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Summary

Two images of a scene can provide the 3-dimensional structural information that

is absent in a single 2-D image. This is because, provided correspondence can be

established across the two views, the variations between the two images provide

cues related to the depth ordering of objects in the scene. These cues can be ex-

ploited for applications such as 3-D reconstruction, mosaicing and computation of

relative camera positions. While these applications are dependent upon the qual-

ity of the inter-image correspondence, with the anticipated correspondence noise

having a significant impact on the problem formulation, many of these applica-

tions can also facilitate the correspondence computation. In this thesis, we explore

the interlocking relationship between image correspondence and computation and

utilization of structural cues using a series of case studies. In chapter 2, we show

how studying the small motion problem with an explicit focus on the types of

correspondence noise anticipated, allows for a theoretical fusion of the discrete

and differential algorithms. In chapter 3, we consider how to design a structure

from motion algorithm which can utilize edge information. In contrast with most

existing algorithms, we do not simply use corner or line features. Rather, we

incorporate edge (without making a straight line assumption) information with

a smoothing term to enable computation of structure from motion from scenes

which are dominated by strong edge information but lacking in corner features.

Finally, in chapter 4, we use an algorithm similar to that in chapter 3, to enable
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the computation of inter-image mosaicing on image pairs with parallax, without

the need to explicitly compute structure from motion.
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Chapter 1

Introduction

An image is a 2-D projection of a 3-D world. The loss of one dimension means that

the appearance of images of the same scene change with view point, a reflection

of the scenes depth variation, a phenomenon known as parallax. It is possible to

utilize these differences to recover 3-D structure and relative camera orientation.

One can also take the opposite approach and compensate for the differences caused

by variation in view point and structure to integrate the image pair into a mosaic.

Utilizing two views of a scene requires the establishment of accurate correspon-

dence across the image pairs, a non-trivial problem. The anticipated correspon-

dence noise has a significant impact on the way applications utilizing image pairs

are formulated. This relationship is made more complex because many of the ap-

plications, such as camera pose recovery, can also facilitate correspondence com-

putation. In this thesis, we investigate the interlocking relationship between cor-

respondence computation and high level image pair applications.

1



Chapter 1. Introduction 2

1.1 Structure from Motion

Structure from Motion or SfM is the process of obtaining of 3-D structure from

multiple images of the same scene and has a long and rich history in computer

vision. While there are many different SfM algorithms, they all share some com-

mon modules. Typically, correspondence is first established across images. This

is followed a computation of relative camera orientation and finally a dense recon-

struction to recover the full 3-D model.

As a means of recovering 3-D models, SfM’s key advantage lies in it adaptability.

Since it requires only image data as an input, it is significantly more flexible

than alternative techniques such as 3-D laser scanning, which need bulky and

expensive equipment. In addition, SfM techniques are readily scalable and the

same algorithm used to reconstruct a city can be applied without modification to

reconstruct a small toy. This degree of flexibility makes SfM important for many

other vision based applications such as navigation, recognition, 3-D movies etc.

Further, SfM also acts as a form of data compression, in which the information

in a large collection of images is summarized within a single compact model, thus

summarizing the information contained in multiple images into a form that is

easily accessible to the viewer. The primary drawback of SfM is that the algorithm

remains fragile and more work is needed to increase the quality of its results. This

desire for increased stability is a major theme in this thesis.

Typically, SfM algorithms are divided into large motion and small motion algo-

rithms. This is because structure from motion as its name implies, is dependent
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upon motion and non-motion is a degenerate case. This makes the SfM problem

very ill conditioned if the motion was small, possibly infinitesimally small. To

overcome this problem, researchers have reformulated the small motion problem

as a structure from velocity problem. In this thesis, we show that for the two

view scenario, if one considers the relationship between noise and displacement,

the linear structure from velocity problem is the same as the discrete structure

from motion problem. This work was published in [57].

While SfM involves computing relative camera position (pose), known camera

pose can also facilitate correspondence. This is because given camera pose, we

can define an epipolar line which narrows the correspondence search space from

a 2-dimensions into a single dimension line search problem. In this thesis, we

show that by jointly estimating both correspondence and camera pose, we can

utilize non-unique features like edges to facilitate camera pose recovery. These

edge features are difficult to correspond in a point to point fashion and are usually

not incorporated into traditional camera pose recovery modules. This work was

published in [58].

1.2 Mosaicing

Mosaicing is the process of integrating multiple images into a single, novel picture.

This is allows us to fuse aspects from different images and is frequently used to

create large field of view mosaics. Traditionally, mosaicing is performed between
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parallax free images (such as images of a planar scene or images taken from a cam-

era executing pure rotations). In this thesis, we formulate a mosaicing algorithm

which can handle parallax.

Unlike in SfM, our mosaicing algorithm does not complete a full structure recovery

process to utilize depth information, thus avoiding some of SfM algorithms fragility

in common mosaicing scenarios. Rather, our formulation uses a smoothly varying

affine field to make implicit to achieve mosaicing by making implicit use of the

underlying structure.

While this application differs somewhat from the previous two, the underlying

design considerations are similar, with our designing a joint mosaicing and cor-

respondence computation algorithm so as to leverage on the interlocking nature

of both problems. This helps reduce the problem of outlier matches and permits

more and better correspondence, which in turn improves the mosaic.

1.3 Other issues

The interlocking issues of correspondence noise, correspondence quality and global

parameter estimation involve a large number of different fields and applications. In

this thesis, we concentrate primarily on static scenes, though our mosaicing work

may also facilitate independent motion detection. We feel that this is a promising

research area and we look forward to greater improvements.



Chapter 2

Discrete meets Differential in SfM

Differential Structure from Motion problems are velocity based formulations. In

this chapter, we note that a velocity based formulation is similar to a discrete

formulation, assuming a proportional noise model (the noise incurred in the corre-

spondence is proportional to the amount of motion). If one makes this assumption

explicit and investigate the discrete Structure from Motion formulation through

the lenes of matrix perturbation theory, it appears that discrete SfM can handle

small motion in a manner similar to differential formulations.

2.1 Motivation

Differential algorithms have been employed in SfM for many years. They are for-

mulated for situations in which the motion is very small, such that the said motion

can be approximated by velocity. To date, for nearly every discrete SfM algorithm,

such as the seminal eight point algorithm by Longuet-Higgins [61], there exists a

5
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differential counterpart (such as [62]). Although there is work reporting simula-

tion results which indicate that some discrete SfM algorithms appear capable of

handling very small motions [6, 99], the stability of the discrete formulation un-

der small motion has largely been viewed with suspicion. Despite the many error

analyses conducted on discrete SfM [18, 22, 66, 68, 72, 109], there is no work that

specifically looks at the behaviour of these algorithms under increasingly smaller

motions, and it is not clear what exactly is gained by resorting to a differential

formulation. As such, the primary question that we seek to answer is whether dif-

ferential algorithms are merely a simplification of the SfM problem, made possible

by making a small motion approximation, or if the formulations address funda-

mental degeneracies in the SfM problem caused by small motion which cannot be

handled by discrete algorithms.

If the answer is the former, it calls into question the motivation for a large volume

of SfM literature which by and large treat the differential problem as something

distinct from the discrete one. Examples of differential SfM formulations include

[11, 30, 41, 44, 49, 62, 67, 105]. If the answer is the latter, it gives rise to the

question of whether a proper understanding of the role of differential algorithms

will allow us to design better discrete algorithms which can perform the same task

without resorting to a differential approximation.

2.1.1 The Differential Formulation

Let us begin by considering the motivation underlying differential algorithms. As

the name structure from motion suggests, one degenerate scenario common to all
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SfM algorithms is that of a stationary camera. This degeneracy is intrinsically in-

surmountable (if there is no motion, there will surely be no structure from motion).

However, it brings to mind a set of very interesting questions. How large must

the motion be before we can recover structure? Is it possible to recover structure

from an infinitesimally small motion? If so, what are the conditions required for

a reasonable structure recovery?

Differential SfM algorithms provide a very elegant answer to all of the above ques-

tions. They assert that when the motion is small, the movement of the individual

feature points on the image plane can be approximated as 2D image velocity (which

is in turn approximated by optical flow). After estimating the 2D optical flow,

the differential algorithms seeks to compute the differential quantities defining the

cameras motion (angular velocity and translation direction) and following that,

the scene structure. As these algorithms are formulated in terms of the instanta-

neous motion, a quantity that is independent of the amount moved, it is clear that

provided the image feature velocity (or optical flow) can be extracted reasonably

well, the stability of the algorithm is not affected by issues of whether or not a

motion is “too small”.

The need to extract a reasonable estimate of the instantaneous feature velocity

for arbitrarily small motion in turn requires that the ratio of noise to optical

flow magnitude (percentage noise) must be sufficiently small. In essence, the

underlying premises of the differential formulation is that one can recover structure

and motion from a sufficiently small motion, provided one has a reasonable bound

on the percentage noise in the optical flow.
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In seeking to ascertain if the differential formulation avoids an intrinsic degeneracy

present in the discrete formulation we need to consider whether the associated dis-

crete algorithm will yield a reasonable estimate for structure and motion given a

sufficiently small motion and a reasonable bound on the percentage noise. Hence-

forth, we denote algorithms that demonstrate such behavior as being able to handle

“differential conditions”. We would also like to distinguish between the inherent

sensitivity of the underlying problem and the error properties of a particular algo-

rithm for solving that problem. For instance, trying to solve the SfM problem for a

configuration near to the critical surface [72, 79] is an inherently sensitive problem.

No algorithms (discrete or differential) working with finite arithmetic precision can

be expected to obtain a solution that is not contaminated with large errors. In this

chapter, we are primarily interested in the stability of the discrete SfM algorithms

under small motion, in the sense that it does not produce any more sensitivity to

perturbation than is inherent in the underlying problem. Thus we would only deal

with general scenes not close to an inherently ambiguous configuration.

2.1.2 Noise and Perturbation Analysis

We feel that a major reason for the persistent division of the two view problem into

the differential and discrete domain is because it is very difficult to systematically

analyze the performance of discrete algorithms when the motion is small.

Some intuition into this problem can be obtained by looking at the classical discrete

eight point algorithm, where the essential matrix is obtained as the solution to the

least squares problem min‖Ax‖2. Since the solution is in the null space of the
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symmetric matrix ATA, the sensitivity of the problem can be characterized by

how the eigenvalues and eigenvectors of the data matrix ATA is influenced by the

amount of motion and noise. As we show later, under small motion, the data

matrix can be written as:

A(ε) ≈ AR + εAT

where the data matrix A(ε) is now written as a function of ε. A(ε) is split into

two terms: the residue term AR when there is no motion, and the motion term

εAT , with ε → 0 as the amount of motion becomes progressively smaller. As we

will show later, the rank of the matrix AR is at most 6, and in fact, for a general

scene, the rank of AR is exactly 6. Since AR has right nullity greater than 1, as

ε approaches 0 and A(ε) approaches AR, the problem of finding a unique solution

to the right null space of AT (ε)A(ε) becomes increasingly ill-conditioned as the

gaps between the eigenvalues become smaller. In particular, if we assume that a

small fixed noise N exists in the estimation process (e.g. noise arising from finite

arithmetic precision, which is 16 decimal digits for double precision):

Ã(ε) ≈ AR + εAT +N

then at a small enough motion, the noise N becomes comparable or even exceeds

the motion term εAT such that the legitimate solution is no longer associated

with the smallest eigenvalue of ÃT (ε)Ã(ε). This sudden appearance of a second

solution has been termed as the second eigenmotion in [68]. This ill-conditioning

is the primary reason why vision researchers have reservations over applying the

discrete formulation when faced with the problem of small motion.
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However, before reaching the limit of arithmetic precision, the noise is likely to be

dictated by measurement noise in the feature correspondence or the optical flow,

and this noise is likely to obey a proportional model. In small motion, the corre-

spondence problem is much simplified by the fact that the two views of the scene

do not differ greatly from each other. There will be less hidden surfaces, smaller

difference in radiometry, and less geometrical deformation. Hence, although the

motion of individual feature points is small, the absolute error incurred in the

matching process is also small. For really small motion, differential optical flow

algorithms [43, 65] would be better placed to yield the desired measurement ac-

curacy, especially with some of the more sophisticated recent implementations

[13, 42, 55, 80, 83, 91, 89]. The error in estimating image velocity through the

Brightness Constancy Equation (BCE) has been analyzed by [104] from which it

is clear that the noise is also likely to be proportional to the magnitude of the mo-

tion. It was shown that error stems from various sources, such as changes in the

lighting arising from non-uniform illumination or different point of view, or abrupt

changes in the reflectance properties of the moving surfaces at the corresponding

location in space, all of which are proportional to the magnitude of the motion.

Ohta’s analysis [81] approached from the perspective of the electronic noise in

the imaging devices and also showed the same dependence of the measurement

error in the optical flow on the amount of image motion. This is a consequence

of the finite receptive field in real cameras, whereby the sampling function is not

a Dirac’s delta function but rather depends on both the image gradient and the

image motion.
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In this connection, it is also well to note that many algorithms for finding opti-

cal flow make errors not only due to the aforementioned sources, but also due to

violation of the flow distribution model that is assumed (such as the smoothness

assumption). This latter source of error might give rise to non-proportional noise

and thus prevent us from obtaining structure from truly infinitesimally small mo-

tions, even if we have succeeded in proving the stability of the discrete eight point

algorithm under small motion with proportional noise. However, we envisage that

these algorithm-specific errors arising from flow distribution model would become

smaller and smaller, especially with the recent spate of optical flow algorithms

[13, 42, 55, 80, 83, 91, 89] and together with the publication of a database for opti-

cal flow evaluation [3]. Indeed, with better flows computed from these algorithms

in regular usage, there is greater motivation for using flows to recover scene struc-

ture since it avoids having to solve the tricky problem of feature correspondence.

It then begs the question whether we should recover structure from flow using one

of the differential SfM formulations, or if inputting flows to some of the discrete

normalized variants offer a better alternative.

2.1.3 Findings and Organization

In this chapter, we carry out perturbation analysis to study the numerical stability

of the discrete eight point algorithm and its variants [19, 39, 61, 74, 97] under small

motion. The noise regime that we have adopted is such that the data matrix Ã(ε)

is given by

Ã(ε) ≈ AR + εAT +M(ε)
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whereM(ε) represents the inherent measurement errors arising from various sources

such as the BCE constraint and the electronic noise, both of which are propor-

tional to the amount of motion “ε”. We show that given a sufficiently small

proportional noise M(ε), the discrete eight point algorithm and its variants are all

capable of handling “differential conditions”. For researchers who view the differ-

ential/discrete dichotomy as inviolate, this result is significant because much effort

has been spent in refining the discrete eight point algorithm. It permits us to use

the more intensively researched discrete algorithms without first reformulating the

problem as a differential one; this can result in very large improvements over the

current state-of-the-art differential algorithms. As we show later in the experimen-

tal section, the normalized discrete algorithms appear to give considerably better

performance than its differential counterparts even when the motion is extremely

small. For researchers who believe that discrete algorithms can be readily applied

to the small motion problem, this chapter provides some explanation for their

empirical results and illustrates the limits within which such an attitude may be

adopted.

The theoretical portion of the chapter is primarily divided into three large portions.

The first third of the chapter (Sections 2.2 to 2.4) involves introducing the eight

point formulation, with some minor reformulations to allow rigorous analysis of

its supposed ill-conditioning in the context of small motion. The second third

(Sections 2.5 to 2.6) is primarily an adaptation of traditional perturbation theory

to our problem of relating baseline to noise, one of the differences being that our

data matrix A(ε) is also a function of ε. Finally, in the last third of the chapter
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(Section 2.7), we complete the stability analysis by tracking how the errors in

the fundamental matrix estimate are propagated to the rotation and translation

estimates, from which structure of the scene is finally recovered. The theoretical

analysis is then followed by the experiments and the conclusion. Lastly, we also

record in the appendix some theorems and results required for the perturbation

analysis carried out in the chapter proper.

2.1.4 Mathematical Notations

In this section, we explain some of the mathematical notations that a reader will

frequently encounter when reading the thesis.

1. AS symbol

Let A =




a d g

b e h

c f i




. The symbol AS denotes the vector obtained by

stacking the columns of A, i.e.,

AS =

[
a b c d e f g h i

]T
.

2.
︷︸︸︷
w symbol
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Let w =

[
w1 w2 w3 . . . w9

]T
∈ R9. We denote by

︷︸︸︷
w the follow-

ing 3× 3 matrix

︷︸︸︷
w =




w1 w4 w7

w2 w5 w8

w3 w6 w9



.

Clearly, we have
(︷︸︸︷

w
)S

= w and
︷︸︸︷
AS = A.

3. û symbol

For each u =

[
u1 u2 u3

]T
∈ R3, we form the 3 × 3 skew-symmetric

matrix û =




0 −u3 u2

u3 0 −u1

−u2 u1 0




.

(a) For v ∈ R3, we have

ûv = u× v, (2.1)

where u× v is the vector product of u and v.

(b) For a 3× 3 invertible matrix A, with det(A) 6= 0, we have the following

result from page 456 of [69].

(A−1)T ûA−1 =
1

det(A)
(Âu) (2.2)
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4. Throughout this thesis, we work on the Frobenius norm of a matrix (say C)

which is defined and denoted as follows:

‖C‖ =

√∑

i,j

c2
ij.

It generalizes the definition of the usual norm on vectors.

5. ∆x symbol

Suppose the function x(ε) is defined for ε ≥ 0. We shall use the usual

notation ∆x to denote the change in x:

∆x = x(ε)− x(0).

Likewise, we have ∆Yi, etc. Sometimes, to avoid cumbersome notation, we

denote a function x(ε) at ε = 0 by just x.

6. For the ease of reading this thesis, we gather in the following a table of sym-

bols for the eigenvalues and eigenvectors of the matrices ATRAR, AT (ε)A(ε)

and Ã(ε)T Ã(ε) (to be introduced in subsequent sections).

Matrix Eigenvalues Eigenvectors

ATRAR λi ri, unit vector

AT (ε)A(ε) λi(ε) qi(ε), unit vector

Ã(ε)T Ã(ε) λ̃i(ε) q̃i(ε)
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2.1.5 Mathematical Expressions

The following phrases will be frequently encountered in this thesis.

1. For a sufficiently small ε: If we say that a condition (or a statement)

X is satisfied for a sufficiently small ε, it means that there exists a positive

ε0 > 0, such that the condition (or statement) X is satisfied for all ε where

0 ≤ ε < ε0.

2. Order εn or O(εn): For an integer n, a function f(ε) is said to be of order

εn if |f(ε)| ≤ Kεn for some K > 0 as ε→ 0. That is, for a sufficiently small

ε > 0,
∣∣∣f(ε)
εn

∣∣∣ is uniformly bounded. In symbol, we write f(ε) = O(εn). When

n = 0, we write O(ε0).

Some special cases/notes:

(a) For a function f(ε), we note that

f(ε) = O(εn+1)⇒ f(ε) = O(εn),

but the converse is not true in general. In other words, O(·) is not an

asymptotically tight bound.

(b) If F (ε) is a matrix (or a vector) , then saying it is of order εn means that

each of its individual entries is of order εn. This is equivalent to saying

that the norm of F (ε) (which is a real valued function) is of order εn.
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(c) Let k be a rational number. For a sufficiently small η, we have

(1 + η)k = 1 + kη +O(η2).

This follows from the first order term of the Taylor expansion. In

particular, for non-negative real numbers n and l, and sufficiently small

ε and m, we have

(1 +O(εn)ml)k = 1 +O(εn)ml, (2.3)

where the constant k has been absorbed in the O-notation.

2.2 A Single Moving Camera Viewing a Station-

ary Scene

Let us assume that there is a single moving camera viewing a stationary scene

consisting of N feature points Pi, where 1 ≤ i ≤ N .

Let ε ≥ 0 be a non-negative real number representing the elapsed time. Our goal

in this section is to formulate the eight point algorithm in the form of a data

matrix and a solution vector, both of which can be expressed as a series in ε.

Subsequently, we will use matrix perturbation theory to analyze their properties

when the elapsed time ε (and hence the motion) is small.
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At time instance ε ≥ 0, a point Pi has its coordinates with respect to the camera

reference frame given by

Pi(ε) =

[
Xi(ε) Yi(ε) Zi(ε)

]T
.

Let us assume that the motion is smooth, with the camera positions being related

to each other by the translation vector εTc and a smoothly changing rotation R(ε).

The 3 × 1 vector Tc is a constant vector representing the translational velocity,

whereas the 3× 3 matrix R(ε) is a rotation matrix which changes smoothly with

ε and R(0) = I, where I is the 3× 3 identity matrix.

The rotation matrix R(ε) can be expressed as the exponential of some skew-

symmetric matrix ω̂, that is, a series of the form (Theorem 2.8, [69])

R(ε) = I + εω̂ +O(ε2), (2.4)

where ω is the angular velocity.

As a result of the motion, we have

Pi(ε) = R(ε)(Pi − εTc). (2.5)

Recall from the preceding section that sometimes we shall denote Pi(0) = Pi.

When projected onto the image plane of the camera, the points Pi and Pi(ε) will
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have image coordinates pi and pi(ε) respectively where

pi =
1

Zi
Pi =

[
xi yi 1

]T
,

pi(ε) =
1

Zi(ε)
Pi(ε) =

[
xi(ε) yi(ε) 1

]T
.

(2.6)

Using Equations (3.1) and (2.6), we have

pi(ε) = pi + ε[ ∆tx ∆ty 0 ]T +O(ε2) (2.7)

where ∆tx, ∆ty are the x and y components of the image feature velocity respec-

tively.

2.2.1 Epipolar Constraint with Normalization

Given two camera images, one at time 0 and the other at time ε, the epipolar

constraint is

pTi E(ε)pi(ε) = 0, (2.8)

where E(ε) = T̂cR
T (ε).

Given eight or more point matches, the above epipolar constraint is sufficient for

us to determine the essential matrix E(ε) up to a scale factor, by solving a set of

linear equations.

This is the famous eight point algorithm of [61]. However, it is important to note

that the epipolar constraint is seldom used in its raw form. Rather, for the sake
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of numerical stability in the presence of noise, a normalization procedure is often

employed.

Let Θ be an 3 × 3 invertible matrix introduced for this purpose. For example, it

can be of the form




a 0 c

0 b d

0 0 1




, with ab 6= 0. Examples of normalization matrices

taking such form are the normalization matrix in Hartley normalization [39], or

in the context of uncalibrated motion analysis, Θ would be the camera’s intrinsic

matrix.

For a sufficiently small ε ≥ 0, suppose

Θ(ε) = Θ +O(ε) (2.9)

is invertible. Then its inverse (Θ(ε))−1 takes the form

(Θ(ε))−1 = Θ−1 +O(ε). (2.10)

We denote the normalized (or uncalibrated) version of the essential matrix as F (ε)

where

F (ε) = (ΘT )−1E(ε)(Θ(ε))−1. (2.11)

We will sometimes call F (ε) the fundamental matrix where appropriate.
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Using Equations (2.9) and (2.7), we can write

Θ(ε)pi(ε) = [ xi yi 1 ]T + ε[ ∆tx ∆ty 0] +O(ε)2, (2.12)

where

Θpi = [ xi yi 1 ]T ,

Θ(ε)pi(ε) = [ xi(ε) yi(ε) 1 ]T

and (∆tx,∆ty) is the image feature velocity in the normalized system. In this

normalized system, the corresponding epipolar constraint (3.6) becomes

[(Θpi)]
TF (ε)[(Θ(ε))pi(ε)] = 0. (2.13)

Collecting N such constraints for i = 1, . . . , N , we form a system of linear equa-

tions:

A(ε) (F (ε))S = 0, (2.14)

where

A(ε) =




x1(ε)x1 x1(ε)y1 x1(ε) y1(ε)x1 y1(ε)y1 y1(ε) x1 y1 1

...
...

...
...

...
...

...
...

...

xN (ε)xN xN (ε)yN xN (ε) yN (ε)xN yN (ε)yN yN (ε) xN yN 1




(2.15)

and (F (ε))S is the column vector defined in Section 2.1.4. Thus, an estimate of

the matrix F (ε) can be obtained via the null space of A(ε).
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Finally, we rewrite the matrix F (ε) in Equation (2.11) into a form more amenable

to analysis:

F (ε) = (ΘT )−1E(ε)(Θ(ε))−1

= (Θ−1)T T̂cΘ
−1ΘRT (ε)(Θ(ε))−1

=
1

det(Θ)
[(̂ΘTc)][ΘR

T (ε)(Θ(ε))−1]

(2.16)

where the last step has been obtained by using Equation (2.2). By Equations

(2.10) and (2.4), we have ΘRT (ε)(Θ(ε))−1 = I +O(ε) which gives

F (ε) =
1

det(Θ)
[(̂ΘTc)][I +O(ε)]. (2.17)

Since F (ε) is defined up to a scale factor, we can write

F (ε) = T̂ +O(ε) (2.18)

where

T =
ΘTc√

2‖ΘTc‖
. (2.19)

Here, we have set ‖T‖ =
1√
2

so that (T̂)S has unit norm. From Equations (2.16)

and (2.1), we note that T is in the left null space of F (ε).
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2.3 The Degeneracy Affecting the Discrete Al-

gorithm

Using Equation (2.12), we rewrite the data matrix A(ε) as a series expansion in ε,

A(ε) = AR + εAT +O(ε2) (2.20)

where

AR =




x2
1 x1y1 x1 y1x1 y2

1 y1 x1 y1 1

...
...

