

MINING PATTERNS IN COMPLEX DATA

DHAVALKUMAR PATEL

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48645391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MINING PATTERNS IN COMPLEX DATA

DHAVALKUMAR PATEL

(M.Tech.(Hons.),Indian Institute of Technology – Kharagpur, India)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2011

Acknowledgments

I would like to express my sincerest gratitude to everybody who helped me throughout

my time at NUS.

First of all, I gratefully acknowledge my supervisors, Professor Wynne Hsu and Professor

Mong Li Lee. I thank them for their persistent support and continuous encouragement, for sharing

with me their knowledge and experience. I have learnt a lot from them in many aspects of doing re-

search. During the period of my graduate study, they not onlyprovided constant academic guidance

and insightful suggestions to my research, but also taught me how to overcome difficulties with an

optimistic attitude.

I wish to thank Dr. Srinivasan Parthasarthy and Dr. Anthony Tung for providing research

direction as a part of their class discussion. I thank Professor Limsoon Wong and Prof. Leong Tze

Yun. As my thesis advisory committee members, they providedconstructive advise on my thesis

work. I also thank Professor Eammon Keogh for the fruitful discussions on time series data mining.

I would like to thank my family for their efforts to provide methe best possible educational

environment. Last but not least, I would also like to thank mylab mates for providing a venue to

discuss the idea.

ii

Contents

Acknowledgments ii
Summary . v
List of Publications viii
List of Figures x
List of Tables xii
1 Introduction 1

1.1 Background . 2
1.2 Motivation .. 2

1.2.1 Patterns in Interval Data 4
1.2.2 Patterns in Time Series Data 5
1.2.3 Patterns in Complex Data .. 7

1.3 Thesis Contributions 9
1.4 Organization .. . 11

2 Related Work .. 13
2.1 Pattern Mining in Categorical Data 13
2.2 Pattern Mining in Numerical Data 15
2.3 Pattern Mining in Sequence Data 16

2.3.1 Set of Sequences . 16
2.3.2 Event Sequence . 18
2.3.3 Set of Interval-based Event Sequences 19

2.4 Pattern Mining in Time Series Data 23
2.5 Pattern Mining in Dataset with Multiple Kinds of Data 25

3 Mining Patterns from Interval Data 27
3.1 Preliminaries .. . 29
3.2 Augmented Hierarchical Representation 33
3.3 Algorithm IEMiner .. . 39

3.3.1 Candidate Generation .. . 40
3.3.2 Support Counting .47
3.3.3 Optimization Strategies 50

3.4 Algorithm IEClassifier 51
3.5 Empirical Studies 53

3.5.1 Experiments on Synthetic Datasets 54
3.5.2 Experiments on Real World Datasets 57
3.5.3 Accuracy of IEClassifier .. . 61

iii

3.6 Summary . 65
4 Mining Patterns from Time Series Data 67

4.1 Preliminaries .. . 70
4.2 Discover Lag Patterns 75

4.2.1 Find All Motifs in a Time SeriesT . 76
4.2.2 Align Motifs . 82
4.2.3 Algorithm LPMiner . 87

4.3 Experimental Evaluation 90
4.3.1 Efficiency Experiments .. . 91
4.3.2 Effectiveness Experiments 92

4.4 Summary . 99
5 Mine Patterns across Different Kinds of Data 101

5.1 Preliminaries .. . 105
5.2 Algorithm HTMiner .. . 110

5.2.1 Algorithm MineSingle .. 110
5.2.2 Algorithm MineMultiple .. . 118

5.3 Algorithm HTClassifier 124
5.3.1 Algorithm MineEssentialSingle 126
5.3.2 Algorithm MineEssentialMultiple 127

5.4 Experimental Study 130
5.4.1 Efficiency Experiments .. . 131
5.4.2 Effectiveness Experiments 135

5.5 Summary . 142
6 Conclusions and Future Work 145

6.1 Future Research Directions 147
Bibliography 149

iv

Summary

Over the last decade, there has been an enormous growth in both the amount and the

complexity of records that is collected and processed by humans and machines. This rapid growth

has spurred interest in complex records that involve multiple kinds of data. Many applications from

the clinical, surveillance and bioinformatics domains arenow generating records with multiple kinds

of data. For these applications to reach their full potential, we need to build effective techniques to

analyze such complex records. Frequent pattern mining, a data mining technique, is widely used

in data analysis and decision support. However, previous work has focused primarily on mining

patterns from categorical data, numerical data, and sequence data. Very little attention has been

paid to mine patterns from interval data, time series data and datasets with multiple kinds of data.

In this work, we seek to develop techniques for analyzing complex records where each record is a

combination of categorical, numerical, interval and time series data. Specifically, we address the

following questions pertaining to mining patterns from complex records: How can we find frequent

patterns from interval data? How can we discover frequent patterns from time series data? How can

we mine frequent patterns from complex records having multiple kinds of data?

In the context of mining interval data, we investigate the problem of mining temporal

patterns from interval-based event sequences. A temporal pattern is a sequence of events along

with temporal relationships specified among events. First,we augment a well known hierarchical

v

representation with additional count information to modelrelationships among events in temporal

pattern. This representation is lossless as the exact relationships among the events from temporal

pattern can be fully recovered. Second, we propose an efficient algorithm to discover frequent tem-

poral patterns from interval-based event sequences. Third, we demonstrate usability of discovered

temporal patterns by building an interval-based classifierto differentiate closely related classes.

In the context of mining time series data, we examine the problem of discovering groups

of motifs from different time series that exhibit some lag relationships. Time series motif is the

recurring pattern in a single time series. First, we define a lag pattern that captures the invariant or-

dering among motifs where motifs are from different time series. Lag pattern characterizes localized

associative pattern involving motifs derived from different time series and explicitly accounts for lag

across multiple time series. Discovery of lag patterns requires to find motifs from each time series.

We present an exact algorithm that integrates the order lineconcept and the subsequence matching

property of the normalized time series to find all motifs of various lengths from single time series.

Next, we propose a method to discover lag pattern efficiently. The proposed method utilizes in-

verted index and motif alignment technique to reduce the search space and improve the efficiency.

Third, we show the usefulness of lag patterns discovered from a stock dataset by constructing stock

portfolio that leads to a higher cumulative rate of return oninvestment.

In the context of mining dataset with multiple kinds of data,we introduce the notion of

heterogenous pattern that captures the associations amongpatterns from different kinds of data.

First, we present a unified algorithm that systematically discovers heterogenous patterns in a depth-

first manner from a dataset consisting of categorical data, numerical, interval and time series data.

Often times in many real-world problems frequent pattern mining algorithms yield many frequent

patterns and only a subset of patterns are used in data analysis tasks such as classification. In view

vi

of this, we present a sequential coverage based approach to discover an essential set of heterogenous

patterns from dataset with multiple kinds of data. Experimental results on two real world datasets

suggest that the proposed approach is efficient and can significantly improve the classification ac-

curacy compared to existing classifiers.

vii

List of Publications

This thesis is based on the following material:

• Dhaval Patel, Wynne Hsu and Lee Mong Li: Mining Relationships among Interval-based

Events for Classification.In Proc. of the 28th Special Interest Group on Management Of

Data(SIGMOD), pages 98-108, 2008.

• Dhaval Patel, Wynne Hsu and Lee Mong Li: Finding Lag patternsfrom time series database.

In Proc. of the 22nd International Conference on Database and Expert Systems Applica-

tions(DEXA), pages 209-224, 2010.

• Dhaval Patel, Wynne Hsu and Lee Mong Li: Finding patterns from multiple kinds of data

for classification. Submitted to Special Interest Group on Knowledge Discoveryand Data

Mining(SIGKDD) for Review, 2011.

Other publications based on material discussed in this thesis are:

• Dhaval Patel, Chidansh Bhatt, Wynne Hsu, Lee Mong Li and Mohan Kankanhalli: Analyz-

ing Abnormal Events from Spatio-Temporal Trajectories.In Proc. of the 8th International

Workshop on Spatial and Spatiotemporal Data Mining(SSTDM), pages 120-128, 2009.

viii

• Dhaval Patel: Mining Interval-orientation pattern from spatio-temporal database.In Proc.

of the 22nd International Conference on Database and ExpertSystems Applications(DEXA),

pages 190-209, 2010.

• Dhaval Patel, Wynne Hsu and Lee Mong Li: Discriminative Mutation Chain in Virus Se-

quence.In Proc. of the 23rd International Conference on Tools with Artificial Intelligence(ICTAI),

2011.

• Sheng Chang, Dhaval Patel, Wynne Hsu and Lee Mong Li: Incorporating Duration Informa-

tion for Trajectory Classification.Submitted to International Conference on Data Engineer-

ing(ICDE) for Review, 2012.

ix

List of Figures

Figure Page

1.1 Lag relationships among motifsm1, m2 andm3 reflecting competitor/co-operative
behavior. 6

1.2 Example of motif and lag pattern obtained from Stulong Dataset 7

2.1 One record in interval data 20
2.2 Example : Event sequence 22
2.3 Example : Event sequence 22
2.4 Example : Event sequence 22

3.1 Example of temporal pattern (a) Medical domain (b) Financial data (c) Geological
data . 27

3.2 Same hierarchical representation “(A OverlapB) OverlapC” for three different
event lists . 33

3.3 Partial enumeration of the possible cases involving 3 events 35
3.4 Example of augmented hierarchical representation: (a)(A Overlap[0,0,0,1,0] B)

Overlap[0,0,0,1,0] C (b) (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C (c) (A Over-
lap[0,0,0,1,0] B) Overlap[0,0,1,1,0] C 36

3.5 Example of augmented hierarchical representation 36
3.6 Examples of forming composite event with count variables. 37
3.7 Example of temporal patterns (a) (A Overlap[0,0,0,1,0]B) Finished-by[0,1,0,0,0] C

(b)(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,1,1] C (c) (A Overlap[0,0,0,1,0] B) Con-
tain[1,0,1,0,0] C (d) (A Contain[1,0,0,0,0] B) Contain[1,0,0,0,0] C (e) (A Con-
tain[1,0,0,0,0] B) Contain[1,0,1,0,0] C (f) (A Contain[1,0,0,0,0] B) Contain[1,0,0,1,0]
C . 37

3.8 Generation of frequent temporal patterns, where the minimum support count is 2. . 41
3.9 Candidate generation: joining frequent patternP to frequent patternQ 43
3.10 Generated candidate patterns from two frequent patterns given in Figure 3.9. 43
3.11 Effect of Varying Minimum Support 55
3.12 Effect of Varying Database Size (Data?k 500 15 0.3 2) 55
3.13 Effect of Varying Pattern Length (Data200k 500 ? 0.3 2) 56
3.14 Effect of Varying Event Density (minimum support = 4%) 57
3.15 Effect of Optimization Techniques (Data200k 500 20 0.3 2) 57

x

3.16 Experiments on ASL dataset 58
3.17 Experiments on Hepatitis dataset 60
3.18 Experiments on Stulong dataset 60
3.19 Sample of temporal patterns for Hepatitis B disease 62
3.20 Sample of temporal patterns for Hepatitis C disease 62
3.21 Sample of temporal patterns for Stulong dataset 64

4.1 Time series motif. 68
4.2 Lag relationships among motifsm1, m2 andm3 reflecting competitor/co-operative

behavior. 69
4.3 Time series. .. 71
4.4 Normalized Time series. 72
4.5 (a) Dataset of two-dimensional subsequences, (b) an ordering of subsequences with

their distance value from subsequence 2 (c) distances of allsubsequences from sub-
sequence 7 . 78

4.6 Motifs before and after alignment. 84
4.7 Inverted index for motifs in Fig. 4.6(b) 86
4.8 Runtime comparison between FindMotifs and OrderLine algorithms. 92
4.9 Evaluation of LPMiner on datasetD. 93
4.10 Usability oflagPatterns discovered from real world dataset. 95
4.11 Example of motifs and lag patterns obtained from Hepatitis Dataset 98
4.12 Example of motifs and lag patterns obtained from Stulong Dataset 99

5.1 Effect of varyingminsup . 132
5.2 Effect of varyingmax conf . 133
5.3 Effect of varyingminsup . 134
5.4 Evaluation results of the classifiers 137
5.5 Evaluation of classifiers on Hepatitis dataset 139
5.6 Evaluation of classifiers on Stulong dataset 140
5.7 Example of HT patterns discovered from Hepatitis dataset 141
5.8 Example HT patterns discovered from Stulong dataset 141
5.9 Effect of exploration order on classifiers’ performances. 142

xi

List of Tables

Table Page

1.1 Dataset with multiple kinds of data 3

2.1 Example : Sequence data 17
2.2 Example : Event sequence data 19

3.1 Working DatabaseDB . 30
3.2 Temporal relationship between eventsEi andEj 30
3.3 Generating 4-patterns 45
3.4 IntermediatecanSet4 . 45
3.5 Support counting ofcanSet3 using first event list from Table 3.1 48
3.6 Testing accuracy: Hepatitis Dataset 61
3.7 Testing accuracy: Stulong Dataset 64

4.1 Running example .. 72
4.2 Subset of lag patterns considered by naive enumeration 83
4.3 Generated length 2lagPatterns using motifm11 88
4.4 The number of Motifs andlagPatterns. 96

5.1 Dataset with multiple kinds of data 102
5.2 Example: Dataset with multiple kinds of data 106
5.3 Generation of length 1 frequent patterns involving single kind of data 112
5.4 Transformed datasetDB′

T and index of motifm1 113
5.5 Example extension of itemset{A,B} . 115
5.6 Example extension of numerical pattern{(attr1,[0.36,0.40])} 115

5.7 Example extension of temporal pattern{L
Overlap[0,0,0,1,0]

−→ K} 116
5.8 Example enlargement of HT pattern : [{A,D},∅,∅,∅] using numerical data 120
5.9 Example enlargement of HT pattern : [{A,D},∅,∅,∅] using third empty pattern . . . 121
5.10 Example extension of HT pattern : [{A,D},∅,{L},∅] 122
5.11 Algorithm Description 130
5.12 Dataset Description 131

xii

Chapter 1

Introduction

Recent advances in data collection and data storage technology have enabled business en-

terprises, research institutes and government agencies toaccumulate enormous amounts of complex

records from their daily activities. Fueled by an increasing need to rapidly analyze and summarize

these data, researchers have turned to the field of knowledgediscovery in databases. This field

is concerned with development of efficient and effective techniques for data analysis and decision

support. These techniques can yield valid, novel, potentially useful and understandable knowledge

from the data. There are many kinds of knowledge that can be generated from data, e.g., frequent

patterns, association rules, classification rules, clusters and outlier. A frequent pattern is a pattern

that appears in a dataset with frequency no less than a user-specified minimum support threshold.

Recent studies have shown that the frequent patterns are useful for mining associations [7, 62, 95],

correlations [91], and many other interesting relationships among data [84, 51]. Moreover, it helps

in data indexing [55], classification [51, 24], clustering [67], and other data mining tasks [41, 6] as

well. Thus, frequent pattern mining has become an importantdata mining task.

1

1.1 Background

Frequent pattern mining was first proposed by Agrawal et al. in [8] to mine frequent

itemsets from categorical data. For example, a set of items,such as milk and bread, denoted as

{milk, bread}, that appears frequently together in categorical data, is afrequent itemset. Later,

Agrawal and Srikant introduced a sequential pattern miningproblem for sequence data [10]. This

problem mines frequently occurring ordered events as patterns. A subsequence, such as buying

first a PC, then a digital camera, and then a memory card, denoted as{PC→ digital camera→

memory card}, if it occurs frequently in sequence data, is a frequent sequential pattern. There have

been hundreds of follow-up research publications, on various kinds of extensions and applications,

ranging from scalable data mining methodologies [77, 19, 39, 42, 34, 44, 20], to handling a wide

diversity of data types [46, 80, 13, 28, 55], various extended mining tasks [35, 63, 24, 6, 94, 67, 21],

and a variety of new applications [51, 83, 22, 98, 29]. However, little attention has been paid on

the study of mining frequent patterns from interval data, time series data and records that involve

multiple kinds of data.

1.2 Motivation

While many of the frequent pattern mining algorithms are geared toward finding frequent

patterns from categorical data, numerical data and sequence data, it has been noted recently that

some of the database applications from the clinical, surveillance and bioinformatics domains have

records with multiple kinds of data [43, 1, 4, 3, 2]. For example, a patient’s record in hospital

database typically comprises of categorical data, numerical data, interval data and time series data.

One such example is the Stulong Dataset [1] obtained from Chiba Hospital. This dataset con-

2

tains complex records from the twenty years lasting longitudinal study of the risk factors of the

atherosclerosis in the population of 1417 middle aged people. Table 1.1 presents a snapshot of this

dataset. The overall objective in this dataset is to discover patterns that describe the risk factors

for atherosclerosis cardiovascular disease. Similar examples of complex datasets include Hepatitis

Dataset [1], Surveillance dataset [2], Drug Safety dataset[4] and etc. The challenge of analyzing

these complex datasets is an immense task. Existing works can discover itemsets, numerical item-

sets and sequential patterns from such complex datasets. However, mining patterns from interval

data, time series data and complex data is also important.

Id Categorical Data Numerical Data Interval Data Time Series Data Class
1 CVD = Yes

Male,

Smoking,

Wine

Age = 21,

DailyWineIntake = 2,

AvgSysBldPre = 2

Headeche

High Blood Pressure

Chest Pain

Time

0 2 4 6 8 10 12 14
3

4

5

6

7

8

9

10

Time

V
al

ue

Cholesterol
LDL

2 CVD = No

Male,

NoSmoking,

NoWine

Age = 30,

DailyWineIntake = 0,

AvgSysBldPre = 5

Headeche High Blood Pressure

Time

0 2 4 6 8 10 12 14
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time

V
al

ue

Cholesterol
LDL

· · · · · · · · · · · · · · · · · ·

Table 1.1. Dataset with multiple kinds of data

3

1.2.1 Patterns in Interval Data

Interval data is a set of records, where each record is an ordered sequence of durative

events, i.e. event with start time and end time. Existing pattern mining algorithms [10, 54, 14, 77]

have focused on discovering frequent patterns from instantaneous events, that is, events with no

duration. This assumption allows the discovered pattern tobe simplified to an ordered sequence

of events, such as{Fever→ Stomach ache→ Vomit}, {Headache→ High Blood Pressure}, etc.

However, such sequential patterns are inadequate to express the complex temporal relationships in

domains such as medical, multimedia, meteorology and finance where the events’ durations could

play an important role.

For example, it has been observed that in many diabetic patients, the presence of hyper-

glycemia1 overlaps with the absence of glycosuria2, denoted as{presence of hyperglycemia
Overlap
−→

absence of glycosuria}. This insight has led to the development of effective diabetic testing kits

[16]. In the case of dengue fever, knowing that there will be adecrease of platelet counts on the

third day after the onset of fever, denoted as{Onset of fever
Contain(3)
−→ decrease of platelet counts},

has led to a better management of the disease. Clearly, thereis a need for a mining algorithm

that can discover complex relationships among events with duration, also known as interval-based

events. As Allen’s interval algebra [12] captures temporalrelation between two events, we pro-

pose an lossless representation to encode Allen’s temporalrelation among more than two durative

events. Furthermore, these discovered relationships can be used to build a classifier that is able to

distinguish closely related classes and improve classification accuracy.

1high concentration of glucose in the blood
2presence of glucose in the urine

4

1.2.2 Patterns in Time Series Data

Time series data is a set of records, where each record is a sequence of regularly sampled

real value observations. Time series analysis is an important research agenda at the heart of many

applications drawn from diverse domains such as signal processing, statistics, medical, financial

applications, etc. Analysis methods can be used to summarize or understand the underlying context

or alternatively to make forecasts. Techniques can also be used to characterize associations across

two or more time series. Many real world time series data exhibits associations among multiple time

series. For example, a common association pattern observedin ICU monitoring is that an increase

in PaO23 level is followed by a decrease in PaCO2
4 level during the patient’s normal condition.

Biologists are interested in identifying interesting regulator-regulated relationships in time-varying

gene expression studies [40]. Health care practitioners are interested in observing the causal effect

of daily air pollution level on mortality rate [52]. Doctorsare interested in identifying important

trigger patterns that highlight the relationship between heart rate and arterial blood pressure [33].

Furthermore, discovered associations might be helpful in avariety of applications, such as classi-

fying human activities in smart home environment, implementing trading strategy in stock market,

building classifier to differentiate closely related classes and so on.

Recent research interests in time series data mining mainlyinvolve indexing time series

for efficient similarity search [101], clustering time series [30, 38, 78], motif discovery [99, 57,

68, 88, 63, 27, 97], rule discovery [28, 62, 45] and time series correlation [102, 70], and so on.

Similar to itemset in categorical data and sequential pattern in sequence data,time series motif is

an important primitive in time series data. Time series motif is the recurring pattern(i.e., contiguous

3Partial Pressure of Oxygen
4Partial Pressure of Carbon Dioxide

5

subsequence) in single time series. For example, Figure 1.1shows the time series of QLogic, Intel

and JP Morgan stocks and highlights motifsm1 = {s11, s12, s13}, m2 = {s21, s22, s23} andm3 =

{s31, s32, s33} in the time series of QLogic, Intel and JP Morgan stocks respectively. Here, motif

m1 appears at time points 38, 55 and 112 in time series of QLogic stock.

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

Time (in Day)

S
to

ck
 P

ric
e

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

2

2.5

Time (in Day)

S
to

ck
 P

ric
e

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (in Day)

S
to

ck
 P

ric
e

s
11

s
12 s

13

s
21 s

22

s
23

s
31

s
32

s
33

m
1
 QLogic Corporation

m
2
 Intel Corporation

m
3
 JP Morgan Co.

6

7

Figure 1.1. Lag relationships among motifsm1, m2 andm3 reflecting competitor/co-operative
behavior.

One useful association analysis of time series data involves finding repeated lag associ-

ations among motifs, where motifs are derived from different time series. For example, a closer

examination of the motifs in Figure 1.1 reveals that the subsequences from one motif occur at

a consistent lag relative to subsequences from other motifs. Here,s21 occurs with lag 6 relative

to s11 while s31 occurs with lag 7 relative tos11. This pattern is repeated for(s12, s22, s32) and

(s13, s23, s33). In short, the lag relationship among the subsequences of motifs are repeated. The

existence of such invariant ordering among the motifs suggests that there may exist some hidden

6

relationships. Further investigation5 reveals that QLogic stock is competitor of Intel stock, while JP

Morgan stock gives higher rating for investment in Intel Stock. Moreover, our experiments reveal

that stock portfolio based on lag relationships among motifs leads to increase in the cumulative rate

of return on investment.

Similarly, motifs and lag patterns from medical data can be used to characterize subgroup

of patients having the same disease. For example, consider the motif given in Figure 1.2(a). This

motif is present in 33 patients from the Stulong dataset. These patients reduced their intake of

cigarettes from 10 cigarettes to 0 cigarette in two month period. Out of these 33 patients, only

8 patients develop cardiovascular disease. Clearly, smoking can be considered as a risk factor for

cardiovascular disease. A pattern shown in Figure 1.2(b) captures lag relationship between Diastolic

blood pressure and Skinfold. This pattern is observed in 12 patients having cardiovascular disease.

1 3 5 7 9 11
0

1

2

3

4

5

6

7

8

9

10

Weeks

Va
lu

e

Number of cigarettes per week

(a) time series motif

1 2 3 4 5 6
60

70

80

90

100

110

120

130

140

150

160

170

Weeks

Va
lu

e

Diastolic blood pressure
Skinfold – above musculus triceps

(b) lag patterns

Figure 1.2. Example of motif and lag pattern obtained from Stulong Dataset

1.2.3 Patterns in Complex Data

Literature survey reveals that mining frequent patterns from categorical data [39], numeri-

cal data [86], and sequence data [77, 37, 18] separately has received lots of attention in recent years.

5Yahoo Finance - http://finance.yahoo.com

7

These pattern mining algorithms have also been extended to mine useful frequent patterns for classi-

fication [48, 98, 75, 24, 35] with improved classification accuracy. However, these algorithms only

work for the specific kind of data they are designed for. Knowing the relationships(associations)

among patterns from different kinds of data can aid in the understanding of a patient’s health con-

dition.

Consider the two patterns

{Male, Smoking} and

{Headache
Overlap
−→ HighBloodPressure}.

The pattern{Male, Smoking} is a frequently occurring itemset [8]. Well-known algo-

rithm such as FPTree [39] can be utilized to find such frequently occurring itemsets. On the other

hand, the pattern{Headache
Overlap
−→ HighBloodPressure} is an interval-based temporal pattern

and its discovery requires a totally different algorithm. Separately, these patterns may not raise any

alarm as there are many male smokers in the population who go about their daily lives normally.

Similarly, many people suffer from headache with elevated blood pressure but they do not experi-

ence any serious consequences. However, the combination ofthese two patterns reveal a different

picture. Studies have shown that a male smoker who experiences headache with elevated blood

pressure is a likely candidate for cardiovascular diseases. We call this combination of patterns from

different kinds of data asheterogenouspatterns. Our experiments on the real world datasets show

that the heterogenous patterns discover previously unknown knowledge and significantly improve

the classification accuracy.

8

1.3 Thesis Contributions

The complexity of data produced by applications is rapidly growing. Applications that

produce and leverage complex datasets are becoming ubiquitous. Traditional frequent pattern min-

ing and optimizations are essential for realizing efficientalgorithms for analyzing complex datasets.

The challenge of analyzing complex datasets is an immense task as much of the existing data mining

work assume that the record consists of observations from a single kind of data. In this thesis, we

investigate issues related to the analysis of datasets withmultiple kinds of data. Such complex data

is commonly found in applications in clinical, surveillance, bioinformatics and other domains. We

first address the problem of mining frequent patterns from interval data and time series data. Later,

we integrate frequent pattern mining algorithms of a singlekind of data to mine frequent patterns

involving multiple kinds of data. The contributions of thisthesis are summarized below:

In the context of mining interval data, we investigate the problem of mining temporal

patterns from interval-based event sequences. A temporal pattern is a sequence of events along with

temporal relationships specified among interval events. First, we augment a well known hierarchical

representation with additional information to model relationships among events in temporal pattern.

This representation is lossless as the exact relationshipsamong the events from temporal pattern can

be fully recovered. Second, we propose an efficient algorithm to discover frequent temporal patterns

from interval-based event sequences. The proposed algorithm has efficient candidate generation

and support counting procedures and uses two optimizationsto enhance the performance. Third,

we demonstrate usability of discovered temporal patterns by building an interval-based classifier to

differentiate closely related classes. This work is published in [75].

9

In the context of mining time series data, we examine the problem of discovering groups

of motifs from different time series that exhibit some lag relationships. Time series motif is the

recurring pattern in single time series. First, we define a lag pattern that captures the invariant

ordering among motifs from different time series. Lag pattern characterizes localized associative

pattern involving motifs derived from each time series and explicitly accounts for lag across multiple

time series. Second, we present an exact algorithm that integrates the order line concept and the

subsequence matching property of the normalized time series to find all motifs of various lengths

from single time series. Third, we also propose a method to discover lag pattern efficiently. The

proposed method utilizes inverted index and motif alignment technique to reduce the search space

and improve the efficiency. At last, we show the usefulness oflag patterns discovered from a stock

dataset by constructing stock portfolio that leads to a higher cumulative rate of return on investment.

This work is published in [74].

In the context of mining dataset with multiple kinds of data,we introduce the notion of

heterogenous pattern that captures the associations amongpatterns from different kinds of data.

First, we present a unified algorithm that systematically discovers frequent heterogenous patterns in

a depth-first manner from a dataset consisting of categorical data, numerical, interval and time series

data. The proposed algorithm works in two stages. In the firststage, we mine frequent patterns from

single kind of data. The second stage utilizes the output of the first stage to generate heterogenous

patterns. In many real-world problems frequent pattern mining algorithms generate many frequent

patterns and only a subset of patterns are used in data analysis tasks such as classification. Thus,

we also present a mining strategy to discover the essential set of heterogenous patterns from dataset

with multiple kinds of data. Our proposed algorithm is an iterative algorithm that discovers an

essential set of heterogenous patterns for classification.In each iteration, we discover an essential

10

heterogenous pattern for classification and performs instance elimination. The instance elimination

reduces the problem size progressively by removing training instances which are correctly covered

by the discovered essential heterogenous pattern. Our experimental results suggest that our approach

is efficient and can significantly improve the classificationaccuracy. This work is submitted to

conference for review [73].

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 describes the fundamental con-

cepts of frequent pattern and present an overview of the current research activities in this area. These

activities can be divided based on data type such as categorical data, sequence data, interval based

event sequence and time series.

Chapter 3 presents the formal definition of temporal patternin interval data. We describe

the problem of finding temporal patterns from interval basedevent sequence and proposed the algo-

rithm in detail. The discovered temporal pattern is used in constructing the classifier.

Chapter 4 introduces a pattern template, called as lag patterns, to capture relationship

among time series motif from different time series. We present an algorithm designed for mining

the proposed patterns. We also construct a stock portfolio based on lag patterns and increase the

cumulative rate of return on investment.

Chapter 5 introduces a pattern template, called as heterogenous pattern, to capture rela-

tionship among patterns from dataset with multiple kinds ofdata. We present two algorithms that

mine complete frequent pattern and essential frequent patterns from dataset with multiple kinds of

data. Finally, Chapter 6 presents concluding remarks aboutthe thesis and provides suggestions for

future research.

11

12

Chapter 2

Related Work

Data mining, a rapidly evolving area of research, aims to discover non-trivial, unknown

and interesting knowledge from the large real data sets [23]. This discipline is an intersection of

several disciplines such as statistics, databases, pattern precognition, optimization, visualization

etc. Various techniques designed in this field such as association rule mining, pattern mining, clus-

tering, classification etc have been successfully employedin various application domains such as

e-commerce, biology, meteorology and many more. The data format varies from domain to domain

and hence various pattern mining techniques are designed for different kinds of data. In this chapter,

we review frequent pattern mining in categorical data, numerical data, sequence data, interval data,

time series data and complex records.

