
 

 

 

 

FABRICATION AND CHARACTERIZATION OF 

GERMANIUM PHOTODETECTORS 

 

 

 

 

 

 

 

 

WANG JIAN 
 

 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF SINGAPORE  

2011  

  



 

 

 

FABRICATION AND CHARACTERIZATION OF 

GERMANIUM PHOTODETECTORS 

 

 

 

 

 

 

 

 

 

WANG JIAN 
B. Sci. (Peking University, P. R. China) 2006 

 

 

 

 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  

DEPARTMENT OF  

ELECTRICAL AND COMPUTER ENGINEERING  

NATIONAL UNIVERSITY OF SINGAPORE  

2011  
 

 



 

i 

Acknowledgements 

First, I would like to express my sincere gratitude to my advisors, Dr. Lee 

Sungjoo and Prof. Kwong Dim-Lee for their invaluable guidance, encouragement 

throughout my Ph.D. study at NUS. Dr. Lee Sungjoo has been a great supervisor for his 

kindness and patience, giving me continuous encouragement, allowing me to make some 

mistakes along the way. And no one can ask for a better guider. I am also truly grateful to 

Prof. Kwong’s wise guidance and foresight to choose Si photonics, one of the hottest 

topic in Si microelectronics as my Ph.D research target.  

I would also like to express my deepest appreciation for Dr. Loh Wei Yip, Dr. Yu 

Mingbin and Dr. Lo Guoqiang Patrick, from the Institute of Microelectronics, Singapore, 

for their valuable advice and technical discussions for my research work. I benefited 

greatly through interactions with them. They gave me inspiration throughout all my 

projects during my graduate study. I would like to thank all the technical staff in NanoEP 

department for their kindness, help and suggestions for my research work. I would not 

have been able to do my doctoral research smoothly. 

Special thanks to my seniors in at NUS, especially Dr. Zang Hui, Dr. Jiang Yu, Dr. 

Fu Jia, Shen Chen, Gao Fei, Song Yan, Zhao Hui and Chen Yu for their assistance on 

many of my technical problems encountered during my graduate study. Many thanks to 

my research buddies, Peng Jianwei, Xie Ruilong, Chin Yoke King, and all the SNDL 

students for their indispensable help for my research work and for the great academic 

atmosphere created. 

My deepest love goes out to my parents who have given me their support and 

encouragement during my doctorial studies. Last but not least, I would like to express 

my gratitude towards my wife, Wei Yuan for her unconditional support and love over the 

years.



 

ii 

Table of Contents 

Acknowledgements ....................................................................................................... i 

Summary ....................................................................................................................... v 

List of Tables .............................................................................................................. vii 

List of Figures ............................................................................................................viii 

List of Symbols ............................................................................................................ xi 

List of Abbreviations ................................................................................................. xii 

1. Introduction .......................................................................................................... 1 

1.1 Overview of Opto-Electronics Integrated Circuits and Photodetectors.................... 1 

1.2 Material Choices for Photodetectors in Si OEIC ...................................................... 4 

1.3 Photodetector Electrical Structures .......................................................................... 6 

1.4 Criteria for photodetectors’ dark current .................................................................. 9 

1.5 Objectives and Scope ............................................................................................. 10 

1.6 Thesis Organization ................................................................................................ 11 

2. Literature and Technology Review .................................................................. 17 

2.1 Ge Growth Techniques ........................................................................................... 17 

2.2 Ge Photodetector light coupling schemes .............................................................. 24 

2.3 Research trends in Ge photodetectors .................................................................... 29 

2.4 Summary................................................................................................................. 34 

3. Integration of Tensile-Strained Ge PIN Photodetector on 

Advanced CMOS Platform ............................................................................... 42 

3.1 Introduction ............................................................................................................ 42 



 

iii 

3.2 Experimental........................................................................................................... 44 

3.3 Results and Discussions ......................................................................................... 46 

3.4 Conclusion .............................................................................................................. 51 

4. Evanescent-Coupled Ge-PIN Photodetectors on Si-Waveguide 

with SEG-Ge and Comparative Study of Lateral and Vertical PIN 

Configurations .................................................................................................... 54 

4.1 Introduction ............................................................................................................ 54 

4.2 Background............................................................................................................. 54 

4.3 Experimental........................................................................................................... 55 

4.4 Sample Measurement Setup and Optical Simulations ............................................ 58 

4.5 Results and Discussion ........................................................................................... 62 

4.6 Conclusion .............................................................................................................. 72 

5. Low-Voltage High-Speed Evanescent-Coupled Thin-film-Ge 

Lateral PIN Photodetectors Integrated on Si-Waveguide ............................. 75 

5.1 Introduction ............................................................................................................ 75 

5.2 Background............................................................................................................. 75 

5.3 Experimental........................................................................................................... 78 

5.4 Results and Discussion ........................................................................................... 79 

5.5 Conclusion .............................................................................................................. 86 

6. Enhanced Sensitivity of Small Size Junction-Field-Effect-

Transistor-Based Germanium Photodetector ................................................. 89 

6.1 Introduction ............................................................................................................ 89 

6.2 Background............................................................................................................. 89 

6.3 Experimental........................................................................................................... 91 



 

iv 

6.4 Results and Discussion ........................................................................................... 92 

6.5 Conclusion .............................................................................................................. 97 

7. Silicon Waveguide Integrated Germanium JFET Photodetector 

with Improved Speed Performance ................................................................ 100 

7.1 Introduction .......................................................................................................... 100 

7.2 Background........................................................................................................... 100 

7.3 Experimental......................................................................................................... 103 

7.4 Results and discussion .......................................................................................... 104 

7.5 Conclusion ............................................................................................................ 108 

8. Conclusion and Outlook .................................................................................. 111 

Appedix: List of Publications .................................................................................. 116 

  



 

v 

Summary 

Si photonics has become one of the most intensive research domains in the world 

since it holds great promise for maintaining the performance roadmap known as Moore’s 

Law. 

First, the recent progresses in the development and integration of Ge-

photodetectors on Si-based photonics is comprehensively reviewed, along with remaining 

technological issues to overcome and future research trend. Second, the impact of 

selective-epitaxial-germanium is discussed, specifically its local strain effects, on high-

performance PIN photodetector for near-infrared applications. Then Si-waveguide-

integrated lateral Ge-PIN photodetectors using novel Si/SiGe buffer and two-step Ge-

process are demonstrated. Comparative analysis between lateral Ge PIN and vertical p-

Si/i-Ge/n-Ge PIN are made. Furthermore, device performance of scaled thin-film-Ge 

lateral PIN photodetectors integrated on Si-waveguide is presented. The photodetectors 

are with closely spaced p+/n+ regions (0.8 µm) on Ge region with short length (5-20 µm) 

and narrow width (2.4 µm). Though with thin Ge-layer (~220 nm including bottom SiGe 

buffer), light is evanescent-coupled from Si waveguide effectively to the overlying Ge 

detector. The device exhibits f3dB bandwidth of 18 GHz with external responsivity of 0.13 

A/W for 1550 nm at -1V. Considering the coupling loss and waveguide loss, the internal 

responsivity is as high as 0.65 A/W. It is shown that with increasing detector length, 

device’s internal quantum efficiency can be improved to ~90% and by suppressing 

parasitic effects, speed can be boosted further towards several tens of GHz. 

To address the photodiodes’ scalability issue, this work demonstrates a scalable 

(with gate length of 1 µm) Ge-photodetector based on junction field-effect-transistor 

(JFET) structure with high sensitivity and improved response time. To overcome the low 

detection efficiency issue of typical JFET photodetectors, a high quality Ge epi-layer as 
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the gate of JFET was achieved using a novel epi-growth technique. By laser surface-

illumination of 3 mW on the Ge gate, an Ion/Ioff ratio up to 185 was achieved at 

wavelength of 1550 nm for the first time. Moreover, SOI wafers are utilized to improve 

the Ge JFET detector’s 3dB bandwidth. The results on high-speed silicon-waveguided Ge 

JFET-based photodetector are reported. While the Ge layer’s footprint on wafer is as 

small as 2 µm×2 µm, low stand-by current (0.5 µA@1 V), high responsivity (642 mA/W) 

and high speed (8 GHz) are achieved. The reported Ge JFET is a promising candidate for 

the further scale-downed photodetector in the next-generation Si photonics. 
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CHAPTER 1 

 

1. Introduction 

1.1 Overview of Opto-Electronics Integrated Circuits and 

Photodetectors 

In the past decade, Si photonics has become one of the most active research 

domains in the world since it holds great promise for maintaining the performance 

roadmap known as Moore’s Law, which predicts that the number of transistors per 

unit area in the integrated circuits would double approximately every 18 months. 

 

 

Fig. 1.1: Moore's law for memory chips and microprocessors. [1.1] 
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As the short-distance data exchange rate approaches 10 Gb/s, metal 

interconnection is facing a number of inevitable issues such as slow resistance-

capacitance limit speed and large heat dissipation. Under these circumstances, it is 

well known that for data communication beyond 10 Gb/s, optical signal delivery is 

more advantageous compared to today’s copper interconnections. As a result, 

combining sophisticated process technique, low cost and mass production, Si based 

Opto-Elelctronics Integrated Circuits (OEIC) emerges as one of the most promising 

solutions for next generation interconnection technique (Fig. 1.2). 

 

Fig. 1.2: OEIC building blocks: light source, modulator, photodetector and passive 

components like waveguide [1.1]. 
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As a signal-delivery system, OEIC comprises several different types of 

photonics devices:  

1) Light sources: to generate optical signal;  

2) Modulators: to convert electrical 0 s and 1 s into optical 0 s and 1 s;  

3) Optical waveguides: to deliver optical signals across the chip; 

4) Photodetectors: to convert optical signal back to electrical signal. 

To date, enormous efforts have been invested into Si photonics techniques and 

critical breakthroughs and millstones have been achieved. Various passive 

components [1.2], active devises like lasers[1.3], and high speed modulators [1.4] 

have been reported. Being the device that ends the optical path, photodetectors, which 

convert light back into electrical signals, are vital component for Si photonic 

integrated circuits. In fact, the trigger of the past decade’s Si photonics upsurge was 

the first successful demonstration of the high-efficiency Germanium photodetector 

[1.5]. 

In principle, photodetector is an Opto-Electronic device which absorbs optical 

energy and converts it into electrical power. In its most common form, 

semiconductor-based photodetectors are widely used in optical communication 

systems. In semiconductor-based photodetectors, incoming photons with energy 

higher than semiconductor bandgap are aborbed and electron-hole pairs (EHP) are 
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generated. These EHPs are then separated by the electric field and contribute to 

external current or voltage. 

The the performance of the photodetectors can be quantified by several indices, 

including, dark current, sensitivity/responsivity at certain wavelength, and response 

speed/bandwidth. To meet the photodetector performance criteria, material selection 

also needs serious consideration. 

1.2 Material Choices for Photodetectors in Si OEIC 

The long-haul communications have been based on fiber optics technique for 

the last 30 years. The wavelength used for the majority of long-distance data 

transition is in the 1.3-1.55 µm range corresponding to the minimum loss window of 

silica optical fiber. If the same wavelength can be utilized in the future short-distance 

data transfer including intra-chip, chip-to-chip and Fiber-To-The-Home (FTTH) 

communications, all end users will be able to connect directly to the external servers 

without the need for wavelength conversion, making global communication much 

easier and cheaper. As a result, Si OEIC working in 1.3-1.55 μm wavelength has 

become aggressively pursued by researchers worldwide. 

Although photodetectors based on silicon have been widely used in optical 

receiver in the wavelength range around 850 nm, its relatively large bandgap of 1.12 

eV corresponding to an absorption cutoff wavelength of ~1.1 μm hinders Si 
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photodetectors’ application in the longer wavelength range of 1.3 and 1.55 μm. For a 

more seamless integration with current long-haul communication technology, a 

material with strong absorption coefficient in the 1.30-1.55 μm is very desirable. 

Among the available choices, III-V compound semiconductors possess the 

advantage of high absorption efficiency, high carrier drift velocity and mature design 

and fabrication technology for optical devices. Therefore, integration of high 

performance III-V photodetectors onto the Si platform by flip-chip bonding or direct 

heteroepitaxy has been widely reported. However, the introduction of III-V material 

into Si process is at the expense of high cost, increased complexities and potential 

introduction of doping contaminants into the Si CMOS devices since III-V materials 

also act as dopants for group IV materials. 

Germanium, a group IV material the same as Si, avoids the cross 

contamination issue. Though Ge is also an indirect bandgap (Eg = 0.66 eV) material 

like Si, its direct bandgap of 0.8 eV is only 140 meV above the dominant indirect 

bandgap. As a result, Ge offers much higher optical absorption in 1.3-1.55 μm 

wavelength range, thus making Ge-based photodetectors promising candidate for Si 

photonics integration. Although the 4% lattice mismatch between Ge and Si places 

challenging obstacle towards monolithic integration of high-quality low dislocation 

density Ge devices through Ge on Si heteroepitaxy; nevertheless, to date, device-
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grade single-crystalline Ge films have been demonstrated by many groups with 

practically high performance Ge photodetectors. 

 

Fig. 1.3: Band diagram of Germanium at 300 K. [1.6] 

1.3 Photodetector Electrical Structures 

Several types of semiconductor-based photodetectors exist, i.e., PIN 

photodetector, Metal-Semiconductor-Metal (MSM) photodetector and avalanche 

photodetectors. 

1.3.1 PIN Detectors 

PN junctions are one of the most commonly used configurations for 

semiconductor photodetectors. The PIN diode with “I” stands for intrinsic, includes 

an intrinsic region in between P and N regions. Due to the built-in potential or 



 

7 

external reverse bias, the intrinsic region is depleted and has high resistivity so that 

voltage drop takes place mainly in this region, giving rise to high electric field for 

effective collection of photo-generated electron-hole pairs (EHP).  

In this configuration, the thickness of the intrinsic region is always many times 

larger than the highly-doped regions so that most of the EHP’s are generated within 

the intrinsic region where strong electric field helps to sweep the EHP to the adjacent 

p+/n+ region faster than diffusion. Another advantage of the PIN structure is that the 

depletion-region thickness (the intrinsic layer) can be tailored to optimize both the 

quantum efficiency and response bandwidth. 

In Ge PIN photodetectors, while the photoabsorption intrinsic layer is usually 

Ge for effective absorption around 1.55 μm , the p+ and n+ region can be formed 

either by implantation [1.7] or in-situ dope to form p+ and n+ regions for PIN 

structure [1.8]. Another way is to use p+/n+ single crystalline Si substrate or 

deposited polycrystalline Si heterojunction [1.9]. 

1.3.2 Metal-Semiconductor-Metal (MSM) detectors 

PIN photodiodes produce a voltage drop across the diode terminals in 

response to an external optical input. Such device is categorized as photovoltaic 

devices. On the other hand, MSM photodetectors are photoconductive devices whose 

conductivity alters when an optical illumination is imposed. Therefore, MSM 

photodetectors are only functional under non-zero external bias. MSM photodetectors 

possess the advantage of low capacitance and relative ease of fabrication. The 
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intrinsically low capacitance resulting from its configuration has always been utilized 

to fabricate high-speed large area detectors. 

One issue in early Ge MSM photodetectors is its high dark current density 

which gives rise to high stand-by power consumption thus making Ge MSM 

photodetectors unfavorable and not practical. Due to the narrow bandgap and strong 

Fermi-level pinning of the metal/Ge interface at valence band, hole injection over 

Schottky Barrier Height (SBH) is the major component of dark current in Ge MSM 

detectors. Regarding this issue, application of dopant segregation (DS) to Ge MSM 

photodetectors for dark current suppression is experimentally demonstrated by H. 

Zang et al [1.10]. Metal-Ge Schottky barrier height modification by an intermediate 

layer of large bandgap material such as amorphous Ge and SiC is also proposed [1.11]. 

While the demonstrated Ge MSM detectors are able to achieve dark current 

suppression of two to four orders of magnitude, it is still an open question whether 

these MSM Ge photodetectors are competitive to PIN devices. 

1.3.3 Avalanche PD 

The simplest avalanche photodiode (APD) has a similar device structure to a 

PIN photodiode. However, a voltage close to its breakdown is usually applied to APD 

for detection of low power signal with high sensitivity. Under sufficiently higher 

external bias, electrical field in the photodiode’s depletion region becomes high 

enough to initiate impact ionization which is responsible for carrier multiplication. 

Therefore, one absorbed incoming photon does not only generate one electron/hole 
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pair but rather a large number of EPHs leading to a quantum efficiency potentially 

large than unity. 

The most important performance indice for APD is excess noise factor 

quantified by effective ratio of electron and hole ionization rate (keff), gain-efficiency 

product and sensitivity. 

