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Abstract 

Wave breaking, a common occurrence in the oceans, plays an important role in air-sea inter-

actions including the transfer of energy and mass across the air-sea interface, turbulent mix-

ing in the surface layer of the ocean, and ambient noise generated during breaking. It is a 

highly non-linear, intermittent three-dimensional phenomenon involving two-phase flows and 

turbulent mixing. Despite numerous studies in the past, there is still a need for a deeper un-

derstanding of the wave breaking process. Due to the complexity of the breaking process, 

studies of wave breaking (both experimental and numerical) are limited by the methodologies 

available and there remain significant gaps in fully understanding the mechanics of wave 

breaking. In this thesis, a detailed numerical study of wave breaking has been carried to ex-

amine the local physics of the wave plunging process, with an emphasis on the mechanics of 

the plunging jet, air entrapment, subsequent breakdown of the entrapped air, vertical sprays 

and turbulent mixing.  

An enhanced Smoothed Particle Hydrodynamics (SPH) methodology has been developed for 

the numerical study. The key controlling parameters of the SPH model are carefully selected 

through calibration and sensitivity studies to minimize errors at the air-water interface. At the 

solid boundaries, an enhanced “ghost particle” method is developed to improve the consis-

tency of the flow field near the boundaries. Within the fluid domains, flow regularization 

techniques including the velocity correction and the 1st order density re-initialization are ap-

plied. These methods are modified to account for large differences in the density and pressure 

gradient across the air-water interface and the conservation of momentum. The SPH code is 

also coded to run in a parallel computing cluster, hence increasing the computational speed 

and resolution. As the simulation is still compute-intense, even with parallel computation, a 

multi-scale nesting approach is also developed to reduce the overall computational cost.  
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The developed SPH code is validated through well-known benchmarks including water slosh-

ing, dame break with impact on vertical wall and rising bubble in a water column. The code 

is also calibrated through sensitivity studies of sinusoidal wave propagation in long water 

flume and modulation and focusing of a wave packet. A horizontal moving wave paddle is 

modelled in the SPH code to simulate the actual wave generation processes.  

Verification studies showed that the enhanced SPH model is able to simulate complex wave 

breaking adequately.  An experimentally simulated plunging wave (Kway 2000), generated 

through wave-wave interactions, is simulated in this study and this forms the basis for the de-

tailed studies of the wave plunging process. Both the air and water layers are modelled in the 

simulation, hence permitting a more accurate description of the air-water interaction.  The 

study has been conducted with very high temporal and spatial resolutions.  This is necessary 

in order to pick up the finer details that have been observed in the experiments but not cap-

tured in the past numerical simulations.  

The numerical results of the 2D plunging wave in deep water obtained in this study compare 

well with the experimental results of Kway (2000).  These include details of the plunging jet, 

jet impingement, air entrapment, disturbances on the surface of the entrapped air tube, for-

ward splash, vertical jet ahead of the plunging jet, upward water sprays, collapse of the en-

trapped air tube and bubble generation in the water column. The numerical results have also 

helped to elucidate finer details of the wave breaking process. These include the bifurcation 

of the flow field relative to the crest velocity, especially on the wave front near the crest, cir-

culations coupled to the air entrapment process, the air tube “rolling” forward, vertical jet col-

lapsing in conjunction with air “squirting” out from the entrapped air pocket generating the 

characteristic vertical water spray, distributions of pressure, acceleration and vorticity in the 

vicinity of the plunging crest, and the dissipation of wave energy associated with the plung-

ing.  
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Chapter 1. Introduction 
 

 

1.1 Background and motivation of the study 

The breaking of surface waves is a common occurrence in the oceans. Generally, surface 

wave breaking is defined as the irreversible transformation from irrotational to rotational mo-

tion, generating air bubbles, vorticity and turbulence in the water column. Wave breaking 

may occur at any water depth as a random, intermittent and highly unsteady process. Theo-

retically, a wave would remain stable only if the water particle velocity at the crest is less 

than the wave celerity or phase velocity (Stokes, 1880). If the wave height is to become so 

large that the water particle velocity at the crest exceeds the wave celerity, the wave would 

become unstable and break.  

In the ocean, the wave length (or height) of breaking waves can range from millimeters for 

capillary-gravity waves to meters for gravity waves. Large breaking waves of tens of meter in 

height usually occur in shallow water under storm conditions. Large waves can also build up 

and break in relatively calm and deep waters due to energy concentration over in both space 

and time, enhanced by the nonlinearity (Brandini and Grilli, 2000). The concentration of 

wave energy could be the result of transformation processes such as wave-current interaction, 

modulation instability, effect of bottom topography (shoals, ridges, refraction), and direc-

tional focusing (superposition of different wave components with different frequencies, 

phases, directions). 
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Wave breaking plays an important role in the air-sea-structure interactions. It dissipates a 

large amount of the wave energy and limits the height of ocean wave. The energy lost in the 

breaking process at deep water is mainly transferred into surface current and turbulence in the 

water column. Energy is also transferred to the air through the air-sea interactions at the inter-

face. The turbulence generated during wave breaking is responsible for the strong mixing in 

the surface layer of the ocean, down to the depth of an order of one wave height. Near the 

shore, the generated current and turbulence are among the main driving forces for the sedi-

ment erosion and transport.  

Wave breaking generates air bubbles and entrains them into the water body. The dynamics of 

the entrained air significantly influences the turbulence intensity that in turn affects the en-

ergy dissipation and other turbulence related processes. Sprays of water droplets and the dis-

engagement of tiny water particles which are subsequently transported away by wind, on the 

other hand, are crucial factors in far-field transport of pollutant. Air bubbles also contribute to 

the ambient noise generated during the breaking process. 

Given its significant role in oceanic processes and air-sea interactions, there is clearly a need 

for a deep understanding of the wave breaking process. Wave breaking, however, is a highly 

non-linear, intermittent three-dimensional phenomenon which involves two-phase flows and 

strong turbulences and “white-caps”. Due to the complexity of the breaking process, studies 

of wave breaking (both experimental and numerical) are still limited by inability to quantity 

specific near-field details of the breaking and mixing. Despite numerous studies already pur-

sued in the past, there remain many gaps in the understanding the phenomenon. 

In this thesis, we have chosen to conduct a numerical study of the wave plunging process, an 

extreme wave breaking process that includes jet formation, air entrainment, sprays and turbu-
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lent mixing.  A novel numerical method and advance computing technique are developed to 

reach quantify the complex process and to gain further insights on the breaking phenomenon.  

1.2 Reviews of wave breaking study 

The wave breaking phenomenon covers a wide range of scales and intensities, from small and 

gentle spilling waves to large and violent plunging waves. Commonly, breaking waves have 

been classified into four different types based on the physical changes of the surface profile 

during the breaking process. These four types are named spilling, plunging, collapsing, and 

surging. There is no distinct quantitative criterion to distinguish the breaker types. Instead, 

they are often progressing from one type to the next in the above order. Some descriptions of 

these breaker types are as follows: 

• Spilling breaker: the white foam, consisting of turbulent air-water mixing, appears at 

the wave crest and spills down the front face of the propagating wave. The turbulence 

is uniformly dissipating wave energy, resulting in a continual decrease in the wave 

height. 

• Plunging breaker: the front face of the wave steepens and overturns. A plunging jet 

ejects from the wave crest and splashes near the base of the wave. The energy dissipa-

tion is more confined than for a spilling breaker. The plunging jet impingement may 

regenerate smaller more irregular waves that propagate forward. 

• Collapsing breaker: the front face of the wave steepens at incipient breaking, the 

lower portion of the face plunges forward and the wave collapses. The collapsing 

breaker is an intermediate form between the plunging and surging. 

• Surging breaker: the crest of the steepening wave remains unbroken and advances up 

the beach slope and retreats. 
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Waves break in the ocean usually in the form of spilling and plunging breakers in both deep 

and shallow water, but most common in shallow water. Collapsing and surging breakers 

however only occur in shallow water. In deep water, spilling breakers are most common and 

the “white-capping” occurs if accompanied with strong wind. Extreme plunging waves with 

heights of tens of meters were observed in deep water and reported as “freak” or “rogue” 

waves. 

Many studies of wave breaking have been focusing on the plunging breakers since they are 

the most powerful, generate more violent fragmentation of water, generate more turbulence, 

trap a larger amount of air and create much greater air entrainment than other types. In shal-

low water, turbulence and strong current generated by plunging breakers are the main driving 

forces behind the beach erosion.  

Typical plunging breakers in the nature are shown in Figure 1.1. Plunging breakers are classi-

cally characterized by a visible curling over of a steepened wave crest with an inner core and 

falling jet impacting on the front water surface. The general process involved in the wave 

steepening and subsequence breaking of plunging wave has been described in details by nu-

merous authors through field observations, laboratory experiments (Galvin, 1968; Longuet-

Higgins, 1982; Peregrine, 1983; Rapp, 1986; Bonmarin, 1989; Chanson and Lee, 1997; Li, 

2000; Kway, 2000; Chanson et al., 2002; Li and Raichlen, 2003) and numerical simulations 

(Longuet-Higgins and Cokelet, 1976; Cokelet, 1979; Peregrine et al., 1980; Grilli et al., 1997; 

Chen et al., 1999; Lubin et al., 2003; Colagrossi and Landrini, 2003; Gotoh et al., 2005). 
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Figure 1.1. Breaking of plunging waves in the nature. Left: side view; Right: front view. 

1.2.1 Experimental studies of plunging breaking waves 

Among the first to study the evolution shape of the breaking wave, Galvin (1968) presented 

the classification of breaker types based on their appearance. The overturning motion of the 

plunging breakers was later reported in the theoretical studies of Longuet-Higgins (1982), 

New (1983), where analytical solutions to characterize the shape of front face of the overturn-

ing wave were suggested. A more realistic mathematical solution to describe the front, loop, 

jet and rear face of the wave was suggested by Greenhow (1983). These formulations are lim-

ited to the stage of jet formation and development.  

More recently, innovative high-speed photography and videography technologies were used 

to capture entire evolution of a plunging breaker from different view angles. These photo-

graphs and videos allowed detail two- and three-dimensional analyses of the plunging break-

ers to be performed. At certain angles, the “white-cap” effect of air-bubbles is greatly reduced 

which allows us to observe clearly the internal structures of the wave breaking and gives bet-

ter description of the complex flow field.  

Typical photos of plunging breakers in shallow water and deep water are shown in Figure 1.2  

and Figure 1.3. In both cases, the breaking begins with the curling of the steepened crest. Due 
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to a quicker propagation of the upper part of the wave and the gravity, the crest overturns cre-

ating a sharp plunging jet that impinges upon the front water surface. New et al. (1985) exam-

ined the velocities and accelerations of particles in the free surface of periodic overturning 

waves on finite (shallow) depth and observed maximum horizontal velocities almost twice 

the linear phase speed and maximum accelerations up to six times that of gravity. Upon im-

pingement, the jet reconnection with the front face of the wave gives rise to two important 

processes which were clearly observed from experiments: the generation of a splash-up cycle 

and the air entrainment process from formation through collapse of an air tube.  

 

 

Figure 1.2. Side view of a breaking sequence of a solitary wave on a plane slope. Wave height is 
much larger than water depth at the breaking point. Very strong vertical jet is generated. Pho-

tographs from Li (2000). 

 

Vertical jet

Splash-up 
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Figure 1.3. Breaking of a solitary wave over a flat bed showing curling over and impact on front 
water of plunging tip and the circulation of the plunging jet (blue), and the splash-up and verti-

cal jet (red). Photographs from Miller (1976). 

In the splashing process, where the plunging jet penetrates the front water surface, a large 

amount of the water in the front is pushed up by the plunging jet to form a jet of water, called 

splash-up in Miller (1976). This splash-up, which looks like a vertical jet, can rise higher than 

the preceding wave. The front part of the vertical jet creates a second plunging jet which, in 

turn, impinges on the front water surface and creates another splash-up down-stream. These 

Vertical jet

Splash-up
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sequences of the splash-up were first described in Miller (1976). Unlike the first sharp plung-

ing jet, these subsequent splash-up consist of fragmented water and entrained air.  

The mechanics of the splash-up formation including the penetration of the plunging jet into 

the wave front and the composition of the emerging water mass ahead of the wave front are 

still poorly understood. Reviews of shallow plunging breaker in Peregrine (1983) proposed 

three schemes of splash-up occurrences (see Figure 1.4). In scheme (a) the plunging jet is to-

tally reflected from the free surface and generates the splash-up. Scheme (b) suggests that the 

plunging jet totally penetrates into the water and the splash-up consists of water from the base 

in the front being pushed by the plunging jet. The last scheme is an intermediate between (a) 

and (b) where water from both the plunging jet and the base compose the splash-up. In all 

schemes, the plunging jet does not penetrate deeply into the water. There could be a similar-

ity in deep-water plunging breaker. Discussions in Bonmarin (1989) based on snapshots of 

deep water breaking waves suggested that all three schemes could occur. The location of 

plunging jet impact with the front surface is always above the still water level and the angle 

of the plunging jet with the front surface is about 31 degrees (Chanson and Lee, 1997).  

 

Figure 1.4. Possible modes of splash-up generation by Peregrine (1983). Water in and from the 
plunging jet is shaded. 

In the air entrainment process, when the plunging jet is penetrating the front water surface, it 

closes over the air beneath it to form a tube of air with circulation motion due to the friction 
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at the contact surface with the surrounding water (see Figure 1.5, where the camera was posi-

tioned behind the wave and below the water surface). The formation of the air tube and the 

circulation motion were also described in Peregrine (1983). During the early stages, the sur-

face of the air tube is relative smooth except some disturbances near the contact region 

(Figure 1.5a). As the wave continues to propagate forward, the air tube rolls forward and the 

entrapped air is carried along with the tube. Instabilities set in and the surface of the tube be-

comes wavy (Figure 1.5e, f). The phenomena were described in Kway (2000). It is not clear 

where the instability came from but the series of photographs in Figure 1.5 suggests that the 

disturbance near the contact area rolls up and eventually spread over the tube. Eventually, the 

tube loses its momentum and breaks abruptly. It was discussed in Peregrine (1983) that the 

air pressure and the centrifugal acceleration usually balance the inward pressure gradient and 

prevents the rapid collapse of the tube. The noncircular initial state and three-dimensional 

instabilities both contribute to this tube having a relatively short life. Sometimes the trapped 

air vents through the surface with a sudden spout of spray. It was also mentioned in Miller 

(1976) and clearly observed from photographs in Figure 1.6 that some water jets spout out 

from the top of the breaking wave, creating upward sprays near the crest (Figure 1.6). It is 

clear that the sprays and collapse of the air tube occur simultaneously. The remaining trapped 

air being broken down into smaller bubbles which eventually resurface due to the buoyancy. 

Once at the water surface the bubbles break up, releasing air and creating foamy water sur-

face (observed in Mutsuda and Yasuda, 2000).  

How the upward sprays are generated during the plunging wave breaking is still not fully un-

derstood. It may be associated with the jets of air squirting out from the entrapped air tube. If 

this is the case, the air tube must be highly compressed during the collapsing of the air tube 

before being squirted out. 
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Figure 1.5. The formation of an elliptical air tube when the plunging jet closes up with the front 
water (Kway, 2000). Photos taken from low, behind view. 
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Figure 1.6. The collapsing of the air tube and upward sprays near the crest (Kway, 2000) 

Bonmarin (1989) described an additional entrainment process. In this process, air is en-

trapped during the interaction between the plunging jet and the rear of the vertical jet, which 

looks like two water masses turning in opposite directions. This interaction between the 

breaking crest and the vertical jet can display two modes: either the rear part of the vertical 

jet flows over the falling crest, or the rear part of the vertical jet looks like a falling water jet 

moving backwards and ‘penetrating’ the front of the original breaking crest as it moves for-

ward. This air entrainment process appears at each successive splash-up/vertical jet cycle and 

the amount of air entrained decreasing logically from one vertical jet to the next one. This 

process is difficult to resolve due to the presence of a large foamy region generated. 

A study by Battjes (1988) indicated that the impingements of the plunging and vertical jets on 

the front water surface and the collapse of the trapped air pocket result in a region with verti-

cal motion and high concentration of a large amount air bubbles rising gradually to the sur-

face. Due to the difficulties in measuring flow conditions in the aerated and fully turbulent 

part of breaking waves, measurements of flow field such as velocity, acceleration, pressure 

are not reliable. Thus studies of the flow field during and post-breaking through laboratory 

experiment is limited. 
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1.2.2 Numerical studies of plunging breaking waves 

Over the past few decades, numerical studies have proven to be an excellent alternative to 

laboratory experiments for the study of breaking waves. Advance numerical models are now 

able to reproduce many complex features associated with the wave breaking process. The ear-

liest numerical models used in the study of wave breaking were based on potential flow. 

Longuet-Higgins and Cokelet (1976) developed the mixed Eulerian-Lagrangian method 

combined with a boundary integral equation which was later used by Cokelet (1979) and 

Peregrine et al. (1980) to study the details of internal flow before breaking. Grilli et al. (1997) 

developed a high order Boundary Element Method (BEM) to solve the problem of nonlinear 

wave evolution with high accuracy. The high order BEM was subsequently extended to three-

dimension (Grilli et al., 2001) and applied in the simulation of shoaling and overturning of a 

solitary wave. Due to the limitation in resolving fragmentation and coalescence of its compu-

tational mesh, all BEM simulations have to stop at the stage when the impinging jet touches 

the front water surface. Even though limited by the potential theory’s assumptions and nu-

merical implementation, BEM is still very useful in capturing and verifying key features prior 

to the instant of jet impingement. Chan and Melville (1988) and Dommermuth et al., (1988) 

used Boundary Integral Method to simulate deep-water plunging breakers and the results 

compared very well with experiments. The results also showed that the maximum velocity 

amplitude occurs in the cusp of the wave and is roughly twice as large as the linear phase 

speed based on a central frequency of the wave spectrum. The maximum Lagrangian accel-

eration is of the order of 6 g, occurring inside the loop and directs radially inward. The accel-

eration in the plunging jet is approximately 1 g and directs downward, suggesting that the tip 

of this overhanging wave is essentially in free fall. 

Recently, grid based Navier-Stokes solvers coupled with a mathematical treatment for free 

surface have become very popular. These free surface techniques which are much more ver-
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satile in modeling complex flows include Marker-And Cell, Volume of Fluid, and Level Set. 

The Marker-And-Cell was firstly used in Harlow and Welch (1965) to track the position of 

free surface using a large number of weightless markers. Subsequently, Sakai et al. (1986) 

extended the methodology to simulate plunging breakers on a sloping beach. The method was 

further improved in the Simplified Marker-And-Cell by Takikawa et al. (1997) and the Sur-

face Marker by Christensen (1996) and Christensen and Deigaard (2001).  

The Volume of Fluid (VOF) developed by Hirt and Nichols (1981) is currently the most 

common method used for modelling wave breaking. In VOF, the air-water interface is typi-

cally treated using interface reconstruction techniques. These include the Donor-Acceptor, 

also referred to as the Simple Linear Interface Reconstruction technique (Lemos, 1992; Lin 

and Liu, 1998; and Zhao et al., 2004), the Piecewise Linear Interface Construction technique 

(Chen et al., 1999) and the Defined Donating Region technique (Hieu et al., 2004). More re-

cent implemented methods used an additional function to track the interface such as the Level 

Set (LS) method (Iafrati et al., 2001) or the Lax-Wendroff Total Variation Diminishing 

scheme (Lubin et al., 2003). 

Depending on the Navier-Stokes solvers, turbulence associated with wave breaking has been 

modelled differently. The most direct approach is the Direct Numerical Simulation (DNS) 

where the turbulent mixing is directly modelled. The limitation, however, is that length-scales 

of the flow smaller than the grid scale will not be captured (see Chen et al., 1999; Iafrati et 

al., 2001; Abadie, 2001; Guignard et al., 2001; Watanabe and Saeki, 2002; Iafrati and Cam-

pana, 2003; Song and Sirviente, 2004). Another approach is the Reynolds Averaged Navier-

Stokes (RANS) (see Lemos, 1992; Takikawa et al., 1997; Lin and Liu, 1998; Bradford, 2000) 

where the turbulence is captured through a closure model. Yet another approach is the Large 

Eddy Simulation (LES) where the flow characteristics that have length scale of the order of a 



  Chapter 1 Introduction 

 
14 

grid size is modelled directly in the governing equations (Zhao and Tanimoto, 1998). Fea-

tures that are smaller than a grid size are approximated using a turbulence closure model. 

In most of the above studies, the air entrainment was not taken into account and the simula-

tions were carried out in two-dimension in which turbulence was not fully modelled. Re-

cently, a few simulations were performed in three-dimension (Watanabe and Saeki, 1999; 

Christensen and Deigaard, 2001; Lubin et al., 2003; Biausser et al., 2004) and some have also 

included the dynamics of entrapped air (Mutsuda and Yasuda, 2000; Lubin, 2004; Lubin et 

al., 2006). Study by Lubin (2004) has described the overturning motion of the plunging jet, 

the air pocket and the splash-up process. The plunging jet is formed in the upper half of the 

fornt face of the steepened wave the tip of the jet has a shape of a rounded finger tip. An air 

vortex above the crest is generated and follows the wave during its motion. The falling crest 

includes a mixture of air and water and the tip of the jet mainly comprises of water droplets. 

When it hits the front water surface, the plunging jet does not penetrate very deep. The plung-

ing jet closes over the air to form an air tube. The pressure in the air pocket increases while 

the entrapped air tries to escape. The splash-up is seen created partly from the rebounding 

plunging crest and partly from the front surface of the wave. These results also agreed with 

the conclusion of Chen et al. (1999) and the observation in Peregrine (1983). Impingement of 

the splash-up on the water surface generates another splash-up downstream that has smaller 

size. The entrainment and formation of air bubbles were captured in the model including the 

presence of large air bubbles that rise to and the free surface, generating sprays in the process. 