2.1 Pattern Mining in Categorical Data

A pattern in categorical data is a collection of various items. For example,{Bread , But-

ter} is a pattern. A pattern is interesting if it occurs frequently in data set. More specifically, a

frequent pattern is a pattern with the support value higher or equal to the user defined minimum

13

support. A pattern{Bread , Butter} may be frequent pattern as it frequently bought by many cus-

tomers together. Note that, frequent patterns are used to derive association rule, in other word,

“Bread⇒ Butter” association rule is discovered from{Bread , Butter} frequent pattern.Down-

ward closure property of frequent pattern is an important research contribution obtained in this

area [10]. According to this property, if a patternP is a frequent patterns then all of it’s subsets

must be the frequent. This property is utilized in various algorithms for pruning purpose. In particu-

lar, frequent pattern of length(size)k is used to derive frequent patterns of length(size)k+1. At this

stage, items in frequent pattern do not have any ordering (i.e.,{Bread , Butter} = {Butter , Bread

}). Thus, pattern mining is also known as itemset mining. Existing algorithms can be classified into

three categories: the Apriori algorithm [7, 9], vertical mining approach [85] and the pattern growth

approach [19].

The Apriori algorithm uses candidate generate-and-test approach to explore the search

space. Frequent itemset mining can be viewed as a set containment join between the transaction

data and the search space of the frequent itemset mining problem. In thek-th pass of Apriori

algorithm, the transaction database and the candidatek-itemsets are joined to generate frequent

k-itemsets. The frequentk-itemsets are then used to generate the candidate (k + 1)-itemsets.

The vertical mining approach maintains a tid list or a tid bitmap for each frequent itemset.

Candidate itemset testing is performed by tid list/bitmap intersection. The main drawback of the

vertical mining approach is that it needs to maintain a largenumber of tid lists/bitmaps, which

prevents it from scaling well with respect to the number of transactions. Recently several techniques

have been proposed to reduce the size of tid lists/bitmaps. Existing vertical mining algorithms

usually change to horizontal mining if all the tid lists/bitmaps cannot be held in the memory.

14

The patten growth approach uses the depth-first order to probe the search space. It adopts

the divide-and-conquer methodology. The search space is divided into disjoint sub search spaces.

The database is partitioned according to the sub search space. For example, there are 5 items

{a, b, c, d, e} frequent in transaction databaseDB. The search space is divided into 5 disjoint sub

search space: (1) itemset starting witha; (2) itemset starting withb, i.e. itemset containingb but

not containinga; (3) itemset starting withc; (4) itemset starting withd; (5) itemset containing only

e. Based on this five sub search space, the database is divided into 5 partitions. Each partition is

called a conditional database. The conditional database ofan itemseti, denoted asDBi, contain

all the transactions containing itemseti. Items beforei are eliminated from each transaction in

DBi. Conditional databaseDBi is used to discover superset of itemseti. This approach reduces

the database scans.

A major challenge to mining frequent itemsets from a large data set is that such mining

often generates a hugh number of itemsets satisfying the minimum support threshold, especially

when threshold is low. To overcome this difficulty, the concept of closed itemset is introduced

[100, 76]. An itemsetX is closed if there exists no proper super-itemsetY such thatY has the

same support count asX. Recent interest in data mining communities is to mine subset of essential

itemsets that are useful for classification [24, 51].

2.2 Pattern Mining in Numerical Data

Quantitative association rules are introduced to mine patterns from numeric attributes

[86, 6, 17, 90]. This approach dynamically discretized, i.e., binning, the numerical attribute dur-

ing mining process so as to satisfy some mining criteria, such as maximizing the confidence or

15

compactness of the rules mined. Three common binning strategies can be utilized named equal

width binning, equal frequency binning and clustering based binning. Very recently, an algorithm

is proposed to mine subgroup discovery in numerical domains[41]. This approach uses sub-space

clustering method to discover a subset of frequent numerical itemsets.

2.3 Pattern Mining in Sequence Data

Time plays an important role in understanding many real world phenomena and in se-

quence data it is used to order the underlying data. Pattern mining in sequence data is concerned

with discovering the frequently recurring subsequences [10, 45, 36, 11, 62, 95]. For example , buy-

ing first a PC, then a digital camera, and then a memory card, denoted as{PC→ digital camera

→ memory card}. Note that, items in pattern are ordered, so pattern is also known astemporal

pattern or sequential pattern.

Various state of the art algorithms exist to discover frequent patterns from sequence data.

The first few papers [10, 11] in this direction assume underlying sequence data has the form as

shown in Table 2.1, which in our approach is referred as “sequence”. Later, various algorithms

[54, 31, 82, 15] were proposed by considering only single butlong sequence as shown in Table 2.2

, which in our case is referred as “event sequence”.

2.3.1 Set of Sequences

Agrawal and Srikant in [10] introduced a problem of mining frequently occurring subse-

quence pattern in the sequence database. A frequent sequential pattern is a sequence whose occur-

rence in the given data sets is higher than the user defined threshold (i.e., minimum support). In their

16

work, they have given a set of sequences where each sequence represents the customer transaction.

A snapshot of such data set is given in the Table 2.1. In this example we have total three customers.

Apriori algorithm is designed to handle this problem and also known as generalized sequential pat-

tern (i.e., GSP) mining algorithm. GSP [87] is based on the breadth first principal and multi scan

approach.

Customer June 4 June 10 June 20
C1 Laptop MemUpgrade Audio
C2 DVD Rec MemCard USB Key
C3 - Laptop DVD-R

Table 2.1. Example : Sequence data

A number of extensions for sequential pattern mining has been proposed, for instance in

[101] vertical list representation is used to speedup the time and in [42, 77] prefix based approach

was proposed to speed up the mining algorithm for low minimumsupport value. One variant of the

sequential pattern mining framework seeks to incorporate user’s feedback in data mining process.

For example, In GSP algorithm user can specify minimum and maximum time interval constraints

between elements in a sequence. Recently, SPIRIT [36] (Sequential Pattern Mining with regular

expression constraints) is proposed in order to mine sequential pattern based on the regular expres-

sion specified by the user. As PrefixSpan does not incorporateuser’s feedback in data mining task,

GenPrefixSpan in [14] is proposed to overcome this limitation.

In [101], the authors proposed the SPADE algorithm. The mainidea in this method is

a clustering of the frequent sequences based on their commonprefix and the enumeration of the

candidate sequence. SPADE needs only three scans in order toextract the sequential patterns. The

first scan aims at finding the frequent items, second scan aimsat finding the sequence of length 2

and last one associates to frequent sequences of length 2, a Table of the corresponding sequence

17

id, itemset id in the data base. Based on this representationin the main memory, the support of

sequence of lengthk is obtained by joining the Table of lengthk-1 prefix who can generate this

pattern.

An interesting approach to mine sequential pattern aims at recursively projecting the data

sequences into the smaller databases. Proposed by Han, FreeSpan in [42] is the first algorithm

considering the pattern-projecting method for mining the sequential pattern. PrefixSpan [77] is the

latest algorithm based on this concept. Starting from the frequent items of the databases, PrefixSpan

generates projected database with the remaining data sequences. The projected database contains

suffix of the data sequences from the original databases. Theprocess is repeated on the projected

databases.

Very recently, closed sequential patterns [89] and time lagpattern [37] are introduced. A

sequential patternP is closed if no supersequence ofP has the same support asP . A time lag

pattern is a sequence pattern with a time information between adjacent events in the sequence.

2.3.2 Event Sequence

A second class of approach, where Manila et al. in [54] introduce an episodic discov-

ery framework from single long order sequence. In this framework, the author considers a long

single sequence, such as alarms in telecommunication network and purpose is to discover the fre-

quent temporal patterns. A snapshot of such data set is givenin Table 2.2, where total five events

{A,B,C,D, V } and sequence length is 9. In their framework, long single sequence is known as

event sequence and a temporal pattern as an episode. An episode can be a serial (i.e., A→ B →

C) or parallel (i.e., (ABC)). Apriori based mining algorithm is employed for this data (i.e., known

as WINEPI). Two notions of frequency counting for an episodeare discussed: fixed width overlap-

18

ping window (i.e., sliding window) and fixed width disjoint window. An automata-based counting

scheme is also proposed to count the frequency of the episode. According to this scheme for se-

rial episode, it takes O(l.k) space and O(n.l.k) time to compute the frequency of a set having total

k elements, each element is of lengthl andn is the length of event sequence. They utilized the

discovered frequent episode to analyze the alarm data and telecommunication data.

Time 1 3 4 5 7 11 12 14 15
Event A B B C D A V A C

Table 2.2. Example : Event sequence data

A number of extensions for event sequence mining has been proposed and the detail can

be obtained from the bibliography given in [81].

2.3.3 Set of Interval-based Event Sequences

The above two basic classes of problems have greatly fueled research in sequential pattern

mining. Most of the data mining algorithms, such as Apriori,GSP, PrefixSpan, FreeSpan, SPADE

consider events as instantaneous events(i.e., duration=0). Hence, all previous approaches mine se-

quential pattern considering only“before” and“equal” temporal relations between them. Recently,

a few papers utilized duration of event directly or indirectly in sequential patter mining. Next we

discussed various attempts made in this direction and problem with those approaches. A sample

snapshot of one transaction we considered in our approach isgiven in Figure 2.1.

First, Kam et. al. [46] discovers frequent temporal patterns by considering the event dura-

tion. Independently, Panagiotis et. al. [72] proposed the H-DFS algorithm to mine frequent arrange-

ment of temporal relation. Briefly, both approaches used vertical list concept similar to the SPADE

algorithm with minor modification. In short, event sequenceis transformed into a vertical represen-

19

(A,0,10)

0 5 10 15 20 25

(C,12,21)

(B,8,13) (D,15,20)

Figure 2.1. One record in interval data

tation (a.k.a., id-list), such as an event A’s id-list contains {tid, [starttime, endtime]}. Then, id-

list of one event is merged with id-list’s of other events to generate temporal pattern between them.

Thus, the temporal pattern betweenA andB has a id list as{ tid, < [A.starttime,A.endtime],

[B.starttime,B.endtime] > }. This is the basic step in both approaches. New patters are gener-

ated by combining the current frequent patterns’s id-list with the id-list of single frequent pattern.

The problems with the both approaches are

• As the length of temporal pattern increases, the second partof id-list representation will also

increase. It is true that, the length of id-list of longer temporal pattern is less, but still travers-

ing long second part of id-list is time consuming process.

• New frequent pattern is generated by combining id-list of frequent pattern at current level

with the id-list of single frequent event. It should be notedthat length of id-list of single

frequent event is still long. Scanning this long list does not give good performance. It is also

obvious now that the pattern generation in their approachesis different than the traditional

SPDAE algorithm. SPADE combines two patterns at the same level to generate the frequent

pattern for next level, while both the above algorithm combine a frequent pattern at current

level with the frequent pattern at level 2 or 1.1

1In Paper [72], H-DFS it is not clear which level they utilizedfor pattern generation.

20

• Discovered temporal pattern by Kam et. al. is ambiguous as pointed out in [93].

Hoppner et al. [13] considers the duration of an event to discover temporal rule from the

single event sequence. In their approach, if similar eventsoverlap or meet, the events are merged

into a larger segment. Author also proposes the extension todefine the constraint patters such

as, if event A follows event B within 10 second then in next 20 second event C follow events A.

Cohen [71] proposes an algorithm to discover significant composite fluent from the underlying event

sequence. They apply the composite relation approach to represent the longer frequent sequence.

A similar approach is used in [56] for mining composite relation from the movement of the video

data. The works [71] and [56, 49] are based on the lossy hierarchical representation. In short, all

these algorithms are based on the ambiguous pattern and alsolack the performance.

Recently, Shin et. al. in [93] proposed an algorithm called TPrefix identical to PrefixS-

pan algorithm for mining non-ambiguous temporal pattern from interval-based events. Note that,

Lossless hierarchical representation in our case means representation is non-ambiguous. To obtain

the non-ambiguous pattern, first the given event sequence isconverted into sequence. For exam-

ple, the sequences given in Figure 2.2 and 2.3 is converted toA+ < B+ < A− < B−) and

(A+ < B+ = A− < B−). A+ denotes the A’s start time andA− denotes A’s end time. For com-

plex sequence such as given in Figure 2.4 is converted to(A+ < B+ = C+ < A− < B− < C−).

This converted sequence is known as the temporal sequence intheir approach. Clearly this conver-

sion double the length of event sequence as well increase thecomplexity of string matching. It also

increases the complexity if similar events overlap.

Next, TPrefix discovers the single frequent events from the temporal sequences obtained

from the preprocessing stage and then project the data base for each frequent single event. Again

it scans the projected database for each frequent events in tern. Then it generates all the possible

21

A

B

Figure 2.2. Example : Event sequence

A

B

Figure 2.3. Example : Event sequence

A

B

C

Figure 2.4. Example : Event sequence

candidates temporal relation (i.e., 13 allen’s temporal relation) between temporal prefix of projected

database and discovered frequent events. Then it counts thefrequency of each generated candidates

by scanning again the same projected data base. It means eachprojected database is scanned twice.

First scan is comparatively easy compared to the second scan. The problems with this approach are

1. Candidate generation process does not have any candidatepruning strategy. This increase

the support counting time. We need to generate the total 13 temporal relations from the one

discovered frequent pattern.

2. Projected database are scanned twice. First scan is not complex. But the second scan required

sophisticated string matching technique to speed the overall operations.

22

3. The intermediate representation of data occupied doublememory compared to the original

size data.

All the above problems have been validated with the originalauthor of the paper. In short,

these recent algorithms either require high main memory to store the prefix data set or lack effective

candidate generation process or mine some spurious temporal patterns.

2.4 Pattern Mining in Time Series Data

Many real-world applications generate time series data, for example, intensive care unit

monitoring, stock market, weather sensory instruments andmany others. Various data mining

methods have been proposed for clustering time series, finding lag based linear correlation be-

tween pairs of time series, discovering time series motifs and indexing time series for efficient

similarity search. Very few work exist in the literature to discover patterns/rules from time se-

ries data. Based on underlying approach, they can be categorized into clustering of time series

[28, 30, 38, 78], finding lag-based correlations in time series [102, 69], and motif discovery in time

series [25, 50, 27, 57, 60, 59, 58, 99].

Das et. al. in [28] made an initial attempt to discover rules from time series by first

obtaining all subsequences of lengthW from the given time series. These subsequences are then

clustered using K-mean clustering algorithm. For each cluster, a representative pattern is obtained

using the cluster center. With that, the original time series is transformed into a symbolic series(i.e.,

sequence) by using the cluster representative. Symbolic rules are then discovered from the sym-

bolic series. The main limitation of this approach is that the rules discovered are all of lengthW .

23

Furthermore, the time complexity is too high for us to extendthis approach to discover the desired

lag associations across multiple time series.

Zhu et. al. in [102] aims to discover lag correlations among multiple streams in real time.

They use fourier transform to summarize the streams and thencompute their pairwise correlations.

However, this method clearly misses any lag that is longer than the window lengthw. [84] discovers

lag correlations among time series by using geometric probing. They calculate correlation values at

various lags and use B-spline method to estimate the correlations for other possible lags. While this

approach discovers lag correlations among the entire time series, it does not discover frequent lag

correlations among subsequences.

Existing motif discovery approaches in time series are either approximate [25, 99, 57, 88]

or exact [50, 64, 63]. In approximate motif discovery, time series is discretized into symbolic

sequences and most recurring subsequences are discovered using variation of random projection

based method [25]. Lin. et. al. in [50] introduce the notion of K-motifs, that is, a motif havingKth

highest count of non-overlapping occurrences. The proposed algorithm hashes all subsequences into

a table using their SAX word and then the promising buckets are processed to discover K-motifs.

These works differ from ours in that they are approximate anddealing with fixed length motifs.

Recently, Mueen et. al. in [64, 63] propose algorithm to find the exact motifs efficiently

by limiting the motifs to just pairs of time series that are very similar to each other. Both algorithms

use order line and triangular inequality to reduce the distance computations. Their methods discover

motifs of the given length. These works differ from ours in that their motif is a pair of the most

similar subsequence.

There are also works that extend [25] to discover approximate multi-dimensional motifs

from multiple time series [99, 57, 68, 88]. However, none of them considers time lag and invariant

24

ordering among motifs. Further, we do not adapt time series subsequences clustering method [28]

to discover lag patterns, since clustering time series subsequence is meaningless as suggested in

[32]. Our work aims to discover groups of motifs that exhibitsome invariant ordering among the

motifs within each group and explicitly capture the lag among them.

Minnen et. al. in [59] quantized time series globally and obtained motifs seeds of vari-

able length by using a generalized suffix tree. However, global quantization tends to miss similar

subsequences that have different amplitude. Oates in [68] developed the PERUSE algorithm to find

recurring patterns in multivariate time series data. This algorithm works directly on real values

and also extends the fixed length motifs to discover variablelengths motifs. This algorithm is not

computational efficient as pointed out in [57].

In summary, none of the existing works is able to discover therepeated lag associations

among motifs from different time series as motivated in our introduction.

2.5 Pattern Mining in Dataset with Multiple Kinds of Data

The works in [79, 80] discover multi-dimensional sequential patterns from categorical

and sequence data. The algorithm discovers a patternα from categorical (sequence) data and use

α to discover patterns from sequence (categorical) data. Hence,α must contain patterns involving

both categorical and sequence data. In our approach, we haverelaxed this requirement. The works

in [41, 65] mine mixture of categorical and numerical data based on subspace clustering. All these

approaches aim to mine a complete set of patterns. Recent interest in data mining community is to

discover a subset of patterns which are essentials for a particular data mining task [24, 35]. However,

existing algorithms mine essential patterns only from records having single kind of data.

25

In summary, no methods in literature is designed to mine essential patterns from the

records involving multiple kind of data for the classification task.

26

Chapter 3

Mining Patterns from Interval Data

In this chapter, we describe how to discover frequent temporal relationships that are hid-

den among events with duration. We have seen that the existing sequential pattern mining algo-

rithms [10, 54, 14, 77] have focused on discovering frequentpatterns from instantaneous events,

that is, events with no duration. This assumption allows thediscovered pattern to be simplified

to an ordered sequence of events, such as “fever→ stomach ache→ vomit”. However, such se-

quential patterns are inadequate to express the complex temporal relationships in domains such as

medical, multimedia, meteorology and finance where the events’ durations could play an important

role. First, we present the following examples of how event duration is useful to find meaningful

knowledge.

 ALP - Normal

 GPT - High

NOVL - -

ORCL - -

High Atmospehric Pressure

Earthquake

(a) (b) (c)

Figure 3.1. Example of temporal pattern (a) Medical domain (b) Financial data (c) Geological data

27

• Medical Domain: A physician has to analyze patient’s data captured over a time in order

to monitor a disease progress. For example, hepatitis patient data [1] contains information

about 771 patients maintained over a period of 10 years. Thisdataset records the result of 230

in-hospital tests performed for each patient during each visit. For accurate data analysis and

interpretation, temporal abstraction method is used to transform the raw values into interval

based abstract description such as interval of “normal”, “high” and “normalTohigh” for each

test. Once interval-based abstraction data is obtained, physician looks for the existence of

any predefined complex temporal pattern to interpret patient’s behavior, such as temporal

pattern shown in Figure 3.1(a). Here, ALP and GPT are two regularly conducted tests for

hepatitis patient. Searching frequent temporal pattern inunsupervised manner helps physician

to discover previously unknown complex temporal pattern. It is also possible to discover

frequent temporal pattern which occurs only in patient withhepatitis B. Such pattern is useful

for performing discriminative analysis.

• Finance Domain: In financial stock market, fluctuation of stock price can be modeled as

interval-based events. For example, increase in stock A’price for at least three consecutive

day is denoted asA + +, decrease in stock A’price for at least three consecutive days is

denoted asA − −, and many more. Figure 3.1(b) shows an example of an intervalbased

pattern for the stock market. The pattern reveals that, “Three days of consecutive increase

of NOVL(Novel)’s priceoverlap with three days of consecutive increase of ORCL(Oracle)’s

price”. This pattern is useful to trader as they can easily incorporate it in trading strategy. We

can also incorporate trader’s preference in event modelingto perform user driven analysis.

28

Many other examples exist where use of event’s duration results in more meaningful

knowledge, such as “Earthquake event occurs onlyduring High Atmospheric Pressure event” as

shown in Figure 3.1(c). With the increasing amount of interval data, the urgency is to design an

efficient mining algorithm that can discover frequent complex relationships among events with du-

ration, also known as interval-based events. Furthermore,these discovered relationships could be

used to build a classifier that is able to distinguish closelyrelated classes.

In this chapter, we introduce the notion of temporal patternin interval data and present

an efficient pattern mining algorithm to mine frequent temporal patterns. We also build classifier

using discovered temporal patterns to distinguish closelyrelated classes. The rest of the chapter is

organized as follows: Section 3.1 provides some preliminaries and definitions. Section 3.2 intro-

duces the lossless representation of temporal pattern. Section 3.3 describes the IEMiner algorithm

and the optimization strategies. Section 3.4 presents the design of IEClassifier. Section 3.5 gives

the experiment results. We summarize in Section 3.6.

3.1 Preliminaries

An event is denoted byE = (type, start, end), whereE.type denotes the type of event,

E.start andE.end denote the event’s start and end time respectively. For example, (A, 1, 4) is an

event of type A. It’s start time is 1 and end time is 4.

An ordered event list EL = {E1, E2, · · · , Ei, · · · , En} is a collection of events such

that, all events inEL are sorted with respect to their start time. In case of conflict (i.e., two events

start at a same time), an event which ends early is selected first. If still there is a conflict (i.e., events

having same start and end times), we ordered them using theirevent’s type. The length ofEL, given

29

by |EL|, is the number of events in the list. For example, the length of first ordered event list in

Table 3.1 is 4. In this chapter, we assume that events are always ordered in the event list.

Sr. No. Ordered Event List
1 {(A,1,4), (B,2,5), (C,3,8), (D,6,7)}
2 {(A,1,2), (F,3,4), (G,5,6)}
3 {(A,1,4), (B,2,5), (C,3,8), (D,6,7), (F,9,10)}
4 {(A,1,3), (B,2,4), (D,5,6), (F,7,8), (G,9,10)}
5 {(Q,1,2), (C,3,4), (D,5,6)}
6 {(P,1,2), (C,3,4), (D,5,6)}

Table 3.1. Working DatabaseDB

Relation Interval Algebra Dual Relation
Ei BeforeEj (Ei.end < Ej.start) Ej After Ei

Ei MeetEj (Ei.end = Ej.start) Ej Met-byEi

Ei OverlapEj (Ei.end > Ej .start) ∧ (Ei.end < Ej .end) Ej Overlapped-byEi

∧ (Ei.start < Ej .start)

Ei StartEj (Ei.start = Ej.start) ∧ (Ei.end < Ej .end) Ej Started-byEi

Ei Finished-byEj (Ei.end = Ej .end) ∧ (Ei.start < Ej.start) Ej FinishEi

Ei ContainEj (Ei.start < Ej.start) ∧ (Ei.end > Ej .end) Ej DuringEi

Ei EqualEj (Ei.start = Ej.start) ∧ (Ei.end = Ej .end) Ej EqualEi

Table 3.2. Temporal relationship between eventsEi andEj

Each event in an event list has atemporal relationship with all the other events in the

event list. Table 3.2 shows the 13 temporal relationships defined by Allen [12] that can occur

between any two interval-based eventsEi andEj , i 6= j.

Given two eventsEi andEj , a newcomposite eventE is given as follow:E = ((Ei.type

R Ej.type), start, end), whereR is temporal relationship between eventsEi andEj . The start

and end times ofE are given by minimum{Ei.start, Ej.start} and maximum{Ei.end, Ej .end}

30

respectively. Here,(Ei.type R Ej .type) is a representation of composite eventE, denoted as

E.type.

For example,E = ((A Overlap B), 1, 5) is a composite event between events (A,1,4) and

(B,2,5). Here,E’s start time is 1 (i.e., minimum{1,2}) and an end time is 5 (i.e., maximum{4,5}).

Also, (A Overlap B) is the representation of composite eventE.

Given an ordered event listEL = {E1, E2, ... ,En} of n events, a composite event of these

n events is modeled using a hierarchical representation [46,5, 66]. In this representation, first two

events inEL are iteratively replaced by their composite event. This iterative process stops when

only one event remains inEL.

For example, consider ordered event listEL = {(A,1,4), (B,2,5), (C,3,8), (D,6,7)} of 4

events. To obtain composite event ofEL, we first replace events (A,1,4) and (B,2,5) inEL by

their composite event ((A Overlap B),1,4). Now, the updatedEL is {((A Overlap B),1,4), (C,3,8),

(D,6,7)}. Next, events ((A Overlap B), 1, 4) and (C,2,8) are replaced by their composite event. As

a result, the updatedEL is {((A Overlap B) Overlap C), 1, 8), (D,6,7)}. Finally, events ((A Overlap

B) Overlap C), 1, 8) and (D,6,7) are replaced by their composite event. Now, resultantEL is {((((A

Overlap B) Overlap C) Contain D), 1, 8)}. Here, ((((A Overlap B) Overlap C) Contain D), 1, 8) is

composite event ofEL.

Note that, hierarchical representation uses only subset ofAllen’s temporal relations while

forming composite event. More specifically, we need only{Overlap, Meet, Before, Contain, Finished-

by, Equal, Start} temporal relations instead of original 13 temporal relations. While the traditional

hierarchical representation provides an attractive and compact mechanism to express the temporal

relations among events in composite event, the hierarchical representation of composite event is

31

lossless. Section 3.2 explains this problem in detail and presents the proposed augmented hierarchi-

cal representation.

Let databaseDB be a set of ordered event lists. Atemporal pattern TP is of the form

E.type whereE.type is a representation of composite event. The support of temporal patternTP ,

denoted assup(TP), is the number of event lists fromDB that containTP . The length ofTP is

given by the number of events inTP . In this chapter, we usen-pattern to denote a lengthn temporal

pattern.

For example, “((A Overlap B) Overlap C)” is a temporal pattern. It is 3-pattern as it

involves three events. Its support is 2, since only first and third event lists from datasetDB shown

in Table 3.1 contain this pattern.

A subpattern of n-pattern is a representation of composite event consistingof k events

from n-pattern,k < n. For example, consider 4-patternP = ((A OverlapB) BeforeC) BeforeD.

It’s underlying event list is{A, B, C, D}. Here,((A OverlapB) BeforeC) is one subpattern of

P . Also, ((A OverlapB) BeforeD) is another subpattern ofP . Note that, fromn-pattern, we can

generaten subpatterns of lengthn− 1.

A temporal pattern TP is frequent if sup(TP) ≥minsup. Given a minimum support

thresholdminsup and interval dataDB, we want to find the complete set of frequent temporal

patterns. Note that, a temporal pattern satisfies the downward closure property, i.e., if temporal

patternTP is frequent, then all its subpatterns are also frequent.

32

3.2 Augmented Hierarchical Representation

Mining temporal patterns from interval data requires unique yet lossless representation to

capture the temporal relationships among events in the temporal pattern. Hierarchical representa-

tion is widely used to encode the temporal relationships among more than two events[5, 66, 46].

However, this representation is lossy as explained below.

Assume, we have given a hierarchical representation “((A OverlapB) OverlapC)” of an

ordered event list having three events. From this hierarchical representation, we can infer overlap re-

lationship between events “A” and “B” as well as overlap relationship between events “B” and “C”.

But, temporal relationship between events “A” and “C” cannot be inferred. More specifically, tem-

poral relationship between events “A” and “C” can be “before”,“meet” or “overlap” relation. Based

on this discussion, Figure 3.2 represents three different interpretations of “(A overlap B) overlap

C”. We can observe that these three different structures have the same hierarchical representation.

In other words, hierarchical representation “((A OverlapB) OverlapC)” is a lossy representation,

as the encoded representation does not preserve the underlying temporal relationship among all the

events. Any mining algorithm that is based on a lossy representation will lead to the discovery of

many spurious patterns as non-frequent patterns may becomefrequent.

A

B

C

(a) (b) (c)

A

B

C

A

B

COverlap Count = 1
Meet Count = 0

Overlap Count = 2
Meet Count = 0

Overlap Count = 1
Meet Count = 1

Figure 3.2. Same hierarchical representation “(A OverlapB) OverlapC” for three different event
lists

33

To overcome this problem, we augment the hierarchical representation with additional

count information. We observe that the first two cases in Figure 3.2 can be differentiated by using

anoverlap countto track the number of events in representation that actually have overlap temporal

relationship with eventC. For example, theoverlap countfor Figure 3.2(a) and 3.2(b) is 1 and 2

respectively. Figure 3.2(c) can be differentiated by usingan additionalmeet countto indicate the

number of events in representation that meetsC.

An exhaustive enumeration shows that we need 5 variables, namely,contain count c, fin-

ish by count f, meet count m, overlap count o, andstart count sto differentiate all the possible cases.

Figure 3.3 shows a partial listing of the various cases. We augment the hierarchical representation

for a composite eventE to include the count variable as follows:

E.type = (((E1.type R1[c, f,m, o, s] E2.type) R2[c, f,m, o, s] E3.type) · · ·
· · · Rn−1[c, f,m, o, s] En.type)

We explain the proposed representation with examples. Consider Figure 3.2(a) as an event

list. First, we obtain representation of composite event between eventsA andB, which results in

(A Overlap[0, 0, 0, 1, 0] B). Next, we obtain representation between (A Overlap[0, 0, 0, 1, 0] B)

and third eventC. We observe that only one event (i.e., eventB) in (A Overlap[0, 0, 0, 1, 0] B)

actually overlaps an event C. Thus, overlap count = 1. Finally, representation of composite event be-

tween (A Overlap[0, 0, 0, 1, 0] B) andC is ((A Overlap[0, 0, 0, 1, 0] B)Overlap [0, 0, 0, 1, 0] C).

