View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by ScholarBank@NUS

MINING PATTERNS IN COMPLEX DATA

DHAVALKUMAR PATEL

NATIONAL UNIVERSITY OF SINGAPORE

2011

https://core.ac.uk/display/48645391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MINING PATTERNS IN COMPLEX DATA

DHAVALKUMAR PATEL

(M.Tech.(Hons.),Indian Institute of Technology — Kharagpur, India)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2011

Acknowledgments

| would like to express my sincerest gratitude to everybodiyp Wwelped me throughout
my time at NUS.

First of all, | gratefully acknowledge my supervisors, Rsfor Wynne Hsu and Professor
Mong Li Lee. | thank them for their persistent support andtitmous encouragement, for sharing
with me their knowledge and experience. | have learnt a twhfthem in many aspects of doing re-
search. During the period of my graduate study, they not prdyided constant academic guidance
and insightful suggestions to my research, but also taughttaw to overcome difficulties with an
optimistic attitude.

| wish to thank Dr. Srinivasan Parthasarthy and Dr. Anthoagdfor providing research
direction as a part of their class discussion. | thank Psaflesimsoon Wong and Prof. Leong Tze
Yun. As my thesis advisory committee members, they provid@tstructive advise on my thesis
work. | also thank Professor Eammon Keogh for the fruitfglcdissions on time series data mining.

I would like to thank my family for their efforts to provide ntiee best possible educational
environment. Last but not least, | would also like to thank laty mates for providing a venue to

discuss the idea.

Contents

Acknowledgments e e e ii
SUMMANY . . . e e e v
Listof Publications e viii
Listof Figures e X
Listof Tables e Xii
1 Introduction e 1
1.1 Background e 2
1.2 Motivation e e 2
1.2.1 PatternsinintervalData 4

1.2.2 PatternsinTime SeriesData 5

1.2.3 PatternsinComplexData 7

1.3 Thesis Contributions e 9
1.4 Organization. e 11

2 RelatedWork e 13
2.1 Pattern Mining in CategoricalData cu...... 13
2.2 Pattern Mining in NumericalData 15
2.3 Pattern MininginSequenceData00, 16
231 SetofSequences e 6

232 EventSequencCe e 8

2.3.3 Setof Interval-based Event Sequences 19

2.4 Pattern Miningin Time SeriesData. oo .. 23
2.5 Pattern Mining in Dataset with Multiple Kindsof Data 25

3 Mining Patterns from IntervalData 27
3.1 Preliminaries e 29
3.2 Augmented Hierarchical Representation 33
3.3 Algorithm IEMiner e 39
3.3.1 Candidate Generation. 40

3.3.2 SupportCounting e a7

3.3.3 Optimization Strategies e 50

3.4 Algorithm IECIassifier e . 51
3.5 Empirical Studies 53
3.5.1 Experiments on SyntheticDatasets 54

3.5.2 Experiments on Real World Datasets 57

3.5.3 Accuracy of IEClassifier 61

3.6 Summary e e e e 65

4 Mining Patterns from Time SeriesData 67
4.1 Preliminaries e 70
4.2 DiscoverLagPatterns 75

4.2.1 Find All MotifsinaTime Serie¥’ 76
422 AlignMotifs 82
4.2.3 Algorithm LPMiner 78
4.3 Experimental Evaluation ca... 90
4.3.1 Efficiency Experiments 91
4.3.2 Effectiveness Experiments 0o o 92
4.4 SUMMAY . . . o e e e e e e 99

5 Mine Patterns across Different Kindsof Data 101
5.1 Preliminaries e 105
5.2 Algorithm HTMiner. e e 110

5.2.1 Algorithm MineSingle 110
5.2.2 Algorithm MineMultiple 118
5.3 Algorithm HTClassifier e 124
5.3.1 Algorithm MineEssentialSingle 126
5.3.2 Algorithm MineEssentialMultiple 127
5.4 Experimental Study e 130
5.4.1 Efficiency Experiments o . 131
5.4.2 Effectiveness Experiments i 135
55 Summary e e 214

6 Conclusions and Future Work e 145
6.1 Future Research Directions 147

Bibliography e 149

Summary

Over the last decade, there has been an enormous growthhntHstamount and the
complexity of records that is collected and processed byamsnand machines. This rapid growth
has spurred interest in complex records that involve nlaltiphds of data. Many applications from
the clinical, surveillance and bioinformatics domainsrare generating records with multiple kinds
of data. For these applications to reach their full poténive need to build effective techniques to
analyze such complex records. Frequent pattern miningfaardeing technique, is widely used
in data analysis and decision support. However, previouk Wwas focused primarily on mining
patterns from categorical data, numerical data, and segquéata. Very little attention has been
paid to mine patterns from interval data, time series dathdatasets with multiple kinds of data.
In this work, we seek to develop techniques for analyzing gemrecords where each record is a
combination of categorical, numerical, interval and tineeess data. Specifically, we address the
following questions pertaining to mining patterns from gaex records: How can we find frequent
patterns from interval data? How can we discover frequettépe from time series data? How can
we mine frequent patterns from complex records having plelkinds of data?

In the context of mining interval data, we investigate thelgem of mining temporal
patterns from interval-based event sequences. A tempattdrp is a sequence of events along

with temporal relationships specified among events. Rivetaugment a well known hierarchical

representation with additional count information to moaghtionships among events in temporal
pattern. This representation is lossless as the exaciorehips among the events from temporal
pattern can be fully recovered. Second, we propose an effigigorithm to discover frequent tem-
poral patterns from interval-based event sequences. ,Mugdlemonstrate usability of discovered

temporal patterns by building an interval-based clasdidigifferentiate closely related classes.

In the context of mining time series data, we examine thelprotof discovering groups
of motifs from different time series that exhibit some la¢ptionships. Time series motif is the
recurring pattern in a single time series. First, we defireggplattern that captures the invariant or-
dering among motifs where motifs are from different timeeserLag pattern characterizes localized
associative pattern involving motifs derived from diffetéime series and explicitly accounts for lag
across multiple time series. Discovery of lag patternsirequo find motifs from each time series.
We present an exact algorithm that integrates the ordecbneept and the subsequence matching
property of the normalized time series to find all motifs ofiwas lengths from single time series.
Next, we propose a method to discover lag pattern efficienflye proposed method utilizes in-
verted index and motif alignment technique to reduce thechespace and improve the efficiency.
Third, we show the usefulness of lag patterns discovered &atock dataset by constructing stock

portfolio that leads to a higher cumulative rate of returrire@stment.

In the context of mining dataset with multiple kinds of data introduce the notion of
heterogenous pattern that captures the associations apadtegns from different kinds of data.
First, we present a unified algorithm that systematicalbgovers heterogenous patterns in a depth-
first manner from a dataset consisting of categorical datmemical, interval and time series data.
Often times in many real-world problems frequent patterningj algorithms yield many frequent

patterns and only a subset of patterns are used in data enialsks such as classification. In view

vi

of this, we present a sequential coverage based approatover an essential set of heterogenous
patterns from dataset with multiple kinds of data. Experitakresults on two real world datasets
suggest that the proposed approach is efficient and carfisagnly improve the classification ac-

curacy compared to existing classifiers.

Vi

List of Publications

This thesis is based on the following material:
e Dhaval Patel, Wynne Hsu and Lee Mong Li: Mining Relationshgmong Interval-based
Events for Classificationln Proc. of the 28th Special Interest Group on Management Of

Data(SIGMOD) pages 98-108, 2008.

¢ Dhaval Patel, Wynne Hsu and Lee Mong Li: Finding Lag pattéros time series database.
In Proc. of the 22nd International Conference on Databasd Brpert Systems Applica-

tions(DEXA) pages 209-224, 2010.

e Dhaval Patel, Wynne Hsu and Lee Mong Li: Finding patternsnfirmultiple kinds of data
for classification. Submitted to Special Interest Group on Knowledge Discoaery Data

Mining(SIGKDD) for Review2011.
Other publications based on material discussed in thisstiaes:

e Dhaval Patel, Chidansh Bhatt, Wynne Hsu, Lee Mong Li and MdKankanhalli: Analyz-
ing Abnormal Events from Spatio-Temporal Trajectoriés.Proc. of the 8th International

Workshop on Spatial and Spatiotemporal Data Mining(SST,[udyes 120-128, 2009.

viii

e Dhaval Patel: Mining Interval-orientation pattern fromatip-temporal databasdn Proc.
of the 22nd International Conference on Database and Expgstems Applications(DEXA)

pages 190-209, 2010.

e Dhaval Patel, Wynne Hsu and Lee Mong Li: Discriminative Migta Chain in Virus Se-
quenceln Proc. of the 23rd International Conference on Tools wittif&sial Intelligence(ICTAI)

2011.

e Sheng Chang, Dhaval Patel, Wynne Hsu and Lee Mong Li: Incatimgy Duration Informa-
tion for Trajectory ClassificationSubmitted to International Conference on Data Engineer-

ing(ICDE) for Review2012.

List of Figures

Figure Page

1.1 Lag relationships among motifis,, my andmg reflecting competitor/co-operative
behavior. 6

1.2 Example of motif and lag pattern obtained from StulongeBat 7
2.1 Onerecordinintervaldata 0u... 20
2.2 Example: Eventsequence 22
2.3 Example: Eventsequence e 22
2.4 Example: Eventsequence 22

3.1 Example of temporal pattern (a) Medical domain (b) Famrdata (c) Geological

data 27
3.2 Same hierarchical representatigid “Overlap B) Overlap C” for three different

eventlists e 33
3.3 Partial enumeration of the possible cases involvingeBiesv. 35

3.4 Example of augmented hierarchical representation:(Aapverlap[0,0,0,1,0] B)
Overlap[0,0,0,1,0] C (b) (A Overlap[0,0,0,1,0] B) Overlay®,0,2,0] C (c) (A Over-

lap[0,0,0,1,0] B) Overlap[0,0,1,1,0]C 36
3.5 Example of augmented hierarchical representation 36
3.6 Examples of forming composite event with countvarigble. 37

3.7 Example of temporal patterns (a) (A Overlap[0,0,0,B)finished-by[0,1,0,0,0] C
(b)(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,1,1] C (c) (A énap[0,0,0,1,0] B) Con-
tain[1,0,1,0,0] C (d) (A Contain[1,0,0,0,0] B) Contair10,0,0] C (e) (A Con-
tain[1,0,0,0,0] B) Contain[1,0,1,0,0] C (f) (A Contain(10,0,0] B) Contain[1,0,0,1,0]

C o e e 37
3.8 Generation of frequent temporal patterns, where thémim support countis 2. . 41
3.9 Candidate generation: joining frequent pattBrto frequent patterd 43
3.10 Generated candidate patterns from two frequent pattgven in Figure 3.9. 43
3.11 Effect of Varying Minimum Support e 55
3.12 Effect of Varying Database Size (D&#k500150.32) 55
3.13 Effect of Varying Pattern Length (Dagd0k500.?2.0.32) 56
3.14 Effect of Varying Event Density (minimum support=4%). 57
3.15 Effect of Optimization Techniques (Da2@0k 500.20.0.32) 57

3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2

4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
411
412

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59

Experimentson ASLdataset e 58
Experiments on Hepatitisdataset 60
Experiments on Stulongdataset.a...... 60
Sample of temporal patterns for Hepatitis Bdisease 62
Sample of temporal patterns for Hepatitis Cdisease 62
Sample of temporal patterns for Stulong dataset 64
Timeseriesmotif. 68
Lag relationships among motifs; , mo andms reflecting competitor/co-operative
behavior. 69
TiIMme Series. e 71
Normalized Time series. i . 72
(a) Dataset of two-dimensional subsequences, (b) amingdof subsequences with

their distance value from subsequence 2 (c) distances sifilbdlequences from sub-

SEQUENCE 7 . . . o o o e e e e e 78
Motifs before and after alignment. 84
Inverted index for motifs in Fig. 4.6(b) 86
Runtime comparison between FindMotifs and OrderLigedthms. 92
Evaluation of LPMinerondataset. 93
Usability oflag Patterns discovered from real world dataset. 95
Example of motifs and lag patterns obtained from Hépddataset 98
Example of motifs and lag patterns obtained from Stubataset 99
Effect of varyingminsup 132
Effect of varyingnax_conf 133
Effect of varyingminsup 134
Evaluation results of the classifiers 137
Evaluation of classifiers on Hepatitisdataset 139
Evaluation of classifiers on Stulong dataset 140
Example of HT patterns discovered from Hepatitis datase 141
Example HT patterns discovered from Stulong dataset. 141
Effect of exploration order on classifiers’ performasice. 142

Xi

Table
1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8
59
5.10
5.11
5.12

List of Tables

Dataset with multiple kindsofdata

Example: Sequencedata
Example : Eventsequencedata

Working Databas®B
Temporal relationship between eveBtsandE;
Generating 4-patterns e e
IntermediateanSety L
Support counting afanSets using first event list from Table 3.1
Testing accuracy: HepatitisDataset
Testing accuracy: Stulong Dataset c.ow ...,

Runningexample
Subset of lag patterns considered by naive enumeration
Generated lengthizgPatterns using motifrmy
The number of Motifs anthg Patterns.

Dataset with multiple kindsofdata

Example: Dataset with multiple kinds ofdata

Generation of length 1 frequent patterns involving laarh@d of data
Transformed datasétB/. and index of motifm;
Example extension of itemsm,B}
Example extension of numerical pattéfat¢tr,,[0.36,0.40]}

K}y oo oo
Example enlargement of HT pattern{ A[D},(,0,0] using numerical data . . .
Example enlargement of HT pattern{ A[D },0,(),0] using third empty pattern . . .
Example extension of HT pattern{A,D},0,{L}0].
Algorithm Description e
Dataset Description e e

_ Overlap[0,0,0,1,0
Example extension of temporal pattdin "%

Xii

Page

Chapter 1

Introduction

Recent advances in data collection and data storage tegynishve enabled business en-
terprises, research institutes and government agencéestonulate enormous amounts of complex
records from their daily activities. Fueled by an incregsmeed to rapidly analyze and summarize
these data, researchers have turned to the field of knowldidgevery in databases. This field
is concerned with development of efficient and effectivénégues for data analysis and decision
support. These techniques can yield valid, novel, potintiseful and understandable knowledge
from the data. There are many kinds of knowledge that can bergied from data, e.g., frequent
patterns, association rules, classification rules, dlsisied outlier. A frequent pattern is a pattern
that appears in a dataset with frequency no less than a peeifisd minimum support threshold.
Recent studies have shown that the frequent patterns &té femining associations [7, 62, 95],
correlations [91], and many other interesting relatiopstamong data [84, 51]. Moreover, it helps
in data indexing [55], classification [51, 24], clusterir@y], and other data mining tasks [41, 6] as

well. Thus, frequent pattern mining has become an impodatat mining task.

1.1 Background

Frequent pattern mining was first proposed by Agrawal et al[8] to mine frequent
itemsets from categorical data. For example, a set of itesosh as milk and bread, denoted as
{milk, bread, that appears frequently together in categorical data,fiequent itemset. Later,
Agrawal and Srikant introduced a sequential pattern mipirgdplem for sequence data [10]. This
problem mines frequently occurring ordered events as fpatteA subsequence, such as buying
first a PC, then a digital camera, and then a memory card, eérast{ PC — digital camera—
memory card, if it occurs frequently in sequence data, is a frequentsetial pattern. There have
been hundreds of follow-up research publications, on uarlonds of extensions and applications,
ranging from scalable data mining methodologies [77, 19429 34, 44, 20], to handling a wide
diversity of data types [46, 80, 13, 28, 55], various extehahning tasks [35, 63, 24, 6, 94, 67, 21],
and a variety of new applications [51, 83, 22, 98, 29]. Howgelittle attention has been paid on
the study of mining frequent patterns from interval dataetiseries data and records that involve

multiple kinds of data.

1.2 Motivation

While many of the frequent pattern mining algorithms arerggdoward finding frequent
patterns from categorical data, numerical data and sequéaia, it has been noted recently that
some of the database applications from the clinical, slianeie and bioinformatics domains have
records with multiple kinds of data [43, 1, 4, 3, 2]. For exdmm patient’s record in hospital
database typically comprises of categorical data, numledigta, interval data and time series data.

One such example is the Stulong Dataset [1] obtained fronbaCHiospital. This dataset con-

2

tains complex records from the twenty years lasting lomtjital study of the risk factors of the
atherosclerosis in the population of 1417 middle aged gedfadble 1.1 presents a snapshot of this
dataset. The overall objective in this dataset is to discpedterns that describe the risk factors
for atherosclerosis cardiovascular disease. Similar plesyof complex datasets include Hepatitis
Dataset [1], Surveillance dataset [2], Drug Safety datg§ednd etc. The challenge of analyzing
these complex datasets is an immense task. Existing workdiseover itemsets, numerical item-
sets and sequential patterns from such complex datasetsevdn mining patterns from interval

data, time series data and complex data is also important.

Id | Categorical Data | Numerical Data | Interval Data Time Series Data Class

1 CVD = Yes
10

—&— Cholesterol
9 —e—LDL

Headeche Chest Pain

Value

Male, Age = 21, i s
Smoking, DailyWinelntake = 2, High Blood Pressure 6
= I\
Wine AvgSysBIdPre = 2 C)
Time 5
4
3 .
0 2 4 6 8 10 12 14
Time
2 CVD = No
6
55 —o&— Cholesterol
—=—LDL
5
4.5
Headeche ‘ ‘ High Blood Pressure o 4
Male, Age = 30, 32
NoSmoking, /lzallyéWnécle;gtake Z 0,| ¢ 5 > 35
. wvgSys| re = i
NoWine goy! Time 3
25
2

Time

Table 1.1. Dataset with multiple kinds of data

1.2.1 Patterns in Interval Data

Interval data is a set of records, where each record is arramtdgequence of durative
events, i.e. event with start time and end time. Existinggpatmining algorithms [10, 54, 14, 77]
have focused on discovering frequent patterns from instettus events, that is, events with no
duration. This assumption allows the discovered pattefpetgimplified to an ordered sequence
of events, such a§Fever— Stomach ache» Vomit}, {Headache— High Blood Pressurg etc.
However, such sequential patterns are inadequate to exfiresomplex temporal relationships in
domains such as medical, multimedia, meteorology and fearere the events’ durations could
play an important role.

For example, it has been observed that in many diabeticnpgtithe presence of hyper-
glycemia1 overlaps with the absence of glycosﬁridenoted agpresence of hyperglycem?aﬂap
absence of glycosurja This insight has led to the development of effective di@besting kits
[16]. In the case of dengue fever, knowing that there will b#earease of platelet counts on the
third day after the onset of fever, denoted{ @nset of fever "“4'¥ decrease of platelet coumts
has led to a better management of the disease. Clearly, iher@eed for a mining algorithm
that can discover complex relationships among events withtibn, also known as interval-based
events. As Allen’s interval algebra [12] captures tempoedhtion between two events, we pro-
pose an lossless representation to encode Allen’s tempaation among more than two durative

events. Furthermore, these discovered relationships earsdd to build a classifier that is able to

distinguish closely related classes and improve clastgitaccuracy.

*high concentration of glucose in the blood
Zpresence of glucose in the urine

1.2.2 Patterns in Time Series Data

Time series data is a set of records, where each record isiarsamof regularly sampled
real value observations. Time series analysis is an imporésearch agenda at the heart of many
applications drawn from diverse domains such as signalegsiog, statistics, medical, financial
applications, etc. Analysis methods can be used to sumenarignderstand the underlying context
or alternatively to make forecasts. Techniques can alsasbd to characterize associations across
two or more time series. Many real world time series dataleth@issociations among multiple time
series. For example, a common association pattern obsgrVv€t) monitoring is that an increase
in PaQ? level is followed by a decrease in PagQevel during the patient’s normal condition.
Biologists are interested in identifying interesting rigar-regulated relationships in time-varying
gene expression studies [40]. Health care practitionerénéerested in observing the causal effect
of daily air pollution level on mortality rate [52]. Doctoere interested in identifying important
trigger patterns that highlight the relationship betweearhrate and arterial blood pressure [33].
Furthermore, discovered associations might be helpfulvargety of applications, such as classi-
fying human activities in smart home environment, impletimgntrading strategy in stock market,

building classifier to differentiate closely related ckesand so on.

Recent research interests in time series data mining mewibyve indexing time series
for efficient similarity search [101], clustering time si[30, 38, 78], motif discovery [99, 57,
68, 88, 63, 27, 97], rule discovery [28, 62, 45] and time sederrelation [102, 70], and so on.
Similar to itemset in categorical data and sequential paitesequence datéime series motifis

an important primitive in time series data. Time series figthe recurring pattern(i.e., contiguous

3partial Pressure of Oxygen
“Partial Pressure of Carbon Dioxide

subsequence) in single time series. For example, Figurshbyis the time series of QLogic, Intel
and JP Morgan stocks and highlights motifs = {s11, s12, 513}, m2 = {521, 522, s23} andms =
{s31, s32, s33} in the time series of QLogic, Intel and JP Morgan stocks retsgey. Here, motif

my appears at time points 38, 55 and 112 in time series of QLagoks

o
T

Stock Price
L&
;

S13

m, QLogic Corporation

o I | | | | |
80 100 120

2 T T T T T T
2 m, Intel Corporation B

Stock Price

60
Time (in Day)
T T T T

Stock Price

m, JP Morgan Co.

" | | | | | |
80 100 120

60
Time (in Day)

Figure 1.1. Lag relationships among motifs;, my and mg reflecting competitor/co-operative
behavior.

One useful association analysis of time series data insdiveling repeated lag associ-
ations among motifs, where motifs are derived from difféergme series. For example, a closer
examination of the motifs in Figure 1.1 reveals that the sgbences from one motif occur at
a consistent lag relative to subsequences from other mdtiée, so; occurs with lag 6 relative
to s11 while s3; occurs with lag 7 relative te,;. This pattern is repeated f@g;2, s22, s32) and
(s13, $23, s33). In short, the lag relationship among the subsequences tifsnace repeated. The

existence of such invariant ordering among the motifs sstggthat there may exist some hidden

6

relationships. Further investigatioreveals that QLogic stock is competitor of Intel stock, \&hiP
Morgan stock gives higher rating for investment in IntelcktoMoreover, our experiments reveal
that stock portfolio based on lag relationships among még#ds to increase in the cumulative rate
of return on investment.

Similarly, motifs and lag patterns from medical data can $&dito characterize subgroup
of patients having the same disease. For example, considenatif given in Figure 1.2(a). This
motif is present in 33 patients from the Stulong dataset. s&éhmatients reduced their intake of
cigarettes from 10 cigarettes to O cigarette in two monthioper Out of these 33 patients, only
8 patients develop cardiovascular disease. Clearly, sigatan be considered as a risk factor for
cardiovascular disease. A pattern shown in Figure 1.2{fuces lag relationship between Diastolic

blood pressure and Skinfold. This pattern is observed inat2mts having cardiovascular disease.

.
S

—e— Number of cigarettes per week 160} —o— Diastolic blood pressure

or —&— Skinfold — above musculus triceps
150¢g
sl
140 .\&\’49/@
7k
130F
o 120
@ L
S sl 3
> > 110r
4r 100} 4
3r 90 i
2r 80 E\E\E/E\—E
1t 70F]
0 . . .
1 3 5 7 9 11 601 2 3 4 5 6
Weeks Weeks
(a) time series motif (b) lag patterns

Figure 1.2. Example of motif and lag pattern obtained fromi@tg Dataset

1.2.3 Patterns in Complex Data

Literature survey reveals that mining frequent patterosifcategorical data [39], numeri-

cal data [86], and sequence data [77, 37, 18] separatelyebawed lots of attention in recent years.

®Yahoo Finance - http://finance.yahoo.com

These pattern mining algorithms have also been extendethtouseful frequent patterns for classi-
fication [48, 98, 75, 24, 35] with improved classification a@cy. However, these algorithms only
work for the specific kind of data they are designed for. Kmayihe relationships(associations)
among patterns from different kinds of data can aid in theeustdnding of a patient’s health con-

dition.

Consider the two patterns
{Male, Smoking} and

{Headache Oueriep HighBloodPressure}.

The pattern{ M ale, Smoking} is a frequently occurring itemset [8]. Well-known algo-
rithm such as FPTree [39] can be utilized to find such fredquertticurring itemsets. On the other
hand, the patterfiH eadache Querkay ighBloodPressure} is an interval-based temporal pattern
and its discovery requires a totally different algorithnep8rately, these patterns may not raise any
alarm as there are many male smokers in the population whdguat gheir daily lives normally.
Similarly, many people suffer from headache with elevatedd pressure but they do not experi-
ence any serious consequences. However, the combinatibess two patterns reveal a different
picture. Studies have shown that a male smoker who expeseneadache with elevated blood
pressure is a likely candidate for cardiovascular dised&fescall this combination of patterns from
different kinds of data aketerogenouspatterns. Our experiments on the real world datasets show
that the heterogenous patterns discover previously unkriamewledge and significantly improve

the classification accuracy.

1.3 Thesis Contributions

The complexity of data produced by applications is rapidigwgng. Applications that
produce and leverage complex datasets are becoming whiquiTraditional frequent pattern min-
ing and optimizations are essential for realizing efficedgbrithms for analyzing complex datasets.
The challenge of analyzing complex datasets is an immeskatamuch of the existing data mining
work assume that the record consists of observations froimgéeskind of data. In this thesis, we
investigate issues related to the analysis of datasetswuittiple kinds of data. Such complex data
is commonly found in applications in clinical, surveillamdioinformatics and other domains. We
first address the problem of mining frequent patterns fraieriml data and time series data. Later,
we integrate frequent pattern mining algorithms of a sirkiiel of data to mine frequent patterns

involving multiple kinds of data. The contributions of thisesis are summarized below:

In the context of mining interval data, we investigate thelgem of mining temporal
patterns from interval-based event sequences. A tempaitalrp is a sequence of events along with
temporal relationships specified among interval eventst,kive augment a well known hierarchical
representation with additional information to model relaships among events in temporal pattern.
This representation is lossless as the exact relationahijpng the events from temporal pattern can
be fully recovered. Second, we propose an efficient algortthdiscover frequent temporal patterns
from interval-based event sequences. The proposed #lgotias efficient candidate generation
and support counting procedures and uses two optimizatmeshance the performance. Third,
we demonstrate usability of discovered temporal patteyrisuilding an interval-based classifier to

differentiate closely related classes. This work is pigsin [75].

9

In the context of mining time series data, we examine thelprotof discovering groups
of motifs from different time series that exhibit some ladptionships. Time series motif is the
recurring pattern in single time series. First, we definegadattern that captures the invariant
ordering among motifs from different time series. Lag patteharacterizes localized associative
pattern involving motifs derived from each time series axglieitly accounts for lag across multiple
time series. Second, we present an exact algorithm thajrates the order line concept and the
subsequence matching property of the normalized timessariéind all motifs of various lengths
from single time series. Third, we also propose a methoddooder lag pattern efficiently. The
proposed method utilizes inverted index and motif aligniiechnique to reduce the search space
and improve the efficiency. At last, we show the usefulnedagpatterns discovered from a stock
dataset by constructing stock portfolio that leads to adrigiumulative rate of return on investment.

This work is published in [74].

In the context of mining dataset with multiple kinds of datae introduce the notion of
heterogenous pattern that captures the associations apattegns from different kinds of data.
First, we present a unified algorithm that systematicakbgovers frequent heterogenous patterns in
a depth-first manner from a dataset consisting of catedatata, numerical, interval and time series
data. The proposed algorithm works in two stages. In thedfiegte, we mine frequent patterns from
single kind of data. The second stage utilizes the outpthefitst stage to generate heterogenous
patterns. In many real-world problems frequent patternimgialgorithms generate many frequent
patterns and only a subset of patterns are used in data angks such as classification. Thus,
we also present a mining strategy to discover the esseatiaf fieterogenous patterns from dataset
with multiple kinds of data. Our proposed algorithm is amdtive algorithm that discovers an

essential set of heterogenous patterns for classificalioeach iteration, we discover an essential

10

heterogenous pattern for classification and performsnastalimination. The instance elimination
reduces the problem size progressively by removing trgiimetances which are correctly covered
by the discovered essential heterogenous pattern. Ouriggrgal results suggest that our approach
is efficient and can significantly improve the classificatamturacy. This work is submitted to

conference for review [73].

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2riess the fundamental con-
cepts of frequent pattern and present an overview of thexuresearch activities in this area. These
activities can be divided based on data type such as catagjdeta, sequence data, interval based
event sequence and time series.

Chapter 3 presents the formal definition of temporal patiteinterval data. We describe
the problem of finding temporal patterns from interval basesht sequence and proposed the algo-
rithm in detail. The discovered temporal pattern is usedimstructing the classifier.

Chapter 4 introduces a pattern template, called as lagrpatteo capture relationship
among time series motif from different time series. We pnés@ algorithm designed for mining
the proposed patterns. We also construct a stock portfalsedb on lag patterns and increase the
cumulative rate of return on investment.

Chapter 5 introduces a pattern template, called as hetgvagepattern, to capture rela-
tionship among patterns from dataset with multiple kindslat. We present two algorithms that
mine complete frequent pattern and essential frequerdgrpatfrom dataset with multiple kinds of
data. Finally, Chapter 6 presents concluding remarks aheuhesis and provides suggestions for

future research.

11

12

Chapter 2

Related Work

Data mining, a rapidly evolving area of research, aims toalisr non-trivial, unknown
and interesting knowledge from the large real data sets [28]s discipline is an intersection of
several disciplines such as statistics, databases, mpattecognition, optimization, visualization
etc. Various techniques designed in this field such as agsmtirule mining, pattern mining, clus-
tering, classification etc have been successfully emplayegrious application domains such as
e-commerce, biology, meteorology and many more. The dataafovaries from domain to domain
and hence various pattern mining techniques are designédffrent kinds of data. In this chapter,
we review frequent pattern mining in categorical data, micagdata, sequence data, interval data,

time series data and complex records.

