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I

Abstract

Most of the systems in our real life are inherently nonlinear. One simple way to control

a nonlinear plant over a large operating region is by utilizing the “divide and conquer”

strategy. A few operating points which cover the whole range of system’s operation are

chosen, and a linear approximation is obtained at each of these operating points. The

designer then designs one local controller for each local model, and activates one of these

local controllers when the process is operating in the neighborhood of the corresponding

linearization point. This is the basic idea behind the gain scheduling approach, supervi-

sory control and multiple model control, which have found popularity in the industry as

well as in flight control.

The aim of our work is to design multiple model controllers for nonlinear systems for

tracking purposes. To this aim, the nonlinear system is approximated as piecewise affine

autoregressive system with exogenous inputs (PWARX). Firstly, we propose a general

framework for the identification of discrete-time time-varying system, where both offline

and online identification algorithms for linear as well as nonlinear systems can be derived.

Built upon this work, we further propose a simple and efficient algorithm which can

automatically provide accurate PWARX models of nonlinear systems based on measured

input-output data. The proposed algorithm is shown to be robust against noise as well as

uncertainties in the model order. Next, we move on to design the local controllers based

on the obtained PWARX model, which are then patched together through switching

to become a global controller for the nonlinear system. We provide a few solutions to

deal with a causality issue whereby the determination of the active subsystem and the

computation of control signal affect each other at the same time. The designed controllers

show good performance both in simulation as well as in experimental studies. One issue

related to the PWARX model identification is the number of subsystems to be used. We

show that if the original piecewise affine system consists of N state space subsystems,

then we will need more than N input-output subsystems to fully describe the system’s

behavior. We show via simulation studies that having the correct number of the input-

output subsystems is crucial to obtain a good idenfication and control of piecewise affine

system.
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Chapter 1

Introduction

1.1 Background and motivation

The objective of “controlling a system” is to influence its behaviour so as to achieve

a desired goal. Questions of control have been of great interest since ancient times, as

can be seen from the design of self-regulating systems such as water clocks in antiquity

and aqueducts in early Rome. In our modern society, control theory and application are

assuming even more importance. Control mechanisms are ubiquitous in many systems

ranging from Watt’s steam engine governor in 1769 which ushered in the Industrial

Revolution in England, to the sophisticated unmanned aircraft in our own times.

The fundamental concept of control is feedback. The three key elements of the

feedback concept are measurement, comparison and adjustment. Firstly, the quantity of

interest is measured using sensors. The measured value is then compared to the desired

value, and the difference between these two is calculated. Finally, the process is adjusted

to reduce or eliminate the error. The accustomed sequence of clause and effect in the

above process is converted into a closed loop of interdependent events. This closed circle

of information transmission, referred to as feedback, underlies the entire technology of

automatic control based on self-regulation.

1
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During the period 1932-1960 numerous methods were developed to control simple

systems in an efficient manner. In particular, using both frequency domain as well as

time domain methods based on pole-zero configurations of the relevant transfer func-

tions, various design methods were developed for the control of linear systems described

by difference or differential equations. These methods have been used extensively in

the industry to design controllers for innumerable systems and have been found to be

extremely robust and hence, very reliable. As a matter of fact, many control systems

have already become an indispensable part in our daily life. For instance, the temper-

ature regulation device of air conditioning system and the cruise control system of the

automobile are both good examples of classical feedback controllers.

Advances in technology invariably call for faster and more accurate controllers. Al-

though the afore-mentioned control methods have been rather successful so far, they rely

on one key assumption that the system is linear, or at least sufficiently linear within a

small range of operation. Real-world systems, on the other hand, are inherently nonlin-

ear. In today’s industry, systems and equipments are forced to work over a wider range

of operation, resulting in the loss of validity of the linearity assumption. For example,

chemical plants would use the same equipments to manufacture various products, each of

which needs a different temperature or pressure as the optimal operating point. As such,

a linear controller is likely to perform poorly, since the nonlinearity cannot be properly

accounted for.

One possible solution to this problem is to design a nonlinear controller which can

handle the system’s nonlinearity and hence, works well in all operating regions. How-

ever, it is also well-known that this is a daunting task, since there is still no general

methodology of nonlinear control design which can tackle all kinds of nonlinear systems.
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Depending on the class and structure of the system, a particular technique (for e.g. feed-

back linearization, backstepping design etc.) could be more suitable than the others.

Thus, the control engineer needs to have not only a deep understanding of the system

itself, but also a collection of various alternatives of controller design methods. Another

difficulty for the nonlinear controller design is that an accurate nonlinear model of the

process, which is used to facilitate the controller design and the analysis of the closed

loop system, is needed. To obtain accurate physical models of nonlinear systems can

be very challenging, because the interplay among the mechanical, electrical, chemical,

thermal or other properties of the system has to be properly understood.

1.2 Control of nonlinear systems using multiple models

and piecewise affine models

Another simpler way to control a nonlinear system over a large operating region is

by utilizing the “divide and conquer” strategy. A few operating points which cover the

whole range of system’s operation are chosen, and a linear approximation is obtained

at each of these operating points. The designer then designs one local controller for

each local model based on any of the well-known linear control design techniques, and

activates one of these local controllers when the process is operating in the neighborhood

of the corresponding linearization point. This is the basic idea behind the gain scheduling

approach, supervisory control and multiple model control, which have found popularity

in the industry as well as in flight control.

The scheme of this multiple model control approach is illustrated in Fig. 1.1, whereby

the nonlinear process is drawn using dashed curve and the linear approximations over

the whole nonlinearity range are sketched using solid lines. Note that we do not define
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Figure 1.1: The multiple model control scheme

the physical meanings for the axes, i.e. the x-axis does not necessarily represent time.

The dashed curve merely serves to illustrate a nonlinear system.

The use of multiple models is not new in control theory. In fact, the classical gain

scheduling theory originates from the late 1950s in the field of aircraft control, in which

the flight parameters are affected significantly by the altitude (dynamic pressure) and

Mach number [37,69]. Stein et al. [73] and Kallstrom et al. [31] used the gain scheduling

approach for the control of F-8 aircraft and tankers, in 1977 and 1979 respectively. In

recent years, Morse [47, 48] has been studying the use of multiple fixed models and

optimization for robust set-point control. Narendra and Balakrishnan [54] proposed the

idea of using multiple adaptive models and switching in order to improve the performance

of an adaptive system while assuring stability. The works by Morse and by Narendra

have gained a large following, and many theoretical as well as application papers have

appeared since then.

The main advantage of the multiple model approach is that powerful linear design

tools can be employed on difficult nonlinear problems. It is thus not surprising that this

control scheme has been utilized to solve many real world control problems. Due to its
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many advantages, we will follow similar approach in our work. However, contrary to

most existing work whereby the controller switching is determined by comparing some

cost functions of current and past errors, we propose to decide the active local con-

troller directly using information regarding the location of the regression vector within

the regressor space. This brings out the advantage of faster decision making. As for

the terminology, a multiple-model system whose active linear/affine subsystem is deter-

mined by the location of the regression vector within the whole regressor space is called

“piecewise affine system”. Therefore, we can think of our approach as the “control of

nonlinear systems using piecewise affine models”, which is a special case of “control of

nonlinear systems using multiple models”.

1.3 Identification of nonlinear systems using piecewise affine

autoregressive models with exogeneous inputs

As mentioned earlier, physical modeling of nonlinear systems is not always an easy

task. Therefore, we are more in favor of using data-based modeling, i.e. to describe the

system’s characteristic through functions of measured input-output data. Many archi-

tectures for modeling nonlinear processes using measured data exist in the literature, for

e.g. artificial neural networks, Hammerstein models, Wiener models, Volterra series and

also piecewise affine ARX (AutoRegressive with eXogenous inputs) functions. Among

these, the first four have the disadvantage that they are usually not affine in control, i.e.

the control signal cannot be computed as a simple function of the reference and output

directly by inverting the models.

Piecewise affine ARX models, on the other hand, have the distinct advantage that

they are affine in control. As such, the control signal can be calculated easily by inverting
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the model and then evaluate a function of the reference and the history of input-output

signals. We shall therefore use piecewise affine ARX models to approximate the nonlinear

functions. Another reason for using piecewise affine ARX models to model nonlinear

functions is that this model structure automatically fits into the framework of multiple

model control strategy, since each of the ARX subsystems of the piecewise affine ARX

model represents one local model of the nonlinear system.

The literature on piecewise affine approximation of nonlinear systems appeared since

the 1970s (see [72] and the references therein). It was mentioned that it is worthwhile

to investigate piecewise linear(affine) models due to “simplicity of implementation, the-

oretical analysis and calculation”. In recent years, there is a growing interest in the

identification of piecewise affine systems. We will defer the description of various identi-

fication methods to the relevant chapter, along with our own proposed algorithm which

shows many advantages over the other existing methods.

1.4 Objectives and Contributions

Our main objective is to control nonlinear systems for reference tracking. To this

aim, we first identify the nonlinear system using piecewise affine ARX models, and then

calculate the control signals based on the identified models. The contributions of our

work are as follows.

1.4.1 Development of a new general framework for the identification

of time-varying systems

Our first contribution, detailed in Chapter 2, is the development of a new general

framework for the identification of discrete-time time-varying systems. Firstly, to make

the problem tractable, we assume that the time-variation can be approximated by a
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piecewise-constant function assuming a finite number N of unknown values. Thus, the

change in the system parameters is equivalent to switching from one subsystem to an-

other, and the system can be modelled as a switching system

y(t + 1) =





ϕT (x(t))θ∗1 if subsystem 1
...

...

ϕT (x(t))θ∗m if subsystem m ∈ (1, . . . , N)
...

...

ϕT (x(t))θ∗N if subsystem N

(1.1)

if the underlying subsystems are linear or linear in the parameters, and

y(t + 1) =





f1(x(t), θ∗1) if subsystem 1
...

...

fm(x(t), θ∗m) if subsystem m ∈ (1, . . . , N)
...

...

fN (x(t), θ∗N) if subsystem N

(1.2)

if the underlying subsystems are nonlinear.

Our proposed algorithm is able to provide the parameters of the linear (or linear in

the parameters) subsystems θ∗m, as well as the nonlinear functions fm(x(t), θ∗m), without

needing to know how the system switches. Furthermore, the algorithms can be easily

extended to cater for both offline and online identification of the parameters. The appli-

cability of our method on all these possibilities, i.e. identification of linear and nonlinear

subsystems as well as derivation of offline and online methods, motivated us to name it

“the general framework for the identification of time-varying systems”.
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1.4.2 Identification of nonlinear systems using piecewise affine autore-

gressive models with exogeneous inputs

In Chapter 3, we proceed to identify a piecwise affine ARX (PWARX) system with

N partitions

y(t + 1) =





ϕT (t)θ∗1 if x(t) ∈ X1

...
...

ϕT (t)θ∗m if x(t) ∈ Xm∈(1,...,N)

...
...

ϕT (t)θ∗N if x(t) ∈ XN

(1.3)

where

x(t) = [y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]
T (1.4)

ϕ(t) =
[
xT (t), 1

]T
(1.5)

and

∪N
i=1Xi = X and Xi ∩Xj = ∅, ∀i 6= j (1.6)

where X denotes the whole regressor space. For this purpose, both the parameters of

the affine subsystems θ∗m as well as the partition of the regressor space Xm have to

be estimated. The first task, i.e. identification of the subsystems’ parameters, follows

exactly the same procedure which is detailed in the general framework for the identifi-

cation of time-varying system (Chapter 2). The procedure to estimate the partition of

the regressor space is provided in Chapter 3.

We then propose to fit the input-output data of nonlinear systems using the PWARX

model. Both simulation and experimental studies validated the efficacy of our algorithms

in identifying nonlinear systems using piecewise affine approximations.

One novelty in this part of the work is the introduction of the “modified regressor

space X̃m, where the control signal at the most current step, u(t), is omitted from the
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original regressor space X(t). This modification to the regression vector will simplify the

controller design at the later stage, and provide significant improvement to the control

performance.

1.4.3 Control of nonlinear systems using piecewise affine autoregressive

models with exogeneous inputs

Having obtained the PWARX model of the nonlinear system, we then move on to

design controllers for tracking purposes. For each of the local models, we design a one-

step-ahead controller which is essentially a model-inversion controller, and switch among

the controllers for different operating regions. The details of this part of the works are

provided in chapter 4.

If we follow the conventional definition of the regressor space of a piecewise affine

system, there will exist one akward chicken-and-egg situation whereby the determination

of the active subsystem as well as the computation of the control signal are interlaced,

i.e. both need the information from each other at the same time. Our contribution lies

in providing a few different solutions to this problem, and showing through simulation

as well as experimental studies that the control performance is truly satisfactory.

1.4.4 Input-output models of switching state space systems

In the earlier part of the work, the number N of subsystems of the PWARX model

is assumed known, or was determined via a trial-and-error process by observing the

fitting result for training data and test data. For the first case, there is actually a

difference between the number N whether the subsystems are described using input-

output equations, or if they are described using state space models. We show in this

work that if there are N subsystems, each of which is a state space model of order p, then
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there exist a total of Np input-output subsystems. Therefore, defining Np input-output

subsystems is crucial for accurate identification and control of a switching piecewise affine

system with N state space models.

Our contribution is that we rigorously develop a rather simple, yet effective, procedure

to derive the input-output models from switching (piecewise affine) state space models.

We call the additional input-output models during switching as the “transition models”.

We further prove that the models are invariant to coordinate transformations of the

states. The advantage of our approach is its relative simplicity (and thus an easily

adoptable methodology), and its ready applicability for the typically more difficult classes

of switching nonlinear systems and MIMO systems. The proposed approach is detailed

in chapter 5.

Finally, we provide a list of possible future research directions in this field. These are

given in chapter 6.



Chapter 2

A General Framework for

Least-Squares Based

Identification of Time-Varying

Systems using Multiple Models

2.1 Introduction

The multiple model adaptive control [11,15,16,21,47,48,54,56,57,84] is an effective

strategy in improving the performance of an adaptive system while assuring stability.

One important element of the multiple model adaptive control strategy is the set of fixed

models, which should be built using some a priori knowledge of the plant. If one of the

fixed models is close to the true plant in some sense, then the transient performance of

the adaptive system will be improved using the multiple model approach. The question

we would like to address in this chapter is how to locate these models in a rapidly

time-varying system.

To make the problem tractable, the time-variation is approximated by a piecewise-

constant function assuming a finite number N of unknown values [19]. Thus, the change

11
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in the system parameters is equivalent to switching from one subsystem to another. If the

switching signal is available to the observer, then the observation data can be segmented

into different subsets, and the standard least squares can be applied to identify the sub-

systems using the subsets. However, if the data are mixed and the underlying switching

signal is not available, it is a very challenging problem to identify the parameters of the

subsystems.

To successfully identify the parameters of the underlying subsystems, an algorithm

should be able to perform clustering (segmentation), regression and optimization. In [77],

Vidal et al proposed an algebraic geometric approach to identify a class of linear hybrid

systems, which is then extended for recursive identification of switched ARX systems

in [78]. The problem with this algorithm is that it is quite vulnerable to noise, and that

it is not easily extended for identification of nonlinear systems. The Expectation Maxi-

mization (EM) [18] based algorithm [24] and the identification algorithm proposed in [19]

can also be used for the identification of switched linear system. Although simulation

results show that the parameter estimates can converge, the mathematical convergence

analysis is not readily established. Also, only linear subsystems were considered in [19]

and [24]. In [61], the EM based algorithm is used to train the Radial-Basis-Function net-

works to identify switched system with nonlinear subsystems. However, a low switching

rate assumption was imposed in [61].

In this chapter, we would like to propose a general framework for the identification of

discrete-time time-varying system, which would be applicable for switched system with

linear and nonlinear subsystems. The general framework also facilitates the derivation of

both offline and online parameter identification algorithms. Extensive simulation studies

show that our algorithm can indeed provide accurate estimates of the plant parameters
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even in noisy cases. Also, a preliminary convergence analysis is available.

This chapter is organized as follows. In section 2.2, the weighted least squares are

reviewed. Section 2.3 introduces our proposed general framework for the identification

of time-varying system. In section 2.4, a multiple model based weighted least squares

algorithm is derived for offline identification of switched system with linear subsystems.

The online identification counterpart, which is based on gradient descent algorithm,

is derived in section 2.5. Section 2.6 deals with the training of multiple multi-layer-

perceptrons for identification of switched system with nonlinear subsystems. Finally, in

section 2.7, conclusions will be drawn.

2.2 Mathematical Preliminaries

Since the proposed procedure hinges on transforming certain cost functions into

weighted least squares, a brief summary of the weighted least squares algorithm is given

in this section.

Pairs of observations {(x(i), y(i + 1)), i = 1, 2, . . . , T} are obtained from an experi-

ment. Assume that the data is fitted by a model in the form of

ŷ(x, α) = ϕ1(x)α1 + ϕ2(x)α2 + · · ·+ ϕn(x)αn = ϕT (x)α (2.1)

where ŷ denotes the estimated value for the true y, ϕ(x) = (ϕ1(x), ϕ2(x), . . . ,

ϕn(x))T is the regression vector, and α = (α1, α2, . . . , αn)T is the unknown parameter

vector to be estimated. Then, the weighted least squares is to minimize the following

cost function

Jw(α) =
T∑

i=1

(w(i)(y(i+ 1)− ŷ(i + 1)))2

=
T∑

i=1

(w(i)y(i + 1)− w(i)ϕT(x(i))α)2 (2.2)
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where w(i) weighs the influence of the data point (x(i), y(i + 1)) over the parameter

estimates.

If the data is sufficiently rich, the unique solution that minimizes the cost function

in (2.2) is

α∗ = (ΦT
wΦw)−1ΦT

wYw (2.3)

where the weighted output vector is

Yw = (w(1)y(2), w(2)y(3), . . . , w(T )y(T + 1))T (2.4)

and the weighted regression matrix is

Φw =




w(1)ϕT(x(1))
...

w(T )ϕT(x(T ))


 (2.5)

2.3 General Framework: Multiple Model Based Least Squares

As mentioned in the introduction, the time-varying discrete-time process is approxi-

mated by a switching system where each subsystem describes the dynamics of the system

under certain environment. Such a general switching system can be described through

the following equation

y(t + 1) =





f1(x(t), θ∗1) if subsystem 1
...

...

fm(x(t), θ∗m) if subsystem m ∈ (1, . . . , N)
...

...

fN (x(t), θ∗N) if subsystem N

(2.6)

where N denotes the number of subsystems, and fm(x(t), θ∗m) represents the possibly

nonlinear function of the regressor x(t) and parameters θ∗m. If the function fm(x(t), θ∗m)
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is linear or linear in the parameters, then the switched system can be written as

y(t + 1) =





ϕT (x(t))θ∗1 if subsystem 1
...

...

ϕT (x(t))θ∗m if subsystem m ∈ (1, . . . , N)
...

...

ϕT (x(t))θ∗N if subsystem N

(2.7)

If the number of the subsystems N is finite and if the switching signal is known,

then the parameter identification problem can be easily solved, as the data can be eas-

ily separated into different groups (subsystems), and the parameters of each individual

subsystem can be identified in a straightforward manner using standard identification

method. However, if the switching signal is unknown, the parameter identification be-

comes a formidable task.

In this chapter, we will present a general framework for the identification of discrete-

time time-varying system, which can be applied on switched system with linear or non-

linear subsystems, without needing to know the switching signal. The general framework

also enables the derivation of both offline and online parameter identification algorithms.

The method is as follows.

2.3.1 The Cost Functions

The first question is how to construct a cost function such that the model parameter

vectors θ∗1, . . . , θ
∗
N would be the solutions for the global minimum (zero for noiseless data).

Among many possible candidates for the cost function to satisfy this requirement, two

effective cost functions are introduced in our work: 1) the geometrical mean of the squares

of errors

Jg(θ1, . . . , θm, . . . , θN) =
1
2

T∑

i=1

e2
1(i) . . .e2

m(i) . . .e2
N (i) (2.8)
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and 2) the harmonic mean of the squares of errors

Jh(θ1, . . . , θm, . . . , θN) =
1
2

T∑

i=1

1
1

e2
1(i)

+ · · ·+ 1
e2
m(i)

+ · · ·+ 1
e2
N (i)

(2.9)

where em(i) is the identification error of the mth model

em(i) = y(i + 1)− fm(x(i), θm) (2.10)

If any of the parameter estimates θ1, . . . , θN equals the true value θ∗m at every time

instant, where m can be any number in the set {1, . . . , N} due to switching, then the

corresponding identification error em(i) will be zero. This will render the cost functions

(2.8) and (2.9) zero, i.e. the proposed cost functions share the same optimal solution.

