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Summary 
 

This thesis aims to develop electron energy spectrometers for the Scanning Electron 

Microscope (SEM), in order to make it a more powerful instrument for nano-scale 

material and device inspection.  Three electron energy spectrometers are reported in 

this thesis for SEMs of different types of objective lenses. 

 

The first spectrometer is based upon the use of a circular magnetic beam separator, 

suitable for SEMs that have electric/magnetic field immersion objective lenses. These 

kinds of  SEMs are able to obtain high image resolution at low primary beam voltage 

(1kV or less). The circular magnetic beam separator acts as the first stage of the 

spectrometer, separating different energy ranges of scattered electrons. An array of 

post-deflectors, which utilize retarding mixed electric/magnetic fields, are 

subsequently used to disperse and focus all the scattered electrons onto their own 

detectors. This redesigned SEM/spectrometer combination is able to capture the 

whole range of scattered electrons, from secondary electrons, Auger electrons to 

backscattered electrons in parallel. Both simulation design as well as an experimental 

prototype for testing the spectrometer concept inside a conventional SEM is reported. 

 

The second spectrometer design in this work is a toroidal geometry spectrometer that 

can be incorporated into the specimen chamber of a conventional SEM as an add-on 

attachment. This spectrometer design goes beyond previous toroidal spectrometer 

designs by achieving second-order focusing, effectively improving the energy 

resolution of previous toroidal spectrometers by over a factor of seven for the same 

transmission. A prototype of this spectrometer design is manufactured as an add-on 
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attachment inside a conventional SEM, and experimental results are reported that 

confirm simulation predictions. 

 

The third spectrometer is a new high resolution-transmission energy spectrometer 

design, named the Radial Mirror Analyzer (RMA). This spectrometer design is based 

upon modifying the well-known fountain spectrometer, enabling it to function as an 

add-on attachment that can be permanently incorporated inside the SEM chamber, 

like a normal energy dispersive X-ray analysis (EDS) unit. The predicted energy 

resolution for this spectrometer is around one order of magnitude better than previous 

rotationally symmetric electrostatic energy spectrometers such as the cylindrical 

mirror analyzer for the same transmission. 

 

The spectrometer designs in this work have applications beyond electron microscopy, 

to other areas in applied physics such as surface sciences. 
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Chapter 1: Introduction 
 

The aim of this thesis is to design and develop electron energy spectrometers for the 

scanning electron microscope (SEM). At present, the detection systems of 

conventional SEMs are not generally designed to capture the energy spectrum of 

electrons scattered from the sample. The main analysis tool used inside the SEM for 

defect/material analysis is the well-known Energy Dispersive X-ray (EDS) method. 

However, this technique is limited by a spatial and depth resolution of about 1µm and 

is difficult to  use for low energy electron beam applications (<10kV) [1.1]. By 

integrating energy spectrometers into the SEM design, the energy spectrum of its 

scattered electrons can be obtained, enhancing the kind of information that SEMs can 

acquire on the nano-scale, making them more powerful material and device 

instruments. 

 

Although some electron energy spectrometers have been developed for the SEM in 

the past, most of them have been made for the purpose of quantifying voltage 

contrast. Towards the late 1980s, several companies emerged which manufactured 

dedicated scanning electron microscope columns, known as Electron Beam Testers 

(EBTs) which were specifically designed and optimized to make quantitative voltage 

measurements on integrated circuits.  From the late 1980s, integrated circuit 

manufacturers started to make circuits covered by a top ground plane, making it 

difficult for Electron Beam Testers to directly probe conductors, and they therefore 

diminished in popularity. 

 

New possibilities of using energy spectrometers for other applications inside the SEM 
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other than voltage contrast are recently emerging. Backscattered electron (BSE) 

detection is well known for qualitative material contrast imaging in the SEM. 

However, change in atomic number of the specimen being probed also provides a 

significant change in the shape of the BSE energy spectrum, making it possible to 

perform material quantification by monitoring the BSE spectrum shape. An example 

of this possibility has been proposed by Luo and Khursheed [1.2], where they 

correlated experimental BSE spectra with corresponding Monte-Carlo simulations. 

This technique might be useful in some cases for single element material analysis. 

Backscattered spectrometers have also been used by Rau et al. to provide depth 

information about multi-layer specimens [1.3]. Some recent work by Kazemian et al. 

[1.4-1.5] demonstrate that by monitoring changes in the secondary electron (SE) 

spectrum, dopant concentrations in semiconductor samples can be quantitatively 

mapped inside the SEM. Furthermore, the possibility of carrying out Auger electron 

(AE) elemental analysis in the SEM has been demonstrated in the work by El-Gomati 

[1.6-1.7] and Cubric [1.8], where the Auger spectrum from a specimen can be 

acquired by a fast energy analyzer after cleaning its surface by ion bombardment. This 

makes Auger spectroscopy a promising tool for analyzing nano-scale defects and 

elemental identification inside the SEM. This method might well be a useful 

companion method to the widely used EDS spectrometry technique and overcome 

important restrictions of standard EDS, of being limited to  operate with primary 

beam energies between 10 to 20 keV and having low (micron) spatial resolution [1.1]. 

All in all, these new possibilities of using scattered electron spectra inside the SEM 

require higher performance energy spectrometers than previous voltage contrast 

spectrometers and form the motivation for this thesis to develop new electron energy 

spectrometers for the SEM. 



 

3 
 

1.1 Objective lens improvements 

One of the most important considerations for integrating a spectrometer in the SEM is 

how it fits together with the objective lens. Over the last few decades, different SEM 

columns have been designed, utilizing different types of objective lenses, as shown in 

Fig. 1.1 [1.9]. Each of these lenses has a different way of detecting scattered electrons 

from the specimen. Hence, different energy spectrometer designs are required for  

different kinds of objective lenses, based up on their mechanical arrangement as well 

as their way of detecting scattered electrons. 

 

In the conventional SEM, illustrated in Fig. 1.1a, the specimen is placed in the free-

field region below the final pole-piece of the objective lens with a working distance, 

which is defined by the distance between the final pole piece of the SEM objective 

lens and the specimen, normally ranging from 5 mm to 30 mm, scattered electrons are 

emitted in all directions. The electron energy analyzer in this case needs to be directly 

placed in between the final pole-piece of the objective lens and the specimen like a 

normal SE or BSE detector as illustrated in Fig. 1.2. These electron spectrometers are 

typically designed as add-on attachments to fit inside the SEM chamber. Examples of 

these types of spectrometers are found in the work by Feuerbaum [1.10] for secondary 

electrons, Jacka et al. for Auger electrons [1.11], and Rau et al. for backscattered 

electrons [1.12-1.13].  

 

The main drawback of this type of spectrometer is that placing it below the SEM 

objective lens results in a large working distance (W). A larger working distance 

increases on-axis aberrations of the primary beam spot on the specimen, which in turn 

significantly degrades the image resolution. The challenge in designing electron 
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energy spectrometers for conventional SEMs, is to make them so that they allow for a 

small working distance, and this is an important motivation for the work in this thesis. 

The spectrometers reported in Chapters 3 and 4 are designed with this goal in mind. 

 

 

Fig. 1. 1. Different types of SEM objective lenses: (a) Conventional lens; (b) Magnetic 
In-lens; (c) Single pole lens below the specimen; (d) Single pole lens above the 
specimen; (e) Retarding field lens; and (f) Mixed-field immersion lens 
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Fig. 1. 2. Arrangement of an energy spectrometer for conventional objective lens type 
SEMs 

 

Beyond the conventional objective lens column, various SEM columns incorporate 

different objective lens design improvements. These lens improvements are designed 

to enhance the SEM spatial resolution, particularly at low lending energy, some of 

them are illustrated in Figures 1.1b-f. They include a magnetic in-lens type of 

objective lens, where the specimen is placed in the lens gap region (Fig. 1.1b); semi-

in lenses, where the magnetic field extends beyond a single lens pole-piece (Figs. 

1.1c-d); a retarding field lens, where the primary beam is slowed down just before it 

strikes the specimen (Fig. 1.1e); and a mixed field immersion lens, where the 

specimen is immersed in both a retarding electric field and a strong magnetic field 

(Fig. 1.1f). A more detailed review of these types of objective lens improvements can 

be found in the work reported by Khursheed [1.9][1.14]. 

 

The combination of an electric retarding field overlaid by a magnetic immersion field 

lens requires a way of separating scattered electrons from the primary beam, since 

their trajectories are strongly collimated and travel up close to the electron optical 

axis. A Wien filter can be used to deflect secondary electrons off-axis to improve the 
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collection efficiency, as shown in Fig. 1.3. Examples of using Wien filters in this way 

are reported by Kienle and Plies [1.15], or in the KLA commercial electron beam 

inspection system [1.16]. 

 

Fig. 1. 3. Separation of scattered electrons from the primary beam by use of a Wien 
filter in a mixed field immersion lens [1.9]. 

 
 

 

Fig. 1. 4. Energy spectrometer arrangement for immersion objective lens type SEMs. 

 
Electron energy spectrometers have also been placed above the lens, where scattered 

electrons travel up through the objective lens bore and are then separated from the 

primary beam before reaching the spectrometer. This type of spectrometer is classified 

as a through-the-lens spectrometer design. The spectrometer then analyzes scattered 

electrons, and directs them to the detector system as illustrated in Fig. 1.4. Designs of 
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these kinds of spectrometers have been proposed by Frosien and Plies for secondary 

electrons [1.17], Kruit and Venebles [1.18] for secondary and Auger electrons, and by 

Kienle and Plies for parallel acquisition of secondary electrons [1.15]. Most of these 

designs use a Wien filter to separate scattered electrons from the primary beam. 

However, one of the problems of using a Wien filter for electron energy spectrometers 

is that its energy dispersion is relatively low, resulting in poor performance of its 

spectrometer action.  

 

How to separate scattered electrons from the primary beam in these kinds of lenses, 

where scattered electrons travel through the lens bore, is the motivation for the 

spectrometer design reported in Chapter 2. 

 

1.2 Electron spectrometers for the scanning Auger electron 

microscope (SAM) 

It is important to describe some important parameters for spectrometer design to 

determine the performance of a spectrometer that can be used for spectroscopic 

applications. There are two main design parameters, the energy resolution and the 

transmittance (transmission). In general, the energy resolution of an electron energy 

analyzer provides a reasonable estimate of how well two signals of different energies 

can be separated by the analyzer as illustrated in Fig. 1.5, while its transmittance 

represents how efficiently the analyzer collects the electrons emitted from the 

specimen under analysis. The energy resolution is usually defined as the ratio ∆E/Ep, 

where ∆E is the full width at half maximum (FWHM) of the energy distribution of a 

monochromatic beam through the analyzer, and Ep is the pass energy of the analyzer. 

In most cases, a relative energy resolution (in percentage) is used. In the context of 
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spectrometer design, the energy resolution can be estimated by comparing the FWHM 

of the electron beam trace-width created by spherical aberration, compared to the 

dispersion along the detection plane (Gaussian plane) caused by energy spread. 

         
Fig. 1. 5. Definition of analyzer resolution  

 

 
 
Fig. 1. 6. Azimuthal and polar angles of electrons emitted from specimen 

 

Transmittance (or transmission) of an electron energy analyzer in this thesis, is 

defined to be the fraction of electrons at a given energy that arrive at the analyzer 

detector, compared to those that leave the specimen. Inside the SEM, the distribution 

of scattered electrons is best approximated by a cosine polar angular distribution [1.9]. 
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In this case the transmittance of the analyzer, T, can be calculated by 

                           
( ) [ ] 1002cos2cos

4 21
12 ×−

−
= θθ

π
ββ

T
     (1.1)

 

 
where the analyzer azimuthal and polar entrance angles range from β1 to β2 and  θ1 to 

θ2 respectively, as shown in Fig. 1.6. Even in cases where analyzers are designed to 

capture the full 2π steradian solid angle of emission, electrons are usually scattered 

and absorbed within the analyzer. The transmittance of most analyzers lies well below 

30%.    

 

High performance electron energy spectrometer designs are usually discussed in the 

context of Auger electron spectrometry (AES) for the Surface Sciences, and the 

instrument used for this purpose is the scanning Auger electron microscope (SAM). 

The SAM instrument actually shares much in common with the SEM as illustrated in 

Fig. 1.7. They both direct a focused primary electron beam on to a specimen, and 

capture  electrons that are subsequently scattered back from it. Their electron beam 

columns have all the same kind of features, a tungsten/field emission electron gun, 

condenser lenses, an objective lens, scanning/stigmator coils, a final aperture, and 

electron detectors. 
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Fig. 1. 7. The schematic layouts of the SEM and the SAM instruments 

 

In terms of scattered emission from the specimen under test, the energy spectrum of 

emitted electrons in both the SEM and the SAM consists of the same contributions, 

from secondary electrons, Auger electrons and backscattered electrons as shown in 

Fig. 1.8. One might therefore ask, what are the differences between the SEM and the 

SAM that have caused them to develop so differently, the SEM for high resolution 

imaging purposes and the SAM for high resolution spectrometry in the Surface 

Sciences? Can the SEM be used like the SAM for the purpose of electron 

spectrometry to form an instrument that has both high resolution imaging and high 

resolution electron spectrometry for nano-scale analysis? 
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Fig. 1. 8. Energy spectrum of scattered electrons that leave the specimen inside SEMs 
and SAMs 

 

There are two main differences between the SEM and the SAM that form the answer 

to the above questions. The first difference is in the way they detect scattered 

electrons from the specimen. The SEM detects its scattered electrons (usually SE 

signal) as an integrated current to form high resolution imaging contrast, while the 

SAM has something that most SEMs do not usually have, an electron energy analyzer 

to acquire the energy spectrum of scattered electrons, as illustrated in Fig. 1.8. The 

presence of an electron energy analyzer in the specimen chamber, however, usually 

causes the working distance (distance of final lens to specimen) in the SAM to be 

larger than it is for the SEM. The second difference relates to the vacuum 

environment inside the specimen chamber. The ultra-high vacuum (UHV) 

environment of the SAM specimen chamber (10-9- 10-10 torr) is much higher than the 

vacuum level inside the SEM specimen chamber, which has a normal high vacuum 

(HV) environment (10-5- 10-7 torr).  Detection of Auger electrons requires the 

specimen surface to be very clean to avoid many mono-layers of contamination that 
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prevent Auger electrons leaving the specimen surface. This condition requires the 

specimen to be placed in an UHV environment and an ion flood gun normally needs 

to be used to clean the specimen surface in-situ. Detection of Auger electrons in the 

SEM specimen chamber  is, therefore normally not possible. The UHV chamber has a 

host of different devices/detectors, other than the electron beam column and SE 

detector, and the SAM for these reasons,  is a much more expensive and complex 

instrument than the SEM.   

 

As mentioned, El-Gomati [1.7] and Cubric [1.8] recently showed that it is possible to 

acquire the Auger electron spectrum in the HV environment of the SEM for a short 

period of time after cleaning the specimen surface by ion bombardment. Thus, if a 

high performance electron energy analyzer and an ion flood gun can be incorporated 

into a SEM without greatly increasing the working distance, there is the potential for 

the SEM to be used as a low cost instrument for both imaging and spectroscopic 

analysis on the nano-scale.  

 

The similarity of the SEM and the SAM naturally raises the question of whether the 

electron energy analyzers used  for the SAM can be incorporated into the SEM? The 

two most commonly used electron energy analyzers for the SAM are the Cylindrical 

Mirror Analyzer (CMA) and the Hemispherical Deflector Analyzer (HDA).  The 

CMA was  first described by Sar-El [1.19] and then shortly afterwards employed for 

observing Auger electron spectrum by Palmberg [1.20], and subsequently developed 

by many research groups for charged particle spectrometry applications [1.21-1.22].  

The best resolution of the CMA for an angular spread of ±6°, theoretically without the 

effect of the output aperture is around 0.155% [1.23]. Due to its second-order optics, 
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this is typically around a factor of 6 times better than most other types of 

spectrometers, which are usually characterized by first-order optics [1.24]. Here, the 

first-order optics (focusing) occurs where small variations with respect to the first-

order change in input polar angle are zero, that is, to the first-order, trajectories that 

leave with slightly different initial angles focus at the same exit point. In this case, the 

trace-width at the Gaussian focusing plane depends on the angular spread by a 

second-order function. The second-order optics (focusing) occurs when the focal point 

position does not change with respect to second-order variations in the input angle. 

For this situation, the trace-width dependence with angular spread becomes a third-

order one, resulting in significantly better energy resolution in comparison with the 

first-order focusing. In practice, most of the CMA designs have an energy resolution 

ranging from 0.25% to 0.7% for an angular spread of ±6° [1.25]. An important factor 

degrading its resolution in practice is a depth of focus error, which is caused by 

specimen misplacement. From a transmittance point of view, the CMA is very 

efficient because it has rotational symmetry and all electrons that pass through it are 

deflected by the same in-plane field distribution, there are no out-of-plane trajectory 

paths (neglecting the finite size of the source).  The transmittance of the second-order 

focusing CMA is estimated to be 16.84% (an angular spread of ±6º), assuming that its 

entrance/exit grids have 90% transparency. 
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Fig. 1. 9. The CMA layout. The electric field distribution is created between concentric 
cylinders which are biased at different voltages, the inner one is usually grounded, 
located at radius R1 from the rotational axis of symmetry, and the outer one,  located 
at radius R2 is biased to a mirror voltage (–Vm). 