2.1 Pattern Mining in Categorical Data

A pattern in categorical data is a collection of various gerRor example{Bread , But-
ter} is a pattern. A pattern is interesting if it occurs frequenti data set. More specifically, a

frequent pattern is a pattern with the support value highexqual to the user defined minimum

13

support. A patter{Bread , Buttef may be frequent pattern as it frequently bought by many cus-
tomers together. Note that, frequent patterns are usedrigedessociation rule, in other word,
“Bread = Butter” association rule is discovered frofBread , Buttef frequent pattern.Down-
ward closure property of frequent pattern is an important research contributibtaioed in this
area [10]. According to this property, if a pattefhis a frequent patterns then all of it's subsets
must be the frequent. This property is utilized in varioygpathms for pruning purpose. In particu-
lar, frequent pattern of length(sizk)s used to derive frequent patterns of length(size)1. At this
stage, items in frequent pattern do not have any orderieg {Bread , Buttef = {Butter , Bread

}). Thus, pattern mining is also known as itemset mining. tihgsalgorithms can be classified into
three categories: the Apriori algorithm [7, 9], verticalmmg approach [85] and the pattern growth

approach [19].

The Apriori algorithm uses candidate generate-and-tegtoagh to explore the search
space. Frequent itemset mining can be viewed as a set comtairjoin between the transaction
data and the search space of the frequent itemset minindepmobin the k-th pass of Apriori
algorithm, the transaction database and the canditlétiemsets are joined to generate frequent

k-itemsets. The frequemtitemsets are then used to generate the candidatel-itemsets.

The vertical mining approach maintains a tid list or a tishizp for each frequent itemset.
Candidate itemset testing is performed by tid list/bitmaierisection. The main drawback of the
vertical mining approach is that it needs to maintain a largmber of tid lists/bitmaps, which
prevents it from scaling well with respect to the number afactions. Recently several techniques
have been proposed to reduce the size of tid lists/bitmapgstig vertical mining algorithms

usually change to horizontal mining if all the tid liststh&ps cannot be held in the memory.

14

The patten growth approach uses the depth-first order teghabsearch space. It adopts
the divide-and-conquer methodology. The search spaceiediinto disjoint sub search spaces.
The database is partitioned according to the sub searcle.sgaar example, there are 5 items
{a,b,c,d, e} frequent in transaction databaBd3. The search space is divided into 5 disjoint sub
search space: (1) itemset starting with(2) itemset starting witld, i.e. itemset containing but
not containinga; (3) itemset starting witla; (4) itemset starting witld; (5) itemset containing only
e. Based on this five sub search space, the database is diviel partitions. Each partition is
called a conditional database. The conditional databasa @emset, denoted asD B;, contain
all the transactions containing itemget Items beforei are eliminated from each transaction in
DB;. Conditional databas® B; is used to discover superset of item&efhis approach reduces

the database scans.

A major challenge to mining frequent itemsets from a large det is that such mining
often generates a hugh number of itemsets satisfying thermim support threshold, especially
when threshold is low. To overcome this difficulty, the cquicef closed itemset is introduced
[100, 76]. An itemsetX is closed if there exists no proper super-itemgesuch thatY” has the
same support count a. Recent interest in data mining communities is to mine dulifsessential

itemsets that are useful for classification [24, 51].

2.2 Pattern Mining in Numerical Data

Quantitative association rules are introduced to mineepadt from numeric attributes
[86, 6, 17, 90]. This approach dynamically discretized,, iinning, the numerical attribute dur-

ing mining process so as to satisfy some mining criteriah & maximizing the confidence or

15

compactness of the rules mined. Three common binning gtestean be utilized named equal
width binning, equal frequency binning and clustering lbdsimning. Very recently, an algorithm
is proposed to mine subgroup discovery in numerical domdits This approach uses sub-space

clustering method to discover a subset of frequent nunletesasets.

2.3 Pattern Mining in Sequence Data

Time plays an important role in understanding many real dvptienomena and in se-
guence data it is used to order the underlying data. Patterimgnin sequence data is concerned
with discovering the frequently recurring subsequenc8s4b, 36, 11, 62, 95]. For example , buy-
ing first a PC, then a digital camera, and then a memory carthted as{PC — digital camera
— memory card. Note that, items in pattern are ordered, so pattern is alswk astemporal
pattern or sequential pattern

Various state of the art algorithms exist to discover frexjyoatterns from sequence data.
The first few papers [10, 11] in this direction assume undeglysequence data has the form as
shown in Table 2.1, which in our approach is referred as “sege”. Later, various algorithms
[54, 31, 82, 15] were proposed by considering only singlddng sequence as shown in Table 2.2

, Which in our case is referred as “event sequence”.

2.3.1 Set of Sequences

Agrawal and Srikant in [10] introduced a problem of miningduently occurring subse-
guence pattern in the sequence database. A frequent sidjparttiern is a sequence whose occur-

rence in the given data sets is higher than the user defineshibid (i.e., minimum support). In their

16

work, they have given a set of sequences where each sequegmesants the customer transaction.
A snapshot of such data set is given in the Table 2.1. In tlasgke we have total three customers.
Apriori algorithm is designed to handle this problem ana &sown as generalized sequential pat-

tern (i.e., GSP) mining algorithm. GSP [87] is based on tleadith first principal and multi scan

approach.
Customer| June 4 June 10 June 20
C1 Laptop | MemUpgrade| Audio
Cc2 DVD Rec| MemCard | USB Key
C3 - Laptop DVD-R

Table 2.1. Example : Sequence data

A number of extensions for sequential pattern mining has Ipeeposed, for instance in
[101] vertical list representation is used to speedup the tand in [42, 77] prefix based approach
was proposed to speed up the mining algorithm for low mininsupport value. One variant of the
sequential pattern mining framework seeks to incorporat’sifeedback in data mining process.
For example, In GSP algorithm user can specify minimum ankinmam time interval constraints
between elements in a sequence. Recently, SPIRIT [36] &igliPattern Mining with regular
expression constraints) is proposed in order to mine séi@li@attern based on the regular expres-
sion specified by the user. As PrefixSpan does not incorpasses feedback in data mining task,
GenPrefixSpan in [14] is proposed to overcome this limitatio

In [101], the authors proposed the SPADE algorithm. The n@ga in this method is
a clustering of the frequent sequences based on their conpnedit and the enumeration of the
candidate sequence. SPADE needs only three scans in oreberact the sequential patterns. The
first scan aims at finding the frequent items, second scan aiifiisding the sequence of length 2

and last one associates to frequent sequences of lengthahle af the corresponding sequence

17

id, itemset id in the data base. Based on this representatitmte main memory, the support of
sequence of length is obtained by joining the Table of leng#z1 prefix who can generate this
pattern.

An interesting approach to mine sequential pattern aimscatrsively projecting the data
sequences into the smaller databases. Proposed by HaspBrea [42] is the first algorithm
considering the pattern-projecting method for mining tbeuential pattern. PrefixSpan [77] is the
latest algorithm based on this concept. Starting from theguent items of the databases, PrefixSpan
generates projected database with the remaining datarssegieThe projected database contains
suffix of the data sequences from the original databases.piduess is repeated on the projected
databases.

Very recently, closed sequential patterns [89] and timepkttern [37] are introduced. A
sequential patter® is closed if no supersequence Bfhas the same support & A time lag

pattern is a sequence pattern with a time information betvaggacent events in the sequence.

2.3.2 Event Sequence

A second class of approach, where Manila et al. in [54] intcedan episodic discov-
ery framework from single long order sequence. In this fraor&, the author considers a long
single sequence, such as alarms in telecommunication rletsmal purpose is to discover the fre-
guent temporal patterns. A snapshot of such data set is givEable 2.2, where total five events
{A,B,C,D,V} and sequence length is 9. In their framework, long singleisece is known as
event sequence and a temporal pattern as an episode. Adegiao be a serial (i.e., A~ B —
C) or parallel (i.e., (ABC)). Apriori based mining algonithis employed for this data (i.e., known

as WINEPI). Two notions of frequency counting for an episadediscussed: fixed width overlap-

18

ping window (i.e., sliding window) and fixed width disjointimdow. An automata-based counting
scheme is also proposed to count the frequency of the episactrding to this scheme for se-
rial episode, it takes @) space and Q(.l.k) time to compute the frequency of a set having total
k elements, each element is of lendthndn is the length of event sequence. They utilized the

discovered frequent episode to analyze the alarm data Brodbiemunication data.

Tme | 1|3|4|5|7|11|12|14|15
Event| A B|B|C|D|A|V]|A |C

Table 2.2. Example : Event sequence data

A number of extensions for event sequence mining has begroged and the detail can

be obtained from the bibliography given in [81].

2.3.3 Set of Interval-based Event Sequences

The above two basic classes of problems have greatly fuesedrch in sequential pattern
mining. Most of the data mining algorithms, such as Apri@EP, PrefixSpan, FreeSpan, SPADE
consider events as instantaneous events(i.e., duradiohtedice, all previous approaches mine se-
guential pattern considering ortlgefore” and“equal” temporal relations between them. Recently,
a few papers utilized duration of event directly or indihgéh sequential patter mining. Next we
discussed various attempts made in this direction and @molvith those approaches. A sample
snapshot of one transaction we considered in our approaybeis in Figure 2.1.

First, Kam et. al. [46] discovers frequent temporal patdiy considering the event dura-
tion. Independently, Panagiotis et. al. [72] proposed tHeR$ algorithm to mine frequent arrange-
ment of temporal relation. Briefly, both approaches useticaiist concept similar to the SPADE

algorithm with minor modification. In short, event sequeigiansformed into a vertical represen-

19

(B,8,13) | [(D,15,20)

| A0100 | [(C1221) |

\ l l l l \
0 5 10 15 20 25

Figure 2.1. One record in interval data

tation (a.k.a., id-list), such as an event A's id-list camsa{¢id, [starttime, endtime]}. Then, id-
list of one event is merged with id-list’'s of other events emgrate temporal pattern between them.
Thus, the temporal pattern betwedrand B has a id list af tid, < [A.starttime, A.endtime],
[B.starttime, B.endtime] > }. This is the basic step in both approaches. New patters aer-ge
ated by combining the current frequent patterns’s id-lighvihe id-list of single frequent pattern.

The problems with the both approaches are

e As the length of temporal pattern increases, the seconapahlist representation will also
increase. Itis true that, the length of id-list of longer paral pattern is less, but still travers-

ing long second part of id-list is time consuming process.

e New frequent pattern is generated by combining id-list efjfrent pattern at current level
with the id-list of single frequent event. It should be notkdt length of id-list of single
frequent event is still long. Scanning this long list doesgive good performance. It is also
obvious now that the pattern generation in their approachdgferent than the traditional
SPDAE algorithm. SPADE combines two patterns at the sarme texgenerate the frequent
pattern for next level, while both the above algorithm cameba frequent pattern at current

level with the frequent pattern at level 2 or'1.

Yin Paper [72], H-DFS it is not clear which level they utilizted pattern generation.

20

e Discovered temporal pattern by Kam et. al. is ambiguous asgabout in [93].

Hoppner et al. [13] considers the duration of an event toadisctemporal rule from the
single event sequence. In their approach, if similar evemslap or meet, the events are merged
into a larger segment. Author also proposes the extensiafefioe the constraint patters such
as, if event A follows event B within 10 second then in next 20and event C follow events A.
Cohen [71] proposes an algorithm to discover significantgmasite fluent from the underlying event
sequence. They apply the composite relation approach tesept the longer frequent sequence.
A similar approach is used in [56] for mining composite nelatfrom the movement of the video
data. The works [71] and [56, 49] are based on the lossy kil representation. In short, all
these algorithms are based on the ambiguous pattern anieltstine performance.

Recently, Shin et. al. in [93] proposed an algorithm call@&i€fix identical to PrefixS-
pan algorithm for mining non-ambiguous temporal patteamfinterval-based events. Note that,
Lossless hierarchical representation in our case mearsseggiation is non-ambiguous. To obtain
the non-ambiguous pattern, first the given event sequencenigerted into sequence. For exam-
ple, the sequences given in Figure 2.2 and 2.3 is convertetito< B+ < A— < B—) and
(A+ < B+ = A— < B—). A+ denotes the As start time anti— denotes A's end time. For com-
plex sequence such as given in Figure 2.4 is convertédto< B+ = C+ < A— < B— < C—-).
This converted sequence is known as the temporal sequettogiimpproach. Clearly this conver-
sion double the length of event sequence as well increassthplexity of string matching. It also
increases the complexity if similar events overlap.

Next, TPrefix discovers the single frequent events from ¢nepbral sequences obtained
from the preprocessing stage and then project the data basadh frequent single event. Again

it scans the projected database for each frequent evergsnin Then it generates all the possible

21

Figure 2.2. Example : Event sequence

A

Figure 2.3. Example : Event sequence

Figure 2.4. Example : Event sequence

candidates temporal relation (i.e., 13 allen’s tempoiatian) between temporal prefix of projected
database and discovered frequent events. Then it courfietheency of each generated candidates
by scanning again the same projected data base. It meanpregetted database is scanned twice.

First scan is comparatively easy compared to the second Sbarproblems with this approach are

1. Candidate generation process does not have any cangidatieg strategy. This increase
the support counting time. We need to generate the totalrhpdeal relations from the one

discovered frequent pattern.

2. Projected database are scanned twice. First scan ismptexy But the second scan required

sophisticated string matching technique to speed the lbogerations.

22

3. The intermediate representation of data occupied dauklmory compared to the original

size data.

All the above problems have been validated with the originghor of the paper. In short,
these recent algorithms either require high main memortote $he prefix data set or lack effective

candidate generation process or mine some spurious tehpai@rns.

2.4 Pattern Mining in Time Series Data

Many real-world applications generate time series datagfample, intensive care unit
monitoring, stock market, weather sensory instruments raady others. Various data mining
methods have been proposed for clustering time seriesnfindig based linear correlation be-
tween pairs of time series, discovering time series motiid imdexing time series for efficient
similarity search. Very few work exist in the literature tesabver patterns/rules from time se-
ries data. Based on underlying approach, they can be caeddnto clustering of time series
[28, 30, 38, 78], finding lag-based correlations in timeesefil02, 69], and motif discovery in time
series [25, 50, 27, 57, 60, 59, 58, 99].

Das et. al. in [28] made an initial attempt to discover rulesrf time series by first
obtaining all subsequences of lendglh from the given time series. These subsequences are then
clustered using K-mean clustering algorithm. For eachtetua representative pattern is obtained
using the cluster center. With that, the original time seisgransformed into a symbolic series(i.e.,
sequence) by using the cluster representative. Symbdés are then discovered from the sym-

bolic series. The main limitation of this approach is tha thles discovered are all of lenghi.

23

Furthermore, the time complexity is too high for us to extémd approach to discover the desired
lag associations across multiple time series.

Zhu et. al. in [102] aims to discover lag correlations amongtiple streams in real time.
They use fourier transform to summarize the streams andatpute their pairwise correlations.
However, this method clearly misses any lag that is longgm the window lengthw. [84] discovers
lag correlations among time series by using geometric pgobihey calculate correlation values at
various lags and use B-spline method to estimate the ctoresafor other possible lags. While this
approach discovers lag correlations among the entire teriess it does not discover frequent lag
correlations among subsequences.

Existing motif discovery approaches in time series areseidipproximate [25, 99, 57, 88]
or exact [50, 64, 63]. In approximate motif discovery, tinexiss is discretized into symbolic
sequences and most recurring subsequences are discogangdvariation of random projection
based method [25]. Lin. et. al. in [50] introduce the notidiKemotifs, that is, a motif havings**
highest count of non-overlapping occurrences. The prapakgrithm hashes all subsequences into
a table using their SAX word and then the promising bucketspancessed to discover K-motifs.
These works differ from ours in that they are approximate demling with fixed length motifs.

Recently, Mueen et. al. in [64, 63] propose algorithm to fimel éxact motifs efficiently
by limiting the motifs to just pairs of time series that areywsimilar to each other. Both algorithms
use order line and triangular inequality to reduce the digaomputations. Their methods discover
motifs of the given length. These works differ from ours imtttheir motif is a pair of the most
similar subsequence.

There are also works that extend [25] to discover approx@matlti-dimensional motifs

from multiple time series [99, 57, 68, 88]. However, noneharh considers time lag and invariant

24

ordering among motifs. Further, we do not adapt time seribsexjuences clustering method [28]
to discover lag patterns, since clustering time seriesesjuEnce is meaningless as suggested in
[32]. Our work aims to discover groups of motifs that exh#ime invariant ordering among the

motifs within each group and explicitly capture the lag agédmem.

Minnen et. al. in [59] quantized time series globally andaittd motifs seeds of vari-
able length by using a generalized suffix tree. However, alghantization tends to miss similar
subsequences that have different amplitude. Oates in Ea&ldped the PERUSE algorithm to find
recurring patterns in multivariate time series data. Thg®or@thm works directly on real values
and also extends the fixed length motifs to discover varitrigths motifs. This algorithm is not

computational efficient as pointed out in [57].

In summary, none of the existing works is able to discoverdpeated lag associations

among motifs from different time series as motivated in einoduction.

2.5 Pattern Mining in Dataset with Multiple Kinds of Data

The works in [79, 80] discover multi-dimensional sequdnpatterns from categorical
and sequence data. The algorithm discovers a pattdrom categorical (sequence) data and use
« to discover patterns from sequence (categorical) datacéjenmust contain patterns involving
both categorical and sequence data. In our approach, wedlaxed this requirement. The works
in [41, 65] mine mixture of categorical and numerical datadshon subspace clustering. All these
approaches aim to mine a complete set of patterns. Receng$hin data mining community is to
discover a subset of patterns which are essentials foriggartdata mining task [24, 35]. However,

existing algorithms mine essential patterns only from résdaving single kind of data.

25

In summary, no methods in literature is designed to minentiséegatterns from the

records involving multiple kind of data for the classificatitask.

26

Chapter 3

Mining Patterns from Interval Data

In this chapter, we describe how to discover frequent tealpetationships that are hid-
den among events with duration. We have seen that the exisiguential pattern mining algo-
rithms [10, 54, 14, 77] have focused on discovering frequatterns from instantaneous events,
that is, events with no duration. This assumption allowsdiseovered pattern to be simplified
to an ordered sequence of events, such as “fevestomach ache+ vomit”. However, such se-
guential patterns are inadequate to express the compleotahrelationships in domains such as
medical, multimedia, meteorology and finance where thetevdarations could play an important

role. First, we present the following examples of how evamadon is useful to find meaningful

knowledge.
ALP - Normal NOVL - - High Atmospehric Pressure
GPT - High ORCL - - Earthquake
(a) (b) (c)

Figure 3.1. Example of temporal pattern (a) Medical domb)rF{nancial data (c) Geological data

27

e Medical Domain: A physician has to analyze patient’s data captured ovema th order
to monitor a disease progress. For example, hepatitisnpatata [1] contains information
about 771 patients maintained over a period of 10 years. detiisset records the result of 230
in-hospital tests performed for each patient during eastt. iFor accurate data analysis and
interpretation, temporal abstraction method is used twsfoam the raw values into interval
based abstract description such as interval of “normalghthand “normalTohigh” for each
test. Once interval-based abstraction data is obtainegsighn looks for the existence of
any predefined complex temporal pattern to interpret pedidoghavior, such as temporal
pattern shown in Figure 3.1(a). Here, ALP and GPT are twolaglyuconducted tests for
hepatitis patient. Searching frequent temporal patteamgupervised manner helps physician
to discover previously unknown complex temporal patternis lalso possible to discover
frequent temporal pattern which occurs only in patient Wigpatitis B. Such pattern is useful

for performing discriminative analysis.

e Finance Domain In financial stock market, fluctuation of stock price can bedeled as
interval-based events. For example, increase in stocko®or at least three consecutive
day is denoted asl + +, decrease in stock Aprice for at least three consecutives d&a
denoted asd — —, and many more. Figure 3.1(b) shows an example of an intbaséd
pattern for the stock market. The pattern reveals that, é<ays of consecutive increase
of NOVL(Novel)'s priceoverlap with three days of consecutive increase of ORCL(Oracle)'s
price”. This pattern is useful to trader as they can easitgiiporate it in trading strategy. We

can also incorporate trader’s preference in event modédimgrform user driven analysis.

28

Many other examples exist where use of event's durationlteefiu more meaningful
knowledge, such as “Earthquake event occurs olulsing High Atmospheric Pressure event” as
shown in Figure 3.1(c). With the increasing amount of irgédata, the urgency is to design an
efficient mining algorithm that can discover frequent coaxplelationships among events with du-
ration, also known as interval-based events. Furthermbese discovered relationships could be

used to build a classifier that is able to distinguish closelgted classes.

In this chapter, we introduce the notion of temporal patiarimterval data and present
an efficient pattern mining algorithm to mine frequent tenappatterns. We also build classifier
using discovered temporal patterns to distinguish closglbted classes. The rest of the chapter is
organized as follows: Section 3.1 provides some prelindsaand definitions. Section 3.2 intro-
duces the lossless representation of temporal pattertio8&c3 describes the IEMiner algorithm
and the optimization strategies. Section 3.4 presentsdhig of IEClassifier. Section 3.5 gives

the experiment results. We summarize in Section 3.6.

3.1 Preliminaries

An eventis denoted by = (type, start, end), whereE.type denotes the type of event,
E.start and E.end denote the event’s start and end time respectively. For pbaii, 1,4) is an
event of type A. It’s start time is 1 and end time is 4.

An ordered event list EL = {F4, Es,--- ,E;,--- ,E,} is a collection of events such
that, all events inZL are sorted with respect to their start time. In case of cdrilie., two events
start at a same time), an event which ends early is selecsedifistill there is a conflict (i.e., events

having same start and end times), we ordered them usinggthemit’s type. The length df'L, given

29

by |[EL|, is the number of events in the list. For example, the lendtlirst ordered event list in

Table 3.1 is 4. In this chapter, we assume that events arg/slwdered in the event list.

Sr. No. | Ordered Event List

{(A\1,4), (B,2,5), (C,3,8), (D,6,%)
{(A\1,2), (F,3,4), (G,5,6)

{(A,1,4), (B,2,5), (C,3,8), (D,6,7), (F,9,1p)
{(A1,3), (B,2,4), (D,5,6), (F,7,8), (G,9,1p)
{(Q1,2), (C,3,4), (D,5,8)

{(P,1,2), (C,3,4), (D,5,6)

OO B WIN| -

Table 3.1. Working Database B

Relation Interval Algebra Dual Relation
E; Before E; (Ej.end < Ej.start) E; After E;
E; MeetEj (Ezend = Ej.start) Ej Met-by E;
E; OverlapE; (Ej.end > Ej.start) A (Ej.end < Ej.end) | E; Overlapped-byf;
A (Ej.start < Ej.start)

E; StartE); (Ej.start = Ej.start) A\ (Ej.end < Ej.end) E; Started-byE;
E; Finished-byE; | (E;.end = Ej.end) A (E;.start < E;.start) E; FinishE;
E; ContainE; (Ej.start < Ej.start) A\ (E;.end > Ej.end) E; During E;
E; EqualL; (Ej.start = Ej.start) A\ (E;.end = Ej.end) E; EqualE;

Table 3.2. Temporal relationship between eveiitand £;

Each event in an event list hagemporal relationship with all the other events in the
event list. Table 3.2 shows the 13 temporal relationshigsel@ by Allen [12] that can occur

between any two interval-based evehAtsand E;, i # j.

Given two eventd”; and£;, a newcomposite eventr is given as follow:E = ((E;.type
R Ej.type), start, end), whereR is temporal relationship between evefsand E;. The start

and end times of’ are given by minimuQ\;.start, E;.start} and maximumE;.end, E;.end}

30

respectively. Here(E;.type R E;.type) is a representation of composite event denoted as

E . type.

For exampleE = ((A Overlap B), 1, 5) is a composite event between events (A,1,4) and
(B,2,5). Here E’s start time is 1 (i.e., minimu#il,2}) and an end time is 5 (i.e., maximy#5}).

Also, (A Overlap B) is the representation of composite evént

Given an ordered event ligL = { Ey, E», ... ,E,} of n events, a composite event of these
n events is modeled using a hierarchical representations[4&6]. In this representation, first two
events inE'L are iteratively replaced by their composite event. Thisatiee process stops when

only one event remains iB L.

For example, consider ordered event st = {(A,1,4), (B,2,5), (C,3,8), (D,6,%)of 4
events. To obtain composite event Bf., we first replace events (A,1,4) and (B,2,5) 1. by
their composite event ((A Overlap B),1,4). Now, the updat&dis {((A Overlap B),1,4), (C,3,8),
(D,6,7)}. Next, events ((A Overlap B), 1, 4) and'(2,8) are replaced by their composite event. As
aresult, the updateB L is {((A Overlap B) Overlap C), 1, 8), (D,6,) Finally, events ((A Overlap
B) Overlap C), 1, 8) and (D,6,7) are replaced by their contpasient. Now, resultarft' L is {((((A
Overlap B) Overlap C) Contain D), 1, B)Here, ((((A Overlap B) Overlap C) Contain D), 1, 8) is

composite event o L.

Note that, hierarchical representation uses only subsiileri’'s temporal relations while
forming composite event. More specifically, we need dihverlap, Meet, Before, Contain, Finished-
by, Equal, Staft temporal relations instead of original 13 temporal relagioWhile the traditional
hierarchical representation provides an attractive amipaact mechanism to express the temporal

relations among events in composite event, the hieraichépmesentation of composite event is

31

lossless Section 3.2 explains this problem in detail and presempthposed augmented hierarchi-

cal representation.

Let databasé) B be a set of ordered event lists.t@mporal pattern T P is of the form
E.type whereE.type is a representation of composite event. The support of testhpattern? P,
denoted asup(T' P), is the number of event lists frot B that containl’ P. The length ofl'P is
given by the number of eventsTP. In this chapter, we use-pattern to denote a lengthtemporal

pattern.

For example, “(A Overlap B) Overlap C)” is a temporal pattern. It is 3-pattern as it
involves three events. Its support is 2, since only first dudl tevent lists from datasdd B shown

in Table 3.1 contain this pattern.

A subpattern of n-pattern is a representation of composite event consistirigevents
from n-pattern,k < n. For example, consider 4-pattefh= ((A OverlapB) BeforeC') Before D.
It's underlying event list is{A, B, C, D}. Here,((A Overlap B) Before C') is one subpattern of
P. Also, (A OverlapB) Before D) is another subpattern @f. Note that, fromn-pattern, we can

generaten subpatterns of length — 1.

A temporal pattern T'P is frequent if sup(T'P) > minsup. Given a minimum support
thresholdminsup and interval dataD B, we want to find the complete set of frequent temporal
patterns. Note that, a temporal pattern satisfies the dovehelasure property, i.e., if temporal

patternT P is frequent, then all its subpatterns are also frequent.

32

3.2 Augmented Hierarchical Representation

Mining temporal patterns from interval data requires urigat lossless representation to
capture the temporal relationships among events in thedmhpattern. Hierarchical representa-
tion is widely used to encode the temporal relationshipsragrmaore than two events[5, 66, 46].
However, this representation is lossy as explained below.

Assume, we have given a hierarchical representation QverlapB) OverlapC)” of an
ordered event list having three events. From this hieraathépresentation, we can infer overlap re-
lationship between events “A” and “B” as well as overlap tielaship between events “B” and “C”.
But, temporal relationship between events “A” and “C” canipe inferred. More specifically, tem-
poral relationship between events “A’ and “C” can be “befdraeet” or “overlap” relation. Based
on this discussion, Figure 3.2 represents three differgetpretations of “(A overlap B) overlap
C”. We can observe that these three different structures ti@ssame hierarchical representation.
In other words, hierarchical representatiofA(OverlapB) OverlapC)” is a lossy representation,
as the encoded representation does not preserve the ungdeadgnporal relationship among all the
events. Any mining algorithm that is based on a lossy reptaten will lead to the discovery of

many spurious patterns as non-frequent patterns may beftequent.

Overlap Count = 1

Overlap Count = 2 Meet Count = 1

Meet Count = 0
e Eoum 0 ¢ | _c |
LA Jle LA) b |

@) (b) (c)

Figure 3.2. Same hierarchical representation OverlapB) OverlapC” for three different event
lists

To overcome this problem, we augment the hierarchical sgmtation with additional
count information. We observe that the first two cases infei@u2 can be differentiated by using
anoverlap counto track the number of events in representation that agthalle overlap temporal
relationship with even€'. For example, th@verlap countfor Figure 3.2(a) and 3.2(b) is 1 and 2
respectively. Figure 3.2(c) can be differentiated by usingadditionalmeet counto indicate the

number of events in representation that mégts

An exhaustive enumeration shows that we need 5 variableselgacontain count ¢fin-
ish_by count f meet count noverlap count pandstart count go differentiate all the possible cases.
Figure 3.3 shows a patrtial listing of the various cases. Vggramnt the hierarchical representation

for a composite evenit to include the count variable as follows:

E.type = (((E1.type Rilc, f,m,o0,s] Ea.type) Rolc, f,m, 0, s] E3.type) - - -
- Rp_1lc, fym, o, s] E,.type)

We explain the proposed representation with examples. i@emBigure 3.2(a) as an event
list. First, we obtain representation of composite evemivben eventsA and B, which results in
(A Owverlap[0,0,0,1,0] B). Next, we obtain representation betweeh@uverlap[0,0,0,1,0] B)
and third eventC'. We observe that only one event (i.e., evéhtin (A Overlap|0,0,0,1,0] B)
actually overlaps an event C. Thus, overlap count = 1. Binapresentation of composite event be-
tween (A Overlap|0,0,0,1,0] B) andC'is ((A Overlap[0,0,0,1,0] B) Overlap [0,0,0,1,0] C).

In Figure 3.2(c), we have one event from Owverlap|0,0,0,1,0] B) that has overlap tempo-
ral relationship with event C, and one event that meets eRefithus, the final representation is

((A Owverlapl0,0,0,1,0] B) Overlap[0,0,1,1,0] C).

