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Abstract

Large scale molecular dynamics (MD) simulations are employed to study faceted

grain boundaries’ defect structures and dynamics in face-centered cubic (FCC)

crystalline metals. In particular, two problems: (1) the plastic deformation of

nanotwinned FCC metals; (2) the finite length grain boundary faceting are investi-

gated in detail. The plastic deformation of nanotwinned copper is studied through

MD simulations employing an embedded-atom method (EAM) potential. Two

dislocation-twin interaction mechanisms that explain the observation of both ul-

trahigh strength and ductility in nanotwinned FCC metals are found. First, the

interaction of a 60◦ dislocation with a twin boundary leads to the formation of a

{001}〈110〉 Lomer dislocation which, in turn, dissociates into Shockley, stair-rod

and Frank partial dislocations. Second, the interaction of a 30◦ Shockley partial

dislocation with a twin boundary generates three new Shockley partials during

twin-mediated slip transfer. The generation of a high-density of Shockley partial

dislocations on several different slip systems contributes to the observed ultrahigh

ductility while the formation of sessile stair-rod and Frank partial dislocations (to-

gether with the presence of the twin boundaries themselves) explain observations

of ultrahigh strength.

Furthermore, polycrystalline MD simulations show that the plastic deformation

of nanotwinned copper is initiated by the nucleations of partial dislocation at

grain boundary triple junctions. Both dislocations crossing twin boundaries and

dislocation-induced twin migrations are observed in the simulations. For the dis-

location crossing mechanism, 60◦ dislocations frequently cross slip onto {001}
planes in twin grains and form Lomer dislocations, constituting the dominant

crossing mechanism. We further examine the effect of twin spacing on this domi-

nant Lomer dislocation mechanism through a series of specifically-designed nan-

otwinned copper samples over a wide range of twin spacing. The simulations show



that a transition in the dominant dislocation mechanism occurs at a small critical

twin spacing. While at large twin spacing, cross-slip and dissociation of the Lomer

dislocations create dislocation locks which restrict and block dislocation motion

and thus enhance strength. At twin spacing below the critical size, cross-slip does

not occur, steps on the twin boundaries form and deformation is much more pla-

nar. These twin steps can migrate and serve as dislocation nucleation sites, thus

softening the material. Based on these mechanistic observations, a simple, analyt-

ical model for the critical twin spacing is proposed and the predicted critical twin

spacing is shown to be in excellent agreement both with respect to the atomistic

simulations and experimental observation. This suggests the above dislocation

mechanism transition is a source of the observed transition in nanotwinned copper

strength.

For the problem of finite length grain boundary faceting, both symmetrical and

asymmetrical aluminium grain boundary faceting are studied with MD simulations

employing two EAM potentials. Facets formation, coarsening, reversible phase

transition of Σ3{110} boundary into Σ3{112} twin and vice versa are demon-

strated in the simulations and the results are are shown to be consistent with ear-

lier experimental study and theoretical model. The Σ11{002}1/{667}2 boundary

shows faceting into {225}1/{441}2 and {667}1/{001}2 boundaries and coarsens

with a slower rate when compared to Σ3{112} facets. However, facets formed by

{111}1/{112}2 and {001}1/{110}2 boundaries from a {116}1/{662}2 bound-

ary is stable against finite temperature annealing. In the above faceted bound-

ary, elastic strain energy induced by atomic mismatch across the boundary cre-

ates barriers to facet coarsening. Grain boundary tension is too small to stabilize

the finite length faceting in both Σ3{112} twin and asymmetrical {111}1/{112}2
and {001}1/{110}2 facets. The observed finite facet sizes are dictated by facet

coarsening kinetics which can be strongly retarded by deep local energy minima

associated with atomic matching across the boundary.
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Chapter 1

Introduction

Research in materials science can be broadly classified into two categories: (1) experimen-

tal study; (2) theoretical modelling. Apart from the above two conventional approaches, a

new method, computational modelling, has emerged together with a half-century relentless

advance in integrated circuits technology [3]. Computational methods, varying from the scale-

independent finite element analysis to first principle electronic structure calculation, have been

developed to study problems across a wide range of spatial and temporal scales in materi-

als science and engineering. Computational simulations, or computational experiments, often

have great advantages over conventional methods. They provide precise controls on system

variables, easy tests of extreme conditions and in some cases, offer both atomistic spatial and

temporal resolutions simultaneously which are usually difficult to access in experiments. Com-

putational methods including continuum modelling and atomistic simulations are becoming an

indispensable approach in many fields of materials research. With no exception, we made an

extensive use of computer simulations for the study of defects in crystalline materials in this

Thesis.

The field of materials research is broad in terms of material type, structure and function.

Among those materials used in our daily life, crystalline materials including metals and semi-

conductors are of exceptional importance. The study of crystalline materials has two parts: (1)

perfect crystals; (2) imperfect crystals [4]. The former studies crystals where atoms are sitting

on regular repeating sites and all atoms are well coordinated. Various material properties, such

as quantum states, lattice structures, elastic properties, etc., can be readily obtained via first

principle calculations. The latter, the study of imperfect crystals, is associated with crystalline

defects of various dimensions. It is well recognized that crystalline materials’ properties are

1



Introduction

often strongly influenced by their underlying microstructures, which in turn are characterized

by crystalline defects. For example, in semiconducting materials, the dopant concentration

governs these materials’ conductivity. One-dimensional line defects, or dislocations, play a

deterministic role in the plastic deformation of many metals. Higher dimensional defects like

interfacial boundaries control materials’ microstructure evolution and their subsequent prop-

erties. In general, the study of defects becomes more difficult with increasing dimensionality.

It becomes more complicated when material properties are determined by the interactions of

the various defects of different dimensions. Such examples include interfacial strengthening

in alloys and multi-layered composites where interactions between dislocations and interfaces

determine the various mechanical properties of these materials.

While crystalline defects have many forms and properties, a generalized study or theory

for all of them is difficult. Among the various types of defect, grain boundaries, being 2-

dimensional defects, have one of the most complex defect structures. A grain boundary has 5

macroscopic degrees of freedom (3 relating to the orientation of the crystallographic axes of

one grain to those of the other and 2 to the inclination of the boundary plane) and 3 microscopic

degrees of freedom (corresponding to rigid body translations of one grain relative to the other).

The latter are not usually specified since nature is free to choose the translation state that, for

example, corresponds to the minimum free energy. These eight parameters are, however, the

minimum number of degrees of freedom. There are, of course, many more microscopic degrees

of freedom, corresponding to the arrangement of the atoms within the boundary plane. These

too may be found by the minimization of the free energy of the system with respect to atomic

coordinates (and composition) with the five macroscopic degrees of freedom specified. Given

the above large number of degrees of freedom in specifying a grain boundary, it is without doubt

that our understanding of grain boundaries and their contribution towards material properties

remains incomplete and various important issues concerning grain boundaries remain open.

Although the types of grain boundaries are enormous, there are some grain boundaries

which are of special interest. Faceted grain boundaries are such examples due to their fre-

quent occurrence in crystalline materials. The most special type of faceted boundary is the

twin boundary. Various types of twin boundaries including deformation twins, transformation

twins and growth twins with twin sizes ranging from a few hundred to a few nanometers are

observed in metallic systems [5–20]. Most notably, pure polycrystalline Cu with a high density

of growth nanotwins exhibits a combination of attractive properties, such as simultaneous ul-

trahigh strength, ductility, electric conductivity and strain hardening [12, 13]. Currently, there
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is a considerable research effort in understanding and designing nanotwinned metals for future

engineering applications.

Twins are very special faceted boundaries. Faceted of grain boundaries with more general

structures have also been observed experimentally on the micrometer scale in nominally pure

Zn [21], Au [22–24], Al [23], Cu [25], Ag [26], and Ni [27], as well as in alloys such as Cu-

Bi [28]. Nanometer scale grain boundary facets have been observed in Au [24, 29], Al [30],

α-Al2O3 [31], SrTiO3 [32], and BaTiO3 [33]. While in many cases, faceting appears to be

irregular, there are several observations of nano-faceting (also described as fine hill and valley

structures), for which the facet lengths are nearly constant. Such examples include Al [34],

Au [29], and α-Al2O3 [31].

In this Thesis, we focus on studying faceted grain boundaries in face-centered cubic (FCC)

metals. In particular, two problems are examined in detail. The first problem is on the plastic

deformation of FCC Cu with coherent growth nanotwins and the second is on the length scales

of grain boundary faceting. Metallic systems grown by electro-deposition, such as Pd [35],

Cd [35], Ag [36], Au [37], Cu [12], or sputtering, such as Cu [11], Cu/304 stainless steel [38],

tend to contain a high density of growth nanotwins. These resulting materials often exhibit

unusual, yet attractive properties such as ultrahigh strength, ductility, strain hardening and con-

ductivity. While it is evident that the growth nanotwins have a dominant role in the plastic de-

formation of these metals, the atomistic mechanisms operating during plastic deformations and

hence their actual contributions towards the observed material properties are unclear. For the

latter problem concerning more generally faceted boundaries, the factors determining facets

length scale are unclear and have attracted many research effort from both experimentalists

and theoreticians throughout the last few decades. We select these two problems because of

their importance in the current materials research and their shared boundary structure (both are

faceted). We employ molecular dynamics (MD) simulations together with continuum elastic

theory in this study. While MD simulations provide the necessary spatial and temporal resolu-

tion for those defects and their evolution in crystalline materials, continuum theory allows us

to extrapolate to more general cases and predict material properties beyond simulation results.

In the following, we introduce the two classes of problems together with a brief summary of

the main findings of this work.
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1.1 Plastic Deformation of Nanotwinned FCC Metals

1.1.1 Problem Statement

Producing materials with optimized properties has been a constant goal of materials research

and engineering. For engineering materials such as metals and their alloys, increasing their

strength and ductility is a critical concern. For metallic materials, strengthening is usually

achieved through microstructure manipulation. Most commonly, the microstructural length

scales used to manipulate the mechanical properties of metals are associated with particle (pre-

cipitates, second phase particles,...) or interface (grain boundaries, twins,...) separation. Unfor-

tunately, increases in alloy strength through grain refinement at microstructural length scales

are usually accompanied by a concomitant decrease in ductility. It is clear that refinement

only at microstructural length scales is insufficient to optimize these two competing mechani-

cal properties and this often poses a dilemma to the materials science community in materials

design.

Recent advances in growth techniques have made it possible to refine both microstructure

length scales and characters, thus offering opportunities for optimizing material properties pre-

viously unachievable. One particular example is pure metals with coherent growth nanotwins

which are special boundaries with a faceted interface. Twins are especially good for controlling

strength because of their extraordinary stability relative to other microstructural features [10].

The small microstructual length scales inherent in nanomaterials open the door to the devel-

opment of ultra-high-strength metals [10–20]. Interestingly, some nanotwinned metals para-

doxically exhibit both high strength and high ductility; e.g., in Cu [11–14] and Co [15]. Most

notably, Lu et al. [12] synthesized ultra-fine pure crystalline Cu containing a high density of

growth twins via a pulsed electrodeposition technique. The resulting material is unusual in that

it simultaneously exhibits high yield strength, high ductility, high strain-rate sensitivity and

high electric conductivity [10, 39, 40].

High resolution transmission electron microscopy (TEM) studies of those nanotwinned

metal samples revealed dislocation pile-ups at twin boundaries [10], suggesting that the en-

hanced mechanical strength is associated with the effectiveness of twin boundaries as barriers

to dislocation motion. Jin et al. [18, 20] studied the mechanisms of interaction between dis-

locations and twins in different FCC metals. While they found that these interactions can

generate dislocation locks, the detailed interaction mechanisms are both material- and loading
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condition-dependent. Zhu et al. [19] showed that twin boundaries are deep traps for screw dis-

locations and suggested that twin boundary mediated slip transfer is the rate-controlling mecha-

nism for the observed increased strain rate sensitivity with increasing twin density. All of these

studies indicate the ultrahigh strength of nanotwinned crystalline metals is related to nanotwin

induced interface strengthening. The increase in strength with decreasing grain size/twin spac-

ing is based upon the interfaces serving as barriers to dislocation migration, resulting (in some

cases) in dislocation pile-ups at the interfaces; this is the so-called Hall-Petch effect [41, 42] in

which the yield stress σy scales with the grain/twin size d as σy = σ0
y + A/

√
d, where σ0

y and

A are constants. While it is clear that nanotwins provide strong barriers to dislocation motions

and enhance the resulting materials’ strength, the origin of the observed ultrahigh ductility and

the detailed atomistic mechanisms by which twin boundaries lead to strain hardening are not

well understood.

In addition to the ultrahigh strength and ductility, Lu et al. [43] also demonstrated that in

pure, nanotwinned Cu, the yield strength exhibits a maximum strength at a small, finite twin

spacing. They found that while the strength goes through a maximum at a critical twin spac-

ing λc, the strain hardening and ductility increase monotonically with decreasing twin spacing.

Earlier simulations [44, 45] were unable to reproduce this transition in strengthening behavior

at twin spacings below the experimentally observed critical twin spacing λc ∼ 15 nm. The

existence of a maximum in the strength, with no minimum in the ductility, suggests the ex-

istence of a heretofore unrecognized length scale in the classical strength of metals picture.

Understanding on the origin of the above observed ultrahigh ductility and the atomistic mecha-

nisms by which twin boundaries lead to strain hardening and strength transition is essential for

better engineering this class of materials. Hence in this work, we employ MD simulations to-

gether with continuum elastic theory to examine the following questions related to this unique

microstructure:

1. What are the dislocation-twin interaction mechanisms responsible for the experimentally

observed simultaneous ultrahigh strength and ductility?

2. What governs the strength transition at the small, critical twin spacing?

1.1.2 Main Findings

Through large scale MD simulations employing an embedded-atom method (EAM) [46] po-

tential, the plastic deformation of nanotwinned Cu are studied in detail. Based upon these
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simulations, the sequence of dislocation events associated with the initiation of plastic de-

formation, dislocation interactions with twin boundaries, dislocation multiplications and de-

formation debris formations are revealed. Two new dislocation mechanisms that explain the

observation of both ultrahigh strength and ductility found in this class of microstructures are

discovered. These two mechanisms are: (1) the interaction of a 60◦ dislocation with a twin

boundary that leads to the formation of a {001}〈110〉 Lomer dislocation which, in turn, dis-

sociates into Shockley, stair-rod and Frank partial dislocations; (2) the interaction of a 30◦

Shockley partial dislocation with a twin boundary which generates three new Shockley partials

during twin-mediated slip transfer. The generation of a high-density of Shockley partial dis-

locations on several different slip systems contributes to the observed ultrahigh ductility while

the formation of sessile stair-rod and Frank partial dislocations (together with the presence of

the twin boundaries themselves) explain observations of ultrahigh strength.

In order to study the strength transition as a function of twin spacings, MD simulations

of the plastic deformation of nanotwinned polycrystalline Cu are performed. The simulations

show that the materials’ plastic deformation is initiated by partial dislocation nucleations at

grain boundary triple junctions. Both dislocations crossing twin boundaries and dislocation-

induced twin migrations are observed in the simulations. For the dislocation crossing mecha-

nism, 60◦ dislocations frequently cross slip onto {001} planes in twin grains and form Lomer

dislocations, constituting the dominant crossing mechanism. We further examine the effect of

twin spacing on this dominant Lomer dislocation mechanism through a series of specifically-

designed nanotwinned Cu samples over a wide range of twin spacing. A transition in the

dominant dislocation mechanism occurring at a small critical twin spacing is found. While

at large twin spacing, cross-slip and dissociation of the Lomer dislocations create dislocation

locks which restrict and block dislocation motion and thus enhance strength, at twin spacing

below the critical size, cross-slip does not occur, steps on the twin boundaries form and defor-

mation is much more planar. These twin steps can migrate and serve as dislocation nucleation

sites, thus softening the material. Based on these mechanistic observations, a simple, analytical

model for the critical twin spacing based on dislocation line tension is proposed and it is shown

that the predicted critical twin spacing is in excellent agreement both with respect to the atom-

istic simulations and experimental observation. We suggest the above dislocation mechanism

transition is a source of the observed transition in nanotwinned Cu strength.
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1.2 Grain Boundary Finite Length Faceting

1.2.1 Problem Statement

The coherent growth twin boundaries as discussed in Section. 1.1 are very special types of

faceted grain boundary. They exhibit extraordinary stability and thus enhance the materials’

properties. There are many other, more general types of faceted grain boundaries that exhibit

a diverse range of faceting patterns, regularity and facet lengths. Some of them also undergo

phase transitions at different temperatures. One of the central questions concerning the grain

boundary finite length faceting is whether facet size and faceting patterns are determined by

thermodynamic equilibrium considerations or kinetics [30]. Herring [47] provided the ther-

modynamic condition for minimizing the grain boundary free energy with respect to boundary

inclination but did not predict facet size, since the only contribution to the boundary thermo-

dynamics he considered is the grain boundary energy itself (energy per unit area). Several

subsequent analyses suggest that facet length scales are determined thermodynamically by the

energy of facet junctions (one-dimensional defects) and the interactions between them. Sutton

and Balluffi [48] argued that facet lengths are determined by the competition between the dis-

location character of the junctions and the line forces arising from the different interface stress

tensors of the two forming facets. Hamilton et al. [49] challenged this assertion (through den-

sity functional theory calculations, embedded-atom method simulations and continuum elas-

ticity analyses) by showing that the grain boundary stress is much too small to stabilize the

observed finite facet length of Σ3{112} type facets in a Σ3{110} grain boundary in Al. It is

dangerous, however, to draw general conclusions from such a study since it focused only on

this special facet. It is also unclear whether such observations can be extrapolated to more

general grain boundaries where faceting is observed. Hence in the second part of this work, we

address the following central question:

What controls the length scales of these generally faceted grain boundaries?

1.2.2 Main Findings

We perform MD simulations for a set of generally faceted grain boundaries and study their sta-

bility, phase transition and length scales. We focus on FCC Al, both because grain boundaries

in Al have been widely studied via experiment and simulation and because grain boundary
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faceting has been observed in this system. Some earlier results [49] are generalized by em-

ploying two different interatomic potentials for Al, simulating very large grain boundaries and

considering two asymmetric grain boundaries {002}1/{667}2 and {116}1/{662}2, in addition

to the symmetric Σ3{110} grain boundary examined by Hamilton et al. [49]. We also cycle the

boundaries over a wide range of temperatures in order to allow thermally activated coarsening

and, in some cases, to observe the facet-defaceting transition. While the present results confirm

the presence of the Σ3{110} boundary faceting behavior reported earlier [49], we demonstrate

that this is a very special case. In the more general case of asymmetric boundaries, facet coars-

ening either does not occur or is extraordinarily sluggish and the facet length scale is dictated

by atomic matching that necessarily introduces extremely large barriers to facet migration - a

necessary step in facet coarsening.

1.3 Outline of the Thesis

The Thesis is organized into Chapters by the respective problem investigation. Chapter 2 gives

a brief review of basic notations, theory and simulation methods used in this Thesis. We present

this immediately following this introduction so that we can standardize notations, naming con-

ventions and basic theories to facilitate the communication with readers of all backgrounds.

With that, a review of the earlier works on interfacial strengthening and in particular, Cu with

a high density of growth nanotwins is postponed to Chapter 3. Chapter 4 focuses on MD sim-

ulations on the plastic deformation of nanotwinned Cu and describes detailed dislocation twin

interaction mechanisms. Chapter 5 studies the dislocation mechanism transition as a func-

tion of twin spacing where both MD simulations on polycrystalline Cu sample and samples

with specifically designed twin spacing are presented. Chapter 6 studies the problem of grain

boundaries finite length faceting. This Thesis is concluded in Chapter 7.
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Chapter 2

Theory and Simulation Methods

2.1 Mathematical Notations

A standard notation gives much convenience in conveying the underlying theory. We adopt the

standard notation of vectors and tensors that is described in this section. In this Thesis, vectors

are written in lower case bold fonts, such as

a, b, c, etc. (2.1)

and higher order tensors are written in capital case bold fonts, such as

A, B, C, etc. (2.2)

The vector dot product, cross product and tensor product are written respectively as:

a · b, a× b, ab (2.3)

There is an exception to the above convention when we describe the FCC dislocation slip

systems using the Thompson’s tetrahedron (see Section. 2.2.2.3).

We adopt the summation convention in basis expansions of vectors and tensors, i.e., sum-

mation over a repeated index is implied if no exception is given. For example, the vector can

be written in basis notation as

x = xiei = x1e1 + x2e2 + x3e3 (2.4)
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2.2 Crystallography

and second order tensors are written as

A = Aijeiej (2.5)

It is usually assumed that the summation indices range from 1 to n, where n is the dimension

of the space. Exceptions to the summation rule are made when the indices are enclosed in

parentheses, i.e.,

a(i)x(i) (2.6)

No summation is implied for the above term.

We also use the Kronecker delta tensor and permutation tensor as defined below

δij = δji = δij =

 1 if i = j

0 if i 6= j
(2.7)

eijk = eijk =


1 if ijk is an even permutation of 123

−1 if ijk is an odd permutation of 123

0 otherwise

(2.8)

2.2 Crystallography

2.2.1 Crystal Structures

The structure of a perfect crystal can be described by a combination of lattice and basis, where

lattice is an arrangement of mathematical points with a regular periodic pattern in 2 or 3 di-

mensions, basis is a particle or object at lattice points.

Crystal = Lattice+Basis (2.9)

Lattices can be categorized according to their symmetry properties. Two lattices are different

from each other if they possess different symmetry properties. In 2 and 3 dimensions, there

are a total of 5 and 14 different lattices (see Ref. [50–53] for details). These lattices are called

Bravais lattices and are named after Auguste Bravais for first proving these exact numbers [53].

A Bravais lattice can be represented by a linear combination of its smallest repeating vec-

tors ci, known as primitive vectors. The position of any lattice point a can be expressed as a
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linear combination of ci, i.e.,

a = nici (2.10)

These primitive vectors form a parallelepiped known as the primitive cell. The volume of the

primitive cell is

Vc = c1 · (c2 × c3) (2.11)

Primitive vectors can be expressed in some cartesian coordinates as

ci = Ajiej (2.12)

where ei · ei = δij . Hence the lattice point in Eqn. 2.10 can be written as

a = niAjiej (2.13)

In Eqn. 2.10, lattice points with two ni same lie on same lines and those sharing one ni lie on

same planes.

Three additional vectors can be defined by taking the cross product of the primitive vectors

(c1, c2, c3) in permutation as

c1 =
c2 × c3

c1 · (c2 × c3)
=
c2 × c3

Vc
(2.14a)

c2 =
c3 × c1

c2 · (c3 × c1)
=
c3 × c1

Vc
(2.14b)

c3 =
c1 × c2

c3 · (c1 × c2)
=
c1 × c2

Vc
(2.14c)

where the scaling factor Vc is chosen so that

cj · ci = δij (2.15)

These three vectors form a parallelepiped with volume

V c = c1 ·
(
c2 × c3

)
=

1
Vc

(2.16)
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Eqn. 2.14 can also be written as

c1 =
c2 × c3

V c
(2.17a)

c2 =
c3 × c1

V c
(2.17b)

c3 =
c1 × c2

V c
(2.17c)

The lattice points in Eqn. 2.10 can also be expressed by taking the three new vectors (ci) as a

set of primitive vectors, thus forming another lattice known as the reciprocal lattice, i.e.,

a = nici = njc
j (2.18)

where cj are the reciprocal primitive vectors. Combining the above Equation with Eqn. 2.14,

the following can be shown

ni = a · ci = njcj · ci = njGji (2.19a)

ni = a · ci = njc
j · ci = njG

ji (2.19b)

where

Gji = cj · ci (2.20a)

Gji = cj · ci (2.20b)

are called the metric and reciprocal metric tensor, respectively. With the above definition of

metric and reciprocal metric tensor, the modulus of the vector a is

|a| =
√
a · a =

√
(nici) · (njcj) =

√
ninjci · cj =

√
ninjGij (2.21)

or

|a| =
√
a · a =

√
(nici) · (njcj) =

√
ninjci · cj =

√
ninjGij (2.22)

In the case of an orthonormal basis ei where

ei · ej = δij (2.23)
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its reciprocal basis is itself, i.e.,

ei = ei (2.24)

Hence vectors and tensors expanded in an orthonormal basis can be written in lower subscripts

only, i.e.,

x = f iei = fje
j , f i = fi (2.25)

and

Gij = Gij = δij = δij (2.26)

The modulus of the vector a = fiei when expressed in the orthonormal basis is thus simplified

to

|a| =
√
a · a =

√
(f iei) · (f jej) =

√
f if jei · ej =

√
f if jGij =

√
f if i (2.27)

A plane can be specified by its intercepts (1/h1, 1/h2, 1/h3) with the axes formed by those

primitive vectors. The normal of that plane can be found as

m =
(
c1

h1
− c2

h2

)
×
(
c2

h2
− c3

h3

)
=
c1 × c2

h1h2
− c

1 × c3

h1h3
+
c2 × c3

h2h3

=
Vc
h1h2

c3 +
Vc
h1h3

c2 +
Vc
h2h3

c1

=
Vc

h1h2h3

(
h1c

1 + h2c
2 + h3c

3
)

(2.28)

Hence the normal to the above plane can be written as

m = h = h1c
1 + h2c

2 + h3c
3 (2.29)

The triad of numbers (h1h2h3) is used to represent a plane orthogonal to the direction (h1h2h3)

in the reciprocal basis. These numbers are known as the Miller indices for a plane. Indices

written between curly brackets {h1h2h3} denote a family of equivalent planes (by lattice sym-

metry) to that by (h1h2h3). While plane normals are always expressed in the reciprocal basis in

the Miller indices, directions are always expressed in the direct basis as [v1v2v3], or 〈v1v2v3〉.
The angular brackets denote directions equivalent to [v1v2v3] by lattice symmetry. We adopt

the above Miller indices when describing the crystallographic planes and directions throughout

this Thesis.
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The equation for all planes with the normal h defined in Eqn. 2.29 is

x · h− C = 0 (2.30)

When x are lattice points, the above equation is written as

a · h− C = 0 (2.31)

where C takes integer values. C = 0 and C = 1 represent two such closely spaced planes and

their interplanar distance is

d =
h · c1

h1

|h|
=

1
|h|

=
1√

hihjGij
(2.32)

There may be one or more atoms in a basis for each lattice point. The positions of those

atoms with respect to that lattice point can be specified by basis vectors

ξn = ξinci (2.33)

where ξin are usually chosen such that |ξin| ≤ 1
2 . For crystals with only one atom at a basis,

the lattice point can always be conveniently chosen such that |ξi1| = 0. Many metals and alloys

have only one atom per lattice point. These crystals are completely defined by lattice points

alone. Since we focus on studying FCC metals, only the FCC lattice will be presented in the

following section (Refer to Ref. [50–53] for a complete description of crystallography).

2.2.2 Face Centered Cubic Lattice

Figure 2.1 (a) shows a unit cell of FCC lattice where the edges of the cube form the cartesian

coordinate axes. The FCC lattice has its lattice points at the corners and face centers of the

cubic unit cell. The length of the cube is denoted as the lattice parameter a and is often taken

as the unit length in the cartesian coordinate. If we denote the unit vectors along the three axes

of the cartesian coordinates as ei, we have

ei · ej = δij (2.34a)

ei × ej = εijkek (2.34b)
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e1
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〉
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(a) (b)

Figure 2.1: (a) The unit cell of a face-centered cubic (FCC) Bravais lattice; (b) FCC lattice
viewed along the 〈111〉 direction. The arrows denote vectors of 1/6〈112〉 and represent the
relative translational positions of each {111} atom layers. In both figures, atoms are colored
based on their translational positions in the {111} planes, i.e., A, B, C layers are in orange,
cyan and magenta.

The primitive vectors for the FCC lattice can be written in the orthonormal basis ei as

c1 =
1
2
e2 +

1
2
e3 (2.35a)

c2 =
1
2
e1 +

1
2
e3 (2.35b)

c3 =
1
2
e1 +

1
2
e2 (2.35c)

The volume of the primitive cell is

Vc = c1 · (c2 × c3) =
1
4
a2 (2.36)

and the reciprocal primitive vectors of the FCC lattice are

c1 =
c2 × c3

Vc
= −e1 + e2 + e3 (2.37a)

c2 =
c3 × c1

Vc
= e1 − e2 + e3 (2.37b)

c3 =
c1 × c2

Vc
= e1 + e2 − e3 (2.37c)
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It is easy to recognize that the above reciprocal primitive vectors of FCC lattice form a body-

centered cubic (BCC) lattice. The volume of the reciprocal primitive cell is

V c = c1 ·
(
c2 × c3

)
= 4/a2 (2.38)

The FCC lattice points expressed as a linear combination of the primitive vectors

a = nici (2.39)

can now be written as

a = n1

(
1
2
e2 +

1
2
e3

)
+ n2

(
1
2
e1 +

1
2
e3

)
+ n3

(
1
2
e1 +

1
2
e2

)
=

1
2
(
n2 + n3

)
e1 +

1
2
(
n1 + n3

)
e2 +

1
2
(
n1 + n2

)
e3

= f iei

(2.40)

where f i are multiples of 1/2. Given the great convenience by the orthonormal basis in cal-

culating vector quantities, vectors in FCC lattices are often expressed directly in the unit cell

basis ei rather than in the primitive vectors ci. In the remaining of this Thesis, FCC lattice

vectors are expressed in the orthonormal ei basis unless otherwise noted. As an example, a

direction written as 1/2[110] refers to the unit cell basis as a = 1/2 (e1 + e2 + 0e3).

The unique features in the FCC lattice are best visualized when the lattice is viewed along

its 〈111〉 direction as shown in Fig 2.1 (b), where a single atom is placed at each lattice point.

The close-packed {111} atom layers are stacked in a sequence of ABCABCABC, where A,

B, and C layers are named based on their translational position in those {111} planes. This

is one of the methods to pack spheres in a regular lattice such that the resulting density is

highest. In the figure, atoms on the A, B, and C layers are colored orange, cyan and magenta,

respectively. Each of the atoms has 12 nearest neighbouring atoms located at
√

2/2a apart as

shown in Fig. 2.2. This number is defined as the lattice’s coordination number N .

FCC lattice has 9 symmetry planes: 3 planes with the cubic unit cell unit vectors as normals

(i.e., {100} planes) and 6 planes whose normals make±π/4 with the unit cell unit vectors (i.e.,

{110} planes). FCC lattice also has an inversion symmetry. This symmetry property can be

used in differentiating the FCC lattice from other lattices, such as the hexagonal close-packed

(HCP) lattice. It is worth to discuss a bit further the HCP lattice as some FCC materials (Ag,
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Figure 2.2: FCC lattice nearest neighbouring atoms. Atom denoted by numbers (1-12) is the
nearest neighbouring atoms to the atom denoted by ‘0’. The FCC lattice is viewed along the
〈111〉 direction.