However, they have different properties (e.g. sensitivity to noise, computational load

and convergence property) and thus should be selected according to the characteristics

of applications. In the following section, the optimization processes and analyses on both

cost functions (2.8) and (2.9) are introduced.

Remark 2.1 Although the exact definition of geometrical mean involves taking the roots

of the product of all the arguments, we still term the cost function (2.8) as the geometrical

mean squares.

2.3.2 A New Perspective on the Cost Functions

Now the next question is how to minimize the cost function. Since the cost functions

are no longer quadratic functions of the parameters, there is no direct way to find out the

global minimum solution using the conventional optimization algorithms such as gradient

descent and conjugate gradient methods.

In the following, we would like to propose a new perspective on the cost functions,

which would enable us to use well-known algorithms with only slight modification to
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identify the parameters of the subsystems. This new perspective is inspired by the well-

known EM Algorithm [18], which deals with the incomplete-data problem by solving the

optimization problem recursively as if the unknown parameters were the true values at

each iteration.

It is observed that if we fix all of the parameters in (2.8) except the one we would

like to estimate at a particular moment, then the cost function becomes quadratic with

respect to the parameter

Jg(θ1, . . . , θm, . . . , θN) =
1
2

T∑

i=1

e2
1(i) . . .︸ ︷︷ ︸
fixed

e2
m(i) . . .e2

N (i)︸ ︷︷ ︸
fixed

=
1
2

T∑

i=1

w2
m(i)e2

m(i) (2.11)

where

wm(i) =
N∏

j=1
j 6=m

ej(i) (2.12)

Similarly, the cost function (2.9) can be transformed into

Jh(θ1, . . . , θm, . . . , θN ) =
1
2

T∑

i=1

w2
m(i)e2

m(i) (2.13)

by fixing

w2
m(i) =

1
e2
m(i)

1
e2
1(i)

+ · · ·+ 1
e2
m(i)

+ · · ·+ 1
e2
N (i)

(2.14)

From this perspective, the geometric mean squares (2.8) and the harmonic mean

squares (2.9) become the usual weighted least squares (2.11) and (2.13) respectively. It

is this change of perspective which enables us to derive various algorithms for offline and

online identification of switched systems with linear or nonlinear subsystems. We will

defer the details of the learning algorithms to the subsequent sections.
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2.4 Offline Identification of Linear Time-Varying Systems

First of all, we will consider the offline identification of linear time-varying systems,

which are assumed to be describable by equation (2.7). For the convenience of the reader,

the system equation is repeated here:

y(t + 1) =





ϕT (x(t))θ∗1 if subsystem 1
...

...

ϕT (x(t))θ∗m if subsystem m ∈ (1, . . . , N)
...

...

ϕT (x(t))θ∗N if subsystem N

(2.15)

2.4.1 The Least Geometric Mean Squares

To identify the parameters of the N subsystems in an offline manner, we propose to

minimize the cost function (2.8) iteratively. Assume the parameter vectors at the kth

iteration are θ1(k), . . . , θm(k), . . . , θN(k), then the cost function is

Jg(k) = Jg(θ1(k), . . . , θm(k), . . . , θN(k))

=
1
2

T∑

i=1

e2
1,k(i) . . .e2

m,k(i) . . .e2
N,k(i) (2.16)

where em,k(i) is the identification error of the mth models at the kth step

em,k(t) = y(t + 1)− ϕT (x(t))θm(k) (2.17)

Following the discussion in section 2.3.2, we can view (2.16) as a weighted least

squares cost function. We are going to propose one simple algorithm such that the value

of the cost function is guaranteed to decrease at each iteration. The N parameter sets

can be estimated separately in N steps in each iteration as follows.

Firstly, the parameter θ1(k + 1) is computed by minimizing (2.16) assuming the

parameters of all the other models, θ2(k), . . . , θN(k), are fixed. Then the cost function
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can be rewritten as

Jg(θ1) =
1
2

T∑

t=1

(y(t + 1)− ϕT (x(t))θ1)2e2
2,k(t) . . .e2

N,k(t)

=
1
2

T∑

t=1

(y(t + 1)− ϕT (x(t))θ1)2w2
1,k(t)

=
1
2

T∑

t=1

(w1,k(t)y(t + 1)− w1,k(t)ϕT (x(t))θ1)2 (2.18)

where

w1,k(t) =
N∏

j=2

ej,k(t) (2.19)

Following (2.3) for the weighted least squares, and by assuming that the data are

sufficiently rich, the unique optimal solution can be obtained as

θ∗1 = (ΦT
1,kΦ1,k)−1ΦT

1,kY1,k (2.20)

where

Y1,k = (w1,k(1)y(2), w1,k(2)y(3), . . . , w1,k(T )y(T + 1))T (2.21)

Φ1,k =




w1,k(1)ϕT(x(1))
...

w1,k(T )ϕT(x(T ))


 (2.22)

Thus let

θ1(k + 1) = (ΦT
1,kΦ1,k)−1ΦT

1,kY1,k (2.23)

The second step is to update the parameters of the second model assuming the

parameters of all the other models are fixed. Note: it is better to use the latest update

of θ1(k+1) rather than the previous one θ1(k). For this purpose, we need to re-calculate

the identification error of the first model as

e1,k+1(t) = y(t + 1)− ϕT (x(t))θ1(k + 1) (2.24)



Chapter 2. A General Framework for Least-Squares Based Identification of
Time-Varying Systems using Multiple Models 20

Then the corresponding cost function is

Jg(θ2) =
1
2

T∑

t=1

(y(t + 1)− ϕT (x(t))θ2)2e2
1,k+1(t)e

2
3,k(t) . . .e2

N,k(t)

=
1
2

T∑

t=1

(y(t + 1)− ϕT (x(t))θ2)2w2
2,k(t)

=
1
2

T∑

t=1

(w2,k(t)y(t + 1)− w2,k(t)ϕT (x(t))θ2)2

(2.25)

where

w2,k = e1,k+1(t)e3,k(t) . . .eN,k(t) (2.26)

The optimal solution to this problem is then

θ∗2 = (ΦT
2,kΦ2,k)−1ΦT

2,kY2,k (2.27)

where

Y2,k = (w2,k(1)y(2), w2,k(2)y(3), . . . , w2,k(T )y(T + 1))T (2.28)

Φ2,k =




w2,k(1)ϕT(x(1))
...

w2,k(T )ϕT(x(T ))


 (2.29)

Thus let

θ2(k + 1) = (ΦT
2,kΦ2,k)−1ΦT

2,kY2,k (2.30)

Similarly, the mth step is to update the parameter of the mth model assuming the

parameters of all the other models are fixed. Recall that it is better to use the latest

update of θ1(k + 1) . . .θm−1(k + 1) rather than the previous one:

θm(k + 1) = (ΦT
m,kΦm,k)−1ΦT

m,kYm,k (2.31)

where

Ym,k = (wm,k(1)y(2), wm,k(2)y(3), . . . , wm,k(T )y(T + 1))T (2.32)
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Φm,k =




wm,k(1)ϕT(x(1))
...

wm,k(T )ϕT (x(T ))


 (2.33)

wm,k(t) =




m−1∏

j=1

ej,k+1(t)






N∏

j=m+1

ej,k(t)


 (2.34)

Since at each step, the resulting parameter corresponds to the unique global minimum

point, we have

Jg(θ1(k + 1), θ2(k), . . . , θN(k)) ≤ Jg(θ1(k), θ2(k), . . . , θN(k))

Jg(θ1(k + 1), θ2(k + 1), . . . , θN(k)) ≤ Jg(θ1(k + 1), θ2(k), . . . , θN (k))

...

Jg(θ1(k + 1), θ2(k + 1), . . . , θm(k + 1), . . . θN (k))

≤ Jg(θ1(k + 1), θ2(k + 1), . . . , θm(k), . . . θN (k)) (2.35)

...

Therefore, the cost function at each iteration is guaranteed to decrease monotonically,

such that

Jg(θ1(k + 1), θ2(k + 1), . . . , θN(k + 1)) ≤ Jg(θ1(k), θ2(k), . . . , θN(k)) (2.36)

Thus, the cost function is guaranteed to converge. But does it converge to zero,

the global minimum? While extensive simulation studies indicate that it indeed con-

verges to zero when the data is rich, the mathematical proof is lacking at the moment.

Furthermore, the meaning of richness of data is still vague at the moment. For suc-

cessful identification using multiple models, it does not suffice for the input signal to be

persistently exciting. Intuitively, each subsystem must also be visited frequent enough.

Formalizing this intuition mathematically will be part of the future work.
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2.4.2 The Least Harmonic Mean Squares

An algorithm to minimize the harmonic mean squares (2.9) can be derived similarly.

Assume that the parameter vectors at the kth iteration are θ1(k), . . . , θm(k), . . . , θN(k),

then the cost function is

Jh(k) = Jh(θ1(k), . . . , θm(k), . . . , θN(k))

=
1
2

T∑

t=1

1
1

e2
1,k(t)

+ · · ·+ 1
e2
m,k(t)

+ · · ·+ 1
e2
N,k(t)

(2.37)

where

em,k(t) = y(t + 1)− ϕT (t)θm(k) (2.38)

Firstly, the parameter θ1(k + 1) is calculated by minimizing:

Jh(θ1) =
1
2

T∑

t=1

1
1

e2
1,k(t)

+ · · ·+ 1
e2
N,k(t)

=
1
2

T∑

t=1

1

e2
1,k(t)

1
e2
1,k(t)

+ · · ·+ 1
e2
N,k(t)︸ ︷︷ ︸

w2
1,k(t)

e2
1,k(t)

=
1
2

T∑

t=1

w2
1,k(t)(y(t + 1)− ϕT (t)θ1)2

=
1
2

T∑

t=1

(w1,k(t)y(t + 1)− w1,k(t)ϕT (t)θ1)2

(2.39)

By assuming that the data are sufficiently rich, the unique optimal solution can be

obtained as

θ∗1 = (ΦT
1,kΦ1,k)−1ΦT

1,kY1,k (2.40)

where

Y1,k = (w1,k(1)y(2), w1,k(2)y(3), . . . , w1,k(T )y(T + 1))T (2.41)

Φ1,k =




w1,k(1)ϕT(1)
...

w1,k(T )ϕT(T )


 (2.42)
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Thus let

θ1(k + 1) = (ΦT
1,kΦ1,k)−1ΦT

1,kY1,k (2.43)

Notice that in (2.39), the weight w1,k actually contains the term θ1(k). Nevertheless,

it is left untouched within the weight when θ1(k+1) is updated according to (2.43). This

makes the convergence proof of the algorithm harder to establish, compared to the least

geometrical mean squares counterpart.

Next, the parameter θ2(k + 1) is calculated by minimizing:

Jh(θ2) =
1
2

T∑

t=1

1
1

e2
1,k+1(t)

+
1

e2
2,k(t)

+ · · ·+ 1
e2
N,k(t)

=
1
2

T∑

t=1

1

e2
2,k(t)

1
e2
1,k+1(t)

+
1

e2
2,k(t)

+ · · ·+ 1
e2
N,k(t)︸ ︷︷ ︸

w2
2,k (t)

e2
2,k(t)

=
1
2

T∑

t=1

w2
2,k(t)(y(t + 1)− ϕT (t)θ2)2

=
1
2

T∑

t=1

(w2,k(t)y(t + 1)− w2,k(t)ϕT (t)θ2)2

(2.44)

where, again, the identification error of the first model has been re-calculated as

e1,k+1(t) = y(t + 1)− ϕT (t)θ1(k + 1) (2.45)

The optimal solution can be computed as

θ∗2 = (ΦT
2,kΦ2,k)−1ΦT

2,kY2,k (2.46)

where

Y2,k = (w2,k(1)y(2), w2,k(2)y(3), . . . , w2,k(T )y(T + 1))T (2.47)

Φ2,k =




w2,k(1)ϕT(1)
...

w2,k(T )ϕT(T )


 (2.48)
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Thus let

θ2(k + 1) = (ΦT
2,kΦ2,k)−1ΦT

2,kY2,k (2.49)

Similarly, the mth step is to update the parameter of the mth model as follows:

θm(k + 1) = (ΦT
m,kΦm,k)−1ΦT

m,kYm,k (2.50)

where

Ym,k = (wm,k(1)y(2), wm,k(2)y(3), . . . , wm,k(T )y(T + 1))T (2.51)

Φm,k =




wm,k(1)ϕT (1)
...

wm,k(T )ϕT (T )


 (2.52)

w2
m,k(t) =

1
e2
m,k(t)

1
e2
1,k+1(t)

+ · · ·+ 1
e2
m−1,k+1(t)

+
1

e2
m,k(t)

+ · · ·+ 1
e2
N,k(t)

(2.53)

As mentioned, the convergence property for this cost function is much harder to be

analyzed. Nevertheless, extensive simulation studies do show that it decreases to zero

when data is sufficiently rich. Another advantage of minimizing this cost function is that

it provides parameter estimates which are less sensitive to measurement noise due to its

normalization property, i.e. the weights are always normalized to be between 0 and 1.

Remark 2.2 In the previous sections, the number of the models, N , is assumed known.

However, if it were unknown a priori, how do we choose a suitable N?

For noiseless data, having any number larger than or equals the true N will provide

the same fitting accuracy. This is because at any one time, we would still have one of the

identification errors em(i) being zero, rendering both the geometrical mean and harmonic

mean of squares of errors to be zero. It is easy to then discard the redundant models by

observing their never-zero identification errors.
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As for noisy data, one possible guidance to gauge the suitability of a particular N is

the fitting accuracy of the models on both training and test data. For the training data,

it is intuitive that the larger N is, the more accurate the data fitting will be. However,

this might not necessarily be reflected on the test set because of overfitting. Therefore, we

could try out a few different N ’s and choose the one which gives the best balance between

the wellness-of-fit and that of the test data.

Remark 2.3 Another question is how to define the order of the multiple local models.

We will show later via simulation in chapter 3.6.1 that overestimating the order of the

models will not affect the accuracy of the models much.

2.4.3 Simulation Study of Noiseless Case

Consider the following switched system with four second order subsystems

y(t + 1) =





−0.5y(t)− 0.9y(t− 1) + 0.8u(t) + 0.3u(t− 1) if subsystem 1

−0.7y(t)− 0.3y(t− 1) + 0.2u(t) + 0.4u(t− 1) if subsystem 2

−0.3y(t)− 0.2y(t− 1) + 0.6u(t) + 0.2u(t− 1) if subsystem 3

−0.6y(t)− 0.8y(t− 1) + 0.2u(t) + 0.1u(t− 1) if subsystem 4

(2.54)

The initial system outputs y(0) and y(−1) as well as u(−1) are set as zero. We

generated 100 data points y(1) . . .y(100). The control input u(0) . . .u(99) is generated

randomly in the range of [0, 10]. The subsystem which is active at a particular instant

is also chosen randomly with equal probability.

The least geometrical mean squares algorithm provides us the correct parameter

estimates in less than ten iterations, as shown in TABLE 2.1. Thus, the efficacy of the

proposed algorithm is validated.
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Table 2.1: Parameter Estimates of a Switched System with Four Subsystems

Iterations a11 a12 b11 b12 a21 a22 b21 b22

0 (randomly generated) 0.6174 0.7427 0.9960 0.9279 0.0191 0.3812 0.6570 0.0282

1 -0.5601 -0.8792 0.6691 0.3658 -0.3383 -0.1449 0.4115 0.1450

2 -0.6115 -0.9577 0.7194 0.3202 -0.5507 -0.1536 0.2398 0.3144

3 -0.5696 -0.9034 0.8054 0.2707 -0.6306 -0.1849 0.1895 0.3713

4 -0.5070 -0.8997 0.8050 0.2902 -0.6707 -0.2658 0.1928 0.3878

5 -0.5002 -0.9000 0.7999 0.3001 -0.7005 -0.2998 0.1998 0.4004

6 -0.5000 -0.9000 0.8000 0.3000 -0.7000 -0.3000 0.2000 0.4000

7 -0.5000 -0.9000 0.8000 0.3000 -0.7000 -0.3000 0.2000 0.4000

Iterations a31 a32 b31 b32 a41 a42 b41 b42

0 (randomly generated) 0.0462 0.8809 0.4224 0.4557 0.8323 0.1927 0.6799 0.9183

1 -0.7039 -0.5999 0.2697 0.6450 -0.3715 -0.4770 0.3032 -0.0487

2 -0.6921 -0.5443 0.4168 0.7487 -0.5647 -0.7619 0.2363 0.0647

3 -0.5690 -0.4615 0.4964 0.6048 -0.5876 -0.7897 0.2064 0.0917

4 -0.4095 -0.3016 0.5447 0.3771 -0.5976 -0.8010 0.2027 0.0989

5 -0.3015 -0.2020 0.5983 0.2034 -0.5979 -0.7990 0.2002 0.0991

6 -0.3000 -0.2000 0.6000 0.2000 -0.6000 -0.8000 0.2000 0.1000

7 -0.3000 -0.2000 0.6000 0.2000 -0.6000 -0.8000 0.2000 0.1000
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Table 2.2: Parameter Estimates of the Four Subsystems, Noisy Case

Iterations a11 a12 b11 b12 a21 a22 b21 b22

0 (randomly generated) 0.8319 0.7627 0.7633 0.7014 0.5459 0.4076 0.2125 0.6275

1 -0.5443 -0.7739 0.6156 0.3139 -0.6553 -0.6086 0.2142 0.4529

2 -0.4039 -0.7023 0.7190 0.2528 -0.7472 -0.5928 0.2931 0.5371

3 -0.3722 -0.7166 0.7073 0.3074 -0.8160 -0.4638 0.2498 0.5358

4 -0.4535 -0.8576 0.7492 0.3214 -0.7956 -0.3292 0.2188 0.4680

5 -0.4734 -0.8943 0.7848 0.2993 -0.7097 -0.3050 0.2170 0.3874

6 -0.4766 -0.8915 0.7866 0.2997 -0.7033 -0.3105 0.2106 0.3924

7 -0.4773 -0.8920 0.7869 0.2998 -0.7033 -0.3109 0.2102 0.3930

8 -0.4773 -0.8921 0.7869 0.2998 -0.7032 -0.3110 0.2102 0.3931

9 -0.4773 -0.8921 0.7869 0.2998 -0.7032 -0.3110 0.2101 0.3931

10 -0.4773 -0.8921 0.7869 0.2998 -0.7032 -0.3110 0.2101 0.3931

Iterations a31 a32 b31 b32 a41 a42 b41 b42

0 (randomly generated) 0.8180 0.1878 0.1969 0.2116 0.1679 0.6145 0.6366 0.7694

1 0.5344 -0.1364 0.4730 -0.1052 0.7550 -0.5158 0.2484 -0.7022

2 0.1756 -0.1280 0.4886 0.0098 -0.6774 -0.6913 0.2105 0.1260

3 -0.1379 -0.1118 0.5249 0.0259 -0.5994 -0.8021 0.2094 0.0916

4 -0.1843 -0.1373 0.5773 0.0151 -0.6029 -0.7939 0.2079 0.0902

5 -0.3104 -0.1779 0.5992 0.1628 -0.5994 -0.7918 0.2065 0.0885

6 -0.3191 -0.1791 0.6002 0.1686 -0.5971 -0.7891 0.2056 0.0872

7 -0.3198 -0.1792 0.6003 0.1691 -0.5969 -0.7887 0.2055 0.0871

8 -0.3199 -0.1792 0.6003 0.1691 -0.5969 -0.7887 0.2055 0.0871

9 -0.3199 -0.1792 0.6003 0.1691 -0.5969 -0.7887 0.2055 0.0871

10 -0.3199 -0.1792 0.6003 0.1691 -0.5969 -0.7887 0.2055 0.0871

2.4.4 Simulation Study of Noisy Case

We consider the same system in section 2.4.3, with the output corrupted with a

zero-mean noise with standard deviation 0.1. The proposed algorithm can again provide

good estimates of the system parameters in this noisy case, as shown in TABLE 2.2.

This shows that the algorithm is robust in face of measurement noise.
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2.4.5 Comparison Studies

As pointed out in the introduction, there indeed exist some other methods for the

identification of switched systems, for instance the algebraic-geometric approach pro-

posed in [77] and its extensions. In this section, we would like to show the advantages

of our algorithm, as compared to the mentioned algebraic-geometric approach.

