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Summary

In this thesis, we introduce novel mechanisms for the separation of colloidal

particles based on the ratchet effect. It is further demonstrated that hydrody-

namic interactions among colloidal particles are able to enhance the ratchet

effect and cause interesting collective phenomena. The research has been done

by means of theoretical modeling and numerical simulations. The thesis can

be divided into three projects.

In the first project, we propose a ratchet-based separation mechanism that

results in microfluidic devices with significantly reduced size. For this purpose,

we introduce a ratchet model that switches cyclically between two distinct

ratchet potentials and a zero-potential state. The applied potentials are cho-

sen such that Brownian particles exhibit reversal of the direction of their mean

displacement when relevant parameters such as the on-time of the potentials

are varied. This direction reversal offers us new opportunities for the design

of microfluidic separation devices. Based on the results of our ratchet model,

we propose two new separation mechanisms. Compared to the conventional

microfluidic devices, the proposed devices can be made of significantly smaller

sizes without sacrificing the resolution of the separation process. In fact, one

of our devices can be reduced to a single channel. We study our ratchet model

by Brownian dynamics simulations and derive analytical and approximative
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SUMMARY

expressions for the mean displacement. We show that these expressions are

valid in relevant regions of the parameter space and that they can be used to

predict the occurrence of direction reversal. Furthermore, the separation dy-

namics in the proposed channel device are investigated by means of Brownian

dynamics simulations.

In the second project, we introduce a mechanism that facilitates efficient

ratchet-based separation of colloidal particles in pressure-driven flows. Here,

the particles are driven through a periodic array of obstacles by a pressure

gradient. We propose an obstacle design that breaks the symmetry of fluid

flows and therefore fulfills the crucial requirement for ratchet-based particle

separation. The proposed mechanism allows a fraction of the flow to penetrate

the obstacles, while the immersed particles are sterically excluded. Based on

Lattice-Boltzmann simulations of the fluid flow, it is demonstrated that this

approach results in highly asymmetrical flow pattern. The key characteristics

of the separation process are estimated by means of Brownian ratchet theory

and validated with Brownian dynamics simulations. For the efficient simu-

lation of fluid flows we introduce novel boundary conditions for the Lattice-

Boltzmann method exploiting the full periodicity of the array.

In the third project, we investigate how hydrodynamic interactions between

Brownian particles influence the performance of a fluctuating ratchet. For this

purpose, we perform Brownian dynamics simulations of particles that move in

a toroidal trap under the influence of a sawtooth potential which fluctuates

between two states (on and off). We first consider spatially constant transition

rates between the two ratchet states and observe that hydrodynamic interac-

tions significantly increase the mean velocity of the particles but only when

they are allowed to change their ratchet states individually. If in addition the

vii



SUMMARY

transition rate to the off state is localized at the minimum of the ratchet poten-

tial, particles form characteristic transient clusters that travel with remarkably

high velocities. The clusters form since drifting particles have the ability to

push but also pull neighboring particles due to hydrodynamic interactions.
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Chapter 1

Introduction

Transport phenomena of colloidal particles in Brownian ratchets are the cen-

tral topic of this thesis. Brownian ratchets are systems far from equilibrium

with broken spatial symmetry. In such a system, the Brownian motion of

colloidal particles is rectified such that directed transport occurs. Within the

framework of Brownian ratchets, we address questions in the field of microflu-

idic particle separation and hydrodynamic interactions. To be precise, we

introduce novel mechanisms for continuous separation of colloidal particles

based on the ratchet effect. Further, we demonstrate that hydrodynamic in-

teractions among colloidal particles are able to enhance the ratchet effect and

cause interesting collective phenomena.

1.1 Brownian ratchets

The ratchet effect has attracted growing interest after it has been discussed

by Feynman in his famous mind experiment - Ratchet and pawl [42]. Here

a rotational mechanical ratchet mechanism is connected through a belt to a

1



Chapter 1. Introduction

Figure 1.1: Schematic depiction of the device discussed in Feynman’s mind
experiment. A wheel with paddles is connected to a wheel with a sawtooth
profile through a belt. An elastic pawl allows rotation in forward direction
as indicated by the arrow, but prevents backward rotation. The whole device
is surrounded by gas molecules moving with thermal velocities corresponding
with a temperature T of the system.

wheel with paddles as depicted in Fig. 1.1. The ratchet mechanism consists

of a wheel with a sawtooth profile and an elastic pawl. The pawl is installed

such that it allows the wheel to rotate easily in one direction (forward) and

blocks the other direction (backward). The whole device is surrounded by gas

in thermal equilibrium at temperature T . The idea is that the gas molecules

drive the wheel by random collisions with the paddles. The ratchet mechanism

is supposed to rectify the resulting random rotations of the wheel. Given

such rectification, the device could even rotate against an external load and

perform work. Although the functioning of such device seems to be plausible,

it breaks the second law of thermodynamics. The latter forbids the existence

of periodically working machines driven only by cooling a single heat bath.

A subtle effect prevents the described ratchet to function as intended. In

order to push the wheel over the next tooth of the profile, the pawl needs to

be bent which requires a certain amount of energy ε. The probability that the

2
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collisions at the paddle accumulate this amount of energy during a certain time

is proportional to e−ε/(kBT ). However, the pawl is also exposed to molecular

collisions of the same strength and hence fluctuates randomly. The probability

that the pawl is bent by collisions such that backward rotation is possible is

also given by e−ε/(kBT ). Eventually both processes balance and the intended

rectification of the rotational motion is impeded.

Feynman describes how to overcome this issue. The surrounding heat bath

needs to be split into two parts with distinct temperatures. One part contains

the ratchet mechanism and is set to the temperature T1 while the other part

contains the paddles and is kept at T2. This difference in the temperatures

breaks the balance of the probabilities. For T1 < T2, the probability for the

wheel being pushed forward by random collisions is larger than the probability

for the pawl being bent by fluctuations; to be precise e−ε/(kBT2) > e−ε/(kBT1).

As a consequence, the device functions as intended and the wheel rotates in

forward direction.1 The second law of thermodynamics is not violated any

longer, since two heat baths are required for the functioning of the device. By

adding the second heat bath Feynman introduced the concept of Brownian

ratchets, i.e., devices that transform unbiased Brownian motion into directed

motion.

It is crucial to the understanding of Brownian ratchets that the use of

two heat baths with distinct temperatures results in a non-equlibrium sys-

tem.2 Further, the forward-bias of the ratchet mechanism imposes a spatial

1If the temperature of the pawl is higher than the temperature of the wheel, the device
will rotate in backward direction. In this case the pawl is not able to prevent backward
rotation. It rather drives the wheel in backward direction by elastic force each time it
reaches the top of a tooth after a fluctuation.

2Due to dissipation at the ratchet mechanism, continuous supply of energy is required to
maintain the desired temperature difference between both heat baths. Note that dissipation
is crucial, in order to avoid oscillations of the pawl.

3



Chapter 1. Introduction

asymmetry to the system. The new understanding that both features, non-

equilibrium and asymmetry, are necessary to rectify Brownian motion can be

considered as the merits of Feynman’s mind experiment.

Three decades after Feynman’s discussion, the first quantitative ratchet

models have been introduced independently by Ajdari et al. [2, 3] and Mag-

nasco et al. [88]. Here, a sawtooth potential is switched on and off periodically

and stochastically, respectively. It is the switching that drives the system far

from equilibrium, while the sawtooth potential provides the spatial asymmetry.

In the proposed systems, Brownian motion is rectified such that the particles

travel with non-zero mean velocities towards a direction that is defined by the

asymmetry of the potential.

These articles initiated an avalanche of further ratchet models, which can

be distinguished mainly by the particular way of breaking the spatial symme-

try or driving the system out of equilibrium [4, 6, 17, 75, 101, 107]. It turned

out that quantitative prediction of the mean velocity for a given ratchet sys-

tem is far from trivial. In most cases, numerical methods are required, as

only few limiting cases have analytical solutions. Not only the magnitude,

even the direction of the induced mean velocity can be difficult to predict

and might change several times while varying a single system parameter. The

investigation of such direction reversal attracted a lot of interest within the

community [9, 15, 18, 72]. Successively, a vast number of further aspects and

extensions have been investigated leading to remarkable diversity within the

field of ratchet systems. Those models include for example ratchets with spa-

tially dependent friction coefficients [26], inertial effects [62], internal degrees

of freedom [63], and active Brownian particles [117]. One branch of studies

focussed on collective effects among groups of particles. It has been shown

4



Chapter 1. Introduction

that coupling among particles has significant effect on the magnitude as well

as the direction of the induced mean velocities [1, 21, 25, 28, 30, 55, 69]. In re-

cent studies, feedback controlled ratchet systems gained considerable interest

[13, 41, 40]. Here, the ratchet potential is a function of the spatial configu-

ration of the particles. It was demonstrated that the induced mean velocities

can be significantly enhanced by certain feedback mechanisms.

Soon after the first ratchet models were introduced, the ratchet effect was

demonstrated experimentally by Rousselet et al. [109]. In this experiment,

colloidal particles were subjected to a spatially asymmetric and periodic a.c.

electric field, which was cyclically switched on and off. The field was generated

by interdigitated electrodes. Directed motion of the particles was observed in

agreement with the predictions of ratchet theory. Further demonstrations of

the ratchet effect used colloidal particles in linear and planar optical tweezer

setups [39]. The direction reversal effect has been demonstrated experimentally

for the first time in such a setup [79, 80].

Already in the early contributions the enormous implication of ratchet the-

ory on the description of molecular motors has been recognized [4, 60, 101].

Molecular motors, e.g., kinesin proteins carrying cargo along tubulin filaments

within cells, perform reliably work in an environment with significant thermal

fluctuations. Hence, their functioning has to vary significantly from macro-

scopic motors, which run in strict periodic cycles. Various ratchet models

have been introduced to explain the principle mechanism of molecular motors

[84]. Those models usually neglect the complexity of the proteins and focus

on the question how chemical energy can be transformed into directional mo-

tion through the ratchet effect [83, 118]. Within the field of molecular motors

the investigation of collective effects has established as a prominent branch.
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Such collective behavior is particularly interesting, as in vivo molecular motors

act in groups. Various coupling schemes, ranging from harmonically coupled

dimers to groups of particles connected to a backbone, have been studied in

this context [7, 10, 60, 61]. Traffic effects of large numbers of motors along

the filaments have been studied with coarse-grained lattice models, reveal-

ing non-equilibrium phase transitions among several phases of traffic modes

[14, 70, 68, 95].

1.2 Ratchet-based separation of micron-sized

particles

In the early theoretical studies on Brownian ratchets, it already became appar-

ent that one promising application is the separation of particles in microfluidic

devices. The reason is that the motion of micron-sized particles is strongly

influenced by thermal fluctuations. In this context it becomes an intriguing

feature of the ratchet effect that diffusion is a requirement to the process rather

than a hindrance.

The first designs that were proposed for this purpose were periodic ar-

rays of asymmetric obstacles [36, 38]. In such a device the particles to be

separated are driven through the device by an external force, e.g., an elec-

trophoretic force. Each time the particles pass a row of obstacles the ratchet

effect induces a mean displacement in the direction perpendicular to the ex-

ternal force. Due to this displacement the mean trajectory of the particles is

inclined to the direction of the external force. Distinct types of particles with

different properties such as their radii have different inclination angles. This

eventually leads to a separation of the particles. Compared to conventional
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technologies, like gel electrophoresis, such devices offer some advantages. For

example they can be operated in continuous mode. Once installed, the sepa-

rated particles can be collected continuously at different outputs. In contrast,

conventional separation devices run in batch mode. First they need to be

loaded, and after the separation process the particles need to be extracted

from the device either at different locations or at different times. Continuous

separation allows ratchet-based devices to be used within integrated microflu-

idic devices denoted as “lab-on-a-chip”, which promise new levels of efficiency

and convenience to researchers in the biological sciences by automating many

laborious experimental procedures [98].

A device for ratchet-based particle separation was realized by Chou et al.

[19]. In their experiment they separated two types of DNA in a microfabricated

array of asymmetric obstacles. The two types of DNA with distinct numbers

of base pairs were driven by an electrophoretic force. It was observed that

different types of DNA travel with distinct inclination angles through the de-

vice. Although this result demonstrates the applicability of the concept of the

Brownian ratchet to the problem of particle separation, there were significant

quantitative deviations between the experimental results and the theoretical

predictions. The deviations made apparent that a complete theoretical un-

derstanding of the process was not achieved and that the early ratchet model

had to be extended for specific separation scenarios. It was pointed out by

Austin et al. [5], that the used ratchet model only holds if the external force

is homogenous and unperturbed by the presence of the obstacles. Deviations

from that assumption lead to a reduced efficiency of the separation process

and hence smaller inclination angles. If the obstacles are completely imper-

meable for the external field, the separation process will be inhibited. Li et

7
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al. [82] confirmed this effect by thorough numerical studies. It was further

shown by Huang et al. [54] that particles can be separated even for completely

impermeable obstacles if their size is similar to the width of the gap between

the obstacles. Such finite-size effects have been neglected previously as parti-

cles have been assumed to be point-like in their interaction with the obstacles.

Still a comprehensive theory providing quantitative predictions for the effect

of impermeable obstacles on the separation process is missing.

A similar ratchet-based separation device has been realized by van Oude-

naarden et al. [115]. In their work, phospholipids with distinct size were

successfully separated. Again, the particles were driven by an electrophoretic

force through an array of asymmetric obstacles. In contrast to the experiment

by Chou et al. [19], the particles were not immersed in an aqueous solution

but rather moved within an lipid bilayer.3 A quantitative comparison of the

results with the predictions of ratchet theory is difficult, because of the addi-

tional effects of the lipid bilayer.

Another approach, denoted as drift ratchet, has been followed by Kettner

et al. [64] and Matthias et al. [92]. They use a microfabricated macroporous

silicon membrane containing a huge number of etched parallel pores, which fea-

ture periodic and asymmetric cross-sections. The suspension is pumped back

and forth with no net bias through such a membrane. Due to a subtle ratchet

effect, the immersed particles move with certain mean velocities through the

pores.4 Further, the direction of the observed mean velocities depends on the

3A small fraction of the phospholipids were labeled with a fluorescent dye such that their
motion could be captured by fluorescence microscopy. It is also the dye that added a net
charge to the phospholipids and therefore enabled electrophoresis.

4The required spatial asymmetry arises from two effects. First, the particles undergo
diffusion among flow layers with distinct velocities. This diffusion in combination with
the asymmetric cross-section of the pores breaks the symmetry. Second the particles are
reflected asymmetrically from the walls of the pore. Both processes depend crucially on the
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particle size. This size dependence allows the separation of a suspension with

two distinct particle types across the membrane. It is an intriguing feature of

this approach that it can be parallelized massively resulting in a significantly

increased throughput.

1.3 Hydrodynamic interactions in colloidal sys-

tems

Hydrodynamic interactions are ubiquitous in colloidal systems, as particles

moving in a viscous fluid induce a flow field that affects other particles in their

motion [49, 66, 31]. Since many ratchet systems have been realized in the col-

loidal domain, it is surprising that only two numerical studies addressed the

question to what extent hydrodynamic interactions influence the performance

of ratchet systems. In the first study, hydrodynamic coupling was included in

the asymmetric simple exclusion process (ASEP) as a model for the dynamics

of Brownian motors [51]. In the second study, hydrodynamic interactions were

taken into account in Brownian dynamics simulations of a harmonically cou-

pled dimer in a ratchet potential [43]. Both studies reported increased mean

velocities of the Brownian motors and dimers, respectively, due to hydrody-

namic coupling. However, the mechanism causing the enhanced velocities has

not been studied in detail.

In contrast, the effect of hydrodynamic interactions on colloidal systems in

general has been investigated in great detail. In this sense, early experimental

and theoretical studies mostly investigated macroscopic rheological or trans-

port properties of colloidal suspensions, where hydrodynamic interactions only

size of the particle.
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appear in ensemble averages over the complete configuration space [96]. Re-

cent advances in experimental techniques such as video microscopy and optical

tweezers [46] have made it possible to monitor and manipulate single particles.

In order to systematically investigate the role of hydrodynamic coupling,

studies were performed on the diffusion of an isolated pair of particles or

the correlated thermal fluctuations of two colloidal beads held at a fixed dis-

tance by an optical tweezer [22, 94, 104, 90]. Several interesting collective

phenomena were identified that originate from the long-range nature of hy-

drodynamic interactions. For instance, they give rise to periodic or almost

periodic motions or even transient chaotic dynamics in sedimenting clusters

of a few spherical particles [12, 111, 59]. Hydrodynamic interactions also lead

to pattern formation through self-assembly of rotating collodial motors or in

arrays of microfluidic rotors [47, 81, 113]. Synchronization induced by hydro-

dynamic interactions is particulary important in microbiology. Metachronal

waves occur in arrays of short filaments that cover, for example, a paramecium.

In order to shed light on the origin of these waves, synchronization in model

systems consisting of a few particles was studied [76, 116, 97, 73]. Rotating he-

lices such as bacterial flagella but also eukaryotic flagella synchronize through

hydrodynamic interactions [65, 105, 45] and even microscopic swimmers are

hydrodynamically coupled [58, 99].

Toroidal trap setups have proven to be useful for investigating hydrody-

namic interactions among a limited number of particles [103, 87]. The toroidal

trap is realized by means of a circling optical-tweezer that forces particles to

move along a circle. For a cluster of particles, each driven by a constant force,

theory has demonstrated highly non-linear drafting behavior [103] which was

then observed in experiments [87]. Modulating the laser intensity during one
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cycle, one can apply additional tangential driving forces to the particles so

that a tilted sawtooth potential results. Here, hydrodynamic interactions help

the particles to leave the local minima of the potential and thereby create

caterpillar-like motion patterns. As a result, the particle cluster moves with a

significantly increased mean velocity compared to a single particle in the same

potential [87].

1.4 Outline

In chapter 2, the theoretical background of colloidal dynamics and Brow-

nian ratchets is introduced. Starting from the hydrodynamics of a single

sphere, we derive the relevant time scales and subsequently specify the hy-

drodynamic regime by means of the dimensionless Reynolds number. Based

on the Langevin equation, we discuss the Brownian motion of colloidal parti-

cles. In particular, we show that diffusion in periodic potentials is not able to

cause net transport of particles. This directly leads us to the so-called on-off

ratchet model in which a periodic sawtooth potential is switched on and off

cyclically. We show that in such a ratchet system directed transport occurs

and derive a calculation scheme for the induced mean velocity. Subsequently,

we introduce the concept of ratchet-based particle separation and map the

separation process onto the on-off ratchet model. Eventually the Langevin

equation is extended to three dimensions, incorporating the Rotne-Prager ap-

proximation for hydrodynamic interactions among the particles. Furthermore,

a numerical integration scheme is introduced.

In chapter 3, a novel ratchet-based mechanism for microfluidic particle sep-

aration is proposed. The major advantage of the mechanism is that it allows
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the reduction of the device to a single channel. The proposed device exploits

the direction reversal effect, such that particles to be separated move towards

opposite directions along the channel. For derivation of the separation mech-

anism we introduce an extension of the on-off ratchet that features direction

reversal and subsequently translate the model parameters into design param-

eters of the device. Further we demonstrate by means of Brownian dynamic

simulations that particle separation in the proposed channel design is feasible.

In chapter 4, a novel design for pressure-driven vector chromatography is

proposed. Based on Lattice-Boltzmann simulations of the fluid flow through an

periodic array of obstacles we demonstrate that conventional solid obstacles are

not able to break the symmetry of the flow field. As a result, particle separation

is not possible in arrays of conventional obstacles. We overcome this problem

by making the obstacle partially permeable to the fluid flow. Subsequently,

we map the dynamics of the separation process onto the on-off ratchet model.

By means of Brownian dynamic simulations we demonstrate that the proposed

obstacle design facilitates pressure-driven vector-chromatography and validate

the predictions of ratchet theory.

In chapter 5, we investigate the effect of hydrodynamic interactions on the

dynamics of colloidal particles in fluctuating ratchets by means of numerical

simulations. It is shown that the ratchet effect is significantly enhanced under

certain conditions. Further, the spontaneous formation of transient clusters

travelling with remarkable velocities is observed. We explain how such cluster

formation is induced by hydrodynamic coupling.

12



Chapter 2

Concepts, theoretical

background and simulation

methods

2.1 Colloidal particles and their environment

Colloidal particles are the main agents of this thesis. Before we introduce the

theoretical methods to describe their motion, we briefly discuss some of their

properties and specify the characteristics of the colloidal systems that we will

investigate in the following chapters.

2.1.1 Properties of colloidal particles

Colloids are solid particles that are usually suspended in a solvent. They are

mainly defined by their size. Although there is no exact definition for the

size of colloidal particles, a rough range can be derived from two physical

assumptions. First, a colloidal particle should be sufficiently large, such that
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many solvent molecules interact simultaneously with the surface of the particle.

Hence, the size of the particle has to be few orders of magnitude larger than the

size of the solvent molecules. A particle size of about 10 nm gives a reasonable

lower bound for most solvents. Second, thermal motion should significantly

affect the dynamics of the particle. This requirement limits the particle size

to a maximum of about 10 µm.

The two most widely used colloids are latex and amorphous silica parti-

cles which are available in a wide range of sizes. Latex particles consist of

polymethylmethacrylate (PMMA) chains. Those chains form compact rigid

spheres in water, which is a poor solvent for PMMA.1 Silica particles have

a rigid amorphous core, while the surface is often chemically modified to in-

fluence the solubility of the particles. The mass density of those particles is

roughly 5% heavier than water. As a consequence, they are prone to sedi-

mentation. Particles significantly larger than the estimated upper bound of

10 µm would sink to the bottom and remain very close to it. Smaller particles

undergo stronger thermal fluctuations and can hence also be found at some

distance to the bottom.

Next to size and mass density, the interaction among the particles needs

to be specified. Two forces that are always present are the attractive van der

Waals force and the repulsive hard-core interaction. Van der Waals forces are

caused by the interaction of permanent or induced electric dipole moments.

Due to their attractive nature, van der Waals forces cause aggregation of parti-

cles and therefore destabilize colloidal solutions. Since van der Waals forces are

relatively short-ranged (r−6) they can be masked by longer ranged repulsive

1For colloids based on polymer chains, the solvent significantly affects the shape. For
example PMMA particles in a good solvent, like benzene, swell to soft and deformable
spheres.
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forces. Silica particles in water, for example, are relatively insensitive to van

der Waals interactions, since they are surrounded by a 3 nm thick structured

layer of water molecules. The repulsive hard-core interaction is caused by the

enormous increase in energy when two particles overlap. For a pair of spheri-

cal particles, the corresponding potential is zero if the inter-particle distance is

more than the sum both radii and virtually infinite for smaller distances [31].

For colloidal particles that carry an electrical charge, electrostatic inter-

action becomes relevant. Due to the presence of free ions and counterions in

the solvent, the pair-interaction potential between charged colloids is not of

the 1/r Coulomb form, but is screened to some extent by the formation of the

so-called double-layer. For moderate potential energies and long distances,

the screened Coulomb potential is given by the Yukawa potential of the form

∼ exp (−κr)/r with κ being the screening length. The latter is strongly in-

fluenced by the amount of free ions. As a consequence, the significance of the

electrostatic interaction among the particles can experimentally be tuned by

the addition of salt [114].

Besides the potential interactions, there is another type of interaction which

is unique to colloidal systems. As colloidal particles move, they induce fluid

flow in the solvent. This induced flow affects the motion of other colloidal

particles. This effect is denoted as hydrodynamic interactions or hydrodynamic

coupling. The character of this interaction is long-ranged and highly non-

linear. Hydrodynamic interactions will be discussed in detail in Sec. 2.5.

According to our definition, DNA molecules can also be considered as col-

loidal particles to some extent, as they form random coils in solution. The

typical radius of the DNA coils depends on the number of base pairs (bp) and
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the buffer conditions.2 The DNA of λ-phage with 48.5 kbp, for example, has

a typical radius of approximately 0.1µm − 1µm. Rather than forming rigid

particles, DNA coils are elastic and deformable under most buffer conditions.

2.1.2 Hydrodynamics of a single sphere

In this section, we consider the flow induced by a translating sphere in order

to specify the relevant time scales and the hydrodynamic regime of colloidal

systems. As discussed in the previous chapter, a colloidal particle is several

orders of magnitude larger than the molecules of the solvent. We therefore

consider the solvent as a continuous fluid with mass density ρ and viscosity

η. The colloidal particle are treated as a boundary condition for the fluid.