Au, Cu, etc.) frequently adopt HCP structure locally. In the HCP lattice, the close-packed

atom layers are stacked in the sequence of ABABAB. This is another way of packing spheres

to achieve highest density packing. The coordination number N for materials adopting HCP

lattice is 12, the same as that of FCC lattice. However, HCP lattice does not have an inversion

symmetry. In FCC and HCP materials, the nearest neighbouring atoms are stacked in the same

way whereas the next nearest neighbouring atoms are stacked differently. Hence FCC materials

adopting an HCP lattice will incur an energy cost, called the stacking fault energy. Materials

with a low stacking fault energy, such as Cu, Au, Ag, etc., often contain a high density of

stacking faults. Those growth nanotwins in Cu, the main focus of this study, are also a form of

stacking fault. In the following, a detailed illustration on the stacking fault in FCC materials is

given for its relevance and importance in the current study.

2.2.2.1 Stacking Faults in Face Centered Cubic Lattice

The stacking sequence ofABCABCABC corresponds to the lowest energy state for materials

having a FCC lattice. When this ideal stacking sequence is altered, a stacking fault is formed

with an additional energy rise known as the stacking fault energy. There are various ways to

alter the stacking sequence and thus create different types of stacking faults. Intrinsic stacking

faults are formed when a layer of atoms are missing such that the stacking sequence becomes

ABCA|CABC. This low energy stacking fault is usually generated by slipping on {111}
planes. Figure 2.3 illustrates one possible way to produce such an intrinsic stacking fault. The
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Figure 2.3: Formation of an FCC intrinsic stacking fault by slipping on a {111} plane. Atoms
are colored according to their ABC stacking sequence with A layer in orange, B layer in blue
and C layer in magenta. (a) Perfect FCC lattice viewed along the 〈110〉 direction. (b) FCC
lattice with an intrinsic stacking fault by slipping of atoms on a {111} plane. (c) The slipping
vector viewed alone the 〈111〉 direction. (d) Change of {111} stacking sequence by the slipping
process.

slipping process is completed by displacing all atoms on A layer and below with a vector of

1/6〈112〉. See Fig. 2.3 (d) for the change of stacking sequence as a result of the above slip. The

above intrinsic stacking fault can be annihilated by another slip of 1/6〈112〉 on the previous

{111} plane as shown in Fig. 2.4.

As the layers of atoms are displaced by 1/6〈112〉, the relative positions of the atoms near

the slip plane vary and so does the energy rise associated with the above displacement. The

maximum value of the energy rise in this process is called the unstable stacking fault energy

γusf while the energy value corresponding to the displacment of 1/6〈112〉 is known as the

stable stacking fault energy, or simply stacking fault energy γssf . The plot of the above energy
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Figure 2.4: Annihilation of an intrinsic stacking fault by slip on {111} plane in FCC lattice.
Atoms are colored according to their ABC stacking sequence with A layer in orange, B layer
in blue and C layer in magenta. (a) FCC lattice with an intrinsic stacking fault by slipping of
atoms on a {111} plane. (b) Clearing an intrinsic stacking fault by a second slipping of atoms
on a {111} plane. (c) The slipping vector viewed alone the 〈111〉 direction. (d) Change of
{111} stacking sequence by the slipping process.
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Figure 2.5: Formation of an FCC extrinsic stacking fault by slipping on a {111} plane. Atoms
are colored according to their ABC stacking sequence with A layer in orange, B layer in blue
and C layer in magenta. (a) FCC lattice with an intrinsic stacking fault by slipping of atoms on
a {111} plane. (b) FCC lattice with an extrinsic stacking fault by second slipping of atoms on
a {111} plane. (c) The slipping vector viewed alone the 〈111〉 direction. (d) Change of {111}
stacking sequence by the slipping process.

rise with respect to the displacement along the 1/6〈112〉 direction is known as the generalized

planar fault (GPF) energy curve [54, 55], which can be used as a measure to the ease of slipping.

Extrinsic stacking faults are formed when a layer of atoms are added such that the stacking

sequence becomes, for example, ABCABC{B}ABC. Similar to the generation of intrinsic

stacking faults, extrinsic stacking faults are usually generated by a slipping process on {111}
planes. Fig. 2.5 illustrates one possible process which generates an extrinsic stacking fault.

The above intrinsic and extrinsic stacking faults are the most commonly observed stacking

faults in FCC materials. In addition, stacking faults can also be formed by arranging the stack-

ing sequence in mirror symmetry about one of the {111} planes, i.e., inABCAB{C}BACBA,
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Figure 2.6: Formation of an FCC twin by slipping on nearest neighbouring {111} planes.
Atoms are colored according to their ABC stacking sequence with A layer in orange, B layer
in blue and C layer in magenta. (a) FCC lattice with an extrinsic stacking fault by slipping
of atoms on a {111} plane. (b) FCC lattice with a twin by continuous slipping of atoms on
nearest neighbouring {111} planes. (c) The slipping vector viewed alone the 〈111〉 direction.
(d) Change of {111} stacking sequence by the slipping process.

thus forming a twin relation. The energy associated with this type of stacking fault is about

half of that of intrinsic or extrinsic stacking faults. As illustrated in Fig. 2.6, slipping layer

by layer with the same displacement vector can generate such a stacking sequence. This slip

process also corresponds to the twin boundary migration. Similar to slip processes generating

intrinsic stacking faults, the maximum value of the energy rise in the process of twin boundary

migration is γutm
Stacking fault energy are typically low in metals when compared to that of other planar

defect types. Typical values of stacking fault energy γssf are 20 mJ/m2 for Ag, 32 mJ/m2 for

Au, 45 mJ/m2 for Cu, 125 mJ/m2 for Ni and 140 mJ/m2 for Al (see Ref. [56]). In general, the
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lower the stacking fault energy, the higher the probability of forming such stacking faults. In

practice, the above stacking fault formation processes as illustrated in Fig. 2.3-2.6 are usually

accomplished through gliding of dislocations, which provide an easier path than the above

uniform and homogeneous ones.

2.2.2.2 Dislocations in Face Centered Cubic Lattice

Frenkel [56] estimated the theoretical shearing strength of a single crystal on rational planes to

be

σtheo =
µb

2πd
∼ µ

15
(2.41)

where µ is the shear modulus, b is the length of the smallest lattice translation vector (i.e.,

primitive vector) and d is the interplanar spacing between these rational shearing planes, as

given by Eqn. 2.32. The model by Frenkel, although simple, is important in a few aspects. First,

it gives the upper bound of the strength materials can achieve. It also suggests that crystals are

likely to deform through slipping in the close-packed directions on the close-packed planes

where the required shearing stress is minimal. In the FCC lattice, 1/2〈110〉 is the shortest

lattice translation vector and 〈100〉 is the second shortest. The close-packed planes in FCC

are those {111} planes. Roundy et al. [57] calculated the ideal shear strengths of FCC Al and

Cu at zero temperature using density functional theory within the local density approximation.

Under structural relaxation of all five strain components other than the imposed shear strain,

the shear strengths on {111} planes are 1.85 and 2.65 GPa for Al and Cu (8% - 9% of the shear

moduli), respectively, marching well to Eqn. 2.41.

It is energetically favorable for slipping on these {111} planes in 〈110〉 direction to take

two steps in a “zig-zag” fashion as illustrated in Fig. 2.7. Instead of slipping by 1/2[110], atoms

will first be displaced by 1/6[121̄] and followed by 1/6[211]. The first slip in the above process

creates an intrinsic stacking fault while the second one clears the stacking fault as following

1
2

[110]→ 1
6

[121̄] + intrinsic stacking fault +
1
6

[211] (2.42)

Slip by a lattice translation vector leaves behind a perfect crystal. Other types of slip will

destroy the perfect lattice arrangement.

FCC crystal slip processes do not occur simultaneously and homogeneously on {111}
planes. It is rather completed section by section through the glides of dislocations that dis-

place a small amount of atoms at a time. The lines separating slipped and unslipped regions
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Figure 2.7: Slipping on {111} planes in FCC lattice via a “zig-zag” fashion.

are called dislocation lines. In the above process, lines separating the first and second slip

with slip vectors not being lattice translation vectors are both partial dislocation lines. These

dislocations are called Shockley partial dislocations and are associated with slip vector of type

1/6〈112〉. There is another type of partial dislocation which is common in FCC materials.

It is the Frank partial dislocation which is formed by removing or inserting one close-packed

{111} layer of atoms, thus creating a stacking fault region. The line bounding the stacking

fault plane contains a dislocation of Burgers vector 1/3〈111〉. Shockley partials can move by

gliding on {111} planes while Frank partials can only climb. There are, of course, many other

types of partial dislocations which are mainly formed through reactions of the above funda-

mental dislocations. We will describe them when we introduce the Thompson tetrahedron in

Section. 2.2.2.3.

Dislocations are important as the plastic deformation of crystalline metals is usually ac-

complished through glide of dislocations. Metals can be softened by mobile dislocations and

in some cases, the required shear stress to initiate plastic flow can drop by 2 orders of mag-

nitude from the theoretical shear strength. Hence, the strengthening of crystalline metals is

mainly focused on dislocations, either eliminating or proliferating them. The former creates

dislocation starvation as in metallic nanowires and nanorods, while the latter creates dislocation

forests, as in heavily deformed metals. A third method is by obstructing disloction glide with

particles or interfaces such as nanoscale twin boundaries. We return to this point in Chapter. 3,

where a detailed account on strengthening through interfaces is given.
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Figure 2.8: The FCC Thompson tetrahedron.

2.2.2.3 Slip Systems in Face Centered Cubic Lattice

The close-packed planes and close-packed directions in which dislocations glide form lattices’

slip systems. In the FCC lattice, the close-packed planes and the close-packed directions are

{111} and 〈110〉, forming a total of 12 slip systems in which dislocations tend to glide. Thomp-

son [56] ingeniously represented these slip systems geometrically by using a tetrahedron, now

known as the Thompson tetrahedron, as shown in Fig. 2.8. In the figure, the four vertices of

the tetrahedron are labelled as A, B, C and D. The middle points of the triangles opposite

A, B, C and D are denoted by α, β, γ and δ, respectively. The surfaces of the tetrahedron

in the figure represent {111} slip planes. Plane a is opposite corner A; similarly for the other

three slip planes in the tetrahedron. Dislocation Burgers vectors are indicated by ordered pairs

of points, e.g., Aγ or AD. Figure 2.9 shows the unfolded Thompson tetrahedron with all the

Burgers vectors written explicitly.

It is important to note that Burgers vectors represented by pairs of Roman letters, such as

AB, CD, AC, etc., are lattice translation vectors of 1/2〈110〉. Dislocations having those

as their Burgers vectors are perfect or full dislocations. On the other hand, Burgers vectors

denoted by Roman-Greek, Greek-Greek pairs represent partial dislocations. Roman-Greek

pairs formed by points on the same slip plane, such as Aγ, Bδ, etc., are known as Shockley

partials of 1/6〈112〉 while those formed by points on different slip planes, such as Aα, Bβ,

etc., are Frank partials of 1/3〈111〉. Those Greek-Greek pairs represents stair-rod dislocations

of 1/6〈110〉
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Figure 2.9: The unfolded FCC Thompson tetrahedron.

There are many other partial dislocations which can be formed by interactions of those

fundamental ones. In addition, slip on non-{111} planes, such as {001}, is also observed in

some FCC materials [56].

2.2.3 Polycrystalline

Metallic solids are often composed of many arbitrarily oriented single crystal grains and grain

boundaries which are regions where two or more grains join. The orientation between two

grains can be described by a rotational operation (plus a translation if necessary) which brings

one grain into coincidence with the other. Denoting the lattice of one grain as a = nici and

that of the other as b = f jcj , we have

b = R · a (2.43)

whereR is the rotational tensor. i.e.,

f j = Rjin
i (2.44)
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f j are usually not integer values. It is often convenient to express the new lattice with its own

set of primitive vectors as b = mjpj such that mj are integers. The linear transformation

between the two sets of primitive vectors can be written as a tensor such that

cj = Lijpi (2.45)

Hence

mk = LkjR
j
in
i = Cki n

i (2.46)

where Cki is called the correspondence tensor which combines the operation of both a rotation

and a change of basis.

This rotational operation has 3 degrees of freedom (2 defining the rotational axis unit vector

ρ and 1 defining the rotation angle θ). It is convenient to use the axis-angle rotational operation

to describe the crystallographic relation between two arbitrarily oriented grains. However, this

method often misses the crystallographic structures of the two grains and carries little physical

information on the resulted lattice properties. Other alternative methods which make use of the

particular lattice symmetry have been developed. When used appropriately in some special ori-

entation relations, they provide better descriptions of the two lattices involved. Such methods

include the coincidence site lattice (CSL) [58, 59], O-lattice [60, 61], and displacement shift

complete (DSC) lattice [62]. The detailed descriptions of some special lattices are introduced

when we use them in sebsequent Chapters.

2.2.3.1 Grain Boundary

A grain boundary has 5 macroscopic degrees of freedom (3 relating to the orientation of the

crystallographic axes of one grain to those of the other and 2 to the inclination of the boundary

plane) and 3 microscopic degrees of freedom (corresponding to rigid body translations of one

grain relative to the other). The large number of degrees of freedom results in a large variation

in the types of grain boundaries. There are a few different criteria, such as energy, structure

and geometry, that are used to classify grain boundaries. However, the correlation between the

current grain boundary classification and material properties seems to be weak as suggested by

a recent survey by Olmsted et al. [63, 64]. Nonetheless, certain low energy grain boundaries

play an important role in determining materials’ properties. Such boundaries include low angle

grain boundaries and twin boundaries. Since this Thesis is focused on twin boundaries, we

devote our effort to the description of the crystallographics aspects of twinning below.
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2.2.3.2 Crystallography of Twinning

Two crystals are twins of each other when their crystallographic orientation can be described

either by a rotation of 180◦ about some axis or by a reflection across some plane. This is

the classical definition of twin relation 1. Figure 2.10 illustrates the crystallographic twinning

sici

η
1

uici

K1

η
2

vici

K2

π − 2ϕ

hic
i

wic
i

Figure 2.10: Crystallographic twinning elements: K1 is the composition or twinning plane;
K2 is the invariant plane associated with K1; η1, η2 lie in K1, K2 and are perpendicular to the
line of intersection of K1, K2; η1 is the shear or twinning direction; plane containing η2 and
perpendicular to K2 is the plane of shear.

elements, where the two invariant planes are K1 and K2 and they are known as the twinning

plane and the conjugate or reciprocal twinning plane. The plane defined by the intersection

of K1 and K2 is the shearing plane. The two directions η1 and η2, lying in K1 and K2, are

perpendicular to the line of intersection of K1 and K2. They are known as the twinning and

conjugate or reciprocal twinning direction.

Conventionally, the two twin-related crystals are called matrix (M) and twin (T) crystals,

respectively. The lattices defining the matrix and twin crystals can be written as

a = nici (2.47)

and

aT = kipi (2.48)
1See Ref. [65] for a generalized twinning theory.
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where ci and pi denote the primitive lattice vector for the matrix and twin lattices, respectively.

Since the two crystals have the same type of lattice, differing only in their orientations, the

matrix and twin crystals have the same density and the twinning process does not change the

volume of the crystal. This suggests twining is a pure shear operation (atomic shuffling is

required for materials having more than one atoms at each lattice sites).

Bilby and Crocker [66] studied four classical cases of twinning operations:

1. reflection in K1;

2. rotation of π about the normal to K1;

3. reflection in the plane normal to η1;

4. rotation of π about η1;

The four fundamental twinning operations transform the matrix lattice into the twin lattice and

vice versa. Employing Eqn. A.5 for rotational operation and Eqn. A.11 for reflection operation,

the above four operations transforming the matrix lattice into the twin lattice can be written as

1.

pi = ci − 2
hjc

j

|hjcj |

(
hjc

j

|hjcj |
· ci
)

= ci − 2
(
dhjc

j
) (
dhjc

j · ci
)

= ci − 2
(
dGijhicj

)
(dhi)

= ci − 2dhimjcj

(2.49)

where d is the interplanar spacing of the twinning plane K1, hjcj is the normal of the

twinning plane K1, dGijhicj = mjcj is thus the unit normal of the K1 plane, .

2.

pi = −ci + 2
hjc

j

|hjcj |

(
hjc

j

|hjcj |
· ci
)

= −ci + 2dhimjcj

(2.50)
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3.

pi = ci − 2
ujcj
|ujcj |

(
ujcj
|ujcj |

· ci
)

= ci − 2lujcj
(
lujcj · ci

)
= ci − 2lbiujcj

(2.51)

where ujcj is the vector along η1, l−1 = |ujcj | is the length of the vector ujcj ; bi =

lujcj · ci is the length of unit vector along η1 projected onto the ci.

4.

pi = −c1 + 2
ujcj
|ujcj |

(
ujcj
|ujcj |

· ci
)

= −ci + 2lbiujcj

(2.52)

In lattices with an inversion symmetry, a reflection operation about a plane is equivalent to

a rotational operation of π about the normal of that plane. Hence (1) and (2) are equivalent and

are called Type I twinning. Case (3) and (4) are equivalent and are called Type II twinning.

Type I twinning requiresK1 and η2 to be rational while type II requiresK2 and η1 to be rational.

In most metallic crystals possessing high symmetry and the one studied in this Thesis, all the

twinning elements are rational (known as compound twins) and it is indistinguishable between

type I and type II twins in these materials [67]. This is true for twinning in FCC lattice when

the shearing plane is a plane of symmetry. Hence in the following, we focus on the derivation

of case (1) while the rest can be found in Ref. [65].

Denote a point on the matrix lattice as qici, the twinning operation in case (1) will transform

it into a point in the twin lattice as ripi with

qici − ripi =
(
2qici ·mjcj

)
mjcj (2.53)

or

qici − ri
(
ci − 2dhimjcj

)
=
(
2qici ·mjcj

)
mjcj (2.54)

i.e., (
qi − ri

)
ci =

(
2qici ·mjcj

)
mjcj − 2drihimjcj (2.55)

The reflection operation about the twinning plane K1 also gives

qici + ripi (2.56)
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lying on the twinning plane K1. Using Eqn. 2.49 the above vector can be expressed as

qici + ripi = qici + ri
(
ci − 2dhimjcj

)
= qici + rici − 2drihimjcj

(2.57)

Hence (
qici + rici − 2drihimjcj

)
· hjcj = 0 (2.58)

i.e., (
qici + rici

)
· hjcj − 2drihimjcj · hjcj

=
(
qici + rici

)
· hjcj − 2drihi

(
dhjc

j
)
· hjcj

=
(
qici + rici

)
· hjcj − 2drihi

(
dGijhjci

)
· hjcj

=
(
qici + rici

)
· hjcj − 2rici · hjcj

=
(
qici − rici

)
· hjcj

= 0

(2.59)

Since
(
qici − rici

)
is a lattice point lying on parallel planes to K1 and there are an infinite

number of such lattice points, K1 must be a rational plane.

The reflection operation in case (1) on the matrix lattice a is also equivalent to a homoge-

nous shear of that lattice. The reflection operation gives

(
ripi + qici

)
·mjcj = 0 (2.60)

where qi and ri are integers. The above equation indicates the vector
(
ripi + qici

)
lies on a

plane parallel to the twinning plane K1.

ripi + qici = 2qici − 2
(
qici ·mjcj

)
mjcj

= Huici

(2.61)

where uici is the shearing direction and H = (Gijuiuj)1/2
(
2qici − 2

(
qici ·mjcj

)
mjcj

)
is the amount of shear. Hence in metals and their alloys, twinning are often conveniently

expressed via a homogeneous shear deformation as depicted in Fig. 2.6. This homogeneous
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shear operation can be written in the form of a shearing tensor as

aT = Sa (2.62)

or

f jcj = Snici (2.63)

where

S = δij − suicihjcj = δij − suihjcicj (2.64)

is the tensor defining the homogeneous shear.

2.2.3.3 Classification of Twins

Twins can be divided based on their genesis. In general it can be grouped into three cate-

gories: growth twins, transformation twins and deformation twins [68]. Transformation twins

are formed during phase transformation and deformation twins are resulted from a homoge-

neous shear during plastic deformation [5–8]. Christian and Mahajan [69] provided a compre-

hensive review on deformation twinning in FCC, BCC and HCP metals and alloys. Niewczas

[9] gave a recent review focusing on twin dislocation interactions in FCC crystals. Growth

twins, which is believed to be caused by an accidential departure from equilibrium during

growth, become an important subject in recent years when metals having low stacking fault

energy can be grown to contain a high density of nanotwins [10–20]. In the following, we

focus on growth twins in FCC lattice.

2.2.4 Growth Twins in Face Centered Cubic Lattice

Growth nanotwins [10–18] in FCC lattice are found to have the twinning plane K1 as {111}
and the twinning direction η1 as 〈112〉. The shearing plane {110} is also a plane of symmetry.

Hence the type I and II twinning are equivalent for those metallic FCC growth twins. It is

important to note that in FCC lattices, the respective slip system in the matrix crystal are ori-

ented differently from that in the twin crystal, resulting in a discontiniuty in slip systems across

the twin boundary (see Section. B.1 in Appendix. B for an explicit listing of those equivalent

crystallographic planes and directions).
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2.2.4.1 Slip Systems in Twinned Face Centered Cubic Lattice

The slip systems of the twinned FCC crystals can be effectively described by a pair of Thomp-

son tetrahedra placed in a mirror orientation [70, 71]. Figure 2.11 shows the pair of Thompson

tetrahedra corresponding to the original FCC and twinned FCC crystals. The four vertices of

the tetrahedron are labelled A, B, C and D. The middle points of the triangles opposite A,

B,C andD are denoted byα, β, γ and δ, respectively. Symbols with superscript T represent

objects in the twinned orientation. The mirror (twin) plane is the hatched ACB plane. The

four {111} slip planes in the upper tetrahedron are defined according to the right handed rule

as a⇔ BCD, b⇔ CAD, c⇔ ABD d⇔ ACB, and similarly in the lower tetrahedron,

aT ⇔ BTCTDT , bT ⇔ CTATDT , cT ⇔ ATBTDT and dT ⇔ ATCTBT . The upper

and lower Thompson tetrahedra, i.e., ABCD and ATBTCTDT , illustrate the slip systems

of matrix and twin crystals.

Because of the mirror symmetry (exchange of left and right) between the two tetrahedra,

the cT plane is a mirror of the c plane, bT mirrors a, aT mirrors b, and the dT and d planes

are coincident. Vertices A, B and D in the upper Thompson tetrahedron correspond to BT ,

AT andDT in the lower Thompson tetrahedron. Vertices C and CT are coincident.

2.3 Continuum Description of Materials

2.3.1 Stiffness and Compliance Tensor for Cubic Materials

The cubic crystal system has cubic unit cell where a = b = c, α = β = γ = π/2. Three

Bravais lattices, simple cubic (SC), BCC and FCC, belong to the cubic crystal system. Cubic

materials have 9 symmetry planes: 3 planes with the unit cell unit vectors as normals(i.e. {100}
planes) and 6 planes whose normals make ±π/4 with the unit cell unit vectors(i.e. {110}
planes). When the unit vectors of the cartesian coordinate axis are taken as edges of the cubic
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A(BT )

B(AT )

C(CT )

D

γ
α

β

δ

DT

γT

βT

αT

Figure 2.11: FCC twin hexahedron formed by two Thompson tetrahedra. In the upper Thomp-
son tetrahedron ABCD, the four {111} slip planes a, b, c and d are defined by the right-
handed rule as following: a ⇔ BCD, b ⇔ CAD, c ⇔ ABD, d ⇔ ACB. In the lower
Thompson tetrahedron ATBTCTDT , the four {111} slip planes aT , bT , cT and dT are
defined by the right-handed rule as following: aT ⇔ BTCTDT , bT ⇔ CTATDT , cT ⇔
ATBTDT , dT ⇔ ATCTBT . Thompson tetrahedra ABCD and ATBTCTDT have twin
relationship with respect to each other. The hatched plane ACB highlights the mirror plane.
Due to mirror symmetry (exchange of left and right), c is mirror to cT , a is mirror to bT , b is
mirror to aT , the d and dT planes are coincident. Vertices C and CT are coincident. Vertices
A, B and D in the upper Thompson tetrahedron correspond to BT , AT and DT in the lower
Thompson tetrahedron.
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2.3 Continuum Description of Materials

unit cell, the elastic stiffness tensor Ĉijkl for cubic materials can be represented as

Ĉ =



Ĉ1111 Ĉ1122 Ĉ1122 0 0 0

Ĉ1111 Ĉ1122 0 0 0

Ĉ1111 0 0 0

Ĉ2323 0 0

Ĉ2323 0

Ĉ2323


=



α β β 0 0 0

α β 0 0 0

α 0 0 0

ω 0 0

ω 0

ω


(2.65)

It contains 3 independent elastic constant. If one makes orthorgonal coordinate transformation

x̂→ x, the elastic stiffness tensor would take the transformation of Ĉ → C as following

Cijkl = Ĉpqrs
∂x̂p

∂xi
∂x̂q

∂xj
∂x̂r

∂xk
∂x̂s

∂xl
(2.66)

Thomas [72] showed that the above transformation when applied for for cubic materials can be

simplified to the following

Cijkl = Ĉ1122δijδkl + Ĉ2323(δikδjl + δilδjk) + (Ĉ1111 − Ĉ1122 − 2Ĉ2323)AiuAjuAkuAlu

= βδijδkl + ω(δikδjl + δilδjk) + (α− β − 2ω)AiuAjuAkuAlu
(2.67)

where Aij is the direction cosine matrix relating the two coordinate frames (x̂→ x), i.e.,

xi = Aijx̂j (2.68)

Using the FCC twin related grains in Fig. 2.12 as an example, the coordinate system in the

matrix grain has its unit vectors along the [112̄], [111] and [11̄0] directions, i.e.,

x1 =
1√
6

(x̂1 + x̂2 − 2x̂3)

x2 =
1√
3

(x̂1 + x̂2 + x̂3)

x3 =
1√
2

(x̂1 − x̂2 + 0x̂3)

(2.69)
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Figure 2.12: Two FCC twin related grain.

Hence, the direction cosine matrix Aij is

A =


1√
6

1√
6
−2√

6
1√
3

1√
3

1√
3

1√
2
−1√

2
0

 (2.70)

and the stiffness tensor is
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C
=

                 1 2
(α

+
β

+
2ω

)
1 3

(α
+

2β
−

2ω
)

1 6
(α

+
5β
−

2ω
)

0
0

−
√

2 6
(α
−
β
−

2ω
)

1 3
(α

+
2β

+
4ω

)
1 3

(α
+

2β
−

2ω
)

0
0

0

1 2
(α

+
β

+
2ω

)
0

0
√

2 6
(α
−
β
−

2ω
)

1 3
(α
−
β

+
ω

)
√

2 6
(α
−
β
−

2ω
)

0
1 6

(α
−
β

+
4ω

)
0

1 3
(α
−
β

+
ω

)

                 

=

               C
1
1
1
1

C
1
1
2
2

C
1
1
3
3

0
0

C
1
1
1
2

C
2
2
2
2

C
2
2
3
3

0
0

0

C
3
3
3
3

0
0

C
3
3
1
2

C
2
3
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3

C
2
3
1
3

0

C
1
3
1
3

0

C
1
2
1
2

               

=

               C
1
1

C
1
2

C
1
3

0
0

C
1
6

C
2
2

C
2
3

0
0

0

C
3
3

0
0

C
3
6

C
4
4

C
4
5

0

C
5
5

0

C
6
6

               

(2
.7

1)
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Similarily, the coordinate system in the twin grain has its unit vectors along the [112̄], [1̄1̄1̄]

and [1̄10] directions, i.e.,

x1 =
1√
6

(x̂1 + x̂2 − 2x̂3)

x2 =
1√
3

(−x̂1 − x̂2 − x̂3)

x3 =
1√
2

(−x̂1 + x̂2 + 0x̂3)

(2.72)

Hence, the direction cosine matrix Aij is

A =


1√
6

1√
6
−2√

6
−1√

3
−1√

3
−1√

3
−1√

2
1√
2

0

 (2.73)

and the stiffness tensor is
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2.3 Continuum Description of Materials

The stiffness tensors for the above two twin related grains share most of the terms with only a

sign difference in the C16, C36 and C45 term. In addition, the following

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0 (2.75)

makes anti-plane deformation (u3) uncoupled from the in plane deformation (u1, u2) for cubic

materials when the coordinate axes are chosen to be one of the aboves [73]. This has important

implications on dislocation image stresses to be discussed below.

2.3.2 Shearing Stress

Dislocations only move in response to shear stresses. The shear stress resolved on the slip

plane in the slip direction drives slip. It is given by

σ =
F

A
cosφ cosλ (2.76)

where F is the applied force acting on an area A; φ is the angle between F and the normal of

the slip plane and λ is the angle between F and the slip direction. cosφ cosλ is known as the

Schmid factor. The shear stress σ required to initiate slip is called the critical resolved shear

stress for slip.

2.3.3 Dislocation Burgers Vector

The dislocation Burgers vector in the continium model is given by the line integral of the

elastic displacement u around the dislocation taken in a right-handed sense relative to the line

direction ξ

b =
∮
C

∂u

∂l
dl (2.77)

In discrete lattices the Burgers vector can be expressed as

b =
N∑
i=1

∆ui (2.78)

where ∆ui is the difference between the actual and perfect reference lattice atom position and

lattice site 1 to N form a closed loop in the perfect reference lattice. Eqn. 2.78 can be used to

find Burgers vectors by forming Burgers loops on crystal lattices [74]. For MD simulations in

subsequent Chapters, we used this method to determine those Burgers vectors.
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Figure 2.13: (a) A screw dislocation with its line direction along the x3 axis; (b) An edge
dislocation with its line direction along the x3 axis and Burgers vector along the x1 axis. The
origin of the cartesian coordinates are conveniently selected at the dislocation locations in both
figures.

2.3.4 Elastic Fields of Straight Dislocations

Dislocations can be classified based on the orientation between the Burgers vector b and line

direction ξ. The angle between b and ξ can be found as

cos θ =
b · ξ
|b||ξ|

(2.79)

Screw dislocations have their line direction ξ parallel to the Burgers vector b, i.e., θ = 0.

Edge dislocation have ξ and b perpendicular to each other, i.e., θ = π/2. Dislocations with

0 < θ < π/2 are mixed dislocations having both screw and edge character. Under isotropic

linear elastic approximation, screw dislocations create an anti-plane strain deformation while

edge dislocations create an in-plane strain deformation. We give the displacement fields of

these two types of dislocations in infinite domain as these formulas are used as approximations

in creating dislocations for MD simulations in latter Chapters.

Under the assumption of infinitesimal linear elastic approximation, the displacement vector

u corresponding to an isotropic anti-plane deformation with the cartesian coordinate shown in

Fig. 2.13 (a) simplifies to

u1 = 0 (2.80a)

u2 = 0 (2.80b)

u3 = u3(x1, x2) (2.80c)
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2.3 Continuum Description of Materials

Hence, the strain tensor εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
takes the following form

ε =
1
2


0 0 u3,1

0 u3,2

0

 (2.81)

and the stress tensor can be obtained by using Eqn. C.5

σ = µ


0 0 u3,1

0 u3,2

0

 (2.82)

The static equilibrium equation (Eqn. C.6) reduces to the following form

u3,11 + u3,22 = 0 (2.83)

The boundary conditions for a screw dislocation can be written as∮
C

∂u3

∂l
dl = b (2.84)

The solution to the above Laplace equation (Eqn. 2.83) with boundary condition Eqn. 2.84 is

u3 =
b

2π
tan−1

(
x2

x1

)
(2.85)

The corresponding strain and stress tensors are thus found by direct differentiation as in Eqn. 2.81

and 2.82.

