

Ant Colony Meta-heuristics –

Schemes and Software Framework

Lim Min Kwang
(B.Eng (Computer Engineering) (Hons I), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48645521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ACKNOWLEDGEMENTS

I would like to express sincere thanks to Dr. Lau Hoong Chuin for his kind

supervision, insight, and contributions to this thesis, as well as work related,

without whom the accomplishment would have took a much longer. Thanks are

due too to Mr. Wan Wee Chong and the folks in the Computational Logistic Lab

(CLL) as well as the several of the research engineers at TLI-AP for several

collaborative efforts of this thesis. Also, I would take this opportunity to expresse

gratitude to Ms. Loo Line Fong and Ms. Agnes Ang who handled the

administrative aspects for my program.

Academic facets aside, this work would not be possible without support

from the managers at Cisco Systems, Inc. for their support of the research relating

to this thesis. Also, I like to thank my family and Ms. Yeo Shu Ern for their

support and understanding for the time that was spent on the computer working

overtime on this thesis, instead of being with them. I really like the snacks that

seem to appear besides my computer periodically.

And finally to everyone who helped, support, and kept my spirits and

motivations high. Thank you.

ii

TABLE OF CONTENTS

Acknowledgements i

Table of Contents ii

List of Figures iv

List of Tables v

Summary vi

Chapter 1 Introduction - 1 -

Chapter 2 Literature Review - 8 -

2.1 Traditional Approaches - 8 -

2.2 Heuristics Approaches - 9 -

2.3 Ant Colony Optimization - 15 -

2.4 Software Framework - 17 -

Chapter 3 Problems Definition - 20 -

3.1 Traveling Salesman Problem - 21 -

3.2 Vehicle Routing Problem (with Time Window) - 22 -

3.3 Inventory Routing Problem (with Time Window) - 24 -

3.4 Multi-Dimensional Knapsack Problem - 27 -

3.5 Multi-Period Multi-Dimensional Knapsack Problem - 29 -

Chapter 4 Ant Colony Optimization - 32 -

4.1 The Ants Metaphor - 32 -

4.2 Algorithmic Structure - 34 -

4.3 Standard Features of ACO - 35 -

4.4 Observations on ACO implementations - 40 -

4.5 Hypothesis of ACO - 45 -

iii

Chapter 5 Software Framework - 48 -

5.1 Meta-heuristics Development Framework - 48 -

5.2 Overview of Framework - 49 -

5.3 ACF - 51 -

5.4 TSF - 54 -

5.5 SAF - 55 -

Chapter 6 ACO schemes - 57 -

6.1 Basic ACO scheme - 57 -

6.2 Variable exploitation factor schemes - 57 -

6. 3 Schemes that handle Time explicitly - 59 -

6. 4 Decay schemes - 61 -

Chapter 7 Solution Approach - 64 -

7.1 Sample Implementation – HASTS - 64 -

7.2 VRPTW - 70 -

7.3 IRPTW - 74 -

7.4 MPMKP - 76 -

Chapter 8 Results and Discussions - 79 -

8.1 Results for VRPTW - 79 -

8.2 Results for IRPTW - 82 -

8.3 Results for MPMKP - 84 -

Chapter 9 Conclusions - 92 -

References - 94 -

iv

LIST OF FIGURES

Figure 2.1: Local Optimal - 11 -

Figure 4.1: Real ants finding shortest path - 33 -

Figure 4.2: ACO algorithmic framework - 35 -

Figure 4.3: Change in pheromone trail - 43 -

Figure 5.1: Architecture of MDF - 50 -

Figure 5.2: Ant Colony Framework architecture (in the context of

MDF)
- 52 -

Figure 6.1: Pseudo-code structure of the pheromone trail - 60 -

Figure 7.1: Derived Models of HASTS - 66 -

Figure 7.2: Pseudo-code of HASTS-EA - 68 -

Figure 7.3: Example of a “crossings” - 69 -

Figure 7.4: Reuse of ACO implementation - 72 -

Figure 7.5: Code Fragment implementation for VRPTW objective 1 - 73 -

Figure 7.6: Code Fragment implementation for VRPTW objective 3 - 76 -

Figure 7.7: Code Fragment implementation for MKP - 77 -

Figure 7.8: Code Fragment implementation for MPMKP - 78 -

v

LIST OF TABLES

Table 8.1: Results for VRPTW from the Solomon’s original test

cases (n=100)
- 79 -

Table 8.2: Results for IRPTW extended from Solomon’s original

test cases
- 83 -

Table 8.3: The nine test cases generated for mknapcbX - 85 -

Table 8.4: Results for mknapcbX (1≤X≤9) set of test cases - 86 -

Table 8.5: Run time for mknapcbX (1≤X≤9) set of test cases - 88 -

vi

SUMMARY

Ant Colony Optimization (ACO) was first proposed as Ant System (AS)

by [Dorigo et al., 1991], revised in [Dorigo et al., 1996], as a strain of swarm

intelligence algorithm, exploiting the foraging behavior of ants. Ants individually

are sub-intelligent species, but share information using a chemical called

pheromone that allows the colony to seek out optimal amount of food. ACO had

efficiently been utilized to solve many NP-hard problems such as the Quadratic

Assignment Problem (QAP) [Gambardella et al.2, 1999], Traveling Salesman

Problem (TSP) [Dorigo et al., 1991; Leguizamon and Michalewicz, 1999; Stutzle

and Dorigo, 1999], Knapsack Problem (KP) [Fidanova1, 2002; Fidanova2, 2002],

as well as more complex problems extended from these problems. The nature of

the algorithm is such that it is extremely suited to solve assignment type problems,

commonly a feature of combinatorial and assignment optimization problems.

However, for complex problems with increasing number of constraints, ACO by

itself tend to be less powerful, due in part to redundant solution construction

cycles. Hence, most implementation of ACO in the literature either breaks down a

complex problem into smaller parts, or integrates ACO with another local search

heuristics, most commonly Tabu Search, to achieve results that perform better

than the individual component algorithms. This motivates a need for an ACO

software framework. This forms the primary objective of this thesis. By

examining the logic and operation of ACO, a C++ software framework is

proposed that is capable of implementation by itself, or integrating with other

heuristics software framework via a higher level meta-heuristics framework. In

particular, the concept of reuse is essential, to exploit the similarities of many

vii

problems, particular those extended from simpler problems. It is demonstrated

how instance implementations for the Vehicle Routing Problem with Time

Window (VRPTW), using generic Traveling Salesman Problem (TSP)

implementations, are solved, and further extended to solve the Inventory Routing

Problem with Time Window (IRPTW) with promising results. Aside from the

software framework, the secondary objective of the thesis explores various factors

of the ACO algorithm that are exploitable to achieve efficient results for complex

problems, such as multi-period scheduling problems like IRPTW or the Multi-

Period Multi-Dimensional Knapsack Problem (MPMKP). This allowed the

development of an ACO scheme that specializes in handling the third dimension

of most extended problems – time. Results from solving the various problems

(VRPTW, IRPTW, and MPMKP) are then presented to prove the case. It is

demonstrated how the framework allowed reuse which saved development time,

yet providing excellent results by extending implementations solving VRPTW to

the IRPTW; and the results for MPMKP showed the effectiveness of the proposed

ACO scheme that is good at handling time notation problems.

- 1 -

CHAPTER 1

Introduction

The humanly instinctive solution to any arbitrary search or optimization

problems would be an exhaustive brute-force approach. The discovery of the notion

of non-deterministic polynomial (NP) completeness in complexity theory [Garey

and Johnson, 1979] unveils the property that there are many NP-hard search or

optimization problems whose solutions are easy to verify in polynomial time, but

computationally intractable to find. Brute-force approach is not feasible in such

instances under the existing von-Newman machine model. This motivates the

development of intelligent exact methods able to achieve good results in efficient

time.

However, exact methods, while ensuring optimality, are often not feasible or

practical when solving NP-hard problems, especially those of large problem size.

This led to the development of meta-heuristics, which manages approximate

methods (heuristics), to search for optimal solutions. Such approaches have been

developed to achieve very good results for solving NP-hard problems in record time,

making industry application, in particular in the field of logistics, very efficient.

However, most of the best performing meta-heuristics to date had been algorithms

of the optimization phase using a two-phase approach (construction phase and local

improvement phase). This motivates a need for a good construction phase algorithm.

In this research of meta-heuristics, the community has recently progressed to

a new age. The observation of nature has yielded many interesting algorithms adept

at solving problems of many types. Nature has many creatures which have existed

for a long time, based on their ability to survive. In particular interest are creatures

- 2 -

of extremely low intelligence, but yet are able to persist. One such survivor is the

ant, which date back at least 92 million years

[http://www.antcolony.org/oldest_ant.htm].

Ant Colony Optimization (ACO) was first proposed by Marco Dorigo in his

PhD thesis [Dorigo et al., 1991]. It was originally used to solve hard combinatorial

optimization problems like the Quadratic Assignment Problem (QAP), and the

Traveling Salesman Problem (TSP). ACO is also capable of solving dynamic

problems such as network flow in an environment like the Internet. For instance,

[Schoonderwoerd et al., 1997] developed an ACO algorithm called ABC for routing

and load balancing in circuit switched telecommunications networks, and [Di Caro

and Dorigo, 1998] proposed AntNet, another ACO algorithm applied to routing in

packet switched telecommunications network. As a developing meta-heuristics,

ACO swiftly achieved recognition when it was shown to be able to achieve

excellent results for many other problems like the Vehicle Routing Problem with

Time Window (VRPTW) and the Multi-Dimensional Knapsack Problem (MKP).

 ACO is inspired by the foraging behavior of an ant colony. ACO is a

particular class of meta-heuristics derived from nature, amongst other categories

that include evolutional algorithms, neural networks, and simulated annealing. In

particular, ACO is a type of swarm intelligence algorithms that had been gaining

popularity. For instance, there are algorithms of similar classes that follow the

behavior of bees (Particular Swarm Optimization) [Parsopoulos and Vrahatis, 2002],

bird flocks (Squeaky Wheel Optimization) [Joslin and Clements, 1999], and even

mammals like lab rats [Yufik and Sheridan, 2002]. ACO, however, proves to be

more welcomed in the community, in part due to the algorithm being naturally

intuitive, easy to understand and implement, but mainly because of the powerful

http://www.antcolony.org/oldest_ant.htm

- 3 -

results that have been obtained, especially in collaboration with other established

local search algorithms like Tabu Search (TS), Genetic Algorithm (GA), Simulated

Annealing (SA), etc., for more complex problems. This is especially true of

combinatorial and assignment type problems like TSP, QAP and the sequential

ordering problem, where ACO outperform all known algorithms on the majority of

classes in benchmark problems. It should, however, be noted that there are

differences in the operations of the algorithm as opposed to the way real ants work.

Regardless, this rest of this thesis will stick to the terminology to properly address

the community.

 Colonies of real ants uses a chemical substance called pheromone as they

traverse to and from the nest and food sources. They lay a higher concentration of

pheromone on trails which have a correspondingly better quality food (as defined

by the ants themselves, like more appropriate food type for ants, or larger quantities,

etc.). Instinctively, the better quality food sources would have more ants traversing

the route in between. As such, the pheromone laid on the trail would be of a higher

concentration then otherwise. This pheromone is also the cause of why troops of

ants tend to travel in a trail rather than haphazardly, which happens only when an

ant is exploring for food. For most of the time, an ant would exploit a trail with a

higher concentration of pheromones, since it is more probable to lead to better food.

This pheromone will also evaporate into the air as time passes, and the ants will

need to constantly reinforce the pheromone. As the quality of the food sources

diminished, lesser ants will travel on the route, and hence lesser pheromone.

Using the pheromone trail as an inspiration for the communication medium,

ACO is developed which allowed individual ants – corresponding to a single

optimization agent – to have simple intelligence (and hence simple to understand

- 4 -

and implement), but be able to share information which allowed a synergistic effect

for the entire colony. By exploiting the power of probability common in many

successful meta-heuristics, ACO allows individual agents to explore and exploit the

pheromone trails, using the pheromone trail to construct solutions of good quality.

The soundness in the logic lies in that the ants will have heavy pheromone

concentration on the best found solution thus far, and then search around the

neighborhood of this best found solution, which tend to yield improving results.

However, this usually leads to local optimal which traps the search process, as in

many other meta-heuristics. The ACO algorithm then deviates from how biological

ants work by proposing new modifications beyond the ants metaphor. Techniques

are introduced in the optimization community, such as the concept of using local

decay to diversify the search, is not what real ants do, among other proposals.

Hence, technically, real ants do not operate as “optimally”, and there is a wide

variant, as well as arguable ground on how close the algorithm works according to

its original inspiring creature.

These modifications arises because the initial proposal of ACO, Ant System

(AS), while yielding encouraging initial results, could not compete with the best

algorithms in the community for most problems like the TSP. However, the

simplicity but potential of the idea stimulated research that added many variants

which had to date been used to solve many benchmark problems with good

performance.

The recent interest in the community regarding the developing ACO

motivates this thesis. For instance, there are many specific conferences dedicated to

ACO [http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html], as well as many

publications about ACO in logistics and optimization conferences and journals.

http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html

- 5 -

Also, due to the nature of randomized solution construction by each ant in an ACO

iteration, the algorithm can be seen as a type of traditional construction heuristics in

a typical two phase heuristics. Furthermore, ACO by itself is also quite capable of

performing optimization, using the pheromone trails. Such flexibility suggests an

excellent potential for collaboration with other strains of ACO, or with other local

search heuristics which complements ACO well, and motivates the development of

a software framework.

As such, the primary objective of the thesis is to present a software

framework that provides the guideline for a developer to easily implement ACO.

There had been ACO algorithm framework proposals [Dorigo and Di Caro, 1999;

Blum and Dorigo, 2001], but no popular software framework on ACO. This is in

part due to the difficulty to create a software framework that is to become popular,

as apparent from the lack of such framework. As such, this framework should also

be generic enough that it allows easy integration and collaboration with other meta-

heuristics, as the most powerful results in the literature are usually those of hybrid

techniques.

Another key factor in the software framework would be re-use, such that

implementation for one problem can be easily re-cycled to solve similar or extended

problems. Reusability will significantly reduce the costs of development and

research. These will contribute to the success of any meta-heuristics framework. By

allowing ease of use, easy reusability, and easy collaboration with any other

arbitrary technique, the thesis hopes to present a framework that will be a base

standard in ACO development. In particular, this thesis demonstrates a powerful

collaboration with the existing Tabu Search Framework (TSF++) [Wan, 2002; Lau

et al.1, 2003].

- 6 -

Furthermore, the simplicity in which ACO works further inspires research

for this thesis. Each agent (artificial ant) has only primitive intelligence (a basic if-

else decision making most of the time, such as “to go here, or there”), but made use

of a shared medium to communication, thereby achieving synergistic effect that can

beat the results achieved by another intellectively superior species. The thesis hopes

to explore certain properties of ACO that makes it powerful, and present schemes

that exploit these properties that is adept at solving different classes of problems.

For instance, ACO had also been very successful in solving problems that had

extended constraints. There are variations of ACO that had solved the VRPTW with

top results in the literature [Gambardella et al.1, 1999]. Similarly, we see ACO

proposals in the literature solving the MKP [Fidanova1, 2002; Fidanova2, 2002;

Leguizamon and Michalewicz, 1999]. Respectively, VRPTW is derived from VRP,

which in turn is derived from TSP, with additional constraints, as such time window;

while MKP is a generalization of the 0-1 Knapsack Problem (KP). In the analogy of

geometry, these extended problems have constraints that correlate in the dimension

of space (second dimension). This thesis proposes schemes for ACO that is

conducive to solving a further generalized form of these generic problems, which

even more closely corresponds to practical scenarios in the industry – time period.

This dimension correlates to the dimension of time in geometry. Examples of such

problems are the Inventory Routing Problem with Time Window (IRPTW),

extended from the VRPTW; and the Multi-Period Multi-Dimension Knapsack

Problem (MPMKP), both which are examined in this thesis.

The rest of this thesis is organized as follows. In Chapter 2, we review

related works in the literature. Chapter 3 provides further background and

mathematical formulations for the some problems that are examined in this thesis.

- 7 -

Chapter 4 provides a detailed examination into the operations of the ACO meta-

heuristics, and how it has the potential to adapt to a software framework. Chapter 5

demonstrates how the actual ACO software framework is designed, with relations

to a generic meta-heuristics development framework comprising of other algorithms

as well. Chapter 6 focuses on the secondary objective of the thesis and presents

several ACO schemes that can be exploited to improve results according to the

problems to be solved. Chapter 7 examines the hybridization of ACO with Tabu

Search and the solution approach to obtain the results to the benchmarks problems

presented in Chapter 8, which also provides discussions on the results obtained.

Chapter 9 concludes the thesis.

- 8 -

CHAPTER 2

Literature Review

 This chapter examines the works in the literature that leads to and including

the development of ACO. The first section looks at traditional problem solving

approaches – exact methods – prior to the introduction of meta-heuristics. The

second section then delves in detail on heuristics and meta-heuristics. This leads to

the class of meta-heuristics that follow observations of nature, of which include

ACO, where related works are presented in the third section. The chapter then

concludes with a section on current meta-heuristics software framework in the

community.

2.1 Traditional Approaches

Exact methods are guaranteed to find optimal solution, and for problems of

polynomial complexity, optimality can be achieved in polynomial time. Some

popular fundamental exact methods include divide and conquer [Bentley, 1980;

Knuth, 1968; Knuth, 1973], branch and bound [Narendra and Fukunaga, 1977;

Nemhauser and Wolsey, 1988; Zhang, 1993; Crowder and Padberg, 1980], cutting

plane [Applegate et al., 1995; Bahn et al., 1994; Elhedhi and Goffin, 2001; Padberg

and Grotschel, 1995; Padberg and Rinaldi, 1987; Padberg and Rinaldi, 1990;

Fleischmann, 1985], branch and cut [Agarwal et al., 1989; Araque et al., 1994;

Augerat et al., 1995; Crowder and Padberg, 1980; Grotschel and Holland, 1991;

Junger and Stormer, 1995; Lin and Kernighan, 1973; Naddef and Rinaldi, 2000;

Ralphs, 2003; Ralphs et al., 2003], and dynamic programming [Bellman, 1957].

- 9 -

Unfortunately, many important combinatorial optimization problems are

NP-hard in nature. The theory of computational complexity [Garey and Johnson,

1979; Papadimitriou, 1994] present a rich collection of such problems. It is well-

known that for NP-hard problems, exact methods take an exponential amount of

computational resources in the worst case, which renders them impractical for

large-scale instances. Heuristics method then became the feasible way to solve

complex problems. A heuristics approach tends to be significantly faster and

provide good solutions. The downside, however, is that they do not guarantee

optimality. But for most practical application, especially real-time situations, it is

usually sufficient to obtain near optimal results in the shortest time possible.

2.2 Heuristics Approaches

 The feasibility of heuristics approach in solving hard problems is a key

factor in their widespread popularity in the literature, as they strive to discover near

optimal, and sometimes optimal, solutions to hard problems in record time. The

word “heuristics” arises from the Greek verb heuriskein, meaning “find” or

“discover”. Heuristics in current context means “rules of thumb” or techniques that

improve the average-case performance of a problem-solving task.

 Meta-heuristics are a further development from heuristics. It literally means

“heuristics for managing heuristics”, and controls the collaboration of one or more

heuristics, searching for a better solution than any single heuristics. Meta-heuristics

focus on what makes a good solution, rather than how to find a good solution. By

induction, meta-heuristics algorithms are well-suited to solving hard problems too

complex or time-consuming to solve using traditional approaches, since it is easier

to define what makes a good solution then how to find one, especially for NP-hard

- 10 -

problems. This is especially useful in the earlier part of the solution search to reduce

the scope of the problem to feasible size (sometimes even small enough to be solve

using exact methods).

