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SUMMARY 

 CaV1.3 is a member of the L-type family of voltage-gated calcium channels 

(LTCC) and is predominantly expressed in the brain, cochlear hair cells, sinoatrial 

node (SAN), and pancreatic β-islets. Low-voltage activation of CaV1.3 channels 

controls excitability in sensory cells and central neurons, as well as pace-making in 

the SAN. Intramolecular protein interactions in the carboxyl-terminus of CaV1.3 

proteins modulate calmodulin binding, altering calcium-dependent inactivation (CDI). 

Post-transcriptional modification of pre-mRNA, which includes alternative splicing 

and RNA editing, is vital for the correct translation of the genome and customization 

of proteins for optimal performance in individual cells.  

 The IQ motif of CaV1.3 channel is edited by Adenosine Deaminases Acting on 

RNA (ADAR), changing adenosine to inosine at three loci and DNA sequencing 

analysis showed that guanosine is observed only in the cDNA of CaV1.3. DNA 

sequencing analysis of cDNA from ADAR2-/- knockout mouse demonstrated that 

ADAR2 is crucial for RNA editing of CaV1.3. Protein analysis of the CaV1.3 proteins 

showed that the edited peptides are expressed in the wild-type mouse brain. 

Immunocytochemistry analysis demonstrated similar surface localization profiles 

between the edited and wild-type CaV1.3 proteins in primary hippocampal neurons. In 

addition, RNA editing of the IQ motif in CaV1.3 is central nervous system (CNS)-

specific and developmentally regulated.  

 To identify the mechanisms responsible for the CNS-specificity and 

developmental regulation, neuronal and insulinoma cell lines were examined and 

found to express only unedited CaV1.3 channels. Experimental manipulations of 

culture conditions demonstrated that glucose metabolism, neuronal differentiation, 
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availability of cofactor zinc, and transient ADAR2 overexpression were insufficient 

for promoting editing in CaV1.3, despite elevated ADAR2 activity and its nuclear 

localization. Full-length analysis of ADAR2 showed higher percent of splice isoform 

with exon 5a, associated with higher ADAR2 catalytic activity, in the rat brain. Co-

expression studies of synthetic construct gIQECS and ADAR2 showed significant 

editing at two adenosine loci, demonstrating that secondary pre-mRNA structure of 

CaV1.3 is critical for site-selective editing and cis-acting elements in the cell lines or 

outside CNS could prevent ADAR2-mediated editing. 

 Using transcript-scanning method, we identified eight different splice variants 

in the C-terminus of CaV1.3 expressed in rat brain. Electrophysiological 

characterization of the splice variants demonstrated modulations to activation, 

inactivation, and recovery properties. A novel C-terminal modulator (CTM) in CaV1.3 

is responsible for diminished CDI in the long variant CaV1.342, and a key residual 

change in the distal C-terminus of rat and human CaV1.3 is critical for this reduction. 

Correction of this cloning error in our rat clone was sufficient for recapitulating the 

reported biophysical properties. Skipping of exon 41 removed the IQ motif, abolished 

CDI completely and decreased current density significantly. Removal of 91 

nucleotides in CaV1.343i caused a frame-shift and CTM-deletion, resulting in robust 

CDI of similar intensity as the short variant CaV1.342a, hyperpolarized shift in 

activation, and faster recovery from inactivation. Skipping of exon 44 and use of 

alternative acceptor site at exon 48 resulted in two splice variants that retained both 

CTM and type I PDZ-binding motif ITTL. However, shortening of the C-termini 

dampened CDI, caused hyperpolarized shifts in activation, and increased recovery 

from inactivation. Finally, removal of ITTL motif in exon 42a, Δ41 and exon 43i 

splice variants did not affect its soma-dendritic localization or synaptic targeting. 
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1.1 Voltage-gated calcium channels  

Calcium channels are key molecular assemblies of the plasma membrane, 

generating electrical and chemical signals essential for coordinating cellular functions. 

These voltage-gated calcium channels (VGCCs) are activated by plasma membrane 

depolarisation beyond their threshold potential in an excitable cell. Opening of the 

channel pore allows an influx of calcium ions into the cytosol that coordinates a 

plethora of responses, namely neurotransmitter release, secretion, excitation-

contraction coupling, gene expression regulation and calcium homeostasis (Catterall, 

2000). These channels are composed of a central pore-forming α1 subunit, a cytosolic 

β subunit, and an extracellular α2 subunit that is linked via a disulphide bond to the 

membrane-anchoring δ subunit. Functional diversity of calcium channels are derived 

primarily from the repertoire of α1 subunit isoforms and its post-transcriptional 

modification, as well as modulated by the various auxiliary subunits.  

1.1.1 The α1 subunit  

The pore-forming α1 subunit is encoded by one of ten genes identified in the 

human genome. These ten channels are further categorized into three families based 

on their inactivation kinetics, pharmacological sensitivities and tissue distribution, as 

well as sequence homology – CaV1 (L-type channels that are activated by a range of 

voltages), CaV2 (P/Q-, N-, and R-type high-voltage-activated channels), and CaV3 (T-

type low-voltage-activated channels). Each isoform is preferentially expressed in 

various tissues, and contributes to a broad spectrum of physiological functions 

(Catterall, 2000; Catterall et al., 2005).  L-type CaV1 channels play a critical role in 

calcium influx in the soma and dendrites of numerous mammalian central neurons, 

regulating gene expression, cell survival, excitation-transcription coupling, synaptic 
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plasticity, and active amplification of synaptic signals (Christie et al., 1997; 

Deisseroth et al., 1998; Weisskopf et al., 1999; Marshall et al., 2003; Wang et al., 

2010).  

The α1 subunit protein is composed of four homologous domains (I-IV), each 

consisting of six transmembrane α-helices (S1-S6) and a membrane-associated loop 

between S5 and S6. The S4 segment of each homologous domain serves as the 

voltage sensor for activation. The S5 and S6 segments and the re-entrant S5-S6 loop 

form the pore lining, and a glutamate residue in each domain faces the narrow 

external pore. The carboxyl side chains of these amino acids coordinate a pair of 

calcium ions in the pore and function as the ion-selectivity filter. The inner pore is 

lined by the S6 segments and forms the receptor sites for pore-blocking L-type Ca2+ 

channels antagonist drugs (Hofmann et al., 1999).  

1.1.2 The β and α2δ subunits 

Auxiliary subunits of calcium channels modulate the trafficking and the 

biophysical properties of the α1 subunit. The β subunit aids in the trafficking of α1 

subunit to the plasma membrane, partly by its ability to mask an endoplasmic 

reticulum retention signal in the α1 subunit (Bichet et al., 2000), as well as modulates 

the biophysical properties of the channel with characteristics specific to α1-β 

combination (Sokolov et al., 2000). The β subunit is encoded by four distinct genes 

(β1- β4), and numerous splice variants are known (Helton and Horne, 2002). While all 

four genes are expressed in the brain, each β subunit shows differential expression in 

other tissues (Arikkath and Campbell, 2003).  

Diversity of α2δ subunits arises from four distinct genes (α2δ-1 - α2δ-4) as well 

as alternative splicing of these subunits, which are differentially expressed in various 
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tissues. Extensive glycosylation of the α2 subunit is important for maintaining the 

stability of the interaction with α1 and is a major determinant of the protein’s ability to 

stimulate the current amplitude (Gurnett et al., 1996). The co-expression of α2δ-1 

allows an enhancement in membrane trafficking of α1 subunit, associated with an 

increase in the number of ligand binding sites, current amplitude, faster activation and 

inactivation kinetics and a hyperpolarizing shift in voltage dependency of activation 

(Felix et al., 1997). 

1.2 CaV1.3 channels 

The L-type CaV1.3 channels, which are expressed together with CaV1.2 

channels in many tissues, was initially thought to be high-voltage-activated and 

slowly activating, with high sensitivity to dihydropyridines (DHP) (Ertel et al., 2000). 

Due to the high overlapping of biophysical and pharmacological properties with 

CaV1.2 channels and its low expression in heterologous system, CaV1.3 channels were 

not considered unique until the generation of CaV1.3 knockout mice (Platzer et al., 

2000; Zhang et al., 2002; Mangoni et al., 2003). Absence of a low-threshold 

activating calcium current in the sinoatrial node (SAN) cells of CaV1.3-/- knockout 

mice caused significant SAN dysfunction, characterized by sinus bradycardia, and the 

same absence in hair cells resulted in the loss of hearing. Neuronal CaV1.3 channels 

are mainly expressed in the soma-dendritic regions, forming clusters on the plasma 

membrane surface (Hell et al., 1993; Lipscombe et al., 2004; Zhang et al., 2006), and 

have been implicated in pace-making functions in neurons (Helton et al., 2005; Olson 

et al., 2005). The first human disease due to loss-of-function mutation in CaV1.3 was 

reported recently, known as SAN Dysfunction and Deafness (SANDD) syndrome 

(Baig et al., 2011). The insertion of a glycine residue in the alternatively spliced exon 

8b, which is predominantly expressed in human inner hair cells (IHCs) and SAN 
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pacemaker cells, affected the cytoplasmic end of inner pore lining S6 helix in domain 

1and caused an abnormal voltage-dependent gating. Homozygous patients displayed 

cardiac and auditory phenotype that closely resembles the CaV1.3-/- knockout mice. 

1.2.1 Unique biophysical properties and pharmacological properties  

Electrophysiological and pharmacological characterization of recombinant 

CaV1.3 channels heterologously expressed in HEK 293 had uncovered several 

biophysical properties unique to this member of L-type Ca2+ channel family (Koschak 

et al., 2001; Safa et al., 2001; Xu and Lipscombe, 2001). CaV1.3 channels activate at 

about -55 mV, a voltage that is ~25 mV more hyperpolarized than CaV1.2 channels 

and the most negative amongst the L-type family. The negative activation threshold 

observed is independent of the tissue of origin and the auxiliary subunits co-

expressed.  

Unlike the CaV1.2 channels, CaV1.3 channels are significantly less sensitive to 

DHP antagonists such as nimodipine and isradipine (Koschak et al., 2001; Xu and 

Lipscombe, 2001). Sensitivity to DHP inhibition is voltage-dependent. Hence, the 

lower sensitivity of CaV1.3 becomes more significant at hyperpolarized membrane 

potentials and DHPs become especially ineffective at inhibiting CaV1.3 currents 

activated at foot of the current-voltage curve (Xu and Lipscombe, 2001).   

CaV1.3 L-type channels open and close with fast kinetics relative to CaV1.2 

channels, but comparable to CaV2.2 channels (Helton et al., 2005). The difference in 

activation kinetics observed could depend on cell-type, temperature, alterative 

splicing, and the presence of auxiliary subunits (Lipscombe et al., 2002; Liu et al., 

2003b). Studies of DHP-sensitive component of L-type currents in hippocampal 

neurons appear as slowly activating (Mermelstein et al., 2000) due to incomplete and 
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time-dependent DHP inhibition on CaV1.3 (due to its lower DHP sensitivity), as 

evidenced by the rapid opening of neuronal L-type channels studied directly without 

pharmacological inhibition (Liu et al., 2003b; Helton et al., 2005). 

1.2.2 Tissue distribution, subcellular localization and physiological functions 

Earlier works using RT-PCR, Western blot analysis and immunocytochemical 

studies demonstrated that CaV1.3 is co-expressed in many of the same tissues as 

CaV1.2, such as the SAN and heart atria, neurons, chromaffin cells, and pancreatic 

islets (Hell et al., 1993; Bohn et al., 2000; Xu et al., 2003). Although CaV1.2 and 

CaV1.3 are often found in the same general neuronal compartments – namely the 

neuronal cell bodies and proximal dendrites, as well as both the synaptic and 

extrasynaptic compartments, immunostaining analysis revealed a distinct difference in 

subcellular localization (Hell et al., 1993; Westenbroek et al., 1998; Zhang et al., 

2006). CaV1.3 channels are generally distributed evenly in the cell surface membrane 

of cell bodies and proximal dendrites while CaV1.2 channels are predominant in the 

distal dendrites and tend to be concentrated in clusters. The soma-dendritic 

localization of CaV1.3 channels in hippocampal pyramidal neurons facilitates 

coupling of neuronal activity to gene-transcription. Ca2+ influx through CaV1.3 at low 

levels of stimulation activates cAMP response element binding protein (pCREB) 

neuronal nuclear transcription factors (Weick et al., 2003; Zhang et al., 2005), which 

acts in conjunction with nuclear translocation of pCREB co-activator TORC to 

promote transcription of multiple genes. The resultant changes in protein expression 

may mediate long-term potentiation (Deisseroth et al., 2003), such as in the amygdala 

and hence participate in the consolidation of fear memory (Gamelli et al., 2009). 
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Due to the negative activation range of CaV1.3 channels and the amount of 

Ca2+ ions entering during plateau, it has been implicated in signalling functions in 

pancreatic β-cells, neuroendocrine cells, photoreceptors, amacrine cells, and IHCs 

(Platzer et al., 2000; Safa et al., 2001; Liu et al., 2004; Sinnegger-Brauns et al., 2004). 

Due to the negative voltage range of about -60 and -40 in SAN cells, CaV1.3 channels 

could participate in diastolic depolarization functions and hence contribute to pace-

making (Platzer et al., 2000; Koschak et al., 2001; Xu and Lipscombe, 2001). 

Similarly, neuronal CaV1.3 channels serve pacemaker function and shape neuronal 

firing (Helton et al., 2005; Olson et al., 2005). For instance, CaV1.3 currents were 

shown to feature prominently in the spontaneous action potentials and Ca2+ spikes in 

the suprachiasmatic nucleus (SCN) neurons that underlie circadian rhythms (Pennartz 

et al., 2002; Jackson et al., 2004). Upon depolarization or hyperpolarization above or 

below a critical voltage approximating CaV1.3 channels’ activation threshold, the Ca2+ 

spikes became irregular or were completely abolished (Xu and Lipscombe, 2001), 

which is consistent with the spike-generating mechanisms involving sequential 

feedback between depolarization driven by low-threshold LTCC and 

hyperpolarization induced by Ca2+-activated K+ channels (Cloues and Sather, 2003). 

Modulations of CaV1.3 biophysical properties could thus affect the SCN spike 

frequency and the central biological clock underlying circadian rhythms.  

The role of neuronal LTCCs in mood and anxiety behaviour is less clear, 

although a number of in vivo studies do suggest a role for CaV1.3 channels. In rodents, 

systemic application of high doses of DHPs induces anti-depressant and anxiolytic-

like behaviours (Sinnegger-Brauns et al., 2004). In CaV1.2DHP-/- mice, application of 

DHP-channel activator BAYK8644 selectively promotes Ca2+ entry through CaV1.3 

channels, inducing depression-like behaviour with neuronal activation of several brain 
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regions involved in emotional processing. Recent studies using CaV1.3-/- knockout 

mice also suggest a role of these channels in affective behaviour, independent of its 

deaf phenotype (Busquet et al., 2010). These studies raise the possibility of selective 

modulation of CaV1.3 as a novel therapeutic concept for treatment of mood disorders.  

1.2.3 The carboxyl terminal domain  

Calcium influx through CaV1.3 channels is limited by calcium-dependent 

inactivation (CDI), a feedback mechanism that is both Ca2+- and voltage-dependent. 

CDI develops in response to local or global elevations of intracellular Ca2+ sensed by 

channel-bound calmodulin (CaM) (Liang et al., 2003). The crucial determinants of 

CDI are located in the proximal third of the carboxyl terminus (C-terminus) of the 

high-voltage activated calcium channels, namely a consensus Ca2+-binding motif (an 

EF hand) and an IQ-type CaM-binding motif. Alignment of the C-terminal sequences 

of the L-type CaV1.3 with CaV1.2 and CaV1.4 shows high conservation in the EF-hand 

and IQ motif (Figure 1.1).  

Alternative splicing of the CaV1.3 in the C-terminus gives rise to two naturally 

occurring channel isoforms, with the shorter variant terminating shortly after the IQ 

motif, displaying a more negative window current, and faster inactivation due to 

enhanced CDI (Singh et al., 2008). Interestingly, CaV1.4 channels also undergo robust 

CDI in a CaM-dependent manner when the intrinsic gating modulator in its C-

terminus was removed (Singh et al., 2006). This carboxyl terminal modulator (CTM) 

resides in the distal C-terminus downstream of the IQ motif, and contributes to the 

fine-tuning of CaV1.4 gating to prevent inactivation and thus support tonic 

neurotransmitter release in sensory cells. Studies by the same group identified a 
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similar modulatory activity in CaV1.3, which was restricted to the last 116 amino 

acids (a.a.) in the C-terminus via truncation studies (Singh et al., 2008).  

In dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc), 

Ca2+ entry through LTCCs elevates cellular vulnerability to toxins used to generate 

animal models of Parkinson’s disease (Chan et al., 2007).  Expression of the shorter 

CaV1.342a channels promotes Ca2+ entry in the DA neurons due to its more negative 

window current, while its faster CDI could limit Ca2+ entry during ensuing action 

potentials. Thus, the biophysical properties of CaV1.3 channels may be important in 

the DA neurons of SNc, which are susceptible to Ca2+ toxicity and neurodegeneration.  

In CaV1.2, auto-inhibitory control was due to the binding interaction between 

a pair of exposed arginine residues in a proximal (PCRD) and negatively charged 

residues in α-helical motifs in a distal (DCRD) conserved region of C-terminus 

(Hulme et al., 2006). Fluorescence resonance energy transfer (FRET) and 

electrophysiological studies confirmed that the equivalent PCRD in human CaV1.3 

was crucial to protein interaction with CTM-containing peptides and to confer 

modulation, while the two conserved negative charges in DCRD are essential for 

CTM-peptide binding to CaV1.3 (Singh et al., 2008). In the shorter splice variant 

CaV1.342a, the conserved PCRD downstream of the IQ motif as well as the CTM are 

missing.  

Essentially, the CaV1.3-CTM and factors that modify its activity – namely 

alternative splicing, interaction with other proteins or post-translational modification, 

are crucial determinants of its electrical excitability and the subsequent physiological 

functions in excitable cells. 
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Figure 1.1 Alignment of L-type calcium channels’ carboxyl-terminal amino acid 
sequences. Amino acid sequences are according to GenBank Accession No: CaV1.1: 
NP_000060; CaV1.2: NP_000710; CaV1.3: NP_000711; and CaV1.4: NP_005174. Grey-
shaded areas indicate regions of sequence homology. Annotated motifs are the EF-hand, IQ-
motif, C-terminal modulator (CTM), proximal conserved region of C-terminus (PCRD) and 
distal conserved region of C-terminus (DCRD). The EF and IQ regions form the calcium-
sensing apparatus responsible for calcium-dependent inactivation (CDI).  
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1.3 RNA editing 

Pre-mRNA editing by selective adenosine deamination is catalysed by 

Adenosine Deaminases Acting on RNA (ADARs), resulting in a single nucleotide 

change from adenosine (A) to inosine (I) (Bass, 2002). A-to-I RNA editing is a 

dynamic and versatile post-transcriptional mechanism of single-nucleotide recoding, 

which could drastically alter both the functional properties and expression levels of 

protein-coding mRNAs, increasing the repertoire of proteins available. Currently, 

most of the identified targets of A-to-I RNA editing are expressed in the mammalian 

nervous system, namely ion channels and neurotransmitter receptors that control 

electrical excitability and signal transduction. Hence, recoding of these proteins by 

RNA editing provides an attractive mechanism for customizing specific channel 

function within diverse biological niches.  

1.3.1 Adenosine Deaminase Acting on RNA (ADAR) 

Three members of the ADAR family (ADAR1-3) have been discovered in 

mammals, and are named according to their sequence of discovery. Through RT-PCR 

analysis and immune-staining studies, ADAR1 and ADAR2 were shown to be 

ubiquitously expressed, with enzymatic targets identified mainly in the nervous 

system (Wagner et al., 1990; Keegan et al., 2001). In contrast, expression of the latest 

family member ADAR3 is restricted to the brain, and has yet no known enzymatic 

targets (Melcher et al., 1996b). These three ADARs are highly conserved in 

vertebrates (Slavov et al., 2000a; Slavov et al., 2000b), and they share common 

functional domains – two or three repeats of the double-stranded (ds) RNA-binding 

motif (DRBM) and a catalytic deaminase domain. Certain structural features, such as 
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Z-DNA-binding domains and the arginine-rich R domain, are unique to ADAR1 and 

ADAR3 respectively.  

The human ADAR2 gene consists of 14 exons, with exons -2 and -1 located in 

the 5’–untranslated region (UTR) and exons 9 and 10 in the 3’-UTR (Slavov and 

Gardiner, 2002). Multiple variations are also observed at the amino (N)-terminal via 

splicing, as indicated in Figure 1.2. In humans, the alternative inclusion of exon 1a 

adds 28 a.a. to the front of the commonly recognized initiator methionine residue, 

while retention of exon 1b in mouse results in frame-shifting and early truncation of 

the protein (Slavov and Gardiner, 2002). The inclusion of an in-frame Alu sequence, 

encoded by exon 5a in human ADAR2 reduces its catalytic activity by 50% (Gerber et 

al., 1997) while use of an alternative 3’ splice acceptor site in intron 5 of mouse 

ADAR2 results in the inclusion of 30 nt Alu sequence and relatively higher catalytic 

activity. Furthermore, use of the alternative splice site in exon 9 leads to deletion of 

29 a.a. from the C-terminal of human ADAR2 protein, resulting in a premature stop in 

exon 10, producing ADAR2 isoforms that have little activity on GluR-2 mRNA (Lai 

et al., 1997a). Splicing in the 3’ UTR of both human and mouse ADAR2 further 

contributes to the repertoire of ADAR2 proteins. Differential protein expression of C-

terminal splice isoforms, detected by western blot, implies that such subtle splicing 

events could also play a role in regulating the translation efficiency of ADAR2 

(Kawahara et al., 2005). 

Both the pre-mRNA and mRNA of ADAR2 are susceptible to A-to-I editing, 

mediated by ADAR2 itself (Rueter et al., 1999). In the rat ADAR2 pre-mRNA, self-

editing occurs in intron 1 and exon 2, which comprised the hotspot of this gene, at six 

different positions – namely -2, -1, +10, +14, +23, and +24 (Rueter et al., 1999; 

Dawson et al., 2004). In particular, editing at position -1 in intron 1 converts an 
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adenosine-adenosine (AA) dinucleotides to adenosine-inosine (AI) that mimics the 

canonical AG dinucleotides found at the 3’ splice junction (Rueter et al., 1999). The 

presence of AI thus acts an alternative 3’ splice acceptor site, resulting in the retention 

of 47 nucleotides (nt) at +28 position of exon 1. Hence, a frame-shift occurs and a 

truncated protein with no editing activity is generated, if the translation begins at the 

first initiator methionine residue. Species difference is observed in the inclusion of 

47-nt isoform in the brain, with an expression of approximately 80% in mouse brain 

and only 15% the human brain (Slavov and Gardiner, 2002). 

Alternatively, a downstream initiator methionine at amino acid position 25 in 

rat ADAR2 could be used to generate the functional protein for the self-edited 

isoforms (Rueter et al., 1999). However, in human ADAR2, the next initiator 

methionine only occurs at position 84, which lies in the DRBM1. Initiation of 

translation at this site may then compromise the RNA binding capacity of the 

expressed protein, and furthermore, may decrease its editing efficiency and reduce 

protein expression.  

Transgenic mice lacking self-editing of ADAR2 express significantly higher 

levels of ADAR2, accompanied by increase in the editing levels of various ADAR2 

substrates (Lai et al., 1997a). This implies that editing of its own pre-mRNA may thus 

serve as a negative feedback mechanism by which ADAR2 regulates its own 

expression and activity.  
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Figure 1.2 ADAR2 genomic structures for both human and mice. Exons are represented 
by boxes; intron, by lines. Filled boxes are coding and open boxes are non-coding. # and * 
indicate the positions of potential initiator methionines and stop codons respectively. The grey 
box before exon 2 indicates the 47 nucleotide cassette, and A/G denotes the site of editing that 
creates the AG splice site. Alternatively spliced exons are indicated. The pink box indicates 
the position of double-stranded RNA binding motif (DRBM) while the blue box indicates the 
position of catalytic deaminase domain. (Figure adapted from (Slavov and Gardiner, 2002).  

 

1.3.2 Mechanism of RNA editing 

ADAR enzymes work by recognizing partial or complete dsRNA duplexes 

that are formed via base-pairing between the edited site and the editing-site 

complementary sequence (ECS), which is typically located in the downstream intron 

(Higuchi et al., 1993). One model suggests that in the presence of RNA substrate with 

specific secondary elements and sufficient length, conformational changes in ADAR2 

protein release its DRBMII and catalytic domain from the N-terminal domain, 

allowing the subsequent binding of DRBMs and catalytic domain to RNA and 

activation of catalytic activity (Macbeth et al., 2004).  

Although the mechanism of site-specific editing is still incomplete, at least 

two studies have shown the role of the DRBMs in the recognition and selective 

binding to RNA substrates (Wong et al., 2001; Macbeth et al., 2004; Stefl et al., 

2006). The two repeats of the DRBM (~65 a.a.) of ADAR2 form a highly conserved 

α-β-β-β-α configuration structure. NMR-based model showed preferential binding of 
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DRBMI to loop regions and recognition of two bulges in the adjacent stem region to 

the edited site by DRBMII (Stefl et al., 2006). Hence, recognition of ADAR2 

substrates by DRBM is structurally-dependent and length sensitive.  

The catalytic domain of ADAR2 consists of amino acid residues that are 

conserved in several cytidine deaminases, which are involved in the cytidine-to-

uridine mRNA editing mechanism and are predicted to participate in the formation of 

the catalytic center containing a zinc ion (Lai et al., 1995; O'Connell et al., 1995). The 

crystal structure of the catalytic domain of human ADAR2 reveals that histidine 

H394, glutamic acid E396, and two cysteine residues, C451 and C516, are involved in 

the coordination of a zinc atom and the formation of the catalytic center (Macbeth et 

al., 2005). Interestingly, an inositol hexakisphosphate IP6 moiety is buried within the 

enzyme core and likely stabilizes multiple arginine and lysine residues present in the 

catalytic pocket. IP6 is located very close to the catalytic center, and may thus play a 

critical role during the hydrolytic deamination reaction (Macbeth et al., 2005).   

In vitro studies have revealed that the A-to-I editing activity of mammalian 

ADAR2 requires homo-dimerization (Cho et al., 2003), and in vivo homo-

dimerization was verified through studies using bioluminescence resonance energy 

transfer and FRET methods (Gallo et al., 2003; Chilibeck et al., 2006). Use of mutant 

ADAR2 that is incapable of binding to dsRNA indicates that dimerization is 

independent of RNA binding, suggesting that homo-dimer complex formation is 

mediated through protein-protein interaction (Valente and Nishikura, 2007). In 

addition, a mutated ADAR subunit had a dominant-negative effect on dimer 

functions, indicating that DRBM of interacting monomers function cooperatively.   
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1.3.3 Substrates of RNA editing 

In the mammalian nervous system, ion channels and neurotransmitter 

receptors are more common amongst the known targets of A-to-I RNA editing (Bass, 

2002). Some notable examples include a number of glutamate-gated ion channels, the 

voltage-gated KV1.1 potassium channels, the GABAA receptor and the serotonin 5-

HT2C receptor. In almost all cases, A-to-I editing occurs at precise and functionally 

important locations in the protein, changing key amino acid residues crucial for 

protein function (Keegan et al., 2001).  