1.4 Criteria for photodetectors’ dark current 

An important issue in the integrated photodetectors is dark current, which 

increases the power consumption of the receiver. Most importantly, shot noise 

associated with this leakage current undesirably degrades the Signal-to-Noise Ratio 

(SNR) leading to increased bit error rate (BER).  

Generally, dark currents less than 1 µA are referred to as acceptable value for 

a high-speed receiver design, below which the transimpedance amplifier (TIA) noise 

is the main noise source [1.12-1.14].In practice, a precise value of the required dark 

current depends upon the speed of operation and the amplifier design. In the recent 

successful demonstration of Ge-on-Si photodetector-based receiver, photodetectors 

with dark current of both ~10 nA [1.13] and ~2 µA [1.15] are reported. 

Depending on the receiver design, higher dark current level is tolerable with 

certain sacrifice in the receiver parameters. For example, L. Vivien et al [1.16] 

showed that with an increase of the input power of about 20% in comparison with 
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photodetector without dark current, a photodetector with 300 µA dark current is still 

able to ensure a BER of 10
-18

 at frequency close to 50 GHz. The conclusion was 

drawn based on SPICE simulation taking into account of feedback resistance noise, 

the shot noise from detector dark current and photocurrent sources, and the transistor 

channel noise [1.17]. 

1.5 Objectives and Scope 

The main aim of this thesis was to demonstrate fabrication and characterization of 

high performance Ge infrared photodetectors integrated on Si platform. The specific 

objectives of this research were to: 

(1) grow device-quality thick Ge layer on Si substrate. The criterion for high-

quality Ge includes: low intrinsic doping level, low threading dislocation, 

and highly-ordered crystal structure. 

(2) integrate tensile-strained Ge PIN photodetector into CMOS platform. With 

the tensile strain applied to Ge, the material’s light absorption range can be 

extended to ~1600 nm, which makes Ge a promising next-generation 

photodetector candidate covering the whole range of modern communication 

wavelength. 

(3) integrate evanescent-coupled Ge-PIN photodetectors with Si-waveguide and 

study the influence of different dimensional parameters on the final 



 

11 

performance index of the photodetector (dark current, responsivity and 

response speed). On the basis of simulation and experimental data, 

optimization of the device structure can be achieved. 

(4) explore new structures of Ge photodetectors capable of infra-red laser signal 

detection. Although photodiode is the majority device structure for high 

speed photodetectors, it suffers from intrinsically low detection sensitivity. 

New types of photodetectors possessing both attributes of high speed and 

high sensitivity are needed for future performance requirement. 

The result of the present study may have impact on theoretical and experimental 

studies of the domain of Si OEIC. The fabricated photodetectors, being an important 

building block of Si OEIC, can be readily integrated into Si OEIC to serve a more 

complete function as optical signal processor, which is the foundation of next-generation 

central-processing-unit (CPU). 

1.6 Thesis Organization 

The organization of the thesis is divided in the following chapters. 

In Chapter 2, the recent progresses in the development and integration of Ge-

photodetectors on Si-based photonics is reviewed, along with remaining technological 

issues to be overcome and research trend. 

Chapter 3 discussess the impact of selective-epitaxial-germanium, specifically 

its local strain effects, on high-performance PIN photodetector for near-infrared 
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applications. Combining a thin compliant Si epitaxial layer (~6 nm) with SiGe buffer 

(10-15 nm), a high quality Ge-film (~150 nm) prepared by two-step growth is 

demonstrated. Without using high-temperature cyclic anneal, Ge films with smooth 

surface (rms ~0.67 nm) and low dislocation density (4×10
6
 cm

-2
), have been achieved. 

Lateral PIN Ge photodetector has been demonstrated with enhanced photoresponse of 

~190 mA/W at 1520 nm and 3dB bandwidth of 5.2 GHz at 1 V. 

Chapter 4 Si-waveguide-integrated lateral Ge-PIN photodetectors using 

Si/SiGe buffer and two-step Ge-process are demonstrated. Comparative analysis 

between lateral Ge PIN and vertical p-Si/i-Ge/n-Ge PIN are made. Light is 

evanescently coupled from Si waveguide to overlaying Ge-detector, achieving high 

responsivity of 1.16 A/W at 1550 nm with f3dB bandwidth of 3.4 GHz for lateral Ge 

PIN detector at 5V reverse bias. In contrast, vertical p-Si/i-Ge/n-Ge PIN has lower 

responsivity of 0.29 A/W but higher bandwidth of 5.5 GHz at -5 V bias. 

Chapter 5 presents the device performance of scaled thin-film-Ge lateral PIN 

photodetectors integrated on Si-waveguide. The photodetectors are with closely 

spaced p+/n+ regions (0.8 µm) on Ge region with short length (5-20 µm) and narrow 

width (2.4 µm). Though with thin Ge-layer (~220 nm including bottom SiGe buffer), 

light is evanescent-coupled from Si waveguide effectively to the overlying Ge 

detector. The device exhibits f3dB bandwidth of 18 GHz with external responsivity of 

0.13 A/W for 1550 nm at -1 V. Considering the coupling loss and waveguide loss, the 
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internal responsivity is as high as 0.65 A/W. It is shown that with increasing detector 

length, devices’ internal quantum efficiency can be improved to ~90% and by 

suppressing parasitic effects, speed can be boosted further towards several tens of 

GHz. 

Chapter 6 demonstrates a scalable (with gate length of 1 µm) Ge-

photodetector based on junction field-effect-transistor (JFET) structure with high 

sensitivity and improved response time. To overcome the low detection efficiency 

issue of typical JFET photodetectors, a high quality Ge epi-layer as the gate of JFET 

was achieved using a novel epi-growth technique. An Ion/Ioff ratio up to 185 was 

achieved at wavelength of 1550 nm for the first time. In addition, the device shows a 

temporal response time of 110 ps with rise time of 10 ps, indicating that the scalable 

Ge JFET photodetector is promising candidate to replace large size photodiode in 

future opto-electronics integrated circuit and as image sensor integrated with CMOS 

circuit for its comparable size in respect to the modern MOSFETs. 

Chapter 7 reports results on high-speed silicon-waveguided germanium 

junction-field-effect-transistor (JFET) -based photodetector. While the Ge layer’s 

footprint on wafer is as small as 2 µm×2 µm, low stand-by current (0.5 µA@1V), 

high responsivity (642 mA/W) and high speed (8 GHz) are achieved. The reported Ge 

JFET is a promising candidate for the further scale-downed photodetector in the next-

generation Si photonics. 
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Chapter 8 summarizes the major results and findings. It also offers some 

suggestions on future research based on the results of this thesis. 
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CHAPTER 2 

 

2. Literature and Technology Review 

As discussed in Chapter 1, Ge-on-Si photodetectors evolves rapidly in the last 

decade. New methodologies and schemes have been proposed to solve various 

technical issues and contribute to the development of Ge photodetectors.  

In this chapter, various Ge growth techniques are first introduced in section 

2.1. Different photodetector light coupling schemes are described in sections 2.2. In 

section 2.3, the historical research trends along with performances of Ge 

photodetectors reported by research groups are summarized. Finally, the remaining 

technical issues and future research directions will be discussed in section 2.4. 

2.1 Ge Growth Techniques 

Tracing back in history, the first Ge on Si detector was reported in 1984 by S. 

Luryi et al [2.1] . The demonstrated detector showed 41% quantum efficiency at 

wavelength of 1.45 μm, where an MBE-grown 1800 Ǻ n+ GexSi1-x alloy (graded in 

ten steps from x=0 to x=1) act as buffer layer for the heteroepitaxy of Ge on Si. 
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Since then, various techniques have been pursued for the growth of Ge film on 

Si surface with their own pros and cons. The main quality criterion of the Ge layer 

can be categorized as: procedure complexity, material cost, growth temperature, and 

the resulting Ge layer’s dislocation density and strain. 

2.1.1 Poly Ge films 

For ease of integration of near-infrared detectors with standard Silicon process 

line for signal acquisition, amplification and processing, low temperature growth of 

Ge layers is much desired. In 2000, Ge deposition approach based on the thermal 

evaporation with process temperature as low as ~300 °C was first proposed in the 

pioneer work conducted by G. Masini et al [2.2] . It was found that polycrystalline Ge 

deposition could be possible at substrate temperature as low as 300 °C, confirmed by 

the Raman spectra results. This method allows simple and low cost integration with Si 

process. Monolithic integration of an array of 8 polycrystalline Ge pixels with CMOS 

readout electronics was demonstrated based on this method [2.3]  shortly after which, 

L. Colace et al [2.4]  reported the realization of a digital camera further confirming 

the process compatibility of the low-temperature approach.  

Moreover, although the low temperature deposition introduces relatively high 

density of defects and dislocations into the poly-Ge layer and worsens the electrical 

properties compared to crystalline Ge films, it was shown recently that by a careful 

design, acceptable performance of the polycrystalline Ge photodetector for Si 
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photonics integration can be obtained, with responsivities between 0.1 A/W and 0.3 

A/W [2.5] . 

 

2.1.2 Crystalline Ge growth with graded SiGe buffer layers 

In the early stage of crystalline Ge film epitaxy on Si wafers, a 

compositionally graded SiGe region was commonly adopted as buffer layer. This 

approach was first adopted in the SiGe/Si system by S. Luryi et al [2.1]  and later 

improved by E. A. Fitzgerald et al. in 1990 [2.6] . Multiple buffer layers with 

increasing Ge content was adopted to relax high strain between Ge and Si, which 

minimizes dislocation nucleation and reduces the threading dislocations. The final 

strain-relaxed Si1-xGex layers grown on these graded layers showed low density of 

threading-dislocations, 4×10
5
 cm

-2
 for x = 0.23 and 3×10

6
 cm

-2
 for x = 0.50. 

However, the graded SiGe buffer method usually requires a thick 10 μm 

buffer for pure Ge epitaxy on Si, while in modern Si photonics technology, Ge 

photodetectors are favorably fabricated in close adjacency with Si optical waveguide 

facilitating evanescent or butt-coupling of the optical power. As a result, new 

technique with thin buffer layers is still needed. 

2.1.3 Two step LT/HT Ge growth 

The origin of the two-step LT/HT (low temperature/high temperature) growth 

technique can be traced back to 1986 for GaAs growth on Si by Fan et al. [2.7] . Its 

application in the epitaxially grown Ge on Si was first proposed and utilized by 
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Colace et al. [2.8]  in a ultra high vacuum chemical vapor deposition (UHVCVD) 

growth reactor in 1998, since when it has attracted wide interest for Ge epitaxial 

growth. 

In the procedure of the two-step Ge growth, first, after thorough cleaning, the 

substrate is maintained at low- temperature (~300-400 °C), a thin layer of Ge buffer 

layer (~ 50-100 nm) is grown to prevent strain release through undesirable island 

growth. Second, the substrate temperature is elevated to ~550-700 °C and a thick Ge 

layer with reduced threading dislocation density is grown on top of the low-

temperature thin Ge buffer. It should be noted that the two-step Ge method can be 

adopted not only in UHVCVD systems, but also in growth tools such as reduced-

pressure CVD (RPCVD) [2.9]  and molecule beam epitaxy (MBE) [2.10] . 

The Ge layers growth by two-step Ge epitaxy typically suffers from a high 

threading dislocation density (TDD) in the order of 10
8
-10

9
 cm

-2
. Therefore, high 

temperature anneal is employed to reduce the TDD to an acceptable level by many 

groups. For example, the research of Luan et al [2.11, 2.12] indicate that the TDD in 

two-step Ge layer can be significantly reduced by cyclic thermal annealing. The 

optimized annealing condition (900 °C/10 min, 780 °C/10 min, cycle number: 10) can 

reduce the threading dislocation density to ~2×10
7
 cm

-2
. Ge photodetectors based on 

this process were successfully demonstrated with improved performance [2.11, 2.13] . 

However, the annealing process increases the thermal budget undesirable for 
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photodetectors’ integration with Si MOSFET. Therefore, a number of experiments 

have been reported to demonstrate high Ge detector performance. These experiments 

are based on low-temperature anneal or even no additional thermal anneal [2.14, 

2.15] . In table 2.1, some of the currently active groups’ Ge growth methods are 

summarized. 

 

Table 2.1: Summary of recent Ge epitaxy method from selected groups. 

  Group Year Ref. Tool 
Low Temp. 

buffer 

High Temp. 

Ge 
Anneal Aneal condition 

RMS 

(nm) 

TDD  

(cm
−2

) 

tw
o

-s
te

p
 L

T
/H

T
 g

ro
w

th
 

IEF 2004 [2.9]  RPCVD 
400 °C  

25 nm Ge 

<750 °C  

730 nm 
yes 

750/875 °C, 

10 cycles  
2.2 <2 × 10

8
 

IEF 2009 [2.16]  RPCVD 
400 °C  

40 nm Ge 

730 °C  

300 nm 
yes not specified - - 

Intel 2006 [2.17]  RPCVD 
400 °C  

100 nm Ge 

670 °C  

1.2 μm 
yes 900 °C, 15 min - ~1 × 10

7
 

IBM 2004 [2.18]  UHVCVD 
350 °C  

50 nm Ge 

600 °C  

400 nm 
yes 

780/900 °C, 

10 cycles  
- ~1 × 10

8
 

Univ. stuttgart 2005 [2.10]  MBE 
thin LT 

buffer 

550° C  

1 μm 
no - - - 

MIT 1999 [2.12]  UHVCVD 
350 °C  

30 nm Ge 

600 °C  

1 μm 
yes 

780/900 °C, 

10 cycles  
- ~2 × 10

7
 

MIT 2007 [2.19]  UHVCVD 
360 °C  

60 nm Ge 

730 °C  

1.1 μm 
yes 

650/850 °C,  

cyclic  
- - 

Luxtera 2007 [2.20]  RPCVD no buffer 350 °C 200 nm no - - - 

Kotura 2010 [2.15]  CVD 
400 °C  

100 nm Ge 

670 °C  

1.1 μm 
yes not specified - - 

ETRI 2009 [2.21]  RPCVD 
400 °C  

100 nm Ge 

650 °C  

1.2/1.7 μm 
no - 1.3 - 

Univ. Roma Tre 2006 [2.14]  UHVCVD 
350 °C  

thin Ge 

600 °C  

1 μm 
no - - - 

S
iG

e 
b

u
ff

er
 

Unvi. Texas 2004 [2.22]  UHVCVD 1 μm SiGe 400 °C 2.5 μm yes 750 °C, 15 min - - 

Canon ANELVA 2006 [2.23]  UHVCVD 

450–520 °C  

13 nm SiGe 

370 °C  

30 nm Ge 

550–600 °C  

1 μm 
yes 800 °C, 15 min 0.44 - 

IME 2007 [2.24]  UHVCVD 

350–400 °C  

30 nm SiGe 

350–400 °C  

30 nm Ge 

550–600 °C  

100 nm 
no - 1.4 ~1 × 10

7
 

H2 anneal Stanford 2008 [2.25]  RPCVD 
350 °C  

200 nm Ge 

600 °C  

400 nm 
yes 

800 °C, 30 min,  

in H2  
~1 0.8–1 × 10

7
 

LEPECVD Como 2009 [2.26]  LEPECVD no buffer 
500–600 °C  

1 μm 
yes 

600/780 °C,  

3 cycles  
- 2 × 10

7
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2.1.4 Other Ge Growth Methods 

Many attempts have been reported to modify the two-step Ge growth 

procedure. An UHV-CVD growth of high quality Ge on Si substrate using modified 

two-step Ge growth method combining with intermediate thin SiGe buffer layers was 

proposed first by Z. Huang et al in 2004 [2.22] .The buffer region consisted of 0.6-

μm-thick Si0.45Ge0.55 and 0.4-μm-thick Si0.35Ge0.65 layers. In-situ anneal for 15 min at 

750 °C was carried out to further reduce the dislocation density.The thickness of the 

SiGe buffer is further reduced by Nakatsuru et al [2.23] by employing 13-nm-thick 

Si0.5Ge0.5 buffer layer grown at 450-520 °C. After post-deposition anneal of 800 °C/15 

min, the Ge layer shows a low roughness of 0.44 nm. T. Loh et al [2.24]  also reported 

epi-Ge layer based on the SiGe buffer method, where the SiGe buffer is grown at low 

temperature of 350-400 °C with the thickness of around 30 nm (Fig. 2.1 a & b). 

Another way to improve Ge film quality is H2 annealing which is reported by 

Choi et al [2.25] . They demonstrated 800 °C/30 min anneal in H2 ambient which is 

able to effectively improve the Ge film quality in terms of surface roughness and 

TDD. It is proposed that the increased atom mobility caused by Hydrogen/Ge bond is 

the main mechanism for the improved film surface planarity and defect density. 