...
...

...
...

...
...

...

x2
N xNyN xN yNxN y2

N yN xN yN 1



,

AT =




x1∆tx1 y1∆tx1 ∆tx1 x1∆ty1 y1∆ty1 ∆ty1 0 0 0

...
...

...
...

...
...

...
...

...

xN∆txN yN∆txN ∆txN xN∆tyN yN∆tyN ∆tyN 0 0 0



.

(2.21)

Recall that when the motion (i.e., ε) is small, the discrete eight point algorithm is

regarded as increasingly ill conditioned. In this section, we revisit the explanation

in terms of the data matrix A(ε).

As ε tends to zero, using Equation (2.20), we know that A(ε) tends to AR. Let F0

be a 3× 3 matrix satisfying

(Θpi)
T F0 (Θ(0)pi(0)) = 0
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i.e., (Θpi)
T F0 (Θpi) = 0, (2.22)

which is the constraint given in Equation (2.13) when ε = 0. Solving F0 from

Equation (2.22) is equivalent to solving the following linear least squares system

AR (F0)s = 0.

whose solution space we will analyze now.

2.3.1 The Null Space of AT
RAR

In this subsection, we prove that for a general scene, the nullity of the 9×9 matrix

ATRAR is 3 and we also determine the null space of ATRAR.

Assume that the feature points on the image plane are well distributed such that

we cannot fit a conic section that passes through all of them (this condition is

easily satisfied, especially under small motion where the number of features which

can be matched is very dense). We then have the following result.

Proposition 2.1. Assume that all the feature points on the image plane do not

lie on any conic section. The nullity of ATRAR is 3.

Proof. Since

ATRARu = 0⇔ ARu = 0,

we shall determine the nullity of AR.
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Note that the matrix AR in Equation (2.21) contains 3 pairs of identical columns,

namely columns 2 and 4, columns 3 and 7, and columns 6 and 8. Hence, the rank

of AR is at most 6.

Consider the submatrix A′R formed from AR by removing one copy of each repeat-

ing column pair:

A′R =




x2
1 x1y1 x1 y2

1 y1 1

...
...

...
...

...
...

x2
N xNyN xN y2

N yN 1



.

We shall show that the 6 columns of A′R are linearly independent so that the rank

of AR is at least 6. Suppose A′Rv = 0, where v =

[
a b c d e f

]T
6= 0.

This gives,

ax2
i + bxiyi + cxi + dy2

i + eyi + f = 0, 1 ≤ i ≤ N,

which means that all the feature points lie on the conic defined by ax2 + bxy +

cx + dy2 + ey + f = 0. This violates our assumption. So, we must have v = 0,

which implies that the rank of A′R ( and hence AR ) is at least 6. Therefore,

the rank of AR is 6. By the rank-nullity formula, the nullity of AR is given by

(9− ( rank of AR)). Hence the nullity of AR is 3, and so is that of ATRAR.

Proposition 2.2. The null space of ATRAR is the following set

S =
{

(û)S | u ∈ R3
}

=








0 −u3 u2

u3 0 −u1

−u2 u1 0




S

| u1, u2, u3 ∈ R





.
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Proof. By Equation (2.1), every skew-symmetric matrix û formed from u ∈ R3

will satisfy Equation (2.22). Thus, the set S ⊆ null space of AR.

However, the set S is a subspace of R9 and its dimension is 3. Since the nullity of

AR is also 3, the set S is indeed the null space of AR.

It is a well known fact that a real symmetric matrix of the form ZTZ has non-

negative eigenvalues. Thus, we can arrange the 9 non-negative eigenvalues λi of

the matrix ATRAR in a non-increasing order:

λ1 ≥ λ2 ≥ · · · > λ7 ≥ λ8 ≥ λ9 ≥ 0.

Proposition 2.3. Consider the real symmetric matrix ATRAR, and let λi be its

eigenvalue, with corresponding unit eigenvector ri, for 1 ≤ i ≤ 9. Then we have

λ1 ≥ λ2 ≥ · · · ≥ λ6 > λ7 = λ8 = λ9 = 0.

Moreover, we may choose r7, r8 and r9 such that

r7 = T̂7

S
, r8 = T̂8

S
, r9 = T̂S

where T is defined in (2.19), and T7, T8 and T are mutually orthogonal vectors

of norm 1√
2
.

Proof. It follows from the nullity of AR (and hence ATRAR) being 3 that the real

symmetric matrix ATRAR has a zero eigenvalue, with multiplicity 3. Thus, λ7 =
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λ8 = λ9 = 0.

The eigen-space corresponding to the zero eigenvalue is indeed the null space of

ATRAR. Since the null space of ATRAR is spanned by its three eigenvectors, we are

free to choose r7, r8 and r9, as long as they belong to the subspace S in Proposition

2.2, and are orthonormal to each other. Therefore we choose to set

r9 = T̂S, (2.23)

where T is defined in Equation (2.19).

By Proposition 2.2, the other two eigenvectors r7 and r8 can also be written in

the form r7 = T̂7

S
, r8 = T̂8

S
, where T7, T8 and T must be mutually orthogonal

vectors of norm 1√
2

to ensure the orthonormality of r7, r8 and r9.

Since AR has right nullity greater than 1, as ε approaches 0 and A(ε) approaches

AR, the problem of finding a unique solution to the right null space of AT (ε)A(ε)

(recall that camera pose is estimated from the right null space of A(ε)) becomes

increasingly ill-conditioned. This ill-conditioning is the primary reason why vision

researchers have reservations over applying the discrete formulation when faced

with the problem of small motion. However, as we have argued in Section 1, if

the noise in the flow estimation is proportional to ε, the question then becomes

whether the noise declining proportionally to ε is sufficient to compensate for the

increased instability due to the last three eigenvalues of AT (ε)A(ε) getting closer

together. In the next section, we explain how this problem can be analyzed using

matrix perturbation theory.
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2.4 On the Noiseless Case A(ε)TA(ε)

The least squares solution to Equation (2.14) is given by the right null space of the

9× 9 symmetric matrix AT (ε)A(ε). As such, the subsequent analysis is conducted

on AT (ε)A(ε) rather than A(ε).

If one thinks of the eigenvectors qi(ε) of AT (ε)A(ε) as possible solutions to Equa-

tion (2.14), then their corresponding eigenvalues λi(ε) are the residue (sum of

squared error) related to these solutions. That is, we have

qi(ε)
TA(ε)TA(ε)qi(ε) = qi(ε)

Tλi(ε)qi(ε) = λi(ε).

Thus, each λi(ε) represents the residue of A(ε) associated with qi(ε). The larger

the value of λi(ε), for 1 ≤ i ≤ 8, the more stable is the solution as the “wrong”

solution is less likely to be confused with the correct one.

In the absence of noise, using Equation (2.20) , the matrix AT (ε)A(ε) can be

expressed as the following series expansion,

AT (ε)A(ε) = ATRAR + ε(ATTAR + ATRAT ) +O(ε2). (2.24)

This says that the matrix AT (ε)A(ε) can be thought of as the “perturbation” of

the matrix ATRAR by the matrix ε(ATTAR + ATRAT ) for sufficiently small ε.

We shall use matrix perturbation theory to discuss the eigenvectors and eigenvalues

of this “perturbed” matrix.
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2.4.1 How the Eigenvectors of AT (ε)A(ε) Vary with ε

Let us denote the eigenvalues of the matrix AT (ε)A(ε) by λi(ε), i = 1, 2, . . . , 9,

where

λ1(ε) ≥ λ2(ε) ≥ · · · ≥ λ9(ε) ≥ 0.

We shall now choose corresponding unit eigenvectors qi(ε), for 1 ≤ i ≤ 9, such

that {q1(ε),q2(ε), . . . ,q9(ε)} is an orthonormal basis of R9.

It is clear from Equation (2.16) and the definition of A(ε) in Equation (2.15)

that the actual camera motion satisfies Equation (2.14). Thus A(ε) and hence

A(ε)TA(ε) have a nullity of at least one. In other words, we have λ9(ε) = 0 and

(F (ε))S is the corresponding eigenvector.

It follows from both Equation (2.18) and our choice of r9 in Equation (2.23) that

(F (ε))S = r9 +O(ε).

Normalizing (F (ε))S, we obtain the the unit eigenvector q9(ε) = (F (ε))S

‖(F (ε))S‖ corre-

sponding to the eigenvalue λ9(ε) = 0. By Lemma A.4 (in Appendix A.1), we

have

q9(ε) = r9 + z9(ε) where z9(ε) = O(ε). (2.25)

Treating the matrix AT (ε)A(ε) as the “perturbation” of the matrix ATRAR by
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ε(ATTAR + ATRAT ) for sufficiently small ε, we apply perturbation theory (in par-

ticular, Theorem A.7 in Appendix A.1) to obtain the following result for the

remaining unit eigenvectors of AT (ε)A(ε).

Theorem 2.4. The set of unit eigenvectors of AT (ε)A(ε) given by

{q1(ε),q2(ε), . . . ,q9(ε)}

can be chosen such that

qi(ε) = r′i(ε) + zi(ε),

where ‖r′i(ε)‖ = 1 and zi(ε) = O(ε). Moreover, the vectors r′i(ε)’s have the follow-

ing properties:

1. r′9(ε) = r9 = T̂S (from Equation (2.25)).

2. r′i(ε) is a linear combination of all eigenvectors rj of ATRAR, whose associated

eigenvalue λj is identical to λi, for i ≤ 9.

3. r′i(ε) is orthogonal to rj if λi 6= λj.

4. r′i(ε), 1 ≤ i ≤ 8 is orthogonal to r9.

Remark 2.5. For 7 ≤ i ≤ 9, each vector r′i(ε) is a linear combination of r7, r8 and

r9, and hence it is a vector in the right null space of AR. From Proposition 2.2,

we have

︷︸︸︷
r′7(ε) = T̂′7(ε), and

︷︸︸︷
r′8(ε) = T̂′8(ε)
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for some orthogonal vectors T′7(ε) and T′8(ε) in R3 where

‖T′7(ε)‖ = ‖T′8(ε)‖ = ‖T‖ =
1√
2
.

2.4.2 How the Eigenvalues of AT (ε)A(ε) Vary with ε

As discussed in the preceding section, λ9(ε) = 0. For the remaining eigenvalues

λi(ε), applying perturbation theory (Theorem 6 in Appendix A.1) to the expression

for AT (ε)A(ε) in Equation (2.24) yields the following result.

Proposition 2.6. For 1 ≤ i ≤ 8,

λi(ε) = λi +O(ε).

From Proposition 2.3 we know that λi > 0 for 1 ≤ i ≤ 6. As such, when ε is

sufficiently small, using Proposition 2.6, we know that eigenvalues λi(ε) remains

positive and hence their corresponding eigenvectors are distinct from the true

solution.

However, for 7 ≤ i ≤ 8, we note that Proposition 2.3 indicates that λi(ε) may be

zero. From the point of view of stability, this is worrying and we must seek a more

explicit expression than that offered by standard matrix perturbation theory.

Lemma 2.7. For i = 7 or 8, if the hypothesis ‖A(ε)qi(ε)‖ = γiε + O(ε2) where

γi > 0 is true, then λi(ε) = O(ε2). In particular,

λi(ε) = Λiε
2 +O(ε3), where Λi = γ2

i > 0.



Chapter 2. Assessing the Stability of Structure from Small Motion 32

Proof. This follows readily from the hypothesis since

λi(ε) =qTi (ε)AT (ε)A(ε)qi(ε)

=‖A(ε)qi(ε)‖2

=Λiε
2 +O(ε3),

where Λi = γ2
i > 0.

We shall explain why the hypothesis imposed on A(ε)qi(ε) is meaningful. Note

that for 7 ≤ i ≤ 8,

A(ε)qi(ε) = (AR + εAT ) (r′i(ε) + zi(ε))

= ARzi(ε) + εAT r′i(ε) +O(ε2)

= ε

(
1

ε
ARzi(ε) + AT r′i(ε)

)
+O(ε2),

where ARzi(ε) + εAT r′i(ε) = O(ε), which is the first order approximation of the

residue of A(ε) associated with the solution qi(ε). The hypothesis that γi > 0 is

intimately related to the assumption that we are dealing with a non-degenerate

scene configuration in a differential setting. The reason can be seen by looking at

the square of the coefficient of the first order term in the preceding equation and

substituting the expressions for AR and AT from Equation (2.21):

‖1

ε
ARzi(ε) + AT r′i(ε)‖2 =

N∑

j=1

((∆tpj)
T
︷︸︸︷
r′i(ε) pj + pj

T
︷︸︸︷
z′i(ε) pj)

2 (2.26)

where

z′i(ε) =
1

ε
zi(ε) = O(ε0),
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pj = [ xj yj 1 ]T , ∆tpj = [ ∆txj ∆tyj 0 ]T

Equation (2.26) should be familiar to most vision researchers: it is the sum squared

error of the differential fundamental matrix [69, 105] associated with the “solution”

r′i(ε) and z′i(ε), with r′i(ε) representing the translational velocity and z′i(ε) related

to the angular velocity.

From Theorem 2.4, for i = 7, 8,
︷︸︸︷
r′i(ε) = T̂′i(ε) where T′i(ε) is orthogonal to the true

translation T and

‖T′i(ε)‖ =
1√
2
.

Thus, the positivity hypothesis made by Lemma 2.7 on the first order term γi

amounts to saying that when we substitute with a translation vector orthogonal

to the true translation, the sum squared error must be greater than zero. This

hypothesis must hold, otherwise the scene in view would be degenerate to the

differential fundamental matrix. Therefore, using Lemma 2.7, we can say that

λi(ε) = ε2Λi +O(ε3), (2.27)

where Λi > 0, 7 ≤ i ≤ 8.

Hence, in principle, under noiseless condition, there is no degeneracy in the solution

to the eight point algorithm even under infinitesimal motion. The question of

whether this non-degeneracy is sufficient to ensure stability under the proportional

noise model is one which will investigate in the subsequent sections.
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2.5 Eigenvalues of AT (ε)A(ε) under Noise

Having determined how the eigenvectors and eigenvalues of AT (ε)A(ε) vary with

ε, we are now in a position to determine how they are affected by noise.

Let the corrupted data matrix Ã(ε) be of the form

Ã(ε) = A(ε) +M(ε),

where A(ε) is defined in Equation (2.15) and ‖M(ε)‖ ≤ εm for sufficiently small

ε. The matrix M(ε) represents the proportional noise model, and m is some

proportionality factor which is a function of the percentage noise in the optical

flow.

Now, the matrix ÃT (ε)Ã(ε) is a perturbed version of AT (ε)A(ε) given by

ÃT (ε)Ã(ε) = AT (ε)A(ε) +B(ε,M) (2.28)

where

B(ε,M) = AT (ε)M(ε) +MT (ε)A(ε) +MT (ε)M(ε) = O(ε)m. (2.29)

The estimated solution is obtained by finding an eigenvector q̃9(ε,M) of ÃT (ε)Ã(ε)

that corresponds to its smallest eigenvalue λ̃9(ε,M). Thus, we have

(
AT (ε)A(ε) +B(ε,M)

)
q̃9(ε,M) = λ̃9(ε,M)q̃9(ε,M). (2.30)
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Note that both the eigenvalues λ̃i(ε,M) and eigenvectors q̃i(ε,M) of ÃT (ε)Ã(ε) are

functions of ε and M . Henceforth, we rely on the ˜ notation to remind the reader

of the dependence on M , suppressing M in these cases to keep our notation simple.

However, in cases where the dependence on M is not clear, we will explicitly write

down the dependence.

2.5.1 Eigenvalue λ̃9(ε)

In this subsection, we shall determine the order of the eigenvalue λ̃9(ε) via the error

|λ̃9(ε)− λ9(ε)|, where λ9(ε) = 0. Specifically, we shall prove that λ̃9(ε) = O(ε2)m

for a sufficiently small m.

Unfortunately, the standard results in perturbation theory only lead to |λ̃i(ε) −

λi(ε)| = O(ε)m for each i, from which we are not able to deduce that λ̃9(ε) is

simple since the three Gerschgorin’s discs might overlap. To overcome this diffi-

culty, we apply the techniques developed in [106] and prove a modified result of

Gerschgorin’s Theorems, namely Proposition A.3 in Appendix A.1. For readers

not familiar with Gerschgorin’s Theorems and the notion of Gerschgorin’s discs,

please refer to Theorems A.1 and A.2 in Appendix A.1.

Before we apply Proposition A.3, let us record the following simple result which

plays an important role in providing the order of eigenvalues and is also crucial

for obtaining the projection αi(ε,M) of q̃9(ε) along qi(ε) in Section 2.6.

Lemma 2.8.
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(a) If either i or k is in the set {1, 2, 3, 4, 5, 6}, then

‖qTk (ε)B(ε,M)qi(ε)‖ = O(ε)m

(b) If both i and k are in the set {7, 8, 9}, then

‖qTk (ε)B(ε,M)qi(ε)‖ = O(ε2)m

Proof. Part (a) is straightforward from Equation (2.29). For part (b), we use

qi(ε) = r′i(ε) + zi(ε) in Theorem 2.4, and the data matrix expression in Equation

(2.20) to obtain

qTk (ε)B(ε,M)qi(ε) =
(
r′k(ε) + zk(ε)

)T (
ATRM(ε) +MT (ε)AR

) (
r′i(ε) + zi(ε)

)
+O(ε2)m2

When 7 ≤ k ≤ 9 and 7 ≤ i ≤ 9, we have λk = 0 and λi = 0. Using Theorem 2.4,

we have ARr′k(ε) = 0 and ARr′i(ε) = 0. Hence, we have

qTk (ε)B(ε,M)qi(ε)

= (r′k(ε) + zk(ε))
T (ATRM(ε) +MT (ε)AR

)
(r′i(ε) + zi(ε)) +O(ε2)m2

= zTk (ε)ATRM(ε)r′i(ε) + r′Tk (ε)MT (ε)ARzi(ε) + zTk (ε)ATRM(ε)zi(ε) +O(ε2)m2

= O(ε2)m
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If we can now specially construct an invertible matrix K such that the matrix

K−1AT (ε)A(ε)K becomes a diagonal matrix Diag(λi(ε)), then Proposition A.3

provides an upper bound for |λ̃i(ε)− λi(ε)|. Our aim is to have upper bounds on

|λ̃i(ε) − λi(ε)| which enable us to isolate the 9th circular disc G̃9 from the other

G̃i’s.

As mentioned above, the standard result from perturbation theory ([106]) is not

adequate as there remains a possibility that the 9th circular disc G̃9 defined in

Proposition A.3 might overlap with other disc G̃i, in which case λ̃9(ε) would lie in

the union of the discs. We need to choose K properly so that G̃9 is isolated from

the other G̃i. We shall now work towards a suitable choice of an invertible matrix

K.

First consider the matrix QT (ε)ÃT (ε)Ã(ε)Q(ε) where Q(ε) is the matrix whose

ith column is the unit eigenvector qi(ε) of the real symmetric matrix AT (ε)A(ε).

Clearly, Q−1(ε) = QT (ε). From Equation (2.28), we have

QT (ε)ÃT (ε)Ã(ε)Q(ε) = Diag(λi(ε)) +QT (ε)B(ε,M)Q(ε) (2.31)

where Diag(λi(ε)) is a diagonal matrix whose ith diagonal entry is λi(ε).

By Proposition A.3, every eigenvalue λ̃j(ε) of ÃT (ε)Ã(ε) lies in at least one of the

circular discs with center λk(ε) and radius

9∑

i=1

|qTk (ε)B(ε,M)qi(ε)| = O(ε)m.
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(Note that Proposition A.3 does not imply that j is necessarily equal to k.) Now,

the center of the 9th circular disc is 0 while those of the 7th and 8th circular discs

are 0 + O(ε2) (from Equation (2.27)). However, all three circular discs have radii

of order O(ε) by the preceding equation. Consequently, for a sufficiently small ε,

these three discs may overlap with each other, and λ̃9(ε) lies in their union. As

such, for this naive choice of K = Q(ε), we are not able to ascertain a good upper

bound for |λ̃9(ε)− λ9(ε)|.

Fortunately, by inspecting the entries in the matrix

Q(ε)TB(ε,M)Q(ε), we find that the upper bound on |λ̃i(ε)−λi(ε)| can be improved

by pre- and post-multiplying the matrix in Equation (2.31) with the respective

matrices S−1(ε) and S(ε), where

S(ε) =



εI6 0

0 I3


 .

Here, In denotes the n × n identity matrix, and 0 is a zero matrix. The effect

of post-multiplying a matrix by S is the same as multiplying its first six columns

by ε while pre-multiplying a matrix by S−1 is the same as multiplying its first six

rows by 1
ε
. So, we have

S−1(ε)QT (ε)B(ε,M)Q(ε)S(ε) =
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qT1 (ε)Bq1(ε) · · · qT1 (ε)Bq6(ε) 1
εq

T
1 (ε)Bq7(ε) · 1

εq
T
1 (ε)Bq9(ε)

...
...

...
...

qT6 (ε)Bq1(ε) · · · qT6 (ε)Bq6(ε) 1
εq

T
6 (ε)Bq7(ε) · 1

εq
T
6 (ε)Bq9(ε)

εqT7 (ε)Bq1(ε) · · · εqT7 (ε)Bq6(ε) qT7 (ε)Bq7(ε) · qT7 (ε)Bq9(ε)

· · · · · · · · · · · ·

εqT9 (ε)Bq1(ε) · · · εqT9 (ε)Bq6(ε) qT9 (ε)Bq7(ε) · qT9 (ε)Bq9(ε)




in which the diagonal sub-matrices of the above matrix

S−1(ε)QT (ε)B(ε,M)Q(ε)S(ε) remain the same as those of QT (ε)B(ε,M)Q(ε).

Note that the above transformation does not affect the eigenvalues. Thus, we have

S−1(ε)QT (ε)ÃT (ε)Ã(ε)Q(ε)S(ε)

= Diag(λi(ε)) + S−1(ε)QT (ε)B(ε,M)Q(ε)S(ε).

By Proposition A.3, where K = Q(ε)S(ε), every eigenvalue of ÃT (ε)Ã(ε) lies in at

least one of the circular discs G̃k with center λk(ε) and radius

dk(ε,M) =





6∑

i=1

|qTk (ε)B(ε,M)qi(ε)|+
1

ε

9∑

i=7

|qTk (ε)B(ε,M)qi(ε)|

= O(ε)m, 1 ≤ k ≤ 6

ε
6∑

i=1

|qTk (ε)B(ε,M)qi(ε)|+
9∑

i=7

|qTk (ε)B(ε,M)qi(ε)|

= O(ε2)m, 7 ≤ k ≤ 9

(2.32)

Using the above, we may now prove that the desired property that the 9th circular

disc G̃9 is disjoint from the rest.

Proposition 2.9. For a sufficiently small ε and m, the 9th circular disc G̃9 is
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disjoint from the union G̃7 ∪ G̃8 of the 7th and 8th circular discs, which in turn is

disjoint from the union ∪6
i=1G̃i of the first six circular discs.

Proof. First, the 9th circular disc G̃9 is disjoint from the union G̃7 ∪ G̃8 of the 7th

and 8th circular discs if the gap (Λ8ε
2 +O(ε3)) between the disc centers λ8(ε) and

λ9(ε) satisfies the following:

Λ8ε
2 +O(ε3) > d9(ε,M) + max(d7(ε,M), d8(ε,M)) (2.33)

For a sufficiently small ε such that the left hand side is more than 1
2
Λ8ε

2, and the

right hand side is O(ε2)m, by Equation (2.32), we have a unform bound on m

(independent of ε) such that for a sufficiently small m, the above condition (2.33)

is satisfied.

Next, the union ∪6
i=1G̃i of the first six circular discs is disjoint from the the union

G̃7 ∪ G̃8 of the 7th and 8th circular discs, if the gap between the two nearest disc

centers λ6(ε) and λ7(ε) satisfies the following:

λ6(ε)− λ7(ε) > max
j=7,8

(dj(ε,M)) + max
1≤k≤6

dk(ε,M).

From Proposition 2.6, we note that

λk(ε) = λk +O(ε) where λk > 0, for 1 ≤ k ≤ 6,
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while under a non-degenerate scene, Equation (2.27) holds:

λj(ε) = Λjε
2 +O(ε3) where Λj > 0 for 7 ≤ j ≤ 8.

Thus the above condition is satisfied if

λ6 − Λ7ε
2 +O(ε) > max

j=7,8
(dj(ε,M)) + max

1≤k≤6
dk(ε,M). (2.34)

However, from Equation (2.32), we have

max
j=7,8

(dj(ε,M)) = O(ε2)m,

and

max
1≤k≤6

dk(ε,M) = O(ε)m.