Glutamate-gated ion channels are the earliest and most extensively studied 

ADAR2 substrate (Melcher et al., 1996a). All five subunits (GluR-B, GluR-C, GluR-

D, GluR-5 and GluR-6) are found to undergo editing at multiple sites, resulting in 

amino acid changes at four sites. In AMPA GluR-B subunit mRNA, adenosine in 

glutamate codon (CAG) at position 607 was changed to inosine, which encodes 

arginine (CIG) (Sommer et al., 1991). This edited Q > R site resides in the “pore loop 

region” of membrane segment 2, which determines the ion permeability of the 

glutamate channel (Seeburg et al., 2001). Channels with edited R form are less 

permeable to calcium. A second editing site in GluR-B causes an arginine (AGA) 

residue to glycine (IGA) change, which results in an enhanced rate of recovery from 

receptor desensitization (Lomeli et al., 1994) and decreases translocation to synaptic 

membrane (Greger et al., 2002; Greger et al., 2003). With the exception of Q > R site 

at the GluR-B subunits, editing is not 100% efficient and both edited and non-edited 

isoforms are expressed in the cell. In transgenic mice, failure to edit at Q > R site in 

GluR-B leads to epileptic seizure and death within three weeks after birth (Brusa et 

al., 1995). 
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The mRNA transcript of human KV1.1 was discovered to undergo RNA 

editing, with an amino acid change from isoleucine (ATT) to valine (GTT) at position 

400, located in the channel’s S6 pore lining (Bhalla et al., 2004). Edited potassium 

channels exhibit rapid recovery from inactivation as compared to unedited channels, 

possibly due to disruption of the interaction between an inactivating particle and the 

channel pore (Bezanilla, 2004). Voltage-gated potassium channel plays an important 

role in the repolarization phase of the action potential. Hence, the faster recovery 

shortens the duration of each action potential and increases the frequency of firing. As 

potassium channels exist as tetramers, and each channel may contain different ratios 

of edited and unedited subunits, the physiological significance of editing on the final 

properties of channel inactivation and hence firing pattern of neuron has yet to be 

determined.   

1.3.4 Role in neurophysiological and neuropathological events 

Editing of mRNA transcripts is critical for normal life and development, as 

observed from the transgenic mice that are deficient in ADAR2. ADAR2-/- knockout 

mice develop normally, but are prone to early onset of epilepsy and die within three 

weeks of birth. Under-editing of the Q > R site in the GluR-B transcripts appears to be 

the underlying reason for epileptic seizures, which could be rescued by introducing an 

edited version of GluR-B gene into the ADAR-/- knockout mice (Higuchi et al., 2000). 

RT-PCR analysis of known RNA editing substrates shows that editing of certain sites 

is regulated during the development of the brain. These would include mRNA 

transcripts of the AMPA and kainite members of the glutamate receptor family – 

GluR-B, GluR-5 and GluR-6 (Lai et al., 1997a), the serotonin 5-HT2C (Hang et al., 

2008), the α3 subunit of GABAA receptor (Rula et al., 2008), and ADAR2 itself 

(Rueter et al., 1999). Stimulation of calcium-permeable AMPA receptors steers 
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differentiation of neural progenitor cells (NPCs) preferentially to neuronal cells, and 

promotes dendritic arborisation. Overexpression of ADAR2 in NPCs results in Q > R 

editing and expression of calcium-impermeable AMPA receptors, which prevents 

AMPA-mediated differentiation, suggesting a physiological role for neurogenesis 

(Whitney et al., 2008).  

Dysregulation of RNA editing has been linked to many human diseases. 

Patients with glioblastoma multiforme (GBMs) have a reduction in both ADAR2 

activity and editing of the GluR-B mRNA at the Q > R site (Maas et al., 2001). 

Neoplasm of glial cells represents the most common tumours of the nervous system, 

with GBMs being the most malignant.  Expression of non-edited GluR-B promotes 

migration and proliferation of the glioblastomas cells, driving its invasion and 

abnormal growth (Ishiuchi et al., 2002). Similarly, restoration of ADAR2 editing 

activity in astrocytoma cell lines inhibit cell migration and proliferation, which 

supports the correlation study between reduction of ADAR2 editing activity and grade 

of astrocytomas in children (Cenci et al., 2008) 

1.4 Alternative splicing diversifies the function of calcium channels 

Alternative splicing of CaV1.3 channels is the second post-transcriptional 

mechanism examined in the thesis. It is used extensively in the mammalian nervous 

system to increase the repertoire of proteins encoded by a set of genes. At least 75% 

of multi-exon genes in the human genome are alternatively spliced (Johnson et al., 

2003). In voltage-gated calcium channels, alternatively spliced isoforms have been 

shown to exhibit diverse electrophysiological properties, and some are expressed in a 

developmental and tissue-specific manner or are altered in response to a physiological 

or pathological condition (Jurkat-Rott and Lehmann-Horn, 2004; Shen et al., 2006; 
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Gray et al., 2007; Liao et al., 2007; Tang et al., 2008). While the biological 

significance and full extent of pre-mRNA splicing is still incompletely understood, it 

is likely to be one of the main mechanisms for fine-tuning channel properties to 

achieve a high degree of functional specialization.  

1.4.1 Mechanism of alternative splicing 

There are several modes of alternative splicing (Figure 1.3). An exon may be 

excluded while its flanking neighbours are spliced together in exon skipping. Either 

one of two adjacent exons may be spliced in preference to the other in mutually 

exclusive exons. Splicing of a cryptic exon lying within an intron constitutes a 

cassette exon. Splicing to alternative splice donor and acceptor sites shortens or 

lengthens an existing exon. The splice donor site refers to the 3’-boundary of the 

exon, while the splice acceptor site is at the 5’-boundary. In all cases, the splicing 

events are specific. Splice sites are demarcated, almost invariably, by an intronic “gt” 

nucleotide pair at the splice donor boundary and an intronic “ag” at the splice 

acceptor boundary, popularly known as the “gt…ag” rule (Sharp and Burge, 1997). 

Mutations involving the canonical nucleotide residues defining splice junctions have 

been documented in various disease and was estimated to contributed to 15% of all 

point mutation-causing disease (Krawczak et al., 1992).  
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Figure 1.3 Common modes of alternative splicing. Exons can be alternatively spliced in a 
variety of combinations. Exon skipping joins two non-adjacent exons while the intermediate 
exon is excluded. Introns may be retained. In mutually exclusive exons, only one or the other 
exon gets spliced into the final transcript. A cassette exon may be spliced when a cryptic 
splice site within an intron is activated. Alternative use of donor and acceptor splice-sites 
could lengthen or shorten an existing exon. A pair of “gt” and “ag” nucleotides resides at the 
intronic boundary of splice sites.  

 

Table 1.1 Nomenclature for describing alternatively splice exon variants. Here, we add 
the following suffixes or prefix to the exon number to denote the type of alternative splicing 
(i.e. 48a+, Δ41):  

Suffix  

a+ exon extension by alternative splice acceptor site 

a- exon shortening by alternative splice acceptor site 

d+ exon extension by alternative splice donor site 

d- exon shortening by alternative splice donor site 

i intron retention 

x mutually exclusion exon 

* cassette exon 

Prefix  

Δ exon skipping 
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Alternative splicing occurs in the spliceosome, a complex of five small nuclear 

RNAs, associated core proteins and several hundred proteins that assemble on nascent 

pre-mRNAs during transcription. The splicing pathway is an intricately 

choreographed series of assembly and conformational rearrangement events, 

punctuated by the chemical transformations of cleavage of phosphodiester bonds at 

exon/intron junctions and phosphodiester bond formation during exon ligation. The 

5’-exon/intron boundary is first cleaved through nucleophilic attack by the 2’-

hydroxyl of a specific branch-point adenosine located within the intron to generate a 

5’-exon fragment and a lariat intermediate that contains intron and 3’-exon sequences 

and the branched adenosine (Figure 1.4). This is followed by cleavage at the 3’-

exon/intron boundary via nucleophilic attack of the 3’-hydroxyl of the 5’-exon at the 

3’-splice site, which ligates the exons and releases the intron in the form of a lariat. 

Spliceosomal proteins are not essential for catalysis since self-splicing of certain 

group II introns occurs through identical chemical steps, and are likely to contribute to 

splicing fidelity and linking splicing to other steps of mRNA biogenesis, transport, 

translation, and turnover.  

 

Figure 1.4 Precursor mRNA splicing pathway. Pre-mRNA splicing occurs through two 
sequential phosphate trans-esterification reactions. In step 1, the 2’-hydroxyl of a unique 
branch-point adenosine within the intron carries out a nucleophilic attack on the 
phosphodiester at the first splice site. This reaction cleaves the pre-mRNA at the exon/intron 
boundary to produce the free exon (denoted as a pink rectangle) and a lariat intermediate that 
contains the exon 2 sequence (denoted as a blue rectangle) and the intron with 2’-, 3’-, and 5’-
ester linkages to the branch-point adenosine. In step 2, the 3’-terminal hydroxyl of exon 1 
carries out nucleophilic attack on the exon 2/intron junction, in a reaction that is the chemical 
reverse of step 1. The second step releases the intron in the form of a lariat and ligates the 
exons 1 and 2.  
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1.4.2 Effects of alternative splicing in L-type calcium channels 

Alternatively spliced exons in CaV1.2 are numerous and have been extensively 

studied (Tang et al., 2004; Liao et al., 2005). The distinctive segregation of some of 

these alternative exons into two major combinations had led to the identification of 

two tissue-specific CaV1.2 variants – namely “smooth muscle” and “cardiac muscle” 

variants with the alternative exon combinations of “1,8,9*, 32” and “1a, 8a, Δ9*, 32” 

respectively. Sub-variants of these have further identified (Liao et al., 2007), as were 

other forms of tissue and disease combinations (Tang et al., 2004; Tang et al., 2008). 

Protein kinase C selectively inhibits the smooth muscle variant expressing exon 1, but 

not the cardiac variant. Exon 8a confers a lower sensitivity towards DHP-inhibition to 

the cardiac CaV1.2 variant, while exon 9* enables the smooth muscle variant to 

activate at more hyperpolarized potentials. 

Similarly, 19 different splice variants of the CaV1.4 has been identified in the 

human retina (Tan, 2010). Electrophysiological characterization of C-terminus splice 

variant 43* demonstrated that its modulated activation and inactivation properties 

were due to CaV1.4-CTM, and splice variant 45a- also regulates its post-inactivation 

recovery. It was suggested that 43* variant opens early when the rod photoreceptor 

recovers from a light pulse and thus serves to initiate neurotransmitter release at the 

synapse as well as various mechanism that maintained sustained exocytosis.  

1.4.3 CaV1.3 in brain is alternatively spliced 

Three alternatively spliced loci in the C-terminus of CaV1.3 transcripts from 

the mammalian brain were previously described (Shen, 2006; Singh et al., 2008). 

They are exons 41, 42 and 43. The alternative use of acceptor site in exon 41 led to 

the deletion of the IQ motif and a premature truncation of protein after exon 41, which 
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resulted in abolished CDI. This isoform is observed in the hippocampus via RT-PCR 

analysis and immune-staining analysis of brain sections using splice variant-specific 

antibody (Shen, 2006). Alternative splicing of cassette exon 42a resulted in a 

premature stop in CaV1.3, just six a.a. after exon 41. The shorter variant activates at 

more hyperpolarized voltages and inactivates more robustly under the influence of 

calcium (Singh et al., 2008). However, in rat analogues of CaV1.342 and CaV1.342a, no 

major difference in the activation voltage range or the CDI was observed (Yang et al., 

2006). The splicing of exon 42 to an alternative acceptor site in exon 43 led to a 

frame-shift with stop codon after 13 a.a. (Shen, 2006).  

Interestingly, despite the early termination of translation observed in CaV1.3 

C-terminus splice variants, the resultant channels are still functional. Alternative 

splicing controlled at the level of individual neurons could customize the proteins for 

optimal performance, resulting in the subtle but varied biophysical properties 

displayed by the principal neurons in different brain sub-regions.  

1.5 Rationale and hypotheses  

CaV1.3 channels play many unique physiological roles in a variety of cell 

types, including sensory and neuroendocrine cell signalling (Marcantoni et al., 2010), 

pace-making in neurons (Olson et al., 2005) and SAN cells (Mangoni et al., 2003), as 

well as a role in the pathology of Parkinson’s disease (Chan et al., 2007; Guzman et 

al., 2009), which are dependent on its negative activation potential range and influx of 

Ca2+ ions during plateau or single action potentials (Helton et al., 2005). In this thesis, 

we focus on two forms of post-transcriptional modification – RNA editing and 

alternative splicing, as possible mechanisms for generating molecular diversity in 

channels encoded by the CaV1.3 gene, in particular examining the C-terminus.  
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Previous studies of alternative splicing in CaV1.3 have shown its critical 

importance for its negative activation range and CDI (Shen et al., 2006; Singh et al., 

2008). The IQ motif is a crucial module in the calcium-sensing apparatus of LTCCs, 

and deletion of the motif completely abolishes CDI. In our laboratory, A-to-I RNA 

editing was observed in three conserved adenosine nucleotides in the IQ motif, and 

individual A-to-I conversion results in amino acid recoding. We proposed that the A-

to-I recoding of IQ motif in CaV1.3 is likely to drastically alter CDI and aim to 

physiologically characterize this post-transcriptional event in the rats and mouse. In 

the process, we discovered that RNA editing of IQ motif is unique to CaV1.3 

expressed in the central nervous system and is developmentally regulated. We 

hypothesized that the mechanism of RNA editing may be due to a variety of factors, 

and set to systematically identify them in cell culture systems. In light of the newly 

described CTM in CaV1.3, and the biophysical differences observed only in the 

human CaV1.3 splice variants, we analysed the CaV1.3 cDNA expressed in rat brain 

and heart and found a sequencing error in CaV1.342 clone that was characterized. 

Correction of mutation was sufficient for duplication of biophysical differences 

observed in human splice variants, similar to the single-residue switch done by Liu et 

al. (2010). In addition, we proposed that the CaV1.3 gene is likely to exhibit more 

alterative splicing in the C-terminus and that splice variation may serve to modulate 

the regulatory mechanism of this domain on CDI. We therefore undertook to 

systematically screen for alternatively spliced exons in rat brain and characterize 

them. We showed that the alternative splicing in exons 44 and 48 resulted in 

decreased CDI, and that the length and secondary structures between PCRD and 

DCRD may be necessary for regulatory effects of CTM.  

 



 

 

 

 

 

 

Chapter 2 

Physiological characterization of RNA editing of CaV1.3 IQ 

motif 
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2.1 Background and Objectives 

 Calcium-dependent inactivation (CDI) of L-type Ca2+ channels plays a critical 

role in controlling Ca2+ entry and downstream signal transduction in excitable cells. 

Structure-function analysis showed that even single amino-acid substitutions at 

critical channel hotspots could markedly alter modulatory properties, and such 

regulation impacts functions as diverse as neurotransmitter release, neuronal pace-

making, neurite outgrowth, and gene expression. The best studied locus is a 

calmodulin (CaM)-binding domain approximating a consensus IQ element satisfying 

the amino-acid pattern IQxxxRGxxxR, with x denoting any residue. CaM binding at 

this IQ motif is a key determinant of CaM/channel regulation, and mutations in the 

central isoleucine or nearby residues can strongly attenuate Ca2+ regulation. In our 

lab, we discovered a novel RNA editing site in the IQ motif in CaV1.3 channels in rat 

brain. As the only other reported RNA editing of voltage-gated calcium channel is the 

cacophony gene in Drosophila melanogaster, which has high sequence similarity with 

CaV1.3, not much is known about this post-transcriptional modification of CaV1.3 at 

its IQ motif. 

 To address this knowledge gap, the objective of this study is to physiologically 

characterize RNA editing of CaV1.3. Firstly, we sought to identify all the editing sites 

and its frequency in CaV1.3 through sequencing analysis of CaV1.3 mRNA in mouse 

brain. Secondly, we aimed to determine the enzyme responsible for RNA editing of 

IQ motif of CaV1.3 via sequencing analysis of mRNA from ADAR2-/- knockout mice. 

Thirdly, we strived to physiologically characterize RNA editing levels of CaV1.3 via 

sequencing analysis of mRNA from different tissues with high CaV1.3 expression, 

developmentally, and in specific brain regions. Lastly, we aimed to confirm surface 
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expression of endogenous edited CaV1.3 proteins in mouse brain, as well as surface 

localization of edited constructs in primary hippocampal neurons.  

 

2.2 Materials and Methods 

Materials 

Experiments were carried out on Sprague-Dawley rats and C57BL mice, as approved 

by the institutional IACUC. The parental full-length rat CaV1.3 subunit was kindly 

provided by Prof. Diane Lipscombe (Brown University), while the β2a and α2δ clones 

were gifts from A/P Terry Snutch (University of British Columbia). Parental full-

length rat CaV1.3 subunit had been previously subcloned into pcDNA6/V5-His B 

expression vector.  

 

Methods 

Tissue preparation and total RNA extraction  

Various regions of the brain and spinal cord were dissected for RT-PCR experiments. 

Total RNA was isolated using the Trizol method (Invitrogen, Carlsbad, CA) and first 

strand cDNA was synthesized with Superscript II and oligo (dT)18 primers 

(Invitrogen, Carlsbad, CA). Negative control reactions without reverse transcriptase 

were performed in all reverse transcription RT-PCR experiments to exclude 

contamination by genomic DNA.  Reverse transcription to generate the first strand 

cDNA was performed by standard methods. 
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Transcript scanning for edited sites in CaV1.3 IQ motif  

Primer pairs were designed with the aid of Primer3 software (Rozen and Skaletsky, 

2000) based on rat and mouse CaV1.3 cDNA sequence (GenBank accession numbers 

NM017298 and NM028981), and the sequence of the oligonucleotides (Proligo, 

Sigma-Aldrich) are detailed in Table 2.1. To optimize the yield of desired amplified 

product and to suppress non-specific amplification, a standard step-down PCR 

protocol was used that included a 3-cycle decrement from 59 °C to 53 oC final 

annealing temperature. The number of cycles for the main PCR was 35, where 

denaturation was performed at 94 oC for 30 sec, annealing at 53 oC for 30 sec, and 

extension at 72 oC for 50 sec.  The final extension was at 72 oC for 5 min. PCR 

products were separated on a 1.5% agarose gel, isolated and purified using the Qiagen 

gel extraction kit.  The PCR product was sent for direct automated DNA sequencing 

(Applied Biosystems, Foster City, CA).   

Colony screening was performed by first sub-cloning PCR products into pGEM®-T 

Easy vector (Promega, Madison, WI), transforming 25 ng of plasmid into 25 µl of 

electrocompetent DH10B Escherichia coli cells at an electrical pulse of 25 µF 

capacitance, 1.8 kV and 200 Ω resistance, and then sending ~50 isolated clones for 

automated DNA sequencing. Three rats or mice were used for each group of animals. 

A total of 150 clones were screened to determine RNA editing for each brain or spinal 

cord region. To compare peak heights of the chromatogram bases, the peak height of 

guanosine was divided by the combined peak heights of adenosine and guanosine 

bases to estimate the percentage of RNA editing. 
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Table 2.1 Primers used for amplification of rat and mouse CaV1.3 at regions flanking IQ 
motif. Ta represents the annealing temperature.  

 Primer name Primer (5’  3’) Ta (°C) 

Sense Mus1D4793IQF CTCCGAGCTGTGATCAAGAAAATCTGG 
53 

Anti-sense Mus1D5092IQR GGTTTGGAGCTTCTGGCTCGTCA 

Sense  Rat1D5204IQF GAGCTCCGCGCTGTGATAAAGAAA 
53 

Anti-sense Rat1D5501IQR GGTTTGGAGTCTTCTGGTTCGTCA 
 

In addition, primer pairs were designed to amplify the paralogous IQ motifs in other 

CaV channels (GenBank accession numbers: CaV1.2, NM_009781; CaV1.4, 

NM_019582; CaV2.1, NM_007578; CaV2.2, NM_001042528; and CaV2.3, 

NM_009782). The oligonucleotide sequences are detailed in Table 2.2. The same 

step-down PCR protocol was utilized, and PCR product was similarly purified and 

sent for DNA sequencing analysis.  

Table 2.2 Primers used for amplification of mouse CaV channels at regions flanking 
paralogous IQ motif. Ta represents the annealing temperature. CaV represents the channel 
name for the α subunit. 

 Primer name Primer (5’  3’) Ta (°C) CaV 

Sense  1C5917IQF CTTCGGGCCATCATCAAGAAAATCTGG 
54 CaV1.2 

Anti-sense 1C6214IQR ATAGCCTTGTCCAACTCCTCCTCA 

Sense  1F4653IQF GGAGCTTCGGATGGTCATCAAAAAG 
54 CaV1.4 

Anti-sense 1F4930IQR TTCCTCAGTGTCATAGGTGAGGGC 

Sense  1A5670IQF GAGCTTCGCAAGGAGATGATG 
54 CaV2.1 

Anti-sense 1A5996IQR ATTCTGGCTGGGTCCTCCCTCCTGTGTT 

Sense  1B5407IQF ACGAAGCAGCACCAGTGTGATGCT 
54 CaV2.2 

Anti-sense 1B5717IQR TTTTGCCGAAGGAAAACCCGAGCTCCT 

Sense  1E5940IQF GTGGTGCAGACAGACAGCAGCTAGACT 
54 CaV2.3 

Anti-sense 1E6268IQR ACTCCGACCACTCAGGCCAGAAACA 
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Tissue membrane preparation  

Mouse brain tissues were cut up and homogenized in lysis buffer (10 mM Tris-base, 

pH 7.5, 1 mM MgCl2), and mixed with NaCl at a final concentration of 150 mM 

before centrifugation at 1000g, 4 °C for 10 min. The supernatant was further spun at 

100 000 g, 4 °C for 40 min, and pellet was resuspended in RIPA buffer (20 mM Tris-

base, pH 7, 1 mM EDTA, 1 mM EGTA, 10 mM sodium-β-glycerophosphate, 1 mM 

sodium-orthovandate, 5% w/v glycerol, 1% w/v Triton X-100, and 270 mM sucrose). 

The resuspended solution was rotated at 4 °C for 1 h, before it was spun at 14 000 g, 4 

°C for 30 min. The supernatant was further spun at 14 000 g, 4 °C for 30 min, and the 

final supernatant was used for affinity purification. 

Affinity purification of CaV1.3 proteins 

Membrane extract was first pre-cleared using Protein A/G Agarose beads (Pierce, Cat 

No: 20421). 50 µl of beads was added to 1 ml of membrane extract and rotated end-

over-end for 1 h at 4 °C. The mixture was then spun at 14 000 rom at 4 °C for 5 min. 

The protein concentration of the resultant supernatant, containing pre-cleared 

membrane extract, was measured using Bradford assay. Affinity purification of 

CaV1.3 proteins was performed via incubation of 8 µg of membrane extract with 8 µl 

of anti-CaV1.3 antibody (Santa Cruz, H-240, sc-25687) and 60 µl of agarose beads 

overnight at 4 °C. Beads were collected, washed thrice with RIPA buffer and sent for 

MRM analysis.  
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Measurement of protein concentration 

The protein concentration of affinity-purified CaV1.3 channels was determined by 

Bradford protein assay and the absorbance at 280 nm (GeneQuant Pro, Amersham 

Biosciences). 

SDS-PAGE and immunoblotting 

Two pull-down experiments were performed concurrently. The proteins from the 

control set were separated by denaturing SDS-PAGE according to the method of 

Laemmli, by using a Bio-Rad Mini PROTEAN II electrophoresis chamber. For 

immunoblotting, the proteins were electrophoresed and transferred to PVDF 

membranes. The membranes were blocked with 5% non-fat milk and subsequently 

probed with anti-CaV1.3 (Alomone, ACC-005, dilution of 1:200) primary antibody. 

Detection of the primary antibody was performed with anti-rabbit IgG Horseradish 

Peroxidase (HRP) (dilution of 1:10000), followed by SuperSignal West Pico 

Chemiluminescent Substrate reagents (Thermo Scientific). 

MRM analyses of protein digest 

Beads were washed with 100mM TEAB buffer, reduced with 10 mM TCEP, and then 

alkylated with 20 mM iodacetamide. Proteins were then digested from beads with 1 

µg Trypsin (Promega) for 16 h at 37 °C. 0.5% formic acid was added to stop digest, 

and the supernatant was collected and freeze-dried in 96-well microtiter plate. 

Peptides were labeled with mTRAQ (Applied Biosystems), according to instructions 

manual, and freeze dried. Peptides were resuspended in 0.1% formic acid, 

concentrated on a trap-column (Reprosil pur, 0.3 x 5 mm, SGE, Australia, and Dr. 

Maisch, Germany), and eluted in a linear gradient from 5% acetonitrile to 50% 
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acetonitrile, 0.1% formic acid in water. For selective detective of edited peptides, a 

list of MRM transitions of potential tryptic peptides was generated by MRMPilot 

(Applied Biosystems), which predicts the collision-induced dissociated fragments and 

the optimized collision energies. In MRM, the first quadrupole filters the precursor 

mass of intact expected tryptic peptide, which is followed by peptide fragmentation in 

the collision cell. Finally, the third quadrupole only allows predicted fragments, based 

on the peptide sequence, from precursor ion to pass, and only the combination of 

precursor and fragment results in a signal. To prevent false positive signals, 2 to 4 

MS/MS fragments per precursor were selected, depending on its length and sequence.  

The targeted mass spectrometric analysis was carried out on a QTRAP4000 equipped 

with a TEMPO 2D nano HPLC (Applied Biosystems), FAMOS autosampler 

(SPARK, Holland) and micro ion spray II (Applied Biosystems). Data collection and 

control of instruments was done by Analyst 1.4 (Applied Biosystems).  

In general, 18 peptides, wild-type (WT) and the different editing combinations, which 

also create additional shorter tryptic fragments due to the mutation of Q to R, and due 

to the RK sequence at the C-terminus, which is cut by trypsin either after the R or 

after the K, resulting in two peptides, were predicted, with 2 to 4 transitions predicted 

fragments per precursor. Cysteine was calculated as carboxymethylated, because of 

the reduction and alkylation steps, and methionines as oxidized, as after the 

preparation steps methionines are usually detected in the oxidized form in mass 

spectrometry. The peptides are namely - DCFR, DCFRK, FYATFLIQDCFR, 

FYATFLIQDCFRK, FYATFLIQDYFR, FYATFLIQDYFRK, FYATFLIR, 

FYATFLIRDCFR, FYATFLIRDYFR, FYATFLMQDCFR, FYATFLMQDCFRK, 

FYATFLMR, FYATFLMRDCFR, FYATFLMRDYFR, KFYATFLIQDCFR, 

KFYATFLIR, KFYATFLMQDCFR and KFYATFLMR. 
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Construct of HA-tagged edited CaV1.3 constructs 

The first four amino acids of the CaV1.3 consensus IQ motif is IQDY corresponding 

to nucleotide sequence ATACAGGACTAC. Four edited CaV1.3 α1D subunits were 

generated from the reference WT α1D-IQfull channels (Shen et al., 2006), now 

designated α1D-IQDY.  The edited subunits were named α1D-MQDY, α1D-IRDY, α1D-MRDY and 

α1D-IQDC. The α1D-MQDY and α1D-IQDC edited clones were generated by replacing a 

BstEII/NotI RT-PCR fragment containing the respective edited sites into the reference 

clone. The other edited clones were generated by in-vitro mutagenesis using the 

primers listed in Table 2.3.  