 

Fig. 1.9 shows a schematic diagram of the CMA layout. The specimen and focal point 

lie on a rotational axis of symmetry. An electron optical column usually needs to be 

placed inside the analyzer, in a field-free central region, making it difficult to combine 

the CMA with other existing electron beam instruments, such as the SEM.  

 

The Hemispherical Deflection Analyzer (HDA) is presently the most widely used  

electron energy analyzer in the Surface Sciences at present. It is constructed by two 

inner and outer hemispheres with radii R1 and R2, in which the inner is grounded and 

the outer is biased at a potential Vm to deflect incoming electrons as shown in Fig. 

1.10. The HDA is characterized by first-order focusing properties, so that it reports a 

poor energy resolution by itself (around 2% for an angular spread of ±6º in both in-

plane and out-of-plane directions) [1.24]. In practice, the HDA, however, is combined 

with a series of lenses in a pre-analyzer decelerating column that allows it to operate 
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in a retardation mode, as shown in Fig. 1.10, effectively lowering the pass energy 

through the analyzer. A relative energy resolution below 0.05% is typically achieved 

in its retardation mode. The transmittance is comparatively low, due to its small 

angular azimuthal angle collection range, 0.172% for ±3° entrance angular spread, 

about 50 times lower than that for the CMA.  A single detector can also be placed at 

the analyzer exit plane, instead of an aperture slit, and the HDA can be operated in a 

multi-channel mode with a band-pass width of around ±3% of the pass energy. The 

characteristics of the HDA can be found in detail from the work reported by Zouros et 

al. [1.26-1.27]. 

 

Fig. 1. 10. Schematic diagram of a HDA combined with its pre-retardation lens column. 

 

Due to the complexity of  its structure as well as its comparatively large size, the HDA 

system is usually placed outside the specimen chamber of the SAM. The pre-

retardation lens is integrated into the specimen chamber through a port to collect 

scattered electrons from the specimen. This arrangement is not suitable for combining 

it with existing SEMs, since SEM chambers are relatively small and the space in 
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between the objective lens and the specimen is limited by a short working distance (of 

less than a few centimeters).  

 

For reasons just mentioned, it is difficult to combine the CMA and the HDA in 

existing SEM instruments. There is a need to develop new electron energy 

spectrometers that have a comparable performance to the CMA and the HDA, and 

which can be integrated into the chambers of existing SEM instruments. 

 

1.3 Parallel energy acquisition concept 

A common feature of most dispersion analyzers such as the CMA is that their 

focusing properties depend on electron energy, and therefore they operate in a serial 

mode of data acquisition.  A finite time is required for acquiring the signal and, for a 

typical electron energy spectrum of over a 2000eV range, the total acquisition time 

can be of the order of minutes. Therefore, another desirable feature for electron 

energy analyzers is to have parallel energy acquisition, where the output signal at a 

wide range of different energies can be obtained simultaneously, greatly speeding up 

data-acquisition times, in the order of seconds.  

 

The HDA can operate in a partial parallel mode of operation by replacing the exit slit 

with a position sensitive detector, typically providing parallel acquisition over a small 

energy band of ±3% of the pass energy [1.27]. Other devices also exist to gather a 

larger energy band, such as the double-pass parallel plate analyzer  that can gather an 

energy span of  about 50% of the middle pass energy [1.28]. 

 

There have been a few proposals to design parallel electron energy acquisition 
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analyzers that can  acquire a wide range of energy, about 2000eV and above. The 

hyperbolic field analyzer (HFA) is a parallel energy acquisition analyzer for Auger 

electron microscopy, which was proposed by Jacka et al [1.11][1.29], shown in Fig. 

1.11. It can collect in parallel an energy spectrum with a range defined by Emax/Emin 

≈36. It is typically set to capture a spectrum from about 75 eV to greater than 2500 eV 

by varying the analyzing field strength. Compared to most electron energy analyzers, 

the total transmission efficiency of the HFA is small. It can only collect 0.05% of 2π 

sr emission in order to provide an energy resolution of a few eV.  However, the data 

acquisition time over the entire energy range between 75 eV to 2500 eV is very fast, 

normally less than 50 ms. This parallel energy analyzer has been developed and 

commercialized by Shimadzu corporation for fast analysis on the nano-scale  [1.8]. As 

depicted in Fig. 1.11, the HFA analyzer can be incorporated into the chamber of 

conventional SEMs due to its compact size. 

 

Fig. 1. 11. A schematic diagram of a HFA. 

 

Another parallel electron energy acquisition analyzer proposal for Auger electron 

spectroscopy is a modified version of the CMA, called the “parallel cylindrical mirror 

analyzer” (PCMA), reported by F. H. Read et al [1.30-1.31]. The new PCMA design 
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is similar to the conventional CMA. The only difference in the new design is that a 

linear potential variation (instead of a fixed voltage as in the conventional CMA) is 

applied to the outer cylinder, and the space between its two concentric cylinders is 

closed by placing disks at the two ends with a non-uniform potential drop along the 

radial direction. This variation allows the analyzer to accept all the electrons within a 

wide energy range and to disperse them along its symmetric axis. For axis-to-axis 

focusing, the energy range is from 300 eV to 1500 eV. The achievable energy 

resolution is predicted to be between 0.182% to 0.456%, with a transmission of 1%. 

However, like the CMA, it is difficult to integrate the PCMA into existing SEMs since 

its rotational axis lies 90º to the primary beam axis. 

 

A new parallel energy acquisition electron spectrometer design is presented in Chapter 

2, and its predicted performance will be compared with the HFA and the PCMA. 

 

1.4 Signal-to-noise ratio (SNR) considerations 

Shot noise, generated within the SEM primary beam and its interaction with the 

specimen usually sets the limit to which output signal variations can be resolved, and 

determines the data acquisition time required for a reasonable signal-to-noise ratio 

(SNR). The number of primary beam np electrons within time τ is assumed to follow a 

Poisson distribution [1.32], having a mean value pn and variance var(np)= pn . The 

mean number of primary beam electrons within time τ can be estimated by  

e
I

n p
p

τ
=

       (1.2)
 

where Ip is the primary beam current.  The signal-to-noise ratio of the primary beam 

electrons is given by 
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where Δf is the bandwidth of the detector system, Δf = 1/2τ. 

 

In the case of backscattered electrons (BSEs), the BSE distribution obeys a binomial 

distribution with a backscattering coefficient η.  The cascade of the Poisson 

distribution of the PE and the binomial distribution of the BSE results in the signal-to-

noise ratio of the BSE as [1.32] 
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Similarly, for Auger electrons, having a yield, YA, the signal-to-noise can be estimated 

as 
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The distribution of secondary electrons (SEs) is more complicated because one PE 

can excite zero, one, or more SEs with decreasing probability. The SE signal-to-noise 

ratio is given by [1.32] 
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where b is the noise factor. In the case of a low SE yield, δ, at very low PE energies, 

the process is approximately a Poisson distribution where b≈1/δ. At a high SE yield 

(for PE beam of 10-20 keV), there is a deviation from the Poisson distribution and the 

value of b becomes larger than this value by a factor of 1.2 to1.5.  

 

The number of scattered electrons travelling through an energy analyzer to the 
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detector is much smaller than the total number of electrons scattered from the 

specimen, depending on the transmission and the energy resolution of the analyzer. 

For typical energy analyzers with a transmission of less than 20% and an energy 

window of less than 1%, the detected signal after the analyzer is much less than 1% of 

the total signal scattered from the specimen. Additionally, the signal-to-noise ratio is 

reduced by the detector quantum efficiency, typically less than 50%. For a primary 

beam current of a few pAs to nAs, an acquisition time of tens to hundreds of 

milliseconds is usually required for a reasonable SNR (>3) [1.25].   

 

1.5 Previous electron spectrometers for the SEM 

Electron energy spectrometers have already been designed for the SEM over a few 

decades, however, they were limited in terms of their range of applications and 

performance. As already mentioned, most of them were made for the purpose of 

quantifying voltage contrast. Retarding field analyzers, which collect the SE energy 

spectrum as an integrated form of signal (S-curve), and monitor the changes of the 

specimen voltage as signal shifts as illustrated in Fig. 1.12, were most widely used for 

this purpose. An early voltage contrast retarding field analyzer using a hemispherical 

retarding grid was proposed by Fentem and Gopinath [1.33], and later ones, using 

planar grids, were reported by Plows [1.34], Flemming and Ward  [1.35], and 

Gopinath and Sanger [1.36]. For over a decade, from 1970, retarding field analyzers 

were placed below the objective lens, and used as add-on attachments for the SEM. 

One major drawback of these voltage contrast spectrometers is that they needed to be 

placed below the SEM objective lens, and as a result, inevitably increased the 

working distance, limiting the image resolution that could be attained.  

 



 

21 
 

 

Fig. 1. 12. Principle of closed loop retarding field spectrometers for voltage contrast: (a) 
Spectrometer layout; (b) Output S-curve signals 

 

From the 1980s, better objective lenses were proposed for the SEM with better 

electron optical performance such as immersion magnetic objective lenses, and 

voltage contrast spectrometer designs were consequently proposed for these kinds of 

objective lenses. Examples of these spectrometers were proposed by Menzel and 

Buchanan [1.37], Garth [1.38], Frosien and Plies [1.17], Dinnis [1.39]. They had 

much smaller working distances (typically 2–5 mm) than the previous retarding field 

analyzers, which were placed below the objective lens. These “through-the-lens” 

voltage contrast spectrometers as well as the previous retarding field analyzers, were 

not used for the purpose of capturing the energy spectrum of scattered electrons, they 

were designed to monitor shifts in the secondary electron (SE) spectrum. Their design 
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and performance, usually characterized by a voltage resolution constant [1.9], and is 

not directly relevant to the new emerging spectroscopic applications inside the SEM, 

such as p-n junction mapping or acquisition of the Auger electron spectrum. More 

details on voltage contrast spectrometers can be found in the references [1.9][1.40]. 

 

Fig. 1. 13. Schematic diagram of Rau spectrometer for the SEM 

 

Apart from voltage contrast spectrometers, very few other spectrometers have been 

proposed for the SEM. Rau and Robinson designed an electrostatic toroidal deflection 

analyzer attachment for the SEM [1.12-1.13], as depicted in Fig. 1.13, to capture the 

BSE spectrum scattered from the specimen under test. This analyzer attachment is 

placed in between the objective lens and the specimen, resulting in a large working 

distance. Therefore, it  is not suitable for spectral applications on the nano-scale 

range. Its performance is characterized by first order optics, and the energy resolution 

was measured to be 2.5% for a reasonable electron intensity at the detector [1.41], 

considerably worse than those normally used for Auger analysis (<0.3%). 

 

All in all, the energy spectrometers for the SEM so far, which include voltage contrast 

spectrometers and Rau and Robinson toroidal spectrometer, are not suitable for the 

new approaches of acquiring scattered electron spectrum for nano-scale analysis 
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inside the SEM. There is a need to look for new electron energy spectrometer 

improvements in the SEM. 

 

1.6 Objectives of the thesis 

This thesis aims to design different high performance electron energy spectrometer 

attachments for SEMs in order to improve their spectroscopic capability. Different 

electron energy spectrometers will be designed for various types of SEMs, including 

existing conventional objective lens SEMs and high imaging resolution immersion 

objective lens SEMs. Their target performance, in terms of energy resolution and 

transmittance,  is to be better than present Auger electron spectrometers, such as the 

CMA and HDA. The thesis also sets out to design parallel energy acquisition 

analyzers for the SEM.  Numerical simulation techniques will be used to design 

analyzers, and proof-of-concept experimental prototypes will be made and tested 

inside existing SEMs. 

 

1.7 Scope of the thesis 

This thesis is divided into five chapters. Chapter 2 describes a parallel electron energy 

acquisition spectrometer, called the circular magnetic beam separator spectrometer. 

This spectrometer is designed for the mixed-field immersion objective lens SEM. 

Chapters 3 and 4 present two rotationally symmetric electrostatic electron energy 

spectrometers for conventional SEMs. In Chapter 3, simulation of a second-order 

focusing toroidal spectrometer as well as experimental results from its prototype SEM 

attachment are discussed in detail. In Chapter 4, simulation results of a radial mirror 

analyzer (RMA) for the SEM are reported. Some suggestions for future work and the 

conclusions of the thesis are presented in Chapter 5. 
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Chapter 2: A circular magnetic beam separator spectrometer 
 

 

2.1  Introduction 

This chapter aims to describe a parallel electron energy acquisition spectrometer 

design for a mixed field immersion objective lens SEM. As discussed in Section 1.3, a 

mixed-field immersion objective lens, which gives the highest image resolution of all 

immersion lens designs [2.1], has the difficulty of separating scattered electrons from 

the primary beam, Wien filters are usually used for this purpose.  

 

Based upon the use of Wien filters, Kienle and Plies proposed a parallel energy 

multichannel secondary electron (SE) analyzer design for a mixed field objective lens 

[2.2]. In their design as depicted in Fig. 2.1, the primary beam travels through most 

the column and is decelerated down to a landing voltage of 1 kV at the specimen. SEs 

are typically accelerated to 8 kV as they travel back up the column, and are deflected 

off-axis by a Wien filter. They are then further deflected and dispersed by an electric  

spherical deflector analyzer (SDA), after which their image is magnified and focused 

on to a YAG scintillator to generate a light image, which is captured by a CCD placed 

behind the scintillator. The whole spectrum of SEs from 0 to 20 eV can be 

simultaneously captured. This design can also be set to another operating mode, 

where it captures the BSE. 

 

The Kienle and Plies spectrometer has the disadvantage of requiring a complicated 

redesign of the electron column. Another Wien filter needs to be placed further up the 

column, in order to cancel out adverse energy dispersion and second-order 
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geometrical aberration effects on the primary beam. In addition, several stages of 

magnifying the energy dispersion are also required, since the lower Wien Filter only 

deflects the secondary electron beam by 15°, and the SDA is limited to a deflection 

angle of 75°.  

 

 
 
 

Fig. 2. 1. Schematic layout for the multi-channel secondary electron off-axis analyzer 
reported by Kienle and Plies [2.2]. 

 
 
Apart from the use of Wien filters for separating scattered electrons from the primary 

beam, there have been so far, two other parallel energy acquisition electron 

spectrometer proposals for immersion objective lenses that utilize magnetic sector 

beam separators for separating scattered electrons from the primary beam. Mankos 
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proposed a curved axis scanning electron microscope design in his patent [2.3], which 

operates in a spectroscopic mode for parallel electron energy acquisition. The design 

is based upon the use of a square magnetic sector beam separator [2.4]. The most 

important characteristic of this beam separator is that it can focus the primary beam 

stigmatically, (stigmatic focusing of an electron beam is characterized by two 

conditions: the focusing positions and the exit semi-angles must be the same in both 

in-plane and out-of-the plane). This proposal utilizes a curved axis instead of a 

straight optical axis down the electron optical column as shown in Fig. 2.2. The 

primary electron beam from the column is bent 90o by the beam separator and focused 

on to the specimen by the objective lens system. The scattered electrons emitted from 

the substrate are extracted through the objective lens and sent into the magnetic beam 

separator. Within the beam separator, they are bent so as to be oriented towards the 

detector system.  The scattered electrons including secondary electrons, Auger 

electrons, plasmon electrons and backscattered electrons are accelerated and 

collimated by the objective lens. A transfer lens is used to create a certain energy 

dispersion at the image plane.  If a linear array or a two-dimensional array of 

detection elements is placed at the image plane, the full energy spectrum of scattered 

electrons can, in principle, be monitored. However, no details of this proposal have 

been published, especially with respect to the objective lens and transfer lens, which 

must achieve sufficient energy dispersion in order to separate electrons in the entire 

scattered energy range with adequate energy resolution at the detector. 
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Fig. 2. 2. A curved axis scanning electron microscope proposed by Mankos [2.3]. 

 

 

The other (more complete) parallel energy acquisition electron spectrometer proposal, 

designed to capture the entire energy range of scattered electrons leaving the 

specimen, has been reported by Khursheed and Osterberg for the SEM [2.5-2.6]. The 

layout of their magnetic beam separator spectrometer is depicted in Fig. 2.3. At the 

heart of the design, there is a circular magnetic sector deflector, which can deflect the 

primary beam stigmatically (preserves a round beam shape), and acts as a beam 

separator [2.7]. The design uses a conventional SEM column (electron gun, condenser 

lens and scanning coils), to project a focused primary beam into the center of a 

magnetic sector deflector that bends it by 90º, which then goes on to strike the 

specimen in the normal vertical direction. The specimen in this case is located inside 

an objective lens, integrated within the specimen chamber. The proposed objective 
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lens is a mixed electrostatic and magnetic immersion lens that is able to provide high 

image resolution at low landing energies [2.1]. 