For the case of in-plane strain deformation corresponding to edge dislocations as shown in

Fig. 2.13 (b), the displacement vector u takes the following form

u1 = u1(x1, x2) (2.86a)

u2 = u2(x1, x2) (2.86b)

u3 = 0 (2.86c)
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Hence the strain tensor εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
takes the following form

ε =
1
2


2u1,1 u1,2 + u2,1 0

2u2,2 0

0

 (2.87)

and the stress tensor can be obtained by using Eqn. C.5 as following

σ =


2µu1,1 + λ(u1,1 + u2,2) µ (u1,2 + u2,1) 0

2µu2,2 + λ(u1,1 + u2,2) 0

λ(u1,1 + u2,2)

 (2.88)

The static equilibrium equation (Eqn. C.6) reduces to the following form

σi1,1 + σi2,2 = 0 (2.89)

or written in full

σ11,1 + σ12,2 = 0 (2.90a)

σ21,1 + σ22,2 = 0 (2.90b)

The boundary condition for the edge dislocation with its Burgers vector along the x1 direction

can be written as ∮
C

∂u1

∂l
dl = b (2.91a)∮

C

∂u2

∂l
dl = 0 (2.91b)

The solution to Eqn. 2.90 can be found by introducing an Airy stress function [56] and can be
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written as

σ11 = − µb

2π(1− ν)
x2(3x2

1 + x2
2)

(x2
1 + x2

2)2
(2.92a)

σ22 =
µb

2π(1− ν)
x2(x2

1 − x2
2)

(x2
1 + x2

2)2
(2.92b)

σ12 =
µb

2π(1− ν)
x1(x2

1 − x2
2)

(x2
1 + x2

2)2
(2.92c)

σ33 = − µbν

π(1− ν)
x2

x2
1 + x2

2

(2.92d)

σ13 = σ23 = 0 (2.92e)

The corresponding displacement field is given by

u1 =
b

2π

[
tan−1 x2

x1
+

x1x2

2(1− ν)(x2
1 + x2

2)

]
(2.93a)

u2 = − b

2π

[
1− 2ν

4(1− ν)
ln(x2

1 + x2
2) +

x2
1 − x2

2

4(1− ν)(x2
1 + x2

2)

]
(2.93b)

u3 = 0 (2.93c)

2.3.5 The Force Exerted on Dislocations: Peach Koehler Force

Dislocations interact with stress caused by other sources excluding their self stress fields. The

interaction energy can be written as

EI =
∫
εσdV (2.94)

where ε is the dislocation’s strain field and σ is the stress field caused by external sources.

Using the principle of virtual work, the interaction between a dislocation b and stress field

σ can be computed by evaluating the work done by the stress field σ on the cutting surface

during the displacement in creating the dislocation. A dislocation segment dξ moves ds and

sweeps an area of dξ× ds. The interaction energy difference before and after the movement is

b · σ · (dξ × ds). The total work difference along the whole dislocation line is

−∆WI =
∫
l
b · σ · (dξ × ds) (2.95)
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Hence the force acting on the dislocation in the direction of ds is

Fm = −∂WI

∂s
=
∫
l
b · σ · (dξ ×m) (2.96)

where m is the unit vector along s, i.e., ds = mds, Fm is the force component (along m)

acting on the dislocation. The force component acting on the dislocation segment dξ is

dFm = b · σ · (dξ ×m) = b · σ · (ξ ×m) dl (2.97)

Hence the force acting on a dislocation line segment ξdl with Burgers vector b by an external

stress field σ is

dF = (σ · b)× ξdl (2.98)

The above result was first generalized by Peach and Koehler [75] and the force is known as the

Peach-Koehler force.

2.3.6 Dislocation Pile-ups

Dislocation pile-ups are frequently observed in crystalline metals. They govern many impor-

tant phenomena, such as yielding and fracture, in the plastic deformation of these materials.

Figure 2.14 (a) shows a single dislocation pile-up formed by straight dislocations of the same

Burgers vector b.

F = n ((σ · b)× ξ) (2.99)

where n is the number of similar dislocations in the pile-up, σ is the applied stress and ξ is the

dislocation line direction. The above equation can be written in the usual scalar form as

F = nσb = (nσ) b = σleadb (2.100)

where σ is the shearing component of the applied stress σ projected onto the slip plane in the

slip direction, σlead is thus the effective shearing stress on the leading dislocation in the pile-

up. Eshelby et al. [76] solved the equilibrium position of each dislocation in the pile-up and

showed that

n = clσ (2.101)
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Figure 2.14: (a) Dislocation pile-up formed by straight dislocations of the same characters; (b)
A double pile-up formed by dislocations of opposite line direction originated from a Frank-
Read source.

where c is a constant and l is the pile-up distance. Combining Eqn. 2.100 and Eqn. 2.101 gives

σ ∝
√
σlead
l

(2.102)

Figure 2.14 (b) shows a double pile-up formed by dislocations with oppsite line direction

originated from a Frank-Read [77] source . The scaling relation in Eqn. 2.102 still applies

in the double pile-up case, which rationalizes the Hall-Petch relation [41, 42] governing the

yielding stress of polycrystalline metals as a function of grain size

σy = σ0
y +

A√
d

(2.103)

where σ0
y and A are constants.

2.3.7 Image Force of Dislocations in Anisotropic Bicrystals

Barnett and Lothe [78] derived an image force theorem for dislocations in infinite anisotropic

bicrystals as illustrated in Fig. 2.15. Their theorem states that a straight dislocation situated at

a distance h from the interface of an infinite anisotropic bicrystals experiences a virtual force
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1

⊥

h

2

Figure 2.15: A straight dislocation located at a distance of h from the interface of a bicrystal
consisting of two semi-infinite anisotropic crystals.

normal to the interface given by

f =
E∞ − E1−2

h
(2.104)

where E∞ is the prelogarithmic energy factor of the dislocation located at an infinite homo-

geneous medium which has the same elastic properties as that of one of the halfspace. E1−2

is the prelogarithmic energy factor of the dislocation located at the interface of the bicrystals.

The important point in the above theorem is that both E∞ and E1−2 depend only on the crys-

tallographic orientation of the dislocation line direction ξ and Burgers vector b with respect to

the two crystals. In Eqn. 2.104, the image force f on the dislocation diverges when h → 0.

Hence the condition h > b is usually imposed as the limit for the above continuum theorem to

be valid.

2.3.8 Image Force of Dislocations in Twin Bicrystals

Crystals with a twin relation such as that shown in Fig. 2.16 form a bicrystal structure. Disloca-

tions located inside one of the two crystals usually experience image forces due to the different

elastic stiffness tensors of the two twin related crystals (see Section. 2.3.1 for the stiffness ten-

sor of twinned FCC crystals). In FCC materials, a pure screw dislocation creates an anti-plane

shear deformation and its elastic field can be solved analytically (see Appendix D.1). It can be

shown that there is no image force arising from the twin grain for pure screw dislocations in

such materials (see Appendix D.2). However, an edge dislocation in FCC materials creates an

in-plane deformation and in general its solution requires numerical calculation. An image force

exists for edge dislocations in such twin related crystals. The above conclusion is also a di-

rect, although subtle, result from the dislocation image theorem by Barnett and Lothe [78] (see
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Figure 2.16: Dislocation in FCC twin related grains.

Section 2.3.7). Take a straight dislocation with its line direction ξ along the z axis as shown

in Fig. 2.16 for example, if it is a pure screw dislocation with its Burgers vector b = AB,

both ξ and b are crystallographically equivalent in both the matrix and twin crystals. Hence

the prelogarithmic energy factor of the pure screw dislocation in either crystal will be the same

and no image force exist. However, Burgers vector of a mixed dislocation with an edge com-

ponent, such asDγ in Fig. 2.16, will be crystallographically different in the two crystals. The

prelogarithmic energy factor due to the edge component will be different and an image force

exists for such dislocations.

2.3.9 Dislocations Line Tension

Dislocation line tension was first conceptualized as

τ =
δU

δl
(2.105)

where δU is the increase of strain energy for an increase of δl in the length of the dislocation.

There have been many attempts to calculate the dislocation line tension [79]. However, it is

often adequate to approximate it as [80, 81]

τ ≈ µb2 (2.106)

where µ is the material’s shearing modulus and b is the magnitude of the dislocation’s Burgers

vector.
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2.4 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are computer simulations in which the atomic trajectory

is determined by integrating the equations of motion according to Newton’s second law for each

atom in the system, i.e.,
d2r(i)

dt2
=
F (i)

m(i)
(2.107)

where r(i) and m(i) are the position and mass of atom i. F (i) is the force acting on atom i

due to interatomic interactions with other atoms in the system. Interatomic interactions in MD

simulations are prescribed by potential functions of empirical or semi-empirical origin, i.e.,

F (i) =
∂E

∂r(i)
(2.108)

where E is the total system energy. In MD simulations, position, velocity, forces acting on

each individual atom are explicitly modelled. The time step used to integrate the Newton’s

second law is usually small (on the femtosecond scale for metals) so that atomic vibrations are

sufficiently captured in simulations. Hence MD simulations provide atomic-level spatial and

temporal resolution which are difficult to access from experiments. The above advantages are

also accompanied by some fundamental limitations inherent in MD simulations. Time scale is

one of the biggest bottlenecks in MD simulations. The availability and choice of appropriate

interatomic potentials are also often questioned when complicated systems involving multiple

elements and force sources are studied.

2.4.1 Embedded Atom Method (EAM)

There have been many types of interatomic potentials developed for atomistic simulations. For

metals, two types of potentials, pair potentails (such as Lennard-Jones (LJ)) and embedded-

atom method (EAM) potentials, are used frequently in the literature. EAM was first conceptu-

alized by Stott and Zaremba [82] and developed by Murray and Baskes [46] to model metallic

defects including impurities, dislocations, surfaces, etc. In the EAM formulation, the total

system energy is given by

E =
∑
i

G(i)

∑
i 6=j

ρ(i)
(
r(ij)

)+
1
2

∑
ij

φ(ij)

(
r(ij)

)
(2.109)
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where r(ij) is the distance between atomic site i and j; ρ(i) is the electron density function

which gives electron density at atomic site i contributed by an atom at site j; G(i) is the em-

bedding function which gives a cohensive energy when an atom is placed at site i under the

electron environment of ρ(i); φ(ij) is the pair potential function and the 1/2 coefficient is to

correct the double counting in the summation. (We write out the summation sign explicitly in

Eqn. 2.109 so that it takes the same form as often found in literature). In principle the sum-

mation should be carried over all the atoms in the system. However, a cutoff radius is usually

specified in the fitting of the respective potential. Thus, EAM potentials effectively describe

short range forces. EAM potentials are many-body potentials and have some advantages over

pair potentials such as the LJ potentials. For cubic metals, EAM potentials can be fitted to

reproduce all the three elastic constants accurately and hence the elastic anisotropy of those

materials. They also can be used to accurately model interfaces and surface properties, such

as surface stress where EAM potentials exhibit surface contraction while pair potentials inac-

curately show surface expansion. Although being many-body potentials, EAM potentials are

computationally efficient. In the simulations of nanotwinned Cu and Al grain boundary in this

Thesis, we use EAM potentials which are described below.

2.4.1.1 Cu Embedded Atom Method (EAM)

The {111} stacking fault energy in FCC metals, γssf , and the equilibrium separation between

pairs of Shockley partial dislocations are known to be sensitive to the choice of interatomic po-

tential employed in atomistic simulations. Therefore, the first step in performing simulations of

nanotwinned Cu is the identification of an interatomic potential function that produces realistic

values of the stacking fault energy. While many interatomic potentials are available for pure

Cu, we chose the EAM potential [46, 82] by Mishin et al. [1] to study the plastic deformation

of nanotwinned Cu. This Cu potential was fit to experimental and ab initio data, including the

lattice parameter a0, cohesive energy E0, and the stacking fault energy γssf . This Cu potential

yields an intrinsic stacking fault energy of 44.42 mJ/m2, an extrinsic stacking fault energy of

44.52 mJ/m2 and a Σ3 coherent twin boundary ({111}〈112〉) energy of 22.27 mJ/m2, which

are all in excellent agreement with available experimental data [56].

The above Cu potential also predicts the lattice properties accurately. Table 2.1 lists the

lattice and elastic constants given by the potential. These constants are well within 1% of error

when compared to experimental values.
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a0 E0 B c11 c12 c44 γssf
Å eV/atom GPa GPa GPa GPa mJ/m2

experiment 3.615 -3.54 138.3 170.0 122.5 75.8 45
EAM Cu [1] 3.615 -3.54 138.3 169.9 122.6 76.2 44.4

Table 2.1: Lattice properties of Cu predicted by EAM Cu by Mishin et al. [1].

2.4.1.2 Al Embedded Atom Method (EAM)

In MD simulations at high temperature, the employed potential’s ability to reproduce the ma-

terial’s melting properties is important. Al EAM potential by Mendelev et al. [2] was fitted to

first-principle calculations and data measured from liquid diffraction. This Al potential pre-

dicts accurately on its melting point, liquid-phase diffusivities, etc. Hence we use it in the

simulations of grain boundary faceting study where simulations at high temperature and those

involving phase transitions are examined. Table 2.2 lists the lattice and elastic constants given

by the potential.

a0 E0 B c11 c12 c44 γssf
Å eV/atom GPa GPa GPa GPa mJ/m2

experiment 4.032 -3.362 76 118 62 33 166, 120-144 [83]
EAM Al [2] 4.045 -3.411 58 (at Tm) 110 61 33 151.7

Table 2.2: Lattice properties of Al predicted by EAM Al by Mendelev et al. [2]. All properties
except the bulk modulus B are obtained at T = 0 K.

2.4.2 Atomic Stress

One way to define the stress tensor at a single atomic site i is through the virial equation,

β(i)
pq =

1
Ω(i)

m(i)v(i)
p v(i)

q +
M∑
j( 6=i)

f (ij)
p r(ij)q

 (2.110)

where Ω(i) is the atomic volume and M is the number of near neighbour atoms. In the square

bracket, the first term is the kinetic energy contribution from atom i and the second term is the

dipole force tensor arising from the pair-wise interaction energy. The atomic volume Ω(i) can

be taken as the atomic site’s voronoi volume [84, 85]. The continuum stress tensor can be taken
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as a volume average over a region under consideration

σpq =
1
K

K∑
i=1

β(i)
pq (2.111)

where K is the number of atoms in the region. The above formulation is used throughout this

work and applies to all subsequent Chapters when stresses are extracted from MD simulations

(see Ref. [86] for a detailed formulation).

2.4.3 Ensemble

The micro-canonical or NVE ensemble simulates a system where the total number of atoms

N, the volume V and the total energy E are conserved during the simulation. When the sim-

ulated atomic system interacts with an external environment or reservoir, special coupling can

be used to model such interactions. A system exchanging heat with a thermostat can be mod-

elled using a Nosé-Hoover temperature thermostat [87, 88] such that its temperature is main-

tained constant with the external thermostat. This results in an isothermal or canonical NVT

ensemble where the total number of atoms N, the volume V and the temperature T are con-

served during the simulation. The interaction with an external barostat can be modelled using

a Nosé-Hoover pressure barostat [88, 89] such that its pressure is maintained constant with

the external barostat. This can be achieved through adjusting the volume of the system which

results in an isobaric ensemble. MD simulations presented in subsequent Chapters use the MD

code LAMMPS’ [90] isothermal isobaric or NPT ensemble, which combines the two coupling

and results in a system where the total number of atoms N, the pressure P and the temperature

T are constant during the simulation (see Ref. [88] for detailed formulation).

2.4.4 Computational Costs

The computational cost of each modelling methods varies significantly. The computing time

required to perform MD simulations depends on the system being simulated. Systems with

ionic bondings involve long range forces and are thus computationally expensive. The inter-

atomic interactions in pure metals are often prescribed by EAM potentials which usually have

only short range interactions. This makes the force analysis simpler, resulting in a much shorter

computer time. Its ability to scale linearly on parallel machines or clusters with modern inter-

connects offers a great computational advantage over other methods. Using the widely adopted
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parallel MD code LAMMPS [90] and Cu potential by Mishin et al. [1], a simulation of 100

million atoms (or a ∼ 106 × 106 × 106 nm cube) for one million time steps will take 105

cpu hours on a Xeon x5570 cluster, or approximately 5 days by summoning 1000 cpu cores.

MD simulations have relatively low requirements on computer memory when compared to that

of cpu time. The total memory required for the above run is less than 40 gigabytes (GB), an

amount of memory even available on workstations nowadays.

MD simulations also generate a huge amount of raw data tracking atomic trajectories such

as individual atom’s position, velocity, etc. For a simulation of 100 million atoms, each time

step produces 4.8× 109 bytes (4.8 GB) of data. Such a simulation would require 4.8 petabytes

of storage for one million time steps. Hence data analysis and filtering become an essential

step in MD simulations.

2.4.5 Data Analysis and Visualization

It is imperative to perform simulations with sufficient length and time scale for realistic ma-

terial behaviors. Hence MD simulations inevitably generate an enormous amount of data on

atomic information. However, in simulations of crystalline metals, atoms on or near defect

regions such as dislocation cores and grain boundaries are often the point of interest, while

atoms on perfect lattices far away from those defects are less important. Furthermore, raw MD

data carries little physical insight. Hence, identifying these defects and tracking their evolution

become crucial in the analysis of simulation results. Various algorithms have been developed

to identify and analyze crystalline defect structures. One straightforward method is the use of

coordination number (n), which measures the number of nearest neighbouring atoms. While

atoms on defect sites can have lower, equal or higher coordination numbers, those on surfaces

often have a lower coordination number. In FCC lattices, n = 12 for perfect lattice environ-

ments. However, the coordination number for atoms on stacking fault in FCC lattice is equal to

that of those on perfect lattice sites, making the stacking faults indistinguishable from perfect

lattice environments. Certain atoms on grain boundaries can have higher, equal or lower co-

ordination number compared to that for a perfect lattice. Hence, coordination number is often

used as a preliminary analysis due to its ease of computation.

Another useful technique to identify FCC lattice defects is the use of the central symmetry
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parameter [91]. For each lattice site, a unique number cp can be defined as

cp =
Np∑
i=1

|ri + ri+Np |2 (2.112)

where ri and ri+Np are the relative (to the lattice site under consideration) position vectors of

the ith pair of nearest neighbouring atoms and Np is the total number such atom pairs. The

FCC lattice hasNp = 6 (as shown in Fig. 2.2) and the BCC lattice hasNp = 4. cp measures the

local lattice inversion symmetry. For lattices having inversion symmetry (such as simple cubic,

body centered cubic and face centered cubic), the central symmetry parameter is zero at perfect

lattice sites and non-zero at defect sites (such as point defects, dislocation cores, stacking faults

and interfaces). Hence it can be used effectively to identify sites in perfect and non-perfect

lattice environments for materials possessing inversion symmetry. This is particularly useful

in identifying stacking faults including twin boundaries in FCC lattices. However, cp does not

detect homogeneous deformation.
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Chapter 3

Interface Strengthening in Crystalline
Metals

In this Chapter we give a brief review on interface strengthening in metallic systems and point

out the current development in this field. We then draw our attention to the topic of nan-

otwinned polycrystalline Cu, where both experimental and simulation studies are presented.

We combine these studies and summarize the main discrepancies between previous experimen-

tal observations and simulation results related to materials having this unique microstructure.

At the end of this Chapter we summarize the key open issues, which drive the simulations in

Chapter 4 and Chapter 5.

3.1 The Need for Strengthening Metals

As a dislocation moves on its slip plane, its core energy varies periodically. The difference

between the maximum and minimum of the dislocation core energy creates an energy barrier

to dislocation motion. This barrier is known as the Peierls barrier [92] of dislocation. The

Peierls barrier can be overcome by an applied stress (i.e., Peierls stress), thermal fluctuations

or a combination of the two. Pure crystalline metals are usually soft as the stress required

for dislocation glide can be orders of magnitude lower than the materials’ theoretical shear

strength. In FCC metals, the Peierls stress can be as low as a few tens of MPa [92–94]. Bujard

et al. [95] estimated the Peierls stress for Cu and Al to be 1.2 × 10−3µ (∼ 58 MPa) and

8 × 10−3µ (∼ 208 MPa), respectively. The actual stress required for dislocations in these

materials to glide can be much lower with the help of thermal fluctuations. Since dislocation
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glide is the dominant carrier of plastic deformation in FCC metals and the stress required for

that is low, the key to increasing the strength of FCC materials lies in: (1) creating barriers to

dislocation glides; (2) reducing dislocation sources. Most conventional methods make use of

first approach. These include strengthening through particles, interfaces, and strain hardening.

On the other hand, materials with novel structures like nanowire or nanorod are usually strong

because of the second. Nanocrystalline materials, depending on their grain size, can exhibit

both features.

3.2 Interface Strengthening in Crystalline Metals

It has long been recognized that polycrystalline metals and their alloys can be strengthened

through interfacial boundaries. The underlying principle for this strengthening mechanism re-

lies on these boundaries serving as barriers to dislocation glide. Several factors, such as strain

mismatch, image forces (also known as Koehler forces [96]), the necessity to create disloca-

tions at interfaces (i.e., ledge creations at interfaces), and interaction with misfit dislocations,

etc. can alter the effectiveness of these barriers [97]. Based on these factors, there has been

relentless effort in developing strong and tough materials through interfacial boundaries. Ta-

ble 3.1 shows some experimental work employing this approach in metallic systems. Based

on this list, a few points are remarkable. The first is the characteristic length scale in these

microstructures. It is evident that the microstructural length scales associated with interface

(grain boundaries, twin boundaries or phase boundaries) separation play an important role in

determining the mechanical properties of these metals. This also suggests that some length

scale dependent mechanisms operate during yielding in these microstructures. For polycrys-

talline metals, a well-known length scale dependent deformation mechanism is the dislocation

pile-ups. This results in the Hall-Petch relationship [41, 42] governing materials’ yield strength

as a function of their microstructure characteristic length scales (see Section. 2.3.6 for a brief

explanation). The Hall-Petch law predicts the strength increases as the grain size decreases in

the grain refinement process. This relation is known to be effective in a wide range of length

scales. However, given the stringent requirements for the operation of dislocation pile-ups, it

is still a surprise that the semi-phenomenological Hall-Petch relation works so well (especially

when length scale > 50 nm) in such a large class of materials and microstructures.

As the grain size decreases to below 100 nm, a controversy on the effect of grain bound-

ary and Hall-Petch relation arises in nanocrystalline materials. While nanocrystalline samples

55



3.2 Interface Strengthening in Crystalline Metals

Materials Structure Strengthening Softening
Cu [11] tb & gb Hall-Petch (8.4 µm - 0.056 µm ) no
Au/Co[37] gb Hall-Petch ( >20 nm) not shown
Ni [98] tb & gb Hall-Petch (>12 nm) not shown
Cu [99] gb Hall-Petch (25 µm - 4 µm ) yes (<16 nm)
Pd [100] gb Hall-Petch ( 5-10 nm ) no
Cu [100] gb Hall-Petch ( 25-35 nm ) not shown
Pd [99] gb not shown yes (<15 nm)
Ni/P [101] gb not shown yes (<120 nm)
Cu/Cr [102] pb Hall-Petch (>50 nm) saturating (<50 nm)
Cu/Nb [102] pb Hall-Petch (>50 nm) no
Cu/Ni [102] pb Hall-Petch (>50 nm) yes (< 5nm)
Cu [12] tb Hall-Petch (>20 nm) yes (<15 nm)
Cu [14] tb Others no
Cu [103] tb not shown not shown
Cu/304 stain-
less steel [38]

pb & tb
Hall-Petch (>100 nm) and others
(100 nm - 5 nm)

yes (<5nm)

Cu/330
stainless
steel [104]

pb & tb Hall-Petch (>50 nm) saturating (<50 nm)

Table 3.1: Recent work on interfacial strengthening in metals. tb, gb and pb stand for twin
boundary, grain boundary and phase boundary, respectively.
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prepared from nano-particles through compression or rolling tend to show softening if their

grain diameter is ∼10 nm [99, 101, 105–108], those prepared via a deposition process can

show strengthening for grain size < 10 nm [37, 98, 100, 109]. This discrepancy is partly re-

solved until recently by recognizing that sample preparation has a strong effect on the strength

of nanocrystalline materials, especially when the grain size is below a few tens of nanome-

ters. Another view point is that dislocation-mediated plasticity transforms into grain boundary

mediated plasticity as the grain diameter reaches some critical size. Similarly, as in strength-

ening via grain boundaries, nanostructured materials strengthened via other types of interfacial

boundaries also exhibit softening when their characteristic length scales are below a few tens

of nanometers. Such examples include Cu/Ni [102], Cu [12], Cu/304 stainless steel [38], etc.

However, the underlying mechanisms responsible for softening in these cases remain largely

unknown.

While the microstructure characteristic length scales help to determine the resulting mate-

rials’ properties, the interface types existing in the microstructure also have an important effect.

During grain refinement and subsequent annealing, grain boundaries adjust two of their macro-

scopic degrees of freedom determining their boundary inclinations so that the overall grain

boundary free energy is reduced. However, the other three macroscropic degrees of freedom

remain fixed. Grain boundary refinement has limited control on the resulting grain boundary

types and thus the effectiveness of those grain boundaries as barriers to dislocation glidings is

compromised [81]. In addition, the uncontrolled grain boundaries can also act as dislocation

sources. Hence, strengthening by conventional grain boundary refinement approach creates

suboptimal materials. On the contrary, multi-layered nanocomposite systems prepared via a

deposition process usually have selected interface types [11, 38, 102]. These interfaces serve

as effective barriers to dislocation propagations from one layer to the other and hence enhance

the strength of the resulting materials. However, microstructure refinement in multi-layered

nanocomposites and nanocrystalline materials often leads to increased strength, but at the ex-

pense of decreased toughness. It is common for these materials to fail at a few percent tensile

strain [109, 110].

Among the large number of interfaces available for manipulating material properties, co-

herent twin boundaries are especially effective at controlling strength because of their extraor-

dinary stability (relative to other microstructural features) [10] and the discontinuity of slip

systems across twin boundaries. Twin related grains have a mirror symmetry about the twin

boundary, so do their slip systems. The discontinuity in the slip systems makes dislocation
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nucleation or cross-slip necessary in the process of slip transfer across the twin boundary. This

provides a strong barrier to dislocation glides and hence makes this unique microstructure an

attractive candidate in creating ultrahigh strength materials. Growth nanotwins, which are be-

lieved to be caused by an accidential departure from equilibrium during growth, have been

observed in many minerals [68] and metals [10–18, 20]. Modern growth techniques have made

it possible to synthesize metals with growth nanotwins with highly tuned twin sizes, which can

vary from a few hundred nanometers to a few nanometers. By controlling both the microstruc-

tural interface type and length scale, the resulting materials with growth nanotwins exhibit a

combination of attractive properties, such as simultaneous ultrahigh strength, ductility, conduc-

tivity and strain hardening [12, 13]. This small microstructure inherent in nanomaterials opens

the door to the development of ultrahigh strength metals [10–20]. In the following section, we

present a detailed description on nanotwinned FCC metals.

3.3 Nanotwinned FCC Metals

There are mainly two popular methods to generate nanotwinned metals: (1) sputter deposition;

(2) electrodeposition. Merz and Dahlgren [11] synthesized high-purity Cu specimens with

grain size between 8.4 µm and 0.056 µm via high rate sputter deposition. Their samples

contain a high density of twin boundaries parallel to the deposition plane and the 0.2% offset

tensile strength follows the Hall-Petch relation with the yielding stress varying from 73.4 MPa

to 481 MPa. Via magnetron-sputtering, Zhang et al. [38] synthesized Cu/304 stainless steel

multilayers with maximum hardness of 5.5 GPa at a layer thickness of 5 nm, below which

the material softens. Zhang et al. [104] also synthesized Cu/austenitic 330 stainless steel

multilayered films with twin spacing of 3-4 nm in the stainless steel layer and a few tens of

nanometers in the copper layer. The hardness of their samples follows the Hall-Petch law

for layer thickness greater than 50 nm and saturates for thinner layers. Anderoglu et al. [14]

synthesized epitaxial nanotwinned Cu films with a twin spacing varying from 7 to 16 nm. All

the previously described materials share similar structures. They form films with columnar

grains and the twinning planes are oriented normal to the growth direction, as they are all

deposited via a layer-by-layer mechanism.

On the other hand, FCC metallic crystals grown by electrodeposition tend to contain growth

twins. Poli and Bicelli [35] reported that numerous growth twins were found in electrode-

posited Pd, Cu and Cd. Faust and John [36] observed growth twins in Ag dendrites grown by
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electrodeposition. Lo et al. [37] found some twins in the electrodeposited Au samples. Zhong

et al. [103] produced nanotwinned Cu nanowire by direct electrodeposition. Recently, Lu et al.

[12] synthesized ultrafine pure polycrystalline Cu containing a high density of growth twins

via a pulsed electrodeposition technique. The average twin spacing, varying between 4 and

96 nm in their samples, can be effectively controlled through the electrodeposition condition

(on-off time and average deposition current density, see Ref. [43] for details). Unlike sam-

ples produced via a layer-by-layer deposition mechanism, their samples also demonstrated a

true polycrystalline microstructure which simultaneously exhibited a high yield strength, high

ductility, high strain-rate sensitivity and high electric conductivity [10, 39, 40].

3.3.1 Ultrafine Nanotwinned Copper

3.3.1.1 Yield Strength, Strain Hardening and Ductility

Those electrodeposited ultrafine pure Cu samples with growth nanotwins by Lu et al. [43] have

many desirable properties. Their mechanical properties are unusual, as shown in Figure 3.1,

which plots the variation of mechanical properties (in uniaxial tensile loading at a strain rate

of 6 × 10−3 s−1) as a function of twin spacing. The data in the figure is for samples with

an average grain diameter between 400 nm and 600 nm. Figure 3.1 (a) shows the yielding

stress σ as a function of twin spacing λ. The yield stress follows a Hall-Petch type relation for

large twin spacings and reaches a maximum at λ = 15 nm. For samples with twin spacings

smaller than 15 nm, the yield stress decreases with decreasing twin spacing. Figure 3.1 (b)

and (c) show the strain hardening coefficient and strain at failure as a function of twin spacing.

Unlike the yield stress which undergoes a strength transition at a critical twin spacing, both the

strain hardening coefficient and strain at failure increase monotonically with decreasing twin

spacing. In addition, samples with small twin spacing (λ < 15 nm) exhibit extraordinary strain

hardening and ductility.

