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Summary

The thesis is concerned about feature selection and model selection in supervised learn-

ing. Specifically, three feature selection methods and one model selection method are

proposed.

The first feature selection method is a wrapper-based feature selection method for multi-

layer perceptron (MLP) neural network. It measures the importance of a feature by the

its sensitivity with respect to the posterior probability over the whole feature space. The

results of experiments show that this method performs at least as well, if not better than

the benchmark methods.

The second feature selection method is a wrapper-based feature selection method for

support vector regressor (SVR). In this method, the importance of a feature is mea-

sured by the aggregation, over the entire feature space, of the difference of the output

conditional density function provided by SVR with and without a given feature. Two

approximations of this criterion are proposed. Some promising results are also obtained

in experiments.

The third feature selection method is a filter-based featureselection method. It uses a

mutual information based criterion to measure the importance of a feature in a backward
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selection framework. Unlike other mutual information based methods, the proposed cri-

terion measures the importance of a feature with the consideration of all features. As

the results of numerical experiments show, the proposed method generally outperforms

existing mutual information methods and can effectively handle the data set with inter-

active features.

The one model selection method is to tune the regularizationparameter of support vector

machine. The tuned regularization parameter by the proposed method guarantees the

global optimum of widely used non-smooth validation functions. The proposed method

highly relies on the solution path of SVM over a range of the regularization parameter.

When the solution path is available, the computation neededis minimal.
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Chapter 1

Introduction

Machine learning is concerned with automatical predictionof unseen patterns based on

known empirical data. Such a prediction is often encountered in various disciplines,

such as computer vision, bioinfomatics, natural language processing, finance and medi-

cal applications. Based on desired outcomes of problems, machine learning algorithms

can be broadly categorized into three paradigms: supervised learning, unsupervised

learning and semi-supervised learning. Supervised learning is for the case where the

labels of empirical data are given, for example, supervisedclassification and supervised

regression. By contrast, unsupervised learning is for the case where the labels of em-

pirical data are not provided. An example of this is clustering where data are clustered

into several distinct groups. Semi-supervised learning isa compromise between super-

vised learning and unsupervised learning, in which a few labeled and a large amount of

unlabeled data are available. Hence, semi-supervised learning can deal with both super-

vised and unsupervised learning problems: semi-supervised classification, regression
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and clustering.

In this thesis, only supervised learning is considered. Thegoal of supervised learning

algorithm is to infer the mappingf : X →Y between input spaceX and output space

Y based on all the observed (i.e. empirical) input-output pairs{(xi,yi)|xi ∈X , yi ∈Y },

such that the resultant mapping has good performance on new unseen patterns. Besides

developing an approximate off , the success of a supervised learning algorithm often

depends on the availability of informative input features,and the correct setting of the

configuration of the algorithm. Their roles in a typical learning algorithm are depicted in

Figure 1.1. Hence, feature selection and model selection can be seen as pre-processing

procedures to a learning algorithm. The former yields the optimal input features while

the latter yields the optimal hyperparameters to the learning algorithm. The common

purpose of these two pre-processing procedures is to improve the generalization perfor-

mance, i.e., the performance on unseen data, of the learningalgorithm.

In the past few years, great success of feature selection andmodel selection for various

learning algorithms have been achieved in bioinformatics,web mining, computer vision

and other data mining fields [6, 20]. The content of this thesis focuses on these two areas

under the supervised learning paradigm. It is worthy to notethat they are also important

in unsupervised and semi-supervised learning, but these issues are not considered in this

thesis.
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1.1 Background 3

Figure 1.1: Feature selection and model selection in a supervised learning task. The
dashes box denotes the pre-processing procedure.

1.1 Background

1.1.1 Feature Selection

Feature selection is a procedure of finding a set of most compact and informative origi-

nal features [32, 31] for the purpose of predicting the output of the learning algorithm.

In practice, many data sets have a huge number of features. For example, in the gene

selection problems, the features are gene expression coefficients corresponding to the

abundance of mRNA for a number of patients [31] and their number can range from

6,000 to 60,000. In text classification problems, the features are “bag of words” or

vocabulary word frequency counts and can be hundreds of thousands in size. While

having more features endows a learning algorithm with a greater discriminating power,

performance degradation often sets in when many irrelevantor redundant features are

included. The inclusion of irrelevant and redundant features also increases the com-

putational complexity of the learning algorithm. Besides,it is also known that feature
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1.1 Background 4

Figure 1.2: The framework of feature ranking.

selection can potentially benefit data visualization and data understanding, data storage

reduction and the easy deployment of the learning algorithm. Consequently, feature

selection has been an area of much research effort in variouslearning tasks [32, 33, 52].

If the input data haved features, there are a total of 2d possible subsets of features.

Obviously, it is not easy to directly select the desired features whend is large, although

some efforts in this direction have been made [77, 90]. Many approaches choose feature

ranking as an auxiliary mechanism to facilitate feature selection. The idea of feature

ranking is to rank all features according to the importance of each feature. User can then

select the desired number of features based on the resultantranking list. As shown in

Figure 1.2, the framework of feature ranking usually contains two constituents: feature

evaluation criterion and subset search strategy.

A feature evaluation criterion measures the importance of afeature or a set of features

and plays a crucial role in a feature selection method. The most direct evaluation cri-

terion is the learning algorithm’s prediction accuracy, asused in [70, 84]. However, its
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implementation costs are typically very high for large datasets, since each evaluation re-

quires training and predicting processes of the learning algorithm. In the past decades,

various efficient evaluation criteria are proposed. Some ofthem rely on the learning

algorithm with reduced training and predicting procedures. Methods that use learning

algorithms are known as wrapper methods. By contrast, others are totally independent

of the learning algorithm and only rely on the characteristics of the data set. These are

known as filter methods.

A subset search strategy generates candidate feature subsets with the aim to find the op-

timal subset. The most direct search strategy is the exhaustive search, i.e., search among

all possible feature subsets (2d in total). As mentioned before, this is computationally

intractable for data sets with many features. In practice, some heuristical search strate-

gies are used:forward or backwardsearch. Specifically, forward search begins with

an empty set and successively adds one or a few most importantfeatures at each time,

while backward search begins with a full set of features and successively removes one

or a few least important features at each time [52].

Filter methods versus wrapper methods, and forward search versus backward search,

which combination is the best? While it is still an open question [31, 32], some basic

facts exist. In terms of computational efficiency, filter methods are faster than wrapper

methods and forward search is faster than backward search ingeneral. However, in

terms of performance, filter methods and forward search havehigher risk to suffer from

performance degradation because of their limited capability to handle interacting effect

of features.
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Figure 1.3: Illustration on feature interacting effect.

Interacting effect of features refers to the phenomenon that multiple variables that are

useless individually can be useful together[31]. This phenomenon can be best illustrated

by the famous “XOR” type problem as show in Figure 1.3. This figure shows a two

class classification problem on a 2-dimensional data set, inwhich two Gaussian clumps

are placed at the coordinates(−1,−1),(1,1) for class 1 while another two are placed

at (1,−1),(−1,1) for class 2. Obviously, the projection of clumps on axisx1 or x2

leads to the perfect overlap of two classes and thus feature 1and feature 2 are useless

individually. But four clumps are well classified into two classes in the two dimensional

space so features 1 and 2 are useful together.

Some filter methods assume that all features are independentand could not be able

to handle the interacting effect well, while some forward methods (partially) ignoring

the interacting effect also fail. These statements will be clarified and validated in the

subsequent chapters.
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1.1.2 Model Selection

Model selection refers to the procedure of tuning the hyperparameters of the learning al-

gorithms. Hyperparameters ubiquitously exist in learningalgorithms. For examples, in

Multi-layer Perceptron (MLP) neural networks [5], hyperparameters include the num-

ber of layers and the number of hidden neurons. In Support Vector Machines (SVMs)

[7, 81], hyperparameters include the regularization parameter and the kernel parameter.

Different choices of these hyperparameters for learning algorithms can lead to drasti-

cally different performances [20, 35]. Hence, model selection is crucial for learning

tasks and has been one active research topic [12, 19, 34, 45].In this thesis, model

selection is restricted on tuning the regularization parameter of SVM classifiers.

In 1992, Support Vector Machine (SVM) is first proposed for classification in the work

[7]. Later, the principles underlying SVM are systematically developed in the frame-

work of statistical learning theory by Vapnik [79, 81]. The extensions of SVM to regres-

sion, density estimation, clustering and structure outputlearning are proposed in [81, 78]

and the references thereof. Today SVM is a well-known learning tool and several out-

standing numerical routines of SVM have been developed [10,41, 62, 44, 39, 34, 58].

Basically, SVM can be formulated into the following regularized empirical risk mini-

mization form:

min
f

Ω( f )+CRemp( f ) (1.1)

where f is the predictor to to be learned,Remp( f ) is the empirical loss on the observed
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Figure 1.4: Validation error rate for different values ofλ = C−1 for Sonar data set.

data,Ω( f ) is the regularizer reflecting the learning capacity of the predictor andC is

the regularizer parameter. The success of SVM depends highly on the regularization

parameterC, as it balances the trade-off between the learning capacityof predictor f

and the empirical loss [79, 81]. This is consistent with the practical experience that

different choices ofC result in very different generalization performance of SVM. To

illustrate this, Fig 1.4 shows the standard validation error rate of SVM1 with respect to

C−1 using Linear kernel on the Sonar data set [1]. It is clear fromthis figure that the

validation error rate can change from 0% to 24 % among the rangeC−1 ∈ [2−8,29].

As mentioned before, the purpose of model selection is to improve the generalization

performance, so the procedure of tuningC involves a validation set and an appropriate

1This is implemented by the software ISVMP available at:
http://guppy.mpe.nus.edu.sg/∼mpeongcj/ongcj.html
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1.2 Motivations 9

validation function. The value ofC that optimizes the validation function over the val-

idation set is the optimalC. In the prototypical binary SVM classifier, the validation

functions are commonly chosen as the error rate, weighted error rate, percentage of cor-

rectly predicted positive examples, or variations thereof. As these validation functions

are not smooth functions ofC, tuningC in SVM is often resorted to some heuristic

or approximated methods, like grid search method or gradient-based method with ap-

proximated validation function. These methods will be reviewed in details in Chapter

2.

1.2 Motivations

In this thesis, a wrapper feature selection method for multi-layer perceptron (MLP) neu-

ral networks is proposed in Chapter 3 and another wrapper feature selection method for

support vector regression (SVR) is proposed in Chapter 4. Then, a filter feature selec-

tion method based on mutual information estimation is proposed in Chapter 5. At last,

a new model selection method to optimally choose regularization parameter C of SVM

is proposed in Chapter 6. The motivations for each of them areprovided next.

MLP neural network and SVR are well known learning algorithms and have been suc-

cessfully used in many applications [5, 6, 20]. To our knowledge, the wrapper feature

selection methods for these two algorithms are still limited. One plausible reason is

that most existing wrapper methods only focus on binary classification problems while

MLP and SVR deal with multi-class classification and regression problems. It is worthy
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to note that straightforward adaptation by discretizing (or binning) the continuous out-

put variable into several classes is not always desirable assubstantial loss of important

ordinal information may result.

Aiming to provide good candidates of wrapper feature selection methods for MLP neu-

ral network and SVR, Chapters 3 and 4 propose new feature selection methods using

probabilistic outputs of MLP neural networks and SVR, respectively. The results on

extensive experiments show the advantage of these two methods over other benchmark

methods.

Mutual information based feature selection methods are well known filter feature selec-

tion methods. These methods measure the importance of a set of features by evaluating

the dependency between this set of features and the output variable, and they often use

the forward search strategy. The review of this kind of methods will be provided in

Chapter 2. As mentioned before, filter feature selection methods and forward search

strategy have limited capability to handle the interactingeffect of features.

To alleviate this issue, Chapter 5 proposes a new mutual information based feature se-

lection method. This method is also a filter method but uses a backward search strategy.

The experimental results verify the effectiveness of the proposed method on the issue of

interacting effect of features.

Proper tuning of regularization parameterC of SVM is important for successful imple-

mentation of SVM. However, to the best of our knowledge, there is no existing model

selection method that can yield the global optimalC of typical validation functions for
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SVM. Most existing methods are approximating the global solution based on grid search

strategy or others.

Aiming to resolve this problem, Chapter 6 proposes a new model selection method that

guarantees the global optimum ofC on a family of common validation functions. This

is validated by numerical experiments on large-scale real world data sets.

1.3 Organization

This thesis is arranged as follows:

Chapter 2: This chapter provides reviews of some learning methods to beused in

the subsequent chapters. Several relevant filter and wrapper feature selection methods

are also reviewed. This chapter ends with a review of some model selection methods

especially for hyper parameter tuning of SVM.

Chapter 3: This chapter presents a new wrapper-based feature selection method for

MLP neural networks using its probabilistic outputs. This method measures the impor-

tance of a feature by the feature’s sensitivity with respectto the posterior probability

over the whole feature space. This chapter also contains extensive experiments on ar-

tificial and real data sets showing the performance comparison between the proposed

method and some benchmark methods.

Chapter 4: This chapter presents a new wrapper-based feature selection method for

Support Vector Regression (SVR) using its probabilistic predictions. As this feature
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ranking criterion is not directly computable, two approximations of this criterion are

discussed. This chapter also reports the result of numerical experiment involving the

proposed and benchmark methods, tested on artificial and real-world data sets .

Chapter 5: This chapter proposes a new filter-based feature selection method using mu-

tual information. Unlike other mutual information based method, the proposed method

measures the importance of a feature in a backward selectionframework with the con-

sideration of all features. This chapter also discusses twowell-known density estimation

methods needed for the computation of the proposed mutual information method. The

effectiveness and efficiency of the proposed method are tested with other benchmark

methods in numerical experiments.

Chapter 6: This chapter proposes a method to tune the regularized parameter of SVM

classifiers. This method can obtain the global optimalC value of the non-smooth valida-

tion functions in SVM. The proposed method relies highly on the regularization solution

path of SVM over a range ofC. The effectiveness of the proposed method evaluated on

large scale real-world data sets is also reported in this chapter.

Chapter 7: This chapter concludes this thesis and summarizes its contributions. Direc-

tions of future research are also suggested.
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Chapter 2

Review

This chapter reviews learning methods used in the later chapters and existing feature

selection methods and model selection methods in the literature. For convenience,

notations frequently used in this thesis are first introduced. Let R be the set of real

numbers. Data setD = {xi ,yi}, i ∈ ID := {1, · · · ,N} is assumed given withxi ∈ R
d

being theith sample havingd features;I = {1, · · · ,d} is the set of indices of all fea-

tures inD ; yi is the label or output of samplexi and it can take valueyi ∈ {−1,+1}

for binary classification problems,yi ∈ {1, · · · ,c} for c-class classification problems or

yi ∈ R for regression problems. IfS ,Q are two sets,|S | refers to its cardinality and

S \Q := {x|x∈ S ,x /∈ Q} the set difference. Also,|D | = |ID |. Furthermore,x j
i ∈ R

is the value of thejth feature of theith sample inD ; the double subscripted symbol

x− j ,i ∈ R
d−1 refers to theith sample after thejth feature has been removed fromxi .

Equivalently,x− j ,i = Zd
j xi whereZd

j is the(d−1)×d matrix obtained by removing the

jth row of thed×d identity matrix. If r is a random variable,p(r), p̂(r),P(r) andEr
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refer to its density function, estimate of its density function, probability and expectation

respectively.

2.1 Learning Methods

2.1.1 Support Vector Machine

The formulations of Support Vector Machine (SVM) and Support Vector Regression

(SVR) [81] are provided in this and next subsections. As their applications on classifi-

cation and regression problems are well known, limited commentary are provided.

SVM is a classification tool of finding the maximum margin hyperplane to separate

two classes. The standard two-class SVM primal problem (SVM-PP) with hinge loss

L(ζ ) = max(0,ζ ) is given by:

min
w,b,ζ

1
2

w′w+C ∑
i∈ID

ζi (2.1)

yi(w
′φ(xi)+b) ≥ 1−ζi , ∀ i ∈ ID (2.2)

ζi ≥ 0, ∀ i ∈ ID (2.3)

whereC > 0 is the regularization parameter,φ(xi) is a vector in the high dimensional

Hilbert space,H , mapped into by the functionφ : Rd →H , w andbare the normal vec-

tor and the bias of the separating hyperplaneH := {φ(x)|w′φ(x)+b = 0} respectively.

To allow misclassified samples, the non-negative slack variablesζ ’s are introduced to
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enforce inequality constraints (2.2).

In the objective function (2.1),12 w′w is the inverse of the margin between the data in

classes+1 and−1, and the hinge loss term∑i∈ID
ζi (ζi ≥ 0) characterizes the degree of

misclassification of all samples inD . The former corresponds to the regularizerΩ( f )

in the regularized empirical risk minimization form (1.1) in subsection 1.1.2, while the

latter corresponds to the empirical lossRemp( f ).

In practice, SVM-PP is often solved by its dual problem (SVM-DP). By introducing

Lagrange multiplierαi for each inequality in (2.2) andγi for (2.3), the Lagrange primal

function is constructed as

Lp :
1
2

w′w+C∑
i

ζi −∑
i

αi [yi(w
′φ(xi)+b)−1+ζi ]−∑

i
γiζi . (2.4)

Setting its derivatives to zero, this gives

∂
∂w

: w = ∑
i

αiyiφ(xi)

∂
∂b

: ∑
i

αiyi = 0

∂
∂ζi

: C−αi = γi .

And the Karush-Kuhn-Tucker (KKT) conditions:

αi [yi(w
′φ(xi)+b)−1+ζi] = 0

γiζi = 0.
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Putting the above expressions in (2.4), SVM-DP is given by

min
ααα

1
2 ∑

i∈ID

∑
j∈ID

αiα jyiy jK(xi ,x j)− ∑
i∈ID

αi (2.5)

0≤ αi ≤C, ∀ i ∈ ID (2.6)

∑
i

αiyi = 0 (2.7)

whereK(xi ,x j) = φ(xi)
′φ(x j). The continuous output function of SVM is

f (x) = ∑
i∈ID

αiyiK(xi ,x)+b. (2.8)

whereαi refers to the optimal solution obtained from solving SVM-DP. The decision

function is

ỹ(x) = sign( f (x)). (2.9)

2.1.2 Support Vector Regression

Similar to SVM, standard SVR [81, 73] with hinge lossL(ζ ) = max(0,ζ ) is also under

the framework of regularized empirical risk minimization (1.1). More exactly, the SVR
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Primal Problem (SVR-PP) overw, b,ζ ,ζ ∗ is given by:

min
w,b,ζ ,ζ ∗

1
2

w′w+C ∑
i∈ID

(ζi +ζ ∗
i ) (2.10)

s.t. yi −w′φ(xi)−b≤ ε +ζi , ∀i ∈ ID (2.11)

w′φ(xi)+b−yi ≤ ε +ζ ∗
i , ∀i ∈ ID (2.12)

ζi ,ζ ∗
i ≥ 0, ∀i ∈ ID . (2.13)

wherex is mapped into a high dimensional Hilbert space,H , by the functionφ : R
d →

H , andw∈ H , b∈ R are variables that definef (x). ζi , ζ ∗
i are the non-negative slack

variables needed for enforcing constraints (2.11) and (2.12). The regularization param-

eter,C > 0, tradeoffs the size ofw and the amount of slack variables while parameter,

ε > 0, specifies the allowable deviation of thef (xi) from yi . In practice, SVR-PP is

often solved through its Dual Problem (SVR-DP):

max
ααα,ααα∗

−1
2 ∑

i∈ID

∑
j∈ID

(αi −α∗
i )(α j −α∗

j )K(xi,x j)−ε ∑
i∈ID

(αi +α∗
i )+ ∑

i∈ID

yi(αi−α∗
i )

(2.14a)

s.t. ∑
i∈ID

(αi −α∗
i ) = 0, 0≤ αi ≤C, 0≤ α∗

i ≤C, i ∈ ID (2.14b)

whereαi andα∗
i are the respective Lagrange multipliers of (2.11) and (2.12),

w = ∑
i∈ID

(αi −α∗
i )φ(xi) (2.15)
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andK(xi ,x j) = φ(xi)
′φ(x j). Using these expressions, the regressor function of SVR is

known to be

f (x) = w′φ(xi)+b = ∑
i∈ID

(αi −α∗
i )K(xi,x)+b. (2.16)

2.1.3 Entropy and Mutual Information

Entropy of a random variable is a measure of its associated uncertainty while mutual

information of two random variables is the reduction in uncertainty of one variable given

knowledge of the other. In this sense, mutual information also measures the amount of

dependency between the two variables.

Let r, q andt be any three random variables. The entropy, joint entropy and conditional

entropy are respectively [17]

H(r) = −
∫

p(r) logp(r)dr = Er [− logp(r)] (2.17)

H(r,q) = −
∫ ∫

p(r,q) logp(r,q)drdq= Er,q [− logp(r,q)] (2.18)

H(q|r) = −
∫ ∫

p(r,q) logp(q|r)drdq= Er,q [− logp(q|r)] . (2.19)

The dependency betweenr andq can be measured by their mutual information:

I(r;q) =
∫ ∫

p(r,q) log
p(r,q)

p(r)p(q)
drdq= Er,q

[
log

p(r,q)

p(r)p(q)

]
(2.20)
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From (2.17)-(2.20), it is easy to show that

I(r;q) = H(r)−H(r|q) = H(q)−H(q|r) = H(r)+H(q)−H(r,q). (2.21)

By generalizing the concepts of entropy and mutual information, conditional mutual

information, e.g. the mutual information betweenr andq givent, is given by

I(r;q|t) = Er,q,t

[
log

p(r,q|t)
p(r|t)p(q|t)

]

=Er,q,t

[
log

p(r,q)

p(r)p(q)
+ log

p(r,q|t)p(q)

p(r,q)p(q|t) + log
p(r)

p(r|t)

]

=I(q; r)− I(t; r)+ I(t; r|q).

(2.22)

It measures the dependency betweenr andq given the knowledge of variablet.

Using appropriate combinations of joint and marginal density functions, mutual infor-

mation can provide relationship among random variables that are beyond that of first and

second-order statistics [4, 17, 49, 13, 21, 24]. For this reason, they have been used in

feature selection methods [4, 47, 53, 21, 23, 83, 46] in the literature. These are reviewed

in the later part of this chapter.

2.1.4 Bounds of Generalization Performance

As mentioned in Chapter 1, the goodness of a learning algorithm is often evaluated by

its generalization performance — the performance of the learning algorithm on unseen

data. In practice, the unseen data is often in the form of a separate data set or as one
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fold in an n-fold cross-validation process or just one sample in a Leave-One-Out (LOO)

procedure. In the later part of this chapter, we will review that generalization perfor-

mance, especially LOO generalization performance, has often been used as the criterion

for feature selection and model selection. However, implementation of LOO procedure

is quite computationally expensive, as a learning algorithm has to be trained and tested

for N times if data setD is given. Moreover, LOO generalization performance is often

nondifferentiable with respect to the interested parameters.

To alleviate these issues, some bounds of LOO generalization performance for learning

algorithms are given. For example, radius margin bound and span bound for SVM (2.1),

without considering lossL(ζ ) and biasb, are firstly proposed by Vapnik [81] and Vapnik

and Chapelle [80] respectively. Specifically, with the samemeanings ofw, α andK in

subsection 2.1.1, the radius margin bound is

4R2||w||2 (2.23)

whereR is the radius of the smallest sphere containing all the pointsφ(xi), ∀i ∈ID and

it can be computed by solving the following optimization problem:

R2 = max
γγγ

1− γγγ ′Kγγγ

s.t.γi ≥ 0, ∑
i

γi = 1, i ∈ ID .

(2.24)
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The span bound is

∑
i∈ID

αiS
2
i (2.25)

whereSi is the distance between the pointφ(xi) and the following set

Γi =

{

∑
j 6=i,α j>0

γ jφ(x j) | ∑
j 6=i

γ j = 1

}
. (2.26)

Note the assumption that the set of support vectors remains the same in LOO procedure

is needed in span bound. The continuity and differentiability of these bounds are inves-

tigated in [12]. Later, the improvement of these bounds and the extension of them to

other forms of SVM are addressed in Chung and Lin [15]. Motivated by these prelimi-

nary work on SVM problem, Chang et al. [11] further propose radius margin bound and

span bound for SVR problem.