Thus, the representation of composite event in Figure &2epresented as (see Figure

3.4)

34

n|lo|lol©o|oco|lo|~|o|lo|o|o| ol o o | © nw|lo|o|© |~ |lo| o
o| o}~ ~|N|~|o|lo|~|o|o|~| o]O o|Qlo|—|@|°|o
E|lo|l~|o|~|o|lo|lo|~|oc|lOo|+~]| ©o|] ol o E|O|~|o|~|o|oO

0|0
7

Figure 3.3. Partial enumeration of the possible casesvim@l3 events
35

(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,1,0] C
(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C

(A Overlap[0,0,0,1,0] B) Overlap[0,0,1,1,0] C

Overlap Count = 1
Overlap Count = 2 Meet Count = 1

Meet Count = 0
Overlap Count = 1 C
Meet Count = 0 L ! 1
LAl |

Nie]

LA

(@) (b) (c)

Figure 3.4. Example of augmented hierarchical repredentata) (A Overlap[0,0,0,1,0] B) Over-
lap[0,0,0,1,0] C (b) (A Overlap[0,0,0,1,0] B) Overlap[@®,0] C (c) (A Overlap[0,0,0,1,0] B)
Overlap[0,0,1,1,0] C

Figure 3.5. Example of augmented hierarchical representat

Similarly, hierarchical representation for Figures 3)5825(b) and 3.5(c) is represented as
“(A Contain[1,0,0,0,0] B) Contaif, 0,0, 0,0] C”, “(A Contain[1,0,0,0,0] B) Contaif, 0, 1,0, 0]
C” and “(A Contain[1,0,0,0,0] B) Contajih, 0,0, 1,0] C” respectively. Note that, the proposed
representation does not require count information betviiegintwo events in the temporal pattern

as well as when relation ifEqual, Meet, Beforg between temporal pattern and new event. More

36

examples to illustrate the augmented hierarchical reptasen are given in Figure 3.6 and Figure

3.7.

=][] o]
j-- ﬁl_l A

i
(@ (b) T1 =AOverlap B () T2 T1 Overlap[0,0,1,0,0] C (d) T3 =T2 Contains[1,0,0,0,0] D

A] [e

Figure 3.6. Examples of forming composite event with cowantables.

Ao (sl [A]

(@) | (@ @
Figure 3.7. Example of temporal patterns (a) (A Overlap®;00] B) Finished-by[0,1,0,0,0] C
(b)(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,1,1] C (c) (A €nap[0,0,0,1,0] B) Contain[1,0,1,0,0] C
(d) (A Contain[1,0,0,0,0] B) Contain[1,0,0,0,0] C (e) (A &ein[1,0,0,0,0] B) Contain[1,0,1,0,0] C
(f (A Contain[1,0,0,0,0] B) Contain[1,0,0,1,0] C
In order to prove that, the augmented representation iseksswe use the concept of
linear ordering of an event list. Given an ordered event &slinear ordering is obtained by the

chronological order of the start and end points of the evantke list. For example, the linear

ordering of the first ordered list in Table 3.1 is:

{A+HB+HC+HA-H{B-HD+H{D-H{C-}}
where+ indicates an event’s start point andindicates an event’s end point. A representation is
lossless if we can recover the complete linear ordering efstrt and end times of all the events

which correspond to the underlying ordered event list.

37

Property | The augmented hierarchical representation is lossless.
Proof We prove the property using proof by induction.

Base case: A composite event consisting of two events itekxssThis inferred directly
from the Interval algebra between two events given in Tat#e 3

Induction step: Suppose a composite eveptconsisting ofn events is lossless. Let
E,+1 = E, Rlc, f,m,o0,s] E be a composite event consistingroft 1 events wherd- is a new
event.

Since £, is lossless, we can recover the linear ordering ofrttevents. With the new

eventE, we observe that the start time Bbfis constrained as follows:

1. E.start = E'.start for all E” whereE’ is an event inE,, and (£’ Start E)). The number of

events that satisfy this condition is given by #tart counts.

2. E.start = E'.end for all E' whereE’ is an event in&,, and (£’ Meet E). The number of

events that satisfy this condition is given by tiheet counin.

3. E.start < E'.endfor all E' whereE'’ is an eventirnt,, and (£’ OverlapFE) or (E’ Finished_By
E)or (E' ContainE) or (E’ StartE). The number of events that satisfy this condition is given

by theoverlap counb, finishedby countf, contain count andstart counts.

Based on the above, we know that there are exastlfto+s events whose end times

come after the start time df. Similarly, the end time of everft is constrained as follows:

1. E.end < E'.end for all E' whereE' is an event inF,, and (£’ ContainFE).

2. E.end = E'.end for all E’ whereE" is an event inE,, and (£’ Finished_By E).

38

In other words, there are exacttyevents whose end times come after the end time of
E. With the linear ordering ofZ,,, we can determine the position of the start and end points of
the new evenf to obtain the linear ordering df,,, 1. Hence, we have shown that the augmented

representation is losslegs.

3.3 Algorithm IEMiner

In this section, we present the proposed algorithm IEMihatefval-basedventMiner)
to discover frequent temporal patterns from interval-daseent sequences (see Algorithm 1). IEM-
iner follows an iterative approach known as level-wise geawhere frequent temporal patterns of
length ¢ — 1) are used to explore temporal patterns of lenigtiwWe first scan the databageB to
obtain all the frequent events (Line 1). These frequent tsvare stored irfreSet;. In Lines 2-8,
freSet,_1 is used to findfreSet. Here, freSet;_1 denotes the set of frequent temporal patterns

of lengthk — 1, i.e.,(k —1)-patterns. ObtainingreSet;, from freSet;_, involves two basic steps:

e First, we call functionGet NextCandidateSet to obtain an initiakanSet; from freSet;_q
(Line 3). HerecanSet, denotes the set éfpatterns that can be frequent. We term this phase

ascandidate generation

e Second, we identify the frequent temporal patterns feamSet,. ThecountSupport proce-
dure is called for each event ligtL in DB to determine the support count for each temporal
pattern incanSet(Lines 4-6). Once all thé L in D B are processed, we obtain the frequent

patterns and store them fireSet; (Line 7). We term this phase aspport counting.

Algorithm IEMiner terminates wherfreSet,_1 is empty, i.e., no frequent pattern is generated.

Finally, all generated frequent temporal patterns aremetli(Line 9).

39

Algorithm 1 Algorithm IEMiner

Input : Databasé B; minimum support thresholghinsup.

Output : frequent temporal pattefireSet
1: freSet; = {Scan databasP B and obtain all frequent everjts
2. for k=2; freSety_1 # ¢; k++do
3: canSet; < GetNextCandidateSetfreSety_1)

4. forall (eventlistE'L € DB)do

5: canSety, = countSupport(k, EL, canSety,)
6: end for

7. freSety < {c € canSety, | sup(c) > minsup }
8: end for

9: return freSet = Uy freSety

To address efficiency and scalability issues, IEMiner eygpleareful design of candi-
date generation(Line 3) and support counting proceduies(®). In addition to this, IEMiner also
employs two additional optimistic strategies to furthepiaove the performance. We have utilized
databaseD B given in Table 3.1 to explain working of IEMiner algorithmhit dataset has total 6
event lists. Assumeninsup is 2 event lists. Figure 3.8 illustrates the working of pregd algo-
rithm for finding temporal patterns iR B. Now, we discuss candidate generation, support counting

procedure and optimizations in detalil.

3.3.1 Candidate Generation

In this section, we explain howanSet, is obtained fromfreSet;_,. Algorithm Get-
NextCandidateSet(see Algorithm 2) gives the details ofickte generation process. Line 1 ini-
tializes the set of candidates to an empty set. We obtainrdguént 2-patterns from the set of
frequent(k — 1)-patterns in Line 2. Lines 3-10 generates candidapatterns from two frequent
(k — 1)-patterns and 2-pattern. All generated candidate pattgmgeturned(Line 11). The remain-

ing section explains Line 6 in detalil.

40

144

Scan DB for
count of each
event

Generate
candidateSet_2 from
frequentSet_1

|:“>

candidateSet_1

frequentSet_1

Events | sup Events | sup

A 1 Compare support A 1

B 3 count with B 3

@ 4 minimum support C 4

D 15 count D s

F 2 F 2

o h G 2

Q 1
candidateSet_2 candidateSet_2
2-patterns 2-patterns sup
e L by A Boforel00.0.00) D | 3
A Before[0,0,0,0,0] D : g 10,0,0,0, |8
A Overlap[0,0,0,1,0] C i g;fs;ﬁ%[%.%%.t.}o}?(, g
A Before[0,0,0,0,0] F 10,0,0.0,
A Befm[o 0.0,0 o] G A Before[0,0,0,0,0) G |2
B e Orle[o]0 B Scan DE to B Overlap[0,0,0,1,0] C | 2
B Btfor-a%[d[{o” i %3 count support of B Before[0.0,0,0,0] D | 3
B B(efz}riiuﬂo‘u‘olo% F each pattern B Before[0,0,0,0,0] F | 2
C Contain[1.0000]D | = g gggra:[lé[t%%{o],]o}[) D 3
C Before[0,0,0,0,0] D = Py
C Before}O.O.OEO,{l% F C Before[0,0,0,0.0] F 1
D Before[0,0,0,0,0] F g gz{zx%ggggg% 11: 3
D Before[0,0,0,0,0] G ,0,0.0,
F Before[0,0,0,0,0] G F Before[0,0,0.0,0] G | 2

candidateSet_3

3-patterns

Generate
candidateSet_3 from
frequentSet_2

I::>

A Overlap[0,0,0,1,0] B Before[0,0,0,0.0] D
A Overlap[0,0,0,1,0] B Overlap[0,0,0,2,0] C
A Overlap(0,0,0,1,0] B Before[0,0,0,0,0] F
A Before[0,0,0,0,0] D Before[0,0,0,0,0] F

A Overlap(0,0,0,1,0] C Contain[1,0,0,0,0] D
A Before[0,0,0,0,0] F Before[0,0,0,0,0] G

B Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] D
B Before[0,0,0,0,0] D Before[0,0,0,0,0] F

Generate
candidateSet_4 from
frequentSet_3

I::>

candidateSet_4

Scan DB to
count support
of each pattern

I::>

candidateSet_3

Compare support
count with
minimum support
count

J-patterns

o
=
o

A Overlap[0,0,0,1,0] B Before[0,0,0,0,0] D
A Overlap[0,0,0,1,0] B Overlap[0,0,0,2,0] C
A Overlap[0,0,0,1,0] B Before[0,0,0,0.0] F
A Before[0,0,0,0,0] D Before[0,0.0,0,0] F

A Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] D
A Before[0,0,0,0,0] F Before[0,0,0,0.0] G

B Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] D
B Before[0,0,0,0,0] D Before[0,0,0,0,0] F

Compare
support count
with minimum
support count

ORD RO R B RO DD OO O

Scan DB to

4-patterns

candidateSet_4

frequentSet_2

2-patterns

w
=
=
¢

A Overlap[0.0.0.1,0] B
A Before[0,0,0,0,0] D
A Overlap[0.0,0,1,0]
A Before[0,0,0,0,0] F
A Before[0,0,0,0,0] G
B Overlap[0.0,0.1,0] C
B Before[0,0,0,0,0] D
B Before[0,0,0,0,0] F
C Contain[1,0.0.0,0] D
C Before[0.0,0,0,0] D
D Before[0,0,0,0.0] F
F Before[0,0,0.0,0] G

C

MNNRNNWRNRN®WRN W W

frequentSet_3

3-patterns

»
=
=

A Overlap[0,0,0,1,0] B Before[0,0,0,0,0] D
A Overlap(0,0,0.1,0] B Overlap[0,0,0,2,0] C
A Overlap(0,0,0.1,0] B Before[0,0,0,0,0] F
A Before[0,0,0,0,0] D Before[0,0,0,0,0] F

A Overlap[0,0,0.1,0] C Contain[1,0,0,0,0] D
A Before[0,0,0,0,0] F Before[0,0,0,0,0] G

B Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] D
B Before[0,0,0,0,0] D Before[0,0,0,0,0 F

(SR SURN SO I SR SR RN

((A Overlap[0,0,0,1,0] B) Overlap[0,0,0.2,0] C) Contain[1,0,0,0,0] D

({A Overlap[0,0,0,1,0] B) Before[0,0,0.0,0] D) Before[0,0,0.0,0] F

count support
of each pattern 4-patterns sup
—_— ((A Overlap(0,0,0,1,0] B) Overlap[0,0,0,2,0] C) Contain[1,0,0,0,0] D | 2
((A Overlap(0,0,0,1,0] B) Before[0,0,0,0,0] D) Before[0,0,0,00 F |2

Compare support count with minimum support count

frequentSet_4

!

4-patterns sup
((A Overlap(0,0,0,1,0] B) Overlap[0,0,0,2,0] C) Contain[1,0,0,0,0] D | 2
((A Overlap|0,0,0,1,0] B) Before[0,0,0.0,0] D) Before[0,0,0,00 F |2

Figure 3.8. Generation of frequent temporal patterns, e/tfee minimum support count is 2.

Algorithm 2 Algorithm GetNextCandidateSet

Input: freqSety_1, set of frequentk — 1)-patterns
Output: canSety, set of candidaté-patterns

canSety < ¢
obtain usefuR-patternsfreSet, from freSet; 4
forall (P € fr_1)do
forall (Q € fr_1) do
if (prefix of P = prefix of Q) then
tmp_can < {Generaté:-patterns byoining P to Q using freSets}
canSety < canSety | J tmp_can
end if
end for
end for
returncanSet;,

=
= Q

Existing Apriori-based algorithms use two frequeht{ 1)-patterns fromfreSet,_, to
generate single candidatepattern. More specifically, candidatepatternR is generated from
frequent(k — 1)-pattern P and frequentk — 1)-patternq if prefix of P = prefix of Q1. Next,
according to downward closure property, if pattétis frequent then all of it's subpatterns are also
frequent. Based on this, patteRwill be pruned, if any of it's subpattern is not frequent. ot
that, existing Apriori-based algorithms generate onlygkirk-pattern from two(k — 1)-pattern.
However, in our method, we need to generate multiple catalitlgatterns from two frequent
(k — 1)-patterns.

For example, consider joining frequent 3-pattérn= “(A Overlap[0,0,0,1,0] B) Over-
lap[0,0,0,2,0] C” to frequent 3-pattetp=“(A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0] D" as shown
in Figure 3.9. Note that, prefix d? = prefix of Q3. From these two patterns, we can generate total

“five” candidate patterns as shown in Figure 3.10. Genegatinltiple candidate patterns incurs

A prefix of a pattern is the pattern with the end cut off. Forragte itemset{A,B} is prefix of itemset{A,B,C}.
Similarly, {A — B} is a prefix of{A - B — C}

2Given frequent 2-itemsefsA,B} and{A,C}, we can generate candidate pattéAyB,C}. Given frequent sequential
pattern of length ZA — B} and{B — C}, we can generate candidate pattéfh— B — C}

3A prefix of n-pattern is a representation of composite event consistirigst » — 1 events fromn-pattern. For
example, “(A Overlap[0,0,0,1,0] B)” is prefix of “(A Overl@p,0,0,1,0] B) Overlap[0,0,0,2,0] C".

42

high cost on checking downward closure property. Howeagefal observation reveals that we do
not need to generate first three patterns in Figure 3.10.i@anthe first pattern in Figure 3.10. The
temporal relationship between evenatandD in this pattern i Meet[0, 0, 1,0,0] D. Now, from
freSetq, a set of frequent temporal patterns of length 2, shown inr€i@.8, we can verify that
C Meet|0,0,1,0,0] D is not frequent. Indirectly, first pattern cannot be frequ&imilar apply to
second and third patterns. This example shows that, fredeeiporal relationship between event
C andD from freSety can be used to prune the candidate patterns while joiRitm(. Note that,

eventsC' and D have latest start time in patteriisand (@ respectively.

[Do 1]

P = ((A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C) Q = ((A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0] D)

Figure 3.9. Candidate generation: joining frequent patfeto frequent patterd)

((A Overlap[0,0,0,1,0] B) ((A Overlap[0,0,0,1,0] B) ((A Overlap(0,0,0,1,01B) (A Overlap[0,0,0,1,0] B) ((A Overlap[0,0,0,1,0] B)
Overlap[0,0,0,2,0] C) Overlap[0,0,0,2,0] C) Overlap[0,0,0,2,0] C) Overlap[0 0'0’2'0j) Overlap[0,0,0,2,0] C)
Meet[0,0,1,0,0] D Overlap[0,0,0,1,0] D Finished-By[0,1,0,0,0] D Before[0,0,0,0,0] D Contain[1,0,0,0,0] D
(a) (b) (c) (d) (e)

Figure 3.10. Generated candidate patterns from two frequadterns given in Figure 3.9.

Based on this observation, we introduce the conceptddrinant event in a temporal
pattern. A dominant event in the pattefhis an event fromP with the latest start time. During

the candidate generation process, a freqent 1)-patternP is joined to frequentk — 1)-pattern

43

Q if prefix of P is equal to prefix of). This joining generate candidakepatternR such that the
temporal relationship between dominant event®@nd(in candidate patterf® is frequent.

We explain the proposed candidate generation processlaw.f@onsider the set of fre-
guent 3-patternsfreSets, given in Table 3.3(a) and the set of frequent 2-pattefngSets, given
in Table 3.3(b). The dominant event of the frequasdattern is underlined in Table 3.3(a). Our
purpose is to generate a set of 4-patteras;Set,. To generate the set of candidate 4-patterns,
we use two 3-patterns fronfireSets, such that they share common prefix. For example, con-
sider joining P to @, whereP = (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] and@ = (A Over-
lap[0,0,0,1,0] B) Before[0,0,0,0,@D. EventC is dominant event in? and eventD is dominant
event inQ. The frequent temporal relation between dominant evéhend D in freSet, are:
C Contain[1,0,0,0,0] D andC Before|0,0,0,0,0] D. Thus, the generated patterns are

((A Overlapl[0,0,0,1,0] B) Overlap|0,0,0,2,0] C') Containl1,0,0,0,0] D, and

((A Overlapl|0,0,0,1,0] B) Overlap|0,0,0,2,0] C) Before|0,0,0,0,0] D.

Similarly, consider joining”’ to Q’, whereP’ = (A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0]
D and Q' = (A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0]. FThe frequent temporal relation be-
tween eventD and F' in freSety is D Before[0,0,0,0,0] F. Thus, the generated pattern isl((
Owverlap|0,0,0,1,0] B) Before[0,0,0,0,0] D) Beforel0,0,0,0,0] F. Table 3.4 presents the list
of generated 4-patterns. Later, pattern from this set wilptuned if it does not satisfy downward
closure property.

One key point to note that not all frequent 2-patterns frraSet, are useful during can-
didate generation. For example, consider frequent 24patteBe fore|0, 0,0, 0,0] D and assume,
we are generating a set of 4-patterns from the set of frec@ipatterns. Careful investigation re-

veals that, no pattern frorfireSets containsC' Be fore[0,0,0,0,0] D. In other words, no pattern

44

(a) freSets (b) freSets

A Overlap[0,0,0,1,0] B Before[0,0,0,0,0] D | A Overlap[0,0,0,1,0] B
A Overlap[0,0,0,1,0] B Overlap[0,0,0,2,0] C| A Before[0,0,0,0,0] D

A Overlap[0,0,0,1,0] B Before[0,0,0,0,0] F| | A Overlap[0,0,0,1,0] C
A Before[0,0,0,0,0] D Before[0,0,0,0,0] F A Before[0,0,0,0,0] F
A Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] B| A Before[0,0,0,0,0] G
A Before[0,0,0,0,0] F Before[0,0,0,0,0] G B Overlap[0,0,0,1,0] G
B Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] D| B Before[0,0,0,0,0] D
B Before[0,0,0,0,0] D Before[0,0,0,0,0] F B Before[0,0,0,0,0] F
C Contain[1,0,0,0,0] D
C Before[0,0,0,0,0]1 D
D Before[0,0,0,0,0] F
F Before[0,0,0,0,0] G

Table 3.3. Generating 4-patterns

3-patterns

(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C Before[@®,0] D
(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C Contairi],n,0,0] D
(A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0] D Before[@M,0] F

Table 3.4. IntermediatennSet,

of length 3 that ha€’ Be fore[0,0,0,0,0] D is frequent. According to anti-monotone property, any
pattern of length 4 that has Before|0,0,0,0,0] D will not be frequent. Thus, frequent 2-pattern
C Beforel0,0,0,0,0] D cannot be used to generate candidate pattern with lendth

Property Il Suppose &-patternR is generated by joining frequett — 1)-pattern P to frequent

(k — 1)-pattern(. LetT P, be a temporal pattern between evehisand E; in pattern R, where
eventL; is from P and eventt; is from Q. Pattern R cannot be frequent if P, is present in less
than (k — 2) number of frequentk — 1)-patterns.

Proof We prove by contradiction. AssumekapatternR is frequent and patteri P, is present in
less thar(k — 2) number of frequentk — 1)-patterns. By the downward closure property, a frequent

k-patternR hask subpatterns of length — 1. Among them, we have at lea@St — 1) subpatterns

45

that contain event’;. Similarly, we have at leag — 1) subpatterns that contain evefif. This
implies that both’; and £/; must occur in at leagtt — 2) number of frequent subpatterns of length
(k—1). In other word,T' P, must occur in at leagt — 2) number of frequent subpatterns of length
(k—1).0

Based on the above observation, while generatingSet;, from freSet;_1, we use only
those 2-patterns fronfireSet, that are present in at least — 2) number of frequent patterns from
freSeti_1.

To illustrate working of above observation, consider a aalkere 2-pattern is present in
less thark — 2 number of frequentk — 1)-patterns and utilized for candidate generation process.
One such pattern i€’ Before[0,0,0,0,0] D while generating-anSet, using freSets. Recall,
we have used’ Beforel0,0,0,0,0] D to generate 4-patterR = ((A Overlap[0,0,0,1,0] B) Over-
lap[0,0,0,2,0] C) Before[0,0,0,0,0] D. According to dowamd closure property all length 3 sub-
patterns ofP must be frequent. However, subpatterns “(A Overlap[01000,C) Before[0,0,0,0,0]
D" and “(B Overlap[0,0,0,1,0] C) Before[0,0,0,0,0] D" aretrfrequent. Hence, even if we utilize
such 2-pattern which are present in less than 2 frequerdrpatin freSets, we are not generating
any temporal pattern that can be frequent. Next, we showotlraélgorithm mines complete set of

frequent patterns.

Theorem 1 Algorithm IEMiner is complete.

Proof Initially, Algorithm IEMiner generates all frequent 2-pains. In the subsequent iterations,
IEMiner generates-pattern from two frequer{tc—1)-patterns and frequent 2-pattern. Now, assume
that IEMiner generates all frequefit— 1)-patterns. We prove that algorithm IEMiner will generate

all frequentk-patterns.

46

Suppose IEMiner does not generate all frequepatterns, in other words, there exists
a frequentk-pattern R that has not been generated by our algorithm. Without loggeoérality,
supposeR can be generated from two frequéht— 1)-patternsP and(@. Let 2-patterril’ P, denote
the temporal relationship between dominant eventd ahd(in patternR. Here, pattern$ and@
are generated by IEMiner. The only way in whikfpatternR is not generated is if' P, is missing
from the set of 2-patterns used during candidate generation

As k-pattern R is frequent, this implies that there akenumber of frequenfk — 1)-
subpatterns ofR. Among thesek frequent subpatterng] P, must be present in at leagt— 2
patterns. By Property II]' P, will be generated and used during candidate generatioigaitialg

that k-patternR will be generated by IEMiner. This completes the proof.

3.3.2 Support Counting

After the canSet;, has been generated, we need to count the number of occwsrehce
eachk-pattern to determine whether they are frequent or not. ifioadlly, support counting is
done by scanning the event list for each candidate patteoweler, checking the occurrence of
a k-pattern in a given event list withh events takes @¢n) time. Repeating this process far
k-patterns takes @{nn) time. In other words, an event in the event list will end umbescanned
multiple times.

Instead, we utilize a single-pass support counting praeedhiere each event in the event
list is scanned only once to determine the occurrence df-phitterns. Algorithm CountSupport
(see Algorithm 3) gives the details. The inputs are an eushtll, a set ofk-patternscanSety,
and the level numbek(i.e., length of temporal pattern). The idea is to keep t@ddke active events

as we scan the event list. An event is considered active atginintt if the start time of the event is

47

less thant while the end time of the event is greater thai®therwise, the event is passive. Active
events are maintained avtive_T P list and passive events are maintainegdnrsive_T' P list. As

a new event arrives, we update thective T P and thepassive T P to reflect the completion of
previously active events (Lines 7-10). Next, new compasients are formed between events from
theactive T P and the new everff (Lines 11-12). If the composite event is presentdnSety, its
support count is incremented (Lines 13-14). Ifitis the prefiany pattern fronvanSet;, we store

it in the active_T P (Lines 15-17). Similarly, new composite events are formetiMeen events
from thepassive T P and the new evenit’ (Lines 20-28). EvenE is then inserted intactive T P
(Line 29). With this, we only need to scan the event list onue @ount the support of all candidate

patterns.

To illustrate the support counting process, let us considertwo patterns (A Over-
lap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C and (A Before[@,0,0] C) Overlap [0,0,0,1,0] D imanSets
and the first event list from Table 3.1. Table 3.5 shows theepa generated as we process an active
event. The patterns in italic are discarded since they ar¢hegrefix of any patterns itunSets.
The pattern (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0isGhe only pattern present in first event

list and we increase its support count.

nextEvent | Generated pattern passive TP | active TP
A - - A
B (A Overlap[0,0,0,1,0] B) - A, B
(A Overlap[0,0,0,1,0] B),
C (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C A /B, C

A Overlap[0,0,0,1,0] C
B Overlap[0,0,0,1,0] C
D C Contain[1,0,0,0,0] D A, B C,D
A Before[0,0,0,0,0] D
B Before[0,0,0,0,0] D

Table 3.5. Support counting efinSets using first event list from Table 3.1

48

Algorithm 3 Algorithm countSupport

Input: Level L, Event ListE L, canSety,
Output: canSety, with updated count
1. active TP « ¢
2: passive TP < ¢
3: while ((nextEvent— getNextEventF L)) # NULL) do

4. if (nextEvent is frequent eventthen
5: currentTime =nextEvent.start
6: for all (temporal pattertp € active T P) do
7. if (tp.end < currentTime)then
8 passive T P <+ passive TP U tp
9: active_ TP < active TP — tp
10: else
11 relation < getRelatiolitp, next Event)
12: newT P = prepareNewTRp, next Event, relation)
13: if (newT P.size = L && newT P € canSety) then
14: Update count forewT P in canSety,
15: else if(newT P is a prefix of a pattern inanSet;) then
16: active TP < active T’ P U newT P
17: end if
18: end if
19: end for
20: for all (tp € passive T P) do
21 relation < Before
22: newT P = prepareNew TR, next Event, relation)
23: if (newT P.size = L && newT P € canSety) then
24: Update count fonewT P in canSety,
25: else if(newT P is a prefix of a pattern inanSet;) then
26: active TP < active TP U newT P
27 end if
28: end for
29: active TP < active T P U next Event
30: endif
31: end while

32: returncanSet;,

49

3.3.3 Optimization Strategies

Besides the novel candidate generation and support coguptotedures, we further in-

troduce two optimization strategies to achieve greatecieffcy for IEMiner.

The first strategy involves building a list @flacklistedevent list. An event listEL is
blacklistedif it has less thark frequent events as sudhL does not have enough events to generate
ak-pattern and hence it cannot affect the support counts @f-fredterns. This implies we can safely

omit EL from scanning during the support counting procedure froekth iteration onwards.

The second optimization strategy aims to further reducatimeber of candidate patterns

generated by utilizing the following observation.

Property llI: (Prefix Count) Suppose &-patternR is generated by joining frequefi— 1)-pattern
P to frequent(k — 1)-pattern@. Letw1 denote the number of event lists in which the prefixtof
occurs at least twice and2 denote the number of event lists in which the prefixjobccurs at least

twice. Patternk cannot be frequent ibl < minsup or w2 < minsup.

Proof We prove this by contradiction. AssumepatternR is frequent andvl < minsup or w2 <
minsup. As patternsP and@ are subpatterns @k, they occur together in at leastinsup number
of event lists. Also, patter® is generated fron® and@. Thus,P and@Q have same prefix. In other
word, there are at leastinsup number of event lists in which prefix d? and prefix of@) occurs

twice. Thuswl >= minsup andw2 >= minsup. This is a contradictionl]

With this observation, we maintain the values for each candidatepattern R as we
scan the event list during support counting. tihealue is incremented if there is another temporal
pattern having the same prefix &f being generated in same event list and the window has not

been blacklisted. Apriori-based candidate generatiorrge® use all frequent temporal patterns

50

discovered at the current round to generate candidatesrpdttr the next round. However, using

the above observation, we only need to join those frequdigmpa whosev >= minsup.

3.4 Algorithm IEClassifier

To the best of our knowledge, this is the first work on utilizinterval-based temporal pat-
terns for classification. Existing works utilized frequéemset patterns for classification. However,
the direct adaptation of existing approaches for the ialdpased patterns is not straightforward and
scalable due to the large number of frequent temporal patgenerated. On the other hand, trans-
forming the temporal patterns by treating each temporatioel between any two events as an
independent attribute will result in a very high dimensiosace and may suffer from the curse
of dimensionality. To address these problems, we proposasaifier called IEClassifier(Interval

based Event Classifier).

The building of IECIassifier has two aspects. The first aspgeats with the selection of a
subset of patterns that is able to discriminate one class &énaoother with high degree of accuracy.
The second aspect deals with the assignment of an unknownheérpnt sequence to a class given

the selected subset of patterns.

Frequent interval-based temporal patterns are generaipdd set of training data that
has been partitioned according to their class labg|sl < i < ¢, where ¢ is the number of class
labels. A frequent pattern which occurs in only one classasediscriminating than one that occurs
in all the classes. To identifying such discriminating eais, we compute the information gain of

each patterf” P using the following equation:

51

InfoGain(C’P)= —>"7 , p(Ci)log p(C;) +
p(TP) 325, p(Ci|TP)log p(Ci|TP) +

p(TP) Y=i_, p(Ci|TP)log p(C;|TP)

In the above formulap(T' P) is probability of pattern’P to occur in datasets. Also
p(TP)=1p(TP). We calculate information gain for all frequent patterngngsabove formula.
Those temporal patterns whose information gain valuesedosvta predefinedn f o_gain threshold
are removed. The remaining temporal patterns are the wligating patterns. We assign to each
discriminating pattern the class label with the highestditional probabilityp(C|T'P). p(C|TP)
is also known as the confidence’Bf (conf(I'P)). At the end of the process, each discriminating

patternT P is assigned a class label (clat¥el)) with the support count supP).