In Figure 3.2(c), we have one event from(A Overlap[0, 0, 0, 1, 0] B) that has overlap tempo-

ral relationship with event C, and one event that meets eventC. Thus, the final representation is

((A Overlap[0, 0, 0, 1, 0] B) Overlap[0, 0, 1, 1, 0] C).

Thus, the representation of composite event in Figure 3.2 are represented as (see Figure

3.4)

34

A

B

C

C

C

C

C

C

C

C

C

C

C

c f m o s

0 0 0 0 0

1

1

1 1

2

C

1 1

1

0

00

1 0

1

1 1

C

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0 0 0

001

0 0 0

01

1 0 0

0 0

0

0

0 0

0

00

0 0

C
1 0 001

A

B

C

C

C

C

C

C

c f m o s

0 0 0 0 0

1

1

1 0

0

0 0

0

0

0

0

1

0

0

0

1

0 0

0 0

1

00

0 0

2 0 0 0 0

Figure 3.3. Partial enumeration of the possible cases involving 3 events

35

(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,1,0] C

(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C

(A Overlap[0,0,0,1,0] B) Overlap[0,0,1,1,0] C

A

B

C

(a) (b) (c)

A

B

C

A

B

COverlap Count = 1
Meet Count = 0

Overlap Count = 2
Meet Count = 0

Overlap Count = 1
Meet Count = 1

Figure 3.4. Example of augmented hierarchical representation: (a) (A Overlap[0,0,0,1,0] B) Over-
lap[0,0,0,1,0] C (b) (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C (c) (A Overlap[0,0,0,1,0] B)
Overlap[0,0,1,1,0] C

B

A

C

(a) (b) (c)

A

B C

A

B

C

Figure 3.5. Example of augmented hierarchical representation

Similarly, hierarchical representation for Figures 3.5(a), 3.5(b) and 3.5(c) is represented as

“(A Contain[1,0,0,0,0] B) Contain[1, 0, 0, 0, 0] C”, “(A Contain[1,0,0,0,0] B) Contain[1, 0, 1, 0, 0]

C” and “(A Contain[1,0,0,0,0] B) Contain[1, 0, 0, 1, 0] C” respectively. Note that, the proposed

representation does not require count information betweenfirst two events in the temporal pattern

as well as when relation is{Equal, Meet, Before} between temporal pattern and new event. More

36

examples to illustrate the augmented hierarchical representation are given in Figure 3.6 and Figure

3.7.

A

B

C

D

A

B

A

B

C A

B

C

D

(a) (b) T1 = A Overlap B (c) T2 = T1 Overlap[0,0,1,0,0] C (d) T3 = T2 Contains[1,0,0,0,0] D

Figure 3.6. Examples of forming composite event with count variables.

A

B

C

(a)

A

B

C

(b)

A

B

C

(c)

A

B C

(d)

A

B

C

(d)

A

B

C

(e)

Figure 3.7. Example of temporal patterns (a) (A Overlap[0,0,0,1,0] B) Finished-by[0,1,0,0,0] C
(b)(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,1,1] C (c) (A Overlap[0,0,0,1,0] B) Contain[1,0,1,0,0] C
(d) (A Contain[1,0,0,0,0] B) Contain[1,0,0,0,0] C (e) (A Contain[1,0,0,0,0] B) Contain[1,0,1,0,0] C
(f) (A Contain[1,0,0,0,0] B) Contain[1,0,0,1,0] C

In order to prove that, the augmented representation is lossless, we use the concept of

linear ordering of an event list. Given an ordered event list, a linear ordering is obtained by the

chronological order of the start and end points of the eventsin the list. For example, the linear

ordering of the first ordered list in Table 3.1 is :

{{A+}{B+}{C+}{A−}{B−}{D+}{D−}{C−}}

where+ indicates an event’s start point and− indicates an event’s end point. A representation is

lossless if we can recover the complete linear ordering of the start and end times of all the events

which correspond to the underlying ordered event list.

37

Property I The augmented hierarchical representation is lossless.

Proof We prove the property using proof by induction.

Base case: A composite event consisting of two events is lossless. This inferred directly

from the Interval algebra between two events given in Table 3.2.

Induction step: Suppose a composite eventEn consisting ofn events is lossless. Let

En+1 = En R[c, f,m, o, s] E be a composite event consisting ofn + 1 events whereE is a new

event.

SinceEn is lossless, we can recover the linear ordering of then events. With the new

eventE, we observe that the start time ofE is constrained as follows:

1. E.start = E′.start for all E′ whereE′ is an event inEn and (E′ StartE). The number of

events that satisfy this condition is given by thestart counts.

2. E.start = E′.end for all E′ whereE′ is an event inEn and (E′ MeetE). The number of

events that satisfy this condition is given by themeet countm.

3. E.start <E′.end for allE′ whereE′ is an event inEn and (E′ OverlapE) or (E′ Finished By

E) or (E′ ContainE) or (E′ StartE). The number of events that satisfy this condition is given

by theoverlap counto, finishedby countf , contain countc andstart counts.

Based on the above, we know that there are exactlyc+f+o+s events whose end times

come after the start time ofE. Similarly, the end time of eventE is constrained as follows:

1. E.end < E′.end for all E′ whereE′ is an event inEn and (E′ ContainE).

2. E.end = E′.end for all E′ whereE′ is an event inEn and (E′ Finished By E).

38

In other words, there are exactlyc events whose end times come after the end time of

E. With the linear ordering ofEn, we can determine the position of the start and end points of

the new eventE to obtain the linear ordering ofEn+1. Hence, we have shown that the augmented

representation is lossless.�

3.3 Algorithm IEMiner

In this section, we present the proposed algorithm IEMiner (Interval-basedEventMiner)

to discover frequent temporal patterns from interval-based event sequences (see Algorithm 1). IEM-

iner follows an iterative approach known as level-wise search, where frequent temporal patterns of

length (k − 1) are used to explore temporal patterns of lengthk. We first scan the databaseDB to

obtain all the frequent events (Line 1). These frequent events are stored infreSet1. In Lines 2-8,

freSetk−1 is used to findfreSetk. Here,freSetk−1 denotes the set of frequent temporal patterns

of lengthk − 1, i.e.,(k−1)-patterns. ObtainingfreSetk from freSetk−1 involves two basic steps:

• First, we call functionGetNextCandidateSet to obtain an initialcanSetk from freSetk−1

(Line 3). Here,canSetk denotes the set ofk-patterns that can be frequent. We term this phase

ascandidate generation.

• Second, we identify the frequent temporal patterns fromcanSetk. ThecountSupport proce-

dure is called for each event listEL in DB to determine the support count for each temporal

pattern incanSetk(Lines 4-6). Once all theEL in DB are processed, we obtain the frequent

patterns and store them infreSetk (Line 7). We term this phase assupport counting.

Algorithm IEMiner terminates whenfreSetk−1 is empty, i.e., no frequent pattern is generated.

Finally, all generated frequent temporal patterns are returned (Line 9).

39

Algorithm 1 Algorithm IEMiner
Input : DatabaseDB; minimum support thresholdminsup.
Output : frequent temporal patternfreSet

1: freSet1 = {Scan databaseDB and obtain all frequent events}
2: for k=2; freSetk−1 6= φ; k++ do
3: canSetk ← GetNextCandidateSet(freSetk−1)
4: for all (event listEL ∈DB) do
5: canSetk = countSupport(k, EL, canSetk)
6: end for
7: freSetk ← {c ∈ canSetk | sup(c) ≥minsup }
8: end for
9: returnfreSet = ∪k freSetk

To address efficiency and scalability issues, IEMiner employs careful design of candi-

date generation(Line 3) and support counting procedures(Line 5). In addition to this, IEMiner also

employs two additional optimistic strategies to further improve the performance. We have utilized

databaseDB given in Table 3.1 to explain working of IEMiner algorithm. This dataset has total 6

event lists. Assume,minsup is 2 event lists. Figure 3.8 illustrates the working of proposed algo-

rithm for finding temporal patterns inDB. Now, we discuss candidate generation, support counting

procedure and optimizations in detail.

3.3.1 Candidate Generation

In this section, we explain howcanSetk is obtained fromfreSetk−1. Algorithm Get-

NextCandidateSet(see Algorithm 2) gives the details of candidate generation process. Line 1 ini-

tializes the set of candidates to an empty set. We obtain the frequent 2-patterns from the set of

frequent(k − 1)-patterns in Line 2. Lines 3-10 generates candidatek-patterns from two frequent

(k− 1)-patterns and 2-pattern. All generated candidate patternsare returned(Line 11). The remain-

ing section explains Line 6 in detail.

40

Scan DB to

count support

of each pattern

Compare support count with minimum support count

Scan DB for

count of each

event

Compare support

count with

minimum support

count

Generate

candidateSet_2 from

frequentSet_1
Scan DB to

count support of

each pattern

Generate

candidateSet_3 from

frequentSet_2

Compare support

count with

minimum support

count

Scan DB to

count support

of each pattern

Compare

support count

with minimum

support count

Generate

candidateSet_4 from

frequentSet_3

candidateSet_1

candidateSet_2
candidateSet_2

candidateSet_3 candidateSet_3

candidateSet_4
candidateSet_4

frequentSet_1

frequentSet_2

frequentSet_3

frequentSet_4

Figure 3.8. Generation of frequent temporal patterns, where the minimum support count is 2.

41

Algorithm 2 Algorithm GetNextCandidateSet
Input: freqSetk−1, set of frequent(k − 1)-patterns
Output:canSetk, set of candidatek-patterns

1: canSetk ← φ

2: obtain useful2-patternsfreSet2 from freSetk−1

3: for all (P ∈ fk−1) do
4: for all (Q ∈ fk−1) do
5: if (prefix ofP = prefix ofQ) then
6: tmp can← {Generatek-patterns byjoining P toQ usingfreSet2}
7: canSetk ← canSetk

⋃

tmp can

8: end if
9: end for

10: end for
11: returncanSetk

Existing Apriori-based algorithms use two frequent (k − 1)-patterns fromfreSetk−1 to

generate single candidatek-pattern. More specifically, candidatek-patternR is generated from

frequent(k − 1)-patternP and frequent(k − 1)-patternQ if prefix of P = prefix of Q1. Next,

according to downward closure property, if patternR is frequent then all of it’s subpatterns are also

frequent. Based on this, patternR will be pruned, if any of it’s subpattern is not frequent. Note

that, existing Apriori-based algorithms generate only single k-pattern from two(k − 1)-patterns2.

However, in our method, we need to generate multiple candidate k-patterns from two frequent

(k − 1)-patterns.

For example, consider joining frequent 3-patternP = “(A Overlap[0,0,0,1,0] B) Over-

lap[0,0,0,2,0] C” to frequent 3-patternQ = “(A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0] D” as shown

in Figure 3.9. Note that, prefix ofP = prefix ofQ3. From these two patterns, we can generate total

“five” candidate patterns as shown in Figure 3.10. Generating multiple candidate patterns incurs

1A prefix of a pattern is the pattern with the end cut off. For example itemset{A,B} is prefix of itemset{A,B,C}.
Similarly, {A → B} is a prefix of{A → B → C}

2Given frequent 2-itemsets{A,B} and{A,C}, we can generate candidate pattern{A,B,C}. Given frequent sequential
pattern of length 2{A → B} and{B → C}, we can generate candidate pattern{A → B → C}

3A prefix of n-pattern is a representation of composite event consistingof first n − 1 events fromn-pattern. For
example, “(A Overlap[0,0,0,1,0] B)” is prefix of “(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C”.

42

high cost on checking downward closure property. However, careful observation reveals that we do

not need to generate first three patterns in Figure 3.10. Consider the first pattern in Figure 3.10. The

temporal relationship between eventsC andD in this pattern isC Meet[0, 0, 1, 0, 0] D. Now, from

freSet2, a set of frequent temporal patterns of length 2, shown in Figure 3.8, we can verify that

C Meet[0, 0, 1, 0, 0] D is not frequent. Indirectly, first pattern cannot be frequent. Similar apply to

second and third patterns. This example shows that, frequent temporal relationship between event

C andD from freSet2 can be used to prune the candidate patterns while joiningP toQ. Note that,

eventsC andD have latest start time in patternsP andQ respectively.

A

B

C

A

B

D

P = ((A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C) Q = ((A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0] D)

Figure 3.9. Candidate generation: joining frequent pattern P to frequent patternQ

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

((A Overlap[0,0,0,1,0] B)

Overlap[0,0,0,2,0] C)

Before[0,0,0,0,0] D

((A Overlap[0,0,0,1,0] B)

Overlap[0,0,0,2,0] C)

Meet[0,0,1,0,0] D

((A Overlap[0,0,0,1,0] B)

Overlap[0,0,0,2,0] C)

Overlap[0,0,0,1,0] D

((A Overlap[0,0,0,1,0] B)

Overlap[0,0,0,2,0] C)

Finished-By[0,1,0,0,0] D

((A Overlap[0,0,0,1,0] B)

Overlap[0,0,0,2,0] C)

Contain[1,0,0,0,0] D

(a) (b) (c) (d) (e)

Figure 3.10. Generated candidate patterns from two frequent patterns given in Figure 3.9.

Based on this observation, we introduce the concept of adominant event in a temporal

pattern. A dominant event in the patternP is an event fromP with the latest start time. During

the candidate generation process, a frequent(k − 1)-patternP is joined to frequent(k − 1)-pattern

43

Q if prefix of P is equal to prefix ofQ. This joining generate candidatek-patternR such that the

temporal relationship between dominant events ofP andQ in candidate patternR is frequent.

We explain the proposed candidate generation process as follow. Consider the set of fre-

quent 3-patterns,freSet3, given in Table 3.3(a) and the set of frequent 2-patterns,freSet2, given

in Table 3.3(b). The dominant event of the frequent3-pattern is underlined in Table 3.3(a). Our

purpose is to generate a set of 4-patterns,canSet4. To generate the set of candidate 4-patterns,

we use two 3-patterns fromfreSet3, such that they share common prefix. For example, con-

sider joiningP to Q, whereP = (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0]C andQ = (A Over-

lap[0,0,0,1,0] B) Before[0,0,0,0,0]D. EventC is dominant event inP and eventD is dominant

event inQ. The frequent temporal relation between dominant eventsC andD in freSet2 are:

C Contain[1, 0, 0, 0, 0] D andC Before[0, 0, 0, 0, 0] D. Thus, the generated patterns are

((A Overlap[0, 0, 0, 1, 0] B) Overlap[0, 0, 0, 2, 0] C) Contain[1, 0, 0, 0, 0] D, and

((A Overlap[0, 0, 0, 1, 0] B) Overlap[0, 0, 0, 2, 0] C) Before[0, 0, 0, 0, 0] D.

Similarly, consider joiningP ′ toQ′, whereP ′ = (A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0]

D and Q′ = (A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0] F. The frequent temporal relation be-

tween eventD andF in freSet2 is D Before[0, 0, 0, 0, 0] F . Thus, the generated pattern is ((A

Overlap[0, 0, 0, 1, 0] B) Before[0, 0, 0, 0, 0] D) Before[0, 0, 0, 0, 0] F . Table 3.4 presents the list

of generated 4-patterns. Later, pattern from this set will be pruned if it does not satisfy downward

closure property.

One key point to note that not all frequent 2-patterns fromfreSet2 are useful during can-

didate generation. For example, consider frequent 2-pattern C Before[0, 0, 0, 0, 0] D and assume,

we are generating a set of 4-patterns from the set of frequent3-patterns. Careful investigation re-

veals that, no pattern fromfreSet3 containsC Before[0, 0, 0, 0, 0] D. In other words, no pattern

44

(a) freSet3

A Overlap[0,0,0,1,0] B Before[0,0,0,0,0] D
A Overlap[0,0,0,1,0] B Overlap[0,0,0,2,0] C
A Overlap[0,0,0,1,0] B Before[0,0,0,0,0] F
A Before[0,0,0,0,0] D Before[0,0,0,0,0] F
A Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] D
A Before[0,0,0,0,0] F Before[0,0,0,0,0] G
B Overlap[0,0,0,1,0] C Contain[1,0,0,0,0] D
B Before[0,0,0,0,0] D Before[0,0,0,0,0] F

(b) freSet2

A Overlap[0,0,0,1,0] B
A Before[0,0,0,0,0] D
A Overlap[0,0,0,1,0] C
A Before[0,0,0,0,0] F
A Before[0,0,0,0,0] G
B Overlap[0,0,0,1,0] C
B Before[0,0,0,0,0] D
B Before[0,0,0,0,0] F
C Contain[1,0,0,0,0] D
C Before[0,0,0,0,0] D
D Before[0,0,0,0,0] F
F Before[0,0,0,0,0] G

Table 3.3. Generating 4-patterns

3-patterns
(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C Before[0,0,0,0,0] D
(A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C Contain[1,0,0,0,0] D
(A Overlap[0,0,0,1,0] B) Before[0,0,0,0,0] D Before[0,0,0,0,0] F

Table 3.4. IntermediatecanSet4

of length 3 that hasC Before[0, 0, 0, 0, 0] D is frequent. According to anti-monotone property, any

pattern of length 4 that hasC Before[0, 0, 0, 0, 0] D will not be frequent. Thus, frequent 2-pattern

C Before[0, 0, 0, 0, 0] D cannot be used to generate candidate pattern with length≥ 4.

Property II Suppose ak-patternR is generated by joining frequent(k−1)-patternP to frequent

(k − 1)-patternQ. LetTP2 be a temporal pattern between eventsEi andEj in patternR, where

eventEi is fromP and eventEj is fromQ. PatternR cannot be frequent ifTP2 is present in less

than(k − 2) number of frequent(k − 1)-patterns.

Proof We prove by contradiction. Assume ak-patternR is frequent and patternTP2 is present in

less than(k−2) number of frequent(k−1)-patterns. By the downward closure property, a frequent

k-patternR hask subpatterns of lengthk − 1. Among them, we have at least(k − 1) subpatterns

45

that contain eventEi. Similarly, we have at least(k − 1) subpatterns that contain eventEj . This

implies that bothEi andEj must occur in at least(k− 2) number of frequent subpatterns of length

(k− 1). In other word,TP2 must occur in at least(k− 2) number of frequent subpatterns of length

(k − 1). �

Based on the above observation, while generatingcanSetk from freSetk−1, we use only

those 2-patterns fromfreSet2 that are present in at least(k − 2) number of frequent patterns from

freSetk−1.

To illustrate working of above observation, consider a casewhere 2-pattern is present in

less thank − 2 number of frequent(k − 1)-patterns and utilized for candidate generation process.

One such pattern isC Before[0, 0, 0, 0, 0] D while generatingcanSet4 usingfreSet3. Recall,

we have usedC Before[0, 0, 0, 0, 0] D to generate 4-patternP = ((A Overlap[0,0,0,1,0] B) Over-

lap[0,0,0,2,0] C) Before[0,0,0,0,0] D. According to downward closure property all length 3 sub-

patterns ofP must be frequent. However, subpatterns “(A Overlap[0,0,0,1,0] C) Before[0,0,0,0,0]

D” and “(B Overlap[0,0,0,1,0] C) Before[0,0,0,0,0] D” are not frequent. Hence, even if we utilize

such 2-pattern which are present in less than 2 frequent patterns infreSet3, we are not generating

any temporal pattern that can be frequent. Next, we show thatour algorithm mines complete set of

frequent patterns.

Theorem 1 Algorithm IEMiner is complete.

Proof Initially, Algorithm IEMiner generates all frequent 2-patterns. In the subsequent iterations,

IEMiner generatesk-pattern from two frequent(k−1)-patterns and frequent 2-pattern. Now, assume

that IEMiner generates all frequent(k−1)-patterns. We prove that algorithm IEMiner will generate

all frequentk-patterns.

46

Suppose IEMiner does not generate all frequentk-patterns, in other words, there exists

a frequentk-patternR that has not been generated by our algorithm. Without loss ofgenerality,

supposeR can be generated from two frequent(k− 1)-patternsP andQ. Let 2-patternTP2 denote

the temporal relationship between dominant events ofP andQ in patternR. Here, patternsP andQ

are generated by IEMiner. The only way in whichk-patternR is not generated is ifTP2 is missing

from the set of 2-patterns used during candidate generation.

As k-patternR is frequent, this implies that there arek number of frequent(k − 1)-

subpatterns ofR. Among thesek frequent subpatterns,TP2 must be present in at leastk − 2

patterns. By Property II,TP2 will be generated and used during candidate generation, indicating

thatk-patternR will be generated by IEMiner. This completes the proof.�

3.3.2 Support Counting

After the canSetk has been generated, we need to count the number of occurrences of

eachk-pattern to determine whether they are frequent or not. Traditionally, support counting is

done by scanning the event list for each candidate pattern. However, checking the occurrence of

a k-pattern in a given event list withm events takes O(km) time. Repeating this process forn

k-patterns takes O(kmn) time. In other words, an event in the event list will end up being scanned

multiple times.

Instead, we utilize a single-pass support counting procedure where each event in the event

list is scanned only once to determine the occurrence of allk-patterns. Algorithm CountSupport

(see Algorithm 3) gives the details. The inputs are an event list EL, a set ofk-patternscanSetk,

and the level numberL(i.e., length of temporal pattern). The idea is to keep trackof the active events

as we scan the event list. An event is considered active at time pointt if the start time of the event is

47

less thant while the end time of the event is greater thant. Otherwise, the event is passive. Active

events are maintained inactive TP list and passive events are maintained inpassive TP list. As

a new eventE arrives, we update theactive TP and thepassive TP to reflect the completion of

previously active events (Lines 7-10). Next, new compositeevents are formed between events from

theactive TP and the new eventE (Lines 11-12). If the composite event is present incanSetk, its

support count is incremented (Lines 13-14). If it is the prefix of any pattern fromcanSetk, we store

it in the active TP (Lines 15-17). Similarly, new composite events are formed between events

from thepassive TP and the new eventE (Lines 20-28). EventE is then inserted intoactive TP

(Line 29). With this, we only need to scan the event list once and count the support of all candidate

patterns.

To illustrate the support counting process, let us considerthe two patterns (A Over-

lap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C and (A Before[0,0,0,0,0] C) Overlap [0,0,0,1,0] D incanSet3

and the first event list from Table 3.1. Table 3.5 shows the patterns generated as we process an active

event. The patterns in italic are discarded since they are not the prefix of any patterns incanSet3.

The pattern (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] Cis the only pattern present in first event

list and we increase its support count.

nextEvent Generated pattern passive TP active TP

A - - A
B (A Overlap[0,0,0,1,0] B) - A, B

(A Overlap[0,0,0,1,0] B)
C (A Overlap[0,0,0,1,0] B) Overlap[0,0,0,2,0] C A, B, C

A Overlap[0,0,0,1,0] C
B Overlap[0,0,0,1,0] C

D C Contain[1,0,0,0,0] D A, B C, D
A Before[0,0,0,0,0] D
B Before[0,0,0,0,0] D

Table 3.5. Support counting ofcanSet3 using first event list from Table 3.1

48

Algorithm 3 Algorithm countSupport
Input: Level L, Event ListEL, canSetk
Output:canSetk with updated count

1: active TP ← φ

2: passive TP ← φ

3: while ((nextEvent← getNextEvent(EL)) 6= NULL) do
4: if (nextEvent is frequent event)then
5: currentTime =nextEvent.start

6: for all (temporal patterntp ∈ active TP) do
7: if (tp.end < currentTime)then
8: passive TP ← passive TP ∪ tp

9: active TP ← active TP − tp

10: else
11: relation← getRelation(tp, nextEvent)
12: newTP = prepareNewTP(tp, nextEvent, relation)
13: if (newTP.size = L && newTP ∈ canSetk) then
14: Update count fornewTP in canSetk
15: else if(newTP is a prefix of a pattern incanSetk) then
16: active TP ← active TP ∪ newTP

17: end if
18: end if
19: end for
20: for all (tp ∈ passive TP) do
21: relation← Before
22: newTP = prepareNewTP(tp, nextEvent, relation)
23: if (newTP.size = L && newTP ∈ canSetk) then
24: Update count fornewTP in canSetk
25: else if(newTP is a prefix of a pattern incanSetk) then
26: active TP ← active TP ∪ newTP

27: end if
28: end for
29: active TP ← active TP ∪ nextEvent

30: end if
31: end while
32: returncanSetk

49

3.3.3 Optimization Strategies

Besides the novel candidate generation and support counting procedures, we further in-

troduce two optimization strategies to achieve greater efficiency for IEMiner.

The first strategy involves building a list ofblacklistedevent list. An event listEL is

blacklistedif it has less thank frequent events as suchEL does not have enough events to generate

ak-pattern and hence it cannot affect the support counts of thek-patterns. This implies we can safely

omit EL from scanning during the support counting procedure from thekth iteration onwards.

The second optimization strategy aims to further reduce thenumber of candidate patterns

generated by utilizing the following observation.

Property III: (Prefix Count) Suppose ak-patternR is generated by joining frequent(k−1)-pattern

P to frequent(k − 1)-patternQ. Letw1 denote the number of event lists in which the prefix ofP

occurs at least twice andw2 denote the number of event lists in which the prefix ofQ occurs at least

twice. PatternR cannot be frequent ifw1 < minsup or w2 <minsup.

Proof We prove this by contradiction. Assumek-patternR is frequent andw1 <minsup orw2 <

minsup. As patternsP andQ are subpatterns ofR, they occur together in at leastminsup number

of event lists. Also, patternR is generated fromP andQ. Thus,P andQ have same prefix. In other

word, there are at leastminsup number of event lists in which prefix ofP and prefix ofQ occurs

twice. Thusw1 >=minsup andw2 >=minsup. This is a contradiction.�

With this observation, we maintain thew values for each candidatek-patternR as we

scan the event list during support counting. Thew value is incremented if there is another temporal

pattern having the same prefix ofR being generated in same event list and the window has not

been blacklisted. Apriori-based candidate generation process use all frequent temporal patterns

50

discovered at the current round to generate candidates pattern for the next round. However, using

the above observation, we only need to join those frequent patterns whosew >= minsup.

3.4 Algorithm IEClassifier

To the best of our knowledge, this is the first work on utilizing interval-based temporal pat-

terns for classification. Existing works utilized frequentitemset patterns for classification. However,

the direct adaptation of existing approaches for the interval-based patterns is not straightforward and

scalable due to the large number of frequent temporal patterns generated. On the other hand, trans-

forming the temporal patterns by treating each temporal relation between any two events as an

independent attribute will result in a very high dimensional space and may suffer from the curse

of dimensionality. To address these problems, we propose a classifier called IEClassifier(Interval

based Event Classifier).

The building of IEClassifier has two aspects. The first aspectdeals with the selection of a

subset of patterns that is able to discriminate one class from another with high degree of accuracy.

The second aspect deals with the assignment of an unknown input event sequence to a class given

the selected subset of patterns.

Frequent interval-based temporal patterns are generated from a set of training data that

has been partitioned according to their class labelsCi, 1 ≤ i ≤ c, where c is the number of class

labels. A frequent pattern which occurs in only one class is more discriminating than one that occurs

in all the classes. To identifying such discriminating patterns, we compute the information gain of

each patternTP using the following equation:

51

InfoGain(TP)= −
∑c

i=1 p(Ci)log p(Ci) +

p(TP)
∑c

i=1 p(Ci|TP)log p(Ci|TP) +

p(TP)
∑c

i=1 p(Ci|TP)log p(Ci|TP)

In the above formula,p(TP) is probability of patternTP to occur in datasets. Also

p(TP)=1-p(TP). We calculate information gain for all frequent patterns using above formula.

Those temporal patterns whose information gain values are below a predefinedinfo gain threshold

are removed. The remaining temporal patterns are the discriminating patterns. We assign to each

discriminating pattern the class label with the highest conditional probabilityp(C|TP). p(C|TP)

is also known as the confidence ofTP (conf(TP)). At the end of the process, each discriminating

patternTP is assigned a class label (clabel(TP)) with the support count sup(TP).

Algorithm 4 Algorithm Best Conf
Input: Event sequence I,PatternMatchI
Output: Class Label of I

1: bestclass← Default class label
2: conf← 0
3: sup← 0
4: for all (temporal patternTP ∈ PatternMatchI) do
5: if (conf(TP) > conf) then
6: bestclass = class label ofTP
7: conf = conf(TP)
8: sup = sup(TP)
9: else if(conf(TP) == conf and sup(TP) > sup)then

10: bestclass = class label ofTP
11: conf = conf(TP)
12: sup = sup(TP)
13: end if
14: end for
15: Assign bestclass as a class label to I

For an unknown input event listI, we matchI against all the discriminating patterns. Let

PatternMatchI be the set of discriminating patterns that are contained inI. Intuitively, there are

52

Algorithm 5 Algorithm Majority Class
Input: Event sequence I,PatternMatchI
Output: Class Label of I

1: for all (classCi, 1≤ i ≤ c) do
2: count[Ci]← 0
3: end for
4: for all (TP ∈ PatternMatchI) do
5: clabel← class label ofTP
6: count[clabel]++
7: end for
8: max← 1
9: for all classCi, 1≤ i ≤ c do

10: if (count[Ci] > count[max]) then
11: max← i

12: end if
13: end for
14: Assign classCmax to I

two ways to assign a class label toI. The first way is to assignI to the class label with the highest

confidence pattern inPatternMatchI . The second way is to assignI to the majority class labels

of the patterns inPatternMatchI . Algorithms BestConf (see Algorithm 4) and MajorityClass

(see Algorithm 5) show the details.

