of tabu search where the quality 

of solutions often relies heavily on the effectiveness of the tabu list. The TabuList 

gives developers the flexibility on the choice of objects to be tabu. Some commonly 

tabu objects are the solutions themselves, the translating moves, recurring partial 

solutions and objective values. 

 

MDF-TSF AspirationCriteria Interface 

The AspirationCriteria is an optional interface in the framework. The 

function of aspiration criteria is to override the tabu status of a move if it meets 

certain criteria. This is used mainly to avoid missing good solutions or moves that 

are otherwise tabu-ed. 
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MDF-TSF EventController 

In a tabu search, it is often desirable for the tabu search engine to respond to 

search events by readjusting the elements in the interfaces. For example, a reactive 

tabu list would need to readjust its tenure (duration in which a move remains tabu-

active) in respond to the success or failure in obtaining a better solution, during the 

search. Hence there must be means of controlling the tabu search to make such 

dynamic readjustments. The EventController acts as a centralize control unit that 

provides interaction between the tabu search engine and the interfaces. When the 

tabu search engine detected any search events, it would reflect them to the 

EventController, which would then respond to these events in accordance to 

strategies set by the users. Usually, these strategies will affect one or more of the 

interfaces that will in turn re-adjust the search approach adopted by the engine. 

Going back to our example of implementing a reactive tabu list, the “triggering-

event” detected by the tabu search engine can be the number of non-improving 

moves made since the last best-found solution. Once the engine triggered this event, 

the control will be passed to the EventController. The strategy will be to readjust 

the tabu tenure in TabuList, using parameters such as number of iterations 

completed, and number of remaining iterations and even from the history from such 

past readjustment. 

 

5.5 Simulated Annealing Framework (SAF) 

MDF-SAF is the third illustration on the generic aspect of the MDF. This 

derived framework has only one extended interface called the CoolingFunction. In 

a similar architecture to the MDF-TSF, MDF-SAF has its own EventController and 

search engine. The engine again performs the standard routine of the meta-heuristic 
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and uses the EventController to re-adjust its search. One possible use of the 

EventController is to dynamically switch between different cooling functions in 

accordance to the quality of solutions. Another popular use for the MDF-SAF is to 

hybridize with the MDF-TSF as the diversifier for the tabu search when the search 

reaches a local optimal. This hybridization is again easily achieved through the use 

of EventController. 

 

MDF-SAF CoolingFunction Interface 

The CoolingFunction determines the probability of a neighbor being 

accepted. SA typically only required iteratively modification for values of different 

parameters to obtain different cooling schedules to produce solutions of different 

qualities. MDF caters for the common scenarios as well as having the advantage of 

the CoolingFunction interface to provide further flexibility for the developers to 

have any number of cooling functions to be implemented, and allow the uses of 

EventController to switch between these functions, if such an implementation is 

desired. 
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CHAPTER 6 

ACO Schemes 

 This chapter presents several ACO schemes derived from the observations 

and hypothesis from chapter 4, with respect to the ACO software framework. These 

schemes are recommended for use by implementers, specializing in different classes 

of problems. These schemes are individual modules that may be built alone or with 

each other into any implementation from the framework. 

 

6.1 Basic ACO scheme 

The natural choice is to present first the basic ACO scheme generic to most 

of the implementations in the literature. This scheme derives from the classic 

algorithmic framework in Figure 4.2, as well as sections 4.3 and 4.4. In short, it is 

the fundamental ACO as proposed by [Dorigo and Di Caro, 1999], adapted into a 

software framework, taking into consideration most of the ACO implementations 

and proposals in the literature. As such, this basic ACO scheme may be extended to 

easily reproduce current works. 

 

6.2 Variable exploitation factor schemes 

Sections 4.5.1 and 4.5.2 presented a potential pitfall with the ACO algorithm. 

Section 4.5.1 stated the performance of the algorithm with increasing iteration, and 

section 4.5.2 expanded the problem with a decrease in effectiveness at the same 

time. As such, ACO is not intrinsically designed for an excessive amount of 

iterations. Good results must be obtained within a reasonable threshold, beyond 
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which the ACO under-performs. To address this issue, the following two schemes 

exploiting section 4.4.1 are proposed: 

Scheme 1: If there is no improving move within th number of iterations, 

adjust (decrease) the exploitation factor q0, such that ACO 

explores more often. 

Or 

Scheme 2: If there is no improving move within th number of iterations, 

adjust (decrease) the exploitation factor q0 by a significant 

amount temporarily, such that the excessively exploration will 

disrupt the overly concentrated pheromone trail. 

 Both schemes relied on the modification to q0. As best known to the author, 

no works in the literature had attempted such an approach. Observations that arises 

from the comparisons of these two schemes against the basic ACO scheme 

suggested variable results (not reflected in this thesis), depending upon the value of 

th and q0 modification. The proper value to use is problem and parameters specified. 

In most cases, Scheme 1 performs better than the Scheme 2, which relied more on 

the operation of the pheromone update functions. Both schemes are also dependent 

upon the value of the best found solution at the moment q0 is changed, which is 

directly related to the effectiveness of the local heuristics. Since most of the 

experiments were tried on known techniques, the local heuristics tend to be already 

good. However, that the schemes improve results in many cases, especially when 

the local heuristics function is weak, reflected their potential. Hence, these two 

schemes are worth considering, especially for countering known weakness of the 

local heuristics, which is hard to specify for certain problems; or to counter the 

effect of bad parameter setting. Furthermore, these schemes are extremely valuable 
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when the algorithm needed to be executed for long number of iterations for any 

reason, such as when solving increasing complex problems. 

 

6.3 Schemes that handle Time explicitly 

 Optimization that involves multiple time-period constraints is more complex. 

For instance, the IRPTW and MPMKP discussed in this thesis extend standard NP-

hard problems, like the VRPTW and MKP respectively, with time-period 

constraints, which increase the practicality of the problem to industrial applications. 

The classic pheromone trail specified using node to node value are not appropriate 

for such scenarios, and a new scheme for the pheromone trail and ACO algorithm 

conducive to this environment that improve the performance of ACO for such 

classes of problem is proposed. 

By virtue of the ACO basic scheme, there are certain properties of the 

underlying algorithm that can be logically extended to provide a scheme 

specializing in handling the notion of time, as can be seen from the experimental 

results presented in the next chapter. The first and most instinctively of these 

schemes that exploit the basic operation of ACO is: 

Scheme 3: In addition to the basic pheromone trail presenting a pheromone 

value from one node to another, add another dimension to the 

pheromone trail structure, hence presenting a 3-D pheromone 

corresponding to the geometric 3-D of 2-D space and 1-D time. 

Figure 6.1(b) below reflects the new pseudo-code structure that results. 

However, Scheme 3 presents an obvious problem. As already analyzed, ACO is 

already computational intensive. To add another dimension of time, T, to the 

problem increases the complexity of the algorithm in the inner-loop (where the 
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pheromone trail are used to calculate individual movement probability) to O(xn2T). 

As such, the following scheme is more appropriate for multiple time-period 

problems. 

Scheme 4: Modify the pheromone trail from a node-to-node trail to a node-

to-period trail. This pheromone trail will specify the 

attractiveness of placing a node in a time-period. 

 For instance, instead of a typical pheromone structure like Figure 6.1(a), 

which is commonly applied in most implementation of ACO, Figure 6.1(c) shows 

the structure that would be implemented instead using Scheme 4. Note the change 

from a node2-to-node structure to a node-to-period structure, which reflects the 

preference of placing a node to a time-period, as opposed to the typical preference 

of placing a node after another node. 