Another new Ge epitaxy procedure is demonstrated based on low-energy 

plasma-enhanced chemical vapor deposition (LEPECVD) [2.26] . Thanks to the high 

deposition rates and high concentration of atomic H present in the chamber, Ge film 

with smooth surface and TDD ~2×10
7
 are achieved under low thermal budget. 
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Moreover, the fabricated diode shows much lower dark current compared to the 

devices from UHVCVD method with comparable dislocation density. This is 

attributed to the improved passivation arising from the dense plasma in LEPECVD 

which is known to be efficient in generating atomic hydrogen radicals. 

 

 

Fig. 2.1: (a) HR-TEM image of epitaxial Ge layer using two-step Ge growth method 

combining with an intermediate SiGe buffer layer. (b) Zoom-in image of the 

heterostructure epitaxial layers of Si/Si0.75Ge0.25/Ge. 
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2.2 Ge Photodetector light coupling schemes  

2.2.1 Normal incidence photodetectors and the bandwidth-efficiency 

tradeoff 

Normal incidence (NI) photodetectors are also known as vertical 

photodetectors or surface illuminated photodetectors. Normal incidence is the 

simplest light coupling scheme with incoming light illuminated on the top or bottom 

surface of the detector (Fig. 2.2). Almost all the electrical structures, i.e., PIN, MSM 

and avalanche, can be fabricated in the fashion of NI photodetectors. Due to its low 

process complexity, NI photodetectors are widely used in communication 

technologies. However, NI photodetectors suffer from an inherent drawback due to 

the bandwidth-efficiency tradeoff. This tradeoff results from the opposite requirement 

of the thickness of the photoabsorption layer for high bandwidth and high efficiency 

[2.29] . 

 

Fig. 2.2: Schematic of a normal incidence photodetector. 
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While the ideal efficiency η assuming zero reflection and full carrier collection 

is: 

1 de    
 

Where υ is carrier transit velocity, d is intrinsic region’s thickness and α is 

material’s absorption coefficient. Using υ = 6×10
6
 cm/s for Ge and α = 4000 cm

-1
, the 

carrier-transit-time-limiting bandwidth and efficiencies versus intrinsic region 

thickness can be plotted as Fig. 2.3. As can be seen, for Ge device with 3dB 

bandwidth of 100 GHz, an intrinsic layer thinner than 0.27 μm is required with 

resulting efficiency of ~10%. 

 

Fig. 2.3: A Calculated carrier-transit-time-limiting bandwidth and efficiencies of 

normal incidence PIN Ge photodetector. 
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2.2.2 Resonant Cavity Enhanced (RCE) detectors 

To overcome the tradeoff between bandwidth and efficiency in NI detectors, 

one method is to sandwich a thin layer of photo absorbing material between two light 

reflectors therefore cavity resonance is enhanced [2.31, 2.32] . Ideally in this structure, 

light is trapped between the two reflectors and travels through the center light 

absorber multiple times until fully absorbed. At the same time, the photoabsorption 

layer can be thin enough to achieve high bandwidth. Another advantage of RCE 

detectors is the wavelength selectivity. When the light reflector is fabricated in the 

form of Bragg reflector, only light in small range of certain wavelength is reflected 

effectively so as to produce high efficiency. RCE device’s light selectivity makes it 

especially useful for wavelength division multiplexing (WDM) systems. 

Ge RCE Schottky photodetectors were demonstrated by Dosunmu et al. [2.31] 

in 2005. The resonant cavity was formed between the Au reflecting top metal contact 

and the SOI substrate. The backside of the SOI wafer was polished to facilitate light 

coupling. Schottky contact was formed between the top contact Au and the Ge layer 

whereas the bottom contact of Au and p+ Si was ohmic contact. The resonant 

wavelength was found at around 1538 nm leading to increased quantum efficiency of 

59%. 

Although RCE photodetectors solves the bandwidth-efficiency tradeoff to 

some extent, the fabrication of high reflectivity mirror increases the design and 

process complexity significantly. The multiple layers needed for effective reflection 
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also make RCE detectors difficult to be integrated with other functional devices. 

Therefore, other methods are still required with more process and integration 

friendliness. 

2.2.3 Waveguide photodetectors 

 

Fig. 2.4: Schematic of a waveguide-fed photodetector. 

The waveguide integrated photodetectors (Fig. 2.4) have been considered to be 

one of the most promising candidates for overcoming the bandwidth-efficiency 

tradeoff in normal incidence detectors. In this configuration, a light signal is delivered 

to the device by in-plane optical waveguide rather than top down, permitting the 

bandwidth and efficiency to be determined almost independently because the 

efficiency is no longer specified by the photoabsorption layer thickness, but rather by 

the waveguide length. 

Furthermore, large scale integration of Si optical and electrical devices 

requires all devices to be fabricated on the same planar wafer which makes optical 

waveguides indispensable. Thus integration of waveguides with photodetectors seems 

to be a natural choice. 
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Table 2.2: Summary of performances from selected Ge photodetectors. 

Year Ref Structure 
Idark(µA) 

@-1V 

Responsivity 

@λ=1.55µm 

@-1V (A/W) 

Highest 

Electrical 

Bandwidth 

(GHz) 

APD Gain-

Bandwidth 

Product 

(GHz) 

2000 [2.33]  NI PIN 12 0.25 ~0.4@-4V  

2002 [2.13]  NI PIN 1.2 0.75 2.5@-1V - 

2005 [2.10]  NI PIN 0.08 0.035@0V 39@-2V - 

2005 [2.34]  NI PIN ~0.8 0.56 8.5@-1V - 

2005 [2.31]  NI PIN RCE 0.38@-5V 0.73 12.1@-3V - 

2006 [2.14]  NI PIN ~10 0.2 10@-1V - 

2007 [2.35]  WG MSM 130 1 25@-6V - 

2007 [2.19]  WG PIN 0.9 0.87 7.5@-3V - 

2007 [2.36]  WG PIN 0.267@-2V 1.16@-2V 29.4@-2V - 

2009 [2.38]  WG MSM 4@-5V ~1 40@-5V - 

2009 [2.39]  NI PIN ~0.10 0.05@-2V 49@-2V - 

2009 [2.21] , NI PIN 0.042 0.47 36@-3V - 

2009 [2.16]  WG PIN ~1 1 42@-4V - 

2009 [2.40] , WG PIN 0.072 0.8 47@-3V - 

2010 [2.15]  WG PIN 1.3 1.1 36.8@-3V - 

2010 [2.41]  WG MSM 90 0.14 40@-2V - 

2008 [2.42]  
NI SACM 

APD 
~10@25V 

~15.6@~25V@

1.3μm 
~12@~25V 340 

2010 [2.43]  
WG SACM 

APD 
~100@23V 16.8@~23V 5@~23V 105 

2010 [2.44]  
WG MSM 

APD 
~100 - ~35@1.5V 350 
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The development of Ge-on-Si photodetectors has been going on for more than 

ten years. In Table 2.2 and Fig. 2.5, performances reported for some typical Ge 

photodetectors are summarized. 

 

Fig. 2.5: Bandwidth and responsivity of selected Ge photodetectors. 

2.3 Research trends in Ge photodetectors 

In this section, research trends are identified and described. 

2.3.1 zero-bias PIN photodiode 

High dark current leads to high stand-by power consumption in addition to the 

degraded SNR. Moreover, it is desirable for the detector and the receiver circuit to 

operate on a single power supply which often restricts the bias voltage for 
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photodetector to be less than 1.5 V [2.45] . As a result, there has been an increasing 

research interest in the development of low-bias or even zero bias PIN photodiode. 

In terms of responsivity, J. Liu et al [2.34]  measured their Ge PIN detector’s 

responsivity over the wide spectrum of 650 nm – 1650 nm. The reported responsivity 

at 0 V bias is more than 98% of the saturated value at 2 V reverse bias, which 

attributed to high carrier collection efficiency resulted from the high built-in electric 

field in the diode’s depletion region. 

High speed operation at zero-bias is demonstrated by M. Jutzi et al [2.10] . 

From PIN Ge detectors with diameter of 10 μm, a record high zero-bias 3dB 

bandwidth of 25.1 GHz is obtained. 

2.3.2 Avalanche photodetectors 

For Ge photodetector’s application in Si photonics IC, next level pre-amplifier 

is necessary to further transform the current signal into voltage signal for later CMOS 

IC process. Avalanche photodetectors offer much lower signal-to-noise ratio 

compared to PIN or MSM structures. Therefore, more and more interest is being 

casted onto Ge-based avalanche photodetectors. To date, Intel [2.42] , IBM [2.44]  

and IME [2.43]  have reported successful fabrication of such devices. 

The first Ge-based APD was demonstrated by Y. Kang et al [2.42] . For the 

reported device, a separate-absorption-charge-multiplication (SACM) configuration is 

used to take advantage of both Si’s low noise property and Ge’s strong absorption 

near 1.55 μm wavelength. The device exhibits low excess noise with low keff of ~0.09. 
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The reported sensitivity of -28 dBm at 10 Gb/s is equivalent to commercial III-V APD. 

And the bandwidth-efficiency product of 340 GHz is even higher than its III-V 

counterpart, thanks to much lower k value of Si compare to InP material. 

Another configuration for Ge APD is conventional MSM structure with nano-

engineered metal-to-metal spacing as small as 200 nm reported by S. Assefa et al 

[2.44] . With low bias voltage of ~1.5 V, the electric field in the immediate vicinity of 

the metal contact is already high enough to initiate avalanche amplification. Although 

the whole APD structure is built on Ge, whose properties is not optimized for APD, 

the device exhibits excess noise factor with keff ~ 0.2, high speed of ~40 GHz, and 

bandwidth-efficiency product of 350 GHz at the wavelength of 1.3 μm. Although the 

high dark current due to the small metal spacing requires more optimization, the Ge 

MSM APD shows great potential for Ge’s application in avalanche photodetection. 

The APD devices reported above are working at 1.3 μm due to the 

incorporation of Si into Ge which gives rise to undesired reduction of the absorption 

efficiency at 1550 nm. Using two-step Ge growth with SiGe buffer layer method, the 

first waveguide-base Ge APD working at 1.55 μm is reported by K. Ang et al [2.43] . 

The device is fabricated based on SACM structure. Waveguide was used to increase 

device efficiency and facilitate future Si photonics integration. The reported high 

responsivity at unity gain was as high as ~0.8 A/W and bandwidth-efficiency product 

105 GHz was achieved. 
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2.3.3 Normal incidence to waveguide integration 

At the starting stage of Ge-on-Si photodetector development for Si photonics 

applications, normal incidence Ge photodetectors were first fabricated and 

comprehensively studied [2.10, 2.13, 2.14, 2.18, 2.33, 2.34, 2.39, 2.42, 2.46-2.54]  

due to its ease of process. 

Due to the bandwidth-efficiency tradeoff, typical NI incidence Ge 

photodetectors offer moderate quantum efficiencies and bandwidths. Among the 

reported NI photodetectors, S. Klinger et al. [2.39]  reported the highest bandwidth of 

49 GHz for Ge-based photodetectors. The Ge PIN photodiode was fabricated in Ge 

grown by MBE two-step Ge growth. Given the nominal Ge intrinsic layer thickness of 

300 nm, detector diameter of 10 μm and the series resistance of 25 Ω, the theoretical 

bandwidth of 54.3 GHz corresponds well with the experiment. It should be noted that 

the reported improved 3dB frequency of 49 GHz from previous result (39 GHz) [2.10]  

is mainly due to the reduced series resistance (Rs) of 15 Ω from 32 Ω. The reported 

responsivity at 1550 nm is ~0.05 A/W limited by small device footprint and relatively 

large density of defects in the Ge layer. 

In terms of high responsivity, thick Ge absorption layer is need. The highest 

reported value at 1550 nm wavelength for NI photodetector is 0.75 A/W from a PIN 

diode with ~4 μm thick Ge layer fabricated and reported by S. Fama and coworkers 

[2.13] . The Ge layer was epitaxial grown on Si substrate by two-step UHVCVD 
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combined with high temperature cyclic anneal for the reduction of dislocation density. 

A time response of less than 200 ps and operation >2.5 Gb/s was also demonstrated. 

The study of the Ge normal incidence photodetectors gives valuable insight 

into the Ge/Si system and its properties. As the Ge growth technique becomes mature 

and the particulars of Ge/Si device have been studied in details, researches are 

gradually redirected to the integration of Ge photodetectors on Si waveguides to 

decouple the tradeoff between bandwidth and efficiency mentioned before. Also since 

Si photonics require devices to be monolithically integrated on the same Si substrate 

using on-wafer optical waveguide, Ge photodetector’s integration with waveguide 

seems mandatory. 

To date, a number of groups demonstrate their results on waveguided Ge 

photodetectors, including MIT[2.19, 2.55-2.58] , IEF[2.16, 2.35] , IME[2.37, 2.43, 

2.59-2.61] , INTEL [2.36, 2.62] , IBM [2.41, 2.44, 2.63] , Kotura [2.15, 2.64] . Both 

PIN and MSM structures are reported in these waveguide photodetector with 

comparable performance and high speed around 40 Gbit/s. 

2.3.4 Improvement of speed performance of waveguide Ge 

photodetectors 

Another trend of the Ge photodetectors continuous evolvement is the 

increasing of the detector bandwidth. At the starting point of Ge detector’s integration 

with Si waveguide, Ge growth on SOI wafers, optical coupling between Ge detector 

and Si optical waveguide is first explored. The reported detectors are ~100 μm long to 
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make sure full absorption of light around 1.55 μm wavelength, inevitably leading to 

large device capacitance so that the bandwidth are <10 GHz limited by RC delay. 

Nowadays, special care in design is given to detector’s bandwidth 

performance. With the adoption of shorter device, sophisticated radio-frequency 

coplanar waveguide (CPW) metal interconnections and frequency measurement 

technologies, 40 Gbit/s operation was reported by several groups [2.36, 2.38, 2.41, 

2.65] , with waveguide detector’s bandwidth as high as 47 GHz [2.65] . 

2.4 Summary 

This chapter summarizes the Ge growth techniques as well as the development 

of Ge-on-Si photodetectors. Various electrical structures (PIN, MSM, and avalanche) 

and optical coupling schemes (normal incidence, resonant cavity enhancement and 

waveguide integration) have been adopted in the Ge photodetectors. 

The Ge photodetectors have been widely reported with improving 

performance. Nevertheless, there are still areas to be explored, especially on the local 

strain effects of selective-epitaxial-germanium on high-performance PIN 

photodetectors for near-infrared applications. There are typically two types of device 

configurations adopted for waverguide Ge-on-Si photodetectors, namely, lateral and 

vertical PIN. To conduct a comparative study of these two configurations is also of 

great interest. 
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Moreover, the reported Ge photodetectors are mostly p-n/PIN diode based 

detectors. Due to its inherent limitations, current PN/PIN diode based Ge 

photodetectors suffer from serious scalability issues where further scaling-down of 

photodiodes inevitably leads to insufficient light absorption and decreases quantum 

efficiency. Thus, novel structures of photodetectors have to be proposed. In the 

following chapters, the above mentioned issues are addressed by employing new 

solutions. 

  



 

36 

REFERENCES 

[2.1]  S. Luryi, A. Kastalsky and J. Bean, "New infrared detector on a silicon chip", 

Electron Devices, IEEE Transactions on, vol.31, no.9, pp. 1135-1139 1984. 

[2.2]  G. Masini, L. Colace, F. Galluzzi and G. Assanto, "Advances in the field of 

poly-ge on si near infrared photodetectors", Materials Science and 

Engineering B, vol.69, pp. 257-260 2000. 

[2.3]  G. Masini, V. Cencelli, L. Colace, F. De Notaristefani and G. Assanto, 

"Monolithic integration of near-infrared ge photodetectors with si 

complementary metal–oxide–semiconductor readout electronics", Applied 

Physics Letters, vol.80, pp. 3268 2002. 

[2.4]  L. Colace, G. Masini, V. Cencelli, F. DeNotaristefani and G. Assanto, "A 

near-infrared digital camera in polycrystalline germanium integrated on 

silicon", IEEE Journal of Quantum Electronics, vol.43, no.4, pp. 311-315 

2007. 

[2.5]  V. Sorianello, M. Balbi, L. Colace, G. Assanto, L. Socci, L. Bolla, G. 

Mutinati and M. Romagnoli, "Guided-wave photodetectors in germanium on 

soi optical chips", Physica E: Low-dimensional Systems and Nanostructures, 

vol.41, no.6, pp. 1090-1093 2009. 

[2.6]  E. Fitzgerald, Y. Xie, M. Green, D. Brasen, A. Kortan, J. Michel, Y. Mii and 

B. Weir, "Totally relaxed gesi layers with low threading dislocation densities 

grown on si substrates", Applied Physics Letters, vol.59, pp. 811 1991. 

[2.7]  J. Fan, B. Tsaur, R. Gale and F. Davis, "Reducing dislocations in 

semiconductors utilizing repeated thermal cycling during multistage epitaxial 

growth", US Patents, 1986. 

[2.8]  L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. 