2.2 Feature Selection Methods

In this section, several related existing feature selection methods are reviewed and they

serve as benchmarks to the proposed methods in numerical experiments of Chapters 3,

4 and 5.
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2.2.1 Filter Methods

Fisher Score Method

Fisher score [31] is probably the easiest and most widely-used filter method for classi-

fication problems. It is the ratio of “between variance” and “within variance” of each

feature. In ac-class{ω1, · · · ,ωc} classification problem, the Fisher score for thejth

feature is defined as

SFscore( j) =

c
∑

k=1
Nk(µ j

k −µ j)2

c
∑

k=1
∑

xi∈ωk

(x j
i −µ j

k)2
, ∀ j ∈ I (2.27)

whereNk is the number of samples belonging to classωk, µ j
k = 1

Nk
∑xi∈ωk

x j
i is the mean

of jth feature in thekth class andµ j = ∑c
k=1Nkµ j

k/N is the mean ofµ j
k over all the

classes. With these notations,(µ j
k − µ j)2 in the numerator of (2.27) amounts to the

discrepancy between the centroid of classj and the centroid of all classes and such

discrepancy is weighted byNk, while ∑
xi∈ωk

(x j
i −µ j

k)2 in the denominator amounts to

the variance within classj. The intuitive meaning of this method is that the important

feature should have better discrimant ability (i.e. larger“between variance” and smaller

“within variance”). Therefore, the greater the score of (2.27) the greater the feature’s

importance.

The underlying assumption of Fisher score method is that features are assumed indepen-

dent and they are ranked according to their own estimated individual predictive capabil-

ities. This assumption also exists in other naive filter methods including Kolmogorov-
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Smirnov test [32] or Pearson correlation [56].

Mutual Information Based Methods

In the past decades, various mutual information based feature selection methods are pro-

posed for classification and regression problems [4, 47, 53,21, 23, 83]. These methods

are often used in a forward selection framework. The forwardselection framework is

implemented in an iterative procedure whereby, in each iteration, the most important

feature inD is identified among a set of remaining features based on some criterion.

This most important feature is then removed from the set of remaining features and

added to a set of identified features. Several criteria have been proposed under this

framework. Supposez∈ R
v is a vector obtained by takingv (v < d) of the d features

from x∈ R
d. The most direct criterion is to find the most appropriatezvector that max-

imizes the mutual informationI(z;y). This is reasonable since the aim is to reduce the

uncertainty ofy given the information ofz. Such a criterion can easily be incorporated

in a forward selection framework. Battiti [4] and Kwak et al.[46] propose the use of

I(z+ j ;y) (2.28)

for feature j ∈ I \Iℓ−1 at theℓ iteration. Here,z+ j ∈ R
ℓ is the augmented vector ofz

with an additional featurej or, equivalently, is derived from the vectorx with features

from Iℓ−1∪ { j}, I being the set of all features,Iℓ−1 the set of identified features

till iteration ℓ andI \Iℓ−1 the set of remaining features at theℓ iteration. From the

definition of mutual informatin, the computation of (2.28) requires knowledge ofp(z+ j),

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



2.2 Feature Selection Methods 24

p(z+ j ,y) andp(y) at everyℓ. As these functions are typically not available, estimations

are needed. To facilitate these estimations, several related criteria have been proposed.

In this direction, Battiti [4] proposes

I(x j ;y)− 1
β ∑

i∈Iℓ−1

I(x j ;xi), (2.29)

whereβ is a user-determined weighting parameter. As a result, the evaluation of (2.29)

requires only estimations of low-dimensional density functions, and is therefore com-

putationally amenable. The criterion (2.29) also has a slightly different meaning from

(2.28). Since∑i∈Iℓ−1
I(x j ;xi) is the sum of measures of dependence ofx j andxi for all

i ∈ Iℓ−1, criterion (2.29) captures the additional dependency betweenx j andy that is

not present in∑i∈Iℓ−1
I(x j ;xi). Several variants of criterion (2.29) are proposed in the

literature [47, 53, 21] by modifying the second term in (2.29). These criteria include

I(x j ;y)− 1
β ∑

i∈Iℓ−1

I(y;xi)

H(xi)
I(x j ;xi), (2.30)

I(x j ;y)− 1
|Iℓ−1| ∑

i∈Iℓ−1

I(x j ;xi), (2.31)

I(x j ;y)− 1
|Iℓ−1| ∑

i∈Iℓ−1

I(x j ;xi)

min{H(x j),H(xi)} . (2.32)

In addition, Fleuret [23] and Vasconcelos et al. [83] approximate (2.28) in different

ways respectively:

min
i∈Iℓ−1

I(y;x j |xi) = I(x j ;y)+ min
i∈Iℓ−1

[I(x j ;xi |y)− I(x j ;xi)], (2.33)
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∑
i∈Iℓ−1

I(y;x j |xi) = I(x j ;y)− ∑
i∈Iℓ−1

[I(x j ;xi)− I(x j ;xi |y)]. (2.34)

whereI(y,x j |xi) is the dependence betweenx j andy givenxi and the last equalities in

both equations follow from the definition of conditional mutual information (2.22).

Criteria (2.29) to (2.34) have been successfully used in some applications due to their

simplicity and efficiency, but they can suffer from the following drawbacks. First, while

the use of (conditional) mutual information terms with 2 or 3features simplifies the

computation, these criteria may not be effective in capturing effects of 3 or more in-

teracting features. Second, the first step in these forward feature selection methods is

crucial as it determines the most important feature. However, all above methods select

the most important feature by the criterion of argmaxj∈I I(y;x j), which assumes all

features are independent. It is therefore very possible that forward scheme incorrectly

chooses the most important feature. Third, in the subsequent steps of forward feature

selection, criteria (2.29) to (2.34) again ignore the interacting effect of the incumbent

feature with those yet to be identified [32]. The above three drawbacks in existing meth-

ods could lead to performance degradation on feature selection. These issues will be

further studied in Chapter 6.

Dependence Maximization Method

Recently, Song et al. [74] propose a sophisticated filter method which appears to be

quite effective in dealing with data sets having interactive features. This method has the

similar idea with the mutual information based feature selection method: the important
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features should have the maximum dependence with target variable. They only differ in

the way of measuring the dependence of two variables.

A dependence maximization method uses cross-covariance inthe kernel space, known

as the Hilbert-Schmidt norm of cross-covariance operator (HSIC) [28], as dependence

measure between feature variables and target variable. More exactly, suppose(x,y)

and(x̃, ỹ) are independently drawn fromD . Let x andx̃ be mapped into a reproducing

kernel Hilbert space (RKHS)H by φ : R
d → H andy andỹ be mapped into another

RKHS G by ϕ : Y → G whereY = R in regression problems,Y = {−1,+1} in

binary classification problems orY = {1, · · · ,c} in multi-class classification problems.

The HSIC between input variables and target variable is defined as:

HSIC(H ,G ,D) =‖Exy[(φ(x)−Ex(φ(x))⊗ (ϕ(y)−Ey(ϕ(y)))]‖2
HS

=Exx̃yỹ[K(x, x̃)L(y, ỹ)]+Exx̃[K(x, x̃)]Eyỹ[L(y, ỹ)]

−2Exy[Ex̃[K(x, x̃)]Eỹ[L(y, ỹ)]]

(2.35)

where⊗ is the tensor product,K(x, x̃) = φ(x)′φ(x̃) andL(y, ỹ) = ϕ(y)′ϕ(ỹ). As claimed

in [28, 74], the expression (2.35) can measure the non-linear dependence betweenx and

y, since both of them are mapped into high dimensional space.

In term of computation, each expectation term in the last equality of (2.35) can be ap-

proximately computed by the U-statistics, and an unbiased estimator of (2.35) is given

by

HSIC1(H ,G ,D) =
1

N(N−3)

[
traceK̃L̃+

1′K̃11′L̃1
(N−1)(N−2)

− 2
N−2

1′K̃L̃1
]

(2.36)
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where1 is the column vector with all elements being 1, andK̃ andL̃ are the same asK

andL respectively except that their diagonal entries are all setto zero.

Further exploitation of the dependence measure (2.35) and its computation (2.36) can

be found in [28]. In the feature selection method of [74], thedependence measure

(2.36) is used in a backward feature selection scheme, i.e.,the least-important feature is

successively removed at each time.

2.2.2 Wrapper Methods

Maximum Output Information Method

Mutli-layer perceptron (MLP) neural network is a well-known machine learning method.

Maximum Output Information (MOI) [72] is a recently proposed wrapper method for

MLP, and appears to outperform other existing wrapper methods for MLP, such as

neural-network feature selector (NNFS) [70] and artificialneural net input gain mea-

surement approximation (ANNIGMA) [40].

MOI method uses a procedure, calledinformation back-propagation, to assign a score to

each feature. Herein, theinformationrefers to the mutual information between thetrue

labely and thepredictedlabel ŷ obtained from the trained MLP. When thisinformation

traverses the trained MLP neural network from output layer to input layer, the resultant

score to each feature can measure the contribution of the feature w.r.t. the dependency

betweeny andŷ. These scores can therefore be used to rank the features.
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The idea of this method appears sound and attractive, but theprocedure ofinforma-

tion back-propagationis not directly computable and several heuristics are used for its

approximations. The details of the heuristics used can be found in [72].

SVM-RFE Method

Due to the success of support vector regression (SVR), feature selection for SVR has

also attracted considerable works in the past few years. This subsection and the next

provide the review of a few feature selection methods particularly for SVR.

SVM-RFE, RFE short for Recursive Feature Elimination, is a well-known wrapper-

based feature selection method for classification problemswith reported good perfor-

mance [31, 33, 64]. Guyon et al. [33] also suggest that this method is applicable to

regression problems. In this case, SVM-RFE measures the importance of a feature by

the sensitivity of the cost function of SVR with and without this feature. The importance

of the jth feature is evaluated by

S∆‖w‖2
( j) =| ‖w‖2−‖w− j‖2 |, ∀, j ∈ I (2.37)

wherew refers to expression (2.15) in subsection 2.1.2 and its variantw− j is obtained

from

w− j = ∑
i∈ID

(αi −α∗
i )φ(x− j ,i) (2.38)
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whereαi andα∗
i ∀i are obtained from the trained SVR onD andx− j ,i is the i-th in-

put sample of data setD− j := {(x− j ,i,yi)|x− j ,i = Zd
j xi for all (xi ,yi) ∈ D}. Expression

(2.38) implicitly assumes that the support vectors remain unchanged when a feature is

removed. Hence, the expensive procedure of retraining SVR with D− j is avoided.

This method has been successfully used for regression application [29] with notable

success.

Leave-One-Out Error Bounds Methods

Based on the preliminary work of leave-one-out bound mentioned in subsection 2.1.4,

Rakotomamonjy [65] proposes a few feature ranking criteriausing leave-one-out error

bounds of SVR as feature importance index. Although the usedSVR model in [65] is

SVR with the square lossL(ζ ) = max(0,ζ )2, but the extension of these criteria to stan-

dard SVR model with hinge lossL(ζ ) = max(0,ζ ) as used in (2.10) is straightforward.

Rakotomamonjy [65] compared his proposed criteria in extensive experiments and con-

cluded that the best two criteria are the radius-margin bound,

SB1( j) = R2
− j ∑

i∈ID

(α− j ,i +α∗
− j ,i), (2.39)

and span estimate bound

SB2( j) = ∑
i∈ID

(α− j ,i +α∗
− j ,i)S

2
− j ,i. (2.40)
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In (2.39), R− j is the radius of the smallest sphere containing all the points φ(x− j ,i),

i ∈ID , and{α− j ,i |i ∈ID} and{α∗
− j ,i|i ∈ID} are SVR solution with data setD− j . In

(2.40),S2
− j ,i is the squared distance ofφ(x− j ,i) to the span of all other support vectors

{φ(x− j ,t)|t ∈F \{i}} with F = {t|0< α− j ,t +α∗
− j ,t < C}. More details of computing

R− j andS
2
− j ,i can be found in [12, 11].

Criteria (2.39) and (2.40) measure the importance of a feature by its sensitivity to the

leave-one-out error bound, and the feature with the smallest error bound is considered

as the non-important feature.

2.3 Model Selection Methods

The procedure of tuning the regularization parameter,C, is a well-known problem in

the study of Support Vector Machine (SVM) classifier. As mentioned in Chapter 1, one

difficulty of tuningC of common validation functions (such as the error rate, weighted

or balanced error rate, precision, recall or variations thereof) is that these functions are

not smooth functions ofC and the determination of the optimalC is not easy.

To solve this problem, the techniques of sampling amongC values and approximating

validation function are often used in practice. These methods are reviewed next.
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2.3.1 Grid Search Method

The grid search method is direct in the sense that it computesvalidation functions over

a set of pre-specifiedC values and chooses the minimum among them. This method is

widely used in practice, including the standard software packages LIBSVM [10], LIB-

LINEAR [22], SVMlight [41] and Weka [88]. It is reported [19] that grid search method

can yield comparable or better performance in comparison with some approximated

validation function methods discussed in 2.3.2.

Generally, there is no guarantee that grid method can find theglobal optimalC value.

The chance of getting a good approximation to the optimalC increases when the grid

gets dense. However, the corresponding computational costalso increases.

2.3.2 Gradient-based Methods

Some methods find the optimalC by approximating common validation functions [11,

15, 12, 45]. Among them, Chapelle et al. [12] suggest severalmeasures for such a pur-

pose. These include various bounds on the generalization error like the radius margin

bound and span bound mentioned in subsection 2.1.4. Empirical evaluations of several

measures have also been reported [19]. Another popular choice is the sigmoidal approx-

imation of the output function of SVM [45]. All these approximations are used for the

procedure of tuningC as they are smooth functions ofC and can facilitate numerical

determination of optimalC via standard gradient-based optimization algorithms.
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However, as approximations, the connection of these smoothfunctions to the true valida-

tion function is not direct. They are also known to have multiple local stationary points,

making the determination of the global optimum difficult forgradient-based algorithms.

2.3.3 Regularization Solution Path of SVM

The above two model selection methods do not guarantee the optimalC value of typical

validation functions. Chapter 6 of this thesis proposes a method that does. It is based on

the availability of complete solution path of SVM on a wide range ofC. This solution

path approach is now reviewed.

Hastie et al. [34] first propose an approach (hereafter referred to as theSVMpath) on

providing SVM solutions for a wide range of values of the regularization parameter,C.

It is based on a one-dimensional tracking of the Karush-Kuhn-Tucker (KKT) optimality

condition of the dual problem asC changes, resulting in numerical solutions for all

values ofC. Extensions ofSVMpathto other problems have also appeared [69, 30, 90],

including those for regression problem [85, 86]. Recetnly,Ong et al. [58] present a

method, called ISVMP, to improve on the reliability ofSVMpathso that it can deal with

data set having duplicate data points, nearly duplicate points, or points that are linearly

dependent in the kernel space.

Apparently,SVMpathor ISVMP can facilitate the procedure of tuningC in multiple

ways. The most direct way is to replace the SVM solver required in the existing grid

search and gradient based methods, with the results ofSVMpathor ISVMP. However,
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such an approach does not avoid the problems of multiple local minimums or the non-

smooth routine. A new method using ISVMP is proposed in Chapter 6 that guarantees

the global optimum ofC on a family of common validation functions.
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Chapter 3

Feature Selection via Sensitivity

Analysis of MLP Probabilistic Outputs

This chapter proposes a new wrapper-based feature selection method for MLP and is an

extension of the earlier work for SVM [71]. This extension ismotivated by the popular-

ity of MLP as a classifier/regressor for many pattern recognition problems. Consider the

case where the output of the MLP takes the form ofP(ωk|x), the posterior probability of

samplex belonging to classωk, for all x in the feature space. The proposed feature se-

lection method, termed Feature-based Sensitivity of Posterior Probabilities (FSPP), uses

the sensitivity ofP(ωk|x) with respect to a feature as the ranking criterion to measure

the importance of that feature. In loose terms, this criterion is the aggregate value, over

theentire feature space, of the absolute difference ofP(ωk|x) over all classes ofk with

and without a given feature. As its original form is not easily computable, an approxi-

mation is proposed. This approximation, used in an overall feature selection scheme, is
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then tested on various artificial and real-world data sets, in comparison to several exist-

ing feature selection methods in the literature for MLP. Theresults show the proposed

method performs generally better than the existing methodsconsidered.

The remainder of this chapter is organized as follows. Section 3.1 provides the standard

basis of probabilistic MLP neural networks. Section 3.2 gives the detailed account of

the proposed feature ranking criterion and its approximation. Section 3.3 outlines the

use of the proposed criterion in an overall feature selection scheme. Section 3.4 reports

extensive numerical studies of the proposed method in comparison to some existing

methods in the literature, followed by the summary given in Section 3.5.

3.1 Preliminary

The structure of the MLP neural network considered in this thesis is shown in Figure 3.1.

Note that the neural network with multiple layers can be straightforwardly extended. It

is a popular choice for probabilistic neural network [43] and consists of a single-layer

hidden neurons with smooth activation functions, an outputlayer with linear neuron

(neuron with linear activation function) and a softmax function after the output neurons.

The choice of the smooth activation function used in this thesis is the hyperbolic tangent

but other choices may also be used. One hidden layer is used because it is known to have

sufficient approximating power [18], [38]. The exact numberof the hidden neurons,

m, is a hyper-parameter and its value is determined usingn-fold cross validation. Let

variablesb0, b1 represent the biases of the input to the respective layers, andWℓ
i j denote
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Figure 3.1: Architecture of softmax-based probabilistic MLP.

the values of the weights from thejth neuron of layerℓ−1 to theith neuron of layerℓ,

and alsoW be the collection ofWℓ
i j , ∀i, j, ℓ, of the network. Then, the output function

Ok(x;W) with k = 1, · · · ,c is

Ok(x;W) =
m

∑
u=1

W2
ku ·πu(

d

∑
j=1

W1
u j ·x j) (3.1)

whereπu(·) = tanh(·) is the activation function ofu-th neuron in layer 1. The softmax

function provides probabilistic estimate from theOk(x;W) for all x∈ R
d in the form of

P̂(ωk|x;W) :=
eOk(x;W)

eO1(x;W) +eO2(x;W) + · · ·+eOc(x;W)
, k = 1, · · · ,c (3.2)

wheree(·) is the exponential function and̂P(ωk|x;W) is the posterior probability ofx

belonging toωk for a given set ofW. The determination ofW is achieved using the

well-established back-propagation update rule for the minimization of the entropy cost
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function,

E(W) =
N

∑
i=1

c

∑
k=1

[−δk(xi) ln P̂(ωk|xi ;W)], (3.3)

whereδk(·) is the indicator function:δk(xi) = 1 if yi = k and δk(xi) = 0 otherwise.

This cost function has a well-known interpretation: minimizing E(W) corresponds to

maximizing the likelihood function of observing the data set D . SupposeW∗ is the

solution to (3.3), then the predicted label for anyx∈ R
d is given by the decision rule:

ŷ(x) := argmax
k

P̂(ωk|x;W∗). (3.4)

3.2 The Proposed Wrapper-based Feature Ranking Cri-

terion for Classification

In c-class classification, the proposed feature-ranking criterion for the jth feature is:

SP( j) =
c

∑
k=1

∫

Rd
| P(ωk|x)−P(ωk|x− j) | p(x)dx, (3.5)

wherex− j ∈ R
d−1 is the sample derived fromx with the jth feature removed (or equiv-

alently, x− j = Zd
j x), p(x) is the probability density function ofx and the integration

is taken over the entire feature space. The motivation of above criterion is clear: the

greater the absolute difference betweenP(ωk|x) andP(ωk|x− j) over the feature space,

the more important is thejth feature. Clearly, it is a sensitivity of the posterior prob-

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.2 The Proposed Wrapper-based Feature Ranking Criterion for Classification 38

abilities with respect to a feature and is hence termed the Feature-based Sensitivity of

Posterior Probabilities (FSPP).

The value ofP(ωk|x− j) in (3.5) corresponds to the probabilistic output of softmax-based

MLP trained using dataD− j := {(x− j ,i ,yi)|x− j ,i = Zd
j xi for all (xi ,yi) ∈ D}. As x has

d features, evaluation ofSP( j), j = 1,2, · · · ,d requires that retraining of the MLP is

performedd times, each time with the data setD− j for a different j. This is obviously a

computationally expensive process. Following the work in SVM by Shen et al. [71], a

random permutation (RP) process [8, 59] is used to approximateP(ωk|x− j) such that the

retraining of MLP is avoided. The basic idea of RP process is to randomly permute the

values of thejth feature inD while keeping the values of all other features unchanged.

Specifically, let{η1, · · · ,ηN−1} be a set of uniformly distributed random numbers in the

interval(0,1) and⌊η⌋ be the largest integer that is less thanη. Then, for eachi starting

from 1 toN−1, computek = ⌊N×ηi⌋+1 and swap the values ofx j
i andx j

k.

Let x( j) ∈ R
d denote the sample derived fromx after the values of thejth feature ran-

domly permuted by the RP process andD( j) := {x( j),i ,yi}N
i=1 denote the resultant data

set. The next theorem states a result onP(ωk|x( j)) following the RP process and serves

as the theoretical basis for the proposed approximation of (3.5).

Theorem 3.2.1.

P(ωk|x( j)) = P(ωk|x− j) (3.6)

The proof of this theorem is given Appendix A.
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Remark 3.2.1. As shown in the proof, the result P(ωk|x( j)) = P(ωk|x− j) is validated

only needs the process which can destroy the dependence between(ωk,x− j) and xj as

well as the dependence between x− j and xj . Therefore, theoretically any procedure with

such function can lead to result.

Random permutation procedure is a good example of this process, especially for the

data set with large number of samples. Nevertheless, in practice data set often has

limited number of samples, e.g., gene dataset has quite few number of samples. In this

case, random permutation may not fully destroy the featuresdependence. To resolve this

problem, multiple times of random permutation might be needed.

The theorem is stated for the case whereP(ωk|x),P(ωk|x( j)) andP(ωk|x− j) are known.

In the case where they are approximated from the data set, theequality of (3.6) becomes

an approximation. Nevertheless, our numerical experimentshows that the approxima-

tion is very good, even when the data is sparse.

Theorem 3.2.1 shows that random permutation of the values ofa feature has the same

effect as removing the contribution of that feature for classification. Using this fact,

(3.5) can be equivalently stated as

SP( j) =
c

∑
k=1

∫

Rd
| P(ωk|x)−P(ωk|x( j)) | p(x)dx. (3.7)

As its true value is not known,P(ωk|x) is approximated bŷP(ωk|x) := P̂(ωk|x;W∗) as

in (3.2), obtained from the softmax-based MLP trained usingD . Similarly, P(ωk|x( j))

is approximated bŷP(ωk|x( j)) obtained using thesameMLP classifier. Further approx-
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imation of the integration overx in (3.7) yields

ŜP( j) =
1
N

c

∑
k=1

N

∑
i=1

| P̂(ωk|xi)− P̂(ωk|x( j),i) | . (3.8)

Using (3.8) and the RP process,ŜP( j) can be computed forj = 1, · · · ,d after a one-

time training of the softmax-based MLP classifier, andd times forward computing MLP

each time withD( j) as input. The computational cost of one-time training of MLPhas a

known complexity [55] of aboutO(2τN|W|), where|W| is the total number of weights

in the MLP andτ is the number of learning iterations of MLP training. Suppose the

optimalW∗ has been obtained. The computational cost of evaluating (3.8) usingD( j)

for all j = 1, · · · ,d is aboutO(N|W|). Hence, the total computational cost isO((2τ +

1)N|W|). Clearly, this is much cheaper than to retrain the MLPd times which has a cost

of O(2dτN|W|).

3.3 Feature Selection Scheme

Like other criteria,ŜP of (3.8) can be used in several ways. It can provide a ranked list of

features based on a one-time training of the MLP. It can also be used in more extensive

ranking schemes like the well-known recursive feature elimination (RFE) approach [33].

The RFE approach removes the least important feature, as determined byŜP, recursively

from successive training of the MLP. Accordingly, the overall scheme is referred to as

MLP-FSPP-RFE and its main steps are listed in Algorithm 1. Ithas its inputs data set

D and the index setI = {1, · · · ,d}. The output is a ranked list of features in the form
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of an index setI f = {i f
1, · · · , i f

d} wherei f
j ∈ I for each j = 1, · · · ,d and i f

1 being the

index of the most important feature andi f
d the least.

Algorithm 1 : Main steps of MLP-FSPP-RFE feature selection scheme.
Input : D , I
Output : I f := {i f

1, · · · , i f
d}

while |I | > 0 do1

Let ℓ = |I |;2

if ℓ > 1 then3

Train the softmax-based MLP withD ;4

For eachj ∈ I , computeŜP( j) using (3.8);5

Obtained a ranked listJ = { j1, · · · , jℓ}, jk ∈ I from {ŜP( j)}ℓ
j=16

such thatŜP( jk) ≥ ŜP( jk+1) for k = 1, · · · , ℓ−1;
Let i f

ℓ = jℓ;7

Let I = I \ jℓ andD = D\{x jℓ
i : i ∈ ID};8

else9

Let i f
1 = jℓ andI = I \ jℓ;10

end11

end12

With reference to Algorithm 1, the while loop is invokedd−1 times. Each time, the

softmax-based MLP is trained with a reduced data setD (step 4) and produces a ranked

list J of all features inD (step 6) based on the scores ofŜP. The least important

feature (the last element ofJ ) is removed fromI and stored in the ranked listI f .