Algorithm 4 Algorithm Best _Conf
Input: Event sequence RatternMatchy
Output: Class Label of |
1: bestclass+ Default class label
2. conf« 0
3: sup«~ 0
4: for all (temporal patter’P € PatternMatchy) do

5. if (conf(I'P) > conf)then
6: bestclass = class label &f P
7. conf = conf("P)
8: sup = sup('P)
9: else if(conf(I' P) == conf and sup{'P) > sup)then
10: bestclass = class label &f P
11: conf = conf("P)
12: sup = sup('P)
13: endif
14: end for

15: Assign besfclass as a class label to |

For an unknown input event ligt we matchl/ against all the discriminating patterns. Let

PatternMatchy be the set of discriminating patterns that are contained intuitively, there are

52

Algorithm 5 Algorithm Majority _Class

Input: Event sequence RatternMatchy

Output: Class Label of |

: forall (classC;, 1<i<c¢) do
count[C;] < 0

end for

forall (TP € PatternMatchy) do
clabel« class label ofl’ P
count[clabel]++

end for

max < 1

forall classC;, 1<i<¢ do
if (count|C;] > count[max]) then

max < 1

end if

. end for

. Assign class},,.. to |

© 0N RN RE

L ol =
AW NN RO

two ways to assign a class labeltoThe first way is to assigh to the class label with the highest
confidence pattern ilvatternMatchy. The second way is to assidrto the majority class labels
of the patterns inPatternMatchy. Algorithms BestConf (see Algorithm 4) and MajoritfClass

(see Algorithm 5) show the details.

3.5 Empirical Studies

In this section, we present the results of experiments otteduo evaluate IEMiner and
IEClassifier.

We first compare the performance of IEMiner with state-&-#nt algorithms GenPre-
fixSpan [14], TPrefixspan [93] and H-DFS [72] to evaluate ffciency and scalability. We use
GenPrefixSpan as the baseline for IEMiner since it only fihndBefore relationship while IEMiner
is able to generate all the temporal relationships amonguvbets. Then we examine the effective-

ness of the two optimization strategies. We also apply |IElon three real world datasets, namely

53

the American Sign Language (ASL) datds&tulong datasetand the Hepatitis datadetFinally,
we verify the accuracy of IEClassifier on the Hepatitis and@tg data sets.

All the algorithms are implemented in C#. The experimenésparformed on a 1.6 GHz
centrino duo with 1.5GHz RAM running window operating systéa\Ve modify the IBM data quest
generatof by including an additional parameteE*%¢Den”(i.e., number of events active at a time)

to generate the synthetic data sets. The control parametedsin the data generator are:

1. number of windows (i.e D)

2. number of event types (i.€)

3. average number of events, active at a time (Fet,Den)
4. average length of patterns (i.&),

5. probability of similar event appear in same window (if&),

We keepT = 500 for all the experiments. The notatio®dta_D_T_L_P_EuvtDen”

represents dataset generated using’, L, P and Evt Den control parameters.

3.5.1 Experiments on Synthetic Datasets

First, we analyze the effect of varying minimum support ontime. Figure 3.11 shows
the results when minimum support varies from 2% to 12%. Wenlesthat as support value
decreases, the time required by all the algorithms inceeddewever, the runtime for H-DFS and

TPrefixSpan increase drastically compared to IEMiner. \&e abte that IEMiner has a comparable

“http://www.bu.edu/aslirp/
Shitp://ecmlpkdd.isti.cnr.it/
Shttp://ecmipkdd.isti.cnr.it/
http:/iwww.almaden.ibm.com/software/quest/Resouriceex.shtml

54

runtime as GenPrefixSpan even though GenPrefixSpan only tfedBefore relationship while

IEMiner generates all types of interval-based relatigoshi

300

—8&— GenPrefixSpan
—<— IEMiner
—6— TPrefixSpan
—*—H-DFS

N
a
=]

)
=1
=]

Running Time (in Seconds)
= =
o ol
o (=]

50F

.
2% 4% 6% 8% 10% 12%
Minimum Support

Figure 3.11. Effect of Varying Minimum Support

Next, we examine the effect of varying sizesiofon runtime. We select 4% as a sup-
port value and vanD from 100K windows to 400K windows. Average number of eventgach
window is 15, hence average number of events vary from 1500000K. Figure 3.12 shows the
experimental results. The runtime of IEMiner increasesdity as value o) increases while the

runtime of TPrefixSpan increases exponentially.

IS
S
=]

w
@
=]

—+&— GenPrefixSpan
—<— IEMiner
—*—H-DFS
—6— TPrefixSpan

L t
0 . -

1500 3000 4500 6000
Database Size (in Thousand)

w
S
=]

N
a
=]

Running Time (in Seconds)
= n
u (=]
o o

=
15)
=]

a
=]

Figure 3.12. Effect of Varying Database Size (D@a500.15.0.3.2)

55

We also investigate the effect of varyidgon run time. We keep and the support
value constant. Figure 3.13 shows the results. As the vdldeimcreases, the runtime of IEMiner
increases but at a slower rate compared to H-DFS and TPrefixSjhis demonstrates that IEMiner
is effective in reducing the number of candidates generdtedeby allowing a much longer pattern

to be discovered.

IS
S
=

—8&— GenPrefixSpan
—<— IEMiner
—*—H-DFS
—6— TPrefixSpan

w)
Q a
=] =]

N
a
=}

Running Time (in Seconds)
. N
u (=]
o o

.
o
=)

501

//

4 8 12 16
Average Sequence Length

Figure 3.13. Effect of Varying Pattern Length (D&2&0k 500.?.0.3.2)

In the next set of experiments, we investigate the effecaofing EvtDen on run time.
Figure 3.14 shows the runtime of IEMiner for varying valudsiytDen. We observe that as
EvtDen increases, the number of temporal relations among the @t increases. Hence,
the support count for each pattern is reduced. As a reswkrfaumber of frequent patterns are
generated compared to GenPrefixSpan. NoteFhaiDen = 1 means that there is only one active

event at each time.

Finally, we analyze the effectiveness of the two optimatstrategies. Two variations
of IEMiner are implemented. IEMiner-1 uses only the evesttiilacklisting optimization strategy,

while IEMiner-2 uses only the prefix count optimization s#gy. Figure 3.15 shows the results.

56

N
1=
=

i
@
S

.
@
=)

—8&— GenPrefixSpan
—<— IEMiner
—#— H-DFS
—6— TPrefixSpan

LN
N &
==

Running Time (in Seconds)
=
o
o

2 2
S S o

|

o

12

[
w
o F
©

Event Density

Figure 3.14. Effect of Varying Event Density (minimum suppoe 4%)

We see that the window blacklisting strategy (IEMiner-1pkde to improve the performance of

IEMiner more as compared to the prefix count strategy (IEKMB)e

)
@
S

2

N
=3
S,

IEMiner
—6&— |IEMiner 1
—4A— |EMiner 2

N]
N
S

N
IN]
=]

Running Time (in Seconds)
e n
o] (=]
o o

i
5y
=]

[
I
S

120 - -
0.4% 0.6% 0.8% 1%

Minimum Support

Figure 3.15. Effect of Optimization Techniques (D2@0k 500.20.0.3.2)

3.5.2 Experiments on Real World Datasets

In this section, we apply the four mining algorithms (IEMin€PrefixSpan, H-DFS and
GenPrefixSpan) on three real world datasets, namely, theigdameSign Language (ASL) dataset,

Stulong dataset and the Hepatitis dataset.

57

ASL dataset

We use the ASL dataset to investigate the relationship tweammatical structure and
gesture field. This dataset has 730 utterances. Each w#ecantains recurrent ASL gestural and
grammatical field. We obtain the frequent temporal pattatngrious support values. The set of

mined patterns is verified against the ground truth [72]. fEseilts are shown in Figure 3.16.

—+&— GenPrefixSpan
—<— IEMiner
—*— H-DFS
—6&— TPrefixSpan

Running Time (in Second)

4% 6% 8% 10% 12%
Minimum Support

Figure 3.16. Experiments on ASL dataset

Hepatitis dataset

The Hepatitis dataset contains a total of 771 patient recowr a period of 10 years.
In this dataset, a patient either has Hepatitis B or Hepafiti There are about 230 tests that a
patient may undergo, out of which 25 tests are conductedasgat each visit to the hospital. We

transform the test results over time into interval basedsvas follows:

1. If the results of a tesf'est during an intervalstart, end| consistently falls within the nor-
mal range of values for the teStest, that is, N(ormal), we map it to the evefif'est-N,

start, end).

58

2. If the results of a tesfest during an intervalstart, end] consistently falls below the normal

range of values for the te%test, that is, L(ow), we map it to the evefil'est-L, start, end).

3. Ifthe results of a tesfest during an interva(start, end] consistently falls above the normal

range of values for the te$test, that is, H(igh), we map it to the eve(if'est-H, start, end).

4. Ifthe results of atedfest during an intervalstart, end] oscillates between Low and Normal,

we map it to the eventl'est-NL, start, end).

5. If the results of a tesT'est during an intervalstart, end] oscillates between Normal and

High, we map it to the ever{l'est-NH, start, end).

6. If the results of a tesf'est during an intervalstart, end] oscillates between Low and High,

we map it to the eventl'est-LH, start, end).

After mapping the test results into interval based evenéscrgate an event list for each
patient. We obtain a total of 498 event lists that correspmngatients who undergo the 25 tests
regularly.

Figure 3.17 shows the results of applying the mining algang on the transformed Hep-
atitis dataset (Hep-T). We observe that IEMiner performt lsesnpared to all algorithms. Here,
average length of underlying event list is around 200 eve@enPrefixspan did not perform well
because it consider events without duration and as a reanly patterns are generated compared to

other three algorithm.

Stulong dataset

The Stulong dataset contains a total of 860 patient recardsaperiod of 20 years. In

this dataset, a patient either has Cardiovascular diseass.ol here are about 10 tests that a patient

59

[
®
=}

—&— GenPrefixSpan
—<— IEMiner

—*— H-DFS

—&— TPrefixSpan

.

@

=}
T

-
S
o

i

]

=]
T

i

o

=]
T

80T

605

Running Time (in Seconds)

40

20

0 L L ¥
15% 20% 25% 30% 35%
Minimum Support

Figure 3.17. Experiments on Hepatitis dataset

may undergo at each visit to the hospital. We transform thterésults over time into interval based
events by following similar convection as explained for &tifs data. Figure 3.18 shows the results
of applying the mining algorithms on the transformed Stglaiataset. We observe that IEMiner

performs best compared to all algorithms.

—o— IEMiner
—»— H-DFS
—6— TPrefixSpan
—&— GenPrefixSpan

Running Time (in Seconds)
=
o

o

1 2 3 4 5
Minimum Support

Figure 3.18. Experiments on Stulong dataset

60

3.5.3 Accuracy of IEClassifier

Finally, we investigate whether the discovered tempor#tepas will improve the accu-
racy of classification. We compare the accuracy of IEClassifith standard classifiers such as

C4.5, CBA and SVM which do not use the temporal information.

Hepatitis dataset

We apply C4.8, CBA® and SVM? classification tools on the original Hepatitis dataset
where each test per visit is considered as an attribute tah tee have around 10,000 attributes.

Next, we build the IECIlassifier from the interval-based Hepataset obtained in the
previous section. We label an event list in the Hep-T dataséiepB or HepC to indicate that the
patient corresponding to the event list has Hepatitis B quatigs C. In total, we have 203 event
lists labeled as HepB and 295 event lists labeled as HepCinfdrgain threshold is set at 0.02 with
minsup of 10%.

10-fold cross validation testing strategy is adopted. &b shows the results.We ob-
serve that the classifiers that make use of temporal refdtips can indeed improve the prediction

accuracy. Overall, the MajoritZlass voting strategy achieves the best accuracy.

Classifier Testing Accuracy
C4.5 78.13%

CBA 76.49%

SVM 78.72%
IEMiner (Majority_Class) 82.13
IEMiner (BestConf) 78.91%

Table 3.6. Testing accuracy: Hepatitis Dataset

8http://www.cs.waikato.ac.nz/ml/weka/
http://www.comp.nus.edu.sg/ dm2/
Ohttp://svmlight.joachims.org/ and also weka

61

CRE-N

GOT-N ZTT-N

[(Pattern 1) Class : HepB Conf: 70% Supp: 14.65%]

LAP - H

LDH-N

FA1GL-N

[(Pattern 2) Class : HepB Conf: 75% Supp: 14%]

‘ LAP-H ‘

FA1GL-N ‘ F A1 GL-NL ‘

[(Pattern 38) Class : HepB Conf: 82% Supp: 12%]

Figure 3.19. Sample of temporal patterns for Hepatitis Bake

ZTT-H

GOT-H GPT-H ‘

[(Pattern 4) Class : HepC Conf: 86% Supp: 17.46%]

ZTT-H ‘

FA1GL-N

[(Pattern 5) Class : HepC Conf: 78% Supp: 34%]

LDH - NH \ LDH - N H LDH - N H LDH - N

[(Pattern 6) Class : HepC Conf: 81% Supp: 19%]

Figure 3.20. Sample of temporal patterns for Hepatitis €atie

62

Figure 3.19 and Figure 3.20 show a sample of the temporatrmpatthat is able to dis-
criminate between the HepB and HepC classes. The first Sripaiteveal the temporal relations
between different tests in the Hepatitis B and Hepatitis f2pts. For example, pattern 3 describes
the behavior of F-A1.GL with respect to LAP test. We discotleat during the period in which
LAP’s value is in the normal range, the F-A1.GL test startthmmnormal range and then begins to
oscillate between the low and normal range. This patteris&iwved in Hepatitis B patients with
82% confidence. It is present in 25.54% hepatitis B patietd dad 3% of hepatitis C patient data.
Pattern 6 reveals how a particular test, the LDH test, egoineghe Hepatitis C patients. Initially,
the LDH'’s value ranges between normal and high, and as tiregegait’s value becomes normal.

This pattern is present in 26% of hepatitis C patient as ogbts 8% in hepatitis B patients.

Stulong dataset

We apply C4.5%, CBA'? and SVM? classification tools on the original Stulong dataset
where each test per visit is considered as an attribute tah tee have around 700 attributes.

Next, we build the IEClassifier from the interval-based &tgl dataset obtained in the
previous section. We label an event list in the Stulong @atas CVD or No-CVD to indicate that
the patient corresponding to the event list has cardioVasdisease or not. In total, we have 460
event lists labeled as No-CVD and 295 event lists labeled\d3.T he info-gain threshold is set at
0.02 with minsup of 10%.

10-fold cross validation testing strategy is adopted. dahl7 shows the results. We

observe that the classifiers that make use of temporaloeitips can indeed improve the prediction

"http://www.cs.waikato.ac.nz/ml/weka/
2http://www.comp.nus.edu.sg/ dm2/
13http://svmlight.joachims.org/ and also weka

63

Classifier Testing Accuracy

C4.5 69.78%
CBA 69.56%
SVM 70.43%
IEMiner (Majority_Class) 76.13%

IEMiner (BestConf) 71.91%

Table 3.7. Testing accuracy: Stulong Dataset

Moderate Activity ‘ ‘ Moderate Activity ‘ ‘ Normal Urine

[(Pattern 1) Class : NoCVD Conf: 74% Support 10.30%]

No Dyspena

Smoking Low ‘ ‘ Smoking Medium ‘

[(Pattern 2) Class : NoCVD Conf: 80% Support 11.30%]

‘ Pain in lower limb ‘

Chest Pain

Smoking Low ‘ ‘ Smoking Medium ‘

[(Pattern 3) Class : CVD Conf: 73% Support 15%]

Figure 3.21. Sample of temporal patterns for Stulong datase

64

accuracy. Overall, the MajoritZlass voting strategy achieves the best accuracy. FightesBows
a sample of the temporal patterns that is able to discriminatween CVD and No-CVD classes. It
was assumed that, smoking is a big risk factor for cardiadasdisease. But, from patterns 2 and
3in Figure 3.21, we can see, a smoker with chest pain and p#aver limb will develop CVD in

future.

3.6 Summary

In this chapter, we have presented a novel approach to mimgoral patterns from inter-

val data. Our key contributions are as follow:

1. We augment the hierarchical representation with codatrimation to achieve a lossless rep-
resentation. We provide a proof that the augmented repiagemis indeed lossless. This

enables us to recover the actual relationships among efvenigshe temporal pattern.

2. We design an Apriori-based algorithm called “IEMinériterval-basedventMiner) to dis-
cover frequent temporal patterns based on the losslesssagation. IEMiner employs two
optimization strategies to reduce the search space. Tloé girthe completeness of IEMiner

is detailed.

3. We also build an interval-based temporal pattern classifilled IEClassifier to perform the
classification of closely related classes. We apply thesiflas to a real world Hepatitis

dataset and Stulong dataset to demonstrate its improvezayc

The success of our approach on all the tested real-worldelatandicates that the event

duration play an important role in extracting complex fielaship among durative events. Our

65

approach can easily incorporate user’s intension in lesglepresentation definition. Further, the
proposed algorithm can easy work with point events and iveravents. In the future, we would like
to consider mining temporal pattern from uncertain dueagivents. Also, it would be interesting to

evaluate the viability of the proposed approach in a stregrar incremental setting.

66

Chapter 4

Mining Patterns from Time Series Data

In the previous chapter, we have analyzed a set of event segsiewhere each event se-
guence is a collection of interval-based events. In thiptgrawe analyze the set of time series,
where each time series is a sequence of real valued obsmvatiVe have seen that the recent
research interests in time series data mining mainly i/atdexing time series for efficient simi-
larity search, clustering time series, motif discoverye rdiscovery, time series correlation and so
on. Time series motif discovery is an active research taph¢ 50, 63, 64]. Time series motifs are
the recurring patterns in single time series. For examptrE 4.1 shows the sample time series
and one motifm = {s1, ss3, s3, s4}. The length of motifm is 10 and it appears 4 times in time
series. Attempts have been made to generalize the notiowtifsrfrom single time series to multi-
dimensional time series data [99, 57, 68, 88]. This gergtitin allows the handling of real world
applications involving several data sources such as gctigcovery using wearable sensor data,

gene expression data showing the expression levels ofpleuifenes, stock market data giving the

67

Value
o

/W/W/W/M

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 4.1. Time series motif.

stock prices of diverse companies. However, none of thegbaude considers the ordering among
the motifs in such an environment.

Figure 4.2 shows the time series of QLogic, Intel and JP Mogtacks. Motifsm, =
{511, $12, S13}, M2 = {s21, S22, s23} andms = {s31, S32, s33} are highlighted in the time series of
QLogic, Intel and JP Morgan stocks respectively. A closemeixation of the motifs in Figure 4.2
reveals that the subsequences from one motif occurs at staidag relative to subsequences from
other motifs. For exampley; occurs with lag 6 relative te; while s3; occurs with lag 7 relative
to s11. This pattern is repeated f0s12, s22, s32) and(si1s, s23, s33). In short, the lag relationship
among the subsequences apeated The existence of such invariant ordering among the motifs
suggests that there may exist some hidden relationshipthefinvestigatioh reveals that QLogic
stock is competitor of Intel stock, while JP Morgan stockegifigher rating for investment in Intel

Stock.
The existence of such invariant orderings among time senietfs is useful and may
provide critical insights in many time series applicatioRsr example:
¢ Financial Domain: Existing approaches compute the portfolio’s expectddsrizmsed on the

co-variances among the assets time series in the portfdiibsrnatively, we can model the

lyahoo Finance - http://finance.yahoo.com

68

Stock Price

Stock Price

Stock Price

m, QLogic Corporation

S

13

100

120

m, Intel Corporation —

m, JP Morgan Co.

60
Time (in Day)

80

100

120

Figure 4.2. Lag relationships among motifs;, mo and mg reflecting competitor/co-operative

behavior.

portfolio’s risks by considering the competitor or co-ogtare relationship between the assets

time series in the portfolio. For example, given the perfance of two financial assets, A and

B, where we know that whenever the price of A drops, the prid® will drop in next five

days. Intuitively, it may not be appropriate to construcoaiplio by including both A and B

concurrently, as the exposure of loss will be increased, stath kind of relationship cannot

always be captured by co-variances. We consider dependelatienship among assets time

series and construct the portfolio. Our experiments retresl stock portfolio based on lag

relationships leads to increase in the cumulative ratetafmeon investment.

e Medical Domain: The electrocardiogram (ECG) are standard test for diaggasrious car-

diovascular abnormalities. Typically, various sensoesgaced in different parts of the body.

Physicians monitor the various channels of signals to neizegwarning patterns. By auto-

69

matically discovering invariant orderings among multinéinsional motifs, they may serve as

early warning patterns to allow for timely intervention.

In this chapter, we introduce the notionlafjPatterns in time series data to capture the
orderings among motifs from different time series. Unlikéseng multi-dimensional motifdag-
Patternexplicitly accounts for lags and the ordering among the fadtom different time series.

Finding lagPatterninvolves two main steps:

1. Identify all motifs of various length in single time segie

2. Discover groups of motifs from multiple time series witlvariant orderings.

Both steps are computationally expensive. A time seriesmfth L, without discretiza-
tion, would haveO(L?) subsequences of various length and hef¢&?) motifs. Thus, the naive
enumeration based method for the first step is quadratic.h Wittime series, we would have
O(L*) possiblelagPatterns As a result, an exhaustive search fagPatternsis exponential.
Here, we describe an efficient and scalable approach to pinersearch space for both steps.

The rest of the chapter is organized as follows: Section dotiges some preliminar-
ies and detailed problem description. Section 4.2 desctifve algorithms to discover motifs and
lagPatterns and the optimization strategies. Section 4.3 presentsqherienent results. We sum-

marize in Section 4.4.

4.1 Preliminaries

A time seriesT = {v[1],v[2],...,v[n]} with length|T| = n is a sequence of regularly
sampled real value observations whef& is observation value at time We useT'[i] to denote a

value at time in time seriesl".

70

A subsequencef a time series, denoted @$i, j|, is a subset ofontiguousobservations
starting at time and ending at timg, i.e., T'[¢, j] = {T[i], T'[i + 1], ..., T[j]}. It's length, denoted

as|Ti,j]|, is equal toj — i + 1. In this chapter, wanormalize subsequence. The normalized

subsequence is given @i, j] = {T[’l_“, T[”U”_“, T[{l—“}, wherey ando are the mean and
standard deviation ofT'[i], T'[i + 1], ..., T'[j]} respectively. Here aftef[i, j] refers to normalized
subsequence.

A subsequencé[i, j] is similar to another subsequend@dp, ¢ if they have the same
length anddist(T'[i, j], T'[p,q]) < &, wheredist(.) is Euclidian distance and is a user-defined
distance threshold.

Normalizing time series (or subsequence of time seriegsttel compare two time series
(subsequence) having similar shape irrespective of thagnitude. For example, consider three
time series shown in Figure 4.3 and its normalized versioRigure 4.4. Without normalization,
dist(T1,T2) = 2,dist(T1,T3) = 3 anddist(172,73) = 1. Note that, the shape of time seriEs

and7'3 is similar. Figure 4.3 shows the normalized version of thigse series. Nowist(1'1,72)

=0.39,dist(T'1,73) = 0 anddist(72,73) = 0.39. Other benefits of normalization is explained in

7
’ ~ ’ ~]
’ ~ 7’ ~
’ ~ ’ ~
’ ~ ’ ~
kd ~ ’ ~
..... e mmm =y v meTi %
E ——T2
s -=--T3
4 o o, o a
o o a 4
2 L L L L L L
1 2 3 4 5 6 7 8

Time

Figure 4.3. Time series.

71

Value

Time

Figure 4.4. Normalized Time series.

Time Series| Motifs m (correlation coefficient coe f = 0.95)
Ty m1 = {T1[14,17], T1[1,4], T1[6, 9], T1[22, 25]}
mig = {T1[22, 25], T1[3,6], T1[14,17]}
miz = {T1[12,14], Ty [1,3], T1[22, 24]}
mag = {T1[6,9], T1[14,17], T1[21, 24]}
T moy = {T»[15,17], T»[2, 4], T»[7, 9], T2[23, 25]}
mag = {T3[17,20], T5[6, 9]}
13 ma1 = {13[19,22], T3[6, 9], T3[11, 14]}
mss = {134, 7], T3[9,12], T3[17,20]}
1y mar = {T4[20, 23], Ty[7,10], T4[12,15]}
15 ms1 = {T5[20,23], T5[3,6], T5[7,10], T5[14,17]}

Table 4.1. Running example

Given a time serie§’, atime series motifmy; ;;, havingT[i, j] as anchor subsequence,

irj]r
is the set of non-overlapping subsequefdesm T that aresimilar to anchor subsequend@di, j].
For simplicity, we will usem in place ofmyy; ;; whenTT[i, j] is obvious. The size of motifn,
denoted agn|, is the number of subsequencesin

Thesupport of time series motifm with anchor subsequen@éi, j|, denoted asSup(m),

is defined as
| T[i, §]| * Im|

i (4.1.1)

mSup(m) =

2We can use the optimal greedy-activity-selector solutiof2é] to discover the maximum set of non-overlapping
subsequences.

72

For example, Table 4.1 shows a subset of motifs for five timesef length 25. The
anchor subsequence in each motif is underlined. The support; is given bymSup(mq;) = %

=0.64.

Given N time seriesl’, 15, --- , Ty, let M; be the set of motifs from time seri€ds. A
lagPattern of length k is a pattern template consisting bfmotifs from different time series and

their lags. Formally,

p= ({myumyw"' ’myk}’{lyulyz"” ’lyk})’myi € Myz'

y; # y; fori # j andmy, lagsm,, by l,,, yi,y; € [1, N] andi, j € [1, k].

For examplepl = ({m11, ma1,m41 }, {0,1,6}) is alagPatternof length 3, as motifsn,
mo1 andmy; are from time serie%;, 7, andT) respectively. But, patterp2 = ({m11,m12}, {0,8})
is not alagPatternas both motifs are from the same time sefigs Note that, the lag between two
motifs in lagPattern is a lag between start time of their respective anchor sulesegs. For
example, lag between motifi;; andmeo; in pl is a lag betweefl} [14, 17] andT»[15, 17]. For this

caseitis 1.

A lagPatternpl is asubpattern of anothedagPatternp?2 if all motifs in p1 also occurs in

p2 with the same invariant ordering. For examplé = ({m11,m41 }, {0,6}) is a subpattern gf2 =

({mlla mai, m41}’{0’1,6})'

Now, we define two interesting measures lgPattern The first measure quantifies the

frequency ofagPatternsand second measure suggest the association among matifiaffBattern

73

Thesupport of alagPattern p = ({m1, ma, - - -, mg }, {l1,l2,- - - ,lx.}), denoted apSup(p),
is the size of the sf(s1, 52, -, sk) | (51 € m1) A (s2 € ma) A--- A (s € my) A (sy lagss; by
ly,1 <y <k}

For example, consides = ({m11, m21},{0,1}). We observe thal1[7,9] € mq; lags
T116,9] € my1 by 1. Similarly,75[23, 25] € mo; lagsTi[22,25] € mq; by 1,75[2,4] € mo; lags
T1[1,4] € myy by 1 andT3[15,17] € mo; lagsTi[14,17] € my; by 1. Hence, they support the
lagPatternp. Thus, the support set {§71[1, 4],7>(2,4)), (11[6,9],7>[7,9]), (T1[14, 17],T2[15, 17]),
(1122, 25],7»[23, 25])}. In this case, the support of pSup(p), is 4. The support ofagPattern
captures the number of repetitions. In this chapter, weiredliat the pattern should be repeated at
least more than one time.

Given alagPatternp, theparticipation ratio of p is defined as

pSup(p)

pRatio(p) =
mam'rnEP“m'}

(4.1.2)

For example, theRatio of p = ({m11, mo1},{0,1}) = = 1. ThepRatio is a

4
max{4,4}
variant of the well-known Allconfidence measure [44] in association-based correlatialysis.
The pRatio measure is anti-monotonic. This property allows us to prawmay a large part of the

search spacenRatio(p) measure the association among the occurrence of motifg itintle series.

Theorem 4.1.1 The participation ratio measure of &g Pattern is anti-monotonic, that is, if a
lagPattern p satisfypRatio(p) > min_ratio, then any subpatterpl of p also satisfiep Ratio(p’)

> min_ratio.

Proof Leta lengthk lagPattern p = ({mi, ma,--- ,my}, {l1,l2, - - ,lx}). We have

pSup(p)

pRatio(p) = ————
®) = ey (m])

74

AssumelagPattern p’ is a subpattern dflagPattern p. It is obvious thapSup(p’) >

pSup(p). Also, maz,, ¢y (|m'|) < mazme,(|m|). HencepRatio(p') > pRatio(p).0]

This implies we do not need to generaté any subpatterry’ of p does not satisfy the
min_ratio constraint.
Given min_sup and min_ratio, alagPatternp is valid if following all conditions are

satisfied:
e pRatio(p) > min_ratio, and
e pSup(p) > 1, and
e for all motifsm, m € p, mSup(m) > min_sup.

Given minimum support threshotéin_sup, minimum participation ratienin_ratio and

N time series of lengtlL, we want to mine alvalid lagPatterns of lengthk, 2< k < N.

4.2 Discover Lag Patterns

The discovery olagPatternsinvolves two main steps. We need to first identify all the
motifs of various lengths in each time series, and then oeter groups of motifs from differ-
ent time series having invariant orderings. Algorithm 6 suamizes our overall approach to mine
lagPatterns. We call Algorithm FindMotifs for each time series to find aflits motifs(Line 5).
Note that,M; denotes the set of motifs generated from time séfjesines 7-9 remove motifn if
it does not satisfy the minimum support. Otherwise, we aligto a reference time point and in-
sert it into an inverted index(Lines 10-12). Next, we invddgorithm LPMiner to obtain the valid

lagPatterns (Line 15). We will discuss the details of each algorithm ia fbllowing subsections.