3.5 Empirical Studies

In this section, we present the results of experiments conducted to evaluate IEMiner and

IEClassifier.

We first compare the performance of IEMiner with state-of-the-art algorithms GenPre-

fixSpan [14], TPrefixspan [93] and H-DFS [72] to evaluate its efficiency and scalability. We use

GenPrefixSpan as the baseline for IEMiner since it only finds the Before relationship while IEMiner

is able to generate all the temporal relationships among theevents. Then we examine the effective-

ness of the two optimization strategies. We also apply IEMiner on three real world datasets, namely

53

the American Sign Language (ASL) dataset4, Stulong dataset5 and the Hepatitis dataset6. Finally,

we verify the accuracy of IEClassifier on the Hepatitis and Stulong data sets.

All the algorithms are implemented in C#. The experiments are performed on a 1.6 GHz

centrino duo with 1.5GHz RAM running window operating system. We modify the IBM data quest

generator7 by including an additional parameter “EvtDen”(i.e., number of events active at a time)

to generate the synthetic data sets. The control parametersused in the data generator are:

1. number of windows (i.e.,D)

2. number of event types (i.e.,T)

3. average number of events, active at a time (i.e.,EvtDen)

4. average length of patterns (i.e.,L)

5. probability of similar event appear in same window (i.e.,P)

We keepT = 500 for all the experiments. The notation “Data D T L P EvtDen”

represents dataset generated usingD, T , L, P andEvtDen control parameters.

3.5.1 Experiments on Synthetic Datasets

First, we analyze the effect of varying minimum support on runtime. Figure 3.11 shows

the results when minimum support varies from 2% to 12%. We observe that as support value

decreases, the time required by all the algorithms increases. However, the runtime for H-DFS and

TPrefixSpan increase drastically compared to IEMiner. We also note that IEMiner has a comparable

4http://www.bu.edu/asllrp/
5http://ecmlpkdd.isti.cnr.it/
6http://ecmlpkdd.isti.cnr.it/
7http://www.almaden.ibm.com/software/quest/Resources/ index.shtml

54

runtime as GenPrefixSpan even though GenPrefixSpan only findsthe Before relationship while

IEMiner generates all types of interval-based relationships.

2% 4% 6% 8% 10% 12%
0

50

100

150

200

250

300

Minimum Support

R
un

ni
ng

 T
im

e
(in

 S
ec

on
ds

)

GenPrefixSpan
IEMiner
TPrefixSpan
H−DFS

Figure 3.11. Effect of Varying Minimum Support

Next, we examine the effect of varying sizes ofD on runtime. We select 4% as a sup-

port value and varyD from 100K windows to 400K windows. Average number of events in each

window is 15, hence average number of events vary from 1500K to 6000K. Figure 3.12 shows the

experimental results. The runtime of IEMiner increases linearly as value ofD increases while the

runtime of TPrefixSpan increases exponentially.

1500 3000 4500 6000
0

50

100

150

200

250

300

350

400

Database Size (in Thousand)

R
un

ni
ng

 T
im

e
(in

 S
ec

on
ds

) GenPrefixSpan
IEMiner
H−DFS
TPrefixSpan

Figure 3.12. Effect of Varying Database Size (Data?k 500 15 0.3 2)

55

We also investigate the effect of varyingL on run time. We keepD and the support

value constant. Figure 3.13 shows the results. As the value of L increases, the runtime of IEMiner

increases but at a slower rate compared to H-DFS and TPrefixSpan. This demonstrates that IEMiner

is effective in reducing the number of candidates generated, thereby allowing a much longer pattern

to be discovered.

4 8 12 16
0

50

100

150

200

250

300

350

400

Average Sequence Length

R
un

ni
ng

 T
im

e
(in

 S
ec

on
ds

)

GenPrefixSpan
IEMiner
H−DFS
TPrefixSpan

Figure 3.13. Effect of Varying Pattern Length (Data200k 500 ? 0.3 2)

In the next set of experiments, we investigate the effect of varyingEvtDen on run time.

Figure 3.14 shows the runtime of IEMiner for varying values of EvtDen. We observe that as

EvtDen increases, the number of temporal relations among the events also increases. Hence,

the support count for each pattern is reduced. As a result, fewer number of frequent patterns are

generated compared to GenPrefixSpan. Note thatEvtDen = 1 means that there is only one active

event at each time.

Finally, we analyze the effectiveness of the two optimization strategies. Two variations

of IEMiner are implemented. IEMiner-1 uses only the event list blacklisting optimization strategy,

while IEMiner-2 uses only the prefix count optimization strategy. Figure 3.15 shows the results.

56

1 3 6 9 12
0

20

40

60

80

100

120

140

160

180

200

Event Density

R
un

ni
ng

 T
im

e
(in

 S
ec

on
ds

)

GenPrefixSpan
IEMiner
H−DFS
TPrefixSpan

Figure 3.14. Effect of Varying Event Density (minimum support = 4%)

We see that the window blacklisting strategy (IEMiner-1) isable to improve the performance of

IEMiner more as compared to the prefix count strategy (IEMiner-2).

0.4% 0.6% 0.8% 1%
120

140

160

180

200

220

240

260

280

Minimum Support

R
un

ni
ng

 T
im

e
(in

 S
ec

on
ds

)

IEMiner
IEMiner 1
IEMiner 2

Figure 3.15. Effect of Optimization Techniques (Data200k 500 20 0.3 2)

3.5.2 Experiments on Real World Datasets

In this section, we apply the four mining algorithms (IEMiner, TPrefixSpan, H-DFS and

GenPrefixSpan) on three real world datasets, namely, the American Sign Language (ASL) dataset,

Stulong dataset and the Hepatitis dataset.

57

ASL dataset

We use the ASL dataset to investigate the relationship between grammatical structure and

gesture field. This dataset has 730 utterances. Each utterance contains recurrent ASL gestural and

grammatical field. We obtain the frequent temporal patternsat various support values. The set of

mined patterns is verified against the ground truth [72]. Theresults are shown in Figure 3.16.

4% 6% 8% 10% 12%
0

10

20

30

40

50

60

70

80

Minimum Support

R
un

ni
ng

 T
im

e
(in

 S
ec

on
d)

GenPrefixSpan
IEMiner
H−DFS
TPrefixSpan

Figure 3.16. Experiments on ASL dataset

Hepatitis dataset

The Hepatitis dataset contains a total of 771 patient records over a period of 10 years.

In this dataset, a patient either has Hepatitis B or Hepatitis C. There are about 230 tests that a

patient may undergo, out of which 25 tests are conducted regularly at each visit to the hospital. We

transform the test results over time into interval based events as follows:

1. If the results of a testTest during an interval[start, end] consistently falls within the nor-

mal range of values for the testTest, that is, N(ormal), we map it to the event(Test-N,

start, end).

58

2. If the results of a testTest during an interval[start, end] consistently falls below the normal

range of values for the testTest, that is, L(ow), we map it to the event(Test-L, start, end).

3. If the results of a testTest during an interval[start, end] consistently falls above the normal

range of values for the testTest, that is, H(igh), we map it to the event(Test-H, start, end).

4. If the results of a testTest during an interval[start, end] oscillates between Low and Normal,

we map it to the event(Test-NL, start, end).

5. If the results of a testTest during an interval[start, end] oscillates between Normal and

High, we map it to the event(Test-NH, start, end).

6. If the results of a testTest during an interval[start, end] oscillates between Low and High,

we map it to the event(Test-LH, start, end).

After mapping the test results into interval based events, we create an event list for each

patient. We obtain a total of 498 event lists that correspondto patients who undergo the 25 tests

regularly.

Figure 3.17 shows the results of applying the mining algorithms on the transformed Hep-

atitis dataset (Hep-T). We observe that IEMiner perform best compared to all algorithms. Here,

average length of underlying event list is around 200 events. GenPrefixspan did not perform well

because it consider events without duration and as a result many patterns are generated compared to

other three algorithm.

Stulong dataset

The Stulong dataset contains a total of 860 patient records over a period of 20 years. In

this dataset, a patient either has Cardiovascular disease or not. There are about 10 tests that a patient

59

15% 20% 25% 30% 35%
0

20

40

60

80

100

120

140

160

180

Minimum Support
R

un
ni

ng
 T

im
e

(in
 S

ec
on

ds
)

GenPrefixSpan
IEMiner
H−DFS
TPrefixSpan

Figure 3.17. Experiments on Hepatitis dataset

may undergo at each visit to the hospital. We transform the test results over time into interval based

events by following similar convection as explained for hepatitis data. Figure 3.18 shows the results

of applying the mining algorithms on the transformed Stulong dataset. We observe that IEMiner

performs best compared to all algorithms.

1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

Minimum Support

R
un

ni
ng

 T
im

e
(in

 S
ec

on
ds

)

IEMiner
H−DFS
TPrefixSpan
GenPrefixSpan

Figure 3.18. Experiments on Stulong dataset

60

3.5.3 Accuracy of IEClassifier

Finally, we investigate whether the discovered temporal patterns will improve the accu-

racy of classification. We compare the accuracy of IEClassifier with standard classifiers such as

C4.5, CBA and SVM which do not use the temporal information.

Hepatitis dataset

We apply C4.58, CBA9 and SVM10 classification tools on the original Hepatitis dataset

where each test per visit is considered as an attribute. In total, we have around 10,000 attributes.

Next, we build the IEClassifier from the interval-based Hep-T dataset obtained in the

previous section. We label an event list in the Hep-T datasetas HepB or HepC to indicate that the

patient corresponding to the event list has Hepatitis B or Hepatitis C. In total, we have 203 event

lists labeled as HepB and 295 event lists labeled as HepC. Theinfo-gain threshold is set at 0.02 with

minsup of 10%.

10-fold cross validation testing strategy is adopted. Table 3.6 shows the results.We ob-

serve that the classifiers that make use of temporal relationships can indeed improve the prediction

accuracy. Overall, the MajorityClass voting strategy achieves the best accuracy.

Classifier Testing Accuracy
C4.5 78.13%
CBA 76.49%
SVM 78.72%
IEMiner (Majority Class) 82.13%
IEMiner (BestConf) 78.91%

Table 3.6. Testing accuracy: Hepatitis Dataset

8http://www.cs.waikato.ac.nz/ml/weka/
9http://www.comp.nus.edu.sg/ dm2/

10http://svmlight.joachims.org/ and also weka

61

CRE-N

GOT-N ZTT - N

LAP - H

F A1 GL - N

LDH - N

LAP - H

F A1 GL - N F A1 GL - NL

[(Pattern 1) Class : HepB Conf: 70% Supp: 14.65%]

[(Pattern 2) Class : HepB Conf: 75% Supp: 14%]

[(Pattern 3) Class : HepB Conf: 82% Supp: 12%]

Figure 3.19. Sample of temporal patterns for Hepatitis B disease

ZTT-H

GOT-H GPT-H

ZTT - H

F A1 GL - N

LDH - NH LDH - N LDH - N LDH - N

[(Pattern 4) Class : HepC Conf: 86% Supp: 17.46%]

[(Pattern 5) Class : HepC Conf: 78% Supp: 34%]

[(Pattern 6) Class : HepC Conf: 81% Supp: 19%]

Figure 3.20. Sample of temporal patterns for Hepatitis C disease

62

Figure 3.19 and Figure 3.20 show a sample of the temporal patterns that is able to dis-

criminate between the HepB and HepC classes. The first 5 patterns reveal the temporal relations

between different tests in the Hepatitis B and Hepatitis C patients. For example, pattern 3 describes

the behavior of F-A1.GL with respect to LAP test. We discoverthat during the period in which

LAP’s value is in the normal range, the F-A1.GL test starts inthe normal range and then begins to

oscillate between the low and normal range. This pattern is observed in Hepatitis B patients with

82% confidence. It is present in 25.54% hepatitis B patient data and 3% of hepatitis C patient data.

Pattern 6 reveals how a particular test, the LDH test, evolves in the Hepatitis C patients. Initially,

the LDH’s value ranges between normal and high, and as time passes, it’s value becomes normal.

This pattern is present in 26% of hepatitis C patient as opposed to 8% in hepatitis B patients.

Stulong dataset

We apply C4.511, CBA12 and SVM13 classification tools on the original Stulong dataset

where each test per visit is considered as an attribute. In total, we have around 700 attributes.

Next, we build the IEClassifier from the interval-based Stulong dataset obtained in the

previous section. We label an event list in the Stulong dataset as CVD or No-CVD to indicate that

the patient corresponding to the event list has cardiovascular disease or not. In total, we have 460

event lists labeled as No-CVD and 295 event lists labeled as CVD. The info-gain threshold is set at

0.02 with minsup of 10%.

10-fold cross validation testing strategy is adopted. Table 3.7 shows the results. We

observe that the classifiers that make use of temporal relationships can indeed improve the prediction

11http://www.cs.waikato.ac.nz/ml/weka/
12http://www.comp.nus.edu.sg/ dm2/
13http://svmlight.joachims.org/ and also weka

63

Classifier Testing Accuracy
C4.5 69.78%
CBA 69.56%
SVM 70.43%
IEMiner (Majority Class) 76.13%
IEMiner (BestConf) 71.91%

Table 3.7. Testing accuracy: Stulong Dataset

Moderate Activity Normal UrineModerate Activity

[(Pattern 1) Class : NoCVD Conf: 74% Support 10.30%]

Smoking Low

No Dyspena

Smoking Medium

[(Pattern 2) Class : NoCVD Conf: 80% Support 11.30%]

Smoking Low

Chest Pain

Smoking Medium

[(Pattern 3) Class : CVD Conf: 73% Support 15%]

Pain in lower limb

Figure 3.21. Sample of temporal patterns for Stulong dataset

64

accuracy. Overall, the MajorityClass voting strategy achieves the best accuracy. Figure 3.21 shows

a sample of the temporal patterns that is able to discriminate between CVD and No-CVD classes. It

was assumed that, smoking is a big risk factor for cardiovascular disease. But, from patterns 2 and

3 in Figure 3.21, we can see, a smoker with chest pain and pain in lower limb will develop CVD in

future.

3.6 Summary

In this chapter, we have presented a novel approach to mine temporal patterns from inter-

val data. Our key contributions are as follow:

1. We augment the hierarchical representation with count information to achieve a lossless rep-

resentation. We provide a proof that the augmented representation is indeed lossless. This

enables us to recover the actual relationships among eventsfrom the temporal pattern.

2. We design an Apriori-based algorithm called “IEMiner”(Interval-basedEventMiner) to dis-

cover frequent temporal patterns based on the lossless representation. IEMiner employs two

optimization strategies to reduce the search space. The proof of the completeness of IEMiner

is detailed.

3. We also build an interval-based temporal pattern classifier called IEClassifier to perform the

classification of closely related classes. We apply the classifier to a real world Hepatitis

dataset and Stulong dataset to demonstrate its improved accuracy.

The success of our approach on all the tested real-world datasets indicates that the event

duration play an important role in extracting complex relationship among durative events. Our

65

approach can easily incorporate user’s intension in lossless representation definition. Further, the

proposed algorithm can easy work with point events and durative events. In the future, we would like

to consider mining temporal pattern from uncertain durative events. Also, it would be interesting to

evaluate the viability of the proposed approach in a streaming or incremental setting.

66

Chapter 4

Mining Patterns from Time Series Data

In the previous chapter, we have analyzed a set of event sequences, where each event se-

quence is a collection of interval-based events. In this chapter, we analyze the set of time series,

where each time series is a sequence of real valued observations. We have seen that the recent

research interests in time series data mining mainly involve indexing time series for efficient simi-

larity search, clustering time series, motif discovery, rule discovery, time series correlation and so

on. Time series motif discovery is an active research topic [25, 50, 63, 64]. Time series motifs are

the recurring patterns in single time series. For example, Figure 4.1 shows the sample time series

and one motifm = {s1, s3, s3, s4}. The length of motifm is 10 and it appears 4 times in time

series. Attempts have been made to generalize the notion of motifs from single time series to multi-

dimensional time series data [99, 57, 68, 88]. This generalization allows the handling of real world

applications involving several data sources such as activity discovery using wearable sensor data,

gene expression data showing the expression levels of multiple genes, stock market data giving the

67

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Time
V

a
lu

e

s
1 s

2
s

4
s

3

Figure 4.1. Time series motif.

stock prices of diverse companies. However, none of these methods considers the ordering among

the motifs in such an environment.

Figure 4.2 shows the time series of QLogic, Intel and JP Morgan stocks. Motifsm1 =

{s11, s12, s13}, m2 = {s21, s22, s23} andm3 = {s31, s32, s33} are highlighted in the time series of

QLogic, Intel and JP Morgan stocks respectively. A closer examination of the motifs in Figure 4.2

reveals that the subsequences from one motif occurs at a consistent lag relative to subsequences from

other motifs. For example,s21 occurs with lag 6 relative tos11 while s31 occurs with lag 7 relative

to s11. This pattern is repeated for(s12, s22, s32) and(s13, s23, s33). In short, the lag relationship

among the subsequences arerepeated. The existence of such invariant ordering among the motifs

suggests that there may exist some hidden relationships. Further investigation1 reveals that QLogic

stock is competitor of Intel stock, while JP Morgan stock gives higher rating for investment in Intel

Stock.

The existence of such invariant orderings among time seriesmotifs is useful and may

provide critical insights in many time series applications. For example:

• Financial Domain: Existing approaches compute the portfolio’s expected risks based on the

co-variances among the assets time series in the portfolios. Alternatively, we can model the

1Yahoo Finance - http://finance.yahoo.com

68

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

Time (in Day)
S

to
ck

 P
ric

e

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

2

2.5

Time (in Day)

S
to

ck
 P

ric
e

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (in Day)

S
to

ck
 P

ric
e

s
11

s
12 s

13

s
21 s

22

s
23

s
31

s
32

s
33

m
1
 QLogic Corporation

m
2
 Intel Corporation

m
3
 JP Morgan Co.

6

7

Figure 4.2. Lag relationships among motifsm1, m2 andm3 reflecting competitor/co-operative
behavior.

portfolio’s risks by considering the competitor or co-operative relationship between the assets

time series in the portfolio. For example, given the performance of two financial assets, A and

B, where we know that whenever the price of A drops, the price of B will drop in next five

days. Intuitively, it may not be appropriate to construct a portfolio by including both A and B

concurrently, as the exposure of loss will be increased. Yet, such kind of relationship cannot

always be captured by co-variances. We consider dependencerelationship among assets time

series and construct the portfolio. Our experiments revealthat stock portfolio based on lag

relationships leads to increase in the cumulative rate of return on investment.

• Medical Domain: The electrocardiogram (ECG) are standard test for diagnosing various car-

diovascular abnormalities. Typically, various sensors are placed in different parts of the body.

Physicians monitor the various channels of signals to recognize warning patterns. By auto-

69

matically discovering invariant orderings among multi-dimensional motifs, they may serve as

early warning patterns to allow for timely intervention.

In this chapter, we introduce the notion oflagPatterns in time series data to capture the

orderings among motifs from different time series. Unlike existing multi-dimensional motifs,lag-

Patternexplicitly accounts for lags and the ordering among the motifs from different time series.

Finding lagPatterninvolves two main steps:

1. Identify all motifs of various length in single time series.

2. Discover groups of motifs from multiple time series with invariant orderings.

Both steps are computationally expensive. A time series of lengthL, without discretiza-

tion, would haveO(L2) subsequences of various length and henceO(L2) motifs. Thus, the naive

enumeration based method for the first step is quadratic. With N time series, we would have

O(L2N) possiblelagPatterns. As a result, an exhaustive search forlagPatternsis exponential.

Here, we describe an efficient and scalable approach to prunethe search space for both steps.

The rest of the chapter is organized as follows: Section 4.1 provides some preliminar-

ies and detailed problem description. Section 4.2 describes the algorithms to discover motifs and

lagPatterns and the optimization strategies. Section 4.3 presents the experiment results. We sum-

marize in Section 4.4.

4.1 Preliminaries

A time seriesT = {v[1], v[2], ..., v[n]} with length |T | = n is a sequence of regularly

sampled real value observations wherev[i] is observation value at timei. We useT [i] to denote a

value at timei in time seriesT .

70

A subsequenceof a time series, denoted asT [i, j], is a subset ofcontiguousobservations

starting at timei and ending at timej, i.e.,T [i, j] = {T [i], T [i + 1], ...,T [j]}. It’s length, denoted

as |T [i, j]|, is equal toj − i + 1. In this chapter, wenormalize subsequence. The normalized

subsequence is given asT [i, j] = {T [i]−µ
σ

, T [i+1]−µ
σ

, ..., T [j]−µ
σ
}, whereµ andσ are the mean and

standard deviation of{T [i], T [i+ 1], ...,T [j]} respectively. Here after,T [i, j] refers to normalized

subsequence.

A subsequenceT [i, j] is similar to another subsequenceT [p, q] if they have the same

length anddist(T [i, j], T [p, q]) ≤ δ, wheredist(.) is Euclidian distance andδ is a user-defined

distance threshold.

Normalizing time series (or subsequence of time series) helps to compare two time series

(subsequence) having similar shape irrespective of their magnitude. For example, consider three

time series shown in Figure 4.3 and its normalized version inFigure 4.4. Without normalization,

dist(T1, T2) = 2, dist(T1, T3) = 3 anddist(T2, T3) = 1. Note that, the shape of time seriesT1

andT3 is similar. Figure 4.3 shows the normalized version of thesetime series. Now,dist(T1, T2)

= 0.39,dist(T1, T3) = 0 anddist(T2, T3) = 0.39. Other benefits of normalization is explained in

[47].

1 2 3 4 5 6 7 8
2

3

4

5

6

7

Time

V
al

ue

T1
T2
T3

Figure 4.3. Time series.

71

1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

V
al

ue

T1
T2
T3

Figure 4.4. Normalized Time series.

Time Series Motifs m (correlation coefficient coef = 0.95)

T1 m11 = {T1[14, 17], T1[1, 4], T1[6, 9], T1[22, 25]}

m12 = {T1[22, 25], T1[3, 6], T1[14, 17]}

m13 = {T1[12, 14], T1[1, 3], T1[22, 24]}

m14 = {T1[6, 9], T1[14, 17], T1[21, 24]}

T2 m21 = {T2[15, 17], T2[2, 4], T2[7, 9], T2[23, 25]}

m22 = {T2[17, 20], T2[6, 9]}

T3 m31 = {T3[19, 22], T3[6, 9], T3[11, 14]}

m32 = {T3[4, 7], T3[9, 12], T3[17, 20]}

T4 m41 = {T4[20, 23], T4[7, 10], T4[12, 15]}

T5 m51 = {T5[20, 23], T5[3, 6], T5[7, 10], T5[14, 17]}

Table 4.1. Running example

Given a time seriesT , a time series motifmT [i,j], havingT [i, j] as anchor subsequence,

is the set of non-overlapping subsequences2 from T that aresimilar to anchor subsequenceT [i, j].

For simplicity, we will usem in place ofmT [i,j] whenT [i, j] is obvious. The size of motifm,

denoted as|m|, is the number of subsequences inm.

Thesupport of time series motifmwith anchor subsequenceT [i, j], denoted asmSup(m),

is defined as

mSup(m) =
|T [i, j]| ∗ |m|

|T |
(4.1.1)

2We can use the optimal greedy-activity-selector solution in [26] to discover the maximum set of non-overlapping
subsequences.

72

For example, Table 4.1 shows a subset of motifs for five time series of length 25. The

anchor subsequence in each motif is underlined. The supportof m11 is given bymSup(m11) = 4∗4
25

= 0.64.

GivenN time seriesT1, T2, · · · , TN , let Mi be the set of motifs from time seriesTi. A

lagPattern of lengthk is a pattern template consisting ofk motifs from different time series and

their lags. Formally,

p = ({my1 ,my2 , · · · ,myk}, {ly1 , ly2 , · · · , lyk}),myi ∈Myi

yi 6= yj for i 6= j andmyi lagsmy1 by lyi , yi, yj ∈ [1, N] andi, j ∈ [1, k].

For example,p1 = ({m11,m21,m41}, {0,1,6}) is a lagPatternof length 3, as motifsm11,

m21 andm41 are from time seriesT1, T2 andT4 respectively. But, patternp2 = ({m11,m12}, {0,8})

is not alagPatternas both motifs are from the same time seriesT1. Note that, the lag between two

motifs in lagPattern is a lag between start time of their respective anchor subsequences. For

example, lag between motifm11 andm21 in p1 is a lag betweenT1[14, 17] andT2[15, 17]. For this

case it is 1.

A lagPatternp1 is asubpattern of anotherlagPatternp2 if all motifs in p1 also occurs in

p2 with the same invariant ordering. For example,p1 = ({m11,m41}, {0,6}) is a subpattern ofp2 =

({m11,m21,m41},{0,1,6}).

Now, we define two interesting measures forlagPattern. The first measure quantifies the

frequency oflagPatternsand second measure suggest the association among motifs from lagPattern.

73

Thesupport of a lagPattern p = ({m1,m2, · · · ,mk}, {l1,l2,· · · ,lk}), denoted aspSup(p),

is the size of the set{(s1, s2, · · · , sk) | (s1 ∈ m1) ∧ (s2 ∈ m2) ∧ · · · ∧ (sk ∈ mk) ∧ (sy lagss1 by

ly, 1 ≤ y ≤ k)}.

For example, considerp = ({m11, m21},{0,1}). We observe thatT2[7, 9] ∈ m21 lags

T1[6, 9] ∈ m11 by 1. Similarly,T2[23, 25] ∈ m21 lagsT1[22, 25] ∈ m11 by 1,T2[2, 4] ∈ m21 lags

T1[1, 4] ∈ m11 by 1 andT2[15, 17] ∈ m21 lagsT1[14, 17] ∈ m11 by 1. Hence, they support the

lagPatternp. Thus, the support set is{(T1[1, 4],T2[2, 4]), (T1[6, 9],T2[7, 9]), (T1[14, 17],T2[15, 17]),

(T1[22, 25],T2[23, 25])}. In this case, the support ofp, pSup(p), is 4. The support oflagPattern

captures the number of repetitions. In this chapter, we require that the pattern should be repeated at

least more than one time.

Given alagPatternp, theparticipation ratio of p is defined as

pRatio(p) =
pSup(p)

maxm∈p{|m|}
(4.1.2)

For example, thepRatio of p = ({m11, m21},{0,1}) = 4
max{4,4} = 1. ThepRatio is a

variant of the well-known Allconfidence measure [44] in association-based correlation analysis.

ThepRatio measure is anti-monotonic. This property allows us to pruneaway a large part of the

search space.pRatio(p) measure the association among the occurrence of motifs in the time series.

Theorem 4.1.1 The participation ratio measure of alagPattern is anti-monotonic, that is, if a

lagPattern p satisfypRatio(p) ≥min ratio, then any subpatternp′ of p also satisfiespRatio(p′)

≥min ratio.

Proof Let a lengthk lagPattern p = ({m1,m2, · · · ,mk}, {l1,l2,· · · ,lk}). We have

pRatio(p) =
pSup(p)

maxm∈p(|m|)

74

AssumelagPattern p′ is a subpattern oflagPattern p. It is obvious thatpSup(p′) ≥

pSup(p). Also,maxm′∈p′ (|m
′|) ≤ maxm∈p(|m|). Hence,pRatio(p′) ≥ pRatio(p).�

This implies we do not need to generatep if any subpatternp′ of p does not satisfy the

min ratio constraint.

Givenmin sup andmin ratio, a lagPatternp is valid if following all conditions are

satisfied:

• pRatio(p) ≥min ratio, and

• pSup(p) > 1, and

• for all motifsm, m ∈ p, mSup(m) ≥min sup.

Given minimum support thresholdmin sup, minimum participation ratiomin ratio and

N time series of lengthL, we want to mine allvalid lagPatterns of lengthk, 2≤ k ≤ N .

4.2 Discover Lag Patterns

The discovery oflagPatternsinvolves two main steps. We need to first identify all the

motifs of various lengths in each time series, and then determine groups of motifs from differ-

ent time series having invariant orderings. Algorithm 6 summarizes our overall approach to mine

lagPatterns. We call Algorithm FindMotifs for each time series to find allof its motifs(Line 5).

Note that,Mi denotes the set of motifs generated from time seriesTi. Lines 7-9 remove motifm if

it does not satisfy the minimum support. Otherwise, we alignm to a reference time point and in-

sert it into an inverted index(Lines 10-12). Next, we invokeAlgorithm LPMiner to obtain the valid

lagPatterns (Line 15). We will discuss the details of each algorithm in the following subsections.

75

Algorithm 6 DiscoverlagPatterns

Input: N , L, min sup, min ratio, coef , minLen, maxLen

Output:LP = set oflagPatterns

1: LP = φ

2: invIndex = φ

3: M = φ; // sets of sets of motifs
4: for i = 1 toN do {// N = Number of time series}
5: Mi = FindMotifs (Ti, coef , minLen, maxLen);
6: for each motifm in Mi do
7: if mSup(m) < min sup then
8: Mi = Mi - {m};
9: else

10: alignm to a reference time pointtp;
11: insertm into invIndex;
12: end if
13: end for
14: end for
15: LP = LPMiner (N , L, min sup, min ratio, M); // L = Length of time series
16: returnLP

4.2.1 Find All Motifs in a Time SeriesT

To find all motifs from time seriesT , we consider each subsequence of length between

minLen andmaxLen from T as an anchor subsequence and discover it’s similar subsequences

from T and then form a motif. Recall, subsequences1 is similar to subsequences2 if dist(s1,

s2) ≤ δ. Since we consider anchor subsequences of various lengths,this δ threshold should be

length-invariant3. Here we utilize the results in [102] which states that the Euclidian distanceδ

between two normalized time series of lengthlen depends on their correlation coefficientcoef ,

that is,δ =
√

2 ∗ (len− 1) ∗ (1− coef). With this equation, we are able to employ the Euclidean

measure in the similarity computation by setting the appropriate δ for varying length, given a fixed

value ofcoef .