We consider again the same system in section 2.4.3. The algorithm in [77] relies on

transforming the system equations into one single equation called the “hybrid decoupling

constraint (HDC)”, identifying the parameters of this HDC, and then recovering back

the identified HDC parameters into the parameters of each subsystem. It was reported

that there are (n+na+nb
n ) independent monomials in the HDC, where n is the total num-

ber of subsystems, na and nb are the numbers of coefficients involving y(t), y(t− 1) . . .

and u(t), u(t − 1) . . . respectively in each subsystem. This means that for the system

considered with n = 4, na = 2 and nb = 2, the HDC is a 70th-order polynomial, with 69

parameters to be identified, even though there are only 16 parameters to be identified in

the original switched system. This “sudden” increase of the parameters to be identified is

one weak point of the algorithm, especially when we have a switched system with many

subsystems, or when each of the subsystems is of higher order.

Secondly, the algorithm in [77] is also much more vulnerable to noise than our pro-

posed algorithms. In our simulation studies, we first add to system in section 2.4.3 a

zero-mean white noise with standard deviations of 0.1. We then run each algorithm ten

times, and calculate the mean of the ten collected values. The result is shown in TA-

BLE 2.3. As can be seen from TABLE 2.3, our least geometric mean (LGM) and least

harmonic mean (LHM) algorithms provide better estimates of the system parameters.

Next, we repeat the same simulations, this time with a white noise of standard devia-
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Table 2.3: Mean of the Identified Parameters, Noise N(0, 0.01)

Parameter True LGM LHM [77]

value

a11 -0.5 -0.4949 -0.4941 -0.4792

a12 -0.9 -0.9024 -0.8989 -0.8395

b11 0.8 0.8027 0.8023 0.7703

b12 0.3 0.2900 0.2938 0.2934

a21 -0.7 -0.6981 -0.6910 -0.6413

a22 -0.3 -0.3075 -0.3080 -0.2600

b21 0.2 0.2043 0.2032 0.1729

b22 0.4 0.3950 0.3860 0.3708

a31 -0.3 -0.2688 -0.3042 -0.3875

a32 -0.2 -0.2011 -0.2163 -0.2221

b31 0.6 0.6070 0.6070 0.6359

b32 0.2 0.1682 0.1914 0.1834

a41 -0.6 -0.5896 -0.5937 -0.5991

a42 -0.8 -0.8025 -0.7980 -0.8158

b41 0.2 0.2013 0.2016 0.1972

b42 0.1 0.0990 0.0943 0.0906
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tion 0.2 added to the system. For this level of noise, we observe that sometimes the least

geometric mean algorithm and, more severely, the algorithm of [77] give identification

results which are very far away from the true values. We shall ignore these results which

are unacceptably wrong, and collect only ten reasonable results. We then calculate the

mean of these ten collected values. The result is shown in TABLE 2.4.

As can be seen from TABLE 2.4, our least geometrical mean (LGM) and least har-

monic mean (LHM) algorithms not only provide better estimates of the system parame-

ters, but are also much more robust to noise than the algorithm in [77]. The robustness

is inferred from the smaller number of attempts needed to obtain the ten acceptable

identification results. Also, we see that the least harmonic mean algorithm is the least

susceptible to noise. This is because the weights used in the least harmonic mean algo-

rithm are normalized to be less than or equal to one.

Finally, the algorithm given by [77] is not readily extendible to nonlinear systems,

whereas it can be seen later that our algorithm can be utilized for the identification of

nonlinear systems as well.

2.5 Online Identification of Linear Time-Varying Systems

2.5.1 The Gradient Descent Algorithm

Here, we use the gradient descent algorithm to identify the parameters of the switched

linear system online. At the ith step, the cost function to minimize is

Jg(θ1, . . . , θm, . . . , θN) =
1
2
e2
1(i) . . .e2

m(i) . . .e2
N (i) (2.55)

which is a special case of (2.8). Again, by fixing

wm(i) =
N∏

j=1
j 6=m

ej(i) (2.56)
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Table 2.4: Mean of the Identified Parameters, Noise N(0, 0.04)

Parameter True LGM LHM [77]

value

a11 -0.5 -0.5298 -0.4868 -0.4925

a12 -0.9 -0.9054 -0.8955 -0.8774

b11 0.8 0.8120 0.8051 0.8075

b12 0.3 0.2961 0.2837 0.3186

a21 -0.7 -0.6554 -0.7009 -0.6459

a22 -0.3 -0.3276 -0.3218 -0.2491

b21 0.2 0.1794 0.1969 0.2343

b22 0.4 0.3748 0.4010 0.3524

a31 -0.3 -0.3116 -0.2715 -0.3503

a32 -0.2 -0.2030 -0.2129 -0.2455

b31 0.6 0.6106 0.6022 0.5963

b32 0.2 0.1881 0.1942 0.2265

a41 -0.6 -0.6065 -0.5878 -0.6119

a42 -0.8 -0.7900 -0.8007 -0.7953

b41 0.2 0.1994 0.1943 0.2300

b42 0.1 0.0971 0.1022 0.0959

Total runs

needed to get ten 15 10 31

reasonable results

Failed attempts 5 0 21
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we obtain

Jg(θm) =
1
2
w2

m(i)e2
m(i)

=
1
2
w2

m(i)(y(i + 1)− ϕT (x(i))θm(i))2 (2.57)

The gradient of the cost function at time t is

∂Jg(θm)
∂θm

= −w2
m(t)(y(t + 1)− ϕT (x(t))θm(t))ϕ(x(t))

= −w2
m(t)em(t)ϕ(x(t)) (2.58)

Thus, the updated θm estimate is calculated as

θm,t+1 = θm,t + ηw2
m(t)em(t)ϕ(x(t)) (2.59)

To ensure convergence of the gradient descent algorithm, the “weighted learning rate”

ηw2
m is chosen as follows:

ηw2
m(t) =

1
1 + ϕT (x(t))ϕ(x(t))

· w2
m

N∑

j=1

w2
j

(2.60)

Remark 2.4 The conventional projection algorithm

θ(t + 1) = θ(t) +
1

c + ϕT (t)ϕ(t)
ae(t)ϕ(t) (2.61)

is guaranteed to converge if 0 < a < 2 and c > 0, a result which has been proven using

Lyapunov analysis. Thus, the convergence of our gradient descent algorithm (2.59) with

the weighted learning rate (2.60) is also ensured, since 0 < a = w2
m∑N

j=1 w2
j

< 1 < 2 and

c = 1 > 0.

Remark 2.5 The gradient descent algorithm (2.59) with the weighted learning rate

(2.60) is the same as that proposed in [19]. This shows that the algorithm can be derived

from our proposed point of view.
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2.5.2 Simulation Study of Noiseless Case

We consider the same system in section 2.4.3. The simulation results for the online

parameter estimation using the proposed gradient descent algorithm are shown in Fig.

2.1.

As can be seen from Fig. 2.1, the subsystem parameters can be identified correctly

using the proposed algorithm.

Figure 2.1: Parameter estimates using the gradient descent algorithm

2.5.3 Simulation Study of Noisy Case

Again, the same system is being considered, with the output corrupted with a zero-

mean noise with standard deviation 0.1. The evolution of the parameter estimates is

shown in Fig. 2.2.
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It can be clearly seen that despite the measurement noise, the system parameters can

still be estimated using the proposed algorithm.

Figure 2.2: Parameter estimates using the gradient descent algorithm, noisy case

2.6 Identification of Time-Varying Nonlinear Systems

Now, let’s consider the identification of time-varying nonlinear systems. Assume

that the system can be approximated as a switching system with nonlinear subsystems

described by equation (2.6). The equation is repeated here for an easier readability.
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y(t + 1) =





f1(x(t), θ∗1) if subsystem 1
...

...

fm(x(t), θ∗m) if subsystem m ∈ (1, . . . , N)
...

...

fN (x(t), θ∗N) if subsystem N

(2.62)

Our aim in this section is to obtain an accurate estimation of the nonlinear functions

fm(x(t), θm), m = {1, . . . , N}. Two popular tools for modeling nonlinear systems are

the radial basis function network (RBFN) and the multilayer perceptron (MLP), which

are both well-known as universal approximators. The RBFN is actually linear in the

parameters, and thus all the previously developed algorithms can be applied to obtain

its parameters/weights. Therefore, we shall concentrate on the MLP in this section.

More specifically, we will use N MLP’s to approximate the N subsystems individually.

y(t + 1) =





f1(x(t), θ∗1) if subsystem 1
...

...

fm(x(t), θ∗m) if subsystem m
...

...

fN(x(t), θ∗N) if subsystem N

≈





MLP1 if subsystem 1
...

...

MLPm if subsystem m
...

...

MLPN if subsystem N

(2.63)

The next question is how to train the N MLP’s so that each of them approximates

one subsystem of the original system.

2.6.1 The ‘Weighted Back Propagation’ Algorithm

The standard way of training the parameters of a single multilayer perceptron is the

back propagation method. Here, we propose the ‘weighted back propagation’ algorithm

to train the N MLP’s simultaneously for modeling the N nonlinear subsystems of a

switched system.
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The ‘weighted back propagation’ algorithm is derived by minimizing the cost function

(2.55) by using the gradient descent algorithm. As mentioned in our general framework

in section 2.3.2, we shall fix all other errors from other MLP’s as the weight for updating

the parameters of the mth MLP. Thus, (2.55) can be viewed as:

Jg(θm) =
1
2
w2

m(i)e2
m(i) =

1
2
w2

m(i)(y(i + 1)− ŷm(i + 1))2 (2.64)

where

wm(i) =
N∏

j=1
j 6=m

ej(i) (2.65)

Without going into the details of the derivations, which we defer to the Appendix A,

we would like to point out that the parameters of the MLP’s are updated in almost the

same way as in the usual back propagation algorithm. The only modification necessary

is to weigh the local gradient of the output layer as

δ
(output)
1 = w2

m(y(i + 1)− ŷm(i + 1)) (2.66)

or

δ
(output)
1 =

w2
m

N∑

j=1

w2
j

(y(i + 1)− ŷm(i + 1)) (2.67)

where we prefer the latter for its robustness against noise, because the weight is normal-

ized to be between zero and one, although the learning rate becomes slightly slower.

2.6.2 Simulation Study of Noiseless Case

Consider the following switched system with three underlying nonlinear subsystems

y(t + 1) =





(3 + sin(2y(t)))u(t) if subsystem 1

0.1y(t) + u(t)(2 + u2(t))
1 + 2u2(t)

if subsystem 2

y(t)− 0.1y3(t)− u(t) if subsystem 3

(2.68)



Chapter 2. A General Framework for Least-Squares Based Identification of
Time-Varying Systems using Multiple Models 37

A set of 1000 data y(1) . . .y(1000) is generated, with y(0) set as zero and u(0) . . .u(999)

randomly generated in the range of [0, 1]. The subsystem which is active at a particular

instant is also chosen randomly with equal probability.

The MLP’s we use have two input nodes (one for u(t) and y(t) each), one hidden

layer with nine nodes, and one output node (for ŷm(t + 1)). The activation function for

the hidden layer is the sigmoidal function, whereas the activation function for the output

layer is identity.

The number of epochs is set as 20000, while the learning rate is chosen as 0.1. After

training the three MLP’s, we generated for each subsystem a new set of data with random

input u(0) . . .u(39) in the range of [0, 1], and tested out how well the MLP’s approximate

the three subsystems. The simulation result is shown in Fig. 3.5.

As can be seen from Fig. 3.5, each of the three MLP’s indeed specialized for one

of the subsystems, and the function approximation is also quite satisfactory. The small

residue could be further decreased by running more epochs.

2.6.3 Simulation Study of Noisy Case

Consider again the same system as described in section 2.6.2. This time however,

the training data is corrupted with a zero-mean white noise with standard deviation 0.2.

After training the three MLP’s using the noisy data, we generated for each subsystem

a new set of noiseless data with random input u(0) . . .u(39) in the range of [0, 1], and

tested out how well the MLP’s approximate the three subsystems. The simulation result

is shown in Fig. 2.4.

As can be observed from Fig. 2.4, the proposed algorithm allows accurate approx-

imation of the three nonlinear subsystems, even when the training data is noisy. This

verifies the robustness of the algorithm.
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Figure 2.3: Test data vs. the output of the three MLP’s

2.7 Conclusions

In this chapter, we presented a general framework for the identification of time varying

system using multiple models. The time varying discrete-time system is approximated

by a switched system. The underlying subsystems of the switched system can be linear

or nonlinear. For the linear case, the models are the usual linear regression model,

whereas for the nonlinear case, multilayer perceptrons are used to perform function

approximation. We showed that by minimizing appropriate cost functions, i.e. the

geometric mean squares or the harmonic mean squares, we can identify the subsytems

with sufficient accuracy. Extensive simulation results verified the efficacy of our proposed

algorithm. We also obtained a preliminary convergence proof of the parameter estimates
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Figure 2.4: Test data vs. the output of the three MLP’s, noisy case

for the case with linear subsystems, which we will further develop in the future.



Chapter 3

Identification of Piecewise Affine

Systems and Nonlinear Systems

using Multiple Models

3.1 Introduction

Piecewise affine (PWA) systems are systems whose state-input domain is partitioned

into a finite number of non-overlapping regions, with each individual subsystem in the

different regions being linear or affine [30,60,72]. If the subsystem in each region has an

ARX (AutoRegressive systems with eXogenous inputs) input-output relationship, then

the system is termed Piecewise affine ARX (PWARX) system [30, 60]. PWA systems

received a lot of attention from researchers because they are equivalent to several classes

of hybrid models [26] and thus can be used to obtain hybrid models from data, whereby

typical examples of hybrid systems include manufacturing systems, telecommunication

networks, traffic control systems, digital circuits, and logistic systems [17]. Moreover,

PWA models can be used to approximate nonlinear dynamical systems by switching

among various linear/affine models [60].

The identification of PWARX models is very challenging, because both the param-

40
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eters of the affine subsystems and the partitions of the regressor domain have to be

estimated [60]. The main difficulty is that the parameter identification problem is cou-

pled with a data classification problem, whereby each data point needs to be associated

with the most suitable submodel [60].

Some methods to identify PWA and PWARX models have been proposed in the

literature [6, 20, 24, 28, 29, 50, 67, 77]. In [24], the system consisting of different modes

or subsystems is viewed as a Hidden Markov Model, and an Expectation-Maximization

(EM) algorithm, or more precisely, the Baum-Welch algorithm, is used to obtain the

parameters of the subsystems as well as the parameters of the transition probability

matrix. The algebraic geometric approach in [77] transforms the multiple ARX models

into a single, “lifted” ARX model that does not depend on the switching sequence. The

parameters of the “lifted” ARX model is identified using standard linear identification

techniques, and finally the parameters of the original ARX submodels are recovered.

While the algebraic geometric approach provides a closed-form solution to the identifica-

tion in the absence of noise, it has been observed that the algorithm is rather sensitive to

noise or nonlinear disturbances [30]. [20, 28, 50] proposed using clustering techniques to

collect the input-output data into different groups, and then estimate the parameter vec-

tor for each cluster. However, in the cases when the model orders are not known exactly,

the identification results become very poor, since distances in the feature space become

corrupted by irrelevant information. [67] formulated the identification of two subclasses

of PWA models as mixed-integer linear or quadratic problems, and solved them using

available optimization algorithms. The cost functions are guaranteed to converge to the

global optimum, but the worst-case complexity is very high and the procedure is there-

fore only suitable for cases where relatively few data are available. In [29], a Bayesian
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procedure was derived to estimate the parameter vectors, which are treated as random

variables and described through their probability density functions. The Bayesian proce-

dure works well if sufficient physical insight into the underlying data generating process

is available, but poor initialization may lead to poor identification results. The bounded-

error procedure in [6] fits a PWARX model satisfying |e(t)| = |yt+1− f(rt)| ≤ ε, without

any assumption on the system generating the data. This procedure is well suited for

the cases when there is no a priori knowledge on the system, and when one wishes to

identify a model with prescribed bounded prediction error. However, it may be difficult

to find the right combination of tuning parameters. The readers are also referred to [30]

and [60] which provide a summary and comparison of some of the procedures mentioned

above.

In this chapter, we propose a procedure for the identification of PWARX systems,

which can also be applied to identify nonlinear systems by approximating them via

PWARX models. The proposed algorithm is not only simple but also accurate. Extensive

simulation studies show that our algorithm can indeed provide accurate estimates of the

plant parameters even in noisy cases, and even when the model orders are overestimated.

The method is then used to obtain a model of an electric motor that exhibits PWA

characteristics due to output saturation, as well as a model of a single-link robotic arm.

This chapter is organized as follows. In section 3.2, the problem formulation is given.

The two steps of the proposed identification algorithm are then detailed in section 3.3 and

section 3.4, followed by a discussion on approximating nonlinear systems using PWARX

models in section 3.5. Simulation results are shown in section 3.6, whereas experimental

results on the modeling of the electric motor system with PWA characteristics and single-

link robotic arm are shown in section 3.7. Finally, in section 3.8, conclusions will be
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drawn.

3.2 Problem Formulation

Consider a PWARX system with N partitions such that

y(t + 1) =





ϕT (t)θ∗1 if x(t) ∈ X1

...
...

ϕT (t)θ∗m if x(t) ∈ Xm∈(1,...,N)

...
...

ϕT (t)θ∗N if x(t) ∈ XN

(3.1)

where

x(t) = [y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]
T (3.2)

ϕ(t) =
[
xT (t), 1

]T
(3.3)

and

∪N
i=1Xi = X and Xi ∩Xj = ∅, ∀i 6= j (3.4)

where X denotes the whole regressor space.

Our aim is to identify the parameters of each subsystem, namely θ∗1, . . . , θ
∗
N as well

as to estimate the regions X1, . . . , XN .

Secondly, we also aim to approximate a nonlinear function

ξ(t + 1) = f(ξ(t), u(t))

y(t) = h(ξ(t))
(3.5)

where the output y(t) ∈ R, the states ξ(t) ∈ Rn and the input u(t) ∈ R are discrete time

sequences, via PWARX models given in equation (3.1).

As mentioned in the introduction, the identification of PWA systems is very challeng-

ing, because the parameter identification is coupled with a data classification problem,

whereby each data point needs to be associated with the most suitable submodel. If
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the partitions of the regressor space is known a priori, then the problem can be easily

solved, as the data can be easily separated into different groups (submodels), and the

parameters of each individual submodel can be identified in a straightforward manner

using standard linear identification methods. However, if the partitions are unknown,

how can we identify the PWA systems? This is the problem we are going to address in

this chapter.

3.3 First Step: Parameter Identification

In the first step of our algorithm, the parameters of the subsystems are identified.

The partitions of the regressor domain are estimated only in the second step.

It can be observed that the PWARX system (3.1) is a special case of the general

switching linear system (2.7), which is repeated here for the convenience of the readers.

y(t + 1) =





ϕT (x(t))θ∗1 if subsystem 1
...

...

ϕT (x(t))θ∗m if subsystem m ∈ (1, . . . , N)
...

...

ϕT (x(t))θ∗N if subsystem N

(3.6)

The two specialties of PWARX systems are that firstly, the underlying subsystems

have input-output relationships of the affine ARX form, i.e.

ϕ(x(t))→ ϕ(t) =
[
xT (t), 1

]T
(3.7)

x(t) = [y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]T (3.8)

and secondly, the switching signal is dependent on the location of the regression vector

x(t) within the regressor space X .

As such, the Least Geometrical Mean and Least Harmonic Mean algorithms de-

scribed in 2.4 and 2.5 can be easily adopted to cater for parameter identification of the
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subsystems, since these two algorithms could solve the parameter identification problem

without any concern on how the subsystems switch from one to another. Therefore,

we will not repeat the development of the parameter identification algorithms in this

chapter.

3.4 Second Step: Estimation of the Partition of the Re-

gressor Space

After the parameters of the individual subsystems have been identified by using the

proposed Least Geometrical Mean and Least Harmonic Mean algorithms, the next step

is to estimate the the partitioned regions X1, . . . , XN . This will allow us to determine the

active subsystem via the location of the regression vector x(t) = [y(t), . . . , y(t− na), u(t),

. . . , u(t− nb)]
T within the regressor space X , and in turn makes it possible for the next

output to be predicted based on the current active subsystem.

This can be formulated as a standard pattern classification problem, and the steps

are briefly detailed as follows: The (training) data are first labelled based on the minimum

prediction error from the multiple models, i.e. class (ithdata point) = arg min1≤j≤N (|ej(i)|),

and grouped into different classes. Standard algorithms such as multi-class support vec-

tor machine classifiers and neural network classifiers are then trained (with inputs=x(t)

and output=class) to classify the data and to estimate the boundaries of the partitions.