75

Algorithm 6 DiscoverlagPatterns
Input: N, L, min_sup, min_ratio, coef, minLen, maxLen
Output: LP = set oflag Patterns

1. LP=¢

2: nvlndex = ¢

3: M = ¢; Il sets of sets of motifs

4: for i =1to N do {// N = Number of time serigs

5. M; = FindMotifs (T;, coef, minLen, maxLen),
6: for each motifm in M; do

7: if mSup(m) < min_sup then

8: M; =M, - {m},

9: else

10: alignm to a reference time poirtf,;

11; insertm into invindex;

12: end if

13: end for

14: end for

15: LP =LPMiner (N, L, min_sup, min_ratio, M); Il L = Length of time series
16: returnLP

4.2.1 Find All Motifs in a Time SeriesT

To find all motifs from time serie§", we consider each subsequence of length between
minLen andmaxLen from T as an anchor subsequence and discover it's similar subsszgie
from T' and then form a motif. Recall, subsequengeis similar to subsequencs; if dist(s1,
s9) < 6. Since we consider anchor subsequences of various lenpths), threshold should be
length-invariant. Here we utilize the results in [102] which states that thelilian distance

between two normalized time series of lendgtlh depends on their correlation coefficiafite f,

that is,d = /2 * (len — 1) x (1 — coef). With this equation, we are able to employ the Euclidean
measure in the similarity computation by setting the appab@d for varying length, given a fixed

value ofcoef.

3Using single value of for mining motifs of various length might miss longer lengtiotifs. At the same time, it is
not feasible for user to providévalue for each length of motif.

76

In this section, we describe a method that uses order lineemirj64] and subsequence
matching property [53] to find all motifs of length betweseninLen andmaxLen from T effi-
ciently. Assume, we are discovering motifs of length from 7. Given a setD B of normalized
subsequences of lengtbn from time seriesI” and a pivot subsequeneg € DB. We obtain an
order line by sorting the subsequences/in3 according to their distance similarity frosy.

For example, Figure 4.5(a) shows the distribution of subeeges of length 2 in a two-
dimensional space. Assuming that the subsequence 2 isspikeequence, Figure 4.5(b) shows the
order line. The number above the order line shows the subsegud while the number below gives
it's euclidian distance from pivot subsequence 2. Oncerdide is prepared, we discover similar
subsequences for each anchor subsequence(i.e., eachumrseon order line).

We traverse the order line (with pivot subsequengerom left to right. Given a distance
thresholdd, supposes; is the next subsequence on the order line to be processedetéfenine the
similar subsequences ef by checking all the subsequences that fall withidistance frons; on
the order line. This is due to the reverse triangular ingtyualhich states thatlist(s;, s;) < 0 if
and only if|dist(sp, s;) — dist(sp, sj)| < 6.

Consider Figure 4.5(b). Let the subsequence we encounter iMhose distance from
the pivot subsequence is 2.24. If§ = 2, then a subsequengeis similar to subsequenceg if
dist(se, s) falls within [2.244, 2.244], that is, [0.24, 4.24]. Hence, the set of candidate similar
subsequences fon is ¢s, = {s1, s5,58}. We compute the actual distances betweemnd each
subsequences iy, to obtain the final set of subsequences that are similay(iee., a motif having
anchor subsequence).

Similarly, the set of candidate similar subsequencessfor,, = {ss, s1, ss, s4}. Note

that, we do not need to compute the actual distance betwesmds; sincedist(ss, s1) = dist(s1, S5)

77

6
Original Space
5t 5o
4 10
3r o8 o4 o7 A
2 20 03
1 o6
0
0 2 4 6 8 10 12
(a)
3 T
il % 1 5 8 4 3 6 7
0.00 224 316 412 510 6.00 7.07 10.05
1 | | | | |
0 2 4 6 8 10 12
(b)
3 T
251 B
1 2 3 4 5 6 7 8

9.06 10.05 412 500 1118 361 000 6.00

1 | | | | |
0 2 4 6 8 10 12

()

Figure 4.5. (a) Dataset of two-dimensional subsequent®san ordering of subsequences with
their distance value from subsequence 2 (c) distances sfilbflequences from subsequence 7

and we have already obtainéést (s, s5) previously ifs; andss are similar. In other words, when
traversing the order line from left to right, we need to parfahe actual distance computations only
for those candidates to its right. Clearly, we do not needhtoutate the distance computations with
all other subsequences fromB. Thus, order line concept helps to reduce the number ofriista

computations required during similarity search.

Another observation is that multiple order lines can prurarcandidates. Suppose we

have a second order line with pivot subsequesiosee Figure 4.5(c)). Using the first order line(See

78

Figure 4.5(b)), we have the set of candidate similar subsmeps forss, cs; = {ss, 51, Ss, 54}-
From the second order line, we observe tiat (s;, ss) = 6 anddist(sy,s5) = 11.18. Hence,
dist(ss, s5) > 5.18 which is more thai. The same process is repeated for subsequencehus,
applying triangular inequality, we eliminatg ands, from c,, without performing any distance
computation. In summary, the first order line is used to obit@tial candidate set of similar subse-
guences for any subsequence while the remaining orderdieassed for further pruning. Algorithm

7 describes the detail of mining all motifs using the conadmirder lines only.

Algorithm 7 OrderLine: Find All Motifs
Input: T', coef, minLen, maxLen, numOrder Line
Output: M = set of Motifs inT'
L. M=¢
2: for len = minLen; len < maxLen; len++ do
3 §=+/2x(len — 1) x (1 — coef) I/ distance threshold for lengtan
. DB ={normalized subsequences of length from 7'}

4

5. PreparewumOrder Line orderlinesO

6: LetI denotes the first order line

7. for all subsequencee DB do

8 ¢s = {similar subsequences sfrom D B using order line/ }
9 refinecs using remaining order lines i@

10: s_set ={s" | s’ € cs Ndist(s,s") < o}
11: Stores_set in M

12: end for

13: end for

14: return M

The order line based algorithm (Algorithm 7) efficiently findll similar subsequences
for a fixed length subsequences. However, In order to findlairmubsequences for subsequence
of length betweemninLen to max Len, we need to iterate the algorithrmba Len - minLen +
1) times and prepare order line for these many times(LinélBus, we integrate the subsequence
matching property[53] with order line concept to reducertbmber of iterations by 50%. The idea

goes as follow: the order line prepared to find similar subseages of lengtlien subsequence is

79

also used to find similar subsequences of lerigtit- 1 subsequence. Létbe a distance threshold
for mining motif of lengthlen ande be a distance threshold for mining motifs of lengéh + 1.

The subsequence matching property states that,

dist(T[i,7 + 1), T[i1, 51 + 1]) < e = dist(T]i, j], T[i1, 1]) < €

where,

- o?(Ti,j+1])
€ = J 2w — 2\/w2 — w.ez.W,

w =TT, I,

o?(Ti,j+1]) = standard deviation of un-normalized subsequehiée; + 1],
o2(Ti,j]) = standard deviation of un-normalized subsequeti¢e;.

This property is based on the observation that the occugeent subsequences similar
to T'[i, 5 + 1] coincides with the occurrences of subsequences simil@litg] most of the time.
Hence, we can discover the candidate set of subsequendés sinsubsequenc€|i, j + 1] while
discovering set of subsequences similaf'ta ;] by setting the appropriate distance threshold given
by maximun{d, ¢'}. The new distance threshold, maxim{#1e'}, ensures that we do not miss any
similar subsequence @i, j] andT'[¢, j + 1]. In most cases) < €. With this, we present an exact

algorithmFindMotifs (See Algorithm 8).

FindMotifs finds similar subsequences of subsequériégj| in a time serie§’. At each
iteration, we seb and prepare a databageB(Lines 3-4). Line 5 prepares order lines for subse-
guences of lengthen. Next, it invokesGenerateMotifto obtain all matches of every anchor subse-
guences of lengthen as well as the candidate sets for anchor subsequences tf lengt+ 1. Line

10 prepares a database of subsequences of léngth 1. Finally, we callRefineMotifto eliminate

80

Algorithm 8 FindMotifs

Input: T, coef, minLen, maxLen, numQOrder Line
Output: M = set of motifs inT’

1. SetM = ¢ andlen = minLen

2: while len < maxLen do

3 §=/2x%(len—1)* (1 — coef)

DB + {normalized subsequences of length from 7'}
PreparevumOrder Line order linesO

Let I denotes the first order line i

[Mien, C] = GenerateMotif (DB, I, O, len, §)

SetM =M U M., andlen =len+ 1

§=1+/2% (len — 1) * (1 — coef)

10: DB <+ {normalized subsequences of length from T'}
11: [Mi.,] = RefineMotif (DB, I,0, C,)

12: SetM =M U M., andlen=len+1

13: end while

14: returnM

ProcedureGenerateMotifDB, I, O, len, §)
15: Let M be the set of motifsn, forall s € DB
16: Let C be the set of candidate subsequences for allD B
17: Setm = ¢ andc = ¢ forallm € M andc € C
18: for j = 1to|I| do
19: selects; € DB as an anchor subsequence
20: Determine’ usinglen + 1 ands;
21: newd =maxe, 0}
22: canSet = {candidate similar subsequencesplisingl w.r.t. newd}
23: canSet = RefinecanSet using remaining orderlines
24. for si € canSet do

© NGO

25; if dist(sk,s;) < 6 then

26: Add (si, tom,) and ; to m,)

27: end if

28: if dist(sy,s;) < € then Add (s, to c,,) end if
29: endfor

30: end for

31: returnM andC

ProcedureRefineMotif(DB, I, C, §)
32: Let M be the set of motifsn, forall s € DB
33: Setmtogforme M
34: for j =1to|I| do
35: if s; € DBthen

36: for each subsequeneén c,, € C do
3T if s € DB anddist(s,s;) < d then
38: Add (s tom,,) and s to my)
39: end if

40: end for

41: endif

42: end for

43: returnM

81

the false matches found in the candidate sets obtaineg@dmerateMotiffor lengthien + 1(Line
11).

The GenerateMoatifprocedure discovers similar subsequences of lefegtisubsequence,
that is,T'[i, i+ len — 1]. Atthe same time, we also keep track of the candidate setsifisequences
of lengthlen + 1, that is,T'[i,i + len]. We uses; to denote the/” subsequence along the order
line I. Next, we determine’ and set the new distance thresholdhas/é(Lines 20-21). Therewd
makes sure that we do not miss finding similar subsequenfg of+len — 1] andT'[i, i+ len]. For
each subsequencg on I, we obtain it's candidate set of subsequence similas;tosing I(Line
22). Line 23 implements the triangular inequality basechpry and refinecanSet. Finally, we
compute the diskj,s), si € canSet. If dist(sy,s;) < 0, we adds, to the set of subsequence
similar tos;(i.e.,ms,) and adds; to m,, due to thesymmetry property. In addition, itlist (s, s;)
< ¢, then we add;, to the candidate set,. Once all subsequences franare processed, we return
ms,; andc;, discovered for all subsequences frans.

The RefineMotifprocedure finds all similar subsequences for lerigth+ 1. Again, we
traverse the order liné from left to right(Line 34). To find subsequences similasjowe use the
candidate set,, obtained byGenerateMotif Line 37 calculateslist(s;,s), s in cs,. If distance

dist(s;,s) < ¢, we adds to m,; ands; to m.

4.2.2 Align Motifs

Having found the sets of motifs from each time series, the s&p is to discover valid
lagPatterns. A naive approach is to enumerate all possible combinatidmaotifs across mul-
tiple time series and calculate the support and particpatatio for each combination. Recall,

enumerating all possible combination of motifs has an egptal time complexity. The anti-

82

lagPattern Support Set
({rm11,m22}1.{0,3}) | {(T1[14,17], T5[17,20])}
({12, ma1},{0,-7}) | {(T1[22,25], 75(15,17]))}
({2, m22}.{0,-3}) | {(71[22,25], T5[17, 20])}

Table 4.2. Subset of lag patterns considered by naive eratiower

monotonic property opRatio that we have proved in Section 4.1 allows us to perform edirtyie
nation oflagPatterns that cannot be valid. However, the naive approach still a¢edorm many

lagPatterns p of length 2 that hagSup(p) = 1(i.e., no repetition) as shown in Table 4.2.

Further, computing Ratio(p) of lagPattern p is also a costly operation. In order to
compute theRatio of alagPattern p = ({my, ma, -+, my}, {l1, la, - - -, I }), we need to obtain
the pSup(p). The naive time complexity of computingSup(p) is O(m1| x |ma| X ... x |mg|) as
explained in example I.

Example I: Consider finding support set ofr211, m22},{0,3}). Recallmy; = {T1[14,17],
T1[1,4], T1[6,9], T1[22,25]} andmage = {T>[17,20], T>[6,9]}. Thus, the set of possible combina-
tions of subsequences from;; andmagg are {(11[14,17],T>[17,20)), (T1[14,17],15[6,9]), ...}.
However, only one combination from these possibilities, {(71[14, 17], T5[17, 20]) }, satisfies the

lag relation betweem; andmas.

To avoid enumerating allagPatterns and speed up the computation @ up(p), we
align all motifs to some reference time poifjt Aligning motif m means aligning it's anchor
subsequence tg, and shifting all it's similar subsequences accordingly. &, to be the length
of time series minusin Len(i.e., minimum length of motif). In our example, we chodges 22 to
align all motifs. Figures 4.6(a) and 4.6(b) show the motdédpe and after alignment. The circled
points denote the anchor subsequences. After alignmaestt,tieae point will show a list of motifs.

We observe that the motifs, denoted by the symbkal&] andV, occur together at time points 9,

83

XMy,

D>m

Amy
O Mg

V Ma
< < Q 4 XMa

* *
% % ®

* @ v

1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time Point

(a) Before alignment

rr o1 o 1o+ T+ 1+ o+ T+ T+ 1 17 1 r° 17 1 1° 11 T° 1 1117 1T T 1T 1T T T T T T T T TT
xm,
Fmy,
D>mi,
* My,
6] o gmy
Amy,
0 my
O My,
V M

X Mgy

X X X

®

v v

%* %*

A
A

® @ ® 86 OO O 9
A

* #
% %

®

&

T T T T R O
123456 7 8 91011121314151617 18192021 222324252627 2829 30313233343536373839404142
Time Point

(b) After alignment

Figure 4.6. Motifs before and after alignment.

84

14, and 22. In other words, theSup({ma1, ms1, ma1},{0,4,5}) is 3. ThepRatio of this pattern

is m =0.75. Now, we explain two benefits of alignment as follow:

e After alignment, the time complexity of computindup(p) is O(m1| + |me| + ... + |mx]).

— Consider finding support set ofr11, ma2},{0,3}). After alignment, the start time of
subsequence im1; is {9, 14, 22, 3Q andma, is {11, 22}. Using hash join, we can get
the intersection of these two sets@{|m11| + |ma2|). For this case, it i§22}. From
this result, we obtain the support set. The support sé(7$[14,17],T>[17,20])} as
subsequenc# [14, 17] from m;; and subsequencs,[17, 20] from my, are aligned at

time point 22.

e The alignment of motifs provides us with information on whimombinations of motifs are

likely to form lagPatterns p that can haveSup(p) at least 2.

— Consider motifmy;. After alignment, motifm; has subsequence at time point 9, 14,
22, and 30. Careful observation of Figure 4.6(b) suggestsahy motif that has sub-
sequences at time point 9, 14 or 30 can fdanPatterns with motif m; and has
pSup(p) at least 2. In this case, the motifs arg;, ms;, m4; andms;. Note that, our

approach does not fordag Patterns with motif mo,.

To facilitate the support counting t#fgPatternsand efficient discovery dagPatterns we
construct an inverted index for the motifs occurring at e@mie point after the alignment. Fig. 4.7
shows the inverted index obtained from Fig. 4.6(b). Note, thiatime pointt,(=22), all the motifs

are present. In other words, all theyg Patterns exist at time point,. We utilize this fact while

85

Figure 4.7. Inverted index for motifs in Fig. 4.6(b)

3 mi2
5 ms5q
9 M1 m21 T Maq Ms51
11 mi3 M22
14 M1 mio M21 M3 Ma1
16 Ms1
22 mqq mqp mq3 Mg Mo m22 Mm31
Mgo Maq Ms51
27 M3o
30 My1 M4 M21
32 mi3
35 m32
37 M14

calculating the support dagPatterns Following the alignment, our method callddP M iner

utilizes the inverted index and search for vdidPatterns

86

4.2.3 Algorithm LPMiner

Method LPMiner processes each matifand generates all lengthl&gPatternsfrom m
as follows. For each motif,, we obtain the start times of its similar matches after atignt. These
start times are used to probe the inverted index and to ohthitandidate motifsn’. Next, we
form alagPattern betweenm and each candidate moiit’, i.e.,p = ({m, m’},{l1,l2}). We also
record the time points of the inverted index whereldgPatternp is generated. ThodagPatterns
that satisfy thenin_sup andmin_ratio are valid and form the set of candidate patterns to generate

longerlagPatterns(sincelagPatternsare anti-monotonic).

Consider the motifni;. After alignment, the start times of its matches &8 14, 22,
30} (see Fig. 4.6(b)). We probe the inverted index at time pdnt$4 and 30 respectively and
obtain candidate motifs. In this case, the set of candidaisfsnis canSet = {ma1, ms1, ma1,
ms1 Y4, Note that, there is no need to probe inverted index at tlexerte time point 22 since all
motifs are aligned at this time point. In other word, dny Pattern p is exists at this time point.
The possibldagPatterns are {m11, mo1},{0,1}), {m11, ms1},{0,5}), {m11, m41},{0,6}) and
({m11, ms1},{0,6}) as shown in Table 4.3. For eakly Pattern, we have recorded the time points
of the inverted index from where it is generated(See secoiuhm in Table 4.3). For example,
the patterrp = ({m11, mo1},{0,1}) occurs at time point$9,14,22,309. This impliespSup(p) is

4. If min_ratio = 0.60, thempRatio(p) T = 1 > man_ratio. Hence, it can be used

_ 4
~ max{4,4

to generate the longer patterns. Note that,l@fiPatterns except {mi1,ms1}, {0,6}) satisfy

min_ratio constraints and so they are valith Patterns.

“Without alignment method, all motifs from time seri@s, 73, Ty and Ts are incanSet for motif my,. Thus,
|canSet| = 6 for naive method.

87

lagPattern Time points Support Set pSup | pRatio

({ma1, m213,{0,1}) | {9, 14, 22, 30 | {(T1[1,4], T2[2,4]), (T1[6,9], T>[7,9)), 4 1
(T [14,17], Ty [15, 17]), (T1[22, 25), T»[23, 25])}

{m11, m31}1,{0,5}) | {9, 14, 22 {(1T1[1, 4], T5[6,9]), (T1[6,9], T5[11, 14]), 3 0.75
(T1[14,17], T5[19, 22])}

({mn, TTL41},{0,6}) {9, 14, 23 {(Tl[l, 4}, T4 [7, 10]), (T1 [6, 9}, T4[12, 15]), 3 0.75
(T1[14,17], T4 [20, 23]) }

{m11, ms1},{0,6}) | {9, 22 {(T1[1,4],T5[7,10]), (11[14,17], T5[20, 23])} 2 0.50

Table 4.3. Generated lengti@y Patterns using motifm.;

Let us consider the valithgPatternp of length 2 = {m1, mo1}, {0,1}). Recall, this
pattern is generated from time points 9, 14, 22 and 30. Hdacéhis pattern, we again probe the
inverted indexes at time poin{®, 14, 3¢(again no need to probe inverted index at time point 22)
and obtain the candidate motif’ from time series” with 7" > T, for extension. In this case, the
set of candidate motifsinSet = {ms1, m4; }. Note that, motifns; is notincanSet aslagPattern
({m11,m51},{0,6}) does not satisfy thewin_ratio. Hence, the possible lengthl&Patternsare
({m11, ma1, ms1}, {0,1,5) and {my1, ma1 , ma1}, {0,1,6) both of which are generated from
time points{9, 14, 22 and satisfy thenin_ratio and hence valid. The process is repeated until no

new valid pattern is obtained.

One key point is how support set bfgPatterns is obtained using time points. Con-
sider patterrp = ({m11, m21},{0,1}) and it's time point{9, 14, 22, 30. We know subsequence
711, 4] from m;; and subsequencs[2, 4] from myy are indexed at time point 9 after alignment.
Thus, ([1[1,4],T>[2,4]) is in the support set gf. Next, subsequencE, [6, 9] from m4; and subse-
quenceT;[7,9] from mqy, are indexed at time point 14. Hencé} 6, 9], 7»[7,9]) is also in the
support set ofp. Similarly, from time point 22 and 30, we obtaiff3(14, 17],75[15,17]) and
(T1]22, 25], T»[23, 25]) respectively. Finally, the support set pfis {(71[1, 4], T>[2, 4]), (11[6, 9],
To[7,9]), (T1[14,17], To[15,17]), (T1]22, 25], T»[23, 25))}.

88

Algorithm 9 LPMiner

Input: N, L, min_sup, min_ratio, M
Output;: LP = set oflagPattern = ¢

1

N

7
8

cfori=1to N —1do
moti fSet = {motifs from M, }
extSet = {time series fron¥;; to Ty }
for each motifm in moti fSet do
Mine({m}, extSet)
end for
: end for
: returnLP;

Procedure Mine(p, extSet)

9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

. probeSet = {starting time points op after alignmeny
canSet = ¢
for each time point in probeSet do
for eachm’ in invIndex|t] do
canSet = canSet U {m/, time pointt}
end for
end for
extPattern = ¢, newExtSet = ¢
for each entryn’ € canSet do
p’ =formlagPattern betweerp andm/’
if pRatio(p’) > min_ratio then
LP=LPUYp
newExtSet = newFExtSet U time series ofn’
extPattern = extPattern U p’
end if
end for
for eachlag Pattern lp € extPattern do
Mine(Ip, newExtSet)
end for

maintains the list of time series from which the candidatdifimi@are obtained for extension(Line
3).
recursively extends the givdagPatternp. Line 9 obtains the time points gfto probe the inverted

index. Lines 11-15 obtain all candidate motifs-ith.Set using inverted index. Lines 17-24 generate

the candidatdagPattern between patterp and each motif ircanSet. The patterns satisfying

Algorithm 9 shows the details of LPMiner. Line 2 obtains bk motifs from/;. extSet

89

For each motifm, we call proceduréMine to discoveriagPatterns. The Mine procedure

min_ratio are stored inLP (Line 20) andextPattern (Line 22). TheMine procedure is called

recursively for each generated patterreit Pattern (Line 26).

Algorithm LPMiner utilizes the anti-monotone property ainglerted index to speed up
the generation ofagPatterns. We derive an upper bound estimate of the participatioro rtati

further improve efficiency of LPMiner by pruning infeasildandidate patterns early.

Optimization. This optimization usegnyy; ;)| to estimate the maximumRatio of alagPattern
p = {m1, ma, ...,my}, {l1,l2,...J}). SincepSup(p) must be less than or equal tirn,,c,{|m|},

the maximunypRatio(p) < minmep{|m|}

mazmep{|m[}’

ConsiderlagPattern p = ({m11, ms1}, {0,5}). We havelm;1| =4 and|mg;| = 3. Sup-

pose thenin_ratio is 0.80. Then theRatio(p) is z;zgﬂ = 0.75 0.80). Thus, this candidate

is infeasible and can be removed from consideration for igeing candidatéagPatterns.

For simplicity, LPMiner looks for exact lag among motifs. \Wever, we can introduce
a slack variable to relax this requirement. For example, iifeaccesses inverted index at time
points 11 and 32 to obtain candidatesfoy;. However, with a slack value of 2, we now obtain pos-
sible candidates by accessing inverted index at time pétht0,11,12,18 and{30,31,32,33,34

In this case, the patterd3, mo; }, {0,3}) will be in the output (See Fig. 4.6(b)).

4.3 Experimental Evaluation

We implement all our algorithms in C (compiled with GCC -O2)ur hardware con-
figuration consists of a 3.2 MHz processor with 3GB RAM rumnivindows. We use synthetic

datasets to verify the scalability of the proposed appr@auhreal world datasets to demonstrate

90

the usefulness dfagPatterns. A random walk generator [64, 26] is used to generate syiothet

datasetd with N =25 andL = 100000.

4.3.1 Efficiency Experiments

FindMotifs Algorithm. We select one time series from dataseand apply FindMotifs
algorithm to find all the motifs. We compare the performantEindMotifs with algorithm Order-
Line. The OrderLine algorithm uses only order line concéffte number of order lines is 5[64].
Fig. 4.8(a) shows the results of varyidgirom 5000 to 100000. We setinLen = 99, maxLen =
110 andcoef = 0.95. We observe that FindMotifs outperforms OrderLing] the gap widens as
the length of the time series increases.

Next, we setl, = 20000 and vary the correlation coefficiemt f from 0.60 to 0.99. Fig.
4.8(b) shows the results in log scale. We observe that Fitif/is much faster than OrderLine.
In particular, when the correlation coefficient is greateart 0.9, FindMotifs is at least 50% faster
than OrderLine. However, the gap narrows:asf decreases. This is because FindMotifs estimates
newd (> 6) in order to apply the subsequence matching property [5&]ldw value ofcoef, newd
is much higher thag resulting in a larger set of candidate subsequences famtistcomputation.

LPMiner Algorithm. Now, we report the results of our experiments on the datd3ets
Unless otherwise stated, we set coef = 0185 _sup = 0.05,min_ratio = 0.80, N = 10, L = 10000,
Min_Len =99 andMax_Len = 110. Fig. 4.9 shows the results. Note that, running times aa
include time required by FindMotifs algorithm. We obsertattincreasing L and N leads to an
exponential increase in the runtime of LPMiner. This is eted since mordagPatternswill be
generated with a large L and N. However, our optimizatioatetty is effective in cutting down the

runtime. We also evaluate LPMiner by varyingn_sup (see Fig. 4.9(d)) anghin_ratio (see Fig.

91

—O— FindMotifs
—B— OrderLine

1000

Time (in Seconds)
B
a
o
o

0 20 40 60 80 100
L(in thousand)

(a) Effect of varying time series length

—5— FindMotifs
—HB— OrderLine

Time (in Seconds)
=
o

101 L L L
0.6 0.7 0.8 0.9 1
coef

(b) Effect of varying coef

Figure 4.8. Runtime comparison between FindMotifs and @Qide algorithms.

5.6(d)). Increasingnin_sup reduces the number of subsequences and results in smateteh
lists. Hence, the runtime decreases. Increasirig_ratio reduces the total number of possible
valid lagPatterns hence the runtime also decreases. Also, LPMiner takegHassone second to
build an inverted index in all experiments. We also obsewiedlar trends of LPMiner algorithm

on real stock dataset, hepatitis dataset and stulong tlatase

4.3.2 Effectiveness Experiments

In this section, we minéagPatterns from real dataset from finance data and medical

data and discuss usability of the discovered patterns.

92

2500 ; . :
—— LPMiner + Opt
2000} —e— LPMiner o
w
T
c
8 15001 1
Q
[0
€ 1000}]
Q
=
* s00{]
GI L L
0.5 1 15 2 25
L v 10*
(a) Effect of varying L
2000 T T T
—— LPMiner + Opt D
—&— LPMiner
- 1500}
ke]
c
[o]
2
v 1000
£
(0]
S
i= 500
5 10 15 20 25
N
(b) Effect of varying N
180 \ : : ‘ ‘
160} ©
% 140} —&— LPMiner + Opt |
k= —©— LPMiner
3 1201 1
]
(]
£ 100} 1
£
£ 80} 1
601 1
404 : : :
0.5 0.6 0.7 0.8 0.9 1
min_ratio
(c) Effect of varying minratio
350 i i i
—<— LPMiner + Opt |
300 —&— LPMiner
@ 250} 1
c
S 200f 1
"
£ 150}]
Q
E 100}]
|_
501 1
0 : 93% © ©
0 0.05 0.1 0.15 0.2
min_sup

(d) Effect of varying minsup

Figure 4.9. Evaluation of LPMiner on datagdet

Finance dataset

We use S&P100 stock data¥gV=100, L=250) to find interesting localized associations
among stock movements. Fig. 4.10(a) and Fig. 4.2 show exangblthe discovered patterns. We
observe that there is cooperative behavior among NvidiaeMe and SanDisk stocks. All these
stocks are from semiconductor industry and none of them @mgpetitor of each other. We use
Yahoo Finance to verify competitor/co-operative behavitw obtain these results, we seke f =

0.90,min_sup = 0.10,min_ratio = 0.75,Min_Len = 6 andM ax_Len = 21.

To further validate the effectiveness and utility of thecdigered patterns, we construct
a portfolio of equities selected from Morgan Stanley Capiternational G7 (MSCI-G7) Indéx
We use the equity indices of seven countries (Canada, Fr&wenany, Japan, Singapore, UK
and USA) recorded daily over a 5 year period from March 2008¢tober 20094 =7, L=1260).
The objective of a portfolio construction is to achieve aheigrate of return over a period of time
(cumulative rate of return). Existing methods such Meariavare Analysis(MVA) determine the

investment weight for each equity indices from historicated

Recently, an alternative method that updates the investmeights based on analyzing
the co-movements of equities (COM) has been reported [82]rder to leverage thiegpatterns,
we first use the co-movement model to set the initial weights subsequently utilize odagPat-
ternsto update the investment weights as described in [92]. I@uPatterns are obtained using
LPMiner with coef = 0.95,min_sup = 0.10,min_ratio = 0.80,minLen = 3, maxLen = 10, N =

7 andL = 240(one year window).

®hitp://biz.swcp.com/stocks/
Sywww.mscibarra.com

94

2 T
NVIDIA Corporation
W B
8 of- 4
a
3
8t E
o
Ll B
~ 1
o E) 100 150 200 20
Time (in Day)
T T T T
150 Novellus Systems T
An i
g 05 —
3
£ -osH —
e i
sk i
1 1 | |
o E) 0 150 200 250
Time (in Day)
C T T T T i
sl SanDisk Corporation i
s i
5 i
3
8
7

| | |
0 50 100 150 200 250
Time (in Day)

(a) Lag based motif association among Nvidia, Novellus and $&nD
stocks.

—%— LPMiner
—e— COM
—e— MVA |
%))
£
=] 4
o}
14
° i
Q
T
14 i
()
2
8 N\
>
£
3
(@] 4
_5 I I I I
0 10 20 30 40 50

Months (Starting from Feb-06 to Oct-09)

(b) Cumulative monthly rate of returns on MSCI-G7 Index.

Figure 4.10. Usability ofagPatterns discovered from real world dataset.