3Using single value ofδ for mining motifs of various length might miss longer lengthmotifs. At the same time, it is
not feasible for user to provideδ value for each length of motif.

76

In this section, we describe a method that uses order line concept [64] and subsequence

matching property [53] to find all motifs of length betweenminLen andmaxLen from T effi-

ciently. Assume, we are discovering motifs of lengthlen from T . Given a setDB of normalized

subsequences of lengthlen from time seriesT and a pivot subsequencesp ∈ DB. We obtain an

order line by sorting the subsequences inDB according to their distance similarity fromsp.

For example, Figure 4.5(a) shows the distribution of subsequences of length 2 in a two-

dimensional space. Assuming that the subsequence 2 is pivotsubsequence, Figure 4.5(b) shows the

order line. The number above the order line shows the subsequence id while the number below gives

it’s euclidian distance from pivot subsequence 2. Once order line is prepared, we discover similar

subsequences for each anchor subsequence(i.e., each subsequence on order line).

We traverse the order line (with pivot subsequencesp) from left to right. Given a distance

thresholdδ, supposesi is the next subsequence on the order line to be processed. We determine the

similar subsequences ofsi by checking all the subsequences that fall withinδ distance fromsi on

the order line. This is due to the reverse triangular inequality which states thatdist(si, sj) ≤ δ if

and only if |dist(sp, si)− dist(sp, sj)| ≤ δ.

Consider Figure 4.5(b). Let the subsequence we encounter bes1 whose distance from

the pivot subsequences2 is 2.24. If δ = 2, then a subsequences is similar to subsequences1 if

dist(s2, s) falls within [2.24-δ, 2.24+δ], that is, [0.24, 4.24]. Hence, the set of candidate similar

subsequences fors1 is cs1 = {s1, s5, s8}. We compute the actual distances betweens1 and each

subsequences incs1 to obtain the final set of subsequences that are similar tos1(i.e., a motif having

anchor subsequences1).

Similarly, the set of candidate similar subsequences fors5, cs5 = {s5, s1, s8, s4}. Note

that, we do not need to compute the actual distance betweens5 ands1 sincedist(s5, s1) = dist(s1, s5)

77

0 2 4 6 8 10 12
0

1

2

3

4

5

6

 2

 1

 5

 8 4

 3

 6

 7

Original Space

(a)

0 2 4 6 8 10 12
1

2

3

 0.00 2.24 3.16 4.12 5.10 6.00 7.07 10.05

 2 1 5 8 4 3 6 7

(b)

0 2 4 6 8 10 12
1

1.5

2

2.5

3

 10.05 9.06 11.18 6.00 5.00 4.12 3.61 0.00

 2 1 5 8 4 3 6 7

(c)

Figure 4.5. (a) Dataset of two-dimensional subsequences, (b) an ordering of subsequences with
their distance value from subsequence 2 (c) distances of allsubsequences from subsequence 7

and we have already obtaineddist(s1, s5) previously ifs1 ands5 are similar. In other words, when

traversing the order line from left to right, we need to perform the actual distance computations only

for those candidates to its right. Clearly, we do not need to calculate the distance computations with

all other subsequences fromDB. Thus, order line concept helps to reduce the number of distance

computations required during similarity search.

Another observation is that multiple order lines can prune more candidates. Suppose we

have a second order line with pivot subsequences7 (see Figure 4.5(c)). Using the first order line(See

78

Figure 4.5(b)), we have the set of candidate similar subsequences fors5, cs5 = {s5, s1, s8, s4}.

From the second order line, we observe thatdist(s7, s8) = 6 anddist(s7, s5) = 11.18. Hence,

dist(s8, s5) ≥ 5.18 which is more thanδ. The same process is repeated for subsequences4. Thus,

applying triangular inequality, we eliminates8 ands4 from cs5 without performing any distance

computation. In summary, the first order line is used to obtain initial candidate set of similar subse-

quences for any subsequence while the remaining order linesare used for further pruning. Algorithm

7 describes the detail of mining all motifs using the conceptof order lines only.

Algorithm 7 OrderLine: Find All Motifs
Input: T , coef , minLen, maxLen, numOrderLine

Output:M = set of Motifs inT

1: M = φ

2: for len = minLen; len ≤maxLen; len++ do
3: δ =

√

2 ∗ (len − 1) ∗ (1− coef) // distance threshold for lengthlen
4: DB = {normalized subsequences of lengthlen from T}
5: PreparenumOrderLine orderlinesO
6: Let I denotes the first order line inO
7: for all subsequences ∈ DB do
8: cs = {similar subsequences ofs from DB using order lineI}
9: refinecs using remaining order lines inO

10: s set = {s′ | s′ ∈ cs ∧ dist(s, s′) ≤ δ}
11: Stores set in M

12: end for
13: end for
14: returnM

The order line based algorithm (Algorithm 7) efficiently finds all similar subsequences

for a fixed length subsequences. However, In order to find similar subsequences for subsequence

of length betweenminLen to maxLen, we need to iterate the algorithm (maxLen - minLen +

1) times and prepare order line for these many times(Line 2).Thus, we integrate the subsequence

matching property[53] with order line concept to reduce thenumber of iterations by 50%. The idea

goes as follow: the order line prepared to find similar subsequences of lengthlen subsequence is

79

also used to find similar subsequences of lengthlen+1 subsequence. Letδ be a distance threshold

for mining motif of lengthlen andǫ be a distance threshold for mining motifs of lengthlen + 1.

The subsequence matching property states that,

dist(T [i, j + 1], T [i1, j1 + 1]) ≤ ǫ⇒ dist(T [i, j], T [i1, j1]) ≤ ǫ′

where,

ǫ′ =

√

√

√

√2ω − 2

√

ω2 − ω.ǫ2.
σ2(T [i,j+1])
σ2(T [i,j])

,

ω = |T [i, j]|,

σ2(T [i,j+1]) = standard deviation of un-normalized subsequenceT [i, j + 1],

σ2(T [i,j]) = standard deviation of un-normalized subsequenceT [i, j].

This property is based on the observation that the occurrences of subsequences similar

to T [i, j + 1] coincides with the occurrences of subsequences similar toT [i, j] most of the time.

Hence, we can discover the candidate set of subsequences similar to subsequenceT [i, j + 1] while

discovering set of subsequences similar toT [i, j] by setting the appropriate distance threshold given

by maximum{δ, ǫ′}. The new distance threshold, maximum{δ, ǫ′}, ensures that we do not miss any

similar subsequence ofT [i, j] andT [i, j + 1]. In most cases,δ ≤ ǫ′. With this, we present an exact

algorithmFindMotifs (See Algorithm 8).

FindMotifs finds similar subsequences of subsequenceT [i, j] in a time seriesT . At each

iteration, we setδ and prepare a databaseDB(Lines 3-4). Line 5 prepares order lines for subse-

quences of lengthlen. Next, it invokesGenerateMotifto obtain all matches of every anchor subse-

quences of lengthlen as well as the candidate sets for anchor subsequences of length len+1. Line

10 prepares a database of subsequences of lengthlen+ 1. Finally, we callRefineMotifto eliminate

80

Algorithm 8 FindMotifs
Input: T , coef , minLen, maxLen, numOrderLine

Output:M = set of motifs inT
1: SetM = φ andlen = minLen

2: while len ≤maxLen do
3: δ =

√

2 ∗ (len− 1) ∗ (1− coef)
4: DB ← {normalized subsequences of lengthlen from T }
5: PreparenumOrderLine order linesO
6: Let I denotes the first order line inO
7: [Mlen, C] = GenerateMotif (DB, I,O, len, δ)
8: SetM = M ∪Mlen and len = len + 1
9: δ =

√

2 ∗ (len− 1) ∗ (1− coef)
10: DB ← {normalized subsequences of lengthlen from T }
11: [Mlen] = RefineMotif (DB, I,O,C, δ)
12: SetM = M ∪Mlen and len = len + 1
13: end while
14: returnM

ProcedureGenerateMotif(DB, I,O, len, δ)
15: LetM be the set of motifsms for all s ∈ DB

16: LetC be the set of candidate subsequences for alls ∈ DB

17: Setm = φ andc = φ for all m ∈M andc ∈ C

18: for j = 1 to |I| do
19: selectsj ∈ DB as an anchor subsequence
20: Determineǫ′ usinglen+ 1 andsj
21: newδ = max{ǫ′, δ}
22: canSet = {candidate similar subsequences ofsj usingI w.r.t. newδ}
23: canSet = RefinecanSet using remaining orderlines
24: for sk ∈ canSet do
25: if dist(sk,sj) ≤ δ then
26: Add (sk to msj) and (sj to msk)
27: end if
28: if dist(sk,sj) ≤ ǫ′ then Add (sk to csj) end if
29: end for
30: end for
31: returnM andC

ProcedureRefineMotif(DB, I, C, δ)
32: LetM be the set of motifsms for all s ∈ DB

33: Setm to φ for m ∈M

34: for j = 1 to |I| do
35: if sj ∈ DB then
36: for each subsequences in csj ∈ C do
37: if s ∈ DB anddist(s, sj) ≤ δ then
38: Add (s to msj) and (sj to ms)
39: end if
40: end for
41: end if
42: end for
43: returnM

81

the false matches found in the candidate sets obtained byGenerateMotiffor length len + 1(Line

11).

TheGenerateMotifprocedure discovers similar subsequences of lengthlen subsequence,

that is,T [i, i+ len−1]. At the same time, we also keep track of the candidate sets forsubsequences

of length len + 1, that is,T [i, i + len]. We usesj to denote thejth subsequence along the order

line I. Next, we determineǫ′ and set the new distance threshold asnewδ(Lines 20-21). Thenewδ

makes sure that we do not miss finding similar subsequence ofT [i, i+ len−1] andT [i, i+ len]. For

each subsequencesj on I, we obtain it’s candidate set of subsequence similar tosj usingI(Line

22). Line 23 implements the triangular inequality based pruning and refinecanSet. Finally, we

compute the dist(sj ,sk), sk ∈ canSet. If dist(sk, sj) ≤ δ, we addsk to the set of subsequence

similar tosj(i.e.,msj) and addsj tomsk due to thesymmetry property. In addition, ifdist(sk, sj)

≤ ǫ′, then we addsk to the candidate setcsj . Once all subsequences fromI are processed, we return

msj andcsj discovered for all subsequences fromDB.

TheRefineMotifprocedure finds all similar subsequences for lengthlen + 1. Again, we

traverse the order lineI from left to right(Line 34). To find subsequences similar tosj, we use the

candidate setcsj obtained byGenerateMotif. Line 37 calculatesdist(sj,s), s in csj . If distance

dist(sj ,s) ≤ δ, we adds tomsj andsj toms.

4.2.2 Align Motifs

Having found the sets of motifs from each time series, the next step is to discover valid

lagPatterns. A naive approach is to enumerate all possible combinationsof motifs across mul-

tiple time series and calculate the support and participation ratio for each combination. Recall,

enumerating all possible combination of motifs has an exponential time complexity. The anti-

82

lagPattern Support Set
({m11,m22},{0,3}) {(T1[14, 17], T2 [17, 20])}
({m12,m21},{0,-7}) {(T1[22, 25], T2 [15, 17])}
({m12,m22},{0,-3}) {(T1[22, 25], T2 [17, 20])}

Table 4.2. Subset of lag patterns considered by naive enumeration

monotonic property ofpRatio that we have proved in Section 4.1 allows us to perform early elimi-

nation oflagPatterns that cannot be valid. However, the naive approach still needs to form many

lagPatterns p of length 2 that haspSup(p) = 1(i.e., no repetition) as shown in Table 4.2.

Further, computingpRatio(p) of lagPattern p is also a costly operation. In order to

compute thepRatio of a lagPattern p = ({m1, m2, · · · , mk}, {l1, l2, · · · , lk}), we need to obtain

thepSup(p). The naive time complexity of computingpSup(p) is O(|m1| × |m2| × ... × |mk|) as

explained in example I.

Example I: Consider finding support set of ({m11,m22},{0,3}). Recall,m11 = {T1[14, 17],

T1[1, 4], T1[6, 9], T1[22, 25]} andm22 = {T2[17, 20], T2[6, 9]}. Thus, the set of possible combina-

tions of subsequences fromm11 andm22 are{(T1[14, 17], T2 [17, 20]), (T1[14, 17], T2[6, 9]), ...}.

However, only one combination from these possibilities, i.e. {(T1[14, 17], T2 [17, 20])}, satisfies the

lag relation betweenm11 andm22.

To avoid enumerating alllagPatterns and speed up the computation ofpSup(p), we

align all motifs to some reference time pointtp. Aligning motif m means aligning it’s anchor

subsequence totp and shifting all it’s similar subsequences accordingly. Wesettp to be the length

of time series minusminLen(i.e., minimum length of motif). In our example, we choosetp = 22 to

align all motifs. Figures 4.6(a) and 4.6(b) show the motifs before and after alignment. The circled

points denote the anchor subsequences. After alignment, each time point will show a list of motifs.

We observe that the motifs, denoted by the symbols⊳, � and∇, occur together at time points 9,

83

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Time Point

m
11

m
12

m
13

m
14

m
21

m
22

m
31

m
32

m
41

m
51

(a) Before alignment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Time Point

m
11

m
12

m
13

m
14

m
21

m
22

m
31

m
32

m
41

m
51

(b) After alignment

Figure 4.6. Motifs before and after alignment.

84

14, and 22. In other words, thepSup({m21,m31,m41}, {0, 4, 5}) is 3. ThepRatio of this pattern

is 3
max{4,3,3} = 0.75. Now, we explain two benefits of alignment as follow:

• After alignment, the time complexity of computingpSup(p) is O(|m1|+ |m2|+ ...+ |mk|).

– Consider finding support set of ({m11,m22},{0,3}). After alignment, the start time of

subsequence inm11 is {9, 14, 22, 30} andm22 is {11, 22}. Using hash join, we can get

the intersection of these two sets inO(|m11| + |m22|). For this case, it is{22}. From

this result, we obtain the support set. The support set is{(T1[14, 17], T2[17, 20])} as

subsequenceT1[14, 17] from m11 and subsequenceT2[17, 20] from m22 are aligned at

time point 22.

• The alignment of motifs provides us with information on which combinations of motifs are

likely to form lagPatterns p that can havepSup(p) at least 2.

– Consider motifm11. After alignment, motifm11 has subsequence at time point 9, 14,

22, and 30. Careful observation of Figure 4.6(b) suggests that any motif that has sub-

sequences at time point 9, 14 or 30 can formlagPatterns with motif m11 and has

pSup(p) at least 2. In this case, the motifs arem21, m31, m41 andm51. Note that, our

approach does not formlagPatterns with motif m22.

To facilitate the support counting oflagPatternsand efficient discovery oflagPatterns, we

construct an inverted index for the motifs occurring at eachtime point after the alignment. Fig. 4.7

shows the inverted index obtained from Fig. 4.6(b). Note that, at time pointtp(=22), all the motifs

are present. In other words, all thelagPatterns exist at time pointtp. We utilize this fact while

85

m123

m515

9

11

m1114

27

30

32

m12

m11

m13

m21 m31 m41

m32

m11

m13

m21 m31 m41 m51

m22

m5116

m21

35 m32

22 m11 m12 m22 m31

m41

m13 m14 m21

m51m32

m14

37 m14

Figure 4.7. Inverted index for motifs in Fig. 4.6(b)

calculating the support oflagPatterns. Following the alignment, our method calledLPMiner

utilizes the inverted index and search for validlagPatterns.

86

4.2.3 Algorithm LPMiner

Method LPMiner processes each motifm and generates all length 2lagPatternsfrom m

as follows. For each motifm, we obtain the start times of its similar matches after alignment. These

start times are used to probe the inverted index and to obtainall candidate motifsm′. Next, we

form a lagPattern betweenm and each candidate motifm′, i.e.,p = ({m,m′},{l1,l2}). We also

record the time points of the inverted index where thelagPatternp is generated. ThoselagPatterns

that satisfy themin sup andmin ratio are valid and form the set of candidate patterns to generate

longerlagPatterns(sincelagPatternsare anti-monotonic).

Consider the motifm11. After alignment, the start times of its matches are{9, 14, 22,

30} (see Fig. 4.6(b)). We probe the inverted index at time points9, 14 and 30 respectively and

obtain candidate motifs. In this case, the set of candidate motifs is canSet = {m21, m31, m41,

m51}
4. Note that, there is no need to probe inverted index at the reference time point 22 since all

motifs are aligned at this time point. In other word, anylagPattern p is exists at this time point.

The possiblelagPatterns are ({m11, m21},{0,1}), ({m11, m31},{0,5}), ({m11, m41},{0,6}) and

({m11, m51},{0,6}) as shown in Table 4.3. For eachlagPattern, we have recorded the time points

of the inverted index from where it is generated(See second column in Table 4.3). For example,

the patternp = ({m11, m21},{0,1}) occurs at time points{9,14,22,30}. This impliespSup(p) is

4. If min ratio = 0.60, thenpRatio(p) = 4
max{4,4} = 1 ≥ min ratio. Hence, it can be used

to generate the longer patterns. Note that, alllagPatterns except ({m11,m51}, {0,6}) satisfy

min ratio constraints and so they are validlagPatterns.

4Without alignment method, all motifs from time seriesT2, T3, T4 andT5 are incanSet for motif m11. Thus,
|canSet| = 6 for naive method.

87

lagPattern Time points Support Set pSup pRatio

({m11, m21},{0,1}) {9, 14, 22, 30} {(T1[1, 4], T2[2, 4]), (T1[6, 9], T2[7, 9]), 4 1
(T1[14, 17], T2 [15, 17]), (T1[22, 25], T2 [23, 25])}

({m11, m31},{0,5}) {9, 14, 22} {(T1[1, 4], T3[6, 9]), (T1[6, 9], T3[11, 14]), 3 0.75
(T1[14, 17], T3 [19, 22])}

({m11, m41},{0,6}) {9, 14, 22} {(T1[1, 4], T4[7, 10]), (T1[6, 9], T4[12, 15]), 3 0.75
(T1[14, 17], T4 [20, 23])}

({m11, m51},{0,6}) {9, 22} {(T1[1, 4], T5[7, 10]), (T1[14, 17], T5 [20, 23])} 2 0.50

Table 4.3. Generated length 2lagPatterns using motifm11

Let us consider the validlagPatternp of length 2 = ({m11, m21}, {0,1}). Recall, this

pattern is generated from time points 9, 14, 22 and 30. Hence,for this pattern, we again probe the

inverted indexes at time points{9, 14, 30}(again no need to probe inverted index at time point 22)

and obtain the candidate motifm′ from time seriesT ′ with T ′ > T2 for extension. In this case, the

set of candidate motifscanSet = {m31,m41}. Note that, motifm51 is not incanSet aslagPattern

({m11,m51},{0,6}) does not satisfy themin ratio. Hence, the possible length 3lagPatternsare

({m11, m21, m31}, {0,1,5}) and ({m11, m21 , m41}, {0,1,6}) both of which are generated from

time points{9, 14, 22} and satisfy themin ratio and hence valid. The process is repeated until no

new valid pattern is obtained.

One key point is how support set oflagPatterns is obtained using time points. Con-

sider patternp = ({m11, m21},{0,1}) and it’s time point{9, 14, 22, 30}. We know subsequence

T1[1, 4] from m11 and subsequenceT2[2, 4] from m22 are indexed at time point 9 after alignment.

Thus, (T1[1, 4], T2[2, 4]) is in the support set ofp. Next, subsequenceT1[6, 9] from m11 and subse-

quenceT2[7, 9] from m22 are indexed at time point 14. Hence, (T1[6, 9], T2[7, 9]) is also in the

support set ofp. Similarly, from time point 22 and 30, we obtain (T1[14, 17], T2 [15, 17]) and

(T1[22, 25], T2 [23, 25]) respectively. Finally, the support set ofp is {(T1[1, 4], T2[2, 4]), (T1[6, 9],

T2[7, 9]), (T1[14, 17], T2 [15, 17]), (T1[22, 25], T2 [23, 25])}.

88

Algorithm 9 LPMiner
Input: N , L, min sup, min ratio, M
Output:LP = set oflagPattern = φ

1: for i = 1 toN − 1 do
2: motifSet = {motifs fromMi}
3: extSet = {time series fromTi+1 to TN}
4: for each motifm in motifSet do
5: Mine({m}, extSet)
6: end for
7: end for
8: returnLP ;

ProcedureMine(p, extSet)
9: probeSet = {starting time points ofp after alignment}

10: canSet = φ

11: for each time pointt in probeSet do
12: for eachm′ in invIndex[t] do
13: canSet = canSet ∪ {m′, time pointt}
14: end for
15: end for
16: extPattern = φ, newExtSet = φ

17: for each entrym′ ∈ canSet do
18: p′ = form lagPattern betweenp andm′

19: if pRatio(p′) ≥min ratio then
20: LP = LP ∪ p′

21: newExtSet = newExtSet ∪ time series ofm′

22: extPattern = extPattern ∪ p′

23: end if
24: end for
25: for eachlagPattern lp ∈ extPattern do
26: Mine(lp, newExtSet)
27: end for

Algorithm 9 shows the details of LPMiner. Line 2 obtains all the motifs fromMi. extSet

maintains the list of time series from which the candidate motifs are obtained for extension(Line

3). For each motifm, we call procedureMine to discoverlagPatterns. The Mine procedure

recursively extends the givenlagPatternp. Line 9 obtains the time points ofp to probe the inverted

index. Lines 11-15 obtain all candidate motifs incanSet using inverted index. Lines 17-24 generate

the candidatelagPattern between patternp and each motif incanSet. The patterns satisfying

89

min ratio are stored inLP (Line 20) andextPattern (Line 22). TheMine procedure is called

recursively for each generated pattern inextPattern (Line 26).

Algorithm LPMiner utilizes the anti-monotone property andinverted index to speed up

the generation oflagPatterns. We derive an upper bound estimate of the participation ratio to

further improve efficiency of LPMiner by pruning infeasiblecandidate patterns early.

Optimization. This optimization uses|mT [i,j]| to estimate the maximumpRatio of a lagPattern

p = ({m1, m2, ...,mk}, {l1,l2,...,lk}). SincepSup(p) must be less than or equal tominm∈p{|m|},

the maximumpRatio(p) ≤ minm∈p{|m|}
maxm∈p{|m|} .

ConsiderlagPattern p = ({m11, m31}, {0,5}). We have|m11| = 4 and|m31| = 3. Sup-

pose themin ratio is 0.80. Then thepRatio(p) is min{3,4}
max{3,4} = 0.75 (< 0.80). Thus, this candidate

is infeasible and can be removed from consideration for generating candidatelagPatterns.

For simplicity, LPMiner looks for exact lag among motifs. However, we can introduce

a slack variable to relax this requirement. For example, LPMiner accesses inverted index at time

points 11 and 32 to obtain candidates form13. However, with a slack value of 2, we now obtain pos-

sible candidates by accessing inverted index at time points{9,10,11,12,13} and{30,31,32,33,34}.

In this case, the pattern ({m13, m21}, {0,3}) will be in the output (See Fig. 4.6(b)).

4.3 Experimental Evaluation

We implement all our algorithms in C (compiled with GCC -O2).Our hardware con-

figuration consists of a 3.2 MHz processor with 3GB RAM running Windows. We use synthetic

datasets to verify the scalability of the proposed approachand real world datasets to demonstrate

90

the usefulness oflagPatterns. A random walk generator [64, 26] is used to generate synthetic

datasetsD with N = 25 andL = 100000.

4.3.1 Efficiency Experiments

FindMotifs Algorithm. We select one time series from datasetD and apply FindMotifs

algorithm to find all the motifs. We compare the performance of FindMotifs with algorithm Order-

Line. The OrderLine algorithm uses only order line concept.The number of order lines is 5[64].

Fig. 4.8(a) shows the results of varyingL from 5000 to 100000. We setminLen = 99,maxLen =

110 andcoef = 0.95. We observe that FindMotifs outperforms OrderLine, and the gap widens as

the length of the time series increases.

Next, we setL = 20000 and vary the correlation coefficientcoef from 0.60 to 0.99. Fig.

4.8(b) shows the results in log scale. We observe that FindMotifs is much faster than OrderLine.

In particular, when the correlation coefficient is greater than 0.9, FindMotifs is at least 50% faster

than OrderLine. However, the gap narrows ascoef decreases. This is because FindMotifs estimates

newδ(≥ δ) in order to apply the subsequence matching property [53]. For low value ofcoef , newδ

is much higher thanδ resulting in a larger set of candidate subsequences for distance computation.

LPMiner Algorithm. Now, we report the results of our experiments on the datasetsD.

Unless otherwise stated, we set coef = 0.95,min sup = 0.05,min ratio = 0.80, N = 10, L = 10000,

Min Len = 99 andMax Len = 110. Fig. 4.9 shows the results. Note that, running time does not

include time required by FindMotifs algorithm. We observe that increasing L and N leads to an

exponential increase in the runtime of LPMiner. This is expected since morelagPatternswill be

generated with a large L and N. However, our optimization strategy is effective in cutting down the

runtime. We also evaluate LPMiner by varyingmin sup (see Fig. 4.9(d)) andmin ratio (see Fig.

91

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

L(in thousand)
T

im
e

(in
 S

ec
on

ds
)

FindMotifs
OrderLine

(a) Effect of varying time series length

0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

coef

T
im

e
(in

 S
ec

on
ds

)

FindMotifs
OrderLine

(b) Effect of varying coef

Figure 4.8. Runtime comparison between FindMotifs and OrderLine algorithms.

5.6(d)). Increasingmin sup reduces the number of subsequences and results in smaller inverted

lists. Hence, the runtime decreases. Increasingmin ratio reduces the total number of possible

valid lagPatterns, hence the runtime also decreases. Also, LPMiner takes lessthan one second to

build an inverted index in all experiments. We also observedsimilar trends of LPMiner algorithm

on real stock dataset, hepatitis dataset and stulong dataset.

4.3.2 Effectiveness Experiments

In this section, we minelagPatterns from real dataset from finance data and medical

data and discuss usability of the discovered patterns.

92

0.5 1 1.5 2 2.5

x 10
4

0

500

1000

1500

2000

2500

L

T
im

e
(in

 S
ec

on
ds

)

LPMiner + Opt
LPMiner

(a) Effect of varying L

5 10 15 20 25
0

500

1000

1500

2000

N

T
im

e
(in

 S
ec

on
ds

)

LPMiner + Opt
LPMiner

(b) Effect of varying N

0.5 0.6 0.7 0.8 0.9 1
40

60

80

100

120

140

160

180

min_ratio

Ti
m

e
(in

 S
ec

on
ds

)

LPMiner + Opt
LPMiner

(c) Effect of varying minratio

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

350

min_sup

T
im

e
(in

 S
ec

on
ds

)

LPMiner + Opt
LPMiner

(d) Effect of varying minsup

Figure 4.9. Evaluation of LPMiner on datasetD.

93

Finance dataset

We use S&P100 stock dataset5(N=100,L=250) to find interesting localized associations

among stock movements. Fig. 4.10(a) and Fig. 4.2 show examples of the discovered patterns. We

observe that there is cooperative behavior among Nvidia, Novellus and SanDisk stocks. All these

stocks are from semiconductor industry and none of them are competitor of each other. We use

Yahoo Finance to verify competitor/co-operative behavior. To obtain these results, we setcoef =

0.90,min sup = 0.10,min ratio = 0.75,Min Len = 6 andMax Len = 21.

To further validate the effectiveness and utility of the discovered patterns, we construct

a portfolio of equities selected from Morgan Stanley Capital International G7 (MSCI-G7) Index6.

We use the equity indices of seven countries (Canada, France, Germany, Japan, Singapore, UK

and USA) recorded daily over a 5 year period from March 2005 toOctober 2009(N=7, L=1260).

The objective of a portfolio construction is to achieve a higher rate of return over a period of time

(cumulative rate of return). Existing methods such Mean Variance Analysis(MVA) determine the

investment weight for each equity indices from historical data.

Recently, an alternative method that updates the investment weights based on analyzing

the co-movements of equities (COM) has been reported [92]. In order to leverage thelagpatterns,

we first use the co-movement model to set the initial weights and subsequently utilize ourlagPat-

terns to update the investment weights as described in [92]. OurlagPatterns are obtained using

LPMiner with coef = 0.95,min sup = 0.10,min ratio = 0.80,minLen = 3,maxLen = 10,N =

7 andL = 240(one year window).

5http://biz.swcp.com/stocks/
6www.mscibarra.com

94

0 50 100 150 200 250
−3

−2

−1

0

1

2

Time (in Day)
S

to
ck

 P
ri
ce

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (in Day)

S
to

ck
 P

ri
ce

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (in Day)

S
to

ck
 P

ri
ce

NVIDIA Corporation

Novellus Systems

SanDisk Corporation
4

3

(a) Lag based motif association among Nvidia, Novellus and SanDisk
stocks.

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

35

40

Months (Starting from Feb−06 to Oct−09)

C
u

m
u

la
ti
v
e

 R
a

te
 o

f
R

e
tu

rn
s

LPMiner
COM
MVA

(b) Cumulative monthly rate of returns on MSCI-G7 Index.

Figure 4.10. Usability oflagPatterns discovered from real world dataset.

95

We construct the portfolio for each month (March 2006 to October 2009) based on the

data from the previous 12 months. We consider four week as onemonth. Fig. 4.10(b) presents the

cumulative monthly rate of returns for MVA, COM and LPMiner.We observe that the cumulative

rate of returns (over a period of 3 years) for LPMiner, COM andMVA is 26.64%, 22.26% and

11.41% respectively. It is also important to note that this trend is observed across the board for most

time points. The more than two-fold increase of LPMiner overMVA highlights the utility of our

approach.