The trend of increasing yield strength with decreasing characteristic length scales is com-

mon in polycrystalline metals. The ultrahigh strength exhibited by these nanotwinned samples

can be understood using Hall-Petch relation, based upon the twin boundary serving as barriers

to dislocation glides, resulting (in some cases) in dislocation pile-ups at the interfaces. This

is similar to grain boundary strengthening in nanocrystalline metals, where ultrahigh strength

is often observed when the grain size is in the range of a few tens of nanometers. However,

nanocrystalline metals often possess very low ductility and failure at only a few percent strain
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Figure 3.1: Experimental measurement of yielding stress, strain hardening coefficient, strain
at failure for uniaxial tensile loading of ultrafine nanotwinned Cu samples at a strain rate of
6× 10−3 s−1. These figures are replotted by taking data from Lu et al. [43]. In all the figures,
the dots represent the experimental data points and the solid lines simply connect these data
points. (a) Yielding stress (at 0.2% strain) v.s. twin spacing λ. The dotted red curve is the best
fit to the Hall-Petch function: σ = σ0 + k/

√
λ for λ ≥ 15 nm. (b) Strain hardening coefficient

n v.s. twin spacing λ. n is obtained by fitting the plastic deformation data to σ = k1 + k2ε
n.

(c) True strain at failure v.s. twin spacing λ.
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are common [110]. Nanotwinned Cu is unusual in that it simultaneously exhibits ultrahigh

strength and ductility. The exact reasons for this paradoxical and yet attractive property are not

well understood and are currently under intensive research.

3.3.1.2 Key Observations from High Resolution TEM

The observations in the previous section suggest some unusual dislocation mechanisms asso-

ciated with twin boundaries might operate during the plastic deformation of nanotwinned Cu

samples. One way to verify this is to look at and compare the microstructure of as-grown and

deformed samples. High-resolution transmission electron microscopy (TEM) is an effective

technique for revealing microstructure at atomic levels. Observations of deformed samples can

provide some understanding of the plastic deformation process in this unique microstructure.

Below, we summarize previously reported TEM observations into three categories.

Dislocation Density The dislocation density increases tremendously with decreasing twin spac-

ing. In samples with large twin spacings, the dislocation density is estimated to be on

the order of 1014 to 1015 m−2 (for λ = 96 nm). For samples with small twin spacings,

the density of dislocations is estimated to be 5× 1016 m−2 [43].

Dislocation Network Pattern TEM observerations of the after-deformation samples show a

difference in the dominant dislocation network pattern. While dislocation tangles and

networks are formed in samples with large twin spacing, planar dislocations associated

with twin boundaries are formed in samples with small twin spacing [43].

Twin Boundary Structure While the as-grown samples show a coherent twin boundary struc-

ture, the after-deformation samples show steps formed along twin boundaries. Twin

boundaries lose coherency in the process of plastic deformations. In addition, a large

number of debris are leftover in the vicinity of twin boundaries [10, 40].

The above facts suggest the plastic deformation process is related to dislocation-twin interac-

tions and those interactions become dominant in samples with small twin spacing. However,

the detailed atomistic mechanisms governing the dislocation-twin interaction, strain hardening,

high ductility and strength transition still remain unclear based on these TEM observations. In

view of this, there have been many computer simulation studies trying to reveal the nature of

the process. We present a summary of existing work in the next section.
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3.3.1.3 Nanotwinned Polycrystalline Metals and Thin Films

The nanotwinned microstructure and thin film structure share many common features. They

both exhibit a layered structure with thicknesses in the range of a few micrometers and a few

nanometers. The mechanical properties of materials adopting either structure are largely deter-

mined by the layer thickness. Nanotwinned materials and thin films exhibit high strength and

their yield strength varies with their characteristic length scales (twin size and film thickness)

according to the Hall-Petch relationship [41, 42] for twin size / film thickness larger than 50

nm. However, in thin films, the increase in strength with the decrease in film thickness is as-

sociated with the stress for driving the motion of individual threading dislocation within film

layers and its deposition and interaction with misfit dislocations along film interfaces [111].

On the other hand, nanotwinned metals such as those nanotwinned Cu by Lu et al. [43] have

a true polycrystalline structure and a distribution of twin sizes. The matrix and twin grains

only differ by their lattice orientations. The twin interface is also a {111} slip plane and con-

tains a Shockley partial Burgers vector as its DSC lattice vector. Dislocations gliding along,

crossing and interacting with twin interfaces are the main deformation mechanism. Hence the

details of these atomistic dislocation-twin interactions are important and likely responsible for

the unusual strength and ductility in nanotwinned metals.

3.3.2 Recent Simulation Works on Nanotwinned Metals

There have been many studies on how those growth nanotwins contribute to the materials’ plas-

tic deformation mechanisms and hence their observed properties. These studies can be broadly

divided into two categories. The first studies the role of twin boundary migration (note that the

coherent twin plane is also a slip plane in the FCC lattice) in the plastic deformation of nan-

otwinned metals while the second focuses on the dislocation-twin interactions. Froseth et al.

[112, 113] studied the effect of growth twins on the deformation mechanisms in nanocrystalline

Al, Ni, Cu. They found that twin migration is the preferred deformation mode in Al, but not

in Ni or Cu. Their results were rationalized using the generalized planar fault (GPF) energy

curve for the formation of intrinsic stacking fault, twin fault and twin migration. The energy

barrier associated with the rigid shear for creating an intrinsic stacking fault (γusf ) is nearly 3

times that of twin migration (γutm) for Al, which suggests twin migration is highly preferred

over partial dislocation nucleation in this material. The ratio of γusf/γutm is about 1 and 1.3

for Cu and Ni, respectively. Therefore in these two materials, slip with high Schmid factors
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3.3 Nanotwinned FCC Metals

will be activated preferably. The above generalization using the shape of the GPF energy curve

is consistent with experimental observations [12]. Dislocations are observed either piling-up

along or across twin boundaries in Cu, while in nanocrystalline Al, twin migration is observed.

The coherent twin plane in the FCC lattice is one of the four slip planes on which disloca-

tions tend to glide. Dislocations on the other three slip planes will interact with twin boundaries

when they encounter them. Jin et al. [18, 20] performed MD simulations to study the interac-

tion mechanisms of dislocation with twin boundaries for Cu, Ni and Al. They found that the

detailed twin boundary mediated slip transfer mechanisms are material and loading condition

dependent. Their results showed that pure screw dislocations cross-slip onto twin boundaries

in Al, while those dislocations cross-slip into the twin crystal in Cu and Ni, - consistent with

the observation of Froseth et al. [112, 113] discussed in the previous paragraph. In addition,

dislocation locks are formed when non-screw dislocations interact with twin boundaries in

their simulation. Using nudged elastic band (NEB) method, Zhu et al. [19] showed that twin

boundaries are deep traps for screw dislocations and suggested that twin boundary mediated

slip transfer is the rate-controlling mechanism for the observed increased strain rate sensitivity

with increasing twin density. Chen et al. [114] performed MD simulations in combination with

an atomistic path technique and showed that the screw dislocation twin boundary interaction is

characterized by repulsive forces attributed to both the elasticity mismatch and distortion (shift

and rotation) of deformation fields across the twin boundary. Afanasyev and Sansoz [44] stud-

ied a set of Au nanopillars with different twin spacings under uniaxial compression by MD

simulations. They suggest the yield stress of Au nanopillars increases with reduction of twin

spacing. Shabib and Miller [45] studied nanocrystalline Cu using MD simulations and found

strength increases with decreasing twin spacing. Deng and Sansoz [115] studied the tensile

loading of Au nanowire with twin boundaries and demonstrated twin boundaries contribute to

ultrahigh plastic flow and work hardening.

The above simulation results are consistent in the sense that twin boundaries provide strong

barriers to dislocation glides and hence their extraordinary strengthening effect in materials

with this microstructure. Furthermore, all the above simulations demonstrated that the strength

of nanotwinned metals increases as twin spacing decreases all the way to a few nanometers, in-

consistent with experimental measurements which shows strength decreases with twin spacing

for twin spacing below 15 nm.

Recently, an MD simulation study by Li et al. [116] demonstrated a softening mechanism

arising from nucleation of dislocations at triple junctions of twin and grain boundaries and their
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subsequent glides parallel to twin boundaries at small twin spacing (λ ∼ 0.63 to 1.25 nm).

They suggested that plastic deformation in this unique microstructure switched from strength-

ening based on Hall-Petch dislocation pile-ups to softening through twin migration. However,

high resolution TEM observations [43] of those after-deformation nanotwinned Cu samples

showed a high density of dislocations blocked at twin boundaries even for samples having a

small twin spacing (λ ∼ 4 nm), suggesting dislocation interacting and crossing twin bound-

aries are important in samples with small twin spacing. The presence of these dislocations is

not consist with the MD simulation results and model [116]. In addition, experimental tensile

loading data as shown in Fig. 3.1 shows the ductility of nanotwinned Cu increases rapidly when

the twin spacing decreases below 15 nm. It is unlikely to achieve a high ductility through plas-

tic deformation via twin migration only as five independent slip systems are required to meet

the condition of a general strain. Other deformation mechanisms, such as activation of other

slip systems other than those on twin planes and grain boundary activities, must operate during

the extensive plastic deformation of the nanotwinned Cu, especially in those samples having

small twin spacings.

3.3.3 Important Open Issues

Combining the experimental observations and MD simulation results in Section 3.3.1 and 3.3.2

suggests that a few important issues remain unsolved. First, the origin of the high density dis-

locations in Cu samples with small twin spacing is unclear. Two scenarios are likely. First,

these dislocations are nucleated from twin steps during twin migration. Second, dislocations

nucleated from grain boundaries cut through twin boundaries during the subsequent plastic de-

formation. Other important questions relating to the current observations are: what are the ac-

tual mechanisms corresponding to yield and what governs the strength transition in this unique

microstructure? In current MD simulations, the yield stress is often dictated by dislocation

nucleation events due to the small sample and grain size simulated. This may not be true

for samples in experiments where other mechanisms, such as dislocations crossing interface

boundaries, may define the yield stress. Finally, the mechanisms responsible for the unusual

high ductility and strain hardening are also not well understood. We address these questions in

Chapter 4 and 5 together with new sets of simulation results and discussions.
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Chapter 4

Plastic Deformation of Nanotwinned
FCC Metals

In this Chapter, we present MD simulations employing a Cu EAM interatomic potential to ex-

amine a microstructure containing an ultrafine array of growth twins under uniaxial, fixed true

strain-rate conditions. We examine the deformation mechanisms by monitoring the evolution

of the dislocation-twin microstructure during the initiation and propagation of plastic defor-

mation with atomic resolution. New mechanisms of twin mediated slip transfer across twin

boundaries are described. One of these is the generation of a {001}〈110〉 Lomer dislocation

from the interaction of a 60◦ full dislocation and a twin boundary. The subsequent dissocia-

tion of the Lomer dislocation into Shockley, stair-rod and Frank partial dislocations are studied

in detail. In addition, we also observe a new mechanism in which a 30◦ partial dislocation

interacts with the twin boundary to generate three new Shockley partial dislocations during

the twin-mediated slip transfer. We discuss the contribution of these mechanisms towards the

observed mechanical properties followed by a summary of all the known dislocation twin in-

teraction mechanisms at the end of this Chapter.

4.1 Simulation Setup

For the simulation described in this Chapter, we constructed the simulation cell, shown in

Fig. 4.1, as following. First, a pair of parallel, vertical grain boundaries are introduced into the

original perfect FCC crystal via a 9◦ rotation about the z axis (i.e., z ‖ [1̄10]). The original

and tilted matrix grains are labeled M and Mt, respectively. The second step is to introduce a
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4.2 Dislocation Nucleation and Evolution

parallel set of twins in both the original and tilted matrix grains by performing 180◦ rotations

of the “twinned” crystal about the [112̄] direction (this is the x-axis in the original matrix

grains). This process is repeated to produce the desired number of twins in the untilted and

tilted grains, T and Tt. Grains labelled M and T have crystallographic orientations x[112̄],

y[111], z[11̄0] and x[112̄], y[1̄1̄1̄], z[1̄10], respectively, and thus have a twin relationship with

respect to each other. The grains in the central region of the simulation cell are labelled Mt

and Tt and are rotated by 9◦ about the [1̄10] axis, relative to the M and T grains, respectively,

and thus Mt and Tt are twin related with respect to each other as well. The “�” symbols denote

the positions of the twin boundaries in the figure. There are several types of grain boundaries

in the unit cell, corresponding to the junctions of the following grain pairs M −Mt, T − Tt,
M − Tt and T − Mt. However, we note that the M − Mt and the T − Tt boundaries are

equivalent, as are the M − Tt and T −Mt boundaries. In the images of the simulation cell

illustrated throughout this Chapter, only the atoms for which the central symmetry parameter

cp [91] (as described in Section 2.4.5) differs from that of the perfect FCC crystal (cp = 0)

are shown. Atoms in non-FCC environments, such as in twin boundaries, grain boundaries,

stacking faults, and dislocation cores, are shown with a color that depends on the value of the

parameter cp (e.g., blue corresponds to cp ∼ 0.04, cyan to cp ∼ 0.171, yellow to cp ∼ 0.285,

and red to cp ∼ 0.36. The simulation cell dimensions are ∼ 475× 950× 153 Å in the x, y and

z directions, respectively, such that the total number of atoms in the system is 5,834,519. The

average spacing between twin boundaries is ∼ 160 Å in the simulation cell.

Molecular dynamics simulations presented in this and subsequent Chapters were performed

using LAMMPS [90]. The simulation cell in Fig. 4.1 was first equilibrated for 50 ps, then

heated to 600 K at 1000 K/ns using molecular dynamics in an ensemble where the number

of particles N , the stress tensor σ, and the temperature were fixed (i.e., the NσT ensemble).

Periodic boundary conditions were imposed in all directions in the simulation. Tensile loading

simulations were performed in an ensemble in whichN and T were fixed, a constant true strain

rate of 108/s was imposed in the x-direction, and all stresses were fixed (at zero), except for

σxx.

4.2 Dislocation Nucleation and Evolution

The initial simulation cell contains a regular array of coherent twin boundaries, a pair of “low

angle tilt” grain boundaries and no dislocations, as shown in Fig. 4.1. This microstructure is
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Figure 4.1: A section of the simulation unit cell containing two vertical grain boundaries (GB)
and an array of parallel twin boundaries. The matrix M and twin T domains are oriented with
respect to the external coordinate frame as x[112̄], y[111], z[11̄0] and x[112̄], y[1̄1̄1̄], z[1̄10],
respectively. The grain in the center of the unit cell is rotated or tilted with respect to the grains
on the left and right by a 9◦ rotation with respect to the z-axis. The matrix and twin domains
in the central grain are labeled, Mt and Tt, respectively. The “�” indicate the positions of the
twin boundaries. Atoms are only shown if the central symmetry parameter differs from that
of the perfect FCC crystal. Atom coloring is also determined based on the central symmetry
parameter, as described in the text. The x, y, and z dimensions of the simulation cell are ∼
475Å, ∼ 950Å, and ∼ 153 Å, respectively, and the simulation cell contains 5,834,519 atoms.
Periodic boundary conditions are imposed in the x, y, and z-directions. Atomic configurations
presented in this and subsequent Chapters are pre-processed in MD simulations and visualized
in Atomeye [117].
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similar to the as-sputtered microstructures reported in [118]; in particular, both the simula-

tions and experiments contain low angle (∼ 9◦) boundaries and a set of parallel coherent twin

boundaries (∼ 15 nm apart). In the present study, we examine dislocation nucleation mecha-

nisms and the subsequent evolution of the dislocation structure and compare these results to the

experimental observations. While earlier atomistic simulation studies examined similar defor-

mation behavior [19, 20], those studies were idealized in the sense that they examined straight

dislocations parallel to the twin boundary under loading conditions that generated pure glide

Peach-Koehler forces. In the present study, we examine the more realistic situation where the

applied load is such that slip can be activated simultaneously on several different slip systems

and, in addition, there are stresses that do not contribute to glide on any of the slip systems.

In the present simulations, the initial dislocation structure is formed as a result of dislocation

nucleation and migration (i.e., not straight dislocations parallel to the twin boundary). This

allows us to examine the generality of the previous results and their applicability to the actual

experiments. Our goal is to understand the mechanisms that produce the experimental reports

of simultaneous ultrahigh strengthening and ductility in nanotwinned metallic systems.

Figure 4.2 shows the evolution of the system during plastic deformation. Figure 4.2 (a)

shows the onset of plastic deformation when dislocations are first nucleated from the grain

boundaries. We note that the grain boundaries formed where crystals M and Tt or Mt and T

meet are general gain boundaries (i.e., not low angle tilt nor low Σ boundaries) and boundaries

joining crystals M and Mt or T and Tt are 9◦ low angle tilt boundaries. The low angle tilt

boundaries consist of regularly spaced lattice dislocations lying on {111} planes, as predicted

for low angle grain boundaries. The dislocations that make up the low angle boundaries split

into pairs of partial dislocations separated by intrinsic stacking faults. The two types of grain

boundaries serve as dislocation nucleation sites for two different types of dislocations which

dominate the initial stage of plastic deformation. Type I is an extended 60◦ full dislocation

in crystal M with Burgers vector DB slipping on the c plane, or equivalently, an extended

60◦ full dislocation in crystal T with Burgers vector DTAT slipping on the cT plane (our

notation for Burgers vectors and slip planes are as described in Fig. 2.11 in Section 2.2.4.1 of

Chapter 2). This dislocation splits into a 30◦ leading partial γB, an intrinsic stacking fault

and a 90◦ trailing partial Dγ (γTAT and DTγT for dislocation in crystal T). This type of

dislocation is nucleated near the triple junction where a general grain boundary (formed by

crystal of type M and Tt), a low angle tilt grain boundary (formed by crystal of type M and

Mt) and a twin boundary meet. The detailed nucleation process is shown in Fig. 4.3 (a). Type
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4.2 Dislocation Nucleation and Evolution

II is a Shockley partial dislocation loop with a circular intrinsic stacking fault and on slip

planes of type a (recall that a, b, aT and bT are equivalent with respect to the current loading

direction). Type II dislocations are nucleated at steps on the stacking fault planes associated

with the dislocations that make up the low angle tilt grain boundaries (Fig. 4.3 (b)). The upper

case letters in Fig. 4.2 (a) denote newly nucleated dislocations (circled). Labels A-D denote

the nucleation of Type I dislocations. Dislocation A is an extended 60◦ dislocation (DB on c

plane, Type I dislocation). Dislocation B is a 30◦ leading partial dislocation γB slipping on

the c plane and trailing an intrinsic stacking fault. The trailing partial has not yet nucleated in

Fig. 4.2 (a). Dislocations C and D are 30◦ leading partials γB and γTBT on slip plane c and

cT , respectively. Dislocations E-H indicate recently nucleated Type II partial dislocations on

a-type slip planes.
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Figure 4.2: Evolution of the nanotwinned Cu system during tensile loading. Figure (a) shows
the onset of plastic deformation shortly after dislocations are first nucleated from the grain
boundary. Figure (b) shows dislocations interacting with twin boundaries. Figure (c) shows
the dislocation/twin/grain boundary microstructure after significant plastic deformation. The
upper case Roman letters highlight recently nucleated dislocations in (a) and the same notation
is used in the subsequent panels.

Figure 4.2 (b) shows the system at the point in time where dislocations start to impinge upon

the twin boundaries. Dislocations A and B are extended 60◦ dislocations (Type I) blocked by

the twin boundaries. Dislocation C is a 30◦ leading partial γB slipping on plane c and leaving

a∼ 12 nm wide stacking fault behind. This stacking fault is∼ 3 times wider than dislocation A
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in Fig. 4.2 (a) because the 90◦ trailing partial dislocationDγ has not yet nucleated (nucleation

is a stochastic process). Dislocation D (DTBT , Type I) in Fig. 4.2 (b) glides on the cT plane,

passes through a twin boundary, and transforms into a Lomer or Lomer-Cottrell dislocation

CD on a {001} plane of crystal M . Shockley partial dislocation (E-H) loops are nucleated

and grow along their respective slip planes until blocked by twin boundaries (see Fig. 4.2 (b)).

The expansion of these leading partial loops creates a high density of stacking faults on a-type

slip planes. Dislocation I in this figure is an extended 60◦ dislocation (Type I) that is partially

transmitted through a twin boundary. A Lomer dislocation (CTDT on {001}T plane in crystal

T ) is generated from this dislocation-twin interaction. The Lomer dislocation on the {001}T

plane further dissociates into two Shockley partial dislocations and one stair-rod dislocation

which forms a Lomer-Cottrell barrier (dislocation J in Fig. 4.2 (b)). This mechanism is dis-

cussed in detail in the following Section 4.3. We note that dislocations A, B and I are all Type

I dislocations with the same Schmid factor. However, only dislocation I passes through the

twin boundary, while dislocations A and B are blocked by the twin boundary (even though

they were nucleated earlier than dislocation I). This suggests that slip transfer across the twin

boundary requires thermal activation (there is an energy barrier associated with nucleating a

new dislocation on the other side of the twin boundary).

A high density of Shockley partial dislocations and stacking fault planes are generated upon

further tensile loading of the system, as shown in Fig. 4.2 (c). These Shockley partial dislo-

cations are either nucleated from the grain boundaries or resulted from the dislocation-twin

interaction during twin-mediated slip transfer. In addition to the dislocation-twin interaction

mechanisms discussed by Jin et al. [18, 20], we observed two additional dislocation-twin inter-

action mechanisms. These provide a mechanism for strain hardening and are one of the main

foci of this Chapter. The first of the two new mechanisms is the generation and dissociation

of a {001}〈110〉 Lomer dislocation from the interaction of a 60◦ full dislocation and a twin

boundary. The second is the generation of three Shockley partial dislocations from the interac-

tion of a 30◦ Shockley partial with a twin boundary. We present detailed analysis of these two

mechanisms below.

4.3 Dislocation-Twin Interaction Mechanisms

Dislocations can be blocked where they first make contact with twin boundaries. As more of

the dislocation encounters the twin boundary, a long, straight dislocation segment forms at the
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(a) General GB

TB

30◦ leading partial

(b) Stacking fault

Partial dislocation loop

Figure 4.3: Dislocation nucleation from grain boundaries. Figure (a) shows partial dislocation
nucleation from the triple junction of a general, a low angle and a twin boundary. Figure (b)
shows partial dislocation loop nucleation from steps on an intrinsic stacking fault.
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intersection of the slip plane and the twin boundary. Because the dislocations intersecting the

twin boundary are straight in the FCC system, we need only focus on three types of lattice

dislocation: (i) a screw dislocation (AB on c plane for example), (ii) a 60◦ dislocation with a

30◦ leading partial and a 90◦ trailing partial (γB andDγ on plane c) and (iii) a 60◦ dislocation

with a 90◦ leading partial and a 30◦ trailing partial (Dγ and γB on plane c). Only the screw

dislocations, which consist of a pair of Shockley partials in the matrix grain, can be transmitted

across the twin boundary while leaving the twin boundary intact. On the other hand, the screw

dislocation can be absorbed into the twin boundary thereby creating steps on the twin boundary.

The interaction of non-screw dislocations with the twin boundary is more complicated; the

detailed mechanisms of which depend on material properties and loading conditions [20]. This

makes it impossible to determine the dislocation-twin interaction mechanisms during the twin-

mediated slip transfer based solely on conservation of Burgers vector considerations. Below

we describe, in detail, the two new mechanisms for dislocation-twin interaction observed under

general stress conditions (i.e., applied stress that involving both do and do not contribute to the

Schmid factor) and their contributions toward strain hardening of the nanotwinned structure.

4.3.1 Generation and Dissociation of Lomer Dislocations

The simulation results presented above show the generation of {001}〈110〉 Lomer dislocations

as a result of dislocation-twin interactions. In describing the mechanism by which this occurs,

we focus attention on the structure shown in Fig. 4.4 and the corresponding schematic illustra-

tion in Fig. 4.5. A leading 30◦ partial dislocation (γB on c) is nucleated from a grain boundary

(refer to Fig. 4.3 (a)). The glide of the leading partial leaves a widening intrinsic stacking fault

behind. As the leading partial propagates further, a trailing 90◦ partial dislocation (Dγ on the

same c plane) is nucleated from the grain boundary. The glide of the trailing partial annihilates

the stacking fault left behind by the leading partial dislocation, as shown in Fig. 4.4 (a1-c1) and

illustrated in Fig. 4.5 (a). This can be summarized as follows:

DB → γB + Dγ

1/2[011] → 1/6[1̄21] + 1/6[112]

lattice dislocation → 30◦ leading partial + 90◦ trailing partial

(4.1)
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Figure 4.4: Three views (a-c) of a 60◦ extended dislocation passing a twin boundary and the
generation and dissociation of a {001}T 〈110〉T Lomer dislocation. Time evolves from left to
right (1-4). The last column shows the coordinate axis triads of the three views. The nearly
horizontal planes of atoms represent a twin plane and the canted planes of atoms represent
stacking faults.
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Figure 4.5: Schematic illustration of a 60◦ dislocation passing through a twin interface and
the generation of a {001}T 〈110〉T Lomer dislocation. Figure (a) shows a 30◦ leading partial
γB and a 90◦ trailing partial Dγ slipping on the c plane. The hatched area highlights the
intrinsic stack fault enclosed by the two Shockley partial dislocations. Figure (b) shows the
γB partial dislocation blocked by the twin boundary and the Dγ trailing partial “catching
up” with the leading partial and narrowing the stacking fault. Figure (c) shows the γB and
Dγ partials recombining into a DB dislocation and a Lomer dislocation CTDT on {001}T
being nucleated in the twinned crystal. A Shockley partial dislocation Aδ is left on the twin
boundary where the Lomer dislocation was nucleated. Figure (d) shows the coordinate axis
triad for the schematic view.
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The leading partial (γB) is blocked by the twin boundary (d) while the trailing partial

dislocation (Dγ) continues to slip towards it, narrowing the intervening stacking fault (see

Fig. 4.4 (a2-c2) and Fig. 4.5 (b)). This process continues until a segment of the trailing partial

(Dγ) merges with a segment of the leading partial (γB) to form a full lattice dislocationDB

at the twin interface (removing the intervening stacking fault). A Lomer dislocation (CTDT )

segment is then nucleated on the {001}T plane at the full dislocation DB. As the Lomer

dislocation glides into the twinned crystal, it leaves behind a partial dislocationAδ on the twin

interface d as shown in Fig. 4.4 (a3-c3) and Fig. 4.5 (c). This reaction can be expressed as

γB + Dγ → DB → CTDT + Aδ

1/6[1̄21] + 1/6[112] → 1/2[011] → 1/2[1̄1̄0]T + 1/6[1̄21̄]

30◦ leading
partial on c

+ 90◦ trailing
partial on c

→ lattice
dislocation

→ Lomer on
{001}T

+ partial
on TB

(4.2)

While the mechanism of Lomer dislocation generation from the twin boundary has been

previously reported for the uniaxial deformation of a Cu nanowire [119] and a Au nanopillar

[44], the importance of the Lomer dislocation, its subsequent dissociation, and the generality

of this mechanism has not been thoroughly analyzed. We provide such an analysis here. Both

the Lomer CTDT and partial Aδ dislocations are glissile. The Aδ dislocation on the twin

plane may also be described as a step, the motion of which shifts the twin plane by one atomic

plane normal to itself. The Lomer dislocation (CTDT on {001}T ) in the twinned crystal is

mobile: its Burgers vector lies in the slip plane. However, the Peierls stress for the motion of

the Lomer dislocation is expected to be higher than that of lattice dislocations on {111} planes.

The Lomer dislocation expands as a semi-circular loop on the {001}T plane with its two ends

in the twin boundary, as illustrated in Fig. 4.5 (c). As the Lomer dislocation loop expands, a

section of the loop becomes parallel to its Burgers vector and, hence, is a screw. The screw

segment dissociates into a pair of Shockley partial dislocations that subsequently move on the

two {111}T slip planes (aT and bT ) that intersect the initial Lomer screw segment, as shown in

Fig. 4.6 (a). These two Shockley partial dislocations (αTDT on aT andCTβT on bT ) expand

quickly into circular partial dislocation loops the inside of which are intrinsic stacking faults.

A stair-rod dislocation (βTαT ) is left at the position of the original Lomer screw segment and
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thus forms a Lomer-Cottrell lock. The above dissociation, was first noted by Cottrell [56] and

can be expressed as

CTDT → CTβT + βTαT + αTDT

1/2[1̄1̄0]T → 1/6[1̄2̄1]T + 1/6[1̄10] + 1/6[1̄2̄1̄]

Lomer on {001}T → Shockley partial
on bT

+ stair-rod

dislocation
+ Shockley partial

on aT

(4.3)

We performed an MD simulation in which we constructed a {001}〈110〉 Lomer screw dis-

location and found that under zero stress, it evolved into the extended configuration described

by Eqn. 4.3. Application of Frank’s dislocation reaction criterion [56] also shows that dis-

sociation, as per Eqn. 4.3, is energetically favorable. Because the Lomer screw dislocation

spontaneously dissociates, the Peierls barrier could not be readily deduced through MD simu-

lations.
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CT βT

αT DT

βT αT
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CTγT
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CTβT

aT

CTαT

(a) (b)

Figure 4.6: Dissociation of {001}T 〈110〉T Lomer dislocation. Figure (a) shows a Lomer dislo-
cationCTDT dissociates into two Shockley partial dislocationsCTβT and αTDT on bT and
aT plane respectively. A stair-rod dislocation βTαT is resulted from the dissociation. Figure
(b) shows dissociation of the {001}T 〈110〉T Lomer dislocation into a Shockley partial dislo-
cation γTDT and a Frank dislocationCTγT . The Lomer dislocation also serves as nucleation
sites for Shockley partial dislocation CTβT and CTαT on bT and aT plane, respectively.

There is a geometric requirement for the Lomer dislocation dissociation to occur. The

Lomer dislocation segment can only dissociate once it becomes aligned with the intersection

of the two {111}T slip planes (i.e., this corresponds to a pure screw orientation). Only a small

segment of the expanding Lomer loop satisfies this geometric requirement; the rest of the loop

is either of edge or mixed character. The Lomer edge segment undergoes another type of
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4.3 Dislocation-Twin Interaction Mechanisms

dissociation, as shown in Fig. 4.6 (b). The Lomer edge dislocation (CTDT ) dissociates into a

Frank dislocation with a Burgers vector CTγT perpendicular to the cT plane and a Shockley

dislocation with Burgers vector γTDT on the cT plane. The Frank dislocation (CTγT ) is

sessile since its Burgers vector is perpendicular to the {111}T slip plane and the Shockley

dislocation forms as a pure screw that (γTDT ) expands into a circular partial dislocation loop

enclosing an intrinsic stack fault. We express the dissociation as

CTDT → CTγT + γTDT

1/2[1̄1̄0]T → 1/3[1̄1̄1]T + 1/6[1̄1̄2̄]T

Lomer on {001}T → Frank partial on
cT

+ Shockley partial
on cT

(4.4)

Just like the Lomer dislocation can dissociate when in a screw orientation, so the Lomer dislo-

cation can dissociate when in an edge orientation; the mixed Lomer dislocation cannot disso-

ciate. Applying Frank’s dislocation reaction criterion [56] shows the dissociation of the Lomer

edge segment in Eq. 4.4 is energetically favorable. Figure 4.6 (b) also shows the Shockley

partial dislocation (CTβT on bT andCTαT on aT ) nucleation from screw Lomer dislocation

line segments. This suggests the slip of a Lomer dislocation on the {001}T plane is unstable

relative to dissociation and the subsequent slip of the Shockley partials on {111}T planes.

