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Summary 

The main purpose of my work is to precisely and effectively explore biological 

phenomenon in vivo by using optical method. To achieve this aim, my major 

work focuses on two aspects: one is to solve the fundamental problems of lack of 

precise optical scattering models for biological tissue and cells, and the other is to 

establish a high performance optical microscopy. For the first aspect, we 

developed a random nonspherical model and a fractal model for the biological 

tissue and cells. These two models are introduced based on different fundamentals 

and have different applications. The power spectrum of the contrast phase images 

is investigated. The phase function, the anisotropy factor of scattering, and the 

reduced scattering coefficient are derived. The effect of different size distributions 

is also discussed. The theoretical results show good agreement with experimental 

data. The application of this model in phase contrast microscopy is in process. For 

the second aspect, we discuss the confocal microscopy with angular gating 

techniques (divided apertures) and investigate the performance of focal 

modulation microscopy (FMM), which modifies a confocal microscopy by a 

combination of angular gating technique with modulation and demodulation 

techniques. We analytically derived the three-dimensional coherent transfer 

function (CTF) for reflection-mode confocal scanning microscopy with angular 

techniques under the paraxial approximation and also analyzed the three-

dimensional incoherent transfer function (OTF) for fluorescence confocal 

scanning microscopy with angular gating techniques. The effects on different 

aperture shapes such as off-axis apertures, elliptical apertures, and Schwartz 

apertures are investigated. FMM was introduced to increase imaging depth into 

tissue and rejection of background from a thick scattering object. A theory for 

image formation in one-photon FMM is presented, and the effects of detecting the 

in-phase modulated fluorescence signal are discussed. Two different non-

overlapping apertures of D-shaped and quadrant apertures are studies. Two-

photon FMM was proposed by us at the first time. The enhanced depth 

penetration permitted by two-photon excitation with the near-infrared photons is 

particularly attractive for deep-tissue imaging. The investigation of the imaging 

depth in an extension of single-photon FMM to two-photon FMM (2PFMM) 



VI 
 

allows the penetration depth to be three-fold of that in convention two-photon 

microscopy (2PM). This result suggests that 2PFMM may hold great promise for 

non-invasive detection of cancer and pre-cancer, treatment planning, and may also 

server as a research tool for small animal whole body imaging. The effects of 

different apodization conditions and polarization distributions on imaging in 4Pi 

microscopy are also discussed. With radially polarized illumination, the 

transverse resolution in the 4Pi mode can be increased by about 18%, but at the 

expense of axial resolution.  
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Chapter 1 Introduction 

 

1.1 Background 

 

Biomedical optics is a rapidly emerging field that relies on advanced 

technologies. Among these technologies, optical imaging is unique in its 

ability to span the realms of biology from microscopic to macroscopic, 

providing both structural and functional information and insights, with uses 

ranging from fundamental to clinical applications. In recent years, a variety of 

concepts have been introduced to improve the spatial resolution of optical 

imaging, including confocal microscopy (CM) [1], multi-photon microscopy 

(MPM) [2], 4Pi microscopy [3-4], and, most recently, fluorescence 

photoactivation localization microscopy (fPALM) [5], stochastic optical 

reconstruction microscopy (STORM) [6], and divided aperture microscopy. 

With some of these advanced schemes, image acquisition with 

subcellular-resolution can be obtained in biological tissue and cells. 

However, modern biological research has been extending to the molecular 

scale. Thus it is significantly important to develop a high performance optical 

microscopy. But to build such an optical microscopy, we still have to face two 

challenges. The first one is that there is lack of a precise light scattering model 

for biological tissue and cells. A scattering model is recognized as the key 

factor to fundamentally improve the spatial resolution of optical microscopy. 
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Now, although it is recognized that the optical scattering properties of tissue 

and cells are related to its microstructure and refractive index, the nature of the 

relationship is still poorly understood. Previous investigations have focused on 

various aspects of this relationship, including the contribution of mitochondria 

to the scattering properties of the live cell [7], the spatial variations in the 

refractive index of cells and tissue sections [8], and the diffraction properties 

of single cells [9]. Still lacking, however, is a quantitative model that related 

the microscopic properties of cells and other tissue elements to the scattering 

coefficients of bulk tissue. Therefore, in order to fundamentally improve the 

spatial resolution of optical microscopy, we introduced a scattering model 

based on random nonspherical particles to study tissue optical properties.  

The second challenge is that for optical microscopy there is a tradeoff 

between the imaging penetration depth and the spatial resolution. Thus it is 

difficult to build a high performance optical microscope which can obtain high 

spatial resolution and deep imaging penetration depth simultaneously. For 

instance, CM is a well established, powerful technique for biological research, 

mainly due to its optical sectioning properties by the use of a pinhole. In 

combination with fluorescence microscopy, confocal microscopy enables 

unprecedented studies of cells and tissue both in vitro and in vivo. However, 

when the focal point moves deep into the tissue, its point spread function 

broadens dramatically because of the effect of multi-scattering, which 

significantly degrades the spatial resolution, thus reducing the imaging 
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penetration depth [2]. MPM is an alternative method to CM, and utilizes an 

ultrashort laser to further localize the illumination spot. By employing 

nonlinear processes, such as two photon excited fluorescence or 

second-harmonic generation, MPM can obtain a high resolution image when 

the imaging depth is less than 1mm [10]. However, compared with CM the 

spatial resolution of MPM is not improved. Moreover, MPM is an expensive 

technique, and its applications are limited by its complex probes. To build a 

high performance optical microscope is significantly important and urgent for 

biological research. Therefore  focal modulation microscopy was developed 

in our laboratory, based on angular gating technique, a novel technique that 

targets an imaging depth greater than 0.5 mm combined with diffraction 

limited spatial resolution and molecular specificity.  

   The subsequent sections provide an overview of high resolution 

microscopy and different models in tissue optics. 

 

1.2 Motivation 

Optical imaging is a powerful tool for studying biology. Compared to 

other imaging methods, optical imaging has the advantage of providing 

molecular information through, for example, Raman scattering or 

fluorescence. 

There are two fundamental challenges in optical imaging. One is 

diffraction, which limits the spatial resolution of an optical imaging system. 
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Over the past two decades, various methods have been developed to break the 

diffraction limit and provide three-dimensional super-resolution images. The 

other challenge is scattering. Except in creatures such as jellyfish, most 

biological tissues are not transparent. This is mainly because of optical 

scattering in tissues. Despite advances in imaging technologies, tissue 

scattering remains a significant challenge. 

Most optical imaging systems rely on an objective lens to form an optical 

focus or to project the image onto a camera. For either method to work, the 

sample being imaged must be highly transparent and the optical path length 

inhomogeneity within the sample must be much less than the optical 

wavelength (a few hundred nanometers). For tissues that are more than several 

hundred microns thick, scattering is a significant problem. This thesis aims to 

develop a new tool for millimeter-scale deep-tissue imaging. 

The advance of high-resolution and high-sensitivity optical molecular 

imaging has revolutionized the way biological events are viewed and studied. 

Because many biological events happen below the surface, it is important to 

develop a robust, turnkey tool that biologists can use to see deeper inside 

tissues. My research aims to enable optical focusing inside tissues and to 

provide a platform to implement fluorescence and nonlinear microscopy with 

high sensitivity. To achieve this goal, we are focused on the following two 

steps. The first one is to establish a better light scattering model to describe 

scattering process much more precisely. This step aims to fundamentally 
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improve imaging performance of microscopy, such as spatial resolution and 

confidence. The other one is to develop a microscopy with better resolution, 

higher sensitivity and deeper penetration depth. This helps to observe 

biological events below the surface. 

 

1.2.1 Light scattering modeling 

The optical properties of tissue and cells are of key significance in optical 

biomedical technology, such as in optical imaging and spectroscopy. 

Currently, for simplicity of computation, most preliminary studies are based 

on two models: discrete models and fractal models. Both of them have 

assumed that the scatterers in biological tissue and cells are homogeneous, 

isotropic, and smooth [11-12]. However, microstructure in biological tissue 

and cells can consist of different types of particles having arbitrary shapes, 

size distributions [13], and orientations, as well as an overall mass density that 

varies spatially within them. Besides, the optical properties of real tissue differ 

significantly from the theoretical homogeneously distributed smooth spherical 

particles. 

Biological tissue is composed of tightly packed groups of cells entrapped 

in a network of fibers through which water percolates. Viewed on a 

microscopic scale, the constituents of the tissue have no clear boundaries [11]. 

They appear to merge into a continuous structure distinguished optically only 

by spatial variations in the refractive index. Schmitt and Kumar [14] provided 
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a statistical approach to model the complicated structure of soft tissue as a 

collection of particles. Mourant et al. [15] demonstrated that there was a 

distribution of scatterer sizes in biological tissue. However, both of their 

approaches are based on Mie theory which is under three assumptions that the 

medium is homogeneous and isotropic, and the scattering particles are spheres. 

Since candidates for scattering centers in biological tissue, such as cell itself, 

the nucleus, other organelles, and structures within organelles, have arbitrary 

shapes, size distributions, and orientations, the three assumptions are far from 

the real case. To precisely calculate the scattering properties, some researchers 

have developed the T-matrix method [16-18]. Based on Huygens principle, the 

T-matrix method is one of the most powerful and widely used tools for 

rigorously computing electromagnetic scattering by single and compounded 

particles, and is the only method that has been used in systematic surveys of 

nonspherical scattering based on calculations for thousands of particles in 

random orientation. However, according to our knowledge, the T-matrix 

method is mainly used to analyze multiple scattering by randomly distributed 

dust-like aerosols in aerospace, and it has not been applied in biological 

research.  

On a microscopic scale, the constituents of the tissue do not present clear 

boundaries and merge into a quasi-continuum structure. Therefore, discrete 

particles may be less appropriate than the tissue modeling as a continuous 

random medium due to weak random fluctuations of the dielectric 
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permittivity. Some attempts have been made to incorporate the 

quasi-continuum effect into tissue modeling. Moscoso et al. [12] suggested 

that the refractive index variations exhibit fractal behavior, and showed that by 

assuming an exponential correlation the scattering function can be determined. 

More recently, Xu and Alfano [19] modified the correlation function of the 

random fluctuations of the dielectric permittivity with an average of 

exponential functions weighted by power law distribution, and showed that the 

resulting scattering model gives good agreement with experimental results for 

liver and other tissues. This implies that when the refractive index variation in 

biological tissue is weak, tissue can be modeled as a continuous random 

medium where light scattering is not due to the discontinuities in refractive 

index but rather to weak random fluctuations of the dielectric permittivity.  

Sheppard [20] extended the fractal theory and model tissue with weak random 

dielectric permittivity fluctuations described by an isotropic stationary random 

process with fractal correlation using the K-distribution. This leads to simple 

expressions for the scattering function, anisotropy function, phase function, 

reduced scattering coefficient, and scattering power, indicating a much easier 

way to correlate the tissue optics properties.  

From the above review, it can be seen that the fractal model attempts to 

consider a range of scale sizes, instead of a characteristic particle size. 

Therefore, it is powerful when applied to a medium with small organelles. 

Unfortunately, all the above studies on the fractal model for tissue optics are 
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based on the assumption that biological tissue is isotropic. However, 

biological tissue and cells always show an anisotropic behavior, which vary in 

different directions. Chemingui [21] proposed stochastic descriptions of 

anisotropic fractal media, which present the von Karman functions as a 

generalization to media with exponential correlation functions. However, this 

study is far from complete, and lacks experiments to examine the correctness. 

Besides, the target application of the study is on seafloor morphology, which 

might be greatly different from biological science. Therefore, it is of practical 

significance to develop a fractal model that can be applied in anisotropic 

medium in biological tissue and cells. 

In sum, the discrete model and fractal model are introduced based on 

different theories. From the view of application in the microscope, the discrete 

particle model is useful for investigating imaging at a resolution scale much 

larger than the size of the scatterers, such as in diffuse optical tomography. 

When the resolution scale is similar to that of the structural detail, such as in 

confocal or multiphoton microscopy, a fractal model based on a continuous 

refractive index variation should be an improvement [20].  

 

1.2.2 Angular gating techniques 

Confocal microscopy (CM) has wide applications in biological research 

and medical diagnosis, as a consequence of its ability to exclude out-of-focus 

information from the image data, thus improving the fidelity of focal 
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sectioning and increasing the contrast of fine image details. The optical 

sectioning ability of confocal microscopy results from the pinhole before the 

detector, used to reject out-of-focus light scattered by the tissue. However, 

when the focal point moves deep into tissue, so that multiple scattering 

dominates, the selective mechanism of the pinhole is not sufficiently effective. 

One of the methods to enhance the background rejection utilizes an angular 

gating mechanism, in which the illumination and detection beams overlap only 

in the focal region, thus resulting in angular gating and improving the optical 

sectioning and rejection of scattered light.  

Angular gating had its beginning with the ultramicroscope, in which the 

sample is illuminated perpendicular to the imaging optical axis [22]. The 

specular microscope, or divided aperture technique, combines different beam 

paths for illumination and detection with confocal imaging, so that light 

scattered other than in the focal region is rejected [23-26]. The 

ultramicroscope was also the fore-runner of confocal theta microscopy 

[27-28], and orthogonal-plane fluorescence optical sectioning (OPFOS) [29], 

also known as selected plane illumination microscopy (SPIM) [30], both of 

which are usually implemented in a fluorescence mode. All these techniques 

have in common that the illuminating and detection pupils do not overlap, so 

that the illumination and detection beams overlap only in the focal region.  

Koester also compared theoretically the optical sectioning performance of 

his system with that of a confocal system with a circular detector aperture, 
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based on geometrical optics [25-26]. Other applications based on the D-shaped 

pupils were given by Török et al [31-32]. They modified a commercial 

confocal microscope with a D-shaped aperture stop to realize dark-field 

imaging. Although their system also employed the D-shaped aperture, it was 

fundamentally different from Koester’s bright-field confocal microscope. They 

derived the one-dimensional transfer function in the direction perpendicular to 

the edge of the beam-stop, and later on they extended their study to the 

dark-field and differential phase contrast imaging with two D-shaped pupils. 

More recently, Dwyer et al. have used a similar system to investigate in vivo 

human skin [33-34]. They called their system the confocal reflectance theta 

line-scanning microscope, to stress that their system combines  confocal 

line-scanning with off-axis geometry, but actually their system is very similar to 

that of Koester [25]. In the analysis of Dwyer et al., they derived the lateral 

resolution and sectioning strength based on two equivalent offset 

non-overlapping circular pupils, as an approximation to the two D-shaped 

pupils. Therefore, it is of practical significance to investigate the optical 

properties of confocal microscope with two D-shaped pupils based on 

diffraction optics. 

Confocal microscopy is a well established, powerful technique for 

biological research mainly due to its optical sectioning properties by the use of 

a pinhole. In combination with fluorescence microscopy, confocal microscopy 

enables unprecedented studies of cells and tissue both in vitro and in vivo 
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[35-36]. However, when the focal point moves deep into the tissue, its point 

spread function broadens dramatically because of the effect of multi-scattering, 

which significantly degrades the spatial resolution [2]. In order to retain high 

resolution in deep regions of the tissue, numerous techniques have emerged 

recently. Multi-photon microscopy (MPM) utilizes an ultra-short-pulsed laser 

to further concentrate the illumination spot. By employing such nonlinear 

processes as two-photon excited fluorescence or second-harmonic generation, 

MPM can obtain high resolution image when the imaging depth is less than 

about 1 mm [2, 10]. However, MPM is an expensive technique, and its 

applications are limited by its complex probes.  

Another promising technique, saturated excitation microscopy, utilizes the 

saturation phenomenon to achieve spatial resolution beyond the diffraction 

limit, since this technique imposes strong nonlinearity in the relation between 

excitation rate and fluorescence emission [37-38]. However, this technique 

require strong excitation intensity, which may exhibit not only photobleaching 

but also other undesirable effects in observation of living biological samples, 

such as defunctionalization of proteins by a large temperature rise. Therefore, 

it is of high significance to develop a comprehensive microscope technique, 

which maintains the optical sectioning ability and obtains a deep penetration 

depth as well. 
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1.3  Significance of the research  

    The main aim of this study was to investigate the underlying optical 

properties of biological tissue and cells, as well as to develop a high 

performance microscopy for biological research. The specific objectives of 

this research can be divided to: 

 Introduction of a nonspherical scattering model to describe the optical 

properties in biological tissue and cells based on the T-matrix method, 

which can be used to precisely calculate the scattering field. 

 Introduction of a fractal model to biological research based on 

the structure function, which is claimed to be able to investigate 

anisotropic surfaces [39].  

 Investigatation of the imaging performance of confocal 

microscopy with the angular gating technique. 

 Establishment of a high performance microscopy named focal 

modulation microscopy by the combination of angular gating technique, 

and modulation and demodulation techniques, to simultaneously enhance 

the imaging penetration depth and improve the spatial resolution. 

The results of this present study have practical significance on biological 

research and medical diagnosis since: 

 The nonspherical scattering model provides a more precise model to 

describe the light scattering properties in biological tissue and cells, 

which would fundamentally improve the imaging performance of 
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optical microscopy.(how can a model improve imaging 

performance?) 

 The fractal model based on structure function is able to consider the 

anisotropic property in biological science and describe the directional 

sensitivity for an anisotropic medium, which can be an alternative 

model to further improve the imaging performance of optical 

microscopy. 

 Confocal microscopy with the angular gating technique can be 

recognized as a method to effectively reject the background signal, 

and thus can further improve the imaging penetration depth.   

 The introduction of focal modulation microscopy, by the combination 

of angular gating technique and modulation and demodulation 

techniques, provides a new solution, which behaves excellently in 

both imaging penetration depth and spatial resolution. 

The validity of nonspherical scattering models has been examined in both 

biological tissue and cells. However, for wider applications, more experiments 

on other tissue and cells should be done. The penetration depth and spatial 

resolution of focal modulation microscopy have been analyzed in this study. 

However, other imaging performance and other configurations are still under 

investigation and hence are beyond the scope of this thesis. 
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1. 4 Structure of the thesis   

This thesis studies light scattering properties in biological tissue and cells, 

and angular gating techniques in optical microscopy. Chapter 2 gives literature 

reviews for light scattering models and optical microscopy. Chapter 3 

investigates light scattering by random non-spherical particles with rough 

surfaces, and the fractal mechanism applied in biological tissue. The phase 

function, which is an important quantity to describe the angular distribution of 

the scattered intensity, is estimated. In Chapter 4, the three-dimensional 

coherent transfer function in coherent confocal microscopy and the 

three-dimensional optical transfer function in incoherent confocal microscopy 

are derived. Imaging formation in confocal microscopy using various divided 

apertures such as off-axis apertures, elliptical apertures and Schwartz apertures 

is presented and compared. Chapter 5 introduces one-photon focal modulation 

microscopy (FMM). The principle and system setup in FMM are provided. 

The diffraction analysis for D-shaped apertures, and quadrant apertures is 

presented. Chapter 6 extends the one-photon FMM system to two-photon 

FMM, and investigates the signal to background ratio and penetration depth. 

Chapter 7 analyzes the polarization effects in 4Pi microscopy, which is a 

preparation for introducing polarization effects in focal modulation 

microscopy. Finally conclusions and future directions are summarized in 

Chapter 8.  
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Chapter 2 Literature Review 

 

The purpose of this chapter serves as an introduction to the relevant topics 

that are about to be presented and extended in the following chapters. The aim 

is to give the reader a quick overview of the scope of the problems. This 

chapter firstly reviews the conventional scattering models when light 

propagates through biological tissue and cells. The second review is about 

optical microscopy including confocal microscopy, multi-photon microscopy 

and 4pi microscopy, respectively. More details and past work that are attached 

to each specific topic are discussed at the beginning of each individual 

chapter. 

 

2. 1 Conventional scattering models 

 

2.1.1 Discrete model 

 The scattering characteristics of the biological tissue are intimately related 

to the physical characteristics of particles such as size, shape, and refractive 

index. For homogeneous or layered spheres, the scattering properties of can be 

easily computed via the conventional Lorenz-Mie theory [1-2]. However, the 

assumption of sphericity is rarely valid in biological tissue. Furthermore, there 

is the overwhelming evidence that scattering properties of nonspherical 

particles can differ quantitatively and even qualitatively from those of volume- 
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or surface-equivalent spheres. To compute the scattered properties of 

nonspherical particles, all exact theories and numerical techniques are based 

on solving Maxwell’s equations either analytically or numerically. The search 

for an exact analytical solution can be reduced to solving the vector Helmholtz 

equation when this equation is separable. Unfortunately, the separation of 

variables technique results in an analytical solution only for the few simplest 

cases. The solution for an isotropic homogeneous sphere was derived by 

Lorenz [3], Love [4], Mie [5], and Debye [6]. This solution has been extended 

to concentric core-mantle spheres [7], concentric multilayered spheres [8-10], 

radially inhomogeneous spheres [11], and optically active spheres [12]. In 

1955, Wait derived a solution for electromagnetic scattering by a 

homogeneous, isotropic, infinite circular cylinder [13]. This solution was 

further extended to optically active cylinders [14] and multilayered elliptical 

cylinders [15]. Later on, the general solution for homogeneous, isotropic 

spheroids was given by Oguchi [16] and Asano and Yamamoto [17]. Indeed, 

the analytical solutions for the simplest finite nonspherical particles and 

spheroids are already very complex. Therefore, numerical solutions are always 

employed for complex shaped particles. Most of the numerical solutions fall 

into two categories: differential equation methods and integral equation 

methods. The differential equation methods compute the scattered field by 

solving the vector wave equation in the frequency or in the time domain. 