As a notation, we will write

σ(t) = h(x(t)) (3.9)

where h is the function of the data classifier which maps the input vector x(t) to σ(t),

with σ(t) = {1, . . . , N} denoting the active subsystem.
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3.4.1 Standard Regressor Space - Classifier I

According to the standard definition of the PWARX system (3.1), the regression

vector is x(t) = [y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]
T . x(t) can therefore be directly

used as the input of the data classifier (3.9). Hereafter, the classifier in this case will be

called “Classifier I” (see Fig 3.1(a)).

Figure 3.1: Data classifier for estimation of partition of regressor space

3.4.2 Modified Regressor Space - Classifier II

However, for reasons which will be explained later, including u(t) within the regres-

sion vector x(t) in Classifier I will prohibit an efficient use of the predictive control.

We therefore propose to omit u(t) from the regression vector, and use the “modified

regressor” x̃(t) = [y(t), . . . , y(t− na), u(t− 1), . . . , u(t− nb)]
T as the input to the data

classifier (3.9). This classifier is named “Classifier II” (see Fig 3.1(b)).

As will be seen later in the simulation studies, for certain nonlinear systems, this mod-

ification is acceptable for the identification purpose and would not degrade the accuracy

of the PWA model severely. It is however noteworthy that the performance of model-

based predictive control can be improved significantly by using this modified regressor

for data classification.

Remark 3.1 To avoid confusion, we would like to stress here that the modified regression
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vector applies only for the data classification step, i.e. we omit u(t) only when classifying

the data points. The full regressor is still being used for the parameter identification part.

That means, equation (3.1) is rewritten as

y(t + 1) ≈





ϕT (t)θ∗1 if x̃(t) ∈ X̃1

...
...

ϕT (t)θ∗m if x̃(t) ∈ X̃m∈(1,...,N)

...
...

ϕT (t)θ∗N if x̃(t) ∈ X̃N

(3.10)

where

x(t) = [y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]T (3.11)

ϕ(t) =
[
xT (t), 1

]T
(3.12)

x̃(t) = [y(t), . . . , y(t− na), u(t− 1), . . . , u(t− nb)]
T (3.13)

and

∪N
i=1X̃i = X̃ and X̃i ∩ X̃j = ∅, ∀i 6= j (3.14)

3.5 Nonlinear Systems Approximation

Consider a nonlinear system

ξ(t + 1) = f(ξ(t), u(t))

y(t) = h(ξ(t))
(3.15)

where the output y(t) ∈ R, the states ξ(t) ∈ Rn and the input u(t) ∈ R are discrete time

sequences. Assume that system (3.15) can also be described by the following nonlinear

Auto-Regressive Moving Average (NARMA) model:

y(t + 1) = F (y(t), . . . , y(t− na), u(t), . . . , u(t− nb)) (3.16)
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The reader can refer to [81] for detailed discussion on the conditions of the existence of

such global input-output models for nonlinear systems.

As mentioned earlier, given a set of input-output data of the above nonlinear system,

PWA models can be used to approximate F (·) by switching among various linear/affine

models

y(t + 1) ≈





ϕT (t)θ∗1 if x(t) ∈ X1

...
...

ϕT (t)θ∗m if x(t) ∈ Xm∈(1,...,N)

...
...

ϕT (t)θ∗N if x(t) ∈ XN

(3.17)

Therefore, our proposed algorithm can be directly used for identifying the nonlinear

systems. The accuracy of the approximation depends on the choice of number of piecewise

affine subsystems, as well as the dimension of the regression vector (na, nb).

3.6 Simulation Studies

3.6.1 Piecewise Affine Systems 1

The example given in this section is based on a simulation study in [30]. We use this

example for better comparison of our algorithm with those given in the work.

The PWARX system is as follows:

y(t + 1) =





2y(t) + 10 + η(t) if y(t) ∈ [−10, 0)

−1.5y(t) + 10 + η(t) if y(t) ∈ [0, 10]
(3.18)

The accuracy of the identified parameters is measured through the quantity

∆θ = max︸︷︷︸
1≤i≤N


 min︸︷︷︸

1≤j≤N

‖θi − θ∗j ‖2
‖θ∗j ‖2


 (3.19)

For perfect estimates, ∆θ is zero. However, it increases as the estimates worsen.

The overall quality measure which also includes the estimation of the active region
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can be provided by the sum of squared residuals (one step ahead prediction errors):

σ̂2
ε =

1
N

N∑

i=1

SSRFi

|Fi| (3.20)

where the set Fi contains the data points classified to the submodel i, |Fi| denotes the

cardinality or the number of elements in the set Fi, and the sum of squared residuals

(SSR) of model i is defined as:

SSRFi =
∑

x(t)∈Fi

(y(t + 1)− ϕT (t)θi)2 (3.21)

This value not only measures the accuracy of the subsystem parameters, but also how

well the correct partition is chosen based on the regression vector. The value is considered

acceptable if σ̂2
ε is small and/or near the expected noise of the identified system.

First of all, we are going to test our algorithm for both noiseless and noisy data, when

the order of the system is known.

For noiseless data, the least geometrical mean squares (LGM) algorithm and least

harmonic mean squares (LHM) algorithm provide us the correct parameter estimates in

just a few iterations, as shown in TABLE 3.1 and TABLE 3.2 respectively. Thus, the

efficacy of the proposed algorithm is validated.

We now study the effects of noise η(t) onto the identification algorithm. η(t) is

normally distributed with zero mean and increasing variance σ2
n. The simulation design

is as follows. The data set consists of 100 noisy data points, based on which our algorithm

should identify the parameters of the subsystems. For each noise level, we repeat the

simulation ten times and calculate the mean of ∆θ . The simulation result is shown in

TABLE 3.3. The result of using the LHM algorithm is comparable to that of using the

Bayesian procedure, the clustering-based procedure and the bounded-error procedure as

shown in [30].
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Table 3.1: Parameter Estimates of the PWARX System 1 using Least Geometrical Mean

Squares Algorithm

Iterations a1 c1

0 (randomly generated) 0.2379 0.6458

1 0.8461 4.0008

2 1.3524 6.5457

3 1.9027 9.4943

4 2.0000 10.000

5 2.0000 10.000

Iterations a2 c2

0 (randomly generated) 0.1603 0.8729

1 -1.0501 7.3440

2 -1.1828 7.3801

3 -1.3921 9.1214

4 -1.4989 9.9909

5 -1.5000 10.000

For the readers to have a feel of the values of ∆θ in TABLE 3.3, two examples

are that the parameter estimates of (1.7814, 8.8215) and (−1.4614, 9.8198) would give

∆θ = 0.1175, whereas the parameter estimates of (1.9814, 9.8734) and (−1.4955, 9.9567)

would give ∆θ = 0.0125. From these results, we see that even in noisy cases, our

algorithms, especially the least harmonic mean squares algorithm, can still give accurate

estimates of the parameters.

Our next simulation studies are to test the effects of overestimating the model or-

ders. For these simulations, we set the noise level at σ2
n = 0.01. The true regressor for

the system is [y(t), 1] with na = 0 and nb irrelevant, but we use the following regres-

sors [y(t), . . . , y(t − na), u(t), . . . , u(t − nb), 1] for all combinations of na = 0, . . . , 3 and

nb = 0, . . . , 4 to model the true system, where u(t) was generated as random number be-

tween -10 and 10. If our algorithms work well for these cases, we expect the parameters

corresponding to the redundant elements in the regressor to be identified as approxi-
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Table 3.2: Parameter Estimates of the PWARX System 1 using Least Harmonic Mean

Squares Algorithm

Iterations a1 c1

0 (randomly generated) 0.3663 0.4435

1 -0.0393 3.5572

2 0.1744 3.8749

3 0.4035 4.2033

. . . . . . . . .

12 2.0000 10.000

13 2.0000 10.000

14 2.0000 10.000

Iterations a2 c2

0 (randomly generated) 0.3663 0.4435

1 -0.5944 4.3440

2 -1.0036 6.7468

3 -1.2546 8.3988

. . . . . . . . .

12 -1.4995 9.9965

13 -1.5000 10.000

14 -1.5000 10.000

Table 3.3: Means of ∆θ for several noise level σ2
n

σ2
n 0.01 0.02 0.04 0.06

LGM 0.0078 0.0135 0.0301 0.0374

LHM 0.0034 0.0067 0.0086 0.0104

σ2
n 0.08 0.10 0.12 0.14

LGM 0.0607 0.0695 0.0779 0.1145

LHM 0.0193 0.0196 0.0275 0.0279

mately zero - which is indeed true, as shown by the simulation result for the extreme

case of na = 3 and nb = 4 in TABLE 3.4

Figure 3.2 and figure 3.3 show the values of log10(σ2
ε ) for models with different model

orders by using the LGM and LHM algorithms respectively. Recall that the noise level
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Table 3.4: Parameter estimation for overestimated model order

parameter true estimate parameter true estimate

a11 2 2.0003 a21 -1.5 -1.4954

a12 0 0.0216 a22 0 0.0004

a13 0 -0.0251 a23 0 0.0008

a14 0 -0.0021 a24 0 0.0004

b11 0 0.0003 b21 0 -0.0016

b12 0 0.0003 b22 0 0.0003

b13 0 0.0000 b23 0 -0.0007

b14 0 -0.0002 b24 0 0.0007

b15 0 -0.0002 b25 0 -0.0003

bias1 10 9.8551 bias2 10 9.9719

is 0.01, thus a value of log10(σ2
ε ) = −2 is considered satisfactory. We see that the

parameter estimates by LGM algorithm is affected slightly for overestimated na but is

not affected by nb, and the accuracy level is considered acceptable. On the other hand,

the LHM algorithm gives accurate parameter estimates regardless of the assumed model

order. This shows that our algorithms have little or no difficulties in estimating the

over-parameterized model. This is an advantage of our algorithms over most of the other

algorithms given in [30].
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ε using LGM algorithm
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ε using LHM algorithm

3.6.2 Piecewise Affine Systems 2

Consider the following PWARX system:

y(t + 1) =





−a13y(t)− a12y(t − 1)− a11y(t − 2)

−a10y(t− 3) + b13u(t) + b12u(t − 1) if x(t) ∈ X1

+b11u(t − 2) + b10u(t− 3) + c10

−a23y(t)− a22y(t − 1)− a21y(t − 2)

−a20y(t− 3) + b23u(t) + b22u(t − 1) if x(t) ∈ X2

+b21u(t − 2) + b20u(t− 3) + c20

(3.22)

where x(t) = [y(t), . . . , y(t− 3), u(t), . . . , u(t− 3)]T . The plant parameters are a13 = 0.2,

a12 = 0.8, a11 = 0.7, a10 = 0.1, b13 = 0.3, b12 = 0.5, b11 = 0.6, b10 = 0.3, c10 = 1.2,

a23 = 0.6, a22 = 0.4, a21 = 0.9, a20 = 0.3, b23 = 0.7, b22 = 0.05, b21 = 0.2, b20 = 0.4,

and c20 = 1.7. The region X1 is active if hT x(t) < 0, whereas the region X2 is active if

hT x(t) ≥ 0, with h = 0.2 [1 1 1 1 1 1 1 1]T .

The system, with zero initial values, is being excited using random control input

u(t) in the range of [−13, 13]. A total of 4000 input-output data are obtained. The

parameters of the two input-output models in (3.22) are then identified using the least

geometrical mean algorithm as detailed in section 2.4.1, and the two regions X1 and X2
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are estimated using multilayer perceptrons.

To test the accuracy of the identified PWARX model, we excite (3.22) with the

following control signal:

u(t) = 7(sin(πt/10) + sin(πt/20)) (3.23)

and check whether the identified PWARX model can give a good prediction of the output.

The test result is shown in Fig. 3.4. From the fact that the true output (dashed line) is

almost completely covered by the estimated output (solid line), it can be concluded that

the identified PWARX model is very accurate.

Figure 3.4: Output prediction for PWA system 2 using the identified PWARX model.

Dashed: True output, solid: Estimated output.

Left: Noiseless case, right: Noisy case

3.6.3 Nonlinear Systems 1

Consider the following nonlinear system,

y(t + 1) =
y(t)

1 + y2(t)
+ u3(t) (3.24)

which can be found in [53].

The training set consists of 4000 data, with the inputs exciting the system being

random inputs in the range of [−2, 2].
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The PWARX model is of the form

y(t + 1) ≈





ϕT (t)θ∗1 if x(t) ∈ X1

...
...

ϕT (t)θ∗N if x(t) ∈ XN

where x(t) = [y(t), u(t)]T

ϕ(t) =
[
x(t)T , 1

]T

(3.25)

After identifying the parameters θ∗1 to θ∗N using either the Least Geometrical Mean

algorithm or Least Harmonic Mean algorithm, we proceed to train a neural network for

data classification using the regressor x(t).

To verify the accuracy of the PWARX model in approximating the original nonlinear

system, the output of the nonlinear system is compared with the output of the PWARX

model when the test input is described by

u(t) = sin(2πt/10) + sin(2πt/25) (3.26)

The simulation result for the test data is shown in Fig. 3.5. As can be observed,

the nonlinear system can be approximated well using the PWARX model with 4 or 16

subsystems.

To have a more quantitative evaluation of the accuracy of the identified model, we

compute the “Fit”-value which is defined as

Fit =

(
1−

√∑
t(y(t + 1)− ŷ(t + 1))2∑

t(y(t + 1)− ȳ)2

)
× 100% (3.27)

where y(t + 1), ŷ(t + 1) and ȳ are the true output, estimated output, and the average

of y(t + 1) respectively. The result is shown in TABLE 3.5. The values show that the

data-fitting improves as the number of subsystems increases.
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Figure 3.5: Identification of nonlinear system 1 via PWARX models.

Solid: True output, dashed: Estimated output.

3.6.4 Nonlinear Systems 2

Consider the following nonlinear system,

y(t + 1) =
1.5y(t)y(t− 1)

1 + y2(t) + y2(t− 1)

+ sin(y(t) + y(t − 1)) + u(t) + 0.8u(t− 1)

(3.28)

This system is a combination of the examples by [13] and [53], with the parameters

slightly modified to make the nonlinearity even more profound.

Table 3.5: Fit values for nonlinear system 1

No. subsystems 1 2 4 8 16

Fit Values 60% 77% 85% 91% 93%
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The training set consists of 4000 data, with the inputs exciting the system being

random inputs in the range of [−2.2, 2.2].

The PWARX model is of the form

y(t + 1) ≈





ϕT (t)θ∗1 if x(t) ∈ X1 or x̃(t) ∈ X̃1

...
...

ϕT (t)θ∗N if x(t) ∈ XN or x̃(t) ∈ X̃N

(3.29)

where

x(t) = [y(t), y(t− 1), u(t), u(t− 1)]T (3.30)

ϕ(t) =
[
x(t)T , 1

]T
(3.31)

x̃(t) = [y(t), y(t− 1), u(t− 1)]T (3.32)

After identifying the parameters θ∗1 to θ∗N using either the Least Geometrical Mean

algorithm or Least Harmonic Mean algorithm, we proceed to train a neural network for

data classification, using either the standard regressor x(t) or the modified regressor x̃(t).

To verify the accuracy of the PWARX model in approximating the original nonlinear

system, the output of the nonlinear system is compared with the output of the PWARX

model when the test input is described by

u(t) = sin(2πt/10) + sin(2πt/25) (3.33)

The simulation results for the test data by using Classifier I and Classifier II to choose

the active subsystem are shown in Figs. 3.6 and 3.7 respecively. As can be observed,

the nonlinear system can be approximated well using the PWARX model with 4 or 8

subsystems. Also, we see that the fitting accuracy is not degraded much by omitting

u(t) from the data classifier.

The quantitative accuracy of the PWARX models are computed using the “Fit”-value
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Figure 3.6: Identification of the nonlinear system 2 via PWARX model using Classifier

I. Solid: True output, dashed: Estimated output.

which is defined as

Fit =

(
1−

√∑
t(y(t + 1)− ŷ(t + 1))2∑

t(y(t + 1)− ȳ)2

)
× 100% (3.34)

for both cases where either Classifier I or II is used to decide the active subsystem, where

y(t+1), ŷ(t+1) and ȳ are the true output, estimated output, and the average of y(t+1)

respectively. The results, given in TABLE 3.6, show that the model accuracy are very

similar for both types of classifier.
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Figure 3.7: Identification of the nonlinear system 2 via PWARX model using Classifier

II. Solid: True output, dashed: Estimated output.

3.6.5 Nonlinear Systems 3

Consider a nonlinear benchmark system given in the state space form:

ξ1(t + 1) =
(

ξ1(t)
1 + ξ2

1(t)
+ 1
)

sin(ξ2(t))

ξ2(t + 1) = ξ2(t)cos(ξ2(t)) + ξ1(t)e−(ξ2
1(t)+ξ2

2(t))/8

+
u3(t)

1 + u2(t) + 0.5cos(ξ1(t) + ξ2(t))

y(t) =
ξ1(t)

1 + 0.5sin(ξ2(t))
+

ξ2(t)
1 + 0.5sin(ξ1(t))

+ ε(t)

(3.35)

Table 3.6: Fit values for nonlinear system 2

No. subsystems 1 2 4 8

Classifier I 59.1% 80.2% 85.9% 87.7%

Classifier II 59.1% 79.9% 85.3% 86.7%
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This plant, taken from [55], does not represent any real system, but is sufficiently

complex and nonlinear so that the conventional linear methods will not provide satisfac-

tory performance. This example was also used in [68] and [79] to test the efficacy of direct

weight optimization (DWO) and piecewise-affine-basis models (BPWA) in approximating

nonlinear systems.

The training set consists of 4000 data, with the inputs exciting the system being

random inputs in the range of [−2.5, 2.5].

The PWARX model is of the form

y(t + 1) ≈





ϕT (t)θ∗1 if x(t) ∈ X1 or x̃(t) ∈ X̃1

...
...

ϕT (t)θ∗N if x(t) ∈ XN or x̃(t) ∈ X̃N

(3.36)

where

x(t) = [y(t), y(t− 1), y(t− 2), u(t), u(t− 1), u(t− 2)]T

ϕ(t) =
[
x(t)T , 1

]T

x̃(t) = [y(t), y(t− 1), y(t− 2), u(t− 1), u(t− 2)]T (3.37)

After identifying the parameters θ∗1 to θ∗N using either the Least Geometrical Mean

algorithm or Least Harmonic Mean algorithm, we proceed to train a neural network for

data classification, using either the standard regressor x(t) or the modified regressor x̃(t).

To verify the accuracy of the PWARX model in approximating the original nonlinear

system, the output of the nonlinear system is compared with the output of the PWARX

model when the test input is described by

u(t) = sin(2πt/10) + sin(2πt/25) (3.38)

The simulation results for the test data by using Classifier I and Classifier II to choose

the active subsystem are shown in Figs. 3.8 and 3.9 respectively. As can be observed, the
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Figure 3.8: Identification of the nonlinear system 3 via PWARX model - Classifier I.

Solid: True output, dashed: Estimated output.

nonlinear system can be approximated well using the PWARX model with 4 subsystems.

Also, we see that the fitting accuracy is not degraded much by omitting u(t) from the

data classifier.

The quantitative accuracy of the PWARX models are computed using the “Fit”-value

which is defined as

Fit =

(
1−

√∑
t(y(t)− ŷ(t))2∑

t(y(t)− ȳ)2

)
× 100% (3.39)

for both cases where either Classifier I or II is used to decide the active subsystem,

where y(t), ŷ(t) and ȳ are the true output, estimated output, and the average of y(t)

respectively. The result, given in TABLE 3.7, shows that the model accuracy are rather

similar for both types of classifier.



Chapter 3. Identification of Piecewise Affine Systems and Nonlinear Systems using
Multiple Models 62

Figure 3.9: Identification of the nonlinear system 3 via PWARX model - Classifier II.

Solid: True output, dashed: Estimated output.

3.7 Experimental Studies

3.7.1 Electric Motor Systems with Velocity Saturation

The experimental testbed for the case study is an electronically commutated elec-

tric motor, a Maxon EC-powermax30 (200W) [46] (Fig. 3.10). The reduction ratio of

the mounted gear-head is 113:1 and its power efficiency is 80%. An encoder with 500

pulses/turn is used to measure the motor side angle, from which the angular velocity can

then be calculated.

In the provided specification [46], the maximum angular velocity of the motor is given

as 17000 RPM (i.e. approximately 15.7 rad/s at the end of the gear head). This velocity
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Table 3.7: Fit values for nonlinear example 3

No. subsystems 1 2 4

Classifier I 16.5% 50.8% 68.4%

Classifier II 16.5% 48.7% 62.2%

Gear (113:1)

200W BLDC Motor

Encoder

Figure 3.10: The geared motor system used as experimental testbed

saturation is caused by the maximum voltage provided to the motor windings, as well as

the limitations of the servo amplifier output [35].