Palange and F. Evangelisti, "Metal–semiconductor–metal near-infrared light 

detector based on epitaxial ge/si", Applied Physics Letters, vol.72, pp. 3175 

1998. 

[2.9]  J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, 

J. M. Fedeli, M. Rouviere, L. Vivien and S. Laval, "Reduced pressure--

chemical vapor deposition of ge thick layers on si(001) for 1.3--1.55-mu m 

photodetection", Journal of Applied Physics, vol.95, no.10, pp. 5905-5913 

2004. 

[2.10]  M. Jutzi, M. Berroth, G. Wohl, M. Oehme and E. Kasper, "Ge-on-si vertical 

incidence photodiodes with 39-GHz bandwidth", IEEE PHOTONICS 

TECHNOLOGY LETTERS, vol.17, no.7, pp. 1510-1512 2005. 

[2.11]  H. Luan, D. Lim, L. Colace, G. Masini, G. Assanto, K. Wada and L. 

Kimerling, "Germanium photodetectors for silicon microphotonics by direct 

epitaxy on silicon", pp. 279-284, Warrendale, Pa.; Materials Research Society; 

1999, 2000. 



 

37 

[2.12]  H. Luan, D. Lim, K. Lee, K. Chen, J. Sandland, K. Wada and L. Kimerling, 

"High-quality ge epilayers on si with low threading-dislocation densities", 

Applied Physics Letters, vol.75, pp. 2909 1999. 

[2.13]  S. Fama, L. Colace, G. Masini, G. Assanto and H. Luan, "High performance 

germanium-on-silicon detectors for optical communications", Applied Physics 

Letters, vol.81, pp. 586 2002. 

[2.14]  L. Colace, M. Balbi, G. Masini, G. Assanto, H. Luan and L. Kimerling, "Ge 

on si PIN photodiodes operating at 10 gbit/ s", Applied Physics Letters, vol.88, 

pp. 101111 2006. 

[2.15]  N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. 

Cunningham and A. Krishnamoorthy, "Vertical PIN germanium photodetector 

with high external responsivity integrated with large core si waveguides", Opt. 

Express, vol.18, pp. 96-101 2010. 

[2.16]  L. Vivien, J. Osmond, J. Fédéli, D. Marris-Morini, P. Crozat, J. Damlencourt, 

E. Cassan, Y. Lecunff and S. Laval, "42 GHz PIN germanium photodetector 

integrated in a silicon-on-insulator waveguide", Optics Express, vol.17, no.8, 

pp. 6252-6257 2009. 

[2.17]  M. Morse, O. Dosunmu, G. Sarid and Y. Chetrit, "Performance of ge-on-si 

PIN photodetectors for standard receiver modules", Photonics Technology 

Letters, IEEE, vol.18, no.23, pp. 2442-2444 2006. 

[2.18]  G. Dehlinger, S. Koester, J. Schaub, J. Chu, Q. Ouyang, A. Grill, I. 

Technologie and A. Villach, "High-speed germanium-on-soi lateral PIN 

photodiodes", IEEE Photonics Technology Letters, vol.16, no.11, pp. 2547-

2549 2004. 

[2.19]  D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. Kimerling, J. Michel, J. 

Chen and F. K rtner, "High performance, waveguide integrated ge 

photodetectors", Opt. Express, vol.15, pp. 3916-3921 2007. 

[2.20]  G. Masini, G. Capellini, J. Witzens and C. Gunn, "A 1550nm, 10Gbps 

monolithic optical receiver in 130nm cmos with integrated ge waveguide 

photodetector", in Group IV Photonics, 2007 4th IEEE International 

Conference on, pp. 1-3, 2007. 

[2.21]  D. Suh, S. Kim, J. Joo and G. Kim, "36-GHz high-responsivity ge 

photodetectors grown by rpcvd", IEEE Photonics Technology Letters, vol.21, 

no.10 2009. 

[2.22]  Z. Huang, J. Oh and J. Campbell, "Back-side-illuminated high-speed ge 

photodetector fabricated on si substrate using thin sige buffer layers", Applied 

Physics Letters, vol.85, pp. 3286 2004. 

[2.23]  J. Nakatsuru, H. Date, S. Mashiro and M. Ikemoto, "Growth of high quality ge 

epitaxial layer on si (100) substrate using ultra thin sige buffer", in Mater. Res. 

Soc. Symp. Proc., pp. 315-320, 2006. 



 

38 

[2.24]  T. Loh, H. Nguyen, C. Tung, A. Trigg, G. Lo, N. Balasubramanian, D. 

Kwong and S. Tripathy, "Ultrathin low temperature sige buffer for the growth 

of high quality ge epilayer on si (100) by ultrahigh vacuum chemical vapor 

deposition", Applied Physics Letters, vol.90, pp. 092108 2007. 

[2.25]  D. Choi, Y. Ge, J. S. Harris, J. Cagnon and S. Stemmer, "Low surface 

roughness and threading dislocation density ge growth on si (0 0 1)", Journal 

of Crystal Growth, vol.310, no.18, pp. 4273-4279 2008. 

[2.26]  J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri and H. v. Kanel, 

"Ultralow dark current ge/si(100) photodiodes with low thermal budget", 

Applied Physics Letters, vol.94, no.20, pp. 201106 2009. 

[2.27]  H. Zang, W. Loh, J. Ye, T. H. Loh, G. Lo and B. Cho, "Integration of dual 

channels mosfet on defect-free, tensile-strained germanium on silicon", 

International Conference on Solid State Devices and Materials (SSDM), pp. 

32-33 2007. 

[2.28]  T. Muoi, "Receiver design for high-speed optical-fiber systems", Lightwave 

Technology, Journal of, vol.2, no.3, pp. 243-267 1986. 

[2.29]  K. Kato, "Ultrawide-band/high-frequency photodetectors", IEEE Transactions 

on Microwave Theory and Techniques, vol.47, no.7, pp. 1265-1281 1999. 

[2.30]  S. Sze and K. Ng, Physics of semiconductor devices, Wiley-Blackwell, 2007. 

[2.31]  O. Dosunmu, D. Cannon, M. Emsley, L. Kimerling and M. Unlu, "High-speed 

resonant cavity enhanced ge photodetectors on reflecting si substrates for 

1550-nm operation", IEEE Photonics Technology Letters, vol.17, no.1, pp. 

175-177 2005. 

[2.32]  O. Dosunmu, M. K. Emsley, D. D. Cannon, B. Ghyselen, L. C. Kimerling and 

M. S. Unlu, "Germanium on double-soi photodetectors for 1550 nm 

operation", in Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th 

Annual Meeting of the IEEE, pp. 853-854 vol.852, 2003. 

[2.33]  L. Colace, G. Masini, G. Assanto, H. Luan, K. Wada and L. Kimerling, 

"Efficient high-speed near-infrared ge photodetectors integrated on si 

substrates", Applied Physics Letters, vol.76, pp. 1231 2000. 

[2.34]  J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. Cannon, S. 

Jongthammanurak, D. Danielson, L. Kimerling and J. Chen, "High-

performance, tensile-strained ge PIN photodetectors on a si platform", 

Applied Physics Letters, vol.87, pp. 103501 2005. 

[2.35]  L. Vivien, M. Rouvière, J. Fédéli, D. Marris-Morini, J. Damlencourt, J. 

Mangeney, P. Crozat, L. El Melhaoui, E. Cassan and X. Le Roux, "High 

speed and high responsivity germanium photodetector integrated in a silicon-

on-insulator microwaveguide", Optics Express, vol.15, no.15, pp. 9843-9848 

2007. 



 

39 

[2.36]  T. Yin, R. Cohen, M. Morse, G. Sarid, Y. Chetrit, D. Rubin and M. Paniccia, 

"31 GHz ge nip waveguide photodetectors on silicon-on-insulator substrate", 

Optics Express, vol.15, no.21, pp. 13965-13971 2007. 

[2.37]  J. Wang, W. Loh, K. Chua, H. Zang, Y. Xiong, S. Tan, M. Yu, S. Lee, G. Lo 

and D. Kwong, "Low-voltage high-speed (18 GHz/1 v) evanescent-coupled 

thin-film-ge lateral PIN photodetectors integrated on si waveguide", IEEE 

Photonics Technology Letters, vol.20, no.17, pp. 1485 2008. 

[2.38]  L. Chen and M. Lipson, "Ultra-low capacitance and high speed germanium 

photodetectors on silicon", Optics Express, vol.17, no.10, pp. 7901-7906 2009. 

[2.39]  S. Klinger, M. Berroth, M. Kaschel, M. Oehme and E. Kasper, "Ge-on-si p-i-n 

photodiodes with a 3-db bandwidth of 49 GHz", Photonics Technology 

Letters, IEEE, vol.21, no.13, pp. 920-922 2009. 

[2.40]  S. Dongwoo, J. Jiho, K. Sanghoon and K. Gyungock, "High-speed rpcvd ge 

waveguide photodetector", in Group IV Photonics, 2009. GFP '09. 6th IEEE 

International Conference on, pp. 16-18, 2009. 

[2.41]  S. Assefa, X. Fengnian and Y. A. Vlasov, "Cmos-integrated low-noise 

germanium waveguide avalanche photodetector operating at 40Gbps", in 

Optical Fiber Communication (OFC), collocated National Fiber Optic 

Engineers Conference, 2010 Conference on (OFC/NFOEC), pp. 1-3, 2010. 

[2.42]  Y. Kang, H. Liu, M. Morse, M. Paniccia, M. Zadka, S. Litski, G. Sarid, A. 

Pauchard, Y. Kuo and H. Chen, "Monolithic germanium/silicon avalanche 

photodiodes with 340 GHz gain–bandwidth product", Nature Photonics, vol.3, 

no.1, pp. 59-63 2008. 

[2.43]  K. Ang, J. Ng, A. Lim, M. Yu, G. Lo and D. Kwong, "Waveguide-integrated 

ge/si avalanche photodetector with 105ghz gain-bandwidth product", in 

Optical Fiber Communication (OFC), collocated National Fiber Optic 

Engineers Conference, 2010 Conference on (OFC/NFOEC), 2010. 

[2.44]  S. Assefa, F. Xia and Y. Vlasov, "Reinventing germanium avalanche 

photodetector for nanophotonic on-chip optical interconnects", Nature, 

vol.464, no.7285, pp. 80-84 2010. 

[2.45]  L. Pavesi and D. Lockwood, "Silicon photonics, topics in applied physics, vol. 

94", Berlin, Germany: Springer-Verlag, 2004. 

[2.46]  J. Wang, W. Loh, H. Zang, M. Yu, K. Chua, T. Loh, J. Ye, R. Yang, X. Wang 

and S. Lee, "Integration of tensile-strained ge PIN photodetector on advanced 

cmos platform", in Group IV Photonics, 2007 4th IEEE International 

Conference on, pp. 1-3, 2007. 

[2.47]  W. Loh, J. Wang, J. Ye, R. Yang, H. Nguyen, K. Chua, J. Song, T. Loh, Y. 

Xiong and S. Lee, "Impact of local strain from selective epitaxial germanium 

with thin si/sige buffer on high-performance PIN photodetectors with a low 

thermal budget", IEEE Electron Device Letters, vol.28, no.11, pp. 984-986 

2007. 



 

40 

[2.48]  T. Loh, H. Nguyen, R. Murthy, M. Yu, W. Loh, G. Lo, N. Balasubramanian, 

D. Kwong, J. Wang and S. Lee, "Selective epitaxial germanium on silicon-on-

insulator high speed photodetectors using low-temperature ultrathin si 0.8 ge 

0.2 buffer", Applied Physics Letters, vol.91, pp. 073503 2007. 

[2.49]  K. Ang, M. Yu, S. Zhu, K. Chua, G. Lo and D. Kwong, "Novel nige msm 

photodetector featuring asymmetrical schottky barriers using sulfur co-

implantation and segregation", IEEE Electron Device Letters, vol.29, no.7 

2008. 

[2.50]  G. Masini, L. Colace, G. Assanto, H. Luan and L. Kimerling, "High-

performance PIN ge on si photodetectors for the near infrared: From model to 

demonstration", IEEE Transactions on Electron Devices, vol.48, no.6, pp. 

1092-1096 2001. 

[2.51]  M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. 

Cassan, D. Pascal, S. Laval and J. Fédéli, "Ultrahigh speed germanium-on-

silicon-on-insulator photodetectors for 1.31 and 1.55 m operation", Applied 

Physics Letters, vol.87, pp. 231109 2005. 

[2.52]  J. Liu, D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. Danielson, 

J. Michel and L. Kimerling, "Tensile strained ge PIN photodetectors on si 

platform for c and l band telecommunications", Applied Physics Letters, 

vol.87, pp. 011110 2005. 

[2.53]  M. Jutzi, M. Berroth, G. Wöhl, M. Oehme and E. Kasper, "Zero biased ge-on-

si photodetector on a thin buffer with a bandwidth of 3.2 GHz at 1300 nm", 

Materials science in semiconductor processing, vol.8, no.1-3, pp. 423-427 

2005. 

[2.54]  M. Oehme, J. Werner, E. Kasper, M. Jutzi and M. Berroth, "High bandwidth 

ge PIN photodetector integrated on si", Applied Physics Letters, vol.89, pp. 

071117 2006. 

[2.55]  J. F. Liu, D. Pan, S. Jongthammanurak, D. Ahn, C. Y. Hong, M. Beals, L. C. 

Kimerling, J. Michel, A. T. Pomerene, C. Hill, M. Jaso, K. Y. Tu, Y. K. Chen, 

S. Patel, M. Rasras, A. White and D. M. Gill, "Waveguide-integrated ge p-i-n 

photodetectors on soi platform", in Group IV Photonics, 2006. 3rd IEEE 

International Conference on, pp. 173-175, 2006. 

[2.56]  A. Donghwan, H. Ching-yin, L. Jifeng, M. Beals, C. Jian, F. X. Kaertner, L. C. 

Kimerling and J. Michel, "Ge photodetectors integrated with waveguides for 

electronic-photonic integrated circuits on cmos platform", in Optical Fiber 

Communication and the National Fiber Optic Engineers Conference, 2007. 

OFC/NFOEC 2007. Conference on, pp. 1-3, 2007. 

[2.57]  J. Liu, D. Ahn, C. Hong, D. Pan, S. Jongthammanurak, M. Beals, L. 

Kimerling, J. Michel, A. Pomerene and D. Carothers, "Waveguide integrated 

ge PIN photodetectors on a silicon-on-insulator platform", pp. 1-4, 2006. 



 

41 

[2.58]  J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, W. Giziewicz, M. 

Beals, L. Kimerling and A. Kopa, "Advances in fully cmos integrated 

photonic devices", pp. 64770P, 2007. 

[2.59]  J. Wang, W. Loh, K. Chua, H. Zang, Y. Xiong, T. Loh, M. Yu, S. Lee, G. Lo 

and D. Kwong, "Evanescent-coupled ge PIN photodetectors on si-waveguide 

with seg-ge and comparative study of lateral and vertical PIN configurations", 

IEEE Electron Device Letters, vol.29, no.5, pp. 445 2008. 

[2.60]  H. Zang, S. Lee, W. Loh, J. Wang, M. Yu, G. Lo, D. Kwong and B. Cho, 

"Application of dopant segregation to metal-germanium-metal photodetectors 

and its dark current suppression mechanism", Applied Physics Letters, vol.92, 

pp. 051110 2008. 

[2.61]  Z. Shiyang, A. Kah-Wee, S. C. Rustagi, J. Wang, Y. Z. Xiong, G. Q. Lo and 

D. L. Kwong, "Waveguided ge/si avalanche photodiode with separate vertical 

seg-ge absorption, lateral si charge, and multiplication configuration", 

Electron Device Letters, IEEE, vol.30, no.9, pp. 934-936 2009. 

[2.62]  Y. Tao, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin and M. J. 

Paniccia, "40gb/s ge-on-soi waveguide photodetectors by selective ge growth", 

in Optical Fiber communication/National Fiber Optic Engineers Conference, 

2008. OFC/NFOEC 2008. Conference on, pp. 1-3, 2008. 

[2.63]  S. Assefa, F. Xia, S. Bedell, Y. Zhang, T. Topuria, P. Rice and Y. Vlasov, 

"Cmos-integrated high-speed msm germanium waveguide photodetector", Opt. 

Express, vol.18, pp. 4986-4999 2010. 

[2.64]  F. Dazeng, L. Shirong, D. Po, F. Ning-Ning, Z. Dawei, L. Hong, R. Shafiiha, 

L. Guoliang, J. Cunningham, K. Raj, A. V. Krishnamoorthy and M. Asghari, 

"Horizontal p-i-n high-speed ge waveguide detector on large cross-section soi 

waveguide", in Optical Fiber Communication (OFC), collocated National 

Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC), pp. 

1-3, 2010. 