 Table 2.3 Primers used for in-vitro site directed mutagenesis at IQ motif of CaV1.3. Ta 
represents the annealing temperature. The nucleotides coding for mutant amino acids are 
italicized and underlined. 

 

The generation of HA-tagged CaV1.3 construct has been described by Zhang et al 

(2006). Briefly the HA tag and the flanking sequences were inserted into extracellular 

S5-S6 loop of domain II of WT rat CaV1.3 plasmid between amino acids Q693 and 

T694. The resulting sequence is 687FNFDETQTRHYPYDVPDYAVTFDEMQTKRS 

TFD694 (HA sequence is in bold, added sequence is italic) The HA tag and flanking 

sequences were inserted by PCR followed by ligation using AleI (658) and BamHI 

(2756) sites and verified by sequencing. The primers used are listed in Table 2.4. 

 

 Primers name Primer (5’  3’) Ta (°C) Mutant 

Sense  IRDY-F TGATACGGGACTACTTTAGG 
58 IRDY 

Anti-sense IRDY-R CCTAAAGTAGTCCCGTATCA 

Sense  MRDY-F TGATGCGGGACTACTTTAGG 
58 MRDY 

Anti-sense MRDY-R CCTAAAGCAGTCCCGCATCA 
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Table 2.4 Primers used for construct of HA-tagged CaV1.3 channel. Ta represents 
annealing temperature.  

 Primer name Primer (5’  3’) Ta (°C) 

Sense  HA-tag-F     AAGCACCTTCGACAACTTCCC 
58 

Anti-sense HA-tag-R CTGTGTCTCATCGAAATTGAACTT 

Sense HA-tag-overlap-F CGGAGGGAAGTTCAATTTCG 
58 

Anti-sense HA-tag-overlap-F TGTGGGAAGTTGTCGAAGGT 

Sense HA-tag-oligo-F CGGAGGGAAGTTCAATTTCGATGAGACAC

AGACTCGTCATTATCCTTATGATGTTCCTG

ATTATGCTGTTACTTTTGATG 
58 

Anti-sense HA-tag-oligo-R TGTGGGAAGTTGTCGAAGGTGCTTCGCTT

GGTTTGCATTTCATCAAAAGTAACAGCAT

AATCAGGAACATCATAAGGATA 

 

Hippocampal neuron culture and transfection 

Low-density dissociated-cell culture of hippocampal neurons rat embryonic 18 (E18) 

rat was prepared, according to established protocol (Kaech and Banker, 2006). The 

neurons were cultured on poly-D-lysine-treated coverslips, which were suspended 

above an astrocyte feeder layer and maintained in serum-free N2 medium, in a 24-

well plate format. Hippocampal cultures have been used widely for visualizing the 

subcellular localization of endogenous or expressed proteins for imaging protein 

trafficking.   Preparation of glial feeder cultures begun at least 2 weeks in advance, 

and approximately 5 days was needed to prepare coverslips as a substrate for neuronal 

growth. Dissection of hippocampus from rat fetuses and plating of hippocampal 

neurons takes 2-3 hours. On days in vitro (DIV) 5 to 7, the primary neurons were 

transiently transfected with HA-α1D-IQDY, HA-α1D-MQDY, HA-α1D-IRDY, HA-α1D-MRDY, 

HA-α1D-IQDC or α1D-IQDY (1.7 µg) and rat β2a (1.25 µg) and α2δ (1.25 µg), using 0.5 µl 

of PLUS Reagent and 1 µl of Lipofectamine LTX (Invitrogen, Carlsbad, CA). Cells 
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were incubated in DNA-Lipofectamine LTX mixture for 5 h in 37 °C incubator, 

before coverslips were returned into conditioned medium. 

Immunocytochemistry and confocal imaging 

For immunofluorescence of cultured neurons, the following antibodies were used: 

rabbit polyclonal anti-CaV1.3 antibody (ACC-005, Alomone, 1:100), rat anti-HA 

antibody (monoclonal, clone 12CA5, Roche, 1:100), goat anti-rabbit Alexa 488 

(1:400) and goat anti-rat Alexa 594 (1:400).  48 hours after transfection, neurons were 

fixed using 4% paraformaldehyde, washed thrice with PBS, blocked using 3% 

BSA/PBS, and incubated with primary antibody overnight at 4 °C. Coverslips were 

then washed thrice with PBS and incubated with secondary antibodies for 1 h at room 

temperature. Coverslips were washed thrice with PBS and mounted in p-phenylene-

diamine-glycerol to retard photobleaching.  

Preparations were analyzed using a Zeiss LSM-510 META confocal microscope 

using a 63x 1.4 numerical aperture (NA) oil immersion objective in the inverted 

configuration. Image brightness/contrast adjustments were performed on the Zeiss 

LSM Image Browser software, version 4.0.0.157. Images were then recorded and 

exported as tiff formats.  
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2.3 Results 

Detecting RNA editing of the IQ motif in CaV1.3channels 

Using mus1D4793IQF and mus1D5092IQR primers for RT-PCR of mRNA 

obtained from mouse brain, we obtained a PCR product of 299 base pair (bp) (Fig. 

2.1A). Direct DNA sequencing of the purified product showed obvious evidence of 

RNA editing at two adenosine positions, characterized by conspicuous A/G double 

peaks in the sequencing chromatograms (Fig. 2.1B, arrows on green and black bands). 

These double peaks indicate that in addition to the canonical IQDY sequence, 

alternative sequences such as MQDY, IQDC, and MQDC could also manifest at the 

protein level, as summarized in Fig. 2.1B.  

However, at the genomic level, the predicted amino acid sequence at the core 

of IQ motif is IQDY. These are coded by the nucleotides ATACAGGACTAC, as 

explicitly confirmed by PCR amplification and sequencing of the rat genomic DNA 

(Fig. 2.1C).  

In order to detect rare occurrences of editing, we employed colony screening, 

where the purified PCR product was cloned into bacteria colonies, and sequencing 

was performed on amplified DNA from individual colonies (Fig. 2.2A). In addition to 

confirming the two sites of editing observed in Fig. 2.1B, this approach revealed a 

rarer locus where CAG (Q) was edited to CGG (R), which elaborates an IRDY 

sequence (Fig. 2.1B, bottom row). These instances of editing could then produce 

peptide variations as demonstrated in Fig. 2.1B, on top of other potential 

combinations – namely, IRDC, MRDY and MRDC. (Fig. 2.2 B).  
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Figure 2.1 Detection of RNA editing sites in the CaV1.3 IQ motif. A. Exemplar PCR 
product (299 bp) from RT-PCR analysis of mouse brain mRNA. B. Direct sequencing results 
of RT-PCR from brain, showing distinct doublets of adenosine (A) and guanosine (G) 
(indicated by arrows) to generate MQDY or IQDC from unedited IQDY. Colony screening 
reveals an additional editing site in the IQ motif, resulting in the peptide combination IRDY. 
C. DNA sequencing chromatogram from direct analysis of PCR of genomic DNA yields a 
unique coding for the IQ motif at this level.  
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Figure 2.2 Colony screening of RNA editing sites in CaV1.3 IQ motif. A. Exemplar PCR 
products from the colony screening of 96 clones transformed with RT-PCR product ligated 
into pGEM®-T Easy vector. B. Possible combinations CaV1.3 IQ motif editing in mouse brain, 
as evidence by DNA sequences from individual clones. These show editing at 2-3 sites in 
various combinations. 
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RNA editing of IQ motif is unique to CaV1.3 channels 

In contrast to the ready detection of RNA editing within the CaV1.3 IQ motif, 

further regions of editing were not observed.  Transcript-scanning of the complete 

CaV1.3 α-subunit from total mouse brain RNA, with direct sequencing of RT-PCR 

products, gave no indication of RNA editing outside of the IQ motif (data not shown). 

Detailed analysis of nearby adenosines upstream or downstream of IQ motif also 

showed clean adenosine peaks. Furthermore, analysis of the paralogous IQ motifs of 

other CaV channels (CaV1.2, CaV1.4, CaV2.1, CaV2.2 and CaV2.3) in mouse brain also 

failed to reveal additional sites of editing (Fig 2.3).   

 

 

Figure 2.3 RNA editing was not detected in the paralogous IQ motifs of other voltage-
gated calcium channels (CaV2.1, CaV2.2, CaV2.3, CaV1.2 and CaV1.4 channels). Direct 
sequencing of the RT-PCR products from mouse brain did not show any differences from 
published data. A. CaV2.1 channels; B. CaV2.2 channels; C. CaV2.3 channels; D. CaV1.2 
channels; and E. CaV1.4 channels. Peptide combination of paralogous IQ motif is listed in 
black. 
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RNA editing of IQ motif is CNS-specific 

Outside of the central nervous system (CNS), CaV1.3 is functionally important 

in cochlea (Shen et al., 2006), heart (Platzer et al., 2000), pancreas (Safa et al., 2001; 

Liu et al., 2004; Taylor et al., 2005), and other tissues.  However, direct sequencing of 

cDNA from rat cochlea, heart, dorsal root ganglion cells and pancreatic islets using 

rat1D5204IQF and rat1D5501IQR primers demonstrated that the IQ motif of CaV1.3 

channels in these tissues was not edited (Fig 2.4A-D). Overall, CNS editing of the 

CaV1.3 IQ motif appeared unique.  

 

Figure 2.4 RNA editing of CaV1.3 channels’ IQ motifs is CNS-specific. Direct sequencing 
of the RT-PCR products from tissues with high CaV1.3 channel expression showed identical 
patterns to the genomic analysis in Fig 2.1C, indicating no editing. A. cochlea; B. heart; C. 
dorsal root ganglion; and D. pancreatic islets.   
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ADAR2 mediates RNA editing of CaV1.3 IQ motif 

Adenosine Deaminases Acting on RNA (ADARs) bind to duplex stem-loop 

structures within pre-mRNA and catalyses the deamination of adenosine (A) to 

inosine (I) (Keegan et al., 2001). This action effectively alters the codon within the 

mature edited mRNA, because the inosine is read off as guanosine (G) by the 

translation machinery, ultimately resulting in a different amino acid in the protein 

product. To test whether the specific deaminase isoform ADAR2 is responsible for 

CaV1.3 editing, we compared results from wild-type (WT) and ADAR2-/-/GluR-BR/R 

knockout mice (Higuchi et al., 2000), focusing, in particular, on the lumbar region and 

whole mouse brain. Direct DNA sequencing of RT-PCR products from these regions 

gave strong qualitative indications of editing at each of the coloured locations (Fig 

2.5A, left) identified earlier in Fig 2.1B.  For more quantitative analysis, we measured 

the relative heights of chromatogram peaks for adenosine and guanosine at these loci, 

enabling specification of a percentage-editing metric shown as light-coloured bar 

graphs (Fig 2.5A, right). Reassuringly, colony screening produced a closely similar 

quantitative profile of editing (Fig 2.5A, right, darker-coloured bars).  The 

quantitative analyses revealed an overall rank order of editing of ATA (I)  ATG (M) 

~ TAC (Y)  TGC (C) > CAG (Q)  CGG (R).   Indeed, while the WT background 

supported robust editing at the CaV1.3 IQ motif (Fig 2.5A), the knockout background 

was devoid of detectable editing (Fig 2.5B). This result provided strong evidence that 

ADAR2 is necessary for IQ motif editing.  

Detailed analysis of the peptide combinations showed that doubly-edited 

MQDC and singly-edited MQDY were the most predominant edited combination in 

brain and lumbar respectively (Fig 2.5C), while editing combinations of IRDY and 
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IRDC were rarer. In knockout tissues, edited peptide combinations of IQDC and 

MQDC were observed at less than 1% (Fig 2.5D), which may be due to compensatory 

RNA editing by ADAR1. 

 

 

Figure 2.5 Profile of editing in CaV1.3 IQ motif in mouse lumbar and whole brain.  A. 
Editing in wild-type (WT) mouse. Left column, direct DNA sequencing of mouse RT-PCR 
products. Right column, percentage editing at three locations (I > M, Q > R and Y > C), as 
calculated by measuring electropherograms heights for adenosine versus guanosine 
(translucent bars), or by colony counting from colony screening analysis (filled bars). The 
electropherograms are representative of independent RT-PCR reactions on cDNA from n=3 
animals. 50 colonies were screened per animal. Error bars represent standard error. B. No 
editing in ADAR2-/-/GluR-BR/R knockout mice. Format as in Fig 2.5A. C. Peptide 
combination of CaV1.3 IQ motif in WT mouse. IQDY depicts the non-edited combination, 
while IQDC, MQDY, MQDC, MRDY and MRDC depict the edited peptide combinations 
observed in colony screening analysis. Percentage with peptide combination, as calculated by 
colony counting of brain (grey bars) and of lumbar (black bars). D. Non-edited peptide 
combination IQDY expressed in ADAR2-/-/GluR-BR/R knockout mice. Format as in Fig 2.5C. 
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Spatio-developmental RNA editing in mouse  

Given the nuanced distribution of ADAR2 throughout the brain (Paupard et 

al., 2000), we next explored the spatio-temporal occurrence of CaV1.3 RNA editing 

across the CNS.  Accordingly, the editing analysis introduced in Fig 2.5 was applied 

to individual brain regions, such as frontal cortex, hippocampus, medulla oblongata 

and cerebellum of mouse brain.  The analysis revealed that editing was spatially 

regulated across the brain, with frontal cortex and hippocampus showing the most 

editing (Fig 2.6B).   These general trends from mice were largely recapitulated in the 

rat brain (data not shown), with some inter-species differences present at the 

quantitative level.  

Beyond spatial regulation, we also observed marked developmental 

modulation of IQ motif editing (Fig 2.7). At embryonic day 14 (E14), the CaV1.3 IQ 

motif lacks detectable levels of editing. By contrast, editing was observed as early as 

postnatal day 4 (P4), and reached adult levels by postnatal day 7 (P7). Similar trends 

were observed in both rats and mice, with line-graph population summaries shown at 

the far right.   
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Figure 2.6 Profile of editing in CaV1.3 IQ motif in different mouse brain regions.  A. 
Exemplar PCR product (297 bp) from RT-PCR analysis of mouse frontal cortex, 
hippocampus, medulla oblongata, cerebellum and lumbar mRNA. B. Left column, direct 
DNA sequencing of mouse RT-PCR products. Right column, percentage editing at three 
locations (I > M, Q > R and Y > C), as calculated by measuring electropherograms heights for 
adenosine versus guanosine (translucent bars), or by colony counting from colony screening 
analysis (filled bars). The electropherograms are representative of independent RT-PCR 
reactions on cDNA from n=3 animals. 50 colonies were screened per animal. A similar trend 
of higher editing at I > M and Y > C sites was observed from both direct sequencing and 
colony screening, in all regions of the brain and spinal cord. 

 

 

 



43 
 

 

 

 

 

 

 

 

 

 

Figure 2.7 Developmental profile of editing in CaV1.3 IQ motif in mouse and rat brains. 
A. RNA editing levels at all three adenosine sites increased with age in rat whole brain. Left 
panel, direct DNA sequencing of RT-PCR products from brains of different ages (n = 3 
animals per age). Right panel, percent editing at three locations (I > M, Q > R and Y > C), as 
calculated by measuring electropherograms heights for adenosine versus guanosine. Error 
bars reflect S.E.M. B. Similar trend of increased RNA editing levels observed in mouse 
whole brain. Format as in Fig 2.7A.  
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Surface expression and localization of edited peptides 

Expression of edited CaV1.3 proteins in endogenous tissue was confirmed via 

high performance liquid chromatography mass spectrometry (HPLC-MS/MS) 

multiple reaction monitoring (MRM) of mTRAQ-labelled peptides. Targeted mass 

spectrometry is an assay technology capable of selective and sensitive detection and 

quantification of potentially any protein of interest in the proteome. In HPLC-MS/MS 

MRM, peptides (precursors) from candidate proteins of interest are selectively 

detected and caused to fragment (products) in the mass spectrometer.  Due to the low 

expression levels of CaV1.3 proteins, it was first concentrated via affinity purification, 

using anti-CaV1.3 antibodies, onto agarose beads before protein identification. Signals 

for mTRAQ-labelled peptides containing FYATFLMR, FYATFLMRDYFR, 

KFYATFLIQDCFR, and KFYATFLIR isoforms of the IQ motif were distinctly 

detected, in addition to that of the non-edited IQ motif (FYATFLIQDYFR) (Fig 2.8). 

The MRM chromatograms, representative of both non-edited and edited peptides (Fig 

2.9A and Table 2.5) showed good recovery of the peptides, and therefore clear 

identification of these molecules. Hence, I to M, Q to R and Y to C edited amino acids 

could be detected within the CaV1.3 IQ motif, and RNA editing does in fact yield 

channel proteins featuring various IQ motifs. The other CaV1.3 IQ motif variants were 

observed at very low intensity, either because of low abundance of the peptide or due 

to MS incompatibility. Immunoblot analysis of the duplicate control pull-down 

confirmed successful concentration of CaV1.3 proteins from wild-type mice. 

To assess whether editing affects the ability of CaV1.3 channels to target to the 

neuronal surface membrane, we generated cDNAs encoding both non-edited (IQDY) 

and various edited forms of CaV1.3 channels (MQDY, IRDY, MRDY or IQDC). 

These channels were also endowed with an extracellular HA-tag to facilitate 
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subsequent immunocytochemical assays of surface-membrane expression. We then 

transiently expressed the suite of HA-tagged CaV1.3 clones in primary hippocampal 

neurons.  In neurons, CaV1.3 channels are localized mainly at neuronal cell bodies and 

proximal dendrites, and could be detected in both synaptic and extrasynaptic 

compartments (Hell et al., 1993; Obermair et al., 2004). Immunocytochemistry 

revealed similar surface expression patterns between the non-edited and edited forms 

of CaV1.3 variants (Fig 2.10A-E, red staining), arguing that transport of channels to 

the neuronal surface membrane was largely unaffected by editing.  In addition, 

expression patterns of transfected CaV1.3 were similar to those of endogenous 

channels, staining predominantly the surface of cell bodies and proximal dendrites 

(Fig 2.9A-E, green staining). 
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Figure 2.8 Membrane expression of edited CaV1.3 proteins was confirmed via HPLC-
MS/MS multiple reaction monitoring (MRM) of mTRAQ-labelled peptides. Expression 
of both non-edited and edited peptides in mouse brain membrane fraction. A. Extracted ion 
chromatogram (XIC) of WT mouse brain membrane protein fraction that was specifically 
targeted at the non-edited IQDY peptide sequence. Peptide sequences and retention times 
(detected using Analyst software) are labelled above the corresponding peaks. The four amino 
acids in the IQ motif are displayed in red, while the predicted peptide sequence is highlighted 
in purple. Asterisks denote background. B. XIC of WT mouse brain membrane protein 
fraction, this time specifically targeted at the edited peptide sequences of the IQ motif. Format 
as in Fig 2.8A.  
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Figure 2.9 MRM transitions for the peptide sequences predicted using MRM software. 
Individual spectrums and transitions for each peptide labelled with mTRAQ light are shown. 
The MRM chromatograms, representative of non-edited peptide FYATFLIQDYFR (Fig 2.9A-
B) and edited peptides KFYATLFIR, FYATFLIQDCFR, FYATFLMR and 
FYATFLMRDYFR (Fig 2.9C-F), all showed good peptide recovery and thereby clear 
identification of molecular species.  
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Table 2.5 Table accompanying Figure 2.9. The table below summarizes details of the 
mTRAQ-labelled peptide sequences detected in panels A-F. The columns are defined as 
follows (left to right), with column headings in italics. Panel gives the panel reference to 
which the detailed information at right refers; each row corresponds to individuals species 
identified in panels A through F. Peptide sequence indicates the sequence of the tryptic 
fragment identified in a given panel, prior to collision-cell (Q2) fragmentation. These tryptic 
peptides are labelled with light mTRAQ. Amino acids labelled with one mTRAQ molecule 
are indicated in bold, while those labelled with two mTRAQ molecules are indicated in bold 
and underlined. Retention time gives the characteristic time at which a given tryptic-peptide 
species exits the chromatography apparatus, and enters the mass spectrometer. For MRM 
transitions using two or more fragments, they have to be detected at the same retention time; 
otherwise the signal results from background ions and is considered random. Molecular mass 
(m) gives the predicted molecular mass of a given tryptic peptide, with mTRAQ label 
attached. Precursor, mass-to-charge (m/z) and valence (z) of a species at Q1. Fragment, mass-
to-charge (m/z) and valence (z) of a species at Q3, after fragmentation in Q2. Bonafide 
detection of a specific IQ domain variant requires matching retention time, precursor m/z, and 
fragment m/z, all collectively diagnostic for a given IQ domain species.   

Panel Peptide sequence 

labelled with 

mTRAQ light 

Retention 

time (min) 

Molecular 

mass (m) 

Precursor Fragment  

m/z z m/z z 

A FYATFLIQDYFR 14.6 2003.1 1002.54 2 1241.67 1 

 FYATFLIQDYFR 14.6 2003.1 1002.54 2 1342.72 1 

 FYATFLIQDYFR 14.6 2003.1 1002.54 2 981.52 1 

B FYATFLIQDYFR 19.0 1722.9 932.49 2 1202.62 1 

 FYATFLIQDYFR 19.0 1722.9 622 3 1202.62 1 

C KFYATFLIR 9.7 1437.8 719.9 2 883.5 1 

 KFYATFLIR 9.7 1437.8 480.3 3 883.5 1 

D KFYATFLIQDCFR 17.6 1988.0 663.7 3 1199.6 1 

E FYATFLMR 21.2 1203.6 602.8 2 754.4 1 

 FYATFLMR 21.2 1203.6 602.8 2 917.5 1 

 FYATFLMR 21.2 1203.6 402.2 3 754.4 1 

 FYATFLMR 21.2 1203.6 402.2 3 683.4 1 

F FYATFLMRDYFR 22.7 1784.9 893.4 2 1016.5 1 

 FYATFLMRDYFR 22.7 1784.9 893.4 2 1163.6 1 

 FYATFLMRDYFR 22.7 1784.9 893.4 2 1264.6 1 

 FYATFLMRDYFR 22.7 1784.9 596 3 1016.5 1 
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Figure 2.10 Surface localization of non-edited and edited CaV1.3 channels. Confocal 
images of subcellular distribution of HA-tagged CaV1.3 channels transiently transfected into 
E18 primary hippocampal neurons. Endogenous and transfected CaV1.3 channels were 
visualized using generic anti-CaV1.3 antibody (Alexa488, green) and anti-HA antibody 
(Alexa594, red) staining respectively. CaV1.3 plasmid without HA-tag was transfected was 
used as negative control. A. HA-tagged non-edited CaV1.3IQDY; B. HA-tagged edited 
CaV1.3MQDY; C. HA-tagged edited CaV1.3IRDY; D. HA-tagged edited CaV1.3MRDY; E. HA-tagged 
edited CaV1.3IQDC; and F. non-edited CaV1.3IQDY. The data are representative of three 
independent transfection experiments with HA-CaV1.3 constructs.  
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2.4 Discussion and Conclusion 

 In our laboratory, we discovered a novel RNA editing substrate in the IQ motif 

of CaV1.3 channel. In the present study, we aimed to confirm and physiologically 

characterize this editing event. The editing site was confirmed by genomic analysis of 

rat brain tissues, whereby only adenosine molecules, and not guanosine, were 

observed. Thus, the possibility that the doublet peaks observed from direct sequencing 

of RT-PCR is due to single nucleotide polymorphism could be eliminated. 

Sequencing of individual colonies revealed a third editing site in the IQ motif, 

increasing the possible IQ motif peptide combinations to eight. Indeed, this was 

confirmed by the observation of doubly- and triply-edited combinations in the 

colonies. In addition, we identified the enzyme responsible for editing CaV1.3 

channels as ADAR2 enzyme, through detailed analysis of RT-PCR products and 

colony screening of ADAR2-/- knockout mouse brain and spinal cord mRNA. RNA 

editing of the CaV1.3 channel at its IQ motif appears specific to the central nervous 

system, since editing in other tissue regions with high CaV1.3 channel expression 

appears to be absent. Adding to the theme of specificity, RNA editing was not found 

in CaV1.3 coding regions outside the IQ motif, and editing was absent in the IQ motif 

of other members of the CaV1-2 channel family. Proteomic analyses confirmed the 

expression of edited CaV1.3 channel proteins within the native brain tissues. 

Furthermore, surface expression of edited CaV1.3 constructs was similar to that of 

both non-edited CaV1.3 construct and endogenous CaV1.3 channels in primary 

hippocampal neurons, as observed from immunocytochemical assays of transiently 

transfected neurons.   

 Adenosine-to-inosine RNA editing regulates protein function by post-

translational recoding of genomic information, thereby generating molecular 
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diversity. Most of the identified editing targets are found in the mammalian nervous 

system, with a predominant historical focus on the family of GluR ion channels and 

serotonin 2C receptors (Schmauss, 2003; Seeburg and Hartner, 2003).  Beyond this 

historical focus, the list of editing targets is expanding.  For example, outside of 

CaV1.3 channels, there are some instances of CaV channel editing exclusive of the IQ 

motif, though with uncertain consequences (Kawasaki et al., 2002; Tsunemi et al., 

2002; Keegan et al., 2005). In other voltage-gated channels, editing of KV1.1/KVβ1.1 

channels speeds inactivation recovery  (Bhalla et al., 2004), and editing of insect Na 

channels alters the channel gating properties (Song et al., 2004; Dong, 2007). Here, 

our discovery of editing within the CaV1.3 IQ motif represents a significant expansion 

to this group, given the striking functional modulation of Ca2+-dependent feedback 

control at this particular locus, and the broad range of biological roles served by these 

channels.  

 Accordingly, work done by another graduate student in our laboratory 

demonstrated that RNA editing of the CaV1.3 IQ motif can strongly diminish the CDI 

of these channels (Huang et al, submitted). Furthermore, to clearly evaluate the 

neurological impact of CaV1.3 IQ motif editing, characterization of the repetitive 

firing properties of neurons in the suprachiasmatic nucleus (SCN), where the bulk of 

L-type Ca2+ current is carried by CaV1.3 channels, was performed. In particular, it was 

observed that RNA editing alters the frequency of repetitive action potentials and 

calcium spikes. As the SCN contributes a central biological clock for circadian 

rhythms, it is plausible that the regulation of mammalian rhythmicity constitutes one 

of many important potential consequences of CaV1.3 RNA editing. 

Notably, ADAR2-mediated editing of the CaV1.3 IQ motif, as shown in our 

study, is exquisitely selective and site-specific.  Firstly, such IQ motif editing was not 
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observed in other calcium channel family members, all of which contain an IQ motif.  

Secondly, the nearby adenosines located upstream or downstream of the IQ motif in 

CaV1.3 were not edited.  Finally, IQ motif editing reaction seems restricted to the 

central nervous system in mouse and rat, even though CaV1.3 channels are crucial to 

function in pancreas (Safa et al., 2001; Liu et al., 2004; Taylor et al., 2005), heart and 

cochlear (Platzer et al., 2000; Shen et al., 2006).  Intriguingly, editing of the CaV1.3 

IQ motif editing was not observed in these tissues despite the endogenous expression 

of ADAR2 (Melcher et al., 1996a; Gan et al., 2006). This selectivity suggests that 

RNA editing of the CaV1.3 IQ motif may be critical for certain biological niches, 

where fine-tuning of Ca2+ feedback on channels (CDI) is especially desirable.   
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3.1 Background and Objectives 

Low voltage activation of CaV1.3 L-type Ca2+ channels controls excitability in 

central neurons and sensory cells – sensory signalling in cochlear inner hair cells 

(Shen et al., 2006) and pancreatic islets (Wiser et al., 1999), as well as SAN pace-

making (Striessnig, 2007). However, with the exception of central nervous system, 

CaV1.3 is not edited in the heart, cochlea and pancreatic islets.  