However, the integral equation methods are based on the volume or surface 
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integral counterparts of Maxwell’s equations. The most commonly used 

numerical methods are the separation of variables method, the finite element 

method, the finite difference time domain method (FDTDM), the point 

matching method, the discrete dipole approximation, the Fredholm integral 

equation method and the T-matrix method. The separation of variables method 

(SVM) for single homogenous, isotropic spheroids was pioneered by Oguchi 

[16] and Asano and Yamamoto [17], and then significantly improved by 

Voshchinnikov and Farafonov [18]. This method solves the electromagnetic 

scattering problem for a prolate or an oblate spheroid in the respective 

spheroidal coordinate system and is based on expanding the incident, internal, 

and scattered fields in vector spheroidal wave functions. However, for 

spheroids significantly larger than a wavelength or for large refractive indices, 

the system of linear equations becomes large and ill conditioned. Furthermore, 

the computation of vector spheroidal wave functions is a difficult 

mathematical and numerical problem, especially for absorbing particles. These 

factors have limited the applicability of SVM to semi-major-axis size 

parameters less than about 40. The obvious limitation of the method is that it 

is applicable only to spheroidal particles. The main advantage of SVM is that 

it can produce very accurate results. Furthermore, the improved version of 

SVM [18] is applicable to spheroids with large aspect ratios. The finite 

element method (FEM) is a differential equation method that computes the 

scattered time-harmonic electric field by solving numerically the vector 
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Helmholtz equation subject to boundary conditions at the particle surface 

[19-20]. The advantages of FEM includes that it permits the modeling of 

arbitrarily shaped and inhomogeneous particles, is simple in concept and 

execution, and avoids the singular-kernel problem. However, FEM 

computations are spread over the entire computational domain rather than 

confined to the scatterer itself. This tends to make FEM computations rather 

time consuming and limited to size parameters less than about 10. The 

FDTDM calculates electromagnetic scattering in the time domain by directly 

solving Maxwell’s time-dependent curl equations [21-24]. As in FEM, the 

scattering particle in embedded in a finite computational domain, and 

absorbing boundary conditions are employed to model scattering in the open 

space [25-27]. The FDTDM has the advantages of conceptual simplicity and 

ease of implementation. The limitation lies in the accuracy, computational 

complexity, size parameter range, and the need to repeat all computations with 

changing direction of illumination. In the point matching method (PMM), the 

fields are matched at as many points on the surface as there exist unknown 

expansion coefficients [16]. However, the validity of this method is 

questionable and depends on the applicability of the Rayleigh hypothesis, that 

is, the assumption that the scattered field can be accurately expanded in the 

outgoing spherical waves in the region enclosed between the particle surface 

and the smallest circumscribing sphere [28-29]. This problem is ameliorated in 

the generalized PMM (GPMM) by forming an overdetermined system of 
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equations for the unknown expansion coefficients [30-32]. The discrete dipole 

approximation (DDA) is based on partitioning a particle into dipoles [33]. The 

electromagnetic response of the dipoles to the local electric field is assumed to 

be known. The field exciting a dipole is a superposition of the external field 

and the fields scattered by all other dipoles. The most important advantage of 

DDA is its applicability to arbitrarily shaped, inhomogeneous, and anisotropic 

particles. The limitations lie in numerical accuracy, especially for scattering 

matrix elements, low convergence of results with increasing of number of 

dipoles, and the need to repeat the entire calculation for each new direction of 

incidence. The scattered field obtained with the Fredholm integral equation 

method (FIEM) satisfies a variational principle, and is claimed to be 

numerically stable and convergent to the exact result even for particles with 

large aspect ratios [34]. The major limitation of FIEM is that the matrix 

elements must be evaluated analytically, thereby leading to different programs 

for each scatterer, and restricting computations to only a few model shapes 

such as spheroids, triaxial ellipsoids, and finite circular cylinders [34-36]. The 

T-matrix method (TMM) is based on expanding the incident field in vector 

spherical wave functions regular at the origin and expanding the scattered field 

outside a circumscribing sphere of the scatterer in vector spherical wave 

functions at infinity. TMM was first introduced by Waterman [37] for single 

homogeneous scatterers and was then generalized to multilayered scatterers 

and arbitrary clusters of nonspherical particles [38-39] and to nonspherical 
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chiral scatterers [40]. Mishchenko [41] developed an analytical 

orientation-averaging T-matrix procedure that makes computations for 

randomly oriented, rotationally symmetric particles as fast as those for a 

particle in a fixed orientation. This procedure has been further extended to 

arbitrary clusters of spheres [42]. The main drawback of TMM is the loss of 

efficiency for particles with large aspect ratios or with shapes lacking axial 

symmetry. The advantages of TMM are the highly accuracy, fast 

computational speed, and independency of the incident and scattered fields. 

 

2.1.2 Fractal model 

A fractal is a shape made of parts similar to the whole in some way. 

In 1990, Falconer [43] gave a descriptive definition of a fractal: 

A set F is fractal, which has the properties as follows: (a) F has a fine 

structure, i.e. detail on arbitrarily small scales. (b) F is too irregular to be 

described in traditional geometrical language, both locally and globally. (c) 

Often F has some form of self-similarity, perhaps approximate or statistical. (d) 

Usually, the “fractal dimension” of F is greater than its topological dimension. 

(e) In most cases of interest F is defined in a very simple way, perhaps 

recursively. 

Mandelbrot [44] proposed to use a fractal dimension to characterize the 

logarithmic rate of the increase of perimeters to the decrease of size. The 

fractal dimension fD  can be determined by the relation, 
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3

0( ) ,fDa ah h -=        (2.2) 

where ( )ah  is the volume fraction of the particles, 0h  is a constant. Fractals 

are functions which are continuous but not differentiable. They possess the 

property of self-similarity, that is they appear the same at any scale of 

magnification. There are generally two types of fractal: self-similarity fractals  

and self-affine fractals. Self-similarity fractals can be completely characterized 

by a single parameter, the fractal dimension fD . Self-affine fractals are 

single-valued. When the scale of observation is changed, a scaling factor with 

dimensions of length must be introduced to restore the appearance of 

self-similarity. Therefore, the difference between self-similarity fractals and 

self-affine fractals are: 

 Self-similarity fractals can be completely characterized by the 

fractal dimension fD , while  

 Self-affine fractals must be characterized by both the fractal 

dimension fD  and the scaling factor Λ. 

Fractal dimensions may vary between the theoretical limits of 1 (a straight 

line) and 2 (a space-filing curve), while topothesies may be represented by 

very short lengths. In practice, no real surface can be fractal over an infinite 

range of wavelengths. A real surface will be formed by several different 

processes each with its characteristic features – a multifractal. It typically will 

present a structure function as two or more straight lines of different slope, 

meeting at a more or less sharp discontinuity. In 1986, a combined correlation 
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function, including non-fractal short range order and long range fractal 

correlations was designed to model aggregated gold colloids [45]. In reality, 

objects can be scaled-invariant only over a limited range, and an 

understanding of the bounds of the fractal regime is crucial in the development 

of a complete picture, not only of aggregates, but of fractal objects in general. 

The properties of self-similarity and self-affine fractals were discussed by 

Sinha in 1989 [46]. The Weierstrass-Maddelbrot (W-M) fractal function was 

used by Majumdar to describe roughness characterization, which was assumed 

to be homogenous and isotropic [47]. W-M fractal function satisfies the 

properties of continuity, non-differentiability and self-affinity, and is therefore 

used to characterize and simulate such profiles. The W-M function has a 

fractal dimension fD , between 1 and 2. Fractal aggregates made of identical 

spherical particles were estimated by several three dimensional off-lattice 

cluster-cluster algorithm by Hasmy in 1993 [48]. The structure function, 

characterized by a fractal dimension and the topothesy was used to describe 

and characterize anisotropy of rough surface [49]. The fractal dimension of an 

isotropic surface is well established to be 1 + the fractal dimension of any 

profile through the surface. For a weakly anisotropic surface, the fractal 

dimension of a profile will be independent of the angle of measurement, but 

the topothesy will change [50]. For a strongly anisotropic surface, both fractal 

dimension and topothesy will change; the fractal dimension along the lay will 

be less than that across the lay [51]. Davies and Hall predict that for a strongly 
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anisotropic surface, the fractal dimension will be the same in all angular 

directions except along the lay, where it will decrease [52]. In 2000, Filippov 

et al. described the results of numerical simulations of the mass or energy 

transfer between the gas and the fractal-like aggregates of N spherical particles 

in either the free molecular or continuum regime, as well as the light scattering 

properties of random fractal-like aggregates, based on Rayleigh-Debye-Gans 

(RDG) theory [53]. In 2003, Ortiz et al. introduced a multi-resolution 

hierarchical algorithm, which allows the study of large systems taking fully 

into account the long range of the interactions in multiple scattering 

calculations, to study the scaling properties of the light scattered by colloidal 

aggregates [54]. By using a probabilistic convolution model, Kolvin and 

Oleschko suggested that for an extended fractal medium with strong scattering 

cross-section, multiple scattering can affect the value of the fractal dimension 

estimated from the wave-field’s Fourier power spectrum [55]. In 2005, Xu and 

Alfano [56] used the fractal continuous random media to model visible and 

near-infrared light scattering by biological tissue and cell suspensions, which 

indicated great implications for spectroscopic tissue diagnosis. Later on, 

Sheppard [57] employed the K distribution to extend the applicable scale of 

the correlation function to a sub-fractal regime. 
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2. 2 Optical microscopy 

 

2. 2. 1 Confocal microscopy 

The confocal principle was first described by Minsky [58]. Based on a 

conventional microscopy, a very small pinhole is introduced into the system to 

cut off the light from the background [59-60]. The system scans a 

diffraction-limited spot of light and builds up the image point by point. The 

essential setup can be made by some mechanism for scanning the light beam 

relative to the specimen and appropriate photodetectors to collect the light 

reflected or transmitted from the specimen [61]. Because of the application of 

very small pinholes, out-focus light is dramatically reduced, thus allowing the 

confocal microscope to image the specimen section-by-section along the axis 

[58-63]. This optical sectioning property of confocal microscopy is considered 

as one of the most significant advantages over conventional microscopy, and 

three dimensional images can be built up from these sections each consisting 

of a two dimensional image. With these exciting advantages, confocal 

microscopy is studied widely both theoretically and experimentally. In 1979, 

Brakenhoff et al. [64] had demonstrated the optical sectioning effect 

experimentally with microscope objectives of the highest available numerical 

aperture, of the type used in cell biology, and also verified the prediction that 

the resolution is improved relative to the non-confocal microscope by a factor 

of the square root of 2, i.e. 1.414. After that, a long series of confocal 
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microscopes, stretching from Minsky’s prototype to the scanning optical 

microscope system supplied commercially in Wijnaents van Resandt and 

Stelzer [65], relied on moving the entire specimen and its supporting stage in 

two directions in raster fashion relative to stationary optics. However, these 

microscopes were too slow and vibration sensitive to be convenient for 

biology. Cox then managed to obtain confocal images of cells stained with 

fluorescein, but the image improvements over conventional epifluorescence 

were unconvincing [66]. The first biologically convincing results with 

fluorescence confocal scanning microscopy were obtained in 1985 [67]. The 

confocal microscopy not only shows its super-resolution in the axial direction 

but also achieves better resolution in the transverse direction compared with a 

conventional microscope. The improvements of resolution can be simply 

explained by a principle given by Lukosz [68], which states that resolution can 

be increased at the expense of field of view. In 1971, Sheppard and 

Choudhury studied the point spread function and two dimensional in-focus 

transfer function of coherent confocal microscopy [69]. For weak scattering 

objects, the three dimensional transfer functions, which is the Fourier 

transform of the point spread function, can be used to completely describe the 

image formation in confocal microscope. The depth of field, which is one of 

the most significant features, was investigated in 1977 [62]. The two 

dimensional transfer functions were extended to the defocused case in 1978 

[70] and to the three dimensional transfer function in 1991 [71]. The size of 
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pinhole is crucial not only in transverse and axial resolutions, but also in signal 

strength and signal to background ratio. The study on the effects of the pinhole 

size was given by Wilson et al. [72] and Cox and Sheppard [73]. The scanning 

slit confocal microscope with D-shaped apertures was developed for 

ophthalmological applications by Goldman [74], Maurice [75], and Koester 

[76-77]. Török et al. employed D-shaped apertures to achieve dark-field 

imaging [78]. Later, they further investigated using D-shaped apertures to 

achieve both dark-field and differential phase contrast imaging [79]. Dwyer et 

al. successfully applied the confocal scanning microscope with D-shaped 

apertures to imaging nuclear and cellular details in human epidermis in vivo 

[80-81]. The wide applicability of this geometry stems from the fact that the 

illumination and detection beams overlap only in the focal region, resulting in 

angular gating and thus improving rejection of scattered light [82]. Later, 

Barbastathis introduced holographic techniques into confocal microscopy [83].   

 

2. 2. 2 Multi-photon microscopy 

The invention of two-photon fluorescence light microscopy by Denk, 

Webb and co-workers revolutionized three-dimensional (3D) in vivo imaging 

of cells and tissues [84]. Two-photon excitation microscopy (2PM) and other 

nonlinear optical techniques constitute one of the most promising and 

fastest-growing areas in biological and medical imaging at the optical 

resolution level [69, 85-88]. In particular, 2PM belongs to a class of imaging 
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techniques that allow observation of biological specimens in conditions very 

close to their natural environment, increasing the possibility of understanding 

the complex and delicate relationship existing between structure and function 

[89]. Moreover, with few exceptions biological tissues strongly scatter light, 

making high-resolution deep imaging impossible for traditional—including 

confocal—fluorescence microscopy. Nonlinear optical microscopy, in 

particular 2PM, has overcome this limitation, providing large depth 

penetration mainly because even multiply scattered signal photons can be 

assigned to their origin as the result of localized nonlinear signal generation. 

Two-photon microscopy thus allows cellular imaging several hundred microns 

deep in biological samples, including lymphatic organs [90-91], kidney [92], 

heart [93], skin [94] and brain [95-96]. 

All 2PMs requires expensive pulsed laser systems to achieve sufficient 

excitation rates. Two major advantages make the investment worthwhile. First, 

because multiple excitation photons combine their quantum energies in 

nonlinear microscopy, the photons generated (or the transitions excited) have 

higher energies than the excitation light making emission 'bluer' than the 

excitation, which is different from traditional fluorescence. For commonly 

used fluorescent markers, multiphoton absorption occurs in the near-infrared 

wavelength range (700–1,000 nm), whereas emission occurs in the visible 

spectral range. Near-infrared light not only penetrates deeper into scattering 
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tissue but is also generally less phototoxic owing to the lack of significant 

endogenous (one-photon) absorbers in most tissues [97]. 

The second major advantage of two-photon absorption and, in fact, of all 

nonlinear contrast mechanisms, is that the signal depends supralinearly on the 

density of photons, that is, the light intensity. As a consequence, when 

focusing the laser beam through a microscope objective, multiphoton 

absorption is spatially confined to the perifocal region. The absence of 

multiphoton absorption in out-of-focus planes contrasts with confocal 

microscopy, where (single-photon) absorption occurs within the entire 

excitation light cone. The lack of out-of-focus excitation in nonlinear 

microscopy further reduces photodamage and thus increases tissue viability, 

which is crucial for long-term imaging [98]. Localization of excitation also 

provides excitation-based three-dimensional resolution with no need for 

spatially resolved detection through a confocal pinhole. By the same token, 

multiphoton absorption allows highly localized photomanipulations, such as 

photobleaching and photolytic release of caged compounds, within femtoliter 

volumes [98-99], which, however, is beyond the scope of this review. 

Localization of excitation is maintained even in strongly scattering tissue 

because the density of scattered excitation photons generally is too low to 

generate significant signal, making nonlinear microscopy far less sensitive to 

light scattering than traditional microscopy. This is of paramount importance 

for deep imaging, because it means that all fluorescence photons are known to 
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originate from near the focus and thus can provide useful signal. The best 

detection strategy therefore becomes: collect as many photons as possible, 

wherever they seem to come from, but look at their color. Scattering does, 

however, increase the spatioangular range (the phase space) within which 

fluorescence light emerges from the tissue so that special detection optics is 

needed to optimize fluorescence collection from deep foci. 

 

2. 2. 3 4Pi microscopy 

In 1978, Christoph Cremer and Thomas Cremer proposed the creation of a 

perfect hologram, i.e. that carries the whole field information of the emission 

of a point source in all directions, a so-called 4pi hologram [100]. The first 

description of a practicable system of 4Pi microscopy, i.e. the setup with two 

opposing, interfering lenses, was invented by Stefan Hell in 1990 [101]. The 

experimental analysis was followed in 1994 [102]. The improvements in 

resolution are achieved by using two opposing objective lenses which both are 

focused to the same geometrical location. The difference in optical path length 

through each of the two objective lenses is carefully aligned to be minimal. By 

this, molecules residing in the common focal area of both objectives can be 

illuminated coherently from both sides and also the reflected or emitted light 

can be collected coherently, i.e. coherent superposition of emitted light on the 

detector is possible. The solid angle that is used for illumination and detection 

is increased and approaches the ideal case. In this ideal case, the sample is 
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illuminated and detected from all sides simultaneously. In any confocal 

arrangement, the point spread function of the microscope is the product of the 

illumination and detection point spread functions. Consequently, combining 

the 4Pi method with the confocal principle leads to several possible hybrid 

microscopies, which can be given as following: 

 Type A: 4Pi illumination and conventional detection 

 Type B: Conventional illumination and 4Pi detection 

 Type C: 4Pi illumination and 4Pi detection 

The three-dimensional imaging properties of 4Pi microscopy, based on a 

scalar theory, have been described in a few papers [103-104]. The point spread 

functions for the vectorial case with plane polarized light were given by Hell 

and Stelzer [105-107]. 
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Chapter 3 Modeling optical properties in biological 

tissue     

 

3.1 Introduction 

 

The optical properties of tissue and cells are of key significance in optical 

biomedical technology, such as in optical imaging and spectroscopy. 

Currently, for the simplicity of computation, most of the preliminary studies 

were proposed based on the three assumptions that the scatterers in biological 

tissue and cells are homogeneous, isotropic and smooth [1-3]. However, 

microstructure in biological tissue and cells can consist of different types of 

particles having arbitrary shapes, size distributions [4], and orientations, as 

well as an overall mass density that varies spatially within them. Besides, the 

optical properties of real tissue differ much from the theoretical 

homogeneously distributed smooth spherical particles. Therefore, creating an 

appropriate model for light scattering by biological tissue and cells is 

important not only for theoretical interest but also for practical reasons. In this 

chapter, two models are proposed. In section 3.2, we extend a discrete model 

based on rough surface nonspherical particles from biological tissue to cells. 

Section 3.3 introduces a fractal model based on the structure function. 
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3.2 Discrete model with rough surface nonspherical particles 

 

Recently, we introduced a method based on random nonspherical particles 

to study tissue optical properties [5]. In a  previous paper, we proposed to use 

slightly rough surface cylinders to model fresh mouse muscle, since the 

sample is cut in a cross-sectional  direction. Theoretical analyses based on 

the T-matrix method were carried out, showing interesting results summarized 

as follows: (i) In the exact forward scattering region, the nonspherical and 

spherical model display only slight differences. In other words, the phase 

function for biological tissue is insensitive to particle nonsphericity in the 

exact forward scattering region. (ii) In both side and back scattering regions, 

the nonspherical model can describe the phase functions better than the 

spherical model. 

To analyze light scattering in biological tissue with randomly 

non-spherical rough-surface particles, an appropriate approach is needed to 

explicitly describe the shape of the particles. According to our previous work 

[5], the shape of the particles is approximately determined by the shape 

parameter K, the variance  , and the center point of the “display window” 

(denoted as “CP”), while the roughness of the particle is determined by the 

roughness parameter  . Changing the values of K,   and CP, a variety of 

random rough surface particles can be obtained, including rough surface 

spherical, cylindrical, prolate and oblate particles. The scattering properties of 
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biological tissue and cells [6] are modeled using slightly rough particles, with 

size not too large compared with the incident wavelength. Therefore, a small 

value of   is selected to represent slightly rough surfaces.   is the aspect 

ratio of the maximum-to-minimum particle dimensions for a spheroid, or is the 

diameter-to-length ratio (D/L) for a cylinder.   