Thus, since λ6 > 0, the condition (2.34) is satisfied for a sufficiently small ε when

m is sufficiently small (i.e., when there is a sufficiently small percentage noise).

Therefore, for a sufficiently small m, and a sufficiently small ε, the 9th circular

disc G̃9 is disjoint from the union G̃7 ∪ G̃8 of the 7th and 8th circular discs, which

in turn is disjoint from the union ∪6
i=1G̃i of the first six circular discs.

It follows from the second part of Proposition A.3 that λ̃9(ε) lies in G̃9, and from

Equation (2.32), we record the following result:
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Theorem 2.10. For a sufficiently small m, and a sufficiently small ε, the eigen-

value λ̃9(ε) is simple and

λ̃9(ε) = O(ε2)m.

Moreover,

λ̃i(ε) = Λiε
2 +O(ε2)m, i = 7, 8;

λ̃i(ε) = λi +O(ε) +O(ε)m, i = 1, 2, 3, 4, 5, 6.

(2.35)

2.6 Projection of q̃9(ε) along qk(ε)

From the preceding section, when m is small, λ̃9(ε) is simple for sufficiently small

ε. Therefore, its corresponding eigen-space is 1-dimensional. Let q̃9(ε) (which may

not be a unit vector) be an eigenvector corresponding to the eigenvalue λ̃9(ε) and

expressed in the form

q̃9(ε) =
9∑

i=1

αi(ε,M)qi(ε). (2.36)

Then the perturbation introduced to q̃9(ε) can be analyzed by looking at the

projection coefficients αi(ε,M) using the same technique in [106].

The following result is simple yet useful in the sequel.

Lemma 2.11.

(
λ̃9(ε)− λj(ε)

)
αj(ε,M) =

9∑

i=1

αi(ε,M)qTj (ε)B(ε,M)qi(ε) (2.37)
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Proof. Substituting (2.36) into (2.30), and using

AT (ε)A(ε)qi(ε) = λi(ε)qi(ε),

we have

9∑

i=1

αi(ε,M)λi(ε)qi(ε) +
9∑

i=1

αi(ε,M)B(ε,M)qi(ε) = λ̃9(ε)

(
9∑

i=1

αi(ε,M)qi(ε)

)
.

Pre-multiplying the above equation with qTj (ε), we obtain the required relation

(2.37) by noting that

qTj (ε)qi(ε) =





1, if i = j,

0, if i 6= j.

Lemma 2.12. Suppose the maximum projection is given by

max{|αi(ε,M)| | 1 ≤ i ≤ 9} = |αi∗(ε,M)|

for some i∗ in 1 ≤ i ≤ 9. Then

∣∣∣λ̃9(ε)− λi∗(ε)
∣∣∣ ≤

9∑

i=1

∣∣qTj (ε)B(ε,M)qi(ε)
∣∣ = O(ε)m.

Proof. Dividing Equation (2.37) by αi∗(ε,M) yields

(
λ̃9(ε)− λi∗(ε)

)
=

9∑

i=1

αi(ε,M)

αi∗(ε,M)
qTj (ε)B(ε,M)qi(ε)



Chapter 2. Assessing the Stability of Structure from Small Motion 44

with | αi(ε,M)
αi∗ (ε,M)

| ≤ 1 for 1 ≤ i ≤ 9. Thus we have

∣∣∣λ̃9(ε)− λi∗(ε)
∣∣∣ ≤

9∑

i=1

∣∣∣∣
αi(ε,M)

αi∗(ε,M)
qTj (ε)B(ε,M)qi(ε)

∣∣∣∣

≤
9∑

i=1

∣∣qTj (ε)B(ε,M)qi(ε)
∣∣ = O(ε)m.

The order follows from Lemma 2.8.

Theorem 2.13. For a sufficiently small noise m (and hence M) and a sufficiently

small ε, the maximum projection is given by

max{|αi(ε,M)| | 1 ≤ i ≤ 9} = |α9(ε,M)|.

Proof. We first prove that for every j in 1 ≤ j ≤ 6,

|αj(ε,M)| 6= max{|αi(ε,M)| | 1 ≤ i ≤ 9}

for a sufficiently small ε (for a given M).

Suppose on the contrary that, for some j∗ in 1 ≤ j ≤ 6, there is a sequence {εs}

with lim
s→∞

εs = 0 and |αj∗(εs,M)| = max{|αi(εs,M)| | 1 ≤ i ≤ 9}.

By Lemma 2.12, we have

∣∣∣λ̃9(εs)− λj∗(εs)
∣∣∣ ≤

9∑

i=1

∣∣qTj (εs)B(εs,M)qi(εs)
∣∣
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As s → ∞, we note that the right hand side of the above inequality approaches

0, by Lemma 2.12. Using Theorem 2.10 and Proposition 2.6, the left hand side

approaches λj∗ , which is positive. This yields a contradiction.

Therefore, |αj(ε,M)| is non-maximal for 1 ≤ j ≤ 6, when ε is sufficiently small.

Now, we shall prove, again by contradiction, that for every j where 7 ≤ j ≤ 8,

|αj(ε,M)| 6= max{|αi(ε,Ms)| | 1 ≤ i ≤ 9}

for a sufficiently small M and a sufficiently small ε.

Suppose for some j∗ ∈ {7, 8} , there is a sequence {Ms} with lim
s→∞
‖Ms‖ = 0 and

|αj∗(ε,Ms)| = max{|αi(ε,Ms)| | 1 ≤ i ≤ 9}. By Lemma 2.12, we have

∣∣∣λ̃9(ε)− λj∗(ε)
∣∣∣ ≤

9∑

i=1

∣∣qTj (ε)B(ε,Ms)qi(ε)
∣∣ .

As s → ∞, we note that the right hand side approaches 0, since lim
s→∞
‖Ms‖ = 0.

The left hand side approaches Λj∗ε
2, by Theorem 2.10 and Proposition 2.7. How-

ever, Λj∗ε
2 is positive for a sufficiently small ε > 0. This yields a contradiction.

Therefore, for a sufficiently small m (and hence M) and a sufficiently small ε, the

projection |αj(ε,M)|, for 7 ≤ j ≤ 8, is non-maximal.

We conclude that for a sufficiently small m and a sufficiently small ε, the projection

|α9(ε,M)| is maximal.
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Note that the following vector

1

α9(ε,M)
q̃9(ε) =

9∑

i=1

αi(ε,M)

α9(ε,M)
qi(ε)

is an eigenvector of ÃT (ε)Ã(ε) corresponding to the eigenvalue λ̃9(ε) with | αi(ε,M)
α9(ε,M)

| ≤

1 for 1 ≤ i ≤ 8.

Thus, from now on, for a sufficiently small ε and m, we may assume that

q̃9(ε) =
9∑

i=1

αi(ε,M)qi(ε), (2.38)

where α9(ε,M) = 1 and |αi(ε,M)| ≤ 1 for 1 ≤ i ≤ 8. Note that with α9(ε,M) =

αi∗(ε,M) = 1, both Lemmas 2.11 and 2.12 still apply. We shall now proceed to

determine the upper bounds on αi(ε,M) for 1 ≤ i ≤ 8.

Proposition 2.14. For 1 ≤ j ≤ 6, for sufficiently small m and ε , we have

αj(ε,M) = O(ε)m.

Proof. From Lemma 2.11, we have

∣∣∣λ̃9(ε)− λj(ε)
∣∣∣ |αj(ε,M)| ≤

9∑

i=1

∣∣qTj (ε)B(ε,M)qi(ε)
∣∣ ,

as each |αi(ε,M)| ≤ 1. By Theorem 2.10 and Proposition 2.7, we have
∣∣∣λ̃9(ε)− λj(ε)

∣∣∣ =

λj +O(ε) while
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9∑

i=1

∣∣qTj (ε)B(ε,M)qi(ε)
∣∣ = O(ε)m, by Lemma 2.8. Therefore, we have

αj(ε,M) = O(ε)m

for a sufficiently small ε and m.

Lemma 2.15. For j = 7 or 8, when m is sufficiently small, we have

|
9∑

i=1

αi(ε,M)qTj (ε)B(ε,M)qi(ε)| = O(ε2)m.

Proof. Note that
9∑

i=1

|αi(ε,M)qTj (ε)B(ε,M)qi(ε)|

≤
6∑

i=1

|αi(ε,M)qTj (ε)B(ε,M)qi(ε)|+
9∑

i=7

|αi(ε,M)qTj (ε)B(ε,M)qi(ε)|.

For 7 ≤ i ≤ 9, we use |αi(ε,M)| ≤ 1 and Lemma 2.8 to obtain

9∑

i=7

|αi(ε,M)qTj (ε)B(ε,M)qi(ε)| = O(ε2)m.

For 1 ≤ i ≤ 6, by Proposition 2.14 and Lemma 2.8, we have

|αi(ε,M)qTj (ε)B(ε,M)qi(ε)| = O(ε2)m2.

Therefore,
9∑

i=1

|αi(ε,M)qTj (ε)B(ε,M)qi(ε)| = O(ε2)m.
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We have the following bound on αj(ε,M) for j = 7 or 8.

Proposition 2.16. For 7 ≤ j ≤ 8, for sufficiently small m and ε, we have

|αj(ε,M)| = O(ε0)m.

Proof. Using Lemma 2.11, we obtain

|αj(ε,M)| ≤

9∑

i=1

|αi(ε,M)qTj (ε)B(ε,M)qi(ε)|
∣∣∣λ̃9(ε)− λj(ε)

∣∣∣
.

By Lemma 2.7 and Theorem 2.10, we have, for sufficiently small ε and m,

|λ̃9(ε)− λj(ε)| = Λjε
2 +O(ε3)m = Λjε

2 (1 +O(ε)m) > 0,

where Λj > 0. Therefore, together with Lemma 2.15, we conclude that |αj(ε,M)| =

O(ε0)m.

As a consequence of the preceding proposition, we are able to set a uniform bound

on m, i.e., independent of ε, such that |αj(ε,M)| < 1 (and are as small as we

like) for 7 ≤ j ≤ 8. With this m, for a sufficiently small ε > 0, we will also have

|αj(ε,M)| < 1 (and are as small as we like) for 1 ≤ j ≤ 6. The above result proves

that stability of the estimated solution q̃9(ε) under the differential condition of

small motion and a bounded percentage noise.

For comparison with other statistical analysis, we would like to find an explicit

expression for the lowest order noise terms (i.e., the m terms) of αj(ε,M), via
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Equation (2.37) in conjunction with the results obtained in Propositions 2.14 and

2.16 and Lemma 2.8. We shall state and prove the result in our last theorem:

Theorem 2.17. Given a sufficiently small m, and a sufficiently small ε,

q̃9(ε) =
9∑

i=1

αi(ε,M)qi(ε)

where α9(ε,M) = 1,

αi(ε,M) = −qTi (ε)B(ε,M)q9(ε)

λi(ε)
+O(ε)m2

= O(ε)m, for 1 ≤ i ≤ 6,

αi(ε,M) = −qTi (ε)B(ε,M)q9(ε)

λi(ε)
+O(ε0)m2

= O(ε0)m, for 7 ≤ i ≤ 8.

Proof. From Equations (2.37) and (2.38) and Propositions 2.14 and 2.16, we have

(
λ̃9(ε)− λj(ε)

)
αj(ε,M)

= qTj (ε)B(ε,M)q9(ε) +
8∑

i=1

αi(ε,M)qTj (ε)B(ε,M)qi(ε)

=





qTj (ε)B(ε,M)q9(ε) +O(ε)m2, 1 ≤ j ≤ 6,

qTj (ε)B(ε,M)q9(ε) +O(ε2)m2, 7 ≤ j ≤ 8.

(2.39)
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Applying Proposition 2.6 and Lemma 2.7, we have

λ̃9(ε)− λj(ε) = −λj(ε)
(

1− λ̃9(ε)

λj(ε)

)

=





−λj(ε)(1 +O(ε2)m), if 1 ≤ j ≤ 6,

−λj(ε)(1 +O(ε0)m), if 7 ≤ j ≤ 8.

Hence, by Equation (2.3), we have

1

λ̃9(ε)− λj(ε)
=





1
−λj(ε)(1 +O(ε2)m), if 1 ≤ j ≤ 6,

1
−λj(ε)(1 +O(ε0)m), if 7 ≤ j ≤ 8.

Dividing Equation (2.39) throughout by λ̃9(ε) − λj(ε) and using Lemma 2.8, we

have the desired expression stated in the theorem.

The above result shows that the lowest order terms in noise are the same as those

derived in [[106], pages 70, 71, 83, where the noise is denoted by ε]. It allows

us to extend much of the unbiasedness/noise whitening analysis carried out on

the discrete eight point algorithm to the differential case, because the foundation

of such analysis is the lowest order noise terms in the perturbation analysis. One

example is the work of [74], which showed that for the so-called TLS-FC normalized

variant of the discrete eight point algorithm1, the expected value of the αi(ε,M)

is zero for i 6= 9, that is, the estimated solution is unbiased.

1In the TLS-FC variant [74], matrix perturbation analysis was used to formulate a new data

matrix Ã′(ε) given by Ã′(ε) = Ã(ε) + M ′(ε) = A(ε) + εM + M ′(ε), where M ′(ε) is chosen such

that Ã′(ε) satisfies the rank 8 constraint without making any changes to the columns of Ã(ε)
in which noise is not present, and that ‖M ′(ε)‖ is minimized. A straightforward application of

the result in Equation (2.41) in Section 2.7 shows that this new Ã′(ε) is bounded by the same
proportional noise regime, and thus the results from our thesis are applicable to this TLS-FC
variant.
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2.7 Obtaining the Rotation and Translation Pa-

rameters

To complete our investigation, we need to ensure that the subsequent decomposi-

tion of the fundamental matrix F̃ (ε) into the translation and the rotation estimates

are stable. Several intermediate steps are also involved, including the correcting of

F̃ (ε) to the nearest rank-two matrix, and the correcting of the recovered essential

matrix Ẽ(ε) to the nearest matrix with the desired property of having the first

two singular values being equal.

In addition, to establish a proper comparison between the discrete and the differen-

tial formulation, we need to convert the rotational and translational displacements

recovered from the discrete algorithm into the corresponding velocity formulations.

As mentioned previously, the differential two view formulation converts the SfM

problem into one independent of ε but involving differential entities like velocity.

Accordingly, the required orders in the errors of the discrete estimates so that the

corresponding velocity estimates have errors independent of ε are given by:

Error in the translation direction = O(ε0)m,

Error in the rotation estimate = O(ε)m.

(2.40)

The above means that when the discrete rotation estimate is divided by the time

ε to get the rotational velocity, the latter’s error would be independent of ε. The

error in the translation estimate only needs O(ε0)m instead of O(ε)m because

the terms Tc and T in our formulation in fact represent velocities already (see
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Equations (3.1) and (2.19)). This is related to the fact that we can only recover

the translation direction anyway.

The overall order of the error provided in Theorem 2.17 is O(ε0)m and superficially,

does not give us much hope that the discrete eight point algorithm can meet the

condition set out in Equation (2.40) for rotation, which requires error of the order

O(ε)m. Fortunately, Theorem 2.17 also shows that the orders of the perturbation

coefficients αi(ε,M)′s are not all equal. In fact, only two coefficients, α7(ε,M) and

α8(ε,M), are of order O(ε0)m, whereas the rest are of order O(ε)m.

We can obtain a better bound if we split the recovered fundamental matrix F̃ (ε) =

︷ ︸︸ ︷
q̃9(ε) into a sum of two terms, such that the large O(ε0)m noise only perturbs the

translation vector. The rest of this section and Appendix A.2 are devoted to

doing just such a split and keeping track of how the errors are propagated and

apportioned in the subsequent decomposition into the translation and rotation

estimates.

2.7.1 Some Preliminaries

Before proceeding further, the following short note on ‘nearest matrix’ will be used

extensively in the discussion of the various errors throughout this section.

Let C̃(ε) be the noise corrupted version of a matrix C(ε). Due to the noise, C̃(ε)

may lack some desired properties which are present in C(ε) (an example of such

property is that the first two singular values are identical or the rank is 2).
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As is often the case, we use the ‘nearest’ C̃ ′(ε) to C̃(ε) (if it exists) instead of C̃(ε)

in the following sense:

(a) C̃ ′(ε) possesses the desired properties, and

(b) ‖C̃ ′(ε)− C̃(ε)‖

= min
{
‖K − C̃(ε)‖ | K possesses the desired properties

}
.

Thus, we have,

‖C̃ ′(ε)− C̃(ε)‖ ≤ ‖C(ε)− C̃(ε)‖. (2.41)

This ensures that in using the nearest matrix, the ‘correction’ introduced has the

same order of error.

Note that the essential/ fundamental matrix is only defined up to a scale factor.

We regard the ‘true’ fundamental matrix Ft(ε) as one having unit Frobenius norm

and given by

Ft(ε) =
︷ ︸︸ ︷
q9(ε) = T̂tΘR

T (ε)(Θ(ε))−1 (2.42)

where Tt is parallel to T defined in Equation (2.19) but scaled such that ‖Ft(ε)‖ =

1. The true essential matrix Et(ε) is defined as the de-normalized version of Ft(ε),

Et(ε) = ΘTFt(ε)Θ(ε) = ΘT T̂tΘR
T (ε). (2.43)
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The estimated fundamental matrix is given by

F̃ (ε) =
︷ ︸︸ ︷
q̃9(ε) .

With noise,
︷ ︸︸ ︷
q̃9(ε) may not be a unit vector and thus may not have unit norm.

Letting F̃ (ε) stay un-normalized has the virtue of keeping the following proof

simple while still obtaining error expressions that suffice for our purpose.

2.7.2 Splitting the Fundamental Matrix

We know from Theorems 2.4 and 2.17 that our estimated solution vector q̃9(ε) can

be expressed as

q̃9(ε) =q9(ε) +
8∑

i=7

αi(ε,M)r′i(ε) +
8∑

i=7

αi(ε,M)zi(ε) +
6∑

i=1

αi(ε,M)qi(ε)

=q9(ε) +
8∑

i=7

αi(ε,M)r′i(ε) +O(ε)m.

where

︷︸︸︷
r′i(ε) = T̂′i(ε), 7 ≤ i ≤ 8.

Therefore, using the definition of Ft(ε) in Equation (2.42), we have

F̃ (ε) =
︷ ︸︸ ︷
q̃9(ε)

= Ft(ε) +
8∑

i=7

αi(ε,M)T̂′i(ε) +O(ε)m

(2.44)
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Utilizing the relation ΘRT (ε)(Θ(ε))−1 − I = O(ε), we can modify Equation (2.44)

such that

F̃ (ε) = Ft(ε) +

8∑

i=7

αi(ε,M)T̂′i(ε)
{

ΘRT (ε)(Θ(ε))−1 +O(ε)
}

+O(ε)m

= Fa(ε,M) +O(ε)m

where

Fa(ε,M) = Ft(ε) +

(
8∑

i=7

αi(ε,M)T̂′i(ε)

)
ΘRT (ε)(Θ(ε))−1

= Ft(ε) +O(ε0)m

(2.45)

is a part of F̃ (ε) that contains the true rotation but an incorrect translation. As

F̃ (ε) may lack the rank two property associated with a fundamental matrix, we

apply the algorithm described in [69] that chooses a rank 2 matrix F̃ ′(ε) with the

minimum ‖F̃ (ε)−F̃ ′(ε)‖. If we consider F̃ (ε) to be a perturbed version of the valid

fundamental matrix Fa(ε,M) (i.e., having rank 2), then from Equation (2.41),

‖F̃ (ε)− F̃ ′(ε)‖ ≤ ‖F̃ (ε)− Fa(ε,M)‖ = O(ε)m.

Hence, the error in F̃ ′(ε) takes the form

F̃ ′(ε) = Fa(ε,M) +O(ε)m.
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2.7.3 Errors in the Motion Estimates

The essential matrix Ẽ(ε) is obtained by de-normalizing F̃ ′(ε):

Ẽ(ε) = ΘT F̃ ′(ε)Θ(ε) = Ea(ε,M) +O(ε)m (2.46)

where using Equations (2.2) , (2.43) and (2.45), we have

Ea(ε,M)

= ΘTFa(ε,M)Θ(ε)

=

(
ΘT T̂tΘ + det(Θ)

8∑

i=7

αi(ε,M) ̂Θ−1T′i(ε)

)
RT (ε)

= Et(ε) +O(ε0)m.

(2.47)

Observe that from Equation (2.47), Ea(ε) is a valid essential matrix (in the sense

that it has rank 2 and two identical non-zero singular values), since it is a product

of a skew symmetric matric and a rotation matrix R(ε) in SO(3).

We can treat Ẽ(ε) as a perturbed version of Ea(ε). Therefore, using the algorithm

in [69] to enforce on Ẽ(ε) the condition of having the first two singular values

being equal, we can obtain a valid essential matrix Ẽ ′(ε), where from Equations

(2.41) and (2.47) , we have

‖Ẽ ′(ε)− Ẽ(ε)‖ ≤ ‖Ea(ε,M)− Ẽ(ε)‖ = O(ε)m. (2.48)
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Using triangle inequality and the orders from Equations (2.46) and (2.48), we have

‖Ẽ ′(ε)− Ea(ε,M)‖

≤ ‖Ẽ ′(ε)− Ẽ(ε)‖+ ‖Ea(ε,M)− Ẽ(ε)‖

= O(ε)m.

(2.49)

Similarly, using the orders from Equations (2.46) , (2.47) and (2.48), we have

‖Ẽ ′(ε)− Et(ε,M)‖

≤ ‖Ẽ ′(ε)− Ẽ(ε)‖+ ‖Et(ε,M)− Ẽ(ε)‖

= O(ε0)m.

(2.50)

The rest of the proof basically keeps track of how the errors are propagated when

one uses singular value decomposition on Ẽ ′(ε) to obtain the rotation and trans-

lation estimates. The steps are nontrivial but the arguments are straightforward.

Interested readers can refer to Appendix A.2 for the details. In particular, using

the order in Equation (2.50) and Proposition A.8 in Appendix A.2, we obtain:

Error in the unit translational vector = O(ε0)m.

With regards to rotation, if one considers Ẽ ′(ε) to be a perturbed version of Ea(ε)

which contains the true rotation, then using the order in Equation (2.49) and

Proposition A.10 in Appendix A.2, we obtain:

Error in the rotational matrix = O(ε)m,
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completing the requirements set out in Equations (2.40).

2.8 Simulation Results

We present simulation results for the following linear algorithms:

HN denotes the eight point algorithm using Hartley normalization [39],

HNC denotes the eight point algorithm with Hartley normalization and estimated

by Total Least Squares – Fixed Column (TLS-FC) [74],

E denotes the un-normalized eight point algorithm [61],

M denotes the differential essential matrix [67], and

S denotes the linear subspace differential algorithm [41].

2.8.1 Decreasing Baseline

Simulation results for decreasing baseline are given in Figures 3.10 and 2.2, with

those of the discrete algorithms represented by dotted lines and those of the dif-

ferential algorithms by solid lines. The simulation conditions are as follows. The

“scene” consisted of a point cloud containing 1000 points with an average depth

of 10 units. The points were uniformly distributed between depths of 7 and 13

units. The simulated camera had a 45◦ field of view (FoV) with a focal length of

1 unit. The initial translation was set at (0, 0.1, 0) unit, and the initial rotation at

(0.01, 0, 0.01) radians. Both the baseline and rotation were steadily decreased by
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(a) Translation Direction=(0, 0, 1)

(b) Translation Direction=(1, 0, 0)

Figure 2.1: Error in estimating the translation direction with decreasing base-
line. For lateral translation (b), the errors in E, M , and S are large.

(a) Translation Direction=(0, 0, 1) (b) Translation Direction=(1, 0, 0)

Figure 2.2: Error in estimating the rotation with decreasing baseline.
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factors of 10 to simulate increasingly small motion. This baseline was decreased

until 10−16, the limit of arithmetic precision, in order to verify our theoretical pre-

diction. The optical flow noise was 3.5% of the average magnitude of the optical

flow. The rotational errors presented in Figure 2.2 have been normalized such that

normalized rotational error =
rotational error in degrees

baseline

As such, a constant normalized rotation error in the graphs indicates that the

actual error is decreasing proportionally to the amount moved by the camera.

2.8.2 Increasing Noise

The scene is similar to that in Subsection 2.8.1. However, in this scenario, we fix

the translation (see Figure 2.3 for the translation) and rotation while increasing

the amount of noise. The results are presented in Figure 2.3, with each column

representing different types of translational motions.