There are four possible models to explain the increase or lack of RNA editing 

in CaV1.3 calcium channel. First, ADAR2 could be regulated at the post-translational 

level, either via protein modification or cellular compartmentalization. Second, a 

cofactor in the editing machinery, which synergistically enhances the action of 

ADAR2, by increasing their access to certain editing sites, may be absent or 

inadequately expressed. Third, expression of a competitive inhibitor that hinders 

access of ADAR2 to editing sites, which may be in the form of a double-strand RNA 

binding protein that competes for binding to the CaV1.3 mRNA editing sites (Lai et 

al., 1997b). Fourth, the absolute and relative levels of ADAR family isoforms, 

ADAR1-3, and splice variants, which may perturb the dsRNA structure, and hence 

pattern of edited CaV1.3 (Werry et al., 2008). In order to elucidate the mechanisms 

regulating tissue-specific and age-dependent RNA editing of CaV1.3 channels’ IQ 

motif, we screened several cell lines for CaV1.3 RNA editing as well as for easier 

manipulation and identification of crucial conditions necessary to facilitate the event. 

We transiently transfected the cell lines with ADAR family members at different 

ratios, exposed them to different cofactors of ADAR2, and exposed neuroblastoma 

cell lines to differentiation agents to mimic age development of neurons. The 

subcellular localization and expression of the ADAR2 was also examined via 

immunochemistry. In addition, we cloned and analysed the full length ADAR2 
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sequences obtained from rat brain and heart to identify and characterize the frequency 

of splice variants and mutations. We propose that a combination of factors may be 

necessary for RNA editing of CaV1.3 channel.  

Furthermore, RNA editing by ADAR2 in pancreatic islets and β-cells is 

metabolically regulated by nutritional and energy status (Gan et al., 2006), and 

exposure to glucose at physiological concentration that stimulate insulin secretion 

may possibly also modulate RNA editing of CaV1.3 IQ motif. To address this gap in 

knowledge, we repeated the same experimental conditions, exposing rat and mouse 

insulinoma cell lines to diabetic glucose concentration for different duration to 

characterize possible changes in RNA editing of CaV1.3 channels.  

 

3.2 Materials and Methods 

Materials 

Experiments were carried out on Sprague-Dawley rats and C57BL mice, as approved 

by the institutional IACUC. Rat and mouse insulinoma cell lines, INS-1, INS-1e and 

MIN6, were kind gifts from Dr Li Guodong (National University of Singapore, 

Singapore).   

 

Methods 

Tissue preparation and total RNA extraction  

Various regions of the brain were dissected for RT-PCR experiments. Total RNA was 

isolated using the Trizol method (Invitrogen, Carlsbad, CA) and first strand cDNA 

was synthesized with Superscript II and oligo (dT)18 primers (Invitrogen, Carlsbad, 
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CA). Negative control reactions without reverse transcriptase were performed in all 

reverse transcription RT-PCR experiments to exclude contamination by genomic 

DNA.  Reverse transcription to generate the first strand cDNA was performed by 

standard methods. 

Mammalian cell culture and transient transfection 

Mouse neuroblastoma cell lines – Neuro2A, N1E-115 and human neuroblastoma cell 

line, SH-SY5Y, were maintained in a growth media comprising of DMEM and 10% 

FBS, buffered with 20.71 mM sodium bicarbonate and 5.04 mM HEPES, and grown 

in a water saturated 5% CO2 incubator at 37 °C. Cultures were passaged at a split ratio 

of 1:15 upon reaching ~80% confluency. 

Mouse neuroblastoma/rat glioblastoma hybrid cell line, NG108-15 was maintained in 

a growth media comprising of DMEM and 10% FBS, supplemented with selective 

agent HAT (0.1 mM hypoxanthine, 400 nM aminopterin and 0.016 mM thymidine), 

buffered with 20.71 mM sodium bicarbonate and 5.04 mM HEPES, and grown in a 

water saturated 5% CO2 incubator at 37 °C. Cultures were passaged at a split ratio of 

1:10 upon reaching ~80% confluency. 

Mouse insulinoma cell line, MIN6 was maintained in a growth media comprising of 

DMEM and 20% FBS, buffered with 20.71 mM sodium bicarbonate and 5.04 mM 

HEPES, and grown in a water saturated 5% CO2 incubator at 37 °C. Cultures were 

passaged at a split ratio of 1:5 upon reaching ~80% confluency. 

Rat insulinoma cell line, INS-1 and its variant, INS-1e, were maintained in a growth 

media comprising of RPMI-1640 and 10% FBS, supplemented with 10 mM HEPES, 

2 mM L-glutamine, 1 mM sodium pyruvate and 0.05 mM 2-mercaptoethanol, and 
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grown in a water saturated 5% CO2 incubator at 37 °C. Cultures were passaged at a 

split ratio of 1:5 upon reaching ~80% confluency. 

For transfection, cells were harvested at ~80% confluency, counted and seeded onto 

6-well cell culture plate. The cells were seeded at a density of approximately 5 x 104 

cells/cm2 to ensure that sufficient cells were available after transfection for RNA 

extraction. The cells were then incubated for 16-24 h to allow the cells to adhere to 

the flat bottom of well. At about 1 h prior to transfection, the spent media was 

aspirated and fresh growth media containing no antibiotics was introduced. 

Approximately 4 µg of plasmid constructs was transfected into the cells using 

Lipofectamine™ 2000 (Invitrogen) transfection reagent. The plasmid DNA and 10 µl 

Lipofectamine™ 2000 were diluted separately in 250 µl Opti-MEM® I Reduced Serum 

Media each, and incubated for 5 min, before they were combined and incubated at r.t. 

for 30 min to allow plasmid/lipid complexes to form. The DNA/Lipofectamine™ 

mixture was then added to cell culture gently. The culture was returned to the 

incubator for 6 h. After which, the media was removed and fresh growth media was 

added. The cells were then incubated for at least 36 h before they were harvested for 

RNA extraction using Trizol (Invitrogen) method. 

Detection and quantification of editing in ADAR2’s editing substrates 

Primer pairs were designed with the aid of Primer3 software (Rozen and Skaletsky, 

2000) based on human, rat and mouse CaV1.3 cDNA sequence (GenBank accession 

numbers NM_000720, NM_017298 and NM_028981), rat and mouse KV1.1 cDNA 

sequences (GenBank accession numbers NM_173095 and NM_010595), and rat and 

mouse GluR-B cDNA (GenBank accession numbers NM_017261 and 

NM_001083806) and the sequence of the oligonucleotides (Proligo, Sigma-Aldrich) 
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are detailed in Table 3.1. To optimize the yield of desired amplified product and to 

suppress non-specific amplification, a standard step-down PCR protocol was used that 

included a 3-cycle decrement from 59 °C to 53 oC final annealing temperature. The 

number of cycles for the main PCR was 35, where denaturation was performed at 94 

oC for 30 sec, annealing at 53 oC for 30 sec, and extension at 72 oC for 50 sec.  The 

final extension was at 72 oC for 5 min. PCR products were separated on a 1.5% 

agarose gel, isolated and purified using the Qiagen gel extraction kit.  The PCR 

product was sent for direct automated DNA sequencing (Applied Biosystems, Foster 

City, CA).   

To compare peak heights of the chromatogram bases, the peak height of guanosine 

was divided by the combined peak heights of adenosine and guanosine bases to 

estimate the percentage of RNA editing. 

Quantification of ADAR2 RNA editing catalytic activity by RT-PCR 

Because ADAR2 edits its own pre-mRNA and thus generates a new splice site for 

alternative splicing (Fig 1.2), ADAR2 self-editing has been used as a marker for the 

intracellular ADAR2 deaminase activity (Maas et al., 2001). Primer pairs were 

designed with the aid of Primer3 software based on rat and mouse ADAR2 cDNA 

sequence (GenBank accession numbers NM_012894 and NM_130895), and the 

sequence of the oligonucleotides (Proligo, Sigma-Aldrich) are detailed in Table 3.1. 

To optimize the yield of desired amplified product and to suppress non-specific 

amplification, a standard step-down PCR protocol was used that included a 3-cycle 

decrement from 59 °C to 53 oC final annealing temperature. The number of cycles for 

the main PCR was 40, where denaturation was performed at 94 oC for 30 sec, 

annealing at 53 oC for 30 sec, and extension at 72 oC for 50 sec.  The final extension 

was at 72 oC for 5 min. PCR products were separated on a 3% agarose gel, isolated 

and purified using the Qiagen gel extraction kit.  The intensities of the splice variant 
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bands were quantified digitally via ImageJ (NIH, US) or analytically via Agilent 

DNA 1000 kit (Agilent Technologies).  

 

Table 3.1 Primers used for amplification of ADAR2 editing substrates. Ta represents the 
annealing temperature. Editing site states the gene and locus or peptide change upon RNA 
editing. 

 Primer name Primer (5’  3’) Ta 

(°C) 

Editing site 

Sense Mus1D4793F CTCCGAGCTGTGATCAAGAAAATCTGG 
53 

 

Anti-sense Mus1D5092R GGTTTGGAGCTTCTGGCTCGTCA  

Sense  Rat1D5204F GAGCTCCGCGCTGTGATAAAGAAA 
53 

Cacna1D 

Anti-sense Rat1D5501R GGTTTGGAGTCTTCTGGTTCGTCA IQ motif 

Sense Hum1D4937F GAACTTCGGGCTGTGATAAAGAAA 
53 

 

Anti-sense Hum1D5238R CGTTTTGTTTCCTCAGGCTCG  

Sense  MusKv1141F CATGACCACTGTGGGATACG 
52 

Kcna1 

Anti-sense MusKv1452R GTTTTGATCAGCTGTGGTGC I to V 

Sense  RatKv1141F CATGACCACTGTGGGATACG 
52 

change 

Anti-sense RatKv1486R GTTTTGATCAGTTGCGGTGC  

Sense  MusGlu1929F GAGGTGATTGACTTCTCGAAGC 
52 

Gria2 

Anti-sense MusGlu2434R GTGGAGCCAGAGTCTAATGTTCC Q to R 

Sense  RatGlu1952F GAGGTGATTGACTTCTCCAAGCCC 
52 

change 

Anti-sense RatGlu2457R GTGGAGCCAGAGTCTAATGTTCC  

Sense  MusGlu2482F GGACTTATATGAGGAGTGCAGAGC 
52 

Gria2 

R to G 

change 

Anti-sense MusGlu2894R CAGCATTGCCAAACCAAGGC 

Sense  RatGlu2505F GGACTTATATGAGGAGTGCAGAGC 
52 

Anti-sense RatGlu2917F CAGCATTGCCAAACCAAGGC 

Sense Red84F CTCCGCCAGTCAAGAAGCCC 
53 Adarb1 

Anti-sense Red368R CAGGGCGTTCTTGGGTAGAACGG 
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Sequencing analysis of rat ADAR2 full length clones 

To characterize the ADAR2 expressed in adult rat brain and rat heart cDNA, full-

length PCR was performed using ADAR2-specific primers situated in the 5’- and 3’-

untranslated regions (UTRs) - -108U35 and 2322U23 respectively, and Elongase 

DNA polymerase (Invitrogen). The resultant ADAR2 full-length amplicons were sub-

cloned into pGEM®-T Easy vector and transformed into DH10B E.coli cells. The 

positive transformants were then picked and grown in 96-well plates. A few clones 

from each plate were picked at random to verify that they were ADAR2 clones. The 

picked clones were first expanded by growing in LB broth and the plasmid DNAs 

extracted and sent for sequencing analysis. 

 

Table 3.2 Primers used for amplification of rat ADAR2. Ta represents the annealing 
temperature. The primers without Ta are used for sequencing only. Two pairs of primers are 
being used to study occurrence of alternative splicing in rat ADAR2 – 84F20 and 368R23, 
and 1681F19 and 2167R19.  

 Primer 

name 

Primer (5’  3’) Ta (°C) 

Sense -108U35 GCTCGCCCTGAAAGAGTTTGCCTCAGATTTGAGCC 
55 

Anti-Sense  2322U23 CCCTACACATCCCCACACTGCCC 

Sense  84F20 CTCCGCCAGTCAAGAAGCCC 
53 

Anti-sense 368R23 CAGGGCGTTCTTGGGTAGAACGG 

Sense  232F21 GTATTCCGCTCTCCAACGGGG  

Anti-sense 614R22 GAAGTCTGTGTTCACGGAGAGG  

Sense  678F22 GAGCCACCCTTCTACGTAGGC (sequencing  

Anti-sense 1135R24 GTCAGGTCACTGAACTTACCCAGG only) 

Sense  1307F23 GATAATCTCCCGAAGGTCCCTGC  

Anti-sense 1733R20 GATGCCCACCACGTTCCAGC  

Sense  1681F19 TGCTCACCATGTCCTGCAG 
53 

Anti-sense 2167R19 CCTTGGCAGCCTGGTACTC 
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Glucose stimulation of insulinoma cell lines 

It was previously shown that ADAR2 expression, editing of GluR-B and ADAR2 

self-editing are markedly augmented in response to glucose at the physiological 

concentration for insulin secretion stimulation (Gan et al., 2006). The same protocol 

of glucose stimulation was repeated for rat insulinoma cell lines INS-1 and INS-1e, 

and modified for mouse insulinoma cell line MIN6, replacing RPMI-1640 with 

DMEM. Briefly, 16-24 h prior to glucose stimulation, the cells were plated at 3 x 104 

cells/cm2 in 6-wells plate to ensure sufficient cells were available for RNA extraction. 

The cells were first pre-cultured in 2.8 mM glucose for 24 h, followed by 16.7 mM 

glucose for different time points – 3 h, 6 h, 12 h, 24 h and 48 h. 

Differentiation of neuroblastoma cell lines 

About 16-24 h prior to application of differentiation agent, the cells were plated at 3 x 

104 cells/cm2 in 6-wells plate to ensure sufficient cells were available for RNA 

extraction. Cells were first rinse with PBS, before incubating with growth media 

containing differentiation agent and reduced serum for different time points – 1 day, 3 

days, 7 days and 14 days. 

Application of exogenous co-factors – zinc, magnesium 

16-24 h prior to application of exogenous co-factors, the cells were plated at 5 x 104 

cells/cm2 in 6-wells plate to ensure sufficient cells were available for RNA extraction. 

Cells were first rinse with PBS, before incubating with growth media containing 

exogenous co-factors – zinc chloride or magnesium chloride, and buffered to different 

pH.  
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Semi-quantitative mRNA expression and sequence analysis of IPPK 

To characterize the mRNA expression level of IPPK semi-quantitatively, PCR of both 

IPPK and housekeeping gene β-actin were performed. Primer pairs were designed 

with the aid of Primer3 software based on rat and mouse IPPK cDNA sequences 

(GenBank accession numbers NM_001008556 and NM_199056 respectively), and on 

rat and mouse β-actin cDNA sequences (GenBank accession numbers NM_031144 

and NM_007393 respectively), and the sequence of the oligonucleotides (Proligo, 

Sigma-Aldrich) are detailed in Table 3.3. To optimize the yield of desired amplified 

product and to suppress non-specific amplification, a standard step-down PCR 

protocol was used that included a 3-cycle decrement from 58 °C to 52 oC final 

annealing temperature. The number of cycles for the main PCR was 25, where 

denaturation was performed at 94 oC for 30 sec, annealing at 53 oC for 30 sec, and 

extension at 72 oC for 50 sec.  The final extension was at 72 oC for 5 min. PCR 

products were separated on a 1.5% agarose gel, and the intensities of the bands were 

quantified digitally via ImageJ (NIH, US). 

To characterize the IPPK expressed in different mouse tissues, full-length PCR of 

IPPK was performed using IPPK-specific primers situated in the 5’- and 3’-

untranslated regions (UTRs) – IPPK-3U25 and 1488U25 respectively, and Elongase 

DNA polymerase (Invitrogen). The resultant IPPK full-length amplicons were sub-

cloned into pGEM®-T Easy vector and transformed into DH10B E.coli cells. The 

positive transformants were then picked and grown in 96-well plates. A few clones 

from each plate were picked at random to verify that they were IPPK clones. The 

picked clones were first expanded by growing in LB broth and the plasmid DNAs 

extracted and sent for sequencing analysis. 
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Table 3.3 Primers used for amplification of IPPK and β-actin. Ta represents the 
annealing temperature. The primers without Ta are used for sequencing only.   

 
Primer name Primer (5’  3’) Ta (°C) 

Sense IPPK-3U25 GGCATGGAAGAGGGGAAAATGGACG 
55 

Anti-Sense  IPPK1488U25 GACACCGCAGGGGAAAAGTTAGACC 

Sense  IPPK8F22 GAGGGGAAAATGGACGAGAATG 
53 

Anti-sense IPPK403R20 CACAGAATCGGCCGGTGCTC 

Sense  IPPK505F18 GTAGCAACTGGAAAGTGG  

Sense IPPK1000F18 GAAGGCCTCTACCCTCTG  

Sense  Beta_actin_for GACTACCTCATGAAGATCC 
53 

Anti-sense Beta_actin_rev CCACATCTGCTGGAAGGTGG 
 

Immunocytochemistry and confocal imaging 

Cells were harvested at ~80% confluency and seeded onto poly-D-lysine coated glass 

coverslips placed in 35 mm tissue culture dishes. The cells were plated at 2 x 104 

cells/cm2 to ensure sufficiently dispersed cells for immunocytochemistry. After 

designated period of treatment, cells were fixed were rinsed in PBS, fixed in 4% 

paraformaldehyde for 10 min, permeabilized for 10 min in PBS containing 0.2% 

Triton X-100 and blocked with 3% BSA in PBS for 1 h. Primary antibodies against 

ADAR family were applied at 4 °C overnight and then incubated with the 

fluorochrome-conjugated secondary antibodies for 1 h. Coverslips were then washed 

and mounted in ProLong® Gold Antifade Reagent with DAPI (Invitrogen) to retard 

photobleaching. Preparations were analyzed using a Zeiss LSM-510 META confocal 

microscope using a 63x 1.4 numerical aperture (NA) oil immersion objective in the 

inverted configuration. Image brightness/contrast adjustments were performed on the 

Zeiss LSM Image Browser software, version 4.0.0.157. Images were then recorded 

and exported as tiff formats.  
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3.3 Results 

Developmental change in ADAR2 RNA editing activity 

To investigate the mechanism for specificity in RNA editing of CaV1.3 

channels, we first determined if there is a trend in age-dependent ADAR2 RNA 

editing in the mouse brain. Using time-mated C57 mice, we sacrificed and removed 

brain, heart and pancreas of the offspring from various time points, namely embryonic 

days 15, 17 and 19 (E15, E17, E19), new born P0, postnatal days 1 to 7 (P1-14) and 2 

week-old pups P14. DNA sequencing analysis revealed that editing of CaV1.3 

channels’ IQ motif first occurs shortly after birth, with percent editing of 6.96 ± 

2.86%  and 4.58 ± 1.9% at I > Q position and Y > C position respectively (Fig 3.1A). 

The editing levels at the three locations increased in a non-linear manner from P0 to 

P7, reaching a peak with percent editing of 42.89 ±1.35%, 6.27 ±1.07% and 25.67 

±1.81% at I > Q, M > R and Y > C locations respectively (Fig 3.1A).  The editing 

levels of the three locations in P7 mouse approximated adult levels, and percent 

editing levels was maintained in P14 mouse (Fig. 3.1A). A similar pattern of percent 

editing was observed in I > V position in potassium channel KV1.1 mRNA, with 

editing initiating at E19 (1.51 ± 0.34%, Fig 3.1B), increasing in a non-linear manner 

from 2.47 ± 0.62% at P0 to 14.39 ± 1.85% at P7 and 24.77 ± 1.44% at P14. The 

editing levels observed were similar to those observed in adult human brain, but 

higher percent editing may be observed in specific brain regions (Hoopengardner et 

al., 2003; Decher et al., 2010). Potassium channels of the voltage-gated KV1 

subfamily play an important role in excitability by repolarizing membranes and 

shaping the firing properties of neurons, and editing of its mRNA within the sixth 

transmembrane domain results in an isoleucine (ATT) to valine (GTT) change (Bhalla 

et al., 2004).   
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As mentioned, ADAR2 edits its own pre-mRNA at multiple positions, mainly 

in intron 1 and exon 2 (Rueter et al., 1999; Dawson et al., 2004). In particular, editing 

at position -1 in intron 1 converts and adenosine-adenosine (AA) dinucleotide to 

adenosine-inosine (AI), which mimics the canonical adenosine-guanosine (AG) 

dinucleotide (Fig 3.5) normally found at the splice junction. The presence of AI thus 

acts as an alternative 3’ splice acceptor site, resulting in the retention of 47 nt at +28 

position of exon 1 (Fig 3.5). This generates a frame-shift and a truncated protein 

sequence with no editing activity, if translation starts as the first initiator methionine 

residue. Hence, ADAR2 self-editing and alternative splicing has been used as a 

marker for the intracellular ADAR2 deaminase activity, and quantified via comparing 

the intensity of larger splice (+47-nt) fragment to the combined intensities of both 

bands (Fig 3.2B, left panel). As early as E15, alternative splicing occurs at 14.62 

±1.18%, increasing in a non-linear manner to 60.77 ±1.32% at P14 (Fig 3.2B, right 

panel). It was observed that in adult mice brain, alternative splicing could almost 

reach 80%. 

There is no direct correlation between the frequency of RNA editing in the 

ADAR2 substrates and ADAR2 deaminase activity, even though a certain threshold 

level of deaminase activity appears to be required for editing of CaV1.3 pre-mRNA to 

occur (Fig 3.2B). Q > R site of glutamate-gated receptor channel, GluR-2 was 100% 

edited as early as P15 (Fig 3.2A). In addition, percent editing at its R > G location 

was 16.38 ± 1.24% at E15 and reached 47.96 ± 3.74% by P0 (Fig 3.2A), whereby 

editing of CaV1.3 and KV1.1 had only just initiated. At P0, self-editing and alternative 

splicing of ADAR2 was 40.54 ± 0.87% and may be the minimal deaminase activity 

required for RNA editing of CaV1.3 channels. 
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Figure 3.1 Developmental profile of RNA editing in ion channels CaV1.3 and KV1.1in 
mouse brain. RNA editing levels at all three adenosine sites in CaV1.3 channels’ IQ motif 
increased with age in mouse whole brain. A, direct DNA sequencing of RT-PCR products 
from brains of different ages (n = 3 animals per age). B, percent editing at three locations (I > 
M, Q > R and Y > C), as calculated by measuring electropherograms heights for adenosine 
versus guanosine. Error bars reflect S.E.M. RNA editing at I > V location in KV1.1 channels 
increased with age in mouse whole brain. C, direct DNA sequencing of RT-PCR products 
from brains of different ages (n = 3 animals per age). D, percent editing at location I > V, as 
calculated by measuring electropherograms heights for adenosine versus guanosine. Error 
bars reflect S.E.M.  
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Figure 3.2 Developmental profile of editing in ADAR2 substrates in mouse brain. A, 
RNA editing at Q > R location in GluR-B receptors is 100% even at E15, while RNA editing 
levels at R > G location increased with age in mouse whole brain. Left panel, direct DNA 
sequencing of RT-PCR products from brains of different ages (n = 3 animals per age). Right 
panel, percent editing at two locations (Q > R and R > G), as calculated by measuring 
electropherograms heights for adenosine versus guanosine. Error bars reflect S.E.M. B, self-
editing and hence alternative splicing of ADAR2 at position -1 in intron 1 increased with age 
in mouse whole brain. Left panel, exemplar PCR products (284 bp and 331 bp) from RT-PCR 
analysis of mouse brain mRNA. The extent of splicing in ADAR2 is an assessment of 
efficiency of ADAR2 self-editing, and hence ADAR2 deaminase activity. Right panel, 
percent alternative splicing at intron 1 – exon 2 boundary, as calculated by measuring peak 
area for 331 bp versus 284 bp. Error bars reflect S.E.M.  
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Spatial change in ADAR2 RNA editing activity 

In addition to developmental profile of ADAR2 RNA editing activity, we also 

looked more deeply into its spatial profile, using tissues extracted from adult mice of 

P28 age. Similar to the tissue-specificity exhibited by RNA editing of CaV1.3, KV1.1 

is only edited at I > V location in the brain (Fig 3.3). The potassium channel was not 

detected in β-islets. Editing of GluR-2 at the Q > R location was consistently 100% in 

all three tissue regions examined, while percent editing at R > G location was 

significantly lower in β-islets (36.29 ± 2.36%, Fig 3.4A) as compared to percent 

editing in brain and heart (68.91 ± 1.43% and 84.32 ± 1.37% respectively, Fig 3.4A). 

Comparable levels of ADAR2 self-editing and alternative splicing was observed in 

the heart and β-islets, at 52.38 ± 1.28% and 44.29 ± 1.09% respectively, while that in 

brain was slightly higher at 76.39 ±1.38% (Fig 3.4B).  

Although ADAR2 deaminase activity in both heart and β-islets should have 

been sufficient for editing of CaV1.3, as determined from the developmental profile, 

other factors may still be critical for this editing specificity.  
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Figure 3.3 Spatial profile of editing in ion channels in adult mouse. A, Only CaV1.3 in 
mouse brain was edited. Left panel, direct DNA sequencing of RT-PCR products from whole 
brain, heart and β-islets of P28 mouse (n = 3 animals). Right panel, percent editing at three 
locations (I > M, Q > R and Y > C), as calculated by measuring electropherograms heights for 
adenosine versus guanosine. Error bars reflect S.E.M. (n = 3). B, Only KV1.1 in mouse brain 
was edited. Left panel, direct DNA sequencing of RT-PCR products from whole brain, heart 
and β-islets of P28 mouse (n = 3 animals). Right panel, percent editing at location I > V, as 
calculated by measuring electropherograms heights for adenosine versus guanosine. Error 
bars reflect S.E.M. (n = 3).  
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Figure 3.4 Spatial profile of editing in ADAR2 substrates in adult mouse. A, GluR-B was 
edited in all three tissues. Left panel, direct DNA sequencing of RT-PCR products from 
whole brain, heart and β-islets of P28 mouse (n = 3 animals). Right panel, percent editing at 
two locations (Q > R and R > G), as calculated by measuring electropherograms heights for 
adenosine versus guanosine. Error bars reflect S.E.M. (n = 3). B, Comparable levels of self-
editing and hence alternative splicing of ADAR2 at position -1 in intron 1 between heart and 
β-islets, but significantly higher deaminase activity in brain. Left panel, exemplar PCR 
products (284 bp and 331 bp) from RT-PCR analysis of whole brain, heart and β-islets of P28 
mouse. Data are representative of three independent experiments. Right panel, percent 
alternative splicing at intron 1 – exon 2 boundary, as calculated by measuring peak area for 
331 bp versus 284 bp. Error bars reflect S.E.M. (n = 3). 
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Characterization of full length ADAR2 in rat brain and heart 

Comparison of ADAR2 amino acid sequences between mouse, rat and human 

revealed > 90% sequence conservation, especially among the domains predicted to be 

involved in double-stranded RNA binding and catalytic deamination (Fig 3.5). 