 
 
 
 

(a) Typical Scheme 
 
 

 
 
 

(b) Scheme 3 
 

 
 
 
 
 

 (c) Scheme 4 
Figure 6.1: Pseudo-code structure of the pheromone trail 

 

                                                 
2 A node can represent a vertex, a request, or any point of reference by which the solution is 
constructed 

Class ACOParameters : ACOParameters 
{ 
     double pheromoneTrail[MAX_NODE] [MAX_NODE]; 
} 

Class ACOParameters : ACOParameters 
{ 
     double pheromoneTrail[MAX_PERIOD][MAX_NODE] [MAX_NODE]; 
} 

Class ACOParameters : ACOParameters 
{ 
     double pheromoneTrail[MAX_PERIOD] [MAX_NODE]; 
} 
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The structure resulting from Scheme 4 (Figure 6.1(c)) arises from the work 

of this thesis, in particular related to IRPTW and MPMKP. There are several 

reasons that Scheme 4 as better than Scheme 3. First, the computational complexity 

becomes O(xnT). It can be seen that the complexity may actually be reduced, if the 

number of time-periods, T, is asymptotically smaller than the number of nodes n, 

which is usually the case. Furthermore, this structure is logically better than the 

classic version in dealing explicitly with time, since it directly informs the 

algorithm where the best period place node is. This easily allows the problem to be 

broken into smaller sub-problems (such as IRPTW into VRPTW), solve the single 

time-period problem, and then allow the basic ACO scheme to take care of the less 

complex problem. 

 

6.4 Decay Schemes 

This aspect of ACO, noted previously in sections 4.3.3, 4.3.5, 4.3.6, and 

4.3.7, is where there is the most research activity. There are many proposals 

presenting different decay functions combinations for the local decay, global decay, 

and evaporation, often combining the functions together, such as seen in 

[Gambardella et al.1, 1999; Fidanova1, 2002]. The pheromone trail can be updated 

in myriad of ways to achieve different results. This section consolidates these works, 

extracting their decay approaches, and presents them in explicit schemes. Some 

good schemes included: 

Scheme 5: Pheromone trails are updated using the best found solution 

multiplied by a factor. This symbolizes trails taken by Elitist 

Ants which found the best found solution. 

Scheme 6: Do not perform one or more of the three decay functions. 
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Scheme 7: Combine one or more of the decay functions together. 

Scheme 8: Use a constant value or a fast heuristics for choosing the default 

decay value τ0. 

Scheme 5 presents the approach taken by some successful ACO technique 

for the global pheromone update to use the best route found for the update, but 

multiplied by a factor, symbolized by elitist ants which are able to find better 

solutions and lay more pheromones than “normal” ants, seen in [Bullnheimer et al., 

1997] using a multiplier of 5.  

Scheme 6 is a scheme used in almost all ACO implementations, especially 

with regards to the evaporation function, although many early ACO proposals 

ignore the local pheromone update as well. The lack of an evaporation function is 

justified if the global and local decay functions update the trail appropriately, 

though it may cause an increasing pheromone concentration (which is 

disadvantageous for the operation of ACO in general) if the local decay functions 

are absent, does not decrease the pheromone traversed by the ant, or there is a lack 

of ants in each iteration. However, ACO usually does not execute long enough for 

the effect to be detrimental, and experimental observations arising from this thesis 

suggested the lack of an evaporation function, and is a method used in all the 

implementations used to obtain results for the next chapter. The lack of a local 

pheromone update function, conversely, might cause the same problem, depending 

on the other two decays function. However, it was found that the lack of this 

function affects the effectiveness negatively most of the time, and also, it is 

advisable to reduce the number of ants in each iteration if the local pheromone 

update function is missing, as the only ways the ants will work collaboratively is 

through the global update and/or evaporation function outside of every iteration, 
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and it is proven experimentally in [Dorigo and Gambardella, 1997] that the ants 

perform better collaboratively. 

In the same line of thought, Scheme 7 is closely related to Scheme 6. The 

usual case of Scheme 7 is when the global pheromone update function is integrated 

with the evaporation function. It should be noted that usually the evaporation 

function applies to all the pheromone trails, while the global update function 

operate only on the solution trail. As well, some implementation may delay the 

local update function until the end of an iteration, effectively operating like a 

complex global update function. 

Scheme 8 provides some methods of finding τ0. This value is can either be a 

fix constant (where 0 is a commonly used value), or found using some fast 

construction algorithm such as Greedy Algorithm. Alternatively, τ0 can be extracted 

from the objective function using an initial pass of the ACO algorithm itself, since 

ACO is itself a capable construction algorithm. The choice of this value provides 

may affect the decay functions, which in turn affect the pheromone trail, in turn 

affecting the effectiveness and efficiency of the algorithm with increasing iteration. 
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CHAPTER 7 

Solution Approach 3 

Having examined the MDF framework in chapter 5, and the ACO 

framework as well as some potential schemes presented in Chapter 6, this chapter 

presents our proposed solution approach to solve the problems presented in chapter 

3, with the results presented in the next chapter. The first section presents 

hybridization with a sample implementation of MDF, using ACF and TSF as the 

key component. This hybridization, HASTS, is the solution approach taken for the 

VRPTW, which bases its implementation from a generic ACO implementation for 

TSP; as well as the IRPTW, which reuses the implementation from VRPTW with 

certain extensions. The last section further presents the solution approach for 

MPMKP using a time-period ACO scheme (Scheme 4) with ACF to solve the 

MPMKP. 

The choice of VRPTW and IRPTW justifies the power of reuse in the 

framework, showing that a good solver for VRPTW can be reused to provide 

another good solver for the extended problem of IRPTW. Meanwhile, IRPTW and 

MPMKP are presented to demonstrate the effectiveness of Scheme 4, showing the 

proposed strain of ACO that is effective at solving multiple time-period problems. 

 

7.1 Sample Implementation – HASTS 

This section presents a sample implementation of MDF, using the ACF and 

TSF framework, exploiting the hypothesis noted in section 4.5.3. This 

                                                 
3 Part of this chapter appears in [Lau et al.2, 2003] 
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implementation described by [Lau et al.2, 2003], called Hybrid Ant System and 

Tabu search (HASTS), is a flexible hybrid method that spawns derived models that 

exploit the strength of meta-heuristics adept at solving certain problems.  HASTS 

employs ACO and Tabu Search as the component heuristics, in particular using 

ACO as the construction heuristics and Tabu search as the local improvement 

heuristics. By varying the degree of importance of the inherent algorithms, various 

derived models are easily formulated to solve subsets of the problem. 

The intrinsic flexibility and potential for heuristical collaboration of MDF 

allows HASTS to vary the importance of the component heuristics. ACO and TS 

are argued to be good complements to each other, as ACO works using a preference 

list, given by the pheromone trail, while TS operates using a forbidden (or tabu) list. 

The algorithmically opposite techniques offered a high potential that when one 

algorithm reaches a local optimal, the other algorithm has a higher chance of bring 

it out and improving the solution henceforth. 

HASTS improves results by adjusting the importance level and degree of 

collaboration of the component meta-heuristics in the hybrid technique, via the 

framework provided by MDF. Each variant of HASTS has a set of algorithms as the 

core algorithm, while the other algorithm(s) serves as the aide algorithm(s). Each of 

these variant becomes a derived model of HASTS. The advantage of the derived 

models lies in the ability to adapt search to exploit the strength and cover the 

weakness of the meta-heuristics under the scheme. As such, HASTS is especially 

suitable for solving complex problems using a divide-and-conquer approach, by 

first breaking down and identifying the objectives of the sub-problems, and solving 

these using the best approach optimally. 



- 66 - 

Figure 7.1 showed four possible derived models of HASTS, extracted from 

[Lau et al.2, 2003], which saw use in solving the IRPTW, by adjusting the relative 

importance of the hybrid collaborators to adapt to the needs of each different sub-

problems. The framework design also ensured that information sharing between the 

sub-problems can be easily achieved, using the shared components provided by the 

MDF framework, to potentially yields better results than if a separate technique 

should solves the problem (or sub-problems) individually. 

  

  

 

 

   (A) HASTS-EA   (B) HASTS-IE 

 

 

 

 

   (C) HASTS-ED   (D) HASTS-CC 

Figure 7.1: Derived Models of HASTS 

The four derived models are respectively Empowered Ants (HASTS-EA) 

(Figure 7.1(A)), Improved Exploitation (HASTS-IE) (Figure 7.1(B)), Enhanced 

Diversification (HASTS-ED) (Figure 7.1(C)), and Collaborative Coalition 

(HASTS-CC) (Figure 7.1(D)). The framework design ensured that each of these 

derived models reuses the same implementation for each of the component 

algorithms. The difference is mainly in where to separate the algorithm, as well as 
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the communication between the algorithms. Hence, for HASTS, MDF guarantees 

that a generic ACO and TS component engine can be used. 