The basic quantities that fully describe the scattering process are the 

ensemble-averaged extinction Cext and scattering Csca cross-section and the 

elements of the so-called normalized Stokes scattering matrix ( )S   given by 

[7]: 
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            (3.1) 

Here, [0 ,180 ]     is the scattering angle. The well-known block-diagonal 

structure of this matrix is confirmed by the T-matrix results and is mainly 

caused by averaging over the uniform orientation distribution of a 

multi-particle group coupled with sufficient randomness of particle positions. 

The (1,1) element ( )P  , which is called the phase function, is an important 

quantity used to describe the angular distribution of the scattered intensity. 

Traditionally, the phase function has been calculated directly for a large set of 

scattering angles, which causes an unbearable computation time. To accelerate 

the T-matrix technique, the phase function is explicitly represented as a 

Legendre polynomial expansion [8]: 
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max

0
( ) (cos ),

i

i ii
P P  


      (3.2) 

where (cos )iP   are Legendre polynomials, the value of the upper summation 

limit maxi  determines on the desired numerical accuracy of computations, and 

i  is the ensemble-average expansion coefficient which can be calculated 

with T-matrix method [9]: 
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where '( )f r  is the size distribution function, and r is the radius for spherical 

particles or radius of the equal-projected-area sphere for nonspherical particles, 

scaC  is the scattering cross section, the index m=1, …, M numbers the aspect 

ratios, and nr  and nw  (n=1,…, N) are quadrature division points and 

weights, respectively. 

The anisotropy factor, which is the mean cosine of the scattering angle, 

used to measure the scattering retained in the forward direction following a 

scattering event [6], can be expressed as: 

 ( ) / ( ) ,g P d P d           (3.4) 

where cos  . Isotropic scattering can be described by the reduced 

scattering coefficient '
s , which is related to the anisotropic factor by 

' (1 ),s s g    In an average sense, this relationship equates the number of 

anisotropic scattering steps, given by 1/(1 ),g with one isotropic scattering 

event [6].  A more explicit formula is given as follows: 
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 ' (1 ) ( ) .s P d      (3.5) 

For non-spherical particles, the phase function is related to the 

equal-projected-area sphere size parameter r [7]. In order to average the light 

scattering characteristics over particles sizes, a size distribution f(r) must be 

applied. Since currently there is no clear consensus as to the size distribution 

best describing biological tissue, we compare three size distributions of power 

law, normal, and skewed logarithmic distributions with our experiments. The 

power law distribution can be written as [3-4]: 

 3

1 0( ) ,fDf r c r   (3.6) 

where fD  is the fractal dimension and c0 is the normalization constant. The 

normal distribution can be given by [10]: 

 2 2
2 ( ) 1/( 2 ) exp[ ( ) /(2 )],m m mf r r r      (3.7) 

where mr  and m  are the mean and standard variation, respectively. The 

general form of skewed logarithmic distribution can be expressed as [11-13]: 

 2 2
3 ( ) exp[ (ln ln ) /(2 )],n

n n nf r c r r r     (3.8) 

where nc  is a normalizing factor, and the quantities nr  and n  set the 

center and width of the distribution, respectively. For n = -1 and n = 0, the 

distribution function is called the logarithmic normal distribution and 
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zeroth-order logarithmic distribution, respectively. Both distributions are used 

extensively in particle-size analysis.  

Considering practical particle size and the T-matrix computation, the 

minimum and maximum particle size should be limited. Thus we modify the 

distribution functions to avoid the infinity while still remaining smooth: 

 min'

min max

, for
( ) , 1, 2,3,

( ), for
i

i
i

c r r
f r = i

f r r r r


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 (3.9) 

where ( )if r  represents the three size distributions, ic is a constant used to 

normalize the distribution function. rmin and rmax refer to the maximum and 

minimum particle size parameters. Accordingly, the effective radius and 

effective variance of a size distribution are defined as: 
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and the effective variance given by 
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where S is the average cross-sectional area 

 
max

min

2 ' ( ) .
r

ir
S r f r dr    (3.12) 

The effective size parameter is ,eff effS k r  where 02 /k n  is the wave 

number in the surrounding medium, and n0 is the background refractive index. 
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Slightly rough surface random nonspherical particles are applied to 

simulate scattering centers in biological tissue and cells. Since the candidates 

for scattering centers in biological tissue and cells are the cell itself, the 

nucleus, and other organelles, and their microstructures range from 

peroxisomes and lysosomes 0.2-0.5 μm or smaller, to mitochondria 

approximately 0.3-0.7 μm in diameter and 1-4 μm in length, to nuclei 3-10 μm 

in diameter [14-15]. We assume the size of the random particles is not too 

large compared with the incident wavelength and the particle orientation is 

uniform distributed. Figure 3.1 illustrates phase functions computed by 

randomly oriented slight rough surface cylinders [5] with three size 

distributions at wavelength of 1100 nm. Parameters are selected to retain the 

same values of effr and effv , which are 3.36 μm and 0.12, respectively.  
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Figure 3.1 Phase functions with different size distribution functions with 

same 3.36effr m and 0.12effv  , and same shape parameters (K = 2, τ = 

0.7, CP = -0.5), at incident wavelength 1100 nm. 
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It is interesting to notice that different size distributions have similar 

phase functions providing the values of effr and effv  are the same. The result 

is quite practical and important, since only two key parameters can provide a 

unified classification of all distributions, and the same result can be obtained 

for many different analytical parameterizations of natural size distributions 

[16]. Currently the size distribution best describing biological tissue is not 

clear, because of the complicated structure of tissue, composed of tightly 

packed groups of cells entrapped in a network of fibers through which water 

percolates. The two key parameters effr and effv  provide an effective 

approach to describe the scattering properties of the biological tissue. 
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Figure 3.2 Phase functions for randomly oriented slight rough prolate (solid 
curves) and oblate (dash curves) spheroids with different aspect ratios of 1.2, 
2.4, and equal-projected-area spheres with different effective size parameter 

Seff .(a) Seff = 15; (b) Seff = 8; 

 

Here slightly rough surface spheroids, including both oblate and prolate 

spheroids, are used to model light scattering properties of rat embryo 

fibroblast cells (M1) and mitochondria in vitro. Experimental data were 
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reported by Mourant et al. [17]. According to Schmitt [12], the refractive 

index variation for the scatterers in M1 cells and the media are 1.4 and 1.35, 

respectively. Here we take the complex refractive index as 1.38 + 0.008i, and 

characterize the size of the random spheroids with the radius of the 

equal-projected-area sphere. Figure 3.2 compares the phase functions of 

prolate and oblate rough surface spheroids, with those of equal-projected-area 

spheres, at different effective size parameters after size and orientation 

averaging. It shows that phase functions of nonspherical particles are quite 

different from those of equal-projected-area sphere, especially in the 

side-scattering and backscattering region. Even for a single rough surface 

spheroid, it produces a unique, shape-specific phase function.  Similar results 

can be found in the literature of Macke et al. [18] and Muinonen [19]. 

However, in Figure 3.2, the phase functions are similar for prolate and oblate 

spheroids with small aspect ratios. This is understandable, because for small 

aspect ratios, the shape difference between prolate and oblate spheroids is 

negligible. 

Figures 3.3 and 3.4 compare the phase functions measured by experiments 

with those calculated by a spherical model and a nonspherical model which is 

mixture of prolate and oblate slightly rough surface spheroids. The theoretical 

computations are obtained by averaging over a wide aspect-ratio distribution 

of prolate and oblate spheroids. To simplify the calculation, we assume the 

aspect ratios are uniformly distributed, centered at the aspect ratio 2 for both 
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prolate and oblate spheroids. while the incident wavelength is taken as 760 nm. 

Note that in the exact forward scattering region, the phase function is 

insensitive to particle nonsphericity and the equal-projected-area spheres can 

be used to characterize the randomly oriented nonspherical particles. It means 

that Mie theory can be used to analyze transmittance measurements of 

biological tissue and cells in microscope without causing significant errors. 

However, the difference between spherical and non-spherical models becomes 

quite obvious in the side-scattering and backscattering regions, and therefore 

the results from Mie theory would cause serious errors in biological image 

detection when applied to analyze reflectance measurements in a microscope.  
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Figure 3.3 Phase functions for suspensions of rat embryo fibroblast cells (M1) 
with spherical and nonspherical model with the effective size parameter 

15.5effS   and experimental results. 
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Figure 3.4 Phase functions for suspensions of mitochondria with random 
non-spherical model, spherical model with the effective size parameter 

10.3effS   and experimental results. The particles are chosen as a 

combination of Figure 1(c) and (d) in Ref.[5]. 

Table 3.1 demonstrates the anisotropy factors g and reduced scattering 

coefficients '
s  from experiment data, and computations with nonspherical 

and spherical models, respectively. Compared with the experiment data, the 

difference of g between nonspherical and spherical models is small, which 

confirms our conclusion that forward scattering is least sensitive to particle 

nonsphericity. The same phenomenon can be found in '
s , which means that in 

the diffusion regime, the number of anisotropic steps of both nonspherical and 

spherical models are similar. 

In sum, slightly rough surface spheroids are used to model scatter center in 

biological cells. Experimental results corroborate that scattering properties of 

non-spherical particles can be significantly different from those of equivalent 
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spheres in both biological tissue and biological cells. To understand better the 

light-scattering mechanism, it is necessary to substitute the spherical model 

with the random non-spherical model. Finally, we note that our experimental 

results are limited to M1 cells and mitochondria and the computational results 

pertain to a specific refractive index scale of biological tissue. To extrapolate 

our conclusions to other kinds of tissue, additional laboratory experiments and 

additional calculations are necessary. 

 

 Experiments Spheroids Sphere 

 g  '
s  g  '

s  g  '
s  

M1 cell 0.90 1.21 0.87 1.32 0.88 1.27 

Mitochondria 0.78 3.65 0.79 3.49 0.80 3.52 

Table 3.1 Anisotropy factors and reduced scattering coefficients for M1 cells 
and mitochondria.  

 

3.3 Fractal model in biological tissue 

 

Light propagation in biological tissue and cells is fundamental to 

biomedical imaging for both diagnosis and therapy. The conventional models 

are based on a distribution of discrete scatters [3, 12]. However, on a 

microscopic scale, the constituents of the tissue do not present clear 

boundaries and merge into a quasi-continuum structure. Therefore, discrete 

particles may be less appropriate than the tissue modeling as a continuous 
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random medium due to weak random fluctuations of the dielectric 

permittivity. Recently, a number of researches have been carried out to 

characterize the optical properties of biological tissue and cells using the 

autocorrelation function of the dielectric permittivity. Moscoso et al. 

suggested a fractal behavior of the tissue and determined the scattering 

function by an exponential correlation [1]. Xu and Alfano modified the 

correlation function with a power law volume fraction [4]. Sheppard 

simplified the Xu’s correlation function by using K distribution and extend the 

applicable scale of the correlation function to a subfractal regime [2]. 

However, all of the above researches are based on the assumption of 

statistically space homogeneous and isotropic media, which is not realistic in 

many cases. Isotropic assumption implies that the aggregates have the same 

microgeometric properties, while many biological tissues are directionally 

sensitive. 

 Although the autocorrelation function has been widely applied to 

description of the refractive index variations, it suffers from a number of 

disadvantages. For example, many different refractive index variations can 

produce the same autocorrelation function. More seriously, the autocorrelation 

function will not cope well with a non-stationary mean, which is a common 

feature of living tissue and cells. Besides, many biological tissue and cells are 

anisotropic, i.e. they have a pronounced lay, and the autocovariance function, 

which should have a variance at the origin common to all profiles, can only be 
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obtained if all profiles are measured form the same mean plane. If they are not, 

singularities are created at the origin of the function [20].  

In this section, we employ the mathematical model of the structure 

function to describe the interaction of light and fractal aggregates. The 

structure function was originally introduced in fluid mechanics to analyze the 

fine structure of turbulence[21-22]. The structure function is related simply to 

the autocorrelation function but is without some of its disadvantages.  

The m-th order structure function of refractive index n(r) can be expressed 

as: 
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In the case of fractal aggregates, we employ the 2-nd order structure function 

to describe the refractive index fluctuations: 
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The power spectrum of the structure function is given by [23] 
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where k is the frequency and L is the correlation length of the fractal structure. 

One possible solution of the power spectrum of the fractal aggregates is 

described by Micali et al. [24]: 

2 2 / 2

sin[ arctan( )]
( ) .

(1 )n

A n kL
P kL

k L nkL



               (3.16) 
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where 5.5fD n   is the fractal dimension of the structure, and A is a 

constant coefficient. 

Figure 3.5 shows the power spectrum normalized to unity for low 

frequencies. The power spectral density variation has a similar shape to those 

of Xu’s model and Sheppard’s model with a break point and a power-law 

decay.  
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Figure 3.5 Power spectrums, normalized to unity for low frequencies 

 

The amplitude scattering function ( )AS   now can be written as: 

 

2 2 1/ 2

2 2 1/ 2

2 2 2 2 2

( ) [ (1 ) ]

sin [ arctan( (1 ) )]
.

(1 (1 )) (1 )n

AS P kL

A n kL

k L n k L

 


 

 




  

        (3.17) 

where cos  . The anisotropy factor (the mean cosine of the scattering 

angle) is given by: 
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2 22 2

2 2

(1 ) ( ) (1 ) ( )
/ .

2 2

AS AS
g d d

k k

     
          (3.18) 

The anisotropy factor for different fractal dimension is illustrated in Figure 

3.6: 

 

Figure 3.6 Anisotropy factor as a function of kL and fractal dimension Df 

The reduced scattering coefficient s  s (1 g) is: 

 
22

'
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(1 )(1 ) ( )
,

2s
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k

  
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 
   (3.19) 

shown in Figure 3.7. 

 

Figure 3.7 Reduced scattering coefficient for different fractal dimensions 
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The phase function is given by: 

22
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2 2 2 1/ 2

2 2 2 2 2 2

(1 ) ( )
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

  

       (3.20) 

The three dimensional phase functions according to the variations of kL and Df 

are demonstrated in Figure 3.8, respectively: 

  

(a) 

 

(b) 

Figure 3.8 Phase function as a function for: (a) given Df; (b) given kL 

In sum, we propose a general structure function to describe the light 

scattering characteristics of the fractal aggregates. This structure function can 

cosθ

cosθ

log10(p(θ)) 

log10(p(θ)) 

log10(kl) 

Df
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be applied to both isotropic and anisotropic scale of the biological tissue. For 

kL << 1, the power spectrum can be further reduced to: 

 
2 /2

( ) ,
[1 ( ) ]n

A
P kL

kL



 (3.21) 

and the power spectrum is the same as the expression described in the 

previous paper [25]. 

 

3.4 Conclusion 

 In this chapter, we explored tissue optics modeling in biological tissue and 

cells. Two different models, which are nonspherical model and fractal model, 

are described. In the nonspherical model, the general functions of random 

non-spherical rough-surfaced particles with axially-symmetric properties were 

introduced. It was found that with a series of generation functions restricted by 

the “display window”, the medium can be characterized by a cluster of 

random non-spherical particles. An important feature of this generation 

function is that generally all kinds of shapes can be described completely with 

five parameters. This method can thus greatly reduce the complexity of the 

calculation and facilitate the process of tissue optics modeling in biological 

science. The T-matrix method was proposed to model the tissue optics 

properties in biological science. The good agreement between theoretical 

predictions with non-spherical model and experimental data confirms our 

hypothesis that the particles’ shapes are the key contributor to tissue optics 
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modeling. The simulation results have slight differences with the experimental 

results in the forward scattering region and back scattering region. This may 

be attributed to the existing of multiple scattering. The phase function for 

surface-equivalent spheres showed larger discrepancy with experiments, 

especially in the side-scattering and backscattering regions. This suggests that 

the scattering properties of non-spherical particles can be significantly 

different from those of equivalent spheres. Therefore, the random 

non-spherical model has the power to simulate biological tissue better than the 

spherical model. This random non-spherical model can thus contribute to the 

accurate and efficient optical property description for biological science and 

medical diagnosis.  

The fractal mechanism is also studied to model the optical properties in 

biological tissue. The structure function is developed to describe the 

interaction of light and fractal aggregates. It is found that the second order 

structure function is related to the fractal dimension directly. The structure 

function is different from the correlation function that was discussed by Xu et 

al. [26] and Sheppard [25]. The relationship is of importance since it should 

help to predict the fractal properties from the second order structure function, 

which is also related to the correlation function R(r). The fractal model with 

structure function has a wider scale of applications, since it can be applicable 

to a medium containing fractal-type aggregates; however, the correlation 

function cannot be used for the finite form of fractal surfaces.  
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Chapter 4 Confocal microscopy using angular gating 

techniques    

 

 

4. 1 Introduction 

 

There has been renewed interest recently in the divided aperture 

technique, as in the so-called specular microscope, for imaging through 

scattering media such as biological tissue [1, 2]. This technique is based on the 

principle of angular gating, one of several gating mechanisms that can be used 

to eliminate multiply-scattered light. Other gating mechanisms include 

confocal, coherence, nonlinear and polarization gates.  

Angular gating had its beginning with the ultramicroscope, in which the 

sample is illuminated perpendicular to the imaging optical axis [3]. The 

specular microscope, or divided aperture technique, combines different beam 

paths for illumination and detection with confocal imaging, so that light 

scattered other than in the focal region is rejected [4-8]. The ultramicroscope 

can be regarded as the fore-runner of confocal theta microscopy [9, 10], and 

selected plane illumination microscopy (SPIM) (also called orthogonal-plane 

fluorescence optical sectioning, OPFOS) [11, 12], both of which can also be 

implemented in a fluorescence mode. KEM Equipment Company (Elk Grove 

Village, IL) and Irvine Optical Corporation (Burbank, CA) both manufactured 

deep field photographic microscope systems in the 1980s. All of these 
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techniques have in common the fact that the illumination and detection pupils 

do not overlap, so that the illumination and detection beams cross only in the 

focal region.  

In divided aperture microscopy, light scattered by a single scattering event 

in the focal region can be detected, but light scattered by a single scattering 

event outside of the focal region will not be able to pass through both the 

collection pupil and the confocal pinhole (or slit). Multiply-scattered light can 

get through the collection pupil, but is unlikely to pass through the confocal 

pinhole. Most published work on the divided aperture technique have used two 

D-shaped apertures (segments of circles) one each for illumination and 

detection, respectively [7]. The width of the region between the two Ds can be 

adjusted in size to reject cross-talk from multiple scattering. For this geometry, 

light reflected specularly from a surface with normal parallel to the optical 

axis can be detected, hence the name specular microscope. It has been shown 

that the system can be used in surface profiling applications to select the 

specular reflection from a spherical surface, while rejecting a reflection that 

comes from the centre of the sphere [13]. Other alternative geometries are 

possible. It is interesting to note that Dwyer et al.[2] based their analysis on 

two offset non-overlapping circles, but they used this only as an 

approximation to the D-shaped case. Another alternative geometry is to use a 

circular pupil and a non-overlapping annulus.[14, 15] This arrangement is 

fundamentally different from the previously mentioned examples, as in this 
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case specular reflections from a normal surface are not detected. It was shown 

using geometrical optics that such a combination of a circular and an annular 

pupil with a finite-sized detector pinhole gives an axial response from a planar 

object that drops identically to zero at a particular defocus distance. So in 

some cases with a finite sized pinhole the axial resolution can be increased by 

use of an annular pupil, which is contrary to our normal expectation that the 

depth of focus in increased for an annular pupil [16].  

Although theory on imaging in a system with D-shaped apertures based 

on geometrical optics has been presented by Maurice and Koester [6-8], a 

diffraction theory had not yet been given. In this chapter we first consider the 

imaging of a point object in a confocal system (point source and point 

detector) with D-shaped apertures. 3D coherent transfer function (CTF) and 

3D optical transfer function (OTF) are considered. Later we extend our 

research to off-axis apertures, elliptical apertures and Schwartz apertures. The 

axial response from a planar, integrated intensity, as well as the signal level is 

presented. 

 

4. 2 Confocal scanning microscope with D-shaped apertures 

 

The geometry of the confocal microscope with two D-shaped pupils is 

given by Figure 4.1. Section 4.2.1 investigates the 3D imaging performance in 

confocal bright-field microscopy with D-shaped apertures and a point detector. 
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In this case, the imaging is purely coherent. Section 4.2.2 introduces the 3D 

incoherent imaging performance for confocal one-photon fluorescence 

microscopy with D-shaped apertures.  

 
Figure 4.1 Geometry of the confocal microscope with two centro-symmetric 

D-shaped pupils. 