 

Fig. 2. 3. A magnetic beam separator spectrometer layout principle for full range energy 
acquisition proposed by Khursheed and Osterberg [2.6] 

 

Scattered electrons are accelerated by the objective lens towards the magnetic sector 

beam separator. They are then deflected away from the primary beam and separated 

by the magnetic sector beam separator according to their different emission energies. 

The transfer lens will tend to focus the scattered electrons to some degree, but there is 

no distinct focal point because of the energy spread. Once separated from the primary 

beam, it is easy to further disperse the scattered electrons before capturing them. A 

post-deflector unit is used to direct and focus them on to a multi-channel detector, 

where their spectrum will be monitored in parallel. In principle, all the scattered 

electrons including secondary electrons, Auger electrons, and backscattered electrons 

can be separated and collected independently because of their different kinetic 

energies. However, in order to attain higher energy resolution, an array of electron 

detectors/spectrometers can be arranged around the beam separator. These post-

Aperture 
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deflector units can be designed to focus the scattered electrons on to a parallel array of 

detectors. In this way, scattered electrons are essentially unrestricted by space 

constraints and are expected to be collected with high transport efficiency.  

 

Khursheed and Osterberg [2.5-2.6] did not complete their proposal, in terms of 

simulation designs and proof-of-concept spectroscopic experiments. The electron 

energy spectrometer design proposed in this chapter naturally follows on from their 

proposal. This work aims to use the circular magnetic beam separator to separate 

scattered electrons from the primary beam and to design a complete electron 

spectrometer system that can capture the entire energy range of scattered electron 

emission in parallel with high energy resolution and high transmission efficiency.  

 

The previous work, carried out by Khursheed and Osterberg dealt mainly with the 

primary beam optics aspects of the spectrometer, while providing preliminary 

simulations in two dimensions for the scattered electrons trajectory ray paths (Fig. 

2.3). They designed the magnetic beam separator to have low primary beam 

aberrations, and confirmed this by experiment [2.7-2.8]. However, the energy 

dispersion of the scattered electrons and a scheme to detect them with high energy 

resolution and high transmittance has not been made. In the following work, ray 

tracing in three-dimensions will be performed, from which the spectrometer energy 

resolution and transmittance characteristics can be predicted in detail. In addition, a 

complete post-deflector arrangement will be designed to capture the whole energy 

range and optimize energy resolution. Simulation software will be written so that 

curved edged mixed field (electric/magnetic) post-deflectors can be modeled in three 

dimensions; the previous simulation was limited to a straight-edged magnetic post-
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deflector in two dimensions. To test these simulation predictions, a prototype 

spectrometer will be made and tested as an attachment inside a conventional SEM,  to 

acquire scattered electron spectra.  

 

2.2 Simulation design of a circular magnetic beam separator 

spectrometer for full range parallel energy spectral acquisition. 
 
The spectrometer design proposed here, like the one reported by Khursheed and 

Osterberg [2.5-2.6], uses a circular magnetic sector deflector as a beam separator, 

which bends the primary beam through 90º, and directs it into a mixed field 

electric/magnetic immersion lens. However, in this case, the transfer lens is designed 

to focus scattered electrons into the beam separator in order to maximize energy 

dispersion and minimize angular dispersion. The beam separator acts as the first stage 

of an energy spectrometer, subsequent first-order focusing on to multi-channel 

detectors will be achieved through the use of additional magnetic sector/retarding 

field units, ones that capture scattered electrons over their entire range with high 

energy resolution and transport efficiency. 

 

2.2.1 Objective and transfer lens designs 

The beam separator spectrometer to be designed here, is one that is specifically meant 

to fuction with the SEM objective lens that combines an electrostatic retarding field 

with a magnetic field. This type of objective lens has much lower focal lengths and 

on-axis aberrations than conventional objective lenses, and is particularly suited to 

provide high resolution at low landing energies [2.1]. Fig. 2.4 depicts finite-element 

solved field distributions for the objective/transfer lens combination. All such field 

distributions, as well as the plotting of trajectory paths through them, were obtained 
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by running programs from the KEOS package [2.9]. The upper pole-piece of the 

objective lens has a 2 mm diameter hole through which the primary beam and 

scattered electrons pass. The distance to the specimen from the upper pole-piece of 

the objective lens is also 2 mm. The objective lens coil current excitation was adjusted 

to focus a 10 kV primary beam on to the specimen. The primary beam is assumed to 

start 50 mm above the transfer lens, corresponding to the beam separator centre.  

 

Fig. 2. 4. Numerically solved lens field distributions required to focus a 10 kV primary 
beam on to a specimen with 5 keV landing energy: (a) Magnetic; (b) Electrostatic 
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Fig. 2. 5. Simulated scattered electron trajectory paths through objective and transfer 
lenses for emission angles ranging from 0 to 1.4 rad in 0.2 rad steps: (a) 500 eV; (b)  2 
keV; (c) 5 keV (BSE) 

 

Fig. 2.5 shows simulated trajectories of scattered electrons leaving the specimen with 

emission energies of 500 eV, 2 keV and 5 keV (BSE) over a wide range of emission 

angles relative to the optical axis (0 to 1.4 radians). The low energy secondary 

electrons (< 5 eV) were not plot since they remain much closer to the optical axis 

(within a radius of 0.5 mm). The trajectory paths shown in Fig. 2.5 illustrate how the 

transfer lens focuses the scattered electrons into the beam separator. In general, the 

point to which the transmitted scattered electrons focus will depend on their emission 

energies, however, an energy range corresponding to focal points 20 mm around the 

beam separator centre (40% of the beam separator radius) will result in scattered 
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electrons having a reduced angular spread at the detector plane. This is the main 

benefit of using the transfer lens, and will be discussed more in detail in the following 

pages. The excitations on the objective/transfer lenses used for the direct ray tracing, 

as indicated in Fig. 2.5, focuses 1-2 keV Auger electrons emitted within the angular 

range from 0 to 0.4 radians to approximately within 20 mm of the beam separator 

centre. The near-axis elastic backscattered electrons are of course, naturally directed 

into the beam separator because they retrace the path of the primary beam.        

 

2.2.2 Field distribution simulation for post-deflector simulated designs 

Simulation of the spectrometer’s characteristics requires accurate ray tracing of 

electron trajectory paths through curved electric/magnetic sector plates. Since 

magnetic sector field distributions are inherently three-dimensional in nature, and 

often involve curved boundaries, direct ray tracing of electrons through them is a non-

trivial task. Numerical field solving techniques such as the finite element method do 

not in general provide enough accuracy to extract aberration coefficients from the 

trajectory paths of focused beams in three dimensions. This is because numerical 

meshes in three dimensions that model complex shaped boundaries typically need 

over a million free nodes, requiring prohibitively large amounts of computer memory 

and unmanageably long program run times [2.10]. The situation is made even more 

difficult for retarding sector units, where an electric field is overlaid onto the 

deflecting magnetic field in order to slow down electrons to very low energies (a few 

eV). Another disadvantage of using a fully finite element approach is that high-order 

interpolation methods are needed to extract accurate field information from nodal 

potentials, so, mesh-less methods are preferred [2.10]. 
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A three-dimensional semi-analytical technique, which uses a modified two-

dimensional finite element solution in combination with a Fourier Series expansion, to 

simulate 3D potential field distributions, has been developed for this work. This 

approach avoids the direct use of a fully three-dimensional finite element solution, 

helping simulate easily and accurately three-dimensional curved mixed field post-

deflectors, and has the desirable feature of not requiring a mesh in the region where 

electron trajectories are to be plotted. Details of this method can be found in the 

Appendix A.  

 

2.2.3 The circular magnetic beam separator 

 The circular beam separator is designed to have the same focusing properties on 

primary beam electrons traveling both in the plane of deflection (x-y), “in-plane”, and 

in the direction perpendicular to it (x-z), “out-of-plane”. It achieves this stigmatic 

focusing property by segmenting the deflection plates, like the square beam separator 

proposed by Mankos illustrated in Fig. 2.1, using a pair of inner plates and a pair of 

outer plates, as shown in Fig. 2.6. The diameter of the beam separator is 100 mm, and 

the gap between each pair of sector plates in the out-of plane direction (z direction) is 

10 mm.  The excitations on the inner and outer plates necessary to provide stigmatic 

focusing of 10 keV primary beam deflected through 90o are 85.85 AT and -12.14 AT 

respectively, (see Ref. [2.7] for more details on simulating the primary beam 

aberrations through this beam separator). 

 

Simulated trajectories of scattered electrons traced through the beam separator, after 

passing through the transfer lens are shown in Fig. 2.6. It indicates that the angular 

spread effect is relatively small for the lower energy scattered electrons (represented 
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by 50 eV in this instance), and for the 2 keV electrons. The accelerating field at the 

specimen surface is responsible for reducing angular dispersion on the lower energy 

electrons, while the transfer lens focusing effect reduces it for the 2 keV electrons. For 

the backscattered electrons, the near-axis emission angle electrons clearly have a 

small amount of dispersion. 

 

Fig. 2. 6. Simulated in-plane (x-y) scattered electron trajectory paths through the beam 
separator for a variety of different emission conditions at the specimen. Emission 
angles are plot in 0.1 radian steps: (a) 50 eV, 0 to 1.5 radians; (b) 500 eV, 0 to 0.6 
radians; (c) 2 keV, 0 to 0.7 radians and (d) 5 keV, 0 to 0.9 radians 

 

The aperture placed just below the beam separator restricts the in-plane angular 

dispersion of the scattered electrons over a wide range of emission energies. For a 2.7 

mm wide aperture, the emission angles of scattered electrons that enter the beam 

separator are limited to 0.4 radians for electrons emitted with energies between 0.5 to 
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2 keV, 0.5 radians for 3 keV, and 0.7 radians for the backscattered electrons (5 keV). 

The angular dispersion of backscattered electrons, however, is further limited by its 

post-deflector geometry, effectively providing a 0.6 radian cut-off emission angle. 

Note that the aperture acts only to restrict the angular dispersion in the plane of 

deflection.     

 

Fig. 2. 7. Simulated out-of-plane (x-z) scattered electron trajectory paths through the 
beam separator for a variety of different emission conditions at the specimen. 
Emission angles are plot in 0.1 radian steps: (a) 50 eV,  0 to 1.5 radians; (b) 500 eV, 0 
to 0.6  radians; (c) 2 keV, 0 to 0.7 radians; (d) 5 keV, 0 to 0.9 radians. 

In the out-of-plane direction, the beam separator dimensions largely determine the 

cut-off angle. For a 10 mm gap between each pair of sector plates, the out-of-plane 

cut-off angles on scattered electrons are: π/2 radians for 50 eV,  0.55 radians for 500 

eV to 1 keV, 0.65 radians for 2 keV, 0.85 radians for 3 keV, and 0.95 radians for 5 keV 

(the backscattered electrons). These results are indicated by the trajectory paths shown 

in Fig. 2.7. Obviously, to increase transmission in the out-of-plane, the beam separator 

size can be increased, and there is no fundamental limit to transmission of the 

scattered electrons in the out-of-plane direction. For the in-plane direction however, 

the transmitted scattered electron angular dispersion must be selectively reduced in 

order to improve the attainable energy resolution at the detector plane. 

(a) (b) 

(d) (c) 

Pair of deflection plates 

x 

z 

10 mm 



 

42 
 

2.2.4 Post-deflectors 

The post-deflectors considered here, consist of magnetic sector deflectors that 

incorporate with an electric retarding unit, slowing down electrons as they travel 

through the deflector. By using the semi-analytical approach for mixed field 

distributions, these magnetic/electric retarding sector units can be accurately 

simulated. The advantage of this design is that it increases the energy dispersion of 

scattered electrons through the deflector, that is, scattered electrons separate more 

than they would do if a normal magnetic sector deflector is used. For example, 

scattered secondary electrons can be slowed down by the retarding field even to a few 

eVs, making them easy to deflect even with a weak magnetic field. At the same time, 

backscattered electrons go through these deflectors with only a slight influence to 

their trajectories, due to their much larger kinetic energy, and can then be detected 

separately.  

 

2.2.5 Energy dispersion properties of beam separator spectrometers 

Fig. 2.8 and Fig. 2.9 depict trajectory paths of scattered electrons that leave a -5 kV 

specimen and travel through a beam separator spectrometer layout that is designed to 

capture a wide-range of energies. Three magnetic sector post-deflectors separate 

scattered electrons according to their emission energies. This is represented in 

simulation by emission energies 3, 500, 1000, 2000, 3000 and 5000 eV. Due to the -5 

kV biasing of the specimen, these electrons have kinetic energies of 5.003, 5.5, 6, 7, 8 

and 10 keV respectively as they travel through the beam separator and arrive at their 

respective detectors. Note that the 3 eV secondary electrons are mirrored back into the 

beam separator for a second pass.   
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Fig. 2. 8. Direct ray tracing of scattered electrons at a variety of different  emission 
energies that emanate from a source located 5 cm below the  beam separator and have 
angles ± 5 mrad diverging from the vertical axis. 

 
Fig. 2. 9. Direct ray tracing of scattered electrons at a variety of different emission 
energies that converge towards the centre of the beam separator with entrance angles 
of ±5 mrad.  
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In Fig. 2.8, all scattered electrons are assumed to enter the beam separator with 

diverging ± 5 mrad angles emanating from a point source located 50 mm below it. In 

Fig. 2.9, they enter the beam separator with ± 5 mrad angles converging towards its 

centre. Exclusion of the objective/transfer lens system is deliberated here in order to 

better understand how to minimize angular dispersion through beam separator.  On 

comparing Figs. 2.8 and 2.9, it is clear that angular dispersion is greatly reduced 

where a transfer lens is used to focus the incoming scattered electrons towards the 

beam separator centre. This is also why the primary beam is also pre-focused towards 

the beam separator centre, by doing this, spherical aberration is minimized [2.9]. 

 

Simulations predict that an energy range corresponding to a focal point spread of 20 

mm around the beam separator centre (40% of the beam separator radius) will result 

in scattered electrons having a reduced angular spread at the detector plane. This is an 

important result, since most of the scattered electrons have energies well below the 

primary beam energy, they will be over-focused by the transfer lens.  These 

simulation results also indicate that there is a relatively wide range of converging 

input angle conditions for which the output angular dispersion is relatively small, and 

therefore predicts that the beam separator spectrometer will have good focusing 

properties for parallel detection across the full range of emission energies.  

 

2.2.6 Full range energy parallel acquisition design 

Fig. 2.10 shows a simulation of scattered electron trajectory paths through the 

spectrometer after having been traced through the objective/transfer lenses. Here the 

beam separator is set to deflect a 10 keV primary beam through 90o. The simulation 

takes into account Auger electrons, as well as secondary and backscattered electrons. 
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Although only ray paths through the beam separator and post-deflectors are shown, 

they are actually traced from the specimen, which is biased at -5 kV, with a wide-

variety of emission energies and angles. The transfer lens excitation is adjusted to 

minimize the angular dispersion for scattered electrons having energies from 1 to 2 

keV. The shapes, retarding voltages, and magnetic excitations on the post-deflectors 

were designed so that the secondary, Auger and backscattered electrons are well 

separated and first-order focusing is achieved on their respective detector planes. The 

secondary electrons are mirrored back into the beam separator for a second pass.  

 

Fig. 2. 10. Simulated scattered electron trajectory paths in the spectrometer for 1 eV 
SEs,  0.5, 1, and 2 keV AEs, and 5 keV BSEs through the beam separator. The 
emission angles are plot in steps of 0.1 radians and range from 0 to 1.5 radians for 
SEs, 0 to 0.4 radians for AEs and 0.6 radians for BSEs. 
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Flat-plane detectors can be used for the secondary and backscattered electrons, 

however for the Auger electrons, due to their wide energy range; it is recommended 

that several detectors be used in parallel over smaller energy ranges. An example of 

using flat-plane detectors is shown in Fig. 2.10. 

 

2.2.7 Energy resolution estimation 

In order to estimate the energy resolution achievable for a given degree of angular 

dispersion on the scattered electrons, detailed diagrams of simulated ray paths around 

the detection plane were plot. Some examples of these diagrams are shown in Fig. 

2.13. By examining the relative dispersion created by different emission energies and 

angles at the detector plane, an energy resolution estimate was made. A cosine 

distribution of the emission angle is assumed (relative to the optical axis), which, after 

taking into account the azimuthal direction, is proportional to sin2θ, giving the 

distribution peak to be 45o emission (π/4 radians). The average dispersion, Δx, was 

calculated by the following weighted average expression 
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Where, xi is the position dispersion to the zero emission angle rays of the electrons 

with emission angle θi. 

 

The energy resolution was then calculated by using the simulated dispersion along 

detection plane, like that shown for Auger electrons in Fig. 2.12. The overall behavior 

of the spectrometer does not necessarily follow simple dispersion rules where the 

energy resolution is proportional to the energy. 
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Fig. 2. 11. Simulated trajectory paths around the detection plane for different emission 
conditions: (a) 1, 3 and 5 eV SEs at 0, ± 0.8 radians; (b) 2 and 2.1 keV AEs at 0 to 0.4 
radians in 0.1 radian steps. 