2.2.1 Two-phase approach

 Classically, most meta-heuristics are either construction algorithms,

optimization algorithms, or a mix of both (two phase approach), (e.g. [Bentley,

1980; Gehring and Homberger, 2001; Schulze and Fahle, 1999]). The two types of

approaches are considerably different. Construction algorithms work on empty or

partial solution and try to extend them in the best possible way to complete problem

solutions, while optimization algorithms work on an already completed solution and

look around the solution space trying to upgrade the quality of the current solution.

Thus far, better results are achieved with optimization algorithms, mostly in

conjunction with problem-specific construction algorithms like Tabu Search,

Simulated Annealing, Genetic Algorithm, etc. However, these algorithms require an

initial solution, usually provided by construction algorithms like variations of

Greedy Algorithm adapted to the problem being solved.

2.2.2 Meta-heuristics

A meta-heuristics is as flexible as the ingenuity of the included heuristics,

but there are several more popular characteristics of meta-heuristics such as hill-

climbing techniques, iterative improvement heuristics, and knowledge-based search

methods. These form the basis of many more advanced techniques, including

guided search like Simulated Annealing (SA) which is inspired from the way metal

cools; procedures of temporary elimination of backtracking like Tabu Search (TS),

- 11 -

and algorithms based on principles of nature and biological evolution, which

included ACO focused in this thesis, amongst many other methods. These are

examined in the next subsection.

By definition, a meta-heuristics can include hybrids of one or more of any

arbitrary heuristics, meta-heuristics and exact methods. It is observed that many of

the best solvers for classic hard problems tend to be hybrid methods, such as the

approaches proposed in [Bent and Hentenryck, 2001; Lau et al.2, 2003;

Gambardella et al.1, 1999; Gambardella et al.2, 1999]. This arises from the concept

that each algorithm has their forte and weakness, and it is easy to exploit each

algorithm separately to achieve optimal effect. The remainder of this section

provides background on some of the various individual approaches.

Hill-climbing (a.k.a Greedy Algorithm)

 Hill-climbing techniques in general search for better solutions when given

an initial solution as a starting point, and are a key ingredient in many other meta-

heuristics. However, it has the downside of being easily trapped in local optimal.

For instance, consider Figure 2.1.

Figure 2.1: Local Optimal

A

B

C

D

X

- 12 -

Point A, B and D are local optimal, and point C is the global optimal.

Suppose the search start at point X. In most hill-climbing heuristics (in fact, in most

other heuristics), depending on the function of the graph, the search will end at

point A, since the search will have no better knowledge of the existence of B, C or

D. On reaching point A, the function will see only decreasing values no matter

which way it goes, and hence concluded erroneously it has find optimality.

Examples of hill-climbing approaches included [Distante and Piuri, 1989; Tomov,

1994].

Iterative Improvement

Iterative improvement heuristics, like hill-climbing, is also another

fundamental technique applied by many other heuristics. Techniques such as

bottleneck reduction [Chakradhar and Raghunathan, 1997] improve solutions

through repeated application of iterations. Iterations allow control over how long to

repeatedly execute an algorithm. For instance, most of the best meta-heuristics to

date, like Tabu Search and ACO, uses repeated (similar) iterations to continuity

attempt to improve the solution. With the inclusion of a variable factor, like the

pheromone trail in ACO, iterations simplify code and implementation, while

allowing powerful performance. [Dorn et al., 1994] provides a comparison of

several iterative improvement techniques for scheduling optimization.

Knowledge-based search

Knowledge-based search method is also another popular and fundamental

building block in meta-heuristics, such as the approach in [Jin and Reynolds, 2000]

used to guide evolutionary search. This characteristics focus on one or more

- 13 -

attributes of candidate solution which is defined to be more important than others,

and search future solution based on this interest. For instance, in the more popular

version of the classic VRPTW, it is more important to focus on reducing the

number of vehicles rather than total distance traveled.

2.2.3 Guided search

This subsection examines three popular guided search techniques employed

in the literature. In particular, simulated annealing (SA) is first examined; followed

by Tabu Search, a local search with memory; and finally algorithms that arises as a

result of biological evolution (Genetic Algorithm) and observations of nature, of

which ACO has relations to.

Simulated Annealing

Simulated annealing (SA) guides the search for good solution by allowing

solutions of lower quality to be temporarily qualified. SA is inspired from the way

metal cools and freezes into a minimum energy element (annealing process). SA is

based on the work of [Metropolis et al. 1958], who originally proposed presented

SA as a method of finding the equilibrium configuration of a collection of atoms at

a given temperature. [Pincus, 1970] discovered the connection between the

algorithm of Metropolis and the mathematical minimization, which led [Kirkpatrick

et al., 1983] to proposed SA as the basis of an optimization technique for

combinatorial problems. A feature that sets SA aside from the previously mentioned

techniques in this section is its ability to avoid being trapped in local optimal. As

mentioned, SA can accept lower quality solution temporarily, and if referencing Fig

3.1 again, supposed the solution has reached point A, SA may allow the search to

- 14 -

continue down the graph towards point B. If the search passes the minimum point

between point A and B, the normal hill-climbing approach would bring it to the

higher point B. The key issue here is to know how much lower quality (“cooling

schedule”) the search can accept.

Tabu Search

Tabu Search is another powerful meta-heuristics, proposed by Glover

[Glover and Laguna, 1997], with many hybrids and techniques. There are several

TS implementation with excellent results in solving classic problems, such as those

seen in [Rochat and Taillard, 1995; Taillard et al., 1997]. The overall concept of TS

differs from SA and GA (Genetic Algorithm, next sub-section), which can be

classified as “memory-less”, in that it relies on memory to avoid entrapment in

cycles, by forbidding or penalizing (tabu-ing) moves that takes the solution in the

next iteration to points in the solution space previously visited. It will be seen later

that the local decay feature of ACO follows this concept to a less zealous extend.

Besides the adaptive memory, TS also advocate responsive exploration, which adds

certain degree of intelligence by giving the search the ability to response to

differing events. TS employ search strategies which attempt to exploit the key

mechanism of adaptive memory and responsive exploration. [Aboudi and Jornsten,

1994; Dammeyer and Voss, 1993] provides more works related to Tabu Search.

Biological Evolution (Darwinian Theory)

Another recent trend in the logistics and optimization research dwells on

algorithms based on principles of nature or biological evolution. Darwinian Theory

[Darwin, 1979] of “the survival of the fittest” and natural selection had inspired

- 15 -

techniques such as Genetic Algorithm (GA), in the aim that the survivor in nature

must follow some optimal or near optimal way (or at least better than the non-

survivors) to sustain existence. Approaches following the concept of biological

evolution, like GA, are powerful problem-solving methods in which a population of

candidate solutions “evolves” to get better and better, much like a creature adapting

to environment. As [Mangano, 1995] summarized, “Genetic Algorithm are good at

taking large, potentially huge search spaces and navigate them, looking for optimal

combinations of things, solutions you might not otherwise find in a lifetime”.

Observations of Nature

 On the other end of this class of algorithms are those following

observations of nature, in particular swarm creatures like ants [Dorigo and Di Caro,

1999], bees [Parsopoulos and Vrahatis, 2002], termites [Bonabeau et al., 1997], and

mammals like birds flocks [Joslin and Clements, 1999], and rats [Yufik and

Sheridan, 2002]. Of particular interest and performance are the many sub-classes of

swarm intelligence (SI) [Bonabeau, 1999; Bonabeau and Theraulaz, 2000;

Hoffmeyer, 1994; Ward, 1998]. SI is a system whereby the collective behaviors of

low intelligence agents interacting locally with their environment cause coherent

functional global patterns to become apparent. This allows collective or distributed

problem solving without centralized control. The particular subclass of swarm

intelligence dealt with in this thesis is the behavior of ants.

2.3 Ant Colony Optimization

 Social insects such as ants, bees, termites and wasps exhibit a collective

problem solving ability [Deneubourg and Goss, 1989; Bonabeau et al., 1997], with

- 16 -

particular interest found in the activity of several ant species which are capable of

selecting the shortest pathway between their nest and food sources [Berkers et al,

1990]. [Dorigo et al., 1991] introduced the Ant System based on this idea to solve

TSP. It was further applied to many other problems like the Job Shop Scheduling

Problem [Colorni et al., 1993], Graph Coloring Problem [Costa and Hertz, 1997],

Quadratic Assignment Problem [Maniezzo et al., 1994], and also to dynamic

problems like network flow across a changing environment like the Internet

[Schoonderwoerd et al., 1997].

 Ants lay a chemical (called pheromone) trail as they travel, which attracts

other ants to follow the same path. The amount of pheromone laid depends on the

distance of the trail. Intuitively, there will be a higher concentration of pheromone

on shorter/easier trail. With time, the pheromone trail will also evaporate into the air,

which allows food sources which had diminished or expired to gradually be ignored.

[Dorigo et al., 1991; Dorigo et al., 1996; Dorigo et al., 1999] formulated and

developed the ACO taking advantage of the concept of pheromone trail. While able

to find solutions fast, the pheromone evaporation also avoided early convergence to

low quality solutions, yielding excellent results for many classical NP-hard

combinatorial optimization problems.

ACO is an adaptive algorithm, and its most powerful implementation so far

had been in collaboration with other techniques, in part due to its capability to be a

construction algorithm, but in part also due to certain pitfalls in the algorithm which

tend to cause solution cycling with increasing iterations. For instance, many of the

more powerful ACO proposals included a “local search” component, suggesting a

hybrid approach. In particular, these “hybrids” had been used to solve hard complex

problems with excellent results such as that of [Gambardella et al.1, 1999] for

- 17 -

VRPTW and [Lau et al.2, 2003] for IRPTW, while GA had been proposed by

[Goldberg, 1989] to evolve the usually hand-tuned ACO parameters to fine-tune

them for different problem types and instances.

To date, the results achieved by ACO had proven it to be more than just

another algorithm. Research Institutes like IRIDIA

[http://iridia.ulb.ac.be/~mdorigo/ACO/about.html] currently focus much of their

research on ACO and its derivation, and there are many conferences dedicated to

ACO only [http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html], as well as

special proceedings and tracks from other acclaimed logistic and optimization

conferences.

2.4 Software Framework

Currently, the community sees a lack of popular and effective meta-

heuristics software framework. A few more recognized or ongoing works included

OpenTS Framework for Tabu Search, EASYLOCAL++, HOTFRAME, Localizer,

TSF++, among others.

OpenTS was the result of an initiative by the Common Optimization

Interface for Operations Research (COIN-OR) group in IBM. OpenTS is a Java-

based application following an Object-Oriented (OO) style inherent in the Java

language proposed by [Harder, 2001]. However, OpenTS is limited strictly to Tabu

Search, and it is complex to integrate other techniques into the engine.

EASYLOCAL++ is another OO framework proposed by [Gaspero and

Schaerf, 2000], but in C++, for the development and analysis of local search

algorithms. It is more generic than OpenTS in that it integrates many local search

techniques like TS, SA, and local search. ACO, however, is not part of

http://iridia.ulb.ac.be/~mdorigo/ACO/about.html
http://iridia.ulb.ac.be/~mdorigo/ACO/conferences.html

- 18 -

EASYLOCAL++. EASYLOCAL++ and OpenTS, however, both do not provide

some form of centralized control mechanism nor library to support development of

advanced search strategies.

To acknowledge this problem, [Fink et al., 1998] proposed the Heuristics

OpTimzation FRAMEwork (HOTFRAME) to provide a set of ready-to-use

software components for heuristics search, in addition to a reliable architecture for

placing the components. HOTFRAME is an ongoing project and to-date had

variants of Tabu Search and Simulated Annealing. However, HOTFRAME is

somewhat complex and documentation is not readily available currently.

Less relevant to the framework context, but related nonetheless, [Michel and

Van Hentenryck, 1999] proposed an attempt to support the implementation of local

search via the use of a modeling language Localizer close to the informal

descriptions in scientific papers. While providing ease of configuration, a user must

provide Localizer the formulation, albeit of any local search, to construct an

algorithm. This differs from the work afore-mentioned which provides a

constructed framework, whereby the usage is simpler since the user only had to

implement specific (and algorithm specific) interfaces/classes.

Another framework that provides centralized control is TSF++ [Wan, 2002].

By allowing flexible components and an architectural base, as well as an easily

extensible library of components, TSF++ proved effective for most situations.

However, like OpenTS, TSF++ comprises only of Tabu Search and currently is

under development to become a sub-component of a higher level framework, of

which the ACO framework proposed in this thesis is another sub-component.

Furthermore, while there had been ACO algorithmic framework [Dorigo

and Di Caro, 1999; Blum and Dorigo, 2001], the community appears to lack a

- 19 -

popular ACO software framework, in part due to the variation of ACO that can be

implemented. As a developing algorithm, an ACO framework needs to be flexible

to allow different schemes, both present and still un-thought of, that exploits

properties of the algorithm, without limiting it.

- 20 -

CHAPTER 3

Problem Definition

 This chapter presents the formulation and mathematical interpretation for

the classical problems examined with regards to this thesis. In particular, the

Traveling Salesman Problem (TSP), the Vehicle Routing Problem (with Time

Window) (VRPTW), the Inventory Routing Problem (with Time Window)

(IRPTW), the Multi-Dimensional Knapsack Problem (MKP), and the Multi-Period

Multi-Dimensional Knapsack Problem (MPMKP) are considered.

 The choice of TSP, VRPTW, and IRPTW is a generalization of many real-

world optimization problems, which tend to have multiple objectives and

constraints. For instance, the IRPTW considers inventory costs across multiple

period of VRPTW, which in turn is the VRP extended with time window, which in

turn is extended with optimal fleet (vehicles) size objective from the classic and

NP-hard TSP. Similarly, the MPMKP is MKP fixated with multiple periods, and the

MKP is an extended case of the 0-1 Knapsack Problem. The extensions of NP-hard

problems with more constraints and objectives provide increasing approximate

analogy to practical application, increasing the value of solving these problems

optimally. As such, these problems are chosen to demonstrate the power of re-use in

the framework in solving similar or extended instances of a problem. By logic of

induction, the ACO framework would be applicable for re-use in other problems as

long as a solution can be formulated for the base problem.

 Furthermore, the thesis looked at the more complex IRPTW and MPMKP,

both of which are multiple time-period problems. As computing power and

algorithmic strength improve, the community had gradually shifted to increasingly

- 21 -

complex problem instances, and one current trend is a focus on the “third-

dimension” extensions of multiple time-periods with constraints binding between

time periods. By providing an ACO solution to both problems, this thesis also

presents a scheme of ants conducive to solving problems with time-period

constraints.

3.1 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem is a classic NP-hard problem, and the

mathematical basis related to TSP was treated as earlier as the 1800s by the Irish

mathematician Sir William Rowan Hamilton and the British mathematician Thomas

Penyngton Kirkman. [Held and Karp, 1969] provides a look at the TSP and the

related Capacited Minimum Spanning Tree, while [Biggs et al., 1976] provides

discussion on the works on the afore-mentioned mathematicians. The development

of the general form of TSP, as well as other classic combinatorial optimization

problems, is studied by [Schrijver]. While the problem was well-known, there

appears a lack of reference in the literature to earlier work, and it was not until 1954

that the most popular TSP definition came from [Dantzig et al., 1954].

TSP definitions for general and variant forms of the problems are easily

available. In the context of this thesis, TSP is defined as follows:

Let

G = (V,A) be a graph,

- 22 -

where V{ v1, v2, ... , vn } be a set of cities (vertex set), and

A = { (vi,vj) : vi,vj ∈ V, i ≠ j } be the edge set,

C(r,s) = C(s,r) be a cost measure associated with edge (r,s) w.r.t. A.

A tour is defined as a Hamiltonian circuit passing exactly once through each

point in V. The TSP objective is to find a tour of minimum costs/distance.

For the interested reader, full historical mathematical formulations of TSP

can be found at [http://rodin.wustl.edu/~kevin/dissert/node11.html], and [Finke et

al., 1984; Lawler et al., 1985; Naddef and Rinaldi, 1991; Naddef and Rinaldi, 1993]

provides more readings on the problem.

3.2 Vehicle Routing Problem (with Time Window) (VRPTW)

The Vehicle Routing Problem [Toth and Vigo, 2002] is a generic class of

complex combinatorial optimization problems extended from the TSP and the Bin

Packing Problem (BPP), and was first formulated by [Dantzig and Ramser, 1959].

The VRP is a generalization of the TSP, with additional m constraints, the m-TSP,

inductively making VRP NP-hard. Inversely, the TSP is the VRP with one un-

capacitated vehicle (which is the elementary version of VRP, the Capacitated

Vehicle Routing Problem – CVRPT), no depot, and customers with no demand.

Such observation inspired some approach to solving VRP using a divide and

conquer method to break VRP into several Multiple TSP (MTSP, a TSP with m

identical duplicated origin and m salesman) (e.g., [Bullnheimer et al., 1997]). VRP

and its variations had been well examined and solved using various techniques from

exact methods (e.g., [Baldacci et al., 1999; Balinski and Quandt, 1964; Christofides

and Eilon, 1969; Christofides et al., 1981; Cook and Rich, 1999; Cullen et al., 1981;

http://rodin.wustl.edu/~kevin/dissert/node11.html

- 23 -

Fisher, 1988; Fisher and Jaikumar, 1981; Foster and Ryan, 1976;]), to heuristics

and meta-heuristics (e.g., [Braysy, 2001; Chiang and Russell, 1997; Cordeau et al.,

2000; Gillet and Miller, 1974; Rousseau et al., 1999]).

A popular and important variant to the VRP, the Vehicle Routing Problem

with Time Windows (VRPTW), introduce additional constraints to the original

definition, specifying that each costumer must be served within a specific time

window. Other variants of the problem are multi-depot, fixed routes, fixed areas, etc.

Such variants are formulated as they better approximate practical scenarios.

This thesis in particular looks at VRPTW, which is defined as follows:

Let

G = (V, A) be a graph,

 where V = {v0, v1, … , vn} is the vertex set, and

A = {(vi, vj) | vi, vj ∈ V, i ≠ j} is the edge set.

This definition is similar to the TSP definition. The difference is in the

additional constraints. The depot vertex v0, has m identical vehicles, each with a

maximum load capacity Q and a maximum route duration D. The remaining vertex

vi є V represent customers to be serviced, each with a non-negative demand qi, a

service time si, and a service time window comprised of a ready time ri and a due

time li. A waiting time wi is incurred if customer i is serviced before its ready time.

Each edge (vi, vj) has an associated non-negative costij, interpreted as the travel time

tij between location i and j. A complete tour is defined by the order in which the n

customers are serviced by m vehicles, and the objective of VRPTW is to determine

a complete tours starting and ending at the depot, such that each customer is visited

exactly once within its time window, the total demand of any vehicle route does not

- 24 -

exceed Q, the duration of any vehicle route does not exceed D and the total cost of

all routes is minimized.

Due to the number of constraints in the problem, there are many definitions

on the problem optimality. A widely debated factor is whether to consider distance

or number of vehicles as the primal optimality factor, with more researchers

focusing on the latter as the primary factor with the former as the secondary factor,

due in part to the challenge among the community in solving [Solomon, 1987]

benchmark test cases. [Larsen, 1999; Mester, 2002; Mester and Braysy, 2002]

provides further references on the VRPTW.

3.3 Inventory Routing Problem with Time Window (IRPTW)

The Inventory Routing Problem with Time Window (IRPTW) follows as a

natural extension from the VRPTW, with the additional constraint over multiple

time-periods, which better reflect practical scenarios of a known future period

planning. Despite the complexity, literature survey showed that IRPTW can be

solved optimally if major restrictions are imposed. [Carter et al., 1996] proposed a

Lagrangean heuristic to solve a single-supplier, single-warehouse instance of the

problem, but it is sensitive to the values of several parameters where there are no

good heuristics for setting them, and is unable to guarantee feasibility. [Chan et al.,

1998] modeled a single-item, constant demand distribution system and presented

worst case as well as probabilistic bounds. However, it is doubtful that any of the

asymptotically optimal heuristic proposed will perform well for realistic problems

with time-varying demand due to the unrealistic assumption on demand. [Campbell

et al., 1998] proposed a computationally intensive integer programming approach to

a similar problem. [Lau et al., 2000; Lau et al., 2002] proposed a divide and

- 25 -

conquer approach of decomposing IRPTW into two sub-problems, then defined an

interface to allow the two corresponding algorithms to collaborate in a master-slave

fashion and provided a proof of convergence. This approach is unable to guarantee

feasibility, when the output of the first module is infeasible for the second; and the

quality of solution is necessarily low, since there is no provision for an iterative

improvement heuristics. This approach is improved upon by [Lau et al.2, 2003]

which is derived as a product of this thesis, and is the implementation used to obtain

the results presented in Chapter 7 for this problem.