 

4.2.1 Coherent transfer function 

For weakly scattering objects, 3-D transfer functions can be used to 

completely describe image formation of confocal system. Consider a single 

D-shaped pupil with outer radii a  and distance parameter d  (-1 ≤ d ≤ 1) 

(Figure 4.1). The width of the separator between the two D shapes is then 2d. 

The defocused pupil function under the paraxial approximation can be 

expressed as: 

 
2 1 1,exp[ ( / 2) ] 1& cos ( / ) cos ( / )

( , , ) ,
0, otherwise

i u d d d
P u

    
 

       
 


  

  (4.1) 
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in cylindrical coordinates, where /r a  denotes the normalized radial 

coordinate, r is the real radial coordinate, and u is the axial optical coordinate 

defined as 

 2(8 / ) sin ( / 2).u n z     (4.2) 

Here λ and   nsin  are the incident wavelength and the numerical aperture 

(NA) of the objective, respectively, and z is the defocus distance from the 

focal plane. 

According to Fourier transform theory, the 3D CTF can be expressed as: 

 2( , , ) [ ( , , ) ( , , )]exp( ) ,c l s P u P u ius du          (4.3) 

where 2 represents the 2-D convolution operation with respect to l. After 

mathematical manipulations, the 3D CTF ( , , )c l s  normalized by the value 

of ( 0, 0, 0)c l s    at 1d    (corresponding to the circular pupils), can 

be derived as: 

  

c(l,,s) 
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(l,,s), when tan1[ 1 d 2 / (1 d )]    / 2,
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B
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with 

 

  


0
  tan1{[ 1 (d  m)2  n / 2] / (d  m / 2)},


1
 tan1{[ 1 d 2  n / 2] / (d  m / 2)},


2
 tan1{[ 1 (d  m)2  n / 2] / (d  m / 2)},


0
 l | cos( ) | /2 1 l2 sin2(  ) / 4.
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
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





 (4.6) 

 

Figure 4.2 The 3-D coherent transfer functions with different distance 
parameters d and different angles ψ. For d = 0 and ψ = π/2, the 3-D CTF is 
the same as the conventional confocal microscope with two circular pupils. 

 

Figure 4.2 gives the complete view of the 3-D CTF ( , , )c l s  in the 

reflection-mode confocal scanning microscope with two D-shaped pupils for 

different distance parameter d and different angular parameter  . At the 

special case of 0d   and / 2  , the 3-D CTF is the same as the 

conventional confocal microscope with two circular pupils. It is interesting to 

note that the transverse cut-off frequency ( , )cutoffl d   depends on both d and 
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 ; while the axial cut-off frequency ( )cutoffs d  only depends on d. For a given 

 , as d is increased, both the axial cut-off frequency and the transverse 

cut-off frequency reduce. However, for a given d, as   increases, only the 

transverse cut-off frequency increases and reaches the maximum of 

2( / 2, ) 2 1cutoffl d     at / 2  ; while the axial cut-off frequency 

remains at 2( )cutoffs d d . Therefore, in the region 0 ≤ s + s0 ≤ d2, the value of 

the CTF is zero, which indicates that the image information in this region is 

missing, thus the low axial frequency region cannot be imaged. 
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Figure 4.3 The intensity along the axis for a D-shaped pupil shown as a 
log-log plot. 

 

In confocal microscopy, the concept of the integrated intensity was 

introduced to quantify the background produced by a scattering medium [17, 
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18]. If the intensity image of a point object is   I(vx ,vy ,u) , then the 

contribution to the background in the focal plane from a distribution of 

particles a distance z away is  

int ( ) ( , , ) .x y x yI u I v v u dv dv= ò  (4.7)  

Figure 4.3 shows the integrated intensity   Iint (u) for a confocal microscope 

with two D-shaped pupils and a point detector as a log-log plot. For a confocal 

microscope with two circular pupils,   Iint (u) falls off as   1/ u2, and for one 

circular and one narrow annular pupil it falls off roughly as   1/ u.[17] For the 

divided aperture system,     Iint (u) falls off more quickly, for   d  0 as     1/u2.54, 

becoming close to     1/ u3.2  for larger values of d. This demonstrates the 

advantage of the divided aperture technique for imaging through scattering 

media. 

 

4.2.2 Optical transfer function 

The divided aperture technique can be also used with a confocal 

fluorescence modality. In this study, we propose the use of the divided 

aperture technique in confocal fluorescence, and extend our study to the 

performance of a system with divided D-shaped apertures (DCM), based on 

incoherent image formation theory. This system has potential applications in 

any area of fluorescence microscopy into scattering media such as tissue.  
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The corresponding effective intensity point spread function (IPSF) for 

confocal single-photon fluorescence microscopy with divided apertures is 

 
 2 2

2( , , ) ( , , ) ( , , ) ( , ) ,x y ill x y dec x y x yh v v u h v v u h v v u D v v 
 (4.8) 

where 2  denotes the two-dimensional convolution operation. ( , )x yD v v  is 

the intensity sensitivity of the finite-size detector. ( , , )ill x yh v v u  and 

( , , )dec x yh v v u  are the 3D amplitude point spread functions (APSF) of the 

illumination and detection objective lenses, respectively. They are defined by 
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  (4.9) 

where ill,decP  are the pupil functions for illumination and detection wave path, 

respectively. xv , yv , and u are optical coordinates. They are related to the 

true distance from the focal point by v
x
 2x nsin /  , 

  
v

y
 2 y nsin /  , and   u  8z nsin2( / 2) /  , with   the excitation or 

emission wavelength, α the semi-angular aperture of the lens, and n the 

refractive index of the immersion medium. The coordinates x , and y are 

distances in the pupil plane, normalized by the pupil radius a . Note that in 

this paper, we neglect the Stokes’ shift, and thus assume that the system has 

equal fluorescence and incident wavelengths. In practice, the longer 

fluorescence wavelength may result in a small degradation of the imaging 

performance. The Stokes’ shift for practical dyes is often around 6%. 
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Figure 4.4 3D OTFs for confocal one-photon fluorescence microscopy with 

D-shaped apertures with various d and vd. (a) C(m=0,n,s) with vd=0,d=0 and 
circular apertures with vd=0; (b) C(m,n=0,s) with vd=0,d=0 (c) C(m=0,n,s) 

with vd=4,d=0 and circular apertures with vd=4; (d) C(m,n=0,s) ) with 
vd=4,d=0; (e) C(m=0,n,s) with vd=0,d=0.4; (f) C(m,n=0,s) with vd=0,d=0.4; 

(g) C(m=0,n,s) with vd=4,d=0.4;  (h) C(m,n=0,s) with vd=4,d=0.4. 
 

The corresponding 3D optical transfer functions (OTF),   C(m,n,s) , is 

given by the 3D Fourier transform of the 3D IPSF. Here m, n, and s are spatial 

frequencies in the x, y, z directions, normalized by nsin /  , sin /n   , and 
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24 sin ( / 2) /n   , respectively. In the following we use l to describe the 

transverse spatial frequency, defined by 2 2l m n  . Since the D-shaped 

aperture is not circularly symmetrical, we consider two special cases: 

( 0, , )C m n s  and ( , 0, )C m n s .  

In practice, the detector is not a single point but has a finite size to 

increase the signal strength. Figure 4.4 illustrates the 3D OTF of DCM with 

different values of d and vd, compared with that of CM. Note that for CM a 

well-known missing cone of spatial frequencies appears around the origin 

[19]. However, as the width of the divider strip increases, this cone gradually 

disappears. 

Figure 4.5 illustrates the integrated intensity of a point object for CM and 

DCM with various values of detector size. It is shown that for a point object 

with a point detector, int ( )I u  falls quickest for DCM with 0d   in the 

region of small values of u. As d increases, int ( )I u  becomes gradually 

broader, and eventually broader than the case for CM. For large values of u, 

int ( )I u  in CM falls off according to an inverse-square law. However, int ( )I u  

for DCM falls off more quickly, for 0d   as 2.531/ u , becoming close to 

3.21/ u for larger values of d [20]. For a finite-size detector, in the region of 

small values of u, as d increases the rate of decay of int ( )I u  for DCM first 

increases then decreases, leading to an optimum value of d to achieve the 

maximum rate of decay. However, for larger values of u, the rate of decay of 

int ( )I u  for DCM increases as d increases. For instance, when 4dv  , int ( )I u  
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for DCM falls off for 0d   as 2.331/ u , becoming close to 2.51/ u for 0.2d  , 

compared with 1.91/ u  for CM.  The fast decay of the integrated intensity 

demonstrates the advantage of the divided aperture technique in imaging 

through scattering media.   
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Figure 4.5 Integrated intensities of CM (solid lines) and DCM (dash lines) for 

(a) vd=0, and (b) vd=4, respectively. 
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4. 3 Confocal scanning microscope with off-axis apertures 

  

 We have seen how intI  for D-shaped apertures decays as only  2.531/ u  

for 0d  . We attribute this to the strong diffraction peak on the optical axis 

caused by the circular edge of the aperture, a phenomenon similar to the 

Poisson spot. We therefore consider other shapes of aperture, which avoid this 

effect. In this section, the 3D coherent transfer function (3D) for two off-axis 

circular apertures in a reflection-mode confocal scanning microscope is 

analytically derived under the paraxial approximation. The properties of axial 

response and integrated intensity are compared with two D-shaped apertures.

 The system diagram is similar as Figure 4.1. However, we use two 

off-axis circular apertures instead of two D-shaped apertures, shown in Figure 

4.6. 

 

 

 

 

 

 

Figure 4.6 Two off-axis circular apertures: one for illumination, and the other 
for detection 

 

 The corresponding 3D CTF calculated by Eq. 4.3 is shown in Figure 4.7.  

 d
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Compared with the CTF of D-shaped apertures (show in Figure 4.2), given 

same value of d, although the axial cut-off frequency remains, the absolute 

value in the high frequency region reduces, implying that the axial resolution 

will be degraded. Moreover, it is also shown that the transverse cut-off  

 
Figure 4.7 The 3-D amplitude coherent transfer functions in the 

reflection-mode confocal scanning microscope with two off-axis circular 
apertures  
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frequency is reduced for two off-axis circular apertures, which means that the 

transverse resolution will be also degraded. This phenomenon is mainly 

caused by the effective pupil area. Given the same value of d, the effective 

pupil area of off-axis apertures is smaller than D-shaped apertures, and thus 

the spatial resolution degraded.  

The intensity along the axis can be calculated by transforming to polar 

coordinates ρ, θ where     
2  t  x

2  y
2  and performing the integration in θ 

first, to give the integrated pupil function 

                 
2

0

( ) ( , ) ,P t P d


                             (4.10)  

where ( , )P   is the pupil function. Then the amplitude along the axis is 

 / 22
( ) ( ) .iutU u P t e dt

                         (4.11) 
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Figure 4.8 Axial responses of reflection-mode confocal scanning microscope 
with a point detector with traditional two circular apertures (CM), with two 

D-shaped apertures, and with two off-axis apertures, respectively.  
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Figure 4.8 illustrates the axial responses for reflection-mode confocal 

scanning microscope with a point detector for various kinds of apertures. It 

shows that given the same value of d, the axial response for D-shaped 

apertures is better than off-axis apertures. However, both of them are worse 

than traditional confocal microscopy (CM). 

 
Figure 4.9 Integrated intensity of a reflection-mode confocal scanning 

microscope with a point detector using D-shaped and off-axis apertures.  

 

Figure 4.9 compares the integrated intensities for D-shaped apertures and 

off-axis apertures. For same value of d, the integrated intensity of D-shaped 

aperture decays more quickly than off-axis apertures. However, as d increases, 

the difference of the decay rate becomes smaller and smaller. This because 

given the same value of d, the aperture area of D-shaped aperture is larger than 

off-axis aperture. As d increases, the difference of aperture area between the 

two kinds of apertures reduces. It suggests that the area of the aperture plays 

an important role in background rejection capability.   
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Figure 4.10 Axial response of a reflection-mode confocal scanning 
microscope with a point detector using D-shaped (dash lines) and off-axis 

apertures (solid lines) with equal area: (a) near focal plane; (b) far from the 
focal plane. 

 

Consider the D-shaped and off-axis apertures have same area. The axial 

response for a point detector is displayed in Figure 4.10. It shown that 

compared with D-shaped apertures, the main lobe of axial response is 
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improved for off-axis apertures. As the area of the apertures is reduced, the 

improvement becomes more obvious. When defocus distance (u) increases, 

axial response decays more quickly for off-axis apertures than for D-shaped 

apertures. Moreover, for off-axis apertures, as the area decreases, decay rate of 

the axial response increases in the region for larger u, which implies that when 

the distance between two off-axis aperture increases, the background 

generated by the defocus plane far from the focal plane decreases.  
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Figure 4.11 Half-width-half-maximum of the axial response as a function of 

normalized detector size for D-shaped apertures (dash lines) and off-axis 
apertures (solid lines).  

 

The half-width-half-maximum (HWHM) of the axial response as a 

function of detector size is shown in Figure 4.11. It is interesting to note that 

given same aperture area, for a small value of detector size, the axial response 

of off-axis apertures is superior to D-shaped apertures. However, as the 
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detector size increases to a certain value, for example, when area = 0.7, 

4.5dv  , D-shaped apertures becomes superior to off-axis apertures. 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

u

I in
t(u

)

 

 

area=0.75
area=0.45
area=0.75
area=0.45

 

Figure 4.12 Integrated intensity of a reflection-mode confocal scanning 
microscope with a point detector for D-shaped (dash lines) and off-axis 

apertures (solid lines). 
 

Figure 4.12 shows the integrated intensity for D-shaped and off-axis 

apertures with equal area. Compared with D-shaped apertures, given same 

pupil area, the integrated intensity of off-axis aperture is smaller in the near 

focal plane region, and decays faster when the defocus distance is larger (see 

Figure 10b), which suggests that given same aperture area, off-axis apertures 

can reject more background than D-shaped apertures. 
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In practice, a finite-sized pinhole is always used to enhance the detected 

signal strength. However, the amount of unwanted scattered light is also 

increased. Therefore, in order to fully understand the overall performance, it is 

necessary to introduce the signal level defined as the measured energy divided 

by that which enters the entrance pupil [21]. The detected intensity on the 

focal plane can be expressed as: 

2

0 ( , ) ( , ,0)exp[ ( cos sin )] .u x y x y x yI D v v P i v v d d dv dv              

                                           (4.12) 

The signal level for a given system can be given by: 

 0 ,uI

                            (4.13) 

where ε is the energy entering the illumination aperture. Figure 4.13 presents 

the signal level, normalized to unity for a large area detector, as a function of 

pinhole size for D-shaped and off-axis apertures, respectively. It is notes that 

for same shape of apertures, either D-shaped or off-axis apertures, the signal 

level increases as the aperture area increases. For apertures with different 

shapes, given same aperture area, signal level for off-axis aperture is higher 

than D-shaped apertures, especially when 4 10dv  .  
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Figure 4.13 Signal level as a function of detected pinhole size for D-shaped 
(dash lines) and off-axis apertures (solid lines). 

 

 

4. 4 Confocal scanning microscope with elliptical apertures 

 

In the section, we analyze a confocal microscope with a pair of 

half-elliptical apertures: one for illumination and the other for detection, 

shown in Figure 4.14. The axial response and integrated intensity is 

investigated. The signal level is also demonstrated. 

According to Eq. 4.10 and 4.11, the axial response can be simply 

expressed by the Fourier transform of the integrated pupil function ( )P t . 
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Therefore, the broader ( )P t  is, the narrower the main lobe of the axial 

response becomes, consequently, the bigger the side lobes appears. 

 
Figure 4.14 Two elliptical apertures: one for illumination and the other for 

detection 
 

Figure 4.15 displays the integrated pupil function ( )P t  for different 

values of a, b and d. The axial response for larger value of u is depicted in 

Figure 4.15. For given values of a and b, which means the shape of the ellipse 

is fixed, as d increases, ( )P t  becomes narrower shown in Figure 4.15(a), 

which causes the optical sectioning properties to be degraded. However, the 

axial response decays more quickly. For given values of a and d, as the b 

increases, although the cut-off frequency of ( )P t  is maintained (from d2 to 1), 

the value in the high frequency region increases (Figure 4.15b), thus 

improving the optical sectioning properties. However, when b is equal to a, 

the fast decay rate of the axial response in the region for larger u is reached.  

This phenomenon suggests that: i). in order to obtain the best optical 

sectioning property and fast decay for larger defocus distances, the D-shaped 
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apertures are always the best choice when d is given; ii) although increasing d 

will broaden the main lobe of the axial response, it increases the decay rate of 

the axial response for larger defocus distances. These properties are confirmed 

in Figure 4.16, which is a log-log plot of the axial response.  
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Figure 4.15 Integrated pupil function ( )P t  for (a) given a = 0.8 and b = 

0.89; (b) a = 0.9 and d = 0.3. 
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Figure 4.16 Axial response for elliptical apertures when u is large. 

 

Figure 4.17 gives the comparison of integrated intensities for elliptical 

apertures with given d. Note that for same value of d, the integrated intensity 

of D-shaped apertures decays fastest, implying D-shaped performs best in the 
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view of background rejection. As the aperture area decreases, the background 

rejection capability is degraded.    
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Figure 4.17 Integrated intensity for elliptical apertures with given value of d 
 

 

Figure 4.18 compares the signal level for various value of b. It shows that 

given d, D-shaped apertures can obtain the high signal level. This is mainly 

due to the fact that given the values of d, a D-shaped aperture has the biggest 

aperture area.  
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Figure 4.18 Signal level as a function of normalized detector pinhole size for 

elliptical apertures. 
 

From above analysis, we understand that size of the aperture area plays a 

significantly important role in determining the optical sectioning properties, 

background rejection capability and signal level. The bigger the aperture area 

is, the better these performances are. Thus D-shaped aperture is always the 

best choice for high optical sectioning and background rejection. We further 

extend our research to the case when D-shaped and elliptical apertures with 

equal areas. Figure 4.19 compares the axial response for elliptical and 

D-shaped apertures with equal area. The HWHM of the axial response for 

D-shaped apertures is slightly narrower than elliptical apertures (Figure 

4.19a). However, if we select the parameters in a certain way, for example, a = 
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b and 2a + d < 1, the elliptical apertures then turn to off-axial circular 

apertures, which has the narrowest HWHM (see section 4.4). The HWHM of 

the axial response is defined by the broadness of the integrated pupil function, 

as well as the value in the high frequency region. Note that in the large u 

region, the axial responses of elliptical apertures decay faster than D-shaped 

apertures. As the distance between a pair of elliptical apertures (2d) increases, 

the decay spread increases.   
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Figure 4.19 Axial response for elliptical and D-shaped aperture (a=b=1) with 
equal area. 
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Figure 4.20 provides the integrated intensity for elliptical and D-shaped 

apertures with equal area, showing D-shaped apertures is superior to elliptical 

apertures, but inferior to off-axis circular apertures (see section 4.4) in 

rejecting background from deep defocus plane.  
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Figure 4.20 Integrated intensity for elliptical and D-shaped (a = b = 1) 

apertures with equal area. 

 

 Figure 4.21 illustrates the signal level as a function of detector pinhole 

size for elliptical and D-shaped apertures with equal area. It suggests that 

given equal aperture area, as the distance between the pair of apertures (2d) 

increases, the signal level decreases. 
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Figure 4.21 Signal level for elliptical and D-shaped (a = b = 1) apertures with 
equal area. 

 

 

4. 5 Confocal scanning microscope with Schwartz apertures 

  

In above analysis, we propose a simple method to estimate the optical 

sectioning properties of a confocal system by using the integrated pupil 

function ( )P t  (Eq 4.10 and 4.11), whose Fourier transform is the amplitude 

along the optical axis of the system.  

In order to suppress the background, we always want the signal generated 

by defocus to decay as fast as possible. According to Fourier transform theory, 

if the kth derivative of a function becomes impulsive, its Fourier transform 

behaves as |s|-k at infinity, where s is in frequency domain [22]. Thus from the 
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derivative of the integrated pupil function, we can estimate the background 

decay rate of the confocal system. For example, for a traditional confocal 

microscope, the integrated pupil function is a rectangular function, whose first 

derivative is a pulse function. The amplitude along the axis decays as 1/u, thus 

the intensity along the axis (axial response) behaves as the well-known 1/u2 

for large u [23].  