The corresponding feature is also removed from the data setD (step 8). The while loop

is then invoked on the reduced sets ofI andD again. This process continues, each time

removing the least important feature fromI and storing in the last position ofI f , until

I has only one feature, which becomes the most important feature naturally.

It is worth noting that more than one feature can be removed atone time with a slight

modification to step 7 and 8 in the Algorithm 1. Like other wrapper methods, the current
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scheme does not involve the re-tuning of the number of hiddenneurons in step 4 in the

while loop of Algorithm 1. Re-tuning is possible albeit withmuch higher costs.

3.4 Numerical Experiment

Extensive experiments on both artificial and real-world data sets are conducted to eval-

uate the performance of the proposed method and three existing MLP feature selection

methods mentioned in Section 2.2, Fisher Score (FisherS) [31] of (2.27), Mutual Infor-

mation (MutualI) [53] of (2.31) and Maximum Output Information (MOI) [72]. Fol-

lowing the procedure of Rätsch [67], the result of the experiment is reported over 30

realizations for all data sets. The subsetDtrn is normalized to zero mean and unit stan-

dard deviation and its normalization parameters are then used to normalizeDtst. Dtrn is

used for training the softmax-based MLP, including the determination ofm, via a 5-fold

cross-validation over the grid[1,2, · · · ,3d] for all problems, except for the problems of

HillValey and Musk where the grid[1,2, · · · ,6] is used. The grid size is chosen accord-

ing to the rule-of-thumb that the total number of weights in MLP should be less than the

number of training samples. The subsetDtst is used for obtaining an unbiased evaluation

of the effectiveness of the underlying feature selection methods. For the case of the MOI

method, a separate validation data set is needed for theinformation back-propagation

evaluation. Hence,Dtrn is further divided into two equal parts: one asDtrn for the

training the MLP and the other asDval for conducting information back-propagation.

|Dtrn| and |Dtst| are the number of training samples and the number of test samples,

respectively.
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The presentation of the results follows that by Rakotomamonjy [64] where the (average)

test error rates varying with the number of top-ranked features for each method are

plotted. The plots are the mean over all realizations of eachdata set. In each figure,

the results of MLP-FSPP-RFE and the existing benchmark methods, FisherS, MutualI,

MOI are reported. In addition, for statistical comparison of the methods, pairedt-test

between the proposed method and each of benchmark methods isconducted on all data

sets. Specifically, the null hypothesis is that the mean testerrors of the two methods are

same and the pairedt-test is conducted for a given number of top-ranked features. The

p-value obtained in the pairedt-test is given and the symbols “+” and “−” are used to

indicate win or loss of the proposed method over that method.

The numerical algorithm for the training of the MLP in our experiments is done us-

ing the Netlab package [57], where a scaled conjugate gradient method is used in the

optimization of the cost function (3.3).

3.4.1 Artificial Data Sets

Weston’s Nonlinear Synthetic Data Sets

This artificial data set has 10 features and 10,000 samples. It is generated according to

the procedure in [87]. Only the first two features 1 and 2 are relevant while others are

random noise, each taken from a normal distribution,N (0,20). The targety∈ {1,2}

and the number of samples withy = 1 is equal to that withy = 2. If y = 1, (x1,x2)

are drawn from two normal distributionsN (µ1,Σ) or N (µ2,Σ) with equal probability,
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with µ1 = (−3/4,−3), µ2 = (3/4,3) andΣ = I . If y = 2, (x1,x2) are drawn from two

normal distributions with equal probability, withµ1 = (3,−3), µ2 = (−3,3) and the

sameΣ.

Four settings with different sizes of the training set (|Dtrn|=200, 90, 70, or 40) are con-

sidered to investigate the influence of the sparseness of thedata set on the performance

of the feature selection methods. In all four settings,m is chosen to be 6 by the cross-

validation process.

Table 3.4.1 presents the number of trials (out of 30 trials ondifferent realizations) that

feature 1 and 2 are successfully ranked as the first and secondmost important features.

The best performance for each case is highlighted bold.

It is easy to see that the advantage of MLP-FSPP-RFE over other benchmark methods

is evident when the feature selection problem becomes more challenging (as the size of

training set gets smaller). First, as seen from Table 3.4.1,both filter methods FisherS

and MutualI completely fail to identify two key features even in the easiest case (with

200 training samples). This is not surprising because features 1 and 2 alone has nearly

no discriminating capability and any filter method that treats features individually will

not work on such problem. Therefore, the experiments of these two filter methods on

more challenging settings (with less training samples) areomitted. Second, Table 3.4.1

also indicates that MLP-FSPP-RFE outperforms MOI and the difference in performance

is especially evident when the learning problem gets harder(with less training samples).

The test error rates varying with the number of top-ranked features as in Figure.3.2 again
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Method |Dtrn| = 200 |Dtrn| = 90 |Dtrn| = 70 |Dtrn| = 40
MLP-FSPP-RFE 30 30 30 30
FisherS 0 −− −− −−
MutualI 0 −− −− −−
MOI 30 29 24 0

Table 3.1: The number of realizations that feature 1,2 are successfully ranked in the top
two positions over 30 realizations for Weston Problem.

shows that MLP-FSPP-RFE outperforms other methods, especially when the feature se-

lection problem becomes more challenging (as the size of training set gets smaller). The

statistical significance of this performance difference isalso verified by afore-mentioned

pairedt-tests. When the training set size is small (i.e. 40 or 70) andonly the first two

top-ranked features are used, thep-value obtained is less than 0.05.

It is also worthy to note that MLP-FSPP-RFE consistently produces a test-error curve

(Figure.3.2) that has the minimum point when top two features are given. This points

to the effectiveness of the proposed feature selection method in removing irrelevant

features even when it operates far from the optimum number offeature. This is not the

case for the MOI method, as shown in Figure. 3 (c) and (d).

Synthetic Corral Data Sets

In this section, synthetic Corral data set (Corral-6) proposed by Corral [42] and its vari-

ants (Corral-46 and Corral-47) proposed by Yu and Liu [89] are used to test the capa-

bility of feature selection methods in handling both irrelevant and redundant features.

In each of three data sets there are 128 samples. All three data sets (Corral-6, Corral-

46 and Corral-47) have four same mutually-independent important boolean features,
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Figure 3.2: Average test error against top-ranked featuresover 30 realizations of Weston
data sets for four training set sizes.

{A0,A1,B0,B1}, and the same target concept,y = (A0∩A1)∪ (B0∩B1), but differ in

the choices of the other redundant and irrelevant features.The Corral-6 data set con-

tains two other features: an irrelevant featureI taking values from a uniformly random

distribution and a redundant feature which matches the target concept 75% of the time

and mismatches 25% of the time. Corral-46 contains 28 redundant features and 14 ir-

relevant features. The 28 redundant features are obtained from the original 4 boolean

features (7 redundant features for each ofA0,A1,B0 andB1) at various correlations lev-

els (1, 15/16, 14/16, · · · , 10/16). These 7 features are correspondingly denoted with a

subscript of an increasing number, for example, the 7 redundant features derived from

A0 includeA00,A01, · · ·A06. Among the 14 irrelevant features, only two features are

uniformly random and each of the remaining 12 is completely correlated with either of

these two. Corral-47 is exactly same as Corral-46 except that the former contains one
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more redundant featureR75. Thus, optimal features sets (after removing all irrelevant

and redundant features) for these three data sets should only contain 4 relevant features

indeed, as shown in Table 3.4.1.

The feature selection performances of MLP-FSPP-RFE, FisherS, MutualI and MOI on

these three synthetic data sets are obtained from 30 realizations with softmax-based

MLP. Similar to the experiments in Weston problem, Table 3.4.1 presents the numbers

of realizations that optimal features sets are successfully ranked in the top four posi-

tions in 30 different realizations. In this table,IG refers to the known optimal features

sets. For Corral-46 and Corral -47, each optimal feature inIG has its duplication in

bracket, so only either of them can be selected in optimal feature set. It is easy to see

the advantage of the proposed method over benchmark methodsin handling both irrel-

evant and redundant features from this table. Two filter methods, FisherS and MutualI,

again almost completely fail to identify optimal features set, while MOI performs well

on Corral-6 but poorly on Corral-46 and Corral-47 when more irrelevant and redun-

dant features are adulterated. In contrast to these benchmark methods, MLP-FSPP-RFE

consistently performs well in all the three data sets.

The graphs of test error rates against the number of top-ranked features in Figure.3.3

again show better performance of MLP-FSPP-RFE than those ofthe benchmark meth-

ods. This performance advantage can also be verified by the afore-mentionedt-test

between MLP-FSPP-RFE and each of the benchmark methods. Forexample, consider

the two relatively more challenging problems of Corral-46 and Corral-47, thep-value

obtained is less than 0.05 by comparing the test error rates with optimal feature reduction

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.4 Numerical Experiment 48

Corral-6 Corral -46 Corral -47
A0 A1 A0(A00) A1(A10) A0(A00) A1(A10)

Method\IG B0 B1 B0(B00) B1(B10) B0(B00) B1(B10)
MLP-FSPP-RFE 30 30 30
FisherS 0 0 0
MutualI 0 0 0
MOI 30 9 10

Table 3.2: The number of realizations that optimal featuresare successfully ranked in
the top four positions over 30 realizations for Corral Problems.

(i.e. when only 4 top-ranked features are left).

3.4.2 Real-world Data Sets

|Dtrn| |Dtst| d c m nr
Abalone 3133 1044 8 3 11 1
WBCD 350 333 9 2 10 1
Wine 120 58 13 3 13 1
Vehicle 423 423 18 4 4 1
Image 210 2100 19 7 2 1
Waveform 400 4600 21 3 3 1
HillValey 606 606 100 2 2 10
Musk 330 146 166 2 3 10

Table 3.3: Description of real-world data sets for classification problems.

Eight real-world data sets are taken from the UCI machine learning repository [1] and

their descriptions are given in Table 3.3, whered, c, m, nr refer to number of features,

number of classes, number of hidden neurons used in the MLP and the number of fea-

tures removed each time by Algorithm 1, respectively. The Abalone data set has been

transformed into a 3-class classification problem following the procedure by Davidet.

al. [16]. Figures 3.4-3.11 show the average test error rates against the number of top-

ranked features used in the classification for Abalone, WBCD, Wine, Vehicle, Wave-

form, Image, HillValey and Musk respectively. Results of paired t-test between MLP-
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Figure 3.3: Average test error against top-ranked featuresover 30 realizations of three
Corral data sets: (a) Corral-6. (b) Corral-46. (c) Corral-47.

FSPP-RFE and each of benchmark methods are respectively tabulated from Tables 3.4

to 3.11, in which No. is the number of top ranked features and the p-values less than

0.05 are highlighted in bold.

For problem Abalone, Figure 3.4 shows the average test errorrates against the number

of top-ranked features in MLP for both proposed and benchmark methods. It can be

observed in this figure that given the same level of the feature selection (with the same

number of features removed), MLP-FSPP-RFE generally yields lower average test er-

ror rates than benchmark methods. This is confirmed by the paired t-tests’ result given

in Table 3.4. Generally, MLP-FSPP-RFE consistently performs at least as well, if not

better than benchmark methods with a few exceptions happen:e.g, in the first row (with

only the top-ranked feature left), the test error rate of MLP-FSPP-RFE is significantly
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higher than those of FisherS and MutualI. This is not considered as a worrying sign,

because they only happen when features are over-eliminatedafter removing many rele-

vant features in RFE. Usually, early stopping of RFE should have been triggered by the

dramatic increase of the test error rate.

For other real-world problems (WBCD, Wine, Vehicle, Image,Waveform, HillValey and

Musk), the experimental results show similar patterns to that of the problem Abalone,

as shown in Figures 3.5 to 3.11 and Tables 3.5 to 3.11. Generally, our results on paired

t-tests show that the proposed method performs at least as well, if not better, than the

benchmark methods.

3.4.3 Discussion

Based on extensive numerical experiments, it appears that the proposed method MLP-

FSPP-RFE outperforms other existing methods in the literature, especially when the data

set is sparse or when the data set has many redundant features. The better performance

of MLP-FSPP-RFE over filter methods, FisherS and MutualI, isexpected since filter

methods have their inherent theoretic pitfalls as mentioned in Chapter 2, but the better

performance of MLP-FSPP-RFE over MOI is interesting and deserves attention. Both

MLP-FSPP-RFE and MOI use the RFE approach but differ in theirranking criteria. The

former uses the “aggregate” sensitivity of MLP probabilistic outputs with respect to a

feature over the feature space while the latter relies on a heuristically assigned credit of

every feature’s contribution to output information.
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The better performance of MLP-FSPP-RFE over MOI is related to posterior probability

being a better measure of performance over output information. Indeed, the decision

function (3.4) of MLP is directly related to the posterior probability but MOI uses the

indirect measure of output information. In addition, ˆy of I(y; ŷ) in the MOI method is

a discrete variable and, thus, is less discriminating than the continuous nature of the

posterior probability. These two factors are likely to be significant when the training

data is sparse. The proposed criterion also has a slight edgeover MOI in terms of

computational cost. As mentioned in Section 3.2, the computational cost of ranking the

d features (ignoring training cost) for the proposed method is aboutO(N|W|) while that

of MOI is aboutO(2N|W|) [72].

3.5 Summary

This chapter proposes a new feature selection method and itsnumerical evaluation for

MLP neural networks. The proposed method is based on the sensitivity of the proba-

bilistic output of the MLP with respect to a given feature. Numerical experiments using

the proposed method and other feature selection methods areconducted on several arti-

ficial and real-world data sets. In all the experiments, statistical testing shows that the

proposed method performs generally better than the other feature selection methods.

The proposed method performs particular well for data sets with low samples-to-feature

ratios and data sets adulterated with different levels of redundant features. This better

performance is very likely due to posterior probability being directly related to the de-

cision function of the MLP and the aggregate of this probabilistic output over the entire
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Figure 3.4: Test error rates on Abalone data set
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Figure 3.5: Test error rates on WBCD data set

MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
1 43.74 39.84 0.00- 39.85 0.00- 45.77 0.00+
2 34.55 36.96 0.00+ 40.14 0.00+ 38.46 0.00+
3 34.12 36.79 0.00+ 39.33 0.00+ 36.29 0.00+
4 33.76 36.76 0.00+ 34.66 0.03+ 34.84 0.02+
5 33.84 36.69 0.00+ 34.41 0.13 33.96 0.78
6 33.90 36.16 0.00+ 34.25 0.30 33.74 0.62
7 33.85 34.00 0.62 34.14 0.37 33.58 0.42
8 33.51 33.50 0.98 33.38 0.69 33.43 0.82

Table 3.4:t-test on Abalone data set.

feature space. In addition, the proposed method requires only modest computations.
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Figure 3.6: Test error rates on Wine data set
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Figure 3.7: Test error rates on Vehicle data set

MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
1 9.90 10.21 0.46 10.82 0.01+ 15.63 0.00+
2 5.78 5.39 0.15 6.18 0.21 7.600.00+
3 4.77 4.61 0.56 4.51 0.31 5.680.01+
4 4.40 4.42 0.93 4.26 0.62 4.47 0.80
5 3.94 4.61 0.01+ 3.89 0.82 4.20 0.29
6 3.69 4.38 0.00+ 3.71 0.90 3.91 0.24
7 3.69 4.04 0.14 3.85 0.39 3.85 0.51
8 3.62 3.81 0.30 3.74 0.53 3.60 0.92
9 3.70 3.61 0.65 3.72 0.91 3.67 0.90

Table 3.5:t-test on WBCD data set.
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Figure 3.8: Test error rates on Image data set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0.2

0.25

0.3

0.35

0.4

0.45

Number of Top−ranked Features

T
es

t E
rr

or
 r

at
e

Waveform

 

 

MLP−FSPP−RFE
FisherS
MutualI
MOI

Figure 3.9: Test error rates on Waveform data set
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Figure 3.10: Test error rates on HillValley data set
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Figure 3.11: Test error rates on Musk data set

MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
1 29.05 23.15 0.02- 25.32 0.14 32.92 0.12
2 11.58 13.44 0.09 10.78 0.46 9.67 0.12
3 6.68 6.41 0.67 7.19 0.45 7.59 0.24
4 4.10 5.28 0.07 4.86 0.26 5.860.02+
5 2.38 3.18 0.13 3.01 0.22 3.880.01+
6 2.41 2.59 0.71 2.24 0.75 3.00 0.26
7 2.41 2.53 0.79 2.26 0.73 2.64 0.61
8 1.15 2.66 0.00+ 2.62 0.00+ 2.22 0.01+
9 0.95 2.53 0.00+ 2.41 0.00+ 1.26 0.38
10 1.07 2.65 0.00+ 1.77 0.07 1.52 0.29
11 1.35 2.54 0.01+ 1.61 0.55 1.36 1.00
12 1.47 2.03 0.20 1.74 0.54 1.46 0.99
13 1.43 1.43 1.00 1.43 1.00 1.43 1.00

Table 3.6:t-test on Wine data set.
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MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
1 56.97 50.67 0.00- 49.77 0.00- 60.54 0.02+
2 46.32 39.40 0.00- 47.60 0.24 45.87 0.78
3 39.07 38.61 0.60 46.720.00+ 39.49 0.72
4 33.53 37.80 0.00+ 45.97 0.00+ 34.24 0.44
5 29.97 34.66 0.00+ 39.76 0.00+ 29.75 0.77
6 27.54 34.47 0.00+ 35.25 0.00+ 28.23 0.37
7 26.08 33.98 0.00+ 32.36 0.00+ 26.79 0.24
8 24.62 32.08 0.00+ 28.37 0.00+ 25.74 0.14
9 23.28 30.56 0.00+ 26.94 0.00+ 24.36 0.06
10 22.02 27.11 0.00+ 25.17 0.00+ 23.21 0.02+
11 21.13 26.86 0.00+ 24.27 0.00+ 22.73 0.01+
12 19.95 25.43 0.00+ 22.96 0.00+ 21.68 0.00+
13 19.78 23.80 0.00+ 21.66 0.00+ 20.83 0.06
14 19.47 23.57 0.00+ 20.38 0.06 20.72 0.02+
15 19.63 22.69 0.00+ 19.11 0.26 19.45 0.71
16 19.45 21.98 0.00+ 18.69 0.04+ 19.22 0.57
17 18.75 20.31 0.00+ 19.08 0.46 18.93 0.66
18 18.93 18.58 0.38 19.00 0.87 18.75 0.67

Table 3.7:t-test on Vehicle data set.

MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
1 45.93 43.81 0.06 50.240.00+ 44.91 0.41
2 25.47 21.61 0.00- 29.23 0.01+ 22.05 0.01-
3 14.98 18.77 0.00+ 14.18 0.38 14.84 0.90
4 6.90 17.70 0.00+ 7.4 0.39 9.68 0.00+
5 6.58 16.21 0.00+ 7.01 0.14 8.07 0.02+
6 6.47 15.45 0.00+ 6.65 0.54 7.07 0.09
7 6.49 15.11 0.00+ 6.51 0.93 6.92 0.15
8 6.63 10.28 0.00+ 6.71 0.74 7.03 0.20
9 6.72 8.52 0.01+ 6.59 0.62 7.36 0.04+
10 7.06 6.39 0.05 6.65 0.14 7.63 0.08
11 7.18 6.58 0.07 6.67 0.13 7.51 0.36
12 7.31 7.09 0.43 7.16 0.62 7.63 0.28
13 7.66 7.32 0.33 7.45 0.53 7.98 0.38
14 8.01 7.61 0.22 7.62 0.17 8.12 0.73
15 8.11 8.10 0.98 8.24 0.71 8.37 0.45
16 8.55 8.33 0.44 8.65 0.76 8.42 0.68
17 8.68 8.68 0.99 8.76 0.82 8.71 0.94
18 9.08 8.93 0.71 8.80 0.45 9.13 0.89
19 9.09 8.96 0.75 8.92 0.69 8.86 0.59

Table 3.8:t-test on Image data set.
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MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
1 44.85 47.71 0.00+ 44.48 0.41 46.10 0.02+
2 30.86 39.37 0.00+ 31.29 0.28 34.65 0.00+
3 27.13 33.41 0.00+ 27.22 0.82 30.17 0.00+
4 24.48 27.31 0.00+ 24.57 0.72 27.22 0.00+
5 22.53 24.07 0.00+ 22.92 0.12 24.49 0.00+
6 21.05 22.11 0.00+ 21.33 0.24 22.59 0.00+
7 19.90 20.91 0.00+ 20.05 0.46 21.59 0.00+
8 19.01 19.70 0.00+ 19.14 0.45 20.60 0.00+
9 18.06 18.60 0.00+ 18.16 0.54 19.57 0.00+
10 17.33 17.94 0.00+ 17.54 0.13 18.59 0.00+
11 16.79 17.62 0.00+ 16.87 0.57 18.03 0.00+
12 16.43 17.07 0.00+ 16.38 0.75 17.43 0.00+
13 16.01 16.76 0.00+ 15.94 0.63 17.04 0.00+
14 15.74 16.40 0.00+ 15.57 0.31 16.65 0.00+
15 15.52 16.26 0.00+ 15.29 0.13 16.24 0.00+
16 15.44 16.03 0.00+ 15.20 0.14 16.02 0.00+
17 15.35 15.70 0.06 15.04 0.06 15.97 0.00+
18 15.31 15.50 0.28 15.03 0.08 15.67 0.03+
19 15.26 15.34 0.64 15.14 0.43 15.49 0.12
20 15.24 15.33 0.57 15.24 0.99 15.43 0.18
21 15.32 15.32 1.00 15.33 0.90 15.32 0.95

Table 3.9:t-test on Waveform data set.

MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
10 18.07 43.28 0.00+ 37.23 0.00+ 16.01 0.30
20 13.83 29.63 0.00+ 36.57 0.00+ 13.96 0.91
30 13.38 18.60 0.01+ 36.85 0.00+ 11.70 0.13
40 13.24 15.64 0.26 34.69 0.00+ 13.53 0.78
50 13.13 15.58 0.21 31.16 0.00+ 13.63 0.64
60 13.36 15.88 0.22 25.45 0.00+ 13.21 0.90
70 13.53 17.31 0.07 21.58 0.00+ 12.93 0.65
80 14.67 14.84 0.90 18.39 0.01+ 14.54 0.90
90 14.59 15.18 0.65 16.81 0.10 14.84 0.84
100 14.91 15.78 0.46 15.70 0.50 14.76 0.90

Table 3.10:t-test on Hillvalley data set.
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MLP-FSPP-RFE FisherS MutualI MOI
No. mean mean p- mean p- mean p-

ERR ERR value ERR value ERR value
6 27.91 29.13 0.34 25.49 0.05- 30.67 0.05
16 20.68 23.48 0.00+ 20.87 0.85 20.73 0.96
26 16.24 21.18 0.00+ 18.42 0.02+ 17.75 0.12
36 15.64 19.84 0.00+ 17.89 0.01+ 16.30 0.36
46 14.70 17.30 0.00+ 16.77 0.02+ 14.82 0.89
56 14.78 15.81 0.22 15.77 0.22 14.13 0.44
66 14.51 14.03 0.65 14.75 0.79 14.07 0.56
76 14.05 12.76 0.20 14.49 0.61 13.15 0.32
86 13.25 13.52 0.76 13.07 0.83 13.50 0.79
96 13.43 13.09 0.66 13.12 0.69 13.17 0.73
106 13.17 13.03 0.87 13.85 0.44 13.09 0.93
116 12.94 12.16 0.33 13.54 0.51 12.66 0.75
126 11.98 12.46 0.57 13.35 0.12 12.29 0.72
136 12.65 13.01 0.66 12.79 0.87 12.64 1.00
146 12.30 12.16 0.86 11.93 0.66 12.53 0.77
156 12.23 11.89 0.66 11.88 0.66 12.49 0.73
166 12.10 12.35 0.72 12.64 0.46 11.96 0.83

Table 3.11:t-test on Musk data set.
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Chapter 4

Feature Selection via Sensitivity

Analysis of SVR Probabilistic Outputs

This chapter proposes a new wrapper-based feature selection method for support vector

regression (SVR). Under the probabilistic framework, the output of a standard SVR can

be interpreted asp(y|x), the conditional density function of targety ∈ R given input

x∈ R
d for a given data set. The proposed method relies on the sensitivity of p(y|x) with

respect to a given feature as a measure of importance of this feature. More exactly, the

importance score of a feature is the aggregation, over the feature space, of the differ-

ence ofp(y|x) with and without the feature. The exact computations of the proposed

method is expensive, two approximations are proposed. Eachof the two approxima-

tions, embedded in an overall feature selection scheme, is tested on various artificial and

real-world data sets and compared with several other existing feature selection methods.