95

We construct the portfolio for each month (March 2006 to ®etc2009) based on the
data from the previous 12 months. We consider four week asrmmth. Fig. 4.10(b) presents the
cumulative monthly rate of returns for MVA, COM and LPMiné&kle observe that the cumulative
rate of returns (over a period of 3 years) for LPMiner, COM &MdA is 26.64%, 22.26% and
11.41% respectively. Itis also important to note that tréad is observed across the board for most
time points. The more than two-fold increase of LPMiner oMBrA highlights the utility of our
approach.

Significance oflagPatterns. Now, we verify the significance dfig Patterns by shuf-
fling the time series data using Fisher-Yates shuffle metB6H [ThelagPatterns are mined from
the original dataset and shuffled dataset for the same seairafieters (See Table 4.4). We ob-
serve that, introducing randomness in the data signifigaetiuce the number of motifs and or
lagPatterns. This shows that the discovered motifs dagPatternare not due to random chance,
but that they are meaningful patterns from the original tsades, as we have significantly fewer

patterns in the shuffled data. Similar observation is alsadidor the other parameters and datasets.

Dataset # Motifs #lagPatterns
Original Data | Shuffled Data | Original Data | Shuffled Data
S&P100 stock 110862 9166 2145943 1321
MSCI-G7 index 3535 2100 22 0
Hepatitis data 4010 39 353 0
Stulong data 5938 102 430 2

Table 4.4. The number of Motifs ardgPatterns.

Hepatitis dataset

In the second set of experiments, we utilize the time serd@a flom Hepatitis dataset.

This dataset has 490 patients. For each patient, we havee8stinies, one time series for one

96

clinical attribute. For such dataset, we define motif as &sgbence that is repeated in the time
series of the same attribute in many patients. Also the l&gnpeis defined as an association among
motifs derived from different clinical attributes. To udgaithm FindMotifs and LPMiner on such

datasets, we fuse time series of same attribute from diffgratients. Thus, the modified dataset

contains 10 time series, one time series for one clinicebate.

Figure 4.11(a) presents an example of two time series maltifsined from time series
of attribute ALB. Both motifs represent behavior of resultAd.B test over two months. The first
motif, denoted as motif 1, appears in 28 patients, out of thématients have Hepatitis B. Similarly,
second motif, denoted as motif 2, appears in 18 patientspfabem 12 patients have Hepatitis C.
From the first motif, we can derive a rule: patient having AL&Bue around 120 for 5 weeks will

have higher chance of developing Hepatitis B.

Next, Figure 4.11(b) presents an example of lag patterns [Hg pattern appears in 15
patients having Hepatitis B. It is not appeared in any p&i&om hepatitis C. Clearly, such infor-
mation might be useful for time series classification. Weehs@tcoe f = 0.95, min_sup = 0.10,
min_ratio = 0.65, Min_Len = 4 andMax_Len = 8 to achieve the above results. We have also

observed that, shuffling the data does not generate motiftagrpatterns as shown in Table 4.4.

Stulong dataset

In the third set of experiments, we utilize the time serigs dieom Stulong dataset. This
dataset has 860 patients. For each patient, we have 10 tiiae,s@ne time series for one clinical
attribute. The definition of motif and lag pattern is simits explained for Hepatitis dataset. To

use algorithm FindMotifs and LPMiner on such datasets, \ge fime series of same attribute from

97

120,
115¢]
—6e— Motif 1: ALB — Hepatitis B
110¢ —&— Motif 2 :ALB — Hepatitis C
105+
100+
1%
]
2 95f
>
90+
85
80
e 5 @ o
75}
70 ‘ ‘ ‘
1 3 5 7 9

Weeks

(a) time series motif

150

—s— ALP
—e— ALB

— . e

100+

Value

501

Weeks

(b) lag patterns

Figure 4.11. Example of motifs and lag patterns obtainechfitepatitis Dataset

different patients. Thus, the modified dataset containgi® $eries, one time series for one clinical
attribute.

Figure 4.12(a) presents an example of a time series motfredd from attribute diastolic
blood pressure. This motif represents behavior of diastalbod pressure test over two months.
This motif appears in 32 patients, out of them 22 patiente Imavcardiovascular disease. From these
motif, we can derive the following rule, a patient havingsd@ic blood pressure similar to Figure
4.12(a) will have less chance of developing cardiovasalikgase. Next, Figure 4.12(b) presents

an example of lag patterns. We set f = 0.95,min_sup = 0.10,min_ratio = 0.65,Min_Len = 4

98

90¢ —o6— Diastolic blood pressure |

88

86

Value

84r

82r

80r

Weeks

(a) time series motif

—o6— Diastolic blood pressure
—=&— Skinfold — above musculus triceps

150q
140 \s\e—’_e/@
130+

Value

2 3 a 5 6
Weeks
(b) lag patterns

Figure 4.12. Example of motifs and lag patterns obtaineadh f&ulong Dataset

andMax_Len = 8 to achieve the above results. We have also observed tthdfljreg the data does

not generate motifs and lag patterns(See Table 4.4).

4.4 Summary

In this chapter, we have introduced a new class of pattettegidagPatternsin time series

data. The key contributions of this work are summarized bovis:

99

1. We define a new class of patterns, callethg® atterns, to capture the orderings among mo-
tifs derived from different time series and prove thajPatterns satisfy the anti-monotonic
property. This property allows us to prune the search speiteigeneration diug Patterns.
We design an efficient algorithm callddP M iner that first aligns the motifs and then build

an inverted index to quickly find group of motifs with invamteorderings.

2. We extend the exact motifs discovery algorithm in [64] igcdver motifs of all lengths. We
take advantage of order line concept and subsequence nattperty of normalized time

series to reduce over 60% of the distance computations.

3. We evaluate the algorithms on both synthetic and realdiaatasets. Our experimental re-
sults show that the proposed approach is scalable. We slkeouws#iulness dagPatternsdis-
covered from a stock dataset by constructing stock poottbiat leads to a two-fold increase
in the cumulative rate of return on investment compared éotthditional mean variance

analysis(MVA) portfolio selection strategy.

In future, we would like to minéagPatterns from streaming data. This will be useful

for financial application such as stock portfolio or investrsuggestion for pair trading.

100

Chapter 5

Mine Patterns across Different Kinds of

Data

We have seen that existing frequent pattern mining algosthre geared toward finding
frequent patterns from categorical data, numerical dadesaquence data. The previous two chap-
ters present frequent pattern mining algorithms for irdkdata and time series data. However,
many database applications in the clinical and bioinfortsadlomains involve records with multi-
ple kinds of data. For example, a patient’s record typicedignprises of categorical data, numerical
data, time sequence data, interval data and time serie(Sdatdable 5.1). Knowing the relation-
ships among patterns from these different kinds of data thimahe understanding of a patient’s
health condition.

Consider the two patterns

{Male, Smoking} and

{Headache Overlap|0,0,0,1,0] HighBloodPressure}.

101

Id | Categorical Data | Numerical Data | Interval Data Time Series Data Class
1 CVD = Yes

—&— Cholesterol
9 —e—LDL

Headeche Chest Pain

Male, Age =21, High Blood Pressure
Smoking, DailyWinelntake = 2, 6
Wine AvgSysBIdPre = 2
Time 5
4
3
0 2 4 6 8 10 12 14
Time
2 CVD = No
6
5.5 —e— Cholesterol
—e—LDL
5
4.5
Headeche ‘ ‘ High Blood Pressure o 4
Male, Age = 30, 3
NoSmoking, DailyWinelntake = 0,| . C > 35
NoWine AvgSysBldPre = 5 Time

Time

Table 5.1. Dataset with multiple kinds of data

The pattern{ Male,Smoking} is a frequently occurring itemset [8]. Well-known algo-
rithms such as FPTree [39] can be utilized to find such fretyeacurring itemsets. On the other
hand, the patterd Headache Overlapl0,0,0,1,0] HighBloodPressure} is an interval-based
temporal pattern and its discovery requires a totally diffé algorithm [75]. Separately, these pat-
terns may not raise any alarm as there are many male smokies fiopulation who go about their
daily lives normally. Similarly, many people suffer fromadadache with elevated blood pressure but
they do not experience any serious consequences. Howkegammbination of these two patterns
reveals a different picture. Studies have shown that a nmaéker who experiences headache with
elevated blood pressure is a likely candidate for cardimvas diseases. We call this combination

of patterns from different kinds of data heterogenouspatterns.

102

In order to mine heterogenous patterns, we must apply dittealgorithms for the dif-
ferent kinds of data. This is then followed by an exhaustiwmlination from each kind of data
to form heterogenous patterns. However, an exhaustive ioaitidn is not a feasible solution. For
example, a small dataset with 10 categorical attributesyu2ferical attributes, 10 events, and 10
days of 10 time series data can result in the generatiai‘ofrequent itemsets [96R%° frequent
intervals,10'° frequent temporal patterns, and'® time series motifs. Hence, the combination of
these patterns is of the ordéx(2°®). Clearly, for practicality, we need an efficient algorithm t

prune the search space.

We have seen that, early works on discovering heterogeraitexips are limited to mining
patterns from at most two different kinds of data [79, 41]eTniSeq algorithm [79] mines patterns
from both categorical and sequence data while the Merge§@riddim [41] is designed for both
categorical and numerical data. These algorithms are laseghaustive enumeration. Thus, they

cannot be extended to discover patterns involving more tilvarkinds of data.

In this work, first we present a pattern mining algorithm)edHTMiner (Heterogenous
PatternrMiner), to mine all frequent heteorgenous patterns from datagketmultiple kinds of data.
HTMiner is an integrated algorithm that systematicallycdigers frequent heterogenous patterns
in a depth-first manner from a dataset consisting of categlodata, numerical data, interval data
and time series data. Giverm@insupthreshold, HTMiner first discovers a set of frequent pagern
from categorical data, numerical data, interval data ame tseries data. Next, HTMiner utilizes
the computations performed in the previous stage to quipkiye off infeasible combinations for
mining heteorgenous patterns. Our experimental resutte shat the proposed algorithm is very

efficient.

103

In many real-world applications, the number of frequentgrats mined for various para-
metric settings is extremely large and only a subset of tipetterns are useful. For example,
frequent pattern based classifier uses only subset of fnequadterns for classification. Thus, we
also present another mining strategy, calClassifier, to mine the essential set of discriminative
heteorgenous patterns from dataset with multiple kindsatd €or classification. HTClassifier is an
iterative algorithm. In each iteration, HTClassifier digers an essential heterogenous pattern for
classification and performs instance elimination. Thitanse elimination step reduces the problem
size progressively by removing training instances whiehcarrectly covered by the discovered es-
sential heterogenous pattern. Experiments on two reabvdaiasets show that the classifier based

on discovered patterns can significantly improve the diaasion accuracy.

To the best of our knowledge, this is the first work that indéégs existing frequent pat-
tern mining algorithms for single data kind to discover hegenous patterns from datasets with
multiple kinds of data. We demonstrate the effectivenessuch heterogenous patterns for clas-
sification by building two classifiers and comparing themhvalassifiers that are built using only
patterns involving single kind of data. Experiment resaligwo real world datasets show that HT-
Miner is efficient and scalable in discovering heterogenmatserns. Further, the classifiers based
on heterogenous patterns significantly outperform classifbased on patterns involving at most

two kinds of data.

The remaining of the chapter is organized as follow: In sech.1, we describe the pre-
liminary and the problem statement. HTMiner algorithm iplained in section 5.2. HTClassifier
algorithm is explained in section 5.3. An extensive experital result is reported in section 5.4.

Section 5.5 summarizes the discussion.

104

5.1 Preliminaries

Let DB be a dataset with multiple kinds of data, namely, categhntanerical, interval
and time series. Each instance/dB has a class label. Table 5.2 shows an example of such a dataset
where column 1 is the instance id, column 2 is the categodiatd, column 3 is the numerical data,
column 4 is the interval data, column 5 is the time series, datd finally column 6 shows the class
labels.

DB can be projected into 4 datasets according to the kind ofatatallows:

1. A categorical dataset, denoted @#3¢, contains instances of the form tid, C, class >
wheretid is the instance identifierC’ is a set of items where each item is a categorical

attribute-value pair, andass is the class label of the instance.

2. A Numerical dataset, denoted B3y, contains instances of the forea tid, N, class >

whereN is a set of numerical attribute-value pairs.

3. An Interval dataset, denoted a5B;, is a set of instances of the form tid, E, class >
whereF is a list of events. Each event is a trip(égpe, start, end Events inE are sorted by
their start times, end times and event types. Each pair aftevg, £ € E has a temporal
relationships [12] given byH;.type R Es.type) where R € {Equal, Meet, Before, Start,

Overlap, Contain, FinisiBy}.

4. A Time series dataset, denotedla®r, is a set of instances of the form tid, T, class >
whereT is a set of time series of length One time series represents one attribute. Each
time series is of the formu(1], v[2] ,...,v[n]) whereuv[i] is the value of the time series at time

pointi. In this chapter, we us€xy to refer a time series of attribué from instanceX.

105

Instance | Categorical| Numerical Interval data Time series data | Class
identifier | data data
1 AB.E,G (attr1,0.4),@ttr2,0.6) | (L,1,6),(K,4,8),(S,8,10),(T,11,12) 71; = {5,6,7,10,14 1
T12 = {7,6,5,5,12
2 A,B,D (attrs,0.8),@ttrs,0.2) | (L,1,5),(T,2,7),(K,3,9),(S,9,13) | T»; ={1,5,6,9,0 1
T22 = {10,7,6,4,(}
3 A,B,D (attr1,0.38),attrs,0.5) | (L,3,8),(T,3,9),(K,5,10),(S,10,12) T5; = {4,5,7,0,4 1
T3 ={12,6,6,5,}
4 B,D,E,G (attrs,0.5),@ttrs,0.9) | (K,2,4),(S,6,10) Ty ={1,2,2,3,4 1
T42 = {0,5,0,1,(}
5 A,B,D (attr1,0.37),@ttrs,0.6) | (L,1,6),(K,3,8),(S,4,10) T51 ={3,6,7,7,3 0
T52 = {0,8,0,6,(}
6 ADE (attr1,0.27),@ttr2,0.4) | (N,5,10) Te1 ={4,5,4,7,4 0
T62 = {0,4,0,3,(}

Table 5.2. Example: Dataset with multiple kinds of data

Different types of patterns can be discovered from eachaptbjected dataset. For the
categorical datasetD B¢, we can find the set of frequent itemsets, where each itemsesét of
items that occurs together frequently. An instance of thastaD B~ supports itemsef if I is
a subset of the instance’s item-set. The support f the ratio of the number of instances that
are superset of to the total number of instances inB-. For example, in Table 5.2, instance 1
supports the itemsg#, B}, but instance 4 does not. The support of itenf#etB} is 7 as instances
1, 2, 3and 5 supporA, B}. The length of itemset is the number of items it contains.example,
length of itemse{A, B} is 2.

For thenumerical datasetD By, the patterns found are of the fommp = {(attry, [I1, u1]),
(attry, [l2,us])- - - } wherel; andu,; denote the lower and upper bound for the numerical attribute
attr;. We say that an instandesatisfies the patternp if and only if for each attribute appearing
in np, the corresponding value of that attributelities in the specified rang@, «] in np. For ex-
ample, instance 1 in Table 5.2 satisfigs= {(attr, [0.39, 0.41]),(attr2, [0.58,0.62])} as the value
of attri(attrs) in instance 1 is 0.4(0.6) which is in [0.39,0.41]([0.582)). The support ofip

is the ratio of the number of instances that satisfipdo the total number of instances InBy .

106

The length of numerical pattemap is the number of attributes it contains. For example, lemdth
{(attry,[0.39,0.41]),(attrs, [0.58,0.62])} is 2.
For theinterval dataset D B, we can find sequence pattern, temporal pattern, annotated

sequence pattern, and annotated temporal pattern. Thitsmpare defined as follows:

i[e,fm,0,8 Ralc,f,m,o0,s
[] []

R
1. A temporal patterrip has the form(E;.type Es.type -+ BE,.type)
where E; .type is an event type an®;[c, f,m, o, s] is temporal relationships between event

of type E; 1 .type and all of it's preceding events ip as explained in chapter 3.

2. A sequence pattern is the special case of the temporefpathere eacl®; in ip is limited

to the “Before” relationship, denoted b¥(.type — Es.type — ... = FE;iq1.type).

3. An annotated temporal pattern is simply a temporal patth a time lagt(> 0) is speci-

Ry [&fﬂ;ﬁ](il))

fied between adjacent pair of eventsiin denoted by(E;.type - Ej.type

Rile,f,m,0,s](ts
e fﬂ; #1(t) Eitq.type - - E,.type).

4. An annotated sequence pattern is the special case of tlueated temporal pattern where

eachR; in ip is limited to the "Before” relationship, denoted B.type > E; . 1.type.

A database instance frof1 B; satisfies a temporal pattefp if and only if for each pair
of event types inp, their respective start and end times in instance confoontiset corresponding
temporal relationship ip. Similarly, for an annotated temporal pattern with time fdgptween a
pair of events(E;, F; 1), we say that an instance satisfies this pattern if the instaatisfies the
corresponding temporal pattern and the difference in te stmes of these events (i.e., start time
of E; 1, - start time of E) lies in the ranget[— 4, t 4], whered(> 0) is a threshold for the time

lag. The length otp is the number of events it contains.

107

Overlapl0.00.1,01(2) - }where event of typd. over-

Consider the annotated pattegn= { L
laps event of typd<. Further, when event of typke occurs, event of typ& will occur with a lag of
2 days (i.e.t=2). Suppos@ = 1, then instance 1 in Table 5.2 supports thisas event. at offset 1
overlaps eveni{ at offset 2 and the difference in the start time of everand event in instance
1 is 3 which is within the range [1,3](i.e.,3[2-1,2+1]). However, instance 1 does not supgdrt
Owverlap(5)

B K} as the difference in the start times of these events is nbimtibe range [4,6] (i.e., 3

¢ [5-1,5+1]). We compute the support of a temporal pattermasadtio of the number of instances

that satisfies the temporal pattern to the total number tdivces inD B;. The length ofip is 2.

For thetime seriesdatasetD B, a time series motif is the set of non-overlapping subse-
guences such that the subsequences in the set are of theesmtine &re from the same attribute and
the distances between any pair of subsequences are less ginzen threshold. For example, con-
sider motifm, = {T11[1,3], T31[1,3], Ts1[2,4]} from attribute 1. This motif has subsequences from
instance 1, 3 and 6. We use euclidian distance to measuréstaaak between two subsequences.
The support of time series motif is the ratio of the number of instances thas subsequence in
the set to the total number of instancesiB,. For example, the support af; is % With these
frequent motifs, we can discover motif sequences and atatbtaotif sequences from time series
datasetD By. Motif sequences and annotated motif sequencesi{igRatterns) have the same
definition as sequence pattern and annotated sequencmpalktere event type is replaced by
time series motif. The support of these patterns from timesealata can be defined in a similar

manner as the support of sequence patterns.

108

A heterogenouspattern, oHT pattern in short, is a quadruplet represente@@sip, ip, tp],
wherecp, np, ip, tp are the patterns discovered from categorical, numeritiival and time series

data respectively.

For exampleq = [{Smoking, Mal@, (), {Smoking — ChestPain}, ()] is a HT pattern
of size 2 since it has patterns only from the categorical atehval data. We usk-HT to refer a

HT pattern of sizek.

The support of a HT pattern, denoted asup(«), is the ratio of the number of instances
in DB satisfyinga to the total number of instances InB. The confidence of for a class label
class, denoted byconf(a, class), is the ratio of the number of instances with class latieks
satisfyinga to the number of instances that satistied=or example, support ef = [{A, B}, ¢, {L
Ouerlapl00.0.L0] gy 41'is 4 asinstances 1, 2, 3 and 5 satisfyAlso, conf(, 1) = 3.

A HT patterna is frequent if sup(e) > minsup. A HT patternca is discriminative if its
confidence for one class is higher thamx_con f and its confidences for the rest of the classes are
lower thanmin_conf. A HT patterna is anessential pattern for classification if it is both frequent

and discriminative.

Given a minimum support threshotdin sup and dataset with multiple kinds of datas,
our purpose is to find the set of frequent heteorgenous patté&urther, given a minimum support
thresholdminsup, maximum class confidence threshetthixz_con f, minimum class confidence
thresholdmin_con f and dataset with multiple kinds of dafaB, we discover a set of essential

heterogenous patterns for classification.

109

5.2 Algorithm HTMiner

In this section, we present an algorithm, called HTMinemioe all frequent heteroge-
nous patterns(see Algorithm 10). HTMiner first projects da¢asetD B into the respective pro-
jected databases based on the kinds of data that exidisBifLine 2). It then calls procedure
MineSingle to generate a set of frequent pattgragernSet along with their support values for
each projected databases (Line 3). Details of MineSingamen in Section 5.2.1. Line 7 invokes
procedure MineMultiple to generate combination of patermom different kinds of data. Details

are given in Section 5.2.2. At last, the generated frequatiems are outputted.

Algorithm 10 HTMiner
Input : databasé B, minimum support thresholthinsup
Output :; set of frequent patterfsePat
Global variable ;frePat = (), N = 4, patternSet =)
1. forp=1toN do
DB, = projected database &iB for p'" kind of data
patternSet, = MineSingle(D B, minsup)
frePat = frePat U patternSet,
end for
Remove infrequent attributes fromB
resultSet = MineMultiple (DB, minsup)
return{ frePat U resultSet}

5.2.1 Algorithm MineSingle

Algorithm MineSingle (see Algorithm 11) unifies the varidusquent pattern mining al-
gorithms for different kinds of data via a modified pseuddgution based pattern growth approach
[77]. It grows the pattern in two dimensions: increase thglle of pattern by 1, and increase
the information content of pattern. In the first case, we itadin extensionof the pattern. For

example, itemsefA, B} is one possible extension of itemggi}. Also, a temporal patterf P

110

Overlapl00,0,1,0] -
verlapD0.0-19 01 is one possible extension of temporal pattéy. In the second case, we call it

Overlap|0,0,0,1,0](7)
[I(

anannotation of the pattern. For exampl¢ P Q} is one possible annotation of

Owerlap|0,0,0,1,0]
—

{P Q}. Only patterns from interval data and time series data recarinotation.

Algorithm 11 MineSingle(D B,,, minsup)
Output : A frequent patternsatSet

1: patSet =0 [/ set of generated patterns
2: frePatSet = {length 1 frequent patterns fromB,, }
3: while frePatSet # () do
Select patterax from frePatSet and remove it fromyfrePatSet
Add o to patSet
extPatSet = {extendpatterna}
frePatSet = frePatSet U extPatSet
annPatSet = {annotate patterna}
9: patSet =patSet U annPatSet
10: end while
11: returnpatSet

© N o g A

Initially, Algorithm MineSingle obtains all the frequenafterns of length 1 from the given
dataset with single kind of date B, (Line 2). Table 5.3 shows a subset of the length 1 patterns

generated for each kind of data using dataset given in TaBle 5

Forcategorical datg a length 1 pattern is simply an item (i.e., attribute-value pair). We
can determine its frequency by counting the number of igsun given databade B~ where this
item occurs. At the same time, the instance id and the offsbedtema within the instance is kept

in an index, calledndezx,, for subsequent use(See Table 5.3(a)).

For numerical data, a length 1 pattern is of the foruttr, [[, u]). To discover the fre-
qguent range of an attributgtr, letV =[v1, vo, ...,v;] be the possible values aftr in DBy . Given
a similarity threshold, we restrict the numerical ranges as followsf §,v1 +9], [vo — d,v2+4], ...,

[vr — 0,u; + d]. For each numerical range, i.e., an interval iterttf,[v; — 6,v; + d]), we determine

111

(a) Categorical dataséBc

G
instanceid | offsetlist
1 4
4 4

A B
instanceid | offsetlist || instanceid | offsetlist
1 1 1 2
2 1 2 2
3 1 3 2
5 1 4 1
6 1 5 2

(b) Numerical

dataseb By

Attribute : attg

VvV =[0.27,0.37,0.38,0.4) =0.2

{(attr;,[0.25,0.29]} {(attr,[0.35,0.39]} {(attr;,[0.36,0.40]} {(attr;,[0.38,0.42]}
instanceid | offsetlist | instanceid | offsetlist | instanceid | offsetlist | instanceid | offsetlist
6 1 3 1 1 1 1 1
5 1 3 1 3 1
5 1
(c) Interval dataseD;
0 | K}
_ _ g instanceid | offsetlist
instanceid | offsetlist
1 1 1 2 {N}
2 3 instanceid | offsetlist
2 1
3 3 6 1
3 1
z 1 4 1
5 2

(d) Time series datas&®Br

motif id | time series motifd = 2)
my {T11[1,3], T31[1,3], T61[2,4]}
meo {T11[1,3], T21[2,4]}
ms {T12[1,3], T22[2,4], T32[2,4]}
may {T12[2,4], T32[2,4]}
ms {T42[1,3], T52[3,5]}

112

Table 5.3. Generation of length 1 frequent patterns inmghdingle kind of data

(a) Transformed datasél B/ (b) Indexm

Instance Id| Interval Motif Data Class motif : my
1 (m1,1,3),(n2,1,3),tns,1,3),(n4,2,4) 1 instanceid | offsetlist
2 (m2,2,4),(n3,2,4) 1 1 1
3 (m1,1,3),(n3,2,4),(n4,2,4) 1 3 1
4 (ms5,1,3) 1 6 1
5 (ms5,3,5) 0
6 (m1,2,4) 0

Table 5.4. Transformed dataseB’. and index of motifmn;

its frequency and record the instance id and its offset innbdex. Table 5.3(b) lists the length 1
patterns generated using attributer .

Forinterval data, a length 1 temporal pattern is simply a frequent event. Waiolthe
frequency of events and record the instance ids and theetsfbf those instances that support these
frequent events.

Fortime series data a length 1 pattern is a frequent motif. Hence, we first diec@l
frequent time series motifs using method described in ptevchapter. Each discovered frequent
motif is given a unique id. For example, Table 5.3(d) lists tliscovered five motifs. Here, motif
my is a set of three subsequences from time series of attrifute, time series 1). Note that,
Ts1[2,4] denotes a subsequence from time points 2 to 4 from temies1 of instance 6. Based on
these frequent motifs, we transform the time series fdBa into an interval-based datasets’. as
follows: we add motifn with its start and end time to th&* entry in D B/, if m has a subsequence
from instancei. For example, motitn; has one subsequence starting from time points 2 to 4 in
time series 1 of instance 6, hence we appeng,2,4) to instance 6 ab B/.. Similarly, we append
(m1,1,3) in instance 3 oD B/.. Table 5.4 shows the result of such a transformation. Naig th
motifs in each instance dP B/. are ordered with respect to start time, end time and motiNioly,

DB/, is processed similarly as interval ddia3;.

113

Once the length 1 patterns for the given data have been dedefdgorithm MineSingle
generates a new candidate pattern by first tryingxiend an existing pattermay(Line 6). We put
all extended patterns ifire PatSet for further extension and annotation. The algorithm algestr
to annotatethe existing pattern to form new patterns if it is from int@rer time series data(Line
8). We put all extended patternspntSet(Line 9). The process is repeated till no pattern is left in
frePatSet. Finally, the set of generated patterngdg Set(Line 11). We will illustrate the extend

and annotate process with examples in the following sulosect

Extend Pattern

Consider the extension demset {A,B}. Table 5.5(a) shows an index of the itemset
{A,B} w.r.t. the dataseD B¢ in Table 5.5(b). The first entryl, {1,2}) indicates that item A is at
offset 1 and item B is at offset 2 in instance 1. Any item apipggafter the offset 2 in instance 1
is a potential candidate item for extending the itemsethis tase, we extend the pattefA, B}
with item E and G to form candidate patterfs, B, E} and{A, B, G} respectively. Note that, for
each candidate pattern, we maintain the instance ids froichvwhe pattern is generated. Similarly,
other entries from index of the itemsgh,B} are processed. Table 5.5(c) lists the candidate patterns
generated. Finally, candidate patterns which are freqaenindexed and returned.

Consider the extension olumerical pattern {(attr;, [0.36,0.40]}. Table 5.6(a) shows
the index of a length 1 numerical pattef(uttr,, [0.36,0.40]} w.r.t the dataseD By in Table
5.6(b). The firstentry1, {1}) indicates that attributettr; is at offset 1 in instance 1. Any attribute
appearing after the offset 1 in instance 1 is a potential icate for extension. From the index, we
access only those instances that supp{tsir,,[0.36,0.40]} in order to obtain the possible values

for each candidate for extension. In this case, there isaméypossible value farttr, = {0.6} and

114

two possible values farttrs = {0.5,0.6. As a result, much savings can be achieved with only three
candidates generated as shown in Table 5.6(c). For eacidatmg@attern, we obtain the supporting

instances. Similarly, other entries from index of the nuo@rpattern{(attr,, [0.36,0.40]} are

(a) Index (b) DatasetD B¢
itemset :{A,B} Instance id| Categorical Datg Class

instanceid | offsetlist 1 AB,E,G 1
1 1,2 2 AB.D 1
2 1,2 3 A,B,D 1
3 1,2 4 B,D,E,G 1
5 1,2 5 A,B,D 0

6 A,D,E 0

(c) Candidate patterns

itemsets

set of instance ids

{A,B,D}

{2,3,5

{ABE} | {1}

{AB,G} | {1}

Table 5.5. Example extension of itemgét,B }

processed. Finally, candidate patterns which are frecarenindexed and returned.