The remaining undissociated Lomer dislocation segments which do not satisfy geometric

requirement for dissociation (pure screw or pure edge) continue to slip on the {001}T plane in

the twinned crystal until they meet the next twin boundary. Twin mediated slip transfer occurs

again and the Lomer dislocation line segment transforms into two Shockley partial dislocations

which glide into the matrix and a Shockley partial dislocation is left on the twin boundary. The

above slip transfer can be expressed as following:

CTDT → γB + Dγ + δA

1/2[1̄1̄0]T → 1/6[1̄21] + 1/6[112] + 1/6[12̄1]

Lomer on
{001}T

→ 30◦ partial on
c

+ 90◦ partial
on c

+ partial
on TB

(4.5)

However, the two Shockley partial dislocations, γB andDγ, slip on next nearest neighbouring
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4.3 Dislocation-Twin Interaction Mechanisms

c planes, thus forming an extrinsic stacking fault. The slip process on the respective c planes

is

BCABCÂBCABC

slip of Dγ ↓ ↓ ↓ ↓ ↓

ABCABÂBCABC

slip of γB ↓ ↓ ↓ ↓ ↓

ABCABÂCABCA

where we have used the classical {111} plane stacking notation and Â indicates the {111}
atomic plane above and below which the two partials slip. The slip of a Dγ partial displaces

atoms on and above the C layer by 1/6[112]. This results a change in the stacking sequence

from the originalBCABCÂBCAB toABCABÂBCABC. The slip of partial γB displaces

atoms on and below the B layer by 1/6[1̄21], thereby changing the stacking sequence from the

previousABCABÂBCABC toABCABÂCABCA and forming an extrinsic stacking fault.

We summarize the above process of generation and dissociation of Lomer dislocations at

the twin boundary in the dislocation path diagram illustrated in Fig. 4.7.

4.3.2 30◦ Shockley Partial Dislocation - Twin Boundary Interaction

The simulations show that a large number of Shockley partial dislocation loops (Type II) are

generated at the grain boundaries during plastic deformation. Some of these partial disloca-

tions meet twin boundaries before the trailing partials are formed at the grain boundary. The

interaction of these partial dislocations with twin boundaries generates an additional set of dis-

locations which augment the ductility of the material. We describe the process here. Figure 4.8

shows leading partial dislocations, without trailing partials, passing through a twin boundary.

Figure 4.9 (a-d) is a schematic illustration of the interaction mechanism. In Fig. 4.9 (a), a

leading partial dislocation (Cβ on b) is nucleated from a grain boundary (as seen in Fig. 4.3

(b)) and forms a circular dislocation loop enclosing an intrinsic stacking fault. The expanding

Cβ dislocation loop is blocked where it meets the twin boundary (d), as shown in Fig. 4.9

(b). As the loop continues to expand it forms a larger and larger straight dislocation segment at

the intersection of the slip plane and the twin boundary. This dislocation segment at the twin

boundary is a 30◦ partial. A semi-circular partial dislocation (CTαT on aT ) is then nucleated

from this straight 30◦ partial in the twin boundary. This new loop propagates into the twinned
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Dislocation Path Diagram
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Figure 4.7: Schematic illustration of the dislocation path for a 60◦ full dislocation interacting
with twin boundaries. A pair of Shockley partials, γB and Dγ from Crystal M1, transforms
as indicated from left to right in the diagram. The two partials in M1 recombine at the first twin
boundary (TB1) to form the lattice dislocationDB which dissociates into a Lomer dislocation
CTDT in the twinned crystal T and leaves a Shockley partial dislocation Aδ on TB1. The
Lomer dislocation CTDT expands as a loop and the screw segments dissociate into Shockley
partials CTβT , αTDT and a stair-rod βTαT dislocation. The edge segments of the Lomer
dislocation dissociate into a Frank partial CTγT and a Shockley partial γTDT . The mixed
Lomer segments interacts with the next twin boundary (TB2) and react to form two Shockley
partial dislocations, γB andDγ, on next nearest neighbouring slip planes in crystal M2 (same
crystallographic orientation as M1) and a Shockley partial dislocation, δA that remains in TB2.
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Figure 4.8: 30◦ partial dislocations impinging on the twin boundary from above and emerging
into the twin crystal (below) as they pass through the twin boundary.

crystal, leaving behind a semi-circular intrinsic stacking fault on the aT plane, as illustrated in

Fig. 4.9 (c). The above slip transfer across the twin boundary can be expressed as

Cβ → CTαT + αTβ

1/6[1̄2̄1] → 1/6[2̄1̄1]T + 2/9[1̄1̄1̄]

Shockley partial
on b

→ Shockley partial
on aT

+ Frank partial on
TB

(4.6)

Following the expansion of the leading partial dislocation loop CTαT in the twin grain

(and the corresponding extension of the stacking fault), an additional pair of partial dislocation

loops are formed. One of these is the trailing partial dislocation in the twin grain αTBT and

the other is in the matrix grain βA. The slip of the αTBT partial in the twin grains annihilates

the stacking fault left behind by the leading partial CTαT , while the slip of the βA partial in

the matrix grain removes the stacking fault left behind by the initial Cβ partial, as shown in

79



4.3 Dislocation-Twin Interaction Mechanisms
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Figure 4.9: Schematic illustration of a 30◦ partial dislocation passing through a twin boundary.
Figure (a) shows a Shockley partial dislocation loop Cβ gliding on the b plane. Figure (b)
shows the Cβ partial dislocation blocked by the twin boundary d producing a straight, 30◦

partial dislocation line segment. Figure (c) shows a Shockley partial dislocation CTαT loop
nucleated from the intersection of the slip plane b and the twin boundary d that glides into the
twinned crystal on plane aT , leaving a Frank-type dislocation behind on the twin boundary.
Figure (d) shows the nucleation of αTBT and βA dislocations on the aT and b planes in the
twinned crystal and matrix, respectively. The slip of the αTBT and βA partial dislocations
clear the stacking faults created by the CTαT and Cβ partial dislocations, respectively. The
hatched areas denote intrinsic stacking faults.
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Fig. 4.9 (d). This dislocation process can be expressed as

αTβ → βA + αTBT

2/9[1̄1̄1̄] → 1/6[11̄2] + 1/6[1̄12]T

Frank partial on
TB

→Shockley partial
on b

+ Shockley partial
on aT

(4.7)

The unique feature of this mechanism is that it represents a dislocation multiplication effect.

One 30◦ dislocation reacts to form three Shockley partial dislocations at the twin boundary,

while leaving the original twin boundary intact and containing no dislocation debris.

4.4 Discussion

Many different dislocation generation mechanisms operate in coarse-grained materials. For

example, a classic Frank-Read source can generate dislocation after dislocation, thereby pro-

viding a continuous supply of dislocations to sustain plastic deformation. However, when the

grain size is on the nanometer scale, most of the dislocation generation mechanisms that op-

erate in coarse-grained materials shut down, leaving a dearth of operative dislocation sources

and what has become known as dislocation starvation. This scarcity of dislocations in pure

nanocrystalline metals often leads to ultrahigh strength and hardness, yet very low ductility

(failure strains in tension of only a few percent are common [110]). As discussed in the Intro-

duction, metals with a high density of nanotwins exhibit simultaneous ultrahigh yield strength

and ductility. To achieve these two , often conflicting, mechanical properties in a material that

deforms via dislocation plasticity, the material must contain both (a) a high dislocation density

and (b) significant barriers to their motion.

The two dislocation-twin interaction mechanisms described in Section. 4.3 imply that twin

boundaries can act not only as dislocation barriers but also as sources for dislocation multi-

plication. The first mechanism is based upon the generation of {001}〈110〉 Lomer disloca-

tions from the interaction of 60◦ dislocations with a twin boundary. Although this mechanism

has been previously reported to be one of the strengthening mechanisms in effect in metallic

nanowires [119] and nanopillars [44], its role as a dislocation source through its dissociation

is first reported here. The dissociation of the Lomer dislocation creates new Shockley partial

dislocations on three {111} slip planes and hence activates three additional slip systems in the
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dislocation-starved grain on the opposite side of the twin boundary. When this decomposition

occurs, the original Lomer dislocation survives. This is because this dissociation occurs only

on the pure edge and pure screw segments of the Lomer dislocation. The surviving segments of

the Lomer dislocation continue to slip on the {001} plane. New Shockley partial dislocations

can then form via the dissociation of the surviving Lomer dislocation as they curve during sub-

sequent migration and via interaction with the next twin boundary in these nanotwinned struc-

tures. The twin mediated slip transformation of a 60◦ dislocation into a {001}〈110〉 Lomer

dislocation leaves behind a Shockley partial dislocation on the twin boundary which activates

yet another slip system.

In the second mechanism reported in Section. 4.3.2, when a 30◦ Shockley partial disloca-

tion impinges upon a twin boundary, three new Shockley partial dislocations are formed at the

intersection of the 30◦ Shockley partial dislocation slip plane and the twin boundary. One of

the nucleated partial dislocation slips back into the grain from which the initial Shockley partial

came (removing the stacking fault that it trailed behind), while the other two partial disloca-

tions slip in the grain on the opposite side of the twin boundary - thereby activating additional

slip systems.

These two mechanisms provide dislocation nucleation through dislocation-twin interac-

tion and the activation of several additional slip systems. The high twin boundary density in

these materials provides copious opportunities for lattice dislocation-twin boundary interac-

tions. This is how these nano-structured materials simultaneously achieve their remarkably

high ductility.

In order to achieve the ultrahigh strength and hardness reported in these nanotwinned ma-

terials, barriers to dislocation migration must be present. It has long been recognized that twin

boundaries, like general grain boundaries, strengthen metals [11, 120]. However, the atomistic

mechanisms by which dislocation-twin interaction strengthen metals remained unclear until

recently, when the MD simulation results of Jin et al. [18, 20] and Zhu et al. [19] were re-

ported. In short, they demonstrated that dislocations are blocked by the twin boundary because

of the discontinuity in the slip systems of the two crystals (associated with the mirror symmetry

there). In order for slip from one grain to its twin to occur, dislocation nucleation or cross-slip

must occur at the twin boundary. Even at high stress, thermal activation is usually required

to overcome the energy barrier associated with dislocation nucleation. In our simulation, the

generation of the Lomer dislocation on the {001} plane shown in Section. 4.3.1 contributes

to strain hardening through its dissociation. From the dissociation of the Lomer dislocation,
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4.5 Slip Transfer across Twin Boundary in FCC Lattice

stair-rod and Frank-type dislocations are formed and tend to restrict the motion of the Lomer

dislocation. These sessile dislocations also serve as barriers to other dislocations in the sys-

tem. Our simulations also show the frequent formation of Lomer-Cottrell locks via reactions

between Shockley partial dislocations slipping on different {111} planes. These sessile dis-

locations, together with the glissile dislocations and closely spaced stacking faults and twin

boundaries, form complex dislocation barriers and networks, as well as point defects, intrinsic

and extrinsic stacking faults and stacking fault tetrahedra during plastic deformation (e.g., see

Fig. 4.2 (c)). This is consistent with TEM observations in which a relatively defect-free, as-

deposited nanotwinned metallic sample contains a high density of dislocations and other debris

following tensile loading [10].

4.5 Slip Transfer across Twin Boundary in FCC Lattice

There have been many studies on the interactions of lattice dislocations with coherent twin

boundaries. At this point of writing, it is appropriate and beneficial to make a collection of all

the known interaction mechanisms. Below we make such a summary as shown in Fig. 4.10.

Since gliding dislocations will be blocked and form straight dislocation lines when they en-

counter interfacial barriers, there are only three categories of lattice dislocation need to be

considered [121] :

(i) a screw dislocation (AB on c plane for example);

(ii) a 60◦ dislocation with a 90◦ leading partial and a 30◦ trailing partial (Dγ and γB on plane

c).

(iii) a 60◦ dislocation with a 30◦ leading partial and a 90◦ trailing partial (γB and Dγ on

plane c) and

In the case where the interface is a coherent twin boundary, the interaction mechanisms seem

to be quite limited. However, the problem is also complex as the mechanisms of dislocation-

twin interaction are known to be material properties and loading conditions dependent [20].

This makes it impossible to determine the dislocation-twin interaction mechanisms during the

twin-mediated slip transfer based solely on conservation of Burgers vector considerations.

We start with the simpler case of screw dislocation first. Screw dislocations can cross

slip onto twin boundaries which are also {111} slip planes. Figure 4.10 (a) depicts such a
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Figure 4.10: Slip transfer of dislocations across an FCC {111} twin boundary. (a-b) show screw
dislocation cross slip onto the twin boundary d and cT in the twin crystal respectively. (c-d)
show interaction mechanisms of a 60◦ dislocation (consisting of a 90◦ leading partial and a 30◦

trailing partial) with the twin boundary . (e-h) show interaction mechanism of a 60◦ dislocation
(consisting of a 30◦ leading partial and a 90◦ trailing partial) with the twin boundary. (i) shows
the interaction mechanism of a 30◦ partial dislocation with the twin boundary.
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mechanism. In this twin boundary mediated slip transfer, a pair of partial dislocationsAγ and

γB with an intrinsic stacking fault in between slip on plane c and they constrict into a full

dislocationAB with pure a screw character as they encounter the twin boundary d:

Aγ + Intrinsic
SF

+ γB → AB

1/6[2̄11̄] + 1/6[1̄21] → 1/2[1̄10]

30◦ partial
on c

+ 30◦ partial
on c

→ full lattice
dislocation

(4.8)

The discontiniuty of the slip system at the twin boundary makes the above dislocation being

blocked. The full dislocation AB is now lying at the intersection of three {111} slip planes,

namely c, d and cT . Both the Schmid factors on the respective slip system and the energy

barriers to nucleate new dislocations can influence which slip systems will be activated in

the subsequent slip transfer. The first factor is loading condition dependent while the second

depends on material properties. The general observation from MD simulations [18, 112, 113]

is that dislocations tend to cross slip onto twin boundaries in materials with a high unstable

stacking fault energy barrier γusf compared to that of a unstable twin migration energy barrier

γutm. Al is such a material with γusf/γutm ∼ 3 and the slip transfer for the above dislocation

in Al tends to be

AB → Aδ + δB

1/2[1̄10] → 1/6[1̄21̄] + 1/6[2̄11]

full lattice
dislocation

→ Shockley
partial on d

+ Shockley
partial on d

(4.9)

Materials such as Cu and Ni have low ratios of γusf/γutm. In these materials, the con-

stricted dislocation AB can not only cross onto the twin boundary as described by Eqn. 4.9,

but also cross slip onto plane cT in the twin crystal as illustrated in Fig. 4.10 (b). The latter slip

transfer process is

AB → γTAT + BTγT

1/2[1̄10] → 1/6[1̄21̄] + 1/6[2̄11]

full lattice
dislocation

→ Shockley
partial on d

+ Shockley
partial on d

(4.10)
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Figure 4.10 (c) shows the dislocation twin interaction mechanism for a 60◦ dislocation

(DB on plane c) consisting of a 90◦ leading partial (Dγ) and a 30◦ trailing partial (γB)

observed in Cu MD simulations by Jin et al. [20]. The partial pair constrict at the twin boundary

as following

Dγ + Intrinsic
SF

+ γB → DB

1/6[2̄11̄] + 1/6[1̄21] → 1/2[011]

90◦ leading
partial on c

+ 30◦ trailing
partial on c

→ full lattice
dislocation

(4.11)

After the constriction of the partial pair at the twin boundary, a Shockley partial BTγT is

nucleated on plane cT in the twin crystal, leaving a pair of partial dislocations (1/3δTDT and

1/3ATBT /CTDT ) pinned at the twin boundary. The slip transfer process can be written as

DB → BTγT + 1/3δTDT + 1/3ATBT /CTDT

1/2[011] → 1/6[12̄1̄]T + 1/9[1̄1̄1̄]T + 1/3[100]T

full lattice
dislocation

→ Shockley
partial on cT

+ Mismatch + Hirth lock

(4.12)

The above 60◦ dislocation DB on plane c (consisting of a 90◦ leading partial Dγ and

30◦ trailing partial γB) has a different slip transfer mechanism in Al, as shown in Fig. 4.10

(d). The pair of partial dislocations constricts at the twin boundary into a full dislocation as

described in Eqn. 4.11. However, the resultant slip transfer in Al is different from that in Cu.

In Al, a pair of Shockley partials are nucleated on the twin boundary, leaving behind a stair-

rod dislocation (CD/AB) at the intersection of the plane c and the twin boundary d. This

again demonstrates the ease of nucleating dislocations on twin boundaries in Al, which can be

attributed to its high value of γusf/γutm. The above slip transfer process can be written as

DB → Aδ + δC + CD/AB

1/2[011] → 1/6[1̄21̄] + 1/6[112̄] + [001]

full lattice
dislocation

→ Shockley
partial on d

+ Shockley
partial on d

+ Hirth lock

(4.13)
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Figure 4.10 (e) shows the dislocation twin interaction mechanism for a 60◦ dislocation

(DB on plane c) consisting of a 30◦ leading partial (γB) and 90◦ trailing partial (Dγ) ob-

served in Cu MD simulations [20]. The pair of partial dislocations constricts at the twin bound-

ary into a full dislocation as described in Eqn. 4.11 above. A pair of Shockley partials are

nucleated on plane cT in the twin crystal, leaving behind a Shockley partial dislocation (Cδ)

on the twin boundary d. The slip transfer process can be written as

DB → BTγT + γTDT + Cδ

1/2[011] → 1/6[12̄1̄]T + 1/6[1̄1̄2̄]T + 1/6[1̄1̄2]

full lattice
dislocation

→ Shockley
partial on cT

+ Shockley
partial on cT

+ Shockley
partial on d

(4.14)

Figure 4.10 (f) shows the dislocation twin interaction mechanism for a 60◦ dislocation

(DB on plane c) consisting of a 30◦ leading partial (γB) and 90◦ trailing partial (Dγ) ob-

served in Ni MD simulations [20]. The pair of partial dislocations constricts at the twin bound-

ary into a full dislocation as described in Eqn. 4.11 above. Shockley partials are nucleated on

twin plane d, leaving behind a Frank type partial dislocation (Dδ) on the twin boundary d.

The slip transfer process can be written as

DB → δB + Dδ

1/2[011] → 1/6[2̄11] + 1/3[111]

full lattice
dislocation

→ Shockley
partial on d

+ Frank
partial on d

(4.15)

At larger strains, the above 60◦ dislocation DB on plane c (consisting of a 30◦ leading par-

tial γB and 90◦ trailing partial Dγ) gives a different slip transfer mechanisms as shown in

Fig. 4.10 (g). Shockley partial dislocations are nucleated on the twinning plane d (Cδ and δB)

and plane cT (γTDT ) in the twin crystal, leaving behind a sessile dislocation (1/6ATBT /CTDT+
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1/18Dδ) on the twin boundary. The slip transfer process can be written as

DB → Cδ + δB + γTDT + 1/6ATBT /CTDT + 1/18Dδ

1/6[1̄1̄2] → 1/6[1̄1̄2] + 1/6[2̄11] + 1/6[1̄1̄1̄]T + 1/6[100]T + 1/18[111]

full lattice
dislocation

→
Shockley

partial
on d

+
Shockley

partial
on d

+
Shockley

partial
on cT

+
sessile
partial
on d

+ sessile
partial on d

(4.16)

Figure 4.10 (h) and (i) are the mechanisms described in the previous section and are not

repeated here.

4.6 Summary

In this Chapter, we presented molecular dynamics simulation results for the uniaxial tensile

loading of Cu with a microstructure similar to that produced by a pulsed electrodeposition or

a magnetron-sputtering technique (i.e., an ultrafine grained microstructure containing a high

density of growth nanotwins). The plastic deformation of the initially dislocation free sam-

ple is initiated by dislocation nucleation from the grain boundaries. The applied load couples

to multiple slip systems producing both Schmid and non-Schmid stresses. We observe two

new dislocation-twin interaction mechanisms that lead to copious dislocation generation and

the production of sessile dislocation debris. The interaction of a 60◦ dislocation with a twin

boundary generates a {001}〈110〉 Lomer dislocation in the twin-related grain and a Shock-

ley partial dislocation on the twin boundary during twin-mediated slip transfer. The Lomer

dislocation line segment subsequently dissociates into Shockley, stair-rod and Frank partial

dislocations. The interaction of a 30◦ partial dislocation with a twin boundary generates three

additional Shockley partial dislocations during twin-mediated slip transfer. Two of the Shock-

ley partial dislocation glide into the twinned crystal, while the third slips back into the matrix

from whence the original partial dislocation came. Through the generation of the Shockley

partial dislocations, these new mechanisms activate additional slip systems and hence con-

tribute to the ductility of the material during plastic deformation. The sessile stair-rod and

Frank partial dislocations, together with the high-density twin boundaries, provide barriers to

dislocation motion and hence strengthen the material. Our simulation results here suggest that

twin boundaries can act both as dislocation barriers and multipliers during plastic deformation.
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These, in turn, are likely responsible for the experimentally observed simultaneous ultrahigh

strength and ductility in this unique microstructure.

We also summarized the known dislocation twin interaction mechanisms in FCC materi-

als and emphasize that the actual mechanisms are material properties and loading condition

dependent. The simulations in this Chapter employ a very special, “bi-crystal” structure. It

is not clear if the results from this simulation cell are valid in polycrystalline simulations. In

addition, the strength transition as a function of twin spacing has not been studied so far. In the

next Chapter, we address these points.
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Chapter 5

Dislocation Mechanisms Transition in
Nanotwinned FCC Metals

The simulation results in the previous Chapter suggest that twin boundaries are effective bar-

riers to dislocation motion and these barriers are not impenetrable. The interactions of dislo-

cation with twin boundaries play an important role in the plastic deformation of nanotwinned

metals. In this Chapter, we extend the previous observation based on a “bi-crystal” simulation

cell to a polycrystalline cell and examine how deformation mechanisms change by simulating

samples over a wide range of twin spacing.

We first present large-scale MD simulations of polycrystalline Cu with nanotwins. We

observe the nanotwinned Cu deforms not only through twin migrations, but also through dis-

locations cutting across twin boundaries as well. Our polycrystalline simulation also demon-

strates frequent occurrences of the Lomer dislocation formation and dissociation mechanism

as described in our earlier “bi-crystal” simulation in the previous Chapter. Since Lomer dis-

locations are formed frequently in our simulation and their dissociation mechanism depends

on the radius of curvature (i.e., a length scale relating to the twin spacing), we further perform

an extensive study on the deformation mechanism of nanotwinned Cu as a function of twin

spacing. We identify a change in deformation mechanism at small twin spacing and show that

this change in mechanism is consistent with the experimentally observed critical twin spacing

for softening. We use these results to develop a model for the twin spacing at which the classi-

cal increase in strength with decreasing microstructural length scale breaks down and provide

a simple approach to predict the optimal microstructural length scale. Our simulation results

suggest that the deformation mechanism changes when the twin spacing is below a critical
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value, which can be a source of the experimentally observed softening effect in nanotwinned

Cu.

In the simulations in this Chapter, uniaxial tensile loading was simulated at a constant

true strain rate of 0.1 ns−1 by stretching the simulation box in one direction while the other

two dimensions were adjusted through the Nosé-Hoover pressure barostat to maintain zero

normal stress. In the following, we describe the polycrystalline simulation first, followed by

simulations focusing on the twin spacing variation.

5.1 Polycrystalline Molecular Dynamics Simulations

5.1.1 Simulation Model

In the current study, we constructed a polycrystalline simulation cell through a Voronoi tessel-

lation as illustrated in Fig. 5.1. We first created a group of Voronoi sites arranged in a body-

centered cubic (BCC) lattice. The Voronoi polyhedron associated with each Voronoi site (or the

bcc super lattice site) is a truncated octahedron as shown in Fig. 5.1 (a). The cubic simulation

unit cell encloses 16 such Voronoi sites and its dimensions were scaled to be ∼ 90 × 90 × 90

nm as drawn in Fig. 5.1 (b). The 16 truncated octahedra were then filled with nanotwinned

FCC crystals (λ ∼ 11.27 nm) with random orientations such that the total number of atoms

in the simulation unit cell is 61,386,312. The atomic configuration was relaxed at 0 K via a

conjugate gradient algorithm. The system was then heated to a temperature of 900 K and a

hydrostatic pressure of 1 GPa for 100 ps followed by cooling to room temperature (300 K)

and zero hydrostatic pressure in another 50 ps. Uniaxial tensile loading was then carried out

along the z direction in Fig. 5.1 (a). Figure 5.1 (c) and (d) show two views of the atomistic

configuration of the simulation cell in which only atoms in non-perfect fcc lattice environment

are shown. (see Fig 5.1 caption for coloring scheme and viewing orientation)

5.1.2 Simulation Results

Figure 5.2 shows the evolution of the defect structure in the nanotwinned polycrystalline Cu

sample during tensile loading. Figure 5.2 (a) shows the onset of plastic deformation when lead-

ing partial dislocations were first nucleated at grain boundary triple junctions. These newly nu-

cleated partial dislocations glided and created wide stacking faults (∼ 10 nm) until they were

blocked by twin boundaries. Figure 5.2 (b) is the sample at a later stage of the deformation

where dislocations (both pure screw and 60◦) started to cross twin boundaries. Those screw
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x
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z (a) (b)

(c) (d)

TBGB

Figure 5.1: Schematic and atomistic view of the polycrystalline molecular dynamics simula-
tion cell. (a) 16 Voronoi sites (dark blue spheres) arranged in a BCC lattice inside the cubic
unit cell. The red truncated octahedron is the Voronoi polyhedron associated with one of the
Voronoi site; (b) the simulation cell with all the Voronoi polyhedra drawn; (c) atomistic view
of the polycrystalline simulation cell (constructed from (b)) when plastic deformation first ini-
tiated through partial dislocation nucleations at grain boundary triple junctions. (d) simulation
cell in (c) viewed along the 〈111〉 direction in the simulation box coordinates. In both figure
(c) and (d), atoms are shown only if their central symmetry parameters [91] differ from that of
the perfect FCC crystal; the colors indicate the local symmetry: twin boundaries (TB), dislo-
cations, intrinsic and extrinsic stacking faults are shown in dark blue, magenta or yellow, etc.
(depending on dislocation type), sky blue and dark blue, respectively.
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dislocations (e.g.,AB in Fig. 2.11) crossed twin boundaries by slipping on {111} and {111}T

planes in the matrix and twin grains alternatively [18, 19]. This process keeps the twin bound-

ary intact. In the simulation, it is also observed that pure screw dislocations cross-slipped onto

twin boundaries (formingAδ and δB) and created pairs of twin steps. The interactions of 60◦

dislocations (e.g., DA, DB) with twin boundaries are different from those pure screw ones.

Lomer dislocations were frequently formed on the {001}T plane in the next twin crystal when

60◦ dislocations passed through a twin boundary. Locations where such dislocation mechanism

occurred are highlighted as blue ellipses in the figure. Glide on the unusual {001}T plane in

the twinned material occurred because of the very high Schmid factor on this slip system.

In addition to the dislocation twin boundary interactions, twin migration via twin step

through Shockley partial dislocation nucleation at twin/grain junctions was also observed in

some grains (see Fig. 5.2 (b)). Li et al. [116] attributed this as the softening mechanism in

their recent study. Close examination of Fig. 5.2b only reveals two twin steps despite the fact

that the total twin area in the sample is quite large (the initial total twin boundary area is 7

µm2). On the other hand, Fig. 5.2 shows many dislocations crossing between twins. Analysis

of the deformation at 3% strain suggests that the ratio of the plastic strain associated with twin

boundary migration to that from dislocation migration between twin boundaries is approxi-

mately 0.15. The simulation here and those of Li et al. [116] show that dislocation nucleation

at the twin/grain boundary junctions and subsequent twin boundary migration is not the domi-

nant deformation mechanism for twin spacings above 3 nm. (Note, dislocations that cross the

twin boundaries can also leave steps on the twin boundaries and these steps can also contribute

to twin boundary migration. This is a consequence of the dislocations cutting twin boundaries

and is a different mechanism than suggested by Li et al. [116].)

Figure 5.2 (c) and (d) show the system at a true strain of 7.5% and 8.5%, respectively.

In these figures, many leading partial dislocations were blocked by twin boundaries while the

trailing partial dislocations had not yet been nucleated. In some cases, the trailing partial does

form, combines with the leading partial at a twin boundary (under the action of the applied

stress), cuts through the twin boundaries and forms a Lomer dislocation (on a {001}T plane).

The number of dislocations that cut through twin boundaries is small relative to the total num-

ber of dislocations formed.

The fact that the yield stresses in the experimental nanotwinned polycrystalline Cu sam-

ples [43] (λ ≥ 15nm) follow a Hall-Petch relation with respect to twin spacing (i.e., the yield
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(a)

(b)

ISF

Twin
Step

Figure 5.2: Dislocation evolution in the nanotwinned polycrystalline Cu during tensile load-
ing. (a) Partial dislocation nucleations at grain boundary triple junctions and creating intrin-
sic stacking faults (ISF). (b) Dislocations passing through some twin boundaries and forming
Lomer dislocations on the {001} plane. Twin migration through a twinning dislocation is also
observed in some of the grains.
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(c)

(d)

Figure 5.2: (continued) dislocation evolution in the nanotwinned polycrystalline Cu during
tensile loading. (c) and (d) shows the dislocation/twin/grain boundary microstructure at true
strain of 7.5% and 8.5%, respectively. In figures (b), (c) and (d), the magenta ellipses highlight
sites where Lomer dislocations form and dissociate.
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strength increases as the inverse square root of the twin spacing) suggests that the twin bound-

aries are finite barriers to dislocations and it is the cutting of twin boundaries that is critical

in the yielding process. Since the formation and dissociation of Lomer dislocations through

60◦ full dislocations passing through twin boundaries occurs readily in our simulation (and its

dissociation mechanism depends on its radius of curvature and the twin spacing) and is the

event that determines the flow stress, we designed a series of simulations to explicitly examine

the effect of twin spacing on this mechanism. We do this by tracing the positions and type of

dislocations (and their reactions) through the plasticity evolution process in each of the simula-

tions. Interestingly, a dislocation mechanism transition occurs when the twin spacing reaches a

lower critical value in our simulation. We describe these simulations in detail in the following

section.

5.2 Dislocation Deformation Mechanism as a Function of Twin
Spacing

5.2.1 Simulation Model

We designed a set of simulations with simulation cells constructed as shown schematically

in Fig. 5.3. The simulation cells consist of two types of twin-related grains M (matrix) and

T (twin). A pair of dislocations with Burgers vectors DB and BD were introduced in the

upper and lower grains in Fig. 5.3, respectively. This is achieved by displacing atoms from

their original perfect FCC lattice positions to new positions according to the isotropic, linear

elastic displacement fields [56] (see Section. 2.3.4). If two atoms were too close together, one

was removed and if voids were detected, additional atoms were inserted in the structure to

fill the voids (as dictated by crystal symmetry) prior to the beginning of the simulations. The

unstrained simulation cell has dimensions∼ 70.8×170×20.4 nm in the x, y and z directions,

respectively, corresponding to 20,850,080 Cu atoms, and the twin boundary spacing λ is varied

between ∼ 1.88 and ∼ 31.3 nm (i.e., the number of twins varies with the choice of λ). These

atomic configurations were relaxed at 0 K via a conjugate gradient algorithm. These systems

were then heated to room temperature (300 K) within 100 ps and held at room temperature for

another 50 ps. Uniaxial tensile loading was then carried out along the y direction in Fig. 5.3.