The experimental result shows that the proposed method performs generally better than,
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if not at least as well as, other methods in almost all experiments.

This chapter is organized as follow: Section 4.1 reviews theformulas of SVR with prob-

abilistic outputs. Section 4.2 presents details of the proposed feature ranking criterion

and the two approximations. Section 4.3 shows the overall feature selection scheme. Re-

sults of numerical experiment of the proposed method, benchmark against other meth-

ods, are reported in Section 4.4. Section 4.5 summarizes thechapter.

4.1 Preliminary

The expressions of standard SVR are reviewed in 2.1.2 of Chapter 2. However, the out-

put function of SVR, as shown in (2.16), provides an estimate, f (x), for outputy for

anyx but provides no information on the confidence level of this estimate. Recogniz-

ing this shortcoming, several attempts to incorporate probabilistic values to SVR output

have been reported in the literature. Following the approach of Bayesian framework for

neural network [54], Law and Kwok [48] propose a Bayesian support vector regression

(BSVR) formulation incorporating probabilistic information. Gao et al. [26] improve

upon BSVR by deriving the evidence and error bar approximation. Chu et al.[14] pro-

pose the use of a unified loss function over the standardε-insensitive loss function and

provide better accuracy in evidence evaluation and inferences.

Another approach to obtaining probabilistic output of the regressor is that used in the

Neural Networks framework [5]. It assumes that the output ofthe regressor is corrupted
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with noise in the form of

y = f (x)+δ (4.1)

whereδ belongs to the Gaussian distribution. Lin and Weng [51] alsoconsider the

case whereδ belongs to the Laplace distribution. Equivalently, this means that density

functions ofy for a givenx are

pL(y|x;σ) =
1

2σ
exp(−|y− f (x)|

σ
), (4.2)

pG(y|x;σ) =
1√
2πσ

exp(−(y− f (x))2

2σ2 ) (4.3)

for the Laplace and Gaussian cases respectively. Like the Neural Network approach,

the intention is to obtain estimates ofσ of (4.2) and (4.3) fromD . If p(x,y) is the joint

density function ofx andy, the likelihood function, as a function ofσ , of observingD

is given by

L(σ) = Πi∈ID
p(xi ,yi) = Πi∈ID

p(yi |xi ;σ)p(xi),

under the assumption of independent and identically distributed samples. By further

assuming thatp(x) is independent ofσ , the expressions ofσ can be obtained by maxi-

mizing the logarithm function ofL(σ) [5, 20]. These expressions are

σL =
∑i∈ID

|yi − f (xi)|
N

, (4.4)

(σG)2 =
∑i∈ID

(yi − f (xi))
2

N
(4.5)
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for the Laplace and Gaussian distributions respectively. It has been shown [51] that this

approach is competitive in terms of performance to the BSVR methods.

4.2 The Proposed Wrapper-based Feature Selection Cri-

terion for Regression

For regression problems, the proposed feature selection method evaluating feature im-

portance relies on measures of difference between two density functions. Our choice of

this measure is the well-known Kullback-Leibler divergence (KL divergence),DKL(·; ·).

Given two distributionsp(y) andq(y),

DKL(p(y);q(y)) =

∫
p(y) log

p(y)
q(y)

dy. (4.6)

From its definition, it is easy to verify thatDKL(p(y);q(y)) ≥ 0 for anyp(y) andq(y),

DKL(p(y);q(y)) = 0 if and only if p(y) = q(y) andDKL(p(y);q(y)) is not symmetrical

with respect to its arguments. The last property is a result of treating p(y) as the ref-

erence distribution. In cases where symmetry of the arguments is important or that a

reference distribution does not exist, modifications toDKL(·; ·) can be easily achieved.

In the case of SVR, the density functionp(y|x) at anyx is assumed to be (4.2) or (4.3)

with f (·) being the solution obtained from (2.16). Givenx ∈ R
d, x− j ∈ R

d−1 can be

obtained by removing thejth feature fromx, or, equivalently,x− j = Zd
j x. With this,

the difference of the two density functionsp(y|x) and p(y|x− j) at a particularx (and
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hencex− j ) is DKL(p(y|x); p(y|x− j)). The proposed feature importance measure is an

aggregation ofDKL(p(y|x); p(y|x− j)) over allx in thex space. More exactly, the measure

is

SD( j) =
∫

DKL(p(y|x); p(y|x− j))p(x)dx. (4.7)

The motivation for definingSD is simple: the greater theDKL divergence betweenp(y|x)

andp(y|x− j) over thex space, the greater the importance of thejth feature. For conve-

nience, (4.7) is termed SD measure, short for Sensitivity ofDensity Functions.

In (4.7), p(y|x) is either (4.2) or (4.3) with the prediction functionf (·) trained onD .

Similarly, p(y|x− j) is obtained from the SVR output function trained using the derived

datasetD− j := {(x− j ,i,yi)|x− j ,i = Zd
j xi for all (xi ,yi) ∈ D}. Thus, evaluations ofSD( j),

j = 1, · · · ,d require the training of SVRd times, each with a differentD− j . Clearly, this

is a computationally expensive process. Like the procedurementioned in Section 3.2 of

Chapter 3, a random permutation (RP) process [8, 59] is used to approximatep(y|x− j)

such that the retraining of SVR is avoided.

Let x( j) ∈R
d be the sample derived fromx after the RP process on thejth feature and let

p(y|x( j)) be the conditional density function ofy givenx( j). Then, we can get a theorem

analogous to theorem 3.2.1 below.

Theorem 4.2.1.

p(y|x( j)) = p(y|x− j) (4.8)
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Therefore, the density functionp(y|x− j) of (4.7) can be replaced byp(y|x( j)). Such

a replacement brings about significant computational advantage sincep(y|x( j)) can be

evaluated from (4.2) or (4.3) usingf (x( j)) obtained from the SVR training usingD .

By assuming thatp(y|x( j)) can be evaluated from (4.2) or (4.3) usingf (x( j)) obtained

from the SVR training usingD (sincex andx( j) are bothd-dimensional), this avoids the

expensived-time retraining of SVR onD− j . Correspondingly, (4.7) can be equivalently

stated as:

SD( j) =

∫
DKL(p(y|x); p(y|x( j)))p(x)dx. (4.9)

Figure 4.1 shows a plot ofp(yi |xi) andp(yi |x( j),i) at one choice ofxi for a typical SVR

problem withd = 1. To compute theSD, further approximation of (4.9) is needed,

resulting in

ŜD( j) =
1
N ∑

i∈ID

DKL(p(yi|xi); p(yi |x( j),i)). (4.10)

Figure 4.1: Demonstration of the proposed feature ranking criterion with d = 1. Dots
indicate locations ofyi
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Whenp(y|x) andp(y|x( j)) are Laplace functions or Gaussian functions, explicit expres-

sions ofŜD( j) exist. Using (4.2) and following the derivation in AppendixB, the KL

divergence for the case of Laplace function can be shown to be,

DKL(pL(y|x;σL); pL(y|x( j);σL
( j))) = ln

σL
( j)

σL −1+
σL

σL
( j)

exp(−
| f (x)− f (x( j))|

σL )+
| f (x)− f (x( j))|

σL
( j)

(4.11)

for a givenx whereσL is that given by (4.4) andσL
( j) is obtained from (4.4) by replacing

f (x) with f (x( j)). Using (4.11) in (4.10) and removing associated constants yields

ŜL
D( j) =

1
N ∑

i∈ID

[
σL

σL
( j)

exp(−
| f (xi)− f (x( j),i)|

σL )+
| f (xi)− f (x( j),i)|

σL
( j)

+ ln
σL

( j)

σL

]
. (4.12)

Following the same development for the case whenp(y|x) is Gaussian, the expressions

are

DKL(pG(y|x;σG); pG(y|x( j);σG
( j))) = ln

σG
( j)

σG +
f (x)2 + f (x( j))

2 +(σG)2−2 f (x) f (x( j))

2(σG
( j))

2
− 1

2

(4.13)

and

ŜG
D( j) =

1
2N ∑

i∈ID

[
( f (xi)− f (x( j),i))

2

(σG
( j))

2
+(

σG

σG
( j)

)2+2ln
σG

( j)

σG

]
(4.14)

where the expression of (4.13) is given by [61].
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In summary,ŜD( j) can be computed for allj = 1, · · · ,d, after a one-time training of

SVR, one-time evaluation ofσL (or σG), d-time RP process,d-time evaluation ofσL
( j)

(or σG
( j)) andd-time evaluation ofDKL.

Remark 4.2.1.The kernel matrix is different for each of the d-time evaluation ofσL
( j) (or

σG
( j)) and this incurs additional computations. Such computations can be kept low using

update formulae. Suppose xr ,xq and x( j),r ,x( j),q are two samples before and after the

RP process is applied to feature j. It is easy to show that K(x( j),r ,x( j),q) = K(xr ,xq)+

x j
( j),r ∗x j

( j),q−x j
r ∗x j

q for linear kernel and K(x( j),r ,x( j),q) = K(xr ,xq)∗exp[κ(x j
r −x j

q)
2−

κ(x j
( j),r −x j

( j),q)
2] with kernel parameterκ for Gaussian kernel.

4.3 Feature Selection Scheme

Analogous to the analysis in Section 3.3, the proposedŜL
D andŜG

D can be used in two

ways: 1.) it yields a ranking list of all features based on a one time training of SVR on

D ; 2.) it yields a ranking list of all features based on the recursive feature elimination

(RFE) scheme. In each iteration of RFE, a ranking of all remaining features is obtained

using some appropriate measures (ŜL
D, ŜG

D or others). The least important feature, as

determined by the measure is then removed from further consideration. This procedure

stops afterd− r iterations to yield the topr features. Accordingly, the overall scheme

with respect to measurêSL
D ( ŜG

D) is referred to as SD-L-RFE (SD-G-RFE). Inputs to

scheme SD-L-RFE areD andI = {1, · · · ,d}, while the output is a ranked list of fea-

tures in the form of an index setI f = {i f
1, · · · , i f

d} wherei f
j ∈ I for each j = 1, · · · ,d
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in decreasing order of importance.

Following Theorem 4.2.1, the associated computational costs of the SD-L-RFE (SD-G-

RFE) scheme is the training of SVR at each iteration and the evaluations ofŜG
D( j)(ŜL

D( j))

using (4.13) ((4.11)) for eachj of the remaining features in that iteration. This is the

case of the proposed scheme. In the next section where other benchmark methods are

discussed, the retraining of SVR at each iteration and within the iteration may be needed

for the ranking of features because of inapplicability of Theorem 4.2.1

4.4 Numerical Experiment

This section presents result of numerical experiment of SD-L-RFE, SD-G-RFE and

the several existing benchmark methods mentioned in Section 2.2, Mutual Informa-

tion (MI) based method [53] of (2.31), Dependence Maximization method (HSIC) [74],

SVM-RFE (∆‖ω‖2) [33] of (2.37), radius-margin bound based method (RMB) [65] of

(2.39) and span bound based method (SpanB) [65] of (2.40), onartificial and real-world

data sets. The first two benchmark methods are filter methods while the last three are

wrapper methods. All methods, except mutual information method, use the same RFE

scheme described in Section 4.3 for ranking the features, and hence they are referred to

as mRMR, HSIC-RFE,∆‖ω‖2-RFE, RMB-RFE and SpanB-RFE, respectively.

Note that the retraining of SVR within each RFE iteration is not needed for∆‖ω‖2-

RFE. However, in the implementation of RMB-RFE and SpanB-RFE by [65], retraining

is used within each iteration of the RFE scheme. Obviously, this is much more expensive
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process than the proposed method since the result of Theorem4.2.1 is not applicable to

them. Our experiments include both cases: RMB-RFE and SpanB-RFE when retraining

is not used and RMB-RFE* and SpanB-RFE* when it is.

For each data set, the result of the experiment is reported over 30 realizations, following

the procedure of Rätsch [67]. As usual,Dtrn is used for SVR training, hyper-parameters

tuning and feature ranking whileDtst is used for unbiased evaluation of the feature se-

lection performance. For each realization,Dtrn is normalized to zero mean and unit stan-

dard deviation and its normalization parameters are then used to normalizeDtst. The ker-

nel function used for all problems isK(xi ,x j) = exp(−κ‖xi −x j‖2) whereκ is the ker-

nel parameter. In each experiment, all hyper-parameters(C,κ,ε) are chosen by a 5-fold

cross-validation on the first five realizations ofDtrn, and the hyper-parameters corre-

sponding to the lowest average cross-validation error among five realizations is chosen.

The grid over the(C,κ,ε) is [2−2,2−1, · · · ,26]× [2−6,2−5, · · · ,22]× [2−5,2−4, · · · ,22].

Two well-known regression performance measures, namely mean squared error (MSE)

and squared correlation coefficient (SCC), are used to evaluate the performance. They

are given by

MSE :=
∑|Dtst|

i=1 (ŷi −yi)
2

|Dtst|
, (4.15)

SCC :=
(|Dtst|∑|Dtst|

i=1 ŷiyi −∑|Dtst|
i=1 ŷi ∑

|Dtst|
i=1 yi)

2

(|Dtst|∑|Dtst|
i=1 ŷ2

i −∑i ŷi ∑
|Dtst|
i=1 ŷi)(|Dtst|∑|Dtst|

i=1 y2
i −∑|Dtst|

i=1 yi ∑i yi)
(4.16)

whereyi and ŷi , for i ∈ {1, · · · , |Dtst|}, are the true and predicted target values respec-

tively .
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Statistical pairedt-test using MSE and SCC are conducted for all problems. Specifically,

pairedt-test between SD-L-RFE and each of the other methods is conducted using dif-

ferent number of top ranked features. Herein, the null hypothesis is that the mean MSE

or SCC of the two tested methods are the same against the alternate hypothesis that they

are not. The chance that this null hypothesis is true is measured by the returnedp-value

and the significance level is set at 0.05 for all experiments. The symbols “+” and “−”

are used to indicate the win or loss situation of SD-L-RFE over the other tested method.

In all experiments, the numerical algorithm for training ofSVR is implemented by the

LIBSVM package [10], where sequential minimal optimization method is used to solve

the dual problem (2.14).

4.4.1 Artificial Problems

In this subsection, three artificial regression problems are used to evaluate the perfor-

mance of every feature selection method. The first two problems were used in [25], and

the last one is new for the purpose of investigating different kinds of interaction among

features. Each problem has 10 variablesx1, · · · ,x10 and the target variabley depends on

some of the features as given in their underlying functions:

• Additive function problem

y = 0.1exp(4x1)+
4

1+exp(−20(x2−0.5))
+3x3 +2x4 +x5 + δ ,
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• Interactive function problem

y = 10sin(πx1x2)+20(x3−0.5)+10x4 +5x5 + δ ,

• Exponential function problem

y = 10exp(−((x1)2 +(x2)2))+ δ ,

wherex j , ∀ j = 1, · · · ,10 is uniformly distributed within the range [0,1] for the first

two problems and [-1,1] for the last. Gaussian noiseδ ∼ N (0,0.1) for the first two

problems whileδ ∼ N (0,0.2) for the last.

Each artificial problem has 2000 samples. They are randomly split into Dtrn andDtst in

the ratio of|Dtrn|:|Dtst|=1:9. To investigate the effect of sparseness of the training set,

decreasing sizes of|Dtrn| are also used while|Dtst| is maintained at 1800.

Table 4.4.1 presents the number of realizations (out of 30 realizations) that relevant fea-

ture are successfully ranked as the top features by the various methods for the different

settings of|Dtrn|. The best performance in each setting is highlighted in bold. From

this table, the advantage of the proposed methods is clear. They generally performs at

least as well as if not better than all other benchmark methods except when|Dtrn| = 50

in the interactive problem. For benchmark methods RMB-RFE*and SpanB-RFE*, the

proposed methods yield comparable performance. It is also evident that as the size of

|Dtrn| decreases, the performance of proposed methods generally degrades less than that

of benchmark methods. In fact, SD-L-RFE correctly ranks theimportant features in the
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top two positions for all settings for the exponential function problem.

Figure 4.2 shows the average MSE and SCC against top-ranked features over 30 real-

izations onDtst for exponential problem. Methods RMB-RFE and SpanB-RFE arenot

shown since they completely fail as shown in Table 4.4.1. From this figure, the advan-

tages of the proposed methods are obvious. Specifically, theproposed methods perform

better than RMB-RFE* and SpanB-RFE* when|Dtrn|= 100,70, better than HSIC-RFE

and∆‖ω‖2-RFE when|Dtrn| = 50,40, and better than mRMR for all|Dtrn|. This can

be verified by aforementionedt-test. Also, it is interesting to see that the curves yielded

by SD-L-RFE and SD-G-RFE have the minimal point when the top two features are se-

lected. These bimodal curves strongly validate the effectiveness of the proposed feature

selection methods. This is not the case for other methods. The figures for other two

problems show the similar patterns and therefore not shown here.

4.4.2 Real Problems

Six real-world data sets from the Statlib1, UCI repository [1] and Delve archive2 are

used for evaluation purposes. Description of these data sets and the parameters used in

the experiments are given in Table 4.2.

Tables 4.3 to 4.8 show thet-test results for six real-world data sets respectively. Itis

seen from these tables that the proposed methods consistently perform at least as well,

if not better than all benchmark methods and the advantage ismore significant for mpg,

1http://lib.stat.cmu.edu/datasets/
2http://www.cs.toronto.edu/∼delve/data/datasets.html
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Figure 4.2: Average MSE (left-hand side) and average SCC (right-hand side) against
top-ranked features over 30 realizations for Exponential Function Problem with six dif-
ferent settings
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Method\|Dtrn| 200 100 70 50
SD-L-RFE 30 27 21 19
SD-G-RFE 30 28 23 19
mRMR 19 7 1 0
HSIC-RFE 14 5 5 3

Additive ∆‖ω‖2-RFE 4 5 11 4
RMB-RFE 0 0 0 0
SpanB-RFE 0 1 0 0
RMB-RFE* 30 25 22 9
SpanB-RFE* 30 23 20 9
Method\|Dtrn| 200 100 70 50
SD-L-RFE 30 30 29 12
SD-G-RFE 30 30 30 11
mRMR 9 2 0 0
HSIC-RFE 7 9 8 6

Interactive ∆‖ω‖2-RFE 0 14 9 10
RMB-RFE 0 0 0 0
SpanB-RFE 0 0 0 0
RMB-RFE* 30 30 30 20
SpanB-RFE* 30 30 30 16
Method\|Dtrn| 100 70 50 40
SD-L-RFE 30 30 30 30
SD-G-RFE 30 30 29 28
mRMR 18 2 0 0
HSIC-RFE 30 29 28 22

Exponential ∆‖ω‖2-RFE 30 30 28 28
RMB-RFE 0 0 0 0
SpanB-RFE 0 1 0 1
RMB-RFE* 4 5 29 27
SpanB-RFE* 28 28 30 29

Table 4.1: The number of realizations that relevant featureare successfully ranked in
the top positions over 30 realizations for three artificial problems. The best performance
for each|Dtrn| is highlighted in bold.

abalone, cpusmall, housing and bodyfat data sets. There aretwo exceptions: the first few

rows of data sets, abalone and bodyfat, show that the SD-L-RFE is statistically worse

off than some benchmark methods. This should not be seen as a worrying sign as it

happens for the case where one or two features are used. Clearly, this case corresponds

to one of over-elimination of features. In practice, early stopping of RFE would have
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Data sets |Dtrn| |Dtst| d C κ ε
mpg 353 39 7 26 2−4 2
abalone 1254 2923 8 26 2−5 2
cpusmall 820 7372 12 26 2−5 2
housing 456 50 13 26 2−4 2
bodyfat 227 25 14 2−2 2−6 2−5

triazines 168 18 60 2−1 2−6 2−3

Table 4.2: Description of real-world data sets for regression problem.

been triggered by the substantial increase of MSE or decrease of SCC.

4.4.3 Discussion

In summary, the effectiveness of the proposed feature selection method is demonstrated

for both artificial and real-world problems. In artificial problems, the proposed method

can consistently yield better performance than all three benchmark methods, and the

advantage is more evident when|Dtrn| is small. This is confirmed by statistical paired

t-test results. Furthermore, when the training data become sparse, the performances of

the proposed methods degrade much less than the benchmark methods. In real-world

problems, it can be observed from all plots andt-test results that the proposed meth-

ods consistently perform at least as well, if not better thanbenchmark methods for all

problems.

The better performance of the proposed method over mRMR is expected since this com-

mon filter method is not effective in capturing effects of 3 ormore interacting features.

The other filter method, HSIC-RFE, appears to be quite effective in dealing with data

having interacting features, and generally shows nearly comparable performance with

the wrapper method∆‖ω‖2-RFE. However, it is not as effective as the proposed meth-
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ods from the results on artificial problems, especially whenthe training data is sparse,

and on real-world data sets of mpg, abalone and cputime. The better performance of

the proposed methods over∆‖ω‖2-RFE, RMB-RFE and SpanB-RFE is interesting and

deserves more attentions, since all of them are wrapper-based feature selection methods

for SVR. The better performance of the proposed methods overthem are probably at-

tributed to the following two differences. Firstly, different ranking criteria are used. The

proposed method uses the “aggregate” sensitivity of SVR probabilistic predictions with

respect to a feature over the feature space while∆‖ω‖2-RFE uses the sensitivity of the

cost function of SVR with respect to a feature and RMB-RFE andSpanB-RFE uses the

sensitivity of the error bound of SVR with respect to a feature. Secondly,∆‖ω‖2-RFE,

RMB-RFE and SpanB-RFE assume that the SVR solution remains unchanged when a

feature is removed within each RFE iteration. This appears to be a strong assumption,

judging from the relative performances of RMB-RFE, SpanB-RFE, RMB-RFE* and

SpanB-RFE*.

Another advantage of the proposed method is the modest computational load. As men-

tioned in Section 3, the evaluation of scores ford features includes a one-time training

of SVR of aboutO(N2.3) [63] complexity, one-time evaluation ofσL (or σG) of O(mN)

whereN = |D |, m is the number of support vectors,d-time RP process ofO(dN), d-

time evaluation ofσL
( j) (or σG

( j)) of O(dmN), andd-time evaluation ofDKL of O(dN).

Hence, after one-time training SVR, the proposed criterionscales linearly with respect

to d andN. Obviously,∆‖ω‖2-RFE, RMB-RFE and SpanB-RFE have similar computa-

tional cost like the proposed methods. However, RMB-RFE* and SpanB-RFE* require
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the training of SVRd−1 times more than the proposed methods when evaluating the

scores ford features. This additional computational load is ofO(dN2.3), which is sig-

nificant whenN is large.

4.5 Summary

This chapter presents a new wrapper-based feature selection method for SVR. This

method measures the importance of a feature by the aggregation, over the feature space,

of the sensitivity of SVR probabilistic prediction with andwithout the feature. Two

approximations of the criterion with random permutation process are proposed. The nu-

merical experiment on both artificial and real-world problems suggests that the proposed

method generally performs as least as well, if not better than three benchmark methods.