 

 

Fig. 2. 12. Simulated energy dispersion of Auger electrons. 

 

The relative number of transmitted scattered electrons is proportional to 0.5 (1 – 

cos2θc), where θc is the cut-off angle as described in Chapter 1. The total transmission 

is estimated by averaging the respective transmissions for the in-plane and out-of-

plane. The results are summarized in Table 2.1.  They predict that the transmission of 

scattered electrons from the specimen to the detector plane for a given energy 
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having an energy resolution of 148 meV to 193 meV is predicted to be 100%. The 

transmission varies between 20 to 40% for 0.5 to 3 keV Auger electrons whose energy 

resolution is between 4 to 7 eV, and is approximately 50% in the case of 5 keV elastic 

backscattered electrons having an energy resolution of 42 eV.  The relative energy 

resolution for the Auger and backscattered electrons for these conditions typically lies 

between 0.2 to 0.9%. It should be noted that the out-of-plane cut-off angles do not 

represent a fundamental limit to the spectrometer, since the beam separator size can 

always be scaled up to allow for 100% transmission in this direction, if this is done, 

the total transmission value is likely to exceed 50%. 

 
Table. 2.1. Simulated energy resolution and transmission characteristics of the 
spectrometer at optimal focal plane. 
 

Emission 
energy E 

(eV) 

In-plane 
cut-off 
angle 

(radians) 

Out-of-plane 
cut-off angle 

(radians) 

Transmission 
(%) 

ΔE (eV) ΔE/E 
(%) 

1  (SE) π/2 π/2 100 0.148 14.8 
3  (SE) π/2 π/2 100 0.193 6.4 
5 (SE) π/2 π/2 100 0.175 3.5 

500 (AE) 0.4 0.55 21.24 4.30 0.86 
1000 (AE) 0.4 0.55 21.24 6.88 0.69 
2000 (AE) 0.4 0.65 25.90 6.67 0.33 
3000 (AE) 0.5 0.85 39.50 6.93 0.23 
5000 (BSE) 0.6 0.95 49.02 41.93 0.83 

 

 

2.2.8 Spectrometer performance comparison 

The predicted performance summarized in Table 2.1 for the present beam separator 

spectrometer compares well with other types of electron energy spectrometers. It 

compares favorably for instance, with the well-known Cylindrical Mirror Analyzer 

(CMA) for Auger electrons operating at the second-order focusing condition, where 

the CMA mid-entrance angle is 42.3º [2.11]. Under this condition, the CMA for an 
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entrance angular width of ± 6o gives a relative theoretical energy resolution of around 

0.328% and a transmission (over 2π sr) of around 20.6% transmission (neglecting 

scattering by its entrance/exit grids). However, a detailed comparison between the 

CMA and the present spectrometer is not meaningful, since the CMA does not provide 

a parallel energy spectrum. A better comparison would be with the parallel energy 

spectrometers proposed by Jacka et al [2.12-2.13], F. H. Read [2.14-2.15] or Kienle 

and Plies [2.2]. 

 

Both the HFA reported by Jacka and the PCMA reported by Read  require relatively 

small entrance angular spreads, typically in the 1o to 3o range, and depending on the 

mid-entrance angle, their transmissions will be smaller than 5%. For the widest 

energy range reported by Read, 125 to 3000 eV and an energy resolution of around 

0.4%, the relative transmission (over 2π sr)  is around 2% (mid-entrance angle at 

27.04o). The widest energy range presented by Jacka is a few tens of eV to 2000 eV, 

the energy resolution of a few eV and the relative transmission is around 0.05% (mid-

entrance angle at 20.76o). The second-order versions of the spectrometers reported by 

Read and Jacka cannot be compared to the present spectrometer since the detectable 

energy range becomes considerably restricted. The spectrometer presented by Kienle 

and Plies is similar to the present beam separator spectrometer in that it can obtain 

good separation between secondary and backscattered electrons. However, it cannot 

obtain them at the same time and the secondary electron energy range is limited to 20 

eV, therefore, a detailed comparison to the present beam separator spectrometer is also 

not meaningful.  In the present context, it is sufficient to note that the present beam 

separator spectrometer is predicted to have a high transmission-energy resolution 

performance, comparable or better than the CMA operating at its optimum condition, 
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while at the same time being capable of capturing the entire range of scattered 

electrons in parallel. 

 

2.3 An experimental magnetic beam separator spectrometer setup 

as a SEM attachment. 
2.3.1 Experimental setup 

The simulated magnetic beam separator spectrometer is predicted to capture electrons 

over the entire energy range in parallel. However, for small angular dispersion, large 

energy dispersion, as well as high transmission, the size of beam separator needs to be 

relative large, around 100 mm in diameter, as assumed for the simulation model used 

in the previous section. This involves using a SEM with a large vacuum chamber, 

especially custom built to incorporate it. In order to test the basic concepts behind the 

spectrometer proposal outlined in the previous section, a much smaller magnetic beam 

separator spectrometer was made, so that it could fit into a conventional SEM 

chamber as an add-on attachment. For the following feasibility studies, a JEOL 5600 

SEM was used. Fig. 2.13 depicts the layout of the spectrometer attachment. Due to the 

limited size of the vacuum chamber, it is difficult to incorporate an array of post-

deflector sectors together with the beam separator. Another possible solution to 

overcome this is to use electric retarding field grids/sectors, which can be designed 

with smaller dimensions and suitable shapes for integration into a smaller space. 

 

Fig. 2.13 also depicts predicted electron trajectory paths inside the add-on 

spectrometer SEM attachment. The electron primary beam is supplied from a SEM 

column (not shown) and bent 90o by the magnetic sector beam separator towards the 

mixed magnetic and retarding electric field objective lens, and focused onto the 

specimen, which is biased at a certain negative voltage VS. The scattered electrons 
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travel back into the beam separator, which acts as the first stage of an energy 

spectrometer. The retarding sector mirror, which is biased at VM, is used to mirror 

back the secondary electrons into the beam separator for a second pass. Secondary 

electrons then hit a scintillator placed before a (photomultiplier tube) PMT, to 

generate light, which is then detected by the PMT and amplified and converted into 

current. The PMT current is measured by a Keitley 617 electrometer and monitored 

by a PC. The integrated spectrum of secondary electrons can then be obtained as the 

collected current of the PMT by ramping the retarding voltage VM of the retarding 

sector mirror as illustrated in Fig. 2.14. Backscattered electrons travel through the first 

retarding unit and, in principle, can be separately detected by another detector. For 

simplicity, the present setup does not use a transfer lens to focus scattered electrons 

into the beam separator, which was proposed in chapter 2. The lack of transfer lens 

may cause  lower collection efficiency and more angular dispersion of scattered 

electrons. 

 

Fig. 2. 13. The magnetic beam separator spectrometer setup as a SEM attachment. 
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Fig. 2. 14. Electron energy spectrum: (a) Typical scattered electron energy spectrum; (b) 
Ramping voltage of the mirror VM 

 

 A schematic of the magnetic beam separator is shown in Fig. 2.15a, while a photo of 

the manufactured unit is presented in Fig. 2.15b. Its outer casing dimensions are 30 

mm x 30 mm x 78 mm. The inner sector plate has a diameter of 10 mm, the outer 

sector ring has an inner diameter of 12 mm and an outer diameter of 20 mm. The 

sectors are fitted into a mild-steel rectangular block casing with a bore diameter of 26 

mm. In between the inner and outer sectors and in between the outer sector and the 

casing are non-magnetic alignment pieces made of brass. The transverse magnetic gap 

is kept at 2 mm. A copper wire with a diameter of 0.5 mm was used to wind 150 turns 

on the inner solenoid coils and 50 turns on the outer solenoid coils.  

 

Energy E 

N(E) 
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Fig. 2. 15.  A circular magnetic sector deflector: (a) drawing of the side view; (b) a 
photo of the attachment design 

 

The overall diameter of the immersion lens casing is 30 mm (the inner diameter is 26 

mm). A NeFeB permanent magnet disc (9000 AT/cm) is used for the magnetic 

excitation having a diameter of 15 mm and the height of 5 mm, and provides a 

magnetic excitation of 4500 AT.  Copper wire with a diameter of 0.4 mm was used to 

wind 230 turns on an iron core (diameter 15mm and height of 5 mm) placed onto the 

top of the permanent magnet for fine focusing control, as shown in Fig. 2.16a. 

However, during the experiments, it was realized that the copper coil generated heat, 

which caused a reduction in the permanent magnet strength, this prevented the 

possibility of fine focusing, which in turn meant high resolution images could not be 

acquired. The lens pieces are held together and held to the separator by magnetic 

force.  
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Fig. 2. 16. (a) Add-on mixed-field immersion lens; (b) Electric retarding field mirror 

 

The electric retarding field mirror is simply designed using two copper plates placed 

in parallel with a 3 mm gap between them. The copper plates have a circular curved 

shape with the same center as the sectors of the beam separator, as illustrated in Fig. 

2.16b, to ensure that the scattered electrons escape the separator perpendicular to the 

mirror electric field.  

 

Fig. 2. 17. A photo of the assembled spectrometer attachment 

 

Immersion lens 

Mirror 

Beam separator 
box 

Teflon 
Iron  
piece 

Specimen, VS 

Permanent 
magnet 

Copper 
coil 

Iron casing Metal casing 

Mirror plate, Vm 

Teflon 

(b) (a) 



 

55 
 

Fig. 2.17 shows the assembled spectrometer attachment. With a total height of 52 mm, 

it can be used in a normal SEM (JEOL 5600 in this case) 

 

2.3.2 Preliminary experimental results 

Fig. 2.18 shows the secondary electron image of a copper grid specimen on carbon 

with a periodicity of 15 μm. The image is formed from scattered secondary electrons 

that travel through the objective lens and beam separator before being mirrored back 

and deflected out of the beam separator. The electrons then hit a copper plate in order 

to generate slow secondary electrons that can be detected by the SEM’s own SE 

detector. In this way, it is relatively straight forward to form an image. The 

backscattered electrons pass through the retarding sector mirror due to their high 

kinetic energies and are absorbed by a carbon block placed at the back of the mirror. 

In the present setup, it is not possible to capture high resolution images due to the lack 

of a fine focusing mechanism.  

 

 

Fig. 2. 18. An SE image of a copper grid specimen on carbon, with a periodicity of 15 
μm 

30 μm 



 

56 
 

The excitations of the beam separator and the specimen biasing voltage were obtained 

by imaging the copper grid specimen, which involved stigmatic focusing of the beam 

separator and setting the objective lens focus onto the specimen. The excitations of 

the beam separator to do this were 70.5 AT for the inner sector and -9 AT for the outer 

sector. The specimen was biased at Vs = -3650 V and 5 keV primary beam energy was 

used. 

 

Fig. 2.19 shows the collected PMT current as a function of mirror voltages for 

different specimen biasing voltages VS. The specimen voltage, VS, is changed in one 

volt steps. For each value of VS, the PMT signal is curved fitted, normalized, and then 

differentiated with the help of software to obtain the SE spectrum. The results are 

given in Fig. 2.20. The SE spectrum linearly shifts as a function of specimen voltage, 

as expected. These preliminary results serve to demonstrate that spectral information 

of the scattered electron spectrum can be obtained through the use of a magnetic beam 

separator spectrometer. 

 

 

Fig. 2. 19. Experimental collected PMT currents as a function of the specimen voltage 
varying in one volt steps 
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Fig. 2. 20. Secondary electron spectra obtained by curve fitting, normalizing and 
differentiation of experiment data. The influence of changing the specimen bias is 
clearly shown  

 

For each spectrum, most of the electrons having energy larger than 9 eV were lost. 

This effect can be explained by loss of transmission in the out-of-plane direction, due 

to the relative small size of spectrometer attachment (plate separation of 2mm). 

Simulations of this experimental setup were carried out for scattered secondary 

electrons to confirm this effect, and predict that the setup accepts all the 1 eV 

secondary electrons with the emission angles larger than 1 rad in the out-of-plane 

direction. The 10 eV secondary electrons can only pass through the setup in the out-

of-plane direction if the emission angles are smaller than 0.1 rad. The simulation 

results predict that most of the high energy secondary electrons (>9eV) are lost in the 

out-of-plane. This explains why the experimental secondary electron spectra drop 

sharply in the high energy region.  

 

2.4 Conclusions 

A circular magnetic beam separator spectrometer has been investigated by direct ray 

tracing simulations. The design is based upon the use of a magnetic sector deflector as 
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a beam separator, which bends the primary beam 90o. The primary beam then enters a 

mixed field electric/magnetic immersion lens. The scattered electrons travel back 

through a transfer lens and into the beam separator, which acts as the first stage of an 

energy spectrometer. An aperture is placed at the entrance of the beam separator in 

order to restrict the angular dispersion of the transmitted scattered electrons in the 

plane of deflection. A series of retarding field magnetic sector post-deflectors are then 

used to focus the scattered electrons on to multi-channel detectors.  

 

By using the transfer lens to focus the scattered electrons into the centre of the beam 

separator, the effect of angular dispersion at the detector plane is predicted to be 

significantly reduced. The transfer lens does not significantly degrade the primary 

beam optics, and small adjustments in the objective lens excitation can be used to 

refocus the primary beam on to the specimen if changes in the transfer lens excitation 

are made in order to optimize scattered electron collection at the detection plane. 

 

It is predicted that the spectrometer can acquire the entire energy range of scattered 

electrons, including secondary, Auger and backscattered emissions with high 

transmission (around 30% for Auger range and up to 100% for the secondary electron 

range). The energy resolution is simulated to be comparable to that of the CMA for 

the Auger and backscattered electron ranges (less than 0.5%) and to be acceptable for 

the secondary electron range. 

 

A preliminary proof-of-concept experiment was carried out using a small add-on 

beam separator spectrometer attachment inside the specimen chamber of a 

conventional SEM. Initial experimental results of secondary electron spectra acquired 
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from the prototype were obtained, confirming that a circular beam separator can 

function as an energy spectrometer for scattered electrons in the SEM. However, these 

results also demonstrate that the beam separator spectrometer concept requires a 

custom built SEM, which has an enlarged SEM specimen chamber, in order to reduce 

out-of-plane scattering. 
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Chapter 3: A second-order focusing toroidal spectrometer 
 
 
3.1 Introduction 

In the previous chapter, a circular magnetic beam separator spectrometer for in-lens 

SEMs was proposed. In general, incorporation of an energy spectrometer into such 

SEMs requires redesign of the SEM column, this is because the energy spectrometer 

is both in the path of the primary beam and scattered electrons. The energy 

spectrometer cannot, therefore, function as an add-on attachment. In conventional 

SEMs, the specimen is placed in a free-field region below the final pole-piece of the 

objective lens and it is possible to place the spectrometer off-axis, where it acts on 

scattered electrons well away from the path of the primary beam. This provides the 

possibility of using an energy spectrometer as an add-on attachment. Both this 

chapter, and the following one, present add-on energy spectrometer designs for 

conventional SEMs. 

 

Rau and Robinson proposed a SEM electrostatic toroidal deflection spectrometer 

attachment for microtomography and  electron spectroscopy analysis [3.1, 3.2]. This 

design has a 65o deflection angle, ϕ, in the polar direction and fully 2π transmittance 

in the azimuthal direction, as shown in Fig. 3.1. The spectrometer is placed in 

between the final pole-piece of the objective lens and the specimen. Scattered 

electrons enter the spectrometer at the input angle, θ, of 25o with an angular spread of 

±3o, and are deflected through a 65o angle. The energy resolution of this initial 

spectrometer design was simulated to be 0.7% (haft-width) [3.3]  
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Fig. 3. 1. Schematic diagram layout of a first-order focusing toroidal spectrometer 
reported by Rau and Robinson: (a) Cross-section showing specimen and detector; (b) 
Simulation layout, OZ is the rotational axis of symmetry [3.1]. 

 

The spectrometer design was later improved, in which a deflection angle of 59o was 

used instead of 65o. This second spectrometer design was simulated to have an energy 

resolution of 0.25% (haft-width) for an angular spread of ±3o, corresponding to a base 

resolution of around 2Δθ2 (0.5% for ±3o) [3.3] . It was used for providing depth 

information of multi-layer thin films by monitoring BSE energy spectra inside the 

SEM. The same spectrometer design was also recently used for monitoring specimen 

charging, where specimen surfaces charge to -5 kV [3.4].  The Rau and Robinson 

toroidal spectrometer, however, does not provide multi-channel energy spectral 

information, since the detector must lie on a cylindrical wall shaped surface. In 
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addition, these spectrometers still have first-order focusing properties that limit the 

energy resolution at high transmittance.  

 

Toroidal shaped spectrometers have been used in many applications, both for energy 

and angular electron spectroscopies, due to their wide collection angle in the 

azimuthal direction (up to 2π) as well as their ability to provide limited parallel 

detection (like the hemispherical deflection analyzers described in Chapter 1). 