2.8.3 Observations

1. From Figures 3.10 and 2.2, one can see that there was no deterioration in

the computation of the motion parameters using the discrete eight point

algorithms (E, HN and HNC) despite reductions in the baseline to the

limit of arithmetic precision. Note that the errors for the discrete algorithms

shot up at about 10−12 or 10−13: At this small baseline, the magnitude of the

optical flow, being two to three orders of magnitude smaller than the baseline,
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(a) Translation=(0, 0, 0.001) (b) Translation=(0.001, 0, 0)

(c) Translation=(0.001, 0.001, 0.001)

(d) Translation=(0, 0, 0.001) (e) Translation=(0.001, 0, 0)

(f) Translation=(0.001, 0.001, 0.001)

Figure 2.3: This figure illustrates the performances of various linear algo-
rithms as the noise increases. The rotation parameters for all simulations in
this figure is given by Rotation=(0 0 0). Figures (a) to (c) show the error in
estimating the translation direction. Figures (d) to (f) show the error in esti-
mating the rotation.
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reached the limit of arithmetic precision, rendering the proportional noise

model invalid and thus resulting in the breakdown of the discrete algorithms.

This simulation clearly verifies that the theoretical predictions made in the

previous section are correct.

2. The performances of the differential essential matrix algorithm (M) and

the linear subspace algorithm (S) were extremely poor (Figures 2.1(b) and

2.3), especially in the lateral motion configuration which is susceptible to

the bas-relief ambiguity [18, 22, 68, 109]. Their performances were more

or less comparable to that of the un-normalized discrete approach (E). In

contrast, the normalized discrete eight point algorithm with Total Least

Squares – Fixed Column estimation (HNC) appeared to give very much

superior results even when the motion was small, with HN ’s not far behind.

3. In Figure 2.2, the absolute rotational error declined proportionally with the

baseline as predicted (i.e. the rotational error was of the order O(ε)m).

4. Referring to Figure 2.3, the impact of noise was keenly felt for the un-

normalized discrete approach (E) and the differential algorithms (M and

S). Under all motion types tested, the well-known forward bias [18, 22, 68]

reared its ugly head at even a low level of noise. For instance, in Figure

2.3(c), when the noise was about 10%, the forward-biased solution of 0◦ for

the translation resulted in an error of about 45◦ (the true translation vector

lies in the 45◦ direction). In the same token, for the forward translation

case (Figure 2.3(a)), the excellent results of E, M , and S should be treated

with caution. These algorithms had a strong forward bias and irrespective of
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the true motion, tended to give a forward translation estimate whenever the

noise was moderately large. On the other hand, the normalized discrete al-

gorithms (HN and HNC) exhibited much less sensitivity to noise under all

conditions tested, except in the translational estimate of HN under forward

translation (Figure 2.3(a)) with the noise level greater than 10%. The results

of this simulation imply that we could expect a stable performance from the

discrete HNC algorithm when dealing with small motions, provided that

the proportional noise in the optical flow computation is small enough.

2.9 Results on Real Image Sequences

With conventional CCD imaging technology and the mechanical stability of the

measurement apparatus, it is clearly impossible to replicate with real image se-

quences the extremely small baseline scenario in the preceding section. Our goal

in this section is to show that over a practical range of decreasing baselines, the

normalized discrete algorithms can perform as well, if not better than the differ-

ential counterparts. The range of flow magnitude simulated is indicated in the

first row of Table 2.1; our smallest baseline corresponds to the case where the

average flow magnitude is of the order 10−1 pixel. This limit is reasonable as at

the current technology level, the imaging noise expected for a high-quality, 12-bit,

scientific imaging system may cause flow variation on the order of 0.01 pixels to

0.001 pixels, depending on the image content [96]. Such noise level would already

constitute a 10% noise for a subpixel image motion of the order 10−1 pixel, which

would be a problem for both the discrete and the differential algorithms.
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(a) Sequence A (b) Sequence B

(c) Sequence C

Figure 2.4: Scenes that have been tested. Field of view ranges from 31 to 53◦.
Sequences A and B involve a pure lateral translation, while Sequence C involves
a pure forward translation.

Three sequences were taken by moving a camera along a linear rail using two

different consumer-grade cameras. For sequence A in Figure 2.4(a), the FoV was

31◦. For sequences B and C in Figures 2.4(b) and 2.4(c), the FoV was 53◦. Optical

flow was estimated using the state-of-the-art algorithm provided by [91]. 4000 flows

were obtained from sub-sampling the available flows and filtered using RANSAC

to remove obvious outliers. In most scenes, 99% of the tested flows were considered

inliers and different RANSAC trials gave little variation in the results. There was

no scene-specific tuning of either the RANSAC thresholds or the parameters in

the optical flow estimation algorithm. Here, we gave the average error over three

trials. For computational efficiency, the number of flows were further reduced to

2000 by sub-sampling before being used for camera pose recovery. For comparison

purpose, the camera pose estimated from all the linear algorithms was also refined
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using the bundle adjustment algorithm [40]. The results of the linear algorithms

are tabulated in the top half of Table 2.1, with the corresponding results refined by

bundle adjustment reported in the bottom half of Table 2.1. As we have no means

of accurately measuring the ground truth for small rotations, only the translational

error is reported.

Sequences in Figures 2.4(a) and 2.4(b) involve a pure lateral translation, while

that in Figure 2.4(c) involves a pure forward translation. Observe that the dis-

crete linear estimator HNC of [74] performed much better than the differential

estimator M from [67]. For example in the lateral motion sequences (Figures 2.4(a)

and 2.4(b)), the discrete algorithm was able to give a good estimate even under

circumstances in which its differential counterpart failed completely. These ex-

perimental results show clearly that for SfM problems involving a practical range

of small motions, the normalized discrete linear algorithms out-performed their

differential counterparts by a large margin, especially in lateral motion configura-

tion which are liable to the bas-relief ambiguity. For forward translation (Figure

2.4(c)), the performance of the normalized discrete algorithms remained on par

with the differential ones and was stable over decreasing baseline. We also note

that random noises have apparently substantial effects on the performances of

all algorithms, as can be seen from the non-smooth error figures over changing

baseline in Table 2.1. This means that the subsequent step of bundle adjustment

to refine the pose estimate is especially important. Given a normalized discrete

algorithm that can provide an initial estimate stably over a large range of motion

and over different motion configurations, the non-linear bundle adjustment step
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would have a higher chance of finding the global minimum and will do so more

quickly (see bottom half of Table 2.1).

2.10 Concluding remarks

We have proven that the eight point algorithm and its variants are “differential

algorithms” in the sense that they can handle arbitrarily small motions given

a sufficiently tight bound on the percentage noise. This proof was done using

tools from matrix perturbation analysis. It shows that for a sufficiently small

proportional noise, the eigenvalues of the data matrix remain separate and the

solution vector can be recovered well even under very small motion. Using both

real and simulation results, we have validated the theoretical analysis and shown

that even under small motion, the normalized discrete eight point algorithms can

perform well and indeed significantly outperform their differential counterparts.

Given that much efforts have been spent in improving the discrete algorithms,

and in view of our theoretical and experimental results, it seems that for now at

Table 2.1: Translation errors for sequences in Figure 2.4. (NL) in the bottom
half of the table indicates that a nonlinear bundle adjustment step was used
to refine the results obtained by the corresponding linear algorithm in the top
half. The first row indicates the average magnitude of the optical flow for the
sequence in that particular column.

Error (o) A1 A2 A3 B1 B2 B3 C1 C2 C3

Flow Mag. 0.53 1.0 4.1 0.73 1.17 1.35 0.8 1.1 2.8
HNC 16.5 22.3 5.2 6.5 24.2 14.3 4.4 4.1 3.8
M 89.1 48.5 7.0 87.1 80.6 88.6 2.6 2.5 2.8
S 89.1 48.5 7.0 87.1 80.6 88.6 2.5 2.5 2.8
HNC (NL) 1.8 6.0 1.1 6.7 2.2 7.3 3.3 4.3 2.8
M (NL) 83.0 4.8 1.0 87.3 7.2 84.5 3.2 2.8 2.2
S (NL) 87.2 38.0 5.6 82.9 7.4 87.8 2.3 2.4 2.9
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least, a properly normalized eight point algorithm should be used for SfM even in

small motion.

Having obtained the theoretical results for the two-view SfM case, it would also

be interesting to investigate whether the many so-called instabilities associated

with small motion in various other problems are due to the instability of the

specific discrete algorithms rather than the inherent sensitivity of small motion.

For instance, [99] considered the case where the third view of a trifocal tensor is

obtained by an infinitesimal change of a discrete two-view system. The additional

constraint was obtained by differentiating the discrete epipolar constraint pTEp′ =

0 with both E and p′ changing, which yields pTEṗ′ + pT Ėp′ = 0. While such

formulation has the virtue of simplicity, the additional differential information

pTEṗ′ + pT Ėp′ can be drowned out when combined with the existing epipolar

constraint pTEp′, leading to apparent degeneracy under small changes in E and p′.

The problem is not inherently sensitive however; rather, a proper weighing and

normalization scheme can do much to enhance the usefulness of the differential

information and generally improve the stability of the algorithm. A full treatment

of this question is beyond the scope of this thesis and presents a very interesting

subject for future research.



Chapter 3

Simultaneous Camera Pose and

Correspondence Estimation with

Motion Coherence

Studying the interlocking relationship between applications and the correspon-

dence recovery process can yield more than theoretical insights. In this chapter,

we show how acknowledging the chicken and egg relationship between camera

pose recovery and correspondence computation, permits the incorporation of non-

unique edge points into the camera pose recovery process. This is achieved by

fusing the camera pose recovery into a motion coherence matching framework.

68
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Fig. 1 This scene illustrates the difficulty in obtaining reliable matches
when there are few corners. The correspondences are the results of a
SIFT matcher. There are insufficient corners available for matching,
with most of the few corners available suffering from ambiguity. Pose
recovery on these scenes would be substantially easier if we could use
the clear contour cues present.

sufficiently distinct to enable unique point to point corre-
spondence. This limits camera pose recovery to well tex-
tured scenes with abundant corner features. In this paper, we
seek to design an algorithm which can incorporate ambigu-
ous features such as edge points into the camera pose recov-
ery process. This allows pose recovery on more challeng-
ing SfM scenes where there are few corners; such scenes
are particularly common in man-made environment [53,54],
one example of which is illustrated in Figure 1. Our algo-
rithm is, however, not limited to such scenes. Natural scenes
where the visual features are highly similar or whose ex-
traction is non-repeatable across large viewpoint change can
also benefit from our approach.

While correspondence is needed to obtain camera pose,
knowledge of camera pose also facilitates point correspon-
dence. In recent years, a number of works [10,17,29,35,
45] have proposed joint pose and correspondence algorithms
(JPC) which explicitly acknowledge the chicken and egg na-
ture of the pose and correspondence problem. Rather than
choosing a camera pose in accordance with a pre-defined
set of matches, these algorithms choose camera pose on the
basis of whether the feature points can find a correspon-
dence along the associated epipolar line. This permits the
utilization of non-unique features to contribute to camera
pose computation. Note that we should distinguish such JPC
works from other joint estimation works such as 2D image
or 3D surface registration [5,12,30,56] using say, the Itera-
tive Closest Point (ICP) technique. These registration works
invariably involve a global transformation that is parameter-
ized by a few variables (such as the affine parameters) and
provides a well-defined mapping from point to point. This
one-to-one mapping means the global parameters automati-
cally preserves the relative alignment of features and largely
accounts for the success in solving the registration. In con-
trast, in the JPC algorithms, the 3D camera pose does not
define a point to point correspondence but rather a point to
epipolar line relationship on the 2D image plane. This ad-
ditional ambiguity means a much greater degree of freedom
and associated problem complexity. More importantly for
our problem scenario where the features are highly ambigu-

ous, it also means that the epipolar constraint alone is insuf-
ficient to resolve the ambiguity, even with the JPC approach.
For example, if the feature points consisted of edge pixels
that form a long connected contour, an epipolar line in any
direction will eventually intersect with the contour. Thus, a
JPC algorithm will have difficulty choosing a correct camera
pose.

Despite such apparent ambiguity, we note that the motion-
induced deformation of a 2D contours’ shape contains clear
perceptual cues as to the relative camera pose. One possible
reason that humans can infer the camera pose might be that
they perceive the contour points as a collective entity in mo-
tion (i.e. the law of shared common fate), rather than as in-
dependently moving individual points. This motivates us to
impose a coherent motion constraint on the feature point dis-
placements such that the displacements approximately pre-
serve the overall shape of these points; in other words, points
close to one another should move coherently [55].

While general non-rigid registration algorithms such as
[8,40] are generally able to preserve the overall shape of a
point set, they are not designed for point-to-point correspon-
dence and suffer from the aperture problem. As was shown
in our preliminary work [31], individual contour points are
poorly localized using the registration algorithm proposed
in [40]. The registration is not consistent with any epipo-
lar geometry and, hence, is not useful for obtaining camera
pose.

In this paper, we propose jointly estimating the camera
pose and point correspondence while enforcing a coherent
motion constraint. Such joint estimation scheme is complex
because the goodness of any point match depends not only
on the camera pose and its local descriptor, but also on the
matching position allocated to all other image points. The
complexity is further increased because the smooth coher-
ent motion of a contour is essentially a continuous concept,
but we wish to work on discrete point sets containing pos-
sibly both corners and edge information. We adapt for this
purpose the Coherent Point Drift framework of [40], which
overlaid a continuous displacement field over the sparse point
set, and regularized the displacement field to achieve motion
coherence. The resultant scheme can compute camera pose
using “ambiguous” features such as edge points (as well as
the conventional corner points). It also removes the local-
ization uncertainty of the edge point correspondence from
using registration algorithm. This is illustrated in Figure 2.
To our knowledge, this is the first attempt to integrate mo-
tion coherence, correspondence over a sparse point set and
camera pose estimation into a common framework. The re-
sult makes a big difference in the perceived difficulty of a
SfM scene. Our experiment showed that our algorithm can
work well across large viewpoint changes, on scenes which
primarily consist of long edges and few corners, as well as
natural scenes with high visual clutter.

Figure 3.1: Illustrates the difficulty in obtaining reliable matches when there
are few corners. Pose recovery on these scenes would be substantially easier if
we could use the clear contour cues present.

3.1 Introduction

As mentioned in preceding chapters, a central issue that must be addressed in solv-

ing SfM is camera pose recovery. Traditionally, the camera pose recovery problem

has been formulated as one of estimating the optimal camera pose given a set of

point correspondences. Such approach includes, among many others, improved lin-

ear estimation [39, 82], bundle adjustment [100] as well as globally optimal estima-

tors [28, 48]. However, despite many advances in matching techniques [7, 38, 64],

obtaining correspondences across two images remains a non-trivial problem and

contains a strong underlying assumption that the features are sufficiently distinct

to enable unique point to point correspondence. This limits camera pose recovery

to well textured scenes with abundant corner features. In this chapter, we seek to

design an algorithm which can incorporate ambiguous features such as edge points

into the camera pose recovery process. This allows pose recovery on more challeng-

ing SfM scenes where there are few corners; such scenes are particularly common
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in man-made environment [107, 108], one example of which is illustrated in Figure

3.1. Our algorithm is, however, not limited to such scenes. Natural scenes where

the visual features are highly similar or whose extraction is non-repeatable across

large viewpoint change can also benefit from our approach.

While correspondence is needed to obtain camera pose, knowledge of camera

pose also facilitates point correspondence. In recent years, a number of works

[24, 33, 54, 70, 90] have proposed joint pose and correspondence algorithms (JPC)

which explicitly acknowledge the chicken and egg nature of the pose and corre-

spondence problem. Rather than choosing a camera pose in accordance with a

pre-defined set of matches, these algorithms choose camera pose on the basis of

whether the feature points can find a correspondence along the associated epipolar

line. This permits the utilization of non-unique features to contribute to camera

pose computation. Note that we should distinguish such JPC works from other

joint estimation works such as 2D image or 3D surface registration [9, 27, 56, 111]

using say, the Iterative Closest Point (ICP) technique. These registration works

invariably involve a global transformation that is parameterized by a few variables

(such as the affine parameters) and provides a well-defined mapping from point

to point. This one-to-one mapping means the global parameters automatically

preserves the relative alignment of features and largely accounts for the success in

solving the registration. In contrast, in the JPC algorithms, the 3D camera pose

does not define a point to point correspondence but rather a point to epipolar

line relationship on the 2D image plane. This additional ambiguity means a much

greater degree of freedom and associated problem complexity. More importantly
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for our problem scenario where the features are highly ambiguous, it also means

that the epipolar constraint alone is insufficient to resolve the ambiguity, even with

the JPC approach. For example, if the feature points consisted of edge pixels that

form a long connected contour, an epipolar line in any direction will eventually

intersect with the contour. Thus, a JPC algorithm will have difficulty choosing a

correct camera pose.

Despite such apparent ambiguity, we note that the motion-induced deformation

of a 2D contours’ shape contains clear perceptual cues as to the relative camera

pose. One possible reason that humans can infer the camera pose might be that

they perceive the contour points as a collective entity in motion (i.e. the law

of shared common fate), rather than as independently moving individual points.

This motivates us to impose a coherent motion constraint on the feature point dis-

placements such that the displacements approximately preserve the overall shape

of these points; in other words, points close to one another should move coherently

[110].

While general non-rigid registration algorithms such as [21, 78] are generally able

to preserve the overall shape of a point set, they are not designed for point-to-

point correspondence and suffer from the aperture problem. As was shown in

our preliminary work [58], individual contour points are poorly localized using the

registration algorithm proposed in [78]. The registration is not consistent with

any epipolar geometry and, hence, is not useful for obtaining camera pose.

In this chapter, we propose jointly estimating the camera pose and point corre-

spondence while enforcing a coherent motion constraint. Such joint estimation
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scheme is complex because the goodness of any point match depends not only

on the camera pose and its local descriptor, but also on the matching position

allocated to all other image points. The complexity is further increased because

the smooth coherent motion of a contour is essentially a continuous concept, but

we wish to work on discrete point sets containing possibly both corners and edge

information. We adapt for this purpose the Coherent Point Drift framework of

[78], which overlaid a continuous displacement field over the sparse point set, and

regularized the displacement field to achieve motion coherence. The resultant

scheme can compute camera pose using “ambiguous” features such as edge points

(as well as the conventional corner points). It also removes the localization uncer-

tainty of the edge point correspondence from using registration algorithm. This

is illustrated in Figure 3.2. To our knowledge, this is the first attempt to inte-

grate motion coherence, correspondence over a sparse point set and camera pose

estimation into a common framework. The result makes a big difference in the

perceived difficulty of a SfM scene. Our experiment showed that our algorithm

can work well across large viewpoint changes, on scenes which primarily consist of

long edges and few corners, as well as natural scenes with high visual clutter.

3.1.1 Related works

The core concept of using an iterative refinement of pose and correspondence has

a long and rich history in SfM. Examples include RANSAC-flavored algorithms

[31, 37, 75], and the Joint Pose and Correspondence/Flow algorithms [24, 54, 70,
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Fig. 2 The dotted region represents the localization uncertainty present
in the matching provided by the registration algorithm. On the right, the
horizontal epipolar line allows the localization of the contour point.

1.1 Related works

The core concept of using an iterative refinement of pose and
correspondence has a long and rich history in SfM. Exam-
ples include RANSAC-flavored algorithms [15,19,38], and
the Joint Pose and Correspondence/Flow algorithms [10,29,
35,42,46,52]. Many of these are landmark works which greatly
improve SfM’s stability in previously difficult scenes.

Of these, the JPC algorithms under small motion [46,42,
52] are the ones which most closely resemble our algorithm.
They overcome the aperture problem by finding an optical
flow that is consistent with a camera motion. While this ap-
proach can be extended to wider baselines by applying a
point set registration algorithm as initialization, such an al-
gorithm would be inelegant and is likely to suffer from large
amount of noise caused by approximating a large displace-
ment by flow. Our approach handles large displacement nat-
urally. It also handles the problem of disconnected point sets
and isolated corners more naturally than that of optical flow
formulation and would be especially useful in incorporat-
ing recently proposed edge descriptors [37]. Lastly, our ap-
proach can incorporate high-dimensional feature descriptors
which give greater robustness to photometric noise.

There are many other works that jointly estimate a global
transformation between two sets of points and the point cor-
respondence between them, but they differ from our work
in some important aspects. Some of these involve multiple
frames [11,27,39], where an initial 3D map was built from
say, five-point stereo [41]. Subsequent camera poses were
tracked using local bundle adjustment over the N most re-
cent camera poses, and features are constantly added to al-
low the 3D map to grow in the SLAM style. In other works,
the 3D models are available a priori (e.g. from a CAD model)
[9,26]. In contrast, our joint estimation is carried out over
two frames in the absence of any 3D model or initial map.
Other joint estimation works [5,24,30,44,56] involve align-
ing two sets of points which are related by some simple
transformations defining a point to point mapping. The one
to one mapping automatically preserves the relative align-
ment of the features within the point set without having a

need for an additional coherence constraint. Our work dif-
fers in that the epipolar geometry does not enforce a one-
to-one mapping. Instead, the unknown depth of the feature
points means that the camera pose provides a point to epipo-
lar line constraint. It also means that an additional coherence
term is needed to enforce a greater coherence of shape, lead-
ing to a significantly more complex problem formulation.

For multiple views, it is also possible to make use of
structure from lines algorithms to overcome the aperture prob-
lem [2,14,22,47]. Interested readers might like to peruse
other works dealing with various aspects of curve / line re-
construction [1,6,23,48,53,54] as well as the merger of in-
tensity and edge information [36,43,51].

2 Formulation

In this paper, the problem addressed is the recovery of cam-
eras’ relative pose (i.e. orientation and position) given two
different views of a static scene. The formulation empha-
sizes generality, allowing easy adaptation for different in-
puts such as corners and edges. Edges are simply described
by point sets obtained by sampling the edge map of the im-
age.

2.1 Definitions

Each feature point takes the form of a D dimensional feature
vector, [

x y r g b . . .
]T
1×D

,

with x and y being image coordinates, while the remain-
ing optional dimensions can incorporate other local descrip-
tors such as color, curvature, etc. We are given two point
sets. A base point set B0M×D = [b01, ..., b0M ]T describ-
ing M feature points in the base image and a target point
set T0N×D = [t01, ..., t0N ]T describing N feature points in
the target image. b0i, t0i are D dimensional point vectors of
the form given above.

We define another matrix BM×D = [b1, ..., bM ]T which
is the evolved version of B0. We seek to evolve B until it is
aligned to the target point set T0N×D, while still preserv-
ing the coherence of B0 (that is, the overall 2D geometric
relationships between points in B0 should be preserved as
much as possible). The evolution of B consists of changing
only the image coordinates (first two entries) of the bi vec-
tors. The remaining entries are held constant to reflect the
brightness/ feature constancy assumption. When attempting
to align the evolving base set B to the target set T0, we try to
ensure that the resulting mapping of the image coordinates
of b0i to bi are consistent with that of a moving camera view-
ing a static scene (i.e. abide by some epipolar constraint).

As many equations only involve the first two dimensions
of b0i, bi, to simplify our notation, we define them as the

Figure 3.2: The dotted region represents the localization uncertainty present
in the matching provided by the registration algorithm. On the right, the hori-
zontal epipolar line allows the localization of the contour point.

84, 92, 103]. Many of these are landmark works which greatly improve SfM’s

stability in previously difficult scenes.

Of these, the JPC algorithms under small motion [92, 84, 103] are the ones which

most closely resemble our algorithm. They overcome the aperture problem by find-

ing an optical flow that is consistent with a camera motion. While this approach

can be extended to wider baselines by applying a point set registration algorithm

as initialization, such an algorithm would be inelegant and is likely to suffer from

large amount of noise caused by approximating a large displacement by flow. Our

approach handles large displacement naturally. It also handles the problem of

disconnected point sets and isolated corners more naturally than that of optical

flow formulation and would be especially useful in incorporating recently proposed

edge descriptors [73]. Lastly, our approach can incorporate high-dimensional fea-

ture descriptors which give greater robustness to photometric noise.

There are many other works that jointly estimate a global transformation between
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two sets of points and the point correspondence between them, but they differ

from our work in some important aspects. Some of these involve multiple frames

[26, 51, 77], where an initial 3D map was built from say, five-point stereo [82].

Subsequent camera poses were tracked using local bundle adjustment over the

N most recent camera poses, and features are constantly added to allow the 3D

map to grow in the SLAM style. In other works, the 3D models are available

a priori (e.g. from a CAD model) [23, 50]. In contrast, our joint estimation is

carried out over two frames in the absence of any 3D model or initial map. Other

joint estimation works [9, 47, 56, 87, 111] involve aligning two sets of points which

are related by some simple transformations defining a point to point mapping.

The one to one mapping automatically preserves the relative alignment of the

features within the point set without having a need for an additional coherence

constraint. Our work differs in that the epipolar geometry does not enforce a one-

to-one mapping. Instead, the unknown depth of the feature points means that

the camera pose provides a point to epipolar line constraint. It also means that

an additional coherence term is needed to enforce a greater coherence of shape,

leading to a significantly more complex problem formulation.

For multiple views, it is also possible to make use of structure from lines algorithms

to overcome the aperture problem [5, 29, 40, 93]. Interested readers might like to

peruse other works dealing with various aspects of curve / line reconstruction

[4, 17, 45, 94, 107, 108] as well as the merger of intensity and edge information

[71, 85, 102].
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3.2 Formulation

In this chapter, the problem addressed is the recovery of cameras’ relative pose

(i.e. orientation and position) given two different views of a static scene. The

formulation emphasizes generality, allowing easy adaptation for different inputs

such as corners and edges. Edges are simply described by point sets obtained by

sampling the edge map of the image.