Significance oflagPatterns. Now, we verify the significance oflagPatterns by shuf-

fling the time series data using Fisher-Yates shuffle method [26]. ThelagPatterns are mined from

the original dataset and shuffled dataset for the same set of parameters (See Table 4.4). We ob-

serve that, introducing randomness in the data significantly reduce the number of motifs and or

lagPatterns. This shows that the discovered motifs andlagPatternare not due to random chance,

but that they are meaningful patterns from the original timeseries, as we have significantly fewer

patterns in the shuffled data. Similar observation is also found for the other parameters and datasets.

Dataset # Motifs # lagPatterns

Original Data Shuffled Data Original Data Shuffled Data
S&P100 stock 110862 9166 2145943 1321

MSCI-G7 index 3535 2100 22 0
Hepatitis data 4010 39 353 0
Stulong data 5938 102 430 2

Table 4.4. The number of Motifs andlagPatterns.

Hepatitis dataset

In the second set of experiments, we utilize the time series data from Hepatitis dataset.

This dataset has 490 patients. For each patient, we have 8 time series, one time series for one

96

clinical attribute. For such dataset, we define motif as a subsequence that is repeated in the time

series of the same attribute in many patients. Also the lag pattern is defined as an association among

motifs derived from different clinical attributes. To use algorithm FindMotifs and LPMiner on such

datasets, we fuse time series of same attribute from different patients. Thus, the modified dataset

contains 10 time series, one time series for one clinical attribute.

Figure 4.11(a) presents an example of two time series motifsobtained from time series

of attribute ALB. Both motifs represent behavior of result of ALB test over two months. The first

motif, denoted as motif 1, appears in 28 patients, out of them21 patients have Hepatitis B. Similarly,

second motif, denoted as motif 2, appears in 18 patients, outof them 12 patients have Hepatitis C.

From the first motif, we can derive a rule: patient having ALB value around 120 for 5 weeks will

have higher chance of developing Hepatitis B.

Next, Figure 4.11(b) presents an example of lag pattern. This lag pattern appears in 15

patients having Hepatitis B. It is not appeared in any patients from hepatitis C. Clearly, such infor-

mation might be useful for time series classification. We have setcoef = 0.95,min sup = 0.10,

min ratio = 0.65,Min Len = 4 andMax Len = 8 to achieve the above results. We have also

observed that, shuffling the data does not generate motifs and lag patterns as shown in Table 4.4.

Stulong dataset

In the third set of experiments, we utilize the time series data from Stulong dataset. This

dataset has 860 patients. For each patient, we have 10 time series, one time series for one clinical

attribute. The definition of motif and lag pattern is similaras explained for Hepatitis dataset. To

use algorithm FindMotifs and LPMiner on such datasets, we fuse time series of same attribute from

97

1 3 5 7 9
70

75

80

85

90

95

100

105

110

115

120

Weeks

V
al

ue
s

Motif 1: ALB − Hepatitis B
Motif 2 :ALB − Hepatitis C

(a) time series motif

1 3 5 7 9 11
0

50

100

150

Weeks

V
al

ue

ALP
ALB

(b) lag patterns

Figure 4.11. Example of motifs and lag patterns obtained from Hepatitis Dataset

different patients. Thus, the modified dataset contains 10 time series, one time series for one clinical

attribute.

Figure 4.12(a) presents an example of a time series motif obtained from attribute diastolic

blood pressure. This motif represents behavior of diastolic blood pressure test over two months.

This motif appears in 32 patients, out of them 22 patients have no cardiovascular disease. From these

motif, we can derive the following rule, a patient having diastolic blood pressure similar to Figure

4.12(a) will have less chance of developing cardiovasculardisease. Next, Figure 4.12(b) presents

an example of lag patterns. We setcoef = 0.95,min sup = 0.10,min ratio = 0.65,Min Len = 4

98

1 3 5 7 9

80

82

84

86

88

90

Weeks
V

al
ue

Diastolic blood pressure

(a) time series motif

1 2 3 4 5 6
60

70

80

90

100

110

120

130

140

150

160

170

Weeks

V
al

ue

Diastolic blood pressure
Skinfold – above musculus triceps

(b) lag patterns

Figure 4.12. Example of motifs and lag patterns obtained from Stulong Dataset

andMax Len = 8 to achieve the above results. We have also observed that, shuffling the data does

not generate motifs and lag patterns(See Table 4.4).

4.4 Summary

In this chapter, we have introduced a new class of patterns called lagPatternsin time series

data. The key contributions of this work are summarized as follows:

99

1. We define a new class of patterns, called aslagPatterns, to capture the orderings among mo-

tifs derived from different time series and prove thatlagPatterns satisfy the anti-monotonic

property. This property allows us to prune the search space in the generation oflagPatterns.

We design an efficient algorithm calledLPMiner that first aligns the motifs and then build

an inverted index to quickly find group of motifs with invariant orderings.

2. We extend the exact motifs discovery algorithm in [64] to discover motifs of all lengths. We

take advantage of order line concept and subsequence matching property of normalized time

series to reduce over 60% of the distance computations.

3. We evaluate the algorithms on both synthetic and real world datasets. Our experimental re-

sults show that the proposed approach is scalable. We show the usefulness oflagPatternsdis-

covered from a stock dataset by constructing stock portfolio that leads to a two-fold increase

in the cumulative rate of return on investment compared to the traditional mean variance

analysis(MVA) portfolio selection strategy.

In future, we would like to minelagPatterns from streaming data. This will be useful

for financial application such as stock portfolio or investment suggestion for pair trading.

100

Chapter 5

Mine Patterns across Different Kinds of

Data

We have seen that existing frequent pattern mining algorithms are geared toward finding

frequent patterns from categorical data, numerical data and sequence data. The previous two chap-

ters present frequent pattern mining algorithms for interval data and time series data. However,

many database applications in the clinical and bioinformatics domains involve records with multi-

ple kinds of data. For example, a patient’s record typicallycomprises of categorical data, numerical

data, time sequence data, interval data and time series data(See Table 5.1). Knowing the relation-

ships among patterns from these different kinds of data can aid in the understanding of a patient’s

health condition.

Consider the two patterns

{Male, Smoking} and

{Headache Overlap[0, 0, 0, 1, 0] HighBloodPressure}.

101

Id Categorical Data Numerical Data Interval Data Time Series Data Class
1 CVD = Yes

Male,

Smoking,

Wine

Age = 21,

DailyWineIntake = 2,

AvgSysBldPre = 2

Headeche

High Blood Pressure

Chest Pain

Time

0 2 4 6 8 10 12 14
3

4

5

6

7

8

9

10

Time

V
al

ue

Cholesterol
LDL

2 CVD = No

Male,

NoSmoking,

NoWine

Age = 30,

DailyWineIntake = 0,

AvgSysBldPre = 5

Headeche High Blood Pressure

Time

0 2 4 6 8 10 12 14
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time

V
al

ue

Cholesterol
LDL

· · · · · · · · · · · · · · · · · ·

Table 5.1. Dataset with multiple kinds of data

The pattern{Male,Smoking} is a frequently occurring itemset [8]. Well-known algo-

rithms such as FPTree [39] can be utilized to find such frequently occurring itemsets. On the other

hand, the pattern{Headache Overlap[0, 0, 0, 1, 0] HighBloodPressure} is an interval-based

temporal pattern and its discovery requires a totally different algorithm [75]. Separately, these pat-

terns may not raise any alarm as there are many male smokers inthe population who go about their

daily lives normally. Similarly, many people suffer from headache with elevated blood pressure but

they do not experience any serious consequences. However, the combination of these two patterns

reveals a different picture. Studies have shown that a male smoker who experiences headache with

elevated blood pressure is a likely candidate for cardiovascular diseases. We call this combination

of patterns from different kinds of data asheterogenouspatterns.

102

In order to mine heterogenous patterns, we must apply different algorithms for the dif-

ferent kinds of data. This is then followed by an exhaustive combination from each kind of data

to form heterogenous patterns. However, an exhaustive combination is not a feasible solution. For

example, a small dataset with 10 categorical attributes, 20numerical attributes, 10 events, and 10

days of 10 time series data can result in the generation of210 frequent itemsets [96],220 frequent

intervals,1010 frequent temporal patterns, and1010 time series motifs. Hence, the combination of

these patterns is of the orderO(258). Clearly, for practicality, we need an efficient algorithm to

prune the search space.

We have seen that, early works on discovering heterogenous patterns are limited to mining

patterns from at most two different kinds of data [79, 41]. The UniSeq algorithm [79] mines patterns

from both categorical and sequence data while the MergeSD algorithm [41] is designed for both

categorical and numerical data. These algorithms are basedon exhaustive enumeration. Thus, they

cannot be extended to discover patterns involving more thantwo kinds of data.

In this work, first we present a pattern mining algorithm, called HTMiner (Heterogenous

PatternMiner), to mine all frequent heteorgenous patterns from dataset with multiple kinds of data.

HTMiner is an integrated algorithm that systematically discovers frequent heterogenous patterns

in a depth-first manner from a dataset consisting of categorical data, numerical data, interval data

and time series data. Given aminsupthreshold, HTMiner first discovers a set of frequent patterns

from categorical data, numerical data, interval data and time series data. Next, HTMiner utilizes

the computations performed in the previous stage to quicklyprune off infeasible combinations for

mining heteorgenous patterns. Our experimental results show that the proposed algorithm is very

efficient.

103

In many real-world applications, the number of frequent patterns mined for various para-

metric settings is extremely large and only a subset of thesepatterns are useful. For example,

frequent pattern based classifier uses only subset of frequent patterns for classification. Thus, we

also present another mining strategy, calledHTClassifier, to mine the essential set of discriminative

heteorgenous patterns from dataset with multiple kinds of data for classification. HTClassifier is an

iterative algorithm. In each iteration, HTClassifier discovers an essential heterogenous pattern for

classification and performs instance elimination. This instance elimination step reduces the problem

size progressively by removing training instances which are correctly covered by the discovered es-

sential heterogenous pattern. Experiments on two real world datasets show that the classifier based

on discovered patterns can significantly improve the classification accuracy.

To the best of our knowledge, this is the first work that integrates existing frequent pat-

tern mining algorithms for single data kind to discover heterogenous patterns from datasets with

multiple kinds of data. We demonstrate the effectiveness ofsuch heterogenous patterns for clas-

sification by building two classifiers and comparing them with classifiers that are built using only

patterns involving single kind of data. Experiment resultson two real world datasets show that HT-

Miner is efficient and scalable in discovering heterogenouspatterns. Further, the classifiers based

on heterogenous patterns significantly outperform classifiers based on patterns involving at most

two kinds of data.

The remaining of the chapter is organized as follow: In section 5.1, we describe the pre-

liminary and the problem statement. HTMiner algorithm is explained in section 5.2. HTClassifier

algorithm is explained in section 5.3. An extensive experimental result is reported in section 5.4.

Section 5.5 summarizes the discussion.

104

5.1 Preliminaries

LetDB be a dataset with multiple kinds of data, namely, categorical, numerical, interval

and time series. Each instance inDB has a class label. Table 5.2 shows an example of such a dataset

where column 1 is the instance id, column 2 is the categoricaldata, column 3 is the numerical data,

column 4 is the interval data, column 5 is the time series data, and finally column 6 shows the class

labels.

DB can be projected into 4 datasets according to the kind of dataas follows:

1. A categorical dataset, denoted asDBC , contains instances of the form< tid, C, class >

where tid is the instance identifier,C is a set of items where each item is a categorical

attribute-value pair, andclass is the class label of the instance.

2. A Numerical dataset, denoted asDBN , contains instances of the form< tid, N , class >

whereN is a set of numerical attribute-value pairs.

3. An Interval dataset, denoted asDBI , is a set of instances of the form< tid, E, class >

whereE is a list of events. Each event is a triplet(type, start, end). Events inE are sorted by

their start times, end times and event types. Each pair of eventsE1, E2 ∈ E has a temporal

relationships [12] given by (E1.type R E2.type) whereR ∈ {Equal, Meet, Before, Start,

Overlap, Contain, FinishBy}.

4. A Time series dataset, denoted asDBT , is a set of instances of the form< tid, T , class >

whereT is a set of time series of lengthn. One time series represents one attribute. Each

time series is of the form (v[1], v[2] ,...,v[n]) wherev[i] is the value of the time series at time

point i. In this chapter, we useTXY to refer a time series of attributeY from instanceX.

105

Instance Categorical Numerical Interval data Time series data Class
identifier data data

1 A,B,E,G (attr1,0.4),(attr2,0.6) (L,1,6),(K,4,8),(S,8,10),(T,11,12) T11 = {5,6,7,10,14} 1
T12 = {7,6,5,5,12}

2 A,B,D (attr2,0.8),(attr3,0.2) (L,1,5),(T,2,7),(K,3,9),(S,9,13) T21 = {1,5,6,9,0} 1
T22 = {10,7,6,4,0}

3 A,B,D (attr1,0.38),(attr3,0.5) (L,3,8),(T,3,9),(K,5,10),(S,10,12) T31 = {4,5,7,0,4} 1
T32 = {12,6,6,5,1}

4 B,D,E,G (attr2,0.5),(attr3,0.9) (K,2,4),(S,6,10) T41 = {1,2,2,3,4} 1
T42 = {0,5,0,1,0}

5 A,B,D (attr1,0.37),(attr3,0.6) (L,1,6),(K,3,8),(S,4,10) T51 = {3,6,7,7,1} 0
T52 = {0,8,0,6,0}

6 A,D,E (attr1,0.27),(attr2,0.4) (N,5,10) T61 = {4,5,4,7,4} 0
T62 = {0,4,0,3,0}

Table 5.2. Example: Dataset with multiple kinds of data

Different types of patterns can be discovered from each of the projected dataset. For the

categorical datasetDBC , we can find the set of frequent itemsets, where each itemset is a set of

items that occurs together frequently. An instance of the datasetDBC supports itemsetI if I is

a subset of the instance’s item-set. The support ofI is the ratio of the number of instances that

are superset ofI to the total number of instances inDBC . For example, in Table 5.2, instance 1

supports the itemset{A, B}, but instance 4 does not. The support of itemset{A, B} is 4
6 as instances

1, 2, 3 and 5 supports{A, B}. The length of itemset is the number of items it contains. Forexample,

length of itemset{A, B} is 2.

For thenumerical datasetDBN , the patterns found are of the formnp = {(attr1, [l1, u1]),

(attr2, [l2, u2])· · · } whereli andui denote the lower and upper bound for the numerical attribute

attri. We say that an instanceI satisfies the patternnp if and only if for each attribute appearing

in np, the corresponding value of that attribute inI lies in the specified range[l, u] in np. For ex-

ample, instance 1 in Table 5.2 satisfiesnp = {(attr1, [0.39, 0.41]),(attr2 , [0.58, 0.62])} as the value

of attr1(attr2) in instance 1 is 0.4(0.6) which is in [0.39,0.41]([0.58,0.62]). The support ofnp

is the ratio of the number of instances that satisfiesnp to the total number of instances inDBN .

106

The length of numerical patternnp is the number of attributes it contains. For example, lengthof

{(attr1, [0.39, 0.41]),(attr2 , [0.58, 0.62])} is 2.

For theinterval datasetDBI , we can find sequence pattern, temporal pattern, annotated

sequence pattern, and annotated temporal pattern. These patterns are defined as follows:

1. A temporal patternip has the form(E1.type
R1[c,f,m,o,s]
−→ E2.type

R2[c,f,m,o,s]
−→ · · · En.type)

whereEi.type is an event type andRi[c, f,m, o, s] is temporal relationships between event

of typeEi+1.type and all of it’s preceding events inip as explained in chapter 3.

2. A sequence pattern is the special case of the temporal pattern where eachRi in ip is limited

to the “Before” relationship, denoted by (E1.type→ E2.type→ ...→ Ei+1.type).

3. An annotated temporal pattern is simply a temporal pattern with a time lagt(≥ 0) is speci-

fied between adjacent pair of events inip, denoted by(E1.type
R1[c,f,m,o,s](t1)

−→ · · · Ei.type

Ri[c,f,m,o,s](ti)
−→ Ei+1.type · · · En.type).

4. An annotated sequence pattern is the special case of the annotated temporal pattern where

eachRi in ip is limited to the ”Before” relationship, denoted byEi.type
t
−→ Ei+1.type.

A database instance fromDBI satisfies a temporal patternip if and only if for each pair

of event types inip, their respective start and end times in instance conforms to the corresponding

temporal relationship inip. Similarly, for an annotated temporal pattern with time lagt between a

pair of events(Ei, Ei+1), we say that an instance satisfies this pattern if the instance satisfies the

corresponding temporal pattern and the difference in the start times of these events (i.e., start time

of Ei+1 - start time of Ei) lies in the range [t − δ, t + δ], whereδ(≥ 0) is a threshold for the time

lag. The length ofip is the number of events it contains.

107

Consider the annotated patternip = {L
Overlap[0,0,0,1,0](2)

−→ K}where event of typeL over-

laps event of typeK. Further, when event of typeL occurs, event of typeK will occur with a lag of

2 days (i.e.,t=2). Supposeδ = 1, then instance 1 in Table 5.2 supports thisip, as eventL at offset 1

overlaps eventK at offset 2 and the difference in the start time of eventL and eventK in instance

1 is 3 which is within the range [1,3](i.e., 3∈ [2-1,2+1]). However, instance 1 does not support{L

Overlap(5)
−→ K} as the difference in the start times of these events is not within the range [4,6] (i.e., 3

6∈ [5-1,5+1]). We compute the support of a temporal pattern as the ratio of the number of instances

that satisfies the temporal pattern to the total number of instances inDBI . The length ofip is 2.

For thetime seriesdatasetDBT , a time series motif is the set of non-overlapping subse-

quences such that the subsequences in the set are of the same length, are from the same attribute and

the distances between any pair of subsequences are less thana given threshold. For example, con-

sider motifm1 = {T11[1,3], T31[1,3], T61[2,4]} from attribute 1. This motif has subsequences from

instance 1, 3 and 6. We use euclidian distance to measure the distance between two subsequences.

The support of time series motif is the ratio of the number of instances that has subsequence in

the set to the total number of instances inDBT . For example, the support ofm1 is 3
6 . With these

frequent motifs, we can discover motif sequences and annotated motif sequences from time series

datasetDBT . Motif sequences and annotated motif sequences(i.e.,lagPatterns) have the same

definition as sequence pattern and annotated sequence pattern where event typeE is replaced by

time series motif. The support of these patterns from time series data can be defined in a similar

manner as the support of sequence patterns.

108

A heterogenouspattern, orHT pattern in short, is a quadruplet represented as [cp, np, ip, tp],

wherecp, np, ip, tp are the patterns discovered from categorical, numerical, interval and time series

data respectively.

For example,α = [{Smoking, Male}, ∅, {Smoking → ChestPain}, ∅] is a HT pattern

of size 2 since it has patterns only from the categorical and interval data. We usek-HT to refer a

HT pattern of sizek.

The support of a HT patternα, denoted assup(α), is the ratio of the number of instances

in DB satisfyingα to the total number of instances inDB. The confidence ofα for a class label

class, denoted byconf(α, class), is the ratio of the number of instances with class labelclass

satisfyingα to the number of instances that satisfiesα. For example, support ofα = [{A,B}, φ, {L

Overlap[0,0,0,1,0]
−→ K}, φ] is 4

6 , as instances 1, 2, 3 and 5 satisfyα. Also, conf(α, 1) = 3
4 .

A HT patternα is frequent if sup(α) ≥ minsup. A HT patternα is discriminative if its

confidence for one class is higher thanmax conf and its confidences for the rest of the classes are

lower thanmin conf . A HT patternα is anessential pattern for classification if it is both frequent

and discriminative.

Given a minimum support thresholdminsup and dataset with multiple kinds of dataDB,

our purpose is to find the set of frequent heteorgenous patterns. Further, given a minimum support

thresholdminsup, maximum class confidence thresholdmax conf , minimum class confidence

thresholdmin conf and dataset with multiple kinds of dataDB, we discover a set of essential

heterogenous patterns for classification.

109

5.2 Algorithm HTMiner

In this section, we present an algorithm, called HTMiner, tomine all frequent heteroge-

nous patterns(see Algorithm 10). HTMiner first projects thedatasetDB into the respective pro-

jected databases based on the kinds of data that exists inDB(Line 2). It then calls procedure

MineSingle to generate a set of frequent patternspatternSet along with their support values for

each projected databases (Line 3). Details of MineSingle are given in Section 5.2.1. Line 7 invokes

procedure MineMultiple to generate combination of patterns from different kinds of data. Details

are given in Section 5.2.2. At last, the generated frequent patterns are outputted.

Algorithm 10 HTMiner
Input : databaseDB, minimum support thresholdminsup

Output : set of frequent patternsfrePat

Global variable :frePat = ∅, N = 4, patternSet = ∅

1: for p = 1 toN do
2: DBp = projected database ofDB for pth kind of data
3: patternSetp = MineSingle(DBp, minsup)
4: frePat = frePat ∪ patternSetp
5: end for
6: Remove infrequent attributes fromDB

7: resultSet = MineMultiple (DB, minsup)
8: return{frePat ∪ resultSet}

5.2.1 Algorithm MineSingle

Algorithm MineSingle (see Algorithm 11) unifies the variousfrequent pattern mining al-

gorithms for different kinds of data via a modified pseudo projection based pattern growth approach

[77]. It grows the pattern in two dimensions: increase the length of pattern by 1, and increase

the information content of pattern. In the first case, we callit an extensionof the pattern. For

example, itemset{A, B} is one possible extension of itemset{A}. Also, a temporal pattern{P

110

Overlap[0,0,0,1,0]
−→ Q} is one possible extension of temporal pattern{P}. In the second case, we call it

anannotation of the pattern. For example,{P
Overlap[0,0,0,1,0](7)

−→ Q} is one possible annotation of

{P
Overlap[0,0,0,1,0]

−→ Q}. Only patterns from interval data and time series data require annotation.

Algorithm 11 MineSingle(DBp, minsup)
Output : A frequent patternspatSet

1: patSet = ∅ // set of generated patterns
2: frePatSet = {length 1 frequent patterns fromDBp}
3: while frePatSet 6= ∅ do
4: Select patternα from frePatSet and remove it fromfrePatSet

5: Add α to patSet

6: extPatSet = {extendpatternα}
7: frePatSet = frePatSet ∪ extPatSet

8: annPatSet = {annotatepatternα}
9: patSet = patSet ∪ annPatSet

10: end while
11: returnpatSet

Initially, Algorithm MineSingle obtains all the frequent patterns of length 1 from the given

dataset with single kind of dataDBp (Line 2). Table 5.3 shows a subset of the length 1 patterns

generated for each kind of data using dataset given in Table 5.2.

Forcategorical data, a length 1 patternα is simply an item (i.e., attribute-value pair). We

can determine its frequency by counting the number of instances in given databaseDBC where this

item occurs. At the same time, the instance id and the offset of the itemα within the instance is kept

in an index, calledindexα for subsequent use(See Table 5.3(a)).

For numerical data, a length 1 pattern is of the form(attr, [l, u]). To discover the fre-

quent range of an attributeattr, letV = [v1, v2, ...,vk] be the possible values ofattr in DBN . Given

a similarity thresholdδ, we restrict the numerical ranges as follows [v1−δ,v1+δ], [v2−δ,v2+δ], ...,

[vk − δ,vk + δ]. For each numerical range, i.e., an interval item (attr,[vi− δ,vi + δ]), we determine

111

(a) Categorical datasetDBC

A
instanceid offset list
1 1
2 1
3 1
5 1
6 1

B
instanceid offset list
1 2
2 2
3 2
4 1
5 2

G
instanceid offset list
1 4
4 4

(b) Numerical datasetDBN

Attribute : attr1
V = [0.27, 0.37, 0.38, 0.4],δ = 0.2

{(attr1,[0.25,0.29])} {(attr1,[0.35,0.39])} {(attr1,[0.36,0.40])} {(attr1,[0.38,0.42])}
instanceid offset list instanceid offset list instanceid offset list instanceid offset list

6 1 3 1 1 1 1 1
5 1 3 1 3 1

5 1

(c) Interval datasetDI

{L}
instanceid offset list
1 1
2 1
3 1
5 1

{K}
instanceid offset list
1 2
2 3
3 3
4 1
5 2

{N}
instanceid offset list
6 1

(d) Time series datasetDBT

motif id time series motif (δ = 2)
m1 {T11[1,3], T31[1,3], T61[2,4]}
m2 {T11[1,3], T21[2,4]}
m3 {T12[1,3], T22[2,4], T32[2,4]}
m4 {T12[2,4], T32[2,4]}
m5 {T42[1,3], T52[3,5]}

Table 5.3. Generation of length 1 frequent patterns involving single kind of data

112

(a) Transformed datasetDB′

T

Instance Id Interval Motif Data Class
1 (m1,1,3),(m2,1,3),(m3,1,3),(m4,2,4) 1
2 (m2,2,4),(m3,2,4) 1
3 (m1,1,3),(m3,2,4),(m4,2,4) 1
4 (m5,1,3) 1
5 (m5,3,5) 0
6 (m1,2,4) 0

(b) Indexm1

motif : m1

instanceid offset list
1 1
3 1
6 1

Table 5.4. Transformed datasetDB′
T and index of motifm1

its frequency and record the instance id and its offset in theindex. Table 5.3(b) lists the length 1

patterns generated using attributeattr1.

For interval data, a length 1 temporal pattern is simply a frequent event. We obtain the

frequency of events and record the instance ids and their offsets of those instances that support these

frequent events.

For time series data, a length 1 pattern is a frequent motif. Hence, we first discover all

frequent time series motifs using method described in previous chapter. Each discovered frequent

motif is given a unique id. For example, Table 5.3(d) lists the discovered five motifs. Here, motif

m1 is a set of three subsequences from time series of attribute 1(i.e., time series 1). Note that,

T61[2,4] denotes a subsequence from time points 2 to 4 from time series 1 of instance 6. Based on

these frequent motifs, we transform the time series dataDBT into an interval-based datasetDB′
T as

follows: we add motifm with its start and end time to theith entry inDB′
T if m has a subsequence

from instancei. For example, motifm1 has one subsequence starting from time points 2 to 4 in

time series 1 of instance 6, hence we append (m1,2,4) to instance 6 ofDB′
T . Similarly, we append

(m1,1,3) in instance 3 ofDB′
T . Table 5.4 shows the result of such a transformation. Note that,

motifs in each instance ofDB′
T are ordered with respect to start time, end time and motif id.Now,

DB′
T is processed similarly as interval dataDBI .

113

Once the length 1 patterns for the given data have been generated, Algorithm MineSingle

generates a new candidate pattern by first trying toextend an existing patternα(Line 6). We put

all extended patterns infrePatSet for further extension and annotation. The algorithm also tries

to annotate the existing pattern to form new patterns if it is from interval or time series data(Line

8). We put all extended patterns inpatSet(Line 9). The process is repeated till no pattern is left in

frePatSet. Finally, the set of generated patterns ispatSet(Line 11). We will illustrate the extend

and annotate process with examples in the following subsections.

Extend Pattern

Consider the extension ofitemset {A,B}. Table 5.5(a) shows an index of the itemset

{A,B} w.r.t. the datasetDBC in Table 5.5(b). The first entry(1, {1, 2}) indicates that item A is at

offset 1 and item B is at offset 2 in instance 1. Any item appearing after the offset 2 in instance 1

is a potential candidate item for extending the itemset. In this case, we extend the pattern{A, B}

with item E and G to form candidate patterns{A, B, E} and{A, B, G} respectively. Note that, for

each candidate pattern, we maintain the instance ids from which the pattern is generated. Similarly,

other entries from index of the itemset{A,B} are processed. Table 5.5(c) lists the candidate patterns

generated. Finally, candidate patterns which are frequentare indexed and returned.

Consider the extension ofnumerical pattern {(attr1, [0.36,0.40])}. Table 5.6(a) shows

the index of a length 1 numerical pattern{(attr1, [0.36,0.40])} w.r.t the datasetDBN in Table

5.6(b). The first entry(1, {1}) indicates that attributeattr1 is at offset 1 in instance 1. Any attribute

appearing after the offset 1 in instance 1 is a potential candidate for extension. From the index, we

access only those instances that supports{(attr1,[0.36,0.40])} in order to obtain the possible values

for each candidate for extension. In this case, there is onlyone possible value forattr2 = {0.6} and

114

(a) Index

itemset :{A,B}
instanceid offset list
1 1,2
2 1,2
3 1,2
5 1,2

(b) DatasetDBC

Instance id Categorical Data Class
1 A,B,E,G 1
2 A,B,D 1
3 A,B,D 1
4 B,D,E,G 1
5 A,B,D 0
6 A,D,E 0

(c) Candidate patterns

itemsets set of instance ids
{A,B,D} {2,3,5}
{A,B,E} {1}
{A,B,G} {1}

Table 5.5. Example extension of itemset{A,B}

two possible values forattr3 = {0.5,0.6}. As a result, much savings can be achieved with only three

candidates generated as shown in Table 5.6(c). For each candidate pattern, we obtain the supporting

instances. Similarly, other entries from index of the numerical pattern{(attr1, [0.36,0.40])} are

processed. Finally, candidate patterns which are frequentare indexed and returned.