Lubin (2004) noted, however, that some large discrepancies could appear between two- and 

three-dimensional results and illustrated the importance of taking a turbulence model into ac-

count. These studies suggested that three-dimensionality of the flows is very important not 

only for correct simulation of the interface but also to depict 3D structure of turbulence. The 

dynamics of entrapped air has a significant role. 
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Although two-phase and three-dimension flows have been successfully simulated, studies 

with both features included are still a very big challenge due to the limitation in computation 

power. Moreover, the above grid-based methods suffer from unavoidable numerical smear-

ing: the so-called numerical diffusion. The diffusion becomes even more severe when the 

steepness of the free surface is very large, which is a common feature in wave breaking. Spa-

tial resolution is also a limiting factor of these grid based methods. A highly refined local 

mesh is typically required in order to capture small portions of fragmented water. Because of 

the existence of strong numerical diffusion and limitation in resolving fine features, grid-

based methods fail to accurately reproduce the splash-up, the mixed air-water droplet sprays 

or the formation of tiny air bubbles. As the result, the subsequent processes such as turbu-

lence generation and energy dissipation may not be accurately simulated. 

The limitations of strong numerical diffusion and resolution could be resolved with mess-free 

particle methods such as the Smoothed Particle Hydrodynamics (SPH). Classical incom-

pressible flows have been simulated withparticle methods using a Poisson equation for pres-

sure and these are referred to as the Incompressible SPH (ISPH) or Moving Particle Semi-

implicit (MPS) method. Koshizuka et al. (1998) has used MPS to simulate a breaking wave. 

Gotoh et al. (2005a) applied MPS to simulate wave overtopping process on vertical seawall. 

Khayyer and Gotoh (2007) and Khayyer et al. (2008) used the incompressible SPH to simu-

late a plunging jet without the effect of entrapped air. The ISPH method agreed well with the 

BEM and VOF (at an equivalent resolution) and the experiments during the early stage of the 

breaking process. At the later stage when the vertical jet is forming, the grid-based methods 

deviated significantly from the experiment while the ISPH reproduced the vertical jet shape 

very well. The use of Poison equation in two-phase flow however is not straightforward. The 

concept of slightly compressible flow with an appropriate equation of state in SPH has also 

been used to simulate classical incompressible flows. The method is commonly called SPH 
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(Monaghan, 1994; Morris et al., 1997). Colagrossi and Landrini (2003), Ikari et al. (2005) 

applied SPH to simulate a wave plunger in two-dimensional dam break problem taking into 

account the air dynamics. The SPH calculation of the evolution shape of the plunger showed 

good agreement with the BEM up to a limit (when the plunging jet is about to touch the water 

surface in the front), and thereafter the SPH method gave good agreement with the results of 

LS method and experiment. It was pointed out that, at an equivalent resolution the LS results 

were much smoother than those from SPH, and LS failed to capture some details smaller than 

a grid size such as water droplets and air bubbles. In these ISPH and SPH simulations, turbu-

lence was modelled using LES. 

Three-dimensional simulations of plunging breakers have been successfully achieved by Go-

toh et al. (2005b) using MPS. In total, 180,000 particles of 0.002 m diameter were used in a 

0.8 m long and 0.04 m deep flume. Periodic boundary condition was applied in the transverse 

direction. Results obtained showed that the plunging jet was not uniform in the transverse 

direction although the initial waves were uniform in this direction. Only fluid velocity across 

a water column was compared with the experiment. The velocity distribution agreed with the 

experiment but the magnitude of the velocity components deviated significantly from the ex-

periment. In the simulation the dynamics of air and turbulence was not included in the gov-

erning equations and the resolution was rather coarse. 

Based on the above studies using SPH, it is evident that SPH has significant advantages over 

grid-based methods especially if the surface displacements are complex. In problems involv-

ing very small perturbations, however, SPH is less accurate and that makes grid-based meth-

ods preferable. In the SPH method, the governing equations can be discretized using a La-

grangian method. As a result, the advection is treated more exactly by tracking the motion of 

the particles and hence the numerical diffusion can be reduced. Furthermore, due to the fact 

that the particles represent the fluid particles, with problems involving more than one material 
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such as air, water and sediment, each medium is described by its own set of particles and 

properties. Hence the multiphase interface tracking problems, which are difficult for classical 

gridded methods, become straightforward for particle methods. The third advantage is that 

particle methods treat the continuum, fragmentation and coalescence of the materials in a 

natural way through the interaction among particles. Therefore particle methods are very use-

ful for solving problems involving fragmentation and coalescence of the bodies such as vio-

lent breaking wave surface. Representing the real materials by particles also leads to a com-

putational advantage since the particles are only required at the areas where presences the 

material. The resolution can be made to depend on position and time. This saves the storage 

and calculation efforts. Since the discretization of the high order derivatives in SPH method 

is much simpler than that in gridded Eulerian methods and because of the close similarity be-

tween particle methods and molecular dynamics, it is possible to include more complex 

physical processes easier and the extension to three-dimension is more straightforward.  

There are limitations in using SPH. Past studies indicated that the accuracy of SPH may re-

duce when the particle locations are unstructured. The problem becomes more severe when 

the so-called “tensile instability” or particle clumping occurs (Monaghan, 1992). There are 

gaps in the use of SPH and further development would be necessary. 

1.3 Scope and objective of the present study 

The scope of the wave breaking study covers the generation of the air tube, splash-up, verti-

cal jet, collapsing of the air tube and sprays of water droplets. Based on reviews of the past 

studies, it is evident that most of the above listed features have already been observed and 

described. However, it is also clear that some specific details of these features are still inade-

quately quantified and not clearly explained nor fully understood. These include:  
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• the formation of the splash-up (three possibilities have been  suggested by Peregrine 

(1983)); 

• the forces that keep the entrapped air tube intact;  

• the sources of instability on the surface of the entrapped air tube and the subsequent 

transformation of these surface roughness;  

• the process of air tube collapse and collision with the splash-up; 

• the mechanism leading to the water sprays  observed in Figure 1.6; and 

• the dissipation of wave energy.  

While controlled laboratory experiments and advanced instrumentation have helped to eluci-

date the physics of wave plunging, the quantification of finer details in the near-field of the 

entrapped air tube and mixing are limited by the complex air-water mixture.  Most grid-based 

numerical methods, on the other hand, are too dispersive to capture the features that are at the 

scales of the grid resolution. The Smoothed Particle Hydrodynamics method, however, ap-

pears to be promising and has the potential to be refined to adequately capture the detail 

physics of wave plunging.  

The overall objective of this thesis is to develop an enhanced Smoothed Particle Hydrody-

namics methodology and to numerically reproduce all the finer features of wave plunging 

including the collapse of the entrapped air tube and the upward water sprays. The latter has 

not been numerically simulated in the past. More specifically, the objectives are to: 

• Develop an enhanced SPH program to simulate the wave plunging.  

The SPH program will be developed from the basic SPH serial code SPHysics v1.0 

(http://wiki.manchester.ac.uk/sphysics) which has been used for general free surface 

flows. Selective developments from other researchers will be modified and incorpo-

rated in to the code. These include the two-phase flow formulation, sharpness control 
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for interface from Collagrossi and Landrini (2003), high order kernel functions from 

Liu and Liu (2003), velocity regularization (XSPH) modified for two-phase flow to 

prevent particle penetration from Monaghan (1992), the density regularization modi-

fied for two-phase flow to reduce pressure oscillation from Belytschko et al. (1998), 

turbulence model using the concept of LES from Gotoh et al. (2004). Additional de-

velopments are also needed to further enhance the accuracy, stability and simulation 

capacity of the SPH code. These include an enhanced “ghost particle” method to im-

prove the consistency of the flow field near solid boundaries, the code parallelization 

and the multi-scale nesting approach that allow very large problem to be simulated.  

• Calibrate and validate the SPH program against benchmarking problems (analytical 

solutions and measurements). The key controlling parameters of the SPH model are 

carefully selected through the calibration of the SPH program. 

• Development and verification of a numerical wave tank using the SPH program. 

• Simulation of a 2D plunging wave breaking using the SPH program.  

• Detailed studies of the near-field physics of wave plunging. 

1.4 Structure of the thesis 

Chapter 2 presents the details of the SPH methodology used in this thesis and the enhance-

ment developed to refine the methodology. These include the formulation of the SPH meth-

odology, the numerical treatment, implementation of the model, code parallelization and nest-

ing, and the development of numerical wave tank. 

Chapter 3 presents the calibration and validation of the developed code through most impor-

tant test cases, the verification of a numerical wave tank. 

Chapter 4 focuses on the detailed simulation of the wave plunging process and a detailed 

analysis of the physics of wave plunging, including the plunging jet formation, jet impinge-
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ment, air entrapment, disturbances on the surface of the entrapped air tube, forward splash, 

vertical jet ahead of the plunging jet, upward water sprays, collapse of the entrapped air tube 

and bubble generation in the water column. 

Key observations are concluded in Chapter 5. 
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Chapter 2. Methodology 
 

 

2.1 The wave breaking problem for the study 

2.1.1 Plunging breaking waves over a flat bottom 

A schematic presentation of a plunging breaking wave over a flat bottom is proposed as in 

Figure 2.1. Choosing a suitable well-defined set of initial condition and boundary conditions 

is crucial for the successfulness of generating correct plunging breakers.  

 

 

Figure 2.1. Schematic presentation of a plunger in a long, flat bottom water flume. 

Cokelet (1979), Chen et al. (1999), Lubin et al. (2006) used a periodic sinusoidal wave of 

large amplitude as the initial condition. The periodic boundary condition is applied at the two 

ends in the wave propagation direction. Properties of the fluid are calculated based on the lin-

ear or nonlinear wave theories. The instability of the travelling nonlinear waves will lead to a 

plunging breaker. This initial condition has certain computational advantages: it is easy to 

setup; the initial wave profile can be calculated exactly; and the numerical dissipation due to 
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pre-breaking evolution of the wave is minimized. However, the condition is too ideal hence 

the breaking process may not reflect the correct phenomena and physics. 

Colagrossi (2004), Khayyer (2008) used a piston paddle to generate a solitary wave. The 

wave was made unstable by let it run up on a slope beach or propagate over an obstacle. The 

breaking wave over a flat bed also can be created. Colagrossi (2004) generated a large soli-

tary wave by imposing a large and rapid movement of the paddle. This method also has simi-

lar computational advantages: it is easily setup; the pre-breaking condition is easily controlled 

using wave paddle theory; and the numerical dissipation due to pre-breaking evolution of the 

wave is minimized. However, this condition is not suitable for our study since solitary wave 

is a shallow water wave and the breaking process is strongly affected by the bottom. 

Our study aims to numerically reproduce an experimental wave breaking in Kway (2000) 

where a strong plunger in deep water was created by the modulation and focusing of a wave 

packet. A sketch of the numerical wave flume is given in Figure 2.2. The numerical experi-

ment takes the same dimensions as the laboratory experiment done in Kway (2000).  

 

Figure 2.2. Dimension of the water flume and setup of the numerical experiment. 

The wave flume has a length of 36 m and a height of 2.4 m of the actual laboratory experi-

ment. The water depth is 0.8 m. A wave paddle at one side of a water flume is programmed to 

generate a packet of short waves with small wave heights and wave frequencies in a narrow 
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band which has high to low frequency order. The amplitude and frequency of the centre com-

ponent are 0.0111 m and 0.83 Hz, respectively. The ratio of water depth over wave length of 

the centre component is 0.8/2.219 = 0.36, thus it is an intermediate water wave (close to 0.5 

which is the criterion for deep water wave). The wave celerity and wave group speed calcu-

lated by linear theory are 1.84 m/s and 1.01 m/s, respectively. Other parameters of the ex-

periments are given in Table 3.1 in Kway (2000). The details of the generation of a breaking 

wave will be discussed later in this Chapter. 

2.1.2 Mathematical description of a water wave problem 

The problem of 2D wave propagation and breaking is governed by the Navier-Stokes equa-

tions which are derived from the Newton’s conservation law of mass and momentum. The 

equations read the form of 

u⋅∇−= ρρ
dt
d

 
(2.1) 

τguu
⋅∇++∇+∇−= 21 ν

ρ
p

dt
d  (2.2) 

where ρ  is the density of the fluids, ),( zx uu=u  is the velocity and p  is the pressure of 

the fluids. The gravitational acceleration is ),( zx gg=g , ν is kinetic viscosity, τ  is tur-

bulence shear stress. The effect of surface tension could be neglected (Peregrine, 1983). In 

this study of plunging wave breaking, the fluids are water and air. 

2.2 Numerical approximation to governing equations: the Smoothed Par-
ticle Hydrodynamics method 

The Smoothed Particle Hydrodynamics (SPH) method was first introduced by Gingold and 

Monaghan (1977) and Lucy (1977) independently. In their works, a kernel estimation tech-

nique was used to derive the equations of motion for simulating astrophysical phenomena in 
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three-dimensional and open space. The kernel estimation technique had been used earlier by 

statisticians to estimate probability densities from sample values (Rosenblatt, 1956; Parzen, 

1962; Boneva et al., 1971). This method allows one to estimate a function at any point using 

the values of the function itself at the other points weighted by the values of kernel function 

at these points. It is essentially an interpolation technique. The estimate of the function could 

be differentiated exactly provided the kernel was differentiable. Because of its close relation 

to the statistical concept, Gingold and Monaghan (1977) and Lucy (1977) firstly described 

the method as a Monte Carlo method.  

The SPH method was applied extensively a decade later in the area of astronomy, including 

the simulation of the binary neutron stars and stellar collision (Benz, 1990; Monaghan, 1992; 

Rosswog and Davies, 2002) or the simulation of the formation of the Moon (Benz et al., 

1986), and tar formation studies (Bate et al., 1995, 2003). Monaghan and Lattanzio (1991) 

used SPH to simulate the collapse and formation of galaxies. Michel et al. (2004) applied 

SPH to the breakup of planetestimals and the formation of asteroid families. 

The SPH method has also been applied to a wide range of areas of computational solid me-

chanics or fluid dynamics because of its advantages of simplicity, flexibility in programming 

and ability of incorporating complex physical phenomena. These works include the simula-

tions of elasticity (Libersky and Petschek, 1991), large deformation and fracture problems 

(Benz and Asphaug, 1994, 1995). Elastic SPH also provides a simple and robust technique 

for simulating complex fracture in geological rock formations and in brittle materials (Gray et 

al. 2001, Gray and Monaghan 2004). Benz and Asphaug (1994, 1995) showed that SPH could 

yield much better results than the finite element or the finite difference methods. Other re-

markable applications of SPH include simulations of impulsive loading, hyper velocity im-

pact (HVI) and explosion problems involving shock wave propagation within solid bodies 

(Randles and Libersky, 1996; Johnson et al., 1996). SPH was also used in blood simulation 



 Chapter 2 Methodology  

 
25 

for virtual reality surgery (Muller et al., 2004), and has been incorporated in commercial 

software package such as Autodyn for solving problems of high velocities, large deformation 

and fragmentation.  

Applications of SPH in fluid dynamics have been increasing in recent years. The first appli-

cations of SPH in fluid dynamics were in gas dynamics, but later extended to problems in-

volving incompressible flows by treating the flows as slightly compressible and with an ap-

propriate equation of state (Monaghan, 1994; Morris et al., 1997). Applications of SPH in 

computational fluid dynamics include the simulation of underwater explosion, shock wave 

(Liu et al., 2003), elastic flow (Fang et al., 2006), flow through porous media (Zhu and Fox, 

2002), liquid metal moulding (Cleary and Ha, 2002), heat transfer and mass flow (Cleary, 

1998), ice and cohesive grains (Gutfraind and Savage, 1998; Oger and Savage, 1999) and 

multi-phase flows (Monaghan and Kocharyan, 1995; Gotoh et al., 2001; Gotoh et al., 2002). 

SPH has also been used for simulations of water wave breaking problems (Koshizuka et al., 

1998; Gotoh et al., 2005a; Monaghan and Kos, 1999; Colagrossi and Landrini, 2003; Ikari et 

al., 2005). 

2.2.1 Kernel approximation 

The heart of the SPH method is an interpolation which allows a function to be expressed in 

term of the contribution of its values at any point ),( zx=x  in the 2D space. This expression 

has the form of 

∫
Ω

′′−′= xxxxx dhWAA ),()()(
 

(2.3) 

where ),( hW xx ′−  is an interpolating kernel (or kernel function) and the integration is taken 

over the entire domain Ω , and h is the smoothing length of the kernel function. The kernel 

function must satisfy the following two important properties 
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1),( =′′−∫
Ω

xxx dhW
 

(2.4)

)(),(lim
0

xxxx ′−=′−
→

δhW
h  (2.5)

For discrete problems, the interpolation is approximated by a summation over all discrete 

points bx  (represented as particle b  which has mass bm , density bρ  and velocity  bu ). 

∑∑ =−=
b

abb
b

b

b
bb

b

b WAmhWAmA
ρρ

),()()( xxxx  (2.6) 

where bA is the value of function )(xA  at location bx  and ),( hWW abab xx −= . 

Using a differentiable kernel function and the approximation (2.6), one can compute the de-

rivatives of a function )(xA  by translating the differentiation to the kernel function. By doing 

so, the gradient and divergence of a function )(xA  can be approximated as 

∑∑ ∇=−∇=∇
b

abab
b

b

b
bb

b

b WAmhWAmA
ρρ

),()()( xxxx  (2.7)

∑∑ ∇⋅=−∇⋅=⋅∇
b

abab
b

b

b
bb

b

b WAmhWAmA
ρρ

),()()( xxxx  (2.8) 

Although the above summations are taken over all particles, only a few of them have signifi-

cant contribution since the kernel function W is often chosen so that its value drops rapidly to 

zero for hb >− xx  (see the next section). 
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2.2.1.1 Kernel function 

The choice of kernel function (also called smoothing function) is crucial to the performance 

of SPH. The kernel function not only represents the pattern for the function approximation, 

dimension of the domain, but also determines the consistency and the accuracy of the particle 

approximations. 

Different kernel functions have been used in the SPH method as shown in the published lit-

eratures (Monaghan, 1992; Liu and Liu, 2003). In general, any function that satisfies the re-

quirements in Equation (2.4) and (2.5) can be used as kernel function. Equation (2.4) is nor-

malization, which is to ensure that constants are approximated exactly. Equation (2.5) indi-

cates that if h  tends to zeros, the kernel function will tend to a delta function. If the kernel 

function is a delta function, Equation (2.3) will reproduce A  exactly.  Other requirements or 

properties for the kernel functions may be needed to keep the kernel function insensitive to 

particle disorder, and the errors in approximating the integral interpolants are small provided 

the particle disorder is not too extreme (Monaghan, 1992). This will lead to better accuracy 

and efficiency of the kernel approximation. Some of the typical requirements or properties 

are as follows 

• The smoothing function have a compact support (or compact support domain), i.e. 

0),( =− hW bxx  for khb >− xx , where k is a parameter which determines the spread 

of the kernel function. This property transforms a kernel approximation from involv-

ing entire set of particles in the computation domain to a local domain which involve 

a few neighbour particles. As a result, computational effort is significantly reduced 

• The kernel function is non-negative in the support domain. It is not strictly required, 

but it is important to ensure a meaningful representation of some physical phenomena. 
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• The kernel function is monotonically decreasing with increase in distance away from 

the particle. This property means that nearer particles should have bigger physical in-

fluences on (or interactions with) the concerned particle. With the increase in distance 

between two interacting particles, the interaction force decreases. 

• The smoothing function is symmetric. This property means that particles from the 

same distance should have equal effect on a concerned particle. This is not a very 

strict condition, and it is sometimes violated so that better results can be achieved. 

• The smoothing function is sufficiently smooth. 

 

Figure 2.3. Kernel function and its compact support domain 

There are several ways to define a kernel function. One of them is the method based on piece-

wise continuous spline functions ( nM ) that have ( )2−n  continuous derivatives Schoenberg 

(1946). These functions are defined by the Fourier transform (see Monaghan, 2005).  

( ) ( )∫
∞

∞−
⎥⎦
⎤

⎢⎣
⎡= dkkx

kh
khhxM

n

n cos
2/

2/sin
2
1),(
π  

(2.9) 

Another way to define the kernel function is to make use of the Taylor expansion to the 

original integral representation of the kernel approximation in Equation (2.3) (Liu and Liu, 
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2003). Assuming that the function )(xA  is sufficiently smooth, applying the Taylor series 

expansion to the function )(x′A  in the vicinity of x  yields 
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(2.10) 

where ⎟
⎠
⎞

⎜
⎝
⎛ ′−

+ h
On
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1  is the remainder which has an order higher than n 

Substituting (2.10) in to (2.3) yields 
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(2.11) 

where 

∫
Ω

′′−⎟
⎠
⎞

⎜
⎝
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= xxxxx dhW
hk

hI
kkk

k ),(
!

)1(

 

In order for Equation (2.11) to be valid for every x , every coefficients kI  on the LHS must 

equal to their counterpart on the RHS, meaning that 
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Because 0>h , the above condition can be further simplified as 
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(2.13)

The form of the kernel function ),( hW xx ′−  is chosen in advance. The most commonly used 

forms of kernel functions are single polynomials and piecewise polynomials.  

For a single polynomial of order n, the following general form could be used 

n
n qaqaqaaqWhW ++++==′− ...)(),( 2

210xx  (2.14)

Here, a non-dimensional parameter q  is used where hq /xx ′−= . In order for the thk  de-

rivative at 0=q  to exists, the following condition must be satisfied 
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20 ...)(),( +++==′− xx  (2.18) 

Substituting the Equation (2.18) of the kernel function in (2.13), one yields a system of linear 

equations with the unknown being the coefficients ia 2 . The kernel function is fully deter-

mined after solving the linear system (2.13). 

For piecewise polynomial, for example a 3 piece polynomial, the following form can be used 

for the kernel function  
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(2.19) 

Consider an thn  order piecewise polynomial. The continuity conditions are required for the 

function itself and the first 1−n  derivatives, thus leads to the following form for the kernel 

function 
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(2.20) 

Following the similar approach as used for single polynomial and using the linear system 

(2.13), the unknown coefficients ia  in (2.20) are determined and so is the kernel function. In 
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the present research, the following kernel functions are used depending on the problems. 