The velocity saturation can be observed from several measurements. For example, in

Fig. 3.11 where the motor is fed with step inputs of varying magnitudes, it is noticed that

before the maximum velocity is reached, the steady state velocity is almost proportional

to the magnitude of the step input, but once the velocity reaches the saturation value,

an increase in the control input does not affect the steady state velocity of the motor

any further.

PWARX Model of the Motor System

Because of the velocity saturation, the electric motor may be viewed as a PWA

system, with one of the subsystems representing the case when the motor is operating

within the linear region at lower speed, and the other subsystem representing the case
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Figure 3.11: Velocity responses to step inputs with different magnitudes

when the velocity saturation is reached. Thus, it serves as an appropriate testbed for

the application of the proposed PWARX model identification algorithm.

Identification for the Training Set

First of all, the input signal is designed to be a chirp-like signal, with the amplitude

being 5V, and the frequencies of the sine waves being 0.1Hz, 0.2Hz, 0.5Hz, 1Hz, 2Hz, 5Hz,

10Hz and 20Hz, one after another. We are interested in these lower frequencies because

the motor/gear system does not reach the velocity saturation speed when excited by

inputs with higher frequences [35]. The input and output signals are then sampled at

50Hz. This set of data is used to train the PWARX model which is in the form of:

v̂(t + 1) =





θ11v(t) + θ12u(t) + θ13 if [v(t), u(t)] ∈ X1

θ21v(t) + θ22u(t) + θ23 if [v(t), u(t)] ∈ X2

(3.40)

The parameters of the two subsystems are identified using the proposed least geometrical

mean squares (LGM) algorithm and the least harmonic mean squares (LHM) algorithm,

whereas the two regions X1 and X2 are estimated using a 2-12-2 multilayer perceptrons.

To showcase the advantage of the PWARX model, the following linear model is also
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Figure 3.12: Data fitting for the training data. Gray: measured, black: estimated.

identified for comparison:

v̂(t + 1) = θ1v(t) + θ2u(t) + θ3 (3.41)

The identification result is shown in Fig. 3.12. It is clear that a single linear model is

not able to capture the piecewise affine characteristic of the motor velocity, whereas the

PWARX models, identified using the proposed algorithms, could provide a much better

data fitting.

To evaluate the fit between the measured and the estimated velocity, the following

“Fit” value is calculated:

Fit =


1−

√√√√√√√

∑

t

(v(t + 1)− v̂(t + 1))2

∑

t

(v(t + 1)− v̄)2


× 100% (3.42)

where v̄ is the arithmetic mean of v(t+1). The result is shown in TABLE 3.8. It is noticed

that the model identified using the LHM algorithm is slightly more superior than that

obtained using the LGM algorithm, because the LHM is less sensitive to measurement

noise.
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Table 3.8: Fit values of the identified models for DC motor

Model Linear PWARX (LGM) PWARX (LHM)

Training data 97.3% 97.8% 98.0%

Test data 1 96.8% 98.2% 98.7%

Test data 2 97.8% 98.3% 98.6%

The model (3.40) identified using the LHM algorithm is:

v̂(t + 1) =





0.948v(t) + 0.283u(t) + 0.022 if [v(t), u(t)] ∈ X1

0.999v(t) + 0.001u(t) + 0.000 if [v(t), u(t)] ∈ X2

(3.43)

where the numerical values of the second subsystem clearly show that the velocity stays

almost constant and is unaffected by the control input, once the velocity saturation is

reached.

Validation for the Test Sets

After the parameters of the models have been identified using the training data, the

ability of the models to generalize on data which was not seen during the training phase

is tested. For this purpose, two types of input signals are defined, the first being a stair-

type signal, with magnitudes from 0.5V to 5V in the increments of 0.5V, and the second

being a sinusoidal signal with 1V amplitude and 1Hz frequency, superimposed with a

stair-type signal with magnitudes 0V, 2V and 4V.

The validation results are shown in Figs. 3.13 and 3.14 respectively. Again, it is

seen that the single linear model cannot provide a good prediction of the velocity after

saturation level is reached, whereas the PWARX models have no difficulty in capturing

the PWA aspects of the motor, with the one identified using the LHM algorithm being

more accurate, as shown in TABLE 3.8.
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Figure 3.13: Data fitting for the test data 1. Gray: measured, black: estimated

Figure 3.14: Data fitting for the test data 2. Gray: measured, black: estimated
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Figure 3.15: Data fitting for the training data using other algorithms. Gray: measured,

black: estimated.

Comparison with other Algorithms

The proposed method is compared with four other algorithms found in the literature,

namely the Hidden Markov Model plus Baum-Welch algorithm (HMM EM) of [24], the

Algebraic-Geometric method of [77], the Clustering technique of [20], and the Bayesian

approach of [29]. The tuning parameters of each of these algorithms (for e.g. the number

of data points per cluster c in the clustering technique) were carefully chosen so as to

obtain the best result. The results for the training data and the test data 1 and 2 are

shown in Figs. 3.15 to 3.17 respectively.

Comparing Figs. 3.15 to 3.17 with Figs. 3.12 to 3.14, it can be observed that the

proposed algorithms, especially the least harmonic mean (LHM) algorithm, outperform

the other compared methods. This conclusion is also supported by the Fit values as

shown in TABLE 3.9.
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Figure 3.16: Data fitting for the test data 1 using other algorithms. Gray: measured,

black: estimated.

Figure 3.17: Data fitting for the test data 2 using other algorithms. Gray: measured,

black: estimated.

Table 3.9: Fit values of the identified models using other algorithms

Algorithm HMM EM Algebraic Clustering Bayesian

Training data 98.1% 97.6% 96.7% 97.6%

Test data 1 98.1% 97.2% 97.2% 98.1%

Test data 2 98.4% 97.8% 97.7% 98.1%
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Figure 3.18: Hardware setup of the single-link robotic arm

Figure 3.19: Schematics diagram of the single-link robotic arm

3.7.2 Single Link Robotic Arm

A DC motor apparatus by L. J. Electronics, which is used as a teaching set for

teaching control courses, has been slightly modified to be a single link robotic arm.

Specifically, the original load which is centric, has been replaced by a brass rod with a

heavy brass pendulum at the end. The setup is shown in Fig. 3.18, and its schematic

diagram is shown in Fig. 3.19.

The simplified physical model of the system is

Jα̈ = −βα̇ −Mglsin(α) + Ku (3.44)
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Figure 3.20: The hardware-in-the-loop simulation for the single-link robotic arm

where J is the overall moment of inertia of the system including the motor shaft, the

rod and the pendulum, M is the mass of the rod and the pendulum, l is the distance

from the pivot of rotation to the center of gravity of the rod and pedulum, g is the

gravitational constant, β is the damping coefficient, α is the angle of rotation, and u is

the input voltage. Determining l and β is not very straightforward, and thus it could be

advantageous to use a data-based approach to identify the system.

PWARX Model of the Robotic Arm

Because the system has an integrator, and since we do not want the robotic arm to

rotate endlessly (or the angle to integrate up to a huge number), we first stabilize the

system using a PD-type controller. Note that this PD-type controller does not need to

be tuned painstakingly to achieve excellent tracking performance. It merely serves to

stabilize the system and to allow the acquiring of input-output data.

The PD Controller is programmed in MATLAB/Simulink, and a dSPACE DS1104

rapid control prototyping system is used to generate the physical control signal v(t) to

the DC Motor, based on the calculated numerical value of the control signal u(t). Also,

the sensor reading of the angle s(t) is sent into the computer via the dSPACE system,

and be interpreted as numerical values α(t). The working diagram is shown in Fig. 3.20.

For this experiment, we chose the sampling rate to be 10Hz. The input-output
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PWARX model of the system is then identified based on the signals u(t) and α(t), and

the PWARX model is of the form

α(t + 1) ≈





ϕT (t)θ∗1 if x̃(t) ∈ X̃1

...
...

ϕT (t)θ∗N if x̃(t) ∈ X̃N

(3.45)

where

x(t) = [α(t), α(t− 1), u(t), u(t− 1)]T (3.46)

ϕ(t) =
[
x(t)T , 1

]T
(3.47)

x̃(t) = [α(t), α(t− 1), u(t− 1)]T (3.48)

The parameters of the two subsystems are identified using the proposed least harmonic

mean squares (LHM) algorithm, whereas the regions X̃i are estimated using multilayer

perceptrons.

Training Set

The training set, which consists of 4000 data points, was obtained by setting the

reference signal to be

r(t) = 0.6sin(2π0.01t) + 0.5sin(2π0.1t) + 0.3sin(2π0.4t + π/3) + π + ε(t) (3.49)

where ε(t) is a random number in the range of [-0.4, 0.4]. This randomness is introduced

so that the data set is richer in frequency content.

The identification errors for the training set are shown in Fig. 3.21. As can be seen,

the error decreases as we have more subsystems in the PWARX model.

To have a more quantitative evaluation of the accuracy of the identified model, we

compute the “Fit”-value which is defined as

Fit =

(
1−

√∑
t(α(t + 1)− α̂(t + 1))2∑

t(α(t + 1)− ᾱ)2

)
× 100% (3.50)
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Figure 3.21: Identification error for the training set

where α(t + 1), α̂(t + 1) and ᾱ are the true output, estimated output, and the average

of α(t + 1) respectively. The result is shown in TABLE 3.10. The values show that the

data-fitting improves as the number of subsystems increases.

Table 3.10: Fit values for single link robotic arm

No. subsystems 1 2 4 8

Training data 96.26% 97.49% 98.14% 98.33%

Test data 96.37% 97.59% 98.14% 98.49%
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Figure 3.22: Identification error for the test set

Test Set

The test set, which contains 1000 data points, was obtained by setting the reference

signal to be

r(t) = 0.7sin(2π0.02t) + 0.8sin(2π0.2t) + π (3.51)

The identification errors for the test set are shown in Fig. 3.22. As the number

of subsystems in the PWARX model increases, the identification error decreases. This

shows that the PWARX Models can generalize well to the test data.
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3.8 Conclusions

In this chapter, a procedure for the identification of piecewise affine ARX systems was

proposed. The proposed algorithm consists of two steps: identification of the parameters

of the subsystems and estimation of the partition of the regressor space. In the first step

of the algorithm, the parameters of the individual subsystems were identified through a

least-squares based identification method using multiple models, without needing to know

the boundaries of the partitions. This step has been handled in chapter 2. The partition

of the regressor space was then determined in the second step using standard procedures

such as neural network classifier or support vector machine classifier. We also used

the same procedure to identify nonlinear systems by approximating them via piecewise

affine systems. Extensive simulation studies show that our algorithm can indeed provide

accurate estimates of the plant parameters even in noisy cases, and even when the model

orders are overestimated. For experimental verification, the method was used to obtain

a PWARX model of an electric motor which shows a velocity saturation characteristic.

The result showed that the proposed algorithm indeed provided an accurate model of

the electric motor and could capture its piecewise affine nature. The method was also

employed to obtain a model of a single-link robotic arm, where it was shown that the

PWARX model provides a better description of the robotic arm than by using a single

linear model.



Chapter 4

Control of Piecewise Affine

Systems and Nonlinear Systems

using Multiple Models

4.1 Introduction

As mentioned in chapter 1, one approach of controller design for nonlinear systems,

which has a large following in the industry as well as in flight control, is to first separate

the operating region of the nonlinear process into several subregions, design a linear

controller for each of these partitions, and then activate the controller corresponding to

the active operating condition at a certain time. The main advantages of this approach

are its simplicity and intuitive appeal, and that powerful linear design tools can be

employed on difficult nonlinear problems.

The partitioning of the full operating region into several smaller subregions has re-

sulted in modeling formalisms of piecewise-linear or piecewise-affine (PWA) models, and

several work have appeared in the literature to deal with the control design for these

PWA systems. In [25,63–66], the controllers were designed for quadratic stabilization

of the PWA systems, with the help of piecewise quadratic Lyapunov functions as well

76
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as convex optimization. The PWA systems considered in these works are in state space

forms, but the authors showed that it was possible to use state observers to estimate the

states if only the output signal is available. In [12], a dynamic controller is designed based

on the common Lyapunov function. Although it is known that the common Lyapunov

function provides a more conservative controller than the piecewise Lyapunov function,

the authors were able to show that regional pole placement of the closed loop system

can be achieved. [80] designed dynamic controllers based on pole placement for each of

the linear subsystems, and then analysed the conditions for stability of the closed loop

system under switching. Switching H-infinity controllers for a class of linear parameter

varying systems are designed in [83]. Last but not least, [27] designed optimal control

for sampled-data piecewise affine systems, i.e. systems whose switching action of the dis-

crete state is determined at each sampling time according to a condition of the continuous

state.

The by far most popular control methodology for piecewise affine systems, switching

systems and hybrid systems is the model predictive control [1–5,7–9,14,17,22,23,45,51,

52,58,59,62,76]. As in the usual model predictive controller for a single model system,

the control signal is computed by minimizing a cost function which penalizes the future

output error and the control signal. However, an additional point which needs to be

taken into consideration is the switching of the model’s subsystems and the corresponding

local controllers. By viewing the activation and deactivation of the local controllers as a

discrete state of one or zero, some researchers proposed to include this discrete state in

the cost function, and solve a mixed-integer linear program or mixed-integer quadratic

program [7,8]. Due to the complexity of the mixed-integer programming, these controllers

might have difficulties to be implemented in real time. As such, [4, 5, 45] proposed to
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recast the optimization problem as multiparametric mixed-integer programming, which

is first solved offline, and the optimal control signal is obtained as an explicit function

of the states. Then, in real time implementation, the optimal control signal is obtained

merely via a simple function evaluation. Unfortunately, this method was demonstrated

in depth only for the Mixed Logical Dynamical (MLD) model, which although is proven

to be equivalent to piecewsie affine systems in [26], is less intuitive and not easy to

comprehend.

Another issue related to the control of nonlinear systems by patching up multiple

local controllers is how to determine/design the switching among the linear controllers.

In [47,48], the “supervisor” determines the best local controller to be used at a particular

instant by evaluating certain norm-squared output estimation errors of the local models.

[36], on the other hand, evaluates the best controller to be activated by comparing the

“virtual” closed-loop performance. Yet, a complete switching between the controllers is

not the only way to utilize the multiple model controllers. It is also possible to weigh

the output of each controllers based on some fuzzy or bayesian rules and sum them up

as the final control signal. This approach was used in [2, 3, 51].

In this chapter, we will derive a model-based controller to control piecewise affine

systems and nonlinear systems for reference tracking, the latter being approximated

using piecewise affine ARX models. The local controllers are weighted one-step-ahead

controllers, and they switch from one to another by observing the active partition of

the regressor space. This is possible because we have already trained data classifiers to

estimate the regressor space partition. However, there also exists a difficult chicken-and-

egg problem, where the determination of the active subsystem needs the information

of the yet-to-be-calculated control signal. We will therefore propose a few solutions to
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overcome this difficulty. Both simulation and experimental studies verified the efficacy

of our control algorithm.

4.2 Weighted One-Step-Ahead Controller

The model of the PWARX system

ŷ(t + 1) =





ϕT (t)θ1 if x(t) ∈ X1 or x̃ ∈ X̃1

...
...

ϕT (t)θm if x(t) ∈ Xm or x̃ ∈ X̃m (m ∈ (1, . . . , N))
...

...

ϕT (t)θN if x(t) ∈ XN or x̃ ∈ X̃N

(4.1)

where

x(t) = [y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]
T (4.2)

ϕ(t) =
[
xT (t), 1

]T
(4.3)

x̃(t) = [y(t), . . . , y(t− na), u(t− 1), . . . , u(t− nb)]
T (4.4)

and

∪N
i=1Xi = X and Xi ∩Xj = ∅, ∀i 6= j (4.5)

where X denotes the whole regressor space, can be explicitly expressed in the following

form:

ŷ(t + 1|t) =





a1nay(t) + · · ·+ a10y(t− na)

+b1nb
u(t) + · · ·+ b10u(t− nb) + c10 if x(t) ∈ X1 or x̃ ∈ X̃1

...

aNnay(t) + · · ·+ aN0y(t − na)

+bNnb
u(t) + · · ·+ bN0u(t− nb) + cN0 if x(t) ∈ XN or x̃ ∈ X̃N

(4.6)
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This can also be unified in the form of

ŷ(t + 1|t) = aσ(t),na
y(t) + · · ·+ aσ(t),0y(t− na)

+ bσ(t),nb
u(t) + · · ·+ bσ(t),0u(t− nb) + cσ(t),0

(4.7)

where aσ(t),i, bσ(t),i and cσ(t),0 are time-varying parameters which depend on the active

region X1, . . . , XN or X̃1, . . . , X̃N . Here, σ(t) denotes the active subsystem, i.e.

σ(t) = m if x(t) ∈ Xm or x̃(t) ∈ X̃m (4.8)

The one-step-ahead control law which would ensure that ŷ(t+1) tracks the reference

r(t + 1) is

u(t) =




r(t + 1)

−aσ(t),na
y(t)− · · · − aσ(t),0y(t− na)

−bσ(t),nb−1u(t− 1)− · · · − bσ(t),0u(t− nb)

−cσ(t),0




bσ(t),nb

(4.9)

This is obtained by minimizing (r(t + 1)− ŷ(t + 1))2.

To improve the stability of the one-step-ahead controller, we can also use the weighted

one-step-ahead control law as follows

u(t) =

bσ(t),nb




r(t + 1)

−aσ(t),na
y(t)− · · · − aσ(t),0y(t− na)

−bσ(t),nb−1u(t− 1)− · · · − bσ(t),0u(t − nb)

−cσ(t),0




b2
σ(t),nb

+ λ
(4.10)

where λ is a nonnegative number. The weighted one-step-ahead control law can be

obtained by minimizing the following cost function

J = (ŷ(t + 1)− r(t + 1))2 + λu2(t) (4.11)

with respect to u(t). λ can thus be seen as a tuning parameter to achieve a balance

between tracking accuracy and control magnitude.
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4.3 A Chicken-and-Egg Situation and its Solutions

Note that the computation of the control signal u(t) according to (4.9) or (4.10)

depends on the switching signal σ(t). We however run into a rather tricky “chicken

and egg” situation here, if we use the standard regressor x(t): At time t, we need the

regressor x(t) = [y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]
T to decide the current switching

signal σ(t) = h(x(t)) using the data classifier, but u(t) within x(t) is yet to be designed

at this stage!

To overcome this akward situation, we have developed five possible methods, which

are listed next from the worst performance to the best.

4.3.1 Method I: Using the Previous Switching Signal

The simplest solution is to assume that the switching is not so frequent, such that

σ(t) = σ(t− 1), i.e. we will use x(t− 1) = [y(t− 1), . . . , y(t− na − 1), u(t− 1), . . . , u(t−

nb − 1)]T to determine the active subsystem at time t.

The advantage of this scheme is its simplicity, but its obvious drawback is that the

assumption can be violated from time to time when switching actually occurs. This leads

to extremely poor performance if switching occurs frequently, or when the nonlinearity

of the system is severe.

4.3.2 Method II: Compute u(t) for all possible switching signals and

compare the cost functions

The second method is to compute the control signals for all possible switching signals

σ(t). The computed control signals are then substituted into the cost function J =

(ŷ(t + 1)− r(t + 1))2 + λu2(t), and the corresponding signal which gives the lowest cost

value will be used.
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This method has the advantage that it conforms with the spirit of cost function

optimization (minimization). However, it still does not guarantee a good control perfor-

mance, because the subsystem with the minimum cost value is not necessarily the true

active subsystem! By using the corresponding incorrect control signal, the system output

will not track the reference as desired.

4.3.3 Method III: Compute u(t) for all possible switching signals and

check the active subsystem

The third method is as follows: First, we shall assume σassumed(t) = 1, and com-

pute u1(t) according to (4.9) or (4.10). We then feed our data classifier with x(t) =
[
y(t), . . . , y(t− na), u1(t), u(t− 1), . . . , u(t− nb)

]T
, and check whether σ(t) is indeed 1.

If this is true, it would mean that we have made a correct guess of σ(t), and we can send

this control signal u(t) = u1(t) to the system.

If however σ(t) 6= σassumed(t) = 1, we should proceed to the next step instead, as

follows: We now assume σassumed(t) = 2, and calculate u2(t) according to (4.9) or (4.10).

Letting the input of the data classifier to be x(t) =
[
y(t), . . . , y(t− na), u2(t), u(t− 1), . . . ,

u(t− nb)]
T , we check whether σ(t) indeed equals 2. If this is correct, it means we have

correctly assumed the active subsystem, and we can proceed to feed the process with

u(t) = u2(t).