(a) Index

{(attr1,[0.36,0.40])}

instanceid offset list

1 1
3 1
5 1

(b) DatasetDBN

Instance Id Numerical Data Class
1 (attr1,0.4),(attr2,0.6) 1
2 (attr2,0.8),(attr3,0.2) 1
3 (attr1,0.38),(attr3,0.5) 1
4 (attr2,0.5),(attr3,0.9) 1
5 (attr1,0.37),(attr3,0.6) 0
6 (attr1,0.27),(attr2,0.4) 0

(c) Candidate patterns

numerical patterns set of instance ids
{(attr1,[0.36,0.40]),(attr2,[0.4,0.8])} {1}
{(attr1,[0.36,0.40]),(attr3,[0.3,0.7])} {3,5}
{(attr1,[0.36,0.40]),(attr3,[0.4,0.8])} {3,5}

Table 5.6. Example extension of numerical pattern{(attr1,[0.36,0.40])}

115

Similarly, we can extend the patterns from interval and timeseries data. Suppose we have

a temporal pattern ip = {L
Overlap[0,0,0,1,0]

−→ K}. Table 5.7(a) shows theindex of this pattern with

respect to the datasetDBI in Table 5.7(b). The first entry in the index(1, {1, 2}) indicates that

eventL is at offset 1 and eventK is at offset 2 of instance 1. From datasetDBI , we notice that

there are two events,S andT , that appear after offset 2 in instance 1. Hence we can extendip by

eventsS andT respectively. First, we attempt to extendip by eventS. We determine S’s temporal

relationship with the events inip. From the start and end times, we observe thatL is “Before”S and

K “Meets” S. Hence, the generated pattern for this event is{L
Overlap[0,0,0,1,0]

−→ K
Meet[0,0,1,0,0]
−→ S}.

Similarly, we process eventT and obtain{L
Overlap[0,0,0,1,0]

−→ K
Before[0,0,0,0,0]

−→ T}. All other entries

from index of temporal pattern{L
Overlap[0,0,0,1,0]

−→ K} are processed similarly. Table 5.7(c) lists

the generated candidate patterns and their support instance ids. The candidate patterns which are

frequent are indexed and returned. It is possible that, an instance supports temporal pattern multiple

times. In such situation, we have indexed all occurrences ofthe temporal patterns.

(a) Index

{L
Overlap[0,0,0,1,0]

−→ K}
instanceid offset list
1 1,2
2 1,3
3 1,3
5 1,2

(b) DatasetDBI

Instance Id Interval Event Data Class
1 (L,1,6),(K,4,8),(S,8,10),(T,11,12) 1
2 (L,1,5),(T,2,7),(K,3,9),(S,9,13) 1
3 (L,3,8),(T,3,9),(K,5,10),(S,10,12) 1
4 (K,2,4),(S,6,10) 1
5 (L,1,6),(K,3,8),(S,4,10) 0
6 (N,5,10) 0

(c) Candidate patterns

temporal patterns set of instance ids

{L
Overlap[0,0,0,1,0]

−→ K
Meet[0,0,1,0,0]
−→ S} {1,2,3}

{L
Overlap[0,0,0,1,0]

−→ K
Before[0,0,0,0,0]

−→ T} {1}

{L
Overlap[0,0,0,1,0]

−→ K
Overlap[0,0,0,2,0]

−→ S} {5}

Table 5.7. Example extension of temporal pattern{L
Overlap[0,0,0,1,0]

−→ K}

116

Annotate Pattern

In order to generate a new pattern via annotation, we need to find the frequent time tag

information between adjacent pairs of events/motifs in a given patternα. This is obtained by cal-

culating the differences between start times of adjacent pair of eventsEi+1 andEi in each instance

present in index ofα. This difference is known as time lag betweenEi andEi+1 and denoted as

lagi,i+1. For each time laglagi,i+1 betweenEi andEi+1, we obtain all instances inindex that

supportslagi,i+1 betweenEi andEi+1. With this, we can generate the frequent annotated patterns.

For example, given a temporal patterntp = {L
Overlap[0,0,0,1,0]

−→ K} and its index in Table

5.7(a). From the index, we know that the difference between the start times of eventsK andL

is either 2 or 3. Thus, we have two candidate annotated patterns {L
Overlap[0,0,0,1,0](2)

−→ K} and{L

Overlap[0,0,0,1,0](3)
−→ K}. For both candidate patterns, we obtain instances from index of tp that supports

them.

Similarly, if given pattern istp = {L
Overlap[0,0,0,1,0]

−→ K
Meet[0,0,1,0,0]
−→ T }, then we obtain

possible time lag between eventL andK as well as between eventK andT using index oftp.

Assume, time lag betweenL andK is 2 or 3 and time lag betweenK andT is 4. Then, we generate

two candidate annotated patterns{L
Overlap[0,0,0,1,0](2)

−→ K
Meet[0,0,1,0,0](4)

−→ T } and{L
Overlap[0,0,0,1,0](3)

−→

K
Meet[0,0,1,0,0](4)

−→ T }.

Note that, HT pattern{L
Overlap[0,0,0,1,0](2)

−→ K
Meet[0,0,1,0,0](4)

−→ T } can be generated by ex-

tending{L
Overlap[0,0,0,1,0](2)

−→ K} or annotating{L
Overlap[0,0,0,1,0]

−→ K
Meet[0,0,1,0,0]
−→ T }. Our approach

selects the second alternative as if{L
Overlap[0,0,0,1,0]

−→ K
Meet[0,0,1,0,0]
−→ T } is not frequent then we do

not need to annotate it even{L
Overlap[0,0,0,1,0](2)

−→ K} is frequent. This is a reason why annotated

pattern is not used for extension and annotation(Lines 8-9 in Algorithm 11).

117

5.2.2 Algorithm MineMultiple

Now, we systematically explore the search space to generateheteorogeneous patterns

(HT patterns) involving multiple kinds of data. Algorithm MineMultiple (see Algorithm 12) uses

the patterns generated from Algorithm MineSingle to grow the heterogenous patternα in three

dimensions:

• Extend α. A new HT pattern is formed by increasing the length of the rightmost non-empty

pattern ofα by 1. For example, ifα = [{A,D}, ∅, {L}, ∅]. Then, we select the rightmost

non-empty pattern{L} for extension. Here, [{A,D},∅, {L
Overlap[0,0,0,1,0]

−→ T}, ∅] is a possible

extension of [{A,D}, ∅, {L}, ∅]. Table 5.10(c) lists the new HT patterns generated whenα

is extended. Similarly, ifα = [{A,D}, ∅, ∅, {m1}]. Then,{m1} is selected for extension.

Here, [{A,D}, ∅, ∅, {m1 →m2}] is a possible extension ofα.

• Annotate α. A new HT pattern is formed by annotating the rightmost non-empty pattern

of α. Note that, only patterns from interval or time series pattern are required annota-

tion. For example, ifα = [{A,D},∅,{L
Overlap[0,0,0,1,0]

−→ K},∅], the example of annotated pat-

tern is [{A,D},∅,{L
Overlap[0,0,0,1,0](2)

−→ K},∅]. But, no annotation is required ifα = [{A,D},

{D,[3,6]}, ∅, ∅] as both patterns from interval and time series are empty.

• Enlarge α. A new HT pattern is formed by increasing the size of HT pattern α by 1. In

this chapter, all empty patterns that appears after the right most non-empty pattern inα are

candidates for enlargement. For example, ifα = ({A,D}, ∅, ∅, ∅), then we can increase the

size ofα by finding length 1 frequent patterns from either numerical,interval, or time series

data.

118

Algorithm 12 MineMultiple(DB, minsup)
Input :DB, minsup

Output : Set of HT patternspatSet

1: HT patternα = [∅, ∅, ∅, ∅]
2: patSet = ∅
3: mdPatSet = {enlargepatternα}
4: while mdPatSet 6= ∅ do
5: Select patternα from mdPatSet and remove it frommdPatSet

6: Storeα in patSet

7: enlPatSet = {enlargepatternα}
8: mdPatSet = mdPatSet ∪ enlPatSet

9: extPatSet = {extendpatternα}
10: mdPatSet = mdPatSet ∪ extPatSet

11: annPatSet = {annotatepatternα}
12: patSet = patSet ∪ annPatSet

13: for each annotated patternβ ∈ annPatSet do
14: enlPatSet = {enlargepatternβ}
15: mdPatSet = mdPatSet ∪ enlPatSet

16: end for
17: end while
18: returnpatSet

Similarly, if α = ({A,D}, ∅, {L}, ∅), then we enlargeα by finding length 1 pattern from time

series data(i.e., motif).

Algorithm 12 starts with an initial HT patternα = [∅, ∅, ∅, ∅] (Line 1). Note that, the size

of α is 0. In line 2, weenlargeα by increasing its size by 1. This yields a set of new HT patterns

where length of non-empty pattern of each generated patternis 1. Briefly, this step generates one

HT pattern for each length 1 frequent patterns of single datakind. Note that, the index of HT

patternα is the index of right most non-empty pattern inα. All generated patterns are stored in

mdPatSet(Line 2). Next, for each HT patternα in mdPatSet, we generate new patterns by

enlarging (Line 7), extending (Line 9) and annotating (Line11). This algorithm terminates when

mdPatSet is empty. Now, we illustrate the enlarge, extend and annotate process for HT patterns

with examples.

119

Enlarge HT Pattern

Consider theenlargementof HT patternα = [{A,D}, ∅, ∅, ∅]. We can increase the size

of α by finding length 1 frequent patterns from either numerical,interval, or time series data such

that the combination with itemset{A,D} are frequent. we observe thatα is present in instances 2,

3, 5 and 6. Hence, we limit the search to only these 4 instancesto find frequent numerical, interval,

or time series patterns of length 1 while enlarging patternα. Finding length 1 frequent pattern

from each kind of data is explained in section 5.2.1. Table 5.8(c) and Table 5.9(c) lists the new HT

patterns obtained using numerical and interval data respectively. Finally, all generated frequent HT

patterns are indexed and returned.

(a) Index

[{A,D},∅,∅,∅]
instanceid offset list
2 1,3
3 1,3
5 1,3
6 1,2

(b) DatasetDBN

Instance Id Numerical Data Class
1 (attr1,0.4),(attr2,0.6) 1
2 (attr2,0.8),(attr3,0.2) 1
3 (attr1,0.38),(attr3,0.5) 1
4 (attr2,0.5),(attr3,0.9) 1
5 (attr1,0.37),(attr3,0.6) 0
6 (attr1,0.27),(attr2,0.4) 0

(c) Candidate patterns

HT pattern set of instance ids
[{A,D},{(attr1, [0.35, 0.39])},∅,∅] {3,5}
[{A,D},{(attr1, [0.36, 0.40])},∅,∅] {3,5}
[{A,D},{(attr1, [0.25, 0.29])},∅,∅] {6}
[{A,D},{(attr2, [0.6, 1.0])},∅,∅] {2}

.

Table 5.8. Example enlargement of HT pattern : [{A,D},∅,∅,∅] using numerical data

120

(a) Index

[{A,D},∅,∅,∅]
instanceid offset list
2 1,3
3 1,3
5 1,3
6 1,2

(b) DatasetDBI

Instance Id Event List Class
1 (L,1,6),(K,4,8),(S,8,10),(T,11,12) 1
2 (L,1,5),(T,2,7),(K,3,9),(S,9,13) 1
3 (L,3,8),(T,3,9),(K,5,10),(S,10,12) 1
4 (K,2,4),(S,6,10) 1
5 (L,1,6),(K,3,8),(S,4,10) 0
6 (N,5,10) 0

(c) Candidate patterns

HT patterns set of instance ids
[{A,D},∅,{L},∅] {2,3,5}
[{A,D},∅,{K},∅] {2,3,5}
[{A,D},∅,{S},∅] {2,3,5}
[{A,D},∅,{T},∅] {2,3}
[{A,D},∅,{N},∅] {6}

Table 5.9. Example enlargement of HT pattern : [{A,D},∅,∅,∅] using third empty pattern

Extend HT Pattern

Considerextensionof HT patternα = [{A,D}, ∅, {L}, ∅]. As mentioned earlier, we

select the rightmost non-empty pattern,{L}, for extension. We observe thatα is present in instances

2, 3 and 5. Hence, we limit the search to only these 3 instancesto find extension of pattern{L}. The

first entry in the index (2,{1}) indicates that eventL is at offset 1 in instance 2′s interval data. From

datasetDBI , we notice that there are three events,T , K, andS, that appear after offset 1 in instance

2. We determineT ’s temporal relationship withL and generate [{A,D},∅,{L
Overlap[0,0,0,1,0]

−→ T},∅].

Similarly, eventsK andS are processed. Next, all entries from index are processed similarly. Table

5.10(c) lists extended patterns ofα. Finally all generated frequent HT patterns are indexed and

returned.

121

(a) Index

[{A,D},∅,{L},∅]
instanceid offset list
2 1
3 1
5 1

(b) DatasetDBI

Instance Id Event List Class
1 (L,1,6),(K,4,8),(S,8,10),(T,11,12) 1
2 (L,1,5),(T,2,7),(K,3,9),(S,9,13) 1
3 (L,3,8),(T,3,9),(K,5,10),(S,10,12) 1
4 (K,2,4),(S,6,10) 1
5 (L,1,6),(K,3,8),(S,4,10) 0
6 (N,5,10) 0

(c) Candidate patterns

HT patterns set of instance ids

[{A,D},∅,{L
Overlap[0,0,0,1,0]

−→ T},∅] {2}

[{A,D},∅,{L
Overlap[0,0,0,1,0]

−→ K},∅] {2,3,5}

[{A,D},∅,{L
Before[0,0,0,0,0]

−→ S},∅] {2,3}
... ...

Table 5.10. Example extension of HT pattern : [{A,D},∅,{L},∅]

Annotate HT Pattern

Considerannotation of HT patternα = [{A,D}, ∅, {{L
Overlap[0,0,0,1,0]

−→ K}}, ∅]. As

mentioned earlier, we select the rightmost non-empty pattern, {L
Overlap[0,0,0,1,0]

−→ K}, for annota-

tion. We observe thatα is present in instances 2, 3 and 5 and the difference between the start

times of eventsK andL is 2 in these instances. Hence, only one annotated pattern, [{A,D}, ∅,

{{L
Overlap[0,0,0,1,0](2)

−→ K}}, ∅], is generated.

Optimizations

We have devise four optimization strategies to further reduce the total number of HT

patterns to be formed.

• Optimization 1: Suppose a HT patternα = [cp,np,∅,∅] is obtained byenlarging an existing

HT pattern [cp,∅,∅,∅] using length 1 patternnp from numerical data. Let sup(np) be the

122

support of patternnp obtained while mining numerical data in the first stage. If sup(α) =

sup(np), then patternsα andnp are generated from the same set of instances. In other words,

patternα and pattern [∅,np,∅,∅] are closed patterns. Hence, we do not need to processα

further, as all heterogenous patterns that can be generatedusingα, can be generating using

[∅,np,∅,∅]. An example of this is the second pattern in Table 5.8(c). Its support is equal to

support of pattern [∅,{(attr1[0.35, 0.39])},∅,∅]. Note that,patternSetN maintains sup(np).

• Optimization 2: Suppose a HT patternα = [cp,np,∅,∅] is obtained byextendingan existing

HT patternβ = [cp,np′,∅,∅]. Let sup(np) be the support of patternnp obtained while mining

numerical data in the first stage. If sup(α) = sup(np), then patternsα andnp are generated

from the same set of instances. In other words, patternα and pattern [∅,np,∅,∅] are closed

patterns. Hence, we do not need to processα further, as all patterns that can be generated

usingα, can be generated using [∅,np,∅,∅].

• Optimization 3: This optimization is based on the observation that if no frequent HT pattern

is generated when enlarging an existing HT patternα (i.e.,enlPatSet = ∅), then any extended

or annotated patterns ofα will not generate frequent HT patterns if it is enlarged. Forexample,

let α = [{A,D}, ∅, {L}, ∅]. If no frequent pattern is generated whenα is enlarged, then

enlargement of [{A,D}, ∅, {L
Overlap[0,0,0,1,0]

−→ K}, ∅] will not generate any frequent patterns.

Thus, we will not enlarge any extended or annotated patternsof α.

• Optimization 4: This optimization is based on the observation that if annotation of pattern

involving single kinds of data does not exist in the first stage, then we do not need to annotate

its corresponding HT pattern. For example, if annotation ofpatternα1 = {L
Overlap[0,0,0,1,0]

−→

K} does not generate any pattern in the first stage, then annotation of α2 = [{A,B}, ∅, {L

123

Overlap[0,0,0,1,0]
−→ K}, ∅] will not generate any pattern in second stage. Thus, we do not annotate

patternα2.

5.3 Algorithm HTClassifier

Frequent patterns reflect strong associations between items and carry the underlying se-

mantics of the data. Thus, they are potentially useful features for classification. However, due to

explosive nature of frequent pattern mining at low support threshold, the frequent pattern-based

feature construction for classification could encounter a computational bottleneck. Thus, we design

an efficient mining strategy, called HTClassifier, which directly mines the discriminative patterns

without generating the whole set of features. HTClassifier modifies HTMiner to generate a set of

essential heterogenous patterns for classification(see Algorithm 13).

Algorithm 13 HTClassifier
Input :DB, minsup, max conf , min conf

Output : A set of essential patternsessPatSet

1: essPatSet = ∅;
2: while truedo
3: /* Find best essential pattern */
4: α = FindEssentialPattern(DB, minsup, max conf , min conf)
5: if α = φ then
6: break
7: end if
8: essPatSet = essPatSet ∪ α

9: /* Instance elimination */
10: DB = DB - DBα

11: if DB = φ then
12: break
13: end if
14: end while
15: returnessPatSet

124

Algorithm 14 FindEssentialPattern(DB, minsup, max conf , min conf)
Output : Essential patternessPat

Global variable :essPat = ∅, N = 4,patternSet = ∅

1: for p = 1 toN do
2: DBp = projected database ofDB for pth kind of data
3: [patternSetp, s] = MineEssentialSingle(DBp , minsup, max conf , min conf)
4: if s > minsup then
5: minsup = s

6: end if
7: end for
8: Remove infrequent attributes fromDB

9: MineEssentialMultiple(DB, minsup, max conf , min conf)
10: returnessPat

Givenminsup,max conf ,min conf and databaseDB, we adopt a sequential coverage

approach [61] to generate a set of essential HT patterns. At each iteration, an essential heterogenous

pattern,α, is discovered from the dataset with multiple kinds of dataDB by calling FindEssential-

Pattern (Line 4). All the instances that supportα, denoted asDBα, are eliminated fromDB (Line

10) thus reducing the size of the dataset for subsequent iterations. This process is repeated till no

essential pattern is generated (Line 6) or all instances have been eliminated (Line 12). Finally, the

set of discovered essential patternsessPatSet is returned (Line 15).

FindEssentialPattern (see Algorithm 14) is similar to HTMiner with additional optimiza-

tions. FindEssentialPattern first projects the datasetDB into the respective projected databases

based on the kinds of data that exists inDB (Line 2). It then calls MineEssentialSingle for each

projected databases. This procedure generates a set of frequent patternspatternSet along with

their support values(Line 3). It also discovers an essential pattern if any. If we find more than one

essential patterns, the pattern with the highest support isselected as an essential pattern. Its sup-

port value,s, is compared againstminsup. If s greater thanminsup, we update theminsup to s

(Lines 4-5). This allows subsequent mining to target only those patterns whose support is greater

125

thans, thus reducing the risk of overfitting in classification. By successively raising theminsup

threshold, we are able to prune off a significant number of patterns while mining remaining data.

Details of MineEssentialSingle are given in Section 5.3.1.Lines 9-11 invoke MineEssentialMultiple

to generate heterogenous patterns. Details are given in Section 5.3.2.

5.3.1 Algorithm MineEssentialSingle

Algorithm MineEssentialSingle is similar to algorithm MineSingle with additional con-

straints(Lines 8-12 and Lines 16-20) . Initially, Algorithm MineEssentialSingle (see Algorithm 15)

obtains all the frequent patterns of length 1 from the given dataset with single kind of dataDBp

(Line 2). Once the length 1 patterns for the given data has been generated, Algorithm MineEssen-

tialSingle generates a new candidate pattern by first tryingto extend an existing patternα(Line 6).

If any patternβ from the generated patternsexpPatSet is an essential pattern, we updateminsup

andessPat (Line 9). Otherwise, we putβ in frePatSet for further extension. The algorithm

also tries to annotate the existing pattern to form new patterns if it is from interval or time series

data(Line 14). If any patternβ from the generated patternsexpPatSet is an essential pattern, we

updateminsup and essPat (Line 17). Otherwise, we putβ in patSet (Line 19). The process

is repeated till no pattern is left infrePatSet. Finally, the set of generated patternspatSet and

updatedminsup are returned (Line 23). Note that,minsup is only updated if any essential pattern

is generated. The extend and annotate process are same as explained earlier.

126

Algorithm 15 MineEssentialSingle(DBp , minsup, max conf , min conf)
Output : A frequent patternspatSet, updatedminsup

1: patSet = ∅ // set of generated patterns
2: frePatSet = {length 1 frequent patterns fromDBp}
3: while frePatSet 6= ∅ do
4: Select patternα from frePatSet and remove it fromfrePatSet

5: Add α to patSet

6: extPatSet = {extendpatternα}
7: for each generated patternβ ∈ extPatSet do
8: if β is an essential patternthen
9: Set (minsup = sup(β) andessPat = β)

10: else
11: Add β to frePatSet

12: end if
13: end for
14: annPatSet = {annotatepatternα}
15: for each annotated patternβ ∈ annPatSet do
16: if β is an essential patternthen
17: Set (minsup = sup(β) andessPat = β)
18: else
19: Add β to patSet

20: end if
21: end for
22: end while
23: return{patSet, minsup}

5.3.2 Algorithm MineEssentialMultiple

Algorithm 16 starts with an initial HT patternα = [∅, ∅, ∅, ∅] (Line 1). Note that, the size

of α is 0. In line 2, weenlargeα by increasing its size by 1. This yields a set of new HT patterns

where length of non-empty pattern of each generated patternis 1. Briefly, this step generates one

HT pattern for each length 1 frequent patterns of single datakind. All generated patterns are stored

in mdPatSet(Line 2). Next, for each HT patternα in mdPatSet, we generate new patterns by

enlarging (Lines 5- 12), extending (Lines 13-20) and annotating (Lines 21-35). If the new pattern is

essential, we updateminsup andessPat, otherwise we process further. This algorithm terminates

whenmdPatSet is empty.

127

Algorithm 16 MineEssentialMultiple(DB, minsup, max conf , min conf)
1: HT patternα = [∅, ∅, ∅, ∅]
2: mdPatSet = {enlargepatternα}
3: while mdPatSet 6= ∅ do
4: Select patternα from mdPatSet and remove it frommdPatSet

5: enlPatSet = {enlargepatternα}
6: for each enlarged patternβ ∈ enlPatSet do
7: if β is an essential patternthen
8: Set (minsup = sup(β) andessPat = β)
9: else

10: Add β to mdPatSet

11: end if
12: end for
13: extPatSet = {extendpatternα}
14: for each extended patternβ ∈ extPatSet do
15: if β is an essential patternthen
16: Set (minsup = sup(β) andessPat = β)
17: else
18: Add β to mdPatSet

19: end if
20: end for
21: annPatSet = {annotatepatternα}
22: for each annotated patternβ ∈ annPatSet do
23: if β is an essential patternthen
24: Set (minsup = sup(β) andessPat = β)
25: else
26: enlPatSet = {enlargepatternβ}
27: for each enlarged patternγ ∈ enlPatSet do
28: if γ is an essential patternthen
29: Set (minsup = sup(γ) andessPat = γ)
30: else
31: Add γ to mdPatSet

32: end if
33: end for
34: end if
35: end for
36: end while

128

We devise an additional optimization strategy to further reduce the total number of can-

didate HT patterns. This optimization is based on the upper bound estimation of confidence and

is used for early termination. Given a HT patternα with |αc| number of instances that supportα

with class labelc. Let |DB| be the number of instances in a dataset DB. Ifα is frequent but not

discriminative, then it needs to be extended, enlarged or annotated only if the following conditions

are satisfied:

1. |αc| ≥ min sup ∗ |DB|, and

2. |αc|
minsup∗|DB| ≥ max conf , and

3. |αc′ |
sup(α) ≤ min conf ∀c′ 6= c

Proof: In the proof, we need to show that ifα does not satisfy the three conditions, then

any HT pattern, sayβ, that is generated by extending, enlarging or annotating from α cannot be

essential.

Case I.β is infrequent.

In this case, we are done sinceβ cannot be an essential HT pattern.

Case II.β is frequent.

Sinceβ is frequent, we havesup(β) > min sup. We know|βc| ≤ |αc| asβ is a longer pattern

thanα and |αc|
min sup∗|DB| < max conf sinceα is not essential. This implies:

conf(β) =
|βc|

sup(β)
≤

|βc|

min sup ∗ |DB|

≤
|αc|

min sup ∗ |DB|
< max conf

129

5.4 Experimental Study

We present the results of experiments to examine the efficiency of HTMiner and effec-

tiveness of the HT patterns discovered by HTClassifier for classification. Experiments are carried

out on an Intel Core Duo E6550 with 3.25GB of main memory running Windows XP Professional.

We implemented all algorithms in Visual C#. In particular, we implement four algorithms named

HTMiner, HTMiner+, HTClassifier, and HTClassifier+. Table 5.11 lists the basic algorithm with

description. Algorithms with suffix “+” incorporates the optimizations described in the respective

sections.

Algorithm Purpose
HTMiner Mining complete set of frequent patterns
HTClassifier Mining set of essential patterns

Table 5.11. Algorithm Description

We use two real world datasets, Hepatitis and Stulong, from the 2004 ECML Discovery

Challenge[1]. The Hepatitis dataset captures the data of patients with Hepatitis B or Hepatitis C.

In general, a biopsy is needed to confirm the type of hepatitis, however biopsy is both invasive

and costly. Hence, predicting the type of hepatitis based ononly laboratory results will be highly

beneficial. The Stulong dataset describes the risk factors of middle aged men that may lead to

atherosclerosis cardiovascular disease. Table 5.12 showsthe characteristics of these datasets.

Baseline Algorithm. We devise a two-phase baseline algorithm for our comparative stud-

ies. The first phase utilizes existing algorithms to mine patterns from each kind of data separately.

The second phase generates candidate HT patterns by enumerating the possible combinations of

patterns obtained in the first phase. The supports and confidences of the candidate HT patterns are

130

Data Type Characteristics DataSet
Hepatitis Stulong

DBC Avg. size of categorical item set 25 20
DBN Avg. size of numerical item set 100 40
DBI Avg. number of events 27 20
DBT Avg. number of time series 8 10

Avg. length of time series 22 12
Total Instances(Patients) 459 855
Class Distribution [HepB = 185] [non-CVD = 583]

[HepC = 275] [CVD = 272]

Table 5.12. Dataset Description

obtained by scanning the original dataset. To obtain a set ofessential patterns, we iteratively select

an essential HT pattern and remove all the instances that arecorrectly supported by the selected

pattern. The process terminates when all instances have been eliminated. Note that this baseline

algorithm generates exactly the same set of essential HT patterns as the optimized algorithms.

5.4.1 Efficiency Experiments

First, we explain the default parameters used in all experiments. We set the similarity

threshold of numerical attribute at 10% of its standard deviation, and the time lag similarity thresh-

old to 1 days. The length of a time series motif ranges from 5 to7 and its similarity threshold is

2.

Mining complete set of frequent HT patterns

Our first set of experiments compare efficiency of mining complete set of heterogenous

patterns, i.e., HTMiner, HTMiner+ and Baseline. We examinethe effect of varying the minimum

support threshold for both datasets. We observed that, HTMiner+ is efficient algorithms. As we

131

reduce minimum support threshold, the running time of all algorithms increase drastically. This is

obvious, as time complexity of frequent pattern mining algorithm is exponential. However, pro-

posed optimization and prefix based indexing enable us to discover patterns efficiently.

0.40 0.45 0.50 0.55
0

200

400

600

800

1000

minsup

ru
nt

im
e(

in
 m

in
ut

es
)

HTMiner+
HTMiner
Baseline

(a) Hepatitis Dataset

0.05 0.1 0.15 0.20
0

200

400

600

800

1000

minsup

ru
n

tim
e

(i
n

 m
in

u
te

s)

HTMiner+
HTMiner
Baseline

(b) Stulong Dataset

Figure 5.1. Effect of varyingminsup

132

Mining set of essential patterns for classification

Our second set of experiments compare efficiency of mining set of essential heterogenous

patterns. We examine the effect of the parametersmax conf andminsup on the performance of

the algorithms HTClassifier, HTClassifier+ and Baseline.

0.63 0.65 0.70 0.75 0.80 0.85 0.90 0.63 0.65
10

0

10
1

10
2

10
3

R
un

ni
ng

 T
im

e(
in

 S
ec

on
ds

)

max_conf

HTClassifier+
HTClassifier
Baseline

(a) Hepatitis Dataset

0.68 0.7 0.72 0.74 0.76 0.78 0.8

10
2

10
3

10
4

max_conf

R
un

ni
ng

 T
im

e(
in

 S
ec

on
ds

)

HTClassifier+
HTClassifier
Baseline

(b) Stulong Dataset

Figure 5.2. Effect of varyingmax conf

We first vary themax conf from 0.65 to 0.80. The defaultminsup value is 5%. Figure

5.2 presents the runtime results for both the Hepatitis and Stulong datasets. We observe that as

133

0.05 0.1 0.15 0.2
10

0

10
1

10
2

10
3

minsup

ru
nt

im
e

(in
 s

ec
on

ds
)

HTClassifier+
HTClassifier
Baseline

(a) Hepatitis Dataset

0.05 0.1 0.15 0.2
10

2

10
3

minsup

ru
nt

im
e

(in
 s

ec
on

ds
)

HTClassifier+

HTClassifier
Baseline

(b) Stulong Dataset

Figure 5.3. Effect of varyingminsup

max conf increases, the runtimes of all 3 algorithms increase. This is because there are fewer

rules whenmax conf is high but the length of each rule is longer, and mining longer patterns

requires more time. In particular, HTClassifier is at least one order of magnitude faster than the

baseline algorithm for both datasets. The optimization strategies in HTClassifier+ are effective in

reducing the runtime further.