These include the cubic spline kernel used for the sloshing problem and a fifth order kernel 

needed for high accuracy modeling of the transient wave breaking process. Sensitivity studies 

show that, in general, a higher order kernel can lead to spurious oscillations.  The choice is 

therefore dependent partly on the validation of the simulation through comparisons with ex-

perimental results.  

Gaussian 

2

)( q
DeqW −= α  (2.21) 

( )2/1 hD πα =  in 2D and ( )32/3/1 hD πα =  in 3D 

 

Figure 2.4. The Gaussian kernel function and its 1st derivative 
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( )24/3 hD πα =  in 2D and ( )34/3 hD πα =  in 3D 
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Figure 2.5. The quadratic kernel function and its 1st derivative 

Cubic spline 
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( )27/10 hD πα =  in 2D and ( )3/1 hD πα =  in 3D 

 

Figure 2.6. The cubic spline kernel function and its 1st derivative 
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Quintic 
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Figure 2.7. The quintic kernel function and its 1st derivative. 

2.2.1.2 Kernel approximation of the governing equations 

Neglecting the viscosity, turbulence and surface tension terms (they will be treated separately 

in the later sections) the Navier-Stokes equations are rewritten as 

u⋅∇−= ρρ
dt
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(2.25) 
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(2.26) 

Using the kernel approximation similar to Equation (2.7) and (2.8), the gradient of pressure 

and divergence of velocity can be approximated as 
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( ) ∑ ∇=∇
b

abab
b

b
a Wpmp

ρ  
(2.27) 

( ) ∑ ∇⋅=⋅∇
b

abab
b

b
a Wm uu

ρ  
(2.28) 

Note that ( )ap∇  does not vanish if p  is a constant which is inconsistent. However, if the 

pressure gradient and velocity divergence are approximated as 

[ ] [ ]1∇−∇=∇ ppp  (2.29) 

[ ] [ ]1∇⋅−⋅∇=⋅∇ uuu  (2.30) 

and 1∇ can be further approximated as 

∑ ∇=∇
b

aba
b

b Wm
ρ

1
 

(2.31) 

Following Equation (2.7) and (2.8), the pressure gradient and velocity divergence can be ex-

pressed as 

( ) ( )∑ ∇−=∇
b

abaab
b

b
a Wppmp

ρ  
(2.32) 

( ) ( )∑ ∇⋅−=⋅∇
b

abaab
b

b
a Wm uuu

ρ  
(2.33) 

Equation (2.32) will ensure that the gradient vanishes if p  is a constant. A drawback of 

Equation (2.32) and (2.33) is that when approximating the pressure forces, linear and angular 

momentum are not conserved exactly (Morris, 1996). 

For higher accuracy, the following expressions of the gradient of pressure and divergence of 

velocity may be used 
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( )[ ] [ ]ρρρ ∇⋅−⋅∇=⋅∇ uuu  (2.35) 

Using the kernel approximation (2.7) and (2.8) for the terms in square brackets, we have 
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1  (2.37) 

Equation (2.36) and (2.37) only work for problems with one phase flow or two-phase with 

small difference of density. In one phase flow problems, the density gradient across the free 

surface is large. However, the pressure will dismiss to zeros, 0→p , when moving across the 

free surface, then the last term of (2.34) vanishes and the large gradient of density at free sur-

face is cancelled out. In two phase flow problem, we do not have situation of 0→p  at the 

interface. The pressure changes (unless surface tension is considered) across the interface to a 

nonzero. However, with small density gradient across the interface, the last term of (2.34) is 
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kept in a stable range. A study by Colagrossi and Landrini (2003) has concluded that the SPH 

formulation using (2.36), (2.37) will not work for the cases of density ratio less than 0.1.  

The main source of numerical instabilities that limit the application of SPH to two-phase flow 

with large density difference is the sharp gradient of density at the interface. To prevent this, 

the following expressions are used in this thesis 
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[ ] [ ]1∇⋅−⋅∇=⋅∇ uuu  (2.39) 

Using the kernel approximation (2.7) and (2.8) for the terms in square brackets, we can yield 
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The density in the continuity equation can be approximated either by 

∑=
b

abba Wmρ  (2.42) 
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or ( )∑ ∇⋅−−=
b
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b

b
a

a Wm
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d uu
ρ

ρρ  (2.43) 

Most SPH calculations use (2.42). However, when (2.42) is used in simulating interfacial 

flow, the density would have dropped near the interface causing pressure oscillations. Equa-

tion (2.43) gives a better representation of density and pressure at the interface.  

The above derivation assumes that there is no source or sink. When a problem involves 

sources and sinks, an additional term is added into the continuity equation. If the source func-

tion is )(xf , then its kernel approximation is 

∑=
b

abb
b

b
a Wfmf

ρ  
(2.44) 

2.2.1.3 Kernel approximation for air-water flow 

From the discussion above, the governing equations for air-water flow in the kernel approxi-

mation will take the form of 
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(2.45) 
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(2.46) 

Position of the particles is updated by 

a
a

dt
d ux

=
 

(2.47) 

Equations (2.45)- (2.47) approximate the governing equations for 2D air-water flow prob-

lems. However, it is also applicable for 3D air-water flow problems. 
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2.2.2 Equation of state 

In real fluids such as water, the speed of sound is very large compared to fluid velocity 

(~1500 m/s compared to ~10 m/s). For this reason, numerical methods treat the water as in-

compressible to simplify the governing equations. Pressure can be computed explicitly or im-

plicitly from the fluid density. In implicit calculation, a Poisson equation of pressure need to 

be solved and the condition of incompressibility can be strictly satisfied. Implicit calculation 

of pressure will involve solving a system of linear equations which is computationally expen-

sive. It also requires an explicit definition of the free surface where the boundary condition of 

pressure is applied. The definition of the free surface in particle methods is very sensitive to 

the pressure calculation and still remains a challenge. In explicit calculation, the pressure is 

directly updated as a function of density and thus no free surface definition is required and 

computational cost is much cheaper. However, only quasi-incompressible condition is 

achieved by adapting an artificial equation of state. This approach is usually referred to as 

weakly-compressible. It is more convenient to use explicit equation of state to simulate gas-

liquid problems such as air-water since the compressible condition is easily applied for gas 

phase while the compressibility of water could be controlled. The following equation of state 

suggested by Batchelor (1967) is used 

o
o

pBp +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 1)(

γ

ρ
ρρ

 
(2.48) 

where, op  is background pressure (sometimes called atmospheric pressure) and usually set 

zero. The reference density of fluid is oρ  ( 3997 mkgo =ρ for water and 32.1 mkgo =ρ for 

air). The coefficient γ  determines the response of pressure changes to the density variation. 

In water, 7=γ  is used hence a very large pressure can only make small change to density. 

This condition brings the water to nearly incompressible. In air, the condition is compressible 



 Chapter 2 Methodology  

 
40 

so a large variation of pressure can lead to a significant change in the density. Hence, a small 

value of γ  is chosen. Here, 4.1=γ  is used for air. 

The subtraction of 1 in the equation of state is to ensure that the relative pressure is zero if the 

density equals to the reference density; and the fluid stays at rest. This helps to remove spuri-

ous boundary effect at the free surface. 

The coefficient B in the equation of state is used to control the compressibility of the fluid. It 

is a function of the compressibility and density of the fluid. The derivation of B is as follows. 

Since the density variation is proportional to square of the Mach number 

2

max
⎟⎟
⎠

⎞
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⎝

⎛
∝

sc
V

ρ
δρ

 
(2.49) 

where maxV  is the maximum speed of fluid and sc  is the sound speed in the fluid which is 

computed as 
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Given the actual sound speed in water, the density variation, maxδ , is very small and thus a 

very large value of B is required. However, the computational time step will be extremely 

small since it is inversely proportional to the sound speed (as discussed later in Section 2.3.7). 

Small time step will deteriorate the efficiency of the computation. Hence, in actual simula-

tions, the value of B is chosen so that the density variation and sound speed are within desired 

ranges. This sound speed used in the computation is called artificial sound speed and is not 

necessary equal to the actual sound speed. Similarly, an artificial sound speed is also used for 

the simulation of air. 

For cases with large density difference such as between air and water, the density variation in 

air, maxδ , is larger due to larger compressibility. However the air density is much smaller than 

water density. Therefore, from Equation (2.52), the reference pressure for water is larger than 

that for air. 

In two-phase flow, the pressure at the interface has to satisfy the dynamic boundary condition 

(p = pA). Since the lighter fluid has smaller value of γ , the pressure-density steepness 

)/( ρ∂∂p has to be larger than that of heavier fluid in order to maintain a small gradient across 

the interface. Moreover, the pressure-density steepness equals to square of the sound speed, 

i.e. )(/ 2 ρρ scp =∂∂ . Therefore, the numerical sound speed in lighter fluid is larger than that in 

heavier fluid (although in reality, sound speed in water is larger than that in air). A simple 

mathematical and graphical proof for air-water case is as follows. Rewriting the equation of 

state, we has 
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(2.53) 

At the interface, the dynamic condition requires AW pp =  yielding 
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Here, subscriptions A and W are meant for air and water particles. With 

( ) %]1%,1[/ −=Wod ρρ  and ( ) ( )WoAo dd ρραρρ // = , 20,15,10,5,1=α , Figure 2.8 show 

the values of  WA BB /  and sWsA cc /  as functions of  ( )Wod ρρ /  at different α  

 

Figure 2.8. Variations of BA/BW and csA/csW as functions of (dρ/ρ0)W at different α. 
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By using the equation of state in SPH, the computed pressures are propagated in the fluid 

through the changes in the particle densities. The pressure propagation speed is equal to the 

artificial sound speed. The computed pressures are the actual pressures of the fluids. How-

ever, the computed particle densities do not necessarily represent the actual densities of the 

fluids. In SPH, the particle densities are intermediate values to compute the pressures. It is 

worth to point out that the equation of state is generally not applicable for liquids. However, 

in SPH the use of equation of state for a fluid is adequate since it is applied on an intermedi-

ate value of fluid density which is not fluid actual density, and the compressibility of the fluid 

is controlled by the choice of B or the artificial sound speed. 

2.2.3 Viscosity 

In SPH, viscosity is usually referred to artificial or laminar viscosity. While, the laminar vis-

cosity is a characteristic of real fluid (i.e. real viscosity), the artificial viscosity has no relation 

to the real viscosity of the fluid and is introduced in the momentum equation to allow shock 

phenomena to be simulated. Lucy (1977) firstly introduced an artificial bulk viscosity to pre-

vent a slow build-up of acoustic energy from integration errors in an SPH simulation. Mona-

ghan and Gingold (1983) introduced a more effective viscosity which conserves linear and 

angular momentum. This viscosity model is then widely used in many applications of shock 

problems involving gases, liquids and solids. In some simulations without a shock wave, arti-

ficial viscosity is also introduced to stabilize the solution. In SPH, artificial viscosity is incor-

porated in the momentum equation as 
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where 
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and 2/)( baab ρρρ +=  and 2/)( baab ccc += are the mean density and sound speed, respec-

tively. The term 201.0 h  is to maintain a nonzero denominator while the term 2
abβμ  is to han-

dle high Mach shocks. Values of α  and β  are suggested to be 1 and 2 by Monaghan (1992), 

respectively. The artificial viscosity was used in many SPH simulations in the past as well as 

some test cases in this study. However, in the simulation of wave breaking, we use laminar 

and turbulence viscosity which are popular in Eulerian gridded methods. The viscosity coef-

ficients used in gridded methods are used in SPH. 

The laminar viscosity appears in the right hand side of the momentum equation as 
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(2.60) 

where ρνμ =  is the dynamic viscosity, ν  is the kinematic viscosity. The SPH approxima-

tion of laminar viscosity has the form of (Morris et al., 1997) 
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(2.61) 

Assuming oνν = is a constant the above expression can be further simplified 
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(2.62) 

For two-phase flows, the summation in Equation (2.62) is performed over particles belongs to 

the same fluid, regardless the other fluid even they are at the interface. 

Comparing the SPH formations for artificial viscosity in (2.57), (2.58) and (2.59) and laminar 

viscosity (2.62), there is a term hcabα  in ab∏  being equivalent to the kinematic viscosity oν . 

This remark can be used to estimate the value of α  such that the artificial viscosity can be 

used in lieu of the real one. 

2.2.4 Turbulence 

For wave breaking problems, the main source of turbulence is due to the breaking of the 

wave where most of wave energy is dissipated quickly. For problems with non-breaking 

wave, turbulence is also generated in the fluid where shear stress is large enough. The shear 

stress in a fluid is characterized by a Reynolds number which is a function of length scale of 

the wave, fluid velocity and viscosity. According to Gotoh et al., (2001), problems involving 

fluid velocity of 50 – 100 times of wave period usually need accurate simulation of turbu-

lence. 

This SPH turbulence model uses the concept of Large Eddy Simulation (LES) where the 

large scale turbulence (particle scale – PS) is computed directly in the numerical simulation 

and the small scale (sub-particle scale – SPS) stresses are modelled using subgrid-scale 

model (SGS). By using a filtering, the velocity is presented by a summation of a PS compo-

nent u  and a SPS component u ′ as 
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iii uuu ′+=  (2.63) 

The particle scale momentum equation can be written as 
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where τ  is SPS Reynolds turbulence stress which is represented by a eddy viscosity model in 

tensor notation as 
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in which tν  is kinematic eddy viscosity; k  is turbulence energy; and ijδ  is Kronecker’s delta. 

With Δ being the filter width (equal to initial particle spacing), the kinematic eddy viscosity 

and the energy dissipation are 

Δ= 2/1kCt νν  (2.66) 

Δ
=

2/3kCεε
 

(2.67) 

Where the constants εν CC ,  are chosen as 1.0 and 0.08 respectively (Gotoh et al., 2001). 

Assuming the local equilibrium condition of the SPS turbulence (Gotoh et al., 2001) 
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 the kinematic eddy viscosity and turbulence energy can be expressed as 

( ) 2/12
rst PC Δ=ν  (2.70) 
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(2.71) 

here sC  is Smagorinsky constant, 2/12/3 −= εν CCCs . 

In SPH simulation of 2D flow, the above tensor notations are rewritten in normal form as 
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The SPH expression of the SPS term in two-phase flow simulation is 
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2.3 Implementation of SPH 

2.3.1 Boundary conditions 

In normal fluid dynamic applications, free surfaces and solid walls (fixed and moving walls) 

are commonly used. In problems involving multiple scales, due to the complexity and size of 

problem, nesting and periodic boundary conditions are applied. 

An accurate treatment of the boundary condition is crucial for a successful SPH simulation. A 

typical calculation pertaining to a specific particle always requires a complete support do-

main, i.e. the support domain filled with particles. However, due to the termination or discon-

tinuity of the computation domain at the boundaries, there will be an absence of particles on 

one side of the boundaries (see Figure 2.9). For completion of the support domain, in particu-

lar, to facilitate the computation of the kernel approximation for particles located near or on 

the boundary, one of the possible approaches is to add in fictitious particles. The use of ficti-

tious particles is different for different types of boundaries. In this thesis, four types of 

boundary conditions are implemented and described as below. 

 

Figure 2.9. Insufficient particles inside the compact support domain of particle ‘a’ (indicated by 
the yellow circle)  
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2.3.1.1 Free surface condition 

Fictitious particles at the free surface are difficult to implement as the free surface has arbi-

trary and changing shapes. In many practical applications such as the simulation of water 

waves, the error due to the neglect of air particles above the free surface is expected to be 

very small. This is largely because of the significant difference in the density of air and water. 

However, if the air is compressed at high pressure, such as in the case of entrapped air inside 

a plunging jet, the neglect of air particles will significantly affect the SPH approximation at 

the water surface. For such a scenario, a two-phase flow simulation comprising both water 

and air particles should be used and fictitious particles are not required at the interface of two 

fluids since the compact support domain of a particle at the interface is completely filled by 

particles from the both fluids.  

2.3.1.2 Solid boundary condition 

In some SPH simulations, solid boundaries are approximated by a set of particles analogous 

to fluid particles. The boundary particles representing the solid boundaries also carry the 

properties of mass, density, pressure and velocity. These properties of the boundary particles 

are either calculated using SPH approximations or extrapolated from fluid particles. The 

dummy particle method (Crespo et al., 2007) widely used in the past is of this type. In this 

method, solid walls are represented by several layers of particles distributed uniformly within 

a distance of h2  outward of the fluid domain. A schematic drawing of the dummy particles at 

a solid boundary is shown in Figure 2.10. In this method, the boundary particles are treated 

equivalently to other fluid particles in the continuity and momentum equations. However, 

these boundary particles are forced to remain in fixed position (for the case of fixed solid 

walls) or to move according to an externally imposed function (for the case of moving solid 

walls such as a gate or wave paddle). The equation of state of the heavier fluid is usually used 
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for the pressure-density calculation for boundary particles at the layers nearer to the fluid. 

Properties of outer layer particles are extrapolated from the inner layer particles. The condi-

tion of zero normal velocity is applied by setting normal velocity of boundary particles to 

zero. The free-slip and non-slip conditions are imposed by forcing the tangential velocity 

component of the boundary particles to be non-zero or zero. 

The dummy particle method is simple to implement. The major disadvantages of the method, 

however, are the low accuracy of the SPH approximation near a solid boundary. In many 

cases, fluid particles are detached from the solid boundary. An alternative method to ap-

proximate solid boundaries is ghost particle method which is implemented in this study.  

    

Figure 2.10. Distribution of dummy solid particles and nearby fluid particles 

The ghost particle method provides a better representation of the solid boundary. In this 

method, a solid boundary is represented by a straight line or a curve. The outer region of the 

solid boundary is filled by a set of the so-called “ghost” particles (see Figure 2.11 and Figure 

2.12). Essentially, the ghost particles are the “image” or the “mirror” of the fluid particles on 

the other side of the solid boundary through the boundary itself. Only fluid particles with in a 

distance of h2  from the solid boundary are mirrored. At the corner where the two solid 
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boundaries intersect, the fluid particles in the corner area are mirrored about the two bounda-

ries and the intersection point as well. Properties of the ghost particle, Ga , are extrapolated 

from their physical counterpart, a , as follows:  

The position of the ghost particle is updated according to the positions of the boundary and 

fluid particle a 

aBaG
xxx −= 2  (2.79) 

where Bx  is the mirror point which is either the perpendicular projection of ax  on the 

boundary or the intersection point of the two boundaries. 

The distances between the fluid particles and the nearest solid boundaries are around a half of 

the initial particle size. Hence, after mirroring, the distance between a particle and its ghost is 

around one grid size. 

In many SPH applications in the past, the pressure and density of ghost particles are set equal 

to that of the fluid counterparts. In this application, a more consistent approach is used. The 

pressure of the ghost particle aG is extrapolated from fluid particle a by using the hydrostatic 

hypothesis. Then the density of particle aG is calculated from its pressure using the inverse of 

the equation of state. The equations are as follows: 
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Here the subscriptions a and aG mean the parameters are defined at particles a and aG. The 

velocity of the ghost particle aG is calculated from its physical counterpart a, depending on 

the slip condition applied at the boundary. The equations are  

nanBna uuu
G

−= 2
 (2.82) 

tastBsta uuu
G

αα +−= )1(  (2.83) 

Here, the subscripts n and t are the normal and tangential velocity components with respect to 

the instantaneous position of the boundary; nBu  and tBu  are the normal and tangential veloc-

ity components at the mirror point Bx  on the boundary; sα  is the slip coefficient, 1=sα  

for free-slip condition and 1−=sα  for non-slip condition. An intermediate slip condition is 

modelled by a value of sα  between -1 and 1. In the corner region, the non-slip condition is 

always used.  

Figure 2.11 and Figure 2.12 show the free-slip and non-slip conditions, respectively. Figure 

2.11 to Figure 2.13 show the distribution of ghost particles used for different types of domain 

corners that the present SPH model can handle. Those include right convex, obtuse convex 

and right concave angles. The acute angle requires more complex treatment and is not pre-

sented here.  
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Figure 2.11. Distribution of ghost particles for a right, convex angle. A free-slip type of bound-
ary condition is imposed. 

 

 

Figure 2.12. Distribution of ghost particles for a right, convex angle. A non-slip type of bound-
ary condition is imposed. 
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Figure 2.13. Distribution of ghost particles for an obtuse, convex angle. A free-slip type of 
boundary condition is imposed. 

 

 

Figure 2.14. Continuity of a ghost particle’s trajectory (red and blue solid lines).  
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erties of fluid particles. To create ghost particles near a right concave corner, the following 

procedure is proposed. The fluid area around the concave corner is divided into 3 sub-areas, 

namely area 1, 2 and 3 as shown in Figure 2.15. Particles in area 1 and area 2 are mirrored 

about the nearest boundary lines while particles in area 3 (corner area) are mirrored about the 

corner point. By doing so, the outer region at the corner is over-mirrored. In the SPH compu-

tation, a fluid particle in each area will have interactions with fluid particles in neighbouring 

areas as usual. In addition, fluid particles in each area will receive contributions from ghosts 

of particles in the same area but not from ghosts of particles in other areas. For example, a 

fluid particle in area 3 will have interactions with fluid particles in neighbouring areas 1 and 

2. It will also have contributions from ghosts of particles in area 3. Using this mirroring pro-

cedure, the continuity of the ghost particles’ paths is assured, as demonstrated by the green 

and red dashed lines in Figure 2.15. In this study, no concave corner is involved; thus this 

mirroring procedure has not implemented. 

 

Figure 2.15. Mirror of particle trajectories near a right, concave angle. A free-slip type of 
boundary condition is imposed. 
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In certain situations, for example water particles at both sides of a wave paddle, a fluid parti-

cle locates within the compact support domain of another particle but the connection line be-

tween the two particles is crossed by a solid boundary. In these cases, one particle and its 

ghosts will have no influence on the other. 