IRPTW is defined as follows:

Given

 S: set of suppliers

 R: set of retailers

 J: set of items

 T: consecutive days in the planning period {1,2,…,n}

 Dijt: demand of retailer I for item j on day t

 Qv: vehicle capacity

 Qw: warehouse storage capacity

 Qi: storage capacity of retailer i

 Wi: time window of retailer i

 Cj: inventory holding cost per unit item j per day at the warehouse

 Cij: inventory holding cost per unit item j per day at retailer i

 Bij: backlog cost per unit item j per day at retailer i

Tik: transportation cost incurred by visiting retailer i followed by k on

the same route

and

- 26 -

 G = (V,A,T) is a multi-period graph

where V = (v1,v2,…,vi,…,vm) is the vertex set, and

A = {(vi, vj) | vi, vj ∈ V, i ≠ j} is the edge set, and

T : as defined above

Output the following:

[1] The distribution plan denoted by

xsjt: integral flow of amount of item j from supplier s to

warehouse on day t, and

xijt: integral flow amount of item j from the warehouse to retailer

i on day t

[2] The set of daily transportation routes Φ, which carry the flow amounts in

(1) from the warehouse to the retailers such that the sum of the following

linear costs is minimized:

(a) inventory cost at the warehouse (Cj)

(b) inventory cost at the retailer (Cij)

(c) backlog cost (Bij)

(d) transportation cost from the warehouse to the retailers (Tik)

Work arising from this thesis improves upon the work of [Lau et al.1, 2002],

by decomposing IRPTW into VRPTW and the Dynamic Lot-sizing Problem (DLP),

and in conjunction with the Tabu Search Framework (TSF++) [Wan, 2002; Lau et

al.1, 2003], presented a powerful algorithm for the IRPTW [Lau et al.2, 2003].

- 27 -

3.4 Multi-Dimensional Knapsack Problem (MKP)

The Multi-Dimensional Knapsack Problem is an extension of another classic

NP-hard problem, the 0-1 Knapsack Problem (KP). Every resource has a cost and

value, so it becomes a decision to seek the maximum value for a given cost. The

typical formulation in practice is the 0-1 Knapsack problem, where each item must

be selected entirely or not at all (hence 0 or 1). This property makes the knapsack

problem hard, as a simple greedy algorithm can find the optimal selection if objects

can be subdivided arbitrarily. This NP-hard property has inspired use of problem as

the underlying basis of cryptography systems. However, the simple knapsack

system was broken using polynomial time algorithms by [Shamir, 1982], the

Graham-Shamir system by [Adleman, 1983], and the iterated knapsack by [Brickell,

1984] who exploited the singular use of modular multiplication as the only method

being used to hide the knapsack. These do not suggest that NP-hard problems are

solvable, but that the knapsack problem holds some property allowing a backdoor

approach to solving the problem. The polynomial time solution relies on the

existence of a particular class of knapsack problems which can be solved trivially,

and extrapolated to a harder problem. MKP, however, is not extensible from these

classes of problems.

MKP is defined as follows:

Given

- 28 -

 Maximize ∑ =

n

j jj xp
1

 Subject to i
n

j jij cxr ≤∑ =1
 i = 1,2,…,m

 xj ∈ {0,1} j = 1,2,…,n

 Assuming pj > 0 for all j ∈ J

 ∑ =
≤≤

n

j ijiij rcr
1

 for all i ∈ I and j ∈ J

For the 0-1 Knapsack Problem, m=1. If m is greater than 1, than the problem

becomes the m-dimensional knapsack problem. This result to this problem is not

presented in this thesis, but it exists to provide the fundamental basis for the next

problem, the MPMKP.

[Shih, 1979] presented a branch and bound algorithm for the MKP. Another

branch and bound algorithm was developed by [Gavish and Pirkul, 1985] where

various relaxations of the problem were used, their algorithm was compared with

the exact algorithm of [Shih, 1979] and was found to be faster by at least one order

of magnitude. Other previous exact algorithms, with only limited success reported,

include the dynamic programming based methods.

[Loulou and Michaelides, 1979] presented a greedy-like method based on

[Toyoda, 1975] primal heuristic. [Balas and Martin, 1980] used linear programming

by relaxing the integrality constraints and heuristically setting the fractional

solution to become integral while maintaining feasibility. [Pirkul, 1987] presented a

heuristic algorithm which makes use of surrogate duality. Freville and Plateau

(1994) presented an efficient preprocessing algorithm for the MKP. [Freville and

Plateau, 1997] presented a heuristic for the special case, the bidimensional knapsack

- 29 -

problem, their heuristic incorporated a number of components including problem

reduction, a bound based surrogate relaxation and partial enumeration.

3.5 Multi-Period Multi-Dimensional Knapsack Problem (MPMKP)

The motivation for the MPMKP arises from a business practice known as

the available-to-promise capacity, which basically is a supplier’s ability to

“promise” to match real-time customer requests with available items for all items

over a certain planning horizon of multiple periods. This available-to-promise

problem is modeled as a specifically becoming the MPMKP. Like IRPTW,

MPMKP impose a late penalty cost (equivalent to the holding cost of IRPTW) if

request cannot be satisfied in a certain period, or corresponding a decreasing profit

with each period that the request is unfulfilled.

In a practical available-to-promise application, it is often more useful for

vendors to be able to make quick decisions for the availability to promise to their

customers than find optimal solutions over a long time. Global optimality usually

takes too long, given the NP-hard nature of the problem. The objective of this

problem then is to find heuristic approaches to get a near-optimal solution fast, to

allow vendor to make quick decisions in offering availability-to-promise capability.

There is currently limited work on MPMKP, but the multiple time periods in

this period inspires the study of this problem with respect to other similar multiple

time-period problems like the IRPTW, which increases the number of constraints

with respect to multiple time-periods.

MPMKP is defined as follow:

Given

 T: number of periods in the planning horizon

- 30 -

 N: total number of requests over the planning horizon

 M: total number of items

 tj: prescribed period where request j is due to be fulfilled

 aij: order size for item i in request j

 bi t: incoming quantity of item I at the beginning of period t

 pjt: net profit if request j is fulfilled in period t

for 1 ≤ j ≤ N, 1 ≤ i ≤ M and 1 ≤ t ≤ T

Assume

All requests from customer and quantity of restock are known at the

beginning of each period.

Then

 Maximize ∑∑
= =

=
N

j

T

t
jtjt xpZ

1 1

 Subject to 1,
1

−
=

+=+∑ tiit

N

j
itjtij sbsxa

i
N

j jij cxr ≤∑ =1

 xj ∈ {0,1} j = 1,2,…,n

 Assuming pj > 0 for all j ∈ J

 ∑ =
≤≤

n

j ijiij rcr
1

 for all i ∈ I and j ∈ J

In the context of this thesis, the profit function pjt of any request j is a

concave function with respect to t and partial delivery is not allowed (which is

extended from the requirement in the 0-1 Knapsack Problem causing the problem to

be hard). Furthermore, it can be seen that when T=1, the MPMKP is reduced to the

- 31 -

MKP. Similarly, if T=1 and M=1, the MPMKP is further reduced to the 0-1

Knapsack Problem.

- 32 -

CHAPTER 4

Ant Colony Optimization

This chapter introduces the Ant Colony Optimization meta-heuristics and its

algorithmic structure. The observations from this chapter will demonstrate the

potential to adapt into a generic software framework presented in the next chapter.

4.1 The Ants Metaphor

As already mentioned, ACO is based on the behavior of real ant colonies.

Real ants are creatures lacking in the normal visual and audio sense utilized by

other species. Despite that, ants are able to find the shortest path from a food source

to their nest. Their primary sense is via their feelers, in particular to sense for the

presence or absence of a chemical call pheromone which they can give out as they

travel, much like the naturally secreted hormones of certain mammals. Ants follow,

based on probability, pheromone that were previously deposited by other ants.

Figure 4.1, extracted from [Dorigo et al., 1996], provides the classic demonstration

of such a phenomenon.

- 33 -

Figure 4.1: Real ants finding shortest path

 In Figure 4.1(A), ants arrive at a decision point in which they have to decide

whether to take the upper or lower path. Ants that originate from the left are labeled

LX, and ants that came from the right labeled RX. At this stage, the choice is totally

random, which statistically which imply that half of the ants will take the upper path,

and the other half taking the lower path, as in Figure 4.1(B). However, since the

lower path is shorter than the upper path, it can be expected that an ant will

complete the path faster, hence implying that the pheromone trail on the path will

be laid faster, as seen in Figure 4.1(C), where the dashed lines are roughly

proportional to the amount of pheromone laid on the trail. As time passes, the

difference in the pheromone level on the two paths will become significant enough

to influence the random choice as ants come to the decision point. Ants will be

attracted to the higher concentration of pheromone on the lower trail, as seen in

Figure 4.1(D), which in turn causes a positive feedback effect. As more time passes,

all ants will be using the shorter path. Real ants stimulate a fast and complete

convergence to a solution. However, pheromone evaporates into the surrounding

- 34 -

gradually. Hence, suppose that an even shorter path should suddenly appear. The

evaporation of the trail will ensure that the ants on the existing path are not

prevented from shifting to the new (better) path, though sometimes the

concentration may be so high that this does not occur (akin to being trapped in local

optimal). However, it is noted that that the reason why ants find the shortest path in

Figure 4.1 is (1) the concurrent activity of many ants and (2) two-way traffic in the

network (or one way traffic with return trip).

4.2 Algorithmic Structure

 Following the observation of real ants in the previous section, this section

presents the specific algorithmic structure relevant to the ACO meta-heuristics.

Figure 4.2 reflects an improved ACO algorithmic framework modified from

[Dorigo and Di Caro, 1999].

Procedure: ACO_meta_heuristics()
 While (termination-criterion-not-satisfied)
 Schedule_activities
 Ants_generation_and_activity()
 Global_Pheromone_Update
 Pheromone_Evaporation
 Daemon_actions()
 end Schedule_activities
 end While
end Procedure

Procedure: Ants_generation_and_activity()

Schedule_creation_of_new_ant()
 While (available_resources)
 New_active_ant()
 end While
end Procedure

Procedure: New_active_ant()
 Initialize_ant();
 M = obtain_ant_shared_memory()
 While (current_state != target_state)
 A = read_local_ant_routing_table
 P = compute_transitional_probablities(A,M)
 Next_state = apply_ant_decision_policy(P)

- 35 -

 Move_to_next_state(next_state)
 Next_state = perform_local_search_improvement
 If (online_step-by-step_pheromone_update)
 Local_pheromone_Update
 end If
 end While
 If (online_delayed_pheromone_update)
 Foreach visited_arc do
 Local_Pheromone_Update
 end Foreach
 end If
end Procedure

Figure 4.2: ACO algorithmic framework

Figure 4.2 depicted the ACO algorithmic framework. The main procedure

ACO_meta_heuristics performs the iterative improvement steps bounded by the

termination_criteria. Usually, this is in the form of a fix amount of real/cpu time or

number of iterations. This main procedure spawns a single iteration of ants activity,

specified by procedure Ants_generation_and_activity(), which simply organized the

activities of individual ants in the iteration. Each ant activity is defined by

procedure New_active_ant(). Each ant then decides on the path to take.

The algorithmic framework in Figure 4.2 is the definitive ACO framework

in the literature. Despite this work, there is no software framework, due in part to

the flexibility of the ACO algorithm in adapting to different situations. Each

guideline in the algorithmic framework hence can be implemented in many

different ways.

4.3 Standard Features of ACO

This section examines the standard features of ACO common to an

arbitrarily generic ACO implementation. These features form the fundamental rules

and propositions by which the ACO software framework will be built upon.

- 36 -

4.3.1 Transitional Probabilities

To decide on which path to take, each ant considers two main factors. First,

the ant considers the natural judgment on whether to take the trail, specified by the

local heuristics. The second factor to consider is the current concentration of

pheromone on the specific trail in consideration. Each of these factors are assigned

a weight, respectively α and β for the local heuristics and pheromone trail. In

particular, the probability of moving from node r to node s is given generally by








∈

= ∑
∈

otherwise

rJsif
srsr

srsr
srp

k

rJu
k

k

0

)(
)],(.[)],([

)],(.[)],([

),(
)(

βα

βα

ητ
ητ

 ………. (1)

where τ(r,s) = pheromone for moving from node r to node s

η(r,s) = local heuristics for moving from node r to node s

i.e., ants decide a path out of m path using two main factors – local heuristics and

pheromone trail.

4.3.2 Local heuristics composition

There are instances of problems, especially those of increased complexity

that a single local heuristics does not suffice. For instance, there had been

implementations of VRPTW with multiple combined local heuristics [Bullnheimer

et al., 1997]. In such instances, τ(r,s) from equation (1) can be formulated as

∑
=

=
n

j
j

jsrsr
1

)],([),(αττ ………. (2)

where αj ≥ 0 and symbolize the weights of the local heuristics

i.e., local heuristics can be a composite of many separate heuristics.

- 37 -

4.3.3 Default Pheromone Value

The pheromone trail τ should be initialized to be fixed value across of the

trails prior to being used, and the value it is initialized to, τ0, is usually given by a

generic “baseline” solution to the problem. This solution can be evaluated using any

construction algorithm like Greedy Algorithm, or even ACO itself (using a generic

pheromone trail initialized to any arbitrary value). τ0 is a function of this initial

solution.

i.e., there should be a default baseline pheromone value, τ0.

4.3.4 Exploration and Exploitation

The probabilities derived from equation (1) and (2) can be utilized in any

ways that meets the need of the problem in question. In particular, works in the

literature used mainly two main ways – exploration and exploitation. Exploration is

the process whereby the ant decides which path to take based on the concentration

probabilities calculated. Hence, there is a higher chance of taking a path with higher

calculated probabilities. Exploitation is the decision of taking the path with the

highest calculated probability. This decision is performed based on a probability

factor q0, the exploitation factor, or the probability that the move under decision

will be exploited.

Suppose there are k possible nodes to be chosen for the next node s. Let pi (1

≤ i ≤ k) denote the transition probability to move to node i. Let pmax denote the

maximum probability among all the possible moves. Then, the following procedure

is used to determine the next node.

- 38 -

generate a random number rE/E between 0 and 1

if (rE/E ≥ q0) // i.e. explore

generate another random number r (0 ≤ r ≤ 1)

choose s to be the node i s.t. Σi
j=1 pj ≤ r ≤ Σi+1

j=1 pj………. (3)

else // i.e. exploit

choose s to be the node with the highest probability pmax

 At this point, the ant would have decided on the next move to take from the

current state, and perform the updates necessary to effect this move, i.e., ants can

use the pheromone trail in different ways.

4.3.5 Local Pheromone Decay/Deposit

After each move is completed, the ant may choose to perform a local

pheromone decay or deposit. If no such action is performed, each of the ants in the

iteration will be non-collaborative and use only the pheromone trail at the beginning

of the iteration. While there are implementations without local pheromone updates

with good results, it was generally found that local pheromone update improves

solution quality. The logic is that unlike real-ants, the solver of an optimization

problem need to traverse the best path once to record it, and implement other ways

to enforce this knowledge (global pheromone update). Meanwhile, it is necessary to

search as much of the solution space as possible, and in most cases, it is better to

lower the pheromone concentration from a taken trail, so that other ants may try the

path less trodden, which allows search around the neighborhood of a good solution

- 39 -

as well as prevent solution cycling. There are many formulas (if implemented) for

local pheromone update, but generally,

0.),().1(),(τρτρτ ll srsr +−← ………. (4)

 where τ0 represents the default pheromone level

 ρl represents the local decay factor

Local pheromone update can be performed in two ways. The first, step-by-

step update, is performed as each ant takes a move. The nature of this process

makes it more suited for a parallel implementation. The second, online-delayed

pheromone update, is performed as each ant completes a solution build, and is more

suited for a serial implementation.

i.e., ants may optionally decay or deposit on the pheromone trail in the local

context.

4.3.6 Global Pheromone Decay/Deposit

While the local pheromone update may be optional, the global pheromone

update that occurred at the end of an iteration is compulsory. The justification for

such an action is by counter-intuition. Suppose there is no pheromone update. Then,

each ant will repeatedly find the same probabilities on all the moves. The only

variable then is the random choice. While this progresses the solution, it does so

very gradually. Furthermore, there tend to be an excessive amount of solution

cycling due to the constant nature of the probabilities. This completes the intuition

that the pheromone trail should be updated.

Global pheromone update can be done in several ways. Some

implementations proposed using the trail from all the ants in the iteration, others

- 40 -

advocate using only the best route in the iteration, and most suggest using the best

route found so far. Generally,

),(.),().1(),(srsrsr gg τρτρτ ∆+−← ………. (5)

 where ρg represents the global decay factor

i.e., ants must deposit on the pheromone trail in the global context.

4.3.7 Pheromone Evaporation

In synch with global pheromone update is the optional pheromone evaporation. One

idea is to use additional reinforcement for unused movements, with equation (6),

while other approaches perform a simple evaporation on all trails with equation (7),

for all i and j:

0.),(),(τρττ ejiji +← ………. (6)

),().1(),(jiji e τρτ −← ………. (7)

 where ρe represents the evaporation factor

i.e., ants may optionally perform decay evaporation for additional reinforcement on

unused trails.

4.4 Observations on ACO implementations

 The previous section provides the proposition assumed to be valid in the

complete operations of ACO. The rest of this section presents observations from

work in the literature as well as a result of the development of this thesis that assists

in the development of the software framework.

4.4.1 Pheromone Trails

- 41 -

 From the formulation of the ACO algorithm above, there are a few

parameters relevant to any arbitrary ACO implementation. Primarily, the

pheromone trail τ is a compulsory factor, as well as an optional initial value for the

pheromone trail τ0. However, the optimal construct of τ is specific to the problem or

the definition of the implementer. For instance, the typical implementation of ACO

has the pheromone trail as the edges between all nodes in the problem, such as in

TSP, VRPTW, etc. The pheromone trail is a very importantly component of the

ACO algorithm (as much as the local heuristics function) that directly influenced

the effectiveness of the algorithm in solving a problem. A study on the pheromone

trail and its relation to performance can be found in [Dorigo and Gambardella,

1997].

4.4.2 Fundamental ACO parameters

 Other parameters included the weights value of α and β, as well as the

inclusive subsets of these weights in the case of section 4.3.2. [Dorigo, 1991] found

from experimental results that good values of α and β (for TSP at least) are 1 and 5

respectively. A greater weight is usually placed on the local heuristics (affected by

β) to prevent fast convergence to local optimal. Another argument for a larger β is

also given by section 4.4.4 below.

 Another key parameters in the ACO algorithm is the decay factors ρ. These

factors are generally a floating point value between 0 and 1, to signify the

percentage of decay/evaporation (0 means no decay, 1 means complete decay).

Decay factors can be subdivided into three separate parameters (local decay, global

decay, and evaporation), although most classic ACO uses the same value for them.

- 42 -

 Exploration or exploitation is another important factor in the ACO algorithm.

A complete exploitation reduce the algorithm simply to the power of the local

heuristics, in most cases just a greedy approach. Exploration allows an opportunity

to search around the best found solution, a technique that works often in non-linear

problems, such as the classes of problem (combinatorial optimization problems)

dealt with here. The decision of exploration or exploitation is defined by the factor

q0, the exploitation factor, which is a floating point value between 0 and 1. When q0

is 0, the ants explore all the time; when q0 is 1, exploitation occurs all the time.