The flow field u(r, t) of an incompressible fluid is governed by the well-known

Navier-Stokes equation

ρ

(
∂

∂t
+ u ·∇

)
u = η∇2u−∇p + f ext (2.1)

and the incompressibility condition

∇ · u = 0, (2.2)

given a sufficient definition of the boundary conditions [31]. The terms f ext

and ∇p refer to the external force density acting on the fluid and the pres-

sure gradient, respectively. In the following, bold symbols will indicate three-

2The radius of gyration strongly depends on the ion concentration since, screened electro-
static interactions strongly influence the statistics of the configuration. Low concentrations
result in more swollen coils, as electrostatic repulsion among segments of the DNA molecule
increases. Higher concentrations, in contrast, lead to more compact coils. Above a critical
concentration, the loose coil collapses to a dense globule. [114]
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dimensional vectors.

We consider a spherical particle with radius σ = 1 µm translating with

velocity v = 1 µm/s in water with viscosity η = 10−3 Pa s. The particle radius

and the velocity are used to introduce the rescaled variables r̄ = r/σ and

ū = u/v. Further we introduce a time-scale τ to rescale the time variable

t̄ = t/τ . Using the rescaled variables in Eq. 2.1 we obtain the dimensionless

Navier-Stokes equation

ρσ2

ητ

∂

∂ t̄
ū + Re ū · ∇̄ū = ∇̄2ū− ∇̄p̄ + f̄ ext, (2.3)

with the rescaled pressure p̄ = p/(ηv/σ) and the rescaled force f̄ = f/(ηv/σ2).

The dimensionless factor Re is the Reynolds number which is defined as [31]

Re =
ρ v σ

η
. (2.4)

The Reynolds number determines the hydrodynamic regime of the system, as

it measures the ratio between inertial and viscous forces. For our translating

particle, the Reynolds number is Re ≈ 10−6. As a consequence, the non-linear

convection term u ·∇u in the Navier-Stokes equation can be neglected, and

we obtain the linear equation

ρσ2

ητ

∂

∂ t̄
ū = ∇̄2ū− ∇̄p̄ + f̄ ext. (2.5)

Due to the linearity at low Reynolds numbers, the corresponding flows are

laminar and no turbulence occurs. In contrast, a boat with a size of 10 m and

a velocity of 1 m/s has a Reynolds number of Re ≈ 107, which is in the non-

linear, turbulent regime. This example makes clear that the hydrodynamic
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regime is not solely determined by the viscosity of the fluid.

In order to determine the flow field around the translating sphere, the

boundary conditions need to be specified. The fluid is unbound and at rest in

infinity. On the surface of the particle, we apply the so-called stick-boundary

condition

u(r) = v, r ∈ δV, (2.6)

with δV being the surface of the particle. For these boundary conditions the

steady state solution of Eq. (2.5) is given by

u(r, t) = A(r − vt) · v, (2.7)

with

A(r) =
3

4

σ

r
(1 + r̂ ⊗ r̂) +

1

4

(σ

r

)3

(1− 3 r̂ ⊗ r̂). (2.8)

The integration of the stress tensor over the particles surface gives the force

F that is required to balance the hydrodynamic drag and to drive the particle

with a constant velocity v [77]. For the flow around a translating sphere in

Eq. (2.8), the required force is proportional to the velocity

F = γ v. (2.9)

The corresponding expression for the friction coefficient γ is given by the fa-

mous Stokes’ law

γ = 6πησ, (2.10)

relating the friction coefficient of a spherical particle to its radius and the

viscosity of the solvent. The inverse of the friction coefficient is the mobility
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of a particle µ = 1/γ, which relates the velocity of a particle to the driving

force through v = µF .

Using Stokes’ law, we can now specify the time τm for the particle to lose

its momentum after the driving force F stops. Subsequently we compare the

result to the previously unspecified time scale τ in Eq. (2.5). As soon as the

force stops, the absolute value of the velocity v is governed by the following

equation of motion

mv̇ + γv = 0. (2.11)

The solution of this differential equation is an exponential decay with the

typical momentum relaxation time

τm =
m

γ
. (2.12)

For the considered particle, the momentum decays approximately 0.1 µs after

the force stops, i.e., virtually instantaneously. Using the mass density of the

particle ρp = 3m/(4πσ3) in Eq. (2.5) we obtain

9

2

ρ

ρp

τm

τ

∂

∂ t̄
ū = ∇̄2ū− ∇̄p̄ + f̄ ext. (2.13)

The mass density of fluid and particle are comparable. As a consequence,

at low Reynolds numbers and on time scales t > τm the inertial terms in Eq.

(2.5) can be neglected. The resulting overdamped dynamics are hence fully

described by the stationary Stokes equation

η∇2u−∇p + f ext = 0, (2.14)
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and the incompressibility equation in Eq. (2.2).

For the colloidal systems discussed in this thesis, the overdamped Stokes

equation (2.14) governs the fluid dynamics and is the stepping stone to the

description of hydrodynamic interactions in Sec. 2.5. In the next section, we

firstly consider the effect of thermal fluctuations on the dynamics of a single

colloidal particle.

2.2 Brownian motion

Already in the 19th century it has been observed that suspended colloidal par-

ticles perform erratic motion. This phenomenon is caused by the interaction

with the molecules of the surrounding fluid. Since the full time dependence

of these interactions cannot be resolved experimentally, the resulting motion

of the suspended particles seems to be random. The effect of the fluid on

the particle can be described by a random force, keeping in mind that such a

random force is the result of a vast number of collisions with fluid molecules.

2.2.1 Langevin equation

The Langevin equation is a stochastic description of Brownian motion. It can

be considered as Newton’s equation of motion including stochastic interactions

with the molecules of the solvent. Thus, a frictional force −γẋ and a fluctuat-

ing force ξ(t) are added. The one-dimensional trajectory of a particle x(t) is

hence described by [110]

mẍ(t) = −γẋ(t) + ξ(t). (2.15)
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The random force is unbiased

〈ξ(t)〉 = 0. (2.16)

The strength of the fluctuations in the random force ξ(t) are not arbitrary.

Since they are caused by interactions with the fluid molecules, they are de-

pendent on the temperature T of the fluid. This is because the average ve-

locity of the molecules and hence the strength of the collisions depend on the

temperature. Furthermore, the random force must be related to the friction

coefficient γ of the particle, because friction and random force have the same

physical origin. The time-correlation of the random force therefore obeys the

fluctuation-dissipation theorem

〈ξ(t)ξ(t′)〉 = 2γkBT δ(t− t′), (2.17)

with kBT being the thermal energy. We will show in the following that the

coefficient 2γkBT is neccesary to fulfill the equipartion theorem for thermal

equilibrium.

The Langevin equation is a stochastic differential equation. Any realization

of the stochastic process ξ(t) leads to unique particle trajectory x(t) for a

certain initial condition. In velocity space ẋ(t) = v(t), the Langevin equation

has the solution [110]

v(t) = v0e
−γt/m +

1

m

∫ t

0

dt′e−γ(t−t′)/mξ(t′). (2.18)

The first term of the right-hand side is due to the initial velocity v0, which

decays exponentially in agreement with the discussion about the momentum
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relaxation in the previous section. The second term gives the contribution of

the random force.

In thermal equilibrium, the equipartition theorem demands 〈v2〉eq = kBT/m.

Hence the particle velocities have to obey

lim
t→∞

〈v2(t)〉 = kBT/m. (2.19)

Using Eq. (2.18), we get the following expression

〈v2(t)〉 =
e−2γt

m2

∫ t

0

dt′
∫ t

0

dt′′e−γ(t′+t′′)/m〈ξ(t′)ξ(t′′)〉, (2.20)

where all mixed terms with the initial velocity contribution are ignored, due

to their exponential decay. Using the correlation function of the random force

defined in Eq. (2.17), the integral can be written as follows

〈v2(t)〉 =
2γkBT

m2
e−2γt/m

∫ t

0

dt′e−2γt′/m

=
kBT

m

(
1− e−2γt/m

)
. (2.21)

In the long time limit, this result resembles Eq. (2.19) and hence validates the

chosen coefficient in the fluctuation-dissipation theorem in Eq. (2.17).

In order to investigate the diffusion of a particle, we consider its displace-

ment during a certain time interval t, which is related to the velocity trajectory

v(t) as follows

∆x(t) = x(t)− x(0) =

∫ t

0

dt′ v(t′). (2.22)

Using Eqs. (2.16, 2.18), we derive that the mean displacement for a particle
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with zero initial velocity is

〈∆x(t)〉 = 0. (2.23)

In other words, the diffusion of the particle is unbiased. The mean square

displacement, however, writes as

〈(∆x(t))2〉 = 2

∫ t

0

dt′(t− t′)′ 〈v(t′)v(0)〉

=
2mkBT

γ2

(
e−γt/m − 1 +

γt

m

)
. (2.24)

Here we used the velocity auto-correlation function

〈v(t)v(t + τ)〉 =
kBT

m
e−γτ/m, (2.25)

which can be calculated from Eq. (2.18). The correlation time m/γ is equiv-

alent to the typical momentum relaxation time τm in Eq. (2.12). For time

lags τ ) m/γ, the velocity v(t + τ) is uncorrelated to the velocity v(t) due to

fluctuations and dissipation.

For the mean square displacement in Eq. (2.24), two regimes are demar-

cated by the correlation time scale. For t * m/γ, the expansion of the ex-

ponential term up to the second order gives the following expression for the

mean square displacement

〈(∆x(t))2〉 =
kBT

m
t2. (2.26)

In this regime, the mean square displacement is independent on the friction

coefficient γ. The particle can be considered to move freely with its thermal

velocity. This regime is known as the ballistic regime. For t ) m/γ, the mean
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square displacement is given by

〈(∆x(t))2〉 =
2kBT

γ
t = 2Dt, (2.27)

which gives the famous Einstein relation for the diffusion constant

D =
kBT

γ
. (2.28)

In this so-called diffusional regime, the diffusion of a Brownian particle features

no mean displacement, but the mean square displacement increases linearly in

time.

In this thesis we are interested in the dynamics of particles on time scales

that are several orders of magnitude larger than the momentum relaxation

time τm and the equivalent correlation time. The mean square displacement is

hence described by the diffusion regime. Further, inertial effects are neglected

and the motion of the particles can be described by the overdamped Langevin

equation

γẋ(t) = ξ(t), (2.29)

which is the stepping stone to most numerical methods in this thesis. Although

we limited the discussion in this section to the case without external forces

fext, such forces can simply be added

γẋ(t) = fext(x, t) + ξ(t), (2.30)

since they only cause additional terms in the previous discussion. In Sec.

2.5, the latter equation is extended to three dimensions and to many-particle
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systems.

2.2.2 Smoluchowski equation

An alternative approach to diffusional motion is to consider the probability

density P(x, t) to find a particle at a certain position x for the time t. The

equation that governs the time evolution of P(x, t) can be derived from the

overdamped Langevin equation (2.30) [110]. For that purpose we define the

probability density as

P(x, t) = 〈δ(x− x(t))〉. (2.31)

Here we have to distinguish carefully between the position x and the trajectory

x(t). The average is taken over an ensemble of particle trajectories. For the

time evolution we get the following expression

∂

∂t
P(x, t) = − ∂

∂x
〈δ(x− x(t)) ẋ(t)〉

= − ∂

∂x
〈δ(x− x(t)) γ−1(fext(x, t) + ξ(t))〉

= −γ−1 ∂

∂x
[fext(x, t)P(x, t)]− γ−1 ∂

∂x
〈δ(x− x(t)) ξ(t)〉.(2.32)

The overdamped Langevin equation (2.29) has been plugged in for ẋ(t). For

the ensemble average in the second term on the right-hand side, a thorough

calculation reveals [110]

〈δ(x− x(t)) ξ(t)〉 = −kBT
∂

∂x
P(x, t). (2.33)
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Using the latter equation, the relation µ = 1/γ and the Einstein relation

D = kBT/γ in Eq. (2.32), we get the well-known Smoluchowski equation

∂

∂t
P(x, t) = − ∂

∂x
[µfext(x, t)P(x, t)] + D

∂2

∂x2
P(x, t). (2.34)

The Smoluchowski equation can be written in the form of a continuity equation

∂

∂t
P(x, t) =

∂

∂x
j(x, t), (2.35)

with the probability density current

j(x, t) = µfext(x, t)P(x, t) + D
∂

∂x
P(x, t). (2.36)

Two contributions to the probability density current can be identified. The

first term corresponds with a deterministic drift current caused by the exter-

nal force. The second term corresponds with a diffusional current caused by

gradients in the probability density function according to Fick’s law.

With the introduction of the probability density P(x, t) we transformed

the Langevin equation, a stochastic differential equation, to the Smoluchowski

equation, a second-order partial differential equation. In contrast to the par-

ticle trajectories, the evolution of the probability density is not of stochastic

nature.
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2.2.3 Diffusion equation

For the special case with no external force, the Smoluchowski equation becomes

the famous diffusion equation

∂

∂t
P(x, t) = D

∂2

∂x2
P(x, t). (2.37)

The diffusion equation can be written in dimensionless form by using rescaled

variables. We therefore introduce the distance L as a length scale. The typical

time for the particle to cover the distance L by diffusion tdiff gives a time scale.

According to the mean square displacement in Eq. (2.27) the diffusion time

tdiff is defined by

tdiff =
L2

D
. (2.38)

Using the rescaled position x̄ = x/L and the rescaled time t̄ = t/tdiff in Eq.

(2.37) we get
∂

∂ t̄
P(x̄, t̄) =

∂2

∂x̄2
P(x̄, t̄). (2.39)

For the initial condition P(x̄, t̄ = 0) = δ(x̄), i.e., for a particle starting at

x̄ = 0, the solution of the diffusion equation is

P(x̄, t̄) =
1√
4π t̄

exp

(
− x̄2

4t̄

)
. (2.40)

This is a Gaussian bell function with a variance of 2t̄, which is in agreement

with the mean square displacement of Brownian particles in Eq. (2.27). The

probability density function has been plotted for three values of the rescaled

time in Fig. 2.1. The distribution becomes wider as time elapses but the mean

position remains unbiased with 〈∆x̄〉 = 0.
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Figure 2.1: Probability density function P(x) as a function of the rescaled
position x̄ for three values of the rescaled times t̄. The initial condition is
P(x̄, t̄ = 0) = δ(x̄).

2.2.4 Diffusion in static periodic potentials

Based on the Smoluchowski equation we can discuss the diffusion in periodic

potentials V (x). The potential is related to the external force through fext =

−(∂/∂x)V (x). The spatial period is given by L such that V (x) = V (x +

L). For the stationary solution of the Smoluchowski equation (2.35) with

(∂/∂t)P(x, t) = 0, we get the condition

− ∂

∂x

[
µ

(
∂

∂x
V (x)

)
P(x, t)

]
= D

∂2

∂x2
P(x, t). (2.41)

In other words, the deterministic drift has to be balanced by the diffusion due

to probability gradients. The solution is given by the Boltzmann distribution

PB(x) ∼ exp

(
−V (x)

kBT

)
, (2.42)
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Figure 2.2: Boltzmann distribution PB(x) as a function of the rescaled position
x̄ for three different rescaled potential amplitudes V̄ = V/(kBT ): V̄ = 1
(dashed line), V̄ = 10 (solid line) and V̄ = 100 (dotted line). The distribution
for V̄ = 100 is not fully shown. The underlying sawtooth potential has been
added with arbitrary unit for its amplitude.

with the proportionality constant determined by normalization over a single

period, such that
∫ L

0 dxPB(x) = 1. The probability density function PB(x)

features the same periodicity as the potential. As an example we consider an

asymmetric, piecewise linear sawtooth potential with the amplitude V̂ .3 The

corresponding probability density is depicted in Fig. 2.2 as a function of the

rescaled position x̄ = x/L for three different rescaled potential amplitudes

V̄ = V/(kBT ). For larger values of V̄ , the distribution becomes more localized

at the minima of the sawtooth potential. In the limiting case with V̄ → ∞,

the probability density becomes a sequence of delta-peaks PB(x̄) = δ(x̄) at the

positions of the minima.

When the system reaches the Boltzmann distribution the probability cur-

rent density vanishes

j(x) = 0, (2.43)

which can be verified by using PB(x) in Eq. (2.36).4 We are interested in the

3The sawtooth potential will be defined in Eq. (2.47).
4For non-periodic potentials, the probability density current j(x) might not vanish for
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mean velocity 〈ẋ〉 of a particle in the periodic potential. The latter is related

to the probability current density through [106]

〈ẋ〉 =

∫ ∞

−∞
dx j(x, t). (2.44)

Since the probability current vanishes in equilibrium, the mean velocity of a

particle also vanishes

〈ẋ〉 = 0 (2.45)

independent of the actual potential V (x). This is an implication of the 2nd

law of thermodynamics, which forbids any system to perform work only driven

by a single heat bath.

2.3 Brownian ratchets

In the previous section, we have demonstrated that static periodic potentials

are not able to induce directed motion to Brownian particles, even in the

case of spatially asymmetric potentials. In this section, we will show how

non-equilibrium perturbations induce non-zero mean velocities in Brownian

ratchets. In the beginning, we discuss a well-known example for such pertur-

bations. This example introduces the ratchet effect in an instructive way and

is, at the same time, particularly relevant for this thesis. Later we discuss the

general characteristics of Brownian ratchets and distinguish different types of

ratchets.

the steady state solution. For example in a tilted sawtooth potential, a constant probability
density current occurs in steady state.
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Figure 2.3: The rectification of Brownian motion due to non-equilibrium per-
turbation of an asymmetric, periodic potential. When the potential is switched
off, the probability density function evolves from the Boltzmann distribution
PB to a wider Gauss-like distribution Poff. When the potential is switched on
again, a net probability flow to the right occurs due to the asymmetry of the
potential.

2.3.1 The ratchet effect

We consider a single particle in an asymmetric sawtooth potential. Assume

that the potential has been switched on for sufficient time so that the system

reached equilibrium and the probability density function has relaxed to the

corresponding Boltzmann distribution PB, as defined in Eq. (2.42). The peak

of that distribution is localized at the minimum of the potential.5 In the next

step, the potential is switched off and the particle diffuses freely. Due to the

diffusion of the particle, the Boltzmann distribution will evolve into a wider

distribution Poff. When the potential is switched on again, the probability

5Note that the mean position of the particle is shifted towards the middle of the period
the weaker the potential is. For V * kBT , the asymmetry of the potential is effectively not
sensed by the particle any longer. We hence consider the case with V ) kBT , such that
the mean position of the particle within a spatial period is significantly shifted towards the
minimum of the potential.
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density will again relax towards the Boltzmann distribution. A certain part

of the probability density function will now relax to the neighboring minima.

Here, the asymmetry of the potential has a crucial effect on the result, i.e.,

the part that reaches the minimum to the right is larger than the part that

reaches the minimum to the left. As consequence, a net probability flow to

the right occurs. If this cycle is repeated continuously, the particle will move

on average to the right such that

〈ẋ〉 > 0. (2.46)

This is a remarkable result given that the average force due to the sawtooth

potential vanishes with
∫ L

0 dx V (x) = 0. By switching the potential on and

off, a cyclic non-equilibrium perturbation has been applied to the potential.

The described system is an example for a Brownian ratchet. If the switching

of the sawtooth potential happens periodically, it is denoted as on-off ratchet.

2.3.2 The On-Off ratchet model

The on-off ratchet is a two state system: The off-state in which the particle

diffuses freely, and the on-state in which the particle moves under the influence

of the ratchet potential V (x). The state of the ratchet potential switches

periodically. For the times ton and toff the potential is in the on- and off state

respectively. A complete cycle of the ratchet potential hence has the period

T = ton+toff. The sawtooth potential V (x) is characterized by a spatial period
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L, asymmetry a, and amplitude V̂

V (x) = V̂






x
aL for 0 < x ≤ aL

1− x−aL
(1−a)L for aL < x ≤ L

, (2.47)

and periodicity is taken into account by V (x) = V (x + L). The asymmetry

parameter a determines the shape of the potential and has a value in the range

from zero to one.

According to Eq. (2.30), the motion of a Brownian particle with a friction

coefficient γ is described by the following overdamped Langevin equation

γ ẋ = − ∂

∂x
V (x, t) + ξ(t), (2.48)

where x denotes the position of the particle at the time t. As discussed in

Sec. 2.2.1, the random force ξ(t) is unbiased, so that 〈ξ(t)〉 = 0, and its time-

correlation function obeys the fluctuation-dissipation theorem

〈ξ(t)ξ(t′)〉 = 2 γ kBT δ(t− t′). (2.49)

Dimensionless parameters

Writing the Langevin equation in dimensionless form reveals the relevant pa-

rameters of the system. The spatial period L provides a length scale, whereas

the time tdiff in Eq. (2.38) gives a time scale. Another time scale is given by the

drift time tdrift, which is the required time for the particle to drift the distance

L under the constant force V̂ /L. With the drift velocity vdrift = V̂ /(γ L), the
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drift time takes the following form

tdrift =
L

vdrift
=

tdiff

V̄
, (2.50)

with the rescaled potential amplitude V̄ = V̂ /(kBT ). The Langevin Eq. (2.48)

and the correlation function Eq. (2.49) can now be expressed in reduced form

˙̄x = V̄ fa(x̄, t̄) + ξ̄(t̄), (2.51)

〈ξ̄(t̄) ξ̄(t̄′)〉 = 2 δ̄(t̄− t̄′), (2.52)

where we have used the rescaled position x̄ = x/L, time t̄ = t/tdiff, random

force ξ̄(t̄) = ξ(t) L/(kBT ), and δ-function δ̄(t̄) = tdiff δ(t). The function fa

describes the rescaled force exerted on the Brownian particle. When the po-

tential is switched off, fa = 0 and Eq. (2.51) describes a particle freely diffusing

in one dimension. When the ratchet potential is switched on, fa = −1/a and

fa = 1/(1−a) on the long and short slopes of the potential, respectively. Note

that the rescaled potential amplitude V̄ is the Peclet number [31]. As shown

by Eq. (2.50), it denotes the ratio of the times a particle needs to diffuse and

drift a distance L. At large Peclet numbers drift is therefore dominant and

Brownian diffusion during the on-time can be neglected.

We also rescale the periods of the ratchet cycle ton and toff. First, the

off-time toff is rescaled with respect to the diffusion time tdiff,

τoff =
toff
tdiff

. (2.53)

For τoff < 1, Brownian particles are typically not able to cover a distance L by

diffusion during the time toff. Second, the on-time ton is rescaled with respect
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to the drift time tdrift,

τon =
ton
tdrift

. (2.54)

For τon > 1, all particles will reach the minima of the potentials. In analogy

with the rescaling of the time variable t̄ = t/tdiff, we also obtain t̄on = τon/V̄

and the period

T̄ = τoff + τon/V̄ (2.55)

of one complete ratchet cycle. Note that for large Peclet numbers V̂ , the

rescaled period is approximately given by T̄ ≈ τoff.

The motion of a Brownian particle in the on-off ratchet is fully determined

by the rescaled off-time τoff , the rescaled on-time τon, the asymmetry parameter

a, and the Peclet number V̄ . For an arbitrary set of parameters, no analyt-

ical solution for the mean displacement exists. Numerical integration of the

Langevin equation is therefore necessary in order to investigate the complete

parameter space. However, in the limit of large Peclet numbers and sufficiently

large values of τon analytic expressions are available.

The limit of discrete steps

To derive an analytic expression for the mean displacement 〈∆x̄〉 in the case

of large Peclet numbers V̄ , we apply the method of discrete steps [3]. This

method is based on the assumption that the rescaled on-time τon and the

Peclet number V̄ are sufficiently large, so that a Brownian particle will always

reach a minimum when the ratchet potential is switched on. Hence, the trajec-

tory of the particle can be mapped onto a sequence of effective steps between

the locations of the potential minima. These steps occur with certain step

probabilities.
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Figure 2.4: Schematic illustration of a complete cycle of the on-off ratchet
in the discrete limit. The distinctly shaded parts of the probability density
function P correspond with the step probabilities pn for a particle to reach the
minimum at x̄ = n in the subsequent on-time.

For large Peclet numbers V̄ , Brownian motion can be neglected once the

potential is switched on. As a result, a particle drifts uniformly towards a

minimum. For the longer slope of the ratchet potential V , the drift velocity

vdrift = V̂ /[γ (1−a)L]. Accordingly, the particle reaches the minimum for

ton ≥
(1− a)L

vdrift
= (1− a)2 tdrift, (2.56)

irrespective of its position at the time the potential is switched on. With the

definition of the rescaled on-time τon in Eq. (2.54), the latter condition can be

expressed as

τon ≥ (1− a)2. (2.57)

Particles drifting under the influence of the shorter slope also reach the min-

imum, provided Eq. (2.57) is satisfied. Accordingly, after each application of

the potential, all particles are located at the minima of V (x). A single par-

ticle hence performs discrete steps along the x-axis, provided its trajectory is

sampled at the end of each on-time. The minima of potential V are labeled

with the integer n , so that the corresponding positions are given by x̄n = n.
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Now, we consider the probability pn for a step performed by a single particle

from the minimum 0 to the minimum n, as illustrated in Fig. 2.4. When

the potential is switched off the particle diffuses freely, starting from x̄ = 0.