Examples of these spectrometer designs include a first toroidal shaped electrostatic 

spectrometer for momentum determination [3.5]; a multichannel toroidal spectrometer 

for angular and momentum measurements [3.6-3.7]; for gas phase studies electron 

impact ionization measurements [3.8-3.10]; for photoelectron applications [3.11]; or a 

design for general energy and angle resolved applications, namely TEARES [3.12-

3.13].  

 

So far, all of the previously reported toroidal spectrometer designs, including the Rau 

and Robinson spectrometer designs for the SEM, have first-order optics, which makes 

their attainable energy resolution (for a given entrance angular spread) inferior to 

other types of 2π radian collection spectrometers such as the Cylindrical Mirror 

Analyzer (CMA), commonly used in Scanning Auger Microscopy (SAM) [3.14]. 

 

At its second-order focusing condition (only possible at an entry angle of  42.3º), the 

CMA energy resolution has a cubic dependence on input angular spread, 

approximately 1.38 Δθ3  for acceptance angles between ± 6º [3.14], indicating that its 

energy resolution is limited by 3rd order spherical aberration. This gives an average 

theoretical relative energy resolution (100×ΔE/E) of around 0.155%. Assuming a 
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cosine emission distribution with respect to the polar angle θ (measure relative to the 

z-axis) and 2π radian emission in the azimuthal angular direction, the total theoretical 

transmission is proportional to sin(2θ), around 20% for ± 6º. In practice, grids are 

used at the spectrometer entrance and exit which typically lower the transmission to 

around 14%. In contrast, toroidal spectrometers (non-retarded) have a theoretical 

energy resolution of around 0.25% at ± 3º acceptance angles (around 10% 

transmission). This value was predicted by simulation for both a toroidal spectrometer 

in photoemission applications [3.11], and the Rau and Robinson toroidal 

backscattered electron spectrometer for the SEM [3.1-3.2]. The energy resolution of 

0.25% at ± 3º acceptance angles is also comparable to the one usually quoted for the 

Concentric Hemispherical Analyser (CHA) on its Gaussian focal plane [3.15], given 

by Δθ2, where Δθ is the angular spread.   

 

Higher energy resolution spectrometers for the SEM are needed if applications such 

as Auger electron spectroscopy is to be carried out. Therefore, designing a new 

spectrometer based on the toroidal shape one that has high energy resolution, high 

transmittance, and can be incorporated into the SEM chamber as an attachment is the 

motivation of this chapter. 

 

The spectrometer presented in this chapter, is a new toroidal spectrometer, which is 

designed to capture electrons in the full 2π azimuthal angular direction while at the 

same time having second-order focusing optics. The design is based upon the 

spherical aberration cancellation idea reported by Khursheed [3.16], in which the 

spherical aberration is cancelled by obtaining an intermediate focus in the r-z plane. 

This allows for second-order spherical aberration contributions accumulated before 
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and after the intermediate focus to cancel, since electrons with emission angles to 

either side of the central ray gain spherical aberration are of opposite sign. The 

remaining spherical aberration is therefore of third-order.  

 

3.2 Simulation design of a second-order focusing toroidal 

spectrometer 
 

3.2.1 Simulation design 

The design approach taken in the following section is essentially a simulation one, 

where two software programs were used to verify the results. The first software is part 

of the KEOS package [3.17].  Finite element programs were used to solve for two-

dimensional rotationally symmetric electrostatic field distributions on a polar mesh. 

Numerical ray tracing of electrons through these field distributions were then plot 

using bi-cubic interpolation and the 4th-order Runge-Kutta method. The meshes were 

graded so that smaller mesh cells are used within the centre region between the 

deflection plates: the size of each adjoining mesh cell increases by 10% in the radial 

direction, and mesh cells mid-way between the plates are typically 276 smaller than 

those at electrode boundaries. The base mesh resolution for each field solution uses 

145 by 145 mesh lines. The accuracy of the simulation was continually checked by 

repeating all results with finer numerical meshes and smaller trajectory step sizes, 

ensuring that the final simulated parameters such as rms trace width did not change 

significantly (by less than 1 %).  

 

The second software is a commercial one called Lorentz-2EM [3.18], a hybrid 

software that combines boundary element and finite element techniques. The 

boundary element method avoids well-known mesh generation/interpolation problems 
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of the finite element method [3.19], especially difficult for curved boundaries. The 

finite element method is used for non-linear field solutions, such as those that arise in 

the presence of magnetic saturation, problems that are difficult to solve directly by 

boundary element methods. Both numerical techniques are coupled together, utilizing 

their relative strengths. In addition,   an adaptive segment technique varies the density 

of charge segments on conductor surfaces, refining it according to local field strength. 

The subsequent improvement on field accuracy and shortening of trajectory run times 

for a given number of charge segments, allows for greater complexity of problems to 

be modeled. The software is able for instance, to simulate  electrostatic structures that 

are very small, embedded in much larger conductor layouts. In the present context, 

this feature was used to plot accurate direct trajectory paths through an aperture slit, 

microns in size, placed within the fringe fields of a spectrometer measuring many 

centimeters. The use of a 5th order Runge-Kutta method in which the trajectory step-

size varies according to local truncation error also helped in making this kind of 

problem much easier to simulate. It also has the advantage of having a friendly  

interface with CAD tools  that allows for designing complex boundaries, so that the 

simulation model can be more realistic, closer to the final engineering design. The 

results generated from these two programs were compared to each other and showed 

good agreement with a mismatch of less than 1%. This agreement between both 

KEOS and Lorentz-2EM  indicates that the following spectrometer design results are 

reliable.  
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Fig. 3. 2. Overall schematic layout of 2π radian collection second-order focusing 
Toroidal spectrometer design. 

 

Fig. 3.2 shows a cross-sectional schematic of the kind of  toroidal spectrometer 

designs considered in this chapter.  An illuminating beam, of either photons or 

electrons is directed and focused on to the specimen through a hole in a hemispherical 

aperture cover. The subsequent scattered/secondary electrons travel from the 

specimen through a ring slit in the aperture cover, entering the spectrometer at an 

angle θ with respect to the vertical axis. The width of the annular slit defines the input 

angular spread, ±Δθ. The polar coordinates φ1, φ2,  R1 and R2 define the length and 

radii of the spectrometer deflection plates around the centre point O in the r-z plane, 

while V1 and V2 represent the voltages to which they are biased (+1 and -1 for the 

purposes of this simulation). The distance of the point O to the rotational axis is 
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denoted by RC, and the instrument is surrounded by zero volt shielding plates, where 

normal Herzog shunt plates smoothly attenuate fringe fields.  Electrons that pass 

through the spectrometer, can either be filtered by an output annular slit aperture 

before being collected by a 2π collection detector (or an array of detectors distributed 

in the azimthual direction), or they can pass through a zero volt grid and strike an 

array of multi-channel plate detectors for energy parallel acquisition, where the 

detection plane is defined on a shallow cone surface.  

 

Table 2.1. Design parameters of the spectrometer. 

Input angle (rad) θ π/4 (45o) 
Angular Length 
(rad) 

φ1 -π/2.25 

 φ2 3π/4 
Radii (cm) R1 1.4 
 R2 2.2 
 

Many designs were investigated by varying the angular length (φ1, φ2) and the input 

angle, θ of the spectrometer to optimize the energy resolution. The highest energy 

resolution was achieved for the design parameters shown in table 2.1. Fig. 3.3 depicts 

16 equipotential lines between -1 to +1 V in equal steps for this  spectrometer design. 

These radii are nominal, since all important optical/aberration parameters, including 

the pass energy, scale linearly with spectrometer dimensions. Fig. 3.3 shows that 

although fringe fields generated from the deflection plates penetrate into the entrance 

and exit regions of the spectrometer, they are greatly attenuated by the Herzog shunts. 

With this electrode arrangement, variations in the precise shape of the shielding plates 

beyond the Herzog shunts do not greatly affect the focal properties of the  

spectrometer.  



 

70 
 

 

Fig. 3. 3. Equipotential lines from a numerically solved field distribution for the 
spectrometer. 16 equal potential intervals are taken between -1 V to +1 V. 

 

Electron trajectory paths are traced from the specimen into the spectrometer, starting 

with the central ray whose energy is automatically scaled so that its trajectory path is 

always normal to the deflection plates on exit. This condition means that the central 

trajectory does not necessarily exit mid-way between the deflection plates, and 

indeed, there is no need to enforce it to do so. For the deflection plate potentials 

normalized to -1 V and +1 V, the pass energy for the toroidal spectrometer shown in 

Figs. 3.2 and 3.3 was found to be 2.293 eV.  

 

Fig. 3.4a shows trajectory paths of scattered electrons leaving a point on the rotational 

axis with the pass energy 2.293 eV for an entrance angle of 45º and an input angular 

spread of  ±6º, 21 trajectories are plot in uniform angular steps.  These ray paths 

clearly indicate a much sharper focus at the exit of the spectrometer than for the 

intermediate focus and this suggests that second-order focusing is taking place at the 
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spectrometer exit. Fig. 3.4b shows that the spectrometer plate geometry can in 

principle accept an input angular spread of up to  ±10º, corresponding to a 

transmission of around 34% for a cosine distribution of emission. 

 

 

Fig. 3. 4. Simulated ray paths of electrons through the spectrometer at the pass energy 
for a wide variety of entrance angles. The central ray enters in at 45º and 21 
trajectories are plot over uniform steps for an input angular spread varying from: (a) -
104 mrad  to +104 mrad (-6º to 6º); (b)-173 mrad  to +173 mrad (-10º to 10º). 
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3.2.2 Energy resolution 

By monitoring intersection points and angles with the central ray, it is relatively 

straightforward to plot the beam trace width as a function of input angle at the output 

Gaussian focal plane, which is shown in Fig. 3.5a. This graph shows that second-

order focusing is predicted for the spectrometer since the trace width at the Gaussian 

plane clearly exhibits third-order (cubic) spherical aberration dependence with respect 

to the input angular spread.  Fig 3.5b depicts the dependence of the trace width at the 

output Gaussian focal plane caused by the relative energy spread in the beam, and as 

expected, it takes a first-order linear variation (dispersion).  

 

The trace width at the output focal plane, ΔTR, is then a combination of energy 

dispersion and spherical aberration, and can be approximately represented by fitting a 

cubic expression to Fig. 4a and a straight line to Fig. 4b, which is given by 

3
11 925.1553.0 θ∆+






 ∆=∆ R

E
ERTR

   (3.1)
 

Proceeding with the normal method of estimating energy resolution, which assumes 

that the minimum energy resolution is equivalent to half the spherical aberration 

contribution distributed over the full input angular variation [-Δθ, +Δθ], the first term 

in the above equation is equated to the second term, obtaining, 

3
11 925.1553.0 θ∆=






 ∆ R

E
ER

     (3.2)
 

348.3 θ=





 ∆⇒

E
E

       (3.3)
 

At say 104 mrad (6º), the relative base energy resolution is predicted to be 0.392%, or 

0.049% at 52 mrad (3º).   
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Fig. 3. 5. Simulated normalized trace width at the output plane: (a) due to spherical 
aberration; (b) due to relative energy spread 

 

A more accurate method of calculating the relative energy resolution is simply to 

estimate it to be twice the value of the rms value of the graph depicted in Fig. 3.5a, 

which is 2.054×10-3, and divide it by the gradient of the line shown in Fig. 3.5b, 

0.554, to obtain an estimated theoretical relative base energy resolution of 0.37%.  

The rms approach is more general and has the advantage of not depending on the 

precise form of spherical aberration distribution, which will inevitably contain within 

it, higher order terms, and residual traces of the second-order term. The rms approach 

is also better suited to investigate the improvement in energy resolution that can be 

obtained by shifting the output slit plane slightly away from Gaussian focal point 

along the central ray. It was noticed for instance that shifting the output slit plane to -

0.17 mm before the Gaussian focal plane resulted in the energy resolution improving 

by a factor of 2.53, to 0.146%. This is a well known property of third-order aberration 

limited focusing systems, and a similar factor of improvement has been incorporated 

into the best theoretical energy resolution estimate already cited for the CMA. The 

simulated energy resolution for the present second-order focusing toroidal 

(a) (b) 
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spectrometer is therefore comparable to the theoretically best energy resolution of the 

CMA [3.14].  

 

For input angles of  ±3º, the relative energy resolution based upon calculating the 

spherical aberration distribution rms value was found to be 0.0446% at the Gaussian 

focal plane, which at a distance of -0.04 mm along the central ray falls to 0.0188% 

(factor of 2.36 improvement), over an order of magnitude better than the 0.25% 

simulated energy resolution reported for previous first-order toroidal spectrometers. 

Based upon the foregoing simulated energy resolution estimates of 0.146% and 

0.0188% at input angular spreads of ±6º and ±3º respectively, the best relative energy 

resolution of the second-order focusing toroidal spectrometer presented in this paper 

is given approximately by 1.314θ3. 

 

A spectrometer designed to accept a 45º central ray with respect to the vertical axis 

was found to provide the best predicted resolution. Due to less dispersion and a longer 

exit focal length, a 60º entrance angle (for a ±6º angular spread) spectrometer 

geometry has a predicted energy resolution that is more than two times worse. For a 

30º entrance angle design, although the dispersion is greater, the second focal point 

lies within the main body of the spectrometer, making it difficult to place detectors  at 

the seond-order focus plane. For these reasons, a spectrometer designed to accept a 

45º central ray is used.  

 

3.2.3 Parallel energy acquisition 

Fig. 3.6 shows simulated electron trajectory paths leaving a point on axis with a range 

of different emission energies through the second-order focusing toroidal 
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spectrometer design, with no angular dispersion considered. Eleven trajectories are 

plot in uniform steps over an energy range spanning 90% to 110%  of the pass energy. 

There is clearly considerable energy dispersion at the spectrometer output, where a 

tilted detector for parallel energy acquisition is marked in the figure. Simulation 

results also showed that the spectrometer plate geometry can in principle provide 

greater energy dispersion, more than ±15% (total of 30%) of the pass energy. 

Although the energy resolution will naturally be much worse at the edges of such a 

large energy pass band range, there are situations where high transmission of this kind 

may be useful. In the SEM for instance, electrons close to the centre of a wide energy 

pass band can be used for spectroscopy, while those outside the centre region can be 

simultaneously used to form a topographical image of the specimen.      

 

Fig. 3. 6. Simulated zero angle trajectories at 11 emission energies spread uniformly 
from 90% to 110% of the pass energy 
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It is interesting to note the existence of an achromatic point located further down the 

central ray in Fig. 3.6. If the electric field distribution in the spectrometer had been 

perfectly symmetric before and after the intermediate focus, one would expect a  

reduction in chromatic aberration, leading to a substantial reduction in dispersion at 

the output plane, similar to the cancellation of second-order spherical aberration. 

Fortunately, due to the asymmetric nature of the field distribution in the toroidal 

geometry, chromatic aberration does not cancel as much as spherical aberration, and a 

significant amount of dispersion at the output focal plane is predicted: a dispersion of 

155 μm is expected  for a relative energy spread of 2×10-2 (R1 = 1.4 cm), compared 

with a trace width of 11.31 μm produced by spherical aberration with an input angular 

spread of ±6º. 

 

Fig. 3.7a shows a magnified set of simulated rays paths around the output focal plane 

that have different emission energies and angles. There are eleven different energies 

uniformly spread over the energy interval ranging from 95% to 105 % of the central 

band energy (2.293 eV). For each energy, there are eleven trajectories whose input 

angles are uniformly spread between -52 to 52 mrad around the central entrance angle 

(45º).  Also marked on Fig. 3.7a is the plane normal to the central ray Gaussian focal 

point, and the line joining the Gaussian focal points on each central energy ray. These 

results indicate that the influence of spherical aberration for parallel energy 

acquisition will be greatly reduced if the detection plane is aligned to the line joining 

Gaussian focal points at different energies, rather than be normal to the central ray. 

Fig. 3.7b shows the case where the detector plane is orientated to be 26.4º with 

respect to the horizontal axis, a line that is formed by joining together the Gaussian 
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focal points of rays at either extreme of the energy band (95% and 105% of the pass 

energy).  All eleven rays across the energy band appear well focused along this line.  

 

 

Fig. 3. 7. Simulated trajectories around the output focal plane for 11 emission energies 
ranging from 95% to 105% of the pass energy and 11 input angles from -52 mrad to 
52 mrad around the central ray in uniform steps: (a) the normal plane and line joining 
up Gaussian focal points; (b) detection plane at 26.4º with respect to the horizontal 
axis 

 

In order to quantify the information depicted in Figs 3.7a and 3.7b, the rms value of 
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the trace width at each energy along the detection plane (at angle of 26.4º to the 

horizontal axis) was calculated, and normalized to its value at the centre of the band. 

This quantity is a direct measure of the relative rise of the energy resolution across the 

energy band, and is shown in Fig. 3.8. As expected, there is a relative increase in trace 

width as a function of how far the pass energy deviates from the central one, however, 

it rises relatively slowly, meaning that the second-order focusing region extends 

across a significant portion of the energy band: the trace width limited by spherical 

aberration rises by less than a factor of two for an energy pass band range defined 

approximately by 96% to 104% of the pass energy. Within this energy range, the 

focusing properties of parallel energy detection are still approximately of second-

order. By way of comparison, the hemispherical spectrometer in retarding mode, has a 

bandwidth of only a few percent (the energy range over which its resolution rises by a 

factor of two to three) [ 3.20]. 