4.4.3 Number of ants

 There are many arguments on the optimal number of ants, num_ants, in the

literature. In particular, the two most commonly argued value for this parameter is a

constant value (e.g., 10) or n (problem size) [Bullnheimer et al., 1997; Dorigo et al.,

1996]. While this parameter will be implementation specified in the framework, it is

the author’s opinion that a constant number of ants is a better figure for most

problems from experimental observations. Furthermore, choosing n will increase

the computational complexity of the problem by another factor of n. Based on x

iterations and n2 for the probability calculation as well as move1 choosing a constant

number of ants give O(xn2), whereas n ants gives O(xn3), hardly an efficient

approach. However, the value of the pheromone decay and collaboration might

compensate for the computational complexity, and allow the search for a better

solution to be found in significantly less iterations. Hence, both arguments are valid,

and the decision on the value should be up to the implementer.

1 It is possible to reduce this time complexity to log(n) with optimized implementation

- 43 -

Figure 4.3: Change in pheromone trail

Consider Figure 4.3, extracted from [Dorigo and Gambardella, 1997] to

provide for this observation. BE represents the pheromone trail average with

increasing iterations when exploiting the Best Edges found so far, while UE defines

the Uninteresting Edges, which are edges that have not participated in the best

found solutions. UE also defines the cut off point given by the initially found and

lower bound value τ0. ϕ1τ0 represents the average pheromone level at the end of

each iteration (before global pheromone update is applied). Hence, assuming that

the generic pheromone update formulas from equation (4) is applied in the

implementation,

01 .),().1(),(τρτρτ +−← − srsr ii ………. (8)

è 001)1.()1).(,(),(τρτρττ +−−−← ii
i srsr ………. (9)

 where τ1(r,s) = ϕ2τ0

 τi(r,s) = ϕ1τ0

 i = approximate number of ants that update edges

(hence affecting a graph change as seen in Figure 4.3)

- 44 -

 è 1)1()1.(21 +−−−← ii ρρϕϕ ………. (10)

 Since the best edges are chosen with probability ≥ q0, then

i ≈ m.q0 ………. (11)

where m = optimal number of ants

 è
)1log(.

)1log()1log(

0

21

ρ
ϕϕ

−
−−−

=
q

m ………. (12)

 Equation (12) showed that the optimal number of ants is a function of ϕ1

and ϕ2. The difficulty, however, is that ϕ1 and ϕ2 are reliant on the structure of the

pheromone trail as well being problem specific.

4.4.4 Importance of local heuristics function

 Experimental results from many implementations of ACO showed that the

local heuristics is a key deciding factor in the effectiveness of the algorithm. This

point alone makes ACO an excellent candidate for a software framework

accommodating other heuristics. This is also the reason why ACO performs well

when collaborating with other local search heuristics. ACO provides a communicate

medium (pheromone) for a synergistic effect to take place, while the power of the

entire algorithm is dependent on the local heuristics function.

 Some simple and effective algorithm for the local heuristics function

included Greedy Algorithm, which is the main local heuristics algorithm used in

many ACO implementations. Other effective techniques included collaborating

with advanced techniques like Tabu Search, Simulated Annealing, etc. It is also

from this observation that β is usually given a higher weight, as the local heuristics

performs the main guidance for the progress of the algorithm. The pheromone trail

- 45 -

(defined by α), will accumulate with increasing ants and iteration to influence the

local heuristics.

4.4.5 Parallel vs. Serial implementation

 It is obvious that ACO, being an agent-based (each ant being an agent)

algorithm, is excellent when using a parallel implementation. However, most ACO

performances were compared using a serial implementation, enhancing its

importance to the community. A generic ACO software framework will provide the

guideline for implementation of either implementation.

4. 5 Hypothesis of ACO

 The previous section provides the fundamental observations that are obvious

and obtainable from results and literature survey. The remainder of this section

provides hypothesis on the performance of ACO for different and hard scenarios, as

well as suggest solutions appropriately.

4.5.1 Large problem instance

 From the algorithmic structure of ACO seen in Figure 4.2 earlier, as well as

the O notation discussed in section 4.4.3, it is seen that ACO is hardly an efficient

algorithm, at O(xn3) at best, with a typical O(xn2) for a constant number of ants.

This suggested that with increasing n, ACO poses a problem. The workaround to

this is to attempt to ensure that ACO is able to find a good solution in a minimal

amount of iterations. Also, the implementer should note to reduce computational

requirements as much as possible. The key to this workaround lies in the

- 46 -

pheromone trail structure (for the inner-most loop performance), and the local

heuristics (to find a good solution fast).

4.5.2 ACO solution cycles with increasing iteration

Another problem with ACO is due to the exploitation performed by ants.

The probability of this action is determined directly by the value of the exploitation

factor q0. A low q0 influences the algorithm to explore more often, but if the value

is too low, the search tends to be too erratic and unguided, despite the pheromone

trail. Hence, the suggested value for q0 is usually on the higher end of the

probability scale (0.7-0.9). A high exploitation q0 however, has two main pitfalls.

First, it could cause the solution to converge too fast to escape local optimal, and

secondly, the algorithm might cycle through the same solutions, especially with

increasing iterations, due to the positive reinforcement of the pheromone trail. This

observation suggests that it is advantageous to gradually modify the exploitation

factor q0 if the solution is not improving after a fixed number of iteration to counter

the positive reinforcement. With a good value of q0, it is also true that when this

observation occurs, the search has reached local optimal, since there is no

neighboring moving that can improve the solution. Hence, it is also a feasible

approach to provide a temporary radical shift to q0. No work in the literature has

applied such either of these two approaches nor stated such an observation.

4.5.3 ACO works better with other local search, and vice versa

 Section 4.4.4 stated that ACO worked better with local search. This is

especially true for extended problems with multiple constraints and dimensions.

The key reason for this is due to the general performance of the ACO algorithm,

- 47 -

stated by sections 4.3.3 and 4.5.1. In such instances, a good approach is to apply

another good heuristics into either an inner loop of the algorithm, or apply ACO as

a powerful construction algorithm, by limiting the number of iterations to a

practical value. As such, to accommodate these sufficiently complex problems, the

ACO software framework should allow easy collaboration with other techniques in

any portion of the algorithm. In addition, many other local search heuristics, e.g.,

Tabu Search, which operates mainly as an optimization phase algorithm, is better

able to achieve good results with a correspondingly good initial solution provided

by the construction phase algorithm. ACO potentially provides such an algorithm.

4.5.4 ACO is an effective construction phase algorithm

 Since ACO operates by allowing each ant to construct a solution,

this hypothesis is trivial. This nature of ACO causes it to escape from the ease by

which many other heuristics get trapped in local optimal, but it also increases the

computational intensity of the algorithm. Regardless, it is this nature that enables

ACO to be an excellent construction phase algorithm, and especially if placed in

collaboration with other local search heuristics.

- 48 -

CHAPTER 5

Software Framework

This chapter capitalized on the observations and hypothesis from the

previous chapter to present the ACO framework. In particular, the first section

presents the Meta-Heuristics Development Framework (MDF), an over-seer meta-

heuristics framework that integrates any heuristics and allows collaboration

between the algorithms. A brief introduction to the other algorithms existing in

MDF is given, with particular emphasis on the ACO framework component (ACF),

the gist of the thesis.

5.1 Meta-Heuristics Development Framework

Solving planning and scheduling problems using meta-heuristics has

become popular, mainly due to the ineptitude of exact methods in producing quality

solutions for large problem sizes. In particular, recent researches had revealed many

new innovative techniques, evolution of existing algorithms and hybridization of

one or more such meta-heuristics. The maturity and popularity of these techniques

brings about rapid growth of differing approaches which shared many similarities.

This diffusion, while healthy for seeding new ideas into the community, is met with

such diversity in implementation that renders experimental benchmarking difficult.

This elevates a need to develop a generic framework that provides some basis for

comparison and collaboration of existing and newly developed techniques. For the

framework to be appealing to the community, it should offer code reusability,

thereby reducing development time on one hand, as well as flexibility for

- 49 -

researchers to effectively inject algorithmic strategies that are peculiar to their

proposed ideas. A collaboratively result of this thesis yields a high level framework,

the Meta-heuristics Development Framework (MDF), designed to meet those goals.

MDF presents a model to facilitate multi-algorithm inter-operability. This nature of

MDF does not require that each algorithmic engine be as generic as possible. While

it is advantageous that each is a specific lower level algorithm framework, if

implementations of similar algorithm must be varied, there can be framework for

variations of the same algorithm in the framework.

The sections that follow present the overview of MDF, as well as the

individual framework for ACO, TS, and SA, which are by no means the limitations

of which algorithm can be integrated, but rather a sample of currently existing

components.

5.2 Overview of Framework

This section presents the general concepts of the MDF framework, depicted

by Figure 5.1. MDF uses abstraction and inheritance as the primary mechanism to

build adaptable components or interfaces. The general behavior of local search is

factored out and grouped into generic interfaces, thus rendering the framework to be

robust yet flexible. These common interfaces include Solution, Objective Function,

Move, Constraint and Neighborhood Generator. The Solution is used as a

representation for the problem output. The Objective Function evaluates the

objective value of solution. The Move translates a Solution object into a new

solution while the Constraint checks on the degree of violation. Finally, the

Neighborhood Generator generates a list of feasible neighbors through the Move

and Constraint interfaces. Each of these generic interfaces makes no assumption on

- 50 -

any specific meta-heuristic or the problem that it is acting. For example, the

solution interface did not restrict developers to any formulation or data structures.

Rather, the framework manipulates the solution indirectly through compulsive

virtual methods and inheritance behaviors. MDF also includes an Engine interface

that outlines the rudimentary controls performed by the any meta-heuristic

applications. Some of these controls include Iterations-To-Go, Start-Solving, Stop-

Solving, and Stopping criteria.

Figure 5.1: Architecture of MDF

MDF also includes a Switch Box, a Control Mechanism and a Strategy

Software Library (SSL). The Switch Box consists of a set of switches used to operate

the framework engine. The maximizing control is an essential control for all derived

frameworks and is used to determine if the search is performing maximization or

minimization. The strength of MDF lies in the inclusion of the Event Controller,

which allows adaptive control over the search sequence, thus giving developers the

- 51 -

ability to guide the framework engine. The Event Controller uses an Event interface

that is used to define a situation that may be experienced in the search. Some

examples are new best-found solutions, series of non-improving solutions and no

feasible solution found. As the search procedures of each meta-heuristic approach

are different, the Event Controller varies across each derived framework.

The SSL is used to facilitate the development of algorithmic strategies. SSL

has a set of generic components that offers a quick and easy means to deploy their

strategies. Some of these components include a fundamentally useful functions such

as a Percentage Random Generator that randomly generate a floating float value

between 0 and 1, a Permutation Generator that returns a permutated set over a

given set of objects and a Elite List data structure that is used with the Event

Controller to collect solutions whose objective value are above a user-specified

threshold. These components also provide a means for the developers to collect

useful search information such as information regarding Recency and Frequency of

partial solutions [Glover and Laguna, 1997].

5.3 Ant Colony Framework (ACF)

This section presents the Ant Colony Framework (MDF-ACF) based on the

generic ant colony framework (Figure 4.2) with potential extensions built into

consideration via the event controller interface, allowing for most known

implementations of ACO, as shown in Figure 5.2. MDF-ACF is twofold; it aims to

serve both as an ACO software framework by itself, as well as being a component

engine of MDF.

- 52 -

Figure 5.2: Ant Colony Framework architecture (in the context of MDF)

MDF-ACF Parameters Interface

ACO works mainly using parameters tuning, where one of the key factors

affecting the effectiveness of an implementation is the values of the parameters. As

such, this interface is concerned mainly with these necessary parameters inherent in

ACO. In particular, there is the following:

a) size of problem,

b) number of ants,

c) decay factors (local decay, global decay, evaporation),

d) exploitation factor (q0).

As with any other interfaces in the framework, the implementer can extend

this interface to include additional parameters such as power of elitist ants, value of

α (weight of pheromone trails), value of β (weight of local heuristics), etc. The

weights are not included in the parameter base interface since the implementer is

- 53 -

free to design his own vector of power values, such as when there are multiple local

heuristics being used in the implementation (as specified in section 4.3.2).

MDF-ACF Pheromone Interface

Another key component of ACO is the pheromone trails. This interface

enforces this requirement by requiring the implementer to state how the pheromone

trail is structured.

MDF-ACF EventController

The EventController class is a key class in allowing flexible implementation.

Besides generic events which are placed throughout the engine, this interface also

requires the user’s implementation for how the engine should perform certain

actions, in particular the following related to the ACO algorithm:

a) local pheromone update,

b) global pheromone update,

c) pheromone evaporation,

d) when to stop an iteration or active ant,

e) how to calculate the probability for a node,

f) where is the starting location for a new active ant, and

g) what to do when a new current or best solution is found.

These presents the possibilities to code many proposed ACO

implementations, as well as allow hybrid techniques to be inserted into appropriate

places in the ACO execution, such as running another local search algorithm after

finding a best solution to optimize this solution locally.

- 54 -

5.4 Tabu Search Framework (TSF)

MDF-TSF is improved from TSF++ [Wan, 2002; Lau et al 1, 2003] and

inherits the fundamental architecture of MDF with the addition of TabuList and

AspirationCriteria interfaces, an MDF-TSF EventController and a tabu search

engine. The tabu search engine uses the set of interfaces to epitomize the routine

tabu search procedures. Furthermore, it also exploits the EventController to

adaptively guide the search in accordance to events experienced during the search.

As such, the MDF-TS have more potential than a simple tabu search

implementation and yet remain as a black box that can allow great flexibility to

both developers and researchers alike.

MDF-TSF TabuList Interface

The adaptive memory is the key component of tabu search where the quality

of solutions often relies heavily on the effectiveness of the tabu list. The TabuList

gives developers the flexibility on the choice of objects to be tabu. Some commonly

tabu objects are the solutions themselves, the translating moves, recurring partial

solutions and objective values.

MDF-TSF AspirationCriteria Interface

The AspirationCriteria is an optional interface in the framework. The

function of aspiration criteria is to override the tabu status of a move if it meets

certain criteria. This is used mainly to avoid missing good solutions or moves that

are otherwise tabu-ed.

- 55 -

MDF-TSF EventController

In a tabu search, it is often desirable for the tabu search engine to respond to

search events by readjusting the elements in the interfaces. For example, a reactive

tabu list would need to readjust its tenure (duration in which a move remains tabu-

active) in respond to the success or failure in obtaining a better solution, during the

search. Hence there must be means of controlling the tabu search to make such

dynamic readjustments. The EventController acts as a centralize control unit that

provides interaction between the tabu search engine and the interfaces. When the

tabu search engine detected any search events, it would reflect them to the

EventController, which would then respond to these events in accordance to

strategies set by the users. Usually, these strategies will affect one or more of the

interfaces that will in turn re-adjust the search approach adopted by the engine.

Going back to our example of implementing a reactive tabu list, the “triggering-

event” detected by the tabu search engine can be the number of non-improving

moves made since the last best-found solution. Once the engine triggered this event,

the control will be passed to the EventController. The strategy will be to readjust

the tabu tenure in TabuList, using parameters such as number of iterations

completed, and number of remaining iterations and even from the history from such

past readjustment.

5.5 Simulated Annealing Framework (SAF)

MDF-SAF is the third illustration on the generic aspect of the MDF. This

derived framework has only one extended interface called the CoolingFunction. In

a similar architecture to the MDF-TSF, MDF-SAF has its own EventController and

search engine. The engine again performs the standard routine of the meta-heuristic

- 56 -

and uses the EventController to re-adjust its search. One possible use of the

EventController is to dynamically switch between different cooling functions in

accordance to the quality of solutions. Another popular use for the MDF-SAF is to

hybridize with the MDF-TSF as the diversifier for the tabu search when the search

reaches a local optimal. This hybridization is again easily achieved through the use

of EventController.

MDF-SAF CoolingFunction Interface

The CoolingFunction determines the probability of a neighbor being

accepted. SA typically only required iteratively modification for values of different

parameters to obtain different cooling schedules to produce solutions of different

qualities. MDF caters for the common scenarios as well as having the advantage of

the CoolingFunction interface to provide further flexibility for the developers to

have any number of cooling functions to be implemented, and allow the uses of

EventController to switch between these functions, if such an implementation is

desired.

- 57 -

CHAPTER 6

ACO Schemes

 This chapter presents several ACO schemes derived from the observations

and hypothesis from chapter 4, with respect to the ACO software framework. These

schemes are recommended for use by implementers, specializing in different classes

of problems. These schemes are individual modules that may be built alone or with

each other into any implementation from the framework.

6.1 Basic ACO scheme

The natural choice is to present first the basic ACO scheme generic to most

of the implementations in the literature. This scheme derives from the classic

algorithmic framework in Figure 4.2, as well as sections 4.3 and 4.4. In short, it is

the fundamental ACO as proposed by [Dorigo and Di Caro, 1999], adapted into a

software framework, taking into consideration most of the ACO implementations

and proposals in the literature. As such, this basic ACO scheme may be extended to

easily reproduce current works.

6.2 Variable exploitation factor schemes

Sections 4.5.1 and 4.5.2 presented a potential pitfall with the ACO algorithm.

Section 4.5.1 stated the performance of the algorithm with increasing iteration, and

section 4.5.2 expanded the problem with a decrease in effectiveness at the same

time. As such, ACO is not intrinsically designed for an excessive amount of

iterations. Good results must be obtained within a reasonable threshold, beyond

- 58 -

which the ACO under-performs. To address this issue, the following two schemes

exploiting section 4.4.1 are proposed:

Scheme 1: If there is no improving move within th number of iterations,

adjust (decrease) the exploitation factor q0, such that ACO

explores more often.

Or

Scheme 2: If there is no improving move within th number of iterations,

adjust (decrease) the exploitation factor q0 by a significant

amount temporarily, such that the excessively exploration will

disrupt the overly concentrated pheromone trail.

 Both schemes relied on the modification to q0. As best known to the author,

no works in the literature had attempted such an approach. Observations that arises

from the comparisons of these two schemes against the basic ACO scheme

suggested variable results (not reflected in this thesis), depending upon the value of

th and q0 modification. The proper value to use is problem and parameters specified.

In most cases, Scheme 1 performs better than the Scheme 2, which relied more on

the operation of the pheromone update functions. Both schemes are also dependent

upon the value of the best found solution at the moment q0 is changed, which is

directly related to the effectiveness of the local heuristics. Since most of the

experiments were tried on known techniques, the local heuristics tend to be already

good. However, that the schemes improve results in many cases, especially when

the local heuristics function is weak, reflected their potential. Hence, these two

schemes are worth considering, especially for countering known weakness of the

local heuristics, which is hard to specify for certain problems; or to counter the

effect of bad parameter setting. Furthermore, these schemes are extremely valuable

- 59 -

when the algorithm needed to be executed for long number of iterations for any

reason, such as when solving increasing complex problems.

6.3 Schemes that handle Time explicitly

 Optimization that involves multiple time-period constraints is more complex.

For instance, the IRPTW and MPMKP discussed in this thesis extend standard NP-

hard problems, like the VRPTW and MKP respectively, with time-period

constraints, which increase the practicality of the problem to industrial applications.

The classic pheromone trail specified using node to node value are not appropriate

for such scenarios, and a new scheme for the pheromone trail and ACO algorithm

conducive to this environment that improve the performance of ACO for such

classes of problem is proposed.

By virtue of the ACO basic scheme, there are certain properties of the

underlying algorithm that can be logically extended to provide a scheme

specializing in handling the notion of time, as can be seen from the experimental

results presented in the next chapter. The first and most instinctively of these

schemes that exploit the basic operation of ACO is:

Scheme 3: In addition to the basic pheromone trail presenting a pheromone

value from one node to another, add another dimension to the

pheromone trail structure, hence presenting a 3-D pheromone

corresponding to the geometric 3-D of 2-D space and 1-D time.

Figure 6.1(b) below reflects the new pseudo-code structure that results.