According to Eq. (2.40), the probability density to reach the position x̄ at the

end of the off-time is given by

P(x̄) =
1√

4πτoff
exp

(
− x̄2

4τoff

)
. (2.58)

Note that the width of this distribution is solely determined by the value of the

rescaled off-time τoff. In order to drift to the minimum n during the subsequent

on-time, the particle needs to diffuse into the interval n − 1 + a < x̄ < n + a

situated between the neighboring maxima of minimum n. Accordingly, the

step probability is given by integrating P(x̄), so that

pn =

∫ n+a

n−1+a

dx̄√
4πτoff

exp

(
− x̄2

4τoff

)
. (2.59)

The step probabilities are depicted in Fig. 2.5 (a) as a function of the rescaled

off-time for a = 0.2. Due to the asymmetry of the sawtooth potential, the step

probabilities are biased, such that p+n > p−n, for any value of τoff.

The mean displacement 〈∆x̄〉 is calculated by averaging over all possible

steps

〈∆x̄〉 = 〈n〉 =
∑

n

n · pn. (2.60)

Note that in the discrete limit the mean displacement 〈∆x̄〉 only depends on

the values of the asymmetry parameter a and the rescaled off-time τoff .

The mean displacement is depicted in Fig. 2.5 (b) as a function of the

rescaled off-time for several values of a. For small values of τoff , the mean
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Figure 2.5: (a) Step probability pn as a function of the rescaled off-time τoff

for a = 0.2. The corresponding mean displacement has been added for sake of
comparison. (b) Mean displacement 〈∆x̄〉 as a function of the rescaled off-time
τoff for nine asymmetry parameters a. The asymmetry parameters are in the
range from 0.1 to 0.9 with increments of 0.1 between adjacent lines.

displacement vanish, because the step probabilities to neighboring minima be-

come negligible. For large values of τoff , the mean displacement approaches

its maximum value 〈∆x̄〉max. An algebraical expression for 〈∆x̄〉max can be

derived on the basis that the probability profile between two maxima becomes

approximately homogeneous for large values of τoff. The fractions of the parti-

cles experiencing the longer and shorter slopes of the ratchet potential V are

given by (1−a) and a, respectively. The corresponding mean displacements of
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these fractions are (1− a)/2 and −a/2. The total mean displacement is given

by the weighed average of both fractions, so that

〈∆x̄〉 =
1

2
− a. (2.61)

It should be kept in mind that this expression is only valid for sufficiently large

values of the rescaled on-time τon ≥ (1− a)2.

In the on-off ratchet the direction of the induced mean displacement is

solely determined by the asymmetry parameter a of the sawtooth potential.

For a < 1/2, the mean displacement is in the positive direction along the x-

axis, whereas for a > 1/2 the particle will move on average in the negative

direction. A simple on-off ratchet with asymmetry (1− a) induces exactly the

opposite mean displacement as a ratchet with asymmetry a. In the symmetric

situation with a = 1/2, no mean displacement will be observed.

Eventually, the mean velocity of the particle is related to the mean dis-

placement through

〈 ˙̄x〉 = 〈∆x̄〉 /T̄ . (2.62)

The mean velocity is depicted in Fig. 2.6 as a function of the rescaled off-time

for several values of a. Smaller values of a lead to higher mean velocities,

since the step probabilities (p+n > p−n) become more biased. Since the mean

displacement 〈∆x̄〉 reaches a maximum value for large values of τoff and the

cycle period T̄ increases linearly with τoff, the mean velocity has a maximum

at a finite value for τoff.
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Figure 2.6: Mean velocity ˙̄x as a function of the rescaled off-time τoff for several
asymmetry parameters a. The ratchet operates in the regime of discrete steps.

2.3.3 General definition of Brownian ratchets

With the on-off ratchet a non-equilibrium system has been introduced that

is capable of rectifying Brownian motion. In general, Brownian ratchets have

the following requirements:

1. The system has a spatial periodicity. This requirement facilitates contin-

uous repetitions of the ratchet cycle. In the on-off ratchet, the sawtooth

potential clearly features the required periodicity.

2. The averages of all external forces vanish over time and space. This

requirement excludes the occurrence of trivial currents caused by non-

vanishing forces. The applied sawtooth potential fulfills this requirement.

3. Fluctuations play a significant role in the motion of the particle. This

requirement excludes mechanisms that work deterministically. For the

functioning of the on-off ratchet, diffusion during the off-time is crucial

and no mean velocity would occur for T = 0.
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4. The symmetry of the system is broken. This requirement results in a

directed response of the system to non-equilibrium perturbations. In the

on-off ratchet, the sawtooth potential features a broken spatial inversion

symmetry, which determines the direction of the induced mean velocity.

5. The system is driven out of equilibrium. This requirement is necessary

to overcome the limitations due to the second law of thermodynamics

and allows the system to perform work. In the on-off ratchet the periodic

switching of the potential drives the system out of equilibrium.

The first three requirements have a rather technical character and are nec-

essary to distinguish Brownian ratchets from similar mechanisms. The last

two requirements address the fundamental functioning of each ratchet system.

The vast number of ratchet models in literature can be categorized accord-

ing to the way how those two requirements are fulfilled. Three major groups

can be identified for the symmetry breaking. First, a ratchet potential with

broken spatial symmetry can be applied [3, 88, 101]. Second, non-Gaussian

fluctuations with non-vanishing odd moments cause the ratchet effect even in

symmetric potentials [24, 86]. Third, spontaneous symmetry breaking can be

caused by collective effects in non-eqilibrium systems [11, 61, 89, 108].

The applied non-equilibrium perturbations can also be categorized into

three major groups. In the first group, the so-called pulsating ratchets, a

multiplicative perturbation Θ(t) of the ratchet potential is used to drive the

system out of equilibrium [9, 28, 101]. The corresponding Langevin equation

for this ratchet type is given by

γ ẋ(t) = −Θ(t)
∂

∂x
V (x) + ξ(t). (2.63)
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Note that the on-off ratchet belongs to this group, with the perturbation be-

ing incorporated in the time-dependent ratchet potential (see Sec. 2.3.2). In a

recent branch of ratchet research, feedback-controlled ratchet systems are in-

vestigated [13, 41, 40]. Here, the perturbation Θ(x, t) depends on the spatial

configuration x of all particles.

In the second group, the so-called tilting or rocking ratchets, a perturbation

Θ(t) enters the Langevin equation as an additional force term

γ ẋ(t) = − ∂

∂x
V (x) + Θ(t) + ξ(t). (2.64)

The additional term causes a time-dependent tilt of the ratchet potential and

could also be a stochastic term [88, 72]. The random force term ξ(t) in pul-

sating as well as tilting ratchets is uncorrelated, Gaussian noise as defined by

the fluctuation-dissipation theorem in Eq. (2.49). In the third group of non-

equilibrium perturbations, the Langevin equation features correlated, non-

Gaussian noise ξΘ(t) [6]. The time-correlation of the noise

〈ξΘ(t)ξΘ(t′)〉 = Θ(t− t′). (2.65)

is generally given by a function Θ(t− t′) deviating from the δ-function which

gives uncorrelated noise.

In this section, we summarized overdamped ratchet systems. However, the

investigation of inertial ratchets has revealed interesting phenomena at the

edge to chaotic behavior [62, 91]. Further, ratchet models can be arbitrary

combinations of the above groups or not belong to any category. For a com-

plete overview about various ratchet types we refer to the detailed reviews of

Reimann [106] and Hänggi et al. [48].
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2.4 Ratchet-based particle separation

In this section, we discuss how the rectification of Brownian motion in ratchet

systems can be exploited for microfluidic particle separation. We firstly explain

the basic idea of the separation process before we introduce a corresponding

ratchet model. Subsequently, we discuss the effect of obstacles that are im-

permeable to the driving force and the effect of the finite size of particles.

2.4.1 Concept of the separation process

Several microfluidic devices have been introduced to exploit the ratchet effect

for particle separation [36, 38]. A device demonstrating the underlying con-

cept is schematically depicted in Fig. 2.7. As shown in panel (a), the particles

are locally injected on the left hand side of the device and are driven through

a periodic array of identical obstacles by an external force fx. The obstacles

feature a spatial asymmetry with respect to the direction of the force. Each

time a particle passes a row of obstacles the ratchet effect induces a mean

displacement in y-direction. As a result, the mean trajectory of the particles

is inclined to the direction of the external force. If the induced mean displace-

ments are different for two types of particles, each type will move in average

towards another direction and both types will eventually be separated. Since

the separation process is of stochastic nature, the exit positions of the particles

at the right hand side of the array are distributed rather than well defined.

Due to the angular resolution of the direction of the mean trajectory, this

separation method has also been denoted as vector chromatography [33, 34].

We now explain how the ratchet effect causes a mean displacement each

time the particle passes a row of obstacles. In panel (b), we therefore consider
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Figure 2.7: Schematic microfluidic device for ratchet-based particle separation.
(a) Periodic array of obstacles confined by two walls. Particles are injected
at one point and driven by an external force through the device. The mean
trajectories for two distinct particle types are indicated, as well as, the dis-
tribution after having passed the device. (b) Example of a trajectory passing
three rows of obstacles.

a single particle of type A driven through such an array starting in the gap at

(x = 0, y = 0). While the particle travels through the device in x-direction,

it diffuses in y-direction. When it reaches the next row of obstacles at x = δx

the probability to find it at a certain y-position is hence given by a Gaussian

distribution. As a consequence, the particle has a certain probability p+1 to

pass the row of obstacles through the gap at (Lx, Ly), i.e., to make a step

upwards. Any trajectory that reaches x = δx above the edge of the next

obstacle at y = aLy, makes such a step upwards. For a downward step through
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the gap at (Lx,−Ly), the particle has to reach x = δx below y = −(1− a)Ly.

The step probabilities are given by the corresponding fraction of the Gaussian

distribution. Due to the asymmetry of the obstacles, upward steps are more

likely than downward steps. To be precise, in the given example the probability

for downward steps is negligible. The bias of the probabilities (p+1 > p−1)

causes the mean displacement in y-direction, which eventually leads to the

inclination of the mean trajectory. We now consider a particle of type B and

assume that it needs a longer time to travel the distance δx between the rows

of obstacles. As a result the Gaussian distribution is wider compared to the

first particle. Therefore, the step probability p+1 is larger and eventually the

trajectory of the particle is more inclined.6

2.4.2 Ratchet model

The separation dynamics can be mapped onto the on-off ratchet model, which

has been introduced in Sec. 2.3.2. The diffusion in y-direction while the parti-

cle travels between two rows of obstacles corresponds with the diffusion of the

particle during the off-time. Further the influence of the obstacle on the tra-

jectory of the particle corresponds with the influence of the ratchet potential

during the on-time. In particular, the gaps between two obstacles corresponds

with the minima of the potentials. Since the particle has to pass through a

gap, we can apply the method of discrete steps to calculate the inclination

angle.

We consider particles with size σ, mobility µ and diffusion constant D.

Further, we assume that the external force fx = Q Fx can be split into two

6The probability for an downward step p−1 actually also increases for a wider distribution,
however, the probability for an upward step increases more.
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terms. The particle-dependent term Q can be considered as a charge, while

the particle-independent term Fx has the meaning of a field strength. In case

of gravitational driving, Q = ∆m and Fx = g with the mass difference between

the particle and the equivalent amount of the solvent ∆m and the gravitational

acceleration constant g. The average time for a particle to travel the distance

δx between two rows is hence given by

toff =
δx

µQFx
, (2.66)

which we denote as toff in analogy to the off-time in Sec. 2.3.2. Here, µQFx is

the mean drift velocity of the particle. The effect of the diffusion in x-direction

on the travel time is neglected in this model. Using Ly as intrinsic length scale,

the diffusion time scale is given by

tdiff =
L2

y

D
. (2.67)

The rescaled off-time is hence given by

τoff =
toff
tdiff

=
D δx

µQFxL2
y

. (2.68)

In analogy to the on-off ratchet, the behavior of the particle in the separation

device is only determined by the rescaled off-time τoff and the asymmetry

parameter a. As indicated in Fig. 2.7 (b), the asymmetry parameter is fully

determined by the shape of the obstacle. The step probabilities pn take the

same form as in Eq. (2.59)

pn =

∫ n+a

n−1+a

dȳ√
4πτoff

exp

(
− ȳ2

4τoff

)
, (2.69)
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with the rescaled position ȳ = y/Ly. The rescaled mean displacement is hence

given by

〈∆ȳ〉 =
∑

n

n · pn, (2.70)

in analogy to Eq. (2.60). The inverse of the rescaled mean displacement gives

the average number of passages that a particle needs in order to make one step

upwards and is hence directly linked with the inclination angle θ of the mean

trajectory with respect to the direction of the driving force fx through

tan θ =
〈∆ȳ〉Ly

Lx
. (2.71)

For strongly diffusive particles (τoff > 0.1), the rescaled mean displacement

reaches the known limit of 〈∆ȳ〉max = 1/2 − a, which limits the inclination

angle for a given geometry (see Fig. 2.5 (b)).

In many cases the system can be tuned such that all step probabilities

apart from p+1 can be neglected by adjusting the external force fx properly.

For this scenario, the stepping process among the gaps in subsequent rows

resembles a binomial process. While passing Nx rows of obstacles a particle

makes in average p+1Nx upward steps. The width of the distribution around

this mean value is given by (p+1p0Nx)1/2. Since the width of the distribution

grows slower than the displacement with increasing Nx, the resolution of the

device can be improved by adding more rows.

Conventional external force

As already mentioned, the rescaled mean displacement and hence the incli-

nation angle are fully determined by τoff and a. Since a is a property of the

obstacle, the particles need to have distinct values of τoff to be separated. In
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Eq. (2.68) for the rescaled diffusion constant, we see that the particle-specific

information is given by the ratio D/(µQ). This is however problematic since

the mobility is connected to the diffusion constant through the Einstein rela-

tion D = µkBT . Thus, the rescaled off-time is independent of µ and D

τoff =
1

Q

kBT δx

FxL2
y

. (2.72)

Still particles can be separated with respect to their specific value of Q. How-

ever, the particularly interesting scenario of separation with respect to the size

of the particles can not be achieved by this approach, if Q is independent of

the particle size. Note that Eq. (2.72) was derived under the assumption of a

homogenous external force. However, only magnetic and gravitational forces

are virtually unaffected by the presence of the obstacles and can provide the

assumed homogeneity.

Pressure-driven flows

An intriguing approach to ratchet-based particle separation is to drive the

particles by a pressure gradient through the device instead of using an external

force. In that case, the types of particles travel with identical velocities vx and

have the same value for toff. The corresponding rescaled off-time

τoff = D
δx

vx L2
y

, (2.73)

depends on the value for D which is directly related to the size of the particle.

In such pressure-driven devices, however, the flow field is not homogeneous

since the obstacles are impermeable to the fluid. The consequence of such

non-homogeneous driving is discussed in section 2.4.3.
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Separation of DNA

One important application of microfluidic particle separation is the separation

of DNA with different contour lengths, i.e., with different number of base pairs

Nbp. In solution DNA forms random coils with a size proportional to N1/2
bp .

The diffusion coefficient is hence proportional to N−1/2
bp . The drift velocity

vDNA of DNA in electrophoretic flow is however independent on the number

of base pairs for typically used electric fields [114]. Therefore the rescaled

off-time

τoff ∼ N−1/2
bp (2.74)

depends on the number of base pairs, which facilitates the separation of dif-

ferent types of DNA molecules. Such separation has been demonstrated in

Ref. [19, 52, 54]. As already mentioned in Sec. 1.2, the results deviate quan-

titatively from the theoretical predictions. The deviations originate from the

inhomogeneity of the electrophoretic force. Similar to pressure-driven flows,

the induced ion flow is not able to penetrate the obstacles and the resulting

electric field is hence bent around the obstacles [5, 82].

2.4.3 The effect of impermeable obstacles

In this section, we consider the effect of obstacles that are impermeable for

the external force. As discussed in the previous section, this is the case for

pressure-driven flows as well as electrophoretic forces. We constrain the dis-

cussion to pressure-driven systems, since they are more relevant for this thesis.

The reasoning is nevertheless similar for electrophoretic forces.

The fluid flow through the array is generated by a constant pressure gradi-

ent along the device. The flow lines around the discussed obstacle are depicted
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in Fig. 2.8 (a) and are compared to homogeneous field lines in panel (b). The

effect of impermeable obstacles can now be discussed by regarding the trajec-

tories of point-like particles. Diffusion of the particle is omitted as it is not

relevant for the discussed effect. In panel (a), two particles start at xA close to

the flow line that bifurcates at the obstacle. In panel (b), both particles start

on the field line that reaches the obstacle at the foremost edge. In both scenar-

ios, we follow one particle that moves upwards and one that moves downwards

around the obstacle. After they have traveled around the obstacles they arrive

at xB. For the homogenous driving force, the trajectories effectively bifurcate

and the particles are spatially separated. In case of the pressure-driven flow,

however, the particles eventually arrive at the same point. This is a direct con-

sequence of the incompressibility of the fluid (see Eq. (2.2)). In other words,

the particle does not remember the obstacle after having traveled around it.

As a consequence, the ratchet-based separation mechanism breaks down, since

it makes no difference through which gap the particle travels.7

The difference between both scenarios occurs in the vicinity of the obsta-

cles. For the homogeneous force, the particle reaches the surface of the obstacle

and is deflected by a repulsive force. As a result, it slides along the surface to-

wards the gap and thereby crosses several field lines which enter the obstacle.

Later the particle is separated from the other particle by exactly the number

of field lines that it has crossed on its way to the gap. The requirement for a

sustainable bifurcation is hence that the field has a non-vanishing component

perpendicular to the surface of the obstacle. It is exactly this component of

the pressure-driven flow that vanishes at the surface of the obstacle due to

stick-boundary conditions. The described effect is reduced if the obstacle is

7Independent on its initial position, a point-like particle always reaches the initial y-
position after having passed one spatial period Lx.
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Figure 2.8: Bifurcation of particle trajectories at an obstacle for two different
scenarios. (a) Obstacles that are completely impermeable to the external
field. Here a pressure-driven flow is depicted, which has been generated by
the method introduced in Sec. 4.2. (b) Obstacles that are fully permeable to
the homogeneous field.

partially permeable to the field, since there will be a non-vanishing component

of the force perpendicular to the surface of the obstacle.

2.4.4 Finite size effects

The discussion in the previous section changes significantly if we consider par-

ticles with a finite size. In Fig. 2.9, we compare the trajectories of particles

with distinct diameters within a pressure-driven flow. Again the particles start

at xA close to the flow line that bifurcates. The finite size crucially alters the

trajectories while the particles move to the gaps at xB along the surface of the
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Figure 2.9: The effect of the finite size of a particle on the bifurcation at an
obstacle for impermeable obstacles. The black lines indicate the trajectories
of the particles: larger particle (solid line), smaller particle (dashed line).

obstacles.8 Due to their spatial extension, it is not possible for the particles

to follow the flow line. As a consequence, they are displaced towards other

flow lines, which they follow after having passed the gap. This displacement

eventually causes a sustainable separation of both trajectories at xC . The re-

pulsive interaction between particles and obstacles causes the required force

perpendicular to the surface. The bifurcation is wider for larger particles, as

the displacement induced by the particle-obstacle interaction is larger.9 Giv-

8It is assumed that particles follow the flow field according to the flow velocity at their
center. This approach neglects the motion induced by shear flows. Further, the effect of the
presence of the particle on the flow field is neglected.

9The finite-size effect itself has been exploited for particle separation by a method denoted
as deterministic lateral displacement (DLD) [27, 56, 57, 53]. A change in the geometry of
the array is required for that method. Subsequent rows obstacles need to be displaced by
a fraction of Ly in y-direction. In DLD devices, a pressure-driven flow is generated across
a periodic array of pillars. Due to the vertical displacement of subsequent rows, several
periodic flow bands arise. Depending on their size, particles in such a flow pattern either
follow a zig-zag motion without any net-displacement or they are displaced to the adjacent
flow band each time they pass a pillar. There is a critical size separating both modes of
motion. This allows the separation of particles into the ones smaller and larger than the
critical size, respectively. Since DLD is a deterministic approach rather than ratchet-based,
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ing an asymmetric flow field, i.e., a field that leads to biased step probabilities

p+1 > p−1, the effective bifurcation enables ratchet based particle separation.

Due to the finite size, the step probabilities are not equal for every pas-

sage, but rather depend on the actual trajectory. A particle that made a step

upwards has an increased probability to make a downward step during the sub-

sequent passage and vice versa. This path-dependence of the step probabilities

reduces the induced mean displacement and hence reduces the effectivity of

the separation process. For particles with a diameter close to the gap size,

the step probabilities become path-independent. The impact of finite size has

been demonstrated in Ref. [54], for coils of DNA molecules with various sizes.

In agreement with the discussion in the previous section, no inclination has

been observed for coils significantly smaller than the gap. The trajectories of

coils with sizes similar to the gap width, were inclined. However, the observed

inclination angles were smaller than predicted by ratchet theory. The applied

model used the geometrical asymmetry a of the obstacles. As we will show in

chapter 4, the effective asymmetry of the flow field differs significantly from

the asymmetry of the obstacle.

2.5 Dynamics of colloidal systems

In the previous sections, the discussion was limited to single particles. Through-

out this thesis single particle systems will serve as useful reference systems.

For our studies on particle separation and hydrodynamic interactions we are

however interested in the dynamics of systems containing many particles. In

this section, we therefore extend the Langevin equation to many-particle sys-

no asymmetry is required and symmetric obstacles are sufficient.
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tems including hydrodynamic interactions and particle interactions. Further,

we introduce an algorithm for the numerical integration of the Langevin equa-

tion.

2.5.1 Hydrodynamic interactions

We have shown in Sec. 2.1.2 that a translating particle causes a flow field.

This field influences the motion of other particles in the fluid. This effect is

significant in colloidal systems and is known as hydrodynamic interaction or

hydrodynamic coupling. Unfortunately a closed solution of the Stokes equation

(2.14) for systems containing more than one particle is generally not possible.

We therefore introduce approximative methods to describe hydrodynamic in-

teractions.

We consider the motion of N spherical particles in an infinite, viscous fluid.

As discussed in Sec. 2.1.2, we can limit the discussion to time-scales larger than

the momentum relaxation time (see Eq. (2.12)) and small Reynolds numbers

(see Eq. (2.4)). The system is hence governed by the linear Stokes equation.

Due to the linearity, the translational and angular velocities vi and ωi depend

linearly on the external forces f j and torques tj acting on each particle. Four

possible types of coupling occur among translations (index t) and rotations

(index r). The equation of motion for particle i can hence be written as

vi =
N∑

j=1

(
µtt

ij(r1, . . . , rN) · f j + µtr
ij(r1, . . . , rN) · tj

)
, (2.75)

ωi =
N∑

j=1

(
µrt

ij(r1, . . . , rN) · f j + µrr
ij(r1, . . . , rN) · tj

)
. (2.76)

The hydrodynamic coupling of the particles is described by four 3×3 mobility
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tensors µtt
ij, µrr

ij, µtr
ij and µrt

ij. In general, these tensors are functions of the

complete spatial configuration of all particles [31].10 In this thesis, we are

mainly interested in translational motion. Further no external torques are

applied. We hence limit the discussion in the following to purely translational

coupling and omit the indices.

For sake of conciseness, we introduce the 3N dimensional vectors v =

[v1, . . . ,vN ] and f = [f 1, . . . ,fN ]. For neglected random forces, the equations

of motion hence take the following form

v = M · f (2.77)

with the 3N × 3N mobility matrix

M =





µ11 · · · µ1N

...
. . .

...

µN1 · · · µNN




. (2.78)

The mobility matrix has two important features. First, the symmetry relation

(µij)
T = µij (2.79)

holds, such that M = MT. Second, the matrix is positive-definite. The latter

guarantees that the dissipated energy is always positive. The dissipated power

is given by P = f ·v which can be written as P = f ·M · f . For positive-definite

M, the dissipated energy is P > 0 for arbitrary forces f .