The advantage of the proposed methods is more significant when the training data is

sparse, or has a low samples-to-features ratio. As a wrappermethod, the computational

cost of proposed methods is moderate.
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SD-L-RFE SD-G-RFE mRMR HSIC-RFE ∆‖ω‖2-RFE RMB-RFE SpanB-RFE RMB-RFE* SpanB-RFE*
N mean mean p- mean p- mean p- mean p- mean p- mean p- mean p- meanp-

value value value value value value value value value value value value value value value value value
MSE measure

1 16.47 16.47 1.00 16.86 0.75 22.450.00+ 16.47 1.00 22.45 0.00+ 31.79 0.00+ 22.21 0.00+ 16.97 0.69
2 7.71 7.71 1.00 16.32 0.00+ 18.06 0.00+ 7.71 1.00 17.77 0.00+ 18.35 0.00+ 17.75 0.00+ 8.59 0.25
3 6.76 6.76 1.00 15.51 0.00+ 15.67 0.00+ 7.54 0.22 17.39 0.00+ 16.29 0.00+ 17.31 0.00+ 7.69 0.15
4 6.81 6.81 1.00 13.46 0.00+ 13.46 0.00+ 6.88 0.91 15.71 0.00+ 14.30 0.00+ 15.96 0.00+ 7.30 0.41
5 6.82 6.82 1.00 11.84 0.00+ 9.79 0.00+ 6.71 0.86 13.62 0.00+ 13.51 0.00+ 13.96 0.00+ 6.65 0.78
6 6.68 6.70 0.98 6.68 1.00 6.44 0.67 6.63 0.92 11.160.00+ 8.62 0.04+ 11.17 0.00+ 6.50 0.63
7 6.20 6.20 1.00 6.20 1.00 6.20 1.00 6.20 1.00 6.20 1.00 6.20 1.00 6.20 1.00 6.20 1.00

SCC measure
1 0.73 0.73 1.00 0.72 0.75 0.630.00+ 0.73 1.00 0.63 0.00+ 0.48 0.00+ 0.63 0.00+ 0.72 0.69
2 0.87 0.87 1.00 0.73 0.00+ 0.70 0.00+ 0.87 1.00 0.70 0.00+ 0.69 0.00+ 0.71 0.00+ 0.86 0.25
3 0.89 0.89 1.00 0.74 0.00+ 0.74 0.00+ 0.88 0.22 0.71 0.00+ 0.73 0.00+ 0.71 0.00+ 0.87 0.15
4 0.89 0.89 1.00 0.78 0.00+ 0.78 0.00+ 0.89 0.91 0.74 0.00+ 0.76 0.00+ 0.74 0.00+ 0.88 0.41
5 0.89 0.89 1.00 0.81 0.00+ 0.84 0.00+ 0.89 0.86 0.78 0.00+ 0.78 0.00+ 0.86 0.00+ 0.89 0.78
6 0.89 0.89 0.98 0.89 1.00 0.90 0.67 0.89 0.92 0.820.00+ 0.86 0.04+ 0.82 0.00+ 0.90 0.63
7 0.90 0.89 1.00 0.90 1.00 0.89 1.00 0.89 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.90 1.00

Table 4.3:t-test on mpg data set.
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SD-L-RFE SD-G-RFE mRMR HSIC-RFE ∆‖ω‖2-RFE RMB-RFE SpanB-RFE RMB-RFE* SpanB-RFE*
N mean mean p- mean p- mean p- mean p- mean p- mean p- mean p- meanp-

value value value value value value value value value value value value value value value value value
MSE measure

1 6.73 6.67 0.63 6.10 0.00- 6.15 0.00- 6.27 0.00- 7.15 0.00+ 6.97 0.01+ 7.12 0.00+ 6.18 0.00-
2 4.95 4.95 0.95 6.02 0.00+ 5.90 0.00+ 4.97 0.51 6.37 0.00+ 6.82 0.00+ 6.67 0.00+ 4.95 0.92
3 4.74 4.74 1.00 5.39 0.00+ 5.62 0.00+ 4.80 0.05 5.16 0.00+ 6.29 0.00+ 5.96 0.00+ 4.87 0.00+
4 4.69 4.69 0.99 5.39 0.00+ 5.41 0.00+ 4.72 0.42 4,83 0.00+ 5.87 0.00+ 5.73 0.00+ 4.79 0.00+
5 4.67 4.67 0.95 5.34 0.00+ 5.29 0.00+ 4.66 0.88 4.73 0.17 5.29 0.00+ 5.28 0.00+ 4.76 0.01+
6 4.64 4.64 0.87 5.21 0.00+ 5.28 0.00+ 4.63 0.67 4.71 0.16 4.89 0.00+ 4.88 0.00+ 4.70 0.06
7 4.62 4.62 0.98 4.59 0.32 4.900.00+ 4.60 0.62 4.63 0.78 4.71 0.07 4.63 0.79 4.67 0.12
8 4.57 4.57 1.00 4.58 1.00 4.57 1.00 4.57 1.00 4.58 1.00 4.58 1.00 4.58 1.00 4.58 1.00

SCC measure
1 0.36 0.36 0.63 0.42 0.00- 0.41 0.00- 0.40 0.00- 0.32 0.00+ 0.33 0.01+ 0.32 0.00+ 0.41 0.00-
2 0.53 0.53 0.95 0.42 0.00+ 0.44 0.00+ 0.53 0.51 0.39 0.00+ 0.35 0.00+ 0.36 0.00+ 0.53 0.92
3 0.55 0.55 1.00 0.49 0.00+ 0.46 0.00+ 0.54 0.05 0.51 0.00+ 0.40 0.00+ 0.43 0.00+ 0.54 0.00+
4 0.55 0.55 0.99 0.49 0.00+ 0.48 0.00+ 0.55 0.42 0.54 0.02+ 0.44 0.00+ 0.45 0.00+ 0.54 0.00+
5 0.55 0.56 0.95 0.49 0.00+ 0.50 0.00+ 0.56 0.88 0.55 0.17 0.50 0.00+ 0.50 0.00+ 0.55 0.01+
6 0.56 0.56 0.87 0.50 0.00+ 0.50 0.00+ 0.56 0.67 0.55 0.16 0.53 0.00+ 0.54 0.00+ 0.55 0.06
7 0.56 0.56 0.98 0.56 0.32 0.530.00+ 0.56 0.62 0.56 0.78 0.55 0.07 0.56 0.78 0.53 0.12
8 0.56 0.56 1.00 0.56 1.00 0.56 1.00 0.56 1.00 0.56 1.00 0.56 1.00 0.56 1.00 0.56 1.00

Table 4.4:t-test on abalone data set.
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SD-L-RFE SD-G-RFE mRMR HSIC-RFE ∆‖ω‖2-RFE RMB-RFE SpanB-RFE RMB-RFE* SpanB-RFE*
N mean mean p- mean p- mean p- mean p- mean p- mean p- mean p- meanp-

value value value value value value value value value value value value value value value value value
MSE measure

2 40.39 64.81 0.00+ 297.51 0.00+ 293.6 0.00+ 75.45 0.00+ 276.56 0.00+ 141.00 0.00+ 295.11 0.00+ 291.26 0.00+
4 18.99 19.33 0.55 279.650.00+ 82.44 0.00+ 60.09 0.00+ 242.23 0.00+ 32.66 0.15 222.18 0.00+ 247.39 0.00+
6 19.20 19.22 0.97 116.140.00+ 28.57 0.32 39.89 0.00+ 167.24 0.00+ 16.60 0.05 112.87 0.00+ 206.61 0.00+
8 20.66 21.28 0.32 19.69 0.07 20.49 0.78 29.360.00+ 19.96 0.25 17.54 0.06 78.51 0.00+ 124.44 0.00+
10 21.64 22.52 0.24 20.68 0.15 22.49 0.28 25.610.00+ 20.81 0.25 19.67 0.07 55.55 0.00+ 59.30 0.00+
12 23.78 23.78 1.00 23.78 1.00 23.78 1.00 23.78 1.00 23.78 1.00 23.78 1.00 23.78 1.00 23.78 1.00

SCC measure
2 0.89 0.82 0.00+ 0.16 0.00+ 0.17 0.00+ 0.79 0.00+ 0.22 0.00+ 0.60 0.00+ 0.17 0.00+ 0.17 0.00+
4 0.95 0.95 0.55 0.21 0.00+ 0.77 0.00+ 0.83 0.00+ 0.31 0.00+ 0.91 0.15 0.37 0.00+ 0.29 0.00+
6 0.95 0.95 0.97 0.67 0.00+ 0.92 0.32 0.89 0.00+ 0.52 0.00+ 0.95 0.05 0.68 0.00+ 0.41 0.00+
8 0.94 0.94 0.32 0.94 0.07 0.94 0.78 0.920.00+ 0.94 0.25 0.95 0.06 0.78 0.00+ 0.65 0.00+
10 0.94 0.94 0.24 0.94 0.15 0.94 0.28 0.930.00+ 0.94 0.25 0.94 0.07 0.84 0.00+ 0.84 0.00+
12 0.93 0.93 1.00 0.93 1.00 0.93 1.00 0.93 1.00 0.93 1.00 0.93 1.00 0.93 1.00 0.93 1.00

Table 4.5:t-test on cputime data set.
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SD-L-RFE SD-G-RFE mRMR HSIC-RFE ∆‖ω‖2-RFE RMB-RFE SpanB-RFE RMB-RFE* SpanB-RFE*
N mean mean p- mean p- mean p- mean p- mean p- mean p- mean p- meanp-

value value value value value value value value value value value value value value value value value
MSE measure

2 19.00 19.00 1.00 29.360.00+ 19.00 1.00 28.99 0.00+ 64.09 0.00+ 62.60 0.00+ 46.80 0.00+ 19.00 1.00
4 16.00 15.94 0.98 25.460.00+ 14.86 0.60 15.19 0.71 38.980.00+ 56.52 0.00+ 23.22 0.01+ 13.97 0.35
6 13.74 13.59 0.94 16.28 0.26 13.90 0.94 13.69 0.98 28.960.00+ 50.93 0.00+ 18.33 0.03+ 12.63 0.54
8 11.47 12.46 0.54 15.24 0.06 11.54 0.96 12.02 0.74 24.630.00+ 43.99 0.00+ 11.38 0.95 11.34 0.93
10 9.57 10.76 0.40 11.32 0.18 10.49 0.50 11.08 0.28 12.25 0.0737.94 0.00+ 11.71 0.15 11.60 0.18
12 10.12 10.12 1.00 9.45 0.62 9.51 0.65 10.36 0.87 10.81 0.63 17.83 0.00+ 10.81 0.65 10.69 0.70
13 10.48 10.48 1.00 10.48 1.00 10.48 1.00 10.48 1.00 10.48 1.00 10.48 1.00 10.48 1.00 10.48 1.00

SCC measure
2 0.77 0.77 1.00 0.65 0.00+ 0.77 1.00 0.65 0.00+ 0.23 0.00+ 0.25 0.00+ 0.45 0.00+ 0.77 1.00
4 0.80 0.80 0.98 0.70 0.00+ 0.82 0.60 0.81 0.71 0.54 0.00+ 0.34 0.00+ 0.73 0.01+ 0.83 0.35
6 0.83 0.83 0.94 0.80 0.26 0.83 0.94 0.83 0.98 0.660.00+ 0.41 0.00+ 0.79 0.03+ 0.84 0.54
8 0.86 0.85 0.54 0.82 0.06 0.86 0.96 0.85 0.74 0.710.00+ 0.49 0.00+ 0.86 0.95 0.86 0.93
10 0.88 0.87 0.40 0.86 0.18 0.87 0.50 0.86 0.28 0.85 0.07 0.560.00+ 0.86 0.15 0.86 0.18
12 0.88 0.88 1.00 0.88 0.62 0.88 0.65 0.87 0.87 0.86 0.63 0.790.00+ 0.87 0.64 0.86 0.70
13 0.87 0.87 1.00 0.87 1.00 0.87 1.00 0.87 1.00 0.87 1.00 0.87 1.00 0.87 1.00 0.87 1.00

Table 4.6:t-test on housing data set.
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SD-L-RFE SD-G-RFE mRMR HSIC-RFE ∆‖ω‖2-RFE RMB-RFE SpanB-RFE RMB-RFE* SpanB-RFE*
N mean mean p- mean p- mean p- mean p- mean p- mean p- mean p- meanp-

value value value value value value value value value value value value value value value value value
MSE measure

2 .00022 .00022 0.91 .000170.00- .00022 0.91 .00022 0.91 .00021 0.51 .00026 0.08 .000320.00+ .00018 0.00-
4 .00018 .00018 0.93 .00016 0.07 .000250.00+ .00017 0.19 .00021 0.11 .000230.02+ .00020 0.28 .00022 0.04+
6 .00021 .00021 1.00 .00019 0.08 .000260.00+ .00020 0.29 .00021 0.88 .00021 0.16 .00019 0.12 .00024 0.06
8 .00020 .00020 0.97 .00023 0.04 .00026 0.05 .00020 0.95 .00022 0.31 .00023 0.09 .00019 0.54 .000250.00+
10 .00020 .00020 0.99 .00023 0.05 .00025 0.05 .00020 0.95 .00022 0.14 .00023 0.12 .00019 0.78 .000240.01+
12 .00021 .00021 1.00 .00023 0.16 .00025 0.05 .00020 0.66 .00023 0.27 .00022 0.48 .00020 0.59 .00023 0.19
14 .00021 .00021 1.00 .00021 1.00 .00021 1.00 .00021 1.00 .00021 1.00 .00021 1.00 .00021 1.00 .00021 1.00

SCC measure
2 0.89 0.89 0.91 0.95 0.00- 0.89 0.91 0.89 0.91 0.52 0.51 0.38 0.08 0.180.00+ 0.79 0.00+
4 0.84 0.84 0.93 0.92 0.07 0.83 0.00+ 0.86 0.19 0.73 0.11 0.46 0.02+ 0.58 0.28 0.75 0.04+
6 0.79 0.79 1.00 0.84 0.08 0.80 0.00+ 0.81 0.29 0.79 0.88 0.47 0.16 0.80 0.12 0.75 0.06
8 0.80 0.80 0.97 0.79 0.05 0.79 0.05 0.78 0.95 0.79 0.31 0.48 0.09 0.78 0.54 0.73 0.00+
10 0.75 0.75 0.99 0.76 0.05 0.77 0.05 0.76 0.95 0.78 0.14 0.53 0.12 0.76 0.78 0.73 0.01+
12 0.74 0.74 1.00 0.73 0.16 0.76 0.05 0.75 0.66 0.76 0.27 0.57 0.48 0.75 0.59 0.75 0.19
14 0.73 0.73 1.00 0.73 1.00 0.73 1.00 0.73 1.00 0.73 1.00 0.73 1.00 0.73 1.00 0.73 1.00

Table 4.7:t-test on pyrim data set.
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SD-L-RFE SD-G-RFE mRMR HSIC-RFE ∆‖ω‖2-RFE RMB-RFE SpanB-RFE RMB-RFE* SpanB-RFE*
N mean mean p- mean p- mean p- mean p- mean p- mean p- mean p- meanp-

value value value value value value value value value value value value value value value value value
MSE measure

1 0.020 0.020 1.00 0.020 0.95 0.021 0.95 0.021 0.69 0.021 0.650.021 0.65 0.021 0.65 0.021 0.85
10 0.018 0.017 0.92 0.017 0.84 0.019 0.63 0.018 0.80 0.020 0.25 0.021 0.18 0.020 0.20 0.018 0.89
20 0.017 0.017 0.98 0.018 0.75 0.017 0.89 0.017 0.87 0.020 0.15 0.021 0.11 0.020 0.14 0.017 0.93
30 0.017 0.018 0.83 0.018 0.63 0.017 0.94 0.017 0.95 0.019 0.30 0.020 0.17 0.020 0.23 0.018 0.97
40 0.018 0.018 0.94 0.018 0.98 0.018 0.75 0.017 0.85 0.018 0.83 0.019 0.43 0.019 0.46 0.018 0.94
50 0.018 0.018 0.99 0.018 0.91 0.020 0.52 0.018 0.93 0.018 0.93 0.019 0.73 0.019 0.72 0.018 0.96
60 0.018 0.018 1.00 0.018 1.00 0.018 1.00 0.018 1.00 0.018 1.00 0.018 1.00 0.018 1.00 0.018 1.00

SCC measure
1 0.12 0.12 1.00 0.08 0.95 0.08 0.95 0.07 0.69 0.094 0.65 0.11 0.85 0.094 0.65 0.11 0.85
10 0.26 0.27 0.92 0.25 0.84 0.19 0.63 0.22 0.80 0.11 0.25 0.11 0.18 0.12 0.20 0.26 0.89
20 0.28 0.29 0.98 0.22 0.75 0.26 0.89 0.28 0.87 0.12 0.15 0.12 0.11 0.14 0.14 0.30 0.93
30 0.29 0.26 0.83 0.20 0.62 0.26 0.94 0.29 0.95 0.18 0.30 0.14 0.17 0.17 0.23 0.28 0.97
40 0.26 0.26 0.94 0.26 0.98 0.22 0.75 0.27 0.85 0.25 0.83 0.17 0.43 0.17 0.46 0.27 0.94
50 0.25 0.25 0.99 0.26 0.90 0.17 0.52 0.26 0.93 0.22 0.94 0.19 0.73 0.21 0.72 0.26 0.96
60 0.25 0.25 1.00 0.25 1.00 0.25 1.00 0.25 1.00 0.25 1.00 0.25 1.00 0.25 1.00 0.25 1.00

Table 4.8:t-test on triazines data set.
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Chapter 5

Feature Selection via Mutual

Information Estimation

This chapter proposes a new feature selection method using amutual information based

criterion that measures the importance of a feature in a backward selection framework. It

considers the dependency among many features and uses either one of two well known

probability density function estimation methods when computing the criterion. The

proposed approach is compared with existing mutual information based methods and

another sophisticated filter method on many artificial and real world problems. The

numerical results show that the proposed method can effectively identify the important

features in data sets having dependency among many featuresand is at least as good as,

if not better than, the benchmark methods.

This chapter is organized as follow: Section 5.1 review two well-known density esti-
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mation methods. Detailed accounts of the proposed feature selection criterion are pre-

sented in Section 5.2. Some connections between the proposed method and some other

methods are built in Section 5.3. Section 5.4 reports extensive numerical studies of the

proposed method in comparison to some existing methods in the literature, followed by

the summary in Section 5.5.

5.1 Preliminary

As shown in 2.1.3 of Chapter 2, entropy and mutual information rely on the values of

(conditional) density functions. This section reviews twocommonly used probability

density estimation methods.

Parzen Window (PW) [60, 20] is a well-known density estimation method that has been

widely used in various applications. Given a data set{xi}N
i=1 with xi ∈ R

d, PW provides

the estimate of probability density ofx, p(x), in the form of

p̂(x) =
N

∑
i=1

αiK(x,xi), (5.1)

whereαi = 1
N , ∀i = 1, ..,N, is a weighting coefficient andK(x,xi) is an appropriate

window function typically chosen as the Gaussian function,1
(
√

2πσ)d exp(−‖x−xi‖2

2σ2 ), with

hyperparameterσ . Determination ofσ is often done by minimizing an appropriate

negative log-likelihood function [20]. Specifically, given p̂(x), the likelihood function,
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as a function ofσ , of observing data set{xi}N
i=1 is given by

L(σ) = ΠN
j=1p(x j ;σ) = ΠN

j=1

N

∑
i=1

αiK(x j ,xi ;σ)

and the corresponding negative log-likelihood function becomes

Ln(σ) = − log(ΠN
j=1p(x j ;σ)) = −

N

∑
j=1

N

∑
i=1

αiK(x j ,xi ;σ).

Remark 5.1.1. If σ is given, it is easy to see that the evaluation ofp̂(x) for one x using

(5.1) is O(N), or O(NM) for M values of x.

If M >> N, it is possible to lower the computational cost. Girolami etal. [27] proposed

a sparse PW method, called Reduced Set Density Estimation (RSDE), that uses the

same expression of (5.1) but with{αi}N
i=1 determined by the solution of the following

optimization problem:

min
α

N

∑
i=1

N

∑
j=1

[
1
2

αiα jK̃(xi ,x j)−
1
N

αiK(xi ,x j)

]

s.t ∑
i

αi = 1, αi ≥ 0, i = 1, · · · ,N
(5.2)

with K̃(x,xi) = 1
(2
√

πσ)d exp(−‖x−xi‖2

4σ2 ).

The quadratic optimization problem of (5.2) is derived fromminimizing the integrated

squared error betweenp(x) and p̂(x). One advantage of RSDE is that the solution of

(5.2) is sparse with only a few non-zeroαi .

Remark 5.1.2. The numerical solution of (5.2) using sequential minimal optimization
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method [62] has a computational complexity of about O(N2). Suppose the solution of

(5.2) containsÑ(< N) non-zeroαi . The evaluation of (5.1) for M values of x requires

O(ÑM). Hence, the total complexity is O(N2)+O(ÑM) using the RSDE approach. If

M >> N > Ñ, the RSDE approach can be more efficient than PW.

5.2 The Proposed Method

The proposed feature selection method is forc-class classification problem. Recalling

the mutual information method proposed by Battiti [4] and Kwak et al. [46] as reviewed

in Section 2.2.1, we use the similar idea but in a backward feature selection framework.

The backward selection framework is implemented in an iterative loop and starts with

the full feature set,I0 = I . It eliminates the least important feature inD from the set

of remaining features at every iteration and has the advantage that interactions among

all remaining features are considered. Letz∈ R
v be a vector obtained by takingv of the

d features fromx∈R
d andz− j ∈ R

v−1 be the vector obtained fromzwith the jth feature

removed. The proposed criterion is

S( j) = I(z− j ;y). (5.3)

SinceI(z− j ;y) measures the dependency ofz− j andy, the removal of a non-important

j feature fromz will increase its value. Hence, thej that maximizesS( j) over j ∈ Iℓ

is the least important feature. Here,Iℓ is the set of remaining features at iterationℓ.
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Criterion (5.3) is also equivalent to

S1( j) = I(z;y)− I(z− j;y) (5.4)

but with the intention of looking for the minimizingj over all j ∈ Iℓ. This equivalence

is clear sinceI(z;y) is a constant in a fixed iteration and maxj I(z− j ;y) = minj −I(z− j ;y).

When written in full, (5.3) or (5.4) becomes

S( j) =I(z− j ;y) =
∫ ∫

p(z− j ,y) log
p(z− j ,y)

p(z− j)p(y)
dz− jdy

=E−z,y

[
log

p(z− j ,y)

p(z− j)p(y)

]
≈ 1

N

N

∑
i=1

log
p(z− j ,i ,yi)

p(z− j ,i)p(yi)
.

(5.5)

The notation(z− j ,i,yi) refers to the sample obtained from theith sample,(xi ,yi), of

D . The expression of (5.5) is not the most ideal for computations. It contains two

density functions,p(z− j ,y) andp(z− j), that have to be estimated for everyj ∈Iℓ. Their

estimations using PW or RSDE have complexity ofO(2N2|Iℓ|) and (O(2N2|Iℓ|) +

O(2ÑN|Iℓ|)) respectively, followingRemarks5.1.1 and 5.1.2.

Further simplification of (5.5) is possible for computational expediency. Recall that a

samplexi ∈ ωk (or zi ∈ ωk) if and only if yi = k. Let D at iterationℓ be decomposed

into Dk
− j = {(z− j ,i,yi)|yi = k} for k = 1, · · · ,c and for everyj ∈ Iℓ with |Dk

− j | = Nk.
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Expression (5.5) can be simplified to:

S( j) =E−z,y

[
log

p(z− j |y)
p(z− j)

]
= E−z,y

[
log

p(z− j |y)
∑c

k̃=1
p(z− j |ωk̃)P(ωk̃)

]

≈ 1
N

N

∑
i=1

log
p(z− j ,i|yi)

∑c
k̃=1

p(z− j ,i|ωk̃)P(ωk̃)

=
1
N

c

∑
k=1

∑
i:yi=k

log
p(z− j ,i |ωk)

∑c
k̃=1

p(z− j ,i|ωk̃)P(ωk̃)

≈ 1
N

c

∑
k=1

∑
i:yi=k

log
p̂(z− j ,i|ωk)

∑c
k̃=1

p̂(z− j ,i|ωk̃)P̂(ωk̃)

(5.6)

whereP(ωk̃) is the prior probability of classωk̃ which can be estimated usinĝP(ωk̃) =

Nk̃
N .

Consider the numerical evaluation of (5.6) using PW. Following Remark5.1.1, the eval-

uation of∑c
k=1 ∑i:yi=k ∑c

k̃=1
p̂(z− j ,i|ωk̃) = ∑N

i=1 ∑c
k̃=1

p̂(z− j ,i|ωk̃) requiresO(N2) opera-

tions for one choice ofj. Here, the standard assumption [20] is adopted in that a sample

z− j ,i is used to estimatep(z− j |ωk) only whenyi = k. For all j ∈ Iℓ, the evaluationS( j)

has the complexity ofO(N2|Iℓ|). This suggests that evaluation ofS( j) via (5.6) is about

half the computational cost needed via (5.5).

Consider the approach of RSDE. Equation (5.6) requires expression of ˆp(z− j |ωk̃) for all

k̃ = 1, · · · ,c. Following Remark5.1.2, this means that (5.2) has to be solvedc times,

each time for onek and usingDk
− j . The evaluation of∑c

k=1 ∑i:yi=k ∑c
k̃=1

p̂(z− j ,i|ωk̃)

requiresO(cÑk̃N) operations for one choice ofj. Hence, the evaluation ofS( j) for all

j ∈ Iℓ has the complexity ofO(cN2
kmax

|Iℓ|)+O(cÑmaxN|Iℓ|) whereNkmax = max{Nk :

k = 1, · · · ,c} andÑmax= max{Ñk : k = 1, · · · ,c}.
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The solution of (5.6) using RSDE can be further simplified to avoid solving (5.2)|Iℓ|

times at each iterationℓ. This is made possible using a random permutation (RP) proce-

dure as mentioned in Section 3.2 of Chapter 3. Letx( j) ∈ R
d denote the sample derived

from x after this RP process on thejth feature. The following result is known.

Theorem 5.2.1.Assume thatD = {(xi ,yi)}N
i=1 is sufficiently rich, then

p̂(z− j |ωk) = p̂(z( j)|ωk) (5.7)

for any k= 1, · · · ,c.