[2.65]  D. Suh, J. Joo, S. Kim and G. Kim, "High-speed RPCVD Ge waveguide 

photodetector", in Group IV Photonics, 6th IEEE International Conference on, 

pp. 16-18, 2009. 

 



 

42 

CHAPTER 3 

 

3. Integration of Tensile-Strained Ge PIN 

Photodetector on Advanced CMOS Platform 

3.1 Introduction 

As discussed in Chapter 1 and 2, heteroepitaxy of SiGe/Ge and Ge-on-SOI are 

highly desired for near-infrared photodetection application due to its CMOS-process 

compatibility and its intrinsic bandgap at 0.8 eV and thus large absorption coefficient 

[3.1] . To further broaden the detection range, tensile-strained Ge photodetectors have 

been fabricated using either backside silicidation-induced strain effect [3.2] and/or 

two-step Ge-method [3.3] . The two-step Ge growth induces tensile-strain (~0.20%) 

in Ge [3.3] . When coupled with backside silicidation, Liu et al. have shown that the 

tensile-strain in Ge can be increased to 0.24% with resulting bandgap of 0.765 eV, 

which is sufficient for detection up to 1620 nm [3.4] . Nevertheless, these tensile-

strains were incorporated on the devices globally, instead of locally, on the whole 

substrate. Local strain would allow us to engineer the devices selectively, for instance, 

only on photodetectors among all associated photonic devices on the same substrate.   

In this study, the effects of selective epitaxially grown (SEG) Ge on a Si/SiGe 

buffer layer are investigated in terms of in-plane strain, defect density, dark current, 

photo responsivity and speed of the fabricated photodetectors. Unlike Refs [3.3, 3.4] 
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the strain effects in this work are incorporated locally based on the selective growth 

scheme without cyclic anneal. It is found that a Si buffer layer coupled with Si0.8Ge0.2 

buffer is critical for low leakage, photoresponse and device speed due to its better film 

qualities and higher tensile-strain induced in the Ge layer. 

 

 

 

 

 

 

 

 

Fig. 3.1: (a) Schematic diagram of normal incidence photodetector with SEG Ge on 

Si substrate for circular ring structure with lateral spacing, S and diameter, . (b) 

SEM image of the photodetector. 

 

SEG - Ge

SiO2

Opitical Signal

Ge p-i-n detector
p-Si substrate

(8-15 cm)

Al Al

SiO2

p+n+p+

Al

space, S



(a) 

SEG - Ge

SiO2

Opitical Signal

Ge p-i-n detector
p-Si substrate

(8-15 cm)

Al Al

SiO2

p+p+n+n+p+p+

Al

space, S



(a) (a) 

(b) 

 
Optical Signal 

 

10µm 

 



 

44 

3.2 Experimental 

The schematic device structure as well as the SEM image are shown in Fig. 

3.1 (a), (b), respectively, with two concentric ring-shaped n+/p+ implant with spacing 

S = 1.5 and 2 m and diameter  of 10, 20 and 28 m. Starting with 8” Si p-(001) 

substrate (~8-15 -cm), 120 nm of PECVD oxide were deposited and patterned by 

RIE (with ~10 nm oxide remaining) and wet DHF (1:200) etch to form oxide window. 

The wafers were subsequently cleaned with standard SC1 (NH4OH:H2O2:H2O=1:2:10 

at 60˚C), DHF clean and IPA dry. All samples were then submitted for epi deposition 

in a UHVCVD chamber (with base pressure <10
-8

 Torr). Beginning with in-situ N2-

bake at 800˚C, after ramp-down and stabilizing at 500˚C, a thin Si-buffer layer (<2 

nm) was selectively grown with SiH4/HCl, followed by a selective Si0.8Ge0.2-buffer 

layer (10-15 nm) deposition with SiH4/GeH4 at 400˚C. The Ge concentration ~21.8% 

was measured by EDX as shown in Fig. 3.2. Two different types of samples with 

different buffer layers were prepared: Si/SiGe and SiGe buffer only. For samples with 

Si/SiGe buffer, the Si-buffer thickness was increased to ~6 nm followed by the same 

Si0.8Ge0.2-buffer. Those with SiGe buffer only have a thin Si-buffer of <2 nm. All 

samples were then subjected to SEG low-temperature Ge seed (10 nm) growth at 400 

˚C followed by SEG Ge (150 nm) at 600 ˚C and subsequently capped with 5 nm Si 

with SiH4 [3.5] . The Ge film surface was then patterned, implanted with As (1×10
15

 

cm
-2

/15 keV) and BF2 (110
15

 cm
-2

/15 keV), and annealed at 600 ˚C for 10 s to form  
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Fig. 3.2: (a) High-resolution TEM of the interfacial layers for samples with Si/SiGe 

buffer layer (6 nm of Si and 12 nm of SiGe). (b) The cross-sectional TEM view of  

the corner of the SEG-Ge on Si/Si0.8Ge0.2 buffer layer on p-type silicon substrate. 
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the n+ and p+ junctions. Ohmic contacts to the Ge n+/p+ were formed with Al 

metallization (25 nm TaN/600 nm Al) on 320 nm of PECVD oxide. 

3.3 Results and Discussions 

Fig. 3.2 (a) shows the high-resolution TEM of the SEG-Ge with Si/SiGe 

buffer. EDX showed very consistent Ge concentration (~92.1-94%) across the Ge film 

with Si/SiGe buffer without trace of Si migration at various locations. For both splits, 

no cross-hatch pattern was observed on the Ge top surfaces. Samples with Si/SiGe 

buffer show smoother surface, for scanning area of 55 m
2
, root-mean square 

roughness ~0.68 nm is obtained, whereas SiGe buffer shows ~1.068 nm. Although the 

epi-deposition in this study was conducted in SEG scheme, the beneficial effect of Si-

buffer on subsequent Ge surface condition is consistent with that reported for blanket 

deposition as in [3.6] . Threading dislocation (TD) is evaluated by subjecting the Ge 

surface to selective etchant composing of ~55% CrO3 and DHF (~49%). The 

estimated etch pits density (EPD) is 3.810
6
 cm

-2 
for sample with Si/SiGe buffer and 

~9.610
6
 cm

-2
 for SiGe buffer sample. These EPD results are comparable to the defect 

density ~2.3×10
6
 cm

-2
 obtained by Luan et al, using two-steps Ge deposition but with 

additional high temperature cyclic anneal [3.7] . 

In Fig. 3.2 (b), the image of the Ge mesa’s edge is shown. This selective Ge 

growth on patterned SiO2/Si wafer was achieved by the same epi-growth method. 

From the image, a smooth surface o f the Ge layer can be observed. It also can be seen 
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that Ge layer was only grown on the Si region. There is no Ge growth on the SiO2 

region. The main reason of this selective Ge growth is that the reaction between GeH4 

and SiO2 growth forms volatile GeO and retards the nucleation of poly Ge on SiO2. 

At the same time, the facets are visible on the edge of Ge mesas. The three types of 

facets on the edge are (311), (111) and (113). The facets play the role of strain 

relaxation during selective Ge growth. 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Micro-Raman spectroscopy on Ge films selectively grown on different 

buffer layers on Si(001) substrate compared to bulk Ge substrate. SEG Ge on 

Si/SiGe buffer shows peak shift of 2.6 cm-1 which corresponds to tensile strain of 

0.63% while that on SiGe buffer alone shows lower peak shift of 0.5 cm-1, 

corresponding to tensile strain of 0.12%. Asymmetric broadening of the Raman 

spectra observed is due to tensile strain which causes a splitting of the threefold 

degeneracy of the zone center phonons into a singlet and doublet [3.8] . 

Film quality and in-plane strain in the Ge layers were evaluated using Raman 

spectroscopy with 514.5 nm Ar
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as shown in Fig. 3.3 (a). Both SiGe and Si/SiGe buffer samples show red-shift of Ge-

Ge vibrational mode compared to bulk Ge, indicating tensile strain in the SEG-Ge 

film.  The in-plane strain component can be calculated from || b where b = -

415 cm
-1

 using the elastic and strain tensor constant from [3.9] . From Fig. 3.3(a), it 

can be observed that samples with SEG-Ge grown on Si/SiGe buffer layer experience 

an in-plane tensile strain of 0.63%. Our strain results for Si/SiGe buffer are 

significantly higher than [3.4] . The major difference is the presence of the LT-Si and 

SEG-Ge in the current study, which is expected to form a primary misfit-dislocation 

(MD) network [3.10]  due to the stress field during SEG Ge growth. The underlying 

MD network due to the compliant micro-crystalline Si layer is expected to have an 

even lower thermal coefficient of expansion (TCE) [3.11]  compared to Si bulk. In 

contrast, samples with SiGe buffer (13.6 nm) have lower tensile strain of 0.12%. The 

enhanced tensile strain in Ge using Si/SiGe buffer results in bandgap narrowing, 

which will increase photon absorption and responsivity at a longer wavelength region 

[3.3]. 
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Fig. 3.4: Photocurrent spectral response for tensile-strained Ge PIN photodetectors 

with Si/SiGe buffer (=0.63%) and SiGe buffer (=0.12%). Inset shows the light and 

dark current leakage of SEG Ge on SiGe and Si/SiGe buffer layers for detectors 

with diameters of 28 m and lateral spacing of 0.2 m. Laser with wavelength of 

1310 nm is coupled via fiber (m.f.d = 8 m) onto the photodetector. Si/SiGe buffer 

shows significant improvement in dark current, photoresponse and spectral range 

due to enhanced tensile strain and better Ge film quality.  

Fig. 3.4 shows the responsivity spectra of the lateral Ge PIN photo detector 

(circular ring with  = 28 m
 
and finger spacing S = 2 m) under normal incidence 

illumination using laser diode with multi-mode fiber probe at λ=1.52 to 1.62 m. 

Samples with Si/SiGe buffer show wider and higher photoresponse of ~190 mA/W at 

1.52 m compared to those with SiGe buffer which could be attributed to the 

enhanced tensile strain. The responsivity is reasonable considering the thickness of Ge 

(≤ 0.2 m) and inherent mismatch between the multi-mode fiber and photodiode 
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aperture during testing. In comparison, Colace et al. have obtained responsivity of 240 

mA/W at 1.32 m for 0.4 m thick Ge [3.12] . Fig. 3.4 inset shows the leakage 

current of the PIN photodetector at 25 ºC. Samples with Si/SiGe buffer show lower 

dark current and higher photocurrent (λ = 1310 nm) compared to samples with SiGe 

buffer, due to better Ge film quality with lower threading dislocations.  

The temporal response of several ring-shaped lateral detectors ( = 9 m, 

electrode spacing S = 1.5 m between the n
+
 and p

+
 regions) were measured using 

1.55 m pulsed fiber laser (optical pulse width of 80 fs), microwave probes and a 15 

GHz sampling oscilloscope. Fig. 3.5 shows the pulsed response and the Fast-Fourier-

Transform (FFT) for Ge PIN with Si/SiGe buffer and SiGe buffer. The 3-dB 

bandwidth is estimated to be ~5.2 GHz (Si/SiGe buffer) and ~1.17 GHz (SiGe buffer) 

at 1-V. Carrier mobility calculated from the transit time for photocurrent at full-width 

at half maximum (FWHM) pulse [3.12]  shows mobility of  = 3084 cm
2
/Vs and 377 

cm
2
/Vs for samples with Si/SiGe and SiGe buffer respectively. Bandwidth for Si/SiGe 

buffer is limited by the transit time with carrier mobility close to theoretical Ge 

mobility. In contrast, those of SiGe buffer shows significant speed degradation with 

long transient tail. Possible reasons are carrier interactions with higher density of slow 

traps in Ge on SiGe buffer, and slow carriers from underlying Si. In this case, as 

SIMS analysis for SiGe and Si/SiGe shows similar Si profile, it is confirmed that the 

degraded speed and responsivity in SiGe samples are not due to Si-Ge interdiffusion. 

Rather, it is speculated that the MD network present in Si/SiGe buffer may prevent 
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the underlying Si from interacting, resulting in enhanced speed even on Si substrate.  
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Fig. 3.5: Fast Fourier transform of the temporal response with bandwidth of 5.2 

GHz (Si/SiGe buffer) and 1.17 GHz (SiGe buffer) is obtained at -1 V under normal 

incidence pulse from 1550 nm fiber laser with optical pulse width of 80 fs. The 

mobility calculated from FWHM transit time 



d

FW HM   for Si/SiGe and SiGe 

buffer are 3084 cm2/Vs and 377 cm2/Vs respectively.  Inset shows the impulse 

response under 1 V reverse bias for Si/SiGe and SiGe buffer samples.  

3.4 Conclusion 

This chapter studies the electrical/optical characteristics of selectively grown Ge 

on SiGe and Si/SiGe buffer on Si for optical photodetection. Using an additional Si 

epitaxial layer as buffer layer, dark current is reduced by half to 0.12 A (circular ring, 

area = 1230 m
2
 and spacing, S = 2m) at 1 V with smooth surface and low 

dislocation density without cyclic anneal or additional chemical-mechanical polishing. 
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By leveraging on the misfit dislocation network in the Si/SiGe buffer, tensile strain in 

Ge layer is increased. Lateral PIN Ge photodetector fabricated on this Ge platform 

shows photoresponsivity of ~190 mA/W at 1.52 m and extended photon detection to 

1.62 m wavelength with 3-dB bandwidth at 5.2 GHz at 1 V.  
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CHAPTER 4 

 

4. Evanescent-Coupled Ge-PIN Photodetectors 

on Si-Waveguide with SEG-Ge and Comparative 

Study of Lateral and Vertical PIN Configurations 

4.1 Introduction 

As discussed in Chapter 3, from the results of normal incidence Ge 

photodiodes, it is found that a Si buffer layer coupled with Si0.8Ge0.2 buffer is critical 

for low leakage, high photoresponse and device speed due to its better film qualities 

and higher tensile-strain induced in the Ge layer. In this chapter, waveguide-

integration structure is utilized to leverage the trade-off between sensitivity and speed. 

Unlike normal incidence scheme, to decouple the light absorption and photo-carrier 

collection, light is delivered into the photodetector from the Si waveguide underneath 

the Ge layer. Therefore, it is of interest to examine the impact of the buffer layers on 

the waveguided photodetectors. 

4.2 Background 

Ge-on-Si photodiodes are critical for low-cost Si-based optical-electronic-

integrated-circuit; integration of Ge on Si however has been very challenging due to 

Ge/Si lattice mismatch. Nonetheless, low-defect Ge was demonstrated by many 
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groups [4.1-4.3], with improved device performance in terms of dark current, 

responsivity and speed. To further improve, structure of the photodetector becomes 

important as well. Waveguide geometry is considered to be one of the key solutions, 

where high absorption efficiency and high speed can be realized simultaneously due 

to the light absorption perpendicular to current collection and thus de-coupling of 

efficiency from the active region thickness [4.4]. Different coupling schemes, e.g., 

evanescent- and butt-coupling, and different detector structures, e.g., Metal-

Semiconductor-Metal (MSM) [4.5] and vertical Ge PIN [4.6-4.7], have been 

demonstrated. 

This study reports on results of evanescent-coupled waveguided lateral Ge 

PIN photodetectors (LPD) and its comparative analysis with vertical Ge p-Si/i-Ge/n-

Ge PIN (VPD). 

4.3 Experimental 

Starting with (100) SOI with 180-nm-thick p-type Si (~8-15 Ωcm) and 1-μm-

thick SiO2 insulator, waveguide (width 0.6 m/height 180 nm) and detector region 

were defined by lithography and dry etch. For VPD, detector region was implanted 

with BF2 1×10
15 

cm
-2

/15 keV and annealed at 1000 °C to form p+ region. 

Subsequently, PECVD oxide ~150 nm was deposited on all samples, patterned and 

dry/wet etched to form 4.4-μm-wide 80-μm-long square windows for Ge deposition. 

Then ultra-thin Si seed (~10 nm, 500 °C), Si0.8Ge0.2 (~25 nm, 350-400 °C) buffer, 



 

56 

low-temperature Ge seed (~10 nm, 400 ˚C), and high-temperature strain-relaxed Ge 

(~100 nm, 600 ˚C) were sequentially deposited in a UHVCVD chamber with base 

pressure of 7×10
-9

 Torr [4.3]. The samples were implanted with BF2 or As of the same 

condition (dose 1×10
15

 cm
-2

, energy 15 keV) and thermally activated at 600 °C for 10 

s to form p+/n+ region for LPD (i-region ~2.6 m) and n+ region for VPD. Finally, 

ohmic contacts were formed by a thin layer of TaN (25 nm) and Al (0.75 μm) 

deposition and patterning. Fig. 4.1 illustrates the schematic of lateral and vertical PIN 

configurations. Fig. 4.2 (a) & (b) show the TEM image of the SEG-Ge on Si and the 

SEM image of LPD, respectively.  