The Burgers vector of the dislocations in the grains were determined using the classical Burgers

circuit construction (see Section. 2.3.3) while those on the twin boundaries were deduced by

applying the conservation of Burgers vector between slip transfers.

96



5.2 Dislocation Deformation Mechanism as a Function of Twin Spacing

b

b

b

b

b

b

b

b

γB

Dγ

λ

M
T
M
T
M
T
M
T
M
T
M

x[112̄]
M

y[111]

z[11̄0]

x[112̄]
T

y[1̄1̄1̄]

z[1̄10]

Figure 5.3: Schematic illustrations of the molecular dynamics unit cell. The simulation cell
consists of alternating matrix (M) and twin (T) grains, each of thickness λ. The crystallographic
orientations of the matrix and twin grains are also shown. 〈110〉 dislocations DB and BD
are introduced in the top and bottom grains at the beginning of the simulations, which then
dissociate into Shockley partial dislocations (Dγ + γB). (refer to Fig. 2.11 for Burgers vectors
and notations)
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5.2.2 Simulation Results

The set of specially constructed simulation cells as shown in Fig. 5.3 share a few common

features. In these simulation cells, the total number of atoms, the simulation cell dimensions

and the simulation conditions are the same. The only difference is the twin spacing among

them. These special settings allow us to estimate how the stress required for dislocation cross-

ing the twin boundaries σc changes as a function of twin spacing λ. The possible source for

such a dependence between σc and λ is the image forces arising from the orientation difference

between the matrix and twin crystals. Figure 5.4 shows the σc v.s. λ obtained from the MD

simulations. It is clear that σc decreases with λ. However, the simulations show that for twin

spacing from 15 nm to 1.8 nm, there is only a ∼ 5% difference between the maximum and

minimum value of σc. This suggests the variation of image forces as a function of twin spacing

is minor and insufficient to give a difference of nearly 3-fold in the experimentally measured

yield stress (see Fig. 3.1). Nevertheless, the set of simulations show a dislocation mechanisms

transition in large and small twin spacing. Figure 5.5 shows an atomic view (only atoms in

non-fcc local environments are shown) of the evolution of the dislocations as they pass through

twin boundaries for (a) large (λ = 18.8 nm) and (b) small (λ = 1.88 nm) twin boundary spac-

ing simulations. Figure 5.6 is an idealized illustration of the dislocation processes exhibited

in Fig. 5.5. In both figures, time and strain evolve from left to right. We describe these two

deformation mechanisms in detail below.

5.2.2.1 Deformation at Large Twin Spacings

We first summarize the evolution of the dislocation microstructure at large twin spacing (λ =

18.8 nm) in atomistic detail and in schematic form in Figures 5.5 (a) and 5.6 (a). A partial

dislocation from the dissociated 60◦ dislocation (Dγ + γB on slip plane c - see Fig. 5.6 (a1))

constricts into a full dislocation (DB) at the intersection of slip plane c and twin boundary

TB1 (Fig. 5.6 (a2)) and cross-slips onto a {001}T plane in the twin grain, thus forming a

{001}T 〈110〉T Lomer dislocation (CTDT in Fig. 5.6 (a3)). While the remaining DB seg-

ments on the twin boundary continue to cross-slip, the cross-slipped Lomer dislocation glides

further and adopts a semi-circular shape under the resolved shear stress (see Fig. 5.6 (a4)). As

the Lomer dislocation line evolves, part of the dislocation line (near the twin boundary) rotates

such that its line direction becomes parallel to its Burgers vector; thus forming a pure Lomer

screw dislocation. Since {001}T , aT and bT planes intersect at a single line, this screw segment
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Figure 5.4: Tensile stress required for a 60◦ dislocation to cross twin boundary at various twin
spacings in MD simulations.

cross-slips onto one of the {111}T slip planes in the twin grain (bT in Fig. 5.6 (a5)) and dissoci-

ates into the usual Shockley partial pair (CTβT and βTDT ). These cross-slip and dissociation

events are energetically favorable (based on Frank’s dislocation reaction criterion [56]). The

newly formed Shockley partial pair glide on their usual {111}T slip plane and form a 60◦ dis-

location (equivalent to the initialDB) when they impinge on the next twin boundary, allowing

the Lomer dislocation generation-dissociation process to repeat. Pure screw segments cross-

slip onto the aT plane with Shockley partials CTαT and αTDT equally possible under the

loading condition in our simulation. In addition, we observe the pure screw Lomer dislocations

cross-slip onto both aT and bT to form a stair-rod segment at the intersection of the above two

slip planes. This is illustrated in Fig. 5.6 (a7-a10), where a different view with all the Burgers

vector labeled is shown as well (see the inset of Fig. 5.5 (a5) and Fig. 5.6 (a7)). The Shock-

ley dislocations, cross-slipped from the Lomer, glide on their respective {111}T slip planes

while dragging the sessile stair-rod dislocation αTβT through a junction zipping-unzipping

process [122]. Those Shockley partial dislocations and remaining Lomer dislocation segments

glide on different slip planes, restricted by the sessile junctions that are formed where they

meet. The restriction on the motion of the Lomer dislocation further curves the dislocation

line, making cross-slip and dissociation favorable. Through the cross-slip and dissociation

of Lomer dislocations, the system develops a complicated 3D dislocation structure contain-
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Figure 5.5: Atomistic view of dislocations passing twin boundaries for case (a) large (λ = 18.8
nm) and (b) small (λ = 1.88 nm) twin boundary spacing (the image shows the same size
section of the simulation cell in each case). In both figures, time evolves from left to right
(1-6). For λ = 18.8 nm, (a1) a segment of the dissociated 60◦ dislocation constricts to pass
through a twin boundary. (a2) The dislocation segment cross-slipped onto a {001}T plane
forming a semi-circular {001}T 〈110〉T Lomer dislocation. (a3) A pure screw segment of the
Lomer dislocation starts to cross-slip onto bT plane. (a4) Additional pure screw segments of
the Lomer dislocation cross-slips onto aT and bT . (a5) Pure screw segments of the Lomer
dislocation cross-slipped onto aT and bT and form a stair-rod dislocation at the junction (see
inset of Fig. 5.6 (a7) for their dislocation Burgers vectors). (a6) A late stage of the deformation.
For λ = 1.88 nm, (b1) shows the dissociated 60◦ dislocation constricts to pass through a twin
boundary, as in (a1). (b2) and (b3) show a dislocation passing subsequent twin boundaries,
leaving behind intrinsic stacking faults in the matrix grains, but not the twin grains. (b4) shows
a segment of the Lomer dislocation gliding in the twin grain without cross-slip or dissociation
(see Fig. 5.6 (b) for details). (b4) and (b5) shows that the intrinsic stacking faults in the matrix
grain are converted to extrinsic stacking faults by the passage of an additional Shockley partial.
(b6) A late stage of the deformation showing a structure with extrinsic stacking faults bridging
matrix grains and Shockley partial dislocations on each twin boundary.
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Figure 5.6: Schematic illustration of dislocations passing twin boundaries with different twin
spacing, corresponding to the atomistic images in Fig. 5.5. The key identifying the slip planes
and stacking faults are shown above the dislocation schematics. The inset of Fig. a7 shows
a Lomer dislocation segment cross-slipped onto the aT and bT planes, forming a stair-rod
dislocation segment at the intersection. The inset of Fig. (a10) illustrates the above dislocation
structure migrating from “p1” to “p2” through a junction zipping-unzipping process.
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ing both glissile and sessile dislocations on various slip planes. Figure 5.5 (a6) shows such a

dislocation structure at a late stage of the deformation.

5.2.2.2 Deformation at Small Twin Spacings

Figure 5.5 (b) shows the case where the twin spacing λ = 1.88 nm. We use Fig. 5.6 (b)

as a schematic illustration to describe the dislocation activity. A Lomer dislocation CTDT

is formed through the same mechanism (Fig. 5.6 (b1 - b3)) as described earlier. However,

instead of dissociation or cross-slip, CTDT glides on the {001}T plane in the twin grain until

it impinges on the next twin boundary TB2 (see Fig. 5.6 (b4)). The Lomer dislocation cross-

slips to the usual {111} slip plane with a Shockley partial dislocation Dγ in the matrix grain

after passing through TB2. This leaves a dislocation with combined Burgers vector γB + δA

on that twin boundary. An intrinsic stacking fault is generated asDγ glides in the matrix grain

(Fig. 5.6 (b5)). Dγ is blocked as it meets the next twin boundary, i.e., TB3. At a later stage,

the blocked leading Shockley partial dislocation Dγ cross-slips onto a {001}T plane in the

next twin grain, forming a new {001}T 〈110〉T Lomer dislocation CTDT as shown in Fig. 5.6

(b7). This leaves a dislocation with combined Burgers vector Bγ +Aδ on TB3. The newly

formed Lomer dislocationCTDT glides in the twin grain until it meets the next twin boundary

TB4 (see Fig. 5.6 (b8)). As the Lomer glides, a Shockley partial dislocation γB glides from

TB2 in the matrix grain and annihilates with dislocation Bγ on TB3. However, γB glides on

the {111} plane adjacent to the one on whichDγ previously glided, thus forming an extrinsic

stacking fault. This process is illustrated in Fig. 5.6 (b9). The resulting configuration is shown

in Fig. 5.6 (b10). The Lomer dislocation CTDT on TB4 now has the same configuration as

the previous one on TB2 in Fig. 5.6 (b4). This means that the whole process repeats at every

second twin boundary as observed in the MD simulations and shown in Fig. 5.5 (b1 - b5).

In summary, the dislocation glides on {111} and {001}T planes, alternatively in the matrix

and twin grains, leaving behind a Shockley partial dislocation on each twin boundary and an

extrinsic stacking fault in each of the matrix grains.

Examining the deformation process in simulations performed over a wide range of twin

spacing λ, suggests that this process of cross-slip and dissociation does not occur at small

twin spacing. We suggest that this change in dislocation mechanism is a source of the experi-

mentally observed maximum in the strength of nanotwinned Cu as a function of twin spacing,

as discussed below. A comparison of Fig. 5.5 (a6) and (b6) suggests a different dislocation

structure results depending on the operative dislocation mechanism. The former mechanism
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involves the cross-slip and dissociation of a Lomer dislocation that forms a complex 3D dislo-

cation network, while in the latter case, slip is constrained to the original slip system such that

a 2D dislocation microstructure is maintained. The feature that is common between these two

cases is that both processes can repeat.

5.3 Analytical Model and Discussion

The simulations in Section. 5.2.2 show a transition in deformation mechanism resulted from

the cross-slip and dissociation of the Lomer dislocation. But what governs this change? As

the applied stress increases and eventually reaches a critical level τc, the constricted 60◦ dislo-

cation segment passes through the twin boundary and cross-slips to form a Lomer dislocation

segment. The newly formed Lomer segment adopts an arc shape under the action of this stress

τc, the two ends of which are on the twin boundary (see Fig. 5.7 (a)). The equilibrium radius

of curvature rc of the arc can be approximated through the balance between the applied shear

stress τc and its line tension T :

rc =
T

bτc
, (5.1)

where b is the Burgers vector of the dislocation. As time evolves, more of the original 60◦

dislocation passes through the twin boundary and cross-slips onto the {001}T plane, the Lomer

dislocation arc grows larger and adopts a new configuration (this is the evolution from the

dashed arc “s1” to “s2” in Fig. 5.7 (a)). However, Eqn. 5.1, governing the radius of curvature of

those arcs, remains valid and the evolving dislocation arc in Fig. 5.7 (a) retains the same radius

of curvature.

As this process proceeds, the Lomer dislocation eventually reaches a semi-circular shape

(denoted as the solid half circle in Fig. 5.7 (a)) and the sections of the dislocation arcs that are

near the twin boundary become parallel to the Burgers vector and hence become pure screw

dislocation segments. It is these pure screw segments that can cross-slip and dissociate easily,

as observed in the MD simulations. The Lomer dislocation is able to form this semi-circular

configuration (and form pure screw segments) if the expanding loop can continue to grow into

the semi-circular geometry before it hits the next twin boundary. In other words, the cross-slip

process can only occur if the twin spacing is larger than the semi-circular arc radius of curvature

rc. In cases where the twin spacing λ is smaller than rc, such as those shown in Fig. 5.7 (b) and

(c), the leading Lomer dislocation arc is blocked by the next twin boundary. In this case, the
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Figure 5.7: Schematic illustrations of the Lomer dislocation gliding in the twin grain at differ-
ent twin spacings. φm is the minimum angle between the dislocation Burgers vector b and its
line direction. (a) The Lomer dislocation evolves from the dashed arc “s1” of size L1 to “s2” of
size L2. The expanding Lomer dislocation arch becomes a semi-circular half-loop (shown as
a solid arc) at size L3. The line segments of the half-loop in contact with twin make an angle
φm = 0 with respect to the Burgers vector and hence become locally pure screws (denoted
as segments with magenta color). The radius of the semi-circular loop rc is equal to the twin
spacing λ (measured in the slip plane) in this case. (b) The Lomer dislocation gliding in a twin
grain with a twin spacing that is too small for the arc to become semi-circular and no pure
screw segments are formed. In this case, the leading Lomer dislocation arc is block by twin
boundary TB2. (c) The Lomer dislocation gliding in a grain with even smaller twin spacing.
As in (b), no screw segments are formed.

minimum angle between the dislocation Burgers vector and its line direction φm does not go

to zero (i.e., a pure screw does not form). Hence, the Lomer dislocation will not form a semi-

circular shape, no screw segments are formed, and no cross-slip and dissociation are possible.

Therefore, it is the relative size of the critical radius of curvature rc and the spacing between

twin boundaries λ that determines which deformation mechanism will be operative.

We now validate this conjecture through quantitative comparisons between this prediction

and our MD simulations. The simulations show that for all λ ≥ 3.13 nm, Lomer dislocation

cross-slip and dissociation occur. For the smallest twin boundary spacing for which MD simu-

lations were performed λ = 1.88 nm, no cross-slip or dissociation occurs. This implies that the

critical twin spacing for the Lomer dislocation to form pure screw segments (a necessary con-

dition for cross-slip) lies between 1.88 nm and 3.13 nm. In order to calculate the critical twin

boundary spacing/critical radius of curvature, we must calculate the dislocation line tension T .

In the isotropic elastic limit (and neglecting the dependence of line tension on line direction),

we can write T = αµb2 [56], where α ≈ 0.5 [80, 81]. For Cu, we use this definition of the line

tension and the experimental values of the parameters: µ = 48 GPa and b = 0.256 nm. For τc
in Eqn. 5.1, we take τc = 2.6 GPa, which is the minimum applied stress resolved onto the slip
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system needed to form the Lomer dislocation into the twin grain. This stress, corresponding to

a 5.5 GPa uniaxial tensile stress, is the minimum stress required to pass dislocations through

the entire twinned structure and hence can be thought of as the yield strength of the materi-

als for the present simulation conditions (The yielding stress for the polycrystalline simulation

described in Section 5.1 is ∼ 2.2 GPa). Using this approach, the predicted transition in defor-

mation mechanism should occur at λ = rc ≈ 2.4 nm. This theoretical value is consistent with

our MD simulation observation for where the dislocation mechanism changes; i.e., 1.88 nm

< λ < 3.13 nm.

It is not reasonable to expect that the simulation prediction will carry directly over to ex-

periments, given the fact that MD simulations are performed on a much shorter time scale,

necessitating much higher loading rates than that in experiment. Since flow stress typically

increases with strain rate, this necessitates re-examining how τc is determined for the sake of

comparison with experiment. If we replace our estimate of τc with the experimentally mea-

sured tensile yielding stress ∼1 GPa of nanotwinned Cu [12] in Eqn. 5.1 and use the line

tension above, we will find a critical twin spacing λc approximately 5 times that we obtained

using the τc estimate from the MD simulations. This suggests the critical twin spacing for the

deformation mechanism transition to occur should be ∼ 13 nm. This is in excellent agreement

with the experimentally observed maximum in the strength at λ = 15 nm.

The fact that the three slip planes, {001}T , aT and bT , intersect at a single line and the dis-

location energy is reduced by dissociation leads to the spontaneous cross-slip and dissociation

of the pure screw Lomer dislocation. The cross-slip and dissociation of the Lomer disloca-

tion simultaneously activates several slip systems and leads to the evolution of a complex 3D

dislocation structure. This structure favors the formation of many Lomer-Cottrell dislocation

locks [56] and hardening. Sessile dislocations resulting from the Lomer dislocation cross-slip

and dissociation can restrict the motion of the Lomer dislocation itself and also serve as bar-

riers for other dislocations in the system. In the small λ case, where the Lomer dislocation

does not form a pure screw segment and no cross-slip and dissociation occurs, a Shockley

partial dislocation with alternating Burgers vector is produced on each twin boundary during

Lomer dislocation glide. The number (and density) of these Shockley partials at twin bound-

aries increases with decreasing twin spacing. These Shockley partial dislocations correspond

to steps on the twin (their Burgers vectors lie in the twinning plane). While these twin steps

may lead to softening the material (see [43]), perhaps their most important role is as dislocation

emission sites, as found in MD simulations [45]. Our simulations thus indicate the operation
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of both a strengthening mechanism (Lomer cross-slip and dissociation) and a mechanism for

increased ductility (through twin step formation), both of which operate above and below a

critical twin spacing. The above analysis on the critical radius for reaching a pure screw con-

figuration is demonstrated and verified for this special case of Lomer dislocation half-loop.

However, we would expect the above theory to be generally applicable to other types of dis-

location half-loops. The proposed critical radius of curvature controls the formation of pure

screw dislocation segments, which in turn determines the cross-slip/non-cross-slip behavior of

dislocations in the nanotwinned microstructure.

Earlier studies [19, 43] suggest the plastic deformation process in this unique microstruc-

ture is related to dislocation-twin interactions and that these interactions become dominant in

samples with small twin spacing. Lu et al. [43] showed that while dislocation tangles and net-

works are formed in samples with large twin spacings, planar dislocations associated with twin

boundaries (and twin steps) are formed in samples with small twin spacing. The two different

dislocation mechanisms operating at large and small twin spacing presented in the previous

section result in dislocation patterns which are consistent with the above experimental facts.

Hence, the mechanism suggested here matches closely not only in the transition length scale

but also in the resultant dislocation pattern.

The experimental data on the deformation of pure, nanotwinned Cu [43] suggest that it is

possible to simultaneously obtain ultrahigh strength and ductility. The peak in the yield stress

occurs at a twin spacing λ ≈ 15 nm. While no such peak is observed in either the hardening

coefficient nor the strain to failure, both of these quantities show a monotonic increase with

decreasing λ. Nonetheless, close examination of the stress-strain curves for nanotwinned Cu

experimental data reported in [43] indicates a rapid rise in the ductility (strain to failure) when

λ is decreased below ∼ 20 nm (there is only one experimental data point reported for 10 nm

< λ < 35 nm). This observation is consistent with a change in deformation mechanism at a

critical twin spacing that is very close to the measured (and predicted) λc. The pronounced

increase in the ductility at λ < λc may be attributed to the formation of steps on the twin

boundary in this twin spacing regime, as discussed above.

5.4 Limitations of MD Simulations

The analysis presented above is largely based on mechanistic understanding. For the polycrys-

talline MD simulations, it would be highly desirable to have some quantitative measurements
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of yield and flow stresses as a function of twin spacing. However, these stresses in MD sim-

ulations are mainly dictated by dislocation nucleation events, which in turn are determined by

the underlying microstructure details (such as dislocation sources and grain boundary types

and distribution) within simulation samples. The microstructure details are often randomized

in current polycrystalline MD simulations. Hence the effect of dislocation mechanism on the

macroscopic mechanical property would only be revealed through very large samples simu-

lated at relatively low strain rate. This will require simulations of polycrystalline samples with

large number of grains, large grain sizes and a variety of twin sizes. Another important point

worth noting is the fact that experimental samples have a distribution of twin spacings while

current MD simulations focus on a single twin spacing. The distribution of twin sizes within

grains might have important effects on dislocation nucleation events.

It has long been recognized that FCC metals such as Cu [123, 124] and Ni [125] have

high strain rate sensitivities. The strain rate of 0.1 ns−1 used in current MD simulations is

extremely high when compared to the typical experimental strain rate of 10−3 s−1. The realistic

strain rate is simply not accessible to current MD simulations consisting of tens of millions of

atoms. Hence it is very common that yield stresses in MD simulations are a few times higher

than those in experiments. The typical, high strain rate of 0.1 ns−1 used in MD simulations

necessarily creates a high stress condition in the simulations. A lower stress would make

the critical twin spacing for dislocation mechanism transition larger, which is discussed in

Section 5.3. It would be highly desirable to perform MD simulations at lower strain rates and

to find the rate controlling mechanisms in nanostructured materials. In addition, time dependent

processes such as dislocation nucleations, cross slips are likely to be affected by the strain rate.

Since dislocation crossing twin boundaries is the critical event in plastic deformation of

nanotwinned structures and this event is likely to be rate-dependent [126, 127], the applied

strain rate may also play an important role in dislocation cross-slip processes during the twin

mediated slip transfer. Dislocation twin interactions other than those described in Fig. 4.10

are possible at different loading rates. For example, cross slip of the 60◦ full dislocation onto

the {001}T plane might be a stress and time-dependent process. Under lower strain rates

and lower stresses, gliding on the unusual {001}T plane may not be favored. However, the

proposed mechanism based on the critical dislocation half-loop radius after dislocation crossing

twin boundaries should still be operative for other types of dislocations and the formation of

pure screw dislocation segments within the matrix/twin grains is important as it determines the

cross-slip/non-cross-slip behavior of dislocations in space-constrained microstructures such as
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nanotwins and thin films. On the other hand, the cross slip and dissociation of the pure screw

Lomer dislocation segments are driven by a reduction of dislocation line energy, which is a

spontaneous process. This process is not likely to be sensitive to the applied strain rate.

It is well known that FCC twin boundaries are preferential crack initiation sites[128–

133]. Previous studies focused on twin boundaries’ effect on fatigue properties where the

twin size was of micrometer scale. Both dislocation[134] and elastic theory [128, 132, 135]

were proposed to explain the unexpected role twin boundaries play during cyclic loading. On

the other hand, there are very few studies on fatigue properties of materials with nanome-

ter twin sizes [136, 137]. Present TEM observations [43] suggest a high density of dislo-

cation near twin boundaries. However, it is unclear whether these dislocations are resulted

from grain boundaries or from local stress concentration sites at twin boundaries due to strain

incompatibility[128, 135]. The MD simulations here suggest that dislocations are nucleated

from grain boundaries and accumulate near twin boundaries, thus forming complicated dis-

location structures. In future, it would be interesting to investigate the effect of the above

dislocation mechanisms on fatigue properties of such nanotwinned microstructure.

5.5 Summary

We presented large scale MD simulations of plastic deformation of polycrystalline nanotwinned

Cu. It is found that dislocation nucleation from grain boundary triple junctions initiates plas-

tic deformation in the simulations. Twin boundary migration via twin steps formed either by

Shockley partial dislocation nucleation at twin/grain boundary junctions or by absorption of

pure screw dislocations are observed. Pure screw and 60◦ dislocations crossing twin bound-

aries are more dominant in our simulations and the latter generates Lomer dislocations which

further dissociate into Shockley and stair-rod partial dislocations. Simulations of Cu samples

over a wide range of twin spacing is also carried out and these simulations reveal a transition

in the deformation mechanism at a small, critical twin spacing. Based upon these observations,

we proposed an analytical model for the magnitude of the critical twin spacing. Comparisons

of the predicted critical twin spacing with both our MD results and experimental data show

that the model leads to excellent quantitative agreement. This, in turn, confirms our assertion

that the transition of dislocation mechanism is a source for the experimentally observed [43]

transition of the strength of nanotwinned Cu with twin spacing.
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Chapter 6

Grain Boundary Finite Length
Faceting in FCC Metallic System

In systems where the boundary free energy is strongly anisotropic with respect to boundary

inclination, the boundary may lower its free energy by faceting. Faceting is the decomposition

of the boundary into sections with low energy inclinations, connected by sections of possibly

higher energy boundary inclinations such that the average boundary inclination is consistent

with the two macroscopic inclinations degrees of freedom. The coherent twin boundaries stud-

ied in the previous Chapters are special faceted boundarie in the sense that the boundary plane

is equally shared by both crystals in twin relationship. They have a relatively simple bound-

ary structure, extremely low boundary energy and possess excellent stability. In this Chapter,

we study more general, commonly observed, faceted boundaries which also have a relatively

simple structure and low boundary energy. While in previous Chapters we focused on the dis-

location twin boundary interactions in the plastic deformation process of those nanotwinned

metals, here we focus on the thermodynamic and equilibrium structures of these more general

faceted boundaries. Our main objective is to study the factors governing the facet length scale

in these boundaries.

6.1 Continuum Description of Faceted Grain Boundaries

The decomposition of a high energy grain boundary into a hill and valley shape results in that

boundary adopting a faceted structure. The equilibrium of those faceted grain boundaries can

be described using a model that accounts for facets and the linear junctions where they meet, as

109



6.1 Continuum Description of Faceted Grain Boundaries

shown in Fig. 6.1. Arrows along the facets meeting at junction 1 (j1) represent the force on the

junction associated with grain boundary tension. The Burgers vector symbols (⊥) show that

the dislocations associated with adjacent junctions have alternating signs and are of the type

±b = ±(t1 − t2), where t1 and t2 are the characteristic translation vectors of the two facets

[34]. We refer to the distance between one junction and the next of the same type along the

average grain boundary inclination as the facet length Λ. The facet orientations and the angles

between facets meeting at a junction are invariant with respect to change in the facet length Λ.

Hence, the facet structure is completely determined by the fixed orientations of the facets and

the facet length Λ in a continuum approximation.

⊥

⊤

F1

F2 ⊥

⊤

⊥

⊤ ⊤

x2

x1j2

j1

Λ Λ Λ

t1 t2

Figure 6.1: Schematic of a faceted grain boundary. Arrows along the facets represent grain
boundary tension. These tensions create a force on the junction that is the vector sum of
the two grain boundary tensions and can be decomposed into effective forces acting on the
junctions perpendicular to the junction line and either parallel, F1, or perpendicular, F2, to the
boundary plane. Λ is the faceting period, measured parallel to the boundary and perpendicular
to the junction lines. x1, x2 directions are as indicated and x3 points inside the paper. Same
coordinate directions are used throughout this Chapter.

The total energy of the grain boundary shown in Fig. 6.1 is the sum of the energies of

the short and long facets, junction energies, and long-range junction-junction interaction en-

ergies (i.e., described as the interactions between dislocations, between surface tension line

forces, and between dislocations and line forces). The interaction energies of the junctions will

change with the facet length Λ. Hence, the energy density of the faceted grain boundary can be

expressed as

γgb = γf1 + γf2 +
2γj + γId(Λ) + γIf (Λ) + γIdf (Λ)

Λ
, (6.1)

where γf1 and γf2 are the energies (per unit area) of the two facets meeting at a junction

line, γj is the energy (per unit length) of the junction and γId(Λ) is the dislocation-dislocation
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interaction energy, γIf (Λ) is the junction-junction line force interaction energy, and γIdf (Λ)

is the dislocation-junction line force interaction energy. Omitting the junction interactions,

the above equation has a form of A + B/Λ, which indicates a monotonic decrease of the

energy density with increasing facet size. Hamilton showed the energy density has a form of

(A1/Λ) ln Λ +B1/Λ +C1 when the various interaction energy are included. Equations for A1

and B1 can be obtained from Ref. [49].

6.2 Molecular Dynamics Simulations

6.2.1 Molecular Dynamics Simulations Setup

To analyze grain boundary faceting, we performed a set of molecular dynamics simulations in

an ensemble where the number of particles N , the stress tensor σ, and the temperature were

fixed; i.e., the NσT ensemble (the stresses were always fixed at σ = 0). The grain boundaries

were constructed by choosing the orientation of the two crystals, truncating the two crystals at

the x1x3 plane (see Fig. 6.1), and joining the two crystals at the grain boundary. The extent of

the crystals parallel to x1 and x2 was chosen to make the system periodic. However, this can

result in large elastic energies (maximum strain of ∼ 0.5% in quasi-periodic boundaries; how-

ever, in the Σ3 case, the system is perfectly matched without strain). A plane of point defects

were introduced at the left/right borders of the simulation cell (Fig. 6.2 c) to accommodate

these strains (resulting in a lower energy configuration than the uniformly strained system).

Throughout the simulations, no point defect diffusion towards grain boundaries was observed.

All energy measurements were made far from this plane. Because the system is periodic in all

three directions, each simulation cell contains two grain boundaries. Since the grain bound-

ary structure is sensitive to the translation state, several initial translation (parallel to x1 and

x3) states were examined. We always focus on the grain boundaries with the lowest energy

translation state (following T = 0 K energy minimization). The grain boundary energy is also

sensitive to the atomic arrangements at the boundary. Therefore, we also investigated the ef-

fects of removing atoms from the boundary that were under the greatest stress and retained

those configurations that yielded minimum energy boundaries at T = 0 K.

In the present study, we focus on FCC aluminium, both because grain boundaries in Al

have been widely studied via experiment and simulation and because grain boundary faceting

has been observed in this system. An embedded-atom method (EAM) type interatomic po-

tential [46] was used in earlier studies of faceting in Al [49]. Unfortunately, this Al potential
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shows a zero-pressure melting point below 700 K, which is much smaller than the experimental

value of 933 K. Therefore, we have employed both the original EAM potential [138] (EAM

Potential 1) and a newer Al potential of the same type [2] that yields a melting point and liquid

diffusivity in excellent agreement with experiment (EAM Potential 2). The correct diffusiv-

ity at Tm predicted by the employed potential is important here as the current study involves

simulations performed over a wide range of temperatures (200 K - Tm) and phase transfor-

mations which could be diffusion-controlled processes. Facet coarsening at temperatures near

materials’ melting points may also be a diffusion-controlled process.

(a)

[112̄]

[1̄10]

[111]

[21̄1̄]

[011̄]

[111]

Σ3 GB

[112̄]

[1̄10]

[111]

(b)

[2̄20]

[002]

[110]

[7̄712]

[6̄67]

[110]

Σ11 GB

[2̄20]

[002]

[110]

(c)

[116]

[6̄6̄2]

[11̄0]

[662̄]

[116]

[11̄0]

90◦〈110〉 GB

[116]

[6̄6̄2]

[11̄0]

Figure 6.2: The geometries of the simulation cell used to simulate (a) Case I (i.e., a pair of
Σ3{110} grain boundaries; (b) Case II (i.e., a pair of Σ11 grain boundaries formed through
the rotation of the center grain by 50.4788◦ about the [110] direction) and (c) Case III (i.e.,
a pair of quasi-periodic boundaries formed by the rotation of the center grain by 90◦ about
the [11̄0] direction). The simulations cell sizes in Case I, Case II and III are ∼ 97 × 169 ×
48Å(containing 50120 atoms), 499 × 397 × 34.2Å (containing 414,252 atoms) and 646.2 ×
246× 40Å (containing 387,236 atoms), respectively.