(a) Index (b) DatasetD By
{(attr,,[0.36,0.40]} Instance Id| Numerical Data Class

instanceid | offsetlist 1 (attry,0.4),@ttr,,0.6) 1
1 1 2 (attr,,0.8),@ttrs,0.2) 1
3 1 3 (attry,0.38),@ttrs,0.5) 1
5 1 4 (attr,,0.5),@ttrs,0.9) 1

5 (attr,,0.37),@ttrs,0.6) 0

6 (attr1,0.27),@ttr2,0.4) | 0O

(c) Candidate patterns

numerical patterns

set of instance ids

{(attr,,[0.36,0.40]),Gttr2,[0.4,0.8])

{1}

{(attr,,[0.36,0.40]),Gttr3,[0.3,0.7])

{3.5}

{(attr,,[0.36,0.40]),Gttr3,[0.4,0.8])

{3.5}

Table 5.6. Example extension of numerical pattfartr;,[0.36,0.40]}

115

Similarly, we can extend the patterns from interval and tg@ees data. Suppose we have

Ovwerlap|0,0,0,1,0]
-

atemporal pattern ip = {L K}. Table 5.7(a) shows thiazdex of this pattern with

respect to the datasédB; in Table 5.7(b). The first entry in the indéX, {1,2}) indicates that
eventL is at offset 1 and evenk’ is at offset 2 of instance 1. From datageB3;, we notice that
there are two events§ andT, that appear after offset 2 in instance 1. Hence we can exehy
eventsS andT respectively. First, we attempt to exteixdby eventS. We determine S'’s temporal
relationship with the events ifp. From the start and end times, we observe thast“Before” S and

Overl 0,10,
K “Meets” S. Hence, the generated pattern for this evertris " 720010 g Meetl0010.01 6y

Owverlap|0,0,0,1,0 Before[0,0,0,0,0
[] K [I

Similarly, we process evefit and obtair{ L T'}. All other entries

- O l bt)
from index of temporal patteriL ©*" %010

K} are processed similarly. Table 5.7(c) lists
the generated candidate patterns and their support irstdac The candidate patterns which are
frequent are indexed and returned. It is possible that, starce supports temporal pattern multiple

times. In such situation, we have indexed all occurrencéseofemporal patterns.

(a) Index (b) DatasetD By
(L Overlap [0,0,0,1,0] K} Instance Id| Interval Event Data Class
instanceid | offsetlist L (L.16),(K4.8),(5,8,10),(T.11,12) 1
1 12 2 (L,1,5),(T,2,7),(K,3,9),(S,9,13) 1
> 13 3 (L,3,8),(T,3,9),(K,5,10),(S,10,12) 1
3 13 4 | (K24).(5,6.10) 1
z 15 5 (L,1,6),(K,3,8),(S,4,10) 0
’ 6 (N,5,10) 0
(c) Candidate patterns
temporal patterns set of instance ids
{L Overlaﬁ0,0,l,O] K Meet[O 0,1,0,0] S} {1’2,3}
{L Overlap[0,0,0 1,0] K Beforﬂ ,0,0,0] T} {1}

Overlap[0,0,0 1,0] Overlap[0,0,0,Q,O}
—

{L S} | {5}

Overlap[O 0,0,1,0]
-

Table 5.7. Example extension of temporal pattfrn K}

116

Annotate Pattern

In order to generate a new pattern via annotation, we needddHte frequent time tag
information between adjacent pairs of events/motifs invemgipatternw. This is obtained by cal-
culating the differences between start times of adjaceinippaventsF;,; and F; in each instance
present in index of.. This difference is known as time lag betweEpand F;,; and denoted as
lag; ;+1. For each time ladag; ;-1 betweenE; and E;;, we obtain all instances iimdez that

supportdag; ;+1 betweenkE; andE; . With this, we can generate the frequent annotated patterns

Owerlap|0,0,0,1,0

For example, given a temporal pattem= {L —) K} and its index in Table

5.7(a). From the index, we know that the difference betwéenstart times of event& and L

Owerlapl0,0,0,1,0](2
—

is either 2 or 3. Thus, we have two candidate annotated pat{ér) K} and{L

Overlarl000.1.01) py For hoth candidate patterns, we obtain instances fronxiatie that supports

them.

Ovwerlap[0,0,0,1,0 Meet[0,0,1,0,0
[] K [

Similarly, if given pattern istp = {L) T}, then we obtain

possible time lag between evehtand K as well as between evelif and T using index oftp.

Assume, time lag betweehand K is 2 or 3 and time lag betwedk andT is 4. Then, we generate

two candidate annotated pattel{dsOverlapM(),l,()](2) K I\/Ieet[()ﬂ),(),()](él) T} and{L Overlap%(),l,()](fﬁ)

Meet[0,0,1,0,0](4)
e

K T},

Ovwerlap[0,0,0,1,0](2 Meet[0,0,1,0,0](4
[I()K [1(4)

Note that, HT patter L T} can be generated by ex-

Owverlap|0,0,0,1,0 Owverlap|0,0,0,1,0] Meet[0,0,1,0,0
— — —

tending{L 1@ K} or annotating{ L K] T}. Our approach

Owerlap[0,0,0,1,0] . Meet[0,0,1,0,0]
: K 3

selects the second alternative a$iif T} is not frequent then we do

Owverlap|0,0,0,1,0
—

not need to annotate it eve 1@ 1 is frequent. This is a reason why annotated

pattern is not used for extension and annotation(Linesr8Algorithm 11).

117

5.2.2 Algorithm MineMultiple

Now, we systematically explore the search space to genbet@rogeneous patterns
(HT patterns) involving multiple kinds of data. AlgorithmidMeMultiple (see Algorithm 12) uses
the patterns generated from Algorithm MineSingle to groe beterogenous pattern in three

dimensions:

e Extend a. A new HT pattern is formed by increasing the length of thatrigost non-empty
pattern ofa by 1. For example, itv = [{A, D}, 0, {L}, 0]. Then, we select the rightmost

overz(zﬁo,o,l,O}T}, (] is a possible

non-empty patterdL } for extension. Here {[A,D},0, {L
extension of {A, D}, 0, {L}, 0]. Table 5.10(c) lists the new HT patterns generated when
is extended. Similarly, itx = [{A, D}, 0, 0, {m1}]. Then,{m,} is selected for extension.

Here, [A, D}, 0, 0, {m1 — m2}] is a possible extension of.

e Annotate . A new HT pattern is formed by annotating the rightmost norpty pattern
of . Note that, only patterns from interval or time series pattare required annota-

Owerlap|0,0,0,1,0]
—

tion. For example, itv = [{A,D},0,{L K1},0], the example of annotated pat-

Owverlap|0,0,0,1,0](2
[I(

tern is {A,D},0,{L)K},V)]. But, no annotation is required if = [{A,D},

{D,[3,6]}, 0,] as both patterns from interval and time series are empty.

e Enlarge . A new HT pattern is formed by increasing the size of HT patterby 1. In
this chapter, all empty patterns that appears after the niglst non-empty pattern in are
candidates for enlargement. For exampley i ({A,D}, 0, (), 0), then we can increase the
size ofa by finding length 1 frequent patterns from either numericdgrval, or time series

data.

118

Algorithm 12 MineMultiple(D B, minsup)
Input : DB, minsup
Output : Set of HT patterngatSet
1: HT patterna = [0}, 0, 0, 0]
2: patSet =)
3: mdPatSet = {enlarge patterna}
4: while mdPatSet # () do
Select patterx from mdPatSet and remove it frommdPatSet
Storea in patSet
enlPatSet = {enlarge patterna}
mdPatSet = mdPatSet U enlPatSet
extPatSet = {extendpatterna}
10: mdPatSet = mdPatSet U extPatSet
11: annPatSet = {annotate patterna}
12: patSet = patSet U annPatSet
13: for each annotated pattethe annPatSet do

14: enlPatSet = {enlarge patterng}

15: mdPatSet = mdPatSet U enlPatSet
16: end for

17: end while

18: returnpatSet

Similarly, if « = ({A,D}, 0, {L}, 0), then we enlarge by finding length 1 pattern from time

series data(i.e., motif).

Algorithm 12 starts with an initial HT pattera = [0, 0, 0, #] (Line 1). Note that, the size
of ais 0. In line 2, weenlarge « by increasing its size by 1. This yields a set of new HT pattern
where length of non-empty pattern of each generated pagelrn Briefly, this step generates one
HT pattern for each length 1 frequent patterns of single #atd. Note that, the index of HT
patternc is the index of right most non-empty patterndn All generated patterns are stored in
mdPatSet(Line 2). Next, for each HT pattern. in mdPatSet, we generate new patterns by
enlarging (Line 7), extending (Line 9) and annotating (Lirl§. This algorithm terminates when
mdPatSet is empty. Now, we illustrate the enlarge, extend and aneqieicess for HT patterns

with examples.

119

Enlarge HT Pattern

Consider theenlargementof HT patterna = [{ 4, D}, 0, 0, #]. We can increase the size
of « by finding length 1 frequent patterns from either numerigdgrval, or time series data such
that the combination with itemsé¢A,D} are frequent. we observe thatis present in instances 2,
3, 5 and 6. Hence, we limit the search to only these 4 instatodi@sd frequent numerical, interval,
or time series patterns of length 1 while enlarging patternFinding length 1 frequent pattern
from each kind of data is explained in section 5.2.1. Tal#écy.and Table 5.9(c) lists the new HT

patterns obtained using numerical and interval data réigpgc Finally, all generated frequent HT

patterns are indexed and returned.

(a) Index (b) DatasetD By
[{A,D},0,0,0] Instance Id| Numerical Data Class
instanceid | offsetlist 1 (attry,0.4),@ttr,,0.6) 1
2 1.3 2 (attr,0.8),@ttrs,0.2) 1
3 1.3 3 (attr1,0.38),@ttrs,0.5) 1
5 1.3 4 (attr2,0.5),@ttrs,0.9) 1
6 1,2 5 (attr1,0.37),@ttrs,0.6) | O
6 (attr1,0.27),@ttr2,0.4) | 0O
(c) Candidate patterns
HT pattern set of instance ids
[{A,D},{(attr,[0.35,0.39])},0,0] | {3,5}
[{A,D},{(attry,[0.36,0.40])},0,0] | {3,5}
[{A,D},{(attr,[0.25,0.29])},0,0] | {6}
[{A,D},{(attrs,[0.6,1.0))},0,0] | {2}
Table 5.8. Example enlargement of HT patterdA,D },0,0,0] using numerical data

120

(a) Index (b) DatasetDB;

[{A,D},0,0,0] Instance Id| Event List Class
instanceid | offsetlist 1 (L,1,6),(K,4,8),(S,8,10),(T,11,12) 1
2 1,3 2 (L,1,5),(T,2,7),(K,3,9),(S,9,13) | 1
3 1,3 3 (L,3,8),(T,3,9),(K,5,10),(S,10,12) 1
5 1,3 4 (K,2,4),(S,6,10) 1
6 1,2 5 (L,1,6),(K,3,8),(S,4,10) 0

6 (N,5,10) 0

(c) Candidate patterns
HT patterns set of instance ids
[{AD}0.{L}.0] | {2,359
{AD}0.{K}.0] | {235
[{AD}0.{5}.0] | {2.3.5
{AD}O{T}0] | {2,3}
{AD}.0{N}0] | {6}

Table 5.9. Example enlargement of HT pattergA,D},0,0,0] using third empty pattern

Extend HT Pattern

Considerextensionof HT patterna = [{A, D}, 0, {L}, 0]. As mentioned earlier, we
select the rightmost non-empty patteftd,}, for extension. We observe thais present in instances
2, 3and 5. Hence, we limit the search to only these 3 instandéwd extension of patterfil }. The
first entry in the index (3,1}) indicates that event is at offset 1 in instance/®interval data. From
datasetD B;, we notice that there are three evefiis/, andS, that appear after offset 1 in instance

Ovwerlap|0,0,0,1,0
—

2. We determiné"'s temporal relationship witt. and generate{];A,D},0,{ L }T},(Z)].
Similarly, eventsK” and S are processed. Next, all entries from index are processstady. Table

5.10(c) lists extended patterns @f Finally all generated frequent HT patterns are indexed and

returned.

121

(a) Index (b) DatasetDB;

[{AD}0,{L},0 Instance Id| Event List Class
instanceid | offsetlist 1 (L,1,6),(K,4,8),(S,8,10),(T,11,12) 1
2 1 2 (L,1,5),(T,2,7),(K,3,9),(S,9,13) 1
3 1 3 (L,3,8),(T,3,9),(K,5,10),(S,10,12) 1
5 1 4 (K,2,4),(S,6,10) 1

5 (L,1,6),(K,3,8),(S,4,10) 0
6 (N,5,10) 0
(c) Candidate patterns
HT patterns set of instance ids
{A D}Q{LOUerlaﬂ)OOIO]T}’(D] {2}
{A D} @ {LOverlap 0,0, 0,1,0}K},®] {2’3’5}
[{A D} @ {LBefore[OO,OOO]S}’(D] {2’3}
Table 5.10. Example extension of HT patterd A[D },0,{ L},0]
Annotate HT Pattern
Considerannotation of HT patterna = [{A, D}, 0, {{Loverlap[o’o’o’l’o]K}} 0].

. . - O l b b]
mentioned earlier, we select the rightmost non-empty patte,”"" %01

K}, for annota-
tion. We observe that is present in instances 2, 3 and 5 and the difference betweestart
times of eventsk and L is 2 in these instances. Hence, only one annotated pattetn/J}, 0,

Ovwerlap|0,0,0,1,0](2
—

{{L K}} 0], is generated.

Optimizations

We have devise four optimization strategies to further cedthe total number of HT

patterns to be formed.

e Optimization 1: Suppose a HT pattem = [cp,np,d,(] is obtained byenlarging an existing

HT pattern Ep,0,0,0] using length 1 pattermp from numerical data. Let supp) be the

122

support of pattermp obtained while mining numerical data in the first stage. if(a) =
supfp), then patterns: andnp are generated from the same set of instances. In other words,
patternc and pattern §,n,,,0,0] are closed patterns. Hence, we do not need to progess
further, as all heterogenous patterns that can be genearatega, can be generating using
[0,n,,0,0]. An example of this is the second pattern in Table 5.8(c.slipport is equal to

support of pattern[,{ (attr[0.35,0.39])},0,0]. Note that,patternSet, maintains sup(p).

Optimization 2: Suppose a HT pattem = [cp,np,),0] is obtained byextendingan existing

HT patterng = [cp,np’,0,0]. Let supgp) be the support of pattermp obtained while mining
numerical data in the first stage. If sap(= supqyp), then patternsy andnp are generated
from the same set of instances. In other words, patteamd pattern(],np,0,0] are closed
patterns. Hence, we do not need to procedsrther, as all patterns that can be generated

usinga, can be generated usinggp,0,0].

Optimization 3: This optimization is based on the observation that if nodesq HT pattern
is generated when enlarging an existing HT pattetne.,enl PatSet = (), then any extended
or annotated patterns afwill not generate frequent HT patterns if it is enlarged. &mmple,
let o« = [{A, D}, 0, {L}, 0]. If no frequent pattern is generated wheris enlarged, then

Owerlap|0,0,0,1,0]
-

enlargement of{A, D}, 0, {L K}, 0] will not generate any frequent patterns.

Thus, we will not enlarge any extended or annotated patte#ras

Optimization 4: This optimization is based on the observation that if artiateof pattern

involving single kinds of data does not exist in the first staen we do not need to annotate

Owerlap|0,0,0,1,0]
—

its corresponding HT pattern. For example, if annotatiopaiferna; = {L

K} does not generate any pattern in the first stage, then ammtdta, = [{A, B}, 0, {L

123

Overlap(0,0,0,1,0 . .
verlapl00.0.1,0 p }, 0] will not generate any pattern in second stage. Thus, we tammwtate

patternas.

5.3 Algorithm HTClassifier

Frequent patterns reflect strong associations betwees i carry the underlying se-
mantics of the data. Thus, they are potentially useful featfor classification. However, due to
explosive nature of frequent pattern mining at low suppbréghold, the frequent pattern-based
feature construction for classification could encountesraputational bottleneck. Thus, we design
an efficient mining strategy, called HTClassifier, whichedity mines the discriminative patterns
without generating the whole set of features. HTClassifiedifies HTMiner to generate a set of

essential heterogenous patterns for classification(sgerigtim 13).

Algorithm 13 HTClassifier
Input : DB, minsup, max_conf, min_con f
Output : A set of essential patterass PatSet
1: essPatSet =0,
2: while truedo
3: /[* Find best essential pattern */

essPatSet = essPatSet U «
* Instance elimination */
10. DB=DB-DB,

11: if DB =¢then

4: « = FindEssentialPattern(D B, minsup, max_conf, min_conf)
5. if a=¢then

6: break

7. endif

8:

9:

12; break
13: endif
14: end while

15: returnessPatSet

124

Algorithm 14 FindEssentialPatterb{B, minsup, max_conf, min_conf)
Output ; Essential pattermssPat
Global variable essPat =), N = 4, patternSet = ()
. forp=1toN do
DB, = projected database @15 for pt" kind of data
[patternSet,, s] = MineEssentialSingld0 B,,, minsup, max_con f, min_con f)
if s > minsup then
minsup = s
end if
end for
: Remove infrequent attributes fromB
: MineEssentialMultipleD B, minsup, max_conf, min_con f)
returnessPat

[EnY

© 0 NORE WD

[EnY
e

Givenminsup, max_con f, min_con f and databas® B, we adopt a sequential coverage
approach [61] to generate a set of essential HT patternsaditiberation, an essential heterogenous
pattern,o, is discovered from the dataset with multiple kinds of d&t& by calling FindEssential-
Pattern (Line 4). All the instances that suppertdenoted a® B,,, are eliminated fronD B (Line
10) thus reducing the size of the dataset for subsequeatiites. This process is repeated till no
essential pattern is generated (Line 6) or all instances baen eliminated (Line 12). Finally, the

set of discovered essential patteersPatSet is returned (Line 15).

FindEssentialPattern (see Algorithm 14) is similar to HTbti with additional optimiza-
tions. FindEssentialPattern first projects the datdst into the respective projected databases
based on the kinds of data that existsldB (Line 2). It then calls MineEssentialSingle for each
projected databases. This procedure generates a set néffitepatterngatternSet along with
their support values(Line 3). It also discovers an esdgpditiern if any. If we find more than one
essential patterns, the pattern with the highest suppaglécted as an essential pattern. Its sup-
port value,s, is compared againstinsup. If s greater tharminsup, we update theninsup to s

(Lines 4-5). This allows subsequent mining to target onbysthpatterns whose support is greater

125

than s, thus reducing the risk of overfitting in classification. Bycsessively raising theninsup
threshold, we are able to prune off a significant number depag while mining remaining data.
Details of MineEssentialSingle are given in Section 5.8ifies 9-11 invoke MineEssentialMultiple

to generate heterogenous patterns. Details are given tiro8&c3.2.

5.3.1 Algorithm MineEssentialSingle

Algorithm MineEssentialSingle is similar to algorithm MiSingle with additional con-
straints(Lines 8-12 and Lines 16-20) . Initially, AlgonithMineEssentialSingle (see Algorithm 15)
obtains all the frequent patterns of length 1 from the givataset with single kind of dat® B,
(Line 2). Once the length 1 patterns for the given data has beaerated, Algorithm MineEssen-
tialSingle generates a new candidate pattern by first triorextend an existing pattem(Line 6).

If any patterng from the generated patteraspPatSet is an essential pattern, we updaténsup
andessPat (Line 9). Otherwise, we puB in frePatSet for further extension. The algorithm
also tries to annotate the existing pattern to form new patté it is from interval or time series
data(Line 14). If any pattersd from the generated patteraspPatSet is an essential pattern, we
updateminsup andessPat (Line 17). Otherwise, we puf in patSet (Line 19). The process
is repeated till no pattern is left ifire PatSet. Finally, the set of generated patteqms . Set and
updatedminsup are returned (Line 23). Note thahinsup is only updated if any essential pattern

is generated. The extend and annotate process are samdaasezkparlier.

126

Algorithm 15 MineEssentialSingld0 B,,, minsup, max_con f, min_con f)
Output : A frequent patternsatSet, updatedninsup

1: patSet =0 [/ set of generated patterns

2: frePatSet = {length 1 frequent patterns fromB,, }

3: while frePatSet # () do

4. Select patterx from frePatSet and remove it fronyrePatSet

5 Add «a to patSet

6: extPatSet = {extendpatterna}

7

8

9

for each generated pattefhe ext PatSet do
if 3 is an essential pattethen

: Set (minsup = sup(3) andessPat = [5)

10: else

11: Add g to frePatSet
12 end if
13: end for

14: annPatSet = {annotate patterna}
15: for each annotated pattethe annPatSet do

16: if 5 is an essential pattethen

17: Set (ninsup = sup(3) andessPat = [3)
18: else

19: Add 3 to patSet

20: end if

21: end for

22: end while

23: return{patSet, minsup}

5.3.2 Algorithm MineEssentialMultiple

Algorithm 16 starts with an initial HT pattera = [0, 0, 0,] (Line 1). Note that, the size
of ais 0. In line 2, weenlarge « by increasing its size by 1. This yields a set of new HT pattern
where length of non-empty pattern of each generated pagelrn Briefly, this step generates one
HT pattern for each length 1 frequent patterns of single kiaid All generated patterns are stored
in mdPatSet(Line 2). Next, for each HT pattera in mdPatSet, we generate new patterns by
enlarging (Lines 5- 12), extending (Lines 13-20) and antitajgLines 21-35). If the new pattern is
essential, we updateinsup andessPat, otherwise we process further. This algorithm terminates

whenmdPatSet is empty.

127

Algorithm 16 MineEssentialMultipleD B, minsup, max_con f, min_conf)

1: HT patterna = [0}, 0, 0, 0]
2: mdPatSet = {enlarge patterna}
3: while mdPatSet # () do

4: Select patterv from mdPatSet and remove it frommdPatSet
5. enlPatSet = {enlarge patterna}
6: for each enlarged pattefhe enlPatSet do
7 if 5 is an essential pattethen
8: Set (ninsup = sup(3) andessPat = [3)
9: else
10: Add 3 to mdPatSet
11: end if
12: end for

13: extPatSet = {extendpatterna}
14: for each extended pattefhe extPatSet do

15: if 5 is an essential pattethen

16: Set (minsup = sup(3) andessPat = [5)
17: else

18: Add g to mdPatSet

19: end if

20: end for

21: annPatSet = {annotate patterna}
22: for each annotated pattethe annPatSet do

23: if 8 is an essential pattethen

24: Set (minsup = sup(3) andessPat = [5)

25: else

26: enlPatSet = {enlarge patterns}

27: for each enlarged patteme enlPatSet do
28: if v is an essential pattethen

29: Set (minsup = sup§) andessPat =)
30: else

31 Add v to mdPatSet

32 end if

33: end for

34 end if

35: end for

36: end while

128

We devise an additional optimization strategy to furtheluee the total number of can-
didate HT patterns. This optimization is based on the uppend estimation of confidence and
is used for early termination. Given a HT patterrwith |a.| number of instances that suppart
with class labek. Let|DB| be the number of instances in a dataset DBy [frequent but not
discriminative, then it needs to be extended, enlarged motated only if the following conditions

are satisfied:

1. |ae| > min_sup x |DBJ, and

lace|

2. W*‘DB‘ Z mCLCC_COTLf, and

3. sLap—C(’O'[) < min_conf Vd #c

Proof: In the proof, we need to show thatdfdoes not satisfy the three conditions, then
any HT pattern, say, that is generated by extending, enlarging or annotatiom f cannot be

essential.

Case |5 is infrequent.

In this case, we are done singeannot be an essential HT pattern.

Case Il.3 is frequent.

Sincef is frequent, we haveup(3) > min_sup. We know|5.| < |a.| as/ is a longer pattern

‘QC|

than« and i sups DT

< max_conf sincea is not essential. This implies:

51 . I8
sup(8) — min_sup x |DB)|

conf(B)

o

< ~
min_sup x | DB maz-conf

129

5.4 Experimental Study

We present the results of experiments to examine the effigiohHTMiner and effec-
tiveness of the HT patterns discovered by HTClassifier fassification. Experiments are carried
out on an Intel Core Duo E6550 with 3.25GB of main memory ragniVindows XP Professional.
We implemented all algorithms in Visual C#. In particulae wnplement four algorithms named
HTMiner, HTMiner+, HTClassifier, and HTClassifier+. Tablelh lists the basic algorithm with
description. Algorithms with suffix “+” incorporates the topizations described in the respective

sections.

Algorithm Purpose
HTMiner Mining complete set of frequent patterns
HTClassifier| Mining set of essential patterns

Table 5.11. Algorithm Description

We use two real world datasets, Hepatitis and Stulong, ftoer2004 ECML Discovery
Challenge[l]. The Hepatitis dataset captures the datatafis with Hepatitis B or Hepatitis C.
In general, a biopsy is needed to confirm the type of hepatitisvever biopsy is both invasive
and costly. Hence, predicting the type of hepatitis basedriy laboratory results will be highly
beneficial. The Stulong dataset describes the risk factorsiddle aged men that may lead to

atherosclerosis cardiovascular disease. Table 5.12 gheveharacteristics of these datasets.

Baseline Algorithm. We devise a two-phase baseline algorithm for our comparativd-
ies. The first phase utilizes existing algorithms to minegwas from each kind of data separately.
The second phase generates candidate HT patterns by etingnéhe possible combinations of

patterns obtained in the first phase. The supports and canéideof the candidate HT patterns are

130

Data Type | Characteristics DataSet
Hepatitis Stulong
DB¢ Avg. size of categorical item set 25 20
DBy Avg. size of numerical item sef] 100 40
DBy Avg. number of events 27 20
DBy Avg. number of time series 8 10
Avg. length of time series 22 12
Total Instances(Patients) 459 855
Class Distribution [HepB = 185] | [non-CVD = 583]
[HepC =275]| [CVD=272]

Table 5.12. Dataset Description

obtained by scanning the original dataset. To obtain a setsdntial patterns, we iteratively select
an essential HT pattern and remove all the instances thatoarectly supported by the selected
pattern. The process terminates when all instances havedbeginated. Note that this baseline

algorithm generates exactly the same set of essential H&rpatas the optimized algorithms.

5.4.1 Efficiency Experiments

First, we explain the default parameters used in all expEnisn We set the similarity
threshold of numerical attribute at 10% of its standard akéwn, and the time lag similarity thresh-
old to 1 days. The length of a time series motif ranges from B &md its similarity threshold is

2.

Mining complete set of frequent HT patterns

Our first set of experiments compare efficiency of mining clatgpset of heterogenous
patterns, i.e., HTMiner, HTMiner+ and Baseline. We exanthe effect of varying the minimum

support threshold for both datasets. We observed that, iH&Miis efficient algorithms. As we

131

reduce minimum support threshold, the running time of glbathms increase drastically. This is
obvious, as time complexity of frequent pattern mining &l is exponential. However, pro-

posed optimization and prefix based indexing enable us tows patterns efficiently.

1000 -
—&— HTMiner+
—&— HTMiner
800 —o— Baseline
A
S 600F
£
1S
£
.E 400
<
=
2001
0 :
0.40 0.45 0.50 0.55
minsup
(a) Hepatitis Dataset
100 . .
—6— HTMiner+
—a— i
800l HTMlper |
a —— Baseline
Q
5
£ 600t
£
£
q_) L
£ 400
c
]
= 200t
0 ©
0.05 0.1 0.15 0.20

minsup

(b) Stulong Dataset

Figure 5.1. Effect of varyingninsup

132

Mining set of essential patterns for classification

Our second set of experiments compare efficiency of miningfessential heterogenous
patterns. We examine the effect of the parametesis:_con f andminsup on the performance of

the algorithms HT Classifier, HTClassifier+ and Baseline.

3

10

—6— HTClassifier+
102+ —=&— HTClassifier
—0— Baseline

Running Time(in Seconds)
h
h

10
0.63 065 070 075 080 085 090 0.63 0.65

max_conf

(a) Hepatitis Dataset

10

—6— HTClassifier+
—&— HTClassifier
—6— Baseline

3

Running Time(in Seconds)

107 7

0.68 0.7 0.72 0.74 0.76 0.78 0.8
max_conf

(b) Stulong Dataset

Figure 5.2. Effect of varyingnax_con f

We first vary themax_con f from 0.65 to 0.80. The defauthinsup value is 5%. Figure

5.2 presents the runtime results for both the Hepatitis @ntbi®y datasets. We observe that as

133

runtime (in seconds)

runtime (in seconds)

max_conf increases, the

10

e —
—6— HTClassifier+
2 —&— HTClassifier
10°¢ —— Baseline
10"
100 L L
0.05 0.1 0.15 0.2

minsup

(a) Hepatitis Dataset

10° —6— HTClassifier"
—8— HTClassifier
—— Baseline
:’—9—\\
n
10%t ‘ ‘ P
0.05 0.1 0.15 0.2
minsup

(b) Stulong Dataset

Figure 5.3. Effect of varyingninsup

runtimes of all 3 algorithms increase. Thisecause there are fewer

rules whenmazx_conf is high but the length of each rule is longer, and mining longgtterns
requires more time. In particular, HTClassifier is at leas® order of magnitude faster than the
baseline algorithm for both datasets. The optimizatioatstiies in HTClassifier+ are effective in

reducing the runtime further.

Next, we varyminsup from 5% to 20%, and sehax_con f to 0.80. Figure 5.3 presents

the results. Increasinginsup reduces the number of patterns generated and improvesrtimeu

134

This behavior is observed in both datasets. The optimizatemable HTClassifier+ to outperform
HTClassifier with an average 78% reduction in search spagdeaaraverage 41% improvement in
runtime on the Hepatitis dataset. Further, HTClassifiedtices 68% search space and 40% runtime

on the Stulong dataset.

5.4.2 Effectiveness Experiments

In this section, we demonstrate the usefulness of the dised\HT patterns by comparing
the accuracies of the classifiers built using HT patternfi¢octassifiers built using patterns from
single kind of data.

The HT patterns used to built the classifiers are obtainedibging HTClassifier+ with
minsup = 5%, min_conf = 20% andmax_conf = 80%. We build three classifiers based on
HT patterns discovered. First, we create a working databageusing the discovered HT patterns.
Suppose the discovered HT patterns from a dat@€etre{«, as, ... ax}. Each instance i B’
hasN attributes, one for each HT pattern, and a class attribute.value of the — th attribute of
an instance i B’ is set to 1 if the corresponding instanceliB supportsy; for i € [1, N|. The
class label of this instance DB’ is set to the class label of the corresponding instandefh We
note that DB’| = |DB|. Having obtainedD B’, we can now apply any classification method such
as decision tree (J48), support vector machine (SVM), andtiy strategy (ADTree) to learn the
rules from it. We denotél 145 for the classifier built using48 on DB’; HT g,.s: for the classifier
built using the boosted decision trddTree on DB’; HTsy) for the classifier built using'V M
onDB’.