However, Scheme 3 presents an obvious problem. As already analyzed, ACO is

already computational intensive. To add another dimension of time, T, to the

problem increases the complexity of the algorithm in the inner-loop (where the

- 60 -

pheromone trail are used to calculate individual movement probability) to O(xn2T).

As such, the following scheme is more appropriate for multiple time-period

problems.

Scheme 4: Modify the pheromone trail from a node-to-node trail to a node-

to-period trail. This pheromone trail will specify the

attractiveness of placing a node in a time-period.

 For instance, instead of a typical pheromone structure like Figure 6.1(a),

which is commonly applied in most implementation of ACO, Figure 6.1(c) shows

the structure that would be implemented instead using Scheme 4. Note the change

from a node2-to-node structure to a node-to-period structure, which reflects the

preference of placing a node to a time-period, as opposed to the typical preference

of placing a node after another node.

(a) Typical Scheme

(b) Scheme 3

 (c) Scheme 4
Figure 6.1: Pseudo-code structure of the pheromone trail

2 A node can represent a vertex, a request, or any point of reference by which the solution is
constructed

Class ACOParameters : ACOParameters
{
 double pheromoneTrail[MAX_NODE] [MAX_NODE];
}

Class ACOParameters : ACOParameters
{
 double pheromoneTrail[MAX_PERIOD][MAX_NODE] [MAX_NODE];
}

Class ACOParameters : ACOParameters
{
 double pheromoneTrail[MAX_PERIOD] [MAX_NODE];
}

- 61 -

The structure resulting from Scheme 4 (Figure 6.1(c)) arises from the work

of this thesis, in particular related to IRPTW and MPMKP. There are several

reasons that Scheme 4 as better than Scheme 3. First, the computational complexity

becomes O(xnT). It can be seen that the complexity may actually be reduced, if the

number of time-periods, T, is asymptotically smaller than the number of nodes n,

which is usually the case. Furthermore, this structure is logically better than the

classic version in dealing explicitly with time, since it directly informs the

algorithm where the best period place node is. This easily allows the problem to be

broken into smaller sub-problems (such as IRPTW into VRPTW), solve the single

time-period problem, and then allow the basic ACO scheme to take care of the less

complex problem.

6.4 Decay Schemes

This aspect of ACO, noted previously in sections 4.3.3, 4.3.5, 4.3.6, and

4.3.7, is where there is the most research activity. There are many proposals

presenting different decay functions combinations for the local decay, global decay,

and evaporation, often combining the functions together, such as seen in

[Gambardella et al.1, 1999; Fidanova1, 2002]. The pheromone trail can be updated

in myriad of ways to achieve different results. This section consolidates these works,

extracting their decay approaches, and presents them in explicit schemes. Some

good schemes included:

Scheme 5: Pheromone trails are updated using the best found solution

multiplied by a factor. This symbolizes trails taken by Elitist

Ants which found the best found solution.

Scheme 6: Do not perform one or more of the three decay functions.

- 62 -

Scheme 7: Combine one or more of the decay functions together.

Scheme 8: Use a constant value or a fast heuristics for choosing the default

decay value τ0.

Scheme 5 presents the approach taken by some successful ACO technique

for the global pheromone update to use the best route found for the update, but

multiplied by a factor, symbolized by elitist ants which are able to find better

solutions and lay more pheromones than “normal” ants, seen in [Bullnheimer et al.,

1997] using a multiplier of 5.

Scheme 6 is a scheme used in almost all ACO implementations, especially

with regards to the evaporation function, although many early ACO proposals

ignore the local pheromone update as well. The lack of an evaporation function is

justified if the global and local decay functions update the trail appropriately,

though it may cause an increasing pheromone concentration (which is

disadvantageous for the operation of ACO in general) if the local decay functions

are absent, does not decrease the pheromone traversed by the ant, or there is a lack

of ants in each iteration. However, ACO usually does not execute long enough for

the effect to be detrimental, and experimental observations arising from this thesis

suggested the lack of an evaporation function, and is a method used in all the

implementations used to obtain results for the next chapter. The lack of a local

pheromone update function, conversely, might cause the same problem, depending

on the other two decays function. However, it was found that the lack of this

function affects the effectiveness negatively most of the time, and also, it is

advisable to reduce the number of ants in each iteration if the local pheromone

update function is missing, as the only ways the ants will work collaboratively is

through the global update and/or evaporation function outside of every iteration,

- 63 -

and it is proven experimentally in [Dorigo and Gambardella, 1997] that the ants

perform better collaboratively.

In the same line of thought, Scheme 7 is closely related to Scheme 6. The

usual case of Scheme 7 is when the global pheromone update function is integrated

with the evaporation function. It should be noted that usually the evaporation

function applies to all the pheromone trails, while the global update function

operate only on the solution trail. As well, some implementation may delay the

local update function until the end of an iteration, effectively operating like a

complex global update function.

Scheme 8 provides some methods of finding τ0. This value is can either be a

fix constant (where 0 is a commonly used value), or found using some fast

construction algorithm such as Greedy Algorithm. Alternatively, τ0 can be extracted

from the objective function using an initial pass of the ACO algorithm itself, since

ACO is itself a capable construction algorithm. The choice of this value provides

may affect the decay functions, which in turn affect the pheromone trail, in turn

affecting the effectiveness and efficiency of the algorithm with increasing iteration.

- 64 -

CHAPTER 7

Solution Approach 3

Having examined the MDF framework in chapter 5, and the ACO

framework as well as some potential schemes presented in Chapter 6, this chapter

presents our proposed solution approach to solve the problems presented in chapter

3, with the results presented in the next chapter. The first section presents

hybridization with a sample implementation of MDF, using ACF and TSF as the

key component. This hybridization, HASTS, is the solution approach taken for the

VRPTW, which bases its implementation from a generic ACO implementation for

TSP; as well as the IRPTW, which reuses the implementation from VRPTW with

certain extensions. The last section further presents the solution approach for

MPMKP using a time-period ACO scheme (Scheme 4) with ACF to solve the

MPMKP.

The choice of VRPTW and IRPTW justifies the power of reuse in the

framework, showing that a good solver for VRPTW can be reused to provide

another good solver for the extended problem of IRPTW. Meanwhile, IRPTW and

MPMKP are presented to demonstrate the effectiveness of Scheme 4, showing the

proposed strain of ACO that is effective at solving multiple time-period problems.

7.1 Sample Implementation – HASTS

This section presents a sample implementation of MDF, using the ACF and

TSF framework, exploiting the hypothesis noted in section 4.5.3. This

3 Part of this chapter appears in [Lau et al.2, 2003]

- 65 -

implementation described by [Lau et al.2, 2003], called Hybrid Ant System and

Tabu search (HASTS), is a flexible hybrid method that spawns derived models that

exploit the strength of meta-heuristics adept at solving certain problems. HASTS

employs ACO and Tabu Search as the component heuristics, in particular using

ACO as the construction heuristics and Tabu search as the local improvement

heuristics. By varying the degree of importance of the inherent algorithms, various

derived models are easily formulated to solve subsets of the problem.

The intrinsic flexibility and potential for heuristical collaboration of MDF

allows HASTS to vary the importance of the component heuristics. ACO and TS

are argued to be good complements to each other, as ACO works using a preference

list, given by the pheromone trail, while TS operates using a forbidden (or tabu) list.

The algorithmically opposite techniques offered a high potential that when one

algorithm reaches a local optimal, the other algorithm has a higher chance of bring

it out and improving the solution henceforth.

HASTS improves results by adjusting the importance level and degree of

collaboration of the component meta-heuristics in the hybrid technique, via the

framework provided by MDF. Each variant of HASTS has a set of algorithms as the

core algorithm, while the other algorithm(s) serves as the aide algorithm(s). Each of

these variant becomes a derived model of HASTS. The advantage of the derived

models lies in the ability to adapt search to exploit the strength and cover the

weakness of the meta-heuristics under the scheme. As such, HASTS is especially

suitable for solving complex problems using a divide-and-conquer approach, by

first breaking down and identifying the objectives of the sub-problems, and solving

these using the best approach optimally.

- 66 -

Figure 7.1 showed four possible derived models of HASTS, extracted from

[Lau et al.2, 2003], which saw use in solving the IRPTW, by adjusting the relative

importance of the hybrid collaborators to adapt to the needs of each different sub-

problems. The framework design also ensured that information sharing between the

sub-problems can be easily achieved, using the shared components provided by the

MDF framework, to potentially yields better results than if a separate technique

should solves the problem (or sub-problems) individually.

 (A) HASTS-EA (B) HASTS-IE

 (C) HASTS-ED (D) HASTS-CC

Figure 7.1: Derived Models of HASTS

The four derived models are respectively Empowered Ants (HASTS-EA)

(Figure 7.1(A)), Improved Exploitation (HASTS-IE) (Figure 7.1(B)), Enhanced

Diversification (HASTS-ED) (Figure 7.1(C)), and Collaborative Coalition

(HASTS-CC) (Figure 7.1(D)). The framework design ensured that each of these

derived models reuses the same implementation for each of the component

algorithms. The difference is mainly in where to separate the algorithm, as well as

- 67 -

the communication between the algorithms. Hence, for HASTS, MDF guarantees

that a generic ACO and TS component engine can be used.

HASTS-EA (Empowered Ants)

 This derived model arises from the hypothesis of sections 4.5.1 and 4.5.2

that when the ants system reaches local optimal solutions, it suffers from a tendency

of solution cycling in the near optimum region due to their emphasis on the strong

pheromone trails. By empowering the ants with memory, it reduces the chances of

reconstructing the same solution. An analogy can be drawn where each ant becomes

more intelligent to find a better trail by not following false tracks laid by previous

ants. Tabu search uses a tabu list to reduce cycling on the same set of solutions.

While the ants system optimizes the solution based on its pheromone trails as a

“preference” memory, solution cycling is reduced via the tabu list. Furthermore,

tabu search can be applied to modify the solutions radically, hence encouraging

exploration that helps to escape from local optimality. This implementation,

however, suffers from a slight increase in computational needs, as well as more

memory for the additional tabu list. This tradeoff is usually justified by the increase

in performance, especially over large iterations. From an implementation viewpoint,

HASTS-EA modifies ACO to include a tabu list, which records the solution made

by each ant in a single iteration. Subsequently, each ant in the iteration would check

if the next move is tabu-ed. If it is, the move will be dropped and a new move will

be generated. The tabu list is reset at the end of the iteration. A pseudo-code of

HASTS-EA is shown in Figure 7.2.

- 68 -

Procedure: HASTS – EA ()
 While (termination-criterion-not-satisfied)
 While (Max_Ant_Not_Reached)
 Ants_generation_and_activity
 Pheromone_Evaporation
 Reset_Tabu_List
 Daemon_actions
 end Schedule_activities
 end While
end Procedure

Procedure: Ants_generation_and_activity ()
 While (available_resources)
 Schedule_creation_of_new_ant
 New_Solution = New_active_ant
 update_Tabu_List (New_Solution)
 end While
end Procedure

Procedure: New_active_ant ()
 Initialize_ant;
 M = read_Pheromone Trail
 T = read_Tabu_List
 While (current_state != target_state)
 A = read_local_ant_routing_table
 P = compute_transitional_probabilities (A, M)
 Foreach Next_state do
 Next_state = apply_ant_decision_policy(P)
 end Foreach
 While (check_Tabu_List (Next_state) == non-tabued)
 Move_to_next_state (next_state)
 If (online_step-by-step_pheromone_update)
 Deposit pheromone
 Update M
 end If
 end While
 If (online_delayed_pheromone_update)
 Foreach visited_arc do
 Deposit pheromone
 Update M
 end Foreach
 end If
end Procedure

Figure 7.2: Pseudo-code of HASTS-EA

HASTS-IE (Improved Exploitation)

 In this model, tabu search is embedded in ACO to conduct intensification

search on the best solution. A similar design has been employed in [Stutzle and

- 69 -

Dorigo, 1999] to produce good solutions for TSP. This model offers two

advantages. First, by updating the pheromone trail only after intensifying the best

solution, we increase the probability of finding a better solution by subsequent ants.

Second, due to the probabilistic guided nature of ants system, this narrows the

chances of reaching an optimal solution if it happens to be radically different from

local optimum. For example, it is well known that for TSP, the ants system may

take a long time before it reaches optimality, due to the presence of “crossings” in

the tour, such as those in Figure 7.3. With the help of tabu search, such crossings

can be eliminated easily by swap moves such as 2-opt. HASTS-IE, on the other

hand, is computational expensive, though it can be extremely effective in situations

with many “crossings” in the solution.

Figure 7.3: Example of a “crossings”

HASTS-ED (Enhanced Diversification)

 In this model, ants system is proposed as a diversifier for tabu search. As

tabu search suffers from local optimality, a diversification strategy is to apply

another meta-heuristic as a diversifier [Li and Lim, 2001]. HASTS-ED uses ACO

as the TS diversifier with the following rationales. First, the probabilistic nature of

*
Depot

*

*
*

*

- 70 -

the ants system gives a higher chance of successfully diversifying from the local

optimum. Second, the diversifier should make a radical move from the current

solution so as to explore new regions. Although a random restart is a good strategy,

the new starting solution is often poor. Ants system provides a remedy to this by

reconstructing quality solutions. However, appropriate parameters for the ACO

diversifier should be set, such as a low q0 that is unusually in most other effective

ACO implementation.

HASTS-CC (Collaborative Coalition)

HASTS-CC proposes a collaborative coalition between the ants system and

tabu search. This model offers the least coupling between the two meta-heuristics

but allows great flexibility in the formulation of the problem. One configuration of

HASTS-CC is to espouse the two-phase approach as advocated by [Schulze and

Fahle, 1997]. This approach consists of a construction phase follow by an

optimization phase. ACO work extremely well for the construction phase as it could

be used independently to obtain quality solutions. Being an optimization heuristic,

tabu search fit naturally into the second phase of the approach. Such collaboration

exploits the natural heritage of each meta-heuristic as noted by section 4.5.4.

7.2 VRPTW

The problem being solved in this instance, the VRPTW, is an NP-hard

multi-objective optimization problem. Traditional approach in solving VRPTW

involves projecting all objectives into a single dimension. However, the correlation

between these various objectives are usually weak and difficult to express using a

common aspect. In addition, during the search, the optimizer has no insight to

- 71 -

which objective it is improving. This resulted in redundancy spent in optimizing the

secondary objectives while the primary objective is being optimized. To resolve this,

an approach is to optimize the problem by independently considering each of its

objectives, allowing precise strategies to be employed. In solving this problem, a

decision can be made to decompose the problem into the following objectives:

1. Minimize the number of vehicles given a set number of customers. The

dual problem is to maximize the total number of customers given a set of

vehicles.

2. Minimizes the total distance traveled given a fixed set of vehicles.

This divide-and-conquer formulation suggests the suitability of using

HASTS. HASTS, described in the previous section, is the solver for VRPTW used

to obtain the results presented in the next chapter. As had been mentioned earlier,

each derived model of HASTS share the same implementation for the component

algorithm. It is also seen that VRPTW is an extension of the TSP in Chapter 3.

Hence, in the implementation, HASTS utilizes a generic ACO implementation for

TSP built from the ACO framework (ACF), and reuse this implementation with

modifications to handle the additional constraints in VRPTW, to provide an ACO

solver for VRPTW. This solver is then extended by each derived model, and

modified according to the specifications of the sub-problem it is assigned to solve.

Figure 7.4 shows the evolution of the ACO implementation in solving VRPTW

using HASTS.

- 72 -

Figure 7.4: Reuse of ACO implementation

 For this problem, HASTS requires only two derived models, HASTS-IE and

HASTS-ED described earlier.

Objective 1: Minimize the number of vehicles given a set number of customers.

The dual problem is to maximize the total number of customers given

a set of vehicles.

This objective can be reformulated to its dual model and writing it as

maximizing the customers served in given a set of vehicles, and reduce the required

vehicles each time a solution that serves all the customers is found with the lesser

fleet size. The HASTS-EA derived model is appropriate for this sub-problem. ACO

is a good meta-heuristic for this objective as it optimizes the solution quality

through reconstruction. TS, although possible, is not a suitable candidate as it tries

to ‘pull’ the solution to feasibility through optimizing the customers’ sequence in

the tour, which is a slow process. Instead, tabu search is used to empower the ant

system by intelligently rupturing the pheromone trails left by the ants, and in doing

so, helped the ants from being ensnared in a local optimum.

Initially m vehicles are obtained by applying a greedy heuristic to serve all

customers. The algorithm then reduces the value of m by 1 and seeks to construct a

feasible solution that services all the customers. Once a feasible solution is found,

the number of vehicles is reduced to the best-found number of vehicles and the

TSP solver VRPTW solver

HASTS derived model 1

HASTS derived model n

- 73 -

process is repeated for a new feasible solution. Figure 7.5 provides the pseudo-code

fragment for the event used to solve this objective. This sub-problem requires

search so as to find a configuration where the customers can fit into the pre-set

vehicles. HASTS-EA performs well since the tabu list assists each ant in an

iteration to construct a radically different solution. Although other derived models

can also be used, they lack of the intensified exploration that HASTS-EA provides.

Figure 7.5: Code Fragment implementation for VRPTW objective 1

Objective 2: Minimizes the total distance traveled given a fixed set of vehicles.

Objective 2 is attempted after Objective 1 had been optimized, and as a

result, this sub-problem will consist of a tighter solution space. In spite of the

success by HASTS-EA in optimizing the number of vehicles, this derived model is

not very effective for this objective because of the difficulties involved in

constructing different feasible solutions on an allowed number of vehicles due to

the nature of ACO. Instead, another derived model, HASTS-ED, is employed to

minimize the total distance on a fixed set of vehicles. HASTS-ED uses tabu search

as the core heuristic with ants system acting as the diversifier. Tabu search is

Class DecreasingFleetSizeEvent : Event
{
 int m = MAX_FLEET_SIZE; // m = fleet size of best found solution
 Solution* initSol = get_initial_solution();
 virtual bool ACO_started (ACO* aco) {
 m = initSol->vehUsed – 1 // attempt to find solution ≤ initSol->vehUsed – 1
 }
 virtual bool afterActiveAnt(ACO* aco) {
 Solution* currentSol = aco->getCurrentSolution();
 if (currentSol->visited_cust(m) > tempSol->visited_cust(m)) {
 tempSol->copyFrom(currentSol);
 if (tempSol->vehUsed <= m) {
 m = tempSol->vehUsed – 1;
 }
 }
 }
}

- 74 -

effective in solving this sub-problem as it optimizes the route distance rather than

reconstructs the solutions. However, tabu search still faces the danger of being

entrapped in a local optimum during its search. To address this issue, when tabu

search encounters a local optimum, it randomly selects some of the routes to be

reconstructed by ACO, which assists tabu search by radically re-configuring the

selected partial routes. Details on this objective relies mainly on the operations of

Tabu Search and is examined in further detail in [Lau et al.2, 2003].

7.3 IRPTW

 Chapter 3 previously described one approach by [Lau et al. 2000] to solve

the IRPTW, an example of a multiple periods and multiple constraints problem, by

decomposing this complex problem into the relatively simpler VRPTW and DLP.

Since VRPTW can be further broken down using its separate objectives as

described in the previous sub-section, IRPTW then can be formulated to the

following three sub-objectives:

1. Minimize the number of vehicle used subject to customer time windows

of the given set of customers.

2. Minimize the total distance traveled, subject to customer time windows

and the given fleet of vehicles.

3. Minimize the inventory holding and backlog costs, subject to the vehicle

capacity and retailer holding capacity constraints.

It can be seen that objectives 1 and 2 forms the VRPTW part of the problem,

while objective 3 specifies the DLP sub-problem. Having previously used HASTS

to solve VRPTW, it become logical to reuse this implementation to solve IRPTW

once it was apparent IRPTW can be broken down into the VRPTW and DLP.

- 75 -

Objective 1: Minimize the number of vehicle used subject to customer time

windows of the given set of customers.

 and

Objective 2: Minimize the total distance traveled, subject to customer time

windows and the given fleet of vehicles.

These two objectives, being equivalent sub-problems of the VRPTW, allow

easy reuse of the HASTS-EA and HASTS-ED derived model. The reuse of ACF

and TSF are both trivial and natural.