 

HASTS-EA (Empowered Ants) 

  This derived model arises from the hypothesis of sections 4.5.1 and 4.5.2 

that when the ants system reaches local optimal solutions, it suffers from a tendency 

of solution cycling in the near optimum region due to their emphasis on the strong 

pheromone trails. By empowering the ants with memory, it reduces the chances of 

reconstructing the same solution. An analogy can be drawn where each ant becomes 

more intelligent to find a better trail by not following false tracks laid by previous 

ants. Tabu search uses a tabu list to reduce cycling on the same set of solutions. 

While the ants system optimizes the solution based on its pheromone trails as a 

“preference” memory, solution cycling is reduced via the tabu list. Furthermore, 

tabu search can be applied to modify the solutions radically, hence encouraging 

exploration that helps to escape from local optimality. This implementation, 

however, suffers from a slight increase in computational needs, as well as more 

memory for the additional tabu list. This tradeoff is usually justified by the increase 

in performance, especially over large iterations. From an implementation viewpoint, 

HASTS-EA modifies ACO to include a tabu list, which records the solution made 

by each ant in a single iteration. Subsequently, each ant in the iteration would check 

if the next move is tabu-ed. If it is, the move will be dropped and a new move will 

be generated. The tabu list is reset at the end of the iteration. A pseudo-code of 

HASTS-EA is shown in Figure 7.2. 
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Procedure: HASTS – EA () 
 While (termination-criterion-not-satisfied) 
  While (Max_Ant_Not_Reached) 
   Ants_generation_and_activity 
   Pheromone_Evaporation 
   Reset_Tabu_List 
   Daemon_actions   
  end Schedule_activities 
 end While 
end Procedure 

 
Procedure: Ants_generation_and_activity () 
 While (available_resources) 
  Schedule_creation_of_new_ant   
  New_Solution = New_active_ant   
             update_Tabu_List (New_Solution)   
 end While 
end Procedure 
 
Procedure: New_active_ant () 
 Initialize_ant; 
 M = read_Pheromone Trail   
      T = read_Tabu_List   
 While (current_state != target_state) 
  A = read_local_ant_routing_table 
  P = compute_transitional_probabilities (A, M) 
  Foreach Next_state do 
               Next_state = apply_ant_decision_policy(P) 
  end Foreach 
  While (check_Tabu_List (Next_state) == non-tabued) 
  Move_to_next_state (next_state) 
  If (online_step-by-step_pheromone_update) 
   Deposit pheromone 
   Update M 
  end If 
 end While 
 If (online_delayed_pheromone_update) 
  Foreach visited_arc do 
   Deposit pheromone 
   Update M 
  end Foreach  
 end If 
end Procedure 

Figure 7.2: Pseudo-code of HASTS-EA 

 

HASTS-IE (Improved Exploitation) 

  In this model, tabu search is embedded in ACO to conduct intensification 

search on the best solution. A similar design has been employed in [Stutzle and 
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Dorigo, 1999] to produce good solutions for TSP. This model offers two 

advantages. First, by updating the pheromone trail only after intensifying the best 

solution, we increase the probability of finding a better solution by subsequent ants. 

Second, due to the probabilistic guided nature of ants system, this narrows the 

chances of reaching an optimal solution if it happens to be radically different from 

local optimum. For example, it is well known that for TSP, the ants system may 

take a long time before it reaches optimality, due to the presence of “crossings” in 

the tour, such as those in Figure 7.3. With the help of tabu search, such crossings 

can be eliminated easily by swap moves such as 2-opt. HASTS-IE, on the other 

hand, is computational expensive, though it can be extremely effective in situations 

with many “crossings” in the solution. 

 

Figure 7.3: Example of a “crossings” 

 

HASTS-ED (Enhanced Diversification) 

  In this model, ants system is proposed as a diversifier for tabu search. As 

tabu search suffers from local optimality, a diversification strategy is to apply 

another meta-heuristic as a diversifier [Li and Lim, 2001]. HASTS-ED uses ACO 

as the TS diversifier with the following rationales. First, the probabilistic nature of 

*
Depot 

*

*
*

*
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the ants system gives a higher chance of successfully diversifying from the local 

optimum. Second, the diversifier should make a radical move from the current 

solution so as to explore new regions. Although a random restart is a good strategy, 

the new starting solution is often poor. Ants system provides a remedy to this by 

reconstructing quality solutions. However, appropriate parameters for the ACO 

diversifier should be set, such as a low q0 that is unusually in most other effective 

ACO implementation. 

 

HASTS-CC (Collaborative Coalition) 

HASTS-CC proposes a collaborative coalition between the ants system and 

tabu search. This model offers the least coupling between the two meta-heuristics 

but allows great flexibility in the formulation of the problem. One configuration of 

HASTS-CC is to espouse the two-phase approach as advocated by [Schulze and 

Fahle, 1997]. This approach consists of a construction phase follow by an 

optimization phase. ACO work extremely well for the construction phase as it could 

be used independently to obtain quality solutions. Being an optimization heuristic, 

tabu search fit naturally into the second phase of the approach. Such collaboration 

exploits the natural heritage of each meta-heuristic as noted by section 4.5.4. 

 

7.2 VRPTW 

The problem being solved in this instance, the VRPTW, is an NP-hard 

multi-objective optimization problem. Traditional approach in solving VRPTW 

involves projecting all objectives into a single dimension. However, the correlation 

between these various objectives are usually weak and difficult to express using a 

common aspect. In addition, during the search, the optimizer has no insight to 
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which objective it is improving. This resulted in redundancy spent in optimizing the 

secondary objectives while the primary objective is being optimized. To resolve this, 

an approach is to optimize the problem by independently considering each of its 

objectives, allowing precise strategies to be employed. In solving this problem, a 

decision can be made to decompose the problem into the following objectives: 

1. Minimize the number of vehicles given a set number of customers. The 

dual problem is to maximize the total number of customers given a set of 

vehicles. 

2. Minimizes the total distance traveled given a fixed set of vehicles. 

 

This divide-and-conquer formulation suggests the suitability of using 

HASTS. HASTS, described in the previous section, is the solver for VRPTW used 

to obtain the results presented in the next chapter. As had been mentioned earlier, 

each derived model of HASTS share the same implementation for the component 

algorithm. It is also seen that VRPTW is an extension of the TSP in Chapter 3. 

Hence, in the implementation, HASTS utilizes a generic ACO implementation for 

TSP built from the ACO framework (ACF), and reuse this implementation with 

modifications to handle the additional constraints in VRPTW, to provide an ACO 

solver for VRPTW. This solver is then extended by each derived model, and 

modified according to the specifications of the sub-problem it is assigned to solve. 

Figure 7.4 shows the evolution of the ACO implementation in solving VRPTW 

using HASTS. 



- 72 - 

Figure 7.4: Reuse of ACO implementation 

 For this problem, HASTS requires only two derived models, HASTS-IE and 

HASTS-ED described earlier.  

 

Objective 1: Minimize the number of vehicles given a set number of customers. 

The dual problem is to maximize the total number of customers given 

a set of vehicles. 

This objective can be reformulated to its dual model and writing it as 

maximizing the customers served in given a set of vehicles, and reduce the required 

vehicles each time a solution that serves all the customers is found with the lesser 

fleet size. The HASTS-EA derived model is appropriate for this sub-problem. ACO 

is a good meta-heuristic for this objective as it optimizes the solution quality 

through reconstruction. TS, although possible, is not a suitable candidate as it tries 

to ‘pull’ the solution to feasibility through optimizing the customers’ sequence in 

the tour, which is a slow process. Instead, tabu search is used to empower the ant 

system by intelligently rupturing the pheromone trails left by the ants, and in doing 

so, helped the ants from being ensnared in a local optimum. 