3.2.1 Definitions

Each feature point takes the form of a D dimensional feature vector,

[
x y r g b . . .

]T

1×D
,

with x and y being image coordinates, while the remaining optional dimensions

can incorporate other local descriptors such as color, curvature, etc. We are given

two point sets. A base point set B0M×D = [b01, ..., b0M ]T describing M feature

points in the base image and a target point set T0N×D = [t01, ..., t0N ]T describing

N feature points in the target image. b0i, t0i are D dimensional point vectors of

the form given above.

We define another matrix BM×D = [b1, ..., bM ]T which is the evolved version of B0.

We seek to evolve B until it is aligned to the target point set T0N×D, while still

preserving the coherence of B0 (that is, the overall 2D geometric relationships

between points in B0 should be preserved as much as possible). The evolution



Chapter 3. Simultaneous Camera Pose and Correspondence Estimation with
Motion Coherence 76

of B consists of changing only the image coordinates (first two entries) of the bi

vectors. The remaining entries are held constant to reflect the brightness/ feature

constancy assumption. When attempting to align the evolving base set B to the

target set T0, we try to ensure that the resulting mapping of the image coordinates

of b0i to bi are consistent with that of a moving camera viewing a static scene (i.e.

abide by some epipolar constraint).

As many equations only involve the first two dimensions of b0i, bi, to simplify our

notation, we define them as the sub-vectors β0i, βi respectively. We further denote

the first two columns of B0 and B by B0 and B, which are M × 2 matrices

formed by β0i and βi. As B0 and B uniquely define B0 and B respectively

in our case, the matrices can often be used interchangeably in probabilities and

function declarations. The constancy of much of the bi vector also means that the

algorithm’s run time is largely independent of the size of D. Hence one can apply

high dimensional descriptors on the contour points with little additional cost.

3.2.2 Problem formulation

We seek an aligned base set B and the associated motion of an uncalibrated camera

F (for calibrated cameras, one could parameterize F using the rotation and transla-

tion parameters without changing the formulation), which has maximum likelihood

given the original base and target point sets B0 and T0 respectively. Mathemat-

ically, this can be expressed as maximizing P (B,F|B0,T0). Using Bayes’ rule,
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this can be formulated as,

P (B,F|B0,T0) =
P (T0,B|F,B0)P (F,B0)

P (B0,T0)

=
P (T0,B|F,B0)P (F|B0)P (B0)

P (B0,T0)

It is clear that the likelihoods P (B0), P (B0,T0) are constants with respect to

the minimization variables F,B. Furthermore, if we assume a uniform (un-

informative) prior for the motion, it makes sense to assign P (F|B0) to be a con-

stant1. This allows us to simplify the probabilistic expression into

P (B,F|B0,T0) ∝ P (T0,B|F,B0)

= P (B|F,B0)P (T0|B,F,B0).

(3.1)

Observe that by expressing our formulation in terms of a warping from a base image

to a target image, we treat the information from the two views in an asymmetrical

manner. A symmetrical formulation may be able to better handle spurious fea-

ture and validate whether the algorithm has converged to an adequate minimum.

However, the resultant scheme will be complex and is beyond the scope of the

thesis.

We first study the term P (B|F,B0). Given camera pose F and assuming inde-

pendent isotropic Gaussian noise of standard deviation σb, the evolving base point

1An intuitive explanation for a uniform prior is that a camera can move to any position in
the 3D world and similarly have any calibration parameters.
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set B has an associated probability given by

P (B|F,B0) = P (B|F,B0) = e−λΨ(B)

M∏

i=1

g(di, σb). (3.2)

where g(z, σ) = e−
‖z‖2

2σ2 is a Gaussian function. We will explain the second term in

more detail in Section 3.2.4 after we discuss the first term e−λΨ(B).

3.2.3 Coherence term

The first exponent in equation (3.2) contains the regularization term Ψ(B) with

λ controlling the relative importance of this regularization term.

Recall that we desire to enforce smoothness over a discrete point set whose points

are sparsely distributed, a rather difficult operation to perform. One option is

to directly penalize any deviation in the relative position of points considered as

neighbors. Such an approach fits naturally into the discrete point set problem

and is amenable to graph based minimization [20, 98]. However, because only

the first order smoothness is imposed, it tends to penalize all deviations in relative

position, rather than penalizing discontinuous changes in shape much more heavily

than smooth deformation in shape caused by viewpoint changes. In other words,

such first-order smoothness does not supply enough coherence of shape.

To overcome the aforementioned difficulties, we define a fictitious continuous field

over the sparse point set and call it the displacement field or velocity field (in this

chapter, the terms velocity and displacement are used loosely and do not imply

any small motion approximation for the former). We utilize the motion coherence
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framework of [110] in which higher order of smoothness is enforced on the velocity

field. The smoothness is imposed mathematically by regularization in the Fourier

domain of the velocity field. Our scheme has a number of advantages:

1. By imposing higher-order smoothness, it permits smooth changes in relative

position that nevertheless maintains coherence in shape, rather than penal-

izing all changes. In fact, [110] explicitly showed that for isolated features, a

smoothing operator with only first-order derivatives does not supply enough

smoothness for a well-posed solution.

2. The formulation of this fictitious velocity field acts as a unifying principle

for all types of motion information (isolated features, contours, brightness

constancy constraint). It allows us to integrate the information provided by

isolated features and contours, and yet does not require the declaration of

a specific region of support when deciding which points are neighbors that

should influence each others’ motion.

3. While the interaction of the velocity field falls off with distance and is thus

local, we obtain a resultant interaction between the isolated features that is

nonlocal. This is desirable on account of the Gestalt principle. On the other

hand, when there is local motion information that suggests discontinuous

change in the velocity field, the rapidly falling off local interaction of the

velocity field will ensure that it will be the locally measured data that are

most respected, thus allowing discontinuous change in the velocity field.

Preservation of such discontinuous changes is further aided by additional

mechanisms introduced in the regularization scheme (more of that, later).
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We define v(.) as this 2D velocity field function. The velocity field covers the entire

image, and at image locations β0i where feature points exist, it must be consistent

with the feature points’ motion. Mathematically, this means that they obey the

constraint

βi = v(β0i) + β0i. (3.3)

Ψ(B) is defined in the Fourier domain to regularize the smoothness of the velocity

field function v(.):

Ψ(B) = min
v′(s)

(∫

<2

|v′(s)|2
g′(s) + κ′(s)

ds

)
, (3.4)

where v′(s) is the Fourier transform of the velocity field v(.) which satisfies equa-

tion (4.1) and g′(s) is the Fourier transform of a Gaussian smoothing function.

The Gaussian function has a spatial standard deviation of γ which controls the

amount of coherence desired of the velocity field. Without the κ′(s) term, the

above smoothness function follows the motion coherence form proposed in [110]

and has been used in general regularization theory [35]; it was also subsequently

adopted in the contour registration work of [78]. Such definition allows us to im-

pose a continuous coherent motion field over the motion of a discrete point set

specified by equation (4.1). Suppressing the high frequency components of the

velocity field ensures that adjacent contour points have similar motion tendencies,

thus preserving the overall 2D geometric relationships between points in B0. How-

ever, the Gaussian function drops off very sharply away from the mean, greatly

penalizing the high frequency terms. In SfM where there may be occlusion and

sharp velocity changes, such a penalty function can be overly restrictive. As such,
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we introduce the additional κ′(s) term, which should have limited spatial support

and hence wide frequency support. In this chapter, spatial support is taken to

be less than the smallest separation between any two points in B0. Given such

limited spatial support, the exact form of the function κ is immaterial. We can

just define:

κ(β0i − β0j) =





k, i = j

0, i 6= j

(3.5)

where k is some pre-determined constant.

3.2.4 Epipolar term

The second term in equation (3.2) contains the epipolar constraint defined by

camera pose, F. As mentioned earlier, we desire that the image coordinate pairs

β0i, βi, to be consistent with F. Hence, di is the perpendicular distance of the

point βi from the epipolar line defined by point β0i and pose F, with a cap at

ζ. Observe that since β0i is a fixed point of unknown depth, di is the geometric

error [40] associated with β0i, βi,F, with an additional capping function. The

capping function basically expresses the fact that the Gaussian noise error model

is only valid for inlier points, while there exist a number of randomly distributed

outlier points which result in much thicker tails than are commonly assumed by

the Gaussian distribution.

Practically, such robust functions allow outliers to be removed from consideration

by paying a certain fixed penalty. In this regards, its function is similar to sta-

tistical form of RANSAC [100]. Formally, the capped geometric distance can be
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written as

di = min(
∥∥lTi (βi − ri)

∥∥, ζ) (3.6)

where ri is a two dimensional vector representing any point on the epipolar line.

li is a two dimensional unit vector perpendicular to the epipolar line defined by F

and β0i. ζ is the maximum deviation of a point from the epipolar line, before it is

considered an outlier. As our point sets often contain huge numbers of outliers, we

usually set ζ to a very low value of 0.01 (the distance is defined in the normalized

image space after Hartley’s normalization [39]).

3.2.5 Registration term and overall cost function

We now consider P (T0|B,F,B0) in equation (3.1). Since T0 is independent of

the ancestors F and B0 given the immediate parent B, this probability can be

simplified to just the confidence measure of T0 given B. Note that the T0 and

B contain a mix of descriptor and coordinate terms. We let each bi be the D

dimensional centroid of an equi-variant Gaussian function with standard deviation

σt (we assume that the data has been pre-normalized, the normalization weights

being given in section 3.3.3). The following forms the Gaussian mixture probability

of T0:

P (T0|B,F,B0) =
N∏

j=1

M∑

i=1

g(t0j − bi, σt). (3.7)

This is the registration error term which includes both geometric and intensity

information. Initially, B is not necessarily close to T0, thus making the above
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probability very small. However, using the Expectation Maximization (EM) algo-

rithm, we use these initial, low probabilities to better align B with T0. Note that

we use the term EM loosely to describe the general minimization style although

the exact mechanism is slightly unconventional.

Substituting equations (3.2) and (3.7) into (3.1) and taking the negative log of

the resultant probability, our problem becomes one of finding the F and B which

maximize the probability in equation (3.1), or equivalently, minimize A(B,F),

where

A(B,F) = −
N∑

j=1

log
M∑

i=1

g(t0j − bi, σt) +
M∑

i=1

d2
i

2σ2
b

+ λΨ(B). (3.8)

The first term in A(B,F) measures how well the evolving point set B is registered

to the target point set T0. The second term measures whether the evolving point

set B adheres to the epipolar constraint. Finally, the third term ensures that the

point set B evolves in a manner that approximately preserves the coherence of B0.

3.3 Joint estimation of correspondence and pose

We seek the B and F which optimize equation (4.6) (recall that B is the first two

columns of B). Observe that this is a constrained minimization but as the li, ri

terms in the geometric distance di have a non-linear relationship with the camera

pose F and image point β0i, as well as due to the presence of the regularization
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term, it precludes other more straightforward minimization techniques. Using a

method similar to expectation maximization, we minimize A(B,F) by alternately

updating B and F. The procedure is described in the following subsections.

3.3.1 Updating registration, B

In this subsection, we hold the camera pose Fold constant while updating B. This

results in a Bnew whose associated evolving base point set Bnew is better aligned to

the target point set T0, while preserving the point set’s coherence and respecting

the epipolar lines defined by the camera pose Fold. The new registration Bnew can

be computed from the M × 2 linear equations in equation (C.2).

Here we provide the derivations. We define

φij(bi, t0j) = g(t0j − bi, σt)

φij(B, t0j) =
φij(bi, t0j)∑
z φzj(bz, t0j)

.

(3.9)

Fo more robust correspondence with occlusion, we use a robust version of φij(B, t0j)

in equtaion (C.1). This is given by φij(B, t0j) =
φij(bi,t0j)∑

z φzj(bz ,t0j)+2µπσ2
t

. The second,

2µπσ2
t denominator term provides a thickening of the tail compared to those of the

Gaussian. The idea is similar to the robust implementation of the regularization

in equation (3.6).
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Using Jensen’s inequality and observing that the maximum value of di is ζ, we

can write the inequality

A(Bnew,Fold)− A(Bold,Fold)

≤−
N∑

j=1

M∑

i=1

φij(B
old, t0j)log

φij(b
new
i , t0j)

φij(boldi , t0j)

+
∑

i∈inlier

(dnewi )2 − (doldi )2

2σ2
b

+ λ
(
Ψ(Bnew)−Ψ(Bold)

)

=∆A(Bnew,Bold,Fold).

(3.10)

where a point i is an inlier if doldi < ζ.

Observing from equation (3.10) that ∆A(Bold,Bold,Fold) = 0, the Bnew which

minimizes ∆A(Bnew,Bold,Fold) will ensure that

A(Bnew,Fold) ≤ A(Bold,Fold)

since the worst A(Bnew,Fold) can do is to take on the value of A(Bold,Fold).

Dropping all the terms in ∆A(Bnew,Bold,Fold) which are independent of Bnew, we

obtain a simplified cost function

Q =
1

2

N∑

j=1

M∑

i=1

φij(B
old, t0j)

‖t0j − bnewi ‖2

σ2
t

+
∑

i∈inlier

(dnewi )2

2σ2
b

+ λΨ(Bnew).

(3.11)
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Using a proof similar to that in [78], we show in the Appendix that the regular-

ization term Ψ(B) at the minima of A(B,F) is related to B and B0 by

Ψ(B) = tr(ΓG−1ΓT ), (3.12)

where G is a M×M matrix with its (i, j) entry given by G(i, j) = g(β0i−β0j, γ)+

kδij (δij being the Kronecker delta), Γ = (B−B0)T , and tr(.) represents the trace

of a matrix. Substituting the above expression of Ψ(B) into Q and taking partial

differentiation of Q with respect to each element of Bnew, we can construct the

matrix ∂Q
∂Bnew

, where each entry is ∂Q
∂Bnew(i,j)

. The conditions needed for achieving

the minimum of Q can be obtained by setting all the entries of this matrix to zero:

∂Q

∂Bnew
=

[
c1 c2 . . . cM−1 cM

]
+ 2λΓnewG−1 = 02×M

C + 2λΓnewG−1 = 02×M

CG + 2λΓnew = 02×M

(3.13)

Here, the column vector ci is computed as

ci =
N∑

j=1

φij(B
old, t0j)

(
βnewi − t̂0j

σ2
t

)

+





qi
old(βnewi −roldi )

σ2
b

i ∈ inlier

02×1 otherwise

,

where qi2×2 is a 2×2 matrix given by qi2×2 = (li)(l
T
i ), t̂0j stands for the truncated

vector of t0j with the latter’s first two elements, and the definitions of li, ri are as

given in equation (3.6). Equation (C.2) produces M × 2 linear equations which
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can be solved to obtain Bnew.

Observe that the minimization step in equation (C.2)—in particular, the compu-

tation of ci—is in keeping with the spirit of the outlier rejection scheme discussed

in equation (3.6): “outliers” are no longer over-penalized by the camera pose but

they remain incorporated into the overall registration framework.

3.3.2 Updating camera pose, F

We now update the camera pose on the basis of the new correspondence set

Bnew,B0. Replacing B in equation (4.6) with Bnew and holding it constant, we

seek to minimize the cost function A(Bnew,Fnew) with respect to only Fnew. Only

the middle term in A(B,F) depends on F. Using the definition of the geometric

distance di in equation (3.6), we minimize the simplified cost function

M∑

i=1

min
(∥∥(lnewi )T (βnewi − rnewi )

∥∥2
, ζ2
)

(3.14)

with βnewi being the image coordinates of the point set Bnew.

Observe that the problem of finding the Fnew which in turn produces lnewi and rnewi

that minimize the above cost function can be formulated as a bundle adjustment

problem [100] with camera pose F initialized to Fold.

After these two steps, Bold, Fold are replaced with Bnew, Fnew and the algorithm

returns to the first step in section 3.3.1. The process is iterated until convergence

as the evolving base set B registers itself to the target set T0.
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3.3.3 Initialization and iteration

Hartley normalization is performed on the image coordinates of both point sets,

thus pre-registering their centroids and setting the image coordinates to have unit

variance. In this chapter, SIFT [64] feature descriptors were also attached to the

points. These descriptors are normalized to have magnitudes of σt of equation

(3.7).

For initialization of the correspondence, we use SIFT flow [59] to give initial values

of Bnew. However, SIFT flow is not used to initialize the camera pose. As can be

seen from equation (4.6), setting li to zero for the first EM iteration will cause the

algorithm to ignore the epipolar constraint during this first iteration. Once Bnew

is calculated, Fnew can be calculated from Bnew and B0, after which Bold,Fold are

replaced with Bnew,Fnew. Normal EM resumes with li restored, and the process

is iterated until convergence.

For stability, we set σt, σb to artificially large values, then steadily anneal them

smaller. This corresponds to the increased accuracy expected of the camera pose

estimate and the point correspondence. A summary of the algorithm is given in

figure 3.3.

3.4 System implementation

In this section, we consider how one might build a complete SfM system using

our proposed joint estimation framework. To do this, we must address issues such
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Input: Point sets, B0, T0

Initialize σt, σb;
Initialize Bold as B0, li to zero vector;
while σt, σb above threshold do

while No convergence do
Use eqn (C.1) to evaluate φij(b

old
i , t0j) from Bold, Fold;

Use eqn (C.2) to determine Bnew from φij(b
old
i , t0j);

Use bundle adjustment to obtain Fnew from Bnew and B0;
Replace Bold,Fold with Bnew,Fnew;

end
Anneal σt = ασt, σb = ασb, where α = 0.97.

end

Figure 3.3: Algorithm to register point sets B0 to T0, while computing the
camera pose in F

as point set acquisition, occlusion detection and initialization under real world

conditions.

The first step of any such system has to be the identification of point sets in both

images. As our algorithm is capable of utilizing non-unique features such as edges,

we do not wish to use a corner detector, which would reject all edge-like features.

Edge detectors would provide edge information; however, they often detect many

spurious edges [102]. In order to overcome these problems, we detect features

following the seminal SIFT algorithm [64]. However, as we are not interested in

uniqueness, we disabled the cornerness term which otherwise would remove feature

points that are considered too edge-like. The result appears to resemble that of

a rather sparse but robust edge detector as illustrated in figure 3.4 but will also

provide corner information when available. The descriptors that come with the

SIFT detector also contribute greatly to stability.

The next issue is one of initialization and occlusion detection. What we need at

this stage is not a well localized image registration but a crude initialization and
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Fig. 4 Left to right: Output of SIFT feature detector with and without
its cornerness function.

The next issue is one of initialization and occlusion de-
tection. What we need at this stage is not a well localized
image registration but a crude initialization and a general
idea of which sections of the image are occluded (feature
points in the occluded regions need to be removed from the
point sets B0 and T0). For these purposes, we utilize the
dense SIFT flow algorithm to give us a crude mapping. Oc-
cluded regions are defined as regions where the SIFT flow is
inconsistent, i.e. point A in image 1 maps to point B in im-
age 2, however, point B does not map back to anywhere near
point A. At very large baselines, the occlusion detector may
declare the entire image as occlusion. In such situations the
occlusion mask is discarded. (Note that a more sophisticated
form of occlusion detection can be obtained in [4].)

Finally, one can obtain a dense 3D reconstruction us-
ing the computed camera pose and the Patched based Multi-
view Stereo (PMVS) [16] as a dense matcher. The complete
pipeline is shown in figure 5.

5 Experiments and Evaluation

We run a series of real and simulated experiments to eval-
uate our algorithm, with errors reported as deviations from
ground truth rotation and translation. All parameters reported
are with respect to the Hartley normalized coordinates. All
images are evaluated at a resolution of 640× 480.

The rotational error R̃ refers to the rotation angle in de-
gree needed to align the reference frame of the computed
pose to that of the true pose. The translational error T̃ is the
angle in degree between the computed translation and the
ground truth translation. Although both the rotational and
translational errors are given in degrees, in general, for typ-
ical camera and scene configuration, a large rotational error
is more serious than a translational error of similar magni-
tude.

We test our system on a wide range of scene types and
baselines. These include many “non-traditional” SfM scenes
in which there are few/ no distinct corners available for match-
ing, such as natural vegetation scenes where there is a large
amount of self occlusion and thus spurious corners, architec-
tural scenes where the available corners are very repetitive
as well as more traditional SfM scenes. This is followed by a

systematic evaluation of our algorithm’s handling of increas-
ing baseline. For most scenes, ground truth camera pose is
obtained by manually obtaining point correspondences until
the computed camera pose is stable. An exception is made
for the last two images in figure 7, where the extremely tex-
tureless scenes were taken using linear rail with known mo-
tion. A calibrated camera was used for all these tests.

To give the reader a general feel for the scenes’ diffi-
culty, our results are benchmarked against that of a tradi-
tional SfM technique. Correspondences are obtained using
[34]. Camera pose is obtained using the five point algorithm
[41] together with outlier removal by the RANSAC imple-
mentation in [28], the outliers rejection threshold being set
at a Sampson distance of 0.001. The RANSAC step is fol-
lowed by a bundle adjustment using the implementation of
[33] to minimize the reprojection error.

The same set of parameters are used throughout the en-
tire experiments. The two Gaussian parameters σb and σt in
equations (2) and (7) are given an initial value of σt = σb =
0.1. They are annealed to smaller values with annealing pa-
rameter α = 0.97. The occlusion handling parameter µ in
equation (9) is set to 0.5, while the epipolar outlier handling
parameter ζ in equation (6) is set to 0.01. λ, which controls
the relative weight given to the smoothness function, is set to
1. k, the degree of tolerance for high frequency components
in equation (5), was set to 0.0001, while γ, the standard de-
viation of the Gaussian smoothness function, was set to 1.

5.1 Evaluation

We evaluate our algorithm on a variety of real and simulated
scenes. In the simulated scene in figure 6, we illustrate our
system’s performance over depth discontinuities and the role
of the discontinuity parameter k in equation (5). It shows
that our algorithm can handle depth discontinuities and the
pose computed is robust to the smoothness perturbations that
the discontinuities induce. This is also illustrated in a num-
ber of real images of trees in figure 8 and a bicycle scene
in figure 9. For the outdoor scenes, the baseline is usually a
few meters. For the indoor scenes where objects are closer
to the camera, the baseline is typically half a meter.

In figure 7, we investigate real images of scenes with
sparsely distributed corners. Errors in the recovered cam-
era parameters are reported below the images. “Ours” in-
dicates the errors obtained by our algorithm, “SIFT flow”
those obtained by running the five point algorithm and bun-
dle adjustment on SIFT flow as correspondence input and fi-
nally, “Traditional” those obtained by running the five point
algorithm with RANSAC and bundle adjustment on SIFT
matches as correspondence input (traditional here refers to
the dependence on unique features such as corners). In some
scenes, SIFT matching returns too few matches for the tra-
ditional algorithm to give a pose estimate. In such circum-

Figure 3.4: Left to right: Output of SIFT feature detector with and without
its cornerness function.

a general idea of which sections of the image are occluded (feature points in the

occluded regions need to be removed from the point sets B0 and T0). For these

purposes, we utilize the dense SIFT flow algorithm to give us a crude mapping.

Occluded regions are defined as regions where the SIFT flow is inconsistent, i.e.

point A in image 1 maps to point B in image 2, however, point B does not map

back to anywhere near point A. At very large baselines, the occlusion detector

may declare the entire image as occlusion. In such situations the occlusion mask

is discarded. (Note that a more sophisticated form of occlusion detection can be

obtained in [8].)

Finally, one can obtain a dense 3D reconstruction using the computed camera

pose and the Patched based Multi-view Stereo (PMVS) [32] as a dense matcher.

The complete pipeline is shown in figure 3.5.
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Input Images

Camera Pose Recovery

Key-point 

Detection

Occlusion

Detection

Joint Registration and

Pose Recovery

Reconstruction

Figure 3.5: 3-D reconstruction pipeline. Left to right: Side view of setup,
input images, key-point detection, occlusion detection (with occluded pixels set
to zero) and final reconstruction obtained from camera pose.

3.5 Experiments and Evaluation

We run a series of real and simulated experiments to evaluate our algorithm, with

errors reported as deviations from ground truth rotation and translation. All

parameters reported are with respect to the Hartley normalized coordinates. All

images are evaluated at a resolution of 640× 480.

The rotational error R̃ refers to the rotation angle in degree needed to align the

reference frame of the computed pose to that of the true pose. The translational

error T̃ is the angle in degree between the computed translation and the ground

truth translation. Although both the rotational and translational errors are given

in degrees, in general, for typical camera and scene configuration, a large rotational

error is more serious than a translational error of similar magnitude.