 

Fig. 4.1: The schematic structure of both lateral and vertical PIN configurations. 
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Fig. 4.2: (a) TEM image of the selective epi grown (SEG) Ge on Si/SiGe buffer on Si. 

The observed Ge surface roughness beneath the metal contact is due to the process 

non-ideality in the contact-etch step that causes over-etch to the Ge layer. The 

original as-deposited Ge-surface was smooth (rms~ 0.4 nm) as verified by AFM. (b) 

SEM image of LPD. 
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4.4 Sample Measurement Setup and Optical Simulations 

 

Fig. 4.3: Schematic of waveguided photodetector measurement setup. 

The waveguided photodetector measurement is conducted on an optical bench 

whose configuration is schematically shown in Fig. 4.3. The Device-Under-Test 

(DUT) is held on stage with backside vacuum. An electrical probe contacts the probe 

pad on chip. An Agilent 4156 parameter analyzer connects the probe and monitors the 

current/voltage of the DUT. Tunable laser source generates the laser with optical 

wavelength in the range of 1520-1620 nm. The output laser power is tunable from 10
-

3
 dBm to 8 dBm. A piezoelectric polarization controller is used to adjust the laser 

polarization without affecting the laser power. The laser is then coupled into on-chip 

waveguide through an optical fiber and lensed fiber (spot size 2.5±0.3 μm) whose 

position is controlled by precision XYZ 3-direction controller.  

Before measurement, the samples are diced and polished. After sample 

placement, the fiber-waveguide coupling was optimized by adjusting the position of 
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the fiber to maximize responsivity which is monitored by parameter analyzer. Once 

fiber adjustment is done, the photocurrent of photodetector at bias was measured. 

To estimate the fiber-to-waveguide mode-conversion loss, the simulation of 

the optical structure is performed by Beam Propagation Method (BPM) using 

commercial software (RSoft 
TM

). The result is presented in Fig. 4.4. 

 

 

Fig. 4.4: Simulated light power distribution and total integrated power along the 

propagation direction. Ge’s absorption is set to be zero. 

For the study of coupling loss only, Si waveguide (refractive index n=3.5, 

height 180 nm) and non-absorptive Ge layer (refractive index n=4.2, height 220 nm) 

are used and the total light power in the simulated space is monitored. As can be seen, 
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the normalized total light power drop from 1 to 0.94 due to mode incontinuity. So it is 

calculated that the mode-conversion loss for the Si-waveguide/Ge-layer is -0.27 dB. 

To check whether the 220 nm Ge layer is thick enough for complete 

evanescent-coupling, the same structure is used but with absorptive Ge layer 

(n=3.5+0.05j, the imaginary part of n corresponds to absorption coefficient of 4000 

cm
-1

 for tensile strained Ge). As shown in Fig. 4.5, light couples up effectively into 

Ge layer. And only less than 5% of light power remains at the end of 20-μm-long Ge 

layer. 

 

Fig. 4.5: Simulated light power distribution and total integrated power along the 

propagation direction. 
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Fig. 4.6: Schematic of temporal response measurement setup. 

Time-domain pulse response measurement was used for bandwidth extraction. 

The configuration of the measurement system is plotted in Fig 4.6. By examination of 

the response electrical pulse as a result of the incoming optical pulse, the response 

speed of the device can be derived. The excitation optical pulse is generated with 

pulse width ~ 80 fs and wavelength of 1550 nm. The electrical pulse from 

photodetector was measured by a system comprising digital sampling oscilloscope 

with nominatal 50 GHz bandwidth, bias network and high speed micromave probe. 

Regarding the data collection procedure, in the 50 GHz oscilloscope showing 

the electrical pulse generated from the photodetector, the temporal resolution is 

adjusted to be the smallest (0.05 ps) and the data sampling window the largest (0.05 

ps*4096 data points=205 ps). In this way, for the typical electrical response pulse 

with ~30 ps foot-to-foot width, there will be 600 sampled points in the pulse region 

and the 200 ps sampling window is 5 times wider than the pulse. Practically, it is 
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expected that the high resolution will avoid the possibility of ignoring of details in the 

pulse and by FFT analyzing the complete length of the sampled 205-ps-long curve; 

long tail will also be included for the bandwidth calculation. 

4.5 Results and Discussion 

4.5.1 I-V Characteristics 

The current-voltage (I-V) measurement was carried out on both LPD and VPD. 

Fig. 4.7 (a) shows the typical I-V curves of the devices, demonstrating low leakage 

current at -1 V bias of 0.44 μA and 0.74 μA for VPD and LPD, respectively, which 

are both below the 1 μA limit for high speed receiver application [4.8]. For Idark 

mechanism, each type of device was fitted to more than one mechanism including 

band-to-band generation [4.8], Shockley-Hall-Read (SHR) effect [4.8] and Poole-

Frenkel process [4.9-4.13]. The dark current mechanism of VPD is determined to be 

trap-assisted generation in the depletion region, the so-called SHR process; while the 

I-V-temperature behavior of LPD only fits Poole-Frenkel effect which describes the 

attenuation of the Coulombic potential barrier under the influence of electric field. Fig. 

4.7 (b) shows the field dependency of the Idark of LPD considering Poole-Frenkel 

effect which can be modeled by the following expression: 

exp( )PF
dark

q q
I CE

kT

 
   

 


EE
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q
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(Eq 4.1) 

(Eq 4.2) 
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Fig. 4.7: (a) I-V curve of LPD and VPD at room temperature. The I-V 

characteristics have good uniformity as confirmed by testing more than 20 devices of 

VPD and LPD, respectively. (b) logarithm of LPD’s conductivity ln(I/E) as a 

function of E where =0.68. The temperature increment step is 10 °C. Good fit is 

observed for modified Poole-Frenkel barrier lowering thermal emission model with 

E0.68 dependency. 
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where C is constant, E is the electric field in i-region, qis zero-field ionization 

energy from Coulombic traps , k is Boltzmann const, T is temperature, K is the 

dielectric const of Ge and  is a constant ranging from 0.5 to 1 [4.13]. Using the above 

equation with =0.68, the dielectric constant of K=13~21 is extracted at T=298 K to 

348 K which is in the range of the theoretical dielectric constant of 16~16.2 for Ge. A 

field power exponent >0.5 for the modified Poole-Frenkel conduction is required due 

to non-uniform spatial distribution of the traps as well as influence of the electrode on 

bulk charge [4.13]. From Fig. 4.7 (b), it can be observed that Idark in the LPD can be 

very well described by the modified Poole-Frenkel effect with a field power exponent 

of 0.68. 

4.5.2 Responsivity Measurement 

The method of the responsivity calculation is the same as what is described in 

[4.7] by Ahn et al. 

 

Fig. 4.8: Schematic of responsivity measurement 

1. Optical propagation loss WG is extracted from the adjacent reference 

waveguide using cut-back method. 
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2. Fiber-waveguide coupling loss LossFB-WG is calculated by subtracting the total 

propagation loss from the overall loss.  

LossFB-WG = Losstotal -WG * LengthRefWG.  

3. The power sent into the detector is calculated as follows:  

WG( ) /10

detector inputP =P 10 FB WG WGLoss Length  
  

 Where Pdetector is the power at the input facet of the photodetector; Pinput is the 

input light power of the laser equipment; LengthWG is the length of the 

waveguide under test. 

4. The responsivity is calculated by the equation below:  

 det

det

response

ector

ector

I
R

P


 

 

For optical characterization, since the waveguide (width 0.6 m/height 180 

nm) favors Transverse Electric (TE) -mode transmission [4.6], the TE polarization of 

input laser is chosen to transmit the maximum power to the detector. The fiber-

waveguide coupling loss and waveguide propagation loss at λ=1550 nm were 

estimated 4.0±0.5 dB/facet and 10±1 dB/cm respectively as characterized on adjacent 

reference waveguides. The responsivity was extracted in a method similar to [4.7]. 

Fig. 4.9 compares the detectors’ responsivity corrected for the losses. For VPDs, 

responsivity reaches plateau of 0.29 A/W at low onset bias of -0.5 V. The low 

responsivity is possibly attributed to the large overlap between the optical mode and 

the highly-doped n+ region in Ge layer since the light absorbed beyond the diffusion 

(Eq 4.3) 

(Eq 4.4) 

(Eq 4.5) 
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length in Ge n+ region does not contribute to detection. The reasoning is illustrated in 

the optical mode in Fig. 4.10.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.9: Plot of responsivity of LPD and VPD as a function of reverse bias. The 1.16 

A/W responsivity of LPD corresponds to ~90% quantum efficiency. (The theoretical 

100%-quantum-efficiency responsivity is 1.25 A/W at wavelength of 1550 nm) 

The optical modes for both VPD and LPD are calculated. The optical mode 

overlap with the highly-doped-region of VPD is seemingly much larger than that of 

LPD as confirmed by simulation (using beam propagation method (BPM)). To 

quantify that, the light intensity over the highly-doped (n+, p+) region is integrated; 

the results show the overlapped light power in VPD is 5 times of that in LPD. This 

may suggest that the optical mode overlap could be one reason of the lower 

responsivity of VPD. 
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Fig. 4.10: Calculated optical mode of VPD and LPD. The result reveals larger 

optical mode overlap with highly-doped Ge region in VPD. 
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Fig. 4.11: Comparison of the various photodetectors’ responsivity and dark current 

Idark. 

Another possible reason is the defects in the Ge/Si interface which could act as 

recombination centers [4.14] and consume a portion of photogenerated electron/hole. 

On the other hand, responsivity of LPDs reaches as high as 1.16 A/W which 

corresponds to ~90% quantum efficiency at -5 V under high electric field across the 

long intrinsic Ge region horizontally, suggesting low defects in the bulk and surface 

of the Ge layer. Fig. 4.11 benchmarks current results with previously reported where 

responsivity is plotted against the logarithm of dark current. By considering both dark 

current and responsivity, it can be observed that the evanescent-coupled LPD matches 

to one of the best responsivities for given dark current. For clarity, Table 4.1 shows 

the comparison of the investigated devices with other groups’ work. 
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Table 4.1: Comparison of the various photodetectors’ performance indices. 

Reference structure Idark(uA) Responsivity@1550(A/W) 
3dB bandwidth 

(GHz) 

Ref [4.5] waveguided Ge MSM 130@1V 1±0.2@1V 10@1V 

Ref [4.7] waveguided Ge PIN 0.9@1V 0.87@1V 7.2@1V 

Ref [4.15] 
normal incidence Ge 

PIN 
1.2@1V 0.75@1V 2.5@1V 

Ref [4.16] 
Ge interdigited lateral 

PIN 
0.9@5V 

~0.6 bias condition 

unknown 
1.8@5V 

Ref [4.17] 

waveguided 

AlGaInAs-silicon 

hybrid 

0.05@1V 0.32@1V 0.467@4V 

Ref [4.18] waveguide poly-Ge 1.5@30V 0.076@30V 1@30V 

Ref [4.19] 
waveguide SiGe/Ge 

multiquantum well 
0.1@10V 0.08@10V --- 

Ref  [4.20] 
normal incidence Ge 

PIN 
0.08@1V 0.035@0V 39@2V 

This Work 

VPD 
waveguided Ge PIN 0.44@1V 0.29@1V 4.4@1V 

This Work 

LPD 
waveguided Ge PIN 0.74@1V 0.81@1V 2.8@1V 

*If not mentioned, the data listed is at reverse bias of 1V. 

4.5.3 Detector Response Speed 

 

 

 

 

 

 

 

 

 

Fig. 4.12: Temporal impulse response of LPD and VPD at 1V, 3V, and 5V reverse 

bias. Inset shows the 3dB bandwidth of the devices. 
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(Eq 4.6) 

The temporal response of both LPD and VPD were measured using 1.55 μm 

pulsed laser with 80 fs pulse width. Devices were probed with microwave probes and 

measured with a 15 GHz sampling oscilloscope. DC bias was coupled through a 50 

GHz bias tee. Fig. 4.12 shows the pulsed response. The 3-dB bandwidth is 2.8 (LPD) 

and 4.4 GHz (VPD) at -1 V bias. When reverse bias rose to -5 V, 3dB bandwidth 

increases to 3.4 (LPD) and 5.5 GHz (VPD). The bandwidth is limited by effects of 

large parasitic capacitance (~500 fF) from large probe pad [4.7] and large 

inductance/series-resistance from the narrow metal lines (~4 m) connecting the 

devices and the probe pads. The following section discusses the degradation of speed 

in details. 

4.5.4 Speed Degradation Analysis 

The overall 3dB bandwidth can be expressed following the equation 

     
 

 
   

 
 

        

 

Where fRC is the RC delay limited bandwidth and ftransit is the transit time 

limited bandwidth. 

For our device, the layout of the probing pads in the devices is shown 

schematically in Fig. 4.13. The isolation oxide below the metal pad is 1.5 m thick. 
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Fig. 4.13: Probing pads for photodetectors bandwidth measurement. 

Using a first order approximation, the capacitance of the probe pad can be 

calculated from a parallel-plate capacitor with the same metal area and 1.5 um oxide 

in between the plates. 
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Accordingly, the Resistance-Capacitance (RC) delay limited speed is then 

given by 

    
 

    
 

 

                
       

On the other hand, the transit time limit bandwidth can be calculated using 

equation 2.1 as follows,  

For VPD: 

              
 

 
      

          

      
         

For LPD: 

              
 

 
      

          

      
        

(Eq 4.7) 

(Eq 4.8) 

(Eq 4.9) 

(Eq 4.10) 
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As can be seen, the RC delay limited 3dB frequency is much than transit time 

limited cut-off frequency for both cases of VPD and LPD. Therefore, large 

capacitance induced by the large area of the probe pads is one of the major limiting 

factors of the devices’ speed. 

Using equations 4.6 to 4.10, the overall 3dB frequency can be calculated to be 

5.8 GHz for VPD and 3.4 GHz for LPD. This is in agreement with our experimental 

results. 

The low speed of the devices is not at all unexpected given the fact that the 

devices are our first attempt which is designed only for resolving the problems of 

(material) Ge epi growth on Si and (DC performance) higher responsivity. As a result, 

the high-speed-required design is not included in this batch, such as Ground-Signal-

Ground (GSG) metal line configuration, proper microwave transmission line, and 

small probe pad. 

4.6 Conclusion 

In this chapter, it is demonstrated lateral Ge PIN with comparison to the 

vertical p-Si/i-Ge/n-Ge PIN photodetectors, both monolithically integrated with Si-

waveguides on a SOI platform. From the results and analysis, given sufficiently low 

dark current, optimizing the probe pads’ and metal lines’ design, and shortening the 

p/n spacing in lateral PIN configuration are expected to achieve higher detector speed 

with maintained high responsivity. 
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CHAPTER 5 

 

5. Low-Voltage High-Speed Evanescent-Coupled 

Thin-film-Ge Lateral PIN Photodetectors 

Integrated on Si-Waveguide 

5.1 Introduction 

From the first attempt of waveguided Ge photodetector fabrication 

demonstrated in Chapter 4, it is found that the detector’s 3dB bandwidth is limited by 

the large device capacitance due to relatively long device length of 100 μm together 

with parasitic effects. In the second attempt presented in this chapter, much higher 

speed was obtained by employing new device designs. 

5.2 Background 

Si-based electronic-photonic integrated circuit has gained increasing attention 

as a promising candidate for next generation semiconductor technology [5.1]. Being 

an important part of the building blocks, Ge is the best choice for photodetection (1.3-

1.55 μm) for its process compatibility with the Si platform. In spite of 4.2% lattice 

mismatch between Ge and Si substrate, high quality Ge growth on Si has been 

demonstrated [5.1-5.5]. Taking advantage of selective-epitaxy growth in small area, a 

modified two-step Ge epitaxy procedure is developed where an ultra-low temperature 
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SiGe buffer is introduced in additional to the low/high temperature prepared Ge layer, 

with dislocation density in Ge as low as 6× 10
6
 cm

-2
 without subsequent anneal [5.6]. 

As device performance is improved in terms of dark current and responsivity and 

speed, the key to further improvement lies in the optimization of the detector structure. 

Waveguided detection scheme, where the light absorption is perpendicular to current 

collection, is capable to achieve high absorption efficiency and high speed 

simultaneously due to the de-coupling of the efficiency from thickness [5.1]. Different 

coupling schemes, e.g., evanescent- and butt-coupling, and different detector 

structures, e.g., Metal-Semiconductor-Metal (MSM) [5.7] and vertical Ge PIN [5.2, 

5.8] have been reported. In Chapter 4, another typical Ge detector structure, i.e., 

lateral PIN-integrated with Si waveguide is demonstrated, and the vertical PIN and 

lateral PIN waveguided photodetectors are compared, both exhibiting reasonably 

good device performance. It is shown that when Ge photodetection layer thickness is 

reduced to ~ 200 nm for effectively cost saving, lateral PIN structure can achieve 

much higher quantum efficiency as compared to vertical PIN due to less light 

consumption in the highly-doped region while achieving similar response speed 

[5.10]. 