The assumption ofD = {(xi ,yi)}N
i=1 being sufficiently rich is needed to ensure that the

RP process destroys any correlation between thejth feature and all other features inD .

While this assumption may not be easy to verify, ˆp(z( j)|ωk) is an excellent approxima-

tion to p̂(z− j |ωk) for all data sets in our experiments.

The use of Theorem 5.2.1 to simplify the RSDE computations of(5.6) is now possible.

The conditional density function ˆp(z− j |ωk) in (5.6) is replaced by ˆp(z( j)|ωk) for all j ∈

Iℓ. This means that (5.2) need not be solved|Iℓ| times, each withDk
− j for a different j.

Instead, it is solved once for ˆp(z|ωk) usingDk := {(zi,yi)|yi = k}. Thereafter, ˆp(z( j)|ωk)

is obtained from ˆp(z|ωk) following the RP procedure for everyj ∈Iℓ. Correspondingly,

(5.6) becomes

S( j) ≈ 1
N

c

∑
k=1

∑
i:yi=k

log
p̂(z( j),i|ωk)

∑c
k̃=1

p̂(z( j),i|ωk̃)P̂(ωk̃)
. (5.8)
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As a result of this simplification, the complexity associated with the solution of (5.2)

drops fromO(cN2
kmax

|Iℓ|) to O(cN2
kmax

) at each iteration. The overall complexity for the

evaluation of (5.6) using RSDE becomesO(cN2
kmax

)+O(cÑmaxN|Iℓ|).

Henceforth, two proposed criteria (5.6) and (5.8) used in backward framework are de-

noted as methods MI-PW and MI-RSDE, respectively.

5.3 Connection with Other Methods

The connection between the proposed approach and the methodby Kwak et at. [46] is

made clear in this section. As mentioned before, criterion (2.28) is used in a forward

feature selection framework in [46]. Hence, the obvious difference is in the choice of

the selection framework. A less obvious difference is the way in which the criterion

is computed. This difference is best described using both methods for criterion (2.28).

Using Kwak’s method of [46], (2.28) is evaluated by

I(z+ j ;y) = −Ey [logp(y)]+Ez+ j ,y
[
logp(y|z+ j)

]
(5.9)

=−
∫

p(y) logp(y)dy+
∫ ∫

p(z+ j ,y) logp(y|z+ j)dz+ jdy. (5.10)
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The first term of the last equation is independent ofj and its computations are not

relevant. The second term is further expanded as

∫ ∫
p(z+ j)p(y|z+ j) logp(y|z+ j)dz+ jdy (5.11)

=
∫

p(z+ j)

[∫
p(y|z+ j) logp(y|z+ j)dy

]
dz+ j (5.12)

=
∫

p(z+ j)

[
c

∑
k=1

P(ωk|z+ j) logP(ωk|z+ j)

]
dz+ j (5.13)

≈ 1
N

N

∑
i=1

c

∑
k=1

[
P(ωk|z+ j ,i) logP(ωk|z+ j ,i)

]
(5.14)

=
1
N

N

∑
i=1

c

∑
k=1

[
p(z+ j ,i|ωk)P(ωk)

∑c
k̃=1

p(z+ j ,i|ωk̃)P(ωk̃)
log

p(z+ j ,i|ωk)P(ωk)

∑c
k̃=1

p(z+ j ,i|ωk̃)P(ωk̃)

]
. (5.15)

As shown in (5.10), the second term of the last equation (5.10) is Ez+ j ,y
[
logp(y|z+ j)

]
.

The approach by Kwak et al. replacesp(z+ j ,y) by p(z+ j)p(y|z+ j) in (5.11). This effec-

tively replacesEz+ j ,y
[
logp(y|z+ j)

]
by Ez+ j [∑

c
k=1 P(ωk|z+ j) logP(ωk|z+ j)

]
, as shown

in (5.13). This change implies that Kwak’s approach assumessamplesxi ’s are indepen-

dent and identically distributed (i.i.d.).

In contrast, the proposed method assumes that data points(xi ,yi) in D are independent

and identically distributed samples, as shown in (5.5). Using the proposed approach, the

second term of (5.10) would be expanded as

Ez+ j ,y
[
logp(y|z+ j)

]
= Ez+ j ,y

[
log

p(z+ j |y)p(y)

∑c
k̃=1

p(z+ j |ωk̃)P(ωk̃)

]
(5.16)

≈ 1
N

N

∑
i=1

log
p(z+ j ,i |ωk)P(ωk)

∑c
k̃=1

p(z+ j ,i |ωk̃)P(ωk̃)
(5.17)

=
1
N

c

∑
k=1

∑
i:yi=k

log
p(z+ j ,i|ωk)P(ωk)

∑c
k̃=1

p(z+ j ,i|ωk̃)P(ωk̃)
. (5.18)
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Clearly, (5.18) is different from (5.15).

Remark 5.3.1. Theoretically, both i.i.d. assumptions are correct. However, as shown

the following derivation from expression (5.19) to (5.22),the assumption that(xi ,yi)
′s

are i.i.d. needs less approximations than the assumption that x′is are i.i.d.. It is known

that less approximation used less error incurred.

(xi ,yi)’s are i.i.d.

I(x;y) =
∫ ∫

p(x,y) log
p(x,y)

p(x)p(y)
dxdy

=
1
N

N

∑
i=1

log
p(xi ,yi)

p(xi)p(yi)

=
1
N

N

∑
i=1

log
p(xi |yi)

p(xi)

(5.19)

xi’s are i.i.d.

I(x;y) =

∫ ∫
p(x,y) log

p(x,y)
p(x)p(y)

dxdy

=

∫
p(x)

∫
p(y|x) log

p(x,y)
p(x)p(y)

dxdy

=
1
N

N

∑
i=1

∫
p(y|xi) log

p(xi ,y)
p(xi)p(y)

dy

=
1
N

N

∑
i=1

∫
p(xi |y)p(y)

p(xi)
log

p(xi |y)
p(xi)

dy

(5.20)

Estimation
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Expression (5.19) is

1
N

N

∑
i=1

log
p(xi |yi)

p(xi)
=

1
N

c

∑
k=1

∑
i:yi=k

log
p(x( j),i |ωk)

∑c
k̃=1

p(x( j),i |ωk̃)P̂(ωk̃)
(5.21)

Expression (5.20) is

1
N

N

∑
i=1

∫
p(xi |y)p(y)

p(xi)
log

p(xi |y)
p(xi)

dy

=
1
N

N

∑
i=1

c

∑
k=1

[
p(xi |ωk)P(ωk)

∑c
k̃=1

p(xi |ωk̃)P(ωk̃)
log

p(xi |ωk)P(ωk)

∑c
k̃=1

p(xi |ωk̃)P(ωk̃)

]
.

(5.22)

Compared to expression (5.21), expression (5.22) needs additional approximation on

the term p(xi |ωk)P(ωk)
∑c

k̃=1
p(xi |ωk̃)P(ωk̃)

. Extremely, we can further use the trick of Bayes theorems

in expression (5.20) and yield the following expression (5.23). In this extreme case,

more approximations on a series of probabilistic terms, namely p(x2
i |x1

i )p(x3
i |x

1,2
i ) · · ·

p(xd
i |x

1,··· ,d−1
i )p(yi |xd

i ), are demanded.

I(x;y)

=

∫ ∫
p(x,y) log

p(x,y)
p(x)p(y)

dxdy

=

∫
· · ·

∫
p(x1)p(x2|x1)p(x3|x1,2) · · · p(xd|x1,··· ,d−1)p(y|xd) log

p(x,y)
p(x)p(y)

dx1 · · ·dxddy

=
1
N

N

∑
i=1

∫
· · ·

∫
p(x2

i |x1
i )p(x3

i |x1,2
i ) · · · p(xd

i |x1,··· ,d−1
i )p(yi |xd

i ) log
p(xi ,yi)

p(xi)p(yi)
dx2 · · ·dxddy

(5.23)
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5.4 Numerical Experiment

Numerical experiments of MI-PW and MI-RSDE and three benchmark methods are

conducted on artificial and real-world data sets. The experiment is done in Matlab 2009a

on Window Vista PC with 3 GHz of Intel Core 2 processor E8400 and 8GB of RAM. The

benchmark methods include two existing mutual informationbased feature selection

methods, mRMR [53] of (2.31) and Kwak [46] of (2.28), and Dependence Maximization

method (HSIC) [74]. The mRMR is used as a representative method of those stated by

(2.29)-(2.34) since it has similar performance to them on data having three or more

interacting features. Following [53, 46, 74] , mRMR and Kwakare used in the forward

selection framework with HSIC backward. Density functionsin (2.31) for mRMR and

(2.28) for Kwak are estimated using histograms and PW respectively. To investigate

the effect of sparsity of the training data, decreasing sizes of |Dtrn| are used. As done

in Chapters 3 and 4, pairedt-test between MI-PW and each of the other methods is

conducted using different number of top ranked features.

Support vector machine (SVM) with Gaussian kernelG(xi ,x j) = exp(−κ||xi −x j ||2) is

used as the classifier for performance evaluation of the various selection methods. Train-

ing and testing SVM are implemented using the LIBSVM package[10]. In each exper-

iment, the hyper-parameterσ in PW and RSDE are chosen by a 5-fold cross-validation

for the each realization ofDtrn, and the parameter corresponding to the smallest negative

log-likelihood function value is chosen. Kernel parameterκ and regularized parameter

C are chosen by 5-fold cross-validation on first five realizations ofDtrn, and the param-

eter corresponding to the lowest average error rate is chosen. The grid over(σ ,κ,C) is
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[2−3,2−2.5, · · · ,23]× [2−6,2−5, · · · ,25]× [2−3,2−2, · · · ,26].

5.4.1 Artificial Data Sets

Monk Data Sets

Monk data sets [1] include 3 problems (Monk-1 Monk-2 and Monk-3) as shown in

Table 5.1. Each problem has 6 features and relevant featuresare known according to the

given target concepts1. Four settings of decreasing|Dtrn| at 432, 200, 100 and 50 are

considered in experiments.

Table 5.2 presents the number of realizations (out of 30 realizations) that features 1,2,5

in Monk-1 are ranked as the first three most important features by the various methods

for the four settings of|Dtrn|. The advantage of MI-PW over other benchmark methods

is evident when the feature selection becomes more challenging with decreasing sizes of

the training set. In fact, except MI-PW, none of methods can consistently rank features

correctly. Method MI-RSDE also performs better than other benchmark methods and is

very effective till|Dtrn| reaches 50.

Figure 5.1 shows the plots of average test error rate againstthe number top-ranked fea-

tures using all feature selection methods for problem Monk-1. This figure again shows

that MI-PW method outperforms other benchmark methods in all different settings of

|Dtrn|. Given top three features, the margins of MI-PW over Kwak, HSIC and mRMR

are significant in all settings, and this is confirmed by aforementioned pairedt-test. Fig-

1As the providedDtrn has too few data, it is exchanged withDtst
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|Dtrn| |Dtst| d m nr Target Concept
(x1 = x2) or (x5 = 1) for Class 1,

Monk-1 432 124 6 5 1 otherwise Class -1
Exactly two of{x1 = 1,x2 = 1,x3 = 1,x4 = 1,x5 = 1,x6 = 1}

Monk-2 432 169 6 9 1 for Class 1, otherwise Class -1
(x5 = 3 andx4 = 1) or (x5 6= 4 andx2 6= 3)

Monk-3 432 122 6 2 1 for Class 1, otherwise Class -1

Table 5.1: Description of Monk data sets

ure 5.1 also shows that both proposed methods consistently yield curves having one

minimal point, at the value where top three features are selected. This is not so for the

benchmark methods. Experimental results with Monk-3 data set is given in Table 5.3

and Figure 5.2. They show similar patterns to that of Monk-1:basically, MI-PW shows

the best results among all data set settings. Results of Monk-2 are not shown because

all features are important as shown in Table 5.1.

Method\|Dtrn| 432 200 100 50
MI-PW 30 30 30 30
MI-RSDE 30 30 30 28
Kwak 3 4 14 3
HSIC 29 21 19 9
mRMR 25 28 29 27

Table 5.2: The number of realizations that feature 1,2,5 are successfully ranked in the
top three positions over 30 realizations for Monk-1 problem. The best performance for
each|Dtrn| is highlighted in bold.

Method\|Dtrn| 432 200 100 50
MI-PW 30 30 29 21
MI-RSDE 30 25 16 14
Kwak 0 0 0 0
HSIC 30 29 26 13
mRMR 15 0 2 0

Table 5.3: The number of realizations that feature 2,4,5 are successfully ranked in the
top three positions over 30 realizations for Monk-3 problem. The best performance for
each|Dtrn| is highlighted in bold.
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Figure 5.1: Average test error against top-ranked featuresover 30 realizations of Monk-1
data sets for four training set sizes.
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Figure 5.2: Average test error against top-ranked featuresover 30 realizations of Monk-3
data sets for four training set sizes.
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Weston Data Sets

This artificial data set is same as that in Section 3.4.1 of Chapter 3. Four settings with

different sizes of the training set (|Dtrn|=200, 90, 40 and 20) are considered while|Dtst|

is maintained at 9800.

Table 5.4 shows the number of realizations (out of 30 realizations) that features 1 and 2

are successfully ranked in the top two positions by the various methods. It is not supris-

ing to note that the backward feature selection methods perform better than the forward

methods in all settings. Among the backward selection methods, MI-PW consistently

performs best over all four settings and its performance degrades much less than the

other two with decreasing|Dtrn|.

Figure 5.3 again shows that average test error rate against top-ranked features over 30

realizations for all methods except mRMR. Method mRMR is excluded since it fails

completely in identifying important features, as shown in Table 5.4. The advantage of

MI-PW over other methods is clear, especially for small values of|Dtrn|. The increase

in error rate is less than 4% when|Dtrn| decreases from 200 to 20. This is much less

than the 13% – 20% exhibited by the other methods.

Method\|Dtrn| 200 90 40 20
MI-PW 30 30 30 26
MI-RSDE 30 30 22 12
Kwak 1 20 14 11
HSIC 30 30 29 18
mRMR 0 0 0 0

Table 5.4: The number of realizations that feature 1,2 are successfully ranked in the top
two positions over 30 realizations for Weston problem.
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Figure 5.3: Average test error against top-ranked featuresover 30 realizations of Weston
data sets for five training set sizes.

5.4.2 Real Problem

Six real-world data sets from UCI repository [1] are used forevaluation purposes. De-

scription of these data sets and the parameters used in the experiments are given in Table

5.5. The Abalone data set has been transformed into a 3-classclassification problem

following the procedure by Davidet. al. [16]. Figures 5.4-5.9 show average error rate

against the number of top-ranked features for Abalone, WBCD, Glass, Wine, Satim-

age and Musk respectively. This is followed by the statistical t-test results tabulated in

Tables 5.7 to 5.12.

For problem Abalone, Figure 5.4 shows the average test errorrate against the number

of top-ranked features for both proposed methods and benchmark methods. It can be

observed that given the same level of the feature selection (with the same number of
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feature selected), MIPW-BW generally yields lower averagetest error rates than other

methods. This is confirmed by the pairedt-test’s result given in Table 5.7.

For the other real-world problems (WBCD, Glass, Wine, Satimage and Musk), the ex-

perimental results show similar patterns to that of Abalone, as shown in Figure 5.5 to

Figure 5.9 and Table 5.8 to Table 5.12 respectively. In general, thet-test results show

that MIPW-BW performs at least as well, if not better than other methods. There are a

few exceptions. For example, The first two rows of Table 5.10 shows that MIPW-BW

performs significantly worse than Kwak-FW and HSIC-BW. Thisshould not be seen

as a worrying sign since it happens for the case where only oneor two features are

used. Obviously, such case corresponds to the one of over-elimination of features. In

practice, early stopping of backward feature selection would have been triggered by the

substantial increase of average test error rate.

Table 5.6 shows the average CPU time over 30 realizations of the real-world data sets

needed by the five feature selection methods to produce the ranked list of all features.

The times shown exclude the training and testing of SVM for the evaluations of error

rates. Two timings are shown:trank, time needed to yield the full feature ranked lists and

tcv, time used in tuningσ in PW and RSDE. An additional timing,tqp, is also included

for MI-RSDE and it corresponds to the time needed for the solution of the quadratic

optimization problem of (5.2). Note thattrank includestqp for MI-RSDE.

From Table 5.6, the times needed by mRMR are much smaller thanthose by the other

four methods. This is expected since mRMR uses mutual information involving only

two features. The other four methods are somewhat similar inthe times needed with

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.4 Numerical Experiment 101

MI-RSDE needed more time than the other three on data sets Abalone, WBCD, Glass

and Wine. It is also of interest to note that MI-RSDE spends less time than MI-PW and

Kwak on data sets Satimage and Musk. This shows that forward method like Kwak is

not always faster than the backward methods.

5.4.3 Discussion

The experiments of the preceding sections suggest that MI-PW is an effective feature

selection approach for both artificial and real-world problems. For artificial problems,

MI-PW consistently yields better performance than all other methods, and its effective-

ness is not affected much when the training set is small. For the real-world problems,

MI-PW consistently performs at least as well, if not better than the other methods for all

problems.

The better performance of MI-PW over mRMR and Kwak is expected since the latter

two methods use the forward feature selection scheme. The better performance justifies

the additional computations needed for the estimation of the higher dimensional density

functions. It is also interesting to note that HSIC is effective in dealing with data set

having interactive features, as shown in the artificial problems, but not as effective as

MI-PW and MI-RSDE. It also does not do well on real-world datasets of Abalone,

WBCD and Musk. Between the two proposed methods, MI-PW generally performs

better than MI-RSDE. This is probably due to inaccuracy of RSDE on complex data

sets.
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5.5 Summary

A new filter feature selection method based on mutual information functions is proposed

in this chapter. Unlike most other filter methods, the proposed method is implemented

in a backward selection framework and, hence, is effective in handling data sets with

dependency involving multiple features. Numerical experiments of the proposed meth-

ods, in comparisons with several benchmark methods, are provided for artificial and

real-world data sets. The experiments also show that the proposed method (with PW

estimation) has better performances over the other benchmark methods for all the data

sets considered. The evaluation of proposed criterion requires estimations of probabil-

ity density functions using either the PW or the RSDE and is therefore more expensive

computationally than some of the benchmark methods. This higher cost is justified in

view of its superior performance.

|Dtrn| |Dtst| d c nr

Abalone 1044 3133 8 3 1
WBCD 350 333 9 2 1
Glass 180 34 9 6 1
Wine 120 58 13 3 1
Satimage 2000 4435 36 6 1
Musk 330 146 166 2 1

Table 5.5: Description of real-world data sets for classification.
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Dataset MI-PW MI-RSDE Kwak HSIC mRMR
tcv trank tcv trank (tqp) tcv trank trank trank

Abalone 0.58 8.19 20.90 9.70 (6.19) 0.58 7.07 13.89 0.15
WBCD 0.10 0.93 4.01 1.02 (0.67) 0.10 0.84 1.21 0.04
Glass 0.04 0.21 1.97 0.34 (0.25) 0.04 0.24 0.20 0.03
Wine 0.03 0.19 1.06 0.50 (0.40) 0.03 0.21 0.17 0.04
Satimage 1.41 813.30 42.20 716.25 (77.36) 1.41 773.24 1377.75 1.85
Musk 0.19 344.69 2.98 223.44 (8.49) 0.19 289.68 366.84 26.60

Table 5.6: Average time (sec) of yielding feature ranking lists by all methods over 30
realizations of real-world data sets.
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Figure 5.4: Test error rates on Abalone data set
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Figure 5.5: Test error rates on WBCD data set
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Figure 5.6: Test error rates on Glass data set
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Figure 5.7: Test error rates on Wine data set
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Figure 5.8: Test error rates on Satimage data set
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Figure 5.9: Test error rates on Musk data set

MI-PW MI-RSDE Kwak HSIC mRMR
No. mean mean p- mean p- mean p- mean p-

value value value value value value value value value
1 40.63 44.56 0.00+ 40.65 0.91 40.80 0.37 40.59 0.74
2 36.14 44.04 0.00+ 39.12 0.00+ 39.95 0.00+ 41.31 0.00+
3 35.86 41.53 0.00+ 37.20 0.00+ 38.07 0.00+ 38.22 0.00+
4 35.79 37.68 0.00+ 36.94 0.00+ 37.41 0.00+ 38.02 0.00+
5 35.62 36.06 0.08 36.680.00+ 37.32 0.00+ 37.51 0.00+
6 35.41 35.50 0.62 36.010.01+ 37.07 0.00+ 37.00 0.00+
7 35.31 35.20 0.46 35.15 0.40 35.930.00+ 34.90 0.01+
8 34.96 34.96 1.00 34.96 0.99 34.96 1.00 34.96 0.99

Table 5.7:t-test on Abalone data set.

MI-PW MI-RSDE Kwak HSIC mRMR
No. mean mean p- mean p- mean p- mean p-

value value value value value value value value value
1 9.67 10.27 0.14 9.55 0.75 10.41 0.06 9.55 0.75
2 5.60 5.51 0.80 7.31 0.00+ 5.99 0.41 6.51 0.01+
3 4.44 4.54 0.76 5.94 0.00+ 5.48 0.00+ 5.23 0.01+
4 3.94 4.33 0.19 5.36 0.00+ 4.83 0.01+ 5.52 0.00+
5 3.71 4.36 0.01+ 3.96 0.37 3.98 0.27 5.04 0.00+
6 3.60 3.76 0.54 3.52 0.73 3.86 0.26 3.83 0.30
7 3.64 3.60 0.84 3.41 0.29 3.61 0.86 3.75 0.63
8 3.68 3.64 0.88 3.37 0.16 3.54 0.54 3.46 0.33
9 3.55 3.55 1.00 3.55 1.00 3.55 1.00 3.55 1.00

Table 5.8:t-test on WBCD data set.
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MI-PW MI-RSDE Kwak HSIC mRMR
No. mean mean p- mean p- mean p- mean p-

value value value value value value value value value
1 61.04 65.57 0.05 65.29 0.06 65.30 0.06 65.53 0.05
2 56.43 62.37 0.02+ 62.48 0.01+ 60.57 0.09 58.06 0.50+
3 46.31 59.39 0.00+ 52.79 0.02+ 54.98 0.00+ 48.60 0.39
4 41.12 48.37 0.01+ 46.95 0.02+ 44.18 0.27 45.09 0.11
5 41.10 40.81 0.92 44.77 0.15 41.58 0.86 43.94 0.29
6 41.58 37.76 0.08 43.07 0.53 37.35 0.09 41.15 0.86
7 40.95 38.12 0.25 40.27 0.79 38.03 0.25 39.85 0.66
8 38.82 37.98 0.72 38.99 0.94 39.20 0.88 39.61 0.76
9 37.94 37.94 1.00 37.94 1.00 37.94 1.00 37.94 1.00

Table 5.9:t-test on Glass data set.

MI-PW MI-RSDE Kwak HSIC mRMR
No. mean mean p- mean p- mean p- mean p-

value value value value value value value value value
1 30.76 25.56 0.08 22.680.00- 31.67 0.77 28.74 0.51
2 14.72 14.04 0.73 11.460.04- 11.15 0.03- 15.88 0.59
3 8.03 10.80 0.09 6.15 0.07 7.90 0.87 11.620.01+
4 6.50 7.89 0.37 6.45 0.96 4.98 0.11 10.530.00+
5 4.88 6.24 0.33 5.62 0.38 2.57 0.05 5.78 0.29
6 3.70 4.57 0.49 4.83 0.10 2.65 0.08 4.62 0.14
7 3.14 4.04 0.34 3.47 0.49 2.52 0.14 4.160.03+
8 2.77 2.95 0.76 2.62 0.75 2.37 0.30 2.86 0.83
9 2.33 2.22 0.77 2.14 0.65 2.30 0.95 2.41 0.85
10 2.19 1.97 0.64 1.77 0.30 1.98 0.63 1.43 0.05
11 2.09 1.60 0.27 1.63 0.25 1.68 0.33 0.87 0.05
12 1.74 1.36 0.34 1.35 0.30 1.60 0.72 1.11 0.10
13 1.29 1.29 1.00 1.29 1.00 1.29 1.00 1.29 1.00

Table 5.10:t-test on Wine data set.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.5 Summary 107

MI-PW MI-RSDE Kwak HSIC mRMR
No. mean mean p- mean p- mean p- mean p-

value value value value value value value value value
1 49.15 53.00 0.00+ 49.33 0.81 44.62 0.00- 49.73 0.42
4 22.03 24.24 0.03+ 21.12 0.05 19.64 0.09 23.570.00+
7 18.02 20.36 0.00+ 17.90 0.70 17.45 0.06 21.190.00+
10 16.24 18.63 0.00+ 16.17 0.82 16.31 0.81 19.610.00+
13 15.19 16.81 0.00+ 15.32 0.62 15.46 0.31 18.000.00+
16 14.38 15.84 0.00+ 14.57 0.43 14.78 0.10 15.920.00+
19 13.73 15.11 0.00+ 14.14 0.02+ 14.32 0.00+ 14.49 0.00+
22 13.33 14.25 0.00+ 13.79 0.01+ 13.76 0.01+ 13.53 0.19
25 13.10 13.51 0.01+ 13.36 0.11 13.14 0.78 12.82 0.06
28 12.85 13.09 0.12 12.85 0.99 12.91 0.69 12.78 0.65
31 12.71 12.81 0.48 12.50 0.15 12.77 0.67 12.61 0.47
34 12.53 12.63 0.48 12.49 0.80 12.55 0.91 12.53 0.98
36 12.48 12.48 1.00 12.48 1.00 12.48 1.00 12.48 1.00

Table 5.11:t-test on Satimage data set.