We focus on three different grain boundaries in this study. Case I is the symmetric Σ3{110}
boundary that facets into a set of Σ3{112} twins. These twins are among the most commonly

observed grain boundaries in FCC metals. The faceting behavior of this boundary has been

studied both experimentally [22, 23] and via computer simulations [49, 139]. The geometry

of Case II is shown in Fig. 6.2 (a). To form the two Σ11 asymmetric tilt boundaries shown,

the middle grain was rotated along the 〈110〉 axis by 50.4788◦. The boundary planes of this

grain boundary are (002) relative to one grain (represented in green in Fig. 6.2 (a)) and (6̄67)

with respect to the other. Case III (see Fig. 6.2 (b)) corresponds to the rotation of the middle

grain about the 〈110〉 axis by 90◦ to form a pair of non-CSL asymmetric tilt boundaries. The
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boundary planes of this grain boundary are (116) relative to one grain (represented in red

in Fig. 6.2 (b)) and (6̄6̄2) with respect to the other. This quasi-periodic boundary has been

examined experimentally [30] and was shown to exhibit very small facets. These three cases

were chosen to represent a wide variety of boundary types, all of which are known to facet (see

Section. B.2 in Appendix. B for the calculation of Σ values for these three cases).

6.2.2 Molecular Dynamics Simulations Results

6.2.2.1 Case I: Σ3{110}

Hsieh and Balluffi [23] observed twin boundaries in aluminium with an average {110} orien-

tation that form facets of the {112} type with facets length on the ∼100 nm scale at low tem-

perature (∼0.3 Tm) which defacet upon heating to temperatures greater than 0.54 Tm. Daruka

and Hamilton [139] proposed a lattice model for the faceting-defaceting phase transition of

this twin boundary and demonstrated the presence of this grain boundary phase transition via

Monte Carlo (MC) and MD simulations using EAM Potential 1.

In our first set of simulations, we equilibrated the system at high temperature (500 K for

EAM Potential 1 and 400 K for EAM Potential 2) for 0.1 ns, cooled it at a rate of 100 K/ns for

2 ns and then heated to its original temperature at the same rate (the simulation cell dimensions

are ∼ 97 × 169 × 48Å, same as that in Ref. [139]). A faceting-defaceting phase transition

was observed to occur between ∼425 K and ∼475 K using EAM Potential 1 (in agreement

with Daruka and Hamilton [139]) and between ∼250 K and ∼330 K using EAM Potential

2. We quote finite temperature ranges here due to the hysteresis in the phase transition and

the finite rates of cooling and heating. To ensure that the results were not overly sensitive

to initial conditions, the simulations were repeated for several different initial atomic velocity

distributions. In all cases, after the onset of the phase transition, the facets grow very quickly

such that only two facets (one on each boundary) are observed over the entire width of the

simulation cell.

Next, we repeated the simulations with a simulation cell width which was 4 times larger

in the x1 direction and 2 times larger in the x2 direction. Figure 6.3 shows the faceting of

the twin boundary in an EAM Potential 1 simulation. Figure 6.3 (a) shows the boundary at

425 K; the temperature where faceting is first observed upon cooling. Figure 6.3 (b) shows

the boundary configuration upon cooling to 375 K, where faceting is nearly complete. Finally,

Fig. 6.3 (c) shows the result of reheating the system to 435 K and holding for 1 ns; note that
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(a) (b) (c)

Figure 6.3: The atomic configuration of the Σ3 {110} grain boundary for the simulation using
EAM Potential 1. The sample is equilibrated at 500 K and then cooled to 300 K at 100 K/ns.
Figure (a) is the configuration of the system at 425 K and (b) at 375 K during the cooling.
Figure (c) shows the configuration following reheating the sample from 300 K to 435K and
holding at 435 K for 1 ns. The simulation cell size is 39.54 nm ×34.2 nm ×4.9 nm with
∼ 401, 000 atoms. The viewing plane is {111}. The facet planes are {112} twins. The
atoms are colored according to their coordination number n (the same color scheme is adopted
throughout this Chapter). n = 12 (e.g., atoms in the perfect crystal) is shown in yellow, lower
coordination numbers n = 9, 10, and 11 in magenta, green and red, respectively, and higher
coordination numbers n = 13 and 14 in blue and pink. The arrows in (a) point to newly formed
{112} twin facets separated by unfaceted {110} boundary segments. These twin facets develop
from the nominally flat {110} boundary. The arrows in (b) and (c) are in the same positions
as in (a) and show how the {112} twin facets nucleated at the lower temperature (and earlier
time) have grown out to encompass the entire, originally unfaceted boundary. We note that in
addition to fast growth, additional facet nucleation has occurred (between (a) and (b)).

this coarsens the facets that were shown in Fig. 6.3 (b). The atoms are colored according to

their coordination number n (the same color scheme is adopted throughout this Chapter). The

perfect crystal n = 12 is shown in yellow, lower coordination numbers n = 9, 10, and 11 in

magenta, green and red, respectively, and higher coordination numbers n = 13 and 14 in blue

and pink.

Figure 6.4 shows the faceting of the same boundary in a simulation performed using the

EAM Potential 2. Upon cooling from 400 K, the facets were seen to first form at 250 K

(see Fig. 6.4 (a)). By the time the system has cooled to 227 K (Fig. 6.4 (b)) the faceting is

nearly complete. Figure 6.4 (c) shows the system upon reheating to 303 K and holding for 1

ns. Comparison of Figs. 6.4 (b) and 6.4 (c) shows that some coarsening of the facet size has

occurred (see especially the boundary on the top in Fig. 6.4).

As evident in Figs. 6.3 (a) and 6.4 (a) (see the location of the arrows in these figures), the
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(a) (b) (c)

Figure 6.4: The atomic configuration of the Σ3 {110} grain boundary for the simulation using
EAM Potential 2. The sample is equilibrated at 400 K and then cooled to 200 K at 100 K/ns.
Figure (a) is the configuration of the system at 250 K and (b) at 227 K during the cooling.
Figure (c) shows the configuration following reheating the sample from 200 K to 303 K and
holding at 303 K for 1 ns. The arrows in (a) point to newly formed {112} twin facets separated
by unfaceted {110} boundary segments. These twin facets develop from the nominally flat
{110} boundary. The arrows in (b) and (c) are in the same positions as in (a) and show how
the {112} twin facets nucleated at the lower temperature (and earlier time) have grown out to
encompass the entire, originally unfaceted boundary. We note that in addition to fast growth,
additional facet nucleation has occurred (between (a) and (b)).

{112} facets begin to form at several, separated locations rather than forming simultaneously

along the entire {110} boundary. Examinations of the dynamics of the facet formation process

show that many facets form and then disappear unless they are sufficiently large. The driving

force for facet nucleation is the lower free energy of the {112} boundaries as compared with the

original {110} boundary (we note that in the recent survey by Olmsted et al. [63, 64] employing

a different EAM potential, the 0 K grain boundary energy of the {112} boundary is higher

than that of the {110} boundary). However, formation of a pair of {112} boundaries requires

formation of a line junction where the two {112} boundaries meet plus two line junctions where

the {112} boundaries join the remaining {110} boundary segments. Forming these junctions

costs energy and hence provides a barrier for facet nucleation. We note that during the initial

stage of the phase transformation process, the nucleated {112} twin facets are connected by

unfaceted {110} boundary segments. These facets grow and spread from those {112} twin

facets nucleated earlier. This is consistent with the faceting being a first order/nucleation and

growth phase transition as described by Oswald et al. [140]. It is difficult in the simulations to

make an accurate determination of the critical facet nucleus size.

115



6.2 Molecular Dynamics Simulations

When we lower the temperature from that in Figs. 6.3 (a) and 6.4 (a) to those in Figs.

6.3 (b) and 6.4 (b), we observe the completion of the faceting process and facet coarsening.

However, we note that the facet coarsening does not go to completion, but rather we end up

with finite size facets. Upon heating the systems to the temperatures of Figs. 6.3 (c) and 6.4

(c), we observe more facet coarsening; yet again the facets do not coarsen to the size of the

simulation cell. The fact that there is some coarsening of facet length during annealing is

consistent with the observations of Medlin [24] on the same boundary in Au. By the end of

our simulations, the facets have become quite regular, yet are smaller than those observed in

the Al experiments of Hsieh and Balluffi [23] by a factor of approximately 5 (i.e., 20 nm vs.

100 nm). This is not surprising given the fact that Hsieh and Balluffi’s experiments on Al were

performed on time scales which are more than a factor of 1012 longer than in the simulations

performed here.

The simulations performed in this section show that Σ3{112} facets form below the facet-

defaceting transition temperature and completely replace the original Σ3{110} boundary. The

facets coarsen over time and coarsen faster at higher temperatures. If the simulation cell size is

very small, such as in the simulations reported by Daruka and Hamilton [139], the facets can

readily grow to the simulation cell size. However, if the simulation cell is large, such as shown

in Figs. 6.3 and 6.4, there is insufficient time for the facets to grow to the simulation cell size.

Nonetheless, our results demonstrate that the facet lengths grow with increasing time and grow

faster at high temperature - consistent with the idea that facet coarsening is thermally activated.

As the facet size increases, the driving force for facet coarsening decreases and hence the rate

of facet coarsening slows over time.

6.2.2.2 Case II: Σ11 {002}1/{667}2

The well studied Σ3 grain boundary case is special in many respects. The overall bicrystal

symmetry is high. The faceting of such boundaries into symmetric {112} twins is also special

in the sense that these symmetric twins have remarkably low energy. Therefore, to understand

faceting more generally, we must turn to grain boundaries which are much less special. The

first such boundary we study is the Σ11 boundary corresponding to a 58.4788◦ rotation about

the 〈110〉 axis and the asymmetric boundary plane orientation where the (002) plane of crystal

1 meets the (6̄67) of crystal 2 (i.e., (002)1/(6̄67)2), as shown in Fig. 6.2 (a). For this asym-

metrical boundary, we perform simulations using both potentials at low temperature, but only
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(a)

(b)

(c)

(d)

Figure 6.5: Faceting of the Σ11 (002)1/(6̄67)2 grain boundary. The as-constructed system
with the grain boundary is shown in (a). The structures produced by annealing for 1 ns at
T = 400 K using EAM Potential 1 and 600 K using EAM Potential 2 are shown in (b) and
(c), respectively. The period of the boundary in all (a)-(c) is 3.2 nm. (d) shows the result of
annealing the structure in (c) at 850 K for 1 ns and cooling back to 600 K (like in (c)). In all
cases, the viewing plane is {110} and the long and short facets are of the {225}1/{441}2 and
{667}1/{001}2 types, respectively.

EAM Potential 2 at high temperatures (recall that EAM Potential 1 has an unphysically small

melting point).

Figure 6.5 (a) shows the as-constructed Σ11 〈110〉 boundary with the average boundary

plane {002}1/{667}2. Heating this boundary to room temperature and holding for 1 ns leave

the flat boundary profile intact in simulations using EAM potential 1 and 2. However, heating

this boundary to 400 K using EAM Potential 1 (see Fig. 6.5 (b)) or heating to 600 K using EAM

Potential 2 (see Fig. 6.5 (c)) leads to the formation of {667}1/{001}2 and {225}1/{441}2
facets. Comparison of these annealed boundaries with the as-constructed boundary shows that

the annealed structures have the same periodicity as the as-constructed boundaries. Cooling

these boundaries to room temperature leaves the facet period unchanged. These results suggest

that the flat boundary structure is metastable with respect to the faceted boundary.

Heating the faceted boundary from Fig. 6.5 (c) to within 10% of the melting point (T/Tm =

850/933) and annealing it there for 1 ns (and then cooling back to 600 K, the same temperature

as Fig. 6.5 (c)) produces the faceted structure seen in Fig. 6.5 (d). The first thing to note is that

unlike the Σ3 boundary of Case I, this boundary does not undergo a facet-defaceting transition.

Second, we see that annealing at this high temperature leads to a slight coarsening of the scale

of the faceting.
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6.2.2.3 Case III: 90◦〈110〉 {662}1/{116}2

Although the grain boundary in Case II is of much lower symmetry than that in Case I, both

boundaries are still special in the sense that they are low Σ boundaries. The boundary examined

in this section is both asymmetric and not exactly a CSL boundary. Figure 6.6 (a) shows the as-

constructed asymmetric tilt boundary, which can be described as a 90◦ rotation about the 〈110〉
axis and a boundary plane, relative to the two crystals, of {662}1/{116}2. Upon heating this

system to 50 K, the entire boundary begins to facet within 1 ps. The structure change appears to

begin simultaneously along the entire planar boundary. The fact that the boundary transforms

so quickly and so uniformly at such a low temperature suggests that the as-constructed flat

boundary is unstable with respect to faceting. Heating to 293 K leads to complete faceting into

a series of {111}1/{112}2 and {001}1/{110}2 facets within 0.1 ns. Figures 6.6 (b) and 6.6 (c)

show this boundary after holding at 293 K for 5 ns for EAM Potentials 1 and 2, respectively.

Annealing the boundary from Fig. 6.6 (c) for 1 ns at 900 K and cooling back to 293 K within 1

ns produces the structure shown in Fig. 6.6 (d). First, we note that even by T = 900 K (∼0.965

Tm), the boundary has not undergone a defaceting transition (as did the Σ3 boundary of Case

I). Second, we note that the period of the faceting developed near 50 K remains unchanged

on heating to 900 K. This suggests that the initial facet period is remarkably stable. However,

we note that since the total duration of the simulations is only several nanoseconds, it is un-

clear whether the structure will show some evolution on experimentally accessible time scales.

Nonetheless, the length scale of this faceting is much more stable than either those observed in

Cases I and II.

6.3 Grain Boundary Energetics

The results presented above show that in the high symmetry, Σ3 system of Case I, the faceting

period increases with time and temperature. Similarly, the asymmetric Σ11 system of Case II,

also shows that the facet period increases with further annealing at an elevated temperature.

Therefore, we expect that faceting in both Cases are controlled by the same phenomena and

that the coarsening process is thermally activated. Because of the similarity of the two cases

and the fact that coarsening occurs much more readily in Case I than Case II we focus on

the former. The fact that the 90◦ 〈110〉 system of Case III shows facets that are remarkably

resistant to facet coarsening suggests that there is an additional feature in this general grain

boundary case that is missing in Cases I and II. In this section, we perform an analysis of the

118



6.3 Grain Boundary Energetics

(a)

(b)

(c)

(d)

Figure 6.6: Faceting of the 90◦ 〈110〉 (116)1/(6̄6̄2)2 grain boundary. The as-constructed sys-
tem with the grain boundary is shown in (a). The structures produced by annealing for 5 ns at
T = 293 K using EAM Potential 1 and EAM Potential 2 are shown in (b) and (c), respectively.
(d) shows the result of annealing the structure in (c) at 900 K for 1 ns and cooling back to 293
K (like in (c)). The period of the boundary in all (a)-(d) is 4.5 nm. In all cases, the viewing
plane is {110} and the long and short facets are of the {001}1/{110}2 and {111}1/{112}2
types, respectively.

grain boundary energy versus facet period to see if this additional feature is of thermodynamic

or kinetic origin.

To examine the effect of facet period on grain boundary energy, we construct a series of

faceted grain boundaries with different facet lengths. For Case I, we fixed the total length of

the cell as 1190 × 530 × 7Å in the x1, x2, and x3 directions, respectively, such that the total

number of atoms in the system is 265,440. The boundaries were constructed by truncating the

two crystals along the facet planes observed in the MD simulations; i.e., the {112} planes. The

length of each facet is identical and chosen according to the desired period Λ (measured as the

distance between two neighboring peaks in the facet landscape in the direction parallel to the

mean boundary plane). These structures were relaxed by minimizing the total energy at T = 0

K using a conjugate gradient algorithm.

Figure 6.7 shows the energy versus facet period (in the unit of a0, where a0 is the T = 0 K

FCC Al lattice parameter) for these Case I boundaries using the EAM Potential 2. The grain

boundary energy density γ decreases monotonically with increasing facet period Λ. These data

are fitted to the analytical expression for the faceted boundary energy suggested by Hamilton

et al. [49] (i.e., γ = (A1/Λ) ln Λ + B1/Λ + C1). Clearly, the analytical expression provides

an excellent fit to the data. This is consistent with the simulation results of Hamilton et al.
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Figure 6.7: The T = 0 K Σ3{110} (Case I) grain boundary energy γ versus facet period Λ ob-
tained by energy minimization using EAM Potential 2. The red circles represent the simulation
data, the red line simply connects these data points, and the dotted blue line is the best fit to the
functional form suggested by Hamilton et al. [49]: γ = (A1/Λ) ln Λ +B1/Λ + C1.

[49] using the EAM Potential 1. This result implies that there are no energetic barriers to

grain boundary facet coarsening that are significantly longer than a few interatomic spacings in

extent.

We also determine the grain boundary energy versus facet period for the grain boundaries

of Case III. In this case, the simulation cell is ∼ 258× 83× 4 nm in the x1, x2, and x3 direc-

tions, respectively, such that the total number of atoms in the system is∼ 5×106. Such a large

simulation cell was chosen to minimize the incompatibility in the size of the two crystals (this

boundary is only quasi-periodic, as discussed in Section 6.2.1). As in Case I, the faceted bound-

ary structure was constructed by truncating the two crystals along the facet planes observed in

the MD simulations; i.e., the {111}1/{112}2 and {001}1/{110}2 planes. Figure 6.8 shows the

energy of the Case III faceted grain boundaries with facet periods in the 3− 90a0 range. This
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figure shows that while there is a trend of decreasing grain boundary energy with increasing

facet period, similar to that seen for Case I, the fluctuations in γ versus Λ is extremely large

in Case III. The same analytical expression for the faceted grain boundary energy versus facet

period suggested by Hamilton et al. [49] and validated above for Case I (EAM Potential 2) was

applied to the data in Fig. 6.8. This functional form shows a good fit to the average data. The

very large fluctuations in γ versus Λ are not captured by the analytical model. The form of this

curve suggests that while it is energetically favorable to increase facet period, the barriers for

doing so are very large. This further suggests that the boundary may be “trapped” at the facet

period that developed at the beginning of the faceting process. We return to this suggestion in

Section 6.4.

6.4 Discussion

All three grain boundaries examined in this study show facet formation. However, there are

pronounced differences in the facet formation, size and coarsening process amongst them. A

reversible facet-defaceting phase transition is evident only in Case I, while no such reversible

phase transition is observed in either Cases II or III at temperatures as high as 0.9 Tm. In Case

I, the Σ3{110} boundary transforms into a series of Σ3{112} twin upon cooling (the exact

transition temperature was not determined because of hysteresis on heating and cooling) and

vice versa upon heating. On cooling at 100 K/ns, the Σ3{112} twin facets form with a period

of 5 ∼ 10 nm and grow to ∼20 nm upon annealing for 1 ns at 303 K (EAM Potential II).

The faceting transformation in this case is consistent with a first order/nucleation and growth

phase transition. In Case II, facets form at low temperature (from the originally constructed

grain boundary) with a period of ∼ 3.2 nm. Interestingly, this is the periodicity of the original,

flat {002}1/{667}2 grain boundary. While some facet coarsening does occur upon annealing

for 1 ns at 850 K (∼ 0.9 Tm), this coarsening is very slow compared with that for Case I at

a much lower temperature. In Case III, the as-constructed boundary is unstable with respect

to faceting. Even with annealing for 1 ns at 900 K (∼ 0.965 Tm), the ∼ 4.5 nm facet pe-

riod formed initially at low temperature do not show perceptible coarsening. The fact that no

reversible facet-defaceting phase transition is observed in either Case II or III suggests that it

is inappropriate to classify these observations of facet formation as a phase transition at all,

let alone a first order/nucleation and growth or a spinodal decomposition phase transforma-
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Figure 6.8: The T = 0 K 〈110〉 90◦ (Case III) grain boundary energy γ versus facet period
Λ obtained by energy minimization using EAM Potential 2. The red circles represent the
simulation data, the red line simply connects these data points, and the dotted blue line is the
best fit to the functional form suggested by Hamilton et al. [49]: γ = (A1/Λ) ln Λ+B1/Λ+C1.
The large black triangle shows the energy and average period of the faceted grain boundary
shown in Fig. 6.6 (c) which was then quenched to T = 0 K. The inset on the right shows the
translation of a single facet and that on the left shows the grain boundary energy for each
translation state of the facet shown on the right.
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tion [140]. The constructed flat boundaries in these two cases are either metastable (Case II) or

unstable (Case III) with respect to faceting.

To understand the differences between facet coarsening in Case I and Case III, we per-

formed simulations to determine the grain boundary energy as a function of facet period,

Λ. We saw that in both cases, the boundary energy is well described by the analytical form

γ = A1/Λ ln Λ + B1/Λ + C1, where A1, B1, and C1 were determined by fitting to the data.

The nature of these agreement between this form and the data indicate that the boundary energy

is well-described on the basis of facet energies, junction energies, and junction-junction inter-

actions. In Case I, the γ vs. Λ plot (Fig. 6.7) shows a smooth, monotonic decay with increasing

facet period. On the other hand, the γ vs. Λ plot for Case III (Fig. 6.8) shows a similar decaying

trend with increasing facet period, but this plot also exhibits a superimposed large amplitude

oscillation with facet period. The amplitude of these oscillations in grain boundary energy with

facet length is as large as 40 mJ/m2 (as compared with the boundary energy of ∼ 500 mJ/m2).

While the grain boundary energy versus facet period results suggest that it is thermody-

namically favorable for the facet period to continue to increase, this is only observed for Case

I, where the γ vs. Λ plot is smooth. We can understand the resistance to facet coarsening

in Case III by consideration of its very rough γ vs. Λ plot. The large roughness of this plot

suggests that if a boundary facet period corresponds to a local minimum in γ, a large positive

energy excursion is necessary to coarsen the facet period. This barrier to facet length coarsen-

ing is much too large to overcome even upon heating to near the melting point in simulations

of the duration of those performed here. (We assume that slight coarsening may be possible if

these boundaries are held at the temperature for very long anneals and anneals 1012 longer are

common in experiments but inaccessible in MD simulations).

Although facet coarsening is thermodynamically favorable, this does not mean that is ki-

netically accessible. To consider kinetic effects, we must first examine how coarsening occurs.

Figures 6.3 (b) and 6.3 (c) show facet coarsening for EAM Potential 1 in Case I, Figs. 6.4 (b)

and 6.4 (c), show facet coarsening for EAM Potential 2 in Case I, and Figs. 6.5 (b) and 6.5 (c)

show coarsening for EAM Potential 2 in Case II. In all cases, we see that coarsening occurs via

the migration of a facet (perpendicular to itself) until its plane meets another facet of the same

type. This process is illustrated schematically in the inset on the right in Fig. 6.8, where facet

WO translates through a series of planes from A to I until it reaches facet UV and forms facet

UI by annihilation of facetWV and junctions V andW . The inset on the left in Fig. 6.8 shows

how the energy varies as facetWO migrates toward UV . (keeping all other facet lengths fixed.
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In each case, we minimize the energy with respect to atomic coordinates.) This plot shows that

the energy of the system undergoes ∼ 45 mJ/m2 energy fluctuations as it migrates. This im-

plies that the barrier to such facet migration is approximately as large as that implied by the γ

versus Λ plot and is too large to overcome during our simulations. We have repeated these facet

translation simulations for the Σ3 boundary of Case I and find that the energy variation with

facet translation is no larger than 1 mJ/m2. Therefore, while it is thermodynamically favorable

to coarsen the facet period in both Cases I and III, it is only possible, kinetically, for Case I.

The results presented above show that there is a tremendous variation in the barriers to facet

migration between the Case I Σ3 twin and the asymmetric, non-CSL boundary of Case III. This

difference is consistent with the observation of much larger facets in Case I than that in Case

III in our own simulations. While these large differences in barriers explain the simulation

results on facet coarsening, they do not address the question as to why these large differences

in barrier heights exist from boundary-to-boundary. We can get a hint of the structural origin

of the variation of the boundary energy with facet period by considering the atomic structure

of the boundary in Case III. Figure 6.9 shows the atomic structure of the boundary in Case

III, (a) as-constructed with facets, (b) the same boundary after energy minimization and (c) the

boundary structure observed when the boundary naturally facets starting from the flat boundary.

Examination of Fig. 6.9 (a) shows that some of the long facets ({001}1/{110}2) have readily

observable excess volume (i.e., low density), while others have the atoms on the two sides

of the facet plane very close together. This facet-to-facet variation is a natural result of the

fact that the top and bottom crystals are incommensurate (i.e., it is not possible to construct a

periodic boundary, with equal facet sizes, where all of the facets are identical). The relaxation

of the facet structure (Fig. 6.9 (b)) involves the straining of the two crystals to close the open

space between the lattice planes on both sides of the facet. This necessarily induces significant

elastic strain in the grains near the facets. As the facet translates from location A to I in the

inset to Fig. 6.8, the atomic matching between the two planes vary and thus the elastic strain

energy varies accordingly. This suggests that the barriers to facet coarsening are associated

with mismatch of the atomic structure across the boundary (i.e., the excess volume of the grain

boundary) and the variation of the elastic energy with facet displacement. Such terms are not

included in the energetic analysis of Ref. [49]. (We note that the atomic structures of the facets

seen in Fig. 6.9 (b) are very similar to those observed in the case in which faceting naturally

occurs, Fig. 6.9 (c).)
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(a)

(b)

(c)

Figure 6.9: The 〈110〉 90◦ faceted grain boundary structure (a) as-constructed, (b) following
energy minimization with respect to the atomic structure of the boundary in (a), and (c) in the
grain boundary where faceting naturally occurs starting from the flat boundary, as shown in
Fig. 6.6 (c).

In Case I, where the facets are symmetric twins, the atomic planes on both sides of the facet

are equivalent and facets migrate by transforming one plane of atoms from one side to the other

side of the boundary with no change in boundary density. Our MD simulations show that such

migration occurs by forming a step on the twin near a junction, followed by step migration.

In Case III, where the facets are {001}1/{110}2 and {111}1/{112}2, the facet energy varies

substantially from one location to the next as it translates. When faceting initially occurs in

our MD simulations starting from a flat boundary, the system naturally selects a distribution

of facet locations where the atomic matching is very good. Translation of the facets away

from this “natural” facet structure requires significant energy and hence is unlikely. This is the

structural and energetic origins of the resistance to facet coarsening.

A good indicator of the degree of mismatch between the two sides of a facet is the ratio of

the atomic plane spacings parallel to the facet in the two crystals of the facet, G; i.e., the {001}
and {110} interplanar spacing for Case III. If the facets are formed by {hkl}1/{opq}2 planes,

the ratio of the atomic plane spacing is

G =
(
h2 + k2 + l2

o2 + p2 + q2

)1/2

. (6.2)

Commensurate boundaries have rational values of G. When G is rational, there are a finite

number of facet plane translation steps necessary for the boundary structure and energy to

repeat. If G is unity, then every facet translation state has the same energy and there are no (or

small) barriers to facet translation. When G is irrational, the energy versus translation plot can

vary widely, without repeating. For the three cases examined here,
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Case I. Σ3{112} - the boundary facets are commensurate (twins) - both facets have G = 1 -

coarsening readily occurs,

Case II. {225}1/{441}2 and {667}1/{001}2 - the boundary facets are commensurate - the

first facet has G=1 and the second G = 11 - coarsening occurs but much more slowly

than in Case I,

Case III. {001}1/{110}2 and {111}1/{112}2 - the boundary is incommensurate - the facets

have G = 1/
√

2 - no coarsening is observed.

These results are consistent with the analysis above. The present coarsening, energetic and

structural arguments are internally consistent, however, this does not mean that they are ob-

served in experiment. Fortunately, each of the boundaries examined by MD here, were also

observed experimentally. Σ3{112} facets in Case I were observed to have facet length of

∼ 100 nm in experiments in Al [23]. Facets formed by {225}1/{441}2 and {667}1/{001}2
boundaries in Case II were observed to have facet lengths of ∼ 50 nm in Al after high tem-

perature (∼ 0.96 Tm) annealing [23]. The facet length of ∼ 4.5 nm found here in Case III

corresponds well with the experimentally observed facet length scale of the same boundary

in Al [30]. In addition, experimental data from recrystallized stainless steel and copper col-

lected in [141, 142] showed that all of the large facets (0.28 µm ∼ 2.34 µm) observed in the

sample correspond to commensurate grain boundaries (this data set consists of 186 facets with

Σ = 9, 27, 81, 243). We plot the mean facet length Λ′ vs. G for G = 1, 3, 9 in Fig. 6.10. The

plot indicates that facet planes with smaller values of G have larger mean length. Combining

the above facts and the three cases studies in the current work, we suggest that coarsening of

facets with smaller values of G is easier compared with that of facets with large and/or irra-

tional values of G. The ease with which facets coarsen often dictates the observed facet size,

since the observed facet lengths are controlled by their coarsening kinetics.

It is important to recognize that the above discussion of facet length scales Λ and boundary

interplanar spacing ratio G is different from the general observation of grain boundary popu-

lation distribution. In general, faceted boundaries have low energies and hence low mobilities.

These boundaries can potentially cause grain growth stagnation [143]. High angle grain bound-

aries meeting the criterion by Herring [47] tend to decompose into low energy, stable facets,

suggesting these low energy facets will have a higher populations than those boundaries with

higher energies, high mobilities/less stabilities. This is consistent with the broad observation

that grain boundary populations are inversely correlated with boundary energies [144, 145].
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Figure 6.10: Mean facet length Λ′ vs. the ratio of the atomic plane spacings parallel to the facet
G. The data consists of 186 facets of recrystallized stainless steel and copper with G = 1, 3, 9
from [141, 142].
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However, the quantitative relation between these low enegy, nanometer scale facets and grain

boundary population has yet to be established.