Objective 3: Minimize the inventory holding and backlog costs, subject to the

vehicle capacity and retailer holding capacity constraints.

 In order to reduce inventory or backlog, more frequent deliveries have to be

made, hence increasing the transportation cost. Hence, the goal here is to minimize

the number of retailers (or customers) served each day without increasing the total

cost. That is, the objective is to delete retailers from routes in a manner that does

not incur additional costs. Many techniques are available to handle this objective,

but in line with reusing HASTS, which is already used to solve the problem

involving the other two objectives, it is a straightforward matter to reuse the same

ACO and TS engines by employing another derived model catered to the problem,

HASTS-IE, such as in Figure 6.6. HASTS-IE uses ACO to construct different

solutions. It then uses tabu search to improve its exploitation to reduce missing elite

solutions. Figure 7.6 presented the pseudo-code fragment for the event class solving

this objective. The tabu search uses the standard add, delete and swap moves that

attempt to improve the solution quality found by the ACO. The output is a

- 76 -

distribution plan that induces the set of customers to be served for objective 1, to

facilitate iterative improvement. Since this objective involves multiple time-periods,

the ACO implementation in HASTS-IE employs Scheme 4.

Figure 7.6: Code Fragment implementation for IRPTW objective 3

7.4 MPMKP

MPMKP is a single dimensional extension of the classical MKP, with the

additional dimension being the multiple time-periods. This increases the number of

constraints in carrying over requests and inventory from one time-period to the next.

Furthermore, unlike IRPTW, MPMKP need not be broken down into multiple

objectives, since it is a single dimensional extension. IRPTW is extended from

VRPTW in more than just time-periods, but also several additional constraints.

Hence, for MPMKP, the same objective as MKP is optimized.

MKP Objective: Maximize ∑ =

n

j jj xp
1

, i.e., Maximize the amount of profit that

can be obtained, subject to the (known) constraints.

Class ImprovedExploitationEvent : Event
{
 virtual bool newCurrentSolutionFound(ACO* aco, Solution* currentSol) {
 TabuSearch* TS = getTSEngine();
 TS->restart(currentSol, iterations);
 TS->startSolving();
 currentSol = TS->getBestSolution();
 }
}

- 77 -

Class MKPACOParameters : ACOParameters
{
 double pheromoneTrail[MAX_REQUEST] [MAX_REQUEST];
}

Class MKPEvent : Event
{
 ACOParameters* = param;
 virtual bool beforeActiveAnt(ACO* aco) { // j : items
 items[j] = capacity[j];
 }
 virtual double* calculateProbabilityOfNodes(ACO* aco) {
 for (all valid request r) { // i : current node
 double sumTightness = 0.0;
 for (all items j) sumTightness += request[r]->amount[j] / items[j];
 visitProbability[r] = (profit[j] / sumTightness)α * (pheromoneTrail[i][r])β
 }
 return visitProbability;
 }
}

MKMKP Objective: Maximize ∑∑
= =

=
N

j

T

t
jtjt xpZ

1 1
, i.e., Maximize the amount of

profit that can be obtained, subject to the (known) constraints

and inventory top-up rate over the (known) time-period.

 With the difference over MKP in the additional time-period dimension, we

simply replace the pheromone trail using a node-to-time-period structure over a

node-to-node structure directly, without need to replace anything else, as described

by Scheme 4. Figure 7.7 first presented the pseudo-code for a MKP implementation,

and Figure 7.8 then presented the pseudo-code that extends from the MKP

implementation to solve the MKMKP.

Figure 7.7: Code Fragment implementation for MKP

- 78 -

Class MPMKPACOParameters : ACOParameters
{
 double pheromoneTrail[MAX_PERIOD] [MAX_REQUEST];
}

Class TimeSchemeEvent : Event
{
 ACOParameters* = param;
 virtual bool beforeActiveAnt(ACO* aco) { // t : period; j : items
 items[t][j] = capacity[j];
 cumItems[t][j] = capacity[j]*(t+1) // cumulative items
 }
 virtual double** calculateProbabilityOfNodes(ACO* aco) {
 for (all valid request r) {
 double sumTightness = 0.0;
 for (all items j) sumTightness += request[r]->amount[j] / cumItems[T-1][j];
 visitProbability[r][t] = (profit[t][j] / sumTightness)α * (pheromoneTrail[t][r])β
 }
 return visitProbability;
 }
}

Figure 7.8: Code Fragment implementation for MPMKP

 Note the similarity between the pseudo-code shown in Figure 7.7

and Figure 7.8. The extension to MKMKP from MKP is one-dimensional only in

the time-period context. As such, MPMKP is not overly concerned with the

ordering of nodes within each time-period (like in IRPTW), and the necessary

changes involved mainly the structure of the pheromone trail (advocated by Scheme

4) as well as related modifications to calculations using the pheromone trail. It

should be noted that all other factors of the implementation (such as the basis of the

formula for the calculation of the probability; the weight ratio of pheromone to local

heuristics; the relevance of item tightness to the problem; etc.) follows from generic

implementations used to solve the MKP in the literature [Fidanova1, 2002;

Fidanova2, 2002; Leguizamon and Michalewicz, 1999].

- 79 -

CHAPTER 8

Results and Discussions

This chapter presents the specific problem parameters and results obtained

using the approaches described in the previous chapter for three NP-hard problems,

namely the VRPTW, IRPTW and the MPMKP, as well as discussions on the results

obtained. All ACO implementations use the proposed parameter values by [Dorigo

et al., 1991] of α = 1, β = 5, numberOfAnts = 10, all decay values of 0.2, and q0 =

0.8.

8.1 Results for VRPTW

VRPTW, as mentioned, as extended from the TSP. The classical and most

common comparison for VRPTW solvers in the literature is with the Solomon’s

VRPTW benchmark [Solomon, 1987], consisting of a total of 56 test cases covering

different scenarios. These test cases included a set of problems consisting of

Clustered nodes (C101-C109, and C201-208), which generally is best solved by

assigning vehicles to service the same or nearby clusters in the problem; a set of

problems consisting of Random nodes (R101-R112, and R201-R211), which has

nodes randomly assigned, and solving it optimally will be problem specific; and a

set of problems consisting of a combination of Random and Clustered nodes

(RC101-108, and RC201-208). Table 8.1 tabulates the results obtained.

Table 8.1: Results for VRPTW from the Solomon’s original test cases (n=100) in
(fleet size/distance)

Test cases TS ACO HASTS

C101 10/828.94 10/855.07 10/828.94
C102 10/852.97 10/1072.24 10/845.61

- 80 -

C103 10/858.62 10/1435.26 10/840.88
C104 10/856.87 10/1182.64 10/857.57
C105 10/828.94 10/936.47 10/828.94
C106 10/828.94 10/958.91 10/828.94
C107 10/828.94 10/877.99 10/828.94
C108 10/828.94 10/1033.81 10/828.94
C109 10/828.94 10/1900.94 10/828.94
R101 19/1686.24 19/1929.05 19/1686.24
R102 18/1518.93 18/1886.77 18/1493.31
R103 14/1301.64 14/1679.71 14/1301.64
R104 11/1072.04 10/1198.69 10/1025.38
R105 14/1459.84 14/1651.43 14/1458.60
R106 13/1324.38 12/1564.99 12/1314.69
R107 11/1165.87 10/1144.72 10/1140.27
R108 10/1002.56 10/1117.25 10/ 994.66
R109 12/1287.62 12/1502.57 12/1207.58
R110 11/1218.33 11/1348.78 11/1166.65
R111 11/1104.93 11/1239.53 11/1172.66
R112 10/1039.55 10/1242.24 10/1041.36
RC101 15/1742.29 15/1899.97 15/1698.50
RC102 13/1605.30 13/1780.98 13/1551.32
RC103 11/1337.04 11/1567.12 11/1371.40
RC104 11/1249.13 10/1353.87 10/1187.97
RC105 15/1633.39 14/1899.54 14/1618.01
RC106 12/1428.88 12/1620.67 12/1434.33
RC107 12/1312.84 11/1468.59 11/1266.92
RC108 11/1258.40 10/1326.94 10/1273.12
C201 3/591.56 3/ 591.56 3/ 591.56
C202 3/591.56 3/ 993.62 3/ 591.56
C203 3/617.32 3/1065.81 3/ 605.23
C204 3/673.46 3/1046.87 3/ 594.80
C205 3/604.67 3/ 913.03 3/ 588.88
C206 3/632.35 3/ 647.29 3/ 588.49
C207 3/621.02 3/ 646.69 3/ 588.49
C208 3/588.88 3/ 646.72 3/ 588.49
R201 4/1308.84 4/2048.31 4/1366.34
R202 4/1123.34 3/1755.11 3/1239.22
R203 3/1013.59 3/1625.26 3/1000.29
R204 3/817.60 3/1159.14 3/ 781.86
R205 4/1022.02 3/1678.53 3/1063.29
R206 4/963.94 3/1525.34 3/ 955.34
R207 3/863.60 3/1258.12 3/ 866.35
R208 3/761.94 2/1016.07 2/1016.07
R209 4/934.45 3/1551.01 3/ 979.30
R210 3/1000.53 3/1659.90 3/ 968.32
R211 3/816.33 3/1143.96 3/ 865.51
RC201 4/1704.92 4/2226.23 4/1445.00
RC202 4/1265.78 4/1878.00 4/1204.45
RC203 3/1118.19 3/1706.48 3/1091.71
RC204 3/884.70 3/1342.81 3/ 826.27
RC205 4/1435.06 4/2271.26 4/1469.25
RC206 4/1162.96 3/1717.62 3/1259.12

- 81 -

RC207 4/1178.01 3/1733.47 3/1127.19
RC208 3/931.76 3/1422.07 3/ 937.78

 Table 8.1 is read as follows: TS refers to the results obtained using a

standard Tabu Search implementation on MDF-TSF. ACO refers to the results after

passing the data through derived model HASTS-EA, a predominantly ACO

technique implemented with MDF-ACF that focus on solving the first objective

(minimizing the fleet size of vehicles). Finally, the HASTS column tabulates the

results obtained after the entire HASTS process mentioned earlier – in effect after a

combination of HASTS-EA and HASTS-ED.

Note the effectiveness of the hybrid HASTS compared against TS and ACO,

which adequately showed the effectiveness of MDF and a divide and conquer

hybrid approach. Also, the results from TS are generally better than ACO in this

instance due to the different objectives of the approach. TS has an objective of

minimizing distance, and perform it so well that for some instances, such as R202,

it performs better in terms of distance, but is worse off by the problem definition

specifying the fleet size as primary priority, while the ACO results focuses mainly

on reducing the fleet size of vehicles.

It should also be further noted that the development of the TS

implementation takes about 3 months man-hours, while the ACO implementation

takes a lesser amount of time at about 2 months, due to its simpler nature.

Meanwhile, with the availability of both software frameworks, HASTS requires

only less than a week man-hours to develop.

- 82 -

8.2 Results for IRPTW

The results for IRPTW are obtained from an implementation that reuses the

implementation for the VRPTW. There are no well-known sets of test cases for the

IRPTW, but there are implementations in the literature that extends the set of test

cases from the Solomon’s benchmark for the VRPTW with additional constraints.

This thesis provides results for solving the same set of problems using the test

instance generation strategy in [Lau et al.1, 2002], which provided a good set of test

cases for IRPTW.

Specifically, the planning period is 10 days. The vehicle capacity, locations

and time-windows of the customers and depot are as specified in the corresponding

Solomon instances. The demand dit of customer i for day t (t=1,…,10) is equal to

the demand di of the Solomon instance, by partitioning the value 10*di into 10 parts,

i.e. di1, di2,…,di,10 randomly such that dit is within the range [0.5*di, 1.5*dj]. The

capacities of consumers and warehouse are the vehicle capacity and infinity

respectively. As for cost coefficients, the inventory cost and backlog cost for each

customer are 1 and 2 respectively, symbolizing a preference to holding a unit of

inventory over a day than suffer a lost of customer trust on a backlog of a

corresponding unit of inventory. The transportation cost of each route is 10 times its

total distance.

Table 8.2 shows the results of the test cases extracted from [Lau et al.1, 2002]

in comparison with the proposed approach. Only extended test cases from the C2

and R2 series are tabulated, which this thesis corresponding match. Furthermore,

RC2 results are also provided to aid further studies on the problem. The columns

VRPTW, ILS+VRP and TS+VRP denote the results obtained from [Lau et al.1,

2002], where VRPTW is the approach taken from adopting a standard two-phase

- 83 -

heuristics; ILS+VRP is the results obtained using Iterated Local Search [Gu 1992;

Johnson 1990]; and TS+VRP employs a Tabu Search technique. The column

HASTS presents the results obtained using our proposed hybrid algorithm

implemented from the MDF (ACF+TSF).

Table 8.2: Results for IRPTW extended from Solomon’s original test cases in (costs)
Test Cases VRPTW ILS+VRP TS+VRP HASTS

C201 178650 113263 112821 54905
C202 192818 117483 124312 53404
C203 200615 131920 122055 53620
C204 216447 136384 142300 54778
C205 175378 116147 109248 51907
C206 177331 123978 127876 50507
C207 177447 122204 117735 51453
C208 175268 124110 125667 52501
R201 304779 111330 116893 85014
R202 291492 116982 114717 70533
R203 247122 110215 115070 68865
R204 227381 114118 114118 61944
R205 284759 122333 123009 73455
R206 260760 120928 123251 64652
R207 223527 115438 115438 63697
R208 338033 120011 117255 59285
R209 249036 116840 120725 69200
R210 - - - 69545
R211 - - - 61816
RC201 - - - 97417
RC202 - - - 87245
RC203 - - - 80114
RC204 - - - 71795
RC205 - - - 92560
RC206 - - - 86144
RC207 - - - 83326
RC208 - - - 71740

 Results for the VRPTW, ILS+VRP, and TS+VRP columns are obtained on a

Pentium 666MHz machine, while the results from the HASTS column is obtained

on a Pentium 1.13GHz machine, which is estimated to perform at twice the power.

As such, for comparison, the HASTS implementation is obtained under 90 seconds,

to compensate for the 180 seconds upper bound used for the other implementations.

- 84 -

 With the objective being to minimize the cost, Table 8.2 amply showed that

HASTS offers a set of superior results compared to previous works. While this

could be due in part to the originality of IRPTW in the literature, and hence not well

studied as yet, it can still be claimed that the effectiveness when solving VRPTW is

not lost when reused to solve IRPTW. Furthermore, it can be seen that the

framework provided generality and flexibility for reuse, which enabled

development to take minimal effort and implementation to be achieved in less than

2 weeks man-hours.

8.3 Results for MPMKP

The results presented here are those using a Tabu Search approach obtained

from a related work [Lau et al.2, 2002], compared against an ACO-only

implementation from ACF proposed in this thesis, to reflect the effectiveness of the

scheme.

The set of test cases solved in this instance is extended from the benchmark

test cases for MKP found in the OR-LIB (http://www.ms.ic.ac.uk/jeb/pub/). OR-

LIB has a set of 0-1 MKPs generated with varying size and tightness. Te benchmark

problems are divided into nine sets, each with a given number of items, m, and

number of requests, n. There are 30 test cases within a set. The first 10 test cases are

generated with a tightness ratio, α, of 0.25. The next 10 test cases are generated

with α = 0.5, and the last 10 test cases are generated with α = 0.75. The parameters

used in each test case are generated as follows:

)1000,0(Uaij = ………. (13)

http://www.ms.ic.ac.uk/jeb/pub/

- 85 -

∑
=

=
n

i
iji ab

1
α for α ∈ {0.25, 0.5, 0.75} ………. (14)

∑
=

+=
m

i

ij
j U

m
a

p
1

)1,0(500 ………. (15)

where aij is the consumed quantity of item i if object j is fulfilled

bi is the total inventory for item i (1 ≤ i ≤ m)

pj is the profit of object j (1 ≤ j ≤ n)

However, this set of benchmark is for 0-1 MKP, and hence can only be used

as test cases for the single-period multi-dimensional knapsack problem. For this

instance, 6 sets of 7-period MPMKPs (equivalent to 7 days of a week) are generated.

Table 8.3 demonstrates how to generate a set of 9 test cases for the MPMKP using

the specified 7-period planning horizon from the 30 test cases in mknapcbX (1 ≤ X

≤ 9). The first test case is generated using the first 7 test cases in mknapcbX. The

rest of the test cases are generated by choosing another 7 test cases from the

mknapcbX test set. The main parameters in each group are n, the number of

requests in each periods, and m, the number of items.

Table 8.3: The nine test cases generated from mknapcbX
Test Cases mknapcbX test cases chosen α

mknapcbX-m7-1-n-M-linear 1,2,3,4,5,6,7 0.25
mknapcbX-m7-2-n-M-linear 2,3,4,5,6,7,8 0.25
mknapcbX-m7-3-n-M-linear 3,4,5,6,7,8,9 0.25
mknapcbX-m7-4-n-M-linear 11,12,13,14,15,16,17 0.50
mknapcbX-m7-5-n-M-linear 12,13,14,15,16,17,18 0.50
mknapcbX-m7-6-n-M-linear 13,14,15,16,17,18,19 0.50
mknapcbX-m7-7-n-M-linear 21,22,23,24,25,26,27 0.75
mknapcbX-m7-8-n-M-linear 22,23,24,25,26,27,28 0.75
mknapcbX-m7-9-n-M-linear 23,24,25,26,27,28,29 0.75

- 86 -

Table 8.4 below compares the results obtained by heuristics methods. The

ZTSA column reflects results obtained using a Tabu Search approach [Lau et al.2,

2002], which has a good Greedy Algorithm as the construction phase algorithm,

while ZACO_S3 and ZACO_S4 shows the results obtained using implementations of ACF

with Scheme 3 and Scheme 4 respectively. ZTSA directly reference the results

produced by [Lau et al.2, 2002].

For purpose of this thesis, ACO Scheme 4 is limited to within 180 seconds,

to show the capability of ACO to produce good solutions fast, as well as a basis of

comparison between the heuristic approaches, while Scheme 3 which is

hypothetically weaker is allowed a complete run on 1000 iterations with 10 ants.