10For non-spherical particles the mobility tensors also depend on the orientation of each
particle.
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2.5.2 Rotne-Prager approximation

In this section, we derive an expression for the mobility matrix as a function

of the spatial configuration of the particles. We consider spherical particles

with radius σ. Again we assume an infinite fluid that is in rest at infinity and

no-slip boundary conditions at the surface of the particles. In order to derive

the mobility matrices for finite-size particles, we apply the method of reflexion

[31]. The latter is based on the idea that the flow field is “reflected” from

particles and can be calculated by iterative reflection steps. At each step the

flow field needs to be adjusted such that the boundary conditions are fulfilled.

This approach yields a series of correction terms that will be truncated to get

the Rotne-Prager approximation.

The method of reflection is based on Faxén’s theorem [31], which yields

the velocity of a particle v in the flow field u(r) and driven by the force f .

The considered flow field is the unperturbed solution of the Stoke equation,

i.e., without the presence of the particle. According to Faxén’s theorem, the

velocity of a particle at position s is given by

v = µf +

(
1 +

1

6
σ2∇2

)
u(r)

∣∣∣∣
r=s

. (2.80)

In the first step, we start with particle 1 under the force f 1. The zeroth-

order approximation for the equation of motion is

v(0)
1 = µ f 1. (2.81)

The flow field induced by the translation of such particle u(0)(r) is given in

Eq. (2.8). This flow field now induces a velocity to a second particle according
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to Faxéns theorem 11

v(1)
2 = µf 2 +

(
1 +

1

6
σ2∇2

)
u(0)(r)

∣∣∣∣
r=r2

. (2.82)

The motion of the second particle induces an additional flow field u(1)(r) given

by Eqs. (2.7, 2.8) with v = v(1)
2 . In some sense the initial flow field has been

reflected by the second particle. The resulting flow field u(0)(r)+u(1)(r) fulfills

the no-slip boundary condition at the surface of particle 2 but is perturbed at

the surface of particle 1.

In the next iteration step we correct this deviation by another application

of Faxén’s theorem. This time we calculate the motion of particle 1 induced

by the reflected field u(1)(r). We set f 1 = 0, since it has already been taken

into account in Eqs. (2.81, 2.82), and get

v(2)
1 =

(
1 +

1

6
σ2∇2

)
u(1)(r)

∣∣∣∣
r=r1

. (2.83)

This motion again induces a flow field u(2)(r) which requires some correction

to fulfill the boundary condition at the surface of particle 2. The continuation

of this iterative process leads to the series

u(r) = u(0)(r) + u(1)(r) + u(2)(r) + · · · (2.84)

for the exact flow field. Accordingly the velocities of both considered particles

11We assume that changes of the flow field induced by particles instantly apply to other
particles. A thorough investigation revealed that perturbations spread through two effects.
One is spreading through spherical sound waves, that travel with the corresponding speed
of sound c [20, 50]. The other is an expanding vortex ring that spreads diffusively. To
spread over a distance r the sound waves need the time τ1 = r/c whereas the vortex rings
need τ2 = r2/ν, with ν = η/ρ being the kinematic viscosity of the fluid. For the considered
systems, τ1 < τ2 ≈ 0.1 ms, which is shorter than the time scales we are interested in.
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are given by the following series

v1 = v(0)
1 + v(2)

1 + · · · ,

v2 = v(1)
2 + v(3)

2 + · · · . (2.85)

All three series can be written as potential series of σ/rij. For the Rotne-

Prager approximation, the series is truncated after the first iteration step in

Eq. (2.84). For the mobility tensors we get the following expressions

µii = µ1 +O(4),

µij = µ

[
3

4

σ

rij
(1 + r̂ij ⊗ r̂ij) +

1

2

(
σ

rij

)3

(1− 3r̂ij ⊗ r̂ij)

]
+O(4)

(2.86)

with O(n) being the error in orders of (σ/rij)n [93]. Note that the first term

in the latter equation corresponds with the Oseen tensor describing hydrody-

namic interactions for large particle distances.12 The mobility tensors reveal

the characteristic long-range nature of hydrodynamic interactions, as they de-

cay asymptotically with σ/rij

The Rotne-Prager approximation considers only two-particle interactions.

For many-particle effects more iterations need to be taken into account. It

was shown that the Rotne-Prager method describes hydrodynamic interactions

precisely for particle distances rij > 3σ.

12The Oseen tensor is derived from the flow field generated by a point-like particle. The
force density acting on the fluid is hence given by a delta function. The Oseen tensor can
therefore be considered as the Green function of the Stokes equation. The Oseen tensor is
a good approximation for hydrodynamic interactions at large distances. In this case, the
impact of the particles on the fluid flow can reasonably be reduced to the impact of point-like
objects. The Oseen tensor already features the long-ranged character.
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2.5.3 Langevin equation of many-particle systems

We now extend the single-particle Langevin equation in Sec. 2.2.1 to describe

N particles including their hydrodynamic interactions and repulsive interac-

tions among particles.

As discussed in Sec. 2.1.1, colloidal particles interact in various ways, e.g.,

hard-core interaction, electrostatic interaction and van-der-Waals interaction.

In this thesis, however, we limit the discussion to hardcore interactions. For the

studied phenomena, the particular interaction has no qualitative implications

as long as particle overlap is inhibited. For the sake of simplified numerical

handling, we use a quasi hard-core potential. For two particles with radii σi

and σj the interaction potential is given by

Vrep(rij) = C

[(
rij

(σi + σj)

)12

− 1

]−1

. (2.87)

Here, rij = |ri − rj| is the center-center distance between particles i and j.

The corresponding repulsive force is given by

f rep,ij(rij) = − ∂

∂rij
Vrep(rij) r̂ij (2.88)

with r̂ij = rij/rij being the unit vector pointing from particle i to particle

j. The total force on particle i is given by the sum of external and repulsive

forces

f i = f ext,i +
∑

j

f rep,ij. (2.89)

Using the 3N dimensional vectors v = [v1, . . . ,vN ] and f = [f 1, . . . ,fN ]

59



Chapter 2. Concepts, theoretical background and simulation methods

from Sec. 2.5.1, the Langevin equation for N particles can be written as

Z(r) · ṙ = f(r, t) + ξ(t). (2.90)

The stochastic force ξ(t) obeys the fluctuation-dissipation theorem

〈ξ(t)⊗ ξ(t′)〉 = 2kBT Z(r) δ(t− t′). (2.91)

This is a set of 3N stochastic differential equations which are coupled through

the friction matrix Z and the repulsive forces, which both depend on the

complete spatial configuration of the system.

2.5.4 Brownian dynamics simulations

For the numerical integration of the Langevin equation we use the algorithm

of Ermak and McCammon [37]. The change of the particle positions dr after

one simulation step with the time interval dt is given by

dr = M · f dt + A · dw. (2.92)

The total displacement contains a deterministic drift term and a random dis-

placement.13 The latter consists of a random vector dw which is independent

13The full expression also contains an additional spurious drift term ∇Ddt. The latter
originates from inertial effects on times scales smaller than the inertia relaxation time, and
can hence not be derived from the overdamped Langevin equation. For the Rotne-Prager
approximation, however, the spurious drift term vanishes, since ∇D = 0 [37].
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on the spatial configuration of the system with the properties

〈dw〉 = 0,

〈dw ⊗ dw〉 = 1dt. (2.93)

and the 3N × 3N amplitude matrix A that obeys

A ·AT = 2D. (2.94)

During the simulation A is determined by a Cholesky decomposition of D

which is always possible since the matrix is positive definite [100]. Further-

more, the components of M, A and f are calculated at the beginning of each

simulation step, following the Itô interpretation of stochastic processes. For

the Cholesky decomposition and the generation of random numbers we use

the GNU scientific library [44].

The integration scheme in Eq. (2.92) yields N trajectories in three-dimen-

sional space, which are a solution of the corresponding Langevin equation

(2.90). It has to be kept in mind that the described method is only valid

for spherical particles in an infinite fluid. The presence of walls significantly

modifies the characteristics of hydrodynamic interactions. For example, it

has been shown that infinite planar walls screen hydrodynamic interactions

[23, 35].
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Selective pumping in

microchannels

3.1 Motivation

In ratchet-based separation devices, the suspended particles are driven through

rows of asymmetric obstacles with the help of an external force. As discussed

in Sec. 2.4, the ratchet effect induces a mean displacement in direction perpen-

dicular to the direction of the external force. The net flow of particles through

the device is hence inclined with respect to the external force. Differences in

the magnitude of the induced mean displacement between distinct types of

particles lead to different inclinations and to particle separation. Compared

to conventional technologies, like gel electrophoresis, such devices offer several

advantages including continuous separation. However, the classical implemen-

tation of the device has two major drawbacks. First, the number of rows of

obstacles, and consequently the size of the device, has to be increased, in or-

der to improve the resolution. Second, a localized injection of the particles
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Figure 3.1: Microfluidic array devices for particle separation that benefit from
the effect of direction reversal proposed by Derenyi et al. [29]. The solid
line represents an example trajectory of a particle driven by an external force
fext with constant strength but periodically changing sign (example trajectory
only shown for one direction). The dark and light gray objects refer to the
obstacles of type A and B, respectively.

is required for optimal separation. Localized injection, however, reduces the

throughput of the device (see Section 2.4 for a detailed discussion).

It has been pointed out by Derenyi et al. [29] that the exploitation of the

direction reversal effect would overcome both disadvantages. In Fig. 3.1, the

proposed design is depicted. It is similar to the conventional array that has

been discussed in Sec. 2.4.1. However, two changes are introduced. First, the

obstacles feature spatial reflection symmetry with respect to the y-axis. In such

an array, an external force with constant strength, but periodically alternating

sign, can be applied driving the particles back and forth through several rows

of obstacles in each direction. Each time the particles pass a row, they have

a certain probability to make a step up- or downwards. If all rows are of type

A, there will be a positive mean displacement in y-direction independent of

the particle properties. Hence, no direction reversal occurs. Since the external
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force has no bias, there is no net transport in x-direction and all particles

move in average in y-direction, thus with different mean velocities. Note that

the mean velocity increases with larger values for the rescaled off-time.1 The

resulting unidirectional transport clearly nullifies the intriguing advantage of

the conventional array, namely the directional resolution.

Hence, a second modification is required. A certain fraction of rows is

replaced by rows of type B. The obstacles within these rows feature inverted

spatial asymmetry with respect to the x-axis. Further, these rows are dis-

placed by half a spatial period L in y-direction. In contrast to rows of type

A, the new rows induce a negative mean displacement in y-direction whose

absolute magnitude decreases for larger values of the rescaled off-time.2 As a

consequence, a device containing both types of rows can be tuned such that

the induced mean displacements for distinct types of particles have opposite

signs.3 In such scenario, two distinct types of particles would separate along

the y-axis by moving towards opposite directions. This allows the reduction

of the device to a few rows in x-direction. Further, the proposed separation

process works even without localized injection of the particles.

In this chapter, we demonstrate how this approach can be further opti-

mized. In line with the idea of Derenyi et al., our approach exploits the

direction reversal effect. For this purpose we introduce an extended version

of the on-off ratchet, which features the required direction reversal and derive

analytic expressions for the mean displacement. Subsequently we translate

1This is in full analogy to the mean displacement in conventional arrays as discussed in
Sec. 2.4.1. See in particular Fig. 2.7.

2Without diffusion, i.e., for τoff = 0, it is apparent that a downward step happens for
every passage through a row of type B. For increasing values of τoff, upward steps become
more likely, accordingly, the absolute mean displacement decreases. For large values of τoff,
up- and downward steps balance.

3In a system that contains equal numbers of rows of both types, the induced mean
velocities compensate mutually and zero mean displacement occurs.
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the characteristic features of the ratchet model into a microfluidic device with

significantly reduced spatial dimensions. In fact, we show that the size can be

reduced to a single channel without sacrificing the resolution of the separation

process. Subsequently we validate our predictions with the help of Brownian

dynamics simulations for the microfluidic channel device.

3.2 The extended on-off ratchet

The simple on-off ratchet relies on an asymmetric sawtooth potential that

is turned on and off and thereby induces a drift in one direction. A simple

modification of this ratchet replaces the sawtooth potential in every second

on-state by a sawtooth potential of inverse asymmetry and half the spatial

periodicity. The second sawtooth potential alone would induce a drift in the

reverse direction. We show that in such an extended ratchet the average drift

direction can be controlled by variation of system parameters such as the time

during which the potentials are switched on.

3.2.1 Details of the model

In the simple on-off ratchet, a Brownian particle moves under the influence of

a sawtooth potential V1, which is periodically switched on and off. For sake of

coherence we briefly summarize the key features of the on-off ratchet model (see

the detailed discussion in Sec. 2.3.2). The sawtooth potential and the ratchet

cycle are schematically depicted in panel (a) and (b) of Fig. 3.2, respectively.

The potential V1 is characterized by a spatial period L, asymmetry a, and

amplitude V̂ . When the potential is switched off during a time toff, the particle

diffuses freely along the x-axis. When the potential is switched on during a
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Figure 3.2: (a) Spatial characteristics of the potentials used in the extended on-
off ratchet. Short-periodic sawtooth potential V2 (top), long-periodic sawtooth
potential V1 (bottom). (b) Cycle of a simple on-off ratchet. (c) Cycle of the
extended on-off ratchet.

time ton, besides diffusion the particle drifts coherently toward a minimum of

the sawtooth potential. The interplay of the diffusion and the coherent drift

rectifies the motion of the particle. The magnitude of the mean displacement

for an ensemble of particles is determined by the properties of the potential as

well as by the diffusional behavior of the particles. In contrast, the direction of

the mean displacement is exclusively determined by the value of the asymmetry

parameter a.

In order to change the direction of the mean displacement with another

property than the asymmetry of the sawtooth potential, the on-off ratchet

needs to be extended. For this purpose, we add a second sawtooth potential

V2 to the ratchet cycle. The cycle of our proposed extended on-off ratchet is

schematically depicted in panel (c) of Fig. 3.2. As illustrated in panel (a) of

Fig. 3.2, the second potential V2 is characterized by half the spatial period
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L/2 and an inverse asymmetry parameter (1 − a). The two potentials are

alternately activated with equal duration ton and equal interjacent off-times

toff, so that the complete cycle lasts T = 2toff + 2ton. Due to their inverse

asymmetries, the individual potentials induce drifts in opposite directions. In

the extended on-off ratchet, both potentials are combined and the resulting

direction of the mean displacement is no longer exclusively determined by the

value of the asymmetry parameter a.

The extended on-off ratchet is fully characterized by the same four dimen-

sionless parameters as the simple on-off ratchet. In analogy to Sec. 2.3.2, the

motion of a particle can be described by dimensionless forms of the Langevin

equation and the fluctuation-disspation theorem

∂

∂ t̄
x̄ = V̄ fa(x̄, t̄) + ξ̃(t̄), (3.1)

〈ξ̄(t̄) ξ̃(t̄′)〉 = 2 δ̃(t̄− t̄′). (3.2)

Again we use the rescaled position x̄ = x/L, time t̄ = t/tdiff, random force

ξ̄(t̄) = ξ(t) L/(kBT ), and δ-function δ̄(t̄) = tdiff δ(t). The diffusion time scale

tdiff = L2/D is defined in analogy to Eq. (2.38). The time-dependent function

fa(x̄, t̄) distinguishes the extended on-off ratchet from the simple model, as

it carries the information about the ratchet cycle. When the potential is

switched off, fa = 0 and Eq. (3.1) describes a particle freely diffusing in one

dimension. When the potential Vi (i = 1, 2) is switched on, fa = −ci/a and

fa = ci/(1 − a) on the long and short slopes of the potential, respectively.

The constant ci takes the values c1 = 1 and c2 = −2. Again, the rescaled

potential amplitude V̄ is the Peclet number, denoting the relative significance

of deterministic drift with respect to diffusional motion.

67



Chapter 3. Selective pumping in microchannels

Also in analogy to the simple on-off ratchet, we rescale the periods of the

ratchet cycle ton and toff. The off-time toff is rescaled with respect to the

diffusion time tdiff,

τoff =
toff
tdiff

, (3.3)

while the on-time ton is rescaled with respect to the drift time tdrift,

τon =
ton
tdrift

, (3.4)

resulting in the rescaled period T̄ = 2(τoff + τon/V̄ ) of one complete ratchet

cycle. As discussed in Sec. 2.3.2, the rescaled off-time τoff is a measure for the

diffusivity of the particle during the off-time, while the rescaled on-time τon

indicates whether the particle is able to reach the minima during the on-time.

In summary, the motion of a Brownian particle in the extended on-off

ratchet depends on the rescaled off-time τoff , the rescaled on-time τon, the

asymmetry parameter a, and the Peclet number V̄ . In the subsequent sections,

we calculate the mean displacement 〈∆x̄〉 per ratchet cycle, as a function of

these four dimensionless variables, where the Peclet number V̄ will always be

chosen much larger than one.

3.2.2 Numerical calculation of the mean displacement

In order to calculate the mean displacement for a wide range of parameters,

we solve the Langevin equation (3.1) numerically. The simulations are based

on the standard Euler method, which is sufficient in view of the simplicity of

the potential. Following this method, the position x̄ evolves during one time
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Figure 3.3: (a) Mean displacements 〈∆x̄〉 obtained from a Brownian dynamics
simulation with asymmetry a = 0.1 (b) As in panel (a), but for a = 0.3. The
contour curves in the bottom planes correspond with 〈∆x̄〉 = 0. These curves
with coordinates τ ∗off and τ ∗on trace the points of the direction reversal of the
mean displacement.

step dt̄ according to

x̄(t̄ + dt̄) = V̄ fa(x̄, t̄) dt̄ + (2 dt̄)1/2 dw̄. (3.5)

Here, (2 dt̄)1/2 dw̄ is the rescaled Wiener increment and dw̄ is a random number

from a distribution with zero mean 〈dw̄〉 = 0 and variance 〈dw̄2〉 = 1 (see Sec.

2.5.4). To obtain sufficiently precise results, one million ratchet cycles were

simulated for each combination of parameters.

The simulation results for the mean displacement 〈∆x̄〉 with V̄ = 1000 and

a = 0.1 and 0.3 are shown in panel (a) and (b) of Fig. 3.3, respectively. A

common feature is that 〈∆x̄〉 becomes vanishingly small in the limit τoff → 0
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and τon → 0. Furthermore, for large values of τoff and τon the mean displace-

ment approaches a maximum value 〈∆x̄〉max. In Sec. 3.3.1, we will derive an

analytical expression for 〈∆x̄〉max. In contrast to the simple on-off ratchet, the

extended model exhibits direction reversal. To be precise, the sign of 〈∆x̄〉 now

depends on the values of τoff and τon. Two regions are observed, in which 〈∆x̄〉

has opposite signs. The coordinates τ ∗off and τ ∗on of the curve which demarcates

both regions depend on the value of the asymmetry parameter a.

In the following two sections, we will derive precise as well as approximative

expressions for the mean displacement in different regions of the parameter

space. Those expressions will enable us to predict direction reversal more

quantitatively.

3.3 Method of discrete steps

To derive an analytic expression for the mean displacement 〈∆x̄〉 in the case

of large Peclet numbers V̄ , we apply the method of discrete steps as discussed

in Sec. 2.3.2. This method is based on the assumption that the rescaled on-

time τon is sufficiently large, so that a Brownian particle will always drift

into a minimum when the sawtooth potentials are switched on. Hence, the

trajectory of the particle can be mapped onto a sequence of effective steps

between the locations of the potential minima. These steps occur with certain

step probabilities. In Sec. 3.3.1, we apply the method of discrete steps to the

extended on-off ratchet by incorporating the step probabilities corresponding

to the additional ratchet potential. In Sec. 3.3.2, we successively extend the

applicability of our method to smaller values of τon with the help of what we

call the split-off approximation.

70



Chapter 3. Selective pumping in microchannels

Figure 3.4: Schematic illustration of a complete cycle of the extended on-off
ratchet in the discrete limit. For one possible step combination (n = 0 → m =
1 → n = 1) the graphical interpretation of the corresponding step probabilities
p01 and q11 is visualized.

3.3.1 Discrete steps and their probabilities

For large Peclet numbers V̄ , Brownian motion can be neglected once the po-

tential is switched on. As a result, a particle drifts uniformly towards a min-

imum. For the longer slope of potential V1, the drift velocity is given by

vdrift = V̂ /[γ (1−a)L]. Accordingly, the particle reaches the minimum for

ton ≥
(1− a)L

vdrift
= (1− a)2 tdrift, (3.6)

irrespective of its position at the time the potential is switched on. With the

definition of the rescaled on-time τon in Eq. (3.4), the latter condition can be

expressed as

τon ≥ (1− a)2. (3.7)
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Particles drifting under the influence of the shorter slope of potential V1 as

well as both slopes of potential V2 also reach the minimum, provided Eq. (3.7)

is satisfied. Accordingly, after each application of the potential, all particles

are located at the minima of either V1 or V2. A single particle hence performs

discrete steps along the x-axis, provided its trajectory is sampled at the end

of each on-time. The minima of the potential V1 are labeled with the integer

n , so that the corresponding positions are given by x̄n = n. For the potential

V2, the minima are labeled with m and the positions are x̄m = m/2, because

V2 has half the spatial periodicity.

Now, we consider the probability pnm for a step performed by a single

particle from the minimum n of V1 to the minimum m of V2, as illustrated

in Fig. 3.4. When the potential is switched off the particle diffuses freely,

starting from x̄S = n. In our rescaled units, the probability density to reach

the position x̄ at the end of the off-time is given by the Gaussian distribution

P(x̄) =
1√

4πτoff
exp

(
−(x̄− x̄S)2

4τoff

)
. (3.8)

Note that the width of this distribution is exclusively determined by the value

of the rescaled off-time τoff. In order to drift to the minimum m of potential V2

during the subsequent on-time, the particle needs to diffuse into the interval

(m− a)/2 < x̄ < (m + 1− a)/2 situated between the neighboring maxima of

minimum m. Accordingly, the step probability is given by integrating P(x̄),

so that

pnm =

∫ 1
2 (m+1−a)

1
2 (m−a)

dx̄√
4πτoff

exp

(
−(x̄− n)2

4τoff

)
. (3.9)

In a similar way, we derive the probability qmn for a step from the minimum

m of V2 to the minimum n of V1. Now, the initial minimum is located at
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x̄S = m/2 and the interval between the maxima around minimum n of V1 is

given by (n− 1+ a) < x̄ < (n+ a). Hence, the step probability takes the form

qmn =

∫ n+a

n−1+a

dx̄√
4πτoff

exp

(
−(x̄−m/2)2

4τoff

)
. (3.10)

The mean displacement 〈∆x̃〉 is calculated for a complete ratchet cycle. Due to

the spatial periodicity of the system, one can always place the initial minimum

at n = 0. By averaging over all possible step combinations, we arrive at

〈∆x̃〉 = 〈n〉 =
∑

n

∑

m

n · p0m qmn. (3.11)

Note that in the discrete limit the mean displacement 〈∆x̄〉 only depends on

the values of the asymmetry parameter a and the rescaled off-time τoff .

We now discuss the limiting behavior of the mean displacement 〈∆x̄〉 for

small and large values of τoff. For small values of τoff , the mean displacement

approaches zero, because the step probabilities to neighboring minima become

vanishingly small. For large values of τoff , the mean displacement takes its max-

imum value 〈∆x̄〉max. An algebraical expression for 〈∆x̄〉max can be derived on

the basis that the probability profile between two maxima becomes approx-

imately homogeneous for large values of τoff. The fractions of the particles

experiencing the larger and shorter slopes of potential V1 are given by (1− a)

and a, respectively. The corresponding mean displacements of these fractions

are (1−a)/2 and −a/2. The total mean displacement induced by potential V1

is given by the weighed average of both fractions, so that 〈∆x̄1〉 = (1/2)− a.

The mean displacement induced by V2 can be derived in the same way and

yields 〈∆x̄2〉 = −〈∆x̄1〉 /2. For the complete cycle, the mean displacement is
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Figure 3.5: Normalized mean displacement 〈∆x̄〉/〈∆x̄〉max in the extended on-
off ratchet versus the rescaled off-time τoff. The curves have been calculated
in the discrete limit. From top to bottom, a = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4 and 0.45. The dashed line with a = 0.25 indicates the onset of direction
reversal in an intermediate range of values for τoff.

given by the sum 〈∆x̄〉 = 〈∆x̄1〉+ 〈∆x̄2〉, so that

〈∆x̄〉max = lim
τoff→∞

〈∆x̄〉 =
1

2

(
1

2
− a

)
. (3.12)

Note that this expression is only valid for sufficiently large values of the rescaled

on-time τon ≥ (1− a)2.