Multiple splice variations of ADAR2 have been identified for mouse, rat and humans; 

yet only a subset of these RNA-processing events are conserved in all three species. 

Alternative splicing of exon 5a results in the production of ADAR2 protein isoforms 

containing an additional 40 (human) or 10 (mouse or rat) a.a. between the second and 

third zinc coordination residues of the deaminase domain, reducing catalytic activity 

by 50% in human isoforms (Gerber et al., 1997) but increasing catalytic activity by 

60% in rat (Rueter et al., 1999). Alternative 3’ splice site selection in intron 1 

introduces an additional 47 nt to mature ADAR2, generating a -1 frame-shift that is 

predicted to produce a 9 kDa protein lacking the DRBMs and the deaminase domain 

required for protein function (Rueter et al., 1999).  

Colony screening and sequencing analysis of full length ADAR2 cloned from 

rat brain and heart cDNA libraries revealed that the splicing frequencies at exon 5a 

and intron 1 varies significantly (Fig 3.6B and Table 3.3). The higher percent splicing 

at intron 1 of 79.2% in rat brain and 34.7% in rat heart was comparable to ADAR2 

transcripts from mouse (Fig 3.4B), and could reinforce the deaminase activity in 

different tissues should be sufficient for RNA editing of CaV1.3 In addition, 

proportion of ADAR2 isoforms containing exon 5a in rat brain was higher (brain: 

36.1%, heart: 18.7%, Table 3.3), which could mean higher catalytic activity in brain. 

Sequencing analysis revealed that of the three mutations detected, T160C and T221G 

could be cloning errors in rat ADAR2 clone U43534 since they were consistently 

observed in both rat brain and heart cDNA libraries. The unique A1310G mutation in 
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rat heart results in an isoleucine to valine amino acid change near the first zinc 

coordination residue in 8.5% of ADAR2 clones (Table 3.3). However, due to the 

similar biophysical properties of these two amino acids, it should not significantly 

alter deaminase activity of ADAR2.  

 

Figure 3.5 Alignment of mouse, rat and human ADAR2 amino acid sequences. Amino 
acid sequences are according to GenBank Accession Numbers: mouse ADAR2: 
NM_001024837, rat ADAR2: NM_012894, and human ADAR2: NM_015833. Grey-shaded 
areas indicate regions of sequence homology. Annotated motifs are DRBMI, DRBMII and 
deaminase domain. Critical alanine residue in DRBMI for ADAR2 dimerization is denoted by 
white triangle. Putative Zn2+ chelating residues in the deaminase domain are denoted by white 
stars (Kim et al., 1994; Lai et al., 1995; Melcher et al., 1996a). Alternative splicing of exon 5a 
results in ADAR2 protein isoforms containing an additional 40 (human) or 10 (rat or mouse) 
a.a. between the second and third zinc coordination residues of the deaminase domain. ADAR 
exon boundaries are denoted by black triangles. 
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Figure 3.6 Full length cloning and colony screening of ADAR2 from rat brain and rat 
heart. A, Exemplar PCR products (~2.4 kb) from full length RT-PCR analysis of ADAR2 in 
rat brain and rat heart.  B, Exemplar PCR products from the colony screening of 96 clones 
transformed with RT-PCR product ligated into pGEM®-T Easy vector. Approximately 50 
bacteria clones each from rat brain and rat heart were amplified, purified and sent for DNA 
sequencing analysis.  
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Table 3.3 Summary of mutations and alternative splicing in full length ADAR2 clones 
extracted from rat brain and heart. Sequences are compared against rat ADAR2 clone 
(GenBank Accession number: U43534). Mutations in cDNA sequences and the relative 
nucleotide position in rat ADAR2 clone is indicated (top), together with the resultant amino 
acid change and the relative amino acid position in rat ADAR2 clone (bottom). Alternative 
splicing at position -1 of intron 1 is indicated by ADAR2+47nt while alternative splicing of 
exon 5a is indicated by ADAR25a+. Approximately 50 clones from rat brain and heart are 
sequenced and analysed, and the frequencies of mutation and splicing are summarized in 
table. 

 

 Rat brain Rat heart 

Consistent mutations      

T  C (160) 

I > T (14) 

100% 

(53/53) 

100% 

(59/59) 

T  G (221) 

No amino acid change 

100%  

(53/53) 

100% 

(59/59) 

A  G (1310) 

I > V (397) 

0% 

(0/53) 

8.5% 

(5/59) 

Alternative splicing   

ADAR2+47nt 79.2% 

(57/72) 

34.7% 

(26/75) 

ADAR25a+ 36.1% 

(26/72) 

18.7% 

(14/75) 
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Glucose metabolic regulation of RNA editing of CaV1.3 in insulinoma cells 

In the pancreatic β-cells, glucose metabolism causes an increase in ATP or the 

ATP/ADP ratio, which in turn closes KATP channels, leading to membrane 

depolarization, opening of L-type calcium channels, influx of Ca2+, and a rise in 

cytosolic free Ca2+ concentration which directly triggers insulin exocytosis. Studies of 

CaV1.3-/- knockout mice indicate that CaV1.3 channels are required for proper 

generation of β-cells in the postnatal pancreas (Namkung et al., 2001), and in 

pancreatic insulinoma cell line INS-1, the channels are preferentially coupled to 

glucose-stimulated insulin secretion (Liu et al., 2003a). In addition, expression levels 

of ADAR2, GluR-B editing and ADAR2 self-editing in INS-1 cells were markedly 

augmented in response to glucose at the physiological concentration for insulin 

secretion stimulation (Gan et al., 2006). Hence, RNA editing by ADAR2 in 

insulinoma cells was metabolically regulated by nutritional and energy status, 

suggesting that A-to-I RNA editing is involved in modulation of β-cell function.  

Given the fact that glucose serves as the most potent physiological stimulus of 

pancreatic islets and β-cells function, and could metabolically regulate ADAR2-

mediated RNA editing, we investigated the effects of glucose on RNA editing of 

CaV1.3 mRNA. Briefly, rat insulinoma cell line INS-1e cells were pre-cultured in 2.8 

mM glucose for 24 h, followed by incubation in media with 16.7 mM glucose for 3 – 

48 h. Cell morphology of INS-1 cells remain consistent despite altered glucose 

content from normal DMEM media (11.1 mM glucose) (Fig 3.7A). CaV1.3 remained 

unedited at all three loci (Fig 3.7B) despite exposure to glucose at physiological 

concentration for insulin secretion stimulation, which progressively augment R > G 

site editing of the GluR-2 pre-mRNA (from 15.6 to 47.9% at 48 h) (Fig 3.8A) and 

ADAR2 self-editing and alternative splicing at intron 1 (from 22.2 to 45.5% at 48 h) 
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(Fig 3.8B). Hence, while glucose could metabolically regulate RNA editing, CaV1.3 

was unaffected due to unknown factors. In addition, similar stimulation effect of 

glucose on the ADAR2 self-editing and R > G site of GluR-B pre-mRNA editing was 

also observed in mouse insulinoma cell line MIN6 (data not shown), while CaV1.3 

mRNA remained unedited. 

 

 

Figure 3.7 No RNA editing of CaV1.3 IQ motif with glucose stimulation. A, No 
morphological changes in rat insulinoma cells, INS-1e that were pre-cultured at 2.8 mM 
glucose and stimulated for up to 48 h at 16.7 mM glucose. B, No RNA editing of CaV1.3 IQ 
motif in INS-1e with glucose stimulation. Left panel, direct DNA sequencing of RT-PCR 
products from INS-1e cells exposed to glucose stimulation. Right panel, percent editing at 
three locations (I > M, Q > R and Y > C), as calculated by measuring electropherograms 
heights for adenosine versus guanosine. Error bars reflect S.E.M. (n = 3).  
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Figure 3.8 Increased RNA editing activity with glucose stimulation. A, Increased RNA 
editing of GluR-B at R > G location in INS-1e cells with glucose stimulation. Left panel, 
direct DNA sequencing of RT-PCR products from INS-1e cells exposed to glucose 
stimulation. Right panel, percent editing at two locations (Q > R and R > G), as calculated by 
measuring electropherograms heights for adenosine versus guanosine. Error bars reflect 
S.E.M. (n = 3). B, Increased in ADAR2 deaminase activity in INS-1e with glucose 
stimulation. Left panel, exemplar PCR products (284 bp and 331 bp) from RT-PCR analysis 
of INS-1e cells with glucose stimulation. Data are representative of three independent 
experiments. Right panel, percent alternative splicing at intron 1 – exon 2 boundary, as 
calculated by measuring peak area for 331 bp versus 284 bp. Error bars reflect S.E.M. (n = 
3). 
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Differentiation of neuroblastoma cell lines and RNA editing of CaV1.3 

Editing of CaV1.3 in the three adenosine sites of IQ motif appears to be 

regulated during the development of the brain, similar to that of KV1.1 at the I > V 

site and GluR-B at the R > G site (Fig 3.1 – 3.2). It is currently not known whether 

there is a specific mechanism during brain development and neuron differentiation for 

the activation of RNA editing machinery, especially in conjunction with subcellular 

localization of ADAR2. Several neuroblastoma cell lines were examined under 

undifferentiated conditions for RNA editing activity, and CaV1.3 were found to be 

unedited in mouse neuroblastoma cell lines N1E-115 and Neuro2A, human 

neuroblastoma cell line SH-SY5Y, and even mouse neuroblastoma/ rat glioblastoma 

cell line NG105-15, despite detection of GluR-B Q > R pre-mRNA editing as well as 

splicing of ADAR2 at intron 1 (Fig 3.9 – 3.10).   

Neuronal differentiation of mouse neuroblastoma N1E-115 cells was induced 

with serum deprivation and retinoic acid (RA) treatment.  Undifferentiated N1E-115 

cells (Fig 3.9A, left panel) were grown in 10% FBS, and neurite formation started to 

form after 24 h in the differentiation media (Fig 3.9A, middle panel) and 

differentiation was complete by day 14 as observed from the neuronal network 

consisting of dendritic outgrowth (Fig 3.9A, right panel). However, CaV1.3 remained 

unedited at all three adenosine sites even after 14 days in differentiation media (Fig 

3.9B) while editing of GluR-B at R > G location, and self-editing of ADAR2 and 

hence splicing at intron 1 were moderately elevated (Fig 3.10). Increase in percent 

editing of KV1.1 at I > V location was not significant (Fig 3.9C).  

Unlike ADAR1, activity of ADAR2 proteins was restricted to the nucleus due to the 

single NLS in its N-terminal domain, and that while ADAR2 were transiently 
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sequestered into the nucleolus, enhanced translocation of ADAR2 into the 

nucleoplasm could be correlated with increased editing efficacy (Desterro et al., 2003; 

Sansam et al., 2003). Hence, we examined the subcellular localization of ADAR2 

proteins in N1E-115 cells upon differentiation, and observed anti-ADAR2 staining 

only in the nucleus of N1E-115 cells. Staining was most intense in the nucleolus in 

undifferentiated and differentiated N1E-115 cells, though there appeared to be more 

diffusion of ADAR2 into nucleoplasm in differentiated cells (Fig 3.10C).  

Despite the increased catalytic activity and diffusion of ADAR2 into 

nucleoplasm with neuronal differentiation, it was not sufficient to edit CaV1.3 pre-

mRNA.  
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Figure 3.9 No RNA editing of CaV1.3 IQ motif with prolonged differentiation of 
neuroblastoma cells. A, Undifferentiated N1E-115 neuroblastoma cells in normal 10% serum 
(leftmost), and turn into a neuronal network consisting of dendritic outgrowth with prolonged 
exposure to differentiating media containing 2% FBS and 20 µM RA (middle and rightmost, 
light microscopy x10). B, No RNA editing of CaV1.3 IQ motif in N1E-115 cells with 
differentiation. Left panel, direct DNA sequencing of RT-PCR products from N1E-115 cells 
exposed to differentiating media. Right panel, percent editing at three locations (I > M, Q > R 
and Y > C), as calculated by measuring electropherograms heights for adenosine versus 
guanosine. Error bars reflect S.E.M. (n = 3). C, A modest increase in RNA editing of KV1.1 
at I > V location in N1E-115 cells with differentiation. Left panel, direct sequencing of RT-
PCR products from N1E-115 cells exposed to differentiating media. Right panel, percent 
editing at location I > V, as calculated by measuring electropherograms heights for adenosine 
versus guanosine. Error bars reflect S.E.M. (n = 3). 
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Figure 3.10 Increase in RNA editing activity with prolonged differentiation of 
neuroblastoma cells. A, Increased RNA editing of GluR-B at R > G location in N1E-115 
cells with differentiation. Left panel, direct DNA sequencing of RT-PCR products from N1E-
115 cells exposed to differentiating media. Right panel, percent editing at two locations (Q > 
R and R > G), as calculated by measuring electropherograms heights for adenosine versus 
guanosine. Error bars reflect S.E.M. (n = 3). B, Increased in ADAR2 deaminase activity in 
N1E-115 cells with differentiation. Left panel, exemplar PCR products (284 bp and 331 bp) 
from RT-PCR analysis of INS-1e cells with glucose stimulation. Data are representative of 
three independent experiments. Right panel, percent alternative splicing at intron 1 – exon 2 
boundary, as calculated by measuring peak area for 331 bp versus 284 bp. Error bars reflect 
S.E.M. (n = 3). C, N1E-115 cells were assayed for ADAR2 localization by indirect 
immunofluorescence using anti-ADAR2 antibodies. The anti-ADAR2 antibody (green) 
stained the nucleoli in both undifferentiated (left panel) and differentiated (right panel) N1E-
115 cells. Staining in differentiated cells appeared to be more diffused, with minor staining in 
nucleoplasm (white arrows). DAPI stained the nuclei.   



82 
 

Co-factors of ADAR2 and RNA editing of CaV1.3 

The crystal structure of the catalytic domain of human ADAR2 reveals that 

several key conserved amino acids (Lai et al., 1995) were involved in the coordination 

of a zinc atom and the formation of the catalytic center (Macbeth et al., 2005). Hence, 

zinc is a crucial co-factor for deaminase function of ADAR2. Several studies have 

shown that zinc transport is a time-, concentration-, pH-, and temperature-dependent 

process, although there appear to be both saturable and non-saturable components 

(Reyes, 1996). Alteration of the pH of culture media for insulinoma cell MIN6 did not 

cause RNA editing of CaV1.3 (Fig 3.11B) but the increase in pH led to a slight 

decrease in both editing of GluR-B at the R > G location (pH 6.4: 23.36 ± 1.88%; pH 

7.25: 21.69 ± 1.38%; pH 8.05: 21.10 ± 2.68%) and self-editing of ADAR2 (Fig 3.12). 

Exposure of cells to additional 10 µM zinc chloride for 24 h also did not result in 

CaV1.3 editing, although the additional zinc caused a modest increase in editing of 

GluR-B at the R > G location (pH 6.4: 23.86 ± 2.16%; pH 7.25: 23.12 ± 1.04%; pH 

8.05: 22.82 ± 2.57%) and self-editing at all three pH tested (Fig. 3.12). A similar trend 

is observed in both mouse neuroblastoma N1E-115 and Neuro2A cells and rat 

insulinoma INS-1e cells. 

Interestingly, from the crystal ADAR2 structure, an inositol hexakisphoshate 

(IP6) moiety was discovered buried within the enzyme core and likely stabilized the 

multiple arginine and lysine residues present in the catalytic pocket. IP6 was thought 

to play a critical role during the hydrolytic deamination reaction due to its close 

proximity to the catalytic center (Macbeth et al., 2005). The last step in the synthesis 

of IP6 is the phosphorylation of inositol pentakisphosphate (IP5) by inositol 1,3,4,5,6-

pentakisphospahte 2-kinase (IPPK) (Fig 3.13A). Relative expression of IPPK in the 

various mouse tissues and cell lines were measured by RT-PCR analysis of mRNA 
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and compared against that of housekeeping gene β-actin (Fig 3.13B). In mouse brain, 

heart and β-islets, the expression levels of IPPK was relatively constant, and similar 

expression levels were observed in both the mouse and human neuroblastoma cells 

N1E-115 and SH-SY5Y as well as mouse insulinoma cells MIN6. Furthermore, 

colony screening and sequencing analysis of full length IPPK cloned from mouse 

brain and heart cDNA showed sequence similarity with published sequences 

(GenBank Accession No: NM_199056). The ippk gene consist of 13 exons, and 

protein translation initiates 75 nt into exon 1 (Fig3.13C). In both the mouse brain and 

heart clones, alternative splicing of ippk mRNA was not observed at the N-termini, 

possibly due to sitting of primers at the initiator methionine site, nor in the C-termini.  
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Figure 3.11 No RNA editing of CaV1.3 IQ motif with exposure to zinc at different pH. A, 
No morphological changes in mouse insulinoma MIN6 cells with exposure to media culture 
buffered at different pH and 10 µM zinc chloride for 24 h. B, No RNA editing of CaV1.3 IQ 
motif in MIN6 cells cultured in media buffered at different pH and 10 µM zinc chloride. Left 
panel, direct DNA sequencing of RT-PCR products from MIN6 cells exposed to different pH 
and 10 µM zinc chloride. Right panel, percent editing at three locations (I > M, Q > R and Y 
> C), as calculated by measuring electropherograms heights for adenosine versus guanosine. 
Error bars reflect S.E.M. (n = 3).  
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Figure 3.12 No change in RNA editing activity with exposure to zinc at different pH. A, 
No change in RNA editing of GluR-B in mouse insulinoma MIN6 cells with exposure to 
media culture buffered at different pH and 10 µM zinc chloride for 24 h. Left panel, direct 
DNA sequencing of RT-PCR products from MIN6 cells cultured in media buffered at 
different pH and 10 µM zinc chloride. Right panel, percent editing at two locations (Q > R 
and R > G), as calculated by measuring electropherograms heights for adenosine versus 
guanosine. Error bars reflect S.E.M. (n = 3). B, Increased in ADAR2 deaminase activity in 
INS-1e with glucose stimulation. Left panel, exemplar PCR products (284 bp and 331 bp) 
from RT-PCR analysis of MIN6 cells cultured in media buffered at different pH and 10 µM 
zinc chloride. Data are representative of three independent experiments. Right panel, percent 
alternative splicing at intron 1 – exon 2 boundary, as calculated by measuring peak area for 
331 bp versus 284 bp. Error bars reflect S.E.M. (n = 3). 
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Figure 3.13 No difference in sequence and mRNA expression levels of IPPK in various 
tissues and cell lines. A. Diagram depicts phosphorylation site in inositol 1,3,4,5,6-
pentakisphosphate (IP5) that is acted upon by enzyme inositol 1,3,4,5,6-pentakisphospahte 2-
kinase (IPPK), forming inositol 1,2,3,4,5,6-hexakisphosphate (IP6). B. Exemplar PCR 
products (IPPK: 395 bp and β-actin: 509 bp) from RT-PCR analysis of mouse brain, heart and 
β-islet mRNA, neuroblastoma cell lines N1E-115 and SH-SY5Y, and insulinoma cell line 
INS-1e. C. Alignment of mouse, rat and human IPPK amino acid sequences. Amino acid 
sequences are according to GenBank Accession Numbers: mouse IPPK: NP_951011, rat 
IPPK: NP_001008556, and human IPPK: NP_073592. Grey-shaded areas indicate regions of 
sequence homology. ADAR exon boundaries are denoted by black triangles. The underlined 
motif EXKPK is conserved in inositol-pentakisphosphate 2-kinases of both family 1 and 2.  
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Overexpression of ADAR2 in insulinoma MIN6 cells 

Immunoblot analysis of nuclear extracts from MIN6 cells showed a low 

expression level of endogenous ADAR2, which was increased with transfection of 

pRK5-ADAR2 (Fig 3.14A). Protein levels in MIN6 cells increased linearly with the 

amount of ADAR2 transfected. Transfected ADAR2 showed a predominantly nuclear 

expression, concentrated mainly in the nucleoli (Fig 3.14B, green staining). Despite 

the increase in self-editing of ADAR2 and editing of GluR-B at the R > G location 

with ADAR2 transfection (Fig 3.14D-E), CaV1.3 remained unedited (Fig 3.14C).     

In vivo, A-to-I editing has been categorized into two types – hyper-editing of 

multiple adenosines and site-selective editing of adenosines in the imperfect double-

stranded RNA duplexes that are formed via base-pairing between the edited site and 

editing-site complementary site (ECS). The ECS is usually located in the 

neighbouring introns. The putative ECS of mouse CaV1.3 was predicted via analysis 

of the genomic sequences and predicted RNA structures using Mfold software. The 

RNA duplex structure (Fig 3.15A) is conserved in human and rat (data not shown). 

The pRK5-gIQECS construct was generated by a colleague. A ~4.9 kb sequence, 

consisting of the edited site in exon 41 and ~4.49 kb of upstream intron with the 58 bp 

intronic ECS 3792 bp upstream of the first edited adenosine, was synthesized by 

overlapping PCR and subcloned into the pRK5 vector (Fig 3.15A). In MIN6 cells, co-

expression of pRK5-gIQECS with either ADAR1 or ADAR2 family caused editing of 

adenosines at the I > M and Y > C loci, but not so in expression of pRK5-gIQECS 

alone or with just ADAR3 (Fig 3.15B). Indeed, percent editing at these two sites (I > 

M: 81.94 ± 2.56%; Y > C: 84.44 ± 1.78%) exceeded that in adult mouse brain (Fig 

2.5A). This data suggests that both the secondary structure of RNA substrate and 

expression levels of ADAR is crucial for RNA editing of CaV1.3 at the IQ motif.  
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Figure 3.14 No RNA editing of CaV1.3 at IQ motif with overexpression of ADAR2 in MIN6 
cells. A, Increase in ADAR2 protein expression in MIN6 cells with ADAR2 transfection. Top, 
Immunoblots of nuclear extracts from MIN6 cells transfected with different among of ADAR2 (0, 
1, 2 and 4 µg) probed with anti-ADAR2 antibody. Bottom, same as top, but probed with anti-
histone H3 antibody (loading control). B, MIN6 cells were assayed localization of transfected 
ADAR2 by indirect immunofluorescence using anti-FLAG antibody (green). DAPI stained the 
nucleus. C, No RNA editing of CaV1.3 IQ motif in MIN6 cells cultured in media buffered at 
different pH and 10 µM zinc chloride. Left panel, direct DNA sequencing of RT-PCR products 
from MIN6 cells transfected with ADAR2. Right panel, percent editing at three locations (I > M, 
Q > R and Y > C), as calculated by measuring electropherograms heights for adenosine versus 
guanosine. Error bars reflect S.E.M. (n = 3). D, Modest increase in RNA editing of GluR-B with 
overexpression of ADAR2 in MIN6 cells. Left panel, direct DNA sequencing of RT-PCR products 
from MIN6 cells transfected with ADAR2. Right panel, percent editing at two locations (Q > R 
and R > G), as calculated by measuring electropherograms heights for adenosine versus 
guanosine. Error bars reflect S.E.M. (n = 3). E, Increase in ADAR2 deaminase activity in MIIN6 
cells with overexpression of ADAR2. Left panel, exemplar PCR products (284 bp and 331 bp) 
from RT-PCR analysis of MIN6 cells transfected with ADAR2. Data are representative of three 
independent experiments. Right panel, percent alternative splicing at intron 1 – exon 2 boundary, 
as calculated by measuring peak area for 331 bp versus 284 bp. Error bars reflect S.E.M. (n = 3). 
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Figure 3.15 Minigene construct gIQECS is edited by both ADAR1 and ADAR2 in MIN6 
cells. A, Minigene construct named pRK5-gIQECS was generated by subcloning a 4952 bp 
mouse genomic CaV1.3 sequence spanning the putative editing-site complementary sequence 
(ECS), intermediate intronic sequence and edited exon 41 into pRK5 vector. Top, Diagram 
shows the sequence of mouse CaV1.3 consisting of the exon 41(green box) and upstream 
intron of ~4 kb and the predicted location of editing site complementary sequence (ECS) 
(pink circle) (GenBank Accession No: NT_039606). Bottom, Diagram of double-stranded 
structure formed between a 58 bp intronic sequence, 3792 bp upstream of the first edited site 
in mouse RNA. Output is derived by input of gIQECS sequence into Mfold webserver 
(http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi), using default setting. The intronic ECS is 
denoted by a pink line and exonic IQ motif by a green line, and the edited adenosines are 
highlighted in red. B, Editing of IQ motif in pRK5-gIQECS occurs together with 
overexpression of ADAR1 and ADAR2 in MIN6 cells, but not with ADAR3. Top, direct 
DNA sequencing of RT-PCR products from MIN6 cells transfected with pRK5-gIQECS and 
ADAR family members (ADAR1-3). Bottom, percent editing at three locations (I > M, Q > R 
and Y > C), as calculated by measuring electropherograms heights for adenosine versus 
guanosine. Error bars reflect S.E.M. (n = 3).  
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3.4 Discussion and Conclusion 

 Beside the IQ motif of CaV1.3 mRNA, editing of most selectively edited 

substrates is regulated during development, showing a non-linear increase with age. 

The editing of recoding targets is under tight control, and the deregulation of RNA 

editing in space and/or time is correlated with various human disease phenotypes 

(Niswender et al., 2001; Gurevich et al., 2002; Paz et al., 2007; Cenci et al., 2008). 

The specific molecular mechanisms that govern intracellular RNA editing levels 

remain largely unknown, and in this study, we aimed to isolate and identify factors 

that control developmental and CNS-specific editing of CaV1.3 at the IQ motif.  

Despite the ubiquitous expression of ADAR2, the presence of ADAR2 mRNA 

rarely correlates with the observed intracellular RNA editing activity. However, 

ADAR2 expression and localization studies in conjunction with developmental and 

cell-type specific modulation of RNA editing have demonstrated multiple and 

complex patterns of regulation on the transcriptional, post-transcriptional, 

translational and post-translational levels (Nishikura, 2010). ADAR2 proteins are 

expressed in several alternative splice forms that differ with respect to their enzymatic 

activity. In our studies, we observed higher ADAR2 catalytic activity in developing 

brains that could partially explain for the increase in CaV1.3 RNA editing. In addition, 

percent splicing of ADAR2 in intron 1 and exon 5a is more frequent in rat brain and is 

equated with greater ADAR2 deaminase activity.   

Nuclear RNA editing activity of ADAR2 can be regulated through the 

controlled nuclear import of the proteins. Within the nucleus, ADAR2 proteins are 

shuttled between the nucleoli and nucleoplasm, which could further regulate its 

editing activity. Immunoblot and immunofluorescence analysis of ADAR2 show 
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nuclear localization in the various cell lines examined, predominantly in the nucleoli. 

However, this appears to be insufficient for RNA editing of CaV1.3 at the IQ motif.  

Although ADAR2 seem to be fully functional without the requirement of 

essential cofactors, the sitting of zinc atom and IP6 at its catalytic center may be 

essential for structural stability and deaminase activity. Modulation of zinc 

availability in the cell lines at different pH did not affect RNA editing of CaV1.3, 

though the additional 10 µM zinc modestly increased ADAR2 editing activity. 