We test our system on a wide range of scene types and baselines. These include

many “non-traditional” SfM scenes in which there are few/ no distinct corners

available for matching, such as natural vegetation scenes where there is a large
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amount of self occlusion and thus spurious corners, architectural scenes where the

available corners are very repetitive as well as more traditional SfM scenes. This is

followed by a systematic evaluation of our algorithm’s handling of increasing base-

line. For most scenes, ground truth camera pose is obtained by manually obtaining

point correspondences until the computed camera pose is stable. An exception is

made for the last two images in figure 3.7, where the extremely textureless scenes

were taken using linear rail with known motion. A calibrated camera was used for

all these tests.

To give the reader a general feel for the scenes’ difficulty, our results are bench-

marked against that of a traditional SfM technique. Correspondences are obtained

using [64]. Camera pose is obtained using the five point algorithm [82] together

with outlier removal by the RANSAC implementation in [53], the outliers rejec-

tion threshold being set at a Sampson distance of 0.001. The RANSAC step is

followed by a bundle adjustment using the implementation of [63] to minimize the

reprojection error.

The same set of parameters are used throughout the entire experiments. The two

Gaussian parameters σb and σt in equations (3.2) and (3.7) are given an initial

value of σt = σb = 0.1. They are annealed to smaller values with annealing

parameter α = 0.97. The occlusion handling parameter µ in equation (C.1) is set

to 0.5, while the epipolar outlier handling parameter ζ in equation (3.6) is set to

0.01. λ, which controls the relative weight given to the smoothness function, is set

to 1. k, the degree of tolerance for high frequency components in equation (3.5),
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was set to 0.0001, while γ, the standard deviation of the Gaussian smoothness

function, was set to 1.

3.5.1 Evaluation

We evaluate our algorithm on a variety of real and simulated scenes. In the

simulated scene in figure 3.6, we illustrate our system’s performance over depth

discontinuities and the role of the discontinuity parameter k in equation (3.5). It

shows that our algorithm can handle depth discontinuities and the pose computed

is robust to the smoothness perturbations that the discontinuities induce. This is

also illustrated in a number of real images of trees in figure 3.8 and a bicycle scene

in figure 3.9. For the outdoor scenes, the baseline is usually a few meters. For the

indoor scenes where objects are closer to the camera, the baseline is typically half

a meter.

In figure 3.7, we investigate real images of scenes with sparsely distributed cor-

ners. Errors in the recovered camera parameters are reported below the images.

“Ours” indicates the errors obtained by our algorithm, “SIFT flow” those ob-

tained by running the five point algorithm and bundle adjustment on SIFT flow

as correspondence input and finally, “Traditional” those obtained by running the

five point algorithm with RANSAC and bundle adjustment on SIFT matches as

correspondence input (traditional here refers to the dependence on unique features

such as corners). In some scenes, SIFT matching returns too few matches for the

traditional algorithm to give a pose estimate. In such circumstances, the pose er-

ror is given as Not Applicable (NA). The first two test images are of buildings. As
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Original point set

Registration with k set to 0.0001

Registration without accommodating discontinuities (i.e. k=0)

Fig. 6 The vertical bars have a different depth and color (color not
shown in results) from the horizontal bars. As the camera moves, the
depth discontinuity causes the vertical bars to slide over the horizon-
tal one. Setting the high frequency tolerance parameter k to 0.0001,
the system retains both the smoothness constraint while accommodat-
ing the discontinuities. While there are some correspondence errors,
our system is sufficiently robust to ensure that there is negligible error
in the overall pose estimation. Using the standard motion coherence,
where k = 0, the conflict between registration, smoothness and epipo-
lar geometry cannot be resolved. The resultant pose estimate suffers,
with a translational and rotation errors of 13.5o and 5o respectively.

R̃ T̃ R̃ T̃ R̃ T̃
SIFT flow 0.43 5.52 1.07 3.94 2.05 1.59
Ours 0.41 3.38 0.76 2.68 0.71 1.90
Traditional 0.31 5.20 0.94 6.20 1.26 3.93

Fig. 9 A set of more traditional structure from motion scenes. Observe
that our algorithm performs well on these easy, well-textured structure
from motion scenes.

R̃ T̃
SIFT flow 5.8690 6.1868

Ours 1.4134 3.7060
Ours* 1.3083 2.5192

Traditional 1.3211 1.1139

Fig. 11 Computed point sets on two images of a textured cloth. This
image is easy for traditional SfM. However, our point set recovery faces
large amount of “self-occlusion” caused by the extremal contours on
the blanket varying under viewpoint changes. Under Ours*, we applied
our algorithm using only traditional SIFT corner features. The results
improve significantly, showing that when there is abundant high quality
corner information present, including more noisy edge information can
have a negative impact on performance. This scene also illustrates our
algorithm ability to give a reasonable estimate despite large amount of
noise and occlusion.

2000.
9. P. David, D. Dementhon, R. Duraiswami, and H. Samet. Simulta-

neous pose and correspondence determination using line features.
International Journal of Computer Vision, 2:424–431, 2002.

10. F. Dellaert, S. Seitz, C. Thorpe, and S. Thurn. Structure from
motion without correspondence. In Proc. of Computer Vision and
Pattern Recognition, 2000.

11. C. Engels, H. Stewenius, and D. Nister. Bundle adjustment rules.
In Photogrammetric Computer Vision, 2006.

12. O. Enqvist, and F. Kahl. Robust Optimal Pose Estimation. Euro-
pean Conference on Computer Vision, 2008.

13. O. Enqvist, and F. Kahl. Two view geometry estimation with out-
liers. British Conference on Machine Vision, 2009.

Figure 3.6: The vertical bars have a different depth and color (color not
shown in results) from the horizontal bars. As the camera moves, the depth
discontinuity causes the vertical bars to slide over the horizontal one. Setting
the high frequency tolerance parameter k to 0.0001, the system retains both the
smoothness constraint while accommodating the discontinuities. While there
are some correspondence errors, our system is sufficiently robust to ensure that
there is negligible error in the overall pose estimation. Using the standard
motion coherence, where k = 0, the conflict between registration, smoothness
and epipolar geometry cannot be resolved. The resultant pose estimate suffers,
with a translational and rotation errors of 13.5o and 5o respectively.
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in many man-made structures, lines and edges are the predominant cues present.

The problem of identifying matches needed for traditional SfM is compounded by

the wide baseline. By relaxing the uniqueness requirement, our algorithm can uti-

lize a much greater amount of information compared to the traditional approach,

leading to a stable camera pose recovery. The third and fourth scenes consist of

extremely sparsely distributed sets of corners. Here the primary SfM cue is the

edge information. Our algorithm can utilize this edge information to convert an

information-impoverished scene with very few point matches into an information-

rich scene. This allows it to circumvent the difficulties faced by the traditional

SfM algorithms.
10

R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃
SIFT flow 15.9177 32.7802 4.8950 5.5900 13.589 81.2057 2.0970 27.8590
Ours 0.8944 2.8339 4.2943 7.5999 1.6161 12.5875 0.9923 11.5929
Traditional 14.5585 78.5412 12.8954 9.3199 15.0885 57.1229 17.7057 80.8453

Fig. 7 We show a number of scenes where there are few corners and correspondingly few matches. The correspondences obtained from SIFT
matching [34] are shown in the third row. The matches that exist are also poorly distributed, with the majority of matches being clustered in a small
region. The fourth row shows the SIFT points used by our algorithm. By relaxing the need for unique correspondence, we can use a much richer
and better distributed point set, which in turn permits a better recovery of the camera pose. The pose errors are reported below the images (see the
text for the meanings of R̃ and T̃ ).

tured SfM scene. The baseline is fairly large, with the cam-
era rotating through 33.9 degrees while fixated on the table.
Our algorithm gives a stable estimate of camera pose for all
images in that sequence, achieving comparable performance
with the traditional approach, and slightly outperforming it
for the case of the widest baseline. The second sequence is
of a moderately difficult scene where our algorithm outper-
forms the traditional approach by remaining stable over the
entire sequence. This enhanced stability is the result of our
algorithm being able to utilize the edge features provided by
the door frame, while the traditional approach is limited to
the tightly clustered features on the posters, giving it a small
effective field of view. Finally, the last sequence shows a
very difficult scene. There are very few feature matches (the
point matches from the second image pair are shown in fig-
ure 1) and by the third image of the sequence, there are in-
sufficient matches for a traditional SfM algorithm to make
a pose estimate. Furthermore, the baseline is slightly larger
than that shown in the previous two scenes, with a maximum
camera rotation of 35.9 degrees about the object of interest.
Although the performance of our algorithm at larger base-

lines degrades, an estimate of the camera pose and the depth
can still be recovered at very large baselines.

5.3 Unresolved issues and Discussion

Throughout this paper, we have emphasized our algorithm’s
ability to utilize more information than traditional SfM al-
gorithms. However, we should caution that unless properly
weighted, more information is not necessarily better. This
is illustrated in figure 11, where an undulating cloth sur-
face means that the edge information is subject to a great
deal of “occlusion” noise, caused by the extremal contours
varying with viewpoint changes. inconsistent edge detec-
tion. Despite the large amount of occlusion, our algorithm
could still return a fairly good estimate; however, re-running
our algorithm using only corner information improves the
results. This indicates that it is the inclusion of “noisy” in-
formation without proper weighting that degrades somewhat
the performance of our algorithm. We note that unique cor-
ner matches can be better incorporated into our algorithm by
allowing these point matches to influence the σt values in

Figure 3.7: We show a number of scenes where there are few corners and cor-
respondingly few matches. The correspondences obtained from SIFT matching
[64] are shown in the third row. The matches that exist are also poorly dis-
tributed, with the majority of matches being clustered in a small region. The
fourth row shows the SIFT points used by our algorithm. By relaxing the need
for unique correspondence, we can use a much richer and better distributed
point set, which in turn permits a better recovery of the camera pose. The pose
errors are reported below the images (with R̃ and T̃ representing rotation and
translation errors in degrees, see text for elaboration).
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In figure 3.8, we further our investigation on scenes which contain a large number

of non-unique corners. This is true for the floor image, where the gird pattern

tiling results in multiple corners with nearly identical feature descriptor. It also

occurs in natural vegetation scenes, where the leaves form many repetitive features.

For plants, the problem is made more severe because the extensive self occlusion

caused by the interlocking of leaves and branches further degrades potential corner

descriptors. Hence, despite the large number of corners available (nearly 1000 for

some of the images), there are few SIFT matches on the foliage. For the floor scene,

jointly estimating the correspondence and pose allows the handling of non-unique

features and the subsequent pose recovery. For the plant images, our algorithm

can ignore the noise in the degraded feature descriptors and utilize the tree trunks

and their outlines to obtain a camera pose estimate. We also illustrate a failure

case in the last column of figure 3.8. With most of the feature descriptors badly

perturbed by self occlusion, the primary SfM cue lies in the edge information which

in this case is the extremal contour of the plant. Unlike polyhedral objects, the

extremal contour of the plant is view-dependent (i.e. the points on the plants

that participate in generating the contour are view-dependent). This dependency

effect is especially significant when the displacement is quite large (at smaller

displacements our algorithm can handle this scene).

Finally, in figure 3.9 we evaluate our algorithm on traditional SfM scenes with ad-

equate number of unique features. This shows that our algorithm also works well

when the primary cue lies in disconnected but discriminative corner information.

Although some scenes contain significant depth discontinuities, our algorithm can
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R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃
SIFT flow 2.0097 27.8590 7.6931 3.6912 1.3447 11.5193 15.3635 88.9147
Ours 1.2401 8.6582 1.5239 13.5200 0.8103 9.3550 48.6037 35.5356
Traditional 9.3170 56.4661 6.5460 86.6666 66.5418 89.6218 NA NA

Fig. 8 Here we experiment on images where corners are plentiful (some of the tree images have over 1000 features detected) but unique matching
remains challenging. This lack of uniqueness is due to the strong repetitive pattern. For the plant images, the problem is compounded by the
interlocking leaves which induce self-occlusion and corresponding feature degradation. For the floor image, our algorithm can utilize the non-
unique SIFT feature to recover camera pose, while for the tree images, we can utilize the features lying along the trees branches. The final image
shows a failure case where the stem is hidden by the foliage and the problem is further compounded by a view-dependent extremal contour.

our Gaussian mixture. A principled fusion of these different
sources of match information, together with a well thought-
out data weighting scheme would be of great practical value
and remains to be properly addressed.

While our algorithm cannot attain the global minimum
and more research in that direction is necessary, we would
like to make some final remarks on the stability of our al-
gorithm against local minima, whether arising from the in-
herent ambiguity of the SfM problem, or caused by errors in
the initialization. Referring to figures 7, 8, and 10, it can be
seen that both “SIFT flow” and “Traditional” sometimes re-
turned a translation estimate that was almost 90 degrees off
the correct solution. This is caused by the well known bias
of the translation estimate towards the center of the image
(the true translation is lateral in these sequences), which be-
comes more acute when the feature matches are insufficient
or of poor quality. Our algorithm suffers less from these well
known local minima of SfM because we can use ambigu-
ous edge features in these circumstances. While initializa-
tion with SIFT flow helps reduce the local minima problem,
it can be seen from our results that we can converge to a
correct solution even when the original SIFT flow initial-
ization is fairly erroneous. This is especially obvious in the
sequences with varying baseline in figure 10, where our al-
gorithm degrades gracefully with increasing displacement
induced noise and worsening SIFT flow initialization.

6 Conclusion

In this paper we have extended the point registration frame-
work to handle the two-frame structure from motion prob-
lem. Integrating the motion coherence constraint into the
joint camera pose and matching algorithm provides a princi-
pled means of incorporating feature points with non-unique
descriptors. This in turn allows us to recover camera pose
from previously difficult SfM scenes where edges are the
dominant cues and point features are unreliable.

While the results obtained so far are promising, there is
also much scope for further improvements in terms of im-
proving the initialization, incorporation of multiple views,
proper weighting of cues, as well as basic improvement to
the point registration mechanism.
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3.5.2 Performance with increasing baseline

In figure 3.10, we investigate our algorithm’s behavior with increasing baseline.

The sequences consist of a moving camera fixated upon a scene and are arranged

in increasing baseline and thus level of difficulty. The color-coded depth maps

obtained by reconstructing the scene using PMVS [32] are also included. The first

sequence is a traditional, well textured SfM scene. The baseline is fairly large, with

the camera rotating through 33.9 degrees while fixated on the table. Our algorithm

gives a stable estimate of camera pose for all images in that sequence, achieving

comparable performance with the traditional approach, and slightly outperform-

ing it for the case of the widest baseline. The second sequence is of a moderately

difficult scene where our algorithm outperforms the traditional approach by re-

maining stable over the entire sequence. This enhanced stability is the result of

our algorithm being able to utilize the edge features provided by the door frame,

while the traditional approach is limited to the tightly clustered features on the

posters, giving it a small effective field of view. Finally, the last sequence shows a

very difficult scene. There are very few feature matches (the point matches from

the second image pair are shown in figure 3.1) and by the third image of the se-

quence, there are insufficient matches for a traditional SfM algorithm to make a

pose estimate. Furthermore, the baseline is slightly larger than that shown in the

previous two scenes, with a maximum camera rotation of 35.9 degrees about the

object of interest. Although the performance of our algorithm at larger baselines

degrades, an estimate of the camera pose and the depth can still be recovered at

very large baselines.
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R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃
SIFT flow 1.4937 5.3991 2.5160 8.632 22.9022 80.4177 28.5813 68.9093

Ours 1.0469 1.6552 0.8479 0.5030 1.7260 2.0957 2.9341 1.8525
Traditional 1.7581 3.5866 2.6261 2.0945 1.0945 1.4169 3.6841 2.5076

SIFT flow 2.0940 2.0046 3.4780 2.9594 6.4810 2.4950 11.3987 5.8146
Ours 1.6858 2.8187 0 3.3449 0.1470 2.6651 0.6746 4.9110

Traditional 7.976 86.9429 0.8721 3.9055 1.7518 3.5200 18.1968 65.5972

SIFT flow 3.3724 9.0112 15.3820 48.9364 22.4894 49.2501 53.7316 57.2713
Ours 2.6484 4.8031 4.0713 2.2964 7.1120 2.6457 12.1119 12.5768

Traditional 8.7717 10.4135 18.2654 83.1424 NA NA 84.6166 53.1542

Fig. 10 Sequences in increasing order of difficulty. Camera pose is with respect to the base image on the extreme left. Color-coded depth maps
computed from our algorithm’s camera pose are included in the second row of each scene sequence, with warm colors representing near depths
and cold colors far depths. Observe that in scenes with sparse sets of corners, our algorithm has greater stability over large baselines, compared
to the traditional approach. In the second image sequence, our algorithm also exhibits an advantage over the traditional SfM in handling wider
baselines. This is because our algorithm allows the utilization of the entire door contour, rather than focusing on the tightly clustered feature
points available on the poster. In the third image sequence where point to point feature matching is extremely difficult (in the fourth image of
this sequence, there are insufficient matches to make an estimate of the camera pose using traditional methods), our algorithm still remains stable.
Although the baseline is wider than the previous two scenes, our algorithm deteriorates gracefully.
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Figure 3.10: Sequences in increasing order of difficulty. Camera pose is with
respect to the base image on the extreme left. Color-coded depth maps com-
puted from our algorithm’s camera pose are included in the second row of each
scene sequence, with warm colors representing near depths and cold colors far
depths.
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3.5.3 Unresolved issues and Discussion

Throughout this chapter, we have emphasized our algorithm’s ability to utilize

more information than traditional SfM algorithms. However, we should caution

that unless properly weighted, more information is not necessarily better. This is

illustrated in figure 3.11, where an undulating cloth surface means that the edge

information is subject to a great deal of “occlusion” noise, caused by the extremal

contours varying with viewpoint changes. inconsistent edge detection. Despite the

large amount of occlusion, our algorithm could still return a fairly good estimate;

however, re-running our algorithm using only corner information improves the

results. This indicates that it is the inclusion of “noisy” information without

proper weighting that degrades somewhat the performance of our algorithm. We

note that unique corner matches can be better incorporated into our algorithm by

allowing these point matches to influence the σt values in our Gaussian mixture.

A principled fusion of these different sources of match information, together with

a well thought-out data weighting scheme would be of great practical value and

remains to be properly addressed.

While our algorithm cannot attain the global minimum and more research in that

direction is necessary, we would like to make some final remarks on the stability of

our algorithm against local minima, whether arising from the inherent ambiguity of

the SfM problem, or caused by errors in the initialization. Referring to figures 3.7,

3.8, and 3.10, it can be seen that both “SIFT flow” and “Traditional” sometimes

returned a translation estimate that was almost 90 degrees off the correct solution.

This is caused by the well known bias of the translation estimate towards the
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center of the image (the true translation is lateral in these sequences), which

becomes more acute when the feature matches are insufficient or of poor quality.

Our algorithm suffers less from these well known local minima of SfM because

we can use ambiguous edge features in these circumstances. While initialization

with SIFT flow helps reduce the local minima problem, it can be seen from our

results that we can converge to a correct solution even when the original SIFT

flow initialization is fairly erroneous. This is especially obvious in the sequences

with varying baseline in figure 3.10, where our algorithm degrades gracefully with

increasing displacement induced noise and worsening SIFT flow initialization.

3.6 Concluding remarks

In this chapter we have extended the point registration framework to handle the

two-frame structure from motion problem. Integrating the motion coherence con-

straint into the joint camera pose and matching algorithm provides a principled

means of incorporating feature points with non-unique descriptors. This in turn

allows us to recover camera pose from previously difficult SfM scenes where edges

are the dominant cues and point features are unreliable.

While the results obtained so far are promising, there is also much scope for

further improvements in terms of improving the initialization, incorporation of

multiple views, proper weighting of cues, as well as basic improvement to the

point registration mechanism.
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Original point set

Registration with k set to 0.0001

Registration without accommodating discontinuities (i.e. k=0)

Fig. 6 The vertical bars have a different depth and color (color not
shown in results) from the horizontal bars. As the camera moves, the
depth discontinuity causes the vertical bars to slide over the horizon-
tal one. Setting the high frequency tolerance parameter k to 0.0001,
the system retains both the smoothness constraint while accommodat-
ing the discontinuities. While there are some correspondence errors,
our system is sufficiently robust to ensure that there is negligible error
in the overall pose estimation. Using the standard motion coherence,
where k = 0, the conflict between registration, smoothness and epipo-
lar geometry cannot be resolved. The resultant pose estimate suffers,
with a translational and rotation errors of 13.5o and 5o respectively.

R̃ T̃ R̃ T̃ R̃ T̃
SIFT flow 0.43 5.52 1.07 3.94 2.05 1.59
Ours 0.41 3.38 0.76 2.68 0.71 1.90
Traditional 0.31 5.20 0.94 6.20 1.26 3.93

Fig. 9 A set of more traditional structure from motion scenes. Observe
that our algorithm performs well on these easy, well-textured structure
from motion scenes.

R̃ T̃
SIFT flow 5.8690 6.1868

Ours 1.4134 3.7060
Ours* 1.3083 2.5192

Traditional 1.3211 1.1139

Fig. 11 Computed point sets on two images of a textured cloth. This
image is easy for traditional SfM. However, our point set recovery faces
large amount of “self-occlusion” caused by the extremal contours on
the blanket varying under viewpoint changes. Under Ours*, we applied
our algorithm using only traditional SIFT corner features. The results
improve significantly, showing that when there is abundant high quality
corner information present, including more noisy edge information can
have a negative impact on performance. This scene also illustrates our
algorithm ability to give a reasonable estimate despite large amount of
noise and occlusion.
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Figure 3.11: Computed point sets on two images of a textured cloth. This
image is easy for traditional SfM. However, our point set recovery faces large
amount of “self-occlusion” caused by the extremal contours on the blanket vary-
ing under viewpoint changes. Under Ours*, we applied our algorithm using only
traditional SIFT corner features. The results improve significantly, showing that
when there is abundant high quality corner information present, including more
noisy edge information can have a negative impact on performance. This scene
also illustrates our algorithm ability to give a reasonable estimate despite large
amount of noise and occlusion.



Chapter 4

Mosaicing

In this chapter, we design a mosaicing algorithm which can accommodate image

parallax. As there is no single set of global parameters which can be used to remove

outlying matches, we leverage on the concept that a mosaic provides cues for

image correspondence, while correspondence provides cues for a mosaic. Exploiting

the relationship between the application and the correspondence, coupled with a

smoothly varying affine field allows us to achieve a parallax handling mosaicing

algorithm which avoids the outlier correspondence problem.

4.1 Motivation

Image stitching has long been of interest in graphics and vision. Its primary goal

is the integration of multiple images into a single seamless mosaic. This serves

103
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many purposes, such as increasing the effective field of view, motion summariza-

tion and clean plate photography. Typically, image stitching relies on an under-

lying transform which warps pixels from one coordinate frame to another. As the

transformation must ensure the perceptually accurate alignment of large (often

quarter image width or greater) non-overlapping image regions, it needs to be ro-

bust to large view point changes and be able to interpolate and extrapolate the

motion over significant occlusion. To handle uncontrolled outdoor environments,

the transform must also accommodate illumination changes and independent mo-

tion. To ensure such a robust warping, mosaicing algorithms have traditionally

sought to parameterize the warping field using a sparse set of global transforma-

tion parameters, such as the 3× 3 affine or Homographic matrix [36]. This sparse

parametrization ensures robustness at the expense of flexibility and as a result, is

only accurate for a limited set of scenes and motions. For example, the commonly

used Homographic transforms are only accurate for planar scenes or parallax free

camera motion between source frames i.e. the photographers physical location

must be fixed and only rotational motion is permitted.

Dornaika et al. [25] highlighted that ideally, an image stitching algorithm should

allow for both general motion and scene structure. As affine and Homographic

stitching can be considered a special case of a 3-D world’s re-projection, and there

is work on [25, 86, 60] combining image stitching with 3-D reconstruction to enable

the handling of parallax in source images with general motion. However, using

pre-computed 3-D points has a number of drawbacks. Firstly, 3-D reconstruction

is only defined on the overlapping sections of the source image, making it difficult
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(a) Input Images (b) Stitching  result

Figure 4.1: A girl passing the time by playing chess with herself, an example
of our image stitching algorithm.

to integrate the non-overlapping regions, which is the primary objective of image

stitching. Secondly, as noted by Liu et al. [60], the 3-D reconstruction pipeline is

brittle, with its main components, accurate camera pose recovery and outlier-free

matching, still being active research issues. Thirdly, camera pose computation

deteriorates if the motion contains too strong a rotational element or if the over-

lapping image regions are of inadequate size, both of which occur frequently in

image stitching.

To achieve flexibility, we turn to the 2D non-rigid warping approaches such as

thin plate spline [10], as-rigid-as-possible warping [46] and motion coherence [78].

They eschew the sparsity of parametric warping in favor of considering warping

as a general matching problem with a smoothness constraint. This provides the

flexibility needed to handle most motion types but at the expense of the motion

generalizing ability possible with a sparse parameterizations. Hence, while warp-

ing algorithms may be used as a form of interpolation, they are seldom directly
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employed to solve traditional two view stitching problems. In this chapter, we

seek to adapt the warping framework to take advantage of the fact that many

scenes can be modeled as having continuous piecewise smooth depth. To do this,

we utilize a formulation based upon the relaxation of the global affine transform.