We also construct 3 classifiers using only patterns frongeeateal data at j45, Cat goost,

Catgyy); 3 classifiers using only patterns from numerical d&&1 j45, N umpBoost, Numgy ar),

135

3 classifiers using patterns from categorical and numedetal ({ C'at, Num} jus, {Cat, Num} poost,
{Cat, Num} sy), and 2 classifiers using patterns from interval date ¢rvalseq, Intervaliemporat)-
We use the default parameters for each classifier unlessagieespecified.

Three measures are used to evaluate the performances tdiskiiers. LetP, N denote
the number of positive and negative instances respectiely, TN denote the number of true
positive and true negative respectivellf;P, F'N denote the number of false positive and false
negative respectively; anfiPR, F' PR denote the rate of true positive and rate of false positive
respectively.T PR determines a classifier performance on classifying paesitigtances correctly
among all positive samples available during the tégt, F PR defines how many incorrect positive

results occur among all negative samples available duh'egelst,%. The three measures are:

e Accuracy =TCATN

e Weighted F-measure (F-measure}z-214——

e Area under the curveAUC) = 0.5 + %FPR-

Figure 5.4 presents the 10-fold cross validation resultthefvarious classifiers on the
Hepatitis and Stulong datasets respectively. We obsentehhb classifiers built based on HT pat-
terns significantly outperform the other classifiers in tewhaccuracy, F-measure, and AUC. This
indicates that HT patterns have higher discriminative pogaenpared to patterns involving only
single kind of data.

Next, we investigate the effects ofax_conf andminsup on the classification perfor-
mance of HT patterns (see Figure 5.5). We note that varyingsup from 2% to 20% does not
change the classification performance of RuleClassifier MathClassifier. This is because the

all essential HT rules found from the Hepatitis Dataset hggpsrt values> 20%. On the other

136

| Classifier | Accuracy(%)| F-measurg AUC |
HTjus 99.56 0.99 0.99
HTBoost 99.56 0.99 0.99
HTsyn 97.82 0.97 0.97
Cat jss 59.13 0.50 0.56
CatBoost 59.78 0.49 0.59
Catsv 60.86 0.53 0.53
Num jug 60.65 0.52 0.60
Numpeost 61.73 0.55 0.62
NumSVM 65.00 0.57 0.57
{Cat, Num} jus 60.00 0.51 0.59
{Cat, Num} poost 62.17 0.54 0.63
{Cat, Num} gy 60.44 0.53 0.53
Intervalse, 76.00 0.73 0.72
Intervaliemporal 60.00 0.37 0.5
(a) Hepatitis Dataset
| Classifier | Accuracy(%)| F-measurg AUC |
HTjag 96.25 0.96 0.97
HTBoost 94.61 0.94 0.95
HTsyn 95.67 0.95 0.95
Cat jss 63.00 0.63 0.54
CatBoost 66.50 0.58 0.51
Catsvu 67.60 0.56 0.50
Num g 61.18 0.61 0.57
Numpeost 63.57 0.61 0.57
Numgyy 67.25 0.54 0.51
{Cat, Num} jsg 63.00 0.63 0.54
{Cat, Num} poost 66.50 0.58 0.51
{Cat, Num} gy 67.60 0.56 0.50
Intervalseq 56.42 0.49 0.49
Intervaliemporal 67.21 0.42 0.51

(b) Stulong Dataset

Figure 5.4. Evaluation results of the classifiers

137

hand, the accuracy and F-measure of RuleClassifier and Netsifier peaks for lower value of
max_conf. AS max_conf increase, these values dips slightly. This could be becthesdigh

confidence HT patterns tend to overfit the data or we could ndtdiny HT patterns that satisfy the
minsup andmax_con f requirements. Note that, the reported classification pmdioce is based

on 10 fold cross-validation.

Figure 5.6 shows the effects nfaxz_con f andminsup on the classification performance
of HT patterns on the Stulong Dataset. We observe that afl dgaluation measures has a good
value whenmnmax_con f = 0.80. As we increasewax_con f, the performance drops. We observe that
whenmax_conf is very high, we could not find good set of essential HT pagtehat satisfy the
mazx_conf requirement. In other word, there exists few training exiasmpvhich are not covered
at all. Thus, the designed classifier behaves like ZeroRhimsa uncovered examples. Similarly,
when we varyminsup beyond0.1, the number of essential HT patterns decreases signifjcantl
leading to a sharp drop in the classification performance T¥iiher except Accuracy. Note that,
Stulong dataset is a biased dataset and reported clagsifipatrformance is based on 10 fold cross-

validation.

Figure 5.7 lists some of the essential HT patterns discovieoen Hepatitis dataset along
with their supports and associated class labels. Here, EIE,@N and LAP are the names of
some laboratory tests. The laboratory test results areateti by ‘N’ signifying 'Normal level’, 'L
signifying 'Low level’, and 'H’ signifying 'High level’. Fa example, CLN denotes that the result
of the laboratory test CL is normal. A quick survey of medicairnals and publications reveal that
some of the HT patterns have been noted by researchers yslyithus confirming the validity of

these patterns.

138

&

IS4 I3
o o ©
(3] o o

o
)

Accuracy

HTJ48

e HT

ADTree
—<—HTgyy
—— RuleClassifier

0.75
0.7
0.65 . . .
0.70 0.75 0.80 0.85 0.90
max_conf
(a) Effect ofmax_conf on accuracy
1g = P T
0.95 \%
HTJ48 !
0.9r —&— HTADTree 1
o —<—HTgy
§ 0.85 —o— RuleClassifier
[
|E 0.8 1
w
0.7p q
0.65 . . .
0.70 0.75 0.80 0.85 0.90
max_conf
(b) Effect of max_conf on F-measure
1, & & = =
0.95r R
—o— HTJAB
> 8 HTADTree
o
S ool s]
§ —o— RuleClassifier
0.85r 1
0.8 © © © ©
0.05 0.10 0.15 0.20 0.30 0.40
minsup
(c) Effect ofminsup on accuracy
1, & & = =
0.95r R
—o— HTJAB
< = HTADTree
=3
g oof o]
|E —— RuleClassifier
w
% 139 ’
0.8 © © © ©
0.05 0.10 0.15 0.20 0.30 0.40
minsup

Figure 5.5. Evaluation of classifiers on Hepatitis dataset

(d) Effect ofminsup on F-measure

Accuracy
o
©
a

o
©

0.75r-

0.65

HTJ48
HTADTrEE
HTSVM

—&— RuleClassifier

0.70 0.75 0.80 0.85 0.90
max_conf
(a) Effect ofmax_conf on accuracy
1g ‘ ‘ ‘
0.9+ 4
—— HTMg
° 08r —&— HTADTree 1
Z ~<—HTguy P
e 0.7r ——6— RuleClassifier J
i
0.6
0.5¢ 4
0.4 . . .
0.70 0.75 0.80 0.85 0.90

max_conf

(b) Effect of max_conf on F-measure

o
©
1

.
.

)

.

o
©

Accuracy

o
o o
0o a1

HTJ48

& HTADTree

¢ HTSVM
—&— RuleClassifier

0.75
0.7.
1]
0.65
0.02 0.05 0.07) 0.10 0.12 0.15
minsup
(c) Effect ofminsup on accuracy
1 T T T T
0.95% ¢ ¢
0.9r
0.85F —o—HT g
o 08l =T orree
§ 0.75- —<—HTgum
IE —— RuleClassifier
w 07r
0.65¢
0.6
0.55¢
05 ‘ 140 . ‘
0.02 0.05 0.07) 0.10 0.12 0.15
minsup
(d) Effect ofminsup on F-measure
Figure 5.6. Evaluation of classifiers on Stulong dataset

HT patterns Class | Support| Confidence
Equal[0,0,0,0,0]
—

1| a=[{CL.N,CHEN}, 0, {UN_N LAP_N}, 0] | HepC| 32.60%| 90%
2| a=[{ZTT.N,CLN}, 8, {T-BIL_.N "L yN N}, 0] | HepB | 21.7% | 90%
3| a=[{ALP_L,GPTH},0, 0, 0] HepB| 6% 90%
4| a =[{Male}, 0, {D-BIL_H},] HepB| 4% 90%

Figure 5.7. Example of HT patterns discovered from Hesatititaset

Figure 5.8 lists some interesting HT patterns discoverethfthe Stulong dataset. The
first pattern indicates that a patient who complains cheist @eer a period of tim&has a higher
risk of getting CVD. The third pattern states that a patie®reises regularly without shortness of
breath has a lower risk of cardiovascular disease even ilkatistory of high blood cholesterol

and is a smoker. This confirms the usefulness of physicalicti

HT patterns Class Support| Confidence
1 | a=[0,{ChestPain,i,l] CVD 14.60% | 93%
2 | a =[{0},{(MaxCigarettes,[1,3]),(AvgCigarettes,[0.60,111]) non-CVD | 8% 81%

{{NoChestPain ""*"-2/0100% Nopyspnea). {0)]
3 | a =[{HighBloodCholesterd|, {, {ModestActivityF”m"”%’l’o’o’o] non-CVD 7% 80%

NoChangelnsmoking ™**"-2/L2%2% NoDyspnea,i]

Figure 5.8. Example HT patterns discovered from Stulongsit

Exploration Order

In HTClassifier, we explore the search space in the followdonder: categorical data,
followed by numerical data, then interval data, and findltyet series data (i.e., & N — | — T).
This set of experiments investigates if changing the oriexploration will result in a significant

difference in the performances of the resulting classifiergure 5.9 presents the results of 10 fold

http://www.ncbi.nim.nih.gov/pmc/articles/PMC1502238
http:/lwww.americanheart.org/presenter.jhtml?ideeti 4726

141

cross-validation for the classifiers using the default peri@rs. We observe that the exploration

order has minimal effect on the classifier performances.

Order Acc(%) | F-measurg AUC
Co>N—=1—->T/| 99.56 0.99 0.99
HTjys | 5C—-N-—>T| 98.91 0.98 0.99
N—-C—I1—-T/| 97.39 0.97 0.98
Co>N—=1—->T/| 99.56 0.99 0.99
HTgoost | | = C—N—=T | 92.60 0.92 0.97
N—-C—I1—-T/| 94.78 0.94 0.98
Co>N—I1—->T/| 97.82 0.97 0.97
Hlsyy |1 =C—=N-—>T | 97.17 0.97 0.97

N—-C—=I—>T| 9565 0.95 0.94
(a) Hepatitis Dataset

Order Acc(%) | F-measure AUC
C—oN—=I1—->T]| 96.25 0.96 0.97
HTjys | = C—>N-—>T | 96.37 0.96 0.95
N—-C—I—T]| 9590 0.96 0.95
C—oN—=I1—->T]| 9461 0.94 0.95
HTpoost | | > C—N—=T | 94.15 0.94 0.91
N—-C—I—-T| 93.68 0.93 0.91
C—oN—=1—-T| 9567 0.95 0.95
HTsyy |1 - C—>N—=T | 9567 0.95 0.95

N—-C—=I—->T| 9520 0.95 0.95
(b) Stulong Dataset

Figure 5.9. Effect of exploration order on classifiers’ perfiances.

5.5 Summary

In this chapter, we have addressed the problem of miningmpeatfrom datasets with dif-
ferent kinds of data. We introduced the notion of an hetaroge pattern to capture the association

among patterns discovered from different kinds of data. éutributions are:

142

1. We present an algorithm named HTMiner to mine completeokétequent patterns from
datasets with multiple kinds of data. HTMiner employs foptimizations and prefix based

indexing techniques to enhance the efficiency.

2. We also present an algorithm named HTClassifier to mirnenéis$ set of discriminative pat-
terns from dataset with multiple kinds of data for classtfmra HTClassifier utilizes sequen-
tial coverage based approach to mine a set of discrimingtiterns for classification. We

build a classifier using discovered patterns.

3. We extend the existing prefix based pattern growth apprfmaanining interval data. Further,

the extended algorithm can mine temporal patterns and tigméeimporal patterns together.

4. We validate the algorithm on real world datasets. Our expntal results show that the pro-
posed approach is efficient. We also discover previoushyhowk patterns from the hepatitis
and stulong datasets. Further, we show the usefulness ofati@rps discovered from both

datasets by constructing a classifier and improving thesifieation accuracy.

In future, we would like to devise an incremental HTClass#igdata under consideration

are updated regularly.

143

144

Chapter 6

Conclusions and Future Work

In this thesis, we investigated issues related to miningegiip class of datasets where
the record contains observation from categorical, nurakriaterval and time series data. For
efficient realizations, we argued that algorithmic optiatians are essential to obtain efficiency that
is commensurate with the data complexity. We designed ralgelrithms and heuristics for the
following three problems - mining temporal patterns frorteimal data; mining lag patterns from
time series data; and developing a unified algorithm foryaad) dataset with multiple kinds of
data. In addition to devising new algorithms, we also shothedusefulness of discovered patterns
by applying them in real world applications.

In terms of novel pattern mining algorithms, we made theofeihg contributions:

¢ We examined the problem of mining relationships among vwaldpased events. We aug-
mented existing hierarchical representation with addéi@ount information to make the rep-
resentation lossless. Based on this new representatiodevedoped an Apriori-based IEM-
iner algorithm to mine frequent temporal patterns fromrvaebased events. We designed

an efficient support counting procedure. The performandgMiner is further improved by

145

employing an event list blacklisting strategy and a prefiMrting strategy. Experiments on
synthetic data sets and real world datasets demonstragezffitiency and scalability of our

proposed approach. Beyond this, we designed the first adtbased classifier, IEClassifier
to improve the predictive accuracy of closely related das&xperiment results on the Hep-
atitis and Stulong datasets showed that IEClassifier diates traditional classifiers such as

C4.5, CBA, and SVM.

Next, we mined lag patterns from time series data. Our peg@pproach extracted the
repeated subsequences of various lengths from each tines satity. We used orderline
concept and subsequence matching property to fulfil thisirespent. Next, we described
algorithm LPMiner that utilized inverted lists and varioyatimization strategies to improve
runtime efficiency. Our experimental results demonstréttatithe proposed approach is scal-
able and meaningful patterns can be discovered from stdasela stulong dataset and hep-

atitis dataset.

We motivated mining patterns from datasets with multipledki of data. We introduced the
notion of an heterogenous pattern to capture the assatiatimng patterns discovered from
different kinds of data. We described two efficient algarithnamed HTMiner and HTClas-
sifier. Our algorithms employ a prefix based indexing methdti wptimization strategies

to achieve good scalability with a reduction of search sparepared to non-optimized al-
gorithms. Experiments on two real world datasets indicéttatithe classifier built based on
heterogenous patterns easily outperforms classifiersvidmbuilt using only patterns involv-

ing single kind of data.

146

6.1 Future Research Directions

There are several promising directions in which one cameixtiee work presented in this
thesis. Applications that produce and process more congjaliextypes such as graph data and image
data are ubiquitous. Examples include social networkmaetataset, bioinformatics, communica-
tion networks, world wide web, to name a few. A promising diien to extend our framework is
to incorporate more complex data types. Further, in suchicgions, data is incremental. Hence,
incremental learning methods can be designed to enhanedfitiency.

Pattern mining in spatio-temporal dataset assumes th#ibkspaents are instantaneous
and discover frequent sequential pattern suckl@s temperature— high percepitation— --- }
in near by region. However, many real world spatial event& fturation. For example, forest fire
in west Indonesia’s jungle lasts 10 days. With the help ohewaerration, we can discover well
known Allen’s temporal relation among nearby spatial eseartd further leverage the discovered
temporal relations in identifying cause and effect relatiBecently, many spatio-temporal database
designers realize the usefulness of event duration in exptamany real world phenomena and
thus have extended their frameworks to record event duratigith the growing demand of such
dataset, we need a data mining approach which consideratucd spatial event and discovers
temporal pattern. Note that, this dataset is dynamic here@lso need an algorithm which can

works an incremental fashion.

147

148

Bibliography

[1] Ecml knowledge discovery challenegeKDD, 2004.

[2] Casas smart home project - http://ailab.eecs.wsucadas/, 2009.

[3] Informs data mining contest, 2009.

[4] Drug safety: Observational medical outcomes partriprshallenge, 2010.

[5] Y. Sheikh A. Hakeem and M. Shah. A hierarchical event espntation for the analysis of

videos. AAAI 2004.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.omatic subspace clustering of

high dimensional data for data mining applicatioS8$GMOD, pages 94-105, 1998.

[7] R. Agrawal, T. Imielinski, and A. Swami. Database mining performance perspective.
Special Issue on Learning and Discovery in Knowledge-B&stdbasespages 914-925,

1993.

[8] R. Agrawal, T. Imielinski, and A. Swami. Mining assodiat rules between sets of items in

large database$SIGMOD, pages 207-216, 1993.

[9] R. Agrawal and R. Srikant. Fast algorithms for miningasation rules.VLDB, pages 487—

499, 1994.

149

[10] R. Agrawal and R. Srikant. Mining sequential patterf@DE, pages 3—14, 1995.

[11] R. Agrawal and R. Srikant. Mining sequential patter@eneralizations and performance

improvementsEDBT, pages 3-17, 1996.

[12] James F. Allen. Maintaining knowledge about tempanédrivals. Commun. ACM26(11),

1983.

[13] C. Antunes and A. L. Oliveira. Discovery of temporal feahs - learning rules about the
gualitative behaviour of time seriesEuropean Conference on Principles and Practice of

Knowledge Discovery in Databasgmges 192-203, 2001.

[14] C. Antunes and A. L. Oliveira. Generalization of pattggrowth methods for sequential
pattern mining with gap constraintd.ecture Notes in Computer Sciengages 239-251,

2003.

[15] M. Atallah. Detection of sets of episodes in event segas: Algorithms, analysis and

experimentsThesis 2003.

[16] J. Augusto. Temporal reasoning for decision supponédicine, 2005.

[17] Yonatan Aumann and Yehuda Lindell. A statistical thefmr quantitative association rules.

Intelligent Information Systempages 261-270, 1999.

[18] C. bettini, X. Wang, and S. Jajodia. Testing complexpgenal relationships involving multi-

ple granularity and its application to data minirRODS 1996.

150

[19] C. Borgelt. An implementation of the fp-growth algdmih. Proceedings of the 1st inter-
national workshop on open source data mining: frequentgoatimining implementations

pages 1 -5, 2005.

[20] S. Brin, R. Motwani, and J. D. Ullman. Dynamic itemsetunting and implication rules.

http://infolab.stanford.edu/ sergey/dic.html

[21] G. Chen, X. Ma, D. Yang, S. Tang, and M. Shuai. A bipargtaph framework for sum-
marizing high dimensional binary categorical and numéudesa. SSDBM pages 580-597,

2009.

[22] J. Chen. Data differentiation and parameter analyflsisabronic hepatitis b database with an

artificial neuromolecular systenBiosystemspages 23—36, 2000.

[23] M.-S. Chen, J. Han, , and P.S. Yu. Data mining: An ovemwieom a database perspective.

TKDE, pages 866—883, 1996.

[24] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discrimiv@pattern mining for effective

classification.ICDE, pages 169-178, 2008.

[25] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic disegvof time series motifsSIGKDD,

2003.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rieesl Clifford Stein.Introduction

to Algorithms, Second EditiorThe MIT Press, September 2001.

[27] C.L.Isbell D. Minnen, I. Essa and T. Starner. Detectufpdimensional motifs: An efficient

algorithm for generalized multivariate pattern discovéGDM, 2007.

151

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smiille discovery from time series.

SIGKDD, pages 16-22, 1998.

Luc Dehaspe. Ruse-warmr: Rule selection for classifiguction in multi-relational data-set.

ICTAI pages 10-16, 2008.

A. Denton. Density-based clustering of time seriesssgjpiences.Mining Temporal and

Sequential Data2004.

T. G. Dietterich and R. S. Michalski. Discovering patte in sequences of eventartificial

Intelligence pages 187-232, 1985.

K. Eamonn and L. Jessica. Clustering of time-seriesasgbences is meaningless : implica-
tions for previous and future researcknowledge and information systen®&?2):154-177,

2005.

G Baselli et al. Causal relationship between heartaatkarterial blood pressure variability

signals.Medical and Biological Engineering and Computjrith(4):374-378, 1987.

C. Faloutsos. Fastmap: a fast algorithm for indexiragaemining and visualization of tradi-

tional and multimedia datasetSIGMOD, pages 163—-174, 1995.

W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S.avig, O. Verscheure. Direct
mining of discriminative and essential graphical and itenfisatures via model-based search

tree. SIGKDD, 2008.

M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Seqtial pattern mining with regular

expression constraint¥/LDBJ pages 223-234, 1999.

152

[37] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli.itig sequences with temporal anno-

tations. SAG pages 593-597, 2006.

[38] D. Goldin, R. Mardales, and G. Nagy. In search of mearorgtime series subsequence

clustering: Matching algorithms based on a new distancesareaCIKM, 2006.

[39] G. Grahne and J. Zhu. Fast algorithms for frequent isgmsning using fp-treesTKDE,

pages 1347-1362, 2005.

[40] AJF Griffiths, SR Wessler, RC Lewontin, WM Gelbart, DTZ8li, and JH Miller. Introduc-

tion to genetic analysisW.H. Freeman and G@th, 2005.

[41] H. Grosskreutz and S. Ruping. On subgroup discoveryimerical domainseCML, 2009.

[42] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and®1 Hsu. Freespan: Frequent

pattern-projected sequential pattern mini8GKDD, pages 355-359, 2000.

[43] Jiawei Han. How can data mining help bio-data analySi&SKDD, 2002.

[44] Jiawei Han and Micheline KambeRata Mining: Concepts and Techniqudglorgan Kauf-

mann, September 2000.

[45] F. Hoopner. Discovery of temporal patterns. learnimigs about the qualitative behaviour of

time seriesPKDD, pages 192-203, 2001.

[46] P.S. Kam and A.W.C. Fu. Discovering temporal patteorsriterval-based eventit. Conf.

Data Warehousing and Knowledge Discovgrgiges 317-326, 2000.

[47] E. Keogh. Time series data mining tutori®erson Communicatiqor2006.

153

[48] N. Lavrac, P. Flach, B. Kavsek, and L. Todorovski. Adagtclassification rule induction to

subgroup discovery)CDM, pages 266—273, 2002.

[49] J. Lee, Y. Lee, B Hun H, and K Ryu. Discovering temporddtien rules from interval data.

Lecture Notes in Computer Scienpages 57-66, 2002.

[50] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding ngoitif time seriesProceedings of the

Second Workshop on Temporal Data Mini2g02.

[51] B. Liu, W. Hsu, and Y. Ma. Integrating classification aagkociation rule miningSIGKDD,

pages 80-86, 1998.

[52] W.P.D. LOGAN. Mortality in the london fog incident.ancet i:336—-338, 2005.

[63] W. Loh, S. Kim, and K. Whang. A subsequence matching rdlgm that supports normal-

ization transform in time-series databasb$4KD, pages 5-28, 2004.

[54] H. Mannila, H. Toivonen, and |. Verkamo. Discovery affuent episodes in event sequences.

ICDE, pages 210-215, 1995.

[55] T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Beaisevgraph-based induction: Min-

ing patterns from structured data lyiscovery Scienggages 422-429, 2002.

[56] F. Michael, D. Phillip, and R. Deb. Mining temporal patts of movement for video content
classification pagesProceedings of the eighth ACM Int. Workshop on Multimedfarma-

tion Retrieval pages 183 — 192, 2006.

[57] D. Minnen, C.L. Isbell, I. Essa, and T. Starner. Disaovg multivariate motifs using subse-

guence density estimation and greedy mixture learrdaAl, 2007.

154

[58] D. Minnen, T. Starner, I. Essa, and C. Isbell. Activigabvery: Sparse motifs from multi-

variate time seriesSnowbird Learning WorkshoR006.

[59] D. Minnen, T. Starner, |. Essa, and C. Isbell. Discavgrtharacteristic actions from on-body

sensor datalnt. Symp. on Wearable Computing (ISW£)06.

[60] D. Minnen, T. Starner, |. Essa, and C. Isbell. Improvaugivity discovery with automatic

neighborhood estimatiorint. Joint Conf. on Artificial Intelligence2007.

[61] T. M. Mitchell. Machine learningMcGraw Hill, 1997.

[62] F. Moerchen. Algorithms for time series knowledge mmi SIGKDD, pages 668 — 673,

2006.

[63] A. Mueen, E. Keogh, and N. Bigdely-Shamlo. A disk-awalgorithm for time series motif

discovery.ICDM, 2009.

[64] A. Mueen, E. Keogh, Q. Zhu, and S. Cash. Exact discovétynte series motifs.SDM,

2009.

[65] E. Muller, I. Assent, and T. Seidi. Hsm: Heterogeneausspace mining in high dimensional

data. SSDBM pages 497-516, 2009.

[66] R Nevatia, T. Zhao, and S. Hongeng. Hierarchical laggdaased representation of events

in video streamslEEE Workshop on Event Mining@003.

[67] S. Nijssen, T. Guns, and L. D. Raedt. Correlated itemseing in roc space: a constraint

programming approact8IGKDD, pages 647-656, 2009.

155

[68] T. Oates. Peruse: An unsupervised algorithm for findiqurring patterns in time series.

ICDM, pages 330 — 337, 2002.

[69] S. Papadimitriou, J. Sun, and C. Faloutsos. Streamaitgim discovery in multiple time-

series.VLDB, pages 697-708, 2005.

[70] S. Papadimitriou, J. Sun, and P.S.Yu. Local correfatiacking in time seriedCDM, pages

456 — 465, 2006.

[71] P. Papapetrou, G. Kollios, and S. Sclaroff. Fluentdéas: elucidating the structure of

episodesin Proc. IDA pages 268-277, 2001.

[72] P. Papapetrou, G. Kollios, and S. Sclaroff. Discovgrfirequent arrangements of temporal

intervals. ICDM, 2005.

[73] D. Patel, Wynne Hsu, and Lee Mong Li. Mining multiple 8sof data for effective classifi-

cation. Submitted to SIGKDD for Review011.

[74] D. Patel, Wynne Hsu, Lee Mong Li, and Srinivasan Pasdletfy. Lag patterns in time series

databasesDEXA 2010.

[75] Dhaval Patel, Wynne Hsu, and Lee Mong Li. Mining relaships among interval-based

events for classificationrSIGMOD, 2008.

[76] J.Pei, J. Han, and R. Mao. Closet: An efficient algoriflammining frequent closed itemsets.

SDM, pages 21-30, 2000.

156

[77] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, UyBlaand M.-C. Hsu. Prefixspan:
mining sequential patterns efficiently by prefix-projecpadtern growth.ICDE, pages 215—

224, 2001.

[78] K. A. Peker. Subsequence time series (sts) clustemepniques for meaningful pattern

discovery.Integration of Knowledge Intensive Multi-Agent Systepagies 360-365, 2005.

[79] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. ltiMlimensional sequential

pattern mining.CIKM, pages 81-88, 2001.

[80] M. Plantevit, Y.W. Choong, A. Laurent, D. Laurent, and Misseire. Msp: Mining sequen-

tial patterns among several dimensioR&DD, pages 205-216, 2005.

[81] J. F. Roddick, K. Hornsby, and M. Spiliopoulou. Temgpraspatial and
spatio-temporal data mining and knowledge discovery rekeabibliography.

http://kdm.first.flinders.edu.au/IDM/STDMBIb.html

[82] R. Ronkainen. Attribute similarity and event sequestmilarity in data mining. Thesis,

University of Helsinki1998.

[83] L. Sabra, J. Anne, and P. Andrew. The xs and y of immuneamses to viral vaccines he

Latent Infectious Disesasgzages 338-349, 2010.

[84] Y Sakurai, S Papadimitriou, and C Faloutsos. Braid:e&wm mining through group lag

correlations.SIGMOD, 2005.

[85] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M.8Band D. Shah. Viper: A vertical

approach to mining association rulédGMOD, 2000.

157

[86] R. Srikant and R. Agrawal. Mining quantitative asstioia rules in large relational tables.

SIGMOD, pages 1-12, 1996.

[87] R. Srikant and R. Agrawal. Mining sequential patter@eneralizations and performance

improvementsEDBT, 1996.

[88] A.Vahdatpour, N. Amini, and M. Sarrafzadeh. Towardwpervised activity discovery using

multi-dimensional motif detection in time seriddCAI, 2009.

[89] J. Wang and J. Han. Bide: Efficient mining of frequentseld sequences, 2003.

[90] Geoffrey Webb. Discovering associations with numeedables.SIGKDD, pages 383-388,

2001.

[91] I. H. Witten and E. Frank. Data mining: Practical ma&hiearning tools and techniques.

Morgan Kaufmann2005.

[92] Di Wu, G. Fung, J. Xu Yu, and Z. Liu. Mining multiple timeeges co-movementAPWeb

pages 572-583, 2008.

[93] S. Wu and Y. Chen. Mining nonambiguous temporal patdior interval-based events.

TKDE, pages 742—-758, 2007.

[94] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significardgh patterns by leap search.

SIGMOD, pages 433—444, 2008.

[95] X. Yan, J. Han, and R. Afshar. Clospan: Mining closedusadial patterns in large datasets.

PKDD, pages 166-177, 2003.

158

[96] G. Yang. The complexity of mining maximal frequent iteets and maximal frequent pat-

terns.SIGKDD, 2004.

[97] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan.téxing time series motifs under

uniform scaling.SIGKDD, pages 844-853, 2007.

[98] X.Yin, J. Han, J. Yang, and P. S. Yu. Efficient classificatacross multiple database rela-

tions: A crossmine approacfiKDE, 18(6):770-783, 2006.

[99] T. Yoshiki, I. Kazuhisa, and U. Kuniaki. Discovery ofrte-series motif from multi-

dimensional data based on mdl principMachine Learning58(2-3):269-300, 2005.

[100] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm étosed itemset miningSIGKDD,

pages 457-473, 2002.

[101] M.J. Zaki. Spade: An efficient algorithm for mining fneent sequenceddachine Learning

J., pages 31-60, 2001.

[102] Y. Zhu and D. Shasha. Statstream: Statistical manigoof thousands of data streams in real

time. VLDB, 2002.

159

	EFFICIENT ANALYSIS OF DATASET WITH
	phd_thesis