2.3.1.3 Lateral periodic boundary condition 

The lateral periodic open boundary condition is applied when the flow condition at one lateral 

boundary is required to be identical to that at the other lateral boundary. In the SPH context, 

this essentially means: (1) a particle near a lateral boundary has interaction with particles in a 

complementary area near the lateral boundary on the other side of the domain; (2) a particle 

leaving the computation domain at one side will enter the same domain from the other side. 

This is demonstrated in Figure 2.16 where water particle a  lies near the right boundary and 

therefore its compact support domain extends beyond the boundary and extrudes into the do-

main through the left boundary (yellow patches). 

 

Figure 2.16. Schematic representation of the lateral periodic open boundary condition. 
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In the present SPH program, a simulation can be executed from a cold start or hot start. In the 

cold start mode, the initial particles are uniformly distributed over the whole computational 

domain with particle-particle distance equal to the particle size. Solid boundaries are located 

at a distance of a half particle size from the nearest fluid particles. The velocity field is calcu-

lated from linear theory. Pressure and density follow the hydrostatic hypothesis and fluid is 

assumed to be incompressible. This initialization may produce small error due to the incon-

sistency with the slightly compressible assumption in the SPH simulation and the nonlinearity 

of the governing equations. However, the error will decay quickly. 

In the hot start mode, a simulation using SPH or any numerical model, such as those based on 

BEM, VOF, etc, is carried in advance. The results of velocity, pressure and density that are 

closest to the desired initial condition are interpolated to a set of uniformly distributed parti-

cles. The hot start is more complex but it can provide more accurate initial conditions.  

2.3.3 The neighbour list problem 

The kernel approximation at a particle requires a search through all particles in the computa-

tional domain for a list of a small number of particles within its compact support domain. 

This task is repeated for every single particle; hence it costs an order of 2N  operations, 

where N is the number of particles inside the computational domain. If N  is large, the parti-

cle searching becomes a very heavy and time consuming task, thus making the program inef-

ficient. 

Several techniques have been designed to reduce the search effort. One of the techniques is to 

use a search grid system in the background (see Figure 2.17). The computational domain is 

divided into square boxes of size h2 , forming the search grid. As shown in Figure 2.17, only 

the black particles fall into the compact support domain of particle a . These particles belong 
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to the box containing particle a  and another 8 boxes in the vicinity. Therefore, the particle 

search is reduced to within these 9 boxes only.  

The search effort can be further reduced by minimizing the repeated search. If particle a  falls 

into the compact support domain of particle b , then particle b will fall into the compact sup-

port domain of particle a . Hence, only one search is needed to compute the interaction be-

tween the two particles a  and b . A sweep technique is used to search for the interaction of 

the pairs of particles. Starting from the lower left corner cell, all cells are swept once by 

changing their index ( )ji, . The interactions of particles in a cell ( )ji,  with particles in the 

East ( )1, +ji , Northeast ( )1,1 ++ ji , North ( )ji ,1+ , Northwest ( )1,1 −+ ji  cells and the cell 

itself are computed (these cells are marked yellow in Figure 2.17, cell ( )ji,  contains particle 

a ). Interactions with particles in the rest of the neighbouring cells are computed in previous 

sweeps. This sweep technique is used in SPHysics v1.0 and is modified to take into account 

the interactions with ghost particles. If two particles have mutual interaction, then ghosts of 

one particle can also influence the other particle if they are lying inside the compact support 

domain. If the two particles have no interaction, then their ghosts do not influence each other. 

Using the search grid and sweep techniques, the computation effort is reduced significantly 

from 2N  to NN log . 
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Figure 2.17. Searching boxes (yellow) for particles influencing particle a. 

2.3.4 XSPH correction 

In the weakly compressible SPH method, particles are free to move with their own velocity. 

Due to the presence of oscillation in the solutions, the neighbouring particles can have sig-

nificantly different velocities which can result in particle inter-penetration. To prevent parti-

cle penetration and to regularize the velocity field, the velocity of a particle is corrected 

closer to the average velocity of its neighbours. This procedure is called XSPH and was in-

troduced by Monaghan (1989). The original XSPH formulation has the form: 

aaa uuu Δ+=ˆ  (2.84) 

( ) ab
b

ab
ab

b
a Wm∑ −=Δ uuu

ρ
ε

 
(2.85) 

where 2/)( baab ρρρ +=  is the mean density and ε  is a constant ( 10 ≤≤ ε ). 
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For strict consistency, the corrected velocity is used only in the position evolution and conti-

nuity equations. The velocity before XSPH correction should be used in the momentum equa-

tion so that no dissipation is introduced by XSPH. 

XSPH will introduce numerical dispersion since the movement of a particle is affected by 

movement of its neighbours. This numerical dispersion can be controlled by the value of ε  

or the kernel function. XSPH is useful for simulation of nearly incompressible fluids without 

using viscosity. 

For two-phase flows, the original XSPH has a limitation. When a particle is very near the in-

terface, the mean density is wrongly evaluated because of the presence of other fluid particles 

in its support domain. The situation becomes more severe if the two fluids have extremely 

large density difference, such as air and water. This wrong XSPH will distort the movement 

of particles near the interface and lead to wrong results. 

The XSPH correction is thus modified for two-phase flows (see Colagrossi and Landrini, 

2003). When correcting the velocity of a particle, only particles belonging to the same me-

dium are used. Furthermore, the correction is also used in the divergence of velocity as  

( ) ( )

( ) ( )∑∑

∑

∇⋅Δ−Δ+∇⋅−=

∇⋅−=⋅∇

b
abaab

b

b

b
abaab

b

b

b
abaab

b

b
a

WmWm

Wm

uuuu

uuu

ρρ

ρ
ˆˆ

 

(2.86) 

The first summation in Equation (2.86) is identical to the original divergence expression of 

(2.45). The second summation is the correction to the divergence. The correction is often ne-

glected in many computations; however, the use of this correction in two-phase flow im-

proves significantly the accuracy of the solution. Furthermore, the use of XSPH is found 

graphically unaffected to energy conservation (Colagrossi and Landrini, 2003). 
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2.3.5 Density re-initialization      

By using this formulation of SPH, small variations of density could be magnified by the 

equation of state, leading to large oscillations of pressure. The situation becomes more severe 

at the interface where the density oscillation is large. A filtering is applied to regularize the 

density field before it is used to calculate pressure. Making use of Equation (2.6), the density 

is reinitialized by a zero-order filter scheme as 

∑
∑

=

b
bab

b
babb

a VW

VWρ
ρ

 

(2.87) 

where bbb mV ρ/= .  

Note that the numerator in (2.87) is identical to that shown in (2.42). However at the bound-

ary or the interface, where 1<∑b babVW , the filtering would introduce additional error. 

Therefore, the presence of the denominator in (2.87) is important as it normalizes the kernel 

approximation.  

Using a similar filtering, highly nonlinear physics such as overturning of wave fronts, wave 

impact and vertical jet were still adequately captured by SPH (Dalrymple and Rogers, 2006) 

A first-order filter scheme has been used by Belytschko et al. (1998). In this method, the den-

sity is re-initialized as: 

∑=
b

b
MLS

abba VWρρ
 

(2.88) 

where the moving-least-square kernel MLS
abW is computed using: 

( ) ( )[ ] abbaba
MLS

ab WzzxxW −+−+= 210 βββ  (2.89) 
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(2.92) 

The re-initialization of density is performed at every 20 – 50 steps. This procedure restores 

the consistency between mass, density and volume of the particles. Moreover, a more regular 

pressure distribution can be obtained and the total energy is better conserved when artificial 

viscosity is used in the computations. These benefits have been observed in Colagrossi and 

Landrini (2003) both for free-surface and for interface flows. In this study, the first-order 

density re-initialization is used. 

2.3.6 Control of interface sharpness 

As discussed in Colagrossi and Landrini (2003), if Equation (2.40) is used and no surface 

tension introduced in the simulations of large density difference flows, lighter fluid at the in-

terface can disperse into heavier fluid. In such cases, the state equation is modified to im-

prove the sharpness of the interface as 

21)( ρ
ρ
ρρ
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(2.93) 

This modified equation of state is applied to lighter fluid only, with the last term expressed in 

SPH approximation as 
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( ) aba
b

bba WVa ∇+− ∑ 22 ρρ
 

(2.94) 

and is further simplified as 

aba
b

ba WVa ∇− ∑22 ρ
 

(2.95) 

The value of a  controls the strength of cohesion force. At the fluid interface, this equation 

reduces the pressure of the lighter fluid acting on the heavier fluid particles by reducing the 

pressure of the lighter fluid particles. This somehow represents the effect of surface tension at 

the fluid interface. It is used in certain cases such as very high pressure air bubbles in water. 

In the wave breaking problem, it is not necessary. 

Note that the force should vanish (or be as small as possible) when the particle is embedded 

totally in its own fluid. The expression (2.95) satisfies this condition since 0≈∇∑b abab WV . 

In this study, the expression (2.95) is added to the SPH approximation of pressure gradient 

(2.40) as 
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(2.96) 

2.3.7 Time-stepping 

Consider the compact form of the governing equations, which are in the form 

a
a D

dt
d

=
ρ

 
(2.97) 

a
a

dt
d Fu

=
 

(2.98) 
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a
a

dt
d ux ˆ=

 
(2.99) 

Two numerical time-stepping schemes of SPHysics v1.0 are used in the present SPH pro-

gram: the Predictor-Corrector scheme (Monaghan, 1989) and the Verlet scheme (Verlet, 

1967). 

In the Predictor-Corrector scheme, the density, velocity and position of fluid particles are first 

predicted as 
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The pressure 2/1+n
ap is calculated from 2/1+n

aρ  via the equation of state. In the corrector stage, 

these values are corrected as 
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Finally, the density, velocity and position of fluid particles at time step 1+n  are updated 
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The pressure 1+n
ap is calculated from 1+n

aρ  via the equation of state 

In the Verlet scheme, the properties of fluid particles are updated as 

n
a

n
a

n
a tDΔ+= −+ 211 ρρ  (2.109) 
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 (2.110) 

These calculations of density and velocity use second order approximation which involves 

the information of particles at time step 1−n .  After every M steps (M  is in order of 40), a 

first order scheme is used: 

n
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n
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 (2.111) 
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a tFuu Δ+=+1

 (2.112) 

The use of 1st order forward scheme is to remove the spurious oscillation due to the effect of 

the 2nd order central difference scheme.  

The position of fluid particles is updated at every step as: 

n
a

n
a

n
a

n
a tt Fuxx 21 5.0ˆ Δ+Δ+=+

 (2.113) 

The pressure 1+n
ap is calculated from 1+n

aρ  via the equation of state. 
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In both the above schemes, the time-step size is controlled by the Courant–Friedrichs–Lewy 

(CFL) condition. The CFL condition requires the distance that a fluid particle moves in one 

time step to be less than a smoothing length. This condition reads 

maxu
htCFL =Δ ; ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= 2max maxmax

ab

abab

bsa

hcu
x

xu
 (2.114) 

The forcing condition requires that the movement of a fluid particle due to the acceleration 

(second order term) to be less than a smoothing length. This implies that 

a
aF

ht
F

min=Δ
  

(2.115) 

The time-step may be updated at every step using 

( )FCFL ttt ΔΔ=Δ ,min2.0   (2.116)

In the present SPH program, the initial time-step is calculated by a simpler formulation 

( )sa
c
ht

max
2.0

=Δ

  
(2.117) 

2.3.8 Computation flow chart 
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Figure 2.18. Computation flow chart of the SPH program 
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2.4 Generation of a plunging wave in deep water 

2.4.1 Wave simulation 

Using a moving vertical paddle in the numerical wave tank, a desired wave can be generated 

by imposing required movement patterns to the paddle. The desired movement of the paddle 

can be computed by using linear or nonlinear theories for wave generation by piston paddles 

which can be found in the book of Dean and Dalrymple (1984). However these calculations 

are analytical and are derived from some simplified equations with assumptions such as line-

arity. Therefore, when the derived paddle movement is applied in numerical models, the gen-

erated wave usually exhibits higher nonlinearity (due to nonlinearity in the numerical model) 

and in many cases they are significantly different from the analytical solutions. 

In this study, the paddle movement is derived directly from the paddle movement signals 

used in the laboratory experiment. Using the paddle signals derived directly from experi-

ments and direct simulations of the wave paddle, wave generations in experiments can be 

mimicked and the wave conditions in laboratory experiments are reproduced very well in the 

numerical simulations. 

2.4.2 Generation of breaking wave 

The initiation of wave breaking by focusing of wave energy in space and time has been tried 

out in the past. Wave energy of unidirectional waves can be focused by laterally converging 

the channel walls or focusing in the wave propagation direction by frequency dispersion. Ex-

periments by Kway (2000) used the longitudinal frequency dispersion and superposition of 

the wave components in time and space. This method has been used in several studies in the 

past including Chan and Melville (1988). In this method, a modulated wave packet is gener-

ated by summing up sinusoidal wave components of discrete frequencies. Using linear wave 

theory and dispersion relationship, wave number and phase can be calculated such that all the 
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wave crests appear simultaneously at a desired point in space and time. Constructive interfer-

ence of the wave component leads to a build up of water level and increase of speed of water 

at the crest. The intensity of the breaking wave can be controlled by changing the amplitude 

of each wave component. This breaking wave can be generated in water of constant depth. 

Such an approach has been used in the experimental studies by Kway (2000) and Lim (2001). 

An amplitude and frequency modulated voltage signal is sent to the wave paddle control sys-

tem in the laboratory.  The signal comprises of 28 components whose frequencies are in the 

range of 0.56 Hz to 1.1 Hz. The phases and amplitudes of the components are calculated such 

that the generated wave packet will break at a distance of 15.2 m from the paddle mean posi-

tion and after 26 seconds. The input voltage signal used in the experiment is given in Figure 

2.19. 

 

Figure 2.19. Voltage signal input to the wave paddle control system in the experiment. 

The velocity of the paddle is needed as the input for the SPH program. In order to obtain the 

velocity of the paddle, it is assumed that the voltage varies linearly with stroke of the paddle 

(Lim, 2001).  Equating the maximum voltage to half of the maximum stroke the following 

equation is assumed and used to obtain the velocity. 
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Using this relationship, the velocity of the wave paddle is derived from the voltage signal and 

is shown in Figure 2.20. This velocity signal was used in a numerical simulation of breaking 

wave in Lim (2001) and will be used in this thesis. 

 

Figure 2.20. Velocity of the paddle input into the numerical simulation. 

2.5 Code parallelization 

When high resolution simulation is required and the air-water phases need to be simultane-

ously simulated, the number of particles involved in the simulation, N, becomes extremely 

large.  

In theory, a computation at a single particle requires a loop over all particles in a computation 

domain to compute the interaction between the particle itself and its neighbours. Thus the 

computation in one step is O(N 2). However, using an advance searching technique (see sec-

tion 2.3.3), the computation complexity is reduced to almost O(N). 

Since the computation is explicitly and totally Lagrangian, the computational time step nearly 

varies linearly with the resolution (proportional to particle size). If M is the times of resolu-
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Time stepping is assumed being reduced by M times when resolution increase by M times. 
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increases M 3 times in 2D and M 4 times in 3D. The actual test of parallel computation has 

shown that the computational time increment is closed to the theoretical O(M 3). 

In such situation, parallel computation is obviously essential. The computational domain is 

partitioned into sub-domains and the Message Passing Interface (MPI) is used to exchange 

data among the sub-domains. The domain decomposition and data exchange are described as 

followings. 

Firstly, the original computational domain is decomposed into several sub-domains; each is 

handled by a separate processor. Assuming the original domain is divided into 6 sub-domains 

(shown as colour coded boxes in Figure 2.21a). A sub-domain is required to exchange data 

with its adjacent sub-domains, e.g. domain #4 exchanges data with domains #0, 1, 2, 3, 5. 

To serve for the data exchange, small zones at the interface between sub-domains are created. 

These zones are called buffer zones and will have widths of 2h (which is equal to the smooth-

ing length or the radius of the compact support circle). A copy of particles which lie inside a 

buffer zone just next to a sub-domain (sharing the same edge or corner) is sent to that sub-

domain. Copies of particles sent to a sub-domain will be added into its particle list, creating 

an extended sub-domain (as shown in Figure 2.21b). Small colour coded boxes surrounding 

the sub-domain #4 are received from adjacent sub-domains with the same colour codes. 

Once all the sub-domains sent and received necessary data, normal SPH calculation is per-

formed for all particles in each extended sub-domain in a separate processor (Figure 2.21c). 

However, only particles in the original sub-domain need to be updated with new properties. 

The efficiency of the parallel computing could be maximized by balancing the computational 

load and communication (data exchange) load. Preliminary calculations and benchmark 

simulations are performed to estimate the resource needed for the simulation.  
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Figure 2.21. Domain decomposition and buffer zones for data exchange. 

At the final nested stage, the SPH program is used to simulate a breaking wave starting from 

the instance of wave steepening to that of the wave collapse. The time scale for this process is 

around 1 second. The length scale of the simulation is equal to that of a laboratory experi-

ment done. Computation domain in two-dimensional is 8 m long and 3 m high. The desired 
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particles. Computational time step required for the simulation at this resolution is 10-6 s. 
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In parallel computation, additional time for data exchange is required. The communication 

time among processors is large if the data required for exchange is large. This communication 

time sometimes dominates the pure computation time. Thus we expect the speedup of a small 

0 1 2

3 4 5
4

Buffer zone(a) (b)2h

0 1 2

3 4 5

(c)



 Chapter 2 Methodology  

 
73 

problem and a large problem could be significantly different even the same program is used. 

Therefore, in this test, a reasonably large problem is used. The size of the problem is as below 

• Number of particles: 3,673,200 

• Number of step: 1,000 

The test is done on 25, 50, 75, 90 processors in a CE Linux cluster with the following specifi-

cation: 

• Nodes: 23, with 4 processors/node. 

• Processor: Intel(R) Core(TM) i7 CPU   940 @ 2.93GHz 

• Memory (RAM): 12GB 

• Network card: Myri-10G PCIe NIC with MX 

The number of processors used and average number of particles per processor, time to finish 

1000 steps and speedup ratio are shown in the Table 2.1. Since the program is too large to run 

in a single processor, the 25-processor run will serve as benchmarking point with speedup 

ratio equal 1. 

The speedup curve of the program is plotted (blue dots) against the ideal one (red dots) in 

Figure 2.22. The green solid line is the fitting curve to the actual speedup. The 100-processor 

run is not shown because hyper-thread mode is used. The speedup in running the SPH 

program is close to expectations. 
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Table 2.1. Computation time and speedup ratio versus number of processors 

No. of 
proc Particles/1 proc Comp. time/ 1000 steps 

(min) Speedup 

25 147,000 13.065 1 

50 73,000 6.495 2.01 

75 49,000 4.71 2.77 

90 41,000 4.178 3.13 

100♣ 37000 6.278 NA 

  ♣Hyper-thread mode used as the number of physical processors is 92. This hyper-thread 
mode reduces the computation speed probably because some physical processors have to 
carry 2 jobs, and this slows down the whole computation. 

 

 

Figure 2.22. Speedup curve of the SPH program running in the “CE Linux” cluster. 
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Using this test and assuming that the computation time increases at O(M 3) with M is the 

increase ratio of resolution; apply to the target problem (24 millions particles), computation 

time will increase (24/3.7)3/2 = 16.5 times. 

Number of particles in one processor is assumped to be in between 40,000 – 300,000 to retain 

the speedup  of the tested problem (or linearly scale up of the tested problem). The number of 

processors required is 160 – 580. Using this assumption, number of processors, number of 

particles and the computation time (minutes per 1000 model steps and hours per 1 model 

second) for the target problem are estimated as in Table 2.2. 

Table 2.2. Estimated computation time versus number of processors for the target problem 

No. of 
proc 

Particles/ 1 
proc 

Comp. time/ 1000 
step (min) 

Comp. time/ 1 
model sec  

(hr) 

90 267,000 23.517 391.95 

162 148,000 13.065 217.75 

325 68,000 6.495 108.25 

487 49,000 4.71 78.5 

585 41,000 4.1775 69.625 

 

To verify this estimation, a simulation of 22,950,000 particles, time step of 10-6 s (close to the 

target problem) is performed on 90 processors. The computation time for 1000 model steps is 

22.8 mins, and time to complete 1 model second is 380 hr. These values are very close to the 

estimation above for 24 millions particles on 90 processors shown in the table above. Thus 

within the range of 40,000 – 300,000 particles per processor, the computational time of the 

program can be linearly scaled with the size of the problem. 
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2.6 Multi-scale nesting approach 

As shown in the previous section, even with parallel computation with large number of proc-

essors, the numerical simulation is unable to perform the whole process of two-dimensional 

two-phase wave focusing and breaking at our target resolution. There are several techniques 

to address this issue. Non-uniform particle size and nesting are the two techniques that have 

been used intensively for multi-scale problems. In this study, the nesting approach is used. 

The computation domain is nested down to the area of interest from a much coarser simula-

tion (see Figure 2.23). The nesting procedure is implemented through the following two 

steps. 

In the first step, the wave packet generation and propagation in a long water flume (shown in 

Figure 2.2 and Figure 2.23) is simulated at a coarse resolution. This simulation is performed 

until the wave packet focuses and starts to break. It is well understood that during this stage 

the evolution of the waves are not much affected by the air, thus single-phase flow model is 

sufficient. Various numerical models could perform well during this stage. However, due to 

the fact that the waves are short waves and travel a long distance before focusing, numerical 

dissipation is a crucial issue. Among available numerical methods, the boundary integral 

method (BIM) and the current SPH are good candidates. In this study we use SPH for simula-

tion of wave propagation and focusing. Results show that SPH output agrees very well with 

that of BIM and observation in the experiment. The numerical dissipation is under control 

and reduced significantly. 
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Figure 2.23. Schematic plot of the nesting procedure.  