MI-PW MI-RSDE Kwak HSIC mRMR
No. mean mean p- mean p- mean p- mean p-

value value value value value value value value value
1 46.93 47.63 0.63 46.46 0.77 41.850.00- 46.58 0.83
11 25.23 25.84 0.61 28.980.00+ 22.17 0.11 28.37 0.00+
21 17.85 19.65 0.03+ 21.53 0.00+ 18.58 0.35 21.97 0.00+
31 13.64 15.10 0.04+ 17.16 0.00+ 16.11 0.00+ 18.71 0.00+
41 11.09 12.96 0.01+ 14.69 0.00+ 14.51 0.00+ 12.48 0.04+
51 9.47 11.48 0.01+ 11.94 0.00+ 12.66 0.00+ 11.16 0.02+
61 8.97 10.52 0.03+ 10.55 0.03+ 11.22 0.00+ 9.65 0.31
71 8.54 9.04 0.40 9.79 0.05+ 10.47 0.01+ 9.18 0.26
81 8.16 8.73 0.38 8.86 0.21 9.860.01+ 8.97 0.15
91 7.82 8.09 0.65 8.25 0.46 9.540.01+ 7.64 0.76
101 7.44 7.89 0.46 8.09 0.24 9.260.00+ 7.78 0.54
111 7.20 7.46 0.70 7.96 0.20 9.100.00+ 8.13 0.12
121 6.97 7.23 0.71 7.56 0.30 8.940.00+ 7.74 0.20
131 6.57 6.69 0.85 7.31 0.22 8.480.00+ 7.55 0.09
141 6.51 6.68 0.78 7.19 0.23 7.67 0.06 6.85 0.58
151 6.55 6.85 0.61 7.20 0.25 7.52 0.11 6.87 0.60
161 6.70 7.04 0.59 6.87 0.79 7.04 0.59 6.95 0.69
166 7.00 7.00 1.00 7.00 1.00 7.00 1.00 7.00 1.00

Table 5.12:t-test on Musk data set.
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Chapter 6

Determination of Global Minimum of

Some Common Validation Function in

Support Vector Machine

Tuning of the regularization parameter,C, is a well-known process in the implementa-

tion of a Support Vector Machine classifier. Such a tuning process uses an appropri-

ate validation function whose value, evaluated over a validation set, is to be optimized

for the determination of the optimalC. Unfortunately, the validation functions are not

smooth functions ofC. This chapter presents a method for obtaining the global optimal

solution of these non-smooth validation functions. The method is guaranteed to find the

global optimum and relies on the regularization solution path of SVM over a range ofC

values. When the solution path is available, the computation needed is minimal.
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The rest of this chapter is arranged as follows. Section 6.1 provides the formulas of

the regularization solution path of SVM overC. Section 6.2 shows the main algorithm

for determining the global optimum of the validation function. Section 6.3 provides re-

sults of numerical experiment of the proposed algorithm anda comparison with several

standard approaches. Summary is given in section 6.4.

6.1 Preliminary

As reviewed in 2.1.1 of Chapter 2, the standard two-class SVMprimal problem (SVM-

PP) is

min
w,b,ζ

1
2

w′w+C ∑
i∈ID

ζi

yi(w
′φ(xi)+b) ≥ 1−ζi , ∀ i ∈ ID

ζi ≥ 0, ∀ i ∈ ID ,

its Dual problem (SVM-DP) is

min
ααα

1
2 ∑

i∈ID

∑
j∈ID

αiα jyiy jK(xi ,x j)− ∑
i∈ID

αi

0≤ αi ≤C, ∀ i ∈ ID

∑
i

αiyi = 0,
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and the output function of SVM is

f (x) = ∑
i∈ID

αiyiK(xi ,x)+b.

It can be seen from the above formulas thatC is a parameter in SVM-PP, the solution

of SVM-DP in the form of{αi : i ∈ ID} andb are all functions ofC. It is possible to

numerically determine these solutions for the entire rangeof C, resulting in aregular-

ization solution pathof SVM. Works in this direction are given by Hastie et al. [34]and

Ong et al. [58]. Hastie et al. [34] provide the framework for the approach following

techniques from parametric programming while Ong et al. [58] use a different formula-

tion to improve on the reliability of the algorithm. Among others, Ong et al.’s approach

takes into consideration numerical problems that can arisein a data set having nominal

features, duplicate points, and/or linearly dependent points in the kernel space. Detailed

information of the approach can be found in [34] and [58].

The rest of this section provides a summary of Ong et al.’s approach [58] whose results

will be needed in the sequel. To facilitate discussion, the notations used in [34] and [58]

are adopted:

λ : = C−1, α0(λ ) := b(λ ), (6.1)

α̂i(λ ) := λαi(λ ), ∀ i ∈ ID ∪{0} (6.2)

where the dependence ofα̂i andαi on λ (equivalently,C) are shown explicitly. The

solution of SVM dual problem (DP) reviewed in 2.1.1 of Chapter 2 at any specific value
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of λ consists of the optimal̂αi(λ ), i ∈ ID ∪{0}. Because of the constraint 0≤ αi ≤

C,∀ i ∈ ID and (6.2),α̂i(λ ) takes value between 0 and 1 for alli ∈ ID . Hence, it is

convenient to introduce the following mutually exclusive sets

R(λ ) := {i ∈ ID : α̂i(λ ) = 0}, L (λ ) := {i ∈ ID : α̂i(λ ) = 1}

andE (λ ) := {i ∈ ID : 0 < α̂i(λ ) < 1}

with the property thatR(λ )
⋃

L (λ )
⋃

E (λ ) = ID at everyλ .

The algorithm in [58], known as Improved SVM Path (ISVMP), starts with a user-

defined range ofλ , (λ ,λ), over which SVM solution path is needed. Typically,(λ ,λ)

is a large interval that covers the range of interest. The output of ISVMP consists of a

set of critical values ofλ in

Λ := {λ 0, · · · ,λ ℓmax} (6.3)

with λ 0 := λ , λ ℓmax = λ , λ ℓ > λ ℓ+1 and the corresponding

{α̂i(λ ℓ) : i ∈ ID ∪{0}} for everyλ ℓ ∈ Λ. (6.4)

Each criticalλ value corresponds to a qualitative changes in the SVM solutions: ele-

ments inR(λ ),L (λ ) or E (λ ) changes whenλ crosses overλ ℓ. More exactly, each

λ ℓ ∈ Λ corresponds to the occurrence of one of the following events:

• an indexi ∈ E (λ ℓ+) moves toL (λ ℓ) or R(λ ℓ),
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• an indexi ∈ L (λ ℓ+) moves toE (λ ℓ),

• an indexi ∈ R(λ ℓ+) moves toE (λ ℓ),

whereλ ℓ+ refers to value ofλ that is slightly larger thanλ ℓ.

In Ong et al.’s method, determination of next eventℓ+1, given the result at eventℓ, is

posed in the following linear programming (LP) problem:

min
δλ

δλ (6.5)

s.t. 0≤ α̂ℓ
i +di

pδλ ≤ 1 ∀ i ∈ E (6.6)

(d′
pk̂i −1)δλ −λ ℓξ ℓ

i ≥ 0 ∀ i ∈ R (6.7)

(d′
pk̂i −1)δλ −λ ℓξ ℓ

i ≤ 0 ∀ i ∈ L (6.8)

δλ ≥−λ ℓ (6.9)

where

δλ = λ −λ ℓ (6.10)

kuv = K(xu,xv)yuyv, ∀u,v∈ ID (6.11)

ξi(α̂, α̂0,λ ) = 1− ∑ j∈ID
α̂ jk ji −yiα̂0

λ
, ∀i ∈ ID (6.12)
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k̂i = [−yi , k1i , · · · , k|E |i ]
′ (6.13)

and

dp = A−11 =




0 −y1 · · · −y|E |

−y1 k11 · · · k1|E |

...
...

...
...

−y|E | k|E |1 · · · k|E ||E |




−1


0

1

...

1




. (6.14)

For notional convenience,{1, · · · , |E |} in (6.13) and (6.14) refer to all indices inE .

The constrains (6.6) to (6.8) are imposed to ensure that all SVM solutions from eventℓ

to eventℓ+ 1 satisfy KKT conditions shown in Section 2.1.1, while constrain (6.9) is

imposed to ensure that onlyλ ≥ 0 is considered. Supposingδ ∗
λ is the minimizer of LP,

λ at the next event is defined byλ ℓ+1 = δ ∗
λ +λ ℓ.

Note that the formulas of LP model (6.5) to (6.9) anddp solution (6.14) are for the case

that the square matrixA in (6.14) is invertible. For the case thatA is not invertible, some

modifications on LP model anddp solution are needed. The details of them can be found

in [58].

The sets given by (6.3) and (6.4) fully characterize the solution path of SVM. Forλ such

thatλ ℓ+1 < λ ≤ λ ℓ, α̂i(λ ) for any i ∈ ID ∪{0} can be found by interpolation using

α̂i(λ ) :=
λ ℓ+1−λ
λ ℓ+1−λ ℓ

α̂i(λ ℓ)+
λ −λ ℓ

λ ℓ+1−λ ℓ
α̂i(λ ℓ+1). (6.15)
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The above solution path of SVM over a range ofC is fully utilized to select the global

optimal regularization parameterC in the subsequent sections.

6.2 Finding the Global Optimal Solution

Consider a given validation set denoted byV := {(xi,yi) : i ∈ IV}. The output function

of f (·) at a specific value ofλ can be expressed as

f (x,λ ) =
1
λ

( ∑
i∈ID

α̂i(λ )yizi ·zj + α̂0(λ )). (6.16)

wherezi := φ(xi) ∀i ∈ ID ∪IV . The tuning process involves finding the optimalλ

value of a validation function onV which requires frequent evaluation off (x j ,λ ) for j

in IV . For convenience, define

h j(λ ) : = λ f (x j ,λ ) = ∑
i∈ID∪{0}

α̂i(λ )gi j (6.17)

= ∑
i∈L (λ )

gi j + ∑
i∈E (λ )∪{0}

α̂i(λ )gi j (6.18)

wheregi j := yizi ·zj for any(i, j)∈ID ×IV andg0 j = 1 for all j ∈IV . Equation (6.18)

follows from (6.17) becausêαi(λ ) = 0 and 1 fori ∈R(λ ) andL (λ ) respectively. Since

h j(λ ) andλ f (x j ,λ ) have the same sign, the predicted output class ofx j ∈V is

ỹ j(λ ) := sign(h j(λ )) =





+1, if h j(λ ) ≥ 0,

−1, if h j(λ ) < 0.
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The proposed approach is applicable to the various validation functions including error

rate, weighted error rate, precision (percentage of positive predictions that are correct),

recall (percentage of positive validation examples that are correctly predicted), F mea-

sure (harmonic mean of precision and recall) and area under ROC curve. However, the

steps involved are best illustrated using one choice of validation function. Extensions of

the approach to other validation functions and cross-validation set are discussed inRe-

marks6.2.1 and 6.2.2. Our choice corresponds to probably the mostcommon validation

function, namely the error rate function, given by

E(λ ) =
1

2|V| ∑
j∈IV

|y j − ỹ j(λ )|, (6.19)

which measures the percentage of incorrect predictions.

The proposed approach relies on the following facts:

(a) E(λ ) is a piecewise-constant function ofλ and changes value only when at least

oneỹ j(λ ) changes value.

(b) ỹ j(λ ) changes value only whenh j(λ ) crosses the zero value, either from positive

to negative or vice versa.

(c) h j(λ ) depends affinely onλ for λ ℓ ≥ λ > λ ℓ+1, following (6.15) and (6.18).

From (a) and (b), an important aspect of finding the global optimum of E(λ ) is to find

the value ofλ at whichh j(λ ) crosses the zero value. For this purpose, consider the

values ofα̂i(λ ) andh j(λ ) betweenλ ℓ andλ ℓ+1. Figures 6.1(a) and 6.1(b) show the
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(a) (b)

Figure 6.1: (a) Typical values of̂αi(λ ), i ∈ E (λ ℓ) for λ ℓ+1 < λ ≤ λ ℓ. (b) Typical values
of h j(λ ) for λ ℓ+1 < λ ≤ λ ℓ. Points A and B refer to two possible values ofh j(λ ℓ),
positive and negative.

possible plots of̂αi(λ ) andh j(λ ) as a function ofλ in this interval respectively. For a

change in the value ofE(λ ), it follows from (b) that at least oneh j(λ ) among j ∈ IV

must have a zero-crossover. This also means thath j(λ ) is of Type 3 or 4 in Figure

6.1(b). Hence, a pointj causes a change inE(λ ) if and only if h j(λ ℓ) andh j(λ ℓ+1)

have different sign. Let the collection of such points be

I ℓ
S = { j : h j(λ ℓ) ·h j(λ ℓ+1) < 0, j ∈ IV}. (6.20)

From (c), a convenient representation ofh j(λ ) is

h j(λ ) =
λ ℓ+1−λ
λ ℓ+1−λ ℓ

hℓ
j +

λ −λ ℓ

λ ℓ+1−λ ℓ
hℓ+1

j , λ ℓ+1 < λ ≤ λ ℓ (6.21)

wherehℓ
j := h j(λ ℓ). Using this expression, the zero-crossover ofh j(λ ) for λ ℓ+1 < λ ≤
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λ ℓ happens at

λ ℓ∗
j =

λ ℓ+1hℓ
j −λ ℓhℓ+1

j

hℓ
j −hℓ+1

j

, ∀ j ∈ I ℓ
S. (6.22)

Let these indices ofλ ℓ∗
j be collected into an ordered set

I ℓ
λ = {i1, i2, · · · , i|I ℓ

S|
} (6.23)

such thatλ ℓ∗
i1 ≥ λ ℓ∗

i2 ≥ ·· · ≥ λ ℓ∗
i|I ℓ

S|
.

With (6.22), it is possible to updateE(λ ) whenλ crossesλ ℓ∗
j . To see this, suppose the

value ofE(λ ℓ) is known, it follows from (6.19) that

E(λ ) =
1

2|V| ∑
j∈I ℓ

S

|y j − ỹ j(λ )|+constant, for λ ℓ ≥ λ > λ ℓ+1.

Let λ ℓ∗+
im , im ∈ I ℓ

λ , be the value ofλ slightly larger thanλ ℓ∗
j . Then

E(λ ℓ∗
im ) = E(λ ℓ∗+

im )+
1

2|V|{|yim− ỹim(λ ℓ∗
im )|− |yim− ỹim(λ ℓ∗+

im )|}.

SinceE(λ ) is a piecewise constant function,E(λ ℓ∗+
im ) is a constant for allλ s.t.,λ ℓ∗

im−1
≥

λ ≥ λ ℓ∗+
im with im, im−1 ∈ I ℓ

λ . Hence the above can also be modified as

E(λ ℓ∗
im ) =





E(λ ℓ∗
im−1

)+ 1
|V| , if yim = ỹim(λ ℓ∗

im−1
)

E(λ ℓ∗
im−1

)− 1
|V| , otherwise

(6.24)

for m= 1, · · · , |I ℓ
S| andλi0 = λ ℓ whenm= 0. Using (6.22), (6.23), (6.24), (6.3) and
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(6.4),E(λ ) can be computed for allλ ≤ λ ≤ λ̄ .

It is now possible to state the Pseudo code for the overall algorithm. The algorithm

assumes that the solution path in the form of (6.3) and (6.4) are available forλ to λ .

The output is the optimalλ , λ ∗ and the correspondingE∗ := E(λ ∗).

Table 6.1: Pseudo Code
Input: λ̄ , λ , ℓmax, Λ, D , V and{α̂i(λ ) : i ∈ ID ∪{0},λ ∈ Λ}
Output:E∗ andλ ∗

1. Initialization:
Let g0 j = 1, ∀ j ∈ IV andλ 0 = λ̄ .
Compute:

gi j = yizi ·zj , ∀i ∈ ID , j ∈ IV ,
hℓ

j using (6.17)∀ℓ = 0,1, · · · , ℓmax and ∀ j ∈ IV ,
E(λ 0) from (6.19).

Let E∗ = E(λ 0), λ ∗ = λ 0 andℓ = 0
2. Main loop:

While ℓ < ℓmax,
a. Read inλ ℓ+1 and{hℓ+1

j : j ∈ IV}.
b. Compute:

hℓ+1
j ·hℓ

j , ∀ j ∈ IV and formI ℓ
S using (6.20).

λ ℓ∗
j using (6.22)∀ j ∈ I ℓ

S and formI ℓ
λ of (6.23).

c. For eachim ∈ I ℓ
λ starting fromi1,

ComputeE(λ ℓ∗
im ) using (6.24),

If E(λ ℓ∗
im ) < E∗,

then letE∗ = E(λ ℓ∗
im ) andλ ∗ = λ ℓ∗

im
d. Letℓ = ℓ+1

end

Remark 6.2.1. The above exposition is for the validation function given by(6.19). This

validation function can also be expressed as E(λ ) = 1
2|V| ∑ j∈IV

max{0,1− y j ỹ j(λ )}

which is related to the hinged loss function in SVM. The abovedevelopment is also

applicable, with minor modifications, when E is given by

• the Weighted Error rate with E(λ ) = 1
2(n++ηn−) [∑ j∈I +

V
|y j − ỹ j(λ )|+∑ j∈I −

V
η|y j −

ỹ j(λ )|] for someη > 0 where n+(n−) is the total number of validation samples
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with y= +1 (y = −1) respectively andI +
V (I −

V ) is the subset of indices inIV

with y= +1(y=−1) respectively. The Weighted Error rate becomes the Balanced

Error rate whenη = n+
n−

.

• the Precision (percentage of positive predictions that arecorrect) with E(λ ) = 1−

1
2N+(λ ) ∑ j∈I −

V
|y j − ỹ j(λ )| where N+(λ ) is the total number of j with̃y j(λ ) = 1.

• Recall (percentage of positive validation examples that are correctly predicted)

with E(λ ) = 1
2n+

∑ j∈I +
V

(2−|y j − ỹ j(λ )|).

• F measure (harmonic mean of precision and recall) with E(λ ) = 1
n++N+(λ ) ∑ j∈I +

V
(2−

|y j − ỹ j(λ )|).

It is quite easy to see that these functions change their values whenever there is a zero-

crossover of hj .

Remark 6.2.2. In the event that V is one fold of a n-fold data used in a cross validation

process, a few changes are needed. More exactly, there is a regularization solution path

for each holdout fold, obtained using the(n−1) remaining folds asD . The procedures

to computeI ℓ
S andI ℓ

λ for each holdout fold are exactly the same as that given by (6.20)

and (6.23). The only additional requirement is to evaluate Eon a denser grid ofλ in

order to find its global optimal solution. Let̄Λk := {λ ℓ∗
im : im∈ I ℓ

λ , ℓ = 0,1, · · · , ℓmax−1

for the kth holdout fold} and Λ̄ := ∪k=1,··· ,nΛ̄k such that it contains theλ values of

all zero-crossovers of all holdout folds. To find the global optimum, the cross-validation

function, E(λ ) = E1(λ )+ · · ·+En(λ ), has to be evaluated for allλ ∈ Λ̄. The evaluation

of Ek(λ ) for λ ∈ Λ̄k is given by (6.24). To evaluate Ek(λ ) overΛ̄ is trivial since Ek(λ )
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is a piecewise constant function and changes value only atλ ∈ Λ̄k. Of course, the final

SVM model is one that is obtained usingD as the training data and withλ obtained by

the above procedure.

6.3 Numerical Experiment and Discussion

For easy referencing, the proposed method is termed GO, Global Optimal approach.

This section compares GO with two standard tuning processes: the grid search method

(GRID) and the gradient based method (GRAD). The GRID methodcomputesE(λ )

over a grid ofλ values and chooses the minimum among them. The GRAD method

works only on smooth validation functions and requires expression of the gradient of

the smooth validation function with respect toλ . For this reason, approximation of

E(λ ) by a smooth function proposed by Keerthi et al. [45] is used. Details of this

approximation are given in the Appendix C. Following [45], the numerical routine used

in GRAD is LBFGS [9]1.

In all experiments, the optimalλ is chosen from the range[2−8,29]. Three levels of

resolution are used in GRID: 2−1, 2−0.1 and 2−0.01 and are termed GRID-1, GRID-

0.1 and GRID-0.01, respectively. Like most nonlinear programming methods, LBFGS

solution depends on the initial choice ofλ . Our experiments use five different initial

values,{100,10,1,0.1,0.01}, for each data set and their results are indicated by GRAD-

m wherem is the initial value. In addition, the smooth validation function for GRAD is

1Downloadable from http://www.cs.toronto.edu/∼liam/software.shtml.
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Ẽ, given in Appendix C.

For consistency in comparison, the time needed to compute the SVM solutions and the

computations ofhℓ
j , ∀ j ∈IV and∀ℓ∈ Λ̄ is removed from all three methods. This means

that the complete regularization solution path fromλ̄ to λ is run once and its solution

with hℓ
j ∀ j ∈ IV , ∀ℓ ∈ Λ̄ is made available to all three methods. Such an approach

eliminates the uncertainties associated with the SVM routines. Note that if this is not

done, SVM solution for the GRID method will have to be invoked18–1800 times while

GRAD requires the SVM solutions depending on the number of intermediateλ used by

the LBFGS algorithm. Of course, GO uses the entire regularization path while GRID

and GRAD need SVM solutions at some selected values ofλ . As an approximate guide,

timing needed for one SVM regularization path is about the same as that needed for

several calls (2-8) to SVM solutions [34, 58] for most data sets.

Numerical experiments are done on Intel Pentium D 3.0G Hz with 1.5G memory under

the Linux operating system. The regularization solution path is obtained using ISVMP

[58] matlab code (Matlab 2009) available from http://guppy.mpe.nus.edu.sg/∼mpeongcj/

ongcj.html. The data sets and their characteristics are given in Table 6.2 and are obtained

from [1] and http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/. For each data set,

the experiments are conducted over 10 realizations. Theℓmax for the first realization is

indicated in Table 6.2. Each of the 10 realizations is created by random (stratified) sam-

pling of the given set intoDtrn andDtst in the ratio of|Dtrn| : |Dtst| = 3 : 1. In each

method,Dtrn is used in a 5-fold cross-validation procedure to determinethe optimalC

while Dtst is a test set for performance evaluation. For each realization,Dtrn is normal-
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ized to zero mean and unit standard deviation and its normalization parameters are then

used to normalizeDtst. All experiments are done using Linear kernel.

Table 6.3 shows the optimalλ ∗ and the 5-fold cross-validation error,E∗, obtained by

each method on the first realization. Note that whileẼ is the validation function of the

GRAD method, the values shown in the table are those ofE evaluated atλ ∗. Several

observations are clear. First, the proposed method obtainsthe global minimal solution

for all 14 data sets. The GRID-i methods do so for 71% to 100% ofthe data sets while

GRAD-i methods do so around 36% to 43% of the data sets. Second, there are data sets

where the minimalE∗ are obtained at multiple values ofλ . For these case, GO always

returns the largest value ofλ ∗. This is not so for the GRAD methods. The larger value of

λ ∗ (or smaller value ofC) is advantageous as it yields better generalization performance

[81]. Third, there are many cases for which GRAD-m returns the initialλ values as

the optimal. This is not too surprising sinceE(λ ) is a piecewise-constant function with

many ranges ofλ having gradients that are very close to 0 (termination condition for

LBFGS). This situation is clearly depicted in Figure 6.2. The figure also shows that the

5-fold cross-validation error (solid line) is quite different from the smooth 5-fold error

function (dashed line) obtained from̃E = 1
5 ∑5

i=1 Ẽi. This discrepancy, we believe, is due

to the choice of the parameters used inẼ (see Appendix C) which is less sensitive to

variation ofE(λ ) at small values ofλ . While the GRID-0.01 result can also obtain the

global optimum ofE for the data sets considered, there is no mechanism in it to ensure

this performance for other data sets, unlike GO.