Initially m vehicles are obtained by applying a greedy heuristic to serve all 

customers. The algorithm then reduces the value of m by 1 and seeks to construct a 

feasible solution that services all the customers. Once a feasible solution is found, 

the number of vehicles is reduced to the best-found number of vehicles and the 

TSP solver VRPTW solver 

HASTS derived model 1 

HASTS derived model n 
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process is repeated for a new feasible solution. Figure 7.5 provides the pseudo-code 

fragment for the event used to solve this objective. This sub-problem requires 

search so as to find a configuration where the customers can fit into the pre-set 

vehicles. HASTS-EA performs well since the tabu list assists each ant in an 

iteration to construct a radically different solution. Although other derived models 

can also be used, they lack of the intensified exploration that HASTS-EA provides.  

 

Figure 7.5: Code Fragment implementation for VRPTW objective 1 

 

Objective 2: Minimizes the total distance traveled given a fixed set of vehicles. 

Objective 2 is attempted after Objective 1 had been optimized, and as a 

result, this sub-problem will consist of a tighter solution space. In spite of the 

success by HASTS-EA in optimizing the number of vehicles, this derived model is 

not very effective for this objective because of the difficulties involved in 

constructing different feasible solutions on an allowed number of vehicles due to 

the nature of ACO. Instead, another derived model, HASTS-ED, is employed to 

minimize the total distance on a fixed set of vehicles. HASTS-ED uses tabu search 

as the core heuristic with ants system acting as the diversifier. Tabu search is 

Class DecreasingFleetSizeEvent : Event 
{ 
     int m = MAX_FLEET_SIZE; // m = fleet size of best found solution 
     Solution* initSol = get_initial_solution(); 
     virtual bool ACO_started (ACO* aco) { 
          m = initSol->vehUsed – 1 // attempt to find solution ≤ initSol->vehUsed – 1 
     } 
     virtual bool afterActiveAnt(ACO* aco) { 
          Solution* currentSol = aco->getCurrentSolution(); 
          if (currentSol->visited_cust(m) > tempSol->visited_cust(m)) { 
               tempSol->copyFrom(currentSol); 
               if (tempSol->vehUsed <= m) { 
                    m = tempSol->vehUsed – 1; 
               } 
          } 
     } 
} 
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effective in solving this sub-problem as it optimizes the route distance rather than 

reconstructs the solutions. However, tabu search still faces the danger of being 

entrapped in a local optimum during its search. To address this issue, when tabu 

search encounters a local optimum, it randomly selects some of the routes to be 

reconstructed by ACO, which assists tabu search by radically re-configuring the 

selected partial routes. Details on this objective relies mainly on the operations of 

Tabu Search and is examined in further detail in [Lau et al.2, 2003]. 

 

7.3 IRPTW 

 Chapter 3 previously described one approach by [Lau et al. 2000] to solve 

the IRPTW, an example of a multiple periods and multiple constraints problem, by 

decomposing this complex problem into the relatively simpler VRPTW and DLP. 

Since VRPTW can be further broken down using its separate objectives as 

described in the previous sub-section, IRPTW then can be formulated to the 

following three sub-objectives: 

1. Minimize the number of vehicle used subject to customer time windows 

of the given set of customers. 

2. Minimize the total distance traveled, subject to customer time windows 

and the given fleet of vehicles. 

3. Minimize the inventory holding and backlog costs, subject to the vehicle 

capacity and retailer holding capacity constraints. 

It can be seen that objectives 1 and 2 forms the VRPTW part of the problem, 

while objective 3 specifies the DLP sub-problem. Having previously used HASTS 

to solve VRPTW, it become logical to reuse this implementation to solve IRPTW 

once it was apparent IRPTW can be broken down into the VRPTW and DLP.  
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Objective 1: Minimize the number of vehicle used subject to customer time 

windows of the given set of customers. 

  and 

Objective 2: Minimize the total distance traveled, subject to customer time 

windows and the given fleet of vehicles. 

These two objectives, being equivalent sub-problems of the VRPTW, allow 

easy reuse of the HASTS-EA and HASTS-ED derived model. The reuse of ACF 

and TSF are both trivial and natural. 

 

Objective 3: Minimize the inventory holding and backlog costs, subject to the 

vehicle capacity and retailer holding capacity constraints. 

 In order to reduce inventory or backlog, more frequent deliveries have to be 

made, hence increasing the transportation cost. Hence, the goal here is to minimize 

the number of retailers (or customers) served each day without increasing the total 

cost. That is, the objective is to delete retailers from routes in a manner that does 

not incur additional costs. Many techniques are available to handle this objective, 

but in line with reusing HASTS, which is already used to solve the problem 

involving the other two objectives, it is a straightforward matter to reuse the same 

ACO and TS engines by employing another derived model catered to the problem, 

HASTS-IE, such as in Figure 6.6. HASTS-IE uses ACO to construct different 

solutions. It then uses tabu search to improve its exploitation to reduce missing elite 

solutions. Figure 7.6 presented the pseudo-code fragment for the event class solving 

this objective. The tabu search uses the standard add, delete and swap moves that 

attempt to improve the solution quality found by the ACO. The output is a 
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distribution plan that induces the set of customers to be served for objective 1, to 

facilitate iterative improvement. Since this objective involves multiple time-periods, 

the ACO implementation in HASTS-IE employs Scheme 4.  

 

Figure 7.6: Code Fragment implementation for IRPTW objective 3 

 

7.4 MPMKP 

MPMKP is a single dimensional extension of the classical MKP, with the 

additional dimension being the multiple time-periods. This increases the number of 

constraints in carrying over requests and inventory from one time-period to the next. 

Furthermore, unlike IRPTW, MPMKP need not be broken down into multiple 

objectives, since it is a single dimensional extension. IRPTW is extended from 

VRPTW in more than just time-periods, but also several additional constraints. 

Hence, for MPMKP, the same objective as MKP is optimized. 

 

MKP Objective: Maximize ∑ =

n

j jj xp
1

, i.e., Maximize the amount of profit that 

can be obtained, subject to the (known) constraints. 

 

Class ImprovedExploitationEvent : Event 
{ 
     virtual bool newCurrentSolutionFound(ACO* aco, Solution* currentSol) { 
          TabuSearch* TS = getTSEngine(); 
          TS->restart(currentSol, iterations); 
          TS->startSolving(); 
          currentSol = TS->getBestSolution(); 
     } 
} 
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Class MKPACOParameters : ACOParameters 
{ 
     double pheromoneTrail[MAX_REQUEST] [MAX_REQUEST]; 
} 
 
Class MKPEvent : Event 
{ 
     ACOParameters* = param; 
     virtual bool beforeActiveAnt(ACO* aco) { // j : items 
          items[j] = capacity[j]; 
     } 
     virtual double* calculateProbabilityOfNodes(ACO* aco) { 
          for (all valid request r) {  // i : current node 
               double sumTightness = 0.0; 
               for (all items j) sumTightness += request[r]->amount[j] / items[j]; 
               visitProbability[r] = (profit[j] / sumTightness)α * (pheromoneTrail[i][r])β 
          } 
          return visitProbability; 
     } 
} 

MKMKP Objective: Maximize ∑∑
= =

=
N

j

T

t
jtjt xpZ

1 1
, i.e., Maximize the amount of 

profit that can be obtained, subject to the (known) constraints 

and inventory top-up rate over the (known) time-period. 

 With the difference over MKP in the additional time-period dimension, we 

simply replace the pheromone trail using a node-to-time-period structure over a 

node-to-node structure directly, without need to replace anything else, as described 

by Scheme 4. Figure 7.7 first presented the pseudo-code for a MKP implementation, 

and Figure 7.8 then presented the pseudo-code that extends from the MKP 

implementation to solve the MKMKP.  