 In this section, we propose a kind of special function introduced by 

Schwartz and Temp, which has all derivatives and furthermore is zero outside 

of a finite range, to generate an integrated pupil function. To our knowledge, 

this is the first time that the Schwartz function is introduced into the pupil 

function, named Schwartz aperture, in confocal microscopy. With Schwartz 

apertures, the signal generated by a defocused plane decays extremely fast as 

the defocus distance increases. An example of Schwartz function is given by 

 2 2 2/
| | ,( , )

0 | | .

x

schwartz
e xf x

x

  


   


               (4.14) 

In order to make the aperture area as large as possible, we modify the 

Schwartz function by integrating it, which also has all derivatives zero and is 

zero outsize a finite range (0-1): 

( ) ( , ) (1 , ) .
t t

schwartz L L schwartz R RP t f x dx f x dx    
 

          (4.15) 

An example for integrated pupil functions of Schwartz aperture is shown in 

Figure 4.22.  
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Figure 4.22. Integrated pupil function of Schwartz aperture. 
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Figure 4.23 A set of Schwartz apertures with the same integrated pupil 

function.  
 

 

For the same integrated pupil function, the reconstructed Schwartz 

aperture may have different kinds of shapes. One possible solution is using 

annular apertures whose transmittance amplitude is controlled by the Schwartz 

aperture function. Another possibility is shown on Figure 4.23. Note that one 
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integrated pupil function can reconstruct a set of Schwartz apertures with 

different pupil area.  
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Figure 4.24 Axial response for Schwartz apertures  

 

Figure 4.24 compares the axial response for D-shaped apertures and 

Schwartz apertures. We found that although the HWHM of the axial response 

for Schwartz apertures is degraded, in the deep defocus plane the axial 

response decays dramatically faster than D-shaped apertures. We believe that 
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the properties of Schwartz function will have wide application, for example, in 

focal modulation microscopy whose imaging penetration depth mainly 

depends on the ballistic light at the surface.    

 

4. 6 Conclusion 

 

The application of angular gating techniques in confocal scanning 

microscope with divided apertures is discussed. Compared with traditional 

confocal scanning microscope, the main advantage of a confocal scanning 

microscope with divided apertures is that it can reject more background. 

Besides, using a finite-sized detector pinhole, it is also possible to improve the 

axial resolution [24].  

The three-dimensional coherent transfer function and three-dimensional 

optical transfer function are investigated when a pair of D-shaped apertures is 

used. The optical sectioning property (shown by the axial response), 

background rejection capability (shown by integrated intensity) and signal 

level are studied when different kinds of divided apertures are used, including 

off-axis apertures, elliptical apertures and Schwartz apertures. If the pupils are 

separated by a strip of width 2d, from the performance comparison among 

D-shaped, off-axis and elliptical apertures, we find that:  i) given the same 

value of d, D-shaped apertures can obtain the best optical section properties 

and background rejection capability, as well as the highest signal level. This is 
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because D-shaped apertures have the largest aperture area. However, above 

three properties can be further improved by using serrated D-shape aperture, 

because the Poisson spot is suppressed by the serrated edge [25]; ii) given the 

same kind of divided apertures, as d increases, the background decay speed 

increases in deep defocus plane; iii) given equal area, off-axis apertures can 

obtain the best optical section properties and background rejection capability, 

as well as the highest signal level.   

A simple method is proposed to estimate the optical sectioning and 

background rejection properties of a confocal system by using the integrated 

pupil function ( )P t , given by the integration of the pupil function ( , )P    

with respect to the angle  . The Fourier transform of ( )P t  determines the 

optical sectioning property, while the derivative of ( )P t  determines the 

background decay rate. According to this approach, Schwartz apertures, to our 

knowledge, are proposed for the first time, to dramatically reject the 

background. We believe Schwartz apertures will have wide application in 

deep penetration imaging, for example, focal modulation microscopy [26-28].  
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Chapter 5 One-photon focal modulation microscopy  

   

    

5. 1 Introduction 

 

The principle of confocal microscopy is to physically reject out-of-focus 

light with the use of a small pinhole. Due to the optical sectioning capability, 

confocal microscopy can be utilized to construct the three-dimensional (3D) 

images, using a scanning system. With these advantages, confocal microscopy 

has wide applications in biological science and medical imaging [1-3]. 

However, confocal microscopy has the essential weakness of low penetration 

depth compared with some other modalities. When applied to thick tissue 

where multi-scattering dominates, the mechanism of confocal microscopy for 

rejection of out-of-focus light is insufficient. To enhance background rejection, 

several technologies have been developed to either increase the penetration 

depth or improve the spatial resolution. One of these technologies is 

multi-photon microscopy (MPM), which utilizes long-wavelength light to 

excite fluorophores within the specimen being observed. In MPM, excitation 

is effectively restricted to a tiny focal volume, resulting in a high degree of 

rejection of out-of-focus light [4-6]. This selection mechanism is effective 

when the imaging depth is less than 1mm [7]. Mertz et al. developed a 

differential-aberration two-photon microscope, which utilizes a subtraction of 

an aberrated image generated by a deformable mirror from an unaberrated 
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image, to further reject the background [8-9]. However, MPM is a very 

expensive technique that uses an ultra-short pulsed laser source. Besides, 

single-photon excitation is preferred over multi-photon excitation in some 

situations in which nonlinear photo-damage and availability of fluorescence 

probes are of concern. Another technique with deep penetration is optical 

coherence tomography (OCT), which utilizes the coherence gating mechanism 

to reject the background [10-11]. In OCT, only the backscattered or reflected 

light, which has a well defined optical path length and polarization state, 

generates the fringe signal for image formation. However, OCT is not 

compatible with fluorescence, which limits its applications in molecular 

imaging [12-15]. Recently, our group has proposed a method, named focal 

modulation microscopy (FMM), to maintain diffraction-limited resolution in 

deep regions of biological tissue (up to 600m) [16-21]. 

In the following paragraph, we theoretically investigate image formation 

in one-photon fluorescence focal modulation microscopy (FMM) based on 

scalar diffraction theory. Two kinds of objective apertures are considered, 

including D-shaped apertures and quadrant apertures. The three-dimensional 

(3D) optical transfer function (OTF) is investigated. The spatial resolution, 

including both axial and transverse resolution, is studied. The signal level and 

background rejection capability are also presented. 
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5. 2 Principle of focal modulation microscopy 

 

In FMM, the illumination beam is divided into two mutually parallel but 

spatially separated beams, one of which is then subjected to a phase delay 

periodically by an acoustic-optic modulator. The background rejection 

capability introduced by a confocal pinhole is first enhanced by angular gating 

technique, then further by phase modulation and demodulation procedure. 

 

 
Figure 5.1 Schematic diagram of the focal modulation microscope. LBE: laser 
beam expander. SPM: spatial phase modulator. DM: dichroic mirror. LF: 
long-pass filter. PMT: photomultiplier tube.L1 and L2: collection lenses. L3: 
objective lens.  

  

A solid state single frequency laser beam is expanded by a laser beam 

expander (LBE). After passing through a spatial phase modulator, the two 

spatial separated half-beams have a relative phase shift periodically ( 2 tdw ) 



99 
 

between 0 and π. The phase modulated beam then passes through a dichroic 

mirror to an objective and a photomultiplier tube with a very small size 

pinhole in front of it for reference signal. Fluorescence emission, if any, is 

collected by the same objective, and the excitation light is rejected by a 

long-pass filter. Another photomultiplier tube is applied to convert the 

detected weak light signal to an electrical signal, which is further enhanced by 

an amplifier before being digitized into a personal computer. The resulting 

FMM signal as well as the reference signal are collected and demodulated by a 

lock-in amplifier. Note that the layout of FMM is identical to that of a 

standard confocal fluorescence microscope except that a spatial phase 

modulator (SPM) is inserted in the illumination laser beam path. As illustrated, 

two geometries of SPM can be applied to FMM, introducing D-shaped and 

quadrant.. 

To simplify the theoretical analysis, we assume that the emission and 

excitation light have the same wavelength λ. According to scalar diffraction 

theory, the illumination pattern can be expressed as: 
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 (5.1) 

Thus, the corresponding 3D time-varying image of a point object with a point 

detector can be described as [19-20]: 
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(5.2) 

where * denotes the conjugate operation. Re and Im denote the real part and 

imaginary part, respectively. Here t is the instantaneous relative phase 

shift of the two beams. h1A and h1B are the 3D amplitude point spread 

functions (APSF) of the quadrant illumination apertures. h2 is the APSF of the 

collection lens. According to scalar diffraction theory, they are defined by 
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where P1A and P1B are the pupil functions of the objective lenses, respectively, 

and P2 is the pupil function of the collection lens. These expressions can also 

be applied to other non-overlapping geometries for the pupils P1A and P1B. 

Here the optical coordinates are related to the true distances from the focal 

point x, y, z by vx  (2 / )xn sin , vy  (2 / )yn sin , u  (8 / )zn sin2 ( / 2) ,  

with  the excitation or emission wavelength,  the semi-angular aperture of 

the lens, and n the refractive index of the immersion medium. The coordinates 

x, y are distances in the pupil plane, normalized by the pupil radius r.  

The detected image signal is then sent to a lock-in amplifier. After 

demodulation, two signals, the in-phase signal Iin and quadrature signal Iqu,, 

can be obtained. They can be expressed as [19]: 

   2

1 1 22Re ,in A BI h h h   (5.4) 



101 
 

   2

1 1 22Im .qu A BI h h h  (5.5) 

Note that the in-phase signal Iin can be also simply expressed as the difference 

between two confocal signals obtained when the two spatial separated 

illumination beams are in-phase and anti-phase, 

  2

1 1 2

2 2 2 2

1 1 2 1 1 2

2Re

.

in A B

A B A B

I h h h

h h h h h h



   
 (5.6) 

Because of the linear form of Eq. 5.4 and Eq. 5.5, image formation is linear in 

intensity, and hence the image of a point object can be regarded as an intensity 

point spread function (IPSF). However, in focal modulation microscopy at 

present we only use the in phase signal Iin. However, we believe that by 

certain clever combinations of the in-phase signal Iin and quadrant signal Iqu., 

the performance of FMM can be further improved. 

 

5. 3 Optical transfer function 

 

 The 3D optical transfer function (OTF) for FMM is given by the 3D 

Fourier transform of IPSF, which can be expressed as [20] 

   2*
3 1 1 2 2( , , ) Re ( , , ) ( , , ) ( , , ) ( , ) ,A x y B x y x y x yC m n s F h v v u h v v u h v v u D v v    

 (5.7) 

where m and n are the radial spatial frequencies normalized by n sin /  , and 

s is the axial spatial frequency normalized by n sin2 ( / 2) /  . F3
 denotes the 3D 

Fourier transform operation. D(vx,vy) is the intensity sensitivity of the detector, 
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which is restricted to the area within a normalized radius vd. Figure 5.2 

compares the 3D OTFs of confocal microscopy (CM) with FMM with 

D-shaped apertures (DFMM) and with quadrant apertures (QFMM) for 

various values of the detector radii vd. The 3D OTFs are normalized to unity 

by C(0,0,0). For a point detector, as expected, the transverse and axial cut-off 

spatial frequencies of both CM and QFMM systems are 4 and 1, respectively. 

However, the high spatial frequency region where the 3D OTF has appreciable 

values for both DFMM and QFMM is broader than for CM. This phenomenon 

becomes more obvious when the detector size vd increases. The broadening of 

the 3D OTF results in a superior response at high spatial frequencies, which 

implies that more energy is distributed at higher angles of diffraction in both 

DFMM and QFMM than in CM. Thus, an improved spatial resolution can be 

achieved. It can be noticed that in DFMM the high frequency region is much 

broader in the horizontal (m) direction than in the vertical (n) direction, which 

is due to the asymmetric geometry of D-shaped apertures, while in QFMM, 

the 3D OTF behaves nearly the same in different directions for a point 

detector. As vd increases, the difference in the 3D OTF in directions a and b of 

QFMM remains relatively small compared with DFMM, resulting in a less 

imaging asymmetry.  
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Figure 5.2 Three dimensional optical transfer functions for: (a) CM with a 

point detector; (b) CM with vd = 3; (c) DFMM in horizontal direction with a 
point detector; (d) DFMM in horizontal direction with vd = 3; (e) DFMM in 

vertical direction with a point detector; (f) DFMM in vertical direction with vd 

= 3; (g) QFMM in direction a with a point detector; (h) QFMM in direction a 
with vd = 3; (i) QFMM in direction b with a point detector; (j) QFMM in 

direction b with vd = 3. 

 

5. 4 Axial resolution 

 

In confocal fluorescence microscopy, the axial resolution can be 

characterized by the measurement of the axial response of an infinitely-thin 

fluorescent layer. The axial response is the Fourier transform of the axial 

cross-section of the 3D OTF with respect to s, giving the strength of optical 

sectioning: the narrower the axial response, the less the cross-talk between two 

adjacent sections of the images and therefore the higher the axial resolution 

[22]. 
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The axial cross-sections of the 3D OTF of CM, DFMM and QFMM, 

C(0,0,s), normalized by C(0,0,s) are shown in Figure 5.3, for a point detector 

and finite-size detector, respectively. When vd = 0, as expected, all the C(0,0,s) 

are cut off at the frequency of 1. However, the ones for DFMM and QFMM   

overlap each other and are broader than CM, implying that compared with 

CM, the improvement of axial resolution of DFMM and QFMM are the same. 

As vd increases, C(0,0,s) of QFMM becomes even slightly broader than for 

DFMM, showing that the optical sectioning property of QFMM can be better 

than DFMM.   
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 Figure. 5.3 The axial cross-sections of the 3D OTF of CM, DFMM and 
QFMM for (a) a point detector; (b) a finite size detector with vd = 3. 

 

An alternative model for the determination of the axial resolution is to 

image a thick uniform fluorescent layer scanned in the axial direction [23]. In 

this case, the sharper axial response of the layer corresponds to a higher axial 

resolution. In practice, this model is more useful as it is easier to prepare a 
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thick fluorescent layer. For a thick fluorescent layer, the corresponding object 

function Of (x,y,z) is 

 

  

O
f
(x, y, z)  1, z  0

0, z  0






,   (5.8) 

and its spatial spectrum O(m,n,s) is given by 
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The fluorescence image can be calculated by the 3D Fourier transform of 

the 3D OTF multiplied by the spatial spectrum of the object. Therefore, the 

image intensities of the thick fluorescent layer can be expressed as [20] 
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2
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
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sin(us)

s0
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where sc is the axial cut-off spatial frequency. Here sc=1. 
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Figure 5.4 Images of a thick fluorescent layer for CM, DFMM and QFMM 
with (a) a point detector; (b) a finite size detector with vd = 3. 
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Figure 5.4 describes the images of a thick fluorescent layer for CM, 

DFMM and QFMM with various detector sizes. It can be noticed that both 

DFMM and QFMM can obtain a better axial resolution than CM, irrespective 

of the detector size. Also, for a point detector the axial resolution is the same 

for DFMM and QFMM. When the detector size increases, the axial resolution 

of QFMM becomes slightly superior to DFMM. For example, when vd = 3, 

compared with CM, the gradient of the image at u = 0 is improved by 23.4% 

and 27.2% for DFMM and QFMM, respectively. 

 

5. 5 Transverse resolution  

 

 The image performance of FMM can be demonstrated by simulating the 

image of a radial spoke pattern. Assume that a thin radial spoke pattern can 

emit fluorescence light with a strength ( , , 0)f x yo v v u  . The image of the 

radial spoke pattern is then given by [24]  
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where 3  denotes the 3-D convolution operation. Fig. 5.5 compares the 

images of a radial spoke pattern at the focal plane for CM, DFMM and 

QFMM, respectively, for various values of the detector radii vd. It can be 

noticed that the transverse resolution of DFMM is asymmetric due to the 

asymmetric property of the two D-shaped illumination apertures. In DFMM, 

super-transverse resolution can be obtained in the horizontal direction. 
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However, it is gradually degraded when deviating from the horizontal 

direction to the vertical direction. The different resolution in horizontal and 

vertical direction may cause a confusing inspection in biological science or 

medical diagnosis. However, in QFMM, when vd = 3 the transverse resolution 

remains nearly the same in different directions, both of which are superior to 

CM.  

(a) (b) (c) 

(d) (e) (f) 

 Figure 5.5 Images of a radial spoke pattern at the focal plane for (a) CM 
with a point detector; (b) DFMM with a point detector; (c) QFMM with a 

point detector; (d) CM with vd = 3; (e) DFMM with vd = 3; (f) QFMM with vd 

= 3. The horizontal and vertical axes are in units of v. 

 

Theoretically, the transverse resolution in confocal fluorescence imaging 

is determined by the transverse cutoff spatial frequency and transverse 

response of the 3D OTF. One of the methods for quantitatively characterizing 

the transverse resolution is to consider the image of a sharp and straight edge 

scanned in the focal plane [25]. Here we first consider the image of a thick, 

straight and sharp fluorescent edge, then move to a thin, straight and sharp 
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fluorescent edge. Since the 3D OTF for FMM is not central-symmetrical, we 

consider the images of an edge oriented along the vertical (Iy) and horizontal 

(Ix) directions for DFMM, and the images of edge oriented along the a 

direction (Ia) and b direction (Ib) for QFMM (in Figure 5.1). 

Consider a thick, straight and sharp fluorescent edge scanned in the focal 

plane. The corresponding image intensities of the edges of DFMM [20] can be 

expressed as: 
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 (5.12) 

where lc is the transverse cut-off spatial frequency. The expression for Ia is 

same as for Ix, while Ib can be expressed in the same form as for Iy by turning  

C(m,n,s) through 45 degrees.  

 

Figure 5.6 Image of a thick fluorescent edge in CM, DFMM and QFMM for (a) 
a point detector and (b) a finite size detector with vd = 3. 
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The single-photon fluorescence images of a thick edge in QFMM, 

compared with CM and DFMM, for a point detector and a finite size detector 

with vd = 3, respectively, are shown in Figure 5.6. The value of the image 

intensity is normalized to unity by its value far from the edge. The intensity at 

the edge is one half of its value far from the edge, as is expected for incoherent 

imaging [20]. It can be seen that for a given size of detector, the images 

obtained by either DFMM or QFMM are sharper than by CM, despite the 

orientation of the edge. For DFMM, when the edge is orientated along the 

vertical direction (Iy), super-resolution can be obtained. Compared with CM, 

the gradient of the image at v = 0 is improved from 45.9% for a point detector 

to 108.8% for vd = 3. However, when the edge is oriented along the horizontal 

direction (Ix), only a slight improvement in transverse resolution can be 

obtained. In this case, the improvements of the gradient of the image at v = 0 

is only 10.4% and 10.3% for a point detector and vd = 3, respectively. The 

asymmetric property of the DFMM system sometimes may cause confusion 

for imaging. However, for QFMM, a high transverse resolution can also be 

obtained, meanwhile keeping the resolution nearly the same in different 

directions when the normalized detector size is smaller than 3, which is always 

the case in practice. The mean improvement of the gradient of QFMM in 

different directions is 17% and 37.5% for vd = 0 and vd = 3, respectively. 

Notes that as vd increases, Iy and Ia become sharper at the cost of increasing the 

strength of a hump near the edge. This phenomenon is mainly caused by the 
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modulation and demodulation process. However, compared with DFMM, the 

strength of the hump near the edge for QFMM is dramatically reduced, thus 

further improving the image quality.  

For the case of a thin, straight and sharp fluorescent edge scanned in the 

focal plane, the corresponding image intensities of the edges in the focal plane 

for DFMM can be derived as [20]: 
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 (5.13) 

where C2 (m,n) denotes the two-dimensional in-focus OTF of the DFMM, 

given by the projection of the 3D OTF C(m,n,s) in the focal plane. The 

expression for Ia is the same as for Ix, while Ib can be expressed in the same 

form as Iy by turning C2 (m,n) through 45 degrees. 

 

 Figure 5.7 Image of a thin fluorescent edge in CM, DFMM and QFMM for 
(a) a point detector and (b) a finite size detector with vd = 3. 
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Figure 5.7 compares the single-photon fluorescence images of a thin edge 

obtained by CM, DFMM and QFMM, for a point detector and a finite-sized 

detector, respectively. The value of the image intensity is normalized to unity 

by its value far from the edge. When the edge is orientated along the 

horizontal direction, the image (Ia) is slightly sharper in QFMM than CM and 

DFMM (Ix) for a point detector. As the detector size increases, Ia becomes 

much sharper in QFMM than CM and DFMM (Ix), indicating a better 

transverse resolution can be obtained with QFMM in vertical direction. Again, 

it should be noticed that the transverse resolution of DFMM is not equal in 

different directions due to the asymmetric properties of the D-shaped apertures. 