Next, we varyminsup from 5% to 20%, and setmax conf to 0.80. Figure 5.3 presents

the results. Increasingminsup reduces the number of patterns generated and improves the runtime.

134

This behavior is observed in both datasets. The optimizations enable HTClassifier+ to outperform

HTClassifier with an average 78% reduction in search space and an average 41% improvement in

runtime on the Hepatitis dataset. Further, HTClassifier+ reduces 68% search space and 40% runtime

on the Stulong dataset.

5.4.2 Effectiveness Experiments

In this section, we demonstrate the usefulness of the discovered HT patterns by comparing

the accuracies of the classifiers built using HT patterns to the classifiers built using patterns from

single kind of data.

The HT patterns used to built the classifiers are obtained by running HTClassifier+ with

minsup = 5%, min conf = 20% andmax conf = 80%. We build three classifiers based on

HT patterns discovered. First, we create a working databaseDB′ using the discovered HT patterns.

Suppose the discovered HT patterns from a datasetDB are{α1, α2, ... ,αN}. Each instance inDB′

hasN attributes, one for each HT pattern, and a class attribute. The value of thei − th attribute of

an instance inDB′ is set to 1 if the corresponding instance inDB supportsαi for i ∈ [1, N]. The

class label of this instance inDB′ is set to the class label of the corresponding instance inDB. We

note that|DB′| = |DB|. Having obtainedDB′, we can now apply any classification method such

as decision tree (J48), support vector machine (SVM), and boosting strategy (ADTree) to learn the

rules from it. We denoteHTJ48 for the classifier built usingJ48 onDB′; HTBoost for the classifier

built using the boosted decision treeADTree onDB′; HTSVM for the classifier built usingSVM

onDB′.

We also construct 3 classifiers using only patterns from categorical data (CatJ48,CatBoost,

CatSVM); 3 classifiers using only patterns from numerical data (NumJ48,NumBoost,NumSVM),

135

3 classifiers using patterns from categorical and numericaldata ({Cat,Num}J48, {Cat,Num}Boost,

{Cat,Num}SVM); and 2 classifiers using patterns from interval data (Intervalseq, Intervaltemporal).

We use the default parameters for each classifier unless otherwise specified.

Three measures are used to evaluate the performances of the classifiers. LetP , N denote

the number of positive and negative instances respectively; TP , TN denote the number of true

positive and true negative respectively;FP , FN denote the number of false positive and false

negative respectively; andTPR, FPR denote the rate of true positive and rate of false positive

respectively.TPR determines a classifier performance on classifying positive instances correctly

among all positive samples available during the test,TP
P

. FPR defines how many incorrect positive

results occur among all negative samples available during the test,FP
N

. The three measures are:

• Accuracy =TP+TN
P+N

• Weighted F-measure (F-measure) = 2∗TP
2∗TP+FN+FP

• Area under the curve(AUC) = 0.5 + TPR−FPR
2 .

Figure 5.4 presents the 10-fold cross validation results ofthe various classifiers on the

Hepatitis and Stulong datasets respectively. We observe that the classifiers built based on HT pat-

terns significantly outperform the other classifiers in terms of accuracy, F-measure, and AUC. This

indicates that HT patterns have higher discriminative power compared to patterns involving only

single kind of data.

Next, we investigate the effects ofmax conf andminsup on the classification perfor-

mance of HT patterns (see Figure 5.5). We note that varyingminsup from 2% to 20% does not

change the classification performance of RuleClassifier andMetaClassifier. This is because the

all essential HT rules found from the Hepatitis Dataset has support values> 20%. On the other

136

Classifier Accuracy(%) F-measure AUC

HTJ48 99.56 0.99 0.99
HTBoost 99.56 0.99 0.99
HTSVM 97.82 0.97 0.97

CatJ48 59.13 0.50 0.56
CatBoost 59.78 0.49 0.59
CatSVM 60.86 0.53 0.53

NumJ48 60.65 0.52 0.60
NumBoost 61.73 0.55 0.62
NumSVM 65.00 0.57 0.57

{Cat,Num}J48 60.00 0.51 0.59
{Cat,Num}Boost 62.17 0.54 0.63
{Cat,Num}SVM 60.44 0.53 0.53

Intervalseq 76.00 0.73 0.72
Intervaltemporal 60.00 0.37 0.5

(a) Hepatitis Dataset

Classifier Accuracy(%) F-measure AUC

HTJ48 96.25 0.96 0.97
HTBoost 94.61 0.94 0.95
HTSVM 95.67 0.95 0.95

CatJ48 63.00 0.63 0.54
CatBoost 66.50 0.58 0.51
CatSVM 67.60 0.56 0.50

NumJ48 61.18 0.61 0.57
NumBoost 63.57 0.61 0.57
NumSVM 67.25 0.54 0.51

{Cat,Num}J48 63.00 0.63 0.54
{Cat,Num}Boost 66.50 0.58 0.51
{Cat,Num}SVM 67.60 0.56 0.50

Intervalseq 56.42 0.49 0.49
Intervaltemporal 67.21 0.42 0.51

(b) Stulong Dataset

Figure 5.4. Evaluation results of the classifiers

137

hand, the accuracy and F-measure of RuleClassifier and MetaClassifier peaks for lower value of

max conf . As max conf increase, these values dips slightly. This could be becausethe high

confidence HT patterns tend to overfit the data or we could not find any HT patterns that satisfy the

minsup andmax conf requirements. Note that, the reported classification performance is based

on 10 fold cross-validation.

Figure 5.6 shows the effects ofmax conf andminsup on the classification performance

of HT patterns on the Stulong Dataset. We observe that all four evaluation measures has a good

value whenmax conf = 0.80. As we increasemax conf , the performance drops. We observe that

whenmax conf is very high, we could not find good set of essential HT patterns that satisfy the

max conf requirement. In other word, there exists few training examples which are not covered

at all. Thus, the designed classifier behaves like ZeroR for those uncovered examples. Similarly,

when we varyminsup beyond0.1, the number of essential HT patterns decreases significantly

leading to a sharp drop in the classification performance of HTMiner except Accuracy. Note that,

Stulong dataset is a biased dataset and reported classification performance is based on 10 fold cross-

validation.

Figure 5.7 lists some of the essential HT patterns discovered from Hepatitis dataset along

with their supports and associated class labels. Here, CL, CHE, UN and LAP are the names of

some laboratory tests. The laboratory test results are indicated by ’N’ signifying ’Normal level’, ’L’

signifying ’Low level’, and ’H’ signifying ’High level’. For example, CLN denotes that the result

of the laboratory test CL is normal. A quick survey of medicaljournals and publications reveal that

some of the HT patterns have been noted by researchers previously, thus confirming the validity of

these patterns.

138

0.70 0.75 0.80 0.85 0.90
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

max_conf

A
cc

ur
ac

y

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(a) Effect ofmax conf on accuracy

0.70 0.75 0.80 0.85 0.90
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

max_conf

F
−

m
ea

su
re

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(b) Effect ofmax conf on F-measure

0.05 0.10 0.15 0.20 0.30 0.40
0.8

0.85

0.9

0.95

1

minsup

A
cc

ur
ac

y

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(c) Effect ofminsup on accuracy

0.05 0.10 0.15 0.20 0.30 0.40
0.8

0.85

0.9

0.95

1

minsup

F
−

m
ea

su
re

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(d) Effect ofminsup on F-measure

Figure 5.5. Evaluation of classifiers on Hepatitis dataset

139

0.70 0.75 0.80 0.85 0.90
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

max_conf

A
cc

ur
ac

y

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(a) Effect ofmax conf on accuracy

0.70 0.75 0.80 0.85 0.90
0.4

0.5

0.6

0.7

0.8

0.9

1

max_conf

F
−

m
ea

su
re

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(b) Effect ofmax conf on F-measure

0.02 0.05 0.07 0.10 0.12 0.15
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

minsup

A
cc

ur
ac

y

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(c) Effect ofminsup on accuracy

0.02 0.05 0.07 0.10 0.12 0.15
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

minsup

F
−

m
ea

su
re

HT
J48

HT
ADTree

HT
SVM

RuleClassifier

(d) Effect ofminsup on F-measure

Figure 5.6. Evaluation of classifiers on Stulong dataset

140

HT patterns Class Support Confidence

1 α = [{CL N,CHE N}, ∅, {UN N
Equal[0,0,0,0,0]
−→ LAP N}, ∅] HepC 32.60% 90%

2 α = [{ZTT N,CL N}, ∅, {T-BIL N
Equal[0,0,0,0,0]
−→ UN N}, ∅] HepB 21.7% 90%

3 α = [{ALP L,GPT H},∅, ∅, ∅] HepB 6% 90%
4 α = [{Male}, ∅, {D-BIL H}, ∅] HepB 4% 90%

Figure 5.7. Example of HT patterns discovered from Hepatitis dataset

Figure 5.8 lists some interesting HT patterns discovered from the Stulong dataset. The

first pattern indicates that a patient who complains chest pain over a period of time1 has a higher

risk of getting CVD. The third pattern states that a patient exercises regularly without shortness of

breath has a lower risk of cardiovascular disease even if he has a history of high blood cholesterol

and is a smoker. This confirms the usefulness of physical activity2.

HT patterns Class Support Confidence
1 α = [∅,{ChestPain},∅,∅] CVD 14.60% 93%
2 α = [{∅},{(MaxCigarettes,[1,3]),(AvgCigarettes,[0.60,1.1])}, non-CVD 8% 81%

{{NoChestPain
F inish By[0,1,0,0,0]

−→ NoDyspnea}},{∅}]

3 α = [{HighBloodCholesterol}, ∅, {ModestActivity
F inish By[0,1,0,0,0]

−→ non-CVD 7% 80%

NoChangeInSmoking
F inish By[0,2,0,0,0]

−→ NoDyspnea},∅]

Figure 5.8. Example HT patterns discovered from Stulong dataset

Exploration Order

In HTClassifier, we explore the search space in the followingorder: categorical data,

followed by numerical data, then interval data, and finally time series data (i.e., C→ N→ I → T).

This set of experiments investigates if changing the order of exploration will result in a significant

difference in the performances of the resulting classifiers. Figure 5.9 presents the results of 10 fold

1http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502238/
2http://www.americanheart.org/presenter.jhtml?identifier=4726

141

cross-validation for the classifiers using the default parameters. We observe that the exploration

order has minimal effect on the classifier performances.

Order Acc(%) F-measure AUC
C→ N→ I → T 99.56 0.99 0.99

HTJ48 I → C→ N→ T 98.91 0.98 0.99
N→ C→ I → T 97.39 0.97 0.98
C→ N→ I → T 99.56 0.99 0.99

HTBoost I → C→ N→ T 92.60 0.92 0.97
N→ C→ I → T 94.78 0.94 0.98
C→ N→ I → T 97.82 0.97 0.97

HTSVM I → C→ N→ T 97.17 0.97 0.97
N→ C→ I → T 95.65 0.95 0.94

(a) Hepatitis Dataset

Order Acc(%) F-measure AUC
C→ N→ I → T 96.25 0.96 0.97

HTJ48 I → C→ N→ T 96.37 0.96 0.95
N→ C→ I → T 95.90 0.96 0.95
C→ N→ I → T 94.61 0.94 0.95

HTBoost I → C→ N→ T 94.15 0.94 0.91
N→ C→ I → T 93.68 0.93 0.91
C→ N→ I → T 95.67 0.95 0.95

HTSVM I → C→ N→ T 95.67 0.95 0.95
N→ C→ I → T 95.20 0.95 0.95

(b) Stulong Dataset

Figure 5.9. Effect of exploration order on classifiers’ performances.

5.5 Summary

In this chapter, we have addressed the problem of mining patterns from datasets with dif-

ferent kinds of data. We introduced the notion of an heterogenous pattern to capture the association

among patterns discovered from different kinds of data. Ourcontributions are:

142

1. We present an algorithm named HTMiner to mine complete setof frequent patterns from

datasets with multiple kinds of data. HTMiner employs four optimizations and prefix based

indexing techniques to enhance the efficiency.

2. We also present an algorithm named HTClassifier to mine essential set of discriminative pat-

terns from dataset with multiple kinds of data for classification. HTClassifier utilizes sequen-

tial coverage based approach to mine a set of discriminativepatterns for classification. We

build a classifier using discovered patterns.

3. We extend the existing prefix based pattern growth approach for mining interval data. Further,

the extended algorithm can mine temporal patterns and time lag temporal patterns together.

4. We validate the algorithm on real world datasets. Our experimental results show that the pro-

posed approach is efficient. We also discover previously unknown patterns from the hepatitis

and stulong datasets. Further, we show the usefulness of HT patterns discovered from both

datasets by constructing a classifier and improving the classification accuracy.

In future, we would like to devise an incremental HTClassifier as data under consideration

are updated regularly.

143

144

Chapter 6

Conclusions and Future Work

In this thesis, we investigated issues related to mining a specific class of datasets where

the record contains observation from categorical, numerical, interval and time series data. For

efficient realizations, we argued that algorithmic optimizations are essential to obtain efficiency that

is commensurate with the data complexity. We designed novelalgorithms and heuristics for the

following three problems - mining temporal patterns from interval data; mining lag patterns from

time series data; and developing a unified algorithm for analyzing dataset with multiple kinds of

data. In addition to devising new algorithms, we also showedthe usefulness of discovered patterns

by applying them in real world applications.

In terms of novel pattern mining algorithms, we made the following contributions:

• We examined the problem of mining relationships among interval-based events. We aug-

mented existing hierarchical representation with additional count information to make the rep-

resentation lossless. Based on this new representation, wedeveloped an Apriori-based IEM-

iner algorithm to mine frequent temporal patterns from interval-based events. We designed

an efficient support counting procedure. The performance ofIEMiner is further improved by

145

employing an event list blacklisting strategy and a prefix counting strategy. Experiments on

synthetic data sets and real world datasets demonstrated the efficiency and scalability of our

proposed approach. Beyond this, we designed the first interval-based classifier, IEClassifier

to improve the predictive accuracy of closely related classes. Experiment results on the Hep-

atitis and Stulong datasets showed that IEClassifier outperforms traditional classifiers such as

C4.5, CBA, and SVM.

• Next, we mined lag patterns from time series data. Our proposed approach extracted the

repeated subsequences of various lengths from each time series entity. We used orderline

concept and subsequence matching property to fulfil this requirement. Next, we described

algorithm LPMiner that utilized inverted lists and variousoptimization strategies to improve

runtime efficiency. Our experimental results demonstratedthat the proposed approach is scal-

able and meaningful patterns can be discovered from stock dataset, stulong dataset and hep-

atitis dataset.

• We motivated mining patterns from datasets with multiple kinds of data. We introduced the

notion of an heterogenous pattern to capture the association among patterns discovered from

different kinds of data. We described two efficient algorithms named HTMiner and HTClas-

sifier. Our algorithms employ a prefix based indexing method with optimization strategies

to achieve good scalability with a reduction of search spacecompared to non-optimized al-

gorithms. Experiments on two real world datasets indicatedthat the classifier built based on

heterogenous patterns easily outperforms classifiers thatwas built using only patterns involv-

ing single kind of data.

146

6.1 Future Research Directions

There are several promising directions in which one can extend the work presented in this

thesis. Applications that produce and process more complexdata types such as graph data and image

data are ubiquitous. Examples include social networks, retina dataset, bioinformatics, communica-

tion networks, world wide web, to name a few. A promising direction to extend our framework is

to incorporate more complex data types. Further, in such applications, data is incremental. Hence,

incremental learning methods can be designed to enhance theefficiency.

Pattern mining in spatio-temporal dataset assumes that spatial events are instantaneous

and discover frequent sequential pattern such as{low temperature→ high percepitation→ · · · }

in near by region. However, many real world spatial events have duration. For example, forest fire

in west Indonesia’s jungle lasts 10 days. With the help of event duration, we can discover well

known Allen’s temporal relation among nearby spatial events and further leverage the discovered

temporal relations in identifying cause and effect relation. Recently, many spatio-temporal database

designers realize the usefulness of event duration in explaining many real world phenomena and

thus have extended their frameworks to record event duration. With the growing demand of such

dataset, we need a data mining approach which considers duration of spatial event and discovers

temporal pattern. Note that, this dataset is dynamic hence we also need an algorithm which can

works an incremental fashion.

147

148

Bibliography

[1] Ecml knowledge discovery challenege.PKDD, 2004.

[2] Casas smart home project - http://ailab.eecs.wsu.edu/casas/, 2009.

[3] Informs data mining contest, 2009.

[4] Drug safety: Observational medical outcomes partnership challenge, 2010.

[5] Y. Sheikh A. Hakeem and M. Shah. A hierarchical event representation for the analysis of

videos.AAAI, 2004.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of

high dimensional data for data mining applications.SIGMOD, pages 94–105, 1998.

[7] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective.

Special Issue on Learning and Discovery in Knowledge-BasedDatabases, pages 914–925,

1993.

[8] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in

large databases.SIGMOD, pages 207–216, 1993.

[9] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.VLDB, pages 487–

499, 1994.

149

[10] R. Agrawal and R. Srikant. Mining sequential patterns.ICDE, pages 3–14, 1995.

[11] R. Agrawal and R. Srikant. Mining sequential patterns:Generalizations and performance

improvements.EDBT, pages 3–17, 1996.

[12] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11),

1983.

[13] C. Antunes and A. L. Oliveira. Discovery of temporal patterns - learning rules about the

qualitative behaviour of time series.European Conference on Principles and Practice of

Knowledge Discovery in Databases, pages 192–203, 2001.

[14] C. Antunes and A. L. Oliveira. Generalization of pattern-growth methods for sequential

pattern mining with gap constraints.Lecture Notes in Computer Science, pages 239–251,

2003.

[15] M. Atallah. Detection of sets of episodes in event sequences: Algorithms, analysis and

experiments.Thesis, 2003.

[16] J. Augusto. Temporal reasoning for decision support inmedicine, 2005.

[17] Yonatan Aumann and Yehuda Lindell. A statistical theory for quantitative association rules.

Intelligent Information Systems, pages 261–270, 1999.

[18] C. bettini, X. Wang, and S. Jajodia. Testing complex temporal relationships involving multi-

ple granularity and its application to data mining.PODS, 1996.

150

[19] C. Borgelt. An implementation of the fp-growth algorithm. Proceedings of the 1st inter-

national workshop on open source data mining: frequent pattern mining implementations,

pages 1 – 5, 2005.

[20] S. Brin, R. Motwani, and J. D. Ullman. Dynamic itemset counting and implication rules.

http://infolab.stanford.edu/ sergey/dic.html.

[21] G. Chen, X. Ma, D. Yang, S. Tang, and M. Shuai. A bipartitegraph framework for sum-

marizing high dimensional binary categorical and numerical data. SSDBM, pages 580–597,

2009.

[22] J. Chen. Data differentiation and parameter analysis of a chronic hepatitis b database with an

artificial neuromolecular system.Biosystems, pages 23–36, 2000.

[23] M.-S. Chen, J. Han, , and P.S. Yu. Data mining: An overview from a database perspective.

TKDE, pages 866–883, 1996.

[24] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern mining for effective

classification.ICDE, pages 169–178, 2008.

[25] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs.SIGKDD,

2003.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.Introduction

to Algorithms, Second Edition. The MIT Press, September 2001.

[27] C.L. Isbell D. Minnen, I. Essa and T. Starner. Detectingsubdimensional motifs: An efficient

algorithm for generalized multivariate pattern discovery. ICDM, 2007.

151

[28] G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth.Rule discovery from time series.

SIGKDD, pages 16–22, 1998.

[29] Luc Dehaspe. Ruse-warmr: Rule selection for classifierinduction in multi-relational data-set.

ICTAI, pages 10–16, 2008.

[30] A. Denton. Density-based clustering of time series subsequences.Mining Temporal and

Sequential Data, 2004.

[31] T. G. Dietterich and R. S. Michalski. Discovering patterns in sequences of events.Artificial

Intelligence, pages 187–232, 1985.

[32] K. Eamonn and L. Jessica. Clustering of time-series subsequences is meaningless : implica-

tions for previous and future research.Knowledge and information systems, 8(2):154–177,

2005.

[33] G Baselli et al. Causal relationship between heart rateand arterial blood pressure variability

signals.Medical and Biological Engineering and Computing, 26(4):374–378, 1987.

[34] C. Faloutsos. Fastmap: a fast algorithm for indexing, data-mining and visualization of tradi-

tional and multimedia datasets.SIGMOD, pages 163–174, 1995.

[35] W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu,and O. Verscheure. Direct

mining of discriminative and essential graphical and itemset features via model-based search

tree.SIGKDD, 2008.

[36] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining with regular

expression constraints.VLDBJ, pages 223–234, 1999.

152

[37] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Mining sequences with temporal anno-

tations.SAC, pages 593–597, 2006.

[38] D. Goldin, R. Mardales, and G. Nagy. In search of meaningfor time series subsequence

clustering: Matching algorithms based on a new distance measure.CIKM, 2006.

[39] G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using fp-trees.TKDE,

pages 1347–1362, 2005.

[40] AJF Griffiths, SR Wessler, RC Lewontin, WM Gelbart, DT Suzuki, and JH Miller. Introduc-

tion to genetic analysis.W.H. Freeman and Co, 8th, 2005.

[41] H. Grosskreutz and S. Ruping. On subgroup discovery in numerical domains.ECML, 2009.

[42] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan: Frequent

pattern-projected sequential pattern mining.SIGKDD, pages 355–359, 2000.

[43] Jiawei Han. How can data mining help bio-data analysis.SIGKDD, 2002.

[44] Jiawei Han and Micheline Kamber.Data Mining: Concepts and Techniques. Morgan Kauf-

mann, September 2000.

[45] F. Hoopner. Discovery of temporal patterns. learning rules about the qualitative behaviour of

time series.PKDD, pages 192–203, 2001.

[46] P.S. Kam and A.W.C. Fu. Discovering temporal patterns for interval-based events.Int. Conf.

Data Warehousing and Knowledge Discovery, pages 317–326, 2000.

[47] E. Keogh. Time series data mining tutorial.Person Communication, 2006.

153

[48] N. Lavrac, P. Flach, B. Kavsek, and L. Todorovski. Adapting classification rule induction to

subgroup discovery.ICDM, pages 266–273, 2002.

[49] J. Lee, Y. Lee, B Hun H, and K Ryu. Discovering temporal relation rules from interval data.

Lecture Notes in Computer Science, pages 57–66, 2002.

[50] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series.Proceedings of the

Second Workshop on Temporal Data Mining, 2002.

[51] B. Liu, W. Hsu, and Y. Ma. Integrating classification andassociation rule mining.SIGKDD,

pages 80–86, 1998.

[52] W.P.D. LOGAN. Mortality in the london fog incident.Lancet, i:336–338, 2005.

[53] W. Loh, S. Kim, and K. Whang. A subsequence matching algorithm that supports normal-

ization transform in time-series databases.DMKD, pages 5–28, 2004.

[54] H. Mannila, H. Toivonen, and I. Verkamo. Discovery of frequent episodes in event sequences.

ICDE, pages 210–215, 1995.

[55] T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Beam-wise graph-based induction: Min-

ing patterns from structured data by.Discovery Science, pages 422–429, 2002.

[56] F. Michael, D. Phillip, and R. Deb. Mining temporal patterns of movement for video content

classification pages.Proceedings of the eighth ACM Int. Workshop on Multimedia Informa-

tion Retrieval, pages 183 – 192, 2006.

[57] D. Minnen, C.L. Isbell, I. Essa, and T. Starner. Discovering multivariate motifs using subse-

quence density estimation and greedy mixture learning.AAAI, 2007.

154

[58] D. Minnen, T. Starner, I. Essa, and C. Isbell. Activity discovery: Sparse motifs from multi-

variate time series.Snowbird Learning Workshop, 2006.

[59] D. Minnen, T. Starner, I. Essa, and C. Isbell. Discovering characteristic actions from on-body

sensor data.Int. Symp. on Wearable Computing (ISWC), 2006.

[60] D. Minnen, T. Starner, I. Essa, and C. Isbell. Improvingactivity discovery with automatic

neighborhood estimation.Int. Joint Conf. on Artificial Intelligence, 2007.

[61] T. M. Mitchell. Machine learning.McGraw Hill, 1997.

[62] F. Moerchen. Algorithms for time series knowledge mining. SIGKDD, pages 668 – 673,

2006.

[63] A. Mueen, E. Keogh, and N. Bigdely-Shamlo. A disk-awarealgorithm for time series motif

discovery.ICDM, 2009.

[64] A. Mueen, E. Keogh, Q. Zhu, and S. Cash. Exact discovery of time series motifs.SDM,

2009.

[65] E. Muller, I. Assent, and T. Seidi. Hsm: Heterogeneous subspace mining in high dimensional

data.SSDBM, pages 497–516, 2009.

[66] R Nevatia, T. Zhao, and S. Hongeng. Hierarchical language-based representation of events

in video streams.IEEE Workshop on Event Mining, 2003.

[67] S. Nijssen, T. Guns, and L. D. Raedt. Correlated itemsetmining in roc space: a constraint

programming approach.SIGKDD, pages 647–656, 2009.

155

[68] T. Oates. Peruse: An unsupervised algorithm for findingrecurring patterns in time series.

ICDM, pages 330 – 337, 2002.

[69] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-

series.VLDB, pages 697–708, 2005.

[70] S. Papadimitriou, J. Sun, and P.S.Yu. Local correlation tracking in time series.ICDM, pages

456 – 465, 2006.

[71] P. Papapetrou, G. Kollios, and S. Sclaroff. Fluent learning: elucidating the structure of

episodes.In Proc. IDA, pages 268–277, 2001.

[72] P. Papapetrou, G. Kollios, and S. Sclaroff. Discovering frequent arrangements of temporal

intervals. ICDM, 2005.

[73] D. Patel, Wynne Hsu, and Lee Mong Li. Mining multiple kinds of data for effective classifi-

cation.Submitted to SIGKDD for Review, 2011.

[74] D. Patel, Wynne Hsu, Lee Mong Li, and Srinivasan Parthasarathy. Lag patterns in time series

databases.DEXA, 2010.

[75] Dhaval Patel, Wynne Hsu, and Lee Mong Li. Mining relationships among interval-based

events for classification.SIGMOD, 2008.

[76] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithmfor mining frequent closed itemsets.

SDM, pages 21–30, 2000.

156

[77] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Prefixspan:

mining sequential patterns efficiently by prefix-projectedpattern growth.ICDE, pages 215–

224, 2001.

[78] K. A. Peker. Subsequence time series (sts) clustering techniques for meaningful pattern

discovery.Integration of Knowledge Intensive Multi-Agent Systems, pages 360–365, 2005.

[79] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. Multi-dimensional sequential

pattern mining.CIKM, pages 81–88, 2001.

[80] M. Plantevit, Y.W. Choong, A. Laurent, D. Laurent, and M. Teisseire. M2sp: Mining sequen-

tial patterns among several dimensions.PKDD, pages 205–216, 2005.

[81] J. F. Roddick, K. Hornsby, and M. Spiliopoulou. Temporal, spatial and

spatio-temporal data mining and knowledge discovery research bibliography.

http://kdm.first.flinders.edu.au/IDM/STDMBib.html.

[82] R. Ronkainen. Attribute similarity and event sequencesimilarity in data mining. Thesis,

University of Helsinki, 1998.

[83] L. Sabra, J. Anne, and P. Andrew. The xs and y of immune responses to viral vaccines.The

Latent Infectious Disesases, pages 338–349, 2010.

[84] Y Sakurai, S Papadimitriou, and C Faloutsos. Braid: Stream mining through group lag

correlations.SIGMOD, 2005.

[85] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah. Viper: A vertical

approach to mining association rules.SIGMOD, 2000.

157

[86] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables.

SIGMOD, pages 1–12, 1996.

[87] R. Srikant and R. Agrawal. Mining sequential patterns:Generalizations and performance

improvements.EDBT, 1996.

[88] A. Vahdatpour, N. Amini, and M. Sarrafzadeh. Toward unsupervised activity discovery using

multi-dimensional motif detection in time series.IJCAI, 2009.

[89] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences, 2003.

[90] Geoffrey Webb. Discovering associations with numericvariables.SIGKDD, pages 383–388,

2001.

[91] I. H. Witten and E. Frank. Data mining: Practical machine learning tools and techniques.

Morgan Kaufmann, 2005.

[92] Di Wu, G. Fung, J. Xu Yu, and Z. Liu. Mining multiple time series co-movements.APWeb,

pages 572–583, 2008.

[93] S. Wu and Y. Chen. Mining nonambiguous temporal patterns for interval-based events.

TKDE, pages 742–758, 2007.

[94] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search.

SIGMOD, pages 433–444, 2008.

[95] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large datasets.

PKDD, pages 166–177, 2003.

158

[96] G. Yang. The complexity of mining maximal frequent itemsets and maximal frequent pat-

terns.SIGKDD, 2004.

[97] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detecting time series motifs under

uniform scaling.SIGKDD, pages 844–853, 2007.

[98] X. Yin, J. Han, J. Yang, and P. S. Yu. Efficient classification across multiple database rela-

tions: A crossmine approach.TKDE, 18(6):770–783, 2006.

[99] T. Yoshiki, I. Kazuhisa, and U. Kuniaki. Discovery of time-series motif from multi-

dimensional data based on mdl principle.Machine Learning, 58(2-3):269–300, 2005.

[100] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm for closed itemset mining.SIGKDD,

pages 457–473, 2002.

[101] M.J. Zaki. Spade: An efficient algorithm for mining frequent sequences.Machine Learning

J., pages 31–60, 2001.

[102] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data streams in real

time. VLDB, 2002.

159

	EFFICIENT ANALYSIS OF DATASET WITH
	phd_thesis