In the second step, a smaller domain that covers the breaking area is extracted from the 

coarser simulation in the first step. The domain is chosen such that it is large enough to 

minimize inconsistency errors at the nesting boundary to propagate in and influence on the 

breaking process. Much finer resolution is used for the simulation of this domain. Initial con-

dition of the water is interpolated from the coarser simulation. The area above the water sur-

face is also filled up by a layer of air. Initial gauge pressure and velocity of the air layer are 

set to zero. Air velocity near the interface with water is extrapolated from the velocity of the 

water to reduce the inconsistency. 

In this thesis, the following two nesting techniques are implemented. 

2.6.1 Interpolated nesting boundary condition 

A key step in nesting is the exchange of boundary and field information between two compu-

tational domains of two different resolutions. The finer resolution domain is located within 

the coarser resolution domain. The information exchange could be one-way (one-way nest-

ing) or two-way (two-way nesting). In the one-way nesting, the finer resolution domain util-

izes data from coarser resolution domain to carry out simulation and there is no data to be fed 
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back to the coarser domain. In the two-way nesting, the finer resolution domain receives data 

from coarser resolution domain to carry out simulation, and the information from finer reso-

lution simulation, which is supposed to be more accurate, is fed back to the coarser domain to 

correct its current state. In general, several nest levels could be used to go from larger scale 

simulation to the finest scale. In this thesis, the one level and one-way nesting are used. 

The scheme for the one level and one-way nesting is shown in Figure 2.24. In this scheme, 

the coarser resolution (represented by light blue area and blue circles as particles) simulation 

is carried out in advance. The simulation of the finer resolution domain (represented by light 

pink area and red circle as particles) is carried out by using information from the coarser do-

main. Lateral boundaries of the finer domain are defined by lines connecting all the outer 

most particles on the left and right sides of its domain. The initial condition of the finer do-

main is interpolated from the coarser domain. Lateral boundary condition is transferred from 

coarser to finer domain through buffer zones, which are defined as strips of 2h wide along the 

lateral boundaries of the finer domain. During every step of the simulation of the finer do-

main, properties of the red particles within the buffer zones are interpolated from the results 

of coarser domain. Properties of particles at the inner zone are computed as usual using SPH 

approximation. In the next step, velocity and position of particles in the finer domain are cal-

culated from equations and lateral boundaries are defined again. 
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Figure 2.24. Schematic representation of the interpolated boundary condition. 

2.6.2 Periodic boundary condition 

The nesting procedure could be further simplified by making use of known characteristics of 

the problems. The wave focusing problem involves slow dynamics at large scale. The length 

and time scales are much larger than those of the breaking problem. In this study, the wave 

flume is 36 m long. The focus point and time of the wave packet to focus are 15 m and 26 s, 

respectively. The wave length at the focus point is around 7 m and the maximum velocity of 

particles is 0.4 m/s. The dynamics of the breaking process is much faster and more localized. 

The length scale of the breaking area is around 2 m and the time scale of breaking process is 

1 – 2 s. The breaking wave crest is located at the centre of the domain or 3 m from the left 

boundary. The velocity of water particle during the breaking could reach 2 -3 m/s. Therefore, 

within one second, disturbances at the lateral boundary which is sufficiently far away are not 

expected to reach the breaking area. Making use of these characteristics of the wave focusing 

and breaking problem, the lateral periodic boundary condition (see Section 2.3.1.3) could be 

used. The procedure is as followings: 
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• The length of the nested domain is chosen to be at least one wave length around the 

focus point so that the breaking area is in the middle of the domain. The left and right 

boundaries are preferred to be at the places where particle velocity is lowest.  

• Water particles at a desired resolution are regularly distributed in the nested domain 

from the bottom to the free surface. Air particles are regularly filled up on top of the 

water surface. A solid boundary located at the top of the air layer to prevent the air 

leaking at the top. The thickness of the air layer is 3 – 4 times of the water layer to 

minimize the effects of the imposed solid wall at the top. 

• The initial condition of the water particles in the nested domain is interpolated from 

the coarser simulation at the starting time of the nested simulation. Initial condition 

comprises of pressure, density, velocity and other viscosity, turbulence and correction 

terms of the particles. Parameters of the state equation for water are copied from 

coarser simulation. Initial pressure and velocity of the air layer are set to zero. Air ve-

locity near the water interface is extrapolated from the velocity of the water to reduce 

the inconsistency. 

• Lateral periodic boundary conditions are applied at the two end of the nested domain, 

for both water and air phases. 

2.6.3 Comparison of the two nesting techniques 

A study of the sensitivity and comparison of the two nesting techniques described above for 

nested simulations at different particle sizes (0.005, 0.0025 and 0.001 m) were conducted (see 

Figure 2.25 to Figure 2.30). In these simulations, only one-phase flow is considered. Results 

in Figure 2.25 and Figure 2.26  show that at coarser resolution, dx = 0.005 m, the shapes of 

the breaking wave are significantly different. At finer resolution, dx = 0.0025 m, the both 

types of boundary condition produce much similar results at the breaking area, except for 

slightly difference at the vertical jet (see Figure 2.27 and Figure 2.28). It suggests that at 
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coarser resolution, numerical noise due to the non-natural truncation of the lateral boundary 

and the imperfect boundary condition at lateral boundaries propagate faster and reach the 

centre of the domain in a shorter time. The numerical noise is larger and propagates faster 

when the resolution is lower, similar to other gridded methods. The SPH method uses infor-

mation from neighbour particles to approximate properties of a particle, thus the more parti-

cles used in its neighbour, the more disturbances it has to receive. In other words, the distur-

bance is propagating at a speed proportionally to the number of neighbour particles and the 

radius of the support domain in that direction. At the finest resolution of 0.001 m, the two 

types of boundary condition produce very similar result at the breaking region (see Figure 

2.29 and Figure 2.30). 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 2 Methodology  

82

 

 

 

 

Figure 2.25. Results at 26.3 s (0.5 s since focal time) from interpolation at the boundaries (a) and 
periodic boundary condition (b). Particle size 0.005 m. Color is fluid pressure. 

 

 

 

Figure 2.26. Results at 26.3 s (0.5 s since focal time) from interpolation at the boundaries (a) and 
periodic boundary condition (b), zoomed in at the breaking area. Particle size 0.005 m. Color is 

fluid pressure. 
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Figure 2.27. Results at 26.3 s (0.5 s since focal time) from interpolation at the boundaries (a) and 
periodic boundary condition (b), zoomed in at the breaking area. Particle size 0.0025 m. Color is 

fluid pressure. 

 

 

Figure 2.28. Results at 26.3 s (0.5 s since focal time) from interpolation at the boundaries (a) and 
periodic boundary condition (b), zoomed in at the breaking area. Particle size 0.0025 m. Color is 

fluid pressure. 
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Figure 2.29. Results at 26.3 s (0.5 s since focal time) from interpolation at the boundaries (a) and 
periodic boundary condition (b), zoomed in at the breaking area. Particle size 0.001 m. Color is 

fluid pressure. 

 

 

Figure 2.30. Results at 26.3 s (0.5 s since focal time) from interpolation at the boundaries (a) and 
periodic boundary condition (b), zoomed in at the breaking area. Particle size 0.001 m. Color is 

fluid pressure. 
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From the theoretical point of view, the interpolated nesting boundary condition is more con-

sistent and accurate than the periodic boundary condition technique in term of the transferring 

the dynamics of the particles in the coarser domain is into the finer domain. However, the in-

terpolated nesting boundary condition technique in more complicated when applied to the air-

water two-phase flow problems. In such problems, the movement of the air particles is faster 

and more turbulent compared to that of water. This makes the definition of lateral boundaries 

and buffer zones more difficult, especially near the air-water interfaces. Moreover, in order to 

supply boundary condition for the nested domain with two-phase flow, the coarser simulation 

must be two-phase as well. The two-phase flow simulation even at the coarser resolution will 

involve much more particles (number of air particles is usually twice or triple number of wa-

ter particles) and thus reduces the efficiency of the nesting approach. 

The periodic boundary condition technique is relatively simpler. Using this technique, the 

lateral boundaries are fixed and no buffer zone is required. The air particles could be initiated 

from rest at the start of the finer simulation. Therefore two-phase simulation at coarser reso-

lution is not required. However, inconsistencies at the lateral boundaries could propagate far 

inside the computational domain if the resolution is relatively coarse and simulation is long. 

In the problem of wave breaking studies in this thesis, the time scale of the breaking process 

under consideration is very short and the resolution is very fine. Under these conditions, as 

concluded in the above sensitivity study, the two nesting methods will produce very similar 

results at the breaking region. Therefore, in the study of wave breaking in this thesis, the pe-

riodic boundary condition is used.  
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Chapter 3. Validation of SPH Program 
in Simulating Extreme Wave Breaking 

 

 

The SPH program is validated against common benchmark problems ranging from slow to 

fast dynamics. The chosen benchmark problems include sloshing in an enclosed tank, dynam-

ics of a high pressure air bubble rising in water, dam break with impact on a vertical wall, and 

wave propagation in a flume. The SPH results are compared with analytical, numerical solu-

tions, and experiments. Sensitivity studies on key numerical settings of SPH are also pre-

sented. 

3.1 Sloshing Tank 

The configuration of the sloshing problem and initial surface displacement are given in Fig-

ure 3.1. The tank is 1.0 m long and 0.25 m high. The still water depth in the tank is H = 0.2 

m. The water is initially inclined a slope of S = 0.02 (Z0 = 0.01 m). The water sloshes under 

gravity with one slosh cycle period estimated from linear theory, T = 1.5196 s. Results are 

verified against the linear analytical solution given in Lin and Li (2002). 

The SPH simulation uses a set of 50,000 water particles with the size of 0.01H in diameter. 

The simulation is carried out for 10s, which covers 6 sloshing cycles. Only the single-phase 

flow simulation is presented. 

The initial free surface and pressure field of the sloshing problem are shown in Figure 3.2. 

The initial analytical solution of free surface is also plotted in this figure as the black line. 
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Comparisons of the simulate sloshing free surfaces to the analytical solutions at different time 

instances are given in Figure 3.3. 

 

Figure 3.1. Schematic configuration of the sloshing water tank problem. 

 

 

 

Figure 3.2. Initial surface elevation and pressure field. 
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Figure 3.3. Comparison of simulated (blue) to analytical solution (red line) of free surfaces.  

Figure 3.4 plots graphs of the normalized potential, kinetic and total energy which are defined 

as 
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where ET  is total energy, ET0 is initial total energy; EP and EK are potential and kinetic ener-

gies, respectively; ∆E is the value used for normalizing; here ∆E = EKmax – EKmin. 

It can be seen from the figure that the kinetic and potential energies are transforming to each 

other. The magnitudes of kinetic and potential energy oscillations reduce by 10% after 6 cy-

cles. The total energy increases by 20% of the maximum range of the kinetic energy ∆E. 
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Figure 3.4. Energy plot of single-phase simulation of sloshing problem. 

The energy lost could be explained, similarly to that of other numerical methods, by the nu-

merical (and artificial) and physical viscosity presented in the SPH simulation. The artificial 

and physical viscosity term is introduced to approximate the real fluid viscosity and to stabi-

lize the SPH solution if required. The numerical viscosity is the result of the approximation 

error of the pressure gradient and other terms. For example, without the presence of other 

forces, the pressure gradient inside a fluid in a water tank must balance with the gravitational 

acceleration. However, the ratio of SPH approximation of pressure gradient over gravitational 

acceleration may not exactly equal to unity. The difference is dependent on many numerical 

parameters such as the kernel characteristics, the particle arrangement or the initialization of 

particle properties. If this ratio is less than one, the error has analogous effect to viscosity to 

dissipate energy. But if the ratio is greater than one, more energy is added to the system. In 

Figure 3.4, the tendency of total energy increase is observed while oscillations of individual 

energy components reduce. The reduction of energy oscillations is normally due to viscosity. 

The energy lost is 10% after 6 sloshing cycles. The increase of total energy is probably due 

the increase of the mean potential energy. This is the result of the slight increase of the free 

surface level due to the error in the approximation of the pressure gradient, especially at the 

free surface. After investigation, we found that the imperfect initialization of particle pressure 

and density, the lacking of particles in supporting domains near the free surface are the major 
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causes of this error. Nevertheless, this error may have significant effect to the problems with 

very small disturbance and inviscid flow. In the problems involving strong flow motion of 

real fluids, viscous effect could overwhelm this error. A balance could be found by carefully 

tuning numerical parameters. This will be demonstrated in the sensitivity studies later in this 

chapter. 

3.2 Rising of an air bubble in water 

The configuration of the air bubble rising problem is given in Figure 3.5. The water tank has 

dimensions of L = 6R and D = 10R. The bubble is initially at high pressure and released near 

the bottom of the tank. The bubble has circular shape of diameter d = 2R. The center of the 

bubble locates at the center line of the tank and 2R from the tank’s bottom. The ratio of the 

reference density of air and water is 1.2/997. Due to the difference of pressure inside and out-

side of the bubble and buoyancy, the bubble quickly deforms and rises up.  

 

Figure 3.5. Setup and dimension of a high pressure air bubble rise in water. 
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The SPH simulation involves 37,500 particles, in which 35,524 is the number of water parti-

cles. The particle diameter is 0.04R. Parameters for SPH simulation are: smoothing length h = 

0.08R; numerical sound speeds in water csW = 28.28(gR)0.5, and in air csA = 400(gR)0.5; time 

step dt = 10-5. 

Due to its very high pressure, the air particles near the bubble surface can easily break 

through the interface and go inside the water. Therefore, the sharpness control parameter is 

turned on to prevent the air particles at the interface diffusing quickly into the water. The 

sharpness control parameter used in the simulation is a = 15,000. 

Snapshots of vertical velocity of the surrounding water at some time instances are plotted in 

Figure 3.6. The bubble’s shapes are shown in Figure 3.7 together with the solution of the 

bubble surface solved by LS method in Sussman et al. (1994). Note that the LS solution is for 

reference only, not for evaluating the accuracy of SPH or LS model.  

At early stage, an upwelling water jet is created beneath the bubble. The jet deforms the bub-

ble to a horse-shoe shape. The jet becomes broaden and the horse-shoe shape bubble 

stretched horizontally. The necks at the bubble tips become thinner and the bubble tips have 

rolling motion due to the circulation of the surrounding water. Eventually, bubble tips de-

tached forming smaller bubbles. The main bubble is flattened and rises up. 

As shown in Figure 3.7, the shapes of the bubble derived from the two methods agree fairly 

well with each other. Significant differences are along the centre line and at the bubble necks. 

The thickness of the bubble along the centreline is larger in the SPH result. The upper surface 

of the bubble from SPH matches well with LS solution, but the lower part is lower in the SPH 

solution. However, the necks are thinner in the SPH solution. This suggests that the vertical 

jet is stronger in LS simulation. After breaking down, LS simulation shows more and larger 

detached bubbles created. The additional smallest bubbles appear and then disappear in LS 
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simulation but not on SPH simulation. That is probably due to poor resolution and mass con-

servation in LS. 

Figure 3.8 shows SPH simulations using different surface sharpness control parameter. In the 

figure, we can see the importance of surface sharpness in this case. On the left, without sur-

face sharpness, the bubble appears to be bursting while on the right the bubble surface retains 

its sharpness. 
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Figure 3.6. Snapshots of vertical velocity fields of water around a rising air bubble. Vectors 
show the direction of water flow. 
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Figure 3.7. Evolution of simulated air bubble rising in water (green dots) compared with LS 
simulation (red circles). Only air particles are plotted. 

 

 

1 2 3 4 5
2

3

4

5

6

Time= 0.89178 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.02204 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.15230 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.28256 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.40280 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.53306 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.66332 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.79358 (s)

1 2 3 4 5
2

3

4

5

6

Time= 1.92384 (s)



 Chapter 3 Validation of SPH Program 

96

 

Figure 3.8. Simulated air particles (green dots) with different surface sharpness options used. 
Left: no sharpness control; Right: surface sharpness parameter a = 15000 (right). LS simulation 

(red circles) is plotted for reference. 

The normalized energy of the air-water system is plotted in Figure 3.9. It can be seen that 

during the evolution, potential energy is almost perfectly transformed into kinetic energy, the 

total energy of the system remains close to the initial energy. 

 

Figure 3.9. Energy of the system. 
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3.3 Dam break and impact of water on vertical wall 

The configuration of the dam break problem is shown in Figure 3.10. The water body after a 

sudden break of a dam is numerically represented as an initial rectangular column of water 

supported by the horizontal bottom of a water tank. The left side of the water column is a ver-

tical wall of the tank. The other vertical side of the water column is the water-air interface 

which is free to evolve under gravitational force. After the dam breaks, water spreads quickly 

over the dry bottom of the tank. The water front then impacts on the right wall of the tank de-

veloping an upward jet. The developed jet reverts and overturns, forming a strong plunger 

and entrapping large amount of air.  

The dam break problem has been studied experimentally in the past (Zhou et al., 1999). Re-

sults of water surface height, impact pressure on the right wall from the experiment can be 

used to verify the current SPH method. 

For comparison, the dam break experiment in Zhou et al. (1999) is reproduced using SPH. 

The dimension of the tank is D×L = 3.33H × 5.366H.  The height and width of the water col-

umn are H = 1.0 m, and W = 2H. The SPH simulation uses 28,800 water particles of size 

0.00833H (and 228,800 air particles in two-phase simulation). The simulation is carried out 

for 3 sec with time step of 2×10-6 sec. 

 

Figure 3.10. Schematic configuration and initial condition of the dam break problem. 
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The computed shapes of the air-water interfaces at different time instances are plotted to-

gether with those obtained from BEM and LS simulations. In Figure 3.11, the SPH simulated 

overturning plunging tips at two time instances are compared with a BEM simulation of in-

viscid flow. SPH simulation is two-phase but only water phase is plotted. Comparisons show 

a good agreement between SPH and BEM near the wall. A slight difference is observed at the 

plunging tip. The plunging tip from SPH simulation develops faster. The BEM simulation 

stops when the plunging tip impacts on the underlying water. At the same time, the tip from 

SPH simulation penetrated the water body, enclosing an air pocket. 

 

Figure 3.11. Comparisons of air-water interface solutions of SPH (blue) to BEM (black solid 
line) solution at dimensionless time t(g/H)1/2 = 5.95 and t(g/H)1/2 = 6.2.  

 

Figure 3.12. Comparisons of air-water interface solutions of SPH (blue) to LS solution (black 
solid line) at dimensionless time t(g/H)1/2 = 6.76 and t(g/H)1/2 = 7.14. 
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Figure 3.12 compares the air-water interface with the solutions from a LS simulation. Both 

methods produce similar results in term of capturing the interface shape. The splash-up of 

water following the impact of the plunging breaker on the wetted deck was captured by SPH 

and LS. Some water particles leaving the main bulk of fluid is observed in SPH simulation. 

Compared to a SPH simulation at the same resolution, the LS method is smoother but it failed 

to capture the fragmentation of water. 

By labelling each fluid particle with a colour code, Figure 3.13 suggests a slight penetration 

of the plunging tip into the underlying water. The plunging tip is divided into two parts. The 

first part is pushed forward together with the water from the underlying surface to form a 

splash-up. The second part penetrates deeper into the water body and is carried along by the 

rolling water surrounding of the entrapped air pocket. The air pocket surface is initially 

smooth except for a small disturbed area near the impact location. The disturbed surface is 

then developed and spread over the air pocket surface due to the rolling motion. This phe-

nomenon is typical for plunging waves and is discussed more in Chapter 4. 

The total height of water column at two locations in the horizontal axis and the impact pres-

sure on vertical wall are compared with experimental results by Zhou et al. (1999). In the ex-

periment, standard capacitive wave gauges being used are sensitive to the wetted portion of 

the wire. Hence in the numerical simulations, the total height of water is computed by taking 

the water level deducting the height of entrapped cavity (if present). Figure 3.14 shows the 

time evolutions of total water height at two locations x1 = 4.517 H and x2 = 3.713H and com-

parison with experiment results. At both locations the water height is characterized by a im-

mediate hump when the deck is being flooded. This is not picked up in the numerical simula-

tions, probably due to the deck condition such as roughness is not included in the simulations. 

In overall, comparisons at two locations show good agreements between numerical simula-

tions and laboratory measurements up to the time t(g/H)1/2 ≈ 6.8 (which corresponds to the 
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stage of splash-up formation shown in Figure 3.12, right pane). Subsequently, the total water 

height measured in experiment jumps sharply then reduces gradually. During this period, the 

two simulations deviate from experiment. At location x1, both single-phase and two-phase 

simulations show similar results which under-predict the measurement. The comparison at 

location x2 shows a better agreement where the two curves follow the trend of the experimen-

tal result. However, the single-phase curve over-predicts while the two-phase curve under-

predicts the experiment result.  

 

Figure 3.13. Penetration of plunging tip into underlying water and splash-up formation. Water 
from the plunging tip is bifurcated on impingement. 

The impact pressures of the water front on the vertical wall computed from numerical simula-

tions are plotted in Figure 3.15 together with the measurement from experiment of Zhou et al. 

(1999). In the experiment, impact pressure was measured by a circular pressure transducer of 

0.09 m (0.15H) in diameter. The pressure transducer is located at the right wall of the tank 

and is centered at 0.267H above the deck. In numerical simulations, the total pressure is com-
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puted based on the Bernoulli equation for compressible fluid which comprises of dynamic 

pressure from the moving fluid that brought to rest and the fluid pressure.  

It can be seen from Figure 3.15 the SPH simulations show a good agreement to the experi-

ment. The first pressure peak (A) at time t(g/H)1/2 ≈ 2.4 corresponds to the impact of the wa-

ter front against the wall. This sudden rise of pressure is well captured in SPH simulations 

both one- and two-phase flows since it associates mainly with the dynamics of the water 

front. The peak of impact pressure from the numerical simulation is about twice larger than 

that measured in the experiment. 