Figure 7.7: Code Fragment implementation for MKP 
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Class MPMKPACOParameters : ACOParameters 
{ 
     double pheromoneTrail[MAX_PERIOD] [MAX_REQUEST]; 
} 
 
Class TimeSchemeEvent : Event 
{ 
     ACOParameters* = param; 
     virtual bool beforeActiveAnt(ACO* aco) { // t : period; j : items 
          items[t][j] = capacity[j]; 
          cumItems[t][j] = capacity[j]*(t+1) // cumulative items 
     } 
     virtual double** calculateProbabilityOfNodes(ACO* aco) { 
          for (all valid request r) { 
               double sumTightness = 0.0; 
               for (all items j) sumTightness += request[r]->amount[j] / cumItems[T-1][j]; 
               visitProbability[r][t] = (profit[t][j] / sumTightness)α * (pheromoneTrail[t][r])β 
          } 
          return visitProbability; 
     } 
} 

Figure 7.8: Code Fragment implementation for MPMKP 

 Note the similarity between the pseudo-code shown in Figure 7.7 

and Figure 7.8. The extension to MKMKP from MKP is one-dimensional only in 

the time-period context. As such, MPMKP is not overly concerned with the 

ordering of nodes within each time-period (like in IRPTW), and the necessary 

changes involved mainly the structure of the pheromone trail (advocated by Scheme 

4) as well as related modifications to calculations using the pheromone trail. It 

should be noted that all other factors of the implementation (such as the basis of the 

formula for the calculation of the probability; the weight ratio of pheromone to local 

heuristics; the relevance of item tightness to the problem; etc.) follows from generic 

implementations used to solve the MKP in the literature [Fidanova1, 2002; 

Fidanova2, 2002; Leguizamon and Michalewicz, 1999]. 
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CHAPTER 8 

Results and Discussions 

This chapter presents the specific problem parameters and results obtained 

using the approaches described in the previous chapter for three NP-hard problems, 

namely the VRPTW, IRPTW and the MPMKP, as well as discussions on the results 

obtained. All ACO implementations use the proposed parameter values by [Dorigo 

et al., 1991] of α = 1, β = 5, numberOfAnts = 10, all decay values of 0.2, and q0 = 

0.8. 

 

8.1 Results for VRPTW 

VRPTW, as mentioned, as extended from the TSP. The classical and most 

common comparison for VRPTW solvers in the literature is with the Solomon’s 

VRPTW benchmark [Solomon, 1987], consisting of a total of 56 test cases covering 

different scenarios. These test cases included a set of problems consisting of 

Clustered nodes (C101-C109, and C201-208), which generally is best solved by 

assigning vehicles to service the same or nearby clusters in the problem; a set of 

problems consisting of Random nodes (R101-R112, and R201-R211), which has 

nodes randomly assigned, and solving it optimally will be problem specific; and a 

set of problems consisting of a combination of Random and Clustered nodes 

(RC101-108, and RC201-208). Table 8.1 tabulates the results obtained. 

Table 8.1: Results for VRPTW from the Solomon’s original test cases (n=100) in 
(fleet size/distance) 

Test cases TS ACO HASTS 

C101 10/828.94 10/855.07 10/828.94 
C102 10/852.97 10/1072.24 10/845.61 



- 80 - 

C103 10/858.62 10/1435.26 10/840.88 
C104 10/856.87 10/1182.64 10/857.57 
C105 10/828.94 10/936.47 10/828.94 
C106 10/828.94 10/958.91 10/828.94 
C107 10/828.94 10/877.99 10/828.94 
C108 10/828.94 10/1033.81 10/828.94 
C109 10/828.94 10/1900.94 10/828.94 
R101 19/1686.24 19/1929.05 19/1686.24 
R102 18/1518.93 18/1886.77 18/1493.31 
R103 14/1301.64 14/1679.71 14/1301.64 
R104 11/1072.04 10/1198.69 10/1025.38 
R105 14/1459.84 14/1651.43 14/1458.60 
R106 13/1324.38 12/1564.99 12/1314.69 
R107 11/1165.87 10/1144.72 10/1140.27 
R108 10/1002.56 10/1117.25 10/ 994.66 
R109 12/1287.62 12/1502.57 12/1207.58 
R110 11/1218.33 11/1348.78 11/1166.65 
R111 11/1104.93 11/1239.53 11/1172.66 
R112 10/1039.55 10/1242.24 10/1041.36 
RC101 15/1742.29 15/1899.97 15/1698.50 
RC102 13/1605.30 13/1780.98 13/1551.32 
RC103 11/1337.04 11/1567.12 11/1371.40 
RC104 11/1249.13 10/1353.87 10/1187.97 
RC105 15/1633.39 14/1899.54 14/1618.01 
RC106 12/1428.88 12/1620.67 12/1434.33 
RC107 12/1312.84 11/1468.59 11/1266.92 
RC108 11/1258.40 10/1326.94 10/1273.12 
C201 3/591.56 3/ 591.56  3/ 591.56 
C202 3/591.56 3/ 993.62  3/ 591.56 
C203 3/617.32 3/1065.81  3/ 605.23 
C204 3/673.46 3/1046.87  3/ 594.80 
C205 3/604.67 3/ 913.03  3/ 588.88 
C206 3/632.35 3/ 647.29  3/ 588.49 
C207 3/621.02 3/ 646.69  3/ 588.49 
C208 3/588.88 3/ 646.72  3/ 588.49 
R201 4/1308.84 4/2048.31   4/1366.34 
R202 4/1123.34 3/1755.11   3/1239.22 
R203 3/1013.59 3/1625.26   3/1000.29 
R204 3/817.60 3/1159.14   3/ 781.86 
R205 4/1022.02 3/1678.53   3/1063.29 
R206 4/963.94 3/1525.34   3/ 955.34 
R207 3/863.60 3/1258.12   3/ 866.35 
R208 3/761.94 2/1016.07   2/1016.07 
R209 4/934.45 3/1551.01   3/ 979.30 
R210 3/1000.53 3/1659.90   3/ 968.32 
R211 3/816.33 3/1143.96   3/ 865.51 
RC201 4/1704.92 4/2226.23   4/1445.00 
RC202 4/1265.78 4/1878.00   4/1204.45 
RC203 3/1118.19 3/1706.48   3/1091.71 
RC204 3/884.70 3/1342.81   3/ 826.27 
RC205 4/1435.06 4/2271.26   4/1469.25 
RC206 4/1162.96 3/1717.62   3/1259.12 
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RC207 4/1178.01 3/1733.47   3/1127.19 
RC208 3/931.76 3/1422.07   3/ 937.78 

 
 Table 8.1 is read as follows: TS refers to the results obtained using a 

standard Tabu Search implementation on MDF-TSF. ACO refers to the results after 

passing the data through derived model HASTS-EA, a predominantly ACO 

technique implemented with MDF-ACF that focus on solving the first objective 

(minimizing the fleet size of vehicles). Finally, the HASTS column tabulates the 

results obtained after the entire HASTS process mentioned earlier – in effect after a 

combination of HASTS-EA and HASTS-ED. 

Note the effectiveness of the hybrid HASTS compared against TS and ACO, 

which adequately showed the effectiveness of MDF and a divide and conquer 

hybrid approach. Also, the results from TS are generally better than ACO in this 

instance due to the different objectives of the approach. TS has an objective of 

minimizing distance, and perform it so well that for some instances, such as R202, 

it performs better in terms of distance, but is worse off by the problem definition 

specifying the fleet size as primary priority, while the ACO results focuses mainly 

on reducing the fleet size of vehicles. 

It should also be further noted that the development of the TS 

implementation takes about 3 months man-hours, while the ACO implementation 

takes a lesser amount of time at about 2 months, due to its simpler nature. 

Meanwhile, with the availability of both software frameworks, HASTS requires 

only less than a week man-hours to develop. 
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8.2 Results for IRPTW 

The results for IRPTW are obtained from an implementation that reuses the 

implementation for the VRPTW. There are no well-known sets of test cases for the 

IRPTW, but there are implementations in the literature that extends the set of test 

cases from the Solomon’s benchmark for the VRPTW with additional constraints. 

This thesis provides results for solving the same set of problems using the test 

instance generation strategy in [Lau et al.1, 2002], which provided a good set of test 

cases for IRPTW. 

Specifically, the planning period is 10 days. The vehicle capacity, locations 

and time-windows of the customers and depot are as specified in the corresponding 

Solomon instances. The demand dit of customer i for day t (t=1,…,10) is equal to 

the demand di of the Solomon instance, by partitioning the value 10*di into 10 parts, 

i.e. di1, di2,…,di,10 randomly such that dit is within the range [0.5*di, 1.5*dj]. The 

capacities of consumers and warehouse are the vehicle capacity and infinity 

respectively. As for cost coefficients, the inventory cost and backlog cost for each 

customer are 1 and 2 respectively, symbolizing a preference to holding a unit of 

inventory over a day than suffer a lost of customer trust on a backlog of a 

corresponding unit of inventory. The transportation cost of each route is 10 times its 

total distance. 