For generalization performance, the SVM classifier withλ ∗ obtained by the various
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Figure 6.2: Curves of cross-validation error rates (CVER) as functions ofλ for data set
svmguide3. Solid line - 5-fold CVER; Dashed line - smooth 5-fold CVER; Dashed-dot
line - CVER of fold 1; Dot line - smooth CVER of fold 1. The CVER functions for
the other folds are omitted to prevent clutter. The optimalλ is 0.114 or log2(0.114) =
−3.1329.

methods are evaluated onDtst. Table 6.4 shows these test error ratesE† of the first

realization. It shows that GO yields the lowest test error rate among all methods for all

data sets. The GRID-i does so for 86% to 100% of the data sets while GRAD-i averages

around 57% to 79% of the data sets. There are some minor variations in the results for

the other realizations. Table 6.5 shows the mean and standard derivation values ofE† of

all methods over the 10 realizations. Three methods GO, GRID-0.1 and GRAD-1 have

the lowest mean test error rate in 8 of the 14 data sets and their performances are better

than the others. It is also interesting to note that in data sets heart, monk-1 and hillvalley,

GO yields smaller standard derivations than the method withthe lowest mean test error

rate.

When the SVM solution path is available, the computations needed to compute theλ ∗

is quite efficient. For each realization of the data sets, thecomputational time needed

by GO to obtainλ ∗ using 5-fold cross validation process ranges from 3 milliseconds
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Figure 6.3: The histogram of intervals having various values of |I ℓ
S| for the 5 folds of

svmguide3 in the first realization. The set|Λ̄k| for k = 1 to 5 are 630,755,727,828 and
754 respectively.

to 8 seconds. These numbers are generally higher than that byGRID-m and GRAD-

m. However, since GO is implemented in Matlab while GRID and GRAD are in C,

comparison by CPU timing may not be meaningful. Another useful measure is the

estimate of the computational complexity of the algorithm with respect to|IV | andℓmax.

Main computations needed by the algorithm are those associated with (6.20), (6.22) and

(6.24). These are proportional to|IV |, |I ℓ
S| and ℓmax. The determination of|I ℓ

S| of

(6.20) forℓmax events isO(|IV| · ℓmax). The computation of (6.22) and (6.24) depends

on the size of|I ℓ
S|. For this purpose, it is useful to know the distribution of|I ℓ

S| over

ℓ. Figure 6.3 shows the histogram (number of intervals) with increasing values of|I ℓ
S|

for the SVMguide3 data set for the 5-fold cross-validation error. As shown,|I ℓ
S| = 0

for more than 90% of all intervals. The histogram shown is typical of other data sets

and realizations. Hence, the computations of (6.22) and (6.24) are much smaller than

that required for (6.20) which means that the computationalcomplexity isO(|IV | ·ℓmax).

The dependence ofℓmax on |D | varies greatly, see [58] for details.
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Data set |ID | |IV | d ℓmax

colon 47 15 2000 8
leukemia 54 18 7129 1

sonar 138 69 60 286
heart 180 90 13 315

ionosphere 234 117 33 534
wbcd 455 228 9 495

monk 1 370 186 6 596
monk 2 400 201 6 1
monk 3 369 185 6 884
diabetes 512 256 8 407
hillvalley 808 404 100 1021
german 667 333 24 400

svmguide3 856 428 22 861
splice 2382 793 60 3637

Table 6.2: Characteristics of data sets used in the experiments.

6.4 Summary

This chapter describes an approach to obtain the global optimum of the validation func-

tion for SVM classifier for the regularization parameter,C. This is possible because the

SVM solution path for a range ofC can be computed. All existing methods either obtain

a local minimum via an approximation of the validation function or a minimum over

a set of discrete values ofC. The algorithm requires the solution of the SVM solution

path. When that is done, the timing needed for the approach iscomparable to existing

methods and is generally very efficient. In the case when there are multipleC values that

attain the global optimum of the validation function, the smallestC value is returned by

the approach.
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Dataset GO GRID-1 GRID-0.1 GRID-0.01 GRAD-100 GRAD-10 GRAD-1 GRAD-0.1 GRAD-0.01
λ ∗ E∗ λ ∗ E∗ λ ∗ E∗ λ ∗ E∗ λ ∗ E∗ λ ∗ E∗ λ ∗ E∗ λ ∗ E∗ λ ∗ E∗

colon 512.000 0.156 512.000 0.156 512.000 0.156 512.000 0.156 100.000 0.196 10.000 0.196 1.000 0.196 0.100 0.196 0.010 0.196
leukemia 512.000 0.034 512.000 0.034 512.000 0.034 512.000 0.034 100.000 0.034 10.000 0.034 1.000 0.034 0.100 0.034 0.010 0.034

sonar 87.762 0.000 64.000 0.000 84.449 0.000 87.427 0.000 26.481 0.000 10.000 0.000 1.000 0.000 0.100 0.000 0.010 0.000
heart 83.464 0.134 64.000 0.134 78.793 0.134 83.286 0.134 95.183 0.144 9.763 0.144 1.184 0.143 0.100 0.143 0.356 0.143

ionosphere 104.860 0.000 64.000 0.000 103.970 0.000 104.690 0.000 79.913 0.000 10.000 0.000 1.000 0.000 0.100 0.000 0.010 0.000
wbcd 55.357 0.000 32.000 0.000 51.984 0.000 55.330 0.000 8.431 0.000 10.000 0.000 1.000 0.000 0.100 0.000 0.010 0.000

monk 1 323.270 0.283 1.000 0.288 315.170 0.287 321.800 0.283 100.000 0.331 10.000 0.331 1.000 0.288 0.736 0.292 0.607 0.292
monk 2 512.000 0.348 512.000 0.348 512.000 0.348 512.000 0.348 100.000 0.348 10.000 0.348 1.000 0.348 0.100 0.348 0.010 0.348
monk 3 90.586 0.183 64.000 0.195 90.510 0.183 90.510 0.183 101.850 0.207 10.000 0.209 1.000 0.209 0.004 0.209 0.004 0.209
diabete 64.735 0.217 64.000 0.217 64.000 0.217 64.445 0.217 48.731 0.219 10.143 0.227 1.000 0.236 0.100 0.234 0.010 0.236

hillvalley 0.004 0.289 0.004 0.289 0.004 0.289 0.004 0.289 99.964 0.533 1.226 0.404 0.910 0.396 0.101 0.359 0.011 0.308
german 43.454 0.231 1.000 0.232 42.224 0.232 43.411 0.231 30.248 0.235 40.438 0.232 2.128 0.233 0.100 0.233 0.010 0.233

svmguide3 0.114 0.178 0.031 0.178 0.109 0.178 0.113 0.178 98.481 0.214 10.115 0.186 0.883 0.183 0.102 0.179 0.026 0.178
splice 195.480 0.153 256.000 0.156 194.010 0.154 195.360 0.153 100.000 0.157 10.093 0.160 1.000 0.159 0.100 0.161 0.010 0.162

Table 6.3: Optimalλ value and 5-fold cross-validation error rates for GO, GRID-i and GRAD-i of the first realization. The smallest error
rate for each data set is highlighted in bold.
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7

Dataset GO GRID-1 GRID-0.1 GRID-0.01 GRAD-100 GRAD-10 GRAD-1 GRAD-0.1 GRAD-0.01
λ ∗ E† λ ∗ E† λ ∗ E† λ ∗ E† λ ∗ E† λ ∗ E† λ ∗ E† λ ∗ E† λ ∗ E†

colon 512.000 0.067 512.000 0.067 512.000 0.067 512.000 0.067 100.000 0.067 10.000 0.067 1.000 0.067 0.100 0.067 0.010 0.067
leukemia 512.000 0.000 512.000 0.000 512.000 0.000 512.000 0.000 100.000 0.000 10.000 0.000 1.000 0.000 0.100 0.000 0.010 0.000

sonar 87.762 0.000 64.000 0.000 84.449 0.000 87.427 0.000 26.481 0.000 10.000 0.000 1.000 0.000 0.100 0.000 0.010 0.000
heart 83.464 0.164 64.000 0.164 78.793 0.164 83.286 0.164 95.183 0.164 9.763 0.179 1.184 0.179 0.100 0.179 0.356 0.179

ionosphere 104.860 0.000 64.000 0.000 103.970 0.000 104.690 0.000 79.913 0.000 10.000 0.000 1.000 0.000 0.100 0.000 0.010 0.000
wbcd 55.357 0.000 32.000 0.000 51.984 0.000 55.330 0.000 8.431 0.000 10.000 0.000 1.000 0.000 0.100 0.000 0.010 0.000

monk 1 323.270 0.345 1.000 0.345 315.170 0.345 321.800 0.345 100.000 0.345 10.000 0.345 1.000 0.345 0.736 0.345 0.607 0.345
monk 2 512.000 0.327 512.000 0.327 512.000 0.327 512.000 0.327 100.000 0.327 10.000 0.327 1.000 0.327 0.100 0.327 0.010 0.327
monk 3 90.586 0.167 64.000 0.167 90.510 0.167 90.510 0.167 101.850 0.167 10.000 0.167 1.000 0.167 0.004 0.167 0.004 0.167
diabete 64.735 0.266 64.000 0.266 64.000 0.266 64.445 0.266 48.731 0.266 10.143 0.271 1.000 0.271 0.100 0.276 0.010 0.276

hillvalley 0.004 0.274 0.004 0.274 0.004 0.274 0.004 0.274 99.964 0.459 1.226 0.409 0.910 0.406 0.101 0.373 0.011 0.310
german 43.454 0.240 1.000 0.252 42.224 0.240 43.411 0.240 30.248 0.240 40.438 0.240 2.128 0.252 0.100 0.256 0.010 0.256

svmguide3 0.114 0.143 0.031 0.143 0.109 0.143 0.113 0.143 98.481 0.209 10.115 0.162 0.883 0.146 0.102 0.143 0.026 0.146
splice 195.480 0.174 256.000 0.180 194.010 0.175 195.360 0.174 100.000 0.179 10.093 0.177 1.000 0.174 0.100 0.178 0.010 0.178

Table 6.4: Optimalλ value and Test error rates for GO, GRID-i and GRAD-i of the first realization. The smallest error rate for each data
set is highlighted in bold.
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Dataset GO GRID-1 GRID-0.1 GRID-0.01 GRAD-100 GRAD-10 GRAD-1 GRAD-0.1 GRAD-0.01
mean std mean std mean std mean std mean std mean std mean std mean std mean std

colon 0.133 0.070 0.133 0.070 0.133 0.070 0.133 0.070 0.140 0.080 0.140 0.080 0.140 0.080 0.140 0.080 0.140 0.080
leukemia 0.017 0.027 0.017 0.027 0.017 0.027 0.017 0.027 0.017 0.027 0.017 0.027 0.017 0.027 0.017 0.027 0.017 0.027

sonar 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
heart 0.158 0.029 0.160 0.036 0.158 0.032 0.157 0.030 0.149 0.046 0.158 0.035 0.155 0.039 0.164 0.025 0.164 0.023

ionosphere 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
wbcd 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

monk 1 0.325 0.032 0.323 0.034 0.325 0.032 0.325 0.032 0.331 0.030 0.331 0.030 0.323 0.034 0.323 0.034 0.323 0.034
monk 2 0.361 0.036 0.361 0.036 0.361 0.036 0.361 0.036 0.361 0.036 0.361 0.036 0.361 0.036 0.361 0.036 0.361 0.036
monk 3 0.191 0.047 0.194 0.044 0.188 0.046 0.188 0.046 0.199 0.043 0.192 0.033 0.198 0.146 0.194 0.044 0.194 0.044
diabete 0.230 0.039 0.288 0.038 0.228 0.042 0.229 0.040 0.231 0.044 0.229 0.040 0.225 0.037 0.225 0.038 0.225 0.038

hillvalley 0.311 0.065 0.299 0.070 0.299 0.072 0.311 0.065 0.389 0.120 0.316 0.081 0.361 0.070 0.313 0.078 0.317 0.074
german 0.249 0.032 0.254 0.035 0.252 0.036 0.250 0.035 0.250 0.032 0.249 0.032 0.252 0.036 0.252 0.037 0.252 0.037

svmguide3 0.203 0.096 0.204 0.098 0.203 0.096 0.203 0.096 0.209 0.096 0.207 0.105 0.208 0.089 0.205 0.101 0.208 0.105
splice 0.158 0.013 0.159 0.015 0.159 0.015 0.159 0.015 0.158 0.015 0.158 0.015 0.158 0.013 0.159 0.014 0.160 0.014

Table 6.5: Mean and Standard Deviations ofE† of GO, GRID-i and GRAD-i over the the 10 realizations. The smallest Mean for each data
set is highlighted in bold.
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Chapter 7

Conclusions

This concluding chapter outlines the main contributions ofthis thesis, and points out

some potential directions for future works.

7.1 Contributions

Wrapper-based Feature Selection Method for MLP

In Chapter 3, a new wrapper-based feature selection method for MLP is proposed. This

method measures the importance of a feature by the sensitivity of the probabilistic output

of MLP with/without this feature. In experiment, the proposed method is compared

with three benchmark methods reviewed in Chapter 2, FisherS[31], mRMR [53] and

MOI [72]. The advantage of the proposed method over the threebenchmark methods is

evidently illustrated by the following main results:
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(1) In the Weston problems with four different settings, theproposed method consis-

tently outperforms FisherS and MtualI in all settings, and performs comparably

with MOI in the first setting while outperforms in the rest three settings.

(2) In the three Corral problems, Corral-6, Corral-46 and Corral-47, the proposed

method consistently outperforms FisherS and MtualI in all three problems, and

performs comparably with MOI in Corral-6 while outperformsin Corral-46 and

Corral-47.

(3) In the eight real-world problems, the proposed method consistently performs at

least as well, if not better than the three benchmark methodsat all levels of feature

selection except the case that only top 1 or 2 features are considered.

A paper [4*], listed on Page 153, based on this work has been published.

Wrapper-based Feature Selection Method for SVR

In Chapter 4, a new wrapper-based feature selection method for SVR is proposed. Sim-

ilar to the method proposed in Chapter 3, this method measures the importance of a

feature by the sensitivity of the probabilistic output of SVR with respect to this feature.

Numerical experiments on both artificial and real-world problems demonstrates the ad-

vantage of the proposed method over five benchmark methods reviewed in Chapter 2,

mRMR [53], HSIC [74],∆‖ω‖2 [33], RMB [65], SpanB [65]. Specifically,

(1) In the three artificial problems, each with four settings, the proposed method con-

sistently performs better than all benchmark methods.
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(2) In the six real-world problems, the proposed method consistently performs at least

as well, if not better than the five benchmark methods at all levels of feature se-

lection except the case that only top 1 or 2 features are considered.

(3) Compared with the similar wrapper method RMB and SpanB, the proposed method

can safely reduce the computational cost due to Theorem 4.2.1.

A paper [2*], listed on Page 153, based on this work has been published.

Filter-based Feature Selection Method using Mutual Information

In Chapter 5, a new filter-based feature selection method using mutual information es-

timation is proposed. Unlike other mutual information based method, the proposed

method measures the importance of a feature in a backward feature selection framework

considering all features. Numerical experiments show thatthe proposed method gen-

erally outperforms five benchmark methods reviewed in Chapter 2, mRMR [53], Kwak

[47] and HSIC [74] according to the following main results:

(1) In the three artificial Monk problems, each with four settings, the proposed method

consistently performs better than all benchmark methods.

(2) In the Weston problem with four settings, the proposed method consistently out-

performs mRMR and Kwak in all settings, and performs comparably with HSIC

in general. The success of the proposed method on this problem and Monk prob-

lems shows that the proposed method can effectively handle the interacting effect

of features.
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(3) In the six real-world problems, the proposed method consistently performs at least

as well, if not better than the three benchmark methods at alllevels of feature

selection except the case that only top 1 or 2 features are considered.

A technique report [5*], listed on Page 154, based on this work has been published.

Finding Global Minimum of Some Common Validation Function in Support Vector

Machine

In Chapter 6, a new method to determine the global optimaC values of common valida-

tion functions for SVM classifier over a validation set or cross-validation set is proposed.

To the best of our knowledge, there is no existing methods that can make this achieve-

ment. The advantage of the proposed method over benchmark methods reviewed in

Chapter 2, grid search method (GRID) and grad based method (GRAD) [45], is vali-

dated in numerical experiments on 14 real-world data sets. Specifically,

(1) The proposed method obtains the global minimal cross validation error rate for all

14 data sets. The GRID method does so for 71% to 100% of the datasets while

GRAD method does so around 36% to 43% of the data sets.

(2) In the case when there are multipleC values that attains the global optimum of the

cross validation function, the smallestC value is returned by the proposed method.

This is not so for GRAD and GRID methods.

(3) The proposed method obtains the lowest mean test error rate in 8 of the 14 data

sets, and GRID and GRAD can achieve the same performance onlywith 1 of 3 (for
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GRID) and 5 (for GRAD) settings while these two methods with other settings are

worse off.

A paper [1*], listed on Page 153, based on this work has been published.

Although feature selection and model selection are different topics, both play the role

of the prepossessing procedure for learning algorithm as mentioned before. To the best

of our knowledge, in practice these two techniques are oftenused together in a learning

task. In terms of how to choose feature selection methods, ithighly depends on the

adopted learning algorithm and the requirement of learningtasks.

7.2 Directions of Future Work

Several directions are available for future research basedon the work in this thesis.

Feature Selection for Semi-Supervised and Unsupervised Problems

In many applications, labeling input samples is often difficult or time consuming due

to the prohibitive effort of experienced human annotators [91]. An alternative is to

look into semi-supervised and unsupervised learning paradigms. In these two learning

paradigms, a few labeled samples (only for semi-supervisedproblem) and large amount

of unlabeled samples are available. Obviously , traditional supervised feature selection

methods are challenged by the situation that the label information is unavailable or rather

insufficient. To the best of our knowledge, semi-supervisedand unsupervised feature

selection methods are still very limited and would benefit from further research in these
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direction.

Selecting the Global Optimal Regularization Parameter forOther Variants of SVM

As addressed in Rosset et al. [69], the solution path algorithm [34, 58] can be extended

to other classification algorithms, such as logistic regression, 1-norm SVM [90] and

least square SVM [76]. Obviously, the proposed model selection approach in Chapter

6 can be easily applied to all these classification algorithms. However, it is not easy

to directly apply the proposed method of Chapter 6 to SVR algorithm, although the

solution path of SVR on the regularization parameterC and the derivation parameter

ε have been proposed in [85, 86]. In regression problems, the validation functions on

parametersC andε are quite different from those in classification problems and careful

investigation are needed to extend the method of Chapter 6 toSVR.

Choosing the Global Optimal Kernel for SVM

Kernel parameter is another important hyperparameter in SVM. This has attracted much

attention recently, such as non-parametric kernel learning [92, 50, 36, 37], multiple

kernel learning [82, 66, 2, 75], the solution path of SVM on kernel parameter [85, 3, 68]

and gradient based methods [45, 12]. However, the global optimal kernel for SVM

cannot be assured. Efforts in this direction would be helpful.
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Appendices

A. Proof of the Theorem 3.2.1

Proof. Sincex( j) is derived fromx after the values of thejth feature having been uni-

formly randomly permuted by the RP process, the distribution of x j is unchanged, or

p(x j
( j)) = p(x j).

Hence, we have

p(x( j)) = p(x j
( j),x− j) = p(x j

( j))p(x− j) = p(x j)p(x− j),

Using similar argument, we have

p(x( j),ωk) = p(x j
( j))p(x− j ,ωk) = p(x j)p(x− j ,ωk).

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



148

Hence,

p(ωk|x( j)) =
p(x( j),ωk)

p(x( j))
=

p(x j)p(x− j ,ωk)

p(x j)p(x− j)
= p(ωk|x− j).

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



149

B. KL Divergence of Two Laplace Distributions

This appendix shows the explicit expression ofDKL(p1(x); p2(x)) whenp1(x) andp2(x)

are Laplace distributions. For convenience, lety := µ1−x andθ := |µ1−µ2|. Then,

p1(x) =
1

2σ1
exp(−|µ1−x|

σ1
) ⇔ p1(y) =

1
2σ1

exp(−|y|
σ1

),

p2(x) =
1

2σ2
exp(−|µ2−x|

σ2
) ⇔ p2(y) =

1
2σ2

exp(−|θ ±y|
σ2

).

Using them,

DKL(p1(y); p2(y))

=
∫ ∞

−∞

1
2σ1

exp(−|y|
σ1

) ln
1

2σ1
exp(− |y|

σ1
)

1
2σ2

exp(− |θ±y|
σ2

)
dy

=

∫ ∞

−∞

1
2σ1

exp(−|y|
σ1

)[ln
σ2

σ1
− |y|

σ1
+

|θ ±y|
σ2

]dy

=
ln σ2

σ1

2

∫ ∞

−∞
exp(−|y|

σ1
)d

y
σ1

− 1
2

∫ ∞

−∞

|y|
σ1

exp(−|y|
σ1

)d
y

σ1
+

σ1

2σ2

∫ ∞

−∞

|θ ±y|
σ1

exp(−|y|
σ1

)d
y

σ1
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Case 1:Suppose|θ ±y| = |θ +y|. ExpressionDKL(p1(y); p2(y)) becomes

=
ln σ2

σ1

2

∫ ∞

−∞
exp(−|y|

σ1
)d

y
σ1

− 1
2

∫ ∞

−∞

|y|
σ1

exp(−|y|
σ1

)d
y

σ1
+

σ1

2σ2

∫ ∞

−∞

|θ +y|
σ1

exp(−|y|
σ1

)d
y

σ1

=
ln σ2

σ1

2

∫ 0

−∞
exp(

y
σ1

)d
y

σ1
+

ln σ2
σ1

2

∫ ∞

0
exp(− y

σ1
)d

y
σ1

− 1
2

∫ 0

−∞

−y
σ1

exp(
y

σ1
)d

y
σ1

− 1
2

∫ ∞

0

y
σ1

exp(− y
σ1

)d
y

σ1
+

σ1

2σ2

∫ −θ

−∞

−θ −y
σ1

exp(
y

σ1
)d

y
σ1

+
σ1

2σ2

∫ 0

−θ

θ +y
σ1

exp(
y

σ1
)d

y
σ1

+
σ1

2σ2

∫ ∞

0

θ +y
σ1

exp(− y
σ1

)d
y

σ1

=
ln σ2

σ1

2
+

ln σ2
σ1

2
− 1

2
− 1

2
+

σ1

2σ2
exp(

−θ
σ1

)+
σ1

2σ2
(

θ
σ1

−1+exp(
−θ
σ1

))+
σ1

2σ2
(

θ
σ1

+1)

= ln
σ2

σ1
−1+

σ1

σ2
exp(− θ

σ1
)+

θ
σ2

Case 2:Alternatively, if |θ ±y| = |θ −y|, expressionDKL(p1(y); p2(y)) becomes

=
ln σ2

σ1

2

∫ ∞

−∞
exp(−|y|

σ1
)d

y
σ1

− 1
2
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)
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C. Gradient-based Model Selection

Gradient-based hyperparameters tuning method for SVM proposed by Keerthi et al. [45]

requires a continuously differentiable function with respect toλ . Using the notations of

this paper, the approximation proposed in [45] forErr(λ ) function of (6.19) is

Ẽrr(λ ) = 1− 1
|IV | ∑

j∈IV

sj = 1− 1
|IV | ∑

j∈IV

1
1+exp(−ρ(λ )y jh j(λ ))

with ρ(λ ) := 10√
1

|IV | ∑i∈IV
(hi(λ )−h̄(λ ))2

and h̄(λ ) = 1
|IV | ∑i∈IV

hi(λ ). The expression of

its gradient is

dẼrr(λ )

dλ
= ∑

j∈IV

∂ Ẽrr
∂sj

∂sj

∂λ
= ∑

j∈IV

∂ Ẽrr
∂sj

[
∂sj

∂ρ
( ∑
i∈IV

∂ρ
∂hi

∂hi

∂λ
)+

∂sj

∂h j

∂h j

∂λ

]

with

∂ Ẽrr
∂sj

= − 1
|IV |

∂sj

∂ρ
= sj(1−sj)y jh j

∂sj

∂h j
= sj(1−sj)ρ(λ )y j ,

∂ρ
∂hi

= −10(hi(λ )− h̄(λ ))

|IV|ρ3(λ )

and

∂h j

∂λ
=

hℓ+1
j −hℓ

j

λ ℓ+1−λ ℓ
.
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Note that these expressions are based on (6.21) and the development of this paper. In the

case where the regularization solution path is not available, a different set of expressions

is needed. In particular,∂h j

∂λ requires the inverse of an appropriate matrix obtained using

data points inE (λ ) and constraint∑i αiyi = 0, see [45] for details.
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