Despite the isoleucine to valine change observed in ~8% of heart ADAR2 coding 

mRNA near the first zinc coordination residue, both amino acids have similar 

biophysical properties and the catalytic center of translated ADAR2 should be 

functional. In the rat brain and heart, the expression levels and splice combination of 

ippk were similar and hence, IP6 is similarly expressed. Hence it appears that 

cofactors of ADAR2 are adequately expressed, and not responsible for CNS-specific 

editing of CaV1.3. 

In this study, we have also eliminated glucose metabolism and neural 

differentiation, as well as expression of ADAR family members as modulators of 

CaV1.3 RNA editing in the cell lines. Although increased glucose metabolism, 

prolonged neural differentiation and elevated ADAR2 expression could augment self-

editing of ADAR2 pre-mRNA as well as editing levels of other ADAR2 substrates, 

the IQ motif in CaV1.3 remains unedited.  

In light of the editing of gIQECS at two adenosine sites in conjunction with 

ADAR1 and ADAR2 overexpression, it appears that the dsRNA structure formed by 

intronic ECS and exon 41 of CaV1.3 is sufficient for site-specific RNA editing. 

Furthermore, it appears that the endogenous ADAR2 expressed in the cell lines alone 
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is inadequate. C/D small nucleolar RNA might play a role in regulating RNA editing, 

as shown by the identification of a brain-specific small RNA, MBII-52 that 

specifically decreases the efficiency of ADAR2 editing at the C-site within 5-HT2C 

pre-mRNA (Vitali et al., 2005). Therefore, there might also be a tissue-specific 

inhibitor that blocks access of ADAR2 to editing sites in CaV1.3, which could not 

bind to the shorter dsRNA structure formed by gIQECS in the cell lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Chapter 4 

Splicing of carboxyl-terminus of CaV1.3 
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4.1 Background and Objectives 

 Alternative splicing in the carboxyl-terminus (C-terminus) of L-type calcium 

channels regulate their biophysical properties. Auto-inhibitory control of CaV1.2 

channel function was proposed to be based on a binding interaction between a pair of 

exposed arginine residues and negatively charged residues in α-helical motifs in a 

proximal (PCRD) and a distal (DCRD) conserved region of the C-terminus, 

respectively (Hulme et al., 2006). In CaV1.4 channels, activation, voltage-dependent 

inactivation (VDI) and calcium-dependent inactivation (CDI) are controlled by an 

intrinsic C-terminal modulator (CTM) (Singh et al., 2006).  

In human CaV1.3, alternative splicing in the α1 subunit C-terminus gives rise 

to a long form (CaV1.342) and a short form (CaV1.342a), with more pronounced 

activation of calcium current at negative voltages and faster inactivation observed in 

CaV1.342a channels due to enhanced CDI (Singh et al., 2008).  In the same study, 

CTM activity was restricted to the last 116 a.a. of the C-terminus, which was spliced 

out in the CaV1.342a channels. 39 residues (1626-1664) that made up the conserved 

domain in PCRD confer modulation, as well as interact with CTM-containing 

peptides. Neutralization of the two conserved positive charges in PCRD did not 

inhibit intramolecular protein interaction, suggesting presence of other essential 

motifs in this 39-residue PCRD domain. In addition, the two conserved negative 

charges in DCRD are essential for binding of CTM-containing peptides to PCRD. The 

diminished CDI in human CaV1.342 clone was not observed in the rat clones (Yang et 

al., 2006), which was attributed to a single valine-to-alanine amino acid switch within 

CaV1.3 channel’s distal C-terminus (Liu et al., 2010).   
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Several proteins have been reported to bind to interaction domains in the C-

terminus of CaV1.342. Erbin binds to the type 1 PDZ-binding motif formed by the last 

four amino acids (ITTL) of neuronal CaV1.342 and thereby relieves the auto-inhibitory 

effect on VDF (Calin-Jageman et al., 2007).  Selective association of Shank protein to 

the C-terminus of CaV1.342 channels is necessary for their synaptic targeting (Zhang 

et al., 2005), while that of RIM-binding protein to proline-rich motif in CaV1.3 C-

terminus could affect the strength of synaptic transmission (Hibino et al., 2002).  

Within rat auditory hair cells, alternative splicing of CaV1.3 channels at exon 

41 results in deletion of the CaM-binding IQ motif, and hence abolition of CDI (Shen 

et al., 2006). Although the C-terminus of CaV1.3 channels contains several motifs 

important for modulation of its biophysical properties and localization, only three 

splice variants have been reported. We propose that the CaV1.3 gene is likely to 

exhibit extensive alternative splicing, especially in the C-terminus.   

To address this gap in knowledge, we undertook to systematically screen for 

these splice variants in the C-terminus of CaV1.3 in the rat brain and identified four 

new loci of alternative splicing, in addition to that at exon 42/exon 42a.  In the light of 

enhanced CDI with C-terminus truncation, and the delimitation of C-terminus, we 

also analysed the changes in the biophysical properties of splice variants in 

heterologous HEK293 cells via patch-clamp electrophysiology. In addition, 

sequencing of rat CaV1.342 clone in our lab as well as rat brain cDNA showed that the 

valine-to-alanine switch between the human and rat clones could be a cloning error. 

Hence, we corrected this mistake and characterized this new rat CaV1.342 clone via 

patch-clamp electrophysiology. Finally, since binding of proteins such as Erbin and 

Shank to C-terminus of CaV1.342 channels could facilitate synaptic targeting, 

alternative splicing of C-terminus may delete this binding motif and affect their 
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subcellular localization. Thus, we constructed HA-tagged CaV1.3 splice variant clones 

and studied their expression patterns in primary hippocampal neurons via 

immunocytochemistry. 

 

4.2 Materials and Methods 

Nomenclature for describing alternatively spliced exon variants 

Various suffixes and a prefixed applied an exon number are used to describe the type 

of alternative splicing that occurred at that exon locus (Table 1.1, Figure 1.3). An 

exon that was skipped in the course of alternative splicing is prefixed with a “Δ”. 

Exons that are lengthen or shortened by alternative splicing are prefixed with “+” or 

“-” respectively. In addition, “a” or “d” denotes if changes to exon length occurred at 

the acceptor or donor site, respectively. Retained introns are indicated by “i” and 

mutually exclusive exons by “x”. “*” denotes a cassette exon.  

Transcript-scanning method  

The transcript scanning method has been described in detail by Mittman et al. (1999) 

and Soong et al. (2002) for the systematic identification of loci for alternative splicing 

of the following voltage-gated calcium channel genes: CACNA1I, CACNA1G, 

CACNA1A and CACNA1C. In this method, we first designed PCR primer-pairs that 

span at least two exons or four splice boundaries along the length of the C-terminus of 

CaV1.3 gene (Fig. 4.1B). Sufficient pairs of primers were made such that amplicons 

from overlapping segments along the C-terminus of CaV1.3 sequence. The primers, 

designed using Oligo Primer Analysis Software (Molecular Biology Insights, Inc., 

CO, USA), are listed in Table 4.1. PCR was performed using rat brain cDNA as 

template and Taq DNA polymerase. The PCR programs employed depends on the 
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expected product length and the estimated annealing temperatures of the primer pair 

used. Each pair of primer produced amplicons of varying sizes that corresponded to 

different alternative splice variants. These were visualized as multiple bands when 

separated by agarose gel electrophoresis. Each band was extracted and ligated into 

pGEM®-T Easy vector. These transcript clones were then transformed into DH10B 

E.coli. For each band cloned, eight to thirty positive clones (indicated by blue/white 

colony selection) were picked and further PCR screened using primers specific to the 

cloned insert. Colonies yielding different sized PCR products were expanded and the 

plasmid DNAs extracted for DNA sequencing. The DNA sequences were analysed, 

by comparison with CaV1.3 genomic and cDNA sequences, to identify the type of 

alternative splicing that had occurred and to determine the exact location of the 

alternative exon-intron splice junctions as well as their adherence to the “gt…ag” rule.   

Construction of cloned C-terminus CaV1.3 library  

PCR was performed using rat brain and rat heart cDNA libraries (Marathon-ReadyTM 

cDNA, catalogue numbers: 639412 and 639416) as template and Elongase DNA 

polymerase (Invitrogen). Full-length PCR was performed using Adaptor Primer (AP) 

1 (Clontech) and rat CaV1.3-specific primers situated in the 3’-untranslated regions 

(UTRs) of CaV1.342 isoform and CaV1.342a isoform – 1D42a320L23 and 1D7563L23 

respectively. A second nested PCR was performed to amplify CaV1.3 from IVS6 to 

end of C-terminus, using 1D4745F21 as sense primer and 1D42a518L21 and 

1D7383L20 as anti-sense primers for CaV1.342 isoform and CaV1.342a isoform, 

respectively. The resultant CaV1.3 C-terminus amplicons were sub-cloned into 

pGEM®-T Easy vector and transformed into DH10B E.coli cells. The positive 

transformants were then picked and grown in 96-well plates. A few clones from each 

plate were picked at random to verify that they were CaV1.3 clones. The picked clones 
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were first expanded by growing in LB broth and the plasmid DNAs extracted and sent 

for sequencing analysis. 

Table 4.1 Primers used for amplification of rat CaV1.3 α1-subunit. Ta represents the 
annealing temperature. Region denotes the exons that the sense-anti-sense primers sit on.  

 Primer name Primer (5’  3’) Ta (°C) Region 

Sense AP1F27 CCATCCTAATACGACTCACTATAGGGC 
61 1-49 

Anti-Sense  1D7563L23 CTGACCGTCTGAGTGATGTTCTC 

Anti-sense 1D42a320L21 CTCACTGAGTCTCTGGCTTGG 61 1-42 

Sense 1D4745F21 TGTGTGACCCGGACTCAGATT 
55 37-49 

Anti-sense 1D7383L20 CCAGCGAGCGTCTGATATGC 

Anti-sense 1D42a518L21 GTCTGCCTTACACAGGTCTGC 55 37-42a 

Sense 1D4745F21 TGTGTGACCCGGACTCAGATT 
52 36-41 

Anti-sense 1D5343R21 CAAGAAGCGGAAAGAGCAAGG 

Sense  1D5148F22 ACGGACGGCTCTCAAGATCAAG 
53 39-43 

Anti-sense 1D5765R21 CCAATATGTCCAAAGCTGCCC 

Sense  1D5475F22 AGATGACGAACCAGAAGACTCC 
52 42-46 

Anti-sense 1D6082R21 TACAACAGGTACCCAGGCAGC 

Sense  1D6001F24 GGGGAGCAGGAATATTTCAGTAGC 
52 45-48 

Anti-sense 1D6492F24 TCGCTCAGAGTCTATGGACCAGGT 

Sense  1D6164F22 ACTCTCCCATTGGCTATGACTC 
52 46-49 

Anti-sense 1D6765R20 CATAGACGAGATGGAGAGCG 
 

 Screening C-terminus library to determine abundance of splice variants 

Pairs of primers were selected (from the list in Table 4.1) that flanks exons shown by 

transcript scanning to have alternatively spliced exons. The clones in the C-terminus 

library were then screened using each selected pair of primers by PCR. The clones 

that produced PCR products and migrated with the expected sizes (wild-type or splice 

variants) on the 5% agarose were counted. Clones were picked at random for 

sequencing to verify the validity of the screen. The quantity of alternatively spliced 

exon variants were expressed as a percentage of the total number of clones counted.  
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Construction of CaV1.3 α-subunits with C-terminal splice variants  

To characterize the functional properties of CaV1.3 C-terminus splice variants, PCR 

fragments with the correct splice variation were substituted into full-length wild-type 

CaV1.342 (kindly provided by Prof Diane Lipscombe, GenBank accession number 

AF_370010) via restriction digest and ligation. The exon-combination of parental 

full-length rat CaV1.342 is 1-49. Large-scale plasmid DNA preparations of CaV1.342 

and constructed splice variants were performed using PureLink™ HiPure Plasmid 

Filter Midiprep Kit (Invitrogen). Small-scale plasmid DNA preparations of CaV1.3 

splice variants cloned into pGEM®-T Easy vector (Promega) were performed using 

Wizard® Plus SV Minipreps DNA Purification System (Promega). DNA purification 

from agarose gels were performed using QIAquick Gel Extraction Kit (Qiagen, 

Germany). All restriction enzymes were obtained from New England Biolabs (MA, 

USA) or Roche Applied Science (IN, USA). 

Cloning of CaV1.3Δ41 

PCR fragment with splice variation of Δ41 amplified from adult rat brain was 

substituted into CaV1.342 using the restriction enzymes BamHI and NotI. The PCR 

product was ligated into pGEM®-T Easy cloning vector and transformed into DH10B 

E.coli. The correct clone was identified by DNA sequencing and analysis against rat 

CaV1.3 mRNA sequence (GenBank accession number NM_017298). Plasmid 

extracted from the correct clone and rat CaV1.342 clone were similarly digested, 

purified after gel electrophoresis, ligated and transformed into DH10B E.coli. The 

full-length rat CaV1.3 subunit splice variant was named CaV1.3Δ41. The CaV1.3Δ41 

(deleted exon 41) has exon 41 alternatively spliced out, thus generating a truncated 

protein that is different from CaV1.342 (contains exon 41). 
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Cloning of CaV1.343i 

PCR fragment with splice variation of 43i amplified from adult rat brain was 

substituted into CaV1.342 using the restriction enzymes BstEII and KpnI. The PCR 

product was ligated into pGEM®-T Easy cloning vector and transformed into DH10B 

E.coli. The correct clone was identified by DNA sequencing and analysis against rat 

CaV1.3 mRNA sequence (GenBank accession number NM_017298). Plasmid 

extracted from the correct clone and rat CaV1.342 clone were similarly digested, 

purified after gel electrophoresis, ligated and transformed into DH10B E.coli. The 

full-length rat CaV1.3 subunit splice variant was named CaV1.343i. The CaV1.343i 

(spliced out “intron” in exon 43) contains an exon, which is subjected to alternative 

splicing at the region used after PCRD, thus generating a truncated protein that has 

intact PCRD. 

Cloning of CaV1.3Δ44 

PCR fragment with splice variation of Δ44 amplified from adult rat brain was 

substituted into CaV1.342 using the restriction enzymes BstEII and KpnI. The PCR 

product was ligated into pGEM®-T Easy cloning vector and transformed into DH10B 

E.coli. The correct clone was identified by DNA sequencing and analysis against rat 

CaV1.3 mRNA sequence (GenBank accession number NM_017298). Plasmid 

extracted from the correct clone and rat CaV1.342 clone were similarly digested, 

purified after gel electrophoresis, ligated and transformed into DH10B E.coli. The 

full-length rat CaV1.3 subunit splice variant was named CaV1.3Δ44. The CaV1.3Δ44 

(deleted exon 44) has exon 44 spliced out, generating an in-frame protein that lacks 

exon 44. 
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Cloning of CaV1.348a- 

PCR fragment with splice variation of 48a- amplified from adult rat brain was 

substituted into CaV1.342 using the restriction enzymes BglII and EcoRV. The PCR 

product was ligated into pGEM®-T Easy cloning vector and transformed into DH10B 

E.coli. The correct clone was identified by DNA sequencing and analysis against rat 

CaV1.3 mRNA sequence (GenBank accession number NM_017298). Plasmid 

extracted from the correct clone and rat CaV1.342 clone were similarly digested, 

purified after gel electrophoresis, ligated and transformed into DH10B E.coli. The 

full-length rat CaV1.3 subunit splice variant was named CaV1.348a-. The CaV1.348a- 

construct (alternative 3’ splice acceptor site in exon 48) has a portion of exon 48 

spliced out, generating an in-frame protein that lacks the first 45 a.a. of exon 48. 

Correction of cloning error in CaV1.342 clone 

Sequencing of PCR fragment amplified with primers 1D6164F22 and 1D6765R20 

using Elongase Taq (Invitrogen) showed GTC (coding for valine) in both adult rat 

brain and rat heart cDNA, instead of GCC (coding for alanine at position 2123) in 

CaV1.342 clone. The PCR product was ligated into pGEM®-T Easy (Promega) cloning 

vector and transformed into DH10B E.coli. The correct clone was identified by DNA 

sequencing and analysis against rat CaV1.3 mRNA sequence (GenBank accession 

number NM_017298) to ensure no further PCR errors. Plasmid extracted from the 

correct clone was digested with XhoI and KpnI (Roche Applied Science) and 

substituted into CaV1.342. The corrected full-length rat CaV1.3 subunit splice variant 

was named CaV1.3A2123V. 
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Transient expression of calcium channels in HEK 293 cells 

HEK 293 cells were maintained in a growth media comprising of DMEM and 10% 

FBS, buffered with 20.71 mM sodium bicarbonate and 5.04 mM HEPES, and grown 

in a water-saturated 5% CO2 incubator at 37 °C. Cultures were passaged at a split 

ratio of 1:5 upon reaching ~80% confluency. For transfection, HEK293 cells were 

harvested at ~80% confluency, counted and seeded onto poly-D-lysine coated glass 

coverslips placed in 35 mm tissue culture dishes. The cells were seeded at a density of 

approximately 1 x 104 cells/cm2 to ensure that isolated cells were available after 

transfection for whole-cell patch-clamp. The cells were then incubated for 16-24 h to 

allow the cells to adhere to the coverslips. About 1 h prior to transfection, fresh 

growth media without antibiotics was introduced. Approximately equi-molar ratios of 

α-subunit, β2a-subunit, α2δ-subunit DNA constructs as well as the T-antigen construct 

were co-transfected into the cells using calcium phosphate precipitation method 

(Huang et al., 2005). 1.75 µg of α-, 1.25 µg of β2a-, 1.25 µg of α2δ-subunits and 0.2 µg 

of T-antigen plasmids were mixed into 75 µl of 2.5 M CaCl2 solution. 75 µl of 2x 

HBS (HEPES-buffered saline; 280 mM NaCl, 50 mM HEPES, 1.5 mM NaPO4) was 

added and the mixture was mixed by pipetting. The mixture was incubated at r.t. for 

10-15 min to allow precipitate formation. The DNA/CaCl2 mixture was added 

dropwise over HEK 293 cells and gently mixed, and returned to incubator for 5-8 h. 

Transfection media was replaced with fresh growth media and cells were incubated 

for at least 36 h before patch-clamp recordings (Patil et al., 1998; Peterson et al., 

1999). The rat β and rat α2δ subunit clones were kindly provided by Dr Terry P. 

Snutch (University of British Columbia, Vancouver, British Columbia, Canada). 
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Electrophysiological recordings and data analysis 

Whole-cell patch-clamp recordings were performed on transfected cells between 36-

72 h after transfection. Outward K+ currents were blocked by Cs+ in the internal and 

external solutions. For whole-cell patch-clamp recording, the internal solution (patch-

pipette solution) contained the following (in mM): 138 Cs-MeSO3, 5 CsCl, 0.5 

EGTA, 10 HEPES, 1 MgCl2, 2 mg/ml Mg-ATP, pH 7.3 (adjusted with CsOH), 290 

mOsm with glucose. The external solution contained the following (in mM): 10 

HEPES, 140 tetraethylammonium methanesulfonate, 10 BaCl2, or 10 CaCl2 (pH 

adjusted to 7.4 with CsOH and osmolarity to 290-310 with glucose). Pipettes of 

resistance 1.5-2 MΩ were used. Whole-cell currents, obtained under voltage clamp 

with an Axopatch 200B amplifier (Molecular Devices, Union City, CA), were filtered 

at 1-5 kHz and sampled at 5-50 kHz, and the series resistance was typically <5MÙ 

after >70% compensation. A P/4 protocol was used to subtract on-line the leak and 

capacitive transients. 

Data were acquired using the software pClamp9 (Molecular Devices) and were 

analysed and fitted using Graphpad Prism IV software (San Diego, CA) and 

Microsoft (Seattle, WA) Excel. Data are expressed as mean values + SE. Statistical 

analysis was performed using paired or unpaired Student’s t test.  

To assess the current-voltage (I-V) curve relationship of the channels, transfected cells 

were depolarized to a family of test potentials of -70 to 60 mV, in steps of 10 mV 

increments, from a holding potential of -90 mV. The peak current evoked by each 

voltage was normalized to the maximal current obtained for each cell recorded and 

fitted with the following equation:  

I = Gmax(V-Erev)/(1+exp[(V-V1/2act)/kact]); 
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where Gmax is the maximum conductance of the cell, Erev is the reversal potential, 

V1/2act is the voltage for half-maximal activation, kact is the slope. 

Steady-state inactivation properties were determined by comparing the test current 

obtained after a long depolarising pulse to an initial pre-pulse. For the -90 mV holding 

potential, a pre-pulse current was evoked by stepping to 10 mV for 30 ms. This was 

followed by a family of 15 sec-long depolarizing pulses ranging from -100 to 60 mV. 

Next, a test-pulse current was evoked by stepping the cell to 10 mV for 100 ms. The 

peak current evoked by each test pulse was divided by the peak current evoked by the 

pre-pulse to obtain the normalized current. The values were fitted with a single 

Boltzmann equation:  

Irelative = Imin + (Imax – Imin)/[1 + exp(V1/2act + V)/kinact); 

where Irelative is the normalized current, V1/2act is the potential for half-inactivation and 

kinact is the slope value.  

The strength of calcium dependent inactivation (CDI) exhibited by the channel is 

expressed by the f-value (Mori et al., 2004). To determine the f-value, the current 

amplitude that remained a given time point (i.e. 30, 50, 100, 200, 300, 400 and 500 

ms) after depolarization was first measured and normalized against the peak current to 

obtain the residual current (i.e. r30 and r300 for 30 and 300 ms, respectively).  Next, the 

f-value was calculated by subtracting the residual IBa with the residual ICa. An f-value 

of 0 indicates no CDI, while the maximal f-value of 1 indicates complete CDI. For 

comparison between channels, we compared the f-values obtained from currents 

evoked by depolarization to 10 mV. The presence of CDI may also be seen in the 

profile of the residual ICa evoked by a family of voltages. When plotted against 
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voltage, the ‘U’-shaped dependence of residual ICa values on voltage is a tell-tale trait 

of CDI. 

For voltage-dependent inactivation (VDI), cells were placed in the external solution 

with Ba2+ as the charge carrier and depolarized to Vmax, from a holding potential of -

90 mV. As time elapsed, the current evoked by Vmax decayed and the amplitude was 

measured at different time points. These were subtracted from the peak current 

evoked to obtain the inactivated current. This was then expressed as a percentage of 

the peak current (percentage inactivation). 

For steady-state activation, we analysed the tail currents (G) obtained at the end of a 

short depolarizing pulse. Cells were held at -90 mV before depolarizing to a family of 

voltages, ranging from -80 to 80 mV, in steps of 10 mV increments, for 20 ms. 

Following which, a repolarization to -50 mV for 10 ms evokes the tail currents that 

are measured. The peak of each tail current was normalized to the maximum obtained 

for each cell recording and fitted with a single Boltzmann equation: 

G/Gmax = Gmin + (Gmax - Gmin)/{1+exp[(V1/2 act - V)/kact]}; 

where G is the tail current, Gmax is the tail current evoked by a depolarization to +120 

mV, V is the membrane potential of the test pulse, kact is the slope factor and V1/2act 

was calculated when G=0.5Gmax.  

Fractional recovery from inactivation was determined using a two-pulse protocol 

whereby following a 2 sec depolarizing pre-pulse to Vmax (determined from the I-V 

properties of the transfected cell), a test-pulse is applied after a certain time period, 

ΔT, has elapsed. The peak IBa measured during the test pulse was expressed as a 

fraction of peak IBa obtained at the beginning of the pre-pulse to obtain the fraction of 
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recovery. This was plotted against ΔT. The curve was obtained by fitting the values 

with a double exponential equation: 

Y = Ymin + Af[1-exp(-t/τf)] + As[1-exp(-t/τs)]; 

where Y is the fraction of recovery, Af and As are the maximum values of the fast and 

slow components, and τf and τs are their time constants, respectively.  

Construction of HA-tagged CaV1.3 C-terminus splice variants 

The generation of CaV1.3HA construct has been described by Zhang et al (2006). 

Briefly the HA tag and the flanking sequences were inserted into extracellular S5-S6 

loop of domain II of rat CaV1.342 plasmid between amino acids Q693 and T694. The 

resulting sequence is 687FNFDETQTRHYPYDVPDYAVTFDEMQTKRSTFD694 

(HA sequence is in bold, added sequence is in italics) The HA-tag and flanking 

sequences were inserted by polymerase chain reaction (PCR) followed by ligation 

using AleI (658) and BamHI (2756) sites and verified by sequencing. Splice variant 

clones - CaV1.3Δ41, CaV1.343i, CaV1.3Δ44 and CaV1.348a-, were then substituted into 

CaV1.3HA via restriction digests using NheI and BamHI, DNA purification from 

agarose gels, ligation and transformation into DH10B E.coli. 

Hippocampal neuron culture and transfection.  

Low-density dissociated-cell culture of hippocampal neurons rat embryonic 18 (E18) 

rat was prepared, according to established protocol (Kaech and Banker, 2006). The 

neurons were cultured on poly-D-lysine-treated coverslips, which were suspended 

above an astrocyte feeder layer and maintained in serum-free B27/neurobasal medium 

supplemented with insulin, apo-transferrin, superoxide dismutase and MITO+ serum 

extender, in a 24-well plate format. The culturing media had to be optimized in order 
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to facilitate neuronal survival to DIV 18-20, in order for synaptic targeting of proteins 

to occur. Hippocampal cultures have been used widely for visualizing the subcellular 

localization of endogenous or expressed proteins for imaging protein trafficking.   

Preparation of glial feeder cultures begun at least 2 weeks in advance, and 

approximately 5 days was needed to prepare coverslips as a substrate for neuronal 

growth. Dissection of hippocampus from rat fetuses and plating of hippocampal 

neurons takes 2-3 hours. For targeting experiments, primary hippocampal neuronal 

cultures at DIV 5-7 were transfected with HA-CaV1.3Δ41, HA-CaV1.3Δ43B, HA-

CaV1.344-, HA-CaV1.3Δ48, HA-CaV1.342 or HA-CaV1.342a (1.7 µg) and rat β2a (1.25 µg) 

and rat α2δ (1.25 µg), using 0.5 µl of PLUS Reagent and 1 µl of Lipofectamine LTX 

(Invitrogen, Carlsbad, CA). Cells were incubated in DNA/Lipofectamine LTX 

mixture for 5 h in 37 °C incubator, before coverslips were returned into conditioned 

medium. 

Immunocytochemistry and confocal imaging 

For the primary hippocampal neurons, cells were immunostained and analyzed 11-14 

days after transfection. For staining of surface-expressed HA-CaV1.3, living neurons 

were incubated with the rat anti-HA antibody (used at 1:100, 12CA5, Roche) for 30 

min at 37°C. Then the cultures were rinsed in Hank’s buffered saline, fixed in 4% 

paraformaldehyde/4% sucrose for 10 min and blocked with 5% normal goat serum in 

PBS, 0.2% bovine serum albumin, and 0.2% Triton X-100 (PBS/BSA/Triton) for 1 h. 