Table 8.2 shows the results of the test cases extracted from [Lau et al.1, 2002] 

in comparison with the proposed approach. Only extended test cases from the C2 

and R2 series are tabulated, which this thesis corresponding match. Furthermore, 

RC2 results are also provided to aid further studies on the problem. The columns 

VRPTW, ILS+VRP and TS+VRP denote the results obtained from [Lau et al.1, 

2002], where VRPTW is the approach taken from adopting a standard two-phase 
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heuristics; ILS+VRP is the results obtained using Iterated Local Search [Gu 1992; 

Johnson 1990]; and TS+VRP employs a Tabu Search technique. The column 

HASTS presents the results obtained using our proposed hybrid algorithm 

implemented from the MDF (ACF+TSF). 

Table 8.2: Results for IRPTW extended from Solomon’s original test cases in (costs) 
Test Cases VRPTW ILS+VRP TS+VRP HASTS 

C201 178650 113263 112821 54905 
C202 192818 117483 124312 53404 
C203 200615 131920 122055 53620 
C204 216447 136384 142300 54778 
C205 175378 116147 109248 51907 
C206 177331 123978 127876 50507 
C207 177447 122204 117735 51453 
C208 175268 124110 125667 52501 
R201 304779 111330 116893 85014 
R202 291492 116982 114717 70533 
R203 247122 110215 115070 68865 
R204 227381 114118 114118 61944 
R205 284759 122333 123009 73455 
R206 260760 120928 123251 64652 
R207 223527 115438 115438 63697 
R208 338033 120011 117255 59285 
R209 249036 116840 120725 69200 
R210 - - - 69545 
R211 - - - 61816 
RC201 - - - 97417 
RC202 - - - 87245 
RC203 - - - 80114 
RC204 - - - 71795 
RC205 - - - 92560 
RC206 - - - 86144 
RC207 - - - 83326 
RC208 - - - 71740 

 

 Results for the VRPTW, ILS+VRP, and TS+VRP columns are obtained on a 

Pentium 666MHz machine, while the results from the HASTS column is obtained 

on a Pentium 1.13GHz machine, which is estimated to perform at twice the power. 

As such, for comparison, the HASTS implementation is obtained under 90 seconds, 

to compensate for the 180 seconds upper bound used for the other implementations. 
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 With the objective being to minimize the cost, Table 8.2 amply showed that 

HASTS offers a set of superior results compared to previous works. While this 

could be due in part to the originality of IRPTW in the literature, and hence not well 

studied as yet, it can still be claimed that the effectiveness when solving VRPTW is 

not lost when reused to solve IRPTW. Furthermore, it can be seen that the 

framework provided generality and flexibility for reuse, which enabled 

development to take minimal effort and implementation to be achieved in less than 

2 weeks man-hours. 

 

8.3 Results for MPMKP 

The results presented here are those using a Tabu Search approach obtained 

from a related work [Lau et al.2, 2002], compared against an ACO-only 

implementation from ACF proposed in this thesis, to reflect the effectiveness of the 

scheme. 

The set of test cases solved in this instance is extended from the benchmark 

test cases for MKP found in the OR-LIB (http://www.ms.ic.ac.uk/jeb/pub/). OR-

LIB has a set of 0-1 MKPs generated with varying size and tightness. Te benchmark 

problems are divided into nine sets, each with a given number of items, m, and 

number of requests, n. There are 30 test cases within a set. The first 10 test cases are 

generated with a tightness ratio, α, of 0.25. The next 10 test cases are generated 

with α = 0.5, and the last 10 test cases are generated with α = 0.75. The parameters 

used in each test case are generated as follows: 

 

)1000,0(Uaij =       ………. (13) 

http://www.ms.ic.ac.uk/jeb/pub/
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where  aij is the consumed quantity of item i if object j is fulfilled 

bi is the total inventory for item i (1 ≤ i ≤ m) 

pj is the profit of object j (1 ≤ j ≤ n)  

However, this set of benchmark is for 0-1 MKP, and hence can only be used 

as test cases for the single-period multi-dimensional knapsack problem. For this 

instance, 6 sets of 7-period MPMKPs (equivalent to 7 days of a week) are generated. 

Table 8.3 demonstrates how to generate a set of 9 test cases for the MPMKP using 

the specified 7-period planning horizon from the 30 test cases in mknapcbX (1 ≤ X 

≤ 9). The first test case is generated using the first 7 test cases in mknapcbX. The 

rest of the test cases are generated by choosing another 7 test cases from the 

mknapcbX test set. The main parameters in each group are n, the number of 

requests in each periods, and m, the number of items.  

Table 8.3: The nine test cases generated from mknapcbX 
Test Cases mknapcbX test cases chosen α 

mknapcbX-m7-1-n-M-linear 1,2,3,4,5,6,7 0.25 
mknapcbX-m7-2-n-M-linear 2,3,4,5,6,7,8 0.25 
mknapcbX-m7-3-n-M-linear 3,4,5,6,7,8,9 0.25 
mknapcbX-m7-4-n-M-linear 11,12,13,14,15,16,17 0.50 
mknapcbX-m7-5-n-M-linear 12,13,14,15,16,17,18 0.50 
mknapcbX-m7-6-n-M-linear 13,14,15,16,17,18,19 0.50 
mknapcbX-m7-7-n-M-linear 21,22,23,24,25,26,27 0.75 
mknapcbX-m7-8-n-M-linear 22,23,24,25,26,27,28 0.75 
mknapcbX-m7-9-n-M-linear 23,24,25,26,27,28,29 0.75 
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Table 8.4 below compares the results obtained by heuristics methods. The 

ZTSA column reflects results obtained using a Tabu Search approach [Lau et al.2, 

2002], which has a good Greedy Algorithm as the construction phase algorithm, 

while ZACO_S3 and ZACO_S4 shows the results obtained using implementations of ACF 

with Scheme 3 and Scheme 4 respectively. ZTSA directly reference the results 

produced by [Lau et al.2, 2002].  

For purpose of this thesis, ACO Scheme 4 is limited to within 180 seconds, 

to show the capability of ACO to produce good solutions fast, as well as a basis of 

comparison between the heuristic approaches, while Scheme 3 which is 

hypothetically weaker is allowed a complete run on 1000 iterations with 10 ants. 

Table 8.4: Results for mknapcbX (1≤X≤9) set of test cases in (profits) 
Test cases ZTSA ZACO_S3 ZACO_S4 