In this chapter, the excellent scalability of the waveguided lateral PIN Ge 

detectors is further demonstrated targeting for low voltage operation (-1 V). With 

shrunk detector dimensions, the device with thin Ge (~220 nm) showed low dark 
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current (~0.06 μA), high internal responsivity (~0.65 A/W) with speed as high as ~18 

GHz. 

 

Fig. 5.1: The schematic structure of lateral PIN configurations. 

    

Fig. 5.2: The schematic structure of lateral PIN configurations. 
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5.3 Experimental 

The process started with 8” (100) silicon-on-insulator (SOI) wafer with 180-

nm-thick top p-type Si (~8-15 Ωcm) on 1 μm buried oxide. Si-waveguide and detector 

regions were patterned by 248 nm deep-ultra-violet lithography and reactive-ion-

etching. Subsequently, plasma enhanced chemical vapor deposition (PECVD) oxide 

(~150 nm) was deposited, patterned and dry/wet etched to form square windows for 

later selective Ge epitaxial growth. The square windows defined the Ge-photodetector 

area, with width of 2.4 μm and length in range of 5-20 μm. After standard cleaning, Si 

seed layer (~10 nm, 500 °C), Si0.8Ge0.2 (~25 nm, 350-400 °C) buffer layer, low-

temperature Ge seed (~10 nm, 400 °C), and high-temperature Ge (~180 nm, 600 °C) 

were sequentially deposited in a ultra-high vacuum chemical vapor deposition 

(UHVCVD) chamber with base pressure of 7× 10
-9 

Torr [5.5]. The samples were 

implanted with BF2 or As of the same condition (dose 1×10
15 

 cm
-2

, energy 15 keV) to 

the corresponding area to form p+/n+ regions. The dopants were thermally activated 

at 600 °C for 1s. After SiO2 deposition and contact formation, TaN (25 nm) and Al 

(0.75 μm) were deposited and patterned. Fig. 5.1 illustrates the schematic of the 

lateral PIN detector. The light propagates through the Si waveguide into the detector 

region, and then couples evanescently into the overlying Ge region where absorption 

occurs. A scanning-electron-microscope (SEM) picture of the fabricated device is 

shown in Fig. 5.2. 
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5.4 Results and Discussion 

For the devices with length of 20 μm and spacing of 0.8 μm, Fig. 5.3 shows 

the typical temperature-dependant current-voltage characteristics. At room 

temperature, the device has a good rectifying characteristic with low leakage current 

of 0.06 μA. The low leakage renders the devices more-than-acceptably suitable for 

high speed receiver application which requires dark current below 1 μA [5.9]. Fig. 5.4 

shows the Arrhenius plot of the dark current Idark/T
3/2

 with activation energy of Ea ~ 

0.31 eV, which corresponds to roughly half of the Ge bandgap (~ 0.66 eV), 

suggesting thermal generation and recombination of carriers in the intrinsic Ge layer 

as the major dark current mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3: Dark current for lateral Ge PIN photodiodes. 
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Fig. 5.4: Arrhenius plot of dark current for lateral PIN Ge photodiodes on SOI 

substrates. Selective epitaxial Ge on SOI substrate shows trap assisted tunneling due 

to Shockley-Hall-Read (SHR) process with activation energy ~ 0.31 eV. 

 

Fig. 5.5: IV curve with and without 1550 nm illumination for a typical 20 μm-long 

device. 
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Fig. 5.6: 20 μm-long lateral Ge PIN photodiode’s responsivity/quantum efficiency at 

wavelength of 1550 nm. 

For the optical characterization, since the Si waveguide (width/height of 0.6 

m/180 nm) favors transverse electric (TE) mode transmission, to deliver high power 

to the detector, TE polarization of input laser was chosen. Fig. 5.5 shows I-V 

characteristics of a waveguide-integrated 20-m-long Ge PIN diode, with and without 

1550 nm laser coupled into the detector through the Si waveguide. Fig. 5.6 plots the 

device’s responsivity together with the corresponding quantum efficiency. The 

photocurrent reaches maximum at reverse bias below 1 V, suggesting that even under 

low bias strong horizontal electric field exists in Ge intrinsic region indicating good 

Ge material quality. With the laser power of 1 mW at the end of the lensed fiber, the 

device under -1 V bias shows ~130 uA response current corresponding to an external 

responsivity of 0.13 A/W. Furthermore, the fiber-waveguide coupling loss and 

waveguide propagation loss at λ =1550 nm were estimated ~ -5± 0.5 dB/facet and ~ -
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10±1 dB/cm respectively as characterized on adjacent reference waveguides. Using 

the same method described in [5.8], the power reaching the Ge detector was estimated 

to be ~200 μW. Thus the internal responsivity of the 20-μm-long detector is 

calculated to be ~ 0.65± 0.07 A/W. According to simulation using beam propagation 

method (BPM), the mode-conversion loss between Si waveguide and the Ge/Si region 

calculated to be -0.27 dB and 20 m length is enough for ~90% quantum efficiency 

when absorption coefficient of 4000 cm
-1

 is assumed for tensile strained Ge [5.11]. 

The difference between simulation and experimental result could be attributed to the 

Si up-diffusion into Ge layer which results in reduced Ge absorption coefficient. 

 

Table 5.1: Performance comparison of the fabricated photodetectors. 

Source Structure 

Ge 

thickness 

(nm) 

Spacing 

(m) 

Length 

(m) 

Idark 

@-1 V (nA) 

Resp. 
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m @-1V 

(A/W) 

3dB BW 

@-1 V 

(GHz) 

[5.8] 

Normal 

incidence 

PIN 

800 0.3 - 80 - 
25@0 V 

39@-2 V 

[5.6] 

WG 

vertical 

PIN 

1100 1.1 10 900 0.87 7 

[5.7] WG MSM 330 1 10 105 1 10 

[5.2] 

WG 

vertical 

PIN 

800 0.7 100 
267 

@-2 V 
1.16@-2 V 

10@0 V 

29.4@-2 V 

This Work 
WG lateral 

PIN 
220 0.8 

5 15 0.4 

18 

10 30 0.5 

15 45 0.58 

20 60 0.65 
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It can be seen that, with comparable device performance, the detectors’ Ge 

detection layer thickness is the thinnest which is critical for effective cost reduction in 

future industrialized massive integration. 

The temporal response of the detector were measured using 1.55 μm pulsed 

laser with 80 fs pulse width. Devices were probed with microwave probe and 

measured with a 50 GHz sampling oscilloscope. DC bias was coupled through a 50 

GHz bias tee. Fig. 5.7 shows the typical pulse response of a 20-μm-long detector 

under 1 V reverse bias. The full-width-at-half-maximum (FWHM) is 17 ps. The Fast 

Fourier Transform (FFT) of the temporal pulse curve indicates a 3dB electrical 

bandwidth of 18 GHz. Fig. 5.8 shows the bandwidth of the device with applied 

reverse voltage of 1, 3, 5, 10 V. As can be seen, the bandwidth saturates at 18.5 GHz 

with reverse bias voltage larger than 5 V. 

 

Fig. 5.7: Temporal impulse response of 20 μm-long detector at -1 V reverse bias. 

Inset shows Fourier transform of the data. 
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Fig. 5.8: 3dB bandwidth of the device vs. bias voltage. 

The experimental speed results agree well with the estimation considering 

both resistance-capacitance (RC) delay and transit time limitations. It is worth noting 

that due to the lateral layout of P and N regions, the device’s PN junction area was 

determined by the detector length and Ge thickness. This difference from the vertical 

PIN structure makes the intrinsic depletion capacitance in lateral PIN diode much 

smaller than the capacitance from vertical structure due to the small junction area as a 

result of thin Ge layer. For 20-m-long device, the intrinsic depletion capacitance is 

estimated to be 0.8 fF which is negligible compared with the calculated probe pad 

(80× 80 m
2
) capacitance of 133 fF. Therefore, the overall device capacitance mainly 

comes from the parasitic effect, namely the probe pad capacitance. Using R=50 Ω of 

the osillopscope, the estimated RC limited bandwidth is f=(2πRC)
-1

=23.8 GHz. Using 

the electron and hole drift saturation velocities of 6× 10
6
 cm/s [5.13, 5.14], the transit-
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time limited bandwidth for the 0.8 μm-spacing detector is 33.2 GHz. Hence, 

combining these two factors, the estimated overall bandwidth is 19.3 GHz, which is 

close to the experiment. While the experiment fits well with the theory, further work 

is needed for direct frequency-domain measurement which is necessary for 

comprehensive analysis of the detectors’ speed performance. 

As suggested in the calculation above, excluding the probe pad capacitance 

effects, the detector’s intrinsic speed is expected to be limited only by the carrier 

transit time and the expected bandwidth is ~30 GHz. In fact, due to the low intrinsic 

capacitance which is the merit of the lateral PIN structure, one can increase the 

responsivity by fabricating longer device with well remained high speed. According 

to the simulation, 100-m-long photodiode with the same P/N spacing will show 90% 

quantum efficiency and maintained high speed with only 3.2 fF depletion capacitance 

larger than the 20-m-long device. 

Figs. 5.9 shows eye diagrams obtained with a 20-μm-long device at a reverse 

bias of 1 V using 10 Gbit/s Digital Communication Analyzer (DCA) and a 

commercially available 40 Gbit/s LiNbO3 modulator. The eye aperture is satisfactory. 

It is worthwhile underlining that a low reverse bias is an important characteristic for 

electrical compatibility with silicon high-speed electronics. 
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Fig. 5.9: Eye diagrams at 10 Gbit/s in a 20-μm-long detector reverse biased at 1 V. 

5.5 Conclusion 

In this chapter, scaled thin-film-Ge lateral PIN photodetectors monolithically 

integrated with Si-waveguides on a SOI platform is demonstrated. From the results 

and analysis, given thin Ge layer and sufficiently low dark current, increasing the 

device length and optimizing the probe pads’ design are expected to achieve improved 

responsivity and much higher detector speed. 
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CHAPTER 6 

 

6. Enhanced Sensitivity of Small Size Junction-

Field-Effect-Transistor-Based Germanium 

Photodetector 

6.1 Introduction 

In the previous chapters, high performance Ge-on-Si photodiodes are 

fabricated and characterized. In this chapter, to address the issues related to 

photodiodes’ further scalability, novel structures of photodetectors, namely Junction-

Field-Effect-Transistor (JFET)-Based photodetectors, are demonstrated. 

6.2 Background 

State-of-the-art electronics technology requires integration with photonics as 

clock delivery system and data bus to quench the increasing speed degradation and 

heat dissipation issues of conventional metal interconnections [6.1]. Ge 

photodetectors, being one of the critical components for low-cost Si-based OEIC 

(Opto-Electronics Integrated Circuit), have been successfully demonstrated by many 

with good performance [6.2, 6.3]. However, due to its inherent limitations, current 

PN/PIN diode based Ge photodetectors suffer from serious scalability issues where 

further scaling-down of photodiodes inevitably leads to insufficient light absorption 
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and reduced quantum efficiency [6.4]. Thus, novel structures of photodetectors, which 

employ optical gain to maintain detection efficiency even with small detector size, 

have attracted increasing research interest based on both group IV [6.5, 6.6] and III-V 

materials [6.7-6.9]. Sahni et al. [6.6] demonstrated a highly scalable Ge photodetector 

based on a junction field-effect-transistor (JFET) structure whose dimensions are 

comparable with that of modern MOSFETs (Metal-Oxide-Semiconductor Field-Effect 

Transistor). However, the reported device sensitivity (Ion/Ioff ratio: ~1.33) and 

response time (FWHM: ~3 ns) are behind that of typical large area photodiode. It was 

suggested the poor performance is mainly due to the low-temperature MBE-grown Ge 

gate where high density of defects act as recombination centers and thus reduce the 

photocarrier collection efficiency. 

In this chpater, a novel Ge epi-growth technique of two-step Ge growth 

combining with a SiGe buffer was applied in Ge gate formation. With the high quality 

Ge gate, a JFET-based Ge photodetector is demonstrated with dramatically improved 

sensitivity (Ion/Ioff = 185) and response time (FWHM=110 ps, rise time=10 ps). 

Together with the maintained merit of large scalability, the device suggests a 

promising solution to image sensor integrated with CMOS circuit and future small-

footprint-area photodetector for optical interconnections. 
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6.3 Experimental 

Starting with 8” (100) p-type (~6-9 Ωcm) Si-substrate, active regions were 

defined by optical lithography and dry etch. The wafer was implanted with Boron 

1×10
11

 cm
-2

/20 keV and source/drain were patterned and implanted with Boron 

1×10
15

 cm
-2

/7 keV. After 1000 °C/5s activation, the junction depth in channel region 

is estimated to be ~150 nm. Subsequently, plasma-enhanced-chemical-vapor-

deposition oxide of ~150 nm was deposited on the surface, patterned and dry/wet 

etched to form square windows on the top of channel region for Ge epi-growth. After 

standard cleaning, using Selective Area Growth (SAG) method, ultra-thin Si seed 

(~10 nm, 500 °C), Si0.8Ge0.2 (~25 nm, 350-400 °C) buffer, low-temperature Ge seed 

(~10 nm, 400 ˚C), and high-temperature Ge (~100 nm, 600 ˚C) were sequentially 

deposited in a UHVCVD (ultrahigh vacuum chemical vapor deposition) chamber with 

base pressure of 7×10
-9

 Torr [6.10]. Due to the dislocations in the epitaxy layer, Ge 

region is estimated to be p-type (~1×10
17

 cm
-3

). Since at the interested wavelength 

pure Ge has much higher absorption coefficient than Si0.8Ge0.2 [6.2], Si0.8Ge0.2 buffer 

layer’s contribution to the device’s optical performance can be neglected. Finally, 

ohmic contacts were formed by TaN (25 nm)/Al (0.75 μm) deposition and patterning. 

Fig.6.1 illustrates the cross section structure of the Ge JFET photodetector, while the 

SEM image of the device’s top-down view is shown in Fig. 6.2. The length/width of 

the channel region are 1 μm/100 μm. Fig. 6.3 shows the TEM image of the Ge layer 

on Si.  
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6.4 Results and Discussion 

 

 

Fig. 6.1: The cross-section schematic of Ge JFET photodetector. 

 

 

Fig. 6.2: SEM image of the device. The laser spot shinned on the Ge gate through 

cleaved single mode fiber is shown together. To obtain the intrinsic characteristics of 

the Ge JFET, the contribution of source-drain current of the un-illuminated part of 

the channel in ID calculation is eliminated. 
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Fig. 6.3: TEM image of the selective area grown (SAG) Ge on Si/SiGe buffer on Si. 

 

Fig. 6.4: ID-VD curve of Ge JFET with and without illumination. Inset shows the 

band diagram of Ge gate on Si channe. 
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The current-voltage (I-V) measurements were carried out on the Ge JFET. 

These characterizations were limited to source-drain bias below 1 V, as in the 

application of highly integrated inter-/intra-chip signal communication, low power 

consumption is much desirable. Fig.6.4 shows the typical ID-VD curves of the devices, 

both with and without illumination. As can be seen, without illumination, the device 

demonstrates low leakage current density of 10.1 nA/μm at 0.5 V bias, which 

corresponds to the channel “off” state as a result of the depletion formed in the 

junction region between the n-Si Channel and p-Ge gate. For optical characterization, 

light was coupled onto the device via cleaved single-mode fiber (core diameter ~8.2 

μm). Due to the large valence band offset (~0.46 eV) between Ge and Si (band 

diagram shown in Fig.6.4 inset), photo-generated holes are confined in the Ge side at 

the Ge/Si interface. The accumulated holes attract electrons in the Si channel 

underneath and thus reduce the width of the depletion region, which leads to enhanced 

source-drain conductance. For the device with 1550 nm laser of 3-mW-power, at low 

bias of VD = 0.5 V, ID is increased from dark current by 185× to 1.86 μA/μm 

corresponding to an internal responsivity of ~2.36 A/W using the calculation method 

described in [6.2, 6.6] with coupling loss of 0.0558 between the optical fiber and 

small-area device taken into account. The lower responsivity of this work compared 

to previous III-V HEMT photodetectors is due to the difference in device structure, 

material properties and characterization method. 
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Fig. 6.5: Ion/Ioff ratio versus laser power in comparison with the prior arts. Inset is 

the saturation behavior for the device with laser power up to 35.8 mW. 