This phenomenon may cause asymmetric image deformation and confusion in 

biological research and medical diagnosis. As the detector size increases, the 

resolution difference for different directions becomes larger, indicating a 

larger imaging asymmetry. However, in QFMM, the transverse resolution is 

the same in the horizontal direction and the transverse direction, but has a 

small difference in the 45 degree direction. It is noted that if vd < 3, which is 

usually used in practice, the difference between Ia and Ib remains sufficiently 

small, thus the transverse resolution improvement of QFMM can remains 

nearly the same in different directions.  
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5. 6 Background rejection capability 

 

The measurement of background signal is one of the methods to 

characterize imaging penetration depth. In this section, a scattering model 

called integrated intensity is introduced to quantitatively characterize the 

capability of background rejection for an optical system. In this model, we 

only consider single scattering and neglect the multi-scattering [19, 26]. If the 

intensity image of a point is I (v,u), then the contribution to the background in 

the focal plane from a distribution of particles a distance u away is [19]  

 
  
I

int
(u)  I(v,u)v dv

0

 . (5.14) 

For a thick object focused at the top with thickness u0, the total 

background detected can be given by: 

 
  
I

bgd
(u

0
)  I

int
(u)du

0

u0 .  (5.15) 

The total background detected by different optical systems with various 

detector sizes are compared directly in Figure 5.8, normalized by the intensity 

at the focal point.  It can be noticed that compared with CM, the background 

signal can be suppressed by either DFMM or QFMM. For instance, given u0 = 

15 when vd = 0, the background signal is reduced to 84.1% and 72.6% for 

DFMM and QFMM, respectively. As the detector size increase to vd = 3, the 

background signal is further reduced to 53.6% and 67.3%, respectively. It 

should be pointed out that compared with DFMM, QFMM can nearly maintain 
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the system to be centro-symmetric at the cost of reducing the background 

rejection capability. However, as vd increases, the relative reduction of 

background rejection becomes smaller.  

 

Figure 5.8 The total background normalized by intensity at focal point for 
CM, DFMM and QFMM at different values of vd : (a) a point detector; (b) a 

finite size detector with vd = 3. 

 

5. 7 Signal Level 

 

When the detector pinhole size increases, both the signal and background 

increase. Therefore, in practice, the concept of signal level is introduced to 

describe the imaging properties [27]. The signal level for a planar object can 

be derived by considering the object to be a thin uniform fluorescent sheet in 

the focal plane [28], and is given by: 

 
  
(v

d
)  C(m  0,n  0,s) ds

0

sc ,  (5.16) 

where sc is the axial cut-off spatial frequency.    



114 
 

 

Figure 5.9 Signal level from a thin fluorescent sheet for DFMM and QFMM 
as a function of detector sizes. 

 

Figure 5.9 compares the signal level  in QFMM with DFMM, as a 

function of normalized detector radius vd. It can be seen that as the detector 

size increases, the signal level in both DFMM and QFMM first increases then 

decreases. The maximal value occurs at vd around 2.8 in DFMM, while it is 

around 3.8 in QFMM. The reason for the occurrence of the peak signal level is 

because as the detector size increases, the negative value of both DFMM and 

QFMM becomes large enough to affect the image formation. Thus in practice, 

to obtain high transverse resolution, the normalized detector pinhole radius 

should not exceed 2.8 in DFMM and 3.6 in QFMM. In addition, the signal 

level in QFMM is much bigger than that in DFMM, especially with larger 

detector sizes. For example, when vd = 1, the signal level for QFMM is 

increased by 31.8% compared with DFMM, while it is increased to 58.9% 

when vd = 2.8. The signal level from a sheet is higher for QFMM because the 
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pupil is more spread out, so IPSF is more concentrated. This indicates that to 

obtain the same amount of signal, QFMM can reduce the illumination 

intensity, thus can effectively reduce photon-damage and photo-bleaching. 

Besides, when the detector pinhole size is larger than 2.8, it is better to utilize 

quadrant apertures than D-shaped apertures.  

 

5. 8 Conclusion 

 

In this chapter, we introduce one-photon focal modulation microscopy 

with quadrant apertures (QFMM) and D-shaped apertures (DFMM) Their 

imaging performance is analyzed based on diffraction theory. Numerical 

simulation results show that QFMM can simultaneously provide better axial 

resolution and transverse resolution than normal confocal microscopy. Besides, 

due to the symmetric geometry of the quadrant apertures, the spatial resolution 

in QFMM is identical in both horizontal direction and vertical direction. When 

the normalized detector pinhole size is smaller than 3, which is usually used in 

practice, QFMM can maintain the system as centro-symmetric. Thus, QFMM 

can greatly reduce the confusion caused in DFMM, which has a transverse 

resolution in horizontal direction superior to that in vertical direction. 

Additionally, the investigation of the background rejection capability 

demonstrates that compared with confocal microscopy, both DFMM and 

QFMM can enhance the background rejection, thus increasing the imaging 
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penetration depth. Note that compared with DFMM, the background rejection 

capability of QFMM is slightly reduced. However, the relative reduction is 

decreased as the detector pinhole size increases. Finally, the analysis of signal 

level shows that compared with DFMM, QFMM can effectively improve the 

signal level, implying that QFMM can reduce photon-damaging and 

photon-bleaching in biological science and medical diagnosis.  
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Chapter 6 Two-photon focal modulation microscopy 

  

      

6. 1 Introduction 

 

Two-photon fluorescence microscopy has become a popular tool for 

fluorescence imaging in biology and medicine. Compared with single-photon 

fluorescence microscopy, a number of significant advantages have popularized 

two-photon fluorescence microscopy. First, the nonlinear nature of two-photon 

excitation limits the fluorescence generation to the focal volume at a deep 

position within thick samples. As a result, image quality is greatly improved 

and photodamage is limited. Second, the near-infrared (NIR) photons 

employed for two-photon excitation of visible fluorescent photons are 

scattered and absorbed much less by the biological tissue than the ultraviolet 

(UV) and visible photons used in single-photon fluorescence excitation. 

Therefore, deeper penetration depth can be achieved with two-photon 

microscopy [1-2]. These unique characteristics make two-photon excitation a 

very attractive technique for biomedical imaging, especially in thick samples 

[3-4]. The imaging depth of the two-photon technique is fundamentally 

limited by the onset of out-of-focus fluorescence generation near the surface 

of the sample [5]. The simplest methods to increase the penetration depth in 

the two-photon technique are to increase the laser average power, and to 
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optimize the collection efficiency of the microscope, by for example using 

non-descanned detection. However, increasing the laser average power can 

lead to excitation saturation, photobleaching, and photodamage. Theer et al. 

have demonstrated that the decrease of the laser repetition rate for a constant 

pulse length leads to increased penetration depth, and successfully extended 

the penetration depth to 1000 m  in mouse brain [6]. Later on, Balu et al. 

increased the penetration depth in biological tissues by using longer excitation 

wavelengths [7]. Recently, Mertz et al. developed a differential aberration 

two-photon microscopy using a deformable mirror to further reject 

out-of-focus background. However, because two images are taken at different 

times, subtraction cannot fully eliminate the background [8]. This limitation 

can be overcome by the focal modulation technique, which, recently, has been 

successfully applied in single-photon fluorescence microscopy [9-12]. In this 

chapter, we extended single-photon fluorescence focal modulation microscopy 

to two-photon fluorescence focal modulation microscopy (2PFMM). A 

theoretical model for 2PFMM is established by combining scalar diffraction 

theory and a statistical model for scattering in turbid media. Image formation 

in 2PFMM is studied, showing that 2PFMM can improve the spatial 

resolution. The signal to background ratio (SNR) is also investigated. 

Compared with the conventional two-photon fluorescence microscopy, 

2PFMM can greatly reject background, arising from both ballistic and 

scattered excitation. It is possible to extend the imaging penetration depth of 
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2PM by a factor of 3, while meanwhile improving the sectioning ability and 

image resolution.  

  

Figure 6.1. Schematic diagram of two-photon focal modulation microscopy 
with annular apertures. SPM: spatial phase modulator; DM: dichronic mirror; 

L1 and L2: collection lenses; L3: objective lens; PMT: photomultiplier tube. 

 The system of 2PFMM is shown in Figure 6.1. Near-infrared light 

generated by a pulsed laser is expanded and then split into two spatially 

separated beams with an annular aperture. After passing through a spatial 

phase modulator, the two beams are subject to different phase delays. The 

excitation light exhibits an intensity modulation around the focal point. When 

the focal point is within a turbid medium, the excitation photons reaching the 
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focal point include both ballistic (unscattered) and scattered photons. The 

emitted fluorescence is detected by a photomultiplier tube (PMT), and finally 

demodulated by lock-in techniques. Only the ballistic photons contribute to 

modulated excitation intensity as they have well defined phase and polarization, 

so that the scattered light is filtered out.  

 

6.2  Ballistic light analysis 

 

6.2.1 3D Optical transfer function 

We begin our analysis by applying scalar diffraction theory under paraxial 

approximation to determine the image formation of 2PFMM. Assume that the 

first Born approximation is valid, i.e., multiple scattering and depletion of the 

incident beam are neglected. To simplify the simulation, we assume that the 

incident wavelength is exactly twice as large as the emitted two-photon 

fluorescence wavelength, i.e. we neglect the Stokes’ shift, which may result in 

a small degradation of the 3D optical transfer function (OTF). The 

corresponding 3D time-varying imaging intensity of a point object with an 

infinite size detector is given by: 



 

123 
 

 

 
  
  
 

42

22 2 2 2

2 2 * * 2

2 2 * * 2

* * 4 * * 4

( , , ) ( , ) ( , )

2

2

.

i t
a b

a b a b

i t
a b a b a b

i t
a b a b a b

i t i t
a b a b a b a b

I v u t h v u h v u e

h h h h

h h h h h h e

h h h h h h e

h h h h e h h h h e







 





 

  

  

  

 

 (6.1) 

where 2 t is the instantaneous relative phase shift of the two 

spatially-separated beams. Here the optical coordinates u and v are related to 

the true distances from the focal point r, z by (2 / ) sinv rn   , 

2(8 / ) sin ( / 2)u zn    with λ the emission wavelength, α the semi-angular 

aperture of the lens, and n the refractive index of the immersion medium. 

( , )ah v u  and ( , )bh v u  are the 3D amplitude point spread functions (APSF) of 

the two spatially separated and non-overlapping objective apertures, 

respectively. According to scalar diffraction theory and the paraxial 

approximation, these are defined by: 

 
1

, , 00
( , ) ( ) ( ) exp( / 2) ,a b a bh v u P J v iu d       (6.2) 

where the coordinate   is the distance in the pupil plane, normalized by the 

pupil radius a . Pa and Pb are the pupil functions of two objective apertures. 

For example, Pa and Pb can be an annular objective aperture with inner and 

outer radii of a  and a  ( 0 1  ), and the circular objective aperture with 

radius of a , respectively. These expressions also apply for other 

non-overlapping geometries for the pupils Pa and Pb.  
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After being demodulated at 2  frequency, the ballistic intensity can be 

given by: 

   
2

2 2* *( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,

bb b

a b a b a b

I I

h v u h v u h v u h v u h v u h v u


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 (6.3) 

where * denotes the complex conjugate operation. Note that equation 6.3 can 

also be expressed as the difference of the in-phase signal to the anti-phase 

signal, 

   

4 4

* * 2 2
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   

   
(6.4)   

It should also be mentioned, if we demodulated at 4 , the ballistic intensity 

is given by ( )4
bb a b a b a b a bI h h h h h h h hdw * * * *= +  Since Ibb can be regarded as the intensity 

point spread function, the 3D optical transfer function (OTF) for AFMM is 

simply given by the 3D Fourier transform of Ibb, which can be expressed as: 

   2 2* *
3( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,a b a b a bC l s F h v u h v u h v u h v u h v u h v u   
 

 (6.5) 

where 2 2l m n= +  is the radial spatial frequency normalized by sin /  , 

and s is the axial spatial frequency normalized by 24sin ( / 2) /  . F3
 denotes 

the 3D Fourier transform operation. 

Figure 6.2 illustrates the 3D OTF of 2PFMM with annular apertures 

( 2 / 2e= ) and D-shaped apertures ( 1d = ), compared with 2PM, 

respectively. It can be noticed that although the cut-off frequencies of the 3D 

OTF of 2PFMM are the same as 2PM, in the high frequency region, 3D OTF 
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of 2PFMM is broader than 2PM in both annular and D-shaped apertures, 

which indicates that better spatial resolution can be achieved by 2PFMM. In 

addition, annular 2PFMM has the advantage in the axial resolution, while 

D-shaped 2PFMM in the transverse resolution.  
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Figure 6.2 The 3D OTF of (a) 2PM and (b) 2PFMM with annular apertures; 
(c) 2PFMM with D-shaped apertures in m direction (n=0); (d) 2PFMM with 

D-shaped apertures in n direction (m=0). 
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6.2.2 Axial resolution 

A model for the determination of the axial resolution is to image a thick 

uniform fluorescent layer scanned in the axial direction [13]. In this case, the 

sharper axial response of the layer corresponds to a higher axial resolution. In 

practice, this model is useful as it is easy to prepare a thick fluorescent layer. 

For a thick fluorescent layer, the corresponding object function of(x,y,z) is: 

1, 0
( , , ) ,

0, 0f

z
o x y z

z


  

 (6.6) 

and its spatial spectrum O(m,n,s) is given by 

 
3( , , ) ( ( , , ))

( ) 1
( ) ( ) .

2 2

fO m n s F o x y z

s
m n

is

 




   
 

  (6.7) 

The corresponding fluorescence image is given by the 3D inverse Fourier 

transform of the product of the 3D OTF and the object spectrum. Therefore, 

the image intensities of the thick fluorescent layer can be expressed as, 

 
0

1 1 sin( )
( ) ( 0, 0, ) ,

2

cs us
I u C m n s ds

s
     (6.8) 

where sc is the axial cut-off spatial frequency. Here sc = 1. 
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Figure 6.3 Images of a thick uniform fluorescent layer scanning in the axial 
direction for two-photon excitation fluorescence microscopy (2P), 2PFMM 
with D-shaped apertures (2PDFMM), and 2PFMM with annular apertures 

(2PAFMM), respectively. 

 Figure 6.3 compares the images of a thick uniform fluorescent layer 

among 2PM, 2PFMM with D-shaped apertures and 2PFMM with annular 

apertures, respectively. It shows that the images obtained by 2PFMM with 

annular apertures and D-shaped apertures are both sharper than 2PM, implied 

that 2PFMM can improve axial resolution than 2PM. Note that 2PFMM with 

annular apertures displays sharper images than 2PFMM with D-shaped 

apertures. This confirms again that 2PFMM with annular apertures is superior 

in the improvement of axial resolution. A similar phenomenon was reported 

for one-photon focal modulation microscopy [14]. It is found that although a 

hump with a relatively big value appears near the edge surface, 2PFMM with 
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equal-area annular apertures can achieve the best the axial resolution. This is 

due to the fact that the anti-phase signal 
4

( , ) ( , )a bh v u h v u generated by 

equal-area apertures can only produce an out-of-focus background while 

keeping the intensity at the focal point zero. Thus after subtracted by the 

in-phase signal 
4

( , ) ( , )a bh v u h v u , the background of 2PFMM is suppressed 

while the intensity at the focal point keeps the maximum value.   

 

6.2.3 Transverse resolution 

The image of a sharp edge scanned in the transverse direction is 

considered, as a characterization of the transverse resolution [15]. Assume a 

thick, straight and sharp fluorescent edge scanned in the focal plane. Due to 

the non-centrosymmtric properties of two D-shaped apertures, two extreme 

cases for the orientation of an edge need to be considered. One is the 

fluorescent edge 0 ( , , )xo x y z  oriented parallel to the stripe between the two 

D-shaped apertures; the other 0 ( , , )yo x y z  is perpendicular to the stripe, 

expressed as: 

0

0

1, 0
( , , ) ,

0, 0

1, 0
( , , ) .

0, 0

x

y
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x

y
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y
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 
   


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 (6.9) 

The corresponding image intensities of the edges of 2PFMM can be expressed 

as: 
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for D-shaped apertures and 

0

1 1 sin( )
( ) ( , 0) ,

2

cl vl
I v C l s dl

l
                     (6.11) 

for annular apertures, where lc is the transverse cut-off spatial frequency.  
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Figure 6.4 Images of a thick, sharp and straight fluorescent edge scanned in 
the transverse direction for two-photon excitation fluorescence microscopy 

(2P), 2PFMM with D-shaped apertures (2PDFMM), and 2PFMM with 
annular apertures (2PAFMM), respectively. 

 The comparison of the images of a thick, sharp and straight fluorescent 

edge for 2PM, 2PFMM with D-shaped apertures and 2PFMM with annular 
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apertures is shown in Figure 6.4. As expected from the analysis of the 3D OTF, 

2PFMM can obtain sharper images than 2PM with either D-shaped apertures 

or annular apertures. However, from the view of transverse resolution, 

2PFMM with D-shaped apertures is superior to annular apertures. Note that 

for one-photon FMM, even for a point detector, compared with D-shaped 

apertures, annular apertures can simultaneously improve the transverse 

resolution and the strength of optical sectioning [14]. It is also noted that for 

2PFMM with annular apertures, the best transverse resolution can be obtained 

if the two apertures have same area ( 2 / 2e= ). 

An alternative method to characterize the transverse resolution is to scan a 

thin, straight and sharp fluorescent edge in the focal plane. The corresponding 

image intensities are 
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for 2PFMM with D-shaped apertures, and 

20

1 1 sin( )
( ) ( ) ,

2

cl vl
I v C l dl

l
               (6.13) 

for 2PFMM with annular apertures, where C2(m,n) denotes the 

two-dimensional in-focus OTF of the DFMM, given by the projection of the 

3D OTF C(m,n,s) in the focal plane.  
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The images of a thin, sharp and straight fluorescent edge are shown in 

Figure 6.5 for 2PM and 2PFMM with D-shaped apertures and annular 

apertures, respectively. It confirms that compared with 2PM, 2PFMM can 

improve the transverse resolution. Moreover, 2PFMM can achieve the best 

transverse resolution if D-shaped apertures are applied. For 2PFMM with 

annular apertures, best transverse resolution can be reached when the two 

apertures have equal area. 
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Figure 6.5 Images of a thin, sharp and straight fluorescent edge scanned in 
the transverse direction for two-photon excitation fluorescence microscopy 

(2P), 2PFMM with D-shaped apertures (2PDFMM), and 2PFMM with 
annular apertures (2PAFMM), respectively. 

 

6.3  Multiple-scattering analysis 

    The ballistic light can be determined quite accurately with the above 

formula. However, it is difficult to calculate the scattered contribution. The 
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propagation of pulsed laser radiation through turbid media has been 

investigated using several different approaches including radiative transfer 

models [16-17], and Monte Carlo simulations [18]. Recently, analytical 

methods using simple statistical concepts were developed to treat scattering in 

turbid water [19-20], and further applied to investigate the imaging depth limit 

in two-photon microscopy [21]. Assuming that scattering is dominant and 

absorption negligible, this is appropriate for most biological tissues. Assuming 

that the variance of the transverse spread for a pulsed unidirectional beam 

incident on a medium corresponds to a Gaussian distribution, the variance of 

the transverse spread ( 2
r ) and the variance of the temporal spread ( 2

 ) for a 

pulsed unidirectional beam incident on a medium with highly anisotropic 

scattering are given by [20]: 

3
2 2

3 4
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2 2 2
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t
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 
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     (6.14) 

respectively, with 2sin( / 2)   and   the scattering angle. Here z is the 

axial distance, c is the speed of light, sl  is the scattering-mean-free-path 

length, 1/ sl  , where s  is the scattering coefficient. The symbol  

represents the statistical average, i.e. the moments of  . The moments of   

can be calculated with [22]: 

1

1

1
( ) ,

2
n nx x p x dx


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where cosx   and p(x) is the scattering phase function. In biological tissue 

optics, the phase function is usually well approximated with the aid of the 

postulated Henyey-Greestein function: 

2

2 3/ 2

1 1
( ) ,

4 (1 2 cos )

g
p

g g


 


 
 

     (6.16) 

where g is the scattering anisotropy factor 

0
cos ( ) cos 2 sin ,g p d


             (6.17) 

and the normalization 
0

( )2 sin 1.p d


     The value of g varies in the 

range from 0 to 1. g = 0 corresponds to isotropic scattering and g = 1 to total 

forward scattering. Using Eq. 6.15, the second moment is given by: 
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cos ( ) (1 2 ),

2 3
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    (6.18) 

Thus 2 2(1 )g   , 4 (8 / 3)(1 )(2 )g g    . Hence the variance of the 

transverse spread 2
r  and the variance of the temporal spread 2

  can be 

reduced to: 
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The Gaussian beam can be viewed as being made up of a fan of rays travelling 

at various angles to the optical axis towards a common focus. Therefore, the 

approximation of the effective temporal and transverse spatial beam widths is: 
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where 0  and w(z) are the 21/ e  temporal and lateral widths of a pulsed 

Gaussian beam in free space, respectively. For a Gaussian beam focused at 

0z z , 
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where λ is the wavelength, 1/ sl   is the scattering coefficient, n is the 

refractive index, 0w  is the Gaussian beam waist, 21/ e
  is the far-field beam 

angle, which is defined as the angle between the beam contour w(z) and the 

optical axis. 