 

 

Fig. 3. 8. Simulated increase in energy resolution across the energy band spanning 95% 
to 105% of the pass energy  
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How to achieve parallel detection on the surface of a cone which has a slant of 26.4º 

with respect to the horizontal axis is a matter for future investigation. One possibility 

may be to use an array of multi-channel flat strip detectors that are evenly distributed 

in the angular azimuthal direction. Fig. 3.9 shows how a portion of this array would 

appear looking down on to the detection plane for 40 flat strip detectors, each detector 

captures electrons over a 9º window in the azimuthal direction. The detector array is 

placed on the cone slant at the point of second-order focus, the radius, RD at this point 

is relatively large, around 1.33R1. Due to the relatively shallow angle of the cone slant 

and its large radius, the size of each flat strip detector is relatively small in 

comparison to the detection cone surface: it has an extension in the azimuthal 

direction of approximately 0.157RD, and its length on the cone slant for a ±10% wide 

pass energy band is 0.0749RD, giving an apparent width of 0.0669RD in the plan view. 

These dimensions are relatively small with respect to RD, which means that the 

detector array provides a good approximation to the detection cone surface. If α is the 

semi-angle of collection for each detector, 4.5º in this case, it is straightforward to 

show from simple trigonometric considerations that the maximum positional error 

relative to RD due to the detector being flat is 1 – cosα, whose average value is given 

by, 1 – (sinα)/α. This translates to an average positional error of 1.03 × 10-3 RD, which 

when used as an off-set around the optimum position for second-order focusing only 

results in the spherical aberration trace width growing by 4.7%, giving an energy 

resolution of 0.152% on each flat strip detector, as opposed to the former value of 

0.146% for perfect cone surface detection.   
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Fig. 3. 9. Part of the plan view of a flat strip multi-channel array in the angular 
azimuthal direction. 40 strip detectors fit on to the conical detector plane of radius RD. 
The 0.0669 RD apparent width corresponds to 0.0749 RD in the r-z plane, which 
captures an energy range of ± 10% of pass energy. 

 

 
3.2.4 A parallel detector design for low energy electrons 

For relatively low pass energies (typically less than 50 eV), pass energies that are 

much lower than voltages required to bias the detector (say 1 to 2 kV), a flat plane 

detector design is possible. In this case, electrons that pass through the spectrometer 

can be further deflected by an electric field created between a negative lower 

electrode, biased at V1, and an upper flat plane detector biased to V2, typically biased 

positive to several kV, as shown by simulated trajectory  paths in Fig. 3.10. In this 

example, electron trajectory paths are traced through the spectrometer for five 

emission energies: 47.5 to 52.5 eV in steps of 1.25 eV , that is, within the 95% to 

105% range of a 50 eV pass energy. They enter the spectrometer with eleven angles 

uniformly distributed between -52 to + 52 mrad (±3º), where V1 = -160V,  and V2 = 

+2.5 kV. 
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Fig. 3. 10. Simulated trajectory paths for flat plane detection at a pass energy of 50 eV. 
There are 5 emission energies ranging from 95% to 105% of the pass energy in 
constant steps,  and 11 input angles uniformly varying from -52 mrad to 52 mrad 
around the central ray (45º). V1=-160 V, V2=2500 V. 

 

 The predicted energy resolution on the flat plane detector is 0.196% for the centre of 

the pass band, and 0.769% for the outer energies (at 95% and 105% of the pass band 

energy). Although the trace width due to angular dispersion on the flat detection plane 

is larger than its value on the conical detection plane, the dispersion is also 

correspondingly larger, leading to the prediction that the energy resolution on the flat 

plane detector will be only marginally worse than its value at the conical detection 

plane, 0.196% compared to 0.146% respectively. These simulation results indicate 

that at least for relatively low pass energies (< 50 eV), the complications of detection 

on a conical surface may be avoided.  

 

3.3 Experimental results from a toroidal spectrometer attachment 

for the SEM 

In the previous section, simulation of a second-order focusing toroidal spectrometer 

design has been presented. This section presents experimental results from a 

spectrometer prototype based upon this design as an attachment inside the SEM. Both 

SE and the BSE energy spectra are recorded. By monitoring the BSE spectrum, the 
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energy resolution of the spectrometer is estimated. In addition, a specimen bias 

technique is developed to enhance the signal-to-noise ratio (SNR) of the spectrometer. 

 

3.3.1 The experimental setup 

Fig. 3.11 depicts the experimental setup of the spectrometer, fit as an attachment 

inside a conventional SEM. The inner sector is grounded and the outer sector is biased 

with a negative potential –VD that is ramped to capture the scattered electron 

spectrum. The spectrometer is designed to capture an angular spread of ± 8o with 

respect to the central entrance angle of 45o in the polar direction. The input angular 

spread in the azimuthal direction is 100o. In this design, the specimen is surrounded 

by two hemi-spherical caps, where the inner cap is electrically connected to the 

specimen and the outer cap is grounded. This arrangement keeps a field-free region 

around the specimen surface while setting up a radial field in the space in between the 

two caps, allowing the specimen to be biased to a certain negative or positive 

potential. This arrangement can be used for extraction and collimation of SEs into the 

spectrometer. An aperture is placed vertically at the spectrometer exit to select 

electron energy. The aperture has a thickness of 100 μm and its width is fixed around 

100 μm for all the following experiments.  A scintillator is used to convert the output 

electrons into light, which is then detected by a photo multiplier tube (PMT). The 

whole setup is placed right below the final pole-piece of the SEM objective lens to 

minimize the working distance, as shown in Fig. 3.11. The minimum working 

distance for this setup is 15 mm. For the acquisition of SE spectra, the scintillator 

voltage, VSC, was biased to +5 kV. A 3D drawing of one half of spectrometer 

attachment prototype is illustrated in Fig. 3.12. 
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Fig. 3. 11. Experimental layout of the high-resolution toroidal secondary electron 
spectrometer inside the SEM. 16 electron trajectory paths with an input angular 
spread of ± 8o around the central angle of 45o are simulated. 

 
 

 
Fig. 3. 12. A prototype of the toroidal spectrometer attachment (a half). The azimuthal 
deflection angle is 100o. The whole attachment is placed on the SEM stage for 
experiments. 
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Fig. 3.11 also depicts 16 simulated secondary electron trajectory paths traced from the 

specimen through the spectrometer on to the scintillator, demonstrating how the 

spectrometer functions. The electric field distribution solution and electron 

trajectories were obtained by running the program, LORENTZ-2EM [3.18]. In this 

simulation, the specimen and the inner cap were grounded. The scattered electrons are 

emitted from the specimen in all directions and a wide range of energies, from the low 

energy secondary electrons through to the elastic backscattered electrons enter the 

spectrometer.  However, only electrons having an initial energy around the 

spectrometer pass energy with polar emission angles between 37o to 53o will travel 

through the spectrometer and strike the scintillator.  

 
3.3.2 The secondary electron spectrum and voltage contrast effects 

A chromium specimen was used to investigate the SE spectrum inside the SEM. The 

specimen was cleaned by  using an ultrasonic cleaner with acetone solvent. The 

specimen was polished to have a smooth surface, in order to minimize the influence 

of surface topography. All experiments were carried out inside a Tungsten JEOL JSM-

5600 SEM, where a 5 kV, 10 pA primary beam was focused on to a 3 nm diameter 

spot on the specimen.  The deflection voltage VD in Fig. 3.11 is software controlled 

through a Personal Computer (PC), and the output signal on the PMT is fed into an 

electrometer, converted into a digital signal and monitored by the PC as VD  is 

scanned. Around 150 to 200 points are used in the generation of a full SE spectrum, 

with each point having a primary beam dwell time of 0.1 s on the specimen. The 

output signal is typically captured at a rate of around 3 points per second. Hence, the 

total acquisition time for each spectrum is about 50-100 s. 
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Agilent E3631A triple output power supplies were used for the spectrometer 

deflection voltage as well as specimen biasing. The voltage ripple of this power 

supply is less than 0.35 mV rms and the voltage drift over a single spectrum 

acquisition is less than 8 μV.  

 

Fig. 3.13a shows an experimentally acquired SE spectrum, while Fig. 3.13b displays a 

selected part of it, in order to study the noise on the signal. In this experiment, the 

specimen and the inner cap were grounded. The deflection voltage here refers to VD in 

Fig. 3.11, the voltage of the outer sector plate. Fig. 3.3b shows that the noise is 

relatively small, allowing for SE spectral shifts of 12 mV or lower to be monitored, 

about 5 times better than the multi-channel SE spectrometer proposed by Kienle and 

Plies [3.21].  

 

Fig. 3. 13. An experimental SE spectrum: (a) full range; (b) selected range in which 
curve 2 is shifted 12 mV with respect to the curve 1. 

 

For the next experiment, the specimen is biased with a negative voltage together with 

the inner cap, while keeping the outer cap grounded. Fig. 3.14 shows the output 
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signals of the collected SEs as a function of deflection voltage at different negative 

specimen biasing voltages. Compared to 0V bias, the output signal not only shifts to 

the right (as expected) but also grows significantly in intensity as the biasing voltage 

increases, forming a sharper peak, which no longer directly represents the SE 

spectrum. The increase in signal height comes from the fact that negative specimen 

voltages accelerate secondary electrons towards the spectrometer entrance, giving 

them a higher pass energy, enabling a wider energy range to travel through the 

spectrometer exit slit. This negative biasing also creates an accelerating leakage field 

that penetrates into the inner cap near the specimen surface, creating a weak lens 

focusing action, and effectively widening the angular spread into the spectrometer. 

Since the output aperture size is unchanged, a correspondingly higher proportion of 

secondary electrons pass through the output slit. The electric field generated between 

the inner and the outer caps pulls through secondary electrons that would otherwise 

strike the inner surface of the inner cap. Simulations confirmed that this effect 

contributed to the increase in SE signal height as the specimen/inner cap were biased 

negatively, in addition to a wider range of energies passing through the spectrometer 

exit slit. Details of this effect will be discussed later. 

 

Although the SE spectrometer output signals no longer represent the SE energy 

spectrum as the extractor field increases (more negative specimen voltages), they are 

in a more useful form for the purposes of quantifying specimen contrast effects due to 

the formation of a sharp peak. These results illustrate an important point about the 

acquisition of the SE spectra in general: high energy resolution is not required, and 

accurate recording of the SE energy spectrum is unnecessary. By biasing the 

specimen/inner cap negatively, the SE spectrum is transformed into a much more 
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convenient form for open-loop specimen voltage measurement than the original SE 

spectrum. If the surface potential does not change by large amounts over the area 

scanned, it is possible to store several images, each at a different analyzer deflector 

voltage, thereby obtaining an estimate of the peak position in the output signal for 

each pixel in the image. In this way, a quantitative voltage map can be superimposed 

upon the normal SE image, rapidly acquired in open-loop mode.  

 

Fig. 3. 14. Experimental secondary electron output signals at different specimen biasing 
voltages.  

 

Not only does the output signal develop a sharp peak, which can be precisely tracked 

as a function of specimen potential, but the signal-to-noise ratio is more than an order 

of magnitude higher than the case when there is no specimen bias. This is illustrated 

by the experimental signals shown in Fig. 3.15, where the bias voltage on the 

specimen/inner cap changes from -10 to -10.1 V.   In this case, the spectrometer 

deflector voltage is restricted to a small range (1 volt) around the peak signal value. 

The presence of shot noise on these signals is relatively small, less than 4mV, a few 

times better than the case of 0V bias.  
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Fig. 3. 15. Experimental secondary electron signals for the specimen voltage changing 
from -10V to -10.1V. 

 

A higher estimate of the signal-to-noise ratio (SNR) on the experimental signals 

shown in Fig. 3.15 is obtained if signal mean around the peak value is monitored. The 

signal mean for each signal (deflection voltage average) is given by expectation value 

E(V): 

j

N

j
jVPVE ∑

=

=
1

)(      (3.3) 

where the index j runs from 1 to the number of points sampled in the output signal 

that is examined, N; V refers to the deflector voltage; Pj refers to the probability of 

each point in the output signal, obtained from the output height normalized to the area 

under the output curve. The expectation function is a convenient way of monitoring 

small changes in the peak value, since the peak position shifts significantly as the 

specimen voltage changes. Also, it takes advantage of the fact that the peak shape is 

approximately symmetric. If the peak is perfectly symmetric for the deflector voltage 

range monitored, the expectation value provides the peak position along the x-axis 
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(deflector voltage), and the noise on either side of it cancels out, providing a measure 

of specimen voltage changes in the output signal, which are relatively insensitive to 

the noise present on the signal.  These points are illustrated by examining the 

expectation values of the signals shown in Fig. 3.15, in which the number of samples, 

N=500 is used. Here the expectation values are E1 = 7.49405 V for VS = -10 V, and E2 

= 7.511865 V for VS = -10.1 V, giving a change of ΔES = E2 – E1 = 17.8154 mV for the 

specimen/inner cap voltage changing by 100 mV. The change in expectation value 

(refer to the noise ΔEN) due to shot-noise of each signal is calculated by comparing its 

expectation value to the expectation value of a smoothed fit.  For the signal at VS = -

10.1 V, ΔEN is calculated to be 6.272 µV, giving a signal-to-noise ratio of 2,840 ( SNR 

= ΔES/ΔEN = 17.8154 mV/6.272 µV). Assuming that the minimum measurable 

voltage occurs at a signal to noise ratio of unity, this sets the minimum detectable shift 

due to shot noise to be around 32.2 µV. These kind of low noise spectra are expected 

to be useful for mapping dopant carrier concentrations in semiconductor devices, 

where shifts in SE spectra of several mV need to be monitored [3.22].  

 

Simulations were carried out to help understand the specimen biasing effect. The 

specimen and the inner cap were biased as the same potential VS = Vcap, while the 

outer cap was grounded. The width and the thickness of the output aperture were set 

to 200 µm and 100 µm respectively. A Chung-Everhart SE distribution was assumed 

for the simulations, as shown in Fig. 3.16, in which the energies taken for simulation 

are represented by the dots. For each energy, the total number of electrons 

corresponds to the “area under the graph” with the width is taken as the difference 

between neighboring midpoints on either side, and this width is then multiplied by the 

average intensity value. This provides a normalized current value that is assigned to 
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each ray plot by the Lorentz software [3.18]. More take-off energy points are used in 

the low energy range of the spectrum, and take-off energies above 23eV do not 

contribute to the collected signal. In that way, 41 discrete energy intervals are graded 

from the minimum value of 0.02eV in the low energy region (around the peak) to 

about 2eV in the high energy region (near the tail of the spectrum). 

 

Fig. 3. 16. Chung-Everhart distribution of the SE emission used in the simulation.  

 

Fig. 3.17 shows examples of simulated trajectory paths from the specimen to the 

positively biased scintillator for 42 emission energies ranging from 0.02eV to 23eV in  

graded steps, as shown in Fig. 3.16, and 30 emission angles from 30º to 60º in 

uniform steps. Scattered electrons over a wide range of energies and angles can enter 

the spectrometer, but among them only electrons within a small energy window can 

go through the output aperture to be detected. A few trajectories on the left side 

illustrate that very few low energy electrons can even be reflected from the slit of the 

first cap to travel through the slit on the other side to enter the spectrometer.  
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Fig. 3. 17. Simulated electron trajectory paths of a wide range of energies and angles 
through the spectrometer. 

 

 
 

Fig. 3. 18. Electron trajectories traced from specimen through the cap arrangement to 
enter the spectrometer of different energies below 1eV. 60 trajectories of each energy 
with the polar angular spread from 1º to 60º  in step of 1º are plot. 

 
 

Fig. 3.18 shows simulated emitted electrons for various energies  and a take-off 

angular range of 1º to 60º in steps of 1º. The specimen bias is -14V. Fig. 3.18 indicates 

that the polar angular range of electrons that enter the spectrometer is highly energy 

dependent at low energies. In general, scattered electrons with take-off energies below 
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1.0 eV are pulled into the toroidal deflector by the electric field set up by the 

specimen bias. 

 

Fig. 3.19 shows the simulated upper and lower limits of the polar angular range 

accepted into the toroidal spectrometer for different take-off energies at a 

specimen/inner cap bias of -14 V. It shows that the accepted take-off polar angular 

range into the spectrometer is sharply energy dependent at low energies. In general, 

scattered electrons with take-off energies below 1.0 eV are pulled into the toroidal 

spectrometer by the electric field set up by the specimen bias. Therefore, more low 

energy electrons enter the spectrometer, up to a 50º range for 0.1 eV SEs, compared to 

the 16o acceptance polar angle range for zero specimen/inner cap voltage. When the 

specimen is biased, the kinetic energies of low energy electrons increase by several 

orders of magnitude, greatly increasing the number of secondary electrons that pass 

through the spectrometer exit slit, creating a sharp peak in the output signal that has a 

much higher amplitude than the case for no biasing.  