Second primary antibodies (MAP2/synapsin) were applied in PBS/BSA/Trixton at 4 

°C overnight and then incubated with the fluorochrome-conjugated secondary 

antibodies for 1 h. Coverslips were then washed and mounted in ProLong® Gold 

Antifade Reagent with DAPI (Invitrogen) to retard photobleaching. Preparations were 

analyzed using a Zeiss LSM-510 META confocal microscope using a 63x 1.4 
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numerical aperture (NA) oil immersion objective in the inverted configuration. Image 

brightness/contrast adjustments were performed on the Zeiss LSM Image Browser 

software, version 4.0.0.157. Images were then recorded and exported as tiff formats.  
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4.3 Results 

Identification of novel CaV1.3 C-terminus splice variants in rat brain 

To determine the different alternatively spliced exons in the CaV1.3 C-

terminus, we employed the transcript scanning strategy previously described 

(Mittman et al., 1999; Soong et al., 2002). Transcript scanning is a straightforward 

and comprehensive method to systematically identify the various alternatively spliced 

exons in a gene using PCR and sequence analysis. Briefly, overlapping segments of 

the C-terminus of CaV1.3 gene was PCR amplified, using primer pairs spanning at 

least two exons or four splice boundaries (Fig 4.1B). The amplification of each 

segment increases the copy numbers, and therefore, the odds of discovering splice 

variations in that region. Based on the understanding that alternative splicing often 

results in a change in exon sizes (with few exceptions), the presence of different-sized 

PCR amplicons from each primer-pair indicate the presence of different population of 

splice variants.  

As CaV1.3 is predominantly expressed in the brain (Hell et al., 1993), we used 

rat brain cDNA as the PCR template. In order to scan the combination of exons in C-

terminus of CaV1.3, we first amplified the entire C-terminus, before generating at 

least five overlapping amplicons (Fig 4.1B). The products derived from PCR were 

separated by electrophoresis on an agarose gel (Fig 4.1C). Multiple bands were 

observed in some lanes and these may correspond to different populations of 

alternatively spliced CaV1.3 transcripts. Bands from the first round of PCR were 

extracted, cloned into pGEMT®-T Easy vectors and transformed into DH10B E.coli, 

and the resultant bacteria colonies were individually PCR-screened to isolate clones 

containing different splice variations. Figure 4.1D shows examples of different-sized 
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PCR products obtained from different splice variant clones. Clones were selected for 

DNA sequencing to identify the exons that were alternatively spliced as well as to 

exclude clones derived from non-specific amplicons. The exact identity and 

mechanism of alternative splicing, in terms of the new exon-intron boundaries and 

their adherence to the “gt…ag” canonical splice junction (Sharp and Burge, 1997) was 

determined by analysis of the DNA sequence in comparison with the CaV1.3 genomic 

sequence (NW_047469, GI:62662350). 

Transcript scanning of CaV1.3 from rat brain cDNA revealed alternative 

splicing in five loci on the C-terminus (Fig 4.2 – 4.3), of which some may undergo 

more than one mode of splicing with some adjacent exons alternatively spliced in 

tandem. Altogether there are three alternative splice acceptor sites, two exon-

skippings, one cassette exon and one intron retention. In all cases, use of the canonical 

“gt…ag” splice junctions in the alternative forms were preserved (Fig 4.3). The types 

of alternative splicing in the C-terminus of CaV1.3 are as follows: 

(1) Exon 41a-. The alternative use of splice acceptor site on exon 41 junction resulted 

in the removal of the IQ motif. This led to a frame-shift, resulting in an extension of 

27 unrelated a.a. after exon 40 before a pre-mature stop codon. This alternative 

splicing has already been reported and denoted as CaV1.3ΔIQ (Shen et al., 2006).   

(2) Δ41. Skipping of exon 41 resulted in the removal of the IQ motif, and a frame-

shift with a subsequent stop codon seven a.a. after exon 40. Its full length construct is 

denoted as CaV1.3Δ41. 

(3) Exon 42a*. Alternative splicing of cassette exon 42a resulted in a premature stop 

in CaV1.3, just six a.a. after exon 41. This alternative splicing was previously reported 
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and characterized as CaV1.342a (Xu and Lipscombe, 2001; Singh et al., 2008; Liu et 

al., 2010).  

(4) Exon 43a-. The splicing of exon 42 to an alternative acceptor site in exon 43 led to 

a frame-shift with stop codon after 13 a.a. This alternative splicing has previously 

been identified (Shen, 2006).  

(5) Exon 43i. This novel alternative splicing in the middle portion of exon 43 resulted 

in a frame-shift in the remainder 3’ half of exon 43, adding on 179 unrelated a.a. 

before a stop codon. The excised portion may have been a previously unidentified 

intron, and inclusion of this “intron” is constitutive. Alternative splicing of exon 43i 

follows the canonical “gt…ag” rule. Its full length construct is denoted as CaV1.343i. 

(6) Δ44. The skipping of exon 44 removed the nine a.a. encoded, but did not cause a 

frame-shift. Hence, the resultant protein still retains the distal C-terminal regulatory 

domain (DCRD) and the C-terminal type I PDZ-domain ITTL. Its full length 

construct is denoted as CaV1.3Δ44. 

(7) Exon 48a-. The use of alternative splice acceptor site on exon 48 results in the 

deletion of 44 a.a. in exon 48, but does not result in frame-shifting. In addition, as this 

alternative splicing site occurs before DCRD, the resultant protein retains the DCRD 

and the C-terminal type I PDZ-domain ITTL. Its full length construct is denoted as 

CaV1.348a-. 

It is important to establish the frequency of occurrence of the alternative splice 

variants. Sequence alternations due to alternative splicing may alter the channel’s 

properties. The net behaviour of CaV1.3 in a cell (i.e. neuron) would therefore be a 

collective of the individual functional behaviour of each population of alternatively 
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spliced and WT CaV1.3 channels. The abundance of each splice variant, no doubt, 

influences its degree of contribution to the net CaV1.3 properties. 

As transcript scanning strategy is a robust method that allows us to detect 

sparsely occurring splice variants; moreover in transcript scanning, because only a 

portion of the CaV1.3 transcript was amplified, the frequency of the splice variants 

that we are able to quantify, i.e. by counting the number of clones that display exon-

size variations, may not be a good estimate of the actual population of these splice 

variants in complete C-terminus of CaV1.3 transcripts. Therefore to determine the 

frequency of splice variants that better reflect the expressed CaV1.3 found in cells, we 

created a library of CaV1.3 clones with complete C-terminus. To do this, we designed 

primers that reside in exon 36 and 3’ UTR (untranslated region) of the CaV1.3 gene 

and perform long PCR amplification using a proof-reading polymerase and rat brain 

cDNA as template. The resultant ~3 kb amplicons were sub-cloned into pGEM®-T 

Easy vector and transformed into DH10B bacteria. The positive white transformants 

were then picked and grown in 96-well plates for colony screening. Using primer-

pairs that target alternatively spliced loci, the CaV1.3 C-terminus clones from the 

library were PCR-screened for the various splice variations. Clones producing PCR 

product size alterations that tallied with the expected changes (like the examples 

shown in Fig 4.1D), calculated based on the splice mechanisms previously 

determined, were counted and expressed as a percentage of the total population. 

Clones were selected at random for DNA sequencing to confirm the fidelity of the 

PCR screen. In summary, the results are (expressed as a percentage of the total 

population, n = no of clones screened): exon 41a- – 13.5%, n =237; Δ41 – 4.6%, n 

=237; exon 43a- – 44.7%, n =237; exon 43i – 5.1%, n = 237; Δ44 – 9.7%, n =237; 

and exon 48a- – 6.3%, n =237.  
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Figure 4.1 Schematic representation of rat L-type voltage-gated calcium channel, CaV1.3 
subunit and transcript scanning PCRs used to detect splice variations. A, schematic 
representations of the CaV1.3 gene divided into 49 exons. The width of the exons shown here 
are relative to their actual nt lengths. B. Locations of the scanning reactions to detect splice 
variations. The lines represent the PCR-amplicons produced by primer-pairs that span at least 
two exons. The amplicons are spaced at overlapping intervals along exon 36 to exon 49 of the 
gene, and thus scans the entire C-terminus diagram of the CaV1.3 transcript for alternative 
splicing of exons. Amplicon sizes were restricted by considerations to (1) enable gel 
resolution of splice variants, (2) facilitate ligation into cloning vector, and (3) length of 
coverage by DNA sequencing per reaction. C, Transcript scanning of PCR products separated 
by electrophoresis on an agarose gel. Labelled above each lane are the exons spanned and 
amplified as shown in B. multiple bands are shown in some of the lanes, which may 
correspond to the different populations of transcripts with alterative splicing that altered exon 
sizes. Bands from each lane are extracted and cloned. D, Analysis of PCR products amplified 
from CaV1.3 clones containing alternatively spliced exons using selected primer-pairs that 
flank the splice loci. Changes in exon size from alternative splicing are reflected in the 
different sizes of PCR products. The exact exon sizes are calculated by analysis of DNA 
sequencing data. Sizes of the PCR products are indicated to the left of each gel image.  
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Figure 4.2 Five loci of CaV1.3 splice variations detected in the C-terminus by transcript 
scanning. The postulated schematic diagram (top) shows a more detailed secondary structure 
of CaV1.3, along with loci of splice variation (1-5), labelled according to transcript variant 
names. Modulatory domains important for channel activation and inactivation in the C-
terminus are shown. EF, EF-hand; IQ, IQ-like CaM interaction domain; PCRD, proximal C-
terminal regulatory domain; DCRD, distal C-terminal regulatory domain. Detailed changes in 
amino acid composition resulting from splice variation at each of five loci are shown below. 
At locus 1 and 3, alternative splicing at exon 41 and 43 removes the IQ motif and portions of 
exon 43 respectively, resulting in frame-shifts and premature truncations of CaV1.3 channel 
proteins.  
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Figure 4.3 Postulated mechanisms underlying splice variation of CaV1.3. A-E, Top row, 
nucleotide sequence of relevant exon-intron boundaries. Bottom row, resultant transcript and 
encoded amino acid of each variant. Mechanism for splicing were alternate acceptor sites (A 
and C), exon skipping (A and D), cassette exon (B) and intron retention (C).  
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Modulation of channel biophysical properties by correction to CaV1.3A2123V 

In human CaV1.3, alternative splicing in the α1 subunit C terminus gives rise to 

a long form (CaV1.342) and a short form (CaV1.342a), with more pronounced activation 

of calcium current at negative voltages and faster inactivation observed in CaV1.342a 

channels due to enhanced CDI (Singh et al., 2008).  However, this diminished CDI of 

CaV1.342 isoform was not replicated in the rat clones, and was attributed to a single 

valine-to-alanine amino acid switch within CaV1.3 channel’s CDI-inhibiting molecule 

(ICDI) (Fig 4.4A) (Liu et al., 2010).  Sequencing of PCR fragment amplified with 

primers flanking exons 48-49 revealed GTC (coding for valine) in both rat brain (Fig 

4.4B) and rat heart cDNA (data not shown), instead of GCC (coding for alanine) at 

position 2123 in rat CaV1.342 clone (Fig 4.4B). The PCR product was ligated into 

pGEM®-T Easy (Promega) cloning vector and transformed into DH10B E.coli. The 

correct clone was identified by DNA sequencing and blasted against rat CaV1.3 

mRNA sequence (GenBank accession number NM_017298) to ensure no further PCR 

errors. 

To assess the current-voltage (I-V) relationship of the channels, transfected 

cells were depolarized to a family of test potentials of -70 to 60 mV, in steps of 10 

mV increments, from a holding potential of -90 mV (Figure 4.4C). The current trace 

profile for CaV1.342a displayed a slower inactivating IBa compared to the corrected 

clone CaV1.3A2123V (Fig 4.4D, grey traces), but showed an early and much pronounced 

inactivation of ICa (Fig 4.4D, black traces). In the I-V curves, CaV1.342a displayed a 

pronounced shift in the hyperpolarized direction, indicating a more negatively 

activating channel in both Ba2+ and Ca2+ (Figure 4.4E-H). This was also reflected in a 

pronounced hyperpolarized shift in voltage for half-maximal activation, V½ act, by 

11.22 mV in Ba2+ (CaV1.3A2123V: -24.33 ± 0.49 mV, n = 17; CaV1.342a: -35.55 ± 0.53 
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mV, n = 13; Table 4.2) and 10.87 mV in Ca2+ (CaV1.3A2123V: -12.28 ± 0.53 mV, n = 

14; CaV1.342a: -23.15 ± 0.39 mV, n = 13; Table 4.3) with respect to CaV1.3A2123V (both 

p < 0.0001; unpaired t-test). This negative shift was because of the significant 

decrease in slope of activation, kact, by 2.43 mV in Ba2+ (CaV1.3A2123V: -8.03 ± 0.32 

mV, n = 17; CaV1.342a: -5.60 ± 0.40 mV, n = 13; Table 4.2) and 2.57 mV in Ca2+ 

(CaV1.3A2123V: -9.39 ± 0.30 mV, n = 14; CaV1.342a: -6.82 ± 0.27 mV, n = 13; Table 

4.3). 

Rapid inactivation of activated channels due to Ca2+ is a phenomenon 

displayed by many high-voltage activated channels. In contrast, with Ba2+ as the 

charge carrier, these channels inactivate more slowly by virtue of voltage (voltage-

dependent inactivation or VDI). The mechanism of CDI involves the Ca2+-sensing 

apparatus, comprising of the EF-hand and IQ motifs that reside in the cytosolic 

proximal C-terminus region of the CaV α1 subunit, together with the calcium-binding 

protein, calmodulin (CaM), tethered there. Upon binding of Ca2+ to CaM, the 

conformational changes in the channel hasten closure of the inactivation gate. In the 

human CaV1.3, the CTM domain in DCRD interacts with the calcium-sensing 

apparatus and greatly subdues CDI (Singh et al., 2008). From the profiles of the 

exemplary traces in Figure 4.4D, it is clear that calcium inactivation in the corrected 

CaV1.3A2123V clone is slower than CaV1.342a clone. To quantify the degree of CDI 

exhibited by the channels, the fraction of current that remain at a given time point 

after depolarization (residual current; i.e. r30 and r300 for 30 and 300 ms, respectively; 

Figure 4.5A-J) to different voltages are determined. The difference between the 

residual current of Ba2+ and Ca2+ is a measure of CDI strength (f-value). Here, we 

calculate the f-value obtained at 0 mV (f0; Figures 4.5A-J) 
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For the corrected CaV1.3A2123V channel, the residue current for Ca2+ was 

smaller than Ba2+ (Figure 4.5A-B). This became more evident with residual currents 

measured at longer depolarization time (Figure 4.5C-E), indicating inactivation by 

Ca2+ (f0, 30 ms, 0.14 ± 0.03; 50 ms, 0.19 ± 0.04; 100 ms, 0.25 ± 0.04; 200 ms, 0.31 ± 

0.04; 300 ms, 0.35 ± 0.04). In contrast, short variant CaV1.342a exhibited 2-fold greater 

f0 (0.71 ± 0.03) at 300 ms. Even as early as 30 ms, CDI was already very much 

pronounced with f0 = 0.60 ± 0.02 (4.3-fold greater than CaV1.3A2123V). The residual 

current of CaV1.342a in Ca2+ exhibits a U-shaped dependence on voltage (Figure 4.5F-

J) that is distinctive of CDI. Because more inactivation occurs when more Ca2+ enters 

the cell, the trough of the U-shape would correspond closely to its I-V curve.  

Hence, correction of alanine-to-valine in amino acid position 2123 in rat 

CaV1.342 clone was sufficient to replicate the diminished CDI observed in human 

CaV1.342. This would suggest that the valine residue is crucial for interaction of the 

CTM with the calcium-sensing apparatus in the proximal C-terminus and could 

greatly repress the CDI of CaV1.3 channels.  
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Figure 4.4. Correction of cloning error in original CaV1.342 clone to CaV1.3A2123V. A, Amino-acid 
alignments of CTM region for long variants of human, mouse and rat CaV1.3 (GenBank Accession 
numbers: human: NM_000720, mouse: NM_028981, rat: NM_017298). Positions of exons 48 and 49 
are given. Highlighted green residues mark the differences between these variants. Highlighted purple 
residues mark the position whereby alanine is observed in position 2123 in rat CaV1.342 clone 
(GenBank Accession number D38101) instead of valine. B, left, direct sequencing results of rat clone 
CaV1.342 clone. Peptide combination is listed in black; right, direct sequencing results of RT-PCR 
amplified from rat brain. Highlighted purple residues mark the position of cloning error. C-H, current-
voltage relationship of corrected CaV1.3A2123V and splice variant CaV1.342a. C, Voltage protocol for 
determining I-V relationship: 400 ms depolarisations to potentials ranging, in 10 mV increments, from -
70 to 60 mV (holding potential -90 mV). D, representative IBa (grey) and ICa (black) traces during 
depolarization to 10 mV. The IBa and ICa traces were scaled to enable comparison between the two 
profiles. Current scales were drawn for both IBa (grey) and ICa (black). The time scales for each IBa and 
ICa pair are the same. E-F, normalized I-V plots for IBa of CaV1.3A2123V and CaV1.342a, respectively. The 
curves were fitted with the equation described in methods. In paratheses are the number of cells 
recorded. G-H, same as E-F, but for ICa.  
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Figure 4.5 Calcium-dependent inactivation of current through CaV1.3A2123V and 
CaV1.342a. A-E, the fraction of peak current, Ipeak, that remained at different time intervals of 
30-, 50-, 100, 200- and 300-ms upon depolarization to the indicated voltages for CaV1.3A2123V 
channels. The difference between the remaining current for IBa and ICa, f-value, indicates the 
strength of calcium-dependent inactivation, CDI. The presence of CDI is also marked by “U”-
shaped dependence of ICa on voltage (i.e. CaV1.342a, black curves). The curves are visual fits 
of the values plotted to facilitate comparison. The number of cells recorded is given in 
parentheses. F-J, the fraction of peak current, Ipeak, that remained at different time intervals of 
30-, 50-, 100, 200- and 300-ms upon depolarization to the indicated voltages for CaV1.342a 
channels. 
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Modulation of channel biophysical properties by alternative splicing of the C-

terminus  

Alternative splicing occurs at five loci on the C-terminus of CaV1.3, resulting 

in at least eight splice variants, namely CaV1.342, CaV1.342a, CaV1.3ΔIQ, CaV1.3Δ41, 

CaV1.343a-, CaV1.343i, CaV1.3Δ44 and CaV1.348a-. Of these eight, CaV1.3ΔIQ and 

CaV1.343a- had been previously characterized by a previous graduate student in the 

laboratory (Shen, 2006), while the two predominant isoforms CaV1.342 and CaV1.342a 

have been reported (Singh et al., 2008). We attempt to characterize the remainder four 

novel splice variants, which alters the C-terminus of CaV1.3 (Figure 4.6A). CaV1.3Δ41 

deletes exon 41 and truncates the C-terminus beyond the EF-hand, while CaV1.343i 

deletes the constitutive “intron” in exon 43 and removes the DCRD of CaV1.342. 

Length altering CaV1.3Δ44 and CaV1.348a- splice variants shortened the length between 

PCRD and DCRD, and may hence remove the secondary structures critical for CTM 

interaction with the proximal C-terminus. All four splice variants may modulate CTM 

function and affect inactivation properties of the channel. In order to characterize 

these splice variants, the sequence alterations in these exons were genetically 

engineered into the C-terminus sequence of CaV1.342 constructs, and compared 

against this predominant isoform.  

To assess the I-V relationship of the channels, transfected cells were similarly 

depolarized to a family of test potentials of -70 to 60 mV, in steps of 10 mV 

increments, from a holding potential of -90 mV (Figure 4.6B). The current trace 

profile for CaV1.343i displayed a slower inactivating IBa compared to CaV1.3A2123V 

(Figure 4.4D, grey traces) or the other three splice variants (Figure 4.6C, grey traces), 

but showed an early and much pronounced inactivation of ICa (Figure 4.4D and 4.6C, 

black traces).  
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All splice variants except for CaV1.3Δ41 activated at more negative potentials 

as observed by the hyperpolarized shift in V½ act in both Ba2+ (CaV1.343i, by 8.01 mV; 

CaV1.3Δ44, by 9.45 mV; CaV1.348a-, by 11.22 mV; Table 4.2) and Ca2+ (CaV1.343i, by 

7.07 mV; CaV1.3Δ44, by 12.29 mV; CaV1.348a-, by 10.32 mV; Table 4.3) with respect 

to CaV1.3A2123V (p < 0.01; unpaired t-test). This shift is predominantly caused by a 

decrease in the slope of activation kact (Ba2+: CaV1.343i, 2.74; CaV1.3Δ44, by 1.83; 

CaV1.348a-, by 2.92; Table 4.2; Ca2+: CaV1.343i, 1.67; CaV1.3Δ44, by 1.19; CaV1.348a-, 

by 1.29; Table 4.3). CaV1.3Δ41 displayed a slight, although statistically significant (p < 

0.001; unpaired t-test), depolarized shift in V½ act by 3.96 mV in Ba2+ and 0.91mV in 

Ca2+, with a slight increase in the slope of activation (kact, increased by 0.66 in Ba2+). 
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Figure 4.6 Current-voltage relationships of CaV1.3 alternatively spliced variants. A, 
schematic representation of alternatively spliced variant constructs. The channel backbone 
consists of CaV1.3 (GenBank Accession number: D38101, white box) while the cytosolic tail 
consist of CaV1.3 long form (CaV1.342), or alternatively spliced variants Δ41, 43i, Δ44 and 
48a- (black). The stop codons for Δ 41 and 43i are indicated by black and white filled circles, 
respectively.  Numberings follow the CaV1.3 amino acid sequence. B, voltage protocol for 
determining I-V relationship. 400 ms depolarisations to potentials ranging, in 10 mV 
increments, from -80 to 60 mV (holding potential -90 mV). C, representative IBa (grey) and ICa 
(black) traces during depolarization to 10 mV. The IBa and ICa traces were scaled to enable 
comparison between the two profiles. Current scales were drawn for both IBa (grey) and ICa 
(black). The time scales for each IBa and ICa pair are the same. D-G, normalized I-V plots for 
IBa of alternatively spliced constructs Δ41, 43i, Δ44 and 48a-. The curves were fitted with the 
equation described in methods. In paratheses are the number of cells recorded. H-K, same as 
D-G, but for ICa. 
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42a, 43i, Δ44 and 48a- splice variant showed narrowing and pronounced negative 

shift in window current 

In the I-V curves, CaV1.342a displayed a pronounced shift in the hyperpolarized 

direction, indicating a more negatively activating channel than CaV1.3A2123. The four 

novel splice variants also resulted in I-V shifts. To enable a more accurate assessment 

of the voltage activation of these channels, we analysed the tail currents (G) obtained 

at the end of a short depolarizing pulse to various potentials (Figure 4.7A). In 

addition, to determine the inactivation properties of the channels under steady-state 

conditions, transfected cells were held at various potentials for 15-sec and currents 

evoked before and after the inactivating pulse were compared (Figure 4.7B). The data 

obtained are displayed in Figure 4.7 and Table 4.2.  

Compared to CaV1.3A2123V, the voltage of half-maximal activation in CaV1.342a 

was shifted by -19.94 mV (V½ act, CaV1.3A2123V, -10.50 ± 0.95 mV, n = 8; CaV1.342a, -

30.44 ± 0.84, n = 5; p < 0.001, unpaired t-test). The slope of CaV1.342a was steeper, 

reflected by the decrease in kact (CaV1.342: 15.13 ± 0.91; CaV1.342a: 8.57 ± 0.74; p < 

0.001, unpaired t-test). Splicing of exon 42a caused a minor but significant shift in the 

voltage for half-maximal steady-state inactivation (V½ inact, CaV1.3A2123V, -44.24 ± 

0.47 mV, n = 7; CaV1.342a, -40.70 ± 0.79, n = 7; p < 0.001, unpaired t-test) but gave 

rise to a slightly steeper SSI slope, decreasing the kinact by 1.12 (k inact, CaV1.3A2123V, 

5.90 ± 0.40, n = 7; CaV1.342a, -4.79 ± 0.71, n = 6; p < 0.001, unpaired t-test). Put 

together, CaV1.342a resulted in a window current that is more hyperpolarized than 

CaV1.3A2123V (Figure 4.7D). The large negative shift in V½ act coupled with a minute 

change in V½ inact also resulted in a narrowing of the window current.  
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Just as in the I-V analyses, the novel splice variants displayed a hyperpolarized 

shift in V½ act of the tail current analyses compared to CaV1.3A2123V. The changes 

observed here were also significant (V½ act, CaV1.3Δ41, -12.68 ± 0.57, n = 7; CaV1.343i, 

-32.24 ± 0.57, n = 5; CaV1.3Δ44, -28.75 ± 0.88, n = 7; CaV1.348a-, -28.72 ± 0.65, n = 9; 

p < 0.001 unpaired t-test). The activation slope factors for the splice variants were 

significantly smaller than CaV1.3A2123V (kact, CaV1.3Δ41, 10.72 ± 0.51; CaV1.343i, 7.59 

± 0.50; CaV1.3Δ44, 10.23 ± 0.78; CaV1.348a-, 9.19 ± 0.65, p < 0.001, unpaired t-test). In 

addition, all four splice variants had small shifts in V½ inact (CaV1.3Δ41, -41.05 ± 0.63 

mV; CaV1.343i, -42.02 ± 0.31; CaV1.3Δ44, -46.57 ± 1.10; p < 0.05; CaV1.348a-, -45.80 ± 

0.69; p < 0.001; compared to CaV1.3A2123V, unpaired t-test)  
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Figure 4.7 Activation and steady-state inactivation properties of CaV1.3 alternatively 
spliced variants. A, voltage protocol used for determining activation properties and an 
exemplar current trace (CaV1.3A2123V). Tail currents were measured after 20 ms depolarisation 
to potentials ranging from -80 to 100 mV, in 10 mV steps. B, voltage protocol used for 
determining steady-state inactivation, SSI, properties and an exemplar current trace 
(CaV1.3A2123V). Currents evoked at 10 mV test potentials were measured before and after 15 s 
depolarisations to potentials ranging from -120 to 20 mV, in 10 mV steps. A holding potential 
of -90 mV was maintained for all experiments. C-H, normalized plots for activation (dashed 
lines) and SSI (solid lines) for long form (CaV1.3A2123V), short form (CaV1.342a), and 
alternatively spliced constructs Δ41, 43i, Δ44 and 48a-. For SSI, peak currents obtained after 
the 15 s inactivating pulse were normalized to that obtained before inactivation and plotted 
against voltage. The curves are fitted with the Boltzmann relationship. For the activation 
plots, the peak of the tail currents (G) were normalized against the largest peak and plotted 
against voltage. The curves were fitted using the equation given in methods. The number of 
cells recorded are given in paratheses; “( )” for SSI and “[ ]” for activation. Plots of long form 
(CaV1.3A2123V) were redrawn in each graph for comparison.  
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Table 4.2 Comparison of IBa electrophysiological properties of CaV1.3 channels 
containing long form (CaV1.3A2123V), short form (CaV1.342), and splice variants Δ41, 43i, 
Δ44 and 48a-. 

 
a p < 0.05, b p < 0.01, c p < 0.001, compared to CaV1.3A2123V (unpaired t test). Values shown are mean ± 
SEM. 
 

Table 4.3 Comparison of ICa electrophysiological properties of CaV1.3 channels.  

 
a p < 0.05, b p < 0.01, c p < 0.001, compared to CaV1.3A2123V (unpaired t test). Values shown are mean ± 
SEM. 
 