 Assuming that the variances of temporal and spatial broadening pertain to 

a Gaussian distribution, the intensity of the scattered light can be written as 

[23]: 
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where ( )scatP z  is the scattered light flux through a transverse plane, 

2 22 / ( )2
( )0

( ) (1 ) ,eff

eff

t z zE
scat zP z e e dt 

 

     and E is the energy in a single 

pulse.  

The total excitation intensity in conventional 2P fluorescence microscopy 

can be simply expressed as: 
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Here 
4

2 exp( 2 )bb
PM a bI h h z    is the ballistic excitation, which is the 

desired signal. The other two terms contribute to the scattered fluorescence, 

where 
2

2 2 exp( )bs
PM s a bI I h h z     and 2

ss sI I .  

The total effective excitation intensity after demodulation in 2PFMM, is 

equal to the difference between the in-phase signal and the anti-phase signal, 

and can be given by: 
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 (6.23) 

Here   2 2* *
2 exp( 2 )bb

PFMM a b a b a bI h h h h h h z     is the ballistic excitation, 

which is the desired signal.  * *
2 exp( )bs

PFMM s a b a bI I h h h h z     is related to 

the scattered fluorescence, which contributes to the background in 2PFMM. 

1/ sl   is the scattering coefficient, where sl  is the 

scattering-mean-free-path length. The term 2
ss
PFMMI  cancels, but the analogous 

term for Mertz’s differential aberration technique does not completely cancel 

because sI  is different in the two terms in the first line of Eq. 6.23. Here, we 

neglect the absorption process since in most biological tissues absorption of 

light is negligible compared to scattering. The symbol * denotes the complex 

conjugate operation. ( , )ah r z  and ( , )bh r z  are the 3D amplitude point spread 

functions (APSF) of the outer annular and central circular objective apertures, 
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respectively. According to the scalar diffraction theory and the paraxial 

approximation, these are defined by: 

 h
a,b

(r, z)  P
a,b

()
0

1

 J
0
(v)exp(iu / 2)d. (6.24) 

Here we employ an equal-area annular aperture where 2 / 2  . These 

expressions also apply for other non-overlapping geometries for the pupils Pa 

and Pb.  

 

 
Figure 6.6. The scattering light with various focus depth at 0µm, 400 µm, 600 

µm, and 1000 µm, respectively. 200sl m , n = 1.33, NA = 0.566, and 

0.9 m   

 

Figure 6.6 illustrates the scattering light ssI  with various focus depth at 

0µm, 400 µm, 600 µm, and 1000 µm, respectively. It can be noticed that the 

out-of-focus fluorescence generated by scattered light can extend to a depth 
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of several sl  and can be the overall dominating contribution. The peak of 

the scattered light does not converge on the focal point, but lies in some point 

between the surface and the focal point. As the focal depth increases, the 

depth where the peak value lies at increases.  
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Figure 6.7. The ballistic light (log value) focused at 5 sl  with 200sl m , n 

= 1.33, NA = 0.556, and 0.9 m  in (a) 2PM, and (b) 2PFMM. 

 

Figure 6.7 illustrates the ballistic light of 2PFMM compared with 

conventional 2P fluorescence microscopy focused at 5 sl , where 200sl m , 

n = 1.33, and 0.9 m  , which are typical conditions encountered in 

two-photon imaging of brain tissue. It is noticed that the ballistic excitation 

light in 2PFMM is highly concentrated around the focal point and decays 



 

138 
 

rapidly outside the focal volume. This indicates that at the same focal depth, 

2PFMM can achieve a better sectioning ability, which is a desirable behavior 

for high resolution imaging. It can be also noticed that there are some 

oscillating regions in 2PFMM compared with conventional 2P fluorescence 

microscopy, which are due to the negative values appeared in the in-phase 

signal [10].  

Figure 6.8 illustrate the variations of the total excitation light distribution 

as the focal point moves deep into the sample for 2PM and 2PFMM, 

respectively. The out-of-focus fluorescence (background) in the two-photon 

excitation technique mainly comes from the scattered light, which extend to a 

depth of several sl , and ballistic light near the surface and near the focal 

volume. For 2PM, at large imaging depth, fluorescence generated near the 

surface significantly increases, and scattered light become the overall 

dominant contribution. Thus, the imaging depth is fundamentally limited by 

the onset of out-of-focus fluorescence generation near the surface of the 

sample. However, the scattered contributions are filtered due to the 

demodulation mechanism in 2PFMM. Therefore, the near-surface 

fluorescence is not the limiting factor for 2PFMM, in which the imaging 

performance is limited by the out-of-focus fluorescence near the focal volume 

mainly. This property implies the potential for deep penetration depth with 

2PFMM. Note that 2PFMM exhibits fringes around the focal point due to the 
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diffraction pattern of the ballistic intensity point spread function, which 

confirms that scattered light is largely suppressed. 

  

(a)         (b) 

 

(c)         (d) 

  

(e)         (f) 

Figure 6.8. The variations of the total excitation (log value) with different 
focal depths in: (a) focused at 0µm in 2PM, and (b) focused at 0µm in 

2PFMM, (c) focused at 500µm in 2PM, and (d) focused at 500µm in 2PFMM, 
(e) focused at 1000µm in 2PM, and (f) focused at 1000µm in 2PFMM . 

200sl m , n = 1.33, NA = 0.566, and 0.9 m  . 

 

To reveal the background contribution of each depth slice, we introduce a 

simple scattering model, based on integrated intensity. If the intensity image 

of a point is ( , )I r z , then the contribution to the background in the focal plane 

from a distribution of particles an axial distance z away is:  
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 int 0
( ) ( , ) .I z I r z rdr


    (6.25) 

The integrated intensity can also be used to describe the background from an 

infinitely thin autofluorescent sheet.  
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Figure 6.9. The comparison of the integrated intensity of Ibb, Isb, Iss, and Itotal in 

(a) 2PM, and (b) 2PFMM. 0 1000z m , 200sl m , n = 1.33, NA = 0.566, 

g = 0.9, and 0.9 m  . 

 

The comparison of the integrated intensity of Ibb, Isb, Iss, and Itotal in 

2PFMM and 2PM is shown in Fig. 6.9. Near the surface, background 



 

141 
 

fluorescence is mainly due to ballistic light in 2PFMM, which dominates 

down to a depth of approximately one scattering-mean-free-path length. 

However, near-surface background is dominated by the out-of-focus 

fluorescence generated by scattered light in 2PM. In addition, the out-of-focus 

ballistic fluorescence is much smaller in 2PFMM. As a result, given the same 

excitation intensity the total near-surface background is 20dB smaller in 

2PFMM than in 2PM when focused at 5 sl . 2PFMM results in reduced 

out-of-focus ballistic light and a largely suppressed out-of-focus scattered light, 

which imply the potential to achieve a greater imaging depth. 

 Assuming a detection efficiency that is independent of the fluorescence 

origin, the signal to background ratio (SBR) with wide field-detection can be 

expressed by: 

 0

00

( , )
,

( , ) ( , )

bbV

total bbV

I r z dV
SBR

I r z dV I r z dV





 

 (6.26) 

where 0V  is the small focal volume, whose radius equals to the beam waist of 

the Gaussian beam. Figure 6.10 shows the SBR of 2PFMM and 2P 

fluorescence microscopy with different anisotropy, as a function of focus 

depth 0z  (Fig. 6.10a) and as a function of anisotropic factor g (Fig. 6.10b), 

respectively. It can be noticed from Fig. 6.10a that when the focal depth is 

smaller than 3 sl , the SBR of both 2PFMM and conventional 2P fluorescence 

microscopy is maintained. This is understandable, because the background 
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mainly comes from the out-of-focus ballistic light near the focal volume. 

However, the SBR is approximately 7dB higher in 2PFMM than in 2PM. This 

indicates that 2PFMM contains approximately 7dB less out-of-focus 

background, and thus exhibits a much better resolution for a focal depth 

smaller than 3 sl . When the focal depth is larger than 3 sl  but smaller than 

4 sl , the SBR in conventional 2P fluorescence microscopy begins to decay, 

because the near-surface background fluorescence begins to dominate. When 

the focal depth is larger than 4 sl , the SBR in conventional 2P fluorescence 

microscopy decays exponentially, depending on the anisotropy factor g. This 

is because the out-of-focus fluorescence generated by scattered light becomes 

dominating when two-photon excitation is focused at large focal depth. In 

contrast, the SBR in 2PFMM keeps almost constant until the focal depth is 

larger than 7 sl , where the background fluorescence mainly comes from the 

out-of-focus fluorescence generation near the surface of the sample. This 

indicates that the scattered fluorescence plays a less important role in the 

background in 2PFMM than in 2PM. Thus the SBR in 2PFMM is significantly 

improved. For example, when the focal depth 0z  equals to 6 sl , the SBR is 

enhanced by 23dB with 2PFMM. If the imaging depth limit is regarded as the 

depth where the signal (perifocal fluorescence) to background (out-of-focus 

fluorescence) ratio (SBR) of 2PM reduces to 1/10 of the surface, the imaging 

depth of 2PFMM can be increased by a factor of 2 when g = 0.01, and 3 when 

g = 0.98.  
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Figure 6.10. The signal to background ratio (SBR) in 2PFMM and 2PM: (a) 
as a function of focus depth z and (b) as a function of anisotropic factor g. 

200sl m , n = 1.33, NA = 0.566, and 0.9 m  . 

 

Figure 6.10b provides the SBR variations as a function of anisotropy 

factor g. It can be seen that the SBR decays as g increases in conventional 2P 

fluorescence microscopy, which confirms the results that with a decreasing 

anisotropy factor, the ratio of perifocal and out-of-focus fluorescence 

increases, as reported by Theer et al. [21]. However, the SBR is maintained in 
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2PFMM. This suggests that the out-of-focus fluorescence generated by 

scattered light, which is crucial factor in conventional 2P fluorescence 

microscopy, plays a minor role in the total background fluorescence in 

2PFMM. This property implies a potential for 2PFMM in the imaging of thick 

tissue in biology and medicine.  

 

Figure 6.11 The ratio of SNR in 2PFMM to SNR 2PM as a function of focus 

depth z0. 200sl m , n = 1.33, NA = 0.56, and 0.9 m  . 

 

The signal-to-noise ratio in the photon-counting mode can be written as 

[24] 

,
S

SNR
S B




      (6.27) 

Both S and B are proportional to the number of photons collected by unit time 

by a given microscope port. If a high speed modulator (eg.10MHz) is used, the 

pixel dwell-time will be very short, thus we neglect the dark count as 
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compared to the background noise. Figure 6.11 illustrates the ratio of the SNR 

in 2PFMM to SNR in 2PM as a function of the focal depth z0. It can be noticed 

that the superior of SNR in 2PFMM over 2PM is 2dB even when focused at 

the surface. As the focus depth increases, the noise rejection of 2PFMM is 

further improved, indicating a deeper penetration depth with 2PFMM 

technique. For example, when focus at 8ls, the SNR of 2PFMM is improved 

by 18dB. The enhanced noise rejection capability of 2PFMM is due to the fact 

that the use of lock-in amplifier rejects the noise components that do not fall 

on the modulation frequency. 

In one photon focal modulation microscopy, as the detector pinhole size 

increases, the signal level first increases, then decreases, leading to a 

maximum value [11, 14, 25]. However, for 2PFMM, the signal level increases 

monotonically as the detector pinhole size increases, showing in Figure 6.12. 
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Figure 6.12 Signal level for 2PFMM with a finite-sized detector pinhole. 
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6.4  Conclusion 

 In summary, we have demonstrated theoretically a focal modulation 

imaging technique to reject out-of-focus background in two-photon imaging of 

thick tissue. The theoretical comparison of signal to background ratio between 

2PFMM and 2PM reveals that using 2PFMM the imaging penetration depth of 

2PM can be extended by a factor of up to 3. An added benefit of our technique 

is that it can improve the spatial resolution due to the fact that the excitation 

light is more concentrated around the focal point and decays more quickly 

outside the focal volume. Moreover, using modulation and demodulation 

techniques can further enhance the noise rejection by reducing noise 

components that do not fall near the modulation frequency. 
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Chapter 7 Polarization effects in microscopy   

      

 

7. 1 Introduction 

 

So far in this thesis we have used scalar paraxial theory to calculate 

imaging properties of microscope systems, but in practice microscopes usually 

use high numerical aperture objectives where the paraxial theory is not really 

valid. Polarization effects are known to be an important consequence of high 

numerical apertures. Polarization will have important effects on the 

performance of FMM, which can be seen very simply from the symmetry of 

the pupils. However, here we consider 4Pi microscopy, where the role of 

polarization is even more important.   

The 4Pi microscope is well known as a way of substantially improving the 

axial resolution in confocal or two-photon microscopy [1-3]. The illumination 

is arranged to approximate a complete sphere of incoming radiation [4]. The 

three-dimensional (3D) imaging properties of 4Pi microscopy, based on a 

scalar theory, have been described in a few papers [5-6, 7], but as 4Pi 

microscopy uses high numerical aperture objectives, vectorial polarization 

effects are important. Although Refs. 1-3 gave plots of the point spread 

function for the vectorial case with plane-polarized light, comparison with 

conventional focusing was not discussed. Recently, our group has presented 

parameters that can be applied to focusing in optical systems with various 
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different polarization properties [8-10]. These three papers discussed the cases 

of plane polarized or radially polarized illumination, and mixtures of electric 

and magnetic dipole or transverse electric and transverse electric fields. All of 

these can also be applied to the 4Pi case to investigate the effects of 

polarization in different cases. Tight 3D focusing of light also has applications 

in other areas, including laser trapping and cooling [11]. 

 

7.2 Symmetry considerations 

 

The field distributions on the surface of the reference sphere for focused 

ingoing radiation for various different illumination polarizations are illustrated 

in Figure 7.1.  

In order to produce the most concentrated electric field in 3D at the focal 

point, the polarization must match up with that of an electric dipole. For the 

complete spherical case, this dipole can be oriented either in a tranverse 

direction, corresponding to an electric dipole field (ED), or in the longitudinal 

direction, corresponding to radially polarized illumination of the lens (TM0, or 

R). These two limiting cases are by symmetry completely equivalent. But if 

we implement these arrangements using a lens of limited numerical aperture, 

the angular spectrum components that are missing are different in the two 

cases. The complete magnetic dipole field concentrates all the energy into the 

magnetic field at the focus, giving a zero in electric energy density, so this 
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arrangement is undesirable for 4Pi imaging. The mixed dipole polarization 

(Mixed), which results from the focusing of plane polarized light, is a 

reasonably good approximation to the transverse electric dipole case for one 

hemisphere, but for the other hemisphere the match becomes worse the closer 

to the optical axis. Thus for plane polarized illumination, the two lenses in a 

4Pi system should each be individually illuminated with plane polarized 

radiation. This is then an approximation to the electric dipole field for the 

correct relative phase of the two components. If the two components are in 

antiphase the polarization approximates to the magnetic dipole field. Finally, 

the tranverse electric distribution TE1 can also be used. Note that this is 

fundamentally different from the TE0, azimuthally polarized case, but for 

simplicity in the following sections we refer to it as simply TE. 

Figure 7.2 shows the polarization necessary in the front focal plane of the 

lens to produce these different polarizations on the reference sphere. Note that 

instead of illuminating with plane polarized light we can use circularly 

polarized light, which corresponds to vertical and horizontal polarizations 

added in quadrature. In this case the focal spot is circularly symmetrical. A 

similar approach can be applied for the other polarizations: the equivalent 

form for TE1 is azimuthal polarization with a phase singularity (vortex) of 

charge unity. ED becomes an elliptical polarization, with ellipticity increasing 

with angle subtended at the axis, with a phase singularity superposed. 
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radial (TM0)TE1

ED Mixed

 

Figure 7.1. The electric and magnetic fields on the surface of the reference 
sphere for ingoing radiation satisfying various different polarization 
conditions. Electric field is shown in red and magnetic field in blue. 

 

mixed

ED TE1  

Figure 7.2. The electric field in the front focal plane of each lens for different 
polarization distributions. The radius of the circles corresponds to  sin 1. 

The electric field is zero at the dashed line. 
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7.3 Illumination using two counter-propagating beams 

 

We consider five important cases for the illumination. The first is the 

usual experimental arrangement of illuminating two aplanatic lenses with two 

counter-propagating beams of plane polarized light (A). The second case is 

also for plane polarized light, but with the apodization modified to optimise 

intensity at the focus (Mixed) [12]. We call this condition the mixed-dipole 

field, as it corresponds to the fields of a transverse electric dipole and a 

transverse magnetic dipole oriented at right angles to each other at the focal 

point. The third case we consider is that of electric dipole polarization, where 

the polarization is modified to increase the electric energy density at the focus 

(ED) [13-14]. In addition, another interesting case that has been considered is 

illumination with transverse electric polarized light (TE) [10]. Finally, we 

consider illumination with radially polarized light (R) [15-20]. The electric 

energy density at the focus for a given focused power (F) for all these cases 

has been presented previously [21]. F is defined so that it is unity for a 

complete electric dipole field.  

Figure 7.3 compares the behaviour for all five 4Pi cases. The electric 

dipole field ED exhibits the best performance. The mixed dipole field (Mixed) 

is slightly better than the aplanatic case A. The radial case R is only better than 

the aplanatic case if the numerical aperture is very high (above 0.97NA in air, 

corresponding to a semi-angular aperture of the system    83). The TE case 
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gives lower values of F than the other cases for high numerical apertures. For 

the liming case of     90, the values of F are 64/75, 7/8, 1, 3/4, 1 for A, 

Mixed, ED, TE, R, respectively. 
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A
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Figure 7.3. The variation in the parameters F,  Gx ,  Gy ,  GT ,  GA, and with 

angular semi-aperture of each objective lens in a 4Pi system. The dashed line 
corresponds to a numerical aperture of 1.46 in oil. A is aplanatic, Mixed is 
mixed dipole, ED is electric dipole, TE is transverse electric TE1, and R is 

radial polarization. 

 

The first two, plane polarized, cases can be treated based on Ref.[8]. But 

they are also special cases of Ref.[10], on which we base our treatment here. 

The electric field at the point with cylindrical coordinates   ,, z  in the focal 

region of a single lens can be written in terms of electric and magnetic dipole 
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components [14, 22] 

 

    

Ex  ikf ( I0 p  I0m ) ( I2 p  I2m )cos2 ,

Ey  ikf ( I2 p  I2m )sin2,

Ez  2kf ( I1p  I1m )cos,

    (7.1) 

where 

 

    

I0 p  Qp(c)(1 c2 )J0
1

1

 k 1 c2 exp ikzc dc,

I1p  Qp(c)c 1 c2 J1
1

1

 k 1 c2 exp ikzc dc,

I2 p  Qp(c)(1 c2 )J2
1

1

 k 1 c2 exp ikzc dc,

I0m  Qm(c)2cJ0
1

1

 k 1 c2 exp ikzc dc,

I1m  Qm(c) 1 c2 J1
1

1

 k 1 c2 exp ikzc dc,

I2m  0.

    (7.2) 

 

The pupil function is expressed in terms of its electric and magnetic 

dipole field components,     Qp,m(c) , expressed as functions of   c  cos , where 

 is the angle between the direction of propagation of a plane wave component 

and the optical axis. The pupil functions are defined so that   Qp (c) Qm(c) 1 
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corresponds to a mixed dipole field (Mixed) [12], which is the field of an 

electric dipole oriented along the x axis and a magnetic dipole oriented along 

the y axis. The electric and magnetic field magnitudes are axially symmetric 

and vary as   (1 cos) / 2. For any plane-polarized illumination, the electric 

and magnetic dipole components are equal. For an aplanatic system (A) with 

no pupil filter we have     Qp (c) Qm(c)  2c1/ 2 /(1 c) . Note that the pupil 

function is defined differently from those in some earlier treatments [8]. For 

the electric dipole field (ED), the magnetic dipole component is zero: 

( ) 1, ( ) 0p mQ c Q c   [13-14]. 

These formulae can be applied directly to the case of 4Pi imaging. Then 

we have for an aplanatic system (A) 

 

1/ 2

1/ 2

1/ 2

1/ 2

2
, cos 1,

  1( )
  2

, cos 1,
1

2
, cos 1,

1( )    
2

, cos 1.
1

p

m

c
c

cQ c
c

c
c

c
c

cQ c
c

c
c










   

     


   
     

      (7.3) 

 

and zero otherwise. This corresponds to the system being set up to give a 

maximum in electric field, but a zero in magnetic field at the focus. We can 

note that the axial resolution improvement of 4Pi microscopy can be explained 

by the fact that the magnetic component of the pupil exhibits odd symmetry, 

so that the magnetic dipole component cancels at the focal point. So the 
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electric field approximates to that of an electric dipole. Alternatively, if the 

system is adjusted so that the two beams are in antiphase, the electric dipole 

component cancels, and the field approximates to that of a magnetic dipole. In 

both cases the polarization is different from that produced using a deep 

paraboloid mirror with linearly polarized illumination [12]. The field in the 

focal region can be calculated directly from Eqs. 1-3. Equivalently, we can 

replace the complex exponential by a cosine for the electric dipole and i times 

a sine for the magnetic dipole components, and take the pupils as zero outside 

of the range     cos  c 1. 