(a)

(b) 

Figure 3.14. Time evolution of total water height at locations (a) x1/H = 4.517 and (b) x2/H = 
3.713. (SPH-1p stands for single water phase, SPH-2p is air-water two phase simulation) 
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The backward plunging water jet impinging on the water surface induces the second pressure 

peak (C) at time t(g/H)1/2 ≈ 6. The numerical simulations show a delay of the rising time of 

this pressure peak. There are several pressure peaks observed in the two-phase flow simula-

tion while less peaks are seen in single-phase simulation. The higher number of peaks in the 

two-phase simulation may be attributed to the compression and expansion of the entrapped 

air pocket. These oscillations are also observed in the measurement although the magnitude is 

smaller. There are two high pressure peaks occurring in very short durations shown in single-

phase curve at t(g/H)1/2 ≈ 8.4 and 9.2 (E and F). These pressure peaks are unrealistic and they 

are associated with the collapse of the void pocket where the top part of the plunging wave 

falls on the water part beneath. This comparison clearly shows the important effect of air-

cushion to the impact pressure on structures. 

 

Figure 3.15. Evolution of total pressure single-phase and two-phase simulations on the vertical 
wall at location (x, z)/H = (5.366, 0.267).  

Figure 3.16 shows the fractions of the hydrostatic and dynamic pressure components contrib-

uting to the total pressure at the wall computed from the two-phase flow simulation. At the 

time of the impact, pressure rises sharply due to the fast moving fluid brought to rest, the ki-

netic energy almost transforms to potential energy (represented in term of pressure). After 

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

t(g/H)1/2

p
/
ρ W
g
H

 

 

experiment
SPH-1p
SPH-2p

B
A

C D
E

F 



 Chapter 3 Validation of SPH Program 

103

that, a part of potential energy converts back to kinetic energy, containing in the vertical wa-

ter jet (see Figure 3.17a). At the time when the second peak occurs, the contribution from dy-

namic pressure is very small. It can be seen on Figure 3.17b that the flow speed near the wall 

is close to zero. The rise of pressure is mainly due to the impact of the falling jet on the un-

derlying water and the pressure propagating through water and the compressing air pocket.  

 

Figure 3.16. Fractions of static pressure (blue) and dynamic pressure (green) contributing to the 
total pressure. 

 

(a)        (b) 

Figure 3.17. Velocity field near the wall of the two-phase simulation (only water phase is shown) 
at the times of the first (A) and second peaks (C) occurring 
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Figure 3.18. Static pressure field near the wall of single-phase (a) and two-phase (b) simulations 
at the times of the simulated peaks (A, B, C, D, E in Figure 3.15) occurring. The circle in each 

snapshot is the location of the pressure sensor.  
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Snapshots of the static pressure distribution near the right wall of the tank corresponding to 

the time instances labelled as A – E in Figure 3.15 are shown in Figure 3.18. The snapshots 

are taken from single-phase (left column) and two-phase simulations (right column). It can be 

seen at time C and D the air pocket is compressed and the fluid pressure is significantly 

higher in the two-phase simulation. At time E, collapse of the plunger in the single-phase 

simulation results in an extremely high pressure near the wall. Note, however, that the en-

trapped air pocket immediately disappears at collapse and this is inconsistent with the physics 

of air entrapment and breakdown into bubbles during breaking.    

The kinetic, potential and total energy of the one- and two-phase flow simulations are given 

in Figure 3.19. The total energy error is defined as (ET – ET0)/ET0, where ET is total energy 

and ET0 is the initial total energy. One can observe several oscillations in the kinetic and po-

tential energy (such as those at t(g/H)1/2 ≈ 3 and t(g/H)1/2 ≈ 6.5). These oscillations may be 

associated with the peaks of impact pressure shown in Figure 3.15 which implies that the ki-

netic energy being transferred to potential energy during the impact. In both cases, the total 

energy dissipation is very small during pre-breaking stage of the backward plunger. During 

breaking, energy dissipates quickly. At time t(g/H)1/2 = 10, total energy is reduced by 30%. 

The two-phase simulation shows faster energy dissipation. 

 

Figure 3.19. Energy plots for two-phase (solid lines) and single-phase (dash lines) simulations of 
the dam break problem.  
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A comparison of different two-phase SPH simulations using different key numerical parame-

ters (numerical sound speed, smoothing length and viscosity model) is also carried out. Three 

scenarios are simulated. The parameter settings of the scenarios are given in Table 3.1. Re-

sults of air-water interfaces, impact pressures on vertical wall and wetted heights at the two 

locations are plotted in Figure 3.20 to Figure 3.22. 

Table 3.1. Scenarios and parameters for different SPH simulations of dam-break problem. 

Scenario 
ID 

Sound speed 
in water 

Sound speed 
in air

Smoothing 
length h/dx Viscosity model 

C1 27.124 108.4 1.33 Artificial viscosity 

C2 27.124 108.4 1.33 Turbulence (LES) 

C3 20 20 2 No viscosity 

 

 

 

Figure 3.20. SPH simulated air-water interfaces solutions at different numerical parameters. 
BEM (left) and LS (right) solutions (black solid line) are plotted for reference. 
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Figure 3.21. SPH simulated total pressures on the vertical wall at location (x, z)/H = (5.366, 
0.267). 

 

Figure 3.22. SPH simulated total water heights at locations (a) x1/H = 4.517 and (b) x2/H = 3.713. 
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We can see that the results from simulations of C1 and C2 are almost similar. It suggests that 

the viscosity model has minor influence to the numerical results. In Figure 3.20, the air-water 

interfaces from simulations of C1 and C2 develop faster than BEM solution but agree very 

well with LS solution. Results of air-water interfaces from simulation of C3 agree well with 

BEM solution but deviate significantly from LS simulation. It is noted that in BEM simula-

tion the fluid is non-viscous and dissipation is small while in LS simulation fluid is viscous 

and dissipation is higher. 

The impact pressure results from the three simulations agree well with each other until the 

second peak of pressure occurring as shown in Figure 3.21. After that, pressures from C1 and 

C2 are oscillatory with many large peaks and slow decay. The pressure from C3 shows two 

large peaks and small oscillation. The decay rate of pressure in C3 is faster and closer to the 

measurement.  

The total water heights computed from the three simulations also agree very well with each 

other until the time the second pressure peak occurs as shown in Figure 3.22. After that, the 

total water heights from C3 are higher and match better with the measurement than that from 

C1 and C2. At location x2, the C3 simulation successfully captures the peak of the total water 

height. 

Overall, the C3 simulation agrees better with the measurement and BEM although it deviates 

significantly from LS simulation. A possible reason is the high dissipation rate in LS and C1, 

C2 simulations. The C3 setting will be used for the later simulations. 

3.4 Water wave propagation in a long flume 

The SPH simulations presented above are at small spatial and temporal scales. Within a short 

time, the numerical dissipation has not significantly affected the results. For problems of lar-
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ger scales, dynamics evolve over a long time scale and numerical dissipation could accumu-

late and drastically changes the results. The difficulty in simulating slow dynamics and large 

dissipation are commonly found in many numerical methods. With SPH, choosing the right 

numerical parameters such as resolution, time step, and smoothing length would help to miti-

gate the numerical dissipation.  

The problem of wave propagation in a wave flume is simulated to test the SPH method as 

well as to obtain the best set of numerical parameters for the later simulations of the wave 

breaking problem. The configuration is shown in Figure 3.23. The flume has dimensions of 

36 m long and 2.4 m height. The water depth is 0.8 m. The bottom surface is assumed flat 

and smooth. The horizontal moving piston is initially located at 0.5 m from the left wall (or 

35.5 m from the right wall). In cases of sinusoidal wave generation, this initial position coin-

cides with the mean paddle position. This configuration of the water flume follows that of the 

laboratory experiment conducted by Kway (1998, 2000).  

 

Figure 3.23. Dimension of the water flume and setup of the numerical experiment. 

A parametric sensitivity study of wave propagation in a water flume, validations of sinusoidal 

wave propagation and wave breaking with laboratory experiments are carried out. All SPH 

simulations used in these numerical experiments are single phase. 
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3.4.1 Sensitivity study of wave propagation simulation 

A signal is sent to the paddle to generate a series of sinusoidal waves (short wave) of prede-

fined amplitude (0.05 m) and period (1 sec). SPH simulations are carried out using different 

combination of smoothing length coefficients hc (hc = h/dx), time steps dt and resolutions 

(particle sizes) dx. Time series of water elevations at the wave gauges are compared with 

each other to find the best combination of these parameters. Results are given in Figure 3.24 

– Figure 3.26. 

 

Figure 3.24. Simulated water levels of sinusoidal waves at gauge #1 (4.5 m from the mean paddle 
position), gauge #2 (9.0 m) and gauge #3 (12.0 m). Four different smoothing length coefficients 

are used. Time step and resolution are fixed at dt = 2×10-5 sec and dx = 0.01 m. 
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Figure 3.25. Simulated water levels of sinusoidal waves at gauge #1 (4.5 m from the mean paddle 
position). Two different time steps are used. Smoothing length and resolution are fixed at hc = 

2.05 and dx = 0.01m. 

 

Figure 3.26. Simulated water levels of sinusoidal waves at gauge #1 (4.5 m from the mean paddle 
position) and gauge #2 (9.0 m). Two different resolutions are used. Smoothing length is fixed at 

hc = 1.55. Time step changed accordingly to resolution. 
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It can be seen from the results plotted in Figure 3.24 that the wave height reduces quickly 

when the smoothing length coefficient hc = 1.33 is used. The use of larger smoothing length 

coefficients reduces the dissipation rate. As a result, wave amplitude remains closer to the 

initial value. Small dissipation is observed with hc = 1.55. Some overshooting peaks are ob-

tained when hc = 2.05 and this increases when hc = 2.55. Using lager smoothing length is 

theoretically more accurate. It is true inside the fluid. However,  large smoothing length could 

cause particles at one or two layers at the free surface to detach from the fluid, resulting in the 

overshooting of surface elevation as observed in the hc = 2.55 curve in Figure 3.24.  The re-

sults suggest that suitable smoothing length coefficients should be chosen in the range be-

tween 1.55 and 2.05. 

Fixing the smoothing length coefficient at hc = 2.05 and resolution at dx = 0.01 m, the simu-

lation are conducted with time steps dt = 5×10-5 sec and dt = 2×10-5 sec. The results are 

shown in Figure 3.25. The results with dt = 5×10-5 suggests that the free surface kept rising 

and eventually blows up. It is recommended that the Courant number, Cr = cs×dt/dx, should 

be less than 0.2 to prevent the simulations from blowing up.  

The comparisons of SPH simulations using two different resolutions, dx, are shown in Figure 

3.26. The smoothing length coefficient is fixed at hc = 1.55 while the time step is adjusted to 

satisfy Courant condition. The surface elevations at two wave gauges located at 4.5 m and 9 

m from the paddle are presented in the figure. It can be seen from the figure that both resolu-

tions yield good results. The use of smaller dx clearly converges closer to the initial wave 

amplitude of 0.05 m. 

3.4.2 Sinusoidal wave propagation  

In the second experiment, a set of suitable numerical parameters are used in the simulations 

of the sinusoidal wave propagation and compared with a laboratory experiment. Input signal 



 Chapter 3 Validation of SPH Program 

113

(the same as that used in experiment) is sent to the paddle to generate a series of sinusoidal 

waves. The period of the input signal is 1 sec and the stroke of the wave paddle is 0.042 m. 

Experimental result showed wave amplitudes of 0.03m at the trough and 0.037m at the crest. 

Water elevations at the two wave gauges (4.5 m, 9 m from the mean paddle position) are 

compared with the records from the laboratory experiment (see Figure 3.27).  

As shown in Figure 3.27, the agreement with measurements at gauge #1 is good although the 

troughs appear to be under-predicted. Flatter troughs in the actual measurement suggest that 

the waves in the experiment exhibit more nonlinearity than those in the numerical simulation. 

At gauge #2, a small phase shift is observed. The simulated time history slightly over-predicts 

the amplitude obtained in the measurement. 

 

Figure 3.27. Comparison of SPH-simulated and measured water level of sinusoidal waves at 
gauge #1 (4.5 m from the mean paddle position) and gauge #2 (9.0 m). 
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3.4.3 Simulation of wave breaking 

Having derived suitable parameters for the simulation of waves in a 36 m long wave flume, a 

simulation of the modulation and focusing a wave packet is carried out. An amplitude and 

frequency modulated signal as presented in Section 2.4.1 is sent to the wave paddle to pro-

duce a propagating wave packet (see Figure 2.20 ). The properties of the wave packet are as 

follows: number of sinusoidal components: 28; frequency ranging: 0.56 Hz to 1.1 Hz; central 

frequency: 0.83 Hz (5.21 rad/s); designed focal distance: 14.0 m (Table 3.1 in Kway (2000)); 

breaking distance: 15.2 m (Table 1 in Kway (1998)); and focal time: 26.0 sec. The actual fo-

cal distance and time measured from the laboratory experiment are 14.0 m and 25.8 sec (as 

shown in Figure 4 and Figure 5 in Kway (1998) and Figure 3.11 and 3.12 in Kway (2000)), 

respectively. Note that these focal distance and time were intuitively estimated from the pho-

tographs taken during the experiment, and thus are very subjective. 

Computed surface elevation time histories at three wave gauges, #1, #2 and #3 (4.5 m, 9 m 

and 12 m from the mean paddle position) are compared with those measured from the ex-

periment in Figure 3.28. 

Very good agreements between the curves can be observed in Figure 3.28. At gauge #1, the 

numerical result almost matches very well with the experiment, except for minor deviations 

at the wave troughs and crests. At gauge #2 and #3, similar agreements are obtained. A slight 

phase shift can be seen at gauge #2 and this increases slightly at gauge #3.  

Snapshots of simulated wave profiles at its focal time zoomed in at the focal point are plotted 

in Figure 3.29 and Figure 3.30. The background color codes are the pressures and the hori-

zontal and vertical velocity components of the water respectively. It can be seen in Figure 

3.29 and Figure 3.30 that the focal point is at x = 14.2 m and focal time is 25.7 s. As the mean 

paddle position is at x = 0.5 m (see Figure 3.23), the focal point is 13.7 m from the mean 
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paddle position. These values are closely agreed with the values obtained from the laboratory 

experiment (14.0 m and 25.8 s, respectively). The breaking jet impinges on the front water 

surface at 14.7 m from the mean paddle position. This value reasonably agrees with the ex-

perimental value of 15.2 m of the breaking point in Kway (1998). The small differences in 

focal distance and focal time are probably due to many factors including the use of derived 

paddle signal that is not exactly the same as the signal used in the experiment, the nonlinear-

ity being not captured, and some experiment conditions being not modelled in the numerical 

simulation. 

Some characteristics of the generated wave packet can be seen from the snapshots in Figure 

3.30 that the horizontal velocity of the water at the wave crest is around 1.4 m/s. The wave 

crest celerity estimated from consecutive snapshots from the simulation is around 2 m/s. 

When the wave starts to break, water velocity at the crest increases to above 2 m/s which is 

higher than the speed of the wave crest. Wave length (measured horizontally from trough to 

trough both sides of the wave crest) is 2.3 m and wave height (measured vertically from the 

wave crest to the wave trough right ahead) is 0.26 m. The wave height over water depth ratio 

is 0.325. 
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Figure 3.28. Comparison of SPH-simulated and measured water level at gauge #1 (4.5 m from 
the mean paddle position) gauge #2, (9.0 m) and gauge #3 (12.0 m). 
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Figure 3.29. SPH-simulated pressure field (N/m2) around the focal point at focal time. 

 

 

Figure 3.30. SPH-simulated horizontal (velX) and vertical (velZ) velocity field (m/s) around the 
focal point at focal time. 
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3.5 Conclusion 

Above calibration and sensitivity studies have shown that the current SPH program can yield 

good results if suitable setting parameters are used. It is apparent that the higher resolution is 

used, the better result can be obtained. However the resolution is usually constrained by the 

computational resources. At a given resolution dx, the smoothing length, hc = h/dx, should be 

in the range of 1.55 to 2.05 and the computational time step dt satisfies the Courant number, 

Cr = max(cs)×dt/dx < 0.2. The suitable numerical sound speed cs in water is around 20 m/s. 

Numerical sound speed in air is 20 – 40 m/s. In simulations of air dynamics with relative low 

pressure compared with surrounding water, the sharpness control is not necessary. These pa-

rameters will be used in the fine simulation of wave breaking in the next chapter. 

Although the input signal to the wave paddle is not exactly the same as the signal used in the 

experiment, it generates a wave packet that agrees well with the measurement at the time 

prior to breaking. Hence, the wave and flow conditions at the focal time are extracted and in-

terpolated to a much finer resolution for a nested two-phase simulation of the breaking proc-

ess. The extracted domain is from x = 11.4 m to x = 19.1 m. The interpolation uses the same 

kernel function as that used in the SPH simulation. Results from the nested two-phase simula-

tion are investigated and presented in Chapter 4. 
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Chapter 4. Numerical Simulation and 
Physical Investigation of a Deep Water 
Plunging Wave  

 

 

The overall objective of this thesis is to develop a deeper understanding of the physics of 

plunging waves in deep water. Details and key features that are still not well understood in-

clude: 

• Plunging jet at pre-breaking stage: geometry of the wave, formation and movement of 

the plunging jet. 

• Dynamics of the wave: impingement of the plunging jet on the underneath water sur-

face, formation of the air-tube, source of the instability/disturbance that spreads over 

the air-tube surface, formation of the splash-up, vertical jet and interaction of the fal-

ling vertical jet and the coming wave crest; pressure, velocity fields and turbulence. 

• Dynamics of air: compression and decompression cycles of the entrapped air, forma-

tion of sprays of water, formation of air bubbles, circulation of surrounding air. 

• Dissipation of wave energy. 

The validation analyses in Chapter 3 have shown that the SPH methodology, with appropriate 

resolution, nesting and treatment of the boundary condition including the inclusion of an air 

layer could adequately simulate such a complex process. Based on the process to simulate a 

plunging wave (Section 3.4.3) further refinement is carried out to simulate the near field de-

tails of wave plunging. 
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4.1 Initial condition for detailed near-field simulation of wave plunging 

The initial condition of the nested simulations is interpolated from the coarser single-phase 

simulation (presented in Section 3.4.3) at the focal time tf = 25.7 s (Figure 3.29 and Figure 

3.30). The air layer is initiated from rest with zero pressure and reference density (density of 

air at zero pressure). To reduce the shear stress between the water and air when the system 

starts, a layer of air particles near the interface is prescribed with velocities extrapolated from 

the water particles near the interface using the kernel approximation. This kernel interpola-

tion uses the same kernel function and smoothing length as those used for approximating the 

governing equations. Both water and air particles are included in the kernel’s support domain. 

The thickness of the air layer is chosen to be at least twice of the water depth to reduce the 

effect of the ceiling of the wave flume to the air dynamics near the air-water interface. The 

initial pressure (p/ρ0gD), density (ρ/ρ0) and velocity (u/C, w/C) of the air-water system near 

the wave crest are displayed in Figure 4.1. Here, g = 9.81 m/s2 is gravitational acceleration, ρ0 

= 1.2 kg/m3 is the reference air density, D = 0.8 m is the initial water depth of the wave 

flume, and C = 2 m/s is the speed of wave crest prior to breaking. The dimension of the 

nested domain is 9.5D long and 3D high (= 7.6m×2.4m). The periodic boundary condition is 

used for the nested simulation. The duration of the simulations is tw = 5.6. Here, tw = (t – 

tf)(g/D)½ is the dimensionless time. 

The SPH simulations involve 22,800,000 particles, in which the number of water particles is 

6,013,907. The resolution (initial particle size) and computational time step are dx/D = 

0.00125 and dtw = 7×10-6, respectively. Smoothing length coefficient is h/dx = 2.1. The nu-

merical sound speeds in water and air are csW/C = 10 and csA/C = 20, respectively. These 

sound speeds correspond to 20 m/s in water and 40 m/s in air. 
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Figure 4.1. Initial conditions of the nested simulation of the air-water two-phase flow near the 
wave crest. 
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4.2 Overall wave plunging process 

The overall wave plunging process and the distribution of pressures and velocities of water 

and air are shown in Figure 4.2 - Figure 4.3. It can be seen from the sequential snapshots in 

Figure 4.2 that when the wave moves from left to right, the crest becomes steeper. A plung-

ing jet is formed at the top of vertical front face of the wave and project forward. The plung-

ing jet curls over and impinges on the water front, entrapping an air tube and, at the same 

time, generating a water splash-up ahead of it. The development process of plunging jet from 

its formation to impingement on the water front takes an time amount of Δtw = 0.74. The en-

trapped air tube, having an elongated elliptical shape initially, changes its shape while mov-

ing forward with the wave. The initial water splash-up develops to a strong vertical jet in 

front of the plunging jet. The top of the vertical jet projects forwards. The plunging jet keeps 

moving forward and impinging on the water front at the base of the vertical jet. A back flow 

portion develops at the rear of the vertical jet and impinges on the plunging jet, entrapping a 

second air pocket. Vertical sprays of water are generated above the wave crest. This whole 

process take an time amount of Δtw = 1.92. The entrapped air pockets break in to smaller 

bubbles in the water column. Large bubbles resurface and burst off, generating foamy water 

surface. Small bubbles entrain deeper in the water column. At the same time with the im-

pingement of the back flow of the vertical jet, the forward flow, which is similar to a plung-

ing jet, impinges on the water surface ahead of it, entrapping an air pocket and generating a 

second water splash-up. 

The water pressure distribution in Figure 4.2 shows that, in general, water pressure almost 

follows the distribution under a non-breaking wave, i.e. pressure increases with the increase 

of distance from the water surface. High pressure is also spotted near the water surface at the 

areas where the plunging jet impinges on the water front and where the collapsing vertical jet 

impinges on the water front and on the plunging jet. In the plunging jet and the vertical jet, 
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pressure distribution is close to zero. The distribution of air pressure shows higher pressure 

areas in the air tube, in front of the vertical jet and at some spots behind the wave which are 

at the centers of vortices.  