mknapcb1-m7-1-100-5 170394 166108.80 172991.50 
mknapcb1-m7-2-100-5 170403 167630.00 174511.50 
mknapcb1-m7-3-100-5 165766 163075.80 169773.70 
mknapcb1-m7-4-100-5 301046 298855.40 305530.00 
mknapcb1-m7-5-100-5 302202 297823.40 305165.70 
mknapcb1-m7-6-100-5 300691 292329.70 301130.00 
mknapcb1-m7-7-100-5 421542 415505.30 422760.60 
mknapcb1-m7-8-100-5 426364 421160.10 428271.50 
mknapcb1-m7-9-100-5 425243 424004.80 430210.40 
mknapcb2-m7-1-250-5 422142 413640.40 419683.10 
mknapcb2-m7-2-250-5 423560 418154.50 423564.00 
mknapcb2-m7-3-250-5 422531 421054.40 426623.40 
mknapcb2-m7-4-250-5 762490 760213.90 766470.50 
mknapcb2-m7-5-250-5 766521 758573.50 765164.90 
mknapcb2-m7-6-250-5 761451 750241.40 756247.30 
mknapcb2-m7-7-250-5 1050350 1043238.40 1051298.40 
mknapcb2-m7-8-250-5 1049140 1052362.80 1059225.60 
mknapcb2-m7-9-250-5 1050460 1062571.90 1069669.60 
mknapcb3-m7-1-500-5 842117 830083.10 835461.30 
mknapcb3-m7-2-500-5 841800 835786.70 842117.00 
mknapcb3-m7-3-500-5 848891 858047.80 863560.60 
mknapcb3-m7-4-500-5 1542250 1532538.90 1539289.40 
mknapcb3-m7-5-500-5 1539590 1542718.20 1548729.80 
mknapcb3-m7-6-500-5 1523470 1529134.10 1534857.90 
mknapcb3-m7-7-500-5 2107850 2086118.00 2094827.10 
mknapcb3-m7-8-500-5 2114540 2129949.20 2135511.20 
mknapcb3-m7-9-500-5 2106420 2110473.10 2115925.40 
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mknapcb4-m7-1-100-10 162173 154759.50 164829.00 
mknapcb4-m7-2-100-10 159706 149624.70 159609.00 
mknapcb4-m7-3-100-10 161311 152395.80 163004.00 
mknapcb4-m7-4-100-10 301580 283156.90 294177.00 
mknapcb4-m7-5-100-10 306173 303296.70 312527.20 
mknapcb4-m7-6-100-10 296748 294717.00 303522.60 
mknapcb4-m7-7-100-10 414000 388742.50 399290.30 
mknapcb4-m7-8-100-10 420116 407112.20 415442.70 
mknapcb4-m7-9-100-10 419433 408924.70 417419.10 
mknapcb5-m7-1-250-10 410521 406566.70 417525.6 
mknapcb5-m7-2-250-10 414048 403700.80 414371.00 
mknapcb5-m7-3-250-10 411796 400603.70 411412.50 
mknapcb5-m7-4-250-10 760319 761432.70 772740.60 
mknapcb5-m7-5-250-10 760858 755473.40 768019.1 
mknapcb5-m7-6-250-10 758738 752282.50 762944.30 
mknapcb5-m7-7-250-10 1059590 1049603.20 1059568.00 
mknapcb5-m7-8-250-10 1056350 1049558.70 1058926.10 
mknapcb5-m7-9-250-10 1058770 1043742.00 1051996.90 
mknapcb6-m7-1-500-10 821095 809800.50 818143.40 
mknapcb6-m7-2-500-10 826232 820644.40 829577.60 
mknapcb6-m7-3-500-10 825980 826518.00 834593.10 
mknapcb6-m7-4-500-10 1502780 1508633.60 1518613.30 
mknapcb6-m7-5-500-10 1518870 1507663.00 1519139.60 
mknapcb6-m7-6-500-10 1512120 1509724.60 1520753.90 
mknapcb6-m7-7-500-10 2106780 2100039.90 2113689.30 
mknapcb6-m7-8-500-10 2107940 2081950.70 2095697.90 
mknapcb6-m7-9-500-10 2103260 2091771.60 2104327.60 
mknapcb7-m7-1-100-30 156032 142178.50 157007.80 
mknapcb7-m7-2-100-30 156368 141355.00 157205.00 
mknapcb7-m7-3-100-30 154808 141638.20 156960.40 
mknapcb7-m7-4-100-30 289066 268620.40 285293.20 
mknapcb7-m7-5-100-30 294527 272348.40 289700.00 
mknapcb7-m7-6-100-30 294653 268390.60 285656.20 
mknapcb7-m7-7-100-30 410677 390187.30 403545.20 
mknapcb7-m7-8-100-30 417794 400152.80 414011.40 
mknapcb7-m7-9-100-30 415666 381110.70 392733.50 
mknapcb8-m7-1-250-30 399999 382107.60 401183.90 
mknapcb8-m7-2-250-30 401153 386723.90 405881.50 
mknapcb8-m7-3-250-30 399017 382146.10 403577.00 
mknapcb8-m7-4-250-30 747851 728399.60 752444.60 
mknapcb8-m7-5-250-30 750229 726118.70 745073.40 
mknapcb8-m7-6-250-30 747512 727883.60 749204.90 
mknapcb8-m7-7-250-30 1039310 1013280.80 1031130.80 
mknapcb8-m7-8-250-30 1054980 1026651.60 1045940.70 
mknapcb8-m7-9-250-30 1052480 1017275.90 1039318.60 
mknapcb9-m7-1-500-30 792223 788881.80 808691.90 
mknapcb9-m7-2-500-30 801077 785644.40 807627.50 
mknapcb9-m7-3-500-30 806659 791132.70 814975.3 
mknapcb9-m7-4-500-30 1500320 1488875.30 1510488.60 
mknapcb9-m7-5-500-30 1496240 1486699.30 1514131.40 
mknapcb9-m7-6-500-30 1499550 1476969.40 1500447.20 
mknapcb9-m7-7-500-30 2097630 2060330.90 2086525.60 
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mknapcb9-m7-8-500-30 2101080 2065677.20 2091225.70 
mknapcb9-m7-9-500-30 2112110 2070480.50 2092516.40 

 

 The table shows that out of the 81 test cases executed, the ACF 

implementation with Scheme 4 yields better results for 53 test cases, with a 

considerably small margin for many of these cases. On the other hand, for the 28 

test cases where TS is better than ACO Scheme 4, the profit value had a lower ratio 

compared to the average performance of the other 53 test cases. Meanwhile, ACO 

Scheme 3 is comparatively weaker than both TS and Scheme 4. However, the 

objective of MPMKP, as defined by the available-to-promise problem, is to find 

good solutions fast, and Table 8.5 tabulates the time taken to achieve the results.  

Table 8.5: Run time for mknapcbX (1≤X≤9) set of test cases in (seconds) 
Test cases CPUTSA CPUACO_S3 CPUACO_S4 