 

 
Fig. 3. 19. Collection efficiency of different SE energies through the two hemispherical 
caps when the inner cap is biased at -14 V 
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Fig. 3. 20. Comparison of experimental and simulated SE output signals for the 
specimen/inner cap voltages of -10 and -14 volts. 

 

The simulated SE collection current was compared to the experimentally obtained 

spectrum as illustrated in Fig. 3.20, for two specimen/inner cap voltages, -10V and     

-14 V. It shows that the relative position of the simulated and experimentally obtained 

curves match closely, with the rising edge almost identical. However, the simulation 

curve width is larger than the experimental one. This may be due to manufacturing 

tolerance and differences in the energy distribution of the experimental signal from 

that assumed in the simulation model (Chung-Everhart distribution). In addition, the 

BSEs from specimen, which would strike the hemispherical cap, may reflect back to 

the specimen to generate more SEs. It may also be due to poor electrical connection 

between the specimen and the inner cap as well as specimen charging, causing the 

actual potential of the specimen to differ from that of the inner cap.  Two other bias 

conditions were simulated to further understand these effects: firstly, where the 
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specimen bias is more negative than the inner cap bias, and secondly, where the 

specimen bias is less negative with respect to the inner cap bias. The results show that 

when the specimen voltage is more negative than the inner cap the simulated curve 

fits better to the experimental one than the other two cases where the specimen bias 

potential is either the same or less negative than the inner cap voltage. The best fit to 

the experimental spectra is obtained when the specimen voltage is set to be one volt 

more negative than the inner cap voltage. One possible explanation for this is that the 

specimen is locally charged up to create a more negative potential compared to the 

inner cap. 

 

3.3.3 BSE spectrum acquisition 

The spectrometer was tested inside a JEOL 5600 Tungsten gun SEM using a 5 keV 

primary electron beam. The BSE spectra for different elements were recorded. Fig. 

3.21 shows experimentally obtained BSE spectra for specimens made from Gold 

(Au), Chromium (Cr) and Aluminum (Al) and Carbon (C). The acquisition time for 

each spectrum is approximately 2 minutes. This acquisition time is limited by the 

response time of the power supplies as well as the detector system. In principle, faster 

acquisition times are possible for better power supplies and detectors. Note that, each 

spectrum plot here is a single recorded data set that contains the shot-noise of the 

setup. It is clear that the shot-noise of the setup is relatively small. These experimental 

results illustrate how the BSE spectrum changes with specimen atomic number, which 

as expected, generates higher BSE yields and narrower widths as the atomic number 

rises. 

 

The BSE spectrum obtained from the spectrometer is also compared to Monte-Carlo 



 

95 
 

(MC) simulations [3.23]. Fig. 3.22 presents how the experimental BSE spectrum of 

Gold is close to its MC-simulation one. It is clear that the two spectra match closely 

with one another.  

 

Fig. 3. 21. BSE spectra of different materials 

 

 

Fig. 3. 22. Experimental and MC-simulated BSE spectra of Gold. 
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3.3.4 Material quantification from the BSE spectrum 

It is well known that backscattered electrons can be used for composition contrast due 

to the variations of the emitted signal on the effective Z-number. This information is 

usually used in imaging mode, qualitatively illustrating sample areas of different 

composition by brightness variations. Previous work on using backscattered electrons 

to estimate atomic number have for the most part, been based upon calculating the 

backscattered yield coefficient η [3.24-3.25]. Although some degree of energy 

filtering has also been attempted [3.26-3.27], it was not based upon acquiring the 

shape of the energy spectrum, as proposed here, but was still reliant on calculating the 

backscattered yield coefficient. 

 

Fig. 3. 23. Dependence of the BSE spectrum full width at half maximum (FWHM) on 
atomic number. Curve fitting was used for both experiment and simulation. The black 
square dots indicate actual measured values 
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presented, which is based upon monitoring its full width at half maximum (FWHM) 

height. A graph illustrating how the FWHM changes with atomic number from 

experimental data together with the MC-simulation is shown in Fig. 3.23. The 

experimental curve is more sensitive to material contrast variations than the MC-

simulation curve. It also shows that the FWHM is more sensitive for light elements 

than for heavy elements. 

 

To estimate how effective the method is in differentiating between materials that have 

similar atomic numbers, an approximate calculation for the signal-to-noise ratio 

(SNR) is performed by comparing changes in the FWHM parameter for close atomic 

numbers with the changes in the FWHM parameter caused by noise. Measurements to 

distinguish Silver, Ag ( atomic no. 47) from Palladium, Pd (atomic no.46) were  made. 

The spectra of Ag and Pd were acquired through the spectrometer and were 

normalized as shown in Fig. 3.24. It shows that the Palladium spectrum is wider than 

that of Silver. Each spectrum is then fit with a high order polynomial around its half 

maximum height. The signal is then calculated from the difference of their respective 

FWHMs. The noise is taken as an average variations of FWHM around the one for the 

fit function. The results are as follows: for Silver and Palladium, the signal from their 

respective FWHMs is SAg-Pd = 122.8 eV, while the noise of Silver is NAg = 5.249 eV 

and the noise of Palladium is NPd = 4.928. So that the SNR to distinguish Silver from 

Palladium is SNRAg-Pd = 122.8/5.249 ≈ 23.4 while the SNR to distinguish Palladium 

from Silver is SNRPd-Ag = 122.8/4.928 ≈ 24.9. These high SNR results are sufficient to 

indicate that it is feasible to use the toroidal spectrometer to perform quantitative 

material analysis in the SEM by capturing of the BSE spectrum and monitoring a 

parameter related to the shape of the spectrum, such as its full width at half maximum 

(FWHM). This method has the advantage of being much simpler than the 
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backscattered coefficient method, since it is dependent on less parameters (it for 

instance, avoids the need to measure the beam current), and is also much less affected 

by topographic contrast. 

 

 

Fig. 3. 24. BSE spectra of two close atomic number elements, Silver and Palladium. D 
represents the FWHM of the spectrum. 

 

3.3.5 Energy resolution measurement. 

Energy resolution is an important parameter characterizing the performance of any 

electron energy spectrometer. For the recent attachment design, the energy resolution 

was simulated to be 0.32% (haft-width) corresponding to an angular spread of ±8º. 

Fig. 3.25 shows simulated trajectories of three energies with an energy difference of 

2% from each other, visually depicting the predicted resolution of the spectrometer for 

an angular spread range of ±8º. An annular aperture of 100 μm is also presented in 

this simulation to illustrate how it operates. In principle, smaller apertures (same size 

of the beam width or less) can be used to achieve the best attainable spectrometer 
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resolution. In the recent experimental setup, however, it is very difficult to make an 

aperture smaller than 100 μm. 

 

Fig. 3. 25. Simulated electron trajectories of three different energies around an aperture 
of 100 μm for an angular spread range of ±8º. EP is the pass energy of the 
spectrometer. The aperture thickness is also 100 μm. 

 

Ideally, a sharp electron spectral peak with small width such as a BSE elastic peak 

should be used to estimate the energy resolution of the spectrometer. However, it is 

not possible to generate such a narrow spectral peak inside the poor vacuum of 

conventional SEM chambers. Here, an alternative method to estimate the energy 

resolution of the recent spectrometer design is employed, one that uses the BSE 

spectrum. The method is based up on the fact that the measured BSE energy spectrum 

from the spectrometer comes from the convolution of two spectra: the 

spectrometer/slit energy response (window), and the intrinsic BSE energy distribution. 

The intrinsic BSE spectrum (unlimited by the spectrometer/slit) falls to zero 

discontinuously, characterized by a corner at the top part of its spectrum. The 

experimentally measured BSE spectrum falls in a smooth continuous way, and can be 

modeled as the convolution of a BSE discontinuous intrinsic signal with a Gaussian 

shaped spectrometer signal, as depicted in Fig. 3.26. A Gaussian shaped spectrometer 
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signal comes from both finite exit aperture thickness and spherical aberration, 

different from an ideal step-function response, as illustrated by the dotted-line 

window in Fig. 3.26.  The full-width of the assumed Gaussian analyzer energy 

distribution (at half-height) is taken to be equal to the ideal energy window limited by 

the aperture, as illustrated in Fig 3.26. The intrinsic BSE spectrum can easily be 

constructed from the measured BSE spectrum by using its falling slope and projecting 

it linearly on to the energy axis. Two aperture sizes were used, 200 μm and 100 μm 

wide, both 100 μm thick. For each aperture, the BSE spectrum was measured, and the 

full-width (at half height) of an assumed spectrometer/slit Gaussian energy 

distribution was varied and combined with the intrinsic BSE energy distribution by 

convolution, to produce a “simulated” output signal, as shown in Fig. 3.27.  The 

Gaussian full-widths that produced the best fit to each experimentally measured signal 

were monitored (∆E1 and ∆E2), and taken to represent the analyzer/slit energy 

resolution.  The solid lines in Fig. 3.27 represent conditions of best fit for each 

aperture. In this way, the analyzer slit energy resolution was estimated to be  ∆E1= 1% 

(for the 200 µm wide aperture), and ∆E2 = 0.6% (for the 100μm wide aperture).  

 

Fig. 3. 26. Convolution of an energy window with an intrinsic BSE spectrum results in 
the measured BSE spectrum. The dashed line indicates the ideal energy window that 
is approximated by a Gaussian one. 
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Fig. 3. 27. Experimental and simulated convolution BSE spectra of different energy 
windows. 

 

The total energy resolution of the spectrometer slit has two components (neglecting 

the chromatic aberration of the primary beam) approximately described by 

222
SA EEE ∆+∆=∆          (3.5) 

Where ΔEA is the resolution due to the finite aperture size and ΔES is the resolution 

due to the spectrometer spherical aberration. Since dispersion in the detection plane is 

approximately linear, the energy resolution limited by finite aperture size will 

naturally have a linear dependence on the aperture width, producing ∆EA1 for the first 

aperture (200 µm) and ∆EA2 for the second aperture (100 µm), where it can be 

assumed that ∆EA2 =  0.5∆EA1, resulting in the two following equations 

22
1

2
1 SA EEE ∆+∆=∆        (3.6) 

2
2
12

2 4 S
A EEE ∆+

∆
=∆

    (3.7)
 

Solving the two above equations (3.6) and (3.7) gives an estimated spectrometer 
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resolution (limited by spherical aberration) of ΔES = 0.38%. This value is slightly 

bigger than the simulated resolution of 0.32% for an angular spread of ±8º.  

 

One reason for the slightly bigger experimental value may come from misplacement 

of the exit slit, ideally, an electronic means of varying the position of the exit focal 

point needs to be found in order to optimize the analyzer’s performance.  However, 

this initial result provides experimental confirmation of the superior (second-order 

focusing) optical properties predicted for the spectrometer, as compared to previous 

toroidal spectrometers.  

 

3.4 Proposals to improve the energy resolution of the second-order 

focusing spectrometer. 

Lenses are often used to project incident scattered electrons into the entrance of 

energy analyzers. The hemispherical analyzer normally utilizes a column of 

rotationally symmetric lenses [3.20], whereas toroidal analyzers use cylindrical slit 

lenses and conical slit lenses [3.12]. These kinds of lenses often have a strong 

focusing action, and provide the possibility of retarding electrons down to a smaller 

pass energy. In the following section, a pre-collimating lens is proposed as an entrance 

lens to improve performance of the toroidal spectrometer. This pre-collimating lens is 

only weakly focusing, and uses an acceleration electric field to minimize the effect of 

spherical aberration. It collimates wide solid emission angles of the electron beam to 

smaller input angles entering the analyzer to improve the energy resolution for a given 

entrance angular spread by an order of magnitude ( up to 0.02% for a ± 6º entrance 

angular spread). 
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3.4.1 Incorporation of an accelerating pre-collimating lens  

Fig. 3.28 shows both simulated ray paths of electrons through the toroidal 

spectrometer with the presence of a pre-collimating lens for an angular spread of ±6º. 

These simulations were carried out using Lorentz-2D [3.18]. The spectrometer design 

is characterized by the same five parameters as described in section 3.1, in which φ1 = 

-π/2.25, φ2 = 3π/4, R2 = 1.57R1 and RT = 2R2, and the deflection plate potentials are 

normalized to V1 = +1V and V2 = -1V. No value of RT is deliberately given here, since 

the spectrometer’s optics does not depend on its absolute size, it can in practice, be 

scaled up as required for different applications, therefore, only relative dimensions are 

specified.  

 

Fig. 3. 28. Simulated ray paths of electrons through the spectrometer at the pass energy 
for a wide variety of entrance angles. The central ray enters in at 45º and 21 
trajectories are plot over uniform steps for an input angular spread varying from -6o to 
+6o. 
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The pre-collimating lens used in this design is a three-element annular slit lens, in 

which the outer electrodes are grounded and the two middle electrodes are biased 

positively at the potentials VL1 and VL2 as shown in Fig. 3.29. The lens radius is 

denoted by RL. An accelerating lens of this type has relatively low spherical 

aberration. Figure 3.29 also shows the simulated electrostatic equipotential 

distribution of the pre-collimating lens and direct ray tracing of electrons emitted from 

the specimen as they travel through the lens, 14 equipotential lines of uniform steps 

and 21 electrons with emission angles between 39o and 51o are used (central ray at 

45o). The lens bias voltages were chosen to be VL1=VL2 = EP, where EP is the pass 

energy through the toroidal spectrometer. The collimating action of the lens on the 

scattered electron beam is evident from the simulated ray paths. This collimating 

action reduces the angular spread of scattered electrons before they enter the 

spectrometer. Hence, scattered electrons travel closer to the spectrometer’s central 

region as depicted by in Fig. 3.28, thereby improving the energy resolution (incurring 

less spherical aberration). These results can be compared to the original toroidal 

spectrometer design without the pre-collimating lens in section 3.1, where simulated 

rays at an emission angular spread of ± 6º travel much closer to the deflection plates 

inside the spectrometer as depicted in Fig. 3.4, producing larger spherical aberrations 

at the detector plane. 
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Fig. 3. 29. Equipotential lines from a numerically solved field distribution for the pre-
focusing lens. 14 equipotential intervals are taken between 0 V to  2.293 V (VL1=VL2 = 
2.293V=EP ) and 21 electrons of 2.293 eV leave the specimen with an emission 
angular spread of ±6º. 

 

The energy resolution of the setup depends on the relative sizes of the pre-collimating 

lens and the toroidal spectrometer. This is because the focusing effect of the pre-

collimating lens has a certain spherical aberration, resulting in a virtual source size for 

electrons entering the spectrometer (instead of a point source at the origin). This 

virtual source is projected on to the spectrometer detector (image) plane. This means 

that the final spot-size of the scattered electron beam is a combination of the size of 

both the spherical aberrations of the spectrometer and the pre-collimating lens. Since 

the aberration width produced by the pre-collimating lens is proportional to its size, a 

well known property of the electrostatic lens, the final energy resolution is predicted 

to improve by the decreasing of the size of the pre-collimating lens.  
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Fig. 3.30 shows the dependence of the simulated energy resolution on the relative size 

of the pre-collimating lens and the spectrometer. The energy resolution is derived 

from the energy width corresponding to half the final trace-width, at the point where 

the trace-width is a minimum (not on the Gaussian plane). The lens radius RL, is 

normalized to RT, the spectrometer radius. This graph shows that when the pre-

collimating lens radius is smaller than 0.09 times the spectrometer radius, the energy 

resolution can be improved. Beyond this size, the spherical aberration of the lens is 

too large, degrading the final trace-width, causing it to be larger than the one obtained 

by the spectrometer alone. This result predicts that the energy resolution of the 

spectrometer can be enhanced by using a relatively small pre-collimating lens at the 

entrance of the spectrometer. The predicted energy resolution obviously improves as 

the relative size of the pre-collimating lens decreases. In the next section, a small 

entrance lens is simulated, showing that the energy resolution can be improved by an 

order of magnitude. 

 

Fig. 3. 30. The dependence of energy resolution on relative size of the pre-collimating 
lens and the toroidal spectrometer. 
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3.4.2 A small pre-collimation lens high energy resolution spectrometer 

As discussed, the pre-collimation lens dimensions can be scaled down (relative to the 

toroidal spectrometer size) in order to reduce its spherical aberration contributions to 

the final spot size. Consider the case where RT/RL = 180. In order to achieve the best 

energy resolution results, it was found that the lens central voltages VL1 and VL2 need 

to be slightly different from one another. If a parameter γ  defines the ratio between 

the two excitation voltages VL1 and VL2, then the best energy resolution is achieved 

when γ = 0.94. Fig. 3.31 shows the dependence of both simulated energy resolutions 

at the Gaussian focal plane and at the least confusion focal plane, on the excitation 

voltages of the pre-collimating lens. The energy resolution reaches a minimum value 

at a certain excitation voltage, which occurs when the voltage VL1 is around 1.22EP. 

The energy resolution is limited by the toroidal spectrometer spherical aberration 

when the excitation voltage of the lens is smaller than this value, and limited by the 

pre-collimating lens spherical aberration when it is higher than this value. 