If this is also not true, we proceed similarly for subsystems 3 to N , until one of the

σassumed(t) equals the correct σ(t), and use the corresponding control signal.

In case none of the above is correct, we might need to resort to one of the earlier two

methods, but the tracking performance will definitely be poor at these instances.
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4.3.4 Method IV: Engage the data classifier while computing u(t)

This is a refinement from Method III. There, we had no control on whether u1(t) will

make subsystem 1 active, u2(t) will make subsystem 2 active and so on. As mentioned,

if none of these are true, the control performance will degrade.

To improve the situation, we will not calculate the control signals using (4.9) or (4.10)

alone. Instead, we shall compute the control signal by solving the following constrained

optimization problem

minu(t)J = (ŷ(t + 1)− r(t + 1))2 + λu2(t)

=


 aσ(t),na

y(t) + · · ·+ aσ(t),0y(t− na)

+bσ(t),nb
u(t) + · · ·+ bσ(t),0u(t− nb) + cσ(t),0 − r(t + 1)




2

+ λu2(t)

s.t. σ(t) = h([y(t), . . . , y(t− na), u(t), . . . , u(t− nb)]) = σpredefined

(4.12)

whereby the function h([y(t), . . . , y(t−na), u(t), . . . , u(t−nb)]) is obtained from the data

classifier.

The procedure is applied to all possible switching signals (σpredefined). Some of the

switching signals will not provide feasible solutions (i.e. there is no u(t) which, together

with the regression vector, would make the predefined subsystem active) and they can

be discarded. For those which are feasible, the control signals are then substituted into

the cost function and the one corresponding to the least cost will be used.

The advantage of this scheme is good control performance, because the correct active

subsystem will definitely be used when calculating the control signal. However, compu-

tational burden in solving the (nonlinear) constrained optimization problem can prohibit

the use of this method in real-time problem.
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4.3.5 Method V: Ad-Hoc scheme using Classifier II

It was due to the difficult chicken-and-egg situation and the lack of good solution

which inspired the development of classifier II, where u(t) is ignored in the data classifica-

tion process. By using x̃(t) = [y(t), . . . , y(t− na), u(t− 1), . . . , u(t− nb)]
T , the problem

is circumvent. Even though one might argue that this classifier might not provide good

identification results, most of our simulations show that this is still a reliable scheme.

Most importantly, the control performance is superior to when the chicken-and-egg prob-

lem needs to be tackled.

Remark 4.1 It is clear that stability is an important issue when designing control sys-

tems. However, a stability analysis for the control of nonlinear systems using multiple

linear controllers is a very challenging problem. For instance, it is well-known that even

though each of the local linear controllers can stabilize its corresponding approximately-

linear region of the system, stability can still be lost if there is frequent switching among

the subsystems. Also, although there are some stability results on model predictive con-

troller for hybrid systems, they all assume that the model is accurate. In our case, since

the PWARX model is an approximate model of the original nonlinear system, the sta-

bility results are not directly applicable. These issues will be investigated as part of our

future work.

4.4 Simulation Studies

4.4.1 Nonlinear System 1

Consider the following nonlinear system,

y(t + 1) =
y(t)

1 + y2(t)
+ u3(t) (4.13)
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which was identified in section 3.6.3. There, we showed that by using the PWARX model

of the form

y(t + 1) ≈





ϕT (t)θ∗1 if x(t) ∈ X1

...
...

ϕT (t)θ∗N if x(t) ∈ XN

where x(t) = [y(t), u(t)]T

ϕ(t) =
[
x(t)T , 1

]T

(4.14)

and by using 4,8 or 16 models, the input-output data can be fit to a reasonable accuracy.

We now proceed to control the system using the weighted one-step-ahead control law

(4.10). The nonlinear system is required to track the reference signal

r(t) = 4sin(2πt/10) + 4sin(2πt/25) (4.15)

The simulation result for the control of the nonlinear system using Method III is

shown in Fig. 4.1. As can be observed, the nonlinear system can track the reference

signal rather well using the controller which is designed based on the PWARX models

with 2, 4 and 16 subsystems, as compared to the case when only one linear model is

used.

However, we also notice that sometimes, the tracking is not too accurate. This is

because the control signals were calculated according to the “assumed” active subsystem

but none of the computed control signal makes the corresponding subsystem active.

Therefore, we proceed to try Method IV, i.e. by engaging the data classifier while

performing the cost function optimization. A comparison of Method III and Method IV

for the case of using the PWARX model with 4 subsystems is shown in Fig. 4.2.

As can be seen, the tracking performance is significantly improved by using Method

IV, because the control signal is calculated with the constraint that it will necessarily

make the predefined subsystem to be active.
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Figure 4.1: Control of nonlinear system 1 - Method III.

Solid: Reference, dashed: Output of nonlinear system.

Figure 4.2: Control of nonlinear system 1 - Method III vs. Method IV.

Solid: Reference, dashed: Output of nonlinear system.
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4.4.2 Nonlinear System 2

Consider next the nonlinear system which was previously identified in section 3.6.4

y(t + 1) =
1.5y(t)y(t− 1)

1 + y2(t) + y2(t− 1)

+ sin(y(t) + y(t − 1)) + u(t) + 0.8u(t− 1)

(4.16)

The nonlinear system was approximated using the PWARX model

y(t + 1) ≈





ϕT (t)θ∗1 if x(t) ∈ X1 or x̃(t) ∈ X̃1

...
...

ϕT (t)θ∗N if x(t) ∈ XN or x̃(t) ∈ X̃N

(4.17)

where

x(t) = [y(t), y(t− 1), u(t), u(t− 1)]T (4.18)

ϕ(t) =
[
x(t)T , 1

]T
(4.19)

x̃(t) = [y(t), y(t− 1), u(t− 1)]T (4.20)

It was shown that both Classifier I and Classifier II provided similar identification results,

and that the data could be fit well by using a PWARX model with 2, 4 or 8 subsystems.

With an accurate PWARX model of the nonlinear system, we proceed to control the

system using the one-step-ahead control law (4.9). The nonlinear system is required to

track the reference signal

r(t) = sin(2πt/10) + sin(2πt/50) (4.21)

The simulation result for the control of the nonlinear system using Method I is shown

in Fig. 4.3. The performance of the controller is very poor. This can be attributed to

the fact that the assumption σ(t) = σ(t− 1) does not hold well. The wrong subsystem

has been assumed at time t, and thus the control signal is computed incorrectly.
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Figure 4.3: Control of the nonlinear system 2 - Method I.

Solid: Reference, dashed: Output of nonlinear system.
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We then proceed to use Method IV to control the nonlinear system. The simulation

result using Method IV is shown in Fig. 4.4. As can be observed, the control performance

improved significantly, as compared to Method I.

Figure 4.4: Control of the nonlinear system 2 - Method IV.

Solid: Reference, dashed: Output of nonlinear system.

However, as mentioned, this method has a large computational burden and is not

implementable in real-time. For instance, for the case of using the PWARX model with

8 subsystems, the simulation time was more than two minutes for the 200 data points on

a computer with Intel(R) Core(TM)2 Duo CPU (2.53GHz) and 2.95 GB RAM at 1.59

GHz.

The simulation result for the control performance using Method V is shown in Fig.

4.5. As can be observed, the nonlinear system can track the reference signal rather
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well using the controller which is designed based on the PWARX model with 4 or 8

subsystems. Most importantly, the simulation time was very short, and was only two

seconds for the case with 8 subsystems.

Figure 4.5: Control of the nonlinear system 2 - Method V.

Solid: Reference, dashed: Output of nonlinear system.

4.4.3 Nonlinear System 3

Consider again the nonlinear benchmark system given in the state space form:

ξ1(t + 1) =
(

ξ1(t)
1 + ξ2

1(t)
+ 1
)

sin(ξ2(t))

ξ2(t + 1) = ξ2(t)cos(ξ2(t)) + ξ1(t)e−(ξ2
1(t)+ξ2

2(t))/8

+
u3(t)

1 + u2(t) + 0.5cos(ξ1(t) + ξ2(t))

y(t) =
ξ1(t)

1 + 0.5sin(ξ2(t))
+

ξ2(t)
1 + 0.5sin(ξ1(t))

+ ε(t)

(4.22)
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We have used a PWARX model of the form

y(t + 1) ≈





ϕT (t)θ∗1 if x(t) ∈ X1 or x̃(t) ∈ X̃1

...
...

ϕT (t)θ∗N if x(t) ∈ XN or x̃(t) ∈ X̃N

(4.23)

where

x(t) = [y(t), y(t− 1), y(t− 2), u(t), u(t− 1), u(t− 2)]T (4.24)

ϕ(t) =
[
x(t)T , 1

]T
(4.25)

x̃(t) = [y(t), y(t− 1), y(t− 2), u(t− 1), u(t− 2)]T (4.26)

to approximate the nonlinear system, and observed that the data could be fit fairly well

using 4 subsystems.

Based on the identified PWARX model of the nonlinear system, we then design

the weighted one-step-ahead control law (4.10) to control the nonlinear system. The

nonlinear system is required to track the reference signal

r(t) = sin(2πt/20) + sin(2πt/100) (4.27)

The simulation result for the control performance using Method I is shown in Fig.

4.6. As can be seen, the control performance is very poor for Method I. The assumption

that σ(t) = σ(t− 1) is not valid, leading to the wrong choice of subsystem and thus the

wrong computation of control signal.

We next proceed to use Method IV to control the nonlinear system. The simulation

result using Method IV is shown in Fig. 4.7. As can be observed, the control performance,

although not yet perfect, improved significantly as compared to Method I. However, the

computational burden is rather high using Method IV, since a nonlinear optimization

problem needs to be solved at each time step. For instance, the simulation time was

more than three minutes for the case of having 4 subsystems in the PWARX model.
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Finally, we tried out Method V to control the nonlinear system, and the simulation

results are shown in Fig. 4.8. As can be seen, the tracking performance is comparable

to that of Method IV, but the biggest advantage of Method V is that computation time

is very short - only two seconds was needed!

Figure 4.6: Control of the nonlinear system 3 - Method I.

Solid: Reference, dashed: Output of nonlinear system.

4.5 Experimental Studies

4.5.1 Single-Link Robotic Arm

Consider again the single-link robotic arm, whose input-output relationships has been

identified using PWARX model in section 3.7.2. There, we showed that the identification

error decreases as we have more subsystems in the PWARX model.
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Figure 4.7: Control of the nonlinear system 3 - Method IV.

Solid: Reference, dashed: Output of nonlinear system.
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Figure 4.8: Control of the nonlinear system 3 - Method V.

Solid: Reference, dashed: Output of nonlinear system.
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Table 4.1: Variance of Tracking Error

No. subsystems 1 2 4 8 PID

Reference Signal 1 0.0155 0.0074 0.0040 0.0032 0.0148

Reference Signal 2 0.0112 0.0059 0.0031 0.0026 0.0152

With an accurate model at hand, we now proceed to control the robotic arm for

(angular) position tracking. Recall that we directly used classifier II to estimate the

partition of the regressor space, and thus we will apply Method V for the control. Here,

we defined two reference signals:

r1(t) = 1.5sin(2π0.05t) + π (4.28)

r2(t) = sin(2π0.03t) + 0.8sin(2π0.1t + π/3) + π (4.29)

The experimental results are shown in Figs. 4.9 and 4.10 respectively. It can be

observed that the tracking errors decrease as the number of subsystems increases. This

improvement is also numerically verified as shown through the variance of errors in

TABLE 4.1.

A PID-type controller is also designed for comparison purposes. The parameters of

the controller are properly tuned to achieve a good tracking performance. The exper-

imental results are shown in Fig. 4.11. It is clear that the tracking accuracy of using

our proposed weighted one-step-ahead controller with PWARX model is higher than by

using the PID controller.

Remark 4.2 We wish to point out that in all the simulation and experimental studies,

we did not give the explicit equations for the partitioning of regressor space, because they

are not a prerequisite for our method to work. We only need the data classifier - which



Chapter 4. Control of Piecewise Affine Systems and Nonlinear Systems using Multiple
Models 96

Figure 4.9: Tracking error of the single-link robotic arm, reference signal 1
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Figure 4.10: Tracking error of the single-link robotic arm, reference signal 2

Figure 4.11: Tracking error of the single-link robotic arm using PID control
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is a black box itself - to determine the active subsystem, given a particular regression

vector.

4.6 Conclusion

In this chapter, we derived weighted one-step-ahead controllers for the piecewise

affine models of nonlinear systems, with special attention given to how to determine the

active subsystem. This is an important issue because unless we can calculate the control

signal based on the model of the correct subsystem, the tracking performance will be

very poor. The most prominent novelty in this part of the work is using the modified

regressor space for determining the active subsystem, because this method thoroughly

bypasses a difficult causality issue. Both simulation and experimental studies show that

our proposed control algorithm works very well.



Chapter 5

Input-Output Transition Models

for Discrete-Time Switched

Linear and Nonlinear Systems

5.1 Introduction

Before going further into this chapter, we would like to first point out that the upcoming

results are valid not only for piecewise affine systems, but also for the more general

switching systems. As such, we shall use the term switched systems or switching systems

more frequently in this chapter.

The problem to be investigated in this chapter is as follows. In the earlier part of

this thesis, the number of subsystems of a switching system, N , is assumed to be known,

or was determined via a trial-and-error process by observing the wellness-of-fit for both

training and test data. Now, assume that we are indeed certain that a switching system

consists of N subsystems, where each of these is in the state space form. Would it

still be sufficient to use N input-output models to describe the characteristics of the

overall switching system? The answer is no! We will show in this chapter that if the

N state-space subsystems are each of order p, then there exists a total of Np input-

99
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output subsystems. As such, it is necessary to define Np input-output subsystems for

an accurate identification and control of the switching system.

The above problem is worthwhile to be investigated, because switched systems are

often written in the state space form (see for e.g. [10,39–44,47,49,56,57,70,71,74,75,82,

85–87]). This is due to the fact that state space models give a more complete description

of the system’s dynamics, as compared to input-output models. However, in practice, we

usually make use of input-output models for system identification or control purposes.

Therefore, we need to link the state space models of switched systems appropriately with

the input-output models.

In this chapter, we consider switched systems where each of the subsystems is rep-

resented by a discrete-time state space model. If we consider each of these state space

subsystems individually without switching, we can easily derive the corresponding input-

output model, for e.g. by using the well-known z-transform (C(zI − A)−1B). However,

if switching is taken into account, then none of these input-output models can describe

the system’s behavior properly at the switching instants, because the output is now in-

fluenced by a mixture of new and old system parameters. This leads to inaccurate iden-

tification and poor control performance of switched systems during switching instants,

as pointed out in the literature, see for e.g. [19, 34].

Although the above problem is known to exist, there are very few effective and readily-

usable results (to our best knowledge) that exists in the open literature on the explicit

form of the input-output models at the switching instants. For switched linear systems,

if we view the discrete-time switched system as a special case of discrete-time time-

varying system, then two methods provided in [32] and [33] can be used to derive the

input-output models from the Single-Input-Single-Output (SISO) and Multiple-Input-
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Single-Output (MISO) time-varying state space models. The method in [33] relies on

transforming the state space models into the observable canonical form at every time step,

whose time-varying coefficients will then match with the coefficients of the input-output

models. However, it is unclear how to utilize the method for more general Multiple-

Input-Multiple-Output (MIMO) systems. Similarly, the algorithm in [32] which relies on

the “generalized z-Transform” is also difficult to be applied to MIMO systems. Another

disadvantage of [32] and [33] is that they are not readily extendible to switched nonlinear

systems.

In this chapter, we rigorously develop a rather simple, yet effective, procedure to

derive the input-output models from switching state space models. We call the additional

input-output models during switching as the “transition models”. We further prove that

the models are invariant to coordinate transformations of the states. The advantage

of our approach is its relative simplicity (and thus an easily adoptable methodology),

and its ready applicability for the typically more difficult classes of switched nonlinear

systems and MIMO systems.

This chapter is organized as follows. In Section 5.2, we give the mathematical pre-

liminary of deriving the input-output model from a single state space model. We then

introduce the concept of transition models for the simple case of a switched linear sys-

tem with two second order subsystems having the observable canonical form in Section

5.3. Section 5.4 discusses the total number of input-output models for a more general

multiple-input-multiple-output switched system, as well as the invariance of the tran-

sition models when the state space models undergo coordinate transformations. Here,

we also show the applicability of the methodology we developed for suitable classes of

switched nonlinear systems. The importance of utilizing these transition models for con-
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troller design and system identification is shown via simulation studies in Section 5.5.

Finally, the afore-mentioned developments will be cogently summarized in section 5.6.

5.2 Mathematical Preliminary

It is essential that the reader be suitably familiar with the essence of the mathematical

derivation from the state-space model to input-output model in the single model case,

before the specific subtleties that arise in the switched systems can be appreciated. In

view of this, we would like to first show a method for deriving input-output models from

state space models for the single model (time-invariant) case.

5.2.1 Linear System

Consider the state space model:

ξ(t + 1) = Aξ(t) + Bu(t) (5.1)

y(t) = Cξ(t) (5.2)

where ξ(t) ∈ Rp is the state vector, u(t) ∈ R is the control input, and y(t) ∈ R is the

system output.

If we start observation at time t, and observe over p steps, then we will have the

output sequence, written in a matrix form:



y(t)

y(t + 1)
...

y(t + p− 1)




=




C

CA
...

CAp−1




ξ(t) +




0

CBu(t)
...

∑p−2
i=0 CAp−i−2Bu(t + i)




(5.3)

Finally, at time t + p, we will obtain:

y(t + p) = CApξ(t) +
p−1∑

i=0

CAp−i−1Bu(t + i) (5.4)
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The task now is to express ξ(t) in (5.4) in terms of input and output. If we assume

that the system is observable, i.e. the observability matrix:

O =




C

CA
...

CAp−1




(5.5)

is of full rank or invertible, then we can get ξ(t) from equation (5.3) as:

ξ(t) =




C

CA
...

CAp−1




−1

×




y(t)

y(t + 1)− CBu(t)
...

y(t + p− 1)−
∑p−2

i=0 CAp−i−2Bu(t + i)




(5.6)

Finally, we substitute (5.6) into (5.4) and obtain:

y(t + p) = CAp




C

CA
...

CAp−1




−1

×




y(t)

y(t + 1)− CBu(t)
...

y(t + p− 1)−
∑p−2

i=0 CAp−i−2Bu(t + i)




+
p−1∑

i=0

CAp−i−1Bu(t + i)

(5.7)

Equation (5.7) is the input-output model corresponding to the state space model

(5.1) and (5.2).

5.2.2 Nonlinear System

Consider the nonlinear state space model:

ξ(t + 1) = f(ξ(t), u(t)) (5.8)

y(t) = h(ξ(t)) (5.9)

where ξ(t) ∈ Rp, u(t) ∈ R, y(t) ∈ R. The state transition map, f is a smooth map from

Rp+1 to Rp, and h is a smooth map from Rp to R.
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Assuming the origin is the equilibrium state under zero input (i.e. f(0, 0) = 0 and

h(0) = 0), then the linearization of the system about the origin can be expressed as:

ξ(t + 1) = Aξ(t) + bu(t) (5.10)

y(t) = cξ(t) (5.11)

where:

A =
∂f(ξ, u)

∂ξ
|(0,0), b =

∂f(ξ, u)
∂u

|(0,0), c =
∂h(ξ)

∂ξ
|(0) (5.12)

The p-step observation map from state space Rp to output sequence space Rp for

any input sequence u(t), . . . , u(t + p− 2), is defined as:

y(t) = h(ξ(t))

y(t + 1) = h(ξ(t + 1)) = h(f(ξ(t), u(t)))

...

y(t + p− 1) = h(f(. . . f(f(ξ(t), u(t)), u(t+ 1)), . . . , u(t + p− 2))) (5.13)

which may be rewritten in a more compact form as:

Y (t) = H(ξ(t), Ut) (5.14)

where:

Ut = [u(t), . . . , u(t + p− 2)]T ∈ Rp−1 (5.15)

The Jacobian matrix of H w.r.t. ξ evaluated at the origin is:

∂H

∂ξ
|(0,0) =




c

cA
...

cAp−1




(5.16)
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which is exactly the observability matrix for the linearized system. Hence, if the linearized

system is observable, by the implicit function theorem, it follows that in a neighborhood

of the origin, the state ξ(t) can be expressed as a function of Y (t) and Ut, i.e.:

ξ(t) = Φ(Y (t), Ut) (5.17)

The output at time t + p is:

y(t + p) = h(f(. . .f(f(ξ(t), u(t)), u(t + 1)) . . . , u(t + p− 1))) (5.18)

Substituting equation (5.17) into (5.18) leads to:

y(t + p) = F (y(t + p− 1), . . . , y(t), u(t + p− 1), . . . , u(t)) (5.19)

Equation (5.19) is the input-output model corresponding to the nonlinear state-space

model (5.8) and (5.9) in a neighborhood of the origin. The above procedure was shown

in [38]. The extensions of the above result to global input-output representation for

general discrete-time nonlinear system can be found in [81].