An affine stitching field is defined over the entire coordinate frame. Every point

is given an associated affine parameter that is biased towards a pre-computed

global affine transform (which plays the role of a regularizer) and smoothness is

enforced on the deviation of each affine parameters from the global affine param-

eter. This permits a region of rather un-smooth 2D motion flow (such as a strong

shear, or forward translation) to become smooth as the affine stitching field can

assign all pixels in that region can to a single, constant affine parameter. As

neighboring regions with significant overlap will share similar affine parameters,

we can fit a very smooth affine stitching field over the image. This smoothness

allows for easily extrapolation over the non-overlapping regions and is an implicit

product of our piecewise smooth depth assumption which provides a “sparsity” (a

strong smoothing is sparse in the sense that it limits the possible solution space

by severely penalizing non-smoothness) and extrapolation ability similar to that

achieved by parameterizing the warping as a single global affine transform. This

permits a general stitching algorithm which can extrapolate across occlusion and

non-overlapping regions, yet does not require an explicit 3-D reconstruction.

the warping as a single global affine transform.

To robustly compute the desired affine stitching field over large displacements,
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Warped image 2

SIFT flow [59] Large displacement flow [14] Our Sparse SIFT warping

Figure 4.2: Computing the warping using dense SIFT features in the SIFT
flow algorithm of [59], large displacement optical flow [14] and our algorithm.
Our results are perceptually more pleasing and easier to mosaic. Our warping
also extrapolates the motion for occluded regions. These results are for the
image pair shown in figure 4.1

illumination change and occlusion noise is a non-trivial problem. If we directly fo-

cused on the brightness constancy constraint, even with modern large displacement

optical flow algorithms [14], the degree of motion and amount of scene variation

we can accommodate would be significantly limited. If however, we utilize view-

invariant feature descriptors like SIFT [64] densely over the entire image, a lot of

localization error will be introduced as neighboring pixels will likely share similar

feature descriptors, thus making accurate and dense, descriptor-based matching

difficult, a point illustrated in figure 4.2. Instead, we rely on a sparse set of cor-

ner features to compute the stitching field, which has an additional advantage in

terms of computation time. While one can extrapolate a stitching field from pre-

computed point matches, this is extremely vulnerable to outlier matches and a

varying stitching field does not permit RANSAC based outlier rejection. Instead,

we observe that a good stitching field can help validate existing correspondence and
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determine additional ones. These correspondences can in turn refine the stitching

field. We exploit the inter-connectedness of these problems by jointly estimating

both the matching and the stitching field. This prevents outlier matches, provides

significantly more matches and yields a better stitching field.

To summarize our contribution:

1) We introduce a flexible image stitching algorithm that retains much of the

motion generalization properties associated with global parametric transforms like

affine/ homography. This permits the handling of general scenes and motions

provided there are no abrupt protrusions. While our results do not always conform

to the ground truth, it provides a good approximate which enables the creation of

a perceptually correct composite.

2) We explore a range of applications made possible by this flexibility. These

include novel scene generation illustrated in fig 4.1, computation of point corre-

spondence and mosaicing of panoramas from translational motion.

4.1.1 Related Work

There is also a large amount of work which seek to refine conventional parametric

image stitching. Interested readers can refer to the comprehensive tutorial by

Szeliski [95] for an overview of such image stitching and blending techniques. In

contrast to the conventional image stitching techniques which rely on a fixed global

parameter for warping, we utilize a flexible stitching to warp the images together.
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 Base Image

 Target Image Y-direction

X-direction Warped Base Image

Overlay

X-direction

Y-direction

Warped Base Image

Overlay

    Input Images     Our stitching field Our warping Naive stitching field Naive warping

Visualization of stitching 
field. The 6-D warping 
field is separated into 
two 3-D fields for X- and
Y- directions.

ai(3), ai(6)

ai(1), ai(4)

ai(2), ai(5)

Figure 4.3: The affine stitching field transfers the base image to the target.
We color code the deviation of each points affine parameters from the global
affine parameter and overlay it on the base image. Affine parameters are divided
into 2 groups according to the axis they operate on. Parameters in each group
are assigned to one RGB color channels. The greater the deviation from the
global affine parameter, the brighter the color. We present both our method
and a naive method where the stitching field is computed by averaging the
affine parameters computed form correspondences within a window. Observe
that the naive method’s stitching field is strongly biased towards regions where
there are many correspondences. This makes it difficult to extrapolate the
field to occluded regions such as the girl. Our algorithm can create a smooth
field (seen in the color transitions) over the right angled corner, and has better
extrapolation ability.

In terms of using affine parameters, our stitching field is related to the affinely

over-parameterized optical flow algorithm of Tal et al. [80]. However, it is unclear

how the framework of [80] can be adapted to utilize the sparse high dimensional

features and a bias towards a pre-defined affine parameters, needed to handle

large displacements. For this purpose, we utilize the motion coherence framework

of Yuille et al. [110] and Myronenko et al. [78] to fit the a dense affine stitching

field over the entire image and anchored at a set of sparse corner matches which

we simultaneously estimate.

Our work is also related to the 3-D reconstruction based image stitching methods

mentioned in the introduction. These techniques have difficulty integrating the

non-overlapping image regions. While this is not important for applications like
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Liu et al.s [60] work on 3-D video stabilization, it is the central issue in forming

large panoramas. Another solution is to perform 3-D reconstruction using many

images. Having a large model naturally suggest one could re-project to recover a

large field-of-view image and the 3-view case was discussed in [25]. However, as

discussed earlier, 3-D reconstruction can be brittle and may not be well suited to

many of the motion types common in mosaicing. Further, this does not answer

the central mosaicing issue of how to relate the non-overlapping image regions,

thus making it impossible to form mosaics using only two views. An alternative is

offered by Qi et.al. [86], where the 3-D reconstruction is used to generate virtual

camera images from whom strips are cut to ensure a smooth transition between

the non-overlapping regions. This averages the error over the mosaic rather than

attempting to align the images and is unsatisfactory because the error is incurred in

the constrained overlapping region, rather than the unconstrained non-overlapping

region. The lack of an underlying warping field also makes it difficult to handle

occlusion and perform blending operations and limits the algorithms applicability

to other image editing task such as the image integration example given in figure

4.1.

There is also work seeking to attain a perceptually accurate large field of view

image through inputs other than conventional image stills. An interesting work is

that of Kopf et al.[52] who generated virtual cameras from a series of “bubbles” or

360o panoramas, thus creating a long street view. Carrol et al.’s [15] introduced

a warping which enables the un-distortion of a very large field-of-view if the user

defines a number of straight lines. For video sequences, Rav-Acha et al. [88]
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showed it is possible to leverage on the trackability and redundancy present in

closely spaced video frames to incrementally stitch a large mosaic from general

motion. However, the formulation does not extend to the large displacement

discrete-view stitching considered in this chapter.

4.2 Our Approach

 Feature
 Matching

Stitched
Output

 Base Target

Stitching

Global affine Smoothly varying affine

Figure 4.4: System overview. Point correspondence is used to obtain a global
affine parameter which we relax to form a smooth affine stitching field. The
images are warped together and their overlapping regions blended to form a
composite.

A naive method of computing an affine stitching field would be to compute lo-

cal affine parameters from SIFT correspondences within a sliding window. These

affine parameters could then be averaged together to give a smooth, dense affine

stitching field with the parameters for non-overlapping regions being obtained by

extrapolation. This method produces a good, smooth stitching field in regions
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where the point correspondence is fairly plentiful. However, the performance de-

clines significantly for regions where there are few/ no point correspondences and

the extrapolation is generally poor. The reason is as follows. For any point (or

small patch), there are many possible affine parameters that can approximate

its motion. Pre-computing an affine parameter from correspondence forces us to

choose one of the possibilities. While this choice may be locally optimal, it may

not extrapolate well over the rest of the scene. The result is an affine stitching

field that fits the regions of dense correspondence very well but does not give due

weight to the sparser correspondences from the outlying regions. This problem

is illustrated in fig 4.3, where even though we use a fairly large window (which

helps avoid local over-fitting) with a length of a quarter image width, the affine

stitching field computed still has difficulty extrapolating over regions with few

correspondence.

In contrast, our problem is formulated as finding the smoothest stitching field

which can align the feature points of both images. This avoids a hard pre-

assignment of local affine parameters, while the choice of stitching field carries

within it an implicit extrapolation because the stitching field is computed over the

whole image. An overview of our system is given in figure 4.4.

Our formulation’s primary constraint consists of two sets of unmatched SIFT

feature points. We denote the M features from the first, base image as b0i, while

the N features from the second, target image, are denoted as t0j, with i and j

running from 1 to M,N respectively. The first two entries of the b0i, t0j vectors

represent image coordinates, with the remaining entries containing SIFT feature
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descriptors (This concatenation is done for notational simplicity and the necessary

associated normalization is discussed in section 4.3). To obtain the stitching of the

b0i ’s to t0j ’s, we define using a continuous affine stitching field v(z2×1) : R2 → R6,

whose output represents the deviation from a global affine parameters aglobal. Using

b0i(1),b0i(2) to represent the first two entries of vector b0, this can be expressed as

(∆ai)6×1 = v
([

b0i(1); b0i(2)

])
, (4.1)

where ∆ai is the deviation of feature i’s affine term, ai, from the global affine

parameters, i.e., ai = aglobal + ∆ai.

We use bi to represent the stitched feature points. bi value depends only on the

affine ai term associated with the stitching field v(.) and their original position

b0i. This relationship can be expressed by the affine transform

bi =




ai(1) ai(2)

ai(4) ai(5)

02×S

0S×2 IS×S




b0i +




ai(3)

ai(6)

0S×1



. (4.2)

To facilitate easy reference to these affine parameters, we also define matrices

AM×6 = [a1, ..., aM ]T ,∆AM×6 = [∆a1, ...,∆aM ]T .
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We relate the base point set’s alignment to the target point set, using the condi-

tional probability based on a robust Gaussian mixture

P (t01:N |b1:M ) =
N∏

j=1

((
M∑

i=1

g(t0j − bi, σt)

)
+ 2κπσ2

t

)
, (4.3)

where g(z, σ) = e−
‖z‖2

2σ2 is a Gaussian function and κ controls the strength of the

uniform pdf which provides a thickening of the Gaussian tails. κ is usually set to

0.5.

Apart form SIFT features, we also desire to incorporate a number of soft con-

straints. As mentioned earlier, we assume that the stitching field is a relaxation of

a single global affine parameter. Hence, we impose a smoothness constraint on the

deviation of each points affine parameters from the global affine parameters. We

incorporate these soft constraints into a smoothing regularization term. As men-

tioned in previous chapters, it is difficult to define smoothness over a discrete set of

points, as such, we turn to the motion coherence framework where the smoothness

of the affine stitching field is defined in the Fourier domain. This gives

∫

R2

|v′(ω)|2
g′(ω)

dω, (4.4)

where v′(ω) denotes the Fourier transform of the continuous stitching field v(.) and

g′(ω) represents the Fourier transform of a Gaussian with spatial distribution γ.

The regularization term biases the affine stitching field towards the global affine

parameters and ensures smooth transition between the constrained stitching field

in the overlapping regions and the extrapolated stitching field in the occluded
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regions. While A is a discrete quantity and the velocity field v(.) is continuous, the

regularization term can be re-expressed in terms of A by choosing the smoothest

velocity field which satisfies eqn (4.1). This yields

Ψ(A) = min
v′(ω)

(∫

R2

|v′(ω)|2
g′(ω)

dω

)
, (4.5)

We combine the negative log of eqn (4.3) with the regularization term in eqn (4.5)

and a λ weighting term, to form a single cost function,

E(A) =−
N∑

j=1

log

((
M∑

i=1

g(t0j − bi, σt)

)
+ 2κπσ2

t

)
+ λΨ(A) (4.6)

which can then be minimized with respect to the variables in A. The minimization

employs the EM formulation, successfully used in [78].

4.2.1 Minimization

Our minimization procedure is similar to that in the previous chapter and most

of the details are placed in the appendix.

We define

φij(bi, t0j) = g(t0j − bi, σt),

φij(A, t0j) =
φij(bi, t0j)∑

l φlj(bl, t0j) + 2κπσ2
t

.

(4.7)
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We then follow a minimization procedure which computes an Ak+1, using the

M × 6 linear equations (4.8) defined by Ak. Compared to Ak, Ak+1 lowers the

overall cost cost defined in equation (4.6), with the process being iterated until

convergence. As mentioned earlier, the derivation of equation 4.8 is placed in the

appendix.

δQ

δAk+1
=

[
c1 c2 . . . cM

]
+ 2λ

(
∆Ak+1

)T
G−1

= C + 2λ
(
∆Ak+1

)T
G−1 = 06×M

=>CG + 2λ
(
∆Ak+1

)T
= 06×M ,

(4.8)

ci =
N∑

j=1

φij(A
k, t0j)

σ2
t

D(bk+1
i − t0j)V(b0i).

D(.),V(.) are simultaneous truncation and tiling operators. They re-arrange only

the first two entries of an input vector z (where z must have a length greater

or equal to 2) to form the respective output matrices

D(z)6×6 =




z(1)I3×3 03×3

03×3 z(2)I3×3




V(z)6×1 =

[
z(1) z(2) 1 z(1) z(2) 1

]T

From the definition of A in (4.2), we know that bk+1
i can be expressed as a linear

combination of the entries of Ak+1. Hence, equation (4.8) produces M × 6 linear

equations which can be used to estimate Ak+1. Ak+1 is used to estimate Ak+2 and

the process is repeated until convergence.
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After convergence, the continuous stitching field v(.) at any point z2×1 can be

obtained from A using a weighted sum of Gaussian given by

WM×6 = [w1, ...wM ]T = G+∆A,

v(z2×1) =
M∑

i=1

wig(z−
[

b0i(1) b0i(2)

]T
, γ),

(4.9)

where G+ is the pseudo-inverse of G and the 6× 1,wi vectors can be considered

weights for the Gaussians. The detailed proof is given in the appendix.

4.3 Implementation

Input: Base image features bi, target image features tj, global affine matrix
aglobal

while σt above threshold do
while No convergence do

Use eqn (4.7) to evaluate φij(b
k
i , t0j) from Ak;

Use eqn (4.8) to determine Ak+1 from φij(b
old
i , t0j)

end
Anneal σt = ασt, where α < 1.

end
Output: Aconverged

Figure 4.5: Algorithm to compute stitching field.

We now discuss system implementation. A process overview is given in fig 4.4,

with stitching field computation algorithm in fig 4.5. In the formulation section,

we have a global affine regularization term, aglobal. aglobal is computed from sift

correspondences using a RANSAC [31] for outliers removal. As aglobal’s regular-

ization role lies in ensuring a smoother stitching field, its precise value is not

important. All the initial ai vectors in A are originally set to aglobal. The affine
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stitching field then computed by repeatedly minimizing the cost in eqn (4.6) with

increasingly smaller values of σt. Each step in this annealing process uses the

previously calculated stitching field is as an initialization. We begin with σt = 1

and decrement it by a factor of α = 0.97, until it reaches the value of 0.1. The

progressively smaller σt values increase the penalty for deviation between the tar-

get and base point sets, forcing the affine stitching field to evolve such that the

base point coordinates register onto the target points.

For notational simplicity, SIFT descriptors and point coordinates are condensed

into a single. This implies a need for normalization. The point coordinates for

the target and base points are normalized to have zero mean, unit variance, thus

making the remaining parameter settings invariant to image size. We normalize the

SIFT descriptors to have magnitudes of 10σt, which gives good empirical results.

The smoothing weight λ and outlier handling term κ are assigned values of 10, 0.5

respectively. The γ term which penalizes un-smooth flow, is set to 1. The stitching

field is used to align the images, which we then blend into a single mosaic using

the Poisson blending with optimal stitch finding algorithm of [16].

4.4 Analysis

The computed smooth affine stitching field is a “sparse” representation of the true

warping function and errors will be incurred by smoothing over depth boundaries

and extrapolating from a small set of feature points. In figure 4.6, we use two

simulated scenes. The first scene contains no major depth discontinuities and the
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average warping error was 1.92 pixels, while the maximum error was 12.573 pixels.

This is quite low, considering we did not perform any of plane segmentation. The

second scene is more difficult, with a depth discontinuity of approximately half of

the average depth. Smoothing over the depth discontinuity greatly increases the

maximum error to 42.87 pixels, however the overall warping remains stable and

the average error is still low at 4.57 pixels. Generally, our algorithm shows good

extrapolation abilities as it can generalized the motion of a 0.25 megapixels using

625 feature points, a ratio of 1 : 400.

In fig 4.7, we provide a qualitative errors analysis of an image pair taken as the

camera fixates on an object. The stitched images are overlayed. In the overlapping

region, the green color channel is from the base image while the red and blue

channels come from the target image. This allows a visualization of alignment

errors which appear in the form of ghosting. While our algorithm incurs some

errors along depth boundaries, they can be removed by blending.

4.5 Applications

Our algorithms flexibility means that it can stitch images even when the pho-

tographer does not maintain a fixed position. This opens up a range of different

possibilities.
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Base Model Target Model

Mean flow: 26.9 pixels Mean error: 1.92 pixels

Mean flow: 70.87 pixels Mean error: 4.57 pixels

Figure 4.6: Quantitative analysis of our algorithms motion generalization
ability. The camera rotates 0.3 radians about the object. Using 625 uniformly
distributed, unique features, we generalize the motion of a 500×500 image (0.25
megapixels), a 1:400 ratio.

4.5.1 Re-shoot

Bae et al.[2], noted that if the photographer has moved away from the original

location, it is difficult to recover the exact view point. Our algorithms good

motion generalization and flexible stitching capability mean we can “re-shoot” a

scene to incorporate information from different time instances, without having to

ensure the photographer’s position is exactly the same.

Observe that image editing using “re-shoot” differs from a “cut and paste” method

of overlaying an object onto a background image. In “cut and paste”, the overlay

must be a discrete object such as a man or a car, with no attached background. As

our stitching algorithm automatically warps the appended region to fit smoothly
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Input Images Overlay After Blending

Ours

Homography

Figure 4.7: Results before and after Poisson blending. For the pre-blended
images, the overlapping regions take the green color channel from the base image
and the red, blue channels from the target image. This enables visualization of
alignment errors which appears in the form of ghosting. Our algorithm incurs
some errors along the depth boundaries. However, after blending, the errors are
not noticeable. The homographic mosaicing, incurs much larger errors and even
after applying the same blending, clear artifacts remain.

with the target image, “re-shooting” allows the overlay of an entire region, includ-

ing the complex background and the subjects interactions with it.

In the first two scenes of fig 4.8, we insert a person into an image where he/she

was not originally present and conversely, remove a person from the image. This

allows interesting compositions such as a girl playing chess with herself in a cafe

and allows two people to alternate as photographers to obtain a group photo. Note

that the images are not taken from the same view point. The following two scenes

of fig 4.8 test our algorithm’s limit by using internet images. These are much

more challenging because photometric changes affect the SIFT feature invariance

our algorithm depends on. However, it permits more dramatic effects such as
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Image Integration

(a)

(b)

(c)

(d)

Summer Autumn

Past (1920) Present

Figure 4.8: “Re-shoot” permits the integration of image pairs to create novel
composites formed by fusing different image portions. Our composites permit
the subject to interact with the environment, something which is not possible
using conventional ”cut and paste” image fusing methodology. In sub-images
(a,b) we fuse the images in the left column to form composites on the right.
(a) shows a girl passing the time by playing chess with herself, while (b) shows
two people alternating as photographers to obtain a group photo. In (c,d), we
fuse images from different time periods. In c we show the changing seasons at
the famous Kiyomizu temple in Japan while (d) marks the passage of time at
the Archbishop’s palace in Prague.
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integration of summer time vista with the spectacular autumn foliage at Kiyomizu

temple in Japan, as well as an image of a young couple walking from Prague’s

present into its past. We believe that our algorithm can be adapted to permit

changes in the SIFT feature which would significantly improve its performance on

internet images.

Technical discussion: “Re-shoot” is more challenging than panorama formation

as the available blending region is narrow and the amount of occlusion typically

very large. To ensure image consistency, we normalize the image colors. Blending

is based on the Poisson blending with optimal cut implementation in [16] and

is followed by a additional alpha blending to merge the colors. This is carried

out on a 25 pixel wide boundary along a user defined transfer region. For the

shots using internet images, the blending boundary is set to be 50 pixels wide to

accommodate the photometric variations and color normalization is discarded. In

the Prague scene, the global affine was not pre-computed (due to a shortage of

reliable matches) but set to an identity matrix. A more sophisticated blending for

“re-shoot”, can by obtained from [1].

4.5.2 Panoramic stitching

Our algorithm can be used for panorama creation. Its ability to handle general

motion allows image stitching from un-conventional sequences, such as a series of

images taken from different windows of a high-rise flat. As most windows are set

back from the facade, this is not possible with homographic mosaicing [12] which

requires a large un-occluded rotational field of view from a single window. Results
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are shown in figs 4.9,4.10. Observe that many of the views have only limited

overlap, making camera pose recovery and hence mosaicing via 3-D reconstruction

difficult.

4.5.3 Matching

Our algorithm can serve as a matcher across two views that can be related by

a smoothly varying affine field (it will not match independent motion). As it

matches features as a set, rather than individually, there is reduced dependency on

the feature descriptor uniqueness. In fig 4.11 we show that applying our algorithm

with traditional SIFT descriptors [64], we can obtain 40% more matches. This is

more than using a nearest neighbor matcher with more sophisticated A-SIFT [76]

descriptors.

4.6 Concluding remarks

We present an image stitching algorithm based on a smoothly varying affine stitch-

ing field. It is significantly more tolerant to parallax than traditional homographic

stitching but retains much of homographie’s ability to extrapolate motion over

occlusion. Its flexibility enables integration of views taken from different physical

locations, permitting a number of interesting applications like panorama creation

from a translating camera or integration of images taken at different times. Our

algorithm’s primary limitation is the violation of affine coherence at depth bound-

aries. While our results show these errors are often small enough to be blended
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Ours

AutoStitch

In
pu

t I
m

ag
es

Input
Images

(a)

(b)

(c)

(d)

Close-up View

Figure 4.9: Input images in (a) are taken from a series of windows. Our mosaic
in (b) is perceptually accurate while homographic mosaicing using AutoStitch
[12] in (c) has difficulty merging the fore-ground buildings, a close up view being
show in (d).
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AutoStitch

Ours

Input Images

Ground-truth

(a)

(b)

(c)

Figure 4.10: Input images in (a) are taken from a series of windows. Our
mosaic in (b) is perceptually accurate. (c) shows homographic mosaicing using
AutoStitch [12], which has difficulty merging the fore-ground buildings.

over, explicit detection and handling would be better. In this regard, our results

provide an excellent starting point for further refinement.
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Figure 4.11: We show the results obtained by using our algorithm as a matcher
and compare against conventional nearest neighbor SIFT [64] and A-SIFT [76]
feature matching. Although we use traditional SIFT [64] descriptors, we can
obtain more matches than applying nearest neighbor matching to the more
sophisticated A-SIFT descriptor. The above figures shows that the additional
matches do not come at the expense of accuracy and the matching is stable to
significant occlusion.
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Conclusions and Future Work

In this thesis we explore the interlocking relationship between the underlying 3-D

structure, applications seeking to exploit it and correspondence noise. As such,

our work has resulted in 3 primary contributions.

Firstly, we show that focusing on the relationship between correspondence and

noise can provide interesting insights which enable the bridging of the differential

and discrete Structure from Motion problems, something we illustrated in chapter

2, where we studied this concept using perturbation theory analysis.

Secondly we exploit the interlocking relationship between camera pose and corre-

spondence noise in a practical applications such as incorporating edge information

into the Structure from Motion problem, which we achieved in chapter 3 by fus-

ing camera pose estimation into a motion coherence matching framework. This

enables computation of camera pose using edge information, without explicitly

assuming straight lines, something which was mpt achievable before.

128
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Thirdly, in chapter 4, we employed a similar coherent motion technique to create

a parallax handling mosaicing algorithms which stably computed the inter-image

correspondence using a smoothly varying affine stitching field does not require

explicit 3-D reconstruction.

We observe that the full relationship between matching and 3-D structure exploita-

tion remains a relatively unexplored field, with many fundamental issues relating

to cue weighting, noise modeling and ideal optimization formulation remaining

unexplored. There are also many alternative applications, such as independent

motion detection, and constraints like straight line or ground plane preservation,

which have not been addressed in this thesis. Many of these issues can be handled

by extending the approaches we have discussed in this thesis and we are hopeful

that future work will explore these issues more thoroughly.

On a higher level, we observe that computer vision is a very compartmentalized

field, with many researchers delving deeply into a wide array of sub-problems,

ranging from independent motion detection, interest point tracking, ground plane

detection and camera pose recovery. Most of these fields have strongly interrelated

components. If a region is a ground plane, it can’t be independently moving, if

we have tracked a point moving from left to right and find our camera in the

opposite direction, either camera motion is incorrect, the point tracks are incorrect

or possibly both. We feel that such interrelated concepts should be combined in

a fashion which reflects their mutual dependence, with an estimation algorithm

which does not hurry to fix either one quantity or another but jointly estimates

both. Such work which brings together results from two very well researched fields
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may yield surprising results and is something we are very interested to pursue. On

that note, we would like to conclude the thesis.