We have obtained the mean displacement for a series of a values in the

range 0.1 < a < 0.45 by numerical evaluation of Eq. (3.11). The normalized

values 〈∆x̄〉/〈∆x̄〉max with 〈∆x̄〉max obtained from Eq. (3.12) are displayed in

Fig. 3.5 as a function of the rescaled off-time τoff. For values of τoff exceeding

0.1, the normalized mean displacement approaches unity. This confirms the

predicted limiting behavior given by Eq. (3.12). For values of a > 0.25, the

normalized mean displacement becomes negative in an intermediate range of

values of τoff, i.e., the mean displacement changes its direction. The resulting

minimum becomes more pronounced for larger values of a. Note that 〈∆x̄〉max

decreases linearly with a and reaches 〈∆x̄〉max = 0 in the symmetric case with
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Figure 3.6: Illustration of the split-off approximation on the longer slope of
potential V1. Particles corresponding with the dark gray colored part of the
diffusion profile fail to reach the minimum n during the on-time and will start
the subsequent off-time from the split-off point n′.

a = 0.5. Accordingly, the minimum in the (unnormalized) mean displacement

〈∆x̄〉 vanishes in the limit a = 0.5.

3.3.2 Split-off approximation

We now extend the method of discrete steps to values of τon smaller than

(1− a)2, i.e., not all particles will drift into a minimum of either potential V1

or V2 during the on-time. For now, we restrict ourselves to the situation, where

the particles on the longer slope of V1 do not necessarily reach a minimum,

but on the smaller slope and when potential V2 is switched on they do. This

situation corresponds to (1− a)2/4 < τon < (1− a)2.

We consider an ensemble of particles at a time right before the potential

V1 is switched on. Particles on the right-hand side of each maximum will not

reach a minimum if they are located in a spatial region with a width ∆1 as

illustrated in Fig. 3.6. We will call ∆1 the split-off parameter in the following.

With the help of the drift velocity on the longer slope of V1 and the length
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(1− a)L of this slope, one is able to calculate the split-off parameter

∆1 = max

[
0, (1− a)

(
1− τon

(1− a)2

)]
. (3.13)

In order to apply the method of discrete steps, we assume that all particles in

the region ∆1 drift to a single split-off point n′. As illustrated in Fig. 3.6, this

split-off point is located at a distance −∆1/2 from the minimum with index

n. The locations of the split-off points are hence given by x̄n′ = n−∆1/2.

For τon < (1− a)2/4, we introduce additional split-off points on the longer

slope of potential V2. They are located at x̄m′ = (m+∆2)/2 where m indicates

the minima of V2. Particles in a certain region at the left-hand side of the

maxima are not able to reach the minima of potential V2. The width of this

region ∆2 is given by

∆2 = max

[
0,

(1− a)

2

(
1− τon

1
4(1− a)2

)]
. (3.14)

Obviously, our split-off approximation will result in a progressively worse es-

timation of the mean displacement for smaller values of τon and, implicitly,

larger values of ∆1 and ∆2.

We can derive an expression for the mean displacement in the same manner

as in Sec. 3.3.1. Now we need to consider eight step probabilities. They

are obtained by integrating over the corresponding sections of the diffusion

profile. The split-off points are taken into account by a modification of the

starting points xS in Eq. (3.8) and the integration limits in Eqs. (3.9, 3.10).

Furthermore, in the expression for the mean displacement one has to introduce

the respective probabilities P and P ′ for a particle to occupy either a minimum

or the corresponding split-off point at the beginning of each cycle. Due to
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the spatial periodicity of the ratchet, these probabilities do not depend on

the particular location n of the potential well. To determine P (t̄0 + T̄ ) and

P ′(t̄0 + T̄ ) from P (t̄0) and P ′(t̄0) after one full ratchet cycle with period T̄ , one

has to consider all possible step combinations during such a cycle. Without loss

of generality, all these step combinations are generated when one starts from

the minimum at n = 0 or the split-off point at 0′. Therefore the probabilities

P and P ′ evolve in time according to

P (t̄0 + T̄ ) = P (t̄0)
∑

m,n

(p0m qmn + p0m′ qm′n) +

P ′(t̄0)
∑

m,n

(p0′m qmn + p0′m′ qm′n) (3.15)

P ′(t̄0 + T̄ ) = P (t̄0)
∑

m,n

(p0m qmn′ + p0m′ qm′n′) +

P ′(t̄0)
∑

m,n

(p0′m qmn′ + p0′m′ qm′n′). (3.16)

We are interested in the steady state solution, P (t̄0 + T̄ ) = P (t̄0) and P ′(t̄0 +

T̄ ) = P ′(t̄0), which yields

P ′

P
=

1−
∑

m,n(p0m qmn + p0m′ qm′n)
∑

m,n(p0′m qmn + p0′m′ qm′n)

=

∑
m,n(p0m qmn′ + p0m′ qm′n′)

1−
∑

n,m(p0′m qmn′ + p0′m′ qm′n′)
. (3.17)

Together with the normalization constraint P + P ′ = 1, the probabilities P

and P ′ are fully determined from either one of the conditions in Eq. (3.17).

The mean displacement can now be derived by averaging over all possible step

combinations (including the split-off points n′ and m′) and takes the following
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form

〈∆x̄〉 =
∑

n,m

n [(P p0m + P ′ p0′m) (qmn + qmn′)+

+ (P p0m′ + P ′ p0′m′) (qm′n + qm′n′)] . (3.18)

Here we approximate the step length by n, irrespective of whether the step

starts or ends in a minimum or split-off point. Note that the mean displace-

ment now depends on the parameters τon, τoff, and a. In particular, the rescaled

on-time τon enters through the values of the parameters ∆1 and ∆2 in the step

probabilities. For τon ≥ (1− a)2, ∆1 = ∆2 = 0 and Eq. (3.18) reduces to the

corresponding Eq. (3.11) pertaining to discrete behavior.

We have obtained the mean displacement 〈∆x̄〉 according to the split-off

approximation by numerical evaluation of Eq. (3.18) for τoff = 1 and a = 0.1

and 0.3. The results are displayed in Fig. 3.7 as a function of the rescaled on-

time τon. For the sake of comparison, we have also included the corresponding

values following from the Brownian dynamics simulation. The maximum value

〈∆x̄〉max, as given by Eq. (3.12), is recovered for τon > (1 − a)2. Note that

the value τoff = 1 is sufficiently large for the application of Eq. (3.12) (see

e.g. Fig. 3.5). With decreasing values of τon, the mean displacement decreases

and changes sign at a critical value of the rescaled on-time τ ∗on. Irrespective

of the value of the asymmetry parameter a, the prediction based on the split-

off approximation is in perfect agreement with the results of the Brownian

dynamics simulations in the range (1− a)2/4 < τon < (1− a)2. The prediction

even reproduces the behavior of 〈∆x̄〉 for smaller values of the rescaled on-

times (with deviations for a = 0.3). In particular, for the present combination

of parameters, the split-off approximation is sufficient to predict the point of
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Figure 3.7: (a) Mean displacement 〈∆x̄〉 in the extended on-off ratchet ver-
sus the rescaled on-time τon for a rescaled off-time τoff = 1.0 and asymmetry
parameter a = 0.1. The solid curve refers to the results from the split-off
approximation, whereas the symbols indicate the results from the Brownian
dynamics simulations. The dashed curve refers to the results from the split-off
approximation with ∆2 = 0 for all values of τon. The vertical dashed lines
indicate the onset of the discrete regime at τon = (1− a)2 and the threshold of
the split-off approximation with ∆2 = 0 at τon = (1 − a)2/4. (b) As in panel
(a), but for asymmetry parameter a = 0.3.

direction reversal τ ∗on.

In order to compare the predictions based on the split-off approximation

with the relevant results of the Brownian dynamics simulations for values of

τoff smaller than 1, we now consider the points of direction reversal of the mean

displacement with coordinates τ ∗off and τ ∗on (i.e., those coordinates for which
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Figure 3.8: Contour curves for 〈∆x̄〉 = 0. These curves trace the points of
direction reversal of the mean displacement with coordinates τ ∗off and τ ∗on. The
symbols refer to Brownian dynamics simulation results with asymmetry pa-
rameters a = 0.1 (!), a = 0.2 (!), a = 0.3 (◦) and a = 0.4 (&). The solid
curves represent the corresponding predictions based on the split-off approxi-
mation. The dashed curves serve as a guide to the eye. Notice that the latter
predictions deviate from the simulation results for a < 0.3 and τ ∗off < 0.05.

〈∆x̄〉 = 0). The corresponding contour curves following from the simulations

as well as from the split-off approximation are displayed in Fig. 3.8 for some

typical values of the asymmetry parameter a. The predictions of the points of

direction reversal based on the split-off approximation are in perfect agreement

with the simulation results for the larger values of the asymmetry parameter

a = 0.3 and 0.4, irrespective the value of the rescaled off-time τoff. In the case

of smaller values of a, i.e. for a = 0.1 and 0.2, the split-off approximation only

gives accurate results for a sufficiently large value of τoff > 0.05. Furthermore,

it should be noticed that for τoff > 0.1, the point of direction reversal of the

mean displacement τ ∗on occurs at a constant but a dependent value, irrespective

of the value of τoff.
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The split-off approximation also allows the calculation of the mean dis-

placement 〈∆x̄〉 for large values of τoff (in practice for τoff > 0.1). In the same

way as for the derivation of Eq. (3.12), we obtain

lim
τoff→∞

〈∆x̄〉 =
1

2

(
1

2
− a

)
− 1

2
∆2

1 + ∆2
2. (3.19)

In the case of discrete behavior with ∆1 = ∆2 = 0, the latter expression

correctly reduces to Eq. (3.12) for τon ≥ (1 − a)2. Furthermore, Eq. (3.19)

allows the derivation of an expression for the point of direction reversal τ ∗on.

We first solve limτoff→∞〈∆x̄〉 = 0 for the split-off parameter ∆1 with ∆2 = 0

and use ∆1 in Eq. (3.13) to calculate the rescaled on-time

τ ∗on = (1− a)2

[
1−

( 1
2 − a

(1− a)2

)1/2
]

. (3.20)

Note that in the limit of τoff → ∞, the value of τ ∗on only depends on the

asymmetry parameter a. The predicted values for τ ∗on are displayed in Fig. 3.9

as a function of the asymmetry parameter a. Excellent agreement with the

corresponding results from the Brownian dynamics simulations is observed for

a < 0.45. Furthermore, we note that the predicted values for τ ∗on fall within the

region τon > (1− a)2/4, where the split-off approximation applies for ∆2 = 0.

Our a priori choice of ∆2 = 0 is hence justified.

In principle, the split-off approximation can be carried to higher levels by

including split-off points on all slopes. We have however refrained from doing

so, because the mathematical expressions become rather involved and there is

not much gain in physical insight. Furthermore, very small values of τon are of

little interest from a practical point of view, because the corresponding mean

displacements are vanishingly small.
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Figure 3.9: Points of direction reversal of the mean displacement τ ∗on versus
the asymmetry parameter a. The solid curve represents the prediction based
on the split-off approximation in the limit of large values of τoff . The symbols
refer to the corresponding results from the Brownian dynamics simulations.
The dashed curve demarcates the region τon > (1− a)2/4, where the split-off
approximation with ∆2 = 0 applies.

3.4 Particle separation

In the extended on-off ratchet the magnitude and the direction of the mean

displacement can be varied by adjusting the parameters τoff and τon. In the

following, we discuss how this feature can be exploited to reduce the size of

microfluidic separation devices. Here, our objective is to translate the pa-

rameters of the extended on-off ratchet model to real design parameters. In

particular, we will explore how we can experimentally control the magnitude

and direction of the mean displacement of the particles.

3.4.1 Design parameters

We propose two possible designs for microfluidic devices. In the first design

depicted in Fig. 3.10 (a), every second row of the obstacles in the classical

array is replaced by a row of obstacles with half the spatial periodicity and

inverse asymmetry. The particles are driven in y-direction through the device
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Figure 3.10: Microfluidic devices for particle separation that benefit from the
effect of direction reversal. (a) A microfluidic array device. The solid line
represents an example trajectory of a particle driven by a constant external
force fext. The gray objects refer to the obstacles. (b) As in panel (a), but
for a microfluidic channel device. The particles are driven by a periodically
inverted external force back and forth across the channel.

with the help of an external force fext and they alternately interact with the

two types of rows of obstacles. In the second proposed design depicted in

Fig. 3.10 (b), the sawtooth shaped obstacles line the opposing walls of a single

channel. Here, the particles are driven back and forth between the walls with

the help of a periodically inverted external force fext. In both devices, the

spatial extensions of the obstacles in x- and y-direction are given by L and h,

respectively, whereas the asymmetry with respect to y-axis is determined by

the parameter a.

Before we discuss particle separation, we need to define the time scales for

diffusion and drift. For a particle with a mobility µ reacting on an external

force fext, the velocity is given by v = µ fext. In contact with an obstacle, the

direction of the velocity changes and acquires a component vx in the direction

perpendicular to the external force. Assuming that the face of the obstacle is

tilted by the angle θ = (1 − a)L/h from the direction of the external force,
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the transverse component amounts to vx(θ) = v sin θ cos θ.4 We now introduce

the largest possible tilt angle θmax = arctan(L/h) for obstacles with a = 0,

and define the characteristic drift time tdrift = L/vx(θmax) in full analogy to

Eq. (2.50). The diffusion time tdiff = L2/D remains the same as in the

ratchet model and the Peclet number hence reads tdiff/tdrift = L vx(θmax)/D.

Accordingly, the latter can be tuned by adjusting the strength of the external

force.

3.4.2 Separation in array devices

We now map the dynamics of particles in the array device with alternating

rows (see panel (a) of Fig. 3.10) onto our extended on-off ratchet. Since the

particles always have to pass the gaps between the obstacles, their motion can

be described by the method of discrete steps. The parameters are mapped in

analogy to Sec. 2.4.2, where the separation dynamics in a conventional array

have been mapped onto the simple on-off ratchet. The off-time of the ratchet

is determined by the time the particles need to cross the distance d between

the rows under the influence of the external force and is given by toff = d/v.

Accordingly, the value of toff and hence the rescaled off-time

τoff =
dD

µfextL2
(3.21)

can experimentally be tuned by adjusting the external force fext. Suppose that

a suspension contains two types of particles A and B with different values for

D/µ. In order to separate these particles in an array with a rescaled off-time

for direction reversal τ ∗off, the rescaled off-times pertaining to the two types of

4We consider the longer face of the obstacles and therefore derive a lower bound for the
Peclet number. Further we restrict the discussion to a < 0.5.
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particles have to be tuned such that τoff,A > τ ∗off > τoff,B. As a consequence, the

induced mean displacements in x-direction have opposite signs, to be precise

〈∆x̄〉A > 0 > 〈∆x̄〉B. In line with Ref. [29], the device can be operated in

combination with a periodic reversal of the direction of the external force. In

this case, both particle types move periodically back and forth in y-direction.

However, particles of type A move in average to the right (〈∆x̄〉A > 0), while

particles of type B move to the left (〈∆x̄〉B < 0). Hence, only a few rows of

obstacles are necessary and the device can be downsized in y-direction without

reducing the resolution of the separation process.

The methods presented in Sec. 3.3.1 can be used to determine the value of

τ ∗off for a device specific value of the asymmetry parameter a. For the design

of the obstacle it is crucial, that the value of a exceeds 0.25 in order to observe

direction reversal of the mean displacement (see Fig. 3.5).

3.4.3 Separation in channel devices

Rather than driving the particles through subsequent rows of obstacles, the

particles can be driven back and forth between the two opposing walls of a

channel with the help of a periodically inverted external force (see panel (b)

of Fig. 3.10). Note that the external force is applied perpendicular to the

direction of the channel. We will now demonstrate that such channel operates

in four different regimes depending on the inversion periods of the external

force. Each regime requires a different mapping of the particle dynamics onto

a ratchet model. We define the time periods T+ and T− to indicate the periods

over which the external force points up and downwards, i.e. in the positive

and negative y-direction, respectively.

For a simplified analysis of the channel device, we set T+ ) d/v. As a
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consequence, the particles always reach the upper wall of the channel, mean-

ing that they completely drift into the grooves of the sawtooth profile. The

performance of the proposed device now depends on the period T− of the

pulsed external force, the distance between the rows d, the height of the saw-

tooth profiles h, and the velocity of the particles v. Four different regimes can

be identified. In the first regime with T− < h/v, the particles are trapped

within one spatial period of the upper row of obstacles and no mean displace-

ment occurs. Note that the limits of the four regimes, which we present here,

are approximate values because of the Brownian motion in y-direction. In

the second regime with h/v < T− < (d + h)/v, the particles only interact

with the upper row of obstacles. Hence the channel functions as a simple

on-off ratchet. The value of the induced mean displacement is determined

by the off-time toff ≈ 2(T− − h/v) and is negative due to the inverse asym-

metry of the profile. For sufficiently large values of toff, the displacement is

given by 〈∆x̄〉 = −(1/2 − a)/2 (see Eq. (2.62)). In the third regime with

(d + h)/v < T− < (d + 2h)/v, the particles interact with both rows of ob-

stacles, however, they will not always drift into the grooves of the sawtooth

profile of the lower wall before their electrophoretic direction is reversed by

switching the external force. In this regime, the mean displacement can ap-

proximately be described by the split-off approximation of the extended on-off

ratchet. The off-time is determined by the time the particles need to cross the

distance d between the upper and lower rows. Hence, the rescaled off-time is

given by Eq. (3.21). The time during which the particles are in contact with

the lower row of obstacles determines the on-time ton ≈ T− − (d + h)/v. Its

rescaled value

τon = sin θmax cos θmax
µfext T− − (d + h)

L
(3.22)
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can be tuned by adjusting the product fextT− properly. Note that in this

regime changes in T− only affect τon whereas τoff remains constant. In the

fourth regime with T− > (d+2h)/v, the particles always reach the walls of the

channel before their velocity changes direction. In this regime, the channel is

equivalent to our array device proposed priorly.

The equations derived under the split-off approximation require minor

modification in order to describe the mean displacement in the third regime.

For given values of h and L, we have already defined the maximum tilt angle

θmax = arctan(L/h). It occurs for asymmetry parameter a = 0. For nonzero

a we define the tilt angle of the longest slope of the two obstacles, θa < θmax.

Compared to the drift velocity induced by the sawtooth potential, the velocity

vx(θa) exhibits a different dependence on the asymmetry parameter a and the

adjusted split-off parameter ∆1 now reads

∆1 = (1− a)− τon
vx(θa)

vx(θmax)
. (3.23)

Due to our choice for T+, the second split-off parameter ∆2 = 0 is zero.

3.4.4 Simulation of a single point-like particle

We performed two-dimensional Brownian dynamics simulations of a single

point-like particle in the proposed channel device. The interaction between

the particle and the walls was modeled with a short-ranged repulsive potential

Vwall. For a reduced particle-wall distance r̄ in units of L, the potential is given

by Vwall(r̄)/kBT = (r̄/b)−12 with b = 1.25 · 10−3. The asymmetry parameter

and the reduced lengths of the channel geometry were set to a = 0.1, h̄ = 0.1,

d̄ = 4, and the Peclet number was chosen as tdiff/tdrift ≈ 20. Figure 3.11 shows
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Figure 3.11: Mean displacement 〈∆x̄〉 of a particle in a channel device as
a function of the reduced time period T̄− in units of tdiff. The geometry of
the channel is defined by the asymmetry parameter a = 0.1 and the reduced
lengths h̄ = 0.1 and d̄ = 4 in units of L. The symbols refer to results from
two-dimensional Brownian dynamics simulations. The solid line refers, respec-
tively, to predictions from the conventional and the extended on-off ratchet
model. The vertical lines demarcate the different operational regimes of the
channel device, as discussed in the text.

the mean displacement 〈∆x̄〉 as a function of the reduced period T̄− in units

of tdiff. We have demarcated the four regimes with increasing T̄− as discussed

above. In each regime, the results of the simulations are compared to the

predictions of the corresponding model, i.e., zero-displacement in regime I,

simple on-off ratchet in II, extended on-off ratchet with non-discrete behavior

in III, and extended on-off ratchet with discrete behavior in IV, respectively.

In all four regimes the predictions are in good agreement with the results

from the simulations. Most of all, the reversal of the drift direction in the

third regime is correctly predicted by the extended on-off ratchet within the

split-off approximation. Deviations between the extended ratchet model and

the simulation data are due to four main reasons. First, the one-dimensional

model neglects diffusion of the particle in y-direction. Second, the model does

not take into account that on- and off-times depend on the exact position of
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the particle at times when the external force is reversed. Third, the model

assumes that the particles can diffuse freely in x-direction even in the vicinity

of the obstacles. Fourth, the simulations were performed for Peclet number

tdiff/tdrift ≈ 20, whereas the model refers to tdiff/tdrift ) 1. Although the

extended ratchet model is a simplification of the actual particle dynamics in the

channel geometry, it offers a fairly good prediction of the mean displacements.

3.4.5 Simulation of finite-size particles

In this section, we investigate more realistic systems consisting of particles

with finite size. For that purpose, we use a two-dimensional version of the

simulation algorithm introduced in Sec. 2.5.4. Hydrodynamic interactions are

neglected, since the channel geometry is too complex in order to be taken into

account properly.5

We now discuss the behavior of two distinct types of particles within the

channel. For that purpose, we simulated 40 spherical particles within a cell

with three spatial periods L and periodic boundary conditions in x-direction.

20 particles have a rescaled radius of σ̄ = 0.01 and the other 20 particles have

σ̄ = 0.02. According to Stokes’ law in Eq.(2.10), the small particles move two

times faster than the large ones. The channel parameters were set to a = 0,

h̄ = 0.3, d̄ = 2 and the Peclet number was chosen as tdiff/tdrift ≈ 20. For

each particle type the induced mean displacement is depicted in Fig. 3.12 as a

function of T̄−. Both particle types show the characteristic direction reversal,

but the positions of the direction reversal are shifted and the amplitudes are

smaller than expected for a = 0.6 The shift is caused by the different drift

5The Rotne-Prager approximation for hydrodynamic interactions is only valid for un-
bound fluids, which is clearly not the case in the considered channel design.

6For a = 0, the extended on-off ratchet model predicts a maximum mean displacement of
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Figure 3.12: Mean displacement as a function of the time period T− for two
particle types. The empty symbols refer to data for particles with rescaled
radius σ̄ = 0.01 while full symbols refers to particles with radius σ̄ = 0.02.
The geometry of the channel is defined by the asymmetry parameter a = 0 and
the reduced lengths h̄ = 0.3 and d̄ = 2. The grey area indicates the interval for
T− where particle of different type are displaced towards opposite directions.

times of both particle types. The smaller particles reach the opposite wall

earlier than the larger particles. Therefore, their mean displacement changes

the direction for smaller values of T̄−. The observed shift of the curves is

crucial for the separation of both types of particles. The gray area marks the

interval for T̄− in which the mean displacements of both particle types have

opposite signs. If the device parameters are adjusted such that the resulting

value for T̄− lies within this interval, small particles will move in average to

the right, while large particles will move to the left.

In oder to demonstrate separation of two particle types, we repeated the

0.25 in both directions for a single particle. The reduced mean displacements originate from
the behavior of the particles in the grooves of the sawtooth profiles. Given sufficient drift
time, a single particle will always reach the grooves of the corresponding wall. For larger
particle numbers, the groove might already be occupied by some other particle. In this
case, particles start from a position slightly displaced from the position of the groove when
the field changes its direction. Due to the asymmetry of the sawtooth profile, particles
are displaced in average towards the longer slope. This decreases the relevant stepping
probabilities and hence leads to the observed reduction of the mean displacements.
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previous simulation but in a channel with four spatial periods and closed

boundaries. To be precise, the channel is confined by two vertical walls on

both sides as illustrated in Fig, 3.13 (a). Further, with T− = 0.02 we choose

the period T̄− such that induced mean displacements have opposite signs for

the considered particle types (gray area in Fig. 3.12 ). Initially, the particles

are homogeneously distributed within the channel. The probability distribu-

tion P(n) to find a particle of a certain type within the spatial period n is

plotted in Fig. 3.13 (b) after 25 ratchet cycles. The distribution data has

been extracted from 100 independent simulation runs. For the small particles,

the distribution is already significantly shifted towards the right end of the

channel. Accordingly the large particles begin to accumulate at the left end.

Panel (b) shows the distribution after 50 ratchet cycles. The accumulation

of the distinct particle types at the opposing end of the channel is now more

pronounced and only few particles can be found in the middle of the channel

(n = 2, 3). In other words, the particles have been separated.