The velocity distribution in Figure 4.3 shows that water velocity is below 0.1C in the water 

body and is as high as 1.25C at the plunging jet and the vertical jet. Water velocity exceeds 

1C when the vertical wave front is formed and a jet starts ejecting. During breaking, water 

velocity under the wave reduces quickly. The air velocity distribution indicates a series of 

vortices is generated in the air above the wave crest and moves backward relatively to the 

wave crest. A strong shear is observed near the wave crest when the plunging jet develops. 

Air velocity exceeds 2.3C at this area.  High air velocity also observed in front the vertical jet 

and subsequent jets. 

Details of the process and physics of the phenomena observed above are discussed in the fol-

lowing sections.  
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Figure 4.2. Normalized pressure (p/ρ0gD) distribution in water (left) and air (right). 
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Figure 4.3. Absolute velocity (V/C) distribution in water (left) and air (right).
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4.3 Characterization of wave breaking 

The geometric parameters of the plunging wave at the inception of breaking are evaluated 

following the definition shown in Figure 4.4 These parameters are defined according to 

Bonmarin (1989). The breaking inception stage is determined by an observed visual criterion 

in the movie pictures. For a plunging breaker, breaking inception corresponds to the occur-

rence of a vertical crest front. In this study, a specific snapshot of simulated wave breaking 

when the crest starts to project forward is chosen. It corresponds to the snapshot of tw = 

0.7004 in Figure 4.2 and Figure 4.3.  

The values of the geometric parameters of the simulated plunger are given in Table 4.1. Us-

ing these values, the breaking criterion, the degree of asymmetry and the angle ratios of the 

SPH-simulated breaking wave are calculated and provided in Table 4.2. These calculated 

values are compared with those published in Bonmarin (1989) (see Table 4.3 to Table 4.5). 

 

Figure 4.4. Definition of steep asymmetric wave parameters. 

It was remarked in Bonmarin (1989) that the observed breakers did not correspond exactly to 

the theoretical definitions of plunging breakers or of spilling breakers. Therefore the term 

“typical breaker” was used. The observed breakers that displayed very distinctly all the char-

acteristics of the theoretical plunging definition (Longuet-Higgins & Cokelet, 1978) were 

called “typical plunging breakers”. A similar criterion was applied for the spilling breakers. 
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The breaking criterion is compared with Stokes limiting wave height, σ = H/gT2 = 0.027. 

This approach has been used by different authors and results were summarized in Bonmarin 

(1989). The breaking criterion for this SPH-simulated plunging wave is 0.02. This is compa-

rable with values of 0.02 – 0.022 in Table 4.3. It is noted, however, that there is no clear cri-

terion for wave breaking. For example, the wave breaking criterion of spilling wave in Ram-

berg & Griffin (1986) is 0.021 which is within the range of plunging waves. The overlap is 

possibly due to the difference in the estimation of parameters, especially the wave period. In 

our calculation, the wave period is calculated from the speed of the wave crest and wave 

length. By definition given in Bonmarin (1989) wave length was estimated from experimen-

tal photograph as shown in Figure 4.4, i.e. L = L1 + L2. However L1 could vary due to differ-

ent breaking conditions such as due to wave-wave interaction (L1 could be longer), wave-

current interaction or wave interference with obstacles (L1 could be shorter). As a result, the 

calculated breaking wave criterion could be different for the same type of wave breaking but 

in different conditions. In this thesis, the wave length is taken as the distance from trough to 

trough at both sides of the wave crest (see Figure 4.5). As shown in Table 4.1, the wave 

length is 2.3 m, which is about twice of L2. The wave crest’s speed estimated from consecu-

tive snapshots is about 2 m/s. Hence, the wave period is 1.15 s. 

 

Figure 4.5. Wave length is measured from trough to trough at both sides of the wave crest. 

The degrees of asymmetry computed in Table 4.3 are compared with published values shown 

in Table 4.4. The horizontal asymmetry factor is 0.769, which is very close to the mean value 

L
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of typical plunging wave (0.77). The vertical asymmetry factor is 2.714, which is larger than 

the mean value of typical plunging wave (2.14) but within the range of minimum value (0.97) 

and maximum value (3.09). The crest front steepness is 0.714, which again is larger than the 

mean value of typical plunging wave (0.61) but within the range of minimum value (0.31) 

and maximum value (0.85). Both the vertical asymmetry factor and crest front steepness are 

much closer to the maximum values. The crest rear steepness is 0.263 which is smaller than 

the mean value of typical plunging wave (0.29) but within the range of minimum value (0.24) 

and maximum value (0.33). It is noted from Table 4.4 that the mean values of first three de-

grees of asymmetry of the typical plunging is larger than those of general plunging. These 

degrees of asymmetry of the SPH-simulated breaking wave are even larger than the mean 

value of typical plunging, which indicate that the SPH-simulated breaking wave could be 

considered a strong plunging wave. 

The published ratios of angles at crest and trough are given in Table 4.5. Going from spilling 

wave to typical plunging wave, ratios of angles reduce at crest and increase at trough. The 

ratio of angles of the SPH-simulated wave is 0.727 at crest (smaller than the value of typical 

plunging) and is 1.049 at trough (larger than the value of typical plunging). It is consistent 

with the typical of asymmetry discussed above and the SPH-simulated breaking wave maybe 

considered a strong plunging wave. 
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Table 4.1. Wave parameters of the simulated breaking wave. 

η 0.2 m F2  0.76 m α2  66 deg H  0.26 m 
η’ 0.06 m F1  0.28 m α1  48 deg L (wave length) 2.3 m 

L2  1.1 m F’2  0.55 m α’2 81 deg C (wave speed) 2 m/s 

L1  2.3 m F’1  1.82 m α’1  85 deg V (particle speed) 2.1 m/s 

 

Table 4.2. Breaking criterion, degree of asymmetry and angle ratios of the simulated breaking 
wave crest. 

  Present study Kway 
(2000) 

Breaking criterion σ = H/gT2 0.02  

Wave steepness γ = H/L 0.113 0.115 

Horizontal asymmetry factor μ = η/H 0.769231 0.8 

Vertical asymmetry factor λ = F2/F1 2.714286 2.4 

Crest front steepness ε = η/F1 0.714286 0.69 

Crest rear steepness δ = η/F2 0.263158 0.33 

Crest steepness γ’ = η/L 0.08696  

Angle ratio at crest α1/α2 0.727273  

Angle ratio at trough α’1/α’2 1.049383  

 

Table 4.3. Breaking coefficients (Bonmarin, 1989). 

Plunging Spilling Unclassified 
Stokes (theoretical limit) - 0.027 - 

Ochi and Tsai (1983) 0.020 - - 
Duncan (1983) - 0.016 - 
Ramberg and Griffin (1986) 0.022 0.021 - 
Bonmarin (1989) 0.020 0.020 0.019 
Koga (1986) - - 0.020 
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Table 4.4. Degrees of asymmetry of wave crest (Bonmarin, 1989). 

 Breaker type Minimum Maximum  Mean 

Horizontal asymmetry 
μ = η/H 

Typical plunging 0.65 0.93 0.77 

Plunging 0.62 0.93 0.76 

Spilling 0.59 0.91 0.75 

Typical spilling 0.60 0.80 0.69 

Vertical asymmetry 
λ = F2/F1 

Typical plunging 0.97 3.09 2.14 

Plunging 0.78 2.52 1.61 

Spilling 0.78 2.37 1.38 

Typical spilling 0.81 1.72 1.20 

Crest front steepness 
ε = η/F1 

Typical plunging 0.31 0.85 0.61 

Plunging 0.29 0.77 0.47 

Spilling 0.24 0.68 0.41 

Typical spilling 0.31 0.51 0.38 

Crest rear steepness 
δ = η/F2 

Typical plunging 0.24 0.33 0.29 

Plunging 0.20 0.42 0.30 

Spilling 0.19 0.42 0.31 

Typical spilling 0.26 0.48 0.33 

 

Table 4.5. Ratios of angles at crest and trough (Bonmarin, 1989). 

Breaker type α1/α2 (crest) α’1/α’2 (trough) 

Typical plunging 0.80 1.02 

Plunging 0.89 1.01 

Spilling 0.93 1.01 

Typical spilling 0.97 0.99 
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4.4 Kinematics of the plunging jet at the initial stage of wave breaking 

At the initial stage of wave plunging, the wave crest is steepened and a jet starts to eject from 

front face near the top of the wave crest and projects forward (as shown in Figure 4.6). The 

velocity magnitude of the water particles at the wave crest at tw = 0.56 (just before the steep-

ening) is less than 1C. Velocities of some particles reach 1C at time tw = 0.63 and exceed 1C 

at time tw = 0.7. A vertical front face of the wave crest is seen. The velocity magnitude in-

creases and a jet is projecting forward could be observed at tw = 0.77. The velocity magnitude 

reduces toward the water in the front. Water in this region is also moving forward but with a 

velocity magnitude less than 1C.  

Snapshots of the velocity field relative to the wave crest during the developments of the 

plunging are shown in Figure 4.7. The relative velocity is calculated by subtracting the wave 

crest speed from the horizontal component of the absolute velocity. Prior to the wave plung-

ing, water particles near the wave crest are moving backward relative to the wave crest. 

When the crest is steepening, an upward movement of water relative to the wave crest is ob-

served. Just prior to the jet formation, the upward movement of water diverges (relative to the 

wave speed) at the top of the wave crest. A part of the upward flowing water moves forward, 

creating the plunging jet. The trajectories of the water particles relative to the wave crest sug-

gest a clockwise circulation following the plunging jet and the front face of the wave. The 

direction of the relative velocity is parallel to the direction of the plunging jet, suggesting that 

the plunging jet is mainly generated by the circular movement of the water at the front face of 

the steepening wave crest. 

Acceleration of the water particles on the interface are shown in Figure 4.8. At the top of the 

wave crest, the acceleration is close to zero. Water acceleration at the tip of the plunging jet 

points downward with magnitude of about 1g, suggesting that the motion of the tip is close to 
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free fall. At the curved part of the inner face of the plunging jet, the acceleration is highest 

with magnitude reaching 4g (see Figure 4.8k). This may be attributed to the centrifugal force 

acting on the circulating water mass in the wave crest and the plunging jet. Further away 

from the plunging crest, the acceleration reduces. Figure 4.8 also shows some irregularities 

under the wave crest. In particular, neighbouring particles appear to exhibit contrasting prop-

erties (e.g. mixture of high acceleration and low acceleration particles).  This is mainly due to 

the spurious oscillations associated with SPH, especially for higher order kernels.  It is noted, 

however, that smoothing every 40 to 100 time steps would be able to contain the spurious 

oscillations and maintain stability. 

The distribution of normalized pressure in the wave crest and the plunging jet is shown in 

Figure 4.9. Away from the plunging jet, pressure is regular and almost follows non-breaking 

wave distribution, i.e. near zero at the water surface and increase with distance from the water 

surface. At the curved part of the inner face of the plunging jet, pressure increase faster with 

distance from surface due to the presence of high water acceleration. In the plunging jet, 

pressure is close to zero which is due to the near-free-fall of the plunging jet. 
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Figure 4.6. Velocities of water particles in the crest when the crest is steepening and the jet 
starts ejecting. Color code represents the absolute velocity (V/C), arrows indicate directions. 
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Figure 4.7. Plunging jet development and the relative velocities of the water particles (V/C-1) in 
the crest and plunging jet in prior to impingement. Color code represents magnitude of the rela-

tive velocity, small arrows indicate directions. 
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Figure 4.8. Acceleration (a/g) of the water in the wave crest and plunging jet in prior to im-
pingement. Color code represents magnitude of the acceleration, arrows indicate directions. 
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Figure 4.9. Pressure distribution (p/ρ0gD) in the wave crest and plunging jet in prior to im-
pingement. 
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4.5 Dynamics of wave breaking 

Three key features of the plunging wave during breaking are: (i) formation of the air tube and 

evolution of the water body surrounding the air tube; (ii), formation of the vertical jet and its 

interaction with the plunging jet; and (iii) collapse of entrapped air tube and vertical sprays of 

water. These features were observed and some were described in the past researches (Miller, 

1976; Peregrine, 1983; Bonmarin, 1989; Kway, 2000). 

Details of the simulated air entrapment process corresponding to Kway (2000) are presented 

in Figure 4.10 to Figure 4.25. In these figures, only water phase is plotted. A color code is 

used to demarcate values of the velocity, pressure or band of water particles, permitting a bet-

ter understanding of the plunging process. 

Figure 4.10 shows the plunging jet entrapping a tube of air just prior to impingement back 

into the wave front. Initially, the air tube has the shape of an inclined and elongated ellipse 

(dash red curves in Figure 4.11). During the early stages, the surface of the tube is relative 

smooth except some disturbances near the contact region (as shown in the dash circles in 

Figure 4.11).  Experiment studies by Kway (2000) showed that the instabilities start to set in 

at this stage and the surface of the tube becomes wavy. The series of photographs in Figure 

1.5 suggests that disturbances near the contact area roll up and eventually spread over the 

tube. It is now clearly seen in Figure 4.11 that the disturbances originate from the collision of 

the plunging tip and the base (indicated by the dashed circles). The disturbances then are car-

ried with the circulation of the water and quickly spread over the inner surface of the tube as 

shown in the series of snapshots in Figure 4.12.  
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Figure 4.10. Water surface is initially smooth at the front before the impingement. Color code 
represents the particle id, small arrows denote direction of relative velocity. 

 

Figure 4.11. Disturbances appear at the contact area just after the plunging jet impingement 
onto the water front. Color code represents the particle id, small arrows denote direction of 

relative velocity. Photographs are observations (Kway, 2000). 

It is clear from Figure 4.12 that the tube changes its shape when rolling forward. In Figure 

4.12a, the tube has a shape of long, thin ellipse. In Figure 4.12b, the tube is thicker and 

shorter. In Figure 4.12c, a more rounded tube is observed. These results are consistent with 

the observations in the experiments by Kway (2000), which are displayed next to the numeri-

cal results in Figure 4.12a-c.  
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From the numerical results, it is also clear that the plunging jet does not penetrate deeply into 

the water column, but is bifurcated on impingement. The inner part is bent backward and fol-

lows the tube surface’s rolling motion and the disturbances (shown in Figure 4.12 by a layer 

of blue particles). The outer part is projected forward on re-bounce. Due to the inclined im-

pingement, water from the wave front (shown as green and yellow particles) is pushed for-

ward, en-massed with the water particles from the plunging jet to form a splash-up. The proc-

ess is illustrated in Figure 4.12a. The plunging jet continuously impinges on the water front, 

peeling off the top layer of the water front to form a big vertical jet as shown in Figure 4.12c. 

It can be seen from the arrows in the water body, which denote velocity directions, that water 

flow relative to the wave crest is bifurcated at the top of the wave crest and at the base of the 

vertical jet where it joins with the plunging jet. Two clockwise circulations, indicated by the 

two bold black arrows in Figure 4.12c, are observed in the plunging jet and the vertical jet. 

The closed circulation in the wave crest and the plunging jet provide the continuity for the 

rolling motion of the air tube. This closed circulation of the surrounding water provides the 

centrifugal force while the entrapped air provides pressure support to the surrounding water 

body. These two factors perhaps are the main reason for the tube to persist while rolling for-

wards with the wave. 

While the tube is rolling, the entrapped air goes through the compression and decompression. 

The changes in the shape of air tube and the pressure of the entrapped air can be seen in Fig-

ure 4.13. In Figure 4.13a,b the entrapped air is at low pressure. The air pressure then in-

creases (as shown in Figure 4.13c,d) and decreases (Figure 4.13e) and increases again (Figure 

4.13f). 
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Figure 4.12. The splash-up and vertical jet are formed composing of water from the plunging jet 
(blue) and the base (yellow). Part of water from the plunging jet is carried with the rolling tube 
to spread over the whole surface of the tube. Color code represents the particle id, small arrows 

denote direction of relative velocity. Photographs are observations (Kway, 2000). 
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Figure 4.13. The air tube change its shape and the entrapped air is compressed (c,d), decom-
pressed (e) and then compressed again (f) while the tube rolling and moving forwards. Color 

code represents air pressure (p/ρ0gD), arrows denote directions of the relative velocities. 
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As the wave plunging progresses, the upper part of the surrounding water becomes thinner 

and weakens, and thus is not able to hold the compressed air inside. At some points, the 

plunging jet is broken and a part of the entrapped air quickly squirts out through the gap. This 

process can be observed in Figure 4.14 (color codes are air pressure in the left column and 

relative air velocity in the right column). The gap is opened near the base of the vertical jet 

where it joins with the plunging jet. The water layer is thinnest at this area (see Figure 4.14b). 

The velocity of the jet is as large as 3C as shown in Figure 4.14c. Entrapped air is com-

pressed before the tube is broken. In Figure 4.14c, it can be seen that the air jet squirts out 

through the narrow gap at a high pressure. After the entrapped being released, the air tube’s 

volume and pressure reduce.  
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Figure 4.14. Close view of the air squirted out from left pocket to the right through an opened 
gap on the plunging jet. Color codes are air pressure (p/ρ0gD) (left column) and relative velocity 

(V/C - 1) (right column). Arrows denote velocity direction. 
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As the plunging jet continues impinging on water front, the initial vertical jet receives more 

water from the plunging jet and the wave front to grow to a large and powerful vertical jet. 

The vertical jet comprises of water mainly from the water front and, to a smaller extent, from 

the plunging jet. The vertical jet can rise as high as the original wave crest (see see Figure 

4.15). It also can be seen in photographs taken by Kway (2000) and Error! Reference 

source not found. (description by Bonmarin, 1989) that the vertical jet can rise higher than 

the wave crest. It is because a large amount of kinetic energy carried by the plunger is trans-

ferred to potential energy in the vertical jet. When the vertical jet attains its maximum height, 

it starts to split backward and forward. The development and collapse of the vertical jet are 

shown in sequences in Figure 4.15 to Figure 4.19. The small arrows these figures indicate the 

movement of the water in the wave crest, vertical jet and in the wave front. A third bifurca-

tion of the water flow is seen at the top of the vertical jet where it slits into backward and 

forward flows. The back flow formed a third water circulation. As indicated by the bold ar-

rows in Figure 4.15c, the 3rd circulation is counter clockwise and lies in between the previous 

two clockwise circulations.   

Figure 4.15 and Figure 4.16 show how the backward diversion of the vertical jet closes up 

with the forward moving plunging jet to entrap a second air pocket. The entrapping air is 

pressurized because of the quick fall of the backward flow of the vertical jet on the plunging 

jet and the air jet squirting out from the original entrapped air pocket on the left. As a result, 

air quickly escapes through the gap between the backward flow of the vertical jet and the 

plunging jet. As shown in the velocity plots in Figure 4.16, the air squirted out creates a 

strong vertical jet with a speed exceeding 3C. 

An unexplained feature of the plunging process, observed in Kway (2000), is the vertical 

sprays (see Figure 1.6). Figure 4.16 to Figure 4.18 depict how the sprays could have been 

formed. Figure 4.16 shows a speed air jet squirted out through the gap between the backward 
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flow of the vertical jet and the plunging jet. In Figure 4.17, it can be seen that the sprays are 

shooting upward, comprising mainly of particles having blue color. The blue particles were 

seen at the tip of the back flow portion of the vertical jet in Figure 4.15b while the plunging 

jet has mainly green and cyan particles. In a close view of the sprays shown in Figure 4.18 

(the color code is the absolute velocity magnitude of water particles and the arrows denote 

the velocity directions), the particles at the tip of the back flow portion of the vertical jet 

probably slightly impacted on the plunging jet and bounced up when the air is squirting out 

(tw = 2.8715 – 2.9765). Although the figure shows an incline shape of the sprays, the arrows 

of the actual velocity show that particles are indeed shooting upward.  The velocities of the 

particles are in the direction of the air jet at the gap. The existence of the high speed air jet (as 

shown in Figure 4.16) and the particle movement following the jet indicate that the air jet is 

the main cause for the formation of the upward spray. The velocity magnitudes of the sprays 

are around 0.2C – 0.4C.  

At the later stages, tw = 3.0115 – 3.1516, velocities of water particles of near the wave crest 

point forward and having higher magnitude (~0.6C), suggesting that these additional sprays 

are mainly caused by the collision of the plunging jet and the back flow portion of the vertical 

jet.  
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Figure 4.15. Impingement of the back flow of the vertical jet onto the plunging jet closing up an 
additional air pocket (circled). The rear part of the vertical jet composes of water droplets. 

Color code represents the particle id, small arrows denote direction of relative velocity. 
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Figure 4.16. Close view of the air squirted out from the right pocket through a gap between the 
back flow portion of the vertical jet and the plunging jet. Color codes are air pressure (p/ρ0gD) 
(left column) and relative velocity of air (V/C - 1) (right column). Arrows denote velocity direc-

tion. 

 

  

(a) 

(b

(c) 

Air jet  

Air jet  

Pressurized 
air

Water spray  

tw  = 2.9065 

tw  = 2.9415 

tw  = 2.9765 

tw  = 2.9065

tw  = 2.9415

tw  = 2.9765



 Chapter 4 Numerical Simulation and Physical Investigation of a Deep Water Plunging Wave 

152

 

Figure 4.17. Water particles from the back flow portion of the vertical jet and surface of the 
plunging jet shooting up, creating sprays. An additional air pocket is formed (circled). Color 

code represents the particle id, arrows denote direction of relative velocity. 
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Figure 4.18. Close views of the vertical sprays of water. Color code and arrows represent the 
absolute velocities of water particles (V/C). 
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When back flow of the vertical jet impinges on the plunging jet, water is strongly splashed 

creating violent fragmentation of water above water surface (see Figure 4.19b-c). It can also 

be seen in the photograph in Figure 4.19c, larger water splashing is observed near the wave 

crest compared to the photograph in Figure 4.17c, suggesting that this water splash is due to 

the collision of back flow of the vertical jet and the plunging jet. Close views of this collision 

are shown in Figure 4.20. The water splash is pushed forward with a speed of 0.5C faster than 

the speed of the wave crest. It can also be seen from the figure that water particles from the 

previous sprays are falling down behind the wave crest. 