5.3 Simple Case: Switched Linear System with Two Sec-

ond Order Subsystems in Observable Canonical Form

In this section, we would like to introduce the concept of transition models with the

help of a simple switched linear system with two second order subsystems having the

observable canonical form. This is because in this case, the input-output models can be

derived graphically and thus understood intuitively.
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The system under consideration is:

ξ(t + 1) =





A1ξ(t) + B1u(t)

=


 −a11 1

−a12 0


 ξ(t) +


 b11

b12


u(t)

if subsystem 1

A2ξ(t) + B2u(t)

=


 −a21 1

−a22 0


 ξ(t) +


 b21

b22


u(t)

if subsystem 2

(5.20)

y(t) =
[

1 0
]
ξ(t) (5.21)

We assume that the states do not experience sudden jumps when switching occurs.

If the system always stays in the first subsystem, then the input-output model can

be easily derived as:

y(t + 1) = −a11y(t)− a12y(t− 1) + b11u(t) + b12u(t− 1). (5.22)

Similarly, if the system always stays in the second subsystem, then the corresponding

input-output model is:

y(t + 1) = −a21y(t)− a22y(t− 1) + b21u(t) + b22u(t− 1). (5.23)

However, at switching instants, neither (5.22) nor (5.23) models the system correctly.

It will be shown shortly that the input-output models should actually be:

y(t + 1) = −a21y(t)− a12y(t− 1) + b21u(t) + b12u(t− 1) (5.24)

when switching from subsystem 1 to subsystem 2 at time t, and:

y(t + 1) = −a11y(t)− a22y(t− 1) + b11u(t) + b22u(t− 1) (5.25)
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when switching from subsystem 2 to subsystem 1.

The models (5.24) and (5.25) are what we termed as “transition models” because

they are valid only at switching (transition) instants. Notice that these models have a

mixture of parameters from the most current and previous subsystems.

Now, we would like to show graphically how to derive these transition models.

Imagine that before and at time t, the system is in the first subsystem, ξ(t + 1) =

A1ξ(t) + B1u(t). Shown in Fig. 5.1 is the observable canonical realization of the system

with parameters of the first subsystem:

Figure 5.1: Subsystem 1 and its signals

In Fig. 5.1, the labeled signals are as follows:

ξ2(t + 1) = b12u(t)− a12y(t) (5.26)

ξ2(t) = b12u(t− 1)− a12y(t− 1) (5.27)

y(t + 1) = b11u(t)− a11y(t) + ξ2(t)

= b11u(t)− a11y(t) + b12u(t − 1)− a12y(t− 1)
(5.28)

It can be seen that the signal y(t + 1) in (5.28) equals the model given by (5.22).

Next, assume that at the next time step (i.e. t+1), the system switches to subsystem

2, such that ξ(t + 2) = A2ξ(t + 1) + B2u(t + 1). The parameters and the signals of the

system are shown in Fig. 5.2.
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Figure 5.2: Signals of the system when switching to subsystem 2

In Fig. 5.2, the predicted output y(t + 2) is:

y(t + 2) = b21u(t + 1)− a21y(t + 1) + ξ2(t + 1) (5.29)

Substituting (5.26) into (5.29), we obtain:

y(t + 2) = b21u(t + 1)− a21y(t + 1) + b12u(t)− a12y(t) (5.30)

The model (5.30) is exactly the one given in (5.24). Notice that the prediction of

y(t+2) is affected by parameters of both the previous and the current subsystems at the

switching instant, t+1. We would like to emphasize that the model (5.30) is only valid at

the switching instant t+1 to predict the output at the next step, t+2. The input-output

model will be the normal one (5.23) if the system stays at system 2 thereafter.

Following the same idea, one can easily show that (5.25) correctly models the system

when there is a switch from subsystem 2 to subsystem 1 at time t.

5.4 Main Result

The derivation of the transition models via the graphical method is only suitable for

switched linear systems in the observable canonical form, because of the straightforward

relationship between the states, input and output. In this section, we will show the
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mathematical derivation of the input-output models for general, possibly multiple-input-

multiple-output state space models.

5.4.1 Switched Linear Systems

The system under consideration is:

ξ(t + 1) = Aσ(t)ξ(t) + Bσ(t)u(t) (5.31)

y(t) = Cξ(t) (5.32)

where ξ(t) ∈ Rp is the state vector, u(t) ∈ Rq is the control input, and y(t) ∈ Rr is the

system output. The matrices Aσ(t), Bσ(t) and C are appropriately dimensioned real ma-

trices, whereas σ(t) ∈ {1, 2, . . . , N} is the switching signal. Note that σ(t) ∈ {1, 2, . . . , N}

means that the switched system consists of N subsystems. We also constrain the matrix

C to be time-invariant, which implies that the same type of output signals is measured for

all subsystems. Furthermore, we assume that the states do not jump during switching.

In order to derive the explicit form of the input-output models, we need to impose

some condition regarding the observability of the system.

Assumption 5.1 The system (5.31), (5.32) is uniformly observable, i.e. the observabil-

ity matrix [33]:

O(t) =




C

CAσ(t)

...

CAσ(t+p−2) . . .Aσ(t)




(5.33)

has full rank for all t.

Now, we will derive the input-output models using the procedure as shown in Section

5.2. If we start observation at time t and observe over p steps, then we will have the
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output sequence:



y(t)

y(t + 1)
...

y(t + p− 1)




=




C

CAσ(t)

...

CAσ(t+p−2) . . .Aσ(t)




ξ(t) +




0

CBσ(t)u(t)
...

γ




(5.34)

where:

γ = C[Aσ(t+p−2) . . .Aσ(t+1)Bσ(t)u(t)

+ Aσ(t+p−2) . . .Aσ(t+2)Bσ(t+1)u(t + 1)

+ · · ·+ Bσ(t+p−2)u(t + p− 2)]

(5.35)

At time t + p, we will have:

y(t + p) = CAσ(t+p−1) . . .Aσ(t)ξ(t)

+ CAσ(t+p−1) . . .Aσ(t+1)Bσ(t)u(t)

+ CAσ(t+p−1) . . .Aσ(t+2)Bσ(t+1)u(t + 1)

+ · · ·+ CBσ(t+p−1)u(t + p− 1)

(5.36)

The task now is to express ξ(t) in (5.36) in terms of input and output. By assumption

5.1, we can express ξ(t) from (5.34) as:

ξ(t) =




C

CAσ(t)

...

CAσ(t+p−2) . . .Aσ(t)




+

×




y(t)

y(t + 1)− CBσ(t)u(t)
...

y(t + p− 1)− γ




= O+(t)




y(t)

y(t + 1)− CBσ(t)u(t)
...

y(t + p− 1)− γ




(5.37)

where O+(t) denotes the pseudo-inverse of O(t):

O+(t) = (OT (t)O(t))−1OT (t) (5.38)
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Substituting (5.37) into (5.36), we will obtain the input-output model:

y(t + p) = CAσ(t+p−1) . . .Aσ(t)

×




C

CAσ(t)

...

CAσ(t+p−2) . . .Aσ(t)




+

×




y(t)

y(t + 1)− CBσ(t)u(t)
...

y(t + p− 1)− γ




+ CAσ(t+p−1) . . .Aσ(t+1)Bσ(t)u(t)

+ CAσ(t+p−1) . . .Aσ(t+2)Bσ(t+1)u(t + 1)

+ · · ·+ CBσ(t+p−1)u(t + p− 1)

(5.39)

which covers all the cases of either staying in one subsystem or switching among the

subsystems, depending on the switching sequence {σ(t), σ(t + 1), . . . , σ(t + p− 1)}.

Now we are ready to state the following theorem which is the first main result of this

chapter.

Theorem 5.1 Consider the general multiple-input-multiple-output state space model (5.31),

(5.32). Subject to assumption 5.1, i.e. the uniform observability condition, a total of Np

input-output models is required to perfectly describe the system behavior for all possible

switching sequences. Furthermore, these input-output models are invariant under state

transformations.

Proof : We first prove the total number of input-output models. We see from (5.39)

that y(t + p) depends on the switching sequence {σ(t), σ(t + 1), . . . , σ(t + p− 1)}, where

σ(i) ∈ {1, 2, . . . , N}. Thus, depending on the switching sequence, one can get a total of:

N︸︷︷︸
t

× N︸︷︷︸
t+1

× · · · × N︸︷︷︸
t+p−1

= Np (5.40)

different combinations of {σ(t), σ(t + 1), . . . , σ(t + p− 1)}. This will result in Np differ-

ent input-output models to cover all the cases where the system stays in one subsystem

or switches.
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Next, we would like to prove the invariance of the transition models when the state

models undergo a coordinate transformation. Consider the following switched system:

ξ̄(t + 1) = Āσ(t)ξ̄(t) + B̄σ(t)u(t) (5.41)

y(t) = C̄ ξ̄(t) (5.42)

where:

ξ̄(t) = Tξ(t) (5.43)

Āσ(t) = TAσ(t)T
−1 (5.44)

B̄σ(t) = TBσ(t) (5.45)

C̄ = CT−1 (5.46)

Following the procedure shown earlier, we will obtain:

y(t + p) = C̄Āσ(t+p−1) . . . Āσ(t)

×




C̄

C̄Āσ(t)

...

C̄Āσ(t+p−2) . . . Āσ(t)




+

×




y(t)

y(t + 1)− C̄B̄σ(t)u(t)
...

y(t + p− 1)− γ̄




+ C̄Āσ(t+p−1) . . . Āσ(t+1)B̄σ(t)u(t)

+ C̄Āσ(t+p−1) . . . Āσ(t+2)B̄σ(t+1)u(t + 1)

+ · · ·+ C̄B̄σ(t+p−1)u(t + p− 1)

(5.47)

where:

γ̄ = C̄ [Āσ(t+p−2) . . . Āσ(t+1)B̄σ(t)u(t)

+ Āσ(t+p−2) . . . Āσ(t+2)B̄σ(t+1)u(t + 1)

+ · · ·+ B̄σ(t+p−2)u(t + p− 2)]

(5.48)
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Now, substitute equations (5.44), (5.45) and (5.46) into (5.47) and (5.48). After some

simple cancellation of T with T−1, we will arrive at:

y(t + p) = CAσ(t+p−1) . . .Aσ(t)T
−1

×




CT−1

CAσ(t)T
−1

...

CAσ(t+p−2) . . .Aσ(t)T
−1




+

×




y(t)

y(t + 1)− CBσ(t)u(t)
...

y(t + p− 1)− γ




+ CAσ(t+p−1) . . .Aσ(t+1)Bσ(t)u(t)

+ CAσ(t+p−1) . . .Aσ(t+2)Bσ(t+1)u(t + 1)

+ · · ·+ CBσ(t+p−1)u(t + p− 1)

(5.49)

How do we deal with the remaining T−1 in (5.49)? It is observed that:

T−1




CT−1

CAσ(t)T
−1

...

CAσ(t+p−2) . . .Aσ(t)T
−1




+

= T−1







C

CAσ(t)

...

CAσ(t+p−2) . . .Aσ(t)




T−1




+

= T−1T︸ ︷︷ ︸
I




C

CAσ(t)

...

CAσ(t+p−2) . . .Aσ(t)




+
(5.50)

Substituting (5.50) into (5.49), we get back the same input-output models as if they

were derived using the original coordinate. This shows that the input-output models,

including the transition models, are invariant under coordinate transformation of the

state models. This completes the proof for Theorem 5.1.

5.4.2 Switched Nonlinear Systems

In this subsection, we would like to show the existence of the input-output transition

models for switched nonlinear systems, at least locally in a neighborhood of the origin.
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To make the derivation more transparent, we will confine our attention to SISO systems

subsequently. But note that all the results can be readily extended to MIMO systems as

well.

Consider the following switched nonlinear system:

ξ(t + 1) = fσ(t)(ξ(t), u(t)) (5.51)

y(t) = h(ξ(t)) (5.52)

where ξ(t) ∈ Rp, u(t) ∈ R, y(t) ∈ R, fσ(t) are smooth state transition maps from Rp+1

to Rp, and h is a smooth map from Rp to R. σ(t) ∈ {1, 2, . . . , N} is the switching

signal. Note that σ(t) ∈ {1, 2, . . . , N} means that the switched system consists of N

subsystems. We also constrain the function h to be time-invariant, which implies that

the same type of output signals is measured for all subsystems. Furthermore, we assume

that the states do not experience sudden jumps when switching happens.

Assuming the origin is the equilibrium state under zero input (i.e. fσ(t)(0, 0) = 0 and

h(0) = 0), then the linearization of the system about the origin can be expressed as:

ξ(t + 1) = Aσ(t)ξ(t) + bσ(t)u(t) (5.53)

y(t) = cξ(t) (5.54)

where:

Aσ(t) =
∂fσ(t)(ξ, u)

∂ξ
|(0,0) (5.55)

bσ(t) =
∂fσ(t)(ξ, u)

∂u
|(0,0) (5.56)

c =
∂h(ξ)

∂ξ
|(0) (5.57)
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Assumption 5.2 The linearized system (5.53) and (5.54) is uniformly observable, i.e.

the observability matrix [33]:

O(t) =




c

cAσ(t)

...

cAσ(t+p−2) . . .Aσ(t)




(5.58)

has full rank for all t.

The p-step observation map from state space Rp to output sequence space Rp for

any input sequence u(t), . . . , u(t + p− 2) is defined as:

y(t) = h(ξ(t))

y(t + 1) = h(ξ(t + 1)) = h(fσ(t)(ξ(t), u(t)))

...

y(t + p− 1) = h(fσ(t+p−2)(. . .fσ(t+1)(fσ(t)(ξ(t), u(t)), u(t+ 1)), . . . , u(t + p− 2)))

(5.59)

which may be rewritten in a more compact form as:

Y (t) = H(ξ(t), Ut) (5.60)

where:

Ut = [u(t), . . . , u(t + p− 2)]T ∈ Rp−1 (5.61)

The Jacobian matrix of H with respect to ξ evaluated at the origin is:

∂H

∂ξ
|(0,0) =




c

cAσ(t)

...

cAσ(t+p−2) . . .Aσ(t+1)Aσ(t)




(5.62)

which is exactly the observability matrix for the linearized system. Hence, since the

linearized system is assumed to be uniformly observable (assumption 5.2), by the implicit
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function theorem, it follows that in a neighborhood of the origin, the state ξ(t) can be

expressed as a function of Y (t) and Ut, i.e.:

ξ(t) = Φ(Y (t), Ut) (5.63)

Considering the output at time t + p:

y(t + p) = h(fσ(t+p−1)(. . .fσ(t+1)(fσ(t)(ξ(t), u(t)), u(t + 1)), . . . , u(t + p− 1))) (5.64)

Substituting (5.63) into (5.64) leads to:

y(t + p) = Fσ(t+p−1)...σ(t)(y(t), . . . , y(t + p− 1), u(t), . . . , u(t + p− 1)) (5.65)

Equation (5.65) defines the input-output models for the switched nonlinear system

(5.51), (5.52). Note that the function Fσ(t+p−1)σ(t+p−2)...σ(t+1)σ(t) depends on the switch-

ing sequence, thus confirming our claim that transition models do exist for switched

nonlinear systems.

Now we are ready to state the following theorem which is the second main result of

this chapter.

Theorem 5.2 Consider the switched nonlinear system (5.51), (5.52). Subject to as-

sumption 5.2, i.e. the uniform observability condition for the linearized system (5.53),

(5.54), then a total of Np input-output models is required to perfectly describe the system

behavior in the neighborhood of the origin for all possible switching sequences.

Proof : We see from (5.65) that y(t+p) depends on the switching sequence {σ(t), . . .

, σ(t + p− 1)}, where σ(i) ∈ {1, 2, . . . , N}. Thus, depending on the switching sequence,

one can get a total of:

N︸︷︷︸
t

× N︸︷︷︸
t+1

× · · · × N︸︷︷︸
t+p−1

= Np (5.66)
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different combinations of {σ(t), σ(t + 1), . . . , σ(t + p− 1)}. This will result in Np differ-

ent input-output models to cover all the cases where the system stays in one subsystem

or switches. This completes the proof for Theorem 5.2.

5.5 Simulation Studies

5.5.1 Design of One-Step-Ahead Controllers for Switched Linear Sys-

tem

Having derived the transition models, we would like to utilize them to design controller

to achieve good tracking performance of switched systems. Here, the controller we design

is the simple one-step-ahead controller.

Consider the same system as shown in (5.20) and (5.21), with a11 = −0.7859, a12 =

0.3679, b11 = 0.3403, b12 = 0.2417, a21 = 0.3630, a22 = 0.3012, b12 = 1.0186 and

b22 = 0.6456. Without taking into account the transition models, we would only design

two controllers for the input-output models (5.22) and (5.23) as follows: at time t, if the

system is in subsystem 1, use:

u(t) =
y∗(t + 1) + a11y(t) + a12y(t− 1)− b12u(t− 1)

b11
(5.67)

and if the system is in subsystem 2, use:

u(t) =
y∗(t + 1) + a21y(t) + a22y(t− 1)− b22u(t− 1)

b21
(5.68)

where y∗(t+1) denotes the one-step-ahead desired output, which is a square wave in our

simulation.

Now, if there is frequent switching between the two subsystems with an equal proba-

bility of either subsystem being active at each time step, then using the controllers above

results in poor tracking performance, as can be seen from Fig. 5.3(a).
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Figure 5.3: Tracking performance by using (a) two controllers only (b) four controllers

However, with the knowledge of the transition models (5.24) and (5.25), we can now

design two additional controllers as follows. Assuming the switching signal is known, at

the instant of switching from subsystem 1 to subsystem 2, use:

u(t) =
y∗(t + 1) + a21y(t) + a12y(t− 1)− b12u(t− 1)

b21
(5.69)

and when switching from subsystem 2 to subsystem 1, use:

u(t) =
y∗(t + 1) + a11y(t) + a22y(t− 1)− b22u(t− 1)

b11
(5.70)

With these two additional controllers, the tracking performance is improved signifi-

cantly despite frequent switching between the subsystems, as can be observed from Fig.

5.3(b).

To check that the controllers can still work well under the influence of measurement

noise, a white noise of variance 0.0011 (equivalent to standard deviation σ = 0.0333

or 3σ value of 0.1) is added to the output measurement. The performance of the four

controllers, which take the transition models into account, is still much better than that

by using only two controllers, as can be observed from Fig. 5.4.

The importance of including the transition models in the controller design for switched

system is clearly seen from the simple examples above.
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Figure 5.4: Tracking performance by using (a) two controllers only (b) four controllers

when output measurement is noisy

5.5.2 Identification of Switched Linear Systems using Multiple Models

The multiple model based identification is a popular method to identify switched systems.

The scheme is shown in Fig. 5.5. One fixes N identification models, where N is the

expected number of input-output models. “Logic” then decides which model shall be

updated according to the switching signal.

Figure 5.5: Identification of switched systems using multiple models

From our discussion thus far, it is easy to understand that if we do not define enough

input-output models to cover the transition models, then the “logic” cannot decide un-

ambiguously which model to update during the switching instants. This is essentially the

problem mentioned in [19, 34]. If we now include the transition models in determining

the number of models (N ← Np), then there will be no ambiguity and each model will
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correspond to exactly one of the cases: the system stays in one subsystem, or the system

switches from one subsystem to another.

As an example, we consider the following switched linear system:

ξ(t + 1) =






 −0.5 1

−0.9 0


 ξ(t) +


 0.8

0.3


 u(t) if subsystem 1


 −0.7 1

−0.3 0


 ξ(t) +


 0.2

0.4


 u(t) if subsystem 2

(5.71)

y(t) =
[

1 0
]
ξ(t) (5.72)

For this system, the input-output models are (can be verified using the procedure

shown in Section 5.4):

y(t + 1) = −0.5y(t)− 0.9y(t− 1) + 0.8u(t) + 0.3u(t− 1) (5.73)

if the system stays in subsystem 1;

y(t + 1) = −0.7y(t)− 0.3y(t− 1) + 0.2u(t) + 0.4u(t− 1) (5.74)

if the system stays in subsystem 2;

y(t + 1) = −0.7y(t)− 0.9y(t− 1) + 0.2u(t) + 0.3u(t− 1) (5.75)

when switching from subsystem 1 to subsystem 2; and

y(t + 1) = −0.5y(t)− 0.3y(t− 1) + 0.8u(t) + 0.4u(t− 1) (5.76)

when switching from subsystem 2 to subsystem 1.