Appendix A

Proofs related to Chapter 2

A.1 Perturbation of Eigenvalues and Eigenvec-

tors

We record some results on perturbation theory from Wilkinson [106]. The first

two results are due to Gerschgorin. These Gerschgorin Disc Theorems give us a

method of estimating the eigenvalues of a matrix based solely on the entries of the

matrix.

Theorem A.1. ([106], Theorem 3, page 71.) Every eigenvalue λ of an n×n ma-

trix C lies in at least one of the circular discs with centers cii and radii
∑

j 6=i |cij|,

where cij is the entry of the matrix C on its ith row and jth column.

The above circular disc is called a Gerschgorin disc.

131
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Theorem A.2. ([106], Theorem 4 , page 71.) If k of the Gerschgorin disc form

a connected domain which is isolated from the other discs, then there are precisely

k eigenvalues of C within this connected domain.

The next result is a slight modification of the above Gerschgorin’s Theorems. It

is applied to the matrix ÃT (ε)Ã(ε) in Equation (2.28) in Subsection 2.5.1.

Proposition A.3. Let C̃ = C+H, where C̃, C and H are n×n matrices. Suppose

there is an invertible matrix K such that K−1CK = D, where D = Diag(di) is a

diagonal matrix with diagonal entries di. Then every eigenvalue λ̃ of C̃ lies in at

least one of the circular discs G̃i with center di and radius
∑n

j=1 |(K−1HK)ij|,

where (K−1HK)ij is the (ij)-entry of the matrix K−1HK.

Moreover, if k of the above circular discs form a connected domain which is iso-

lated from the other discs, then there are precisely k eigenvalues of C̃ within this

connected domain.

Proof. Firstly, we note that the matrices K−1C̃K and C̃ have the same set of

eigenvalues. Now, by the first Gerschgorin’s result, namely Theorem A.1, every

eigenvalue of K−1C̃K, and hence of C̃, lies in one of its Gerschgorin discs. The

ith Gerschgorin disk Gi of the matrix K−1C̃K is given by

Gi =

{
λ
∣∣ |λ−

(
di + (K−1HK)ii

)
| ≤

∑

j 6=i

|(K−1HK)ij|
}
. (A.1)
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Applying the triangle inequality to the inequality in (A.1) gives

|λ− di| ≤
∑

j

|(K−1HK)ij|,

which defines a circular disc G̃i centered at di and with radius
∑

j

|(K−1HK)ij|.

This circular disc contains the ith Gerschgorin disk Gi. Consequently, every eigen-

value of C̃ lies in one of such circular discs. The second part of the proposition

now follows readily from Theorem A.2.

Before we proceed to obtain the perturbation of eigenvectors, we first include a

simple proof of the next lemma which is used to provide us with a unit vector.

Lemma A.4. Suppose q(ε) = r(ε) + z(ε) where r = O(ε0) and z(ε) = O(ε). Then

the unit vector

q̆(ε) =
q(ε)

‖q(ε)‖

can be expressed as

q̆(ε) = r̆(ε) + w(ε)

where r̆(ε) = r(ε)
‖r(ε)‖ and w(ε) = O(ε).

Proof. Note that ‖q(ε)‖ = ‖r(ε)‖+O(ε). Thus,

q̆(ε) = q(ε)
‖q(ε)‖

= 1
‖r(ε)‖+O(ε)

(r(ε) + z(ε))

= 1
‖r(ε)‖(1+O(ε))

(r(ε) + z(ε))

= r̆(ε) + w(ε)
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where w(ε) = O(ε). We have made use of 1
1+O(ε)

= 1 + O(ε) from Equation

(2.3).

For a perturbed symmetric matrix, we first have the following result on its per-

turbed eigenvalues from [106].

Theorem A.5. ([106], Wielandt-Hoffman Theorem, page 104.) Suppose C̃(H) =

C +H, where C̃(H), C and H are n×n real symmetric matrices. If C̃(H) and C

have eigenvalues λ̃i(H) and λi respectively and they are arranged in non-increasing

order, then
n∑

i=1

(λ̃i(H)− λi)2 ≤ ‖H‖2.

It follows that for each i,

|λ̃i(H)− λi| ≤ ‖H‖. (A.2)

In the above statement, we have used the symbol C̃(H) instead of C̃ for C + H

to stress the dependence of its eigenvalue λ̃i(H) on H.

To obtain the perturbed eigenvectors, we may apply a technique in [106] which

we have also used in Section 2.6. The idea is quite simple and we thus state the

result without proof.

Lemma A.6. Let C̃(H) = C+H, where C̃(H), C and H are n×n real symmetric

matrices. Suppose {ri|1 ≤ i ≤ n} is a basis of eigenvectors of C, where each ri is

an eigenvector that corresponds to eigenvalue λi. For a fixed k, let

qk(H) =
n∑

i=1

αi(H)ri
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be an eigenvector of C̃(H) corresponding to eigenvalue λ̃k(H). Suppose j is such

that λj 6= λk. Then for a sufficiently small ‖H‖, the projection αj(H) of qk(H)

on rj is non-maximal, i.e.,

|αj(H)| 6= max{|αi(H)| | 1 ≤ i ≤ n}.

Theorem A.7. Suppose C̃(H) = C + H, where C̃(H), C and H are n × n real

symmetric matrices. The unit eigenvectors q̃k(H) and rk of C̃(H) and C corre-

sponding to λ̃k(H) and λk respectively are related by

q̃k(H) = q′k(H) +O(‖H‖),

where q′k(H) is a unit vector and is a linear combination of all those eigenvectors

rj of C, whose associated eigenvalue λj is identical to λk.

A.2 Errors in the Translation Vector and Rota-

tion Matrix

In this section, we show that the decomposition of an essential matrix into its

rotational and translational terms is stable. This means that in general, lowering

the amount of noise will improve the the rotational as well as the translational

estimate, rather than only one or the other.
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Let E(ε) be an essential matrix with a finite Frobenius norm. Recall Ẽ ′(ε) is the

corrupted version of E(ε) but it has been corrected to possess the desired properties

of an essential matrix. The rotation and translation estimates are obtainable

from the SVD of Ẽ ′(ε) using the algorithm in [40]. The SVD process involves

the eigenvalues and eigenvectors of the real symmetric matrices Ẽ ′T (ε)Ẽ ′(ε) and

Ẽ ′(ε)Ẽ ′T (ε), of whom we note the following (ε is here suppressed temporarily):

‖Ẽ ′T Ẽ ′ − ETE‖ = ‖Ẽ ′T (Ẽ ′ − E) + (Ẽ ′T − ET )E‖

≤ ‖Ẽ ′T‖ ‖Ẽ ′ − E‖+ ‖(Ẽ ′T − ET )‖ ‖E‖

≤ ‖Ẽ ′ − E‖
(

2‖E‖+ ‖Ẽ ′ − E‖
)
,

(A.3)

which has the same order as ‖Ẽ ′(ε)−E(ε)‖, since ‖E(ε)‖ is finite. The same result

can be obtained for ‖Ẽ ′(ε)Ẽ ′T (ε)− E(ε)ET (ε)‖. Thus, both errors have the same

order as ‖Ẽ ′(ε)− E(ε)‖.

Consider the SVD of the matrix E(ε)

E(ε) = U(ε)




√
λ(ε) 0 0

0
√
λ(ε) 0

0 0 0



V T (ε) (A.4)

where λ(ε) = λ+O(ε) is a positive real number, and U(ε) and V (ε) are orthogonal

matrices. Each ith column vi(ε) of V (ε) is a unit eigenvector of ET (ε)E(ε) that

corresponds to the eigenvalue λ(ε) for i = 1, 2 and 0 for i = 3.
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Likewise, we have the corresponding SVD of Ẽ ′(ε) :

Ẽ ′(ε) = U ′(ε)




√
λ′(ε) 0 0

0
√
λ′(ε) 0

0 0 0




(V ′(ε))T . (A.5)

where the ith column of V ′(ε) is the unit eigenvector of Ẽ ′T (ε)Ẽ ′(ε).

Using Equations (A.4) and (A.5), for i = 1, 2, the ith columns ui(ε), vi(ε), u′i(ε)

and v′i(ε) of the respective matrices U(ε), V (ε), U ′(ε) and V ′(ε) are related as

follows,

√
λ(ε)vi(ε) = ET (ε)ui(ε),

√
λ′(ε)v′i(ε) = Ẽ ′T (ε)u′i(ε).

(A.6)

From [40], the translation directions associated with Ẽ ′(ε) and E(ε) are given by

the third columns u′3(ε) and u3(ε) respectively. The next result gives the error

involved in these translation vector estimates.

Proposition A.8. For the unit translational vectors u3(ε) and v3(ε), the errors

‖u′3(ε)− u3(ε)‖ and ‖v′3(ε)− v3(ε)‖ have the same order as ‖Ẽ ′(ε)− E(ε)‖.

Proof. The vectors u3(ε), v3(ε) u′3(ε) and v′3(ε) are unit eigenvectors corresponding

to the simple eigenvalue 0 of the real symmetric matrices ET (ε)E(ε) , E(ε)ET (ε),

Ẽ ′T (ε)Ẽ ′(ε) and Ẽ ′(ε)Ẽ ′T (ε) respectively.

The result now follows readily from Theorem A.7 in Appendix A.1 and the error

obtained in (A.3).
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Next, we relate U(ε) to U ′(ε) and V (ε) to V ′(ε) when ε is sufficiently small. This

relationship is then used to determine the error in the estimate of the rotation

matrix.

Lemma A.9. Both ‖U ′(ε) − U(ε)‖ and ‖V ′(ε) − V (ε)‖ have the same order as

‖Ẽ ′(ε)− E(ε)‖.

Proof. The non-zero eigenvalue of the real symmetric matrix ET (ε)E(ε) (and hence

also E(ε)ET (ε)) is repeated twice. Hence, the corresponding eigen space has di-

mension 2. Therefore, we choose u2(ε) and u′2(ε) such that

u′2(ε) = u2(ε) +O(‖Ẽ ′(ε)− E(ε)‖). (A.7)

(Here we have used Equation (A.3).)

Now, we view Ẽ ′T (ε)Ẽ ′(ε) as a perturbation of ET (ε)E(ε) with ‖Ẽ ′T (ε)Ẽ ′(ε) −

ET (ε)E(ε)‖ = O(‖Ẽ ′(ε) − E(ε)‖). By the Wielandt-Hoffman Theorem (recorded

as Theorem A.5 in Appendix A.1), the perturbed eigenvalue λ′i(ε) is

λ′i(ε) = λi(ε) +O(‖Ẽ ′(ε)− E(ε)‖), i = 1, 2,

so that, using Equations (A.6), (A.7) and (2.3), we obtain

v′2(ε) =
(Ẽ′(ε))Tu′2(ε)√

λ(ε)+O(‖Ẽ′(ε)−E(ε)‖)

= 1√
λ(ε)

(Ẽ ′(ε))Tu2(ε) +O(‖Ẽ ′(ε)− E(ε)‖).
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Therefore, we have

‖v′2(ε)− v2(ε)‖ ≤ ‖Ẽ′(ε)− E(ε)‖ ‖u2(ε)‖√
λ(ε)

+ ‖O(‖Ẽ′(ε)− E(ε)‖)

which is of the same order as ‖Ẽ ′(ε)− E(ε)‖.

Now, the vector u1(ε) (respectively v1(ε) ), being orthogonal to both u2(ε) and

u3(ε) (respectively v2(ε) and v3(ε)), can be obtained by taking the unit vector

along û2(ε)u3(ε) (respectively v̂2(ε)v3(ε)).

Similarly, we have u′1(ε) as the unit vector along û′2(ε)u′3(ε). The error

‖u′1(ε)− u1(ε)‖ = ‖û′2(ε)u′3(ε)− û2(ε)u3(ε)‖

can be shown to have the same order as ‖Ẽ ′(ε) − E(ε)‖. The same argument

applies for the error

‖v′1(ε)− v1(ε)‖.

Hence, we have proven the result.

Finally, we discuss the error in the rotation matrix.

Proposition A.10. Let the rotation matrices associated with E(ε) and Ẽ ′(ε) be

denoted as R(ε) and R′(ε) respectively. Then the Frobenius norm of the error in

estimating the rotation matrix is of the same order as ‖Ẽ ′(ε)− E(ε)‖.
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Proof. The rotation matrices associated with E(ε) and Ẽ ′(ε) are R(ε) and R′(ε)

respectively. Using the algorithm in [40], R(ε) and R′(ε) are given by

R(ε) = U(ε)W (V (ε))T

R′(ε) = U ′(ε)W (V ′(ε))T
(A.8)

where W may take the form




0 −1 0

1 0 0

0 0 0




or




0 1 0

−1 0 0

0 0 0



.

The correct form of W can be identified by enforcing the positive depth constraint.

Assume that we have identified the true W and we call it W0. Using Equation

(A.8), the difference between R(ε) and R′(ε) is given by (ε is again suppressed

temporarily)

‖R−R′‖ = ‖U ′W0V
′T − UW0V

T‖

≤ ‖U ′W0V
′T − U ′W0V

T‖+ ‖U ′W0V
T − UW0V

T‖

≤ ‖U ′‖ ‖W0‖ ‖V ′T − V T‖+ ‖U ′ − U‖ ‖W0‖ ‖V T‖

which has the same order as ‖Ẽ ′(ε)− E(ε)‖.



Appendix B

Proofs related to Chapter 3

This appendix deals with how the smoothness function Ψ(B) can be simplified

into a more tractable form for the minimization process. In particular, we want

to show that at the minima of A(B,F), Ψ(B) is related to B and B0 by Ψ(B) =

tr(ΓG−1ΓT ).

At the minima, the derivative of equation (4.6) with respect to the velocity field

expressed in the Fourier domain v′(.) must be zero. Hence, utilizing the Fourier

141
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transform relation, v(β0i) =
∫
<2 v

′(s)e2πk<β0i,s>ds, we obtain the constraint

∂A(v′,F)

∂v′(z)
=

−
N∑

j=1

M∑

i=1

(
1

σ2
t

(βi − t̂0j)
)
g(t0j − bi, σt)

∫

<2

∂v′(s)

∂v′(z)
e2πk<β0i,s>ds

M∑

i=1

g(t0j − bi, σt)

+
∑

i∈inlier

1

σ2
b

lil
T
i (βi − ri)

∫

<2

∂v′(s)

∂v′(z)
e2πk<β0i,s>ds

+ λ

∫

<2

∂

∂v′(z)

|v′(s)|2
g′(s) + κ′(s)

ds

= −
N∑

j=1

M∑

i=1

(
1

σ2
t

(βi − t̂0j)
)
g(t0j − bi, σt)e2πk<β0i,z>

M∑

i=1

g(t0j − bi, σt)

+
∑

i∈inlier

1

σ2
b

lil
T
i (βi − ri)e2πk<β0i,z> + 2λ

v′(−z)
g′(z) + κ′(z)

,

= 02×1

(B.1)

where t̂0j denotes a two dimensional vector made of the first two elements of t0j.

Simplifying equation (C.4), we obtain

−2λ

M∑

i=1

wie
2πk<β0i,z> + 2λ

v′(−z)
g′(z) + κ′(z)

= 0

where the two dimensional vectors wi act as placeholders for the more complicated

terms in (C.4).
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Substituting z with −z into the preceding equation and making some minor rear-

rangements, we have

v′(z) = (g′(−z) + κ′(−z))
M∑

i=1

wie
−2πk<β0i,z>. (B.2)

where the two dimensional vectors, wi, can be considered as weights which param-

eterize the velocity field.

Using the inverse Fourier transform relation

∫

<2

wTi wj(g
′(z) + κ′(z))e+2πk<β0j−β0i,z>dz

= wTi wj (g(β0j − β0i, γ) + κ(β0j − β0i)) ,

and equation (C.5), we can rewrite the regularization term of equation (4.6) as

Ψ(B) =

∫

<2

(v′(z))T (v′(z))∗

g′(z) + κ′(s)
dz

=

∫

<2

(g′(z) + κ′(s))2
∑M

i=1

∑M
j=1w

T
i wje

+2πk<β0j−β0i,z>

g′(z) + κ′(s)
dz

=
M∑

i=1

M∑

j=1

∫

<2

wTi wj(g
′(z) + κ′(s))e+2πk<β0j−β0i,z>dz

= tr(WTGW),

(B.3)

where ∗ represents the complex conjugate operation, tr(.) represents the trace of

a matrix, and

WM×2 = [w1, ..., wM ]T ,

G(i, j) = g(β0i − β0j, γ) + κ(β0i − β0j).
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If, as in the main text, one takes κ(.) to be a function with spatial support less than

the smallest separation between two feature points in B0, the above expression for

G(i, j) can be simplified into

G(i, j) =





g(β0i − β0j, γ) + k, i = j

g(β0i − β0j, γ), i 6= j

(B.4)

where k is some pre-determined constant.

Lastly, taking the inverse Fourier transform of equation (C.5), we obtain

v(z) = (g(z, γ) + κ(z)) ∗
M∑

i=1

wiδ(z − β0i)

=
M∑

i=1

wi(g(z − β0i, γ) + κ(z − β0i)).

where δ is the Dirac delta. Hence,

B−B0 = GW. (B.5)

Substituting equation (C.8) into (C.6), we see that the regularization term Ψ(B),

has the simplified form used in the main text

Ψ(B) = tr(WTGW) = tr((B−B0)TG−1(B−B0)). (B.6)



Appendix C

Proofs related to Chapter 4

C.1 Minimization of Smoothly varying Affine field

We follow a minimization procedure which computes an Ak+1, using the M × 6

linear equations (4.8) defined by Ak. Compared to Ak, Ak+1 lowers the overall

cost cost defined in equation (4.6). The process is iterated until convergence.

Copying the main bodies functional definition of φ, we have

φij(bi, t0j) = g(t0j − bi, σt),

φij(A, t0j) =
φij(bi, t0j)∑

l φlj(bl, t0j) + 2κπσ2
t

.

(C.1)

Note that the second functions argument is given as A because, as can be seen

from equation (4.2) bi’s are the base features after being warped by A and are

wholly dependent on the A.
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Using Jensen’s inequality, we can write

E(Ak+1)− E(Ak)

≤−
N∑

j=1

M∑

i=1

φij(A
k, t0j)log

φij(b
k+1
i , t0j)

φij(bki , t0j)
+ λ

(
Ψ(Ak+1)−Ψ(Ak)

)

=∆E(Ak+1,Ak).

From the above, we know ∆E(Ak,Ak) = 0. Hence, an Ak+1 which minimizes

∆E(Ak+1,Ak) will ensure E(Ak+1) ≤ E(Ak).

Dropping all the terms in ∆E(Ak+1,Ak) which are independent of Ak+1, we obtain

a simplified cost function

Q =
1

2

N∑

j=1

M∑

i=1

φij(A
k, t0j)

∥∥t0j − bk+1
i

∥∥2

σ2
t

+ λΨ(Ak+1).

Using a proof similar to that in Myronenko et al.[78], we show in the floow-

ing section that the regularization term Ψ(A) has the simplified form Ψ(A) =

tr(∆ATG−1∆A) where G(i, j) = g(b0i(1:2)−b0j(1:2), γ). Substitute this definition

of Ψ(A) into Q, take partial differentiation of Q with respect to Ak+1 and post

multiply G throughout, we have

δQ

δAk+1
=

[
c1 c2 . . . cM

]
+ 2λ

(
∆Ak+1

)T
G−1

= C + 2λ
(
∆Ak+1

)T
G−1 = 06×M

=>CG + 2λ
(
∆Ak+1

)T
= 06×M ,

(C.2)
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ci =
N∑

j=1

φij(A
k, t0j)

σ2
t

D(bk+1
i − t0j)V(b0i).

D(.),V(.) are simultaneous truncation and tiling operators. They re-arrange only

the first two entries of an input vector z (where z must have a length greater

or equal to 2) to form the respective output matrices

D(z)6×6 =




z(1)I3×3 03×3

03×3 z(2)I3×3




V(z)6×1 =

[
z(1) z(2) 1 z(1) z(2) 1

]T

From the definition of A in (4.2), we know that bk+1
i can be expressed as a linear

combination of the entries of Ak+1. Hence, equation (C.2) produces M × 6 linear

equations which can be used to estimate Ak+1. Ak+1 is used to estimate Ak+2 and

the process is repeated until convergence.

After convergence, the continuous stitching field v(.) at any point z2×1 can be

obtained from A using a weighted sum of Gaussian given by

WM×6 = [w1, ...wM ]T = G+∆A,

v(z2×1) =
M∑

i=1

wig(z−
[

b0i(1) b0i(2)

]T
, γ),

(C.3)

where G+ is the pseudo-inverse of G and the 6× 1,wi vectors can be considered

weights for the Gaussians. The detailed proof is given in the folowing section
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C.2 Affine Smoothness

This section deals with how the affine smoothness function can be simplified into a

more computationally tractable form. This proof is similar to that used in Chapter

3, with minor modifications to adapt the formulation from 2 to 6 dimensions.

At the minima, the derivative of the energy term in (4.6) with respect to the

stitching field v′(.), must be zero. Hence, utilizing the fourier transform relation,

(∆ai)6×1 = v(µi) =
∫
R2 v

′(ω)e2πι<µi,ω>dω, where µi = [ b0i(1) b0i(2)
]T , we obtain

the constraint

δE(v′)
δv′(z)

= 06×1,∀z ∈ R2

−
N∑

j=1

M∑

i=1

(
g(t0j − bi, σt)

σ2
t

)
diag (D(bi − t0j)V(b0i))

∫

R2

δv′(ω)

δv′(z)
e2πι<µi,ω>dω

M∑

i=1

g(t0j − bi, σt) + 2κπσ2
t

+ λ

∫

R2

δ

δv′(z)

|v′(ω)|2
g′(ω)

dω = 06×1

−
N∑

j=1

M∑

i=1

(
g(t0j − bi, σt)

σ2
t

)
diag (D(bi − t0j)V(b0i)) e

2πι<µi,z>

M∑

i=1

g(t0j − bi, σt) + 2κπσ2
t

+ 2λ
v′(−z)

g′(z)
= 06×1

(C.4)

D(.),V(.) are simultaneous truncation and tiling operators. They re-arrange only

the first two entries of an input vector z (where z must have a length greater

or equal to 2) to respectively form the 6× 6 and 6× 1 output matrices

D(z)6×6 =




z(1)I3×3 03×3

03×3 z(2)I3×3




V(z)6×1 =

[
z(1) z(2) 1 z(1) z(2) 1

]T
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diag(.) is a diagonalization operator which converts a k dimensional vector z into

a diagonal matrix, such that

diag(zk×1) =




z(1) 0 · · · 0

0 z(2) · · · 0

...
...

. . .
...

0 0 · · · z(k)



k×k

.

Simplifying eqn (C.4), we obtain

−2λ
M∑

i=1

wie
2πι<µi,z> + 2λ

v′(−z)

g′(z)
= 0

where the six dimensional vectors wi act as placeholders for the more complicated

terms in (C.4).

Substituting z with −z into the preceding equation and making some minor rear-

rangements, we have

v′(z) = g′(−z)
M∑

i=1

wie
−2πι<µi,z>. (C.5)

where the six dimensional vectors, wi, can be considered as weights which param-

eterize the stitching field.

Using the inverse Fourier transform relation

∫

R2

wT
i wjg

′(z)e+2πι<µj−µi,z>dz = wT
i wjg(µj − µi, γ),
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and eqn (C.5), we can rewrite the regularization term of eqn (4.6) as

Ψ(A) =

∫

R2

(v′(z))T (v′(z))∗

g′(z)
dz

=

∫

R2

g′(z)2
∑M

i=1

∑M
j=1 wT

i wje
+2πι<µj−µi,z>

g′(z)
dz

=
M∑

i=1

M∑

j=1

∫

R2

wT
i wjg

′(z)e+2πι<µj−µi,z>dz

= tr(WTGW),

(C.6)

where

WM×6 = [w1, ...,wM ]T ,

G(i, j) = g(µi − µj, γ).

Taking the inverse Fourier transform of eqn (C.5), we obtain

v(z) = g(z, γ) ∗
M∑

i=1

wiδ(z− µi) =
M∑

i=1

wig(z− µi, γ). (C.7)

As ∆aj = v(µj),

∆A = GW. (C.8)

Substituting eqn (C.8) into (C.6), we see that the regularization term Ψ(A), has

the simplified form used in the main body

Ψ(A) = tr(WTGW) = tr(∆ATG−1∆A). (C.9)

It can also be seen from eqn (C.8) that the stitching field v(.) can be defined in
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terms of A. This is done by using the matrices ∆A,G to compute the weighting

matrix W via,

W = G+∆A. (C.10)

Using equation (C.7), we can then define the stitching field at any point z2×1.
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