Table 8.4: Results for mknapcbX (1≤X≤9) set of test cases in (profits)
Test cases ZTSA ZACO_S3 ZACO_S4

mknapcb1-m7-1-100-5 170394 166108.80 172991.50
mknapcb1-m7-2-100-5 170403 167630.00 174511.50
mknapcb1-m7-3-100-5 165766 163075.80 169773.70
mknapcb1-m7-4-100-5 301046 298855.40 305530.00
mknapcb1-m7-5-100-5 302202 297823.40 305165.70
mknapcb1-m7-6-100-5 300691 292329.70 301130.00
mknapcb1-m7-7-100-5 421542 415505.30 422760.60
mknapcb1-m7-8-100-5 426364 421160.10 428271.50
mknapcb1-m7-9-100-5 425243 424004.80 430210.40
mknapcb2-m7-1-250-5 422142 413640.40 419683.10
mknapcb2-m7-2-250-5 423560 418154.50 423564.00
mknapcb2-m7-3-250-5 422531 421054.40 426623.40
mknapcb2-m7-4-250-5 762490 760213.90 766470.50
mknapcb2-m7-5-250-5 766521 758573.50 765164.90
mknapcb2-m7-6-250-5 761451 750241.40 756247.30
mknapcb2-m7-7-250-5 1050350 1043238.40 1051298.40
mknapcb2-m7-8-250-5 1049140 1052362.80 1059225.60
mknapcb2-m7-9-250-5 1050460 1062571.90 1069669.60
mknapcb3-m7-1-500-5 842117 830083.10 835461.30
mknapcb3-m7-2-500-5 841800 835786.70 842117.00
mknapcb3-m7-3-500-5 848891 858047.80 863560.60
mknapcb3-m7-4-500-5 1542250 1532538.90 1539289.40
mknapcb3-m7-5-500-5 1539590 1542718.20 1548729.80
mknapcb3-m7-6-500-5 1523470 1529134.10 1534857.90
mknapcb3-m7-7-500-5 2107850 2086118.00 2094827.10
mknapcb3-m7-8-500-5 2114540 2129949.20 2135511.20
mknapcb3-m7-9-500-5 2106420 2110473.10 2115925.40

- 87 -

mknapcb4-m7-1-100-10 162173 154759.50 164829.00
mknapcb4-m7-2-100-10 159706 149624.70 159609.00
mknapcb4-m7-3-100-10 161311 152395.80 163004.00
mknapcb4-m7-4-100-10 301580 283156.90 294177.00
mknapcb4-m7-5-100-10 306173 303296.70 312527.20
mknapcb4-m7-6-100-10 296748 294717.00 303522.60
mknapcb4-m7-7-100-10 414000 388742.50 399290.30
mknapcb4-m7-8-100-10 420116 407112.20 415442.70
mknapcb4-m7-9-100-10 419433 408924.70 417419.10
mknapcb5-m7-1-250-10 410521 406566.70 417525.6
mknapcb5-m7-2-250-10 414048 403700.80 414371.00
mknapcb5-m7-3-250-10 411796 400603.70 411412.50
mknapcb5-m7-4-250-10 760319 761432.70 772740.60
mknapcb5-m7-5-250-10 760858 755473.40 768019.1
mknapcb5-m7-6-250-10 758738 752282.50 762944.30
mknapcb5-m7-7-250-10 1059590 1049603.20 1059568.00
mknapcb5-m7-8-250-10 1056350 1049558.70 1058926.10
mknapcb5-m7-9-250-10 1058770 1043742.00 1051996.90
mknapcb6-m7-1-500-10 821095 809800.50 818143.40
mknapcb6-m7-2-500-10 826232 820644.40 829577.60
mknapcb6-m7-3-500-10 825980 826518.00 834593.10
mknapcb6-m7-4-500-10 1502780 1508633.60 1518613.30
mknapcb6-m7-5-500-10 1518870 1507663.00 1519139.60
mknapcb6-m7-6-500-10 1512120 1509724.60 1520753.90
mknapcb6-m7-7-500-10 2106780 2100039.90 2113689.30
mknapcb6-m7-8-500-10 2107940 2081950.70 2095697.90
mknapcb6-m7-9-500-10 2103260 2091771.60 2104327.60
mknapcb7-m7-1-100-30 156032 142178.50 157007.80
mknapcb7-m7-2-100-30 156368 141355.00 157205.00
mknapcb7-m7-3-100-30 154808 141638.20 156960.40
mknapcb7-m7-4-100-30 289066 268620.40 285293.20
mknapcb7-m7-5-100-30 294527 272348.40 289700.00
mknapcb7-m7-6-100-30 294653 268390.60 285656.20
mknapcb7-m7-7-100-30 410677 390187.30 403545.20
mknapcb7-m7-8-100-30 417794 400152.80 414011.40
mknapcb7-m7-9-100-30 415666 381110.70 392733.50
mknapcb8-m7-1-250-30 399999 382107.60 401183.90
mknapcb8-m7-2-250-30 401153 386723.90 405881.50
mknapcb8-m7-3-250-30 399017 382146.10 403577.00
mknapcb8-m7-4-250-30 747851 728399.60 752444.60
mknapcb8-m7-5-250-30 750229 726118.70 745073.40
mknapcb8-m7-6-250-30 747512 727883.60 749204.90
mknapcb8-m7-7-250-30 1039310 1013280.80 1031130.80
mknapcb8-m7-8-250-30 1054980 1026651.60 1045940.70
mknapcb8-m7-9-250-30 1052480 1017275.90 1039318.60
mknapcb9-m7-1-500-30 792223 788881.80 808691.90
mknapcb9-m7-2-500-30 801077 785644.40 807627.50
mknapcb9-m7-3-500-30 806659 791132.70 814975.3
mknapcb9-m7-4-500-30 1500320 1488875.30 1510488.60
mknapcb9-m7-5-500-30 1496240 1486699.30 1514131.40
mknapcb9-m7-6-500-30 1499550 1476969.40 1500447.20
mknapcb9-m7-7-500-30 2097630 2060330.90 2086525.60

- 88 -

mknapcb9-m7-8-500-30 2101080 2065677.20 2091225.70
mknapcb9-m7-9-500-30 2112110 2070480.50 2092516.40

 The table shows that out of the 81 test cases executed, the ACF

implementation with Scheme 4 yields better results for 53 test cases, with a

considerably small margin for many of these cases. On the other hand, for the 28

test cases where TS is better than ACO Scheme 4, the profit value had a lower ratio

compared to the average performance of the other 53 test cases. Meanwhile, ACO

Scheme 3 is comparatively weaker than both TS and Scheme 4. However, the

objective of MPMKP, as defined by the available-to-promise problem, is to find

good solutions fast, and Table 8.5 tabulates the time taken to achieve the results.

Table 8.5: Run time for mknapcbX (1≤X≤9) set of test cases in (seconds)
Test cases CPUTSA CPUACO_S3 CPUACO_S4

mknapcb1-m7-1-100-5 14.87 15.38 15.68
mknapcb1-m7-2-100-5 14.71 5.57 1.92
mknapcb1-m7-3-100-5 14.68 6.33 2.86
mknapcb1-m7-4-100-5 41.77 9.89 7.03
mknapcb1-m7-5-100-5 47.89 8.44 5.37
mknapcb1-m7-6-100-5 51.71 9.45 8.33
mknapcb1-m7-7-100-5 147.69 8.48 4.14
mknapcb1-m7-8-100-5 106.53 8.46 4.28
mknapcb1-m7-9-100-5 123.12 14.48 10.77
mknapcb2-m7-1-250-5 152.51 192.67 12.36
mknapcb2-m7-2-250-5 166.85 293.07 18.10
mknapcb2-m7-3-250-5 128.88 222.57 12.11
mknapcb2-m7-4-250-5 494.74 207.18 19.30
mknapcb2-m7-5-250-5 513.16 142.51 19.54
mknapcb2-m7-6-250-5 529.77 199.06 19.10
mknapcb2-m7-7-250-5 699.59 213.93 113.92
mknapcb2-m7-8-250-5 711.66 113.30 37.89
mknapcb2-m7-9-250-5 706.03 100.51 25.27
mknapcb3-m7-1-500-5 756.36 886.24 345.23
mknapcb3-m7-2-500-5 732.61 951.93 52.52
mknapcb3-m7-3-500-5 643.13 1060.97 52.84
mknapcb3-m7-4-500-5 821.59 933.63 87.69
mknapcb3-m7-5-500-5 849.69 548.14 86.12
mknapcb3-m7-6-500-5 815.20 609.20 118.05
mknapcb3-m7-7-500-5 241.60 655.44 107.5
mknapcb3-m7-8-500-5 236.46 678.25 109.32
mknapcb3-m7-9-500-5 238.99 730.92 105.78

- 89 -

mknapcb4-m7-1-100-10 13.63 5.38 5.15
mknapcb4-m7-2-100-10 13.02 3.75 2.03
mknapcb4-m7-3-100-10 13.40 3.44 2.22
mknapcb4-m7-4-100-10 41.86 8.47 6.92
mknapcb4-m7-5-100-10 46.40 6.66 5.57
mknapcb4-m7-6-100-10 42.41 4.65 3.54
mknapcb4-m7-7-100-10 148.19 5.59 4.68
mknapcb4-m7-8-100-10 194.19 9.19 4.38
mknapcb4-m7-9-100-10 140.76 12.38 6.65
mknapcb5-m7-1-250-10 108.14 88.61 12.48
mknapcb5-m7-2-250-10 107.89 94.72 12.83
mknapcb5-m7-3-250-10 118.30 138.93 12.54
mknapcb5-m7-4-250-10 475.93 136.05 22.33
mknapcb5-m7-5-250-10 501.04 69.51 33.21
mknapcb5-m7-6-250-10 572.33 125.85 22.06
mknapcb5-m7-7-250-10 691.45 129.48 30.40
mknapcb5-m7-8-250-10 744.97 85.79 30.91
mknapcb5-m7-9-250-10 741.83 93.68 45.36
mknapcb6-m7-1-500-10 160.56 453.39 51.65
mknapcb6-m7-2-500-10 161.94 526.34 51.15
mknapcb6-m7-3-500-10 164.45 525.70 79.85
mknapcb6-m7-4-500-10 271.30 682.82 91.91
mknapcb6-m7-5-500-10 270.60 549.18 97.77
mknapcb6-m7-6-500-10 273.84 605.56 100.96
mknapcb6-m7-7-500-10 345.11 587.36 112.00
mknapcb6-m7-8-500-10 338.53 630.59 114.46
mknapcb6-m7-9-500-10 349.79 577.76 170.86
mknapcb7-m7-1-100-30 17.28 6.29 2.78
mknapcb7-m7-2-100-30 18.11 5.99 2.93
mknapcb7-m7-3-100-30 15.93 26.21 26.79
mknapcb7-m7-4-100-30 53.57 12.88 7.35
mknapcb7-m7-5-100-30 61.70 9.64 4.54
mknapcb7-m7-6-100-30 57.02 40.64 37.82
mknapcb7-m7-7-100-30 141.62 60.93 59.33
mknapcb7-m7-8-100-30 158.40 21.97 11.62
mknapcb7-m7-9-100-30 145.26 21.93 11.15
mknapcb8-m7-1-250-30 145.23 60.83 15.96
mknapcb8-m7-2-250-30 140.72 82.88 49.33
mknapcb8-m7-3-250-30 165.32 76.75 16.90
mknapcb8-m7-4-250-30 560.62 122.78 28.91
mknapcb8-m7-5-250-30 599.01 69.53 28.75
mknapcb8-m7-6-250-30 559.06 92.29 28.58
mknapcb8-m7-7-250-30 816.74 107.42 57.06
mknapcb8-m7-8-250-30 858.27 128.04 59.63
mknapcb8-m7-9-250-30 838.59 104.44 39.13
mknapcb9-m7-1-500-30 145.23 470.73 69.17
mknapcb9-m7-2-500-30 286.24 495.76 68.62
mknapcb9-m7-3-500-30 288.55 478.81 80.31
mknapcb9-m7-4-500-30 286.41 571.76 165.83
mknapcb9-m7-5-500-30 500.72 578.27 122.91
mknapcb9-m7-6-500-30 507.14 575.78 121.01
mknapcb9-m7-7-500-30 502.03 756.60 172.06

- 90 -

mknapcb9-m7-8-500-30 642.25 737.34 161.69
mknapcb9-m7-9-500-30 641.26 644.54 170.15

Tables 8.5 sufficiently show the time efficiency with which TSA and the

two ACO approaches obtain near-optimal solutions. Interestingly, ACO Scheme 4

comes within 6% deviation of the upper bound obtained from CPLEX4). ACO

which operates by solution reconstruction of each ant, coupled with an effective

scheme, local heuristics and parameters tuning, is effective in gauging the

optimality of the problem overall. All the heuristic approaches are also able to

provide a constant estimation of the problem optimality at a fixed (early) time,

though the random nature of ACO makes it a slightly less suitable candidate in such

situations. In particular, this slight disadvantage is however easily redeemed by the

speed of Scheme 4. This overall performance enhances our argument that Scheme 4

is an effective ACO scheme for hard scheduling problems. This is further noted

when sample implementations using generic ACO approaches, as well as the

implementation using Scheme 3 is executed in the lab, where it is seen from Table

8.4 that the results are way under par compared to Scheme 4 or the TSA approach.

Furthermore, the CPU time for Scheme 3, seen from Table 8.5, approximates the

CPU time for the TSA approach, which is weaker than the Scheme 4

implementation in most cases.

It is also observed that TSA is somewhat dependent on the tightness ratio

of the problem, rather than on the problem size. ACO is less sensitive than TSA to

the tightness ratio. The disadvantage of ACO, however, is in the intrinsic way it

operates using a new solution construction in all iterations, and hence it is more

sensitive to problem size. This is as due to its complexity, which in uses an O(xn2)

4 The upper bounds were obtained after running CPLEX for 2 hours.

- 91 -

and O(xn3) ACO implementation for Scheme 4 and Scheme 3 respectively, and

hence there is not many iterations that can be executed, unless the code is further

optimized. Hence, when the problem size is very large, such as when number of

requests is much greater than 500, or the time-period much greater than 7, TSA will

prove to be a more effective approach, although in the set of test cases

experimented (mknapcb9 being the largest problem size with 500 requests per

period and 30 items), ACO Scheme 4 still outperform TSA in terms of the ability to

allow for quick decision. Regardless, when the problem size gets large, and given

the limitations of the ACO algorithms as discussed in this thesis, the algorithm

requires diversification or extreme exploration, or collaboration of ACO Scheme 4

as a construction phase algorithm together with a local search technique like Tabu

Search for the optimization phase. The results also proved the potential of the time-

period scheme specified by ACO Scheme 4 over a generic scheme like ACO

Scheme 3 in dealing with time-period constraints.

- 92 -

CHAPTER 9

Conclusion

 This thesis presented the operations of the Ant Colony Optimization, and

extracted observations on the algorithm to develop a generic ACO software

framework. ACO, which is inspired from the foraging behavior of real ants colony,

does not work exactly as how the real ants operate, using additional modifications

which adapt it better into an optimizing algorithm, in particular when employing the

concept of diversification. However, the modifications have allowed promising

applications to many problems, although the terminology generally used in the

community, in relation to the real ant colonies, may arguably be inappropriate.

The Ant Colony Framework (ACF) is developed with a twofold purpose

capable of serving as a standalone ACO software framework, as well as being a

component framework in a higher level Meta-heuristics Development Framework

(MDF) that is an overseer framework capable of integrating any number of separate

heuristics to aid algorithmic collaboration and performance comparisons.

 A primary objective of the thesis is to demonstrate the potential of reuse in

the framework, which can decrease developmental resources and increase

productivity. In particular, it is shown how ACF, together with other heuristics

framework of MDF, can be easily adapted from one implementation solving

VRPTW (which uses a TSP implementation not explicitly established in this thesis)

to solve IRPTW, which is an extended problem of VRPTW. The VRPTW

implementations obtained good results, even when compared against state-of-the-art

techniques in the literature, and when reused for IRPTW, the excellent results

achieved clearly show the value of reuse in this instance. By induction, it is logical

- 93 -

to state that as long as a good implementation is found for a base problem, it is

simple to reuse that implementation for similar or extended scenarios of that base

problem. While the ACO algorithm can be implemented in a serial and parallel

manner, this thesis follows the classic serial approach applied in most works in the

literature, although a parallel formulation makes more sense, as this will more

closely follows the behavior of real ants.

 A secondary objective of this thesis deals with presenting useful schemes

which developers of the ACO algorithm can exploit for various situations. Besides a

few generic and/or common schemes, of concern is the current state of the

community in moving towards the time-period dimension of many classic problems

to better approximate practical applications. As such, schemes for ACO that

exploits the time-period properties are examined and encouraging running time

performance for the MPMKP, which is a single time dimension extension of MKP,

are obtained.

 The current development opens avenue for future works, such as the further

development of MDF, in the context of improving the collaboration between the

existing engines, as well as introducing new algorithms. As well, more schemes can

be formulated to cater for different classes of problems. Another potential is the use

of ACF to hybridize with other engines in MDF to solve for other classic and/or

industrial problems not examined previously. Furthermore, it is also interesting to

explore a complete parallel implementation which was not examined.

- 94 -

REFERENCES

[Aboudi and Jornsten, 1994] R. Aboudi and K. Jornsten. Tabu search for general zero-one integer

programs using pivot and complement heuristic, ORSA Journal on Computing, 6, 82-93, 1994

[Agarwal et al., 1989] Y. Agarwal, K. Mathur, and H.M. Salkin. Set Partitioning Approach to

Vehicle Routing, Networks 7, 731, 1989

[Ahuja et al., 2003] R. K. Ahuja, K. C. Jha, J. B. Orlin, D. Sharma. Very Large-Scale Neighborhood

Search for the Quadratic Assignment Problem, MIT Working paper, 2003

[Adleman, 1983] L. Adleman. On breaking the iterated Merkle-Hellman public-key cryptosystem,

Proceedings of the 15th ACM Symposium on the Theory of Computing, 402--412. 15, 1983

[Applegate et al., 1995] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Finding Cuts in the TSP,

DIMACS Technical Report 95-05, 1995.

[Araque et al., 1994] J.R. Araque, G. Kudva, T.L. Morin, and J.F. Pekny. A Branch-and-Cut

Algorithm for Vehicle Routing Problems, Annals of Operations Research 50, 37, 1994

[Augerat et al., 1995] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddef, and G.

Rinaldi. Computational Results with a Branch and Cut Code for the Capacitated Vehicle Routing

Problem, Research Report 949-M, Universite Joseph Fourier, Grenoble, France, 1995

[Bahn et al., 1994] O. Bahn, O. du Merle, J.L. Goffin, and J.P. Vial. Cutting Plane Method from

Analytic Centers for Stochastic Programming, Technical Report, Dept. of Management Studies,

University of Geneva, 1211 Geneva, Switzerland, Dec, 1992, revised 1994

[Balas and Martin, 1980] E. Balas and C. H. Martin. Pivot and complement--A heuristic for 0-1

programming, Management Science, 26, 86-96, 1980

[Baldacci et al., 1999] R. Baldacci, A. Mingozzi, and E. Hadjiconstantinou. Exact Algorithm for

the Capacitated Vehicle Routing Problem Based on a two-commodity network flow formulation,

Technical Report 16, Department of Mathematics, University of Bologna, 1999

[Balinski and Quandt, 1964] M.L. Balinski, and R.E. Quandt. On an Integer Program for a

Delivery Problem, Operations Research 12 (1964), 300, 1964

[Bellman, 1957] R. Bellman. Dynamic Programming, Princeton Univ. Press, Princeton, N.J., 1957

- 95 -

[Bent and Hentenryck, 2001] R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Local Search

for the Vehicle Routing Problem with Time Windows, Technical Report CS-01-06, Department of

Computer Science, Brown University, 2001

[Bentley, 1980] J.L. Bentley. Multidimensional divide-and-conquer, Communications of the ACM,

23, 214-229, 1980

[Biggs et al., 1976] N.L.Biggs, E.K.Lloyd, and R.J. Wilson. Graph Theory 1736-1936, Clarendon

Press, Oxford, 1976

[Blum and Dorigo, 2001] C. Blum, A. Roli, and M. Dorigo. HC-ACO: The hyper-cube framework

for ant colony optimization, Proceedings of the Metaheuristics International Conference, MIC 2001,

Porto, Portugal, (2) 399-403, 2001

[Bonabeau et al., 1997] E.W. Bonabeau, G. Theraulaz, J-L. Deneubourg, S. Aron, and S. Camazine.