The initial state ξ(0) is set as zero. We generated 100 data points y(1) . . .y(100). The

control input u(0) . . .u(99) is generated randomly in the range of [0, 10]. The subsystem

which is active at a particular instant is also chosen randomly with equal probability.
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The simulation result by using the “Least Geometrical Mean Algorithm” from Chap-

ter 2 is as follows: If we had used only two identification models for the two subsystems,

not aware of the existence of the transition models, we were not able to correctly identify

the system parameters. However, if we use four models as described above to cover also

the two additional transition models, we were able to obtain perfect identification, as

shown in Table 5.1.

From the above example, it can be readily concluded that for a good identification

of switched system, we must fix enough (i.e. Np) models to cover not only the usual

input-output models (i.e. when the system stays in one subsystem for a long time), but

also the transition models.

5.5.3 Identification of Switched Nonlinear Systems using Multiple Mod-

els

For the identification of switched nonlinear system, we can also use the multiple model

approach, as shown in Fig. 5.5, with the identification models replaced by multilayer-

perceptrons (MLP).

Consider the following switched nonlinear system:

ξ1(t + 1) =





5(1− exp(−ξ2(t)))
1 + exp(−ξ2(t))

if subsystem 1

0.1ξ1(t) + 2(u(t) + ξ2(t))
1 + (u(t) + ξ2(t))2

if subsystem 2

ξ2(t + 1) =





0.1ξ1(t)ξ2(t) + (6 + ξ1(t))u(t)
6 if subsystem 1

0.1ξ2(t) + u(t)(2 + u2(t))
1 + ξ2

1(t) + ξ2
2(t)

if subsystem 2

y(t) = ξ1(t) + ξ2(t) (5.77)

It can be shown that (5.77) satisfies assumption 5.2. Therefore, there exists Np =
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Table 5.1: Parameter Estimates of a Switched System with Two Subsystems

Iterations a11 a12 b11 b12

0 (randomly generated) 0.3993 0.7857 0.5059 0.5624

1 -0.7742 -0.6712 0.4785 0.4501

2 -0.7860 -0.9261 0.6568 0.3799

. . . . . . . . . . . . . . .

6 -0.5000 -0.8986 0.8002 0.2992

7 -0.5000 -0.9000 0.8000 0.3000

8 -0.5000 -0.9000 0.8000 0.3000

Iterations a21 a22 b21 b22

0 (randomly generated) 0.0138 0.9875 0.1740 0.4030

1 -0.2858 -0.3686 0.1383 0.4020

2 -0.3690 -0.2429 0.1321 0.5347

. . . . . . . . . . . . . . .

6 -0.6995 -0.2996 0.2000 0.3998

7 -0.7000 -0.3000 0.2000 0.4000

8 -0.7000 -0.3000 0.2000 0.4000

Iterations a31 a32 b31 b32

0 (randomly generated) 0.0694 0.1874 0.3490 0.9143

1 -1.3195 -0.8629 0.7445 0.4713

2 -1.0171 -0.8996 0.4526 0.3935

. . . . . . . . . . . . . . .

6 -0.7102 -0.8991 0.2033 0.3074

7 -0.7000 -0.9000 0.2000 0.3000

8 -0.7000 -0.9000 0.2000 0.3000

Iterations a41 a42 b41 b42

0 (randomly generated) 0.7012 0.2854 0.9866 0.2243

1 -0.7264 -0.3493 0.7884 0.3534

2 -0.6594 -0.3409 0.8410 0.3372

. . . . . . . . . . . . . . .

6 -0.5001 -0.3000 0.8000 0.4000

7 -0.5000 -0.3000 0.8000 0.4000

8 -0.5000 -0.3000 0.8000 0.4000
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22 = 4 input-output models in the neighborhood of the origin as follows:

y(t + 2) = F11(y(t), y(t + 1), u(t), u(t+ 1)) (5.78)

if the system stays in subsystem 1;

y(t + 2) = F22(y(t), y(t + 1), u(t), u(t+ 1)) (5.79)

if the system stays in subsystem 2;

y(t + 2) = F21(y(t), y(t + 1), u(t), u(t+ 1)) (5.80)

if σ(t) = 1 and σ(t + 1) = 2; and

y(t + 2) = F12(y(t), y(t + 1), u(t), u(t+ 1)) (5.81)

if σ(t) = 2 and σ(t + 1) = 1.

Starting from ξ1(0) = 0 and ξ2(0) = 0, we generated a training set with 2000 data

points using (5.77), whereby the input u(t) is a random number in the range of [0, 1].

The subsystem which is active at a particular instant is also chosen randomly with equal

probability.

We make use of four MLP’s to approximate the four functions in (5.78)-(5.81). Each

MLP has four input nodes with y(t + 1), y(t), u(t + 1) and u(t) as inputs, one hidden

layer with nine nodes, and one output node with ŷ(t + 2) as the output. The activation

function for the hidden layer is the sigmoidal function, whereas the activation function

for the output layer is identity. The MLP training algorithm we use is the “weighted

back propagation” approach which has been detailed in chapter 2.6.1.

The simulation result is as follows: We observed from our simulation that if we were

unaware of the existence of the transition models (5.80) and (5.81), and had used only

two MLP’s for the identification of the switched system (5.77), the test result is rather
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poor. However, if we use four MLP’s as described above, the identification performance

improves significantly. After the MLP’s have been trained for 10000 epochs with a

learning rate η0 = 0.1, we generated for each subsystem in (5.77) 40 test data (without

switching). Two of the four MLP’s indeed accurately approximate the nonlinear functions

(Fig. 5.6).

Figure 5.6: Simulation results for the identification of switched nonlinear system using

multiple perceptrons

We thus conclude that transition models do exist for switched nonlinear systems,

and that we shall use enough (i.e. Np) MLP’s for accurate identification of the switched

system.

5.6 Conclusions

The existence of the transition models is an important phenomenon which must not be

overlooked if we want to describe a switched system perfectly using input-output models.

In this chapter, we derived mathematically the transition models for switched linear and

nonlinear systems to describe the system behavior during the switching instants. The

advantage of the proposed procedure is that it can be applied for general multiple-input-

multiple-output systems, and for large classes of nonlinear systems. We also showed

that these transition models are invariant under coordinate transformation of the state
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space model. All these developments are established as rigorous results. The importance

of these transition models in the design of controllers and system identification is also

verified through simulation studies.



Chapter 6

Conclusions

6.1 Main Contributions

When nonlinear systems are required to work over a large operating range, a single

linear controller will give very poor control performance or will even lead to instability

of the whole system. One simple way to achieve a good control of the nonlinear system

over its whole operating range, which at the same time retains the advantages of linear

control design such as simplicity, is to separate the complete operating range into a

few regions, design linear controllers for each of these regions, and then finally activate

the corresponding controller when the system operates in a particular partition. This

intuitive idea comes in various guises such as gain scheduling, supervisory control, and

multiple model control, and has found success in process industry as well as flight control.

This dissertation focuses on the design of multiple model controller for nonlinear sys-

tems, as introduced above. To this aim, we first proposed to approximate the nonlinear

system using piecewise affine ARX model, because this model structure automatically

fits into the framework of multiple model control. The development of the model iden-

tification algorithm is detailed in chapters 2 and 3. In chapter 2, we presented the

multiple model architecture for the identification of discrete-time time-varying systems.

126
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The time-variation is approximated by a piecewise-constant function assuming a finite

number N of unknown values, and thus the change in the system parameters is equivalent

to switching from one subsystem to another. The subsystems of these switching systems

can be either linear in the parameters or nonlinear. For the linear case, the multiple

models are the usual linear regression model, whereas for the nonlinear case, multiple

multilayer perceptrons are used to perform function approximation. We showed that

by minimizing appropriate cost functions, i.e. the geometrical mean or the harmonic

mean of the squares of errors, we can identify the subsytems with sufficient accuracy.

We were able to derive both offline (batch mode) and online (sequential mode) methods

for the system identification. Extensive simulation results verified the efficacy as well as

robustness of our proposed algorithm. We also obtained a preliminary convergence proof

of the parameter estimates for the case with linear subsystems.

In chapter 3, we formally moved on to identify piecewise affine ARX models. The

piecewise affine ARX model is a special case of the switching system, whereby the sub-

systems are affine function of the input-output data, and the switching is orchestrated

by the position of the regression vector within the complete regressor space. We pro-

posed using data classifiers such as multilayer perceptrons or support vector machines to

estimate the partition of the regressor space which defines the switching rule. To avoid

a causality issue in the later stage of controller design, we also proposed a “modified”

regression vector whereby the most current control signal is omitted from the regressor

space. Our extensive simulation studies indicated that our algorithm can indeed provide

accurate identification of piecewise affine systems as well as good approximation for non-

linear systems. The efficacy of our algorithm was also demonstrated by true experimental

studies on DC motor and single-link robotic arm.
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The multiple model controller is then designed and the details are given in chapter 4.

More specifically, the control signal is computed in a similar way as weighted one-step-

ahead predictive control, by relying on the piecewise affine model. This can be easily

done because the model is affine in control, and thus the control signal is evaluated easily

as a function of the reference signal as well as measurement data. There is however

an important issue here: It is essential that the correct subsystem be chosen while

computing the control signal, because the control signal is calculated based on the model

of the “assumed” active subsystem in such a way that the next step’s predicted output

equals the reference signal. If a wrong subsystem is assumed, it is clear that the tracking

performance will be poor. Therefore, we proposed to make use of the estimated partition

of the regressor space to aid in determining the active subsystem. Yet there appears

another problem: The regression vector which is used to determine the active subsystem

contains the yet-to-be-calculated control signal! In view of this, we proposed five methods

to overcome this problem, and showed via simulations and experiments that some of these

methods work out very well.

Chapter 5 deals with the issue of the number of input-output subsystems needed to

describe a switching system whose underlying subsystems are state space models. As is

well-known to control engineers, for each state space model, an input-output model can

be derived easily using z-transform. However, it is less well-known and less studied that

when switching from one state space model to another, additional input-output models

are needed to describe the dynamics. We rigorously developed a rather simple, yet effec-

tive, procedure to derive the input-output models from switching state space models. We

called the additional input-output models during switching as the “transition models”,

and we further proved that the models are invariant to coordinate transformations of
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the states. The advantage of our approach is its relative simplicity (and thus an eas-

ily adoptable methodology), and its ready applicability for the typically more difficult

classes of switched nonlinear systems and MIMO systems. The importance of including

these transition models, or in other words defining the correct number of input-output

subsystems, in the design of controllers and system identification was verified through

simulation studies.

6.2 Suggestions for Future Work

Past research activities have laid a foundation for the future work. Based on the

prior research, the following questions deserve further consideration and investigations.

1. In chapter 2, we proved that by using our proposed algorithm, the geometrical

mean of error squares will decrease monotonically. However, a complete proof that it will

decrease to the global minimum (zero) is lacking at this moment. Thus, one important

future work will be to analyze the convergence property of our least geometrical mean

algorithm in a rigorous manner. The same applies to the least harmonic mean algorithm.

2. There are nonlinear systems which cannot be satisfactorily represented by a con-

catenation of linear systems, such as those which cannot undergo Taylor expansion. It

would be interesting to extend or modify our approach to accommodate such nonlinear-

ities.

3. Even though the multiple model control scheme in chapter 4 showed good tracking

performance in simulations and experimental studies, we have yet to mathematically

verify the stability of the closed loop system. The stability proof for switching system is

a very complicated issue itself even for those systems without control input. Thus, the

level of complexity for the case with control is of magnitude higher. Nevertheless, with
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more and more tools of analysis appearing in the literature, we strongly believe that we

can obtain a stability proof of the controlled system in the future.

4. The stability proof of model predictive control, the one-step-ahead controller being

a special case, relies on an accurate model of the system. In our work, the nonlinear

system is approximated using piecewise affine model, and furthermore, the partition of

the regressor space is estimated using multilayer perceptrons or support vector machines.

This means that there will be some unavoidable approximation errors of the PWARX

model. It is crucial to understand how much the approximation error will affect the

performance and stability of our multiple model control scheme.

5. Method IV of solving the chicken-and-egg problem, detailed in chapter 4, offers

good control performance because the control signal is computed by making sure that a

certain subsystem is activated. However, the related optimization problem is a nonlinear

program and requires a long computational time. As such, the method cannot be used

for real-time systems if a high sampling frequency is needed. We shall therefore look for

possible way of reducing the computational burden for solving this optimization problem.

6. We shall also dwell into some fundamental issues such as how best to determine

the optimal number of affine subsystems in a PWARX model as well as the order of these

subsystems to describe a nonlinear system.

In conclusion, the control of nonlinear systems using multiple model or piecewise

affine models has emerged as a practically viable method. A systematic approach is

needed to address the numerous mathematical questions encountered while using the

method in practice. And this thesis represents a further step in that direction.



Appendix A

The Weighted Back Propagation

In this section we would like to show the derivation of the weighted back propagation

algorithm.

A.1 The Multilayer Perceptron

Consider the mth multilayer perceptron (MLP) with 1 input layer, 2 hidden layers

and 1 output layer, as shown in Fig. A.1. For this network, there are n0 inputs, n1

nodes in the first hidden layer, n2 neurons in the second hidden layer, and one output

node. The activation functions for the hidden layers are the sigmoidal function

ϕ(1)(v) = ϕ(2)(v) =
1

1 + e−v (A.1)

whereas the activation function for the output layer is the linear function

ϕ(3)(v) = v (A.2)

For this MLP, some of the signals are as follows:

v
(1)
j =

n0∑

i=1

w
(1)
ji xi (A.3)

131
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Figure A.1: A multilayer perceptron

x
(1)
out,j = ϕ(1)(v(1)

j ) (A.4)

v
(2)
j =

n1∑

i=1

w
(2)
ji x

(1)
out,i (A.5)

x
(2)
out,j = ϕ(2)(v(2)

j ) (A.6)

v
(3)
1 =

n2∑

i=1

w
(3)
1i x

(2)
out,i (A.7)

ym = v
(3)
1 (A.8)
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A.2 Weight Updates

In the usual backpropagation algorithm (sequential mode), the following instanta-

neous error squares is to be minimized:

E =
1
2
(d− y)2 =

1
2
e2 (A.9)

where d is the desired output.

To weigh the degree of updating the mth MLP, we propose to minimize the following

weighted error squares:

E =
1
2
p2

m(d− ym)2 =
1
2
pme2

m (A.10)

whereby we use pm here as the weight for the error squares, instead of w as in earlier

chapters, because w is used here to represent the weights within the MLP.

The weights of the MLP are then updated using the method of gradient descent

∆w
(s)
ji = −η(s) ∂E

∂w
(s)
ji

(A.11)

where s denotes the sth layer of the MLP. The question now is how to obtain the partial

derivative of E with respect to w
(s)
ji , and this can be considered layer by layer, as follows.

A.2.1 Weight Updates for Output Layer

For the output layer, we have

∂E

∂w
(3)
1i

=
∂E

∂v
(3)
1︸ ︷︷ ︸
I

∂v
(3)
1

∂w
(3)
1i︸ ︷︷ ︸

II

(A.12)
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∂E/∂v
(3)
1 is calculated as

∂E

∂v
(3)
1

=
∂

v
(3)
1

(
1
2
p2

me2
m

)

=
∂

v
(3)
1

(
1
2
p2

m(d− ym)2
)

=
∂

v
(3)
1

(
1
2
p2

m(d− v
(3)
1 )2

)

= −p2
m

(
d− v

(3)
1

)

4
= −δ

(3)
1

(A.13)

whereas ∂v
(3)
1 /∂w

(3)
1i is obtained as

∂v
(3)
1

∂w
(3)
1i

= x
(2)
out,i (A.14)

Therefore,

∂E

∂w
(3)
1i

= −p2
m

(
d− v

(3)
1

)
x

(2)
out,i = −δ

(3)
1 x

(2)
out,i (A.15)

and

∆w
(3)
1i = η(3)p2

m (d− ym)x
(2)
out,i = η(3)δ

(3)
1 x

(2)
out,i (A.16)

A.2.2 Weight Updates for the Second Hidden Layer

For the second hidden layer, we have

∂E

∂w
(2)
ji

=
∂E

∂v
(2)
j︸ ︷︷ ︸
I

∂v
(2)
j

∂w
(2)
ji︸ ︷︷ ︸

II

(A.17)

The II part of the differentiation is straightforward:

∂v
(2)
j

∂w
(2)
ji

= x
(1)
out,i (A.18)
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The I part of the differentation can be calculated as follows

∂E

∂v
(2)
j

=
∂E

∂x
(2)
out,j

∂x
(2)
out,j

∂v
(2)
j

=
∂

∂x
(2)
out,j

(
1
2
p2

me2
m

)
∂ϕ(2)(v(2)

j )

∂v
(2)
j

=
∂

∂x
(2)
out,j

(
1
2
p2

m(d− ym)2
)

ϕ(2)′(v(2)
j )

=
∂

∂x
(2)
out,j

(
1
2
p2

m(d− v
(3)
1 )2

)
ϕ(2)′(v(2)

j )

=
∂

∂x
(2)
out,j


1

2
p2

m(d−
n2∑

j=1

w
(3)
1j x

(2)
out,j)

2


ϕ(2)′(v(2)

j )

= − p2
m(d− ym)︸ ︷︷ ︸

δ
(3)
1

w
(3)
1j ϕ(2)′(v(2)

j )

= −δ
(3)
1 w

(3)
1j ϕ(2)′(v(2)

j )

4
= −δ

(2)
j

(A.19)

Therefore,

∂E

∂w
(2)
ji

= −δ
(3)
1 w

(3)
1j ϕ(2)′(v(2)

j )x(1)
out,i = −δ

(2)
j x

(1)
out,i (A.20)

and

∆(2)
ji = η(2)δ

(3)
1 w

(3)
1j ϕ(2)′(v(2)

j )x(1)
out,i = η(2)δ

(2)
j x

(1)
out,i (A.21)

A.2.3 Weight Updates for the First Hidden Layer

The derivation of the weight update rule for the first hidden layer is similar to that

of the second layer. Again, we have

∂E

∂w
(1)
ji

=
∂E

∂v
(1)
j︸ ︷︷ ︸
I

∂v
(1)
j

∂w
(1)
ji︸ ︷︷ ︸

II

(A.22)

with

∂v
(1)
j

∂w
(1)
ji

= xi (A.23)
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and

∂E

∂v
(1)
j

=
∂E

∂x
(1)
out,j

∂x
(1)
out,j

∂v
(1)
j

=
∂

∂x
(1)
out,j

(
1
2
p2

me2
m

)
∂ϕ(1)(v(1)

j )

∂v
(1)
j

=
∂

∂x
(1)
out,j

(
1
2
p2

m(d− ym)2
)

ϕ(1)′(v(1)
j )

=
∂

∂x
(1)
out,j

(
1
2
p2

m(d− v
(3)
1 )2

)
ϕ(1)′(v(1)

j )

=
∂

∂x
(1)
out,j

(
1
2
p2

m(d−
n2∑

i=1

w
(3)
1i x

(2)
out,i)

2

)
ϕ(1)′(v(1)

j )

=
∂

∂x
(1)
out,j


1

2
p2

m

(
d−

n2∑

i=1

w
(3)
1i ϕ(2)

(
v

(2)
i

))2

ϕ(1)′(v(1)
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=
∂
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(1)
out,j
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2
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(3)
1i ϕ(2)
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(A.24)

Thus we have

∂E

∂w
(1)
ji

= −

(
n2∑

i=1

δ
(2)
i w

(2)
ij

)
ϕ(1)′(v(1)

j )xi = −δ
(1)
j xi (A.25)

and

∆w
(1)
ji = η(1)

(
n2∑

i=1

δ
(2)
i w

(2)
ij

)
ϕ(1)′(v(1)

j )xi = η(1)δ
(1)
j xi (A.26)
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A.2.4 Summary

As a summary, we have

∆w
(s)
ji = η(s)δ

(s)
j x

(s−1)
out,i (A.27)

for all the layers. The difference lies in how the local gradient δ
(s)
j are computed. For

the output layer, we have

δ
(output)
1 = p2

m(d− ym) (A.28)

whereas for the hidden layers, the local gradient is

δ
(s)
j =

(
ns+1∑

i=1

δ
(s+1)
i w

(s+1)
ij

)
ϕ(s)′(v(s)

j ) (A.29)

If we compare the above calculation of the local gradients with those of the conven-

tional back propagation algorithm, we notice that the weight pm on how much the MLP

weights should be updated appears only in the local gradient of the output layer.
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