6.5 Summary

In this Chapter, we examined three aluminium grain boundaries that exhibit finite size faceting

using molecular dynamics simulations employing two different EAM potentials. All three

boundaries showed faceting in the simulations using both potentials. In Case I, the Σ3{110}
boundary showed a reversible facet-defaceting phase transition, while no such reversible phase

transition was observed in either Case II Σ11{002}1/{667}2 or Case III non-CSL 90◦〈110〉
{116}1/{662}2. We observed that the initial sizes of Σ3{112} twin facets in Case I were deter-

mined by the relative positions of the facet nucleation sites and the facet coarsening processes

in Cases I and II require thermal activation. In Case II, the facets formed by {225}1/{441}2
and {667}1/{001}2 boundaries showed some, but at a slower rate when compared to that

of Σ3{112} twin facets in Case I. Facets formed by the {111}1/{112}2 and {001}1/{110}2
boundaries in Case III were found to be stable under thermal annealing and no coarsening

was observed during the simulation. We also examined the dependence of the grain boundary

energy density change on facet period for Cases I and III. In both cases, the boundary energy

density was well described by the same analytical form γ = A1/Λ ln Λ+B1/Λ+C1. In Case I,

the Σ3{112} faceted boundary energy density showed a smooth monotonic decay with increas-

ing facet period. However, in Case III, facets formed by {111}1/{112}2 and {001}1/{110}2
boundary exhibited a similar trend with increasing facet length, albeit with very large ampli-

tude oscillations. The non-smoothness in the faceted boundary energy density in Case III may

be attributed to the atomic mismatch between the two planes forming the facets, which nec-

essarily induces additional elastic strain energy near the facets. These elastic strain energy

increments, associated with mismatch of the atomic structure across the boundary, create bar-

riers to facet coarsening. Unlike in the energy analysis that successfully described Case I, we

find facet coarsening is also controlled by the boundary plane matching instead of facet junc-

tions alone. The results of the current study suggest that grain boundary tension is too small to

stabilize the finite length faceting in both Σ3{112} twin and asymmetrical {111}1/{112}2 and

{001}1/{110}2 facets. The observed finite facet sizes are dictated by facet coarsening kinetics

which can be strongly retarded by deep local energy minima associated with atomic matching

across the boundary.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this Thesis we studied two categories of problems relating to faceted grain boundaries which

are frequently observed in metals and their alloys. Growth nanotwins are very special, faceted

grain boundaries and materials with a high density of growth nanotwins exhibit a combination

of attractive properties including simultaneous ultrahigh strength, ductility, conductivity and

strain hardening. Understanding on the underlying atomistic mechanisms contributing to these

extraordinary properties is important not only as scientific curiosities, but in engineering ap-

plications as well. Through very large scale “bi-crystal” and polycrystal molecular dynamics

simulations involving more than 60 million atoms, a few improtant dislocation twin interaction

mechanisms that lead to copious dislocation generation and the production of sessile dislo-

cation debris during plastic deformation were revealed. The interaction of a 60◦ dislocation

with a twin boundary generates a {001}〈110〉 Lomer dislocation in the twin-related grain and

a Shockley partial dislocation on the twin boundary during twin-mediated slip transfer. The

Lomer dislocation line segment subsequently dissociates into Shockley, stair-rod and Frank

partial dislocations. The interaction of a 30◦ partial dislocation with a twin boundary gener-

ates three additional Shockley partial dislocations during twin-mediated slip transfer. While

the generation of Shockley partial dislocations activates additional slip systems and hence con-

tributes to the ductility of the material during plastic deformation, the sessile stair-rod and Frank

partial dislocations, together with the high-density twin boundaries, provide barriers to dislo-

cation motion and hence strengthen the material. These findings highlight the importance of

interplay between the carriers of and barriers to plastic deformation in achieving simultaneous
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ultrahigh strength and ductility.

We also studied the deformation of nanotwinned Cu for a wide range of twin spacings and

found a dislocation mechanism transition at a small twin spacing. While at large twin spacing,

cross-slip and dissociation of the Lomer dislocations create dislocation locks which restrict

and block dislocation motion and thus enhance strength. At twin spacing below a critical size,

cross-slip does not occur, steps on the twin boundaries form and deformation is much more

planar. These twin steps can further migrate and serve as dislocation nucleation sites, thus

softening the material. Based on these mechanistic observations, a simple, analytical model

for the critical twin spacing was proposed and the predicted critical twin spacing was shown

to be in excellent agreement both with respect to the atomistic simulations and experimental

observation. We thus suggested the above dislocation mechanism transition is a cause of the

observed transition in nanotwinned Cu strength.

For the problem on grain boundary finite length faceting, we studied a set of generally

faceted boundaries and revealed the factors determining the facet length scales. We demon-

strated facet formation, coarsening, reversible phase transition of Σ3{110} boundary into

Σ3{112} boundary and vice versa in molecular dynamics simulations. These results are consis-

tent with earlier experimental studies and theoretical models. The Σ11{002}1/{667}2 bound-

ary shows faceting into {225}1/{441}2 and {667}1/{001}2 boundaries and coarsens with a

slower rate when compared to Σ3{112} facets. However, facets formed by {111}1/{112}2
and {001}1/{110}2 boundaries from a {116}1/{662}2 boundary are stable against finite tem-

perature annealing. In the above faceted boundary, elastic strain energy induced by atomic

mismatch across the boundary creates barriers to facet coarsening. Grain boundary tension

is too small to stabilize the finite length faceting in both Σ3{112} twin and asymmetrical

{111}1/{112}2 and {001}1/{110}2 facets. The observed finite facet sizes are dictated by

facet coarsening kinetics which can be strongly retarded by the deep local energy minima as-

sociated with atomic matching across the boundary.

7.2 Future Work

There has been considerable research effort in engineering nanotwinned metallic materials.

Apart from Cu, other metals like Ag, Au, Ni and their alloys are good candidates in the sense

that these materials have relatively low stacking fault energy. The potential of the nanotwinned

microstructure in FCC materials may also be realized in materials with other lattice structures
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such as BCC and HCP. There are also several questions that remain unsolved for these nan-

otwinned materials. Currently two mechanisms are proposed to rationalize the experimentally

observed strength transition at a critical twin spacing of 15 nm in nanotwinned polycrystalline

Cu. Twin migration induced softening provides a possible mechanism. However, this has

only been demonstrated via MD simulations in cases where the twin spacing is below a few

nanometers. In addition, it does not provide clear sources for those dislocations blocked at

twin boundaries as seen in TEM observations. The mechanism by dislocations passing through

twin boundaries, generating unusual dislocations, activating several slip systems and creating

twin steps is another likely source to induce strength transition. This mechanism is based on

the mechanistic observation of full dislocations passing through twin boundaries and cross-

slipping onto {001} planes in twin crystals. These two mechanisms may also coexist and

cooperate during the plastic deformation of nanotwinned materials. Furthermore, nanotwinned

materials’ high strain hardening behavior is missing in current MD simulations. The difficulty

to reveal those experimental observations might be attributed to the small grain sizes and high

strain rates used in current simulations including those presented here. Hence it is worthwhile

to focus on addressing these issues in future work.

Lastly, we wish to emphasize that computer simulations provide valuable insights into the

understanding of physical problems and allow us to peek into processes nature does. Never-

theless, simulations have their own limitations such as the time scale in MD simulations. In

simulations where the central problem is plastic deformation, the time scale difference with ex-

periments can be as large as 1012, which necessarily creates artefacts from the high stress/high

rate/short time conditions in nearly all such simulations. We end with the cautionary note

that results obtained from these simulations have to be interpreted with care and verified by

experiments.
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Appendix A

Geometric Operations

A.1 Rotation About an Axis

The rotational operation can be described by several different ways mathematically. The choice

of representation is merely a result of convienence and efficiency in applications. For example,

a rotation can be represented in an axis-angle pair (n− θ)

f (x) = x cos θ + n(n · x)(1− cos θ) + sin θ(n× x) (A.1)

where n is the axis about which the rotation takes place and θ is the angle of rotation. Rotation

can also be expressed in the form of an orthogonal tensor

f (x) = R · x (A.2)

where

Rij = cos θδij + ninj(1− cos θ)− εijknk sin θ (A.3)
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or

R =


cos θ + n2

1 (1− cos θ) n1n2 (1− cos θ)− n3 sin θ n1n3 (1− cos θ) + n2 sin θ

n1n2 (1− cos θ) + n3 sin θ cos θ + n2
2 (1− cos θ) n2n3 (1− cos θ)− n1 sin θ

n1n3 (1− cos θ)− n2 sin θ n2n3 (1− cos θ) + n1 sin θ cos θ + n2
3 (1− cos θ)


(A.4)

When θ = π, Eqn. A.1 simplifies to

f (x) = −x+ 2n(n · x) (A.5)

and

R =


−1 + 2n2

1 2n1n2 2n1n3

2n1n2 −1 + 2n2
2 2n2n3

2n1n3 2n2n3 −1 + 2n2
3

 (A.6)

A.2 Rotational Tensor between Two Arbitrarily Oriented Bases

Two arbitrarily oriented bases can be brought into coincidence through a combination of ro-

tational and translational operation. The rotational operation can be expressed as a tensor in

various forms as discussed in the previous section. In studies of polycrystalline materials, it is

often desirable to find the corresponding rotational tensor given the orientations of two crys-

tals or two bases. In the following, we derive the rotational tensor using Fig. A.1, where two

arbitrarily oriented bases, {si} and {oi}, are shown. The following conditions are given

ei = Ajisj = Bl
iol (A.7)

and there exists a rotational tensor R (plus a translational) which brings {si} and {oi} into

coincidence, i.e.,

si = Rki ok (A.8)

Substituting the above equation into Eqn. A.7 gives

AjiR
k
jok = Bl

iol (A.9)
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A.3 Reflection about a Plane

Hence

Rkj = (A−1)kl B
l
j (A.10)

e1

e2

e3⊙

s1

s2

s3

o1

o2

o3

Figure A.1: Rotational tensor between two arbitrarily oriented bases.

A.3 Reflection about a Plane

A reflection is a mirror operation that transforms any vector x into its mirror image across

some plane defined by a unit normal n.

f(x) = x− 2n (n · x) (A.11)

Comparison of the above equation with that of a rotation of π about some axis (Eqn. A.5)

shows reflection about a plane is equivalent to a rotation of π about the normal of that plane

plus an inversion operation.
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Appendix B

Crystallography

B.1 Crystallographical Equivalence of FCC Twinned Crystals

The crystallographic equivalence of the matrix and twin lattice as shown in Fig. 2.11 can be

worked out by a rotational tensor corresponding to a rotation of π about axis δC = [n1n2n3] =

1/
√

6[112̄]. Employing Eqn. A.6 the following is obtained

R =


−1 + 2n2

1 2n1n2 2n1n3

2n1n2 −1 + 2n2
2 2n2n3

2n1n3 2n2n3 −1 + 2n2
3

 = 1/3


−2 1 −2

1 −2 −2

−2 −2 1

 (B.1)

Hence the equivalence between the matrix and twin lattice can be found as shown in Table. B.1.

B.2 Coincidence Site Lattice (CSL)

Two lattices interpenetrating in space and sharing a common origin contain a sublattice which

is common to both lattices. The sublattice is called the Coincidence Site Lattices (CSL). The

fraction of lattice points which are also the coincidence sites is a rational fraction 1/Σ. Σ is

always an odd integer and is often used to indicate the local atomic fit of an interface when

that interface is a rational plane or close to a rational plane in the CSL. Σ can be found by the

transformation tensor relating the two forming lattice. If R is such a tensor and an integer h
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B.2 Coincidence Site Lattice (CSL)

In Matrix In Twin
Equivalent
In Matrix

plane a

Aα 1/3[1̄11̄]

aT

ATαT 1/3[1̄11̄]T 1/9[51̄1̄]
BC 1/2[101̄] BTCT 1/2[101̄]T 1/2[011̄]
BD 1/2[01̄1̄] BTDT 1/2[01̄1̄]T 1/6[141]
CD 1/2[1̄1̄0] CTDT 1/2[1̄1̄0]T 1/6[114]

plane b

Bβ 1/3[11̄1̄]

bT

BTβT 1/3[11̄1̄]T 1/9[1̄51̄]
AC 1/2[011̄] ATCT 1/2[011̄]T 1/2[101̄]
AD 1/2[1̄01̄] ATDT 1/2[1̄01̄]T 1/6[411]
CD 1/2[1̄1̄0] CTDT 1/2[1̄1̄0]T 1/6[114]

plane c

Cγ 1/3[1̄1̄1]

cT

CTγT 1/3[1̄1̄1]T 1/9[1̄1̄5]
AB 1/2[1̄10] ATBT 1/2[1̄10]T 1/2[11̄0]
AD 1/2[1̄01̄] ATDT 1/2[1̄01̄]T 1/6[411]
BD 1/2[01̄1̄] BTDT 1/2[01̄1̄]T 1/6[141]

plane d

Dδ 1/3[111]

dT

DTδT 1/3[111]T 1/3[1̄1̄1̄]
AB 1/2[1̄10] ATBT 1/2[1̄10]T 1/2[11̄0]
AC 1/2[011̄] ATCT 1/2[011̄]T 1/2[101̄]
BC 1/2[101̄] BTCT 1/2[101̄]T 1/2[011̄]

Table B.1: Equivalence between the matrix and twin in FCC lattice.
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B.2 Coincidence Site Lattice (CSL)

can be found such that all the elements of R are integers without a common factor, h is the Σ

value relating the two lattice [146]. Hence the tensor in the above Eqn. B.1 results in a Σ = 3

CSL.

For the grain boundary faceting cases shown in Fig. 6.2 in Chapter. 6, the respective Σ

value can be calculated by forming the rotational tensor through Eqn. A.10.

Case I

A =


1/
√

6 1/
√

6 −2/
√

6

−1/
√

2 1/
√

2 0

1/
√

3 1/
√

3 1/
√

3

 (B.2)

A−1 =


1/
√

6 −1/
√

2 1/
√

3

1/
√

6 1/
√

2 1/
√

3

−2/
√

6 0 1/
√

3

 (B.3)

B =


2/
√

6 −1/
√

6 −1/
√

6

0 1/
√

2 −1/
√

2

1/
√

3 1/
√

3 1/
√

3

 (B.4)

hence

R = A−1 ·B = 1/3


2 −1 2

2 2 −1

−1 2 2

 (B.5)

Hence Σ = 3.

Case II

A =


−1/
√

2 1/
√

2 0

0 0 1

1/
√

2 1/
√

2 0

 (B.6)
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B.2 Coincidence Site Lattice (CSL)

A−1 =


−1/
√

2 0 1/
√

2

1/
√

2 0 1/
√

2

0 1 0

 (B.7)

B =


−7/
√

242 7/
√

242 −12/
√

242

−6/11 6/11 7/11

1/
√

2 1/
√

2 0

 (B.8)

hence

R = A−1 ·B = 1/11


9 2 6

2 9 −6

−6 6 7

 (B.9)

Hence Σ = 11.

Case III

A =


1/
√

38 1/
√

38 6/
√

38

−6/
√

76 −6/
√

76 2/
√

76

1/
√

2 −1/
√

2 0

 (B.10)

A−1 =


1/
√

38 −6/
√

76 1/
√

2

1/
√

38 −6/
√

76 −1/
√

2

6/
√

38 2/
√

76 0

 (B.11)

B =


6/
√

76 6/
√

76 −2/
√

76

1/
√

38 1/
√

38 6/
√

38

1/
√

2 −1/
√

2 0

 (B.12)
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B.2 Coincidence Site Lattice (CSL)

hence

R = A−1 ·B =


3
√

2/38 −9/19 −1/
√

38

1/38 −3
√

2/38 −3/
√

38

3
√

2/
√

38 −1/
√

38 0

 (B.13)

Hence the two crystals do not form a CSL.
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Appendix C

Linear Elasticity

C.1 Generalized Hooke’s Law

The generalized Hooke’s law for continuum medium can be expressed as following

σ = C : ε (C.1)

where σ and ε are the stress and strain tensor, respectively (we assume infinitesimal linear

elasticity throughout the Thesis). C in the above equation is a tensor characterizing materials’

stiffness, i.e., materials’ linear deformation in response to applied load. It is a fourth order

tensor and has 81 components in three dimensional spaces (among the 81, only 21 are inde-

pendent for general anisotropic materials). The stiffness tensor obeys the general rules of basis

transformation as following

C = Q :: Ĉ (C.2)

where

Qpqrsijkl =
∂x̂p

∂xi

∂x̂q

∂xj

∂x̂r

∂xk

∂x̂s

∂xl
(C.3)

Eqn. C.1 written in indicial notation is as following

σij = Cijklεkl (C.4)
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C.2 Contracted Notation

For isotropic medium, the above equation reduces to

σij = 2µεij + λδijεkk (C.5)

where µ is the shear modulus and λ is the Lame constant and λ =
2µν

1− 2ν
, ν is the poisson’s

ratio. The static equilibrium equation can be expressed as a function of the strain and stiffness

tensor as following

σij,j = Cijklεkl,j = Fi (C.6)

Under the assumption of infinitesimal strain, the above equation can be written in terms of the

displacement vector

σij,j = Cijklεkl,j = Cijkl
1
2

(uk,lj + ul,kj) = Cijkluk,lj = Fi (C.7)

The generalized Hooke’s law can also be expressed in terms of the compliance tensor

ε = S : σ (C.8)

or in indicial notation

εij = Sijklσkl (C.9)

C.2 Contracted Notation

The contracted notation allows us to write the strain and stress tensor in vector forms and the

stiffness and compliance tensor in matrix forms with the following transformation:

σα = σij (C.10)

εα =

 εij if i = j

εij + εji if i 6= j
(C.11)

Cαβ = Cijkl (C.12)

141



C.2 Contracted Notation

where

α( or β) =

 i if i = j ( or if k = l)

9− i− j if i 6= j ( or if k 6= l)
(C.13)

The generalized Hooke’s law written in the contracted notation is

σα = Cαβεβ (C.14)

or in explicit form as following 

σ1

σ2

σ3

σ4

σ5

σ6


=



σ11

σ22

σ33

σ23

σ31

σ12


(C.15)



ε1

ε2

ε3

ε4

ε5

ε6


=



ε11

ε22

ε33

ε23 + ε32

ε31 + ε13

ε12 + ε21


=



ε11

ε22

ε33

2ε23

2ε31

2ε12


(C.16)
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C.2 Contracted Notation

C =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66


=



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

C1212


(C.17)

The generalized Hooke’s law expressed in the compliance matrix is as following

εα = Sαβσβ (C.18)

where

Sαβ =


Sijkl if both α, β ≤ 3

2Sijkl if either α, β ≤ 3

4Sijkl if both α, β > 3

(C.19)

or write in explicit form

S =



S11 S12 S13 S14 S15 S16

S22 S23 S24 S25 S26

S33 S34 S35 S36

S44 S45 S46

S55 S56

S66


=



S1111 S1122 S1133 2S1123 2S1113 2S1112

S2222 S2233 2S2223 2S2213 2S2212

S3333 2S3323 2S3313 2S3312

4S2323 4S2313 4S2312

4S1313 4S1312

4S1212


(C.20)
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Appendix D

Anti-plane Deformation

D.1 Anti-plane Strain in Cubic Materials

The anti-plane and in-plane deformation can be decoupled if the materials’ stiffness tensor

satisfies Eqn. 2.75. One such example is a screw dislocation in FCC lattice with the coordinate

system chosen as that of one of the grains in Fig. 2.12. The stiffness tensor has the following

form

C =



C11 C12 C13 0 0 C16

C22 C23 0 0 0

C33 0 0 C36

C44 C45 0

C55 0

C66


(D.1)

The displacement field u corresponds to such an anti-plane shear deformation can be expressed

as

u1 = 0, u2 = 0, u3 = u(x1, x2) (D.2)
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D.1 Anti-plane Strain in Cubic Materials

Hence the strain tensor has the following form

εij =



ε11

ε22

ε33

2ε23

2ε13

2ε12


=



0

0

0
∂u(x1, x2)

∂x2
∂u(x1, x2)

∂x1

0


(D.3)

and the stress tensor is

σij =



σ11

σ22

σ33

σ23

σ13

σ12


=



0

0

0

2C44ε23 + 2C45ε13

2C45ε23 + 2C55ε13

0


=



0

0

0

C44
∂u(x1, x2)

∂x2
+ C45

∂u(x1, x2)
∂x1

C45
∂u(x1, x2)

∂x2
+ C55

∂u(x1, x2)
∂x1

0


(D.4)

In the absence of body force, the equilibrium equation written in Eqn. C.6 has the expanded

form as

σ11,1 + σ12,2 + σ13,3 = 0

σ21,1 + σ22,2 + σ23,3 = 0

σ31,1 + σ32,2 + σ33,3 = 0

(D.5)

Substitute the stress into the above equation we have

C55
∂2u(x1, x2)

∂x2
1

+ 2C45
∂2u(x1, x2)
∂x1∂x2

+ C44
∂2u(x1, x2)

∂x2
2

= 0 (D.6)

In the following we seek the displacement of a screw dislocation in infinite domain as

illustrated in Fig. D.1. The boundary condition due to a screw dislocation with Burgers vector
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D.1 Anti-plane Strain in Cubic Materials

⊙x3

x1

x2

⊥

S−
c

S+
c

b3(xh, xv)

Figure D.1: Anti-plane shear deformation in cubic materials.

b3 at (xh, xv) is prescribed as following

u(x1, x
−
v )− u(x1, x

+
v ) = b3H(x1 − xh) (D.7)

We apply a coordinate transformation technique [147, 148] to convert Eqn. D.6 into a

Laplace’s equation in a transformed domain. The transformation has the following form

X1

X2

 =

1 κ

0 χ


x1

x2

 (D.8)

where κ
χ

 =
1
C44

 −C45√
C44C55 − C2

45

 (D.9)

Hence in the transformed domain Eqn. D.6 has the form

∂2u(X1, X2)
∂X2

1

+
∂2u(X1, X2)

∂X2
2

= 0 (D.10)

and the boundary condition D.7 due to the screw dislocation is written as

u(X1, X
−
V )− u(X1, X

+
V ) = b3H(X1 −XH) (D.11)
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D.1 Anti-plane Strain in Cubic Materials

where

XH = xh + κxv

XV = χxv

(D.12)

The solution to the Laplace equation in Eqn. D.10 becomes trivial in the transformed domain.

It has the same form as that of the isotropic case as following

u(X1, X2) =
b3
2π

tan−1 X2 −XV

X1 −XH
(D.13)

and in the original anisotropic domain

u(x1, x2) =
b3
2π

tan−1


√
C44C55 − C2

45

C44
(x2 − xv)

x1 − xh −
C45

C44
(x2 − xv)


=
b3
2π

tan−1

( √
C44C55 − C2

45(x2 − xv)
C44(x1 − xh)− C45(x2 − xv)

)

=
b3
2π

tan−1

(
χ(x2 − xv)

x1 − xh + κ(x2 − xv)

)
(D.14)

The strain field can be obtained by direct differentiation of the displacement field as fol-

lowing

ε23 =
∂u

∂x2

=
b3
2π

1

1 +
(

χ(x2 − xv)
x1 − xh + κ(x2 − xv)

)2

∂

∂x2

(
χ(x2 − xv)

x1 − xh + κ(x2 − xv)

)

=
b3
2π

1

1 +
(

χ(x2 − xv)
x1 − xh + κ(x2 − xv)

)2

χ (x1 − xh + κ(x2 − xv))− κχ(x2 − xv)
(x1 − xh + κ(x2 − xv))2

=
b3
2π

χ(x1 − xh)
(x1 − xh + κ(x2 − xv))2 + χ2 (x2 − xv)2

(D.15)
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D.1 Anti-plane Strain in Cubic Materials

ε13 =
∂u

∂x1

=
b3
2π

1

1 +
(

χ(x2 − xv)
x1 − xh + κ(x2 − xv)

)2

∂

∂x1

(
χ(x2 − xv)

x1 − xh + κ(x2 − xv)

)

=
b3
2π

1

1 +
(

χ(x2 − xv)
x1 − xh + κ(x2 − xv)

)2

−χ(x2 − xv)
(x1 − xh + κ(x2 − xv))2

=
b3
2π

−χ(x2 − xv)
(x1 − xh + κ(x2 − xv))2 + χ2 (x2 − xv)2

(D.16)

and the stress field by Hook’s law

σ23 = C44
∂u

∂x2
+ C45

∂u

∂x1

=
b3
2π

C44χ(x1 − xh)− C45χ(x2 − xv)
(x1 − xh + κ(x2 − xv))2 + χ2 (x2 − xv)2

(D.17)

σ13 = C45
∂u

∂x2
+ C55

∂u

∂x1

=
b3
2π

C45χ(x1 − xh)− C55χ(x2 − xv)
(x1 − xh + κ(x2 − xv))2 + χ2 (x2 − xv)2

(D.18)

The elastic strain energy can be found as following

E∞ =
1
2

∫
V
σijui,jdV

=
1
2

∫
V

(σ31u3,1 + σ32u3,2) dV
(D.19)

Without loss of generality we set the origin at (xh, xv) and the total elastic strain energy can

be found as

E∞ =
b23

8π2

∫
V

χ2
(
C44x

2
1 − 2C45x1x2 + C55x

2
2

)(
(x1 + κx2)2 + χ2x2

2

)2

 dV (D.20)
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D.2 Anti-plane Strain in Bi-layer Semi-infinite Cubic Materials

In the following we solve the anti-plane shear deformation in semi-infinite bi-layer twin struc-

ture for cubic materials as illustrated in Fig. D.2. The coordinate origin is set at the twin

interface.

Ma et al. [149, 150] solved the above elastic problem in multilayered medium through a

coordinate transform method. Their solution can be applied directly in the case of nanotwinned

materials. We follow their derivation closely in the following. In addition, the nanotwinned

structure has the following feature

Cj44 = C44

Cj55 = C55

Cj45 = (−1)jC45

(D.21)

where

j = 1 for the upper semi-infinite domain

j = 2 for the lower semi-infinite domain
(D.22)

Hence Eqn. D.6 can be written as below

C55
∂2u(j)(x1, x2)

∂x2
1

+ (−1)j2C45
∂2u(j)(x1, x2)

∂x1∂x2
+ C44

∂2u(j)(x1, x2)
∂x2

2

= 0 (D.23)

We apply a coordinate transformation technique [147, 148] to convert Eqn. D.23 into a

Laplace’s equation in a transformed domain. The transformation has the following form

X1

X2

 =

1 (−1)jκ

0 χ


x1

x2

 (D.24)

where κ
χ

 =
1
C44

 C45√
C44C55 − C2

45

 (D.25)
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Figure D.2: Schematics of the bi-layer semi-infinite twin structure.

The equilibrium equations Eqn. C.6 in the transformed coordinate are

µ

(
∂2u(j)(X1, X2)

∂X2
1

+
∂2u(j)(X1, X2)

∂X2
2

)
= 0 (D.26)

where

µ =
√
C44C55 − C2

45 (D.27)

The linear transformation in Eqn. D.24 changes the original bi-layer twinned anisotropic prob-

lem to an isotropic homogenous problem. The solution of the latter becomes trivial. The

continuity requirements of the displacement and traction at the nanotwin interfaces in the trans-

formed domain, although satisfied implicitly, have the following form

u(1)(X1, X2) = u(2)(X1, X2)

σ
(1)
23 (X1, X2) = σ

(2)
23 (X1, X2)

(D.28)

The boundary condition due to the screw dislocation in the transformed domain can be pre-

scribed as below

u(m)(X1, X
−
V )− u(m)(X1, X

+
V ) = b3H(X1 −XH) (D.29)

150



D.2 Anti-plane Strain in Bi-layer Semi-infinite Cubic Materials

where

XH = xh + (−1)mκxv

XV = χxv

(D.30)

m = 1 if the dislocation is in the upper semi-infinite domain

m = 2 if the dislocation is in the lower semi-infinite domain
(D.31)

The Laplace equation in Eqn. D.26 with boundary condition prescribed above has the fol-

lowing solution

u(X1, X2) =
b3
2π

tan−1 X2 −XV

X1 −XH
(D.32)

and in the original nanotwinned anisotropic domain

u(j)(x1, x2) =
b3
2π

tan−1 χ(x2 − xv)
x1 − xh + κ((−1)jx2 − (−1)mxv)

(D.33)

It is straight forward to find the corresponding strain and stress field once the displacement

field has been obtained by employing the definition of strain and Hooke’s law. The shearing

strain are found by direct differentiation of the displacement field as below.

εj23 =
∂u(j)

∂x2

=
b3
2π

1

1 +
(

χx2 − χxv
x1 − xh + κ ((−1)jx2 − (−1)mxv)

)2

∂

∂x2

χx2 − χxv
x1 − xh + κ ((−1)jx2 − (−1)mxv)

=
b3
2π

1

1 +
(

χx2 − χxv
x1 − xh + κ ((−1)jx2 − (−1)mxv)

)2

×

(
χ
(
x1 − xh + κ

(
(−1)jx2 − (−1)mxv

))
− (−1)jκ (χx2 − χxv)

(x1 − xh + κ ((−1)jx2 − (−1)mxv))
2

)

=
b3
2π

χ
(
x1 − xh + xvκ

(
(−1)j − (−1)m

))
(x1 − xh + κ ((−1)jx2 − (−1)mxv))

2 + (χx2 − χxv)2
(D.34)

151



D.2 Anti-plane Strain in Bi-layer Semi-infinite Cubic Materials

εj13 =
∂u(j)

∂x1

=
b3
2π

1

1 +
(

χx2 − χxv
x1 − xh + κ ((−1)jx2 − (−1)mxv)

)2

∂

∂x1

χx2 − χxv
x1 − xh + κ ((−1)jx2 − (−1)mxv)

=
b3
2π

1

1 +
(

χx2 − χxv
x1 − xh + κ ((−1)jx2 − (−1)mxv)

)2

(
− (χx2 − χxv)

(x1 − xh + κ ((−1)jx2 − (−1)mxv))
2

)

=
b3
2π

−χ (x2 − xv)
(x1 − xh + κ ((−1)jx2 − (−1)mxv))

2 + (χx2 − χxv)2
(D.35)

and the stress as following

σj23 = C44
∂u(j)

∂x2
+ (−1)jC45

∂u(j)

∂x1

=
b3
2π

χ
(
C44

(
x1 − xh + xvκ

(
(−1)j − (−1)m

))
− (−1)jC45 (x2 − xv)

)
(x1 − xh + κ ((−1)jx2 − (−1)mxv))

2 + (χx2 − χxv)2

(D.36)

σj13 = (−1)jC45
∂u(j)

∂x2
+ C55

∂u(j)

∂x1

=
b3
2π

χ
(
(−1)jC45

(
x1 − xh + xvκ

(
(−1)j − (−1)m

))
− C55 (x2 − xv)

)
(x1 − xh + κ ((−1)jx2 − (−1)mxv))

2 + (χx2 − χxv)2

(D.37)

When the screw dislocation is at the interface, the above field strain and stress field simpli-

fies to

εj23 =
b3
2π

χx1

(x1 + κ ((−1)jx2))2 + (χx2)2
(D.38)

εj13 =
b3
2π

−χx2

(x1 + κ ((−1)jx2))2 + (χx2)2
(D.39)

and the stress as following

σj23 =
b3
2π

χ
(
C44x1 − (−1)jC45x2

)
(x1 + κ ((−1)jx2))2 + (χx2)2

(D.40)
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σj13 =
b3
2π

χ
(
(−1)jC45 (x1)− C55 (x2)

)
(x1 + κ ((−1)jx2))2 + (χx2)2

(D.41)

The elastic strain energy can be found as following

E∞ =
1
2

∫
V
σijui,jdV

=
1
2

∫
V1

(σ31u3,1 + σ32u3,2) dV +
1
2

∫
V2

(σ31u3,1 + σ32u3,2) dV
(D.42)

where V1 and V2 are the volumes in the upper and lower parts, respectively. The total elastic

strain energy can be found as

E∞ =
b23

8π2

∫
V

χ2
(
C44x

2
1 − 2C45x1x2 + C55x

2
2

)(
(x1 + κx2)2 + χ2x2

2

)2

 dV (D.43)

which is the same as that of a screw dislocation in an infinite domain.
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