SelfOrganization in Social Insects, Trends in Ecology and Evolution 12:188-193, 1997

[Bonabeau, 1999] E. Bonabeau. Biological and economic networks, Making Sense Of Networks, 4

MAY, 1999

[Bonabeau and Theraulaz, 2000] E. Bonabeau, and G. Theraulaz. Swarm smarts, Scientific

American, pp. 72-79, March, 2000

[Bullnheimer et al., 1997] B. Bullnheimer, R. F. Hartl, C. Strauss. Applying the Ant System to the

Vehicle Routing Problem, Proceedings of the 2nd Metaheuristics International Conference (MIC-97),

Sophia-Antipolis, France, 1997

[Braysy, 2001] O. Braysy. A Reactive Variable Neighborhood Search Algorithm for the Vehicle

Routing Problem with Time Windows, Working Paper, University of Vaasa, Finland, 2001

[Brickell, 1984] E. Brickell. Solving low-density knapsack, Proc Crypto 83, pp 25-37, 1984

[Chakradhar and Raghunathan, 1997] S. T. Chakradhar and A. Raghunathan. Bottleneck

elimination algorithm for dynamic compaction and test cycles reduction, IEEE Transactions on

Computer-Aided Design, October, 1997

[Campbell et al., 1998] A. Campbell, L. Clarke, A. J. Kleywegt, and M. W. P. Savelsbergh. The

Inventory Routing Problem, in T.G. Crainic, and G. Laporte, (eds), Fleet Management and Logistics,

Kluwer Academic Publishers, pp. 95-113, 1998

[Carter et al., 1996] M. W. Carter, J. M. Farvolden, G. Laporte, J. Xu, Solving an Integrated

Logistics Problem Arising in Grocery Distribution, INFOR, Vol 34:4, pp. 290-306, 1996

- 96 -

[Chan et al., 1998] L. M. Chan, A. Federgruen and D. Simchi-Levi. Probabilistic Analysis and

Practical Algorithms for Inventory-Routing Models, Ops Res, Vol. 46:1. pp. 96-106, 1998

[Chiang and Russell, 1997] W. Chiang and R. A. Russell, A Reactive Tabu Search Metaheuristic

for Vehicle Routing Problem with Time Windows, INFORMS Journal on Computing, Vol 8, No 4,

1997

[Christofides and Eilon, 1969] N. Christofides and S. Eilon. An Algorithm for the Vehicle

Dispatching Problem, Operational Research Quarterly 20, 309, 1969

[Christofides et al., 1981] N. Christofides, A. Mingozzi, and P. Toth. Exact Algorithms for Solving

the Vehicle Routing Problem Based on Spanning Trees and Shortest Path Relaxations, Mathematical

Programming 20, 255, 1981

[Colorni et al., 1993] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-

shop schedul-ing. Belg. J. Oper. Res., Stat. and Comput. Sci. 34, 39-53, 1993

[Cook and Rich, 1999] W. Cook, J. L. Rich. A parallel cutting-plane algorithm for the vehicle

routing problem with time windows, Department of Computational and Applied Mathematics

Technical Report TR99-04, Rice University, 1999

[Cordeau et al., 2000] J. F. Cordeau, G. Laporte, and A. Mercier. A Unified Tabu Search Heuristic

for Vehicle Routing Problems with Time Windows, Centre for Research on Transportation,

Montreal, Canada, 2000

[Costa and Hertz, 1997] D. Costa and A. Hertz. Ants Can Colour Graphs, Journal of the

Operational Research Society, 48, 295-305, 1997

[Crowder and Padberg, 1980] H. Crowder and M. Padberg. Solving Large Scale Symmetric

Traveling Salesman Problems to Optimality, Management Science 26, 495, 1980

[Cullen et al., 1981] F.H. Cullen, J.J. Jarvis, and H.D. Ratliff. Set Partitioning Based Heuristic for

Interactive Routing, Networks 11, 125, 1981

[Dammeyer and Voss, 1993] F. Dammeyer and S. Voss. Dynamic tabu list management using

reverse elimination method, Annals of Operations Research, 41, 31-46, 1993

[Darwin, 1979] C. Darwin. Origin of Species, Avenel Books, Crown Publishers, 1979

[Dantzig et al., 1954] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large scale

traveling salesman problem, Operations Research, 2:393-410, 1954

- 97 -

[Dantzig and Ramser, 1959] G.B. Dantzig and J.H. Ramser. The Truck Dispatching Problem,

Management Science 6, 80, 1959

[Di Caro and Dorigo, 1998] G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic Control

for Communications Networks, Journal of Artificial Intelligence Research, 9:317--365, 1998

[Distante and Piuri, 1989] F. Distante and F. Piuri. Hill-climbing heuristics for optimal hardware

dimensioning and software allocation in fault-tolerant distributed systems, IEEE transactions on

Reliability, vol. 38:1, ISSN: 0018-9529, pp. 28-39, 1989

[Dorigo and Di Caro, 1999] M. Dorigo, G. Di Caro. Ant Colony Optimization: A New Meta-

Heuristic, Proc. 1999 Congress on Evolutionary Computation, July 6-9, 1999, pp. 1470-1477, 1999

[Dorigo and Gambardella, 1997] M. Dorigo and L.M. Gambardella. Ant Colony System: A

Cooperative Learning Approach to the Traveling Salesman Problem, IEEE Trans on Evolutionary

Computation, Vol. 1, No. 1, 1997

[Dorigo et al., 1991] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: An Autocatalytic

Optimizing Process. Technical Report No. 91-016 Revised, Politecnico di Milano, Italy, 1991

[Dorigo et al., 1996] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a

Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B,

26(1):29-41, 1996

[Dorn et al., 1994] J. Dorn, M. Girsch, G. Skele, and W. Slany. Comparison of Iterative

Improvement Techniques for Schedule Optimization, Proceedings of the 13th UK Planning Special

Interest Group, Glasgow (also available as CD-TR 94-61), 1994

[Dorigo et al., 1999] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant Algorithms for Discrete

Optimization, Artificial Life, 5(2):137-172. Also available as Tech.Rep.IRIDIA/98-10, Université

Libre de Bruxelles, Belgium, 1999

[Elhedhi and Goffin, 2001] S. Elhedhli and J.L. Goffin. The Integration of an Interior-Point

Cutting-Plane Method within a Branch-and-Price Algorithm, http://www.crt.umontreal.ca/~jlg/,

March, 2001.

[Fidanova1, 2002] S. Fidanova. ACO Algorithm for MKP Using Different Heuristic Information,

5th Int Conference of Numerical Methods and Applications,Lecture Notes in Computer Science,

Springer-Verlag, Germany , 434-440, 2002

http://www.crt.umontreal.ca/~jlg

- 98 -

[Fidanova2, 2002] S. Fidanova. Evolutionary Algorithm for Multiple Knapsack Problem, In

Proceedings of PPSN-VII, Seventh International Conference on Parallel Problem Solving from

Nature, Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany, 2002.

[Fink et al., 1998] A. Fink, S. Voß, D. Woodruff. Tutorial Building Reusable Software Components

for Heuristic Search, INFORMS/CORS conference in Montreal, April, 1998

[Finke et al., 1984] G. Finke, A. Claus, and E. Gunn. A two-commodity network flow approach to

the traveling salesman problem, Congress Numerantium 41, 167, 1984

[Fisher, 1988] M.L. Fisher. Optimal Solution of Vehicle Routing Problems Using Minimum k-Trees,

Operations Research 42, 141, 1988

[Fisher and Jaikumar, 1981] M.L. Fisher and R. Jaikumar. A Generalized Assignment Heuristic

for Solving the VRP, Networks 11, 109, 1981

[Fleischmann, 1985] B. Fleischmann. A cutting plane procedure for the travelling salesman

problem on road networks, European J. Oper. Res. 21: 307-317, 1985

[Freville and Plateau, 1997] A. Freville and G. Plateau. The 0-1 bidimensional knapsack problem:

toward an efficient high-level primitive tool, Journal of Heuristics, 2, 147-167, 1997

[Foster and Ryan, 1976] B.A. Foster and D.M. Ryan. An Integer Programming Approach to the

Vehicle Scheduling Problem, Operational Research Quarterly 27, 367, 1976

[Gambardella et al.1, 1999] L.M. Gambardella, E. Taillard, G. Agazzi. MACS-VRPTW: A

Multiple Colony System For Vehicle Routing Problems With Time Windows, Technical Report

IDSIA, IDSIA-06-99, 1999

[Gambardella et al.2, 1999] L.M. Gambardella, E.D. Taillard, and M. Dorigo. Ant Colonies for the

QAP, Journal of the Operational Research Society, 50:167--176, 1999

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[Gaspero and Schaerf, 2000] L. Di Gaspero and A. Schaerf. EasyLocal++: An object-oriented

framework for flexible design of local search algorithms, Res. Report UDMI/13/2000/RR, 2000

[Gavish and Pirkul, 1985] B. Gavish and H. Pirkul. Efficient algorithms for solving multiconstraint

Zero-One knapsack problems to optimality, Mathematical Programming, 31, 78-105, 1985

- 99 -

[Gehring and Homberger, 2001] H. Gehring and J. Homberger. A Parallel Two-phase

Metaheuristic for Routing Problems with Time Windows, Asia-Pacific Journal of Operational

Research, 18, 35-47, (2001)

[Gillet and Miller, 1974] B.E. Gillet, L.R. Miller. A Heuristics Algorithm for the Vehicle Dispatch

Problem, Operations Research, 22:340-349, 1974

[Glover and Laguna, 1997] F. Glover and M. Laguna. Tabu Search, Readings, Kluwer Academic

Publishers, Boston/Dorderecht/London, 1997

[Goldberg, 1989] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, Reading, Mass, 1989

[Grotschel and Holland, 1991] M. Grotschel, and O. Holland. Solution of large--scale symmetric

travelling salesman problems, Math. Programming 51: 141-202, 1991

[Gu, 1992] J. Gu. Efficient Local Search for Very Large-Scale Satisfiability Problem, SIGART

Bulletin, 3, 8-12, 1992

[Harder, 2001] R.Hearder, IBM OpenTS Homepate, http://opents.iharder.net, 2001

[Held and Karp, 1969] M. Held, and R.M. Karp. The Traveling Salesman Problem and Minimal

Spanning Trees, Operations Research 18, 1138, 1969

[Hoffmeyer, 1994] J. Hoffmeyer. The swarming body, Proc. 5th Congress of the International

Association for Semiotic Studies, Berkeley, 1994

[Homberger and Gehring, 1999] J. Homberger and H. Gehring. Two Evolutionary Metaheuristics

for the Vehicle Routing Problem with Time Windows, INFOR, VOL. 37, 297-318, 1999

[Jin and Reynolds, 2000] X. Jin, R. G. Reynolds. Using knowledge-based systems with

hierarchical architectures to guide evolutionary search, International Journal on Artificial

Intelligence Tools, Vol. 9, No. 1, 27-44, 2000

[Johnson, 1990] D.S. Johnson, Local Optimization and the Traveling Salesman Problem, Procs of

the 17th Colloquium on Automata, Languages and Programming, 446-461, 1990

[Joslin and Clements, 1999] D. E. Joslin and D. P. Clements. Squeaky Wheel Optimization,

Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1999

[Junger and Stormer, 1995] M. Junger and P. Stormer. Solving large-scale traveling salesman

problems with parallel Branch-and-Cut, Technical Report No. 95.191, 1995

http://opents.iharder.net

- 100 -

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gerlatt Jr., and M.P. Vecchi. Optimization by

Simulated Annealing, Science 220, 671-680, 1983.

[Knuth, 1968] D.E. Knuth. The art of programming, Vol. 1, Addison-Wesley, 1968

[Knuth, 1973] D.E. Knuth. The art of programming, Vol. 3, Addison-Wesley, 1973

[Larsen, 1999] J. Larsen. Vehicle Routing with Time Window – Finding optimal solutions

efficiently, DORSnyt (engl.), no. 116, Sep 15, 1999

[Lau et al., 2000] H. C. Lau, A. Lim, and Q. Z. Liu. Solving a Supply Chain Optimization Problem

Collaboratively. Proc. 17th National Conf. on Artificial Intelligence, 780-785, 2000

[Lau et al.1, 2002] H. C. Lau, H. Ono, and Q. Z. Liu. Integrating Local Search and Network Flow to

Solve the Inventory Routing Problem. Proc. 19th National Conf. on Artificial Intelligence, 9-14,

2002

[Lau et al.2, 2002] H.C. Lau, S.C. Lua, and Y. Y. Song. The Multi-Period Multi-Dimensional

Knapsack Problem, Manuscript, TLI-AP, 2002

[Lau et al.1, 2003] H. C. Lau, W. C. Wan and X. Jia, A "Generic Object-Oriented Tabu Search

Framework", Metaheuristics International Conference, 2003

[Lau et al.2, 2003] H. C. Lau, M.K. Lim, W. C. Wan, H. Wang and X. Wu. Solving Multi-Objective

Multi-Constrained Optimization Problems using Hybrid Ants System and Tabu Search,

Metaheuristics International Conference, 2003

[Lawler et al., 1985] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley, New York,

1985

[Leguizamon and Michalewicz, 1999] G. Leguizamon and Z. Michalewicz. A New version of Ant

System for Subset Problem, Proceedings of the Congress of Evolutionary Computation, pp. 1459-

1464, 1999

[Li and Lim, 2001] H. Li and A. Lim. A Metaheuristic for the Pickup and Delivery Problem with

Time Windows. 13th IEEE Int’l Conf on Tools with Artificial Intelligence, 2001

[Lin and Kernighan, 1973] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the

traveling salesman problem, Oper. Res. 21: 498-516, 1973

[Loulou and Michaelides, 1979] R. Loulou and E. Michaelides. New greedy-like heuristics for the

multidimensional 0-1 knapsack problem, Operations Research, 27, 1101-1114, 1979

- 101 -

[Mangano, 1995] S. Mangano. Man Machine Interfaces, Computer Design, May, 1995

[Maniezzo et al., 1994] V. Maniezzo, A.Colorni, and M.Dorigo. The ant system applied to the

quadratic assignment problem, Tech. Rep. IRIDIA/94-28, Université Libre de Bruxelles, Belgium,

1994

[Mester, 2002] D. Mester. An Evolutionary Strategies Algorithm for Large Scale Vehicle Routing

Problem with Capacitate and Time Windows Restrictions, Working Paper, Institute of Evolution,

University of Haifa, Israel (2002)

[Mester and Braysy, 2002] D. Mester and O. Braysy. Guided Evolution Strategies for Large Scale

Vehicle Routing Problem with Time Windows, Working Paper, Institute of Evolution, University of

Haifa, Israel (2002)

[Metropolis et al. 1958] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E.

Teller. Equations of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087- 1092,

1958.

[Naddef and Rinaldi, 1991] D. Naddef, and G. Rinaldi. The Symmetric Traveling Salesman

Polytope and its Graphical Relaxation: Composition of Valid Inequalities, Mathematical

Programming 51, 359, 1991

[Naddef and Rinaldi, 1993] D. Naddef, and G. Rinaldi. The Graphical Relaxation: A New

Framework for the Symmetric Traveling Salesman Polytope, Mathematical Programming 58, 53,

1993

[Naddef and Rinaldi, 2000] D. Naddef and G. Rinaldi. Branch and Cut, P. Toth and D. Vigo, eds.,

Vehicle Routing, SIAM, 2000

[Narendra and Fukunaga, 1977] P. Narendra and K. Fukunaga. A branch and bound algorithm for

feature subset selection, IEEE Trans on Computers, 26:917-922, 1977

[Nemhauser and Wolsey, 1988] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial

Optimization, John Wiley, Chichester, UK, 1988

[Padberg and Grotschel, 1995] M.W. Padberg and M. Grotschel. Polyhedral computations, The

Traveling Salesman Problem (E. L. Lawler et al., eds), Wiley, Chichester, pp. 307-360, 1995

[Padberg and Rinaldi, 1987] M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric

traveling salesman problem by branch and cut, Oper. Res. Lett. 6(1): 1-7, 1987

- 102 -

[Padberg and Rinaldi, 1990] M. Padberg and G. Rinaldi. Facet identification for the symmetric

traveling salesman polytope, Math. Programming 47: 219257, 1990

[Padberg and Rinaldi, 1991] M. Padberg, and G. Rinaldi. A Branch-and-Cut Algorithm for the

Resolution of Large-Scale Traveling Salesman Problems, SIAM Review 33, 60, 1991

[Papadimitriou, 1994] C.H. Papadimitriou. Computational Complexity, Addison-Wesley, Reading,

MA, 1994

[Parsopoulos and Vrahatis, 2002] Konstantinos E. Parsopoulos, Michael N. Vrahatis. Particle

Swarm Optimization Method for Constrained Optimization Problems, Intelligent Technologies -

Theory and Applications: New Trends in Intelligent Technologies, pp. 214-220, IOS Press (Frontiers

in Artificial Intelligence and Applications series, Vol. 76), 2002

[Pincus, 1970] M. Pincus, A Monte Carlo Method for the Approximate Solution of Certain Types of

Constrained Optimization Problems, Oper. Res. 18, 1225-1228, 1970.

[Pirkul, 1987] H. Pirkul. A heuristic solution procedure for the multiconstraint Zero-One knapsack

problem, Naval Research Logistics, 34, 161-172, 1987

[Ralphs, 2003] T.K. Ralphs. Parallel Branch and Cut for Vehicle Routing, Parallel Computing 29,

607, 2003

[Ralphs et al., 2003] T.K. Ralphs, L. Kopman, W.R. Pulleyblank, , and L.E. Trotter Jr. On the

Capacitated Vehicle Routing Problem, Mathematical Programming Series B 94, 343, 2003

[Rochat and Taillard, 1995] Y. Rochat, and E.D. Taillard. Probabilistic Diversification and

Intensification in Local Search for Vehicle Routing, Journal of Heuristics 1, 147-167, 1995

[Rousseau et al., 1999] L.M. Rousseau, M. Gendreau and G. Pesant. Using Constraint-Based

Operators to Solve the Vehicle Routing Problem with Time Windows, Journal of Heuristics, 1999

[Schoonderwoerd et al., 1997] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz. Ant-

based load balancing in telecommunications networks, Adaptive Behavior, vol. 5, no. 2, 1996

[Schrijver] A. Schrijver. On the history of combinatorial optimization (till 1960),

http://www.cwi.nl/~lex/files/histco.ps

[Schulze and Fahle, 1999] J. Schulze, and T. Fahle. A Parallel Algorithm for the Vehicle Routing

Problem with Time Window Constraints, Combinatorial Optimization: Recent Advances in Theory

and Praxis, J.E. Beasley, Y.M. Sharaha (eds.), Baltzer, Special Volumn of Annals of Operations

Research, 86, 1999, 585-607, 1999

http://www.cwi.nl/~lex/files/histco.ps

- 103 -

[Shamir, 1982] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman

cryptosystem, in Proc. of 23rd FOCS, pages 145--152. IEEE, 1982

[Shih, 1979] W. Shih. A branch and bound method for the multiconstraint Zero-One knapsack

problem. Journal of the Operational Research Society, 30, 369-378, 1979

[Stutzle and Dorigo, 1999] T. Stutzle and M. Dorigo. ACO Algorithms for the Traveling Salesman

Problem, In Evolutionary Algorithms in Engineering and Computer Science, pp. 163-183, Wiley,

1999

[Solomon, 1987] M. M. Solomon. Algorithms for Vehicle Routing and Scheduling Problem with

Time Window Constraints, Operation Research Vol. 35, pp. 254 – 265, 1987

[Taillard et al., 1997] E. Taillard, P. Badeau, M. Gendreau, F. Geurtin, and J. Y. Potvin. A Tabu

Search Heuristic for the Vehicle Routing Problem with Time Windows, Transportation Science, 31,

170-186, 1997

[Tomov, 1994] N. Tomov. Hill-climbing heuristics for solving constraint satisfaction problems, 4th

year project report, Department of Artificial Intelligence, University of Edinburgh, 1994

[Toth and Vigo, 2002] P. Toth, and D. Vigo. The Vehicle Routing Problem, SIAM Monographs on

Discrete Mathematics and Applications, 2002

[Wan, 2002] W.C. Wan. A Guided Generic Tabu Search Framework for Combinatorial

Optimization Problems, B.Eng thesis, National University of Singapore, 2002

[Ward, 1998] M. Ward. There’s an ant in my phone, New Scientist, 24 January, 1998

[Toyoda, 1975] Y. Toyoda. A simplified algorithm for obtaining approximate solutions for zero-one

programming problems, Management Science, 21, 1417-1427, 1975

[Michel and Van Hentenryck, 1999] L. Michel and P. Van Hentenryck. Localizer: A modeling

language for local search, INFORMS Journal of Computing, 11(1):1-14, 1999

[Yufik and Sheridan, 2002] Y. M. Yufik and T. B. Sheridan. Swiss Army Knife and Ockham’s

Razor: Modeling and Facilitating Operator’s Comprehension in Complex Dynamic Tasks, IEEE

Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol. 32, No. 2,

March, 2002

[Zhang, 1993] W. Zhang. Truncated branch-and-bound: A case study on the asymmetric tsp.,

Working Note of AAAI 1993, Spring Symposium: AI and NP-Hard Problems, pp 160-166, Stanford,

CA, March 22-25, 1993