Table 4.4 Comparison of the kinetics of recovery from inactivation in Ba2+.  

 
a p < 0.05, b p < 0.01, c p < 0.001, compared to CaV1.3A2123V (unpaired t test). Values shown are mean ± 
SEM. 
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Calcium-dependent inactivation (CDI) is augmented by 42a, 43i, Δ44 and 48a- 

splicing 

From the profiles of the exemplary traces in Figure 4.6C, it is clear that all 

four novel splice variants are functional and exhibit CDI, although CaV1.3Δ41 may 

have very much diminished CDI as compared to CaV1.342a. To quantify the degree of 

CDI exhibited by the channels, the fraction of current that remained at a given time 

point after depolarization (residual current; i.e. r30 and r300 for 30 and 300 ms, 

respectively; Figure 4.8A-T) to different voltages was determined for all four 

constructs. The difference between the residual current at 0 mV (f0; Figures 4.8Q-T) 

was obtained as a measure of CDI strength. 

As expected, deletion of exon 41 in CaV1.3Δ41, which removed the entire IQ 

motif, resulted in very small degree of inactivation by Ca2+ even at 300 ms (f0, 30 ms, 

0.03 ± 0.01; 50 ms, 0.04 ± 0.02; 100 ms, 0.09 ± 0.02, 200 ms, 0.14 ± 0.03, 300 ms, 

0.17 ± 0.03).  

Surprisingly, alternative splicing of exon 43 in CaV1.343i, which caused a 

frame-shift and incorporation of 179 unrelated a.a. after the splice junction, exhibited 

a very pronounced CDI, comparable to that of CaV1.342a (Figure 4.9). Furthermore, 

for CaV1.3Δ44 and CaV1.348a-, like CaV1.342a, the residual currents at time points 

measured for Ca2+ exhibited a U-shaped dependence on voltage (Figure 4.8C-D, 

4.8G-H, 4.8K-L, 4.8O-P, and 4.8S-T). However, CaV1.3Δ44 and CaV1.348a- had a 

smaller f0 than CaV1.342a (Figure 4.9). It is plausible that the secondary structures 

changes brought about by these splice variants may affect the efficacy of interaction 

between the DCRD and the calcium-sensing apparatus. 
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Voltage-dependent inactivation (VDI) remained suppressed with C-terminal 

alternative splicing 

An appreciable degree of slow inactivation in the absence of Ca2+ is apparent 

in the current trace profiles in Figure 4.4D as well as the residual current plots in 

Figure 4.5A for CaV1.3A2123V. We now consider if voltage-dependent inactivation 

(VDI) may be modulated by alternative splicing in the C-terminus. Figure 4.10 shows 

the percentage inactivation of peak IBa evoked at Vmax, as it decays over various time 

points. Inactivation of IBa through CaV1.3A2123V increased steadily over time; 

displaying 2.65 ± 3.53% inactivation at 30 ms after depolarization, 4.97 ± 1.25% at 

100 ms and reaching 10.80 ± 2.07% by the end of 300 ms. Inactivation of IBa through 

CaV1.3Δ41 occurred at a similar pace (Fig 4.10) and was statistically indistinguishable 

from CaV1.3A2123V (p > 0.05, Kruskal-Wallis test). Effect of truncation of the distal C-

terminus by 42a and 43i splicing on VDI could not be determined as the percentage 

inactivation of peak IBa relative to CaV1.3A2123V differs at the various time points, and 

were statistically indistinguishable. However, the general trend of increased 

percentage inactivation with prolonged depolarization was conserved in all splice 

variants, albeit at different rates (Fig 4.10).  
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Figure 4.8 Calcium-dependent inactivation of current through CaV1.3 splice variants Δ41, 
43i, Δ44 and 48a-. A-D, the fraction of peak current, Ipeak, that remained at 30 ms upon 
depolarisation to the indicated voltages, r30. The difference between the remaining current for IBa 
and ICa, f-value, indicates the strength of calcium-dependent inactivation, CDI. The curves are 
visual fits of the values plotted to facilitate comparison. The number of cells recorded is given in 
parentheses. E-H, the fraction of peak current, Ipeak, that remained at 50 ms upon depolarisation to 
the indicated voltages, r50. I-L, the fraction of peak current, Ipeak, that remained at 100 ms upon 
depolarisation to the indicated voltages, r100. M-P, the fraction of peak current, Ipeak, that remained 
at 200 ms upon depolarisation to the indicated voltages, r200. Q-T, the fraction of peak current, 
Ipeak, that remained at 300 ms upon depolarisation to the indicated voltages, r300. 



131 
 

 

Figure 4.9 Strength of calcium-dependent inactivation in CaV1.3A2123V, CaV1.342a and 
splice variants Δ41, 43i, Δ44 and 48a-. A quantifier for the amount of CDI exhibited by each 
channel is represented by f10, the difference in levels of remaining IBa and ICa currents evoked 
by 10 mV. A-E, f10 for r30, r50, r100, r200, and r300, respectively. 

 

 

Figure 4.10 Voltage-dependent inactivation of current through CaV1.3A2123V, CaV1.342a 
and splice variants Δ41, 43i, Δ44 and 48a-. The level of voltage-independent inactivation of 
the channel is represented as a percentage of IBa inactivation during depolarization to Vmax in 
the time course indicated. The numbers of cells recorded are CaV1.3A2123V: 17, CaV1.342a: 13, 
CaV1.343i:17, CaV1.3Δ44: 14, CaV1.348a-: 17. *, p < 0.05 (compared to CaV1.3A2123V) (Kruskal-
Wallis test followed by Dunn’s multiple-comparison post-test).  
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Rapid recovery from inactivation maintained in C-terminal splice variants 

The recovery of the channels were determined using a two-pulse protocol 

whereby a conditioning pre-pulse of 2-sec was followed by a test-pulse after a given 

time interval (ΔT) has elapsed (Figure 4.11A). Recovery was expressed as the 

dependence of the maximal current obtained the test-pulse, as a fraction of the 

maximal current at pre-pulse, on the time-interval between the pulses (Figure 4.11C).  

The recovery of the channels, here, may be described as occurring in two-

phases: a fast recovery phase (ΔT ≈ 0-40 ms) and a slow recovery phase (ΔT ≈ 60 ms 

onwards). In CaV1.3A2123V, recovery began rapidly and about 56% of the channels 

recovered by 20 ms, near the beginning of the slow phase. However, the subsequent 

rate of recovery was decreased and only ~82% of channels recovered at the end of 2-

sec (Figure 4.11C). Increasing the time interval up to 4 s still could not bring about a 

complete recovery of all the channels (~85% recovered; data not shown). CaV1.342a 

exhibited a slower rate of recovery compared to CaV1.3A2123V (Figure 4.11C. τf, 

CaV1.3A2123V, 7.74 ± 2.97 ms; CaV1.342a, 20.84 ± 7.45 ms; p = 0.06, unpaired t test). 

About 60% of CaV1.342a channels had recovered by the early part of the slow phase at 

100 ms. At 2-sec, the late part of the slow phase saw only ~71% recovery in CaV1.342a 

while ~82% of CaV1.3A2123V had already recovered. The plot of the recovery data at 

the slow phase of CaV1.342a fitted into a slightly more gentle slope than CaV1.3A2123V 

(τs, CaV1.3A2123V, 0.61 ± 0.12 s; CaV1.342a, 0.76 ± 0.22 s; p = 0.28, unpaired t test).  

CaV1.3Δ41 displayed a similar recovery profile as CaV1.3A2123V (Figure 4.11D), 

reflected in the similar slope values of the fast and slow phase (Table 4.4).  

CaV1.343i, like CaV1.3A2123V, began with rapid recovery at the early part of the 

slow phase, where ~66% of the channels had recovered by 100 ms (Figure 4.11E). 
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Despite the slightly more gentle slope than CaV1.3A2123V at the late slow phase, ~81% 

of channels recovered by 2-sec.  

CaV1.3Δ44 started with rapid recovery near the early part of the slow phase, 

reaching ~60% recovery of channels by 20 ms, respectively (Figure 4.11F). It has a 

steeper slope than CaV1.3A2123V in the fast phase (τf, CaV1.3A2123V, 7.74 ± 2.91 ms; 

CaV1.3Δ44, 24.07 ± 10.05 ms; p = 0.06, unpaired t test) and a gentler slope in the slow 

phase (τs, CaV1.3A2123V, 0.61 ± 0.12 s; CaV1.3Δ44, 0.40 ± 0.09 s; p = 0.10, unpaired t 

test). Recovery of CaV1.3Δ44 channels reached ~87% by 2-sec in the slow phase, 

which slightly greater than the ~82% recovery of CaV1.3A2123V channels. 

CaV1.348a-, like CaV1.3A2123V, began with rapid recovery at the early part of the 

slow phase, where ~63% of the channels had recovered by 100 ms (Figure 4.11G). 

Despite the slightly more gentle slope than CaV1.3A2123V at the late slow phase, ~86% 

of channels recovered by 2-s, which is slightly greater than that of CaV1.3A2123V 

channels.  
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Figure 4.11 Recovery from inactivation in CaV1.3A2123V, CaV1.342a and splice variants Δ41, 
43i, Δ44 and 48a-.  A, two-pulse protocol whereby following a 2 sec depolarising pre-pulse to 
Vmax (from -90 mV holding potential), a test-pulse is applied after a certain time period, ΔT, has 
elapsed. Peak IBa measured during the test pulse was expressed as a fraction of peak IBa obtained at 
the beginning of the pre-pulse to determine fractional recovery. B, representative current traces 
evoked by the two-pulse protocol. The traces for the test-pulse shown are those obtained with ΔT 
= 0.1 and 1 s. C-G, fractional recovery plotted as a function of ΔT for CaV1.3A2123V, CaV1.342a and 
splice variants Δ41, 43i, Δ44 and 48a-, respectively. The curve for CaV1.3A2123V was redrawn for 
all plots for comparison. In parentheses are the numbers of cells recorded. Curves were fitted as 
described in methods.  
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Δ41 splice variant mediates 3-fold smaller current density 

Previous reports of LTCC with C-terminus deletions had described gross 

increase in current density as a result (CaV1.2: Wei et al., (1994); CaV1.1: Morrill and 

Cannon (2000); CaV1.3: Singh et al., (2008)). We hence measured the current density 

from the novel CaV1.3 C-terminus splice variants and compared against CaV1.3A2123V. 

Figure 4.12 showed that CaV1.342a exhibits a much larger current density compared to 

the other channels. When evoked at 20 mV, the current density of CaV1.342a was 2.8 

times greater than CaV1.3A2123V (CaV1.3A2123V: 88.39 ± 12.48 pA/pF, CaV1.342a: 

246.81 ± 52.44 pA/pF; p < 0.001, Kruskal-Wallis test, followed by Dunn’s multiple-

comparison post-test). Even when depolarized to -40 mV, the current density was 

already significantly larger (CaV1.3A2123V: 8.15 ± 1.29 pA/pF, CaV1.342a: 45.89 ± 

18.82 pA/pF; p < 0.01, Kruskal-Wallis test, followed by Dunn’s multiple-comparison 

post-test). CaV1.3Δ44 and CaV1.348a- also displayed small increases in current density 

to CaV1.3A2123V, but these were not statistically significant.  

In contrast, the current density of CaV1.3Δ41 was 3.3 times smaller than 

CaV1.3A2123V (CaV1.3A2123V: 88.39 ± 12.48 pA/pF, CaV1.3 Δ41: 26.53 ± 4.22 pA/pF; p < 

0.001, Kruskal-Wallis test, followed by Dunn’s multiple-comparison post-test). Even 

when depolarized to -40 mV, the current density was also significantly smaller 

(CaV1.3A2123V: 8.15 ± 1.29 pA/pF, CaV1.3 Δ41: 2.06 ± 0.30 pA/pF; p < 0.001, Kruskal-

Wallis test, followed by Dunn’s multiple-comparison post-test). CaV1.343i also 

displayed small, but not statistically significant decrease in current density compared 

to CaV1.3A2123V.  

Differences observed in current densities could reflect differences in the 

properties of individual channels including channel open probability and conductance, 
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or might be indicative of differences in the rates of trafficking to or removal from 

plasma membrane for the CaV1.3 C-terminal splice variant isoforms. Single-channel 

electrophysiological would allow us to investigate the biophysical changes in CaV1.3 

splice isoforms at single channel level. Immunohistochemical staining of brain slices 

using splice-variant-specific antibodies of CaV1.342 and CaV1.342a demonstrated 

similar staining patterns of these two splice variants. Quantitative real-time PCR of 

mouse brain and different sub-regions showed that CaV1.342 was the predominant 

mRNA isoform, although significant expression of CaV1.342a was also observed 

(cerebellum: 17.1 ± 2.5%; nucleus accumbens: 13.3 ± 1.5%; whole brain: 11.0 ± 

0.6%) (Singh et al., 2008). It would be interesting to check if this translates to 

differences in protein expression, using the splice-variant-specific antibodies.  

 

 

Figure 4.12 Density of Ba2+-currents through CaV1.3A2123V, CaV1.342a and splice variants 
Δ41, 43i, Δ44 and 48a-. The peak of tail currents measured at the end of short depolarising 
pulses evoked at different potentials were normalized against the membrane capacitance (Cm) 
of the recorded cell to obtain current density. The number of cells recorded in the parentheses. 
**, p < 0.01; ***, p < 0.001 (compared to CaV1.3A2123V) (Kruskal-Wallis test followed by 
Dunn’s multiple-comparison post-test). 
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Soma-dendritic localization maintained in C-terminus splice variants  

 Immunostaining analysis of primary hippocampal neurons transfected with 

HA-tagged CaV1.342 showed that the channels are mainly localized in the cell bodies 

and proximal dendrites (Fig 4.13A and Figure 4.14A; green staining), consistent with 

previous studies (Hell et al., 1993; Zhang et al., 2006). HA-tagged CaV1.342 staining 

observed in the dendrites were fairly diffused, with some cluster formations along the 

dendrites. In addition, partial co-localization of CaV1.342 was observed with synapsin 

clusters (Fig 4.13A; red staining) and MAP2 (Fig 4.14A; red staining). Shank 

association with the class I PDZ domain-binding C-terminus motif ITTL in CaV1.342 

channels is important for its synaptic targeting (Zhang et al., 2005).  

Alternative splicing in the C-terminus of CaV1.3 results in the premature 

truncations in all the splice variants except CaV1.3Δ44 and CaV1.348a-, which also 

retained the ITTL-motif of CaV1.342 channels. To examine if the subcellular 

localization of the C-terminus splice variants would be affected, they were sub-cloned 

into the surface epitope-tagged CaV1.342 rat plasmid. Both splice variants with intact 

ITTL-motif, CaV1.3Δ44 and CaV1.348a-, a predominantly soma-dendritic localization 

was observed in the hippocampal neurons (Fig 4.13E-F and Fig 4.14E-F; green 

staining). In addition, synaptic targeting was maintained as observed by the partial co-

localization of HA-tagged channels with synapsin (Fig 4.13E-F, red staining). 

Surprisingly, truncations of C-terminus that remove the ITTL-motif did not affect 

membrane expression of splice variants CaV1.342a, CaV1.3Δ41 and CaV1.343i at the 

soma-dendritic regions (Fig 4.13B-D and Fig 4.14B-D; green) Partial co-localization 

with synapsin clusters and MAP2 was also maintained (Fig 4.13B-D and Fig 4.14B-

D; red). This could suggest that additional motifs in the neuronal CaV1.3 are involved 

in membrane expression and synaptic target, besides the ITTL motif. 
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Figure 4.13 Surface localization of HA-tagged CaV1.342, CaV1.342a and splice variants 
Δ41, 43i, Δ44 and 48a- in hippocampal neurons.  A-F, synaptic targeting of recombinant 
HA-tagged CaV1.3 channels in hippocampal neurons. Hippocampal neurons were transfected 
with HA-tagged constructs together with β2a and α2δ auxiliary subunits at 6-8 DIV and 
analysed 11-14 days after transfection by anti-HA antibody surface labelling (green) and anti-
synapsin (red) immunostaining. A, CaV1.342. B, CaV1.342a. C, CaV1.3Δ41. D, CaV1.343i. E, 
CaV1.3Δ44. F, CaV1.348a-. The data are representative of three independent transfection 
experiments with HA-CaV1.3 constructs.  
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Figure 4.14 Surface localization of HA-tagged CaV1.342, CaV1.342a and splice variants 
Δ41, 43i, Δ44 and 48a- in hippocampal neurons.  A-F, synaptic targeting of recombinant 
HA-tagged CaV1.3 channels in hippocampal neurons. Hippocampal neurons were transfected 
with HA-tagged constructs together with β2a and α2δ auxiliary subunits at 6-8 DIV and 
analysed 11-14 days after transfection by anti-HA antibody surface labelling (green) and anti-
MAP2 (red) immunostaining. A, CaV1.342. B, CaV1.342a. C, CaV1.3Δ41. D, CaV1.343i. E, 
CaV1.3Δ44. F, CaV1.348a-. The data are representative of three independent transfection 
experiments with HA-CaV1.3 constructs.  
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4.4 Discussion and Conclusion 

 Alternative splicing is a pre-mRNA post-transcriptional mechanism that has 

the potential to expand the proteome exponentially, and is important for modifications 

in ion channels in response to neuronal input changes. As shown in this study, 

alternative splicing in the C-terminus of CaV1.3 alone is extensive, with at least five 

loci and eight splice variant isoforms identified in rat brain. Correction of the valine-

to-alanine cloning error in the rat CaV1.342 clone is sufficient to replicate the 

diminished CDI observed in the human clone (Liu et al., 2010), demonstrating the 

importance of this conserved residue in the DCRD for CTM function.   

 Alternative splicing of the C-terminus at exon 41, which removes the IQ motif 

of the calcium-sensing apparatus, leads to abolishment of CDI, a slight rightward shift 

in inactivation kinetics and a significant decrease in current density. Alternative 

splicing in both exons 44 and 48 shortens the distance between the PCRD and DCRD 

of CaV1.3 C-terminus, and alters their secondary protein structure via adding or 

shortening the stretches of alpha helices. Altered efficiency in the interaction between 

these two domains, and hence CTM function, may cause the slight reduction in CDI 

in CaV1.3Δ44 and CaV1.348a-. Furthermore, a larger inactivation shift and a small 

activation shift in the hyperpolarizing direction leads to a narrowing of the window 

current for both splice isoforms relative to CaV1.342. No shift in activation was 

observed between CaV1.342 and CaV1.3Δ44 was mentioned briefly in the study by 

Singh et al (2008), possibly due to the human CaV1.3 clone or the different auxiliary 

subunits, β3 used. Truncation of the entire DCRD in CaV1.343i splice isoforms results 

in CDI of similar intensity as the short variant CaV1.342a, as a result of the 

elimination of CTM function. In all splice variants, the small VDI of CaV1.3 is 
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maintained, together with the general trend of small increase in VDI with prolonged 

depolarization. 

In addition, alternative splicing in exons 41, 42a, and 43 causes frame shift 

and premature truncations of the CaV1.3 channel protein, thus eliminating the type 1 

PDZ-binding motif (ITTL) that is present in the CaV1.342, CaV1.3Δ44 and CaV1.3½48 

channels. Selective binding of Shank proteins to the ITTL-motif in neuronal CaV1.342 

channels were shown to be critical for its synaptic targeting (Zhang et al., 2005). 

However, our study of subcellular localization of the splice variants in primary 

neuronal culture showed that removal of the type 1 PDZ-binding motif did not affect 

the predominant soma-dendritic expression of CaV1.3 channels, or its synaptic 

targeting. A possible reason could be the different auxiliary subunits used, β2a versus 

β3 used in the study by Zhang et al (2005), which could affect membrane trafficking 

and possibly subcellular localization (Arikkath and Campbell, 2003). Furthermore, 

primary neurons in this study were allowed to differentiate and form mature dendritic 

spines and synapses, before fixing on DIV 18-21, as compared to the neurons fixed on 

DIV 12-13 in the study by Zhang et al (2005), which could explain for the differential 

synaptic clustering results observed.   
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5.1 Conclusion 

 In this thesis, two post-transcriptional events – RNA editing and alternative 

splicing, in the carboxyl-terminus of L-type calcium channel CaV1.3 were studied. 

Firstly, by sequencing analysis of both cDNA and genomic DNA of CaV1.3, we 

identified three RNA editing sites in the IQ motif. We confirmed the protein 

expression of the edited peptides via targeted HPLC-mass chromatography as well as 

the surface localization in primary neurons via immunocytochemistry. In addition, we 

identified the enzyme responsible as ADAR2 via sequencing analysis of ADAR2-/- 

knockout mice. Examination of tissue regions with CaV1.3 expression, namely the 

brain, heart, pancreatic islets and cochlea demonstrated that RNA editing of CaV1.3 is 

specific to the central nervous system. Furthermore, RNA editing of CaV1.3 in the 

brain is developmentally regulated, first appearing in post-natal rodents at P1 and 

increasing to adult levels by approximately P7.  

Secondly, in order to examine the mechanism for tissue-specific and 

developmentally-regulated RNA editing of CaV1.3, we utilized cell lines with CaV1.3 

expression for easier manipulation and testing of isolated conditions. Through these 

studies, we showed that while the ADAR2’s catalytic activity and editing levels of 

GluR-B at R > G site were elevated with glucose metabolism, neuronal 

differentiation, zinc concentration and ADAR2 overexpression, they were insufficient 

to cause RNA editing of CaV1.3. While the higher percent splicing in intron 1 and 

exon 5a in developing mice could partially explain for the increased editing of 

CaV1.3, it could not explain for the tissue-specificity. Expression of essential cofactor 

IP6 was similar in both tissues and cell culture systems. A possible mechanism 

appears to be expression of tissue-specific inhibitors of ADAR2 binding with CaV1.3 
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mRNA, as shown by editing of adenosine residues in the synthetic gIQECS construct 

with overexpression of both ADAR1 and ADAR2 in cell lines.  

The second post-transcriptional mechanism examined was alternative splicing. 

Previous studies of L-type calcium channels showed extensive alterative splicing 

along the entire channels, and at least three sites have been identified in the C-

terminus of CaV1.3. In this study, we identified alternative splicing at five loci in the 

C-terminus of CaV1.3, and the resulting eight splice isoforms, including wild-type 

variant CaV1.342. Biophysical properties of the splice variants were examined by 

electrophysiological recordings of transfected HEK293 cells. We demonstrated that 

truncation of the distal C-terminus via alternative splicing removes its modulatory 

effect, resulting in robust CDI and smaller window current (CaV1.342a and CaV1.343i). 

However, decreasing the length between the PCRD and DCRD only dampens CDI 

slightly (CaV1.3Δ44 and CaV1.348a-). Elimination of the IQ motif in calcium-sensing 

apparatus abolishes CDI and results in a much smaller current density. In addition, 

correction of valine-to-alanine mutation in the rat CaV1.342 clone is sufficient for 

replicating the diminished CDI in the human clone, proving that the conserved residue 

is critical for interaction between PCRD and DCRD. Immunocytochemical analysis of 

transfected primary neurons showed that splicing of C-terminus and removal of the 

PDZ-binding motif does not alter the soma-dendritic localization of CaV1.3, 

particularly at the synapses.  

5.2 Future studies  

Through numerous studies, several important criteria for selective A-to-I RNA 

editing have been delineated – namely, the imperfect fold-back dsRNA structure 

formed between ECS and editing site, the homo-dimerization of ADAR, and cofactors 
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such as zinc and IP6 that stabilizes ADAR2’s catalytic core, the mechanism for 

developmental regulation and tissue-specificity of ADAR2 substrates remains 

uncertain. 

Co-expression of pRK5-gIQECS and ADAR2 in mouse insulinoma cells and the 

resultant RNA editing of its IQ motif suggest that a cis-element close to the ECS may 

bind proteins in a developmentally-regulated and neuron-specific manner. To test this 

hypothesis, we could use RNA affinity chromatography, a tool for isolating RNA-

binding proteins. As sequence-specific RNA-binding proteins often bind their targets 

with high affinity, we could modify the pRK5-gIQECS to generate a shorter plasmid 

for in vitro transcription, purify the RNA-binding proteins using RNA affinity 

chromatography and identify them via mass spectrometry. Hence, we could identify 

RNA-binding proteins that compete and prevent or enhance RNA editing of CaV1.3 

IQ motif. 

The A-to-I editing of certain substrates such as GluR-B and 5-HT2C receptor 

RNA must occur before or simultaneously with splicing, since the dsRNA structure 

essential for editing mechanism is formed between the exonic editing site and 

downstream intron sequence (Higuchi et al., 1993; Lomeli et al., 1994). Post-

transcriptional processing of most pre-mRNAs requires several common steps, such 

as 5’-end capping, 3’-end processing and splicing, which have been proposed to be 

carried out within large nuclear ribonucleoprotein (InRNP) particles, and isolation of 

ADAR2 from these particles suggest that editing mechanism in InRNP complexes  

may constitute the natural pre-mRNA processing machinery (Raitskin et al., 2001). 

Hence, splicing and editing may influence on each activity. Using bioinformatics, we 

could identify possible splicing factors that may bind upstream of the ECS in CaV1.3 
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and test whether co-expression of the splicing factors may modulate the level of 

editing.  

Due to the interaction of alternative splicing and editing mechanisms, in the 

context of extensive alternative splicing in the C-terminus of CaV1.3 and editing in its 

IQ motif, it would be wise to characterize the combination and frequency of these two 

events together. The predominant combination of splicing and editing could narrow 

down the region of CaV1.3 C-terminus crucial for these post-transcriptional changes.  

 CaV1.3 currents feature prominently in the spontaneous action potentials and 

Ca2+ spikes in the SCN neurons that underlie circadian rhythms (Pennartz et al., 2002; 

Jackson et al., 2004). In our laboratory, we have demonstrated that in SCN neurons of 

ADAR2-/-/GluR-BR/R mice (Higuchi et al., 2000), both Na+ spikes and Ca2+ spikes 

fired at lower frequencies, with decreased depolarization rates between Na+ spikes 

and shorter half widths of Ca2+ spikes, as compared to ADAR2+/+/GluR-BR/R control. 

Furthermore, role of CaV1.3 channels in driving repetitive activity was shown by the 

abolishment of Ca2+ spikes with nimodipine application. These results suggest that 

RNA editing of the CaV1.3 IQ motif diminishes channel CDI, which in turn impacts 

SCN spike frequency and thereby the central biological clock underlying circadian 

rhythms. However, one drawback of the ADAR2-/- knockout mice is that ADAR2 

targets a wide range of target such as KV1.1 and GluR, which could confound the 

results observed. In addition, Ca2+ entry through LTCCs in DA neurons of the SNc 

elevate cellular vulnerability to toxins used to create animal models of Parkinson’s 

disease (Chan et al., 2007). In these models, blockage of CaV1.3 channels underlies 

the neuroprotective therapeutic effects of DHP antagonist. Hence, it would be 

interesting to investigate the biophysical impact of RNA editing of CaV1.3 IQ motif 

on the SNc DA neurons. Therefore, we propose to identify the important structure 
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determinant such as the ECS, and to generate transgenic ECS-/- mice with abolished 

editing specifically in the IQ motif of CaV1.3. This would allow us to investigate the 

impact of non-editing in CaV1.3 IQ motif on neurophysiology.  

In this study, we have examined alternative splicing of the CaV1.3 C-terminus in 

the whole brain. We know that CaV1.3 channels could have diverse roles in different 

brain regions, such as modulation of fear, anxiety and depression (McKinney and 

Murphy, 2006; Busquet et al., 2010) which are often associated with the hippocampus 

and amygdala. It would be prudent to identify the expression patterns of CaV1.3 splice 

variants in specific brain regions, which could drastically affect the channel properties 

and thus, the firing patterns of neurons in this regions.  
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