mknapcb1-m7-1-100-5 14.87 15.38 15.68 
mknapcb1-m7-2-100-5 14.71 5.57 1.92 
mknapcb1-m7-3-100-5 14.68 6.33 2.86 
mknapcb1-m7-4-100-5 41.77 9.89 7.03 
mknapcb1-m7-5-100-5 47.89 8.44 5.37 
mknapcb1-m7-6-100-5 51.71 9.45 8.33 
mknapcb1-m7-7-100-5 147.69 8.48 4.14 
mknapcb1-m7-8-100-5 106.53 8.46 4.28 
mknapcb1-m7-9-100-5 123.12 14.48 10.77 
mknapcb2-m7-1-250-5 152.51 192.67 12.36 
mknapcb2-m7-2-250-5 166.85 293.07 18.10 
mknapcb2-m7-3-250-5 128.88 222.57 12.11 
mknapcb2-m7-4-250-5 494.74 207.18 19.30 
mknapcb2-m7-5-250-5 513.16 142.51 19.54 
mknapcb2-m7-6-250-5 529.77 199.06 19.10 
mknapcb2-m7-7-250-5 699.59 213.93 113.92 
mknapcb2-m7-8-250-5 711.66 113.30 37.89 
mknapcb2-m7-9-250-5 706.03 100.51 25.27 
mknapcb3-m7-1-500-5 756.36 886.24 345.23 
mknapcb3-m7-2-500-5 732.61 951.93 52.52 
mknapcb3-m7-3-500-5 643.13 1060.97 52.84 
mknapcb3-m7-4-500-5 821.59 933.63 87.69 
mknapcb3-m7-5-500-5 849.69 548.14 86.12 
mknapcb3-m7-6-500-5 815.20 609.20 118.05 
mknapcb3-m7-7-500-5 241.60 655.44 107.5 
mknapcb3-m7-8-500-5 236.46 678.25 109.32 
mknapcb3-m7-9-500-5 238.99 730.92 105.78 
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mknapcb4-m7-1-100-10 13.63 5.38 5.15 
mknapcb4-m7-2-100-10 13.02 3.75 2.03 
mknapcb4-m7-3-100-10 13.40 3.44 2.22 
mknapcb4-m7-4-100-10 41.86 8.47 6.92 
mknapcb4-m7-5-100-10 46.40 6.66 5.57 
mknapcb4-m7-6-100-10 42.41 4.65 3.54 
mknapcb4-m7-7-100-10 148.19 5.59 4.68 
mknapcb4-m7-8-100-10 194.19 9.19 4.38 
mknapcb4-m7-9-100-10 140.76 12.38 6.65 
mknapcb5-m7-1-250-10 108.14 88.61 12.48 
mknapcb5-m7-2-250-10 107.89 94.72 12.83 
mknapcb5-m7-3-250-10 118.30 138.93 12.54 
mknapcb5-m7-4-250-10 475.93 136.05 22.33 
mknapcb5-m7-5-250-10 501.04 69.51 33.21 
mknapcb5-m7-6-250-10 572.33 125.85 22.06 
mknapcb5-m7-7-250-10 691.45 129.48 30.40 
mknapcb5-m7-8-250-10 744.97 85.79 30.91 
mknapcb5-m7-9-250-10 741.83 93.68 45.36 
mknapcb6-m7-1-500-10 160.56 453.39 51.65 
mknapcb6-m7-2-500-10 161.94 526.34 51.15 
mknapcb6-m7-3-500-10 164.45 525.70 79.85 
mknapcb6-m7-4-500-10 271.30 682.82 91.91 
mknapcb6-m7-5-500-10 270.60 549.18 97.77 
mknapcb6-m7-6-500-10 273.84 605.56 100.96 
mknapcb6-m7-7-500-10 345.11 587.36 112.00 
mknapcb6-m7-8-500-10 338.53 630.59 114.46 
mknapcb6-m7-9-500-10 349.79 577.76 170.86 
mknapcb7-m7-1-100-30 17.28 6.29 2.78 
mknapcb7-m7-2-100-30 18.11 5.99 2.93 
mknapcb7-m7-3-100-30 15.93 26.21 26.79 
mknapcb7-m7-4-100-30 53.57 12.88 7.35 
mknapcb7-m7-5-100-30 61.70 9.64 4.54 
mknapcb7-m7-6-100-30 57.02 40.64 37.82 
mknapcb7-m7-7-100-30 141.62 60.93 59.33 
mknapcb7-m7-8-100-30 158.40 21.97 11.62 
mknapcb7-m7-9-100-30 145.26 21.93 11.15 
mknapcb8-m7-1-250-30 145.23 60.83 15.96 
mknapcb8-m7-2-250-30 140.72 82.88 49.33 
mknapcb8-m7-3-250-30 165.32 76.75 16.90 
mknapcb8-m7-4-250-30 560.62 122.78 28.91 
mknapcb8-m7-5-250-30 599.01 69.53 28.75 
mknapcb8-m7-6-250-30 559.06 92.29 28.58 
mknapcb8-m7-7-250-30 816.74 107.42 57.06 
mknapcb8-m7-8-250-30 858.27 128.04 59.63 
mknapcb8-m7-9-250-30 838.59 104.44 39.13 
mknapcb9-m7-1-500-30 145.23 470.73 69.17 
mknapcb9-m7-2-500-30 286.24 495.76 68.62 
mknapcb9-m7-3-500-30 288.55 478.81 80.31 
mknapcb9-m7-4-500-30 286.41 571.76 165.83 
mknapcb9-m7-5-500-30 500.72 578.27 122.91 
mknapcb9-m7-6-500-30 507.14 575.78 121.01 
mknapcb9-m7-7-500-30 502.03 756.60 172.06 
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mknapcb9-m7-8-500-30 642.25 737.34 161.69 
mknapcb9-m7-9-500-30 641.26 644.54 170.15 

 

Tables 8.5 sufficiently show the time efficiency with which TSA and the 

two ACO approaches obtain near-optimal solutions. Interestingly, ACO Scheme 4 

comes within 6% deviation of the upper bound obtained from CPLEX4). ACO 

which operates by solution reconstruction of each ant, coupled with an effective 

scheme, local heuristics and parameters tuning, is effective in gauging the 

optimality of the problem overall. All the heuristic approaches are also able to 

provide a constant estimation of the problem optimality at a fixed (early) time, 

though the random nature of ACO makes it a slightly less suitable candidate in such 

situations. In particular, this slight disadvantage is however easily redeemed by the 

speed of Scheme 4. This overall performance enhances our argument that Scheme 4 

is an effective ACO scheme for hard scheduling problems. This is further noted 

when sample implementations using generic ACO approaches, as well as the 

implementation using Scheme 3 is executed in the lab, where it is seen from Table 

8.4 that the results are way under par compared to Scheme 4 or the TSA approach. 

Furthermore, the CPU time for Scheme 3, seen from Table 8.5, approximates the 

CPU time for the TSA approach, which is weaker than the Scheme 4 

implementation in most cases. 

It is also observed that TSA is somewhat dependent on the tightness ratio   

of the problem, rather than on the problem size. ACO is less sensitive than TSA to 

the tightness ratio. The disadvantage of ACO, however, is in the intrinsic way it 

operates using a new solution construction in all iterations, and hence it is more 

sensitive to problem size. This is as due to its complexity, which in uses an O(xn2) 

                                                 
4 The upper bounds were obtained after running CPLEX for 2 hours.  
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and O(xn3) ACO implementation for Scheme 4 and Scheme 3 respectively, and 

hence there is not many iterations that can be executed, unless the code is further 

optimized. Hence, when the problem size is very large, such as when number of 

requests is much greater than 500, or the time-period much greater than 7, TSA will 

prove to be a more effective approach, although in the set of test cases 

experimented (mknapcb9 being the largest problem size with 500 requests per 

period and 30 items), ACO Scheme 4 still outperform TSA in terms of the ability to 

allow for quick decision. Regardless, when the problem size gets large, and given 

the limitations of the ACO algorithms as discussed in this thesis, the algorithm 

requires diversification or extreme exploration, or collaboration of ACO Scheme 4 

as a construction phase algorithm together with a local search technique like Tabu 

Search for the optimization phase. The results also proved the potential of the time-

period scheme specified by ACO Scheme 4 over a generic scheme like ACO 

Scheme 3 in dealing with time-period constraints. 
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CHAPTER 9 

Conclusion  

 This thesis presented the operations of the Ant Colony Optimization, and 

extracted observations on the algorithm to develop a generic ACO software 

framework. ACO, which is inspired from the foraging behavior of real ants colony, 

does not work exactly as how the real ants operate, using additional modifications 

which adapt it better into an optimizing algorithm, in particular when employing the 

concept of diversification. However, the modifications have allowed promising 

applications to many problems, although the terminology generally used in the 

community, in relation to the real ant colonies, may arguably be inappropriate. 

The Ant Colony Framework (ACF) is developed with a twofold purpose 

capable of serving as a standalone ACO software framework, as well as being a 

component framework in a higher level Meta-heuristics Development Framework 

(MDF) that is an overseer framework capable of integrating any number of separate 

heuristics to aid algorithmic collaboration and performance comparisons. 

 A primary objective of the thesis is to demonstrate the potential of reuse in 

the framework, which can decrease developmental resources and increase 

productivity. In particular, it is shown how ACF, together with other heuristics 

framework of MDF, can be easily adapted from one implementation solving 

VRPTW (which uses a TSP implementation not explicitly established in this thesis) 

to solve IRPTW, which is an extended problem of VRPTW. The VRPTW 

implementations obtained good results, even when compared against state-of-the-art 

techniques in the literature, and when reused for IRPTW, the excellent results 

achieved clearly show the value of reuse in this instance. By induction, it is logical 
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to state that as long as a good implementation is found for a base problem, it is 

simple to reuse that implementation for similar or extended scenarios of that base 

problem. While the ACO algorithm can be implemented in a serial and parallel 

manner, this thesis follows the classic serial approach applied in most works in the 

literature, although a parallel formulation makes more sense, as this will more 

closely follows the behavior of real ants.  

 A secondary objective of this thesis deals with presenting useful schemes 

which developers of the ACO algorithm can exploit for various situations. Besides a 

few generic and/or common schemes, of concern is the current state of the 

community in moving towards the time-period dimension of many classic problems 

to better approximate practical applications. As such, schemes for ACO that 

exploits the time-period properties are examined and encouraging running time 

performance for the MPMKP, which is a single time dimension extension of MKP, 

are obtained. 

 The current development opens avenue for future works, such as the further 

development of MDF, in the context of improving the collaboration between the 

existing engines, as well as introducing new algorithms. As well, more schemes can 

be formulated to cater for different classes of problems. Another potential is the use 

of ACF to hybridize with other engines in MDF to solve for other classic and/or 

industrial problems not examined previously. Furthermore, it is also interesting to 

explore a complete parallel implementation which was not examined. 
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