It can be seen in Figure 4.15c that the original air pocket reduces its volume because a part of 

air has escaped. As shown in Figure 4.19a, a second air pocket having an equivalent size is 

created when the back flow of the vertical jet has impinged on the plunging jet. The two air 

pockets rotate in opposite directions and then break into smaller bubbles in the water column. 
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Figure 4.19. Water splashes near the wave crest due to the collision of the back flow of the verti-
cal jet onto the plunging jet. Color code represents the particle id, arrows denote direction of 

relative velocity. 
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Figure 4.20. Close views of the collision of the vertical jet onto the plunging jet, breaking the 
water surface, creates violent water fragmentation at the surface. Color code and arrows repre-

sent relative velocities of water particles (V/C - 1). 
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Details of the pressure distributions in the plunging jet, in the vertical jet and under wave 

crest before and during the collapse of the vertical jet are shown in Figure 4.21 - Figure 4.23. 

Water pressures are low in the plunging jet and in the vertical jet. High pressures are ob-

served at impact areas such as at the impingement of the plunging jet onto the water front and 

the collision of the vertical jet on the plunging jet (Figure 4.22c). The spinning vortices in the 

water column also increase the pressure of the surrounding water (see Figure 4.23). 

The vorticity and subgrid turbulent kinematic eddy viscosity inside water are provided in 

Figure 4.24 and Figure 4.25. We can see large vorticity and turbulence intensity are located at 

the breaking region. Large values appear at some spotted areas where velocity gradient is 

large such as the impinging areas, counter-spinning vortices. The spinning structures of the 

vortices generate high turbulence and carry it deeply into the water column. The more vor-

tices are generated, the more energy will be dissipated through turbulence. Except for the vor-

tex-generated part being brought down, turbulent mixing is mainly confined to near the water 

surface. 
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Figure 4.21. Pressure distribution (p/ρ0gD) in the plunging jet, in the vertical jet and under wave 
crest before the vertical jet collapse. 
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Figure 4.22. Pressure distribution (p/ρ0gD) in the plunging jet, in the vertical jet and under wave 
crest during the collapsing of the vertical jet. 
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Figure 4.23. Pressure distribution (p/ρ0gD) in the water column under the breaking wave. 
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Figure 4.24. Vorticity (s-1) generated in the water column.  
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Figure 4.25. Subgrid turbulent kinematic eddy viscosity in water, tν  (m2s-1) 
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4.6 3D perspectives of wave plunging 

The 3D perspectives of wave plunging photographs presented in Kway (2000) provide valu-

able benchmarks for verifying the numerical results. Profiles of the breaking wave derived 

numerically are extracted to create 3D perspectives as shown in Figure 4.26. The projected 

wave breaking profile is compared with Kway’s results the same viewing angles. The projec-

tion procedure and comparison of 3D views are shown in Figure 4.26 to Figure 4.28. In this 

projection, the roughness of the water surface is ignored. Hence the resulted surface of the 

tube is smooth. 

 

 

Figure 4.26. 3D projection of a breaking profile of the simulated plunging wave. 

The photograph in Figure 4.27b shows a clear wall inside the water column. It was initially 

suggested that the plunging jet penetrates deeply into the water column, entraining a large 

amount of air and creating the wall. However, the numerical simulation shows that the plung-

ing jet does not penetrate deeply. When the 3D profile of the simulated wave is created and 

viewed from the same angle, it is clear that “the wall” is the envelop of the air tube (Figure 
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4.27a). From another view angle, the 3D profile of the simulated wave also matches very well 

with the photograph taken from experiment (see Figure 4.28). 

Excellent agreements between numerical simulation and experiments are observed in Figure 

4.11 to Figure 4.28 which indicates that the SPH model reproduces correctly the highly 

nonlinear breaking process. 

 

Figure 4.27. The air tube viewed from front, below. (a) 3D projection of the simulated wave, (b) 
photograph taken from the same viewing angle. 

 

Figure 4.28. The air tube viewed from behind, below. (a) 3D projection of the simulated wave, 
(b) photograph taken from the same viewing angle. 

4.7 Dynamics of the air layer during wave plunging 

The circulation of the air above the water is illustrated in Figure 4.29. The colour code in the 

figure denotes the id of the air particles which is uniquely assigned and fixed for each parti-

cle. The air particles are initialized with uniform position and zeros velocity. It is noted that 

this numerical simulation does not take wind into account. When the wave propagates from 
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left to right, the strong shear at the interface drives the air particles near the interface to move 

in the same direction while particles higher above moves lesser. More air particles are carried 

forward near the wave crest (tw = 0.70). When the wave starts curling over (tw = 0.105), some 

small eddies are generated above the plunging tip and detached from the interface. The eddies 

could grow to larger eddies as the one shown in the dashed black circle in Figure 4.29l. 

 

 

Figure 4.29. Circulation of surrounding air during the wave breaking. 
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4.8 Importance of air dynamics in wave plunging simulation 

In the discussion above, many phenomena are related to the dynamics of air. In order to have 

better understanding the influences of the air dynamics on the process of wave breaking, the 

two-phase simulation is compared with a one-phase simulation. In the two simulations, all the 

numerical settings of the SPH models are the same except that one model does not include 

the air particles. Snapshots of the two simulations are plotted side by side in Figure 4.30. The 

color code is the id of water particles which is uniquely assigned and fixed to each particle. 

At the time before the impingement of the plunging jet, the shapes of the plunging jets from 

the two simulations show a little difference: the plunging jet from the single-phase simulation 

develops faster than that from the two-phase one. The small difference suggests that the air 

dynamics plays a minor role at this stage except for providing additional drag force which 

slows down the plunger’s development.  

After the plunging tip has impinged onto the water in the front, the single-phase simulation 

shows remarkable reduction of the tube’s volume and a quick collapse of the tube. The tube 

in the single-phase simulation retaining its volume for a short time is probably due to the cen-

trifugal force acting on the surrounding water of the tube when it is rolling. This rolling mo-

tion slows down quickly. As a result, the centrifugal force reduces and the tube abruptly col-

lapses.  

A significantly different behaviour of the tube is observed in two-phase simulation. The tube 

in the two-phase simulation maintains its volume for a longer time. The air acts as a cushion, 

providing pressure in addition to the centrifugal force to hold the tube longer. Once the roll-

ing motion slows down, the centrifugal force reduces and the tube starts to collapse. The col-

lapse of the tube squeezes the air that breaks the water surface. Part of the compressed air 

then escapes though a gap on the broken surface, contributing to the formation of water 
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sprays (illustrated in Figure 4.30-right column, tw = 2.8). The remains of the air tube later 

break into several bubbles. 

There is also a significant difference in the shape of the vertical jet generated by the plunger’s 

impingement. The water particles composing the vertical jet in single-phase simulation seem 

to be flying freely like marbles. In the two-phase simulation the presence of air produces fric-

tion and pressure force on the water surface. The pressure force acting on the front face of the 

vertical jet in opposite to the wave propagation direction results in the vertical jet being built 

up vertically and eventually breaking reversely relative to the forward motion of the wave. 

The impingement of the back flow of the vertical jet onto the coming wave contributes sig-

nificantly to the subsequent collapsing of the air-tube, additional air entrainment and genera-

tion of sprays of water (Bonmarin, 1989). The bifurcation of the vertical jet is not reproduced 

in the single-phase simulation.  

The comparison of the two simulations does indicate the highly important role of the air dy-

namics in the simulation the breaking process of water wave. Without the presence of air in 

the simulation, many important physics would be missed. These include the build up and col-

lapse of the vertical jet and the entrapment of the two large air pockets. 
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Figure 4.30. Snapshots of wave breaking simulations: without air dynamics (left) and with air 
dynamics (right). Only water phase is plotted. Color code is particle id. 
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4.9 Wave energy dissipation 

The energy dissipation due the breaking wave is evaluated over a time period of tw = 10.5 

since the focal time. As the computation domain is periodic, flow left the domain through the 

right boundary and entered the domain through the left boundary may interact with the wave 

and may not reflect the correct pattern of energy dissipation. During the simulation period, 

the errors, however, are located at thin regions near the two lateral boundaries (see Figure 

2.29) and thus is expected to contribute little to the evaluation of wave energy. 

The total energy is calculated over all the water particles in the nested domain. We define E0 

to be the energy of all water particles in the nested domain (defined in Section 4.1) when they 

are at balance positions and rest. In other words, E0 is the minimum energy of the water in the 

nested domain. Other definitions of relative potential, kinetic, total energy, initial total energy 

and energy for normalization are similar as those used in previous chapters. Here, they are 

normalized by their initial values (computed at the start of the nested simulation). 
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The time series plots of the normalized energy components are presented in Figure 4.31 to-

gether with snapshots of breaking stages at respective times. In this case of plunging breaking 

about 60% of total energy within the nested domain is kinetic energy. 

During the first Δtw = 1.4 from the focal time, tw = 0, the total energy is almost conserved. 

Kinetic energy is transformed to potential energy. The energy decay rate starts to rise after 

the time tw = 1.4 which is the instance of the plunging jet about to impinge on the water front. 

When the breaking intensity increases, the decay rate increases. During the first Δtw = 2.8 of 

the studied period of the wave breaking, kinetic energy increases while potential energy de-

creases. At time tw = 2.8, about 12% of potential energy converted to kinetic energy and dis-
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sipated. It results in 5% increase of kinetic energy. After tw = 3.5, when the two large air 

pockets start to collapse to small bubbles, kinetic energy starts to decrease. The decrease of 

kinetic energy could be attributed to the kinetic energy partly transforming to potential en-

ergy and partly dissipated through the strong turbulence generated during this stage. After tw 

= 4.2, several cycles of energy transform between kinetic and potential forms are observed. In 

overall, the total energy keeps decreasing monotonically. About 18% of the total energy con-

tained in the water is dissipated through this period of wave breaking. Similar patterns of en-

ergy transformation and dissipation (which are the oscillation of potential and kinetic ener-

gies and monotonically dissipation of the total energy) were observed in the experimental 

study in Rapp (1986) and the numerical study in Lubin (2004). 

 

 

Figure 4.31. Time series of calculated normalized energy components of the water in the nested 
domain. Snapshots of the breaking stages of the wave are shown at respective times. 
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Chapter 5. Conclusion 
  

 

In this thesis, an enhanced Smooth Particle Hydrodynamics (SPH) methodology has been 

successfully developed to study specific details of wave plunging, air entrapment and turbu-

lent mixing.. The numerical study has led to a deeper understanding of the mechanics of 

wave plunging, especially in the near-field of the plunging jet. These include the details of 

the air entrapment process, formation of a secondary vertical jet and its interaction with the 

plunging jet, evolution and collapse of the entrapped air tube, development of a vertical water 

spray and the subsequent turbulent mixing in the wake of wave plunging.   

5.1 Development of the numerical methodology  

The numerical methodology has been developed based on the Smoothed Particle Hydrody-

namics methodology developed by Gingold and Monaghan (1977) and Lucy (1977) including 

the serial code SPHysics v1.0 (http://wiki.manchester.ac.uk/sphysics) for general free surface 

flows. Significant modifications and enhancements have been developed and incorporated 

into the SPH model in order to improve its stability, accuracy and ability to simulate a multi-

scale complex process at a high resolution. The work includes selective implementations of 

developments from other researchers, the developments of enhanced “ghost” method, multi-

scale nesting and parallel computing by the author, extensive calibration, validation and sen-

sitivity studies to select the key controlling parameters of the SPH model. 

An SPH formulation for air-water two-phase flows, similar to that used in Colagrossi and 

Landrini (2003), was incorporated into the SPH model. The use of this formulation has 
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helped to reduce the error associated with the large difference in fluid densities at the air-

water interface. Enhancements were also made to the XSPH correction for particle velocity 

and the density regularization considering this large density difference. 

A “ghost” particle method was used in the SPH model for the treatment of solid boundaries. 

Enhancements to the mirror procedure were introduced to improve the consistency of the 

“ghost” and fluid particles. Using the hydrostatic hypothesis, computations of pressures and 

densities of the ghost particles took into account accelerations of the fluid counterparts. A 

formulation for the slip condition at solid boundaries was derived. By using a slip coefficient, 

the non-slip, full-slip or intermediate-slip condition at the boundaries could be imposed. In 

addition, different mirror patterns at boundary corners were introduced to maintain the con-

sistency; trajectories of the ghost particles have to be consistent with those of the fluid coun-

terparts. As a result, accuracy of flow near a solid boundary was significantly improved. 

Two significant developments successfully introduced are the coding of the methodology for 

parallel computation and the multi-scale nesting. Through these modifications, the size of the 

computation domain has been increased to several hundred times larger than a normal simu-

lation in a single computer and the resolution was refined by ten folds.  

Numerical simulations of tank sloshing, dam break and wave propagation in a long flume re-

vealed that the high dissipation rate in SPH simulations may be attributed to the low resolu-

tion and small smoothing length being used. At high resolutions, and with a careful selection 

of numerical parameters, the SPH model yields smaller dissipation rates compared with other 

gridded methods. Results from the benchmarking problems agreed well with those from the 

Boundary Element Method, analytical solutions and experiments. The use of the parallel SPH 

model allows the simulation of wave breaking to be conducted at finer resolutions to reduce 

the numerical dissipation. 
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At a very high resolution, a simulation of a two-phase wave breaking in a full laboratory-

scale water flume could involve hundreds of millions of particles. Thus, it is impractical even 

if the parallel SPH model on hundreds of processors is used. The one-way nesting procedure 

introduced, therefore, has enabled the simulation of a two-phase flow wave breaking process 

at high resolution. The nesting procedure was implemented in the SPH model through two 

steps. The wave generation and propagation in a long water flume were simulated at a coarse 

resolution. This simulation was performed until the wave starts to break. At this stage, a 

smaller domain that covers the breaking area was extracted from the coarser simulation in the 

first step. A much finer resolution was used for the simulation of identified domain.    The 

initial condition of the water was interpolated from the coarser simulation. The area above the 

water surface was filled up by a layer of air. Initial gauge pressure and velocity of the air 

layer were set to zero. Air velocity near the interface with water was extrapolated from the 

velocity of the water to reduce the inconsistency. The nested domain was then simulated with 

a periodic boundary condition applied at its lateral boundaries. The procedure has proven to 

be effective and accurate, evident in the comparison between simulated results and experi-

mental measurements. 

The calibration, validation and sensitivity studies of the SPH model have been conducted us-

ing well-known benchmark problems.  The chosen benchmark problems include sloshing in 

an enclosed tank, dynamics of a high pressure air bubble rising in water, dam break with im-

pact on a vertical wall, and wave propagation in a flume. The numerical results converge to 

the analytical solutions as the resolution increases. The studies also showed that, at a given 

resolution dx, the smoothing length, hc = h/dx, should be in the range of 1.55 to 2.05.  The 

computational time step dt satisfies the Courant number, Cr = max(cs)×dt/dx < 0.2. The suit-

able numerical sound speed (cs) in water is around 20 m/s and the suitable numerical sound 

speed in air is in the range of 20 – 40 m/s. 



 Chapter 5. Conclusion 

 
174 

Through the above modifications and enhancements, the SPH methodology was able to re-

produce accurately the results obtained in a laboratory simulation of wave plunging.   

5.2 Numerical simulation and analysis of the plunging wave breaking 

The evolution of a frequency and amplitude modulated wave packet leading to a plunging 

wave, studied in substantial details by Kway (2000) and Lim (2001) in laboratory experi-

ments, has been successfully simulated using the numerical wave tank developed in this the-

sis. The length of the wave flume is 30 m. The input signal to the wave paddle in the SPH 

model has been derived from the prescribed input signal to the wave paddle used in the labo-

ratory experiment conducted by Kway (2000). The signal comprises 28 wave components 

with frequencies in the range of 0.56 Hz to 1.1 Hz and designed to generate a wave that 

would break at a distance of 15.2 m from the paddle mean position after 26 seconds. The 

simulation of the entire wave tank is performed at with a resolution of 0.005 m. The nested 

inner domain, 7.6 m long and 2.4 m high (including the air layer), is simulated with a resolu-

tion of 0.001 m.  

The degrees of asymmetry of the simulated plunging wave are compared with the values de-

rived and classified by Bonmarin (1989). The results suggest that the simulated plunging 

wave may be classified as a strong plunging wave. At the initial stage of wave plunging, wa-

ter particles near the wave front typically flow backwards relative to the wave crest. When 

the crest steepens further to form a vertical wave front, the upward movement of water parti-

cles (relative to the crest) bifurcates at the top of the wave crest. A part of the upward flowing 

water particles on the wave front moves forward at the crest, creating the plunging jet. The 

plunging jet projects forward and curls towards the water surface on the wave front. Relative 

to the wave crest, the water particles on the wave front and the plunging jet clearly develop a 

well-defined vortex that “rolls” forward along with the crest.   
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Water acceleration at most parts of the plunging jet is about 1g and pointing downwards, 

suggesting that water particles within the plunging jet fall freely due to gravity. At the curved 

part of the inner face of the plunging jet, accelerations are much higher with magnitudes ex-

ceeding 4g. This is probably due to the centrifugal force acting on the circulating water mass 

on the inner surface of the wave front enclosed by the plunging jet. The obtained results agree 

fairly well with those derived using the Boundary Integral Method in Lim (2001). 

The process of plunging jet also leads to a characteristic air entrapment.  The tube of en-

trapped air has the shape of an inclined and elongated ellipse. The surface of the tube is ini-

tially smooth except for some roughness near the contact region between the tip of the plung-

ing jet and the wave front. The disturbances originate from the collision of the plunging tip 

and the water surface.  These features “roll” up the wave front, consistent with circulation of 

the water particles on the surface of the entrapped air tube. The tube changes its shape when 

rolling forward and the entrapped air in the tube goes through compression and decompres-

sion. These results are consistent with the observations in the experiments by Kway (2000). 

The pressure support from the air tube and the centrifugal force due to the circulation of the 

water perhaps are the main factors for the tube to persist while rolling forwards with the 

wave. When wave plunging progresses further, the plunging jet becomes thinner and weak-

ens. A gap opens near the base of the air tube and a part of the entrapped air quickly “squirts” 

out through the gap at a speed as large as three times of the wave speed. With the release of 

entrapped air, the volume of the air tube and its pressure reduce substantially.  

Based on the numerical results, it is clear that the plunging jet will not penetrate deeply into 

the water column. While part of the plunging jet splashes forward, part of it moves along with 

the water particles on the original wave front to continue form the air tube and rolls forward 

accordingly. Due to the inclined impingement, however, part of the water mass from the 

wave front is pushed forward, en-massed with the water particles from the plunging jet to 
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form a vertical jet. The vertical jet comprises of water mainly from the water front and, to a 

smaller extent, from the plunging jet. The jet could rise as high as the original wave crest be-

fore collapsing. A characteristic vertical water spray, earlier observed in Kway (2000) ap-

pears to be due to the interaction between the tip of the vertical jet and the plunging jet and in 

conjunction with the release of the entrapped air. The numerical results show that that water 

particles could attain a vertical speed of around a half of the wave speed.  

The presence of the vertical jet ahead of the plunging jet also leads to the formation of a sec-

ond air pocket of comparable volume compared to the collapsed entrapped air tube.  The two 

air pockets, however, appear to be rotating in opposite directions and broken into smaller 

bubbles in the water column. Larger bubbles quickly rise to water surface rapidly, releasing 

air and creating a foamy surface. Smaller bubbles are entrained deeper into water column due 

to the counter-spinning vortices associated with the two phase fluid. The spinning bubbles 

could be carried as deep as half a wave height into the water column. As the study has been 

conducted using a two dimensional model, the numerical results is not able to yield any three 

dimensional features that may be formed.  Given the fact that the vertical jet, in a real three 

dimensional scenario, is likely to be uneven in the lateral direction, the entrapped air formed 

between the plunging jet and the vertical jet is likely to be in the form of larger air pockets 

rather than an air tube.  The breakdown into bubbles at this stage of the plunging is also evi-

dent in the experimental results obtained by Kway (2000). 

Based on the analysis of the energy dissipation associated with the wave plunging process, it 

is clear that a significant proportion of the wave energy is lost during wave breaking. The 

numerical results are similar to those observed earlier in experimental studies conducted by 

Rapp (1986) and in numerical studies conducted by Lubin (2004).  While the total wave en-

ergy decreases monotonically, the kinetic and potential energy oscillated as observed in ear-

lier experiments. During plunging and prior to jet impingement, a significant portion of the 
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wave potential energy is converted into kinetic energy. While part of the wave energy is im-

parted into the air flows and water sprays generated by the breaking wave, part of the energy 

is also dissipated through the turbulent mixing generated in the water column.  

In this thesis, a numerical methodology based on SPH has been successfully developed to 

capture the essential physics of the wave plunging process. It is evident that a two-phase 

simulation is necessary, especially for the modelling of the entrapped air dynamics.  Up to the 

stage before jet impingement, air dynamics would have a minor role and a one-phase simula-

tion would have been adequate.  However, this would not be true for the complex process af-

ter jet impingement. Before the impingement of the plunging jet, the air dynamics only 

played a minor role. After the plunging tip had impinged onto water in the front, the en-

trapped air tube provided pressure in addition to the centrifugal force of the circulating water 

mass to hold the tube longer. The thesis has also shown that the enhanced SPH methodology, 

coupled with multi-scale nesting and coding for parallel computing, is able to model the finer 

details of the complex breaking process.  

Although it is not done in the thesis, the methodology could be easily extended to three di-

mensional simulations, hence enabling the simulation even more complex features of the 

complex process. An obvious advantage of the SPH model is its ability to capture the details 

of flow within the water mass. With the expected improvement in computing resources, the 

extension into a detailed simulation of 3D features would indeed be feasible. For a deeper 

understanding of energy dissipation through wave breaking, future studies could also focus 

on different breaking intensities. An extension to understand the physics of wave impacts on 

offshore structures is now being pursued by a fellow student. 
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