Assuming that the channel is connected to fluid reservoirs at both ends

and that the left reservoir contains both types of particles the channel can

act as a selective pump. The mean displacements for both particle types in

Fig. 3.12 reveal three operational modes controlled by the actual value of

T−. First, the induced mean displacement can prevent both particles types

to pass through the channel (〈∆x̄〉 < 0 for both particles). Second, the small

particles are pumped through the channel while the large particles are blocked

(〈∆x̄〉small > 0 and 〈∆x̄〉large < 0). Third, both particle types are pumped

through the channel (〈∆x̄〉 > 0 for both particles). In principle, this selective

pumping between both reservoirs can be extended to suspensions containing

more types of particles.
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Figure 3.13: (a) Channel setup with four spatial periods confined by two
vertical walls. Two particle types with different radii are schematically shown
at the end of the time period T̄+ with the external force pointing upwards. (b)
Particle distribution P(n) within the four spatial periods n after 25 ratchet
cycles for particles with rescaled radius σ̄ = 0.1 (empty symbols) and with
σ = 0.2 (full symbols). A channel containing 20 particles of each type as
simulated. (c) Same as in (b), but after 50 ratchet cycles.

3.5 Conclusions

We have introduced an extension of the standard on-off ratchet by including

a second asymmetric sawtooth potential with half the periodicity and inverse

asymmetry in the ratchet cycle. As a result of this additional potential, Brow-

nian particles exhibit direction reversal of their mean displacement. Analysis

of the Langevin equation reveals that the motion of the particles and, hence,
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their mean displacement depends on four dimensionless parameters: the Peclet

number, the asymmetry of the potentials, and the rescaled on- and off-times.

We have derived analytical expressions for the mean displacement, based on

the method of discrete steps and the split-off approximation. We show that

these expressions are valid in relevant regions of the parameter space and that

they can be used to predict locations in parameter space where direction re-

versal occurs. We have concentrated on the ratio 1 : 2 for the periods of the

two sawtooth potentials. However, the formalism presented here can also be

applied to other ratios, albeit some expressions will require modifications due

to changes in the symmetry of the system.

We have demonstrated that our ratchet model offers new opportunities for

the separation of particles in microfluidic devices. In particular, we have shown

that the application of direction reversal can overcome the major drawbacks of

the classical array designs. Therefore, we have proposed two different designs

with significantly reduced system sizes without sacrificing the resolution of the

separation process. Exploiting direction reversal in the non-discrete ratchet

regime allows a reduction of the device to a single channel. Furthermore in

both designs non-localized injection is possible, which leads to an increased

throughput. We demonstrate that the model of the extended on-off ratchet is

able to describe the dynamics of a single particle in the proposed devices. How-

ever, one should bear in mind that the model is a simplification. Many-particle

effects due to electrostatic and hydrodynamic interactions among the particles

are not included. Hydrodynamic interactions between the particles and the

obstacles are also neglected. Furthermore, we have assumed a homogeneous

external force that is not disturbed by the presence of the obstacles.

Our simulation results demonstrate that particles can be separated effec-
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tively in a single channel. It is remarkable that separation can be achieved in

a device that only contains four spatial periods. Given the usual dimensions of

the obstacles in ratchet-based particle separation, the overall size of the simu-

lated device can be estimated as 50µm× 50µm, which is orders of magnitude

smaller than conventional devices. The small size of the proposed channel

design is appealing for application in integrated microfluidic devices. Further-

more, the channel can be parallelized in y-direction, forming two-dimensional

barriers with tunable permeability.
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Pressure-driven vector

chromatography

4.1 Motivation

The substantial requirement for ratchet-based particle separation is a spatial

asymmetry of the system. It is further crucial that particle trajectories bifur-

cate effectively when passing through distinct gaps. As discussed in Sec. 2.4.1,

both requirements are fulfilled if the external force is homogeneous and the

obstacles are permeable to the external force. In this case, the spatial sym-

metry can simply be broken by the shape of the obstacles. In pressure-driven

vector chromatography, however, a pressure difference between two reservoirs

generates a fluid flow through the device. The motion of the immersed parti-

cles is now determined by the pattern of the flow around the obstacles. For

this case, we have shown in Sec. 2.4.3 and 2.4.4 that only particles with a

finite size perceive the presence of the obstacles and bifurcate effectively.

In this chapter, we demonstrate that the bifurcation for finite-size parti-
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cles itself is not sufficient for the occurrence of the ratchet effect. It is further

necessary that the flow field features spatial asymmetry. In this context, it is

shown that impermeable obstacles are not able to break the symmetry signifi-

cantly, even if their shape is asymmteric. In order to overcome this limitation,

we introduce a design that allows a fraction of the flow to penetrate the obsta-

cles through gaps. The immersed particles, however, are sterically excluded

and have to move around the obstacles. We demonstrate that our approach

breaks the symmetry of the fluid flow and facilitates vector chromatography

in pressure-driven flows. For the purpose of a quantitative analysis, we in-

troduce a measure for the asymmetry of the flow field. We further introduce

a ratchet model to predict the induced mean displacements and validate our

predictions by means of Brownian dynamics simulations. In order to calcu-

late the flow fields effectively, we introduce a novel boundary condition for the

Lattice-Boltzmann method.

4.2 Calculation of flow fields in microfluidic

arrays with bidirectional periodicity

For the calculation of the flow fields in this chapter, we use the Lattice-

Boltzmann method (LBM), which has become a versatile tool for the simula-

tion of fluid flows in complex geometries [16, 112]. In the microfluidic devices

studied in this chapter, a pressure gradient between two reservoirs generates

a flow through a two-dimensional array of identical obstacles. In addition, the

array is confined by solid walls. The setup is schematically depicted in Fig. 4.1

(a). The resulting flow field reflects the bidirectional periodicity of the array.

Only in the vicinity of the walls and the reservoirs the periodicity of the flow
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Figure 4.1: (a) Exemplary microfluidic device consisting of an periodic array
of triangular obstacles. A pressure gradient (ρα > ρΩ) drives a fluid flow from
left to right. (b) A single unit cell including the lattice nodes: fluid nodes
(open circles), solid nodes (full circles), and GPBC boundary nodes (crosses).
(c) Lattice vectors ei and distribution functions fi for a single lattice node.
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is not fully established. Due to the large number of obstacles in such arrays,

it is desirable to exploit the periodicity of the system in both directions. This

would allow the reduction of the simulated system to a unit cell containing

only a single obstacle.

With the boundary conditions known in literature, the full periodicity of

the system cannot be exploited if the obstacles are asymmetric with respect to

the x-axis. The depicted triangular obstacles clearly create such asymmetric

scenario. Here, the flow initially adjusts its direction according to the shape

of the obstacles reducing the effective resistance of the array. Hence, a net

flow component perpendicular to the pressure gradient emerges. Due to the

confining walls, this perpendicular flow gives rise to a perpendicular pressure

gradient. This perpendicular pressure gradient increases until the forces re-

sulting from obstacle are balanced and the perpendicular component of the

flow vanishes.

In the following section, we introduce a Lattice-Boltzmann approach that

correctly reflects the effect of the walls on the flow within a single unit cell. The

simulation setup uses an adaptive perpendicular pressure gradient to suppress

the perpendicular flow. This pressure gradient is adjusted through a standard

proportional-differential controller loop, using the cell’s vertical leakage and

momentum as controlling quantities.

4.2.1 The Lattice-Boltzmann algorithm

Within two-dimensional LBM, the simulated system is mapped onto a uniform

lattice of Nx ·Ny lattice nodes with lattice constant δx. The lattice is schemat-

ically depicted for a unit cell of the array in Fig. 4.1 (b). At each node, a

set of nine lattice vectors ei is defined, i.e., the eight vectors pointing to the
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neighboring nodes and a null vector (see panel (c)).1 The state of the system

is then described by a set of distribution functions fi at every lattice node.

The distribution functions fi correspond to the amount of molecules with a

discrete velocity ui = ei/δt, with δt being the time between two simulation

steps. As commonly done in the discussion of LBM, all quantities are in the

following given in units of δx, δt and combinations thereof. The lattice vec-

tors and the corresponding distribution functions are shown in panel Fig. 4.1

(c) for one lattice node. The macroscopic hydrodynamic parameters, namely

density ρ and velocity u, can be calculated from the distribution functions at

each lattice node through

ρ =
8∑

i=0

fi; u =
8∑

i=0

fiei

ρ
. (4.1)

The evolution of the system emerges by repeated application of local rules

for the redistribution of the functions fi at each lattice node. For lattice

nodes that are not subjected to boundary conditions, so-called fluid nodes,

the propagation of the system is defined by the Lattice-Boltzmann equation

fi (r + ei, t + δt)− fi (r, t) = Ω(f). (4.2)

Fluid nodes are represented by open circles in Fig. 4.1 (b). Two processes

contribute to the evolution of the system. First, the populations fi propagate

freely along the lattice links. Second, the populations are redistributed by the

collision operator Ω. The latter reflects the effect of microscopic collisions on

1 This is the most commonly used two-dimensional lattice which is denoted as D2Q9.
For a three-dimensional problems, lattices with either 18 vectors (D3Q18) or 27 vectors
(D3Q27) are used. In the following, all our discussions will be based on a D2Q9-system of
unit vectors, however, extension to other systems is straightforward.
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the evolution on the distribution functions. In this sense, the collision operator

takes dissipation into account. A proper formulation of Ω(f) has to fulfill the

local conservation of mass and momenta. The most commonly used collision

operator is the linear Bhatnagar-Gross-Krook (LBGK) relaxation operator[8]

Ω(f) = −(fi − f eq
i )(r, t)

τ
, (4.3)

with a linear decay to the local equilibrium distribution f eq
i . The relaxation

time τ determines the rate of change towards the local equilibrium and has

to be set to τ > 0.5 for stable decay [102, 74]. It has further been found

that confining the relaxation time to τ < 1 minimizes simulation errors. The

equilibrium distribution f eq
i is defined as a quadratic expansion of the Maxwell-

Boltzmann equilibrium distribution

f eq
i (ρ, u) = wiρ

(
1 +

ei · u
c2
s

+
1

2

(u · ei)
2

c4
s

− 1

2

u2

c2
s

)
. (4.4)

The weight factors wi depend on the chosen set of unit vectors and are derived

under the condition of rotational invariance. Furthermore, the speed of sound

cs is set to cs = 1/
√

3 and relates density to pressure through the equation of

state p = c2
sρ.

Bounce-back mechanism

The propagation of the system described in Eq. (4.2) needs to be adapted for

lattice nodes that are a part of a solid obstacle. Such so-called solid nodes

are represented by full circles in Fig. 4.1 (b). In most cases, solid nodes are

simulated using the bounce-back mechanism [78]. During propagation, the

component of the distribution function that would propagate into the solid
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node is reflected back towards the initial node. This rule results in no-slip

boundary conditions in the middle between both nodes.2

Generalized periodic boundary conditions

As shown in Fig. 4.1 (a), the array of obstacles is confined by outer walls and

connected to reservoirs of different pressures ρα and ρΩ < ρα. The pressure

difference over the system results in a periodic pressure gradient over each unit

cell

ρ(x, y)− ρ(x + Lx, y) = ∆$x (4.5)

with Lx = Nx · δx being the spatial period of the unit cell in x-direction. The

corresponding current through the device, however, is periodic

j(x, y) = j(x + Lx, y). (4.6)

In an asymmetric geometry, a pressure gradient in y-direction

ρ(x, y)− ρ(x, y + Ly) = ∆$y (4.7)

will arise over time. In the fully developed state, it will suppress any net flow

through any horizontal cross section over the unit cell interval such that

j⊥(y) =

∫ x+Lx

x

jy(x, y)dx = 0. (4.8)

The boundary conditions for such a system have to take the periodicity of the

momentum field in x- and y-direction into account. Furthermore, a constant

2The simple and flexible implementation of no-slip boundary conditions even for complex
geometries can be considered as one reason for the widespread popularity of the Lattice-
Boltzmann method.

101



Chapter 4. Pressure-driven vector chromatography

pressure gradient in x-direction driving the flow has to be maintained, while

another pressure gradient in y-direction has to be applied to fulfill j⊥ = 0 in

the fully established state.

For the boundary conditions in x-direction, we use the generalized periodic

boundary conditions (GPBC) that were suggested by Kim et al. [67]. This

approach combines periodic momentum density with a pressure gradient for

one dimension.3 It therefore allows the reduction of the array to a single

row by exploiting its periodicity in x-direction. Fixed average densities are

assumed on the right and left boundary outside the unit cell: ρ(x = 0) = ρL

and ρ(x = Lx + δx) = ρR. Those lattice nodes lying outside the unit cell at

x = 0 and x = Lx + δx are represented by crosses in Fig. 4.1 (b). It should

be noticed that the externally applied density difference ∆ρx = ρL− ρR is not

identical to the periodic density gradient ∆$x, since it is taken over a distance

Lx + δx slightly larger than the unit cell. Fluctuations in the pressure along

the vertical boundaries are carried onward

ρ(0, y) = ρL + ρ(Lx, y)− ρ(Lx),

ρ(Lx + δx, y) = ρR + ρ(δx, y)− ρ(δx). (4.9)

The average densities on the inner boundaries of the unit cell, ρ(x = δx) and

ρ(x = Lx), are not pre-defined but taken from the simulation. The velocity on

3In earlier works, a pressure gradient was often replaced by a body force akin to gravity.
Such a force alters the equilibrium distribution, and hence simple periodic boundary condi-
tions could be used. This approach however requires a uniform cross-sectional area of the
system to give correct results. Generalised periodic boundary conditions for periodic flow
velocities [120] and momentum densities [67] with pressure gradients allow to simulate such
geometries without having to resort to a body force.
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the vertical boundaries, given these pressures and the periodicity condition, is

u(0, y) =
ρ(Lx, y)

ρ(0, y)
u(Lx, y),

u(Lx + δx, y) =
ρ(δx, y)

ρ(Lx + δx, y)
u(δx, y). (4.10)

The distribution functions on the corresponding nodes are given by the sum

of the equilibrium distribution of the known density and velocity, and the

non-equilibrium distribution of the corresponding periodic node

fi(0, y) = f eq
i (ρ(0, y), u(0, y)) + fi(Lx, y)− f eq

i (Lx, y),

fi(Lx + δx, y) = f eq
i (ρ(Lx + δx, y), u(Lx + δx, y))

+fi(δx, y)− f eq
i (δx, y). (4.11)

Adaptive generalized periodic boundary conditions

For the boundary conditions in y-direction, we also use GPBC. As opposed to

the x-direction, the pressure gradient between the top and bottom boundary

nodes ∆ρy = ρB− ρT is not constant, but is adjusted to suppress j⊥. We refer

to these boundary conditions in the following as adaptive generalised periodic

boundary conditions (AGPBC).

Densities, velocities and distributions on the upper and lower boundary

nodes with y = Ly +δx and y = 0, respectively, are defined in analogy to Eqns.

(4.9-4.11). The density on the corner nodes is given through the periodicity
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conditions:

ρ(0, 0) = ρ(Lx, Ly) + ∆$x + ∆$y (4.12)

ρ(Lx + δx, 0) = ρ(δx, Ly)−∆$x + ∆$y

ρ(0, Ly + δx) = ρ(Lx, δx) + ∆$x −∆$y

ρ(Lx + δx, Ly + δx) = ρ(δx, δx)−∆$x −∆$y.

Since ∆$x is not an a priori known quantity, it has to be measured within

the simulation, and the result will only be applicable in the fully developed

state.

In the following, we introduce a controller algorithm to adapt ρB and ρT.

In general terms, the average density on both boundaries needs to be adapted

in order to suppress j⊥. In a fully developed flow, Eq. (4.8) has to hold for

any row y. Alternatively, we can require the total perpendicular momentum

of the fluid in the unit cell

jtot
y =

∫

V

jydxdy

=
Nx∑

k=1

Ny∑

l=1

8∑

i=0

ey · eifi(kδx, lδx) (4.13)

and the net leakage through the upper and lower walls of the cell

Φy =

∮

∂V

jyeydo

=
Nx∑

k=1

(
∑

m=2,5,6

fi(kδx, Ly)− fi(kδx, 0)

+
∑

i=4,7,8

fi(kδx, δx)− fi(kδx, Ly + δx)

)
(4.14)
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to vanish separately. The total perpendicular momentum jtot
y is a much better

control quantity than the flow through a single line since it is less affected

by fluctuations traveling through the liquid while the flow is developing. We

control jtot
y through the density difference ∆ρy and Φy through the density at

the lower boundary ρB, which each are adjusted using a standard PD controller

algorithm [32], such that

− d

dt
∆ρy = Kd

d

dt
jtot
y + Kpj

tot
y (4.15)

and accordingly for ρB and Φy.

4.2.2 Validation of the method

In order to be able to evaluate the precision of our proposed adaptive boundary

conditions, a reference system needs to be defined. We will take this reference

from a system that contains one complete row of obstacles in y-direction in-

cluding, the confining walls. The effects of the walls on the flow are hence fully

captured, although finite size effects limiting the periodicity may arise.

Consider the array of obstacles shown in Fig. 4.1 (a). Using GPBC in

x-direction, this array can be reduced to a 1 ·My array. Each unit cell contains

a solid triangular obstacle. We choose My = 7, which is enough to achieve

sufficient periodicity at the inner cells and can still be easily simulated with

modern computers. A unit cell grid of Nx = Ny = 200 lattice nodes is used.

The LBM relaxation time is set to τ = 0.8, corresponding to a kinematic

viscosity of ν = δx2/10δt. Using the resulting average flow velocity and the

horizontal length of the obstacle as characteristic length and velocity, this

setup corresponds to a Reynolds number of Re ≈ 10−1. This is an approximate
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upper boundary for our method since above this threshold, time dependencies

– albeit very small ones – make it impossible to compare the accuracy in the

stationary case at the achieved level. As we will see later in this chapter,

the discussed microfluidic devices work in regimes with Reynolds numbers

significantly below this threshold.

The value of ∆ρy was adjusted using Kd = 0.8 · 10−5 and Kp = 0.8 · 10−6,

while Kd = 0.5·10−5 and Kp = 0.5·10−4 were used for controlling ρB. Initially,

the fluid in the system is inert. The simulation is run for 4 · 105 steps. The

controller loop was started after an initialisation period of 104 steps, to avoid

initial effects affecting the control variables. In the following, we use the central

unit cell of this array as our reference system. Density averages at x = 0 and

x = Lx + δx are set to 1.00001 and 1.0 respectively.

Note that the average density difference ∆ρx calculated over the entire row

of seven unit cells (i.e., averaging from y = δx to y = My ·Ly) is kept fixed. The

flow velocities however vary due to the friction at the confining walls. To be

precise, the flow in the inner cell, the reference system, is faster than the flow

in cells closer to the walls. Only considering the middle cell, the flow seems to

be driven by an increased effective pressure gradient (∆ρeff
x > ∆ρx). This error

is a finite size effect intrinsic to the reference system and is not related to the

single cells’ setup. It vanishes with increasing number of obstacles within the

row. We have to keep this deviation in mind for the subsequent comparison

of both systems.

In the following, we use the reference system to test the accuracy of a single

unit cell using AGPBC. For comparison, we also show the results for a cell

that also uses GPBC in x- but simple periodic boundary conditions (SPBC)

in y-direction. The resulting flow isolines |v| after 3 · 105 simulation steps are
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Figure 4.2: Flow isolines |u| of the reference system (thick gray lines) and the
single cell (thin black lines) (a) with AGPBC (b) with SPBC. In both panels,
velocity isolines are spaced by 4 · 10−5δx/δt. The factors at the bottom left
side indicate the order of magnitude.

Figure 4.3: Relative deviations ε between the reference system and the single
cell using AGPBC. (a) ∆ρx is equal for the reference system and the single
cell. (b) The effective pressure gradient ∆ρeff

x of the reference system is applied
to the single cell. The factors at the bottom left side indicate the order of
magnitude.

shown in Fig. 4.2. Here, panel (a) shows the results for AGPBC, while panel

(b) gives the isolines for SPBC. In both panels, the isolines of the control

system are depicted as thicker gray lines. Results for AGPBC coincide with

the control system to a degree where the isolines become indistinguishable. In

contrast, deviations are clearly visible for SPBC. Here, the deviations in the

velocity are of the same order of magnitude as the average flow velocity. The

significant deviations are expected, since SPBC completely ignore the effects

of asymmetric obstacles.

To quantify the deviations, we introduce the measure ε for the relative
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error

ε =

(
(|u|− |uref |)2

u2
ref

)1/2

, (4.16)

with the mean square flow velocity u2
ref averaged over of the complete reference

cell. The corresponding error data is shown in Fig. 4.3. Panel (a) shows the

deviations between the reference system and the system with AGPBC. The

errors are of the order 10−4. Evidently, the error in the velocity appears to

be proportional to the velocity itself, indicating that it may stem from the

small difference in the pressure gradient ∆ρx discussed above. To test this

hypothesis, we simulate the AGPBC system and apply the effective pressure

gradient ∆ρeff
x of the reference system. As shown in panel (b), the resulting

error is reduced by several orders of magnitude, showing that the originally

observed error was caused by the mismatch in ∆ρx. Furthermore, such an error

is of a particular type, since only the flow velocity but not the flow pattern

is altered. In fact, a simple rescaling of the flow velocities in order to match

the density gradients would suffice to reduce the error by the same order of

magnitude (data not shown).

The time evolution of the adaptive density gradient is shown in Fig. 4.4

(a). After the initialisation period, a very short period with strong fluctua-

tions follows. Compared with the density gradient over the reference system,

the adaptive density gradient thereafter converges faster and with smaller fluc-

tuations against its long time limit. Notably, the density difference over the

outermost cells differs significantly. This is caused by the presence of the solid

outer walls, which slow down the flow considerably. However, already for our

seven-cell system, such deviations occur only for the cells in direct contact with

the solid walls. Density differences over all unit cells are shown in Figure 4.4
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Figure 4.4: (a) Evolution of the density difference ∆ρy for the adaptive system
(solid line) compared to the density difference over the topmost (◦), central
(+) and bottommost (2) unit cells of the row. (b) Steady state values of
the density difference over different unit cells of the row ("), with the applied
adaptive difference ∆ρy (dashed, between nodes 0 and 201) and the resulting
periodic difference ∆$y (solid, between nodes 1 and 201) as horizontal lines.

(b) for the long time limit when numerical accuracy was reached (t ≈ 4·105δt).

The differences over all inner cells are virtually identical and agree very well

with the resulting ∆$y over the unit cell with AGPBC.
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4.3 Ratchet-based particle separation in asym-

metric flow fields

In this section, we begin with a discussion of the flow around completely im-

permeable obstacles, similar to those used in conventional devices. We show

that the corresponding flow fields are lacking the required asymmetry. Subse-

quently, we introduce a novel type of obstacles, which are partially permeable

for the fluid flow and therefore generate asymmetric flows. We investigate how

and to what extent the symmetry of the flow is broken. We furthermore es-

timate the key characteristics of the separation process by applying standard

Brownian ratchet theory and validate the theoretical predictions by means of

Brownian dynamics simulations.

4.3.1 Breaking the symmetry of flow fields

The setups of the simulated devices are similar to the one depicted in Fig.

4.1 (a). An periodic array of obstacles is confined by two walls in y-direction

and connected to reservoirs with different pressures at each end of the device.

As a consequence, a fluid flow is generated through the array in x-direction.

We determine the flow fields by means of the Lattice-Boltzmann Method using

the adaptive generalized periodic boundary condition that has been introduced

in the previous section. The unit cell of the array has spatial extensions

Lx and Ly and contains a single obstacle. The constant pressure difference

∆ρx that drives the fluid flow is taken into account via generalized boundary

conditions. Furthermore, a self-adjusting pressure gradient ∆ρy in y-direction

develops during the calculation, in order to match a zero net flow condition in

that direction. As discussed in the previous section, this additional pressure
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gradient mimics the effect of the confining walls of the device.

In Fig. 4.5 (a), the flow field for an impermeable, wedge-shaped obstacle

is depicted using stream lines. One side of the wedge is parallel to the x-axis

while the other is inclined by π/3. The gap between two adjacent obstacles

in x and y-direction is given as δx and δy, respectively.4 The shape has an

asymmetry with respect to the y-axis, however, the flow around this obstacle

lacks the required asymmetry.

In oder to understand why the flow around such an impermeable obstacle is

not suitable for pressure driven vector chromatography, the underlying ratchet

mechanism needs to be understood. We therefore consider a particle that

passes the gap at (x=0, y =0). Without diffusion, this particle would follow

the stream line y0 as indicated in Fig. 4.5 (a) throughout the device and no

inclination would occur. For diffusing particles, however, there is a probability

p+1 to diffuse into the stream S+ before reaching the next row of obstacles

at x = δx. In this case, the particle passes through the gap at (Lx, Ly).