For the case of electric dipole polarization (ED), we have 

 

1, cos 1,
( )    

1, cos 1,

( ) 0.

p

m

c
Q c

c

Q c



 

     


     (7.4) 

 

and zero elsewhere. We see that A and Mixed can be considered as 

approximations to ED, in all cases the electric field of the magnetic dipole 

component cancelling at the focal point. Previously we defined performance 

parameters     Gx ,Gy ,GA  that describe the parabolic widths of the central lobe 

of the focal spot in the x, y, and axial directions: 

 

    
W W0 1Gx

(kx)2

3
Gy

(ky)2

3
GA

(kz)2

3









,     (7.5) 
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the widths of the central lobe of the focused spot in different directions being 

proportional to 1/    G1/ 2 . The parameters are normalized to unity for a full 

spherical scalar wave. We can also introduce the transverse gain averaged over 

all transverse directions  

 

    GT  (Gx Gy ) / 2 ,       (7.6) 

 

and the polar gain (averaged over all directions in three dimensions) 

 

    GP  (Gx Gy GA ) / 3 (2GT GA ) / 3.    (7.7) 

 

Note that the parameter  GT  also applies for the transverse gain for 

illumination with circularly polarized rather than plane-polarized light. In this 

case the focal spot is circularly symmetrical. The eccentricity of the focal spot 

is       (1Gx / Gy )1/ 2 . The performance parameters, in terms of the moments 

of the pupils [10]  

 

    

qpn  Qp(c)
1

1

 cndc,

qmn  Qm (c)
1

1

 cndc,

       (7.8) 

 

for the 4Pi case reduce to 
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Gx 
3

4

qp0  2qp2 3qp4 + 4qm1  4qm3

qp0  qp2  2qm1

,

Gy 
3

4

3qp0  2qp2  qp4  4qm1  4qm3

qp0  qp2  2qm1

,

GT 
3

2

qp0  qp4  2qm1  2qm3

qp0  qp2  2qm1

,

GA  3
qp2  qp4  2qm3

qp0  qp2  2qm1

,

GP 1.

     (7.9) 

In general, for a system adjusted to give a maximum in electric field at the 

focus, we have the symmetry conditions qpn  0,n odd  and qmn  0,n even . 

Note that the symmetry has resulted in the polar gain being unity, independent 

of the aperture. In fact all the case considered here have this property. Thus 

transverse and axial gains are simply related, so that if one increases the other 

decreases. 

 For the case of plane polarized illumination, A and Mixed, Qp  Qm , so 

qpn  qmn  qn , say, and 
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Gx 
3

4

q0 + 4q1  2q2  4q3 3q4

q0  2q1  q2

,

Gy 
3

4

3q0  4q1  2q2  4q3  q4

q0  2q1  q2

,

GT 
3

2

q0  2q1  2q3  q4

q0  2q1  q2

,

GA  3
q2  2q3  q4

q0  2q1  q2

,

GP 1.

      (7.10) 

For the case of the electric dipole polarization (ED), we have qmn  0 , so we 

can write qpn  qn , giving 

 

    

Gx 
3

4

q0  2q2 3q4

q0  q2

,

Gy 
3

4

3q0  2q2  q4

q0  q2

,

GT 
3

2

q0  q4

q0  q2

,

GA  3
q2  q4

q0  q2

,

GP 1.

       (7.11) 

 

The parameters can alternatively be calculated by expanding the pupil into TE 

and TM components,     QTE ,TM (c), as we have described in a previous paper 
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[10]. In general for the 4Pi case, qTEn  0,n odd  and qTMn  0,n even . Then  

 

    

Gx 
3

4

qTE0  qTE2 3qTM1 3qTM 3

qTE0  qTM1

,

Gy 
3
4

3qTE0 3qTE2  qTM1  qTM 3

qTE0  qTM1

,

GT 
3

4

qTE0  qTE2  qTM1  qTM 3

qTE0  qTM1

,

GA  3
qTE2  qTM 3

qTE0  qTM1

,

GP 1.

      (7.12) 

 

For an aplanatic system A we then have   QTE (c) QTM (c)  c1/ 2  when nonzero. 

If     QTE (c) QTM (c) 1 c  when nonzero, the system reduces to Mixed. 

For the electric dipole case, qTMn  qTE (n1)  qn1 , and 

 

    

Gx 
3

4

(q0  q2 )(q0  2q2 3q4 ) 4(q1  q3 )2

(q0  q2 )2
,

Gy 
3

4

3q0  2q2  q4

q0  q2

,

GT 
3

4

(q0  q2 )(q0  q4 ) (q1  q3 )2

(q0  q2 )2
,

GA  3
q2  q4

q0  q2

,

GP 1.

   (7.13) 
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Then if     Q(c) 1 when nonzero, the system reduces to ED. 

If     QTM  0, then the electric field in the focal region is purely transverse 

(TE) for any form of   QTE , and 

 

    
Gx 

3

4

q0  q2

q0

,Gy 
9

4

q0  q2

q0

,GT 
3

2

q0  q2

q0

,GA  3
q2

q0

,GP 1. (7.14) 

 

A special transverse electric case (called TE here) is when ( ) 1TEQ c   when 

nonzero. This corresponds to 2( ) 1/(1 )pQ c c  , 2( ) 1/(1 )mQ c c   . The 

gains of these special cases are illustrated in Figure7.3.  

 For illumination with radially polarized light [17], the parameters 

developed for the radially polarized case can be used [9],   Q(c)  is the pupil 

function expressed as a function of   c  cos , that includes an apodization 

factor that depends on the design of the optical system and an additional factor 

    1 c2 . Then in general qn  0,n odd , and the gains reduce to 

 

    
GT 

3(q0  q2 )

2q0

,GA 
3q2

q0

,GP 1.      (7.15) 

 

Many different apodizations could be considered for radial polarization [23]. 

For the particular case when   Q(c) 1 c2  if nonzero, the intensity at the 

focus is maximized, and the field corresponds to that of an axially oriented 

electric dipole (called R here). Again the behaviour of the parameters is 

presented in Figure 7.3. 
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7.4 Comparison of various geometries 

 

Figure 7.3 illustrates the behaviour of the parameters for various different 

cases. The dashed vertical line is at a numerical aperture of 1.46 in oil, the 

value for a Leica lens recommended for 4Pi microscopy. We see that the 

electric energy density at the focus is greatest for the electric dipole case (ED) 

for any value of angular semi-aperture less than  90 . The transverse gain   GT  

is greatest for the radial polarization case for any aperture. The axial gain for 

all cases for low aperture is equal to 3, corresponding to   cos2 kz  fringes. 

Then as the aperture is increased, the axial gain decreases, but this is of course 

accompanied by a fall in the strength of the axial side lobes. The polar (3D) 

gain has a constant value of unity for all cases for any value of aperture. 

Values of F and   GT  at NA 1.46 are given in Table 1.  

 

 F 
 GT  (4Pi) M = F  GT  

(4Pi) 

 GT  

(single 

lens) 

% increase 

in resoln. 

aplanatic 0.746 0.713 0.532 0.573 10.4 

mixed dipole 0.747 0.729 0.545 0.581 10.7 

electric dipole 0.797 0.756 0.603 0.694 4.2 

Helmholtz 0.463 0.995 0.461 0.680 17.3 

parabolic 

mirror

0.697 0.833 0.581 0.630 13.0 

TE 0.552 0.833 0.460 0.833 0 

radial 0.612 1.032 0.632 0.821 10.8 

Table 7.1. Values of the parameters F,,  GT  and M for NA = 1.46. “% increase 

in resolution” is for 4Pi compared with the single lens case. 
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We also give values for two other plane-polarized cases, for two opposing 

systems satisfying the Helmholtz condition, and for paraboloid mirrors. Both 

these cases exhibit enhanced  GT  but reduced F. The Helmholtz apodization 

is produced by a diffractive optical element, but a similar effect can be 

obtained using a conventional refractive lens with an amplitude mask. We also 

give values in Table 1 for an overall performance parameter  M  FGT . The 

electric dipole case gives the highest value of M for all the polarizations 

considered except for radial polarization. 

The values for the gains shown in Figure 7.3 are seen to be different from 

those presented elsewhere for a single lens (non 4Pi) system [8-10]. The 

values of F are simply double those for a single lens. This is because the 

power input is increased by a factor of two in 4Pi, but the intensity at the focus 

increases by a factor of four. Although 4Pi microscopy is primarily used for its 

improved axial resolution, transverse imaging is also improved because the 

cross-components of polarization tend to cancel out. Thus previously we 

showed that   GT  for radial polarization at low NA becomes negative because 

the transverse field near the focus is stronger than the longitudinal field 

[9] .This effect does not apply for the 4Pi case. The values of the gains are for 

most cases larger than for the single-lens case. Table 1 gives some values. The 

percentage increase in resolution (defined in terms of the width of the 

parabolic central lobe) resulting from using 4Pi geometry is given: the 

improvement is greatest for the Helmholtz case (17.3%) as this case has strong 
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off-axis angular spectrum components that give strong cross components of 

polarization. We also note that all the examples presented give better 

transverse resolution than 4Pi using aplanatic plane polarized illumination: 

there is a 16.9% improvement for radially polarized illumination. 

The normalized widths of the central lobe in the different directions can 

be calculated directly from the gains as   1/ G . Figure 7.4 shows the 

transverse and axial widths for the different cases. This particular 

normalization gives transverse and axial widths for TE that are both unity for 

    90. The full-width at half-maximum (FWHM) of the focal spot is then 

given by 

FWHM 
32

2G







1/2

.     (7.16) 
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Figure 7.4. The normalized widths of the focal spot in the transverse and axial 
directions for 4Pi systems for different polarization cases. (t) corresponds to 

the transverse direction and (a) to the axial direction. The dashed line 
corresponds to a numerical aperture of 1.46 in oil. A is aplanatic, Mixed is 

mixed dipole, ED is electric dipole, TE is transverse electric 1, and R is radial 
polarization. 
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7.5 Discussion 

 

We have derived performance factors that can be used to compare the 

imaging performance of 4Pi microscopes for a variety of different polarization 

and apodization conditions. An important observation is that the transverse 

resolution is improved for 4Pi microscopy, resulting from the cancellation of 

the longitudinal electric fields (or the transverse fields for radially polarized 

illumination of the lens). 
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Chapter 8 Conclusions and suggestions for further 

work       

 

This study explored tissue optics modeling in biological tissue and cells. In 

the random non-spherical model, general functions of random non-spherical 

rough-surfaced particles with axially-symmetric properties were introduced. It 

was found that with a series of generation functions restricted by the “display 

window”, the medium can be characterized by a cluster of random 

non-spherical particles. An important feature of this generation function is that 

generally all kinds of shapes can be described completely with five 

parameters. This method can thus greatly reduce the complexity of the 

calculation and facilitate the process of tissue optics modeling in biological 

science.  

The random non-spherical model combined with the T-matrix method was 

proposed in this study to model the tissue optics properties in biological 

science. We investigated the phase function, which describes the angular 

distribution of the scattered intensity. It was found that: i) providing the same 

values of effective radius and effective variance of a size distribution, different 

size distributions have similar phase functions. Thus only two key parameters 

can provide a unified classification of all distributions; ii) phase functions are 

insensitive to the dimension-to-length ratios D/L in most of the scattering 

regions for different kinds of rough cylinder. This finding is of crucial 
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importance in terms of characterization of cylindrical particles in tissue optics 

modeling, since an average parameter can be used instead of considering 

various values of D/L for every cylindrical particle; iii) The good agreement 

between theoretical predictions with the non-spherical model and experimental 

data confirms our hypothesis that the particles’ shapes are the key contributor 

to tissue optics modeling. The theoretical results have slight differences with 

the experimental results in the forward scattering region and back scattering 

region. This may be attributed to the exististence of multiple scattering. The 

phase function for surface-equivalent spheres showed larger discrepancy with 

experiments, especially in the side-scattering and backscattering regions. This 

suggests that the scattering properties of non-spherical particles can be 

significantly different from those of equivalent spheres. Therefore, the random 

non-spherical model has the power to simulate biological tissue better than the 

spherical model. This random non-spherical model can thus contribute to the 

accurate and efficient optical description for biological science and medical 

diagnosis.  

It is acknowledged that this study did only a preliminary analysis on 

modeling tissue optics properties with random non-spherical generation 

functions and the T-matrix method. The experimental data are limited to 

mouse skeleton tissue, mitochondria and rat embryo fibroblast cell. To 

extrapolate our conclusions to other kinds of tissue, additional laboratory 

experiments on particular tissue and cells and additional calculations are 



171 
 

needed to examine the validity of this random non-spherical model. An 

extension to various biological tissue and cells with different refractive 

indexes is also recommended, since the current computational results 

pertained to a specific refractive index of typical biological tissue.  

It should be pointed out that this random non-spherical model did only a 

single scattering analysis based on the random non-spherical model. 

Therefore, for thick tissue where multiple scattering dominates, further work is 

needed to correlate the simulation to multiple scattering processes, which can 

be simplified with diffusion theory.  

This study also investigated the fractal mechanism to model the optical 

properties in biological tissue. The structure function was developed to 

describe the interaction of light and fractal aggregates. It was found that the 

second order structure function is related to the fractal dimension directly. The 

structure function is different from the correlation function that was discussed 

by Xu et al. [1] and Sheppard [2]. The relationship is of importance since it 

should help to predict the fractal properties from the second order structure 

function, which is also related to the correlation function R(r). The fractal 

model with the structure function has a wider scale of applications, since it can 

be applicable to the medium containing fractal-type aggregates; however, the 

correlation function cannot be used for the finite form of fractal sample.  

This fractal model with structure function can be also applied in the 

anisotropic case. With specific limits of small directional sensitivity, the 
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power spectrum based on the structure function can be reduced to the isotropic 

case in good accordance with the analytical expressions obtained by previous 

work [2]. These findings have provided valuable insight into fractal tissue 

optics modeling of anisotropic tissue in biological science. Based on the power 

spectrum calculated from a series of phase contrast images, optical properties, 

such as anisotropy factor and reduced scattering coefficient, can be obtained 

directly.  

The tissue fractal modeling method developed in this study is not able to 

describe thick biological tissue, where the size distribution of scatterers 

occupies a large range. The simulation results began to deviate from the 

experimental data as the thickness of the tissue increases. The deviation may 

be attributed to the existing of multiple scattering, since in thick tissue, the 

multiple scattering processes always dominate. Therefore, the assumption of 

the fractal model with structure function that single scattering processes are 

the main pattern in the medium brakes down. To keep the accuracy of the 

anisotropic fractal model, further research is needed to correlate the simulation 

to multiple scattering processes. To achieve this, a multi-fractal tissue model is 

required, where the optical properties of the thick biological tissue can be 

characterized with a multi-fractal mechanism. It is also recommended that a 

series of experiments on light scattering of different thick biological tissue be 

investigated in order to examine the validity of the multi-fractal property in 

various biological tissue and cells. 
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This study also examined the angular gating techniques in optical 

microscopy. For a confocal microscopy with angular gating technique, the 

three-dimensional coherent transfer function and three-dimensional optical 

transfer function are investigated when a pair of D-shaped apertures is used. 

The optical sectioning property, background rejection capability and signal 

level are studied when different kinds of divided apertures are used, including 

off-axis apertures, elliptical apertures and Schwartz apertures. If the pupils are 

separated by a strip of width 2d, from the performance comparison among 

D-shaped, off-axis and elliptical apertures, we find that: i) given the same 

value of d, D-shaped apertures can obtain the best optical section properties 

and background rejection capability, as well as the highest signal level. This is 

because D-shaped apertures have the largest aperture area. However, the 

above three properties can be further improved by using serrated D-shape 

aperture, due to the Poisson spot being suppressed by the serrated edge [3]; ii) 

given the same kind of divided apertures, as d increases, the background decay 

rate increases for deep defocus planes; iii) given equal area, off-axis apertures 

can obtain the best optical sectioning properties and background rejection 

capability, as well as the highest signal level.   

We also proposed a simple rule to estimate the optical sectioning and 

background rejection properties of a confocal system by using the integrated 

pupil function ( )P t , given by the integration of the pupil function ( , )P    

with respect to the anger  . The Fourier transform of ( )P t  determines the 
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optical sectioning property, while the derivative of ( )P t  determines the 

background decay rate. According to this method, Schwartz apertures, to our 

knowledge, are proposed for the first time to dramatically reject the 

background. We believe Schwartz apertures will have wide application in 

deep penetration imaging, for example, in focal modulation microscopy [4-6].  

By combining the angular gating technique with modulation and 

demodulation techniques, we investigated a high performance microscopy, 

named focal modulation microscopy (FMM). The imaging performance of 

one-photon and two-photon FMM is presented. It was found that FMM can 

simultaneously acquire conventional confocal images and FMM images. 

Experimental results for chicken cartilage showed that the imaging depth of 

one-photon FMM can be extended to around 600µm. Compared with 

conventional confocal microscopy, which is usually performed at an imaging 

depth up to a few tens of microns for subcellular imaging, FMM system 

exhibits a much deeper penetration depth. This finding is of crucial importance, 

since owing to the high penetration depth, non-invasive optical biopsies can be 

obtained from patients and ex vivo tissue by morphological and functional 

fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, 

lipofuscin, porphyrins, collagen and elastin. The simulation results suggest 

that the background of FMM decays with distance from the focal plane most 

quickly among all the microscopy technologies discussed. This property is of 

importance since it should help to reduce the cross-talk between the in-focus 



175 
 

image and out-of-focus images, thus contributing to the high spatial resolution 

and deep imaging penetration depth. The superior image performance of FMM 

has a simple explanation. In the FMM case, only the ballistic photons in the 

focal region can be detected due to their well defined phase and polarization. 

However, in confocal microscopy, some ballistic photons scattered from the 

vicinity of the focal plane can still be collected by the detector through the 

pinhole. Thus the spatial filtering effect using only a pinhole in confocal 

microscopy is not as effective as in FMM, where the spatial filtering effect is 

enhanced by a phase modulator. Moreover, detection of the in-phase signal 

after demodulation in FMM, instead of the modulation signal, gives better 

spatial resolution and deeper penetration depth, making it promising for in 

vivo imaging. In practice, the use of lock-in amplifier can further enhance the 

noise rejection by reducing noise components that do not fall on the 

modulation frequency.  

To our knowledge, we have investigated for the first time a two-photon 

focal modulation microscopy (2PFMM). The theoretical comparison of signal 

to background ratio between 2PFMM and traditional two-photon fluorescence 

microscopy (2PM) reveals that using 2PFMM the imaging penetration depth 

of 2PM can be extended by a factor of up to 3. An added benefit of our 

technique is that it can improve the spatial resolution due to the fact that the 

excitation light is more concentrated around the focal point and decays more 

quickly outside the focal volume. Moreover, using modulation and 
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demodulation techniques can further enhance the noise rejection by reducing 

noise components that do not fall near the modulation frequency. 

It should also be pointed out that the analysis of focal modulation 

microscopy is under the paraxial approximation. This approximation is largely 

true when the numerical aperture is less than 0.7. However, it loses its validity 

as the numerical aperture increases above 1. Therefore, for a system with large 

numerical aperture, vector diffraction theory is needed to be taken into account. 

It is also recommended that the focal modulation microscopy with various 

polarization conditions be established and described, which can be greatly 

different from the unpolarized cases.  

The effects of different apodization conditions and polarization 

distributions on imaging in 4Pi microscopy are also discussed, which is a 

preparation to introduce polarization effect in focal modulation technique. 

Performance parameters are derived that allow the different implementations 

to be compared. 4Pi microscopy is mainly used because of its superior axial 

imaging performance, but it is shown that transverse resolution is also 

improved in the 4Pi geometry, by as much as 25% compared with focusing by 

a single aplanatic lens. Compared with plane polarized illumination in a 4Pi 

aplanatic system, transverse resolution in the 4Pi mode can also be increased 

by about 18%, using radially polarized illumination, but at the expense of axial 

resolution. The electric energy density at the focus for a given power input can 
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be increased using electric dipole polarization, which is relevant for atomic 

physics experiments such as laser trapping and cooling. 

For the two-photon FMM, we used a statistical approach to describe the 

effects of multiple scattering. We found the results agreed well with Monte 

Carlo modeling. It would be useful to extend this approach to 1-photon 

confocal microcopy, and to investigate in detail the effects of multiple 

scattering in the comparison of different theories based on integrated intensity 

and extinction of the excitation.  
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