 

 

Fig. 6.6: Temporal impulse response of Ge JFET at 0.5 V source-drain bias. Inset 

shows the zoomed details of the pulse’s rising part. 
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In Fig. 6.5, the Ion/Ioff ratio (ratio of source-drain current under illumination 

and dark current) at a fixed source-drain bias of 0.5 V versus the laser power is shown 

together with previously reported data from [6.6]. Compared with the up to 1.33× 

Ion/Ioff ratio observed by Sahni et al., the device from this work demonstrates more 

than ten times’ enhancement over the whole light power range. The main reason for 

the sensitivity boost-up is believed to be the enhanced quality of the Ge film by our 

novel Ge epi-growth technique of two-step Ge growth combining with a SiGe buffer, 

which results in low density of defects in Ge top layer, thus high photo-carrier 

collection efficiency can be achieved. Fig. 6.5 inset shows Ge JFET’s saturation 

behavior. Similar to conventional JFET [6.11], with increasing incident laser power, 

the device eventually enters saturation region. With the highest available laser power 

of 35.8 mW, Ion/Ioff reaches as high as 575 corresponding to ID = 5.79 μA/μm. This 

value is in close consistency with the classic JFET theory, from which a saturation 

source-drain current of ~7 μA/μm is estimated. 

The temporal response of the Ge JFET was measured using 1.55 μm pulsed 

laser (pulse width 80 fs, repetition rate 20 MHz). Devices were probed with 

microwave probes and measured with a 50 GHz sampling oscilloscope. DC bias of 

0.5 V was coupled through a 50 GHz bias tee. The pulsed response is shown in 

Fig.6.6. The inset zooms in on the rising part of the pulse. Worth noticing is that the 

rise time (tr) of the device is 10 ps which is comparable with the advanced Ge-on-Si 

photodiodes and suitable for high-speed applications. The FWHM (Full Width at Half 
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Maximum) and fall time (tf) are 110 ps and 1.4 ns, respectively. Similar to the HEMT 

photodetectors [6.7], the long tail in the impulse response’s falling portion is due to 

the long lifetime of the accumulated holes. The speed performance is higher than the 

previous best results for Ge JFET (tf =20 ns and FWHM=3 ns from [6.6]), which 

could be attributed to the low-temperature defective buffer layers between Ge and Si 

where dislocations act as recombination centers and thus reduce the lifetime of the 

accumulated photo-holes in the Ge/Si interface [6.12]. Therefore, optimizations, such 

as defect engineering [6.13, 6.14] on the buffer layer between Ge and Si, are expected 

to extend the bandwidth further. A gate electrode in contact with the Ge island is also 

a possible way for speed enhancement similar to a base terminal in heterojunction 

phototransistor (HPT) [6.15, 6.16]. 

6.5 Conclusion 

In this chapter, the enhanced performance of Ge JFET photodetector is 

demonstrated using the Ge epi-growth technique of two-step Ge growth combining 

with a SiGe buffer. The Ion/Ioff ratio achieves as high as 575 in saturation region. The 

device shows a fast temporal response of 10 ps rise time with FWHM=110 ps. 

Together with its large scalability, the Ge JFET photodetector suggests an attractive 

solution to replace large size photodiode in future waveguide-based opto-electronics 

integrated circuit. 
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CHAPTER 7 

 

7. Silicon Waveguide Integrated Germanium 

JFET Photodetector with Improved Speed 

Performance 

7.1 Introduction 

In Chapter 6, the two-step Ge epi-growth technique combining with a SiGe 

buffer was applied in Ge gate formation in JFET photodetectors, resulting 

considerably enhanced sensitivity. However, the speed performance of the JFET is 

still inadequate for GHz-range Si photonics applications. Therefore, in this chapter, 

SOI wafers are used as the fabrication substrate of the JFET photodetectors, 

cancelling the bulk diffusion effects that resulted in the long response tail, leading to 

~GHz bandwidth JFETs. Furthermore, waveguide-feeding structure is utilized to 

facilitate the integration of JFET into Si photonics circuits. 

7.2 Background 

Si-based OEIC, which employs optical signal as data deliverer, has been 

considered as a promising candidate to solve the delay and heat problems related to 

the global metallic interconnects [7.1] and to maintain the microelectronics scale-

down roadmap known as Moore’s Law [7.2]. Therefore, the development of 
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photonics building blocks such as silicon light-emitting diode and laser diode [7.2, 

7.3], low loss optical waveguides [7.4], high-speed integrated modulators [7.5, 7.6] 

and detectors [7.7, 7.8] are under intensive study.  

Although Ge waveguided photodiodes have been demonstrated with improved 

device performances [7.9, 7.10], to address the issues related to photodiodes’ further 

scalability, novel structures of photodetectors has to be introduced. As a result, 

different groups are focusing on the investigation and new structures were proposed 

and demonstrated based on group IV [7.11, 7.12] or III-V materials [7.13]. In Chapter 

6, a scalable Ge-photodetector based on junction field-effect-transistor (JFET) 

structure was successfully demonstrated with Ion/Ioff ratio of 185 [7.14]. To overcome 

the low detection efficiency issue of conventional JFET photodetectors, modified 

two-step high/low temperature epitaxy technique [7.15] was utilized to grow a high 

quality Ge epi-layer as the gate of JFET. However, the reported temporal response 

(full width at half maximum (FWHM)) of 110 ps severely limits JFET’s application 

in GHz-domain Si photonics. Carrier generation and diffusion in the bulk Si region 

beneath the device is a possible reason for the pulse response’s long decaying tail. 

In this work, a considerably enhanced bandwidth of 8 GHz is found in the Ge 

JFET photodetectors built on silicon-on-insulator (SOI) wafers, which play a major 

role in eliminating the carrier generation and diffusion far away from the intrinsic 

device region thus boost up the detection speed. While the merit of JFET’s large 

scalability is maintained, the results suggest a promising solution to replace large-size 
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photodiodes in future OEIC through small-footprint-area photodetector for optical 

interconnections. 

 

 

 

 

Fig. 7.1: (a) Schematic of Germanium JFET photodetector integrated with Si 

waveguide on SOI platform; (b)cross-section structure of JFET along plain A. 
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7.3 Experimental 

Fig. 7.1(a) shows the schematic of the fabricated JFET-based photodetectors 

with the feeding Si waveguide. Starting from (100) SOI with 400-nm-thick p-type Si 

(8~15 Ωcm) and 2-μm-thick SiO2 insulator, waveguide (width 400 nm) and detector 

region were defined by lithography and dry etch. Subsequently, JFET channel region 

was implanted with Phosphorus 1×10
11

 cm
-2

/20 keV and the source/drain was 

implanted with Phosphorus 1×10
15

 cm
-2

/15 keV. After spike annealing at 1000 °C/5 s 

to activate n-/n+ region, plasma-enhanced chemical-vapor-deposition (PECVD) oxide 

of ~ 150 nm was deposited. This was followed by the patterning and etching to form 

1.5-μm-wide 2-μm-long square windows for Ge deposition on top of the channel 

region. The etching process was carried out first by reactive ion etch. After removal of 

~ 130 nm oxide, wet etching by 1% diluted HF was used to remove the remaining 

oxide in the window. Subsequently, the wafers were sent for cleaning in (NH4OH : 

H2O2 : DI (de-ionized water) = 1 : 2 : 10) for 8 min, HF : DI (1 : 200) for 2 min 

followed by ultrasonic drying. Immediately after cleaning, the wafers were loaded 

into an ultra-high vacuum chemical vapor deposition chamber with base pressure of 

7×10
-9

 Torr [7.15], where ultra-thin Si seed (~ 10 nm, 500 °C), Si0.8Ge0.2 (~ 25 nm, 

350-400 °C) buffer, low-temperature Ge seed (~ 10 nm, 400 ˚C), and high-

temperature strain-relaxed Ge (~ 300 nm, 600 ˚C) were sequentially deposited. Finally, 

after 750 nm PECVD oxide deposition and contact via etch, ohmic contacts were 

formed by a thin layer of TaN (25 nm) and Al (0.75 μm) deposition and patterning. 
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Fig. 7.1 (b) illustrates the cross-sectional structure of the device. The transmission 

electron microscope (TEM) image of the selective area grown Ge is shown in Fig. 7.2. 

 

Fig. 7.2: TEM image of the Ge/Si interface. 

7.4 Results and discussion 

The photodetectors were first characterized in terms of dark current and light 

response. The current-voltage curve of the device is measured and plotted in Fig. 7.3. 

As can be seen, the device’s dark current is 0.5 µA@1 V. It is previously suggested 

that dark current lower than 1 µA@-1 V is desirable for reduced standby power and 

acceptable detection noise [7.16].  

For optical characterization, the samples were diced and polished. Then 1550-

nm-wavelength laser was coupled into the waveguide by lensed-fiber (spot size 

2.5±0.3 μm) mounted on precision XYZ stage. The coupling loss between the fiber 
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and the waveguide is calculated to be ~ 7 dB from the cutback structures near the 

actual devices. Therefore, for the input laser power of 8.3 mW, the power reaching the 

device is estimated to be ~ 1.7 mW. 

 

Fig. 7.3: IV characteristics of the waveguide JFET with and without laser input. 

 

Fig. 7.4: Ion/Ioff ratio versus input laser power showing the saturation behavior for 

the device similar as previously reported [7.14]. 
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The external responsivity at 1 V is calculated to be 17 mA/W. At 3 V, the 

external responsivity is 128 mA/W, which corresponds to an internal responsivity of 

642 mA/W with the coupling loss factored out. Since the theoretical responsivity for 

1550 nm wavelength assuming 100% quantum efficiency (QE) is 1.2 A/W, the 

reported responsivity corresponds to QE of ~ 53%. The reported external responsivity 

is the highest for photodetectors with the detection material’s footprint as small as 2 

µm×2 µm. This could be attributed to the intrinsic gain mechanism from the device’s 

working principle [7.12]. However, the total device area is still large taking into 

account the 5 µm×5 µm contact via, making further device design optimization 

necessary. 

In Fig. 7.4, the Ion/Ioff ratio at the source/drain bias of 1 V is plotted, which 

shows typical saturation behavior due to the balance between photocarrier generation 

and recombination, similar to previous report [7.14]. 
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Fig. 7.5: Electrical response to the input laser pulse captured by high-speed 

oscilloscope. Inset is JFET photodetector’s -3dB bandwidth. The device is biased at 1 

V. 

To measure the 3dB bandwidth of the reported device, ~ 80-fs-wide laser 

pulse was coupled into the detector and the generated electrical response pulse was 

captured by measurement system comprising 50-GHz-bandwidth sampling 

oscilloscope, RF microwave probe and high-speed RF cable. 

Fig. 7.5 shows the obtained response pulse under source/drain bias of 1 V. The 

FWHM is 21 ps. The fast-fourier-transform (FFT) of the original pulse is plotted in 

Fig. 7.5 inset. It should be noted that the FFT was conducted over a window of 1000 

ps, much larger than the 200 ps window shown in Fig. 7.5, to ensure correct data 

processing. An initial bandwidth of ~ 5 GHz was obtained. After correction to 

eliminate the impact of the measure system by deconvolving the system response 
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(20GHz limited by RF cable), the device demonstrates ~ 8 GHz bandwidth. Although 

the mechanism for the largely improved bandwidth is still being studied, one of the 

possible reasons is the use of the SOI substrate, which suppresses the carrier diffusion 

in the bulk Si, hence eliminating the long response tail following the initial impulse. 

Another possible mechanism is the higher leakage leading to further reduction of the 

carrier occupation time in the Ge layer [7.12], as the device shows an increased dark 

current as compared to [7.14]. 

7.5 Conclusion 

In this chapter, waveguide-integrated Germanium infrared photodetector based 

on JFET was demonstrated with low dark current, high responsivity and large 

bandwidth. By the use of SOI wafers, parasitic effects is suppressed, which were 

previously believed to limit the detector’s performance. The responsivity of 642 

mA/W, bandwidth of 8 GHz may confirm Ge JFET’s promise for the future small-

foot-print photodetector. 
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CHAPTER 8 

 

8. Conclusion and Outlook 

This thesis focused on the research of integration of Ge photodiodes and Ge 

JFETs photodetectors on Si platform for OEIC. 

In Chapter 2, the literature and technology review on recent progresses in the 

development and integration of Ge-photodetectors on Si-based photonics are 

reviewed. The remaining technological issues to overcome are also discussed. 

Chapter 3 studies the electrical/optical characteristics of selectively grown Ge 

on SiGe and Si/SiGe buffer on Si for optical photodetection. Using an additional Si 

epitaxial layer as buffer layer, dark current is reduced by half to 0.12 A at 1 V with 

smooth surface and low dislocation density without cyclic anneal or additional 

chemical-mechanical polishing. Lateral PIN Ge photodetector fabricated on this Ge 

platform shows photoresponsivity of ~190 mA/W at 1.52 m and extended photon 

detection to 1.62 m wavelength with 3-dB bandwidth at 5.2 GHz at 1 V. 

Chapter 4 Si-waveguide-integrated lateral Ge-PIN photodetectors using novel 

Si/SiGe buffer and two-step Ge-process are demonstrated. Comparative analysis 

between lateral Ge PIN and vertical p-Si/i-Ge/n-Ge PIN are made. Light is 

evanescently coupled from Si waveguide to overlaying Ge-detector, achieving high 

responsivity of 1.16 A/W at 1550 nm with f3dB bandwidth of 3.4 GHz for lateral Ge 
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PIN detector at 5 V reverse bias. In contrast, vertical p-Si/i-Ge/n-Ge PIN has lower 

responsivity of 0.29 A/W but higher bandwidth of 5.5 GHz at -5V bias. 

Chapter 5 presents the device performance of the scaled thin-film-Ge lateral 

PIN photodetectors monolithically integrated with Si-waveguides on a SOI platform. 

With shrunk detector dimensions, the device with thin Ge (~220 nm) showed low 

dark current (~0.06 μA), high internal responsivity (~0.65 A/W) with speed as high as 

~18 GHz. It is shown that with increasing detector length, devices’ internal quantum 

efficiency can be further improved to ~90%. 

In Chapter 6, the enhanced performance of Ge JFET photodetector is 

demonstrated using the Ge epi-growth technique of two-step Ge growth combining 

with a SiGe buffer. The Ion/Ioff ratio achieves as high as 575 in saturation region. The 

device shows a fast temporal response of 10 ps rise time with FWHM=110 ps. 

Together with its large scalability, the Ge JFET photodetector suggests an attractive 

solution to replace large size photodiode in future waveguide-based opto-electronics 

integrated circuit. 

Chapter 7 reports results on high-speed silicon-waveguided germanium 

junction-field-effect-transistor (JFET) -based photodetector with low stand-by current 

(0.5 µA@1V), high responsivity (642 mA/W) and high speed (8 GHz). The reported 

Ge JFET is a promising candidate for the further scale-downed photodetector in the 

next-generation Si photonics 

There are several areas of work which can be studied in future research. 



 

113 

1) Pursuit of Higher Bandwidth 

Nowadays, the reported Ge photodetectors’ bandwidths are approaching 50 

GHz, ready for near-future 40 Gb/s applications. On the other hand, in 

correspondence with III-V photodetectors whose speed has already exceed 100 GHz, 

it can be seen that there is still much room for enhancement. For bandwidths beyond 

50 GHz, much thinner Ge intrinsic layers should be used. As in the high frequency 

region, undesirable parasitic effect such as contact resistance, stray capacitance and 

inductance may become the main limiting factors in bandwidth performance. Given 

the fact that reducing the intrinsic region’s thickness for smaller carrier transition time 

at the same time leads to increase of device capacitance, the mushroom-mesa 

structure [8.1] may be of help for further bandwidth evolution, since it is capable of 

reducing the Rs and capacitance simultaneously. 

2) Monolithic Integration of Ge Photodetectors with CMOS Circuits 

Essential for future Si OEICs the co-integration of Ge photodetectors with 

functional CMOS circuits, which brings optical detection and further signal 

processing together. Therefore, there has been much effort in pursuing such 

integration. However, fabrication of high performance Ge photodetectors together 

with conventional CMOS devices comes with several technical issues that must be 

addressed, including the thermal budget issue, the cross contamination issues and the 

non-planarity issue due to Ge layer thickness. These issues could be one of the major 

research directions in the future study. 
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3) Plasmonics for Extreme Light Concentration 

For higher speed, lower noise and suppressed power consumption, 

photodetectors are being fabricated in smaller dimensions [8.2]. However, previously 

the physical dimensions of the photodetectors were limited in the micrometer range 

by classical diffraction theory. 

Recently, the amazing ability of plasmonic structures to concentrate light both 

laterally and in the depth of a semiconductor material beyond the diffraction limit into 

the deep-subwavelength-dimension was reported by Ishi et al. [8.3] A concentric 

grating surface plasmon antenna of 10 μm diameter was demonstrated to concentrate 

light into the center Si mesa Schottky diode of an active area of 300 nm in diameter. 

The observed more than 20-fold enhancement in photocurrent confirms the plasmonic 

effect. The estimated bandwidth of such small detector exceeds 100 GHz. 

Because of its promise in Ge photodetector’s drastic miniaturization into the 

nano-scale domain and expected high speed, plasmonics technology’s application in 

Ge-based detectors should be pursued in the future. 
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