Accordingly, p−1 denotes the probability for the particle to diffuse into the

stream S− and hence pass the gap at (Lx,−Ly). Each time the particle passes

a row of obstacles, it experiences a mean displacement of

〈∆y〉 = (p+1 − p−1)Ly (4.17)

in y-direction. For the ratchet effect, i.e., for a non-zero mean displacement,

the probabilities need to be biased. The streams S+ and S− are demarcated

from the stream S0 by the lines y+ and y−, respectively. For the depicted flow

pattern around the obstacle, however, the distances |y+ − y0| and |y− − y0|
4A resolution of 400 lattice nodes per δx has been used to calculate the flow. Furthermore,

it has been checked that the results are indepent on the resolution.
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Figure 4.5: (a) Stream lines of the flow field for a solid, wedge-shaped obstacle
with δy = 3δp. The dark grey objects represent impermeable structures. The
green, grey, and blue streams indicate the fractions S−, S0, and S+ of the flow
that pass through the gaps at y = −Ly, 0 and Ly, respectively. The black
lines y+ and y− demarcate the streams S+ and S− from S0, respectively. The
black line y0 indicates the stream line that passes the gaps at y = 0. (b) Same
as in (a) but for the proposed obstacle. The streams S ′0, S ′+ and S ′− indicate
the fractions of the flow that penetrates the obstacles. (c) Same as in (b) but
for the extended version of the proposed obstacle with N = 4.
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are similar for most of the interval between two obstacles. As a consequence,

the probabilities are virtually unbiased and the mean trajectory will not be

inclined.

In Fig. 4.5 (b), the flow field for our proposed design is shown. The diagonal

side of the wedge is replaced by a row of four spherical pillars with radius σp,

such that the values for δy and Ly are unchanged. The distance between two

adjacent pillars is δp. In this chapter, the parameters are chosen such that

δp = σp. The change of the design allows the stream S ′0 to penetrate the

obstacle. For particles with radius σ larger than δp/2, this additional stream

breaks the symmetry of the flow pattern, since now |y+ − y0| < |y− − y0| and

hence p+1 > p−1. As a consequence, the particle experiences a non-zero mean

displacement each time it passes a row of obstacles, and the mean trajectory is

hence inclined. For a quantitative discussion of the asymmetry, we introduce

the dimensionless parameter

a = |y+ − y0|/Ly (4.18)

at x = δx/2, i.e., in the middle between two rows of obstacles.5 Accordingly,

the asymmetry of the flow is a = 0.38 for our proposed design and a = 0.5

for the solid obstacle.6 Note that a value of 0.5 indicates a symmetric system,

5The value of the asymmetry parameter a depends on the actual x-position. In Fig. 4.5
one can see that a becomes smaller if it is measured closer to x = δx. We chose to determine
a at x = δx/2, because the resulting values holds for most x-positions. Furthermore, the
deviations close to the obstacle decrease for larger distances δx. In this sense, our definition
of the asymmetry parameter can be considered as a long distance limit.

6The symmetry of the flow field around the impermeable obstacles sheds some light one
the discrepancy between experimental results and theoretical predictions that occurred for
ratchet-based particle separation [19, 54]. In the models, the geometrical asymmetry of
the obstacle, as defined in Fig. 2.7, were used. We have shown now, that the asymme-
try of the flow field is relevant for the separation process. The values of the geometrical
asymmetry of the obstacles are smaller than the those of the resulting flow field. Using
the geometrical asymmetry in the ratchet model therefore leads to an overestimation of the
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Figure 4.6: (a) Asymmetry parameter a as a function of the gap width δy. The
gap width is given in multiples of the distance between two adjacent pillars δp.
(b) Asymmetry parameter a as a function of the number of pillars N in the
additional horizontal row. The gap width is 4δp (upper line) and 3δp (lower
line).

while smaller values of a indicate more asymmetric flows.

In Fig. 4.6 (a), the asymmetry parameter a for the proposed obstacle is

shown as a function of the gap width δy. The asymmetry parameter decreases

for smaller gap widths δy, i.e., the asymmetry of the flow pattern increases.

For smaller gap widths, a larger fraction of the flow penetrates the obstacle,

which leads to an increased distance between the y0 and the y− line and hence

a smaller value for the asymmetry parameter a.

For a larger bias of the probabilities, the flow needs to be more asymmetric.

We therefore modify the design in order to allow a wider range of values for a.

As depicted in Fig. 4.5 (c), the proposed design is extended by an additional

mean displacement.
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horizontal row of N spherical pillars, which connects to the upper end of the

diagonal row. The horizontal side of the wedge is elongated such that its

extension in x-direction matches the added horizontal row of pillars. The

corresponding flow is depicted in Fig. 4.5 (c). The additional horizontal row

allows a larger fraction of the flow to penetrate the obstacle without changing

Ly and hence increases the asymmetry of the flow pattern. In Fig. 4.6 (b),

the asymmetry parameter a is shown as a function of the number of pillars

N in the horizontal row. For N > 6 and δy = 3δp, the asymmetry parameter

decreases to remarkably small values below 0.1.

4.3.2 Ratchet model

The probabilities pn for a particle to diffuse into the stream Sn and hence the

mean displacement 〈∆y〉 can be approximated by means of Brownian ratchet

theory [3, 36]. In such a model, the ratchet behavior of a particle is completely

determined by the asymmetry parameter a and the rescaled off-time

τoff = δxD/(vxL
2
y) (4.19)

with vx being the average velocity of the flow in x-direction and D the diffusion

constant of the particle. For spherical particles, the diffusion constant is re-

lated to the friction coefficient γ and the radius σ through the Stokes-Einstein

relation D = kBT/γ = kBT/(6πησ), with η being the viscosity of the fluid.

Note that δx/vx is the average time that the particle needs to travel from a gap

to the next row of obstacles. The rescaled diffusion constant hence compares

the travel time δx/vx with the typical time L2
y/D for a particle to cover the

distance Ly by diffusion.
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As previously discussed, the y-position of the particle at the moment it

reaches the next row of obstacles determines through which gap it passes. The

probability density function P(ȳ) to find a particle displaced by the rescaled

distance ȳ = (y− y0)/Ly from the flow line y0 at the position δx is assumed to

be given by a normal distribution

P(ȳ) =
1√

4πτoff
exp

(
− ȳ2

4τoff

)
. (4.20)

Accordingly, the probabilities pn for a particle to be in the stream Sn at x = δx

and hence to pass through the gap at (Lx, nLy) are given by integrating P (ȳ),

so that

pn =

∫ n+a

n−1+a

P(ȳ)dȳ. (4.21)

The mean displacement is hence given by

〈∆y〉 = Ly

∞∑

n=−∞
n pn, (4.22)

which is a more general expression of Eq. (4.17). For very small values of

the rescaled diffusion constant, the probabilities to reach adjacent gaps vanish

and zero mean displacement occurs. For increasing values of τoff, the mean

displacement increases monotonously and reaches its maximum value

〈∆y〉max = (1/2− a) Ly (4.23)

which is solely determined by the asymmetry parameter. Note that this model

assumes parallel stream lines in the range 0 < x < δx. Therefore effects of

the shear flow in the vicinity of the obstacles are not taken into account.
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Further, effects due to the finite size of the particle as discussed in Sec. 2.4.4

are neglected. Diffusion in x-direction is also neglected, since only the average

travel time δx/vx is considered.

4.3.3 Brownian dynamics simulations

In order to validate the theoretical predictions and the feasibility of the sep-

aration process, Brownian dynamics simulations of spherical particles in the

discussed flow fields were carried out. The simulation of a finite-size particle in

shear flow and in the presence of non-trivial boundary conditions is a complex

problem, because the involved effects occur on a wide range of time-scales.

Since we are interested in particle trajectories that pass a large number of ob-

stacles, it is impossible to fully resolve hydrodynamic effects that happen on

much shorter time scales. We therefore have to assume that the presence of a

suspended particle does not alter the flow field. In other words, the flow field

is solely determined by the obstacles. For the interaction with the obstacles,

however, the particles have a finite size.

Under these assumptions, the two-dimensional trajectories r(t) = (x(t), y(t))

of suspended particles are governed by the overdamped Langevin equation

ṙ = γ−1 [f obs(r) + ξ(t)] + u(r). (4.24)

The components ξi of the random force ξ are unbiased, so that 〈ξi(t)〉 = 0,

and obey the fluctuation-dissipation theorem

〈ξi(t)ξj(t
′)〉 = 2γkBT δijδ(t− t′). (4.25)
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The force f obs is determined by the interaction potential between the parti-

cles and the pillars, which is modeled by a short-ranged, repulsive potential

Vobs(d) ∼ d−12 with d being the closest distance between the surfaces of the

particle and the obstacle. The proportionality factor is chosen such that the

minimal distance during the simulations is approximately 0.01 δp. The dis-

placement of the particle due to the fluid flow is equal to the velocity u(r)

of the fluid at the center of the particle. For the numerical integration of the

Langevin equation we use a standard Euler approach with an adaptive time

step algorithm.

We simulated particle trajectories in a system with N = 8 and δy = 4 δp.

The corresponding flow field has an asymmetry of a = 0.17 according to the

data in Fig. 4.6 (b). With the radius of the pillars set to σp = 0.5 µm, the

system has the spatial dimensions δy = 2 µm, δx = 20 µm, Lx = 32 µm and

Ly = 8.2 µm. Flow velocities in the range from vx = 0.36 µms−1 to 36 µms−1

have been simulated. The corresponding Reynolds numbers Re = vxLyρ/η

are in the range between 10−6 and 10−4 and hence completely in the Stokes

regime. In this hydrodynamic regime, the flow pattern is independent of the

pressure gradient ∆px. Hence, it is sufficient to scale the velocity field u(r) in

order to achieve the desired average velocity vx. The resulting rescaled mean

displacement 〈∆y〉/Ly is depicted in Fig. 4.7 (a) as a function of the rescaled

off-time τoff for four particle radii σ. The data reveals two operational regimes,

depending on the particle size. In the first regime, with particle sizes larger

than the inter-pillar distance 2σ > δp, the results agree with the prediction of

ratchet theory in Eq. (4.22). In particular, the mean displacement converges

closely to the maximum value 〈∆y〉max/Ly = 0.33 for large values of τoff, as

predicted in Eq. (4.23). This behavior indicates that the symmetry of the
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Figure 4.7: Brownian dynamics simulation data for a system with N = 8,
δy = 4 δp and δp = 0.5 µm and for several particle radii: σ = 0.1 µm (#),
0.5 µm ("), 0.7 µm (◦) and 0.9 µm (2). (a) The rescaled mean displacement
〈∆y〉/Ly as a function of the rescaled diffusion constant D. The solid line refers
to the Brownian ratchet model. The dashed line indicates the maximum value
〈∆y〉max. (b) Same data as in (a) but as a function of the flow velocity vx.
(c) Probability P (ny) for the particle to be displaced by ny gaps in y-direction
after having passed 1000 rows.The symbols refer to the simulation results,
while the solid line refers to the corresponding binomial distributions.
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flow field is indeed broken as predicted and that the ratchet effect occurs. In

Fig. 4.7 (b), the same data is depicted as a function of the flow velocity vx.

For a certain value of vx, the mean displacement decreases with larger particle

sizes. This particle size dependence of the mean displacement facilitates vector

chromatography, since the trajectories of particles with different radii point

towards different directions.

In the second regime, with particle sizes smaller than the inter-pillar dis-

tance 2σ < δp, the particle trajectories are not significantly inclined. Particles

of that size can pass between the pillars. As a consequence, they perceive each

pillar as an individual impermeable obstacle. Since individual pillars are not

able to break the symmetry of the flow pattern, the mean trajectories are not

expected to be inclined. The small values observed for 〈∆y〉/Ly in that region

may rise from finite-size effects, as discussed in Sec. 2.4.4 and Ref. [53].

Assuming that all probabilities but p+1 and p0 are negligible, the rescaled

mean displacement 〈∆y〉/Ly is equal to p+1. The probability to find the par-

ticle displaced by ny gaps in y-direction after having passed nx rows in x-

direction is hence given by a binomial distribution. In Fig. 4.7 (c), the numer-

ical results for vx = 3.6 µms−1 are compared with the corresponding binomial

distributions for nx = 1000. For 2σ > δp the numerical data is well described

by binomial distributions. For 2σ < δp, however, the numerical results clearly

deviate from the binomial distribution. This further indicates that the behav-

ior of particles in this regime is not described by the discussed ratchet effect.

The results in this figure demonstrate that vector chromatography can be ef-

fectively realized in such a device, since the distributions for the three particle

sizes that operate in the first regime are clearly distinguishable and completely

separated from the distribution for the particle size that operate in the second
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Figure 4.8: Position of fixed particles with radius σ = 1.8 δp, that have been
used to estimate the effect of finite-size particles on the asymmetry of the
flow. The horizontal dashed lines indicate the extension of the unit cell in
y-direction.

regime.

The applicability of the proposed method is limited by two conditions.

First, the flow has to be in the regime of low Reynolds numbers, which is

virtually always the case for microfluidic flows. Second, diffusion needs to be

sufficiently strong to induce non-zero mean displacements. For the investigated

system with N = 8 and δy = 4δp, this requirement translates to the condition

τoff > 0.005 for the rescaled diffusion constant (see. Fig. 3 (a)). For the studied

flow velocity vx = 3.6 µms−1, the latter condition gives an upper bound of

about δp = 1.3 µm for the system size. Note that larger values of δx raise

this upper bound. The advantage of the proposed method, however, is that

no lower bound for the system size exists. In fact, the separation becomes

more efficient for smaller system sizes, as diffusion is the driving process of the

separation mechanism.

We conclude with brief remarks on two approximations used in this chapter.

First, the effect of suspended particles on the asymmetry of the flow has been

neglected. In order to get an upper bound for this effect, we placed a fixed

particle at several positions indicated in Fig. 4.8 and recalculated the flow for

a system with N = 8 and δy = 4δp. For this purpose, we used particles with

121



Chapter 4. Pressure-driven vector chromatography

Table 4.1: Asymmetry parameters a of the perturbed by a fixed, finite-size
particle at the positions indicated in Fig. 4.8. The data is based on simulations
with N = 8 and δy = 4δp. The last row gives the value for the unperturbed
flow without any particle.

position index asymmetry a
1 0.169
2 0.170
3 0.173
4 0.166

unperturbed 0.169

σ = 1.8 δp which is the largest radius that has been investigated in this chapter.

We limit the analysis on particles placed in front of the obstacle. Here, their

motion is hindered by the pillars and the particles act approximately as fixed

objects. Since fixed particles have a larger impact on the flow pattern than

suspended ones, this approach is sufficient to estimate the maximal impact.

The obtained asymmetries are shown in Table 4.1 and reveal a maximum

deviation of about 3 % to the unperturbed flow. This estimate indicates that

finite-size particles slightly affect the asymmetry of the flow, however, the

magnitude of their impact is clearly not sufficient to impede the discussed

symmetry breaking.

Second, the effect of other interactions between particles and obstacles

has not been discussed in this chapter, although other types , e.g., screened

electrostatic interactions, might be relevant in the considered systems. For

our separation process, additional repulsive interactions allow larger inter-

pillar distances for a given particle size. In fact, the repulsion simply increases

the effective radius of the particles. The range of separable particles is hence

shifted towards smaller sizes. For long-ranged potentials, the effective size

however depends on the flow velocity, as repulsive forces from the obstacles can
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be compensated by faster flow rates. In this case, particles are pushed through

the gaps surpassing a potential maximum. We hence chose the quasi-hardcore

potential (d−12), whose effect is virtually independent of the flow velocity. We

want to highlight that the asymmetry of the flow is determined by the geometry

of the obstacle and hence independent of the actual type of interaction. Any

interaction between particles and obstacles that excludes particles from the

inside of the obstacle is sufficient for the separation mechanism.

4.4 Conclusions

In summary, a mechanism has been introduced that facilitates pressure driven

vector chromatography based on the ratchet effect. The key feature of the

proposed design is the penetration of a certain fraction of the fluid flow through

the obstacles, which results in a non-zero normal force at the surface of the

obstacles for sterically excluded particles. This approach breaks the symmetry

of the flow pattern. Highly asymmetric flow patterns can be achieved with the

proposed extension of the obstacle design.

For an experimental realization the actual design may differ from the pro-

posed one, as long as the conceptual key features are maintained. We are con-

vinced that the discussed example can be realized with available lithographic

methods. However, the uniformity of the array and the required aspect ratios

of the pillars pose a challenge. It needs to be stressed, that any technological

progress that allows the fabrication of smaller obstacle sizes would immediately

lead to improved separation characteristics.

The proposed ratchet based separation approach has to be compared with

existing pressure driven methods such as continuous separation through deter-
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ministic lateral displacement [53, 56, 57]. The method has been successfully

demonstrated for particle sizes in the order of 1 µm. However, the underlying

deterministic separation mechanism is perturbed by diffusion. Therefore, high

flow velocities were necessary in order to suppress negative effects of diffusion.

Since it is not possible in microfluidic devices to increase the flow velocity to

arbitrary values, there exists a lower bound for the particle sizes that can be

separated by that method. In contrast, the proposed ratchet-based mechanism

has in principle no lower bound for the particle size and therefore extends the

range of separable particles to smaller sizes.
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Enhanced ratchet effect induced

by hydrodynamic interactions

5.1 Motivation

A wide range of collective effects in ratchet systems has been investigated in

literature. In those studies it has been reported that coupling among particles

significantly influence the magnitude of the induced mean velocity as well

as the direction [4, 6, 17, 75, 101, 107]. Hydrodynamic coupling of colloidal

particles in ratchet systems has however attracted only minor interest. This

seems to be surprising, as hydrodynamic interactions are, in some sense, the

intrinsic coupling in colloidal systems. Effects of hydrodynamic interactions

on ratchet systems have so far been investigated only in two numerical studies.

In the first study, hydrodynamic coupling was included in the ASEP model

for the dynamics of Brownian motors [51]. In the second study, hydrodynamic

interactions were included in Brownian dynamics simulations of a harmonically

coupled dimer in a ratchet potential [43]. Both studies reported significantly
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increased mean velocities of the Brownian motors and dimers, respectively,

due to hydrodynamic coupling. However, a microscopic understanding of the

mechanism enhancing the ratchet effect was not given in either of both studies.

One collective effect that appears particularly interesting in view of ratchet

systems, has been studied by Lutz et al. [87]. Here, colloidal particles moved

under the influence of a tilted sawtooth potential in a toroidal trap setup. A

caterpillar-like motion pattern was observed for a pair of particles. The pat-

tern is caused by a repetitive sequence of hydrodynamic interactions as shown

in Fig. 5.1. Initially, particle A is trapped in a minimum of the potential,

while particle B drifts towards the same minimum. Due to hydrodynamic in-

teractions particle A is pushed over the maximum of the potential and drifts

to the next minimum. While doing so, it will drag particle B over the maxi-

mum. As soon as particle A reaches the next minimum, one caterpillar cycle

is completed. As a result, the particles move with a significantly increased

mean velocity compared to a single particle in the same potential. It has yet

not been investigated whether hydrodynamic coupling is able to cause similar

motional pattern in ratchet systems.

In this chapter, we study numerically how pure hydrodynamic coupling

influences the dynamics of colloidal particles in a fluctuating ratchet potential

within a toroidal trap. We use the Rotne-Prager approximation to incorpo-

rate hydrodynamic interactions in our Brownian dynamics simulations. For

spatially constant transition rates, we demonstrate that hydrodynamic inter-

actions increase the mean velocities only if the particles change their ratchet

state individually rather than simultaneously. We explain the mechanisms how

hydrodynamic coupling among particles in different ratchet states causes the

enhanced ratchet effect. For localized transition rates, we show that hydro-
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Figure 5.1: Sequence of interactions for caterpillar-like motion of a pair of
colloidal particles in a static tilted sawtooth potential. The front and rear
particle is labeled A and B, respectively. The arrows show the drift direction
due to the potential and the grey arcs symbolize hydrodynamic interactions
between the particles. The picture is explained in detail in the main text.

dynamic interactions can induce the formation of transient clusters traveling

with velocities more than ten times faster than a single particle. Further, we

identify the underlying sequence of hydrodynamic interactions causing the ob-

served cluster formation. This cluster formation indeed has some remarkable

reminiscence of the discussed caterpillar-like motion.

5.2 Model and numerical implementation

We choose a toroidal trap as a model system since such a system has already

been used for related numerical studies of hydrodynamic phenomena in col-

loidal systems and has been realized experimentally [39, 103]. In particular,

the experiments with colloids in a tilted sawtooth potential have been done in

a toroidal trap [87].
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5.2.1 Toroidal trap

The toroidal trap contains N spherical particles with radius σ. Their positions

are specified by cylindrical coordinates (r,φ, z) and r is the positional vector.

A harmonic trap potential Vtrap of the form

Vtrap =
A

2

[
(r −R)2 + z2

]
(5.1)

keeps the particles on a circle with radius R. In the following, we chose A such

that the particles are not able to change their sequential order.

The interaction between the particles is modeled with a soft repulsive po-

tential Vrep of the form

Vrep = B

[(rij

2σ

)12

− 1

]−1

. (5.2)

as introduced in Eq. 2.87. Here, rij = |ri − rj| is the center-center distance

between particles i and j. In the following, we chose B such that the minimal

distance during the simulations is approximately 3σ. A trap with radius R =

20σ and 30 particles is depicted in Fig. 5.2 (a).

5.2.2 Ratchet potential and transition rates

A sawtooth-type ratchet potential Vrat(φ, t) is imposed in tangential direction.

As illustrated in Fig. 5.2 (b), the ratchet potential is characterized by the

angular period Lφ, the asymmetry parameter a, and the amplitude V̂rat (see

also Eq. (2.47)). The number of potential minima Nmin determines the angular

period Lφ = 2π/Nmin and the asymmetry parameter a is defined as the ratio

between the width of the short side of the sawtooth and the period Lφ. Finally,
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Figure 5.2: (a) Toroidal trap with N = 30 particles and radius R = 20σ. A
ratchet potential with Nmin = 20 minima and asymmetry parameter a = 0.1
is schematically indicated. (b) The two states of the ratchet potential Vrat:
the off-state with zero potential and the on-state with a sawtooth potential
characterized by the angular period Lφ, the potential amplitude V̂rat, and the
asymmetry parameter a. The stochastic transition between both states is
governed by the transition rates ωon and ωoff.

for a given trap radius R, the spatial period of the sawtooth potential is

L = RLφ = 2πR/Nmin.

As discussed in Sec. 2.3.3, several models for the time-dependence of the

ratchet potential are known in literature. In this chapter, we use a fluctuat-

ing ratchet potential. In such a ratchet, the potential changes stochastically

between two states: the on-state, in which the particle feels a force according

to the ratchet potential Vrat, and the off-state, in which the particle diffuses
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freely along the trap. The transition between both states is governed by the

rates ωon and ωoff. We investigate two different scenarios for the stochastic

transitions. In the first scenario, the ratchet state changes simultaneously for

all particles and they are always in the same state. In the second scenario,

each particle changes its state individually. As a consequence, particles in dif-

ferent states coexist in the trap. We further introduce the position-dependent

transition rate ω̂off(φ) such that the rate is increased to ωoff b in a narrow inter-

val around each minimum, while it is decreased to ωoff/b anywhere else along

the circle. The interval has the width of 1 deg and is centered around each

minimum. This position dependence localizes the transitions from the on to

the off-state in the vicinity of the potential minima. The parameter b > 1

defines the strength of this localization. For b = 1, the transition rate does

not depend on the particle position.

For all simulations, we set the potential amplitude to V̂rat/kBT = 100 where

kBT is the thermal energy. As a consequence, the induced drift by the ratchet

potential dominates the motion of particles in the on-state.

5.2.3 Hydrodynamic interactions

As discussed in Sec. 2.5.1, forces acting on particles also influence all the

other particles through induced flow fields. Due to the linearity of the Stokes

equations, the translational velocities ṙi depend linearly on the external forces

f j acting on all particles. The velocity of particle i can be written as

ṙi =
N∑

j=1

µij(r1, . . . , rN)f j. (5.3)
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The hydrodynamic coupling of the translating particles is described by 3 × 3

mobility tensors µij.

In our quasi-one-dimensional system, hydrodynamic interaction mainly has

the following effects. Consider three particles in the toroidal trap, with the

particle in the middle being driven by an external force along the channel.

The two adjacent particles only feel the trap potential. Whereas the particle

in the middle pushes the preceding particle forward by its drift motion, due to

hydrodynamic interaction it can also pull the succeeding particle forward for

a certain time.

5.2.4 Langevin equation

The total external force on particle i is given by the sum of the trap force,

the repulsive forces, and the ratchet force which we derive from the potentials

defined in Eqs. (5.1), (5.2), and in Sec. 5.2.2:

f i = f trap,i + f rat,i +
∑

j

f rep,ij. (5.4)

In analogy to Sec. 2.5.3, we combine the individual forces f i and positions

ri of the particles to the 3N -dimensional vectors f = (f 1, . . . ,fN) and r =

(r1, . . . , rN), respectively. Then, the particle trajectories of the N particle

system are governed by the Langevin equation

Z(r) ṙ = f(r, t) + ξ(t). (5.5)
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Table 5.1: List of simulation parameters and the corresponding time and ve-
locity scales. The diffusion time is given for a = 0.1.

Particle radius σ 0.5 µm
Trap radius R 10 µm
Trap coefficient A 5 · 10−7 Nm−1

Repulsion coefficient B 7.5 · 10−19 Nm
Temperature T 300 K
Viscosity η 10−3 Pa s
Potential amplitude V̂rat 4.1 · 10−19 Nm
Number of minima Nmin 20
Drift velocity vdrift 15.5 µms−1

Drift time tdrift 0.18 s
Diffusion time tdiff 0.22 s

The stochastic force ξ(t) is unbiased 〈ξ(t)〉 = 0 and its autocorrelation function

obeys the fluctuation-dissipation theorem

〈ξ(t)⊗ ξ(t′)〉 = 2kBT Z(r) δ(t− t′). (5.6)

5.2.5 Numerical methods

For the numerical integration the Langevin equation, we use the algorithm of

Ermak and McCammon [37]. The change of the particle positions after one

simulation step during time interval dt is given by

dr = Mf dt + A dw. (5.7)

The mobility matrix M, the amplitude matrix A and the Wiener increment

dw have been discussed in Sec. 2.5.4. The complete list of parameters for the

performed simulations is given in Table 5.1.

In order to analyze the particle dynamics, we calculate the mean velocity
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and the velocity auto-correlation function from the simulated particle trajec-

tories. Based on the angular positions of the particles at the beginning (φ(0))

and the end (φ(T )) of the simulation, the mean velocity is given by

〈v〉 =
R

N

N∑

i=1

φi(T )− φi(0)

T
. (5.8)

Here, φi(t) is a continuous angular trajectory. It grows beyond the angle 2π,

so it is not reset each time the particle passes φ = 0. For all simulations in

this article the simulation time T was chosen such that at least 104 individual

ratchet cycles occured. The velocity auto-correlation function is defined as

c(τ) =
1

N

N∑

i=1

〈∆vi(t)∆vi(t + τ)〉√
〈∆vi(t)2〉〈∆vi(t + τ)2〉

(5.9)

with

∆vi(t) = vi(t)− 〈v〉. (5.10)

5.3 Ratchet dynamics of a single particle

In this section, we discuss the dynamics of a single particle in the fluctuating

ratchet potential. The single particle system serves as a reference for the

multi-particle systems which we discuss for spatially constant and localized

transition rates in Secs. 5.4 and 5.5.

In contrast to the on-off ratchet discussed in Sec. 2.3.2, the sawtooth po-

tential switches stochastically between the on and the off-state, rather than

cyclically. However, the underlying mechanism of the ratchet effect remains

unchanged. Again, the interplay between deterministic drift caused by the

asymmetric potential and unbiased diffusion leads to a rectification of Brow-
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nian motion in the fluctuating ratchet. We consider a particle that has just

changed to the off-state and assume a ratchet potential with asymmetry pa-

rameter a < 1/2. In the off-state, the particle diffuses freely along the trap.

We now derive the probability density function for the particle to be at a

certain position when it changes back to the on-state. First, the probability

density function for the particle to change to the on-state after time t has

elapsed is given by

pon(t) = won exp(−ωont). (5.11)

Hence, the average time the particle spends in the off-state is

〈toff〉 =

∫ ∞

0

pon(t)t dt = 1/ωon. (5.12)

Second, the probability density function to find the particle displaced by ∆φ

from its initial position φ0 after time t has elapsed is given by a Gaussian

distribution

D(∆φ, t) =
1√

4πDφt
exp

(
−(∆φ)2

4Dφt

)
, (5.13)

where Dφ = D/R2 is the diffusion constant for angular diffusion along the

circular trap. Eventually, the probability density to find the particle displaced

by ∆φ from its initial position φ0 when it returns to the on-state is given by

P(∆φ) =

∫ ∞

0

pon(t)D(∆φ, t)dt

=
√

ωon

4Dφ
exp

(
−

√
ωon

Dφ
|∆φ|

)
. (5.14)

This function is symmetric and gives zero mean displacement as expected from

free diffusion. However, due to the asymmetry of the ratchet potential and
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a mean bias of the initial position φ0 towards a local mimimum, the fraction

of P(∆φ) reaching into a neighboring spatial period is larger in clockwise

direction. As a consequence, the particle will on average travel clockwise

along the trap in absence of any net force in this direction. The resulting

mean velocity 〈v〉 defined in Eq. (5.8) is the main measure in this article. As

a reference velocity, we introduce the velocity

vdrift = µV̂rat/[(1− a)L] (5.15)

of a single particle solely driven by the force V̂rat/[(1 − a)L] that is exerted

by the longer slope of the ratchet potential. Further we rescale the transition

rate ωon by the inverse of the time

tdiff = (aL)2/D (5.16)

a particle needs to diffuse an average distance aL/2. The transition rate ωoff

rate is referred to the inverse of the drift time

tdrift = (1− a)L/vdrift (5.17)

a particle spends on the longer slope of the ratchet potential. The numeric

values of tdrift, vdrift and tdiff are given in Table 5.1.

Figure 5.3 (a) depicts simulation results for the rescaled mean velocity

〈v〉/vdrift as a function of ωon tdiff for several values of the asymmetry param-

eter a. As discussed in Sec. 2.3.2, more asymmetric ratchet potentials, i.e.,

those with smaller values of a, lead to larger mean velocities. The maximum

mean velocity occurs for a transition rate ωon ≈ tdiff that gives the particle a
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Figure 5.3: Rescaled mean velocity 〈v〉/vdrift of a single particle, (a) as a
function of ωon tdiff for a = 0.1, 0.2 and 0.3 with ωoff tdrift = 3.6 and b = 1. (b)
as a function of ωoff tdrift for b = 1, 10, 100 and 1000 with ωon tdiff = 4.5 and
a = 0.1.

significant chance to reach the next spatial period by diffusion and keeps the

duration of the off-state short.

Figure 5.3 (b) shows the simulation results for the rescaled mean velocity

〈v〉/vdrift as a function of ωoff tdrift for several values of the localization parame-

ter b. For a spatially constant transition rate (b = 1), the mean velocity has a

maximum value for ωoff tdrift ≈ 10. This means that for maximizing the mean

velocity, it is rather beneficial to change to the off-state before reaching the
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minimum of the potential than being trapped at the minimum. For localized

transition rates with b > 1, the mean velocities significantly increase and the

maximum velocity occurs for a wider range of values ωoff. For b = 100, the

maximum velocity reaches its maximum value. For very large values of b this

value is reached virtually independent of ωoff. The mean velocity increases

since the performance of the ratchet is optimized by the localized transition

rate ω̂off(φ). On the one hand, the localization reduces the probability for a

particle to change to the off-state before it reaches the potential minimum and

hence increases the displacement during the on-state. On the other hand, the

localization increases the probability to change to the off-state as soon as the

potential minimum is reached. This keeps the time short during which the

particle is trapped in the potential minimum.

For sufficiently large values of b, the particle will virtually always drift all

the way towards the minimum and immediately change to the off-state. This

optimized ratchet cycle gives the observed maximum value 〈v〉/vdrift ≈ 0.13

for the mean velocity in Fig. 5.3. As expected, this value is still smaller than

the deterministic drift velocity vdrift even for highly optimized ratchet cycles.

However, we will show in the subsequent sections that the ratio 〈v〉/vdrift in-

creases significantly in multi-particle systems and even surpasses parity for

localized transition rates.

5.4 Spatially constant transition rates

We now investigate multi-particle effects on the ratchet dynamics, in particular

the effect of hydrodynamic interactions among the particles. We consider a

ratchet potential with spatially constant transition rates and compare two
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scenarios where particles change the ratchet state either simultaneously or

individually.

We first present the results when all particles always occupy the same

state. Figure 5.4 depicts the rescaled mean velocity 〈v〉/vdrift as a function

of the rescaled transition rate ωon tdiff for various particle numbers. With

ωoff tdrift = 3.6, the transition rate ωoff has been chosen such that the mean

velocity is close to the corresponding maximal value for any value of ωon.1

Panel (a) shows the simulation results when hydrodynamic interactions are

neglected while in panel (b) hydrodynamic interactions are included. The

maximum mean velocity is virtually unchanged for N = 1, 10, 20 and 30 par-

ticles. For N = 40 particles, the maximum mean velocity even drops by a

factor of 0.6 compared to the single particle system. Hydrodynamic interac-

tions hardly influence this behavior. Two effects due to the fixed sequential

order of the particles in the toroidal trap reduce the mean velocity for large

particle numbers. First, single-file diffusion occurs with sub-diffusional behav-

ior of the mean square displacement 〈∆φ〉2 ∼ t1/2. which is most pronounced

when the particle number is large [71, 119]. This slows down the spreading

of the particle distribution function during the off-state and hence the mean

velocity is reduced. Second, for large particle numbers the probability that two

or more particles drift towards the same minimum increases. Since only one

particle can occupy the position at the minimum, the drift of the other par-

ticles is hindered. This decreases the mean velocity not only by reducing the

mean drift length but also by increasing the mean distance to the neighboring

potential minimum.

1As shown in Fig. 5.3 (b), the choice of ωoff tdrift = 3.6 leads to a mean velocity close
to the maximum. However, the precise position of the maximum depends further on the
values of ωon and N . Our choice has been made empirically such that the mean velocity is
close to the maximum (with respect to ωoff) for all considered combinations of ωon and N .
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Figure 5.4: Rescaled mean velocity 〈v〉/vdrift as a function of ωon tdiff when
particles change their ratchet states simultaneously. Simulation results for
different particle numbers N = 1 (solid line), N = 10 ("), N = 20 (◦), N = 30
(2), and N = 40 (!) are plotted. Parameters are ωoff tdrift = 3.6, a = 0.1,
and b = 1. (a) without hydrodynamic interactions, (b) with hydrodynamic
interactions.

The system’s response for increasing particle numbers changes crucially

when individual transitions of the particles between the ratchet states are

allowed. For this scenario, Fig. 5.5 illustrates the rescaled mean velocity

〈v〉/vdrift as a function of the rescaled transition rate ωon tdiff for various par-

ticle numbers. Panel (a) shows the simulation results when hydrodynamic

interactions are neglected. Here, the maximum mean velocity increases with
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Figure 5.5: Rescaled mean velocity 〈v〉/vdrift as a function of ωon tdiff when
particles change their ratchet states individually. Simulation results for differ-
ent particle numbers N = 1 (solid line), N = 10 ("), N = 20 (◦), N = 30
(2), and N = 40 (!) are plotted. Parameters are ωoff tdrift = 3.6, a = 0.1,
and b = 1. (a) without hydrodynamic interactions, (b) with hydrodynamic
interactions.

growing particle number. For N = 40 particles, 〈v〉/vdrift is larger than the

single-particle value by a factor of 2.2. Panel (b) shows the simulation results

when hydrodynamic interactions are included. In contrast to the system with

simultaneous transitions, hydrodynamic interactions now lead to a further sig-

nificant increase of the mean velocity. For N = 40 particles, the mean velocity

is larger by a factor of about 4.7 compared to the single-particle velocity. The
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following consideration provides a qualitative understanding why the mean

velocity increases when particles can switch individually between the on- and

off-state. Particles in the on-state can push neighboring particles in the off-

state due to repulsive interactions. Since the ratchet effect induces a mean drift

clockwise along the longer potential slope, particles in the off-state are more

likely pushed clockwise. When hydrodynamic interactions are included, drift-

ing particles can also pull neighboring particles along which further enhances

the mean velocity.

In order to analyze this mechanism quantitatively, we consider in Fig. 5.6

the probability density function P(∆φ) for a particle to move a distance ∆φ

along the circle during off-time. The two graphs illustrate numerical results

for N = 1, 20, and 40 particles and compare them to the theoretical prediction

of Eq. (5.14) for a single-particle system (full line). In panel (a) hydrodynamic

interactions are not included. For N = 1, simulations give a symmetric and

unbiased probability density P(∆φ) in good agreement with the theoretical

curve. For larger particle numbers the distribution is shifted towards positive

values, i.e., clockwise, whereby the induced bias increases with the number of

particles. To be concrete, the mean value of the distribution is 〈∆φ〉 = 0.2 deg

for N = 20 particles and 〈∆φ〉 = 0.51 deg for 40 particles. As a consequence,

the probability for a particle to reach the neighboring potential minimum

during the off-state and hence the mean velocity increases. Panel (b) shows

the results when hydrodynamic interactions are included in the simulations.

The induced bias of the probability distribution is further enhanced. For

N = 20 particles, the mean value of the distribution is 〈∆φ〉 = 0.46 deg for

N = 20 particles and 〈∆φ〉 = 1.0 deg for 40 particles. These mean values

are now of the order of the length of the short slope of the ratchet potential
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Figure 5.6: The probability density function P(∆φ) for a particle displacement
∆φ at the moment when the particle changes to the on-state determined from
the same simulation data as the graphs of Fig. 5.5. The curves belong to
particle numbers N = 1 ("), N = 20 (◦), and N = 40 (2), and the full line
corresponds to the analytic expression of Eq. (5.14) for a single particle. (a)
Without hydrodynamic interactions, (b) with hydrodynamic interactions.

(aLφ = 1.8 deg). It is noteworthy that the distribution is not symmetric

any longer and the probability for particles to be displaced by more than

5 deg is increased significantly. The long-range character of hydrodynamic

interactions explains the enhanced bias of the distribution. A drifting particle

not only pushes diffusing particles without being in direct contact but also
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pulls diffusing particles. Both mechanisms lead eventually to the observed

increase of the mean velocities. In other words, the hydrodynamic coupling

enhances the induced bias in diffusion.

We want to stress that this induced bias does not occur when all particles

change their ratchet states simultaneously since then drifting particles can-

not influence the diffusion of particles in the off-state. Individual transitions

between the ratchet states are therefore a crucial requirement for the ratchet

effect being enhanced by hydrodynamic coupling.

5.5 Localized transition rates

In this section, we demonstrate that hydrodynamic interactions in combina-

tion with a localized transition rate ω̂off(φ) initiate the formation of transient

particle clusters that move at high velocities. The underlying mechanism goes

beyond the previously discussed induced bias in the diffusional off-state. Of

course, the model is only realizable when the transitions between the on- and

off-state occur individually for each particle. The transition rate from the on-

to the off-state is ωoffb when the particle reaches a potential minimum and

ωoff/b otherwise.

Figure 5.7 shows the velocity 〈v〉 in units of both vdrift and the one-particle

value 〈v〉N=1 as a function of the particle number N when hydrodynamic

interactions are included as well as neglected. For the localization parameter

b = 100, ωon tdiff = 4.5, and ωoff tdrift = 3.6 the ratchet operates close to

its maximum velocity. In both cases, the mean velocity increases with the

particle number N . For 40 particles, the mean velocity is larger by a factor of

4.4 than the one-particle value when hydrodynamic interactions are neglected;
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Figure 5.7: Mean velocity 〈v〉 in units of vdrift (left ordinate) and 〈v〉N=1 (right
ordinate) as a function of particle number N . The parameters are ωon tdiff =
4.5, ωoff tdrift = 3.6, a = 0.1, and b = 100. The symbols refer to simulation
results including (◦) and without (") hydrodynamic interactions, respectively.

in the presence of hydrodynamic interactions the factor assumes 10.3. It is

remarkable that the mean velocity for N ≥ 30 even surpasses the deterministic

drift velocity vdrift when hydrodynamic interactions are included. In other

words, the particles in the ratchet potential move faster than a single particle

would travel that is driven by a constant force exerted by the longer slope

of the ratchet potential. It is known that particles under the influence of a

constant force in a toroidal trap move faster than a single particle due to

reduced hydrodynamic drag [103]. In the following we discuss how clusters of

particles in a ratchet potential can partially benefit from such a drag reduction

and eventually surpass the velocity vdrift.

In order to reveal the underlying mechanism, we consider the example

trajectories in Fig. 5.8 for a system with N = 20 particles. One set of

trajectories is based on simulations including hydrodynamic interactions (HI);

they have been neglected in the other set. The close-up of the trajectories

in panel (b) (with HI) features strong variations in the particle density. In
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Figure 5.8: (a) Particle trajectories φ(t) of N = 20 particles in the toroidal
trap. The upper and lower set of trajectories refer to simulations where hy-
drodynamic interactions (HI) are included or neglected , respectively. The
parameters are a = 0.1, b = 100, ωon tdiff = 4.5, and ωoff tdrift = 3.6. The boxes
indicate close-ups of the trajectories in panels (b) and (c). Examples of the
run-walk cycle with duration Trw and the drift-wait cycle with duration Tdw

are indicated in (b) and (c), respectively.

other words, clusters of particles with short distances occur spontaneously in

the circular trap. These clusters travel with remarkably high velocities before

they dissolve. The number of particles in such a transient cluster is not fixed.

Rather, new particles join the cluster from the front and others are left behind

at the rear end. When hydrodynamic interactions are neglected, as in panel

(c), the spontaneous formation of transient clusters is not visible.

For a pair of particles, we explain in Fig. 5.9 how hydrodynamic interactions
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induce the formation of transient clusters which are then able to move with

high velocities. We denote the particle in front with A and assume that it is

located at the minimum of the ratchet potential where it has just switched

into the off-state (grey). The second particle B is in the on-state (black) and

drifts towards the minimum. It reaches the minimum without changing the

state, due to the localization of ω̂off, and pushes particle A forward beyond

the location of the potential barrier. Note that particle A needs to be in the

off-state for this step. When particle B reaches the minimum, it immediately

changes to the off-state. Ultimately, particle A assumes the on-state and drifts

towards the next minimum. While doing so, it uses hydrodynamic interactions

to pull particle B beyond the location of the potential barrier. When particle

A arrives at the next minimum and when particle B changes to the on-state,

the initial configuration is reached; the cluster has moved one spatial period.

Without hydrodynamic interactions this sequence is interrupted, as the leading

particle A is not able to pull B while drifting into the next minimum and the

cluster breaks up.

The motional pattern just described resembles the caterpillar-like motion

that has been observed for colloidal particles in tilted sawtooth potentials [87].

The latter describes a fully deterministic pattern only disturbed by Brownian

motion whereas the motion of the transient clusters has intrinsic stochastic el-

ements: diffusion during the off-state and stochastic transition to the on-state.

This stochastic character is the major difference to the caterpillar dynamics

in Ref. [87]. The cluster dynamics has been demonstrated for a pair of par-

ticles. The presence of additional particles stabilizes the cluster since several

pushing particles at the rear end and pulling particles at the front increases

the probability that the cycle illustrated in Fig. 5.9 repeats itself.
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Figure 5.9: Transient cluster formation of a pair of particles using hydrody-
namic interactions. The front and rear particles are labeled A and B, respec-
tively. The colors of the particles indicate the on-state (black) and the off-state
(grey) in the ratchet cycle. The arrows show the drift direction in the ratchet
potential and the grey arcs symbolize hydrodynamic interactions between the
particles. The picture is explained in detail in the main text.

Particles traveling in the observed clusters perform repetitive drift-wait cy-

cles: They drift in the on-state to the next minimum, and subsequently wait

until they are either pushed or pulled into the neighboring period by a front or

rear particle, respectively. Note, that the waiting period might last multiple

ratchet cycles, as the particle might fail to reach the next period during the

off-time. In addition to this short-period drift-wait cycle, particles perform

long-period run-walk cycles, where they run with high velocity as part of a

cluster until they are left behind. Then, they walk as single particles with

velocities lower than the overall mean velocity, until they join another cluster.

When hydrodynamic interactions are neglected, the characteristic cluster for-

mation does not occur but particles still perform drift-wait cycles. Since no
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Figure 5.10: Velocity auto-correlation functions cn(τ) as a function of the
rescaled time lag τ/tdrift. Solid and dotted lines refer to data including and
neglecting hydrodynamic interactions, respectively. The mean cycle periods
〈Tdw〉 and 〈Trw〉 are indicated by the arrows in units of tdrift.

hydrodynamic pulling occurs, particles wait in the vicinity of a potential min-

imum until they reach the next period either by diffusion or by being pushed

by a rear particle. In Fig. 5.8 (b), an exemplary run-walk and drift-wait cycle

are indicated, respectively. The drift-wait cycles for included hydrodynamic

interactions in panel (b) are too short to be properly visualized in the same

figure.

The discussed cycles cause velocity signals with alternating intervals of

velocities larger and smaller than the mean velocity. If such oscillations in

the signal have a predominant period, oscillations with the same period will

appear in the velocity auto-correlation function defined in Eq. (5.9).2 We

use this relation to obtain statistic information about the discussed cycles.

The velocity auto-correlation function c(τ) based on simulations with N = 20

particles is depicted in Fig. 5.10. For included hydrodynamic interactions, the

2In the considered case, the oscillations in the auto-correlation function decay due to the
stochastic nature of the velocity signal.
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correlation data indeed features two superimposed oscillations with different

periods. The period of the fast oscillation corresponds with the mean period

of the drift-wait cycle 〈Tdw〉, whereas the slow oscillation refers to the run-walk

cycle with its mean period 〈Trw〉. From the correlation data, the mean periods

have been found to be 〈Trw〉 = 28.6 tdrift and 〈Tdw〉 = 1.15 tdrift, respectively.

Note, that the latter is smaller than the sum of the drift time and the mean

off-time tdrift + 〈t〉off = 1.27 tdrift. This comparison reveals two characteristics

of the drift-wait cycle. Since the mean off-time is not influenced by the cluster

dynamics, the actual drift time 〈Tdw〉−〈t〉off = 0.88 tdrift is, in average, smaller

than the drift time which was calculated for a single particle. This indicates

that the drift velocities are increased in multi-particle systems due to screening

of hydrodynamic drag. Second, one off-time occurs in average per drift-wait

cycle. In other words, the particle skips to the next period virtually every

ratchet cycle while traveling in the cluster.

For neglected hydrodynamic interactions, the correlation data features only

one oscillation, which corresponds to the drift-wait cycle. Here, the mean pe-

riod has been found to be 〈Tdw〉 = 2.75 tdrift which is significantly larger than

the drift-wait cycle for included hydrodynamic interactions. This is mainly

because, the lack of hydrodynamic pulling decreases the probability for a

particle to skip to the next period during an off-time. Assuming a single-

particle drift velocity, the average number of off-times per drift-wait cycle is

(〈Tdw〉 − tdrift)/〈t〉off = 6.5. In other words, the particle needs in average

more than six off-times to reach the next period. Here, the on-times have

been neglected, when the particles failed to reach the next period, because the

corresponding distances to drift are very short.
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5.6 Conclusions

In this chapter, we presented a thorough investigation how hydrodynamic in-

teractions among Brownian paricles influence the performance of fluctuating

thermal ratchets. In particular, we demonstrated that hydrodynamic inter-

actions can significantly increase the particles’ mean velocity. However, this

is only possible when the particles change their ratchets states individually

rather than simultaneously. Only then can drifting particles in the on-state

act on neighboring particles in the off-state and add drift motion to their diffu-

sional spreading. If in addition the transition rate from the on- to the off-state

is localized at the minima of the ratchet potential, hydrodynamic interactions

induce the formation of characteristic transient clusters. They travel with

remarkably high velocities due to the reduction of the friction coeffcient per

particle in such a linear cluster.

Localized transition rates in ratchet systems are discussed in the context

of modeling molecular motors [60, 83, 84]. On the other hand, recent theo-

retical work based on an extended ASEP model addressed the traffic of ki-

nesin proteins along microtubulin complexes and showed that hydrodynamic

interactions increase the mean velocity of the motor proteins and even cause

cytoplasmic streaming [51].

An early realization of a Brownian ratchet with colloidal particles uses a

circling optical tweezers, the intensity of which is modulated in order to create

the sawtooth potential [39]. Realizing, in particular, a localized transition rate

would require some feedback mechanism that monitors the particle position

and switches off the sawtooth potential when a single particle reaches a min-

imum. A different feedback algorithm for particles whose states are switched
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collectively has already been demonstrated in the optical tweezer system [85].

It remains a challenge to experimentalists to construct the fluctuating ratchet

where the particles change their states individually.
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