 

 

Fig. 3. 31. Dependence of the base and the best energy resolutions on the excitations of 
the pre-focusing lens, parameter γ is chosen to be 0.94. 
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By choosing the parameter γ = 0.94 and excitation voltage VL1 = 1.22EP, the best 

simulated relative energy resolution was found to be 0.021% for an input angular 

spread of  ±6º, corresponding to a transmittance of 20% (assuming a polar angle 

cosine distribution), which is an order of magnitude better than that of the second-

order focusing toroidal spectrometer without the pre-collimating lens. For input 

angles of ±10º, corresponding to a transmittance of 34%, the best relative energy 

resolution is simulated to be 0.088%. The simulated energy resolution improvement 

of the spectrometer by use of the pre-focusing lens can be visually demonstrated by 

examining focal points at the detection plane, as shown in Fig. 3.32, in which three 

electron beams of different energies with an input angular spread of ±6º were plot. 

The difference in energy between these electron beams is 0.05% of the pass energy. It 

is clear that these three electron beams are well separated, visually confirming that the 

spectrometer design has a relative energy resolution well below 0.05%.   

 

The predicted high energy resolution for the small pre-collimation lens/toroidal 

spectrometer is comparable to the energy resolution of the spheroidal spectrometer 

recently proposed by Cubric for the same transmittance [3.27]. For the second-order 

focusing cylindrical mirror analyzer (CMA) commonly used in Auger spectroscopy, 

the best simulated relative energy resolution is around 0.155%  for ±6º entrance 

angles [3.14], therefore, the recent toroidal analyzer with the pre-collimating lens 

design is expected to be an order of magnitude better than the CMA for the same 

entrance angular spread. Hemispherical deflection analyzers with retardation of the 

pass energy can provide an energy resolution of 0.05% but have much lower 

transmittance (<0.5%). [3.20] 
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Fig. 3. 32. Simulated trajectories around the output focal plane for 3 emission energies 
EP – 0.05%EP, EP and EP + 0.05%EP, where Ep is the pass energy, and the input angles 
range from -6º to 6º around the central ray in uniform steps. 

 

Simulation results predict that the addition of the pre-collimating lens will also 

improve the toroidal spectrometer parallel energy detection mode of operation. A 

comparison of ray paths around the detection plane with different energies and angles 

for the toroidal spectrometer with and without the pre-collimating lens is shown in 

Fig. 3.33. There are eleven different energies uniformly spread over an energy interval 

ranging from 95% to 105 % of the pass energy (indicated by Ep in the diagram). For 

each energy, there are eleven trajectories whose input angles are uniformly spread 

between -6° to +6° around the central entrance angle (45º).  Fig. 3.33a shows  

trajectory ray paths for the toroidal spectrometer only, while Fig. 3.33b shows 

trajectory ray paths produced with the addition of the small pre-collimating lens. The 

improvement of energy resolution is clearly maintained across the entire energy pass 

band range.  
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Fig. 3. 33. Simulated trajectories around the output focal plane for 11 emission energies 
ranging from 95% to 105% of the pass energy and 11 input angles from -6º to 6º 
around the central ray in uniform steps: (a) without the pre-collimating lens; (b) with 
the pre-collimating lens 

(a) 

(b) 
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Fig. 3. 34. Simulated energy band  (a) Simulated trajectories shown in Fig. 32b along a 
detection plane at 29.2o with respect to horizontal direction; (b) Simulated energy 
resolution along the detection plane,  across the energy band spanning 95% to 105% 
of the pass energy 

 

Fig. 3.34a shows the case where the detector plane is orientated to be 29.2º with 

respect to the horizontal axis, the optimum orientation angle of the detection plane. 

The energy resolution (half-width) along this detection plane was calculated, and 

normalized to its value at the centre of the band and plot as a function of energy, the 

result is shown in Fig. 3.34b. The energy resolution rises by less than a factor of three 
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for an energy pass band defined from 95% to 105% of the central pass energy. This 

indicates that the degradation of the energy resolution is small over a relatively wide 

energy range (~10%), making it possible to operate the spectrometer in the parallel 

energy mode of detection with high energy resolution.  

 

3.5 Conclusions 

A fully 2π radian collection second-order focusing toroidal spectrometer design has 

been investigated.  A range of different geometrical designs were investigated, the 

best of which have the following simulated predictions: second-order focusing with 

an expected energy resolution of 0.146% for acceptance angles between ±6º, 

comparable to the theoretically best resolution-transmittance of the CMA; parallel 

energy acquisition where the increase in energy resolution with respect to the band 

centre rises by less than a factor of 2 for energies that lie within ±4% of the pass 

energy; a maximum input angular spread of ±10º and a maximum parallel energy 

band-width of ±15% (30% total) of the pass energy; retarding/accelerating field mode 

of operation without the need to incorporate auxiliary lenses; and depending on the 

precise application, no working distance limitations. 

 

For parallel energy detection, the detection plane lies on the surface of a shallow cone 

whose slanting side makes an angle of around 26.4º with respect to the horizontal. A 

multi-channel array of flat strip detectors in the azimuthal direction is not expected to 

significantly degrade the energy resolution, typically less than 5% for 40 such 

detectors.  For low energy electrons, typically less than 50 eV, electrons can be 

mirrored on to a flat plate detector located below the specimen after they pass through 

the spectrometer. The energy resolution is only marginally degraded by doing this, 
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and predicted to be 0.196% at the centre energy pass band (for an input angular spread 

of ±6º). 

 

A prototype of the toroidal electron spectrometer based upon simulation design has 

been made, functioning as a SEM attachment. It shows that the spectrometer has low 

noise, in the mV range, useful for voltage contrast applications. A negative biasing 

specimen technique was also investigated and shown to enhance the output signal 

intensity by one to two orders of magnitude,  creating a more convenient way of  

making open-loop specimen voltage contrast measurements. The technique also 

improves the SNR, making it possible to detect µV voltage shifts in the SE spectra. 

BSE spectra was also acquired, demonstrating that is is possible to distinguish close 

atomic number materials by a SNR of over 20. This result suggests that a SEM 

spectrometer attachment of this kind may be useful for quantitatively mapping 

elemental contrast on the nano-scale.  

 

A technique to estimate the energy resolution of the spectrometer has also been 

proposed. This technique utilizes the measured BSE falling edge as a convolution of 

the intrinsic BSE spectrum and a Gaussian spectrometer/slit response. The energy 

resolution measured experimentally by this method is 0.38% for an angular spread of 

±8o, which is comparable to the simulation prediction of 0.32%. This agreement 

provides initial confirmation of the spectrometer’s superior second-order focusing 

properties, as compared with previous first order focusing toroidal spectrometer.  

 

A pre-collimating lens has also been proposed for the second-order focusing 

spectrometer. Simulation results predict that the spectrometer energy resolution-
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transmittance performance can be greatly improved via the use of the lens, predicting 

a relative energy resolution of 0.021% and 0.088% for emission angular spreads of ± 

6º and ± 10º respectively, corresponding to a transmittance of around 20% and 34%, 

an order of magnitude better than that of the second-order focusing CMA and a factor 

of 50 times better than previous first-order focusing toroidal spectrometers. 
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Chapter 4: A Radial Mirror Analyzer for the SEM 
 

4.1 Introduction 

In the previous chapter, a toroidal energy spectrometer with second-order focusing 

was developed as an add-on attachment for conventional SEMs. Its energy resolution, 

however, is limited to the same order of the CMA, due to low energy dispersion at its 

focal plane. The aim of the following work is to design a high energy resolution 

spectrometer for use inside conventional SEMs, typically to have an energy resolution 

that is around one order of magnitude better than that of the CMA (for the same 

entrance angular spread).  

 

In Auger Electron Spectrometry (AES) and X-ray photoelectron spectrometry (XPS) 

the relatively high energy resolution capability of hemispherical deflector analyzers 

(HDAs), around 0.05%, comes at the price of low transmission, typically less 0.15% 

[4.1]. On the other hand, the better transmission of cylindrical mirror analyzers 

(CMAs), of say 15%, comes at the price of a poorer minimum energy resolution, 

which typically lies between 0.2 – 0.5% [4.2]. There is an obvious need for energy 

spectrometers that can achieve both  high transmittance (> 15%) and high energy 

resolution (< 0.05%) at the same time. 

 

There have been a few high performance spectrometer designs (high energy resolution 

and high transmission) for ASE and XPS.  Siegbahn et al. described a class of electron 

energy analyzers having an axially symmetric field structure, similar to that of the 

CMA, but differing from the latter in having a curved inner concentric plate, and a 

conical outer plate [4.3]. This analyzer provides axis-to-axis second-order focusing, 

similar to the CMA. Its third–order spherical aberration, however, is several times 
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smaller than that of the CMA for the same base length. This allows a noticeable 

increase in the angular acceptance of the analyzer for a given energy resolution, or 

alternatively, increased energy resolution for fixed entrance angular spread. The 

maximum energy resolution of this analyzer was reported to be 0.05% for an 

acceptance angular spread of about ±6º corresponding to a transmission around 15%. 

The energy resolution of a double pass structure using this analyzer design is even 

better for the same transmission.  

 

Belov and Yavor reported a second-order focusing toroidal mirror analyzer (TMA) 

that is also an extension of the CMA design [4.4]. The TMA is rotational symmetric 

and has an inner concentric plate like the CMA, but its outer concentric plate is 

curved, therefore toroidal in shape. For the case where its focal plane lies on the 

surface of the inner electrode (require a ring detector), the final spot size is limited by 

fourth-order aberration (third-order focusing). In many modes of operation, this 

analyzer has energy resolutions much better than the CMA, typically less than 0.05% 

for an angular spread of ±8º. 

 

Another high resolution high transmission energy analyzer design was also reported 

by Belov and Yavor [4.5]. They proposed an axis-to-ring rotational symmetric mirror 

analyzer design followed by a hemispherical energy analyzer, having 2π azimuthal 

angular collection. The energy resolution of this design was reported to be 0.07% for 

an angular spread of ±11º. 

 

A recent high energy resolution high transmission electron spectrometer, named a 

spheroid energy analyzer (SEA), was described by Cubric [4.6-4.7]. A schematic 
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diagram of a SEA is shown in Fig. 4.1. The inner and outer cylindrically symmetric 

electrodes of the SEA are created by two spheroids. The inner electrode is grounded 

while the outer electrode’s potential is ramped to acquire the electron energy 

spectrum. The energy resolution of the SEA is measured to be 0.05% for an entrance 

angular spread of ±8º in the polar direction. This design has been recently 

commercialized by Shimadzu Corporation.   

 

 

Fig. 4. 1. Schematic diagram of a SEA [4.7] 

 

All of the previous high performance energy analyzer designs just described have the 

common feature of being variations of the CMA or HDA design. Most of them are 

based upon using curved/conical concentric inner/outer plates. Moreover, all of them 

were designed for ASE or XPS, and not for the SEM. They cannot be used as add-on 

attachments inside a SEM chamber, and require a dedicated electron beam column to 

be integrated between their source and detector plane.  
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Apart from high energy resolution, another desirable feature for energy analyzers is to 

have parallel energy acquisition, where the output signal at different energies can be 

obtained simultaneously, greatly speeding up data-acquisition times. Although both 

the CMA and HDA function sequentially, the HDA can operate in a partial parallel 

mode of operation for high energy resolution (>0.05%), where the output energy 

bandwidth is  typically around 3% to 5% of the central-band energy [4.1]. Widening 

this output bandwidth further is an important area of spectrometer development. The 

toroidal spectrometer design reported in Chapter 3 has a parallel mode of operation, 

however, its focal plane lies on a conical surface detector. Although an array of 

straight plane detectors in the azimuthal direction can be used to overcome this 

inconvenience, a flat detector plane is preferable and much simpler to achieve in 

practice. 

  

The new energy analyzer proposed in this chapter is rotational symmetric and has a 

high predicted performance (energy resolution of around 0.05% for an angular spread 

of ±8º), and has the capability of parallel energy acquisition with a bandwidth of 15% 

on a flat-plane detector.  It is also suitable for use as an attachment inside the 

specimen chambers of  scanning electron/ion microscopes. The analyzer is designed 

to fit around a conical shaped objective lens pole-piece/electrode, allowing for a 

relatively short minimum working distance, 5 mm or less. The design approach taken 

in this chapter is essentially a simulation one, where all field distributions and electron 

trajectory ray paths were simulated using Lorentz-2EM program [4.8].  
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4.2 The radial mirror analyzer (RMA) design for SEMs 

4.2.1 Simulation design 

The present energy analyzer design is based upon modifying the well-known fountain 

spectrometer [4.9]. The main problem preventing the use of the fountain spectrometer 

inside a scanning electron/ion microscope is that there is no central hole through 

which the primary electron/ion beam can pass in order to strike the specimen. The 

introduction of such a central hole will inevitably change its internal field distribution 

and alter the spectrometer’s  energy dispersion and focusing properties. The present 

analyzer design, like the fountain analyzer, has a central rotational axis of symmetry, 

but unlike the fountain analyzer, it makes provision for a central conical shaped field 

free region, whose walls have a tilt angle of 45°, in which the pole-pieces/electrodes 

of an objective lens can fit, and through which the primary beam can pass. The 

analyzer uses a rotationally symmetric electric field distribution to transport electrons 

emitted from a central point source in a radial direction on to a ring shaped 

collection/detection area, as shown in Fig. 4.2.    

 

The name proposed here for the spectrometer, the Radial Mirror Analyzer (RMA), is 

based upon it using an electric field to mirror and analyze the energies of electrons 

travelling in a radial direction from a central point source. The outer spectrometer 

radius, R,  is chosen to be 5 cm. Its minimum working distance (W) can be typically of 

the same size as the objective lens lower pole-piece radius, which can in principle be 

as small as 5mm, allowing for high spatial resolution. The analyzer is conveniently 

located above the specimen, much like the conventional backscattered detector.  The 

outer cover is grounded in order to prevent electric field leakage into the SEM 

specimen chamber. Two grounded electrostatic grids are also used to cover the 
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entrance and the exit of the spectrometer in order to avoid distortion of the electric 

field near these regions. In the following simulation model, these grids were 

approximated to be ideal equipotential planes. Inside the analyzer, under the conical 

hole, segmented plates are biased at potentials V1, V2, and V3, in order to control how 

the electric potential falls, suitably adjusted so that the spectrometer has an optimal 

mirroring/focusing action on incoming electrons. The upper deflection electrode is 

biased at a voltage Vd.     

 

 

Fig. 4. 2. Schematic diagram of a simulated redesign central filed-free fountain 
spectrometer for use inside the SEM. The segmented electrodes are biased by V1, V2, 
V3 and the curvature deflecting electrode is biased at Vd.  Parameter W defines the 
working distance. 

 

Many designs were investigated by varying the upper deflection electrode shape, 

relative positions of segmented electrodes,  electrode biasing potentials, and the 

entrance angle, θ, in order to minimize the simulated spot size at the detector plane. 

Conditions for the best simulated energy resolution occur for a central ray entrance 

angle of θ = 32.6o, V1 = Vd, V2 = 0.711Vd,  V3 =0.302Vd,  and a pass energy EP of 

1.75Vd.   
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Fig. 4. 3. Equipotential lines from a numerically solved field distribution for the new 
spectrometer design. 14 equipotential intervals are taken between 0 V to - 0.57V(V1 = 
Vd, V2 = 0.711Vd, and V3 =0.302Vd, and Vd = -0.57V). 

 

Figure 4.3 shows 14 equipotential lines plot at uniform voltage steps on the simulated 

potential distribution for these design parameters.  The upper deflection electrode 

voltage is chosen to be Vd = -0.571V (pass energy of 1eV). The equipotential lines 

inside the spectrometer, especially close to the three segmented electrodes, are clearly 

not uniform, unlike the equipotential lines inside the conventional fountain 

spectrometer. Simulation results showed that this non-uniform field distribution near 

the input of the spectrometer is the most critical parameter for it to achieve high 

energy resolution, since it reduces the electron beam trace-width at the output of the 

analyzer. Furthermore, the non-uniform field created by the curvature of the upper 

deflection electrode close to the exit of the spectrometer is an important design 

parameter for the analyzer’s parallel mode detection characteristics. 

 

4.2.2 Simulated energy resolution-transmittance characteristics  

Figure 4.4 shows simulated direct ray paths of scattered electrons with a pass energy 

EP = 1eV, leaving a point on the rotational axis for an input angular spread of  ± 6º 

around an entrance angle θ of 32.6o , 21 trajectories are plot in uniform angular steps. 
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This entrance angle θ is slightly different to that of the conventional second-order of 

focusing fountain spectrometer, where θ = 30o.  Spherical aberration characteristics of 

the spectrometer are obtained by monitoring the beam trace-width at its Gaussian 

focal plane as a function of input angular spread and is plot in Fig. 4.5a. This graph 

indicates that the RMA design is characterized by second-order focusing optics, since 

the trace-width at the output Gaussian focal plane exhibits a third-order dependence 

with respect to the input angular spread. The third-order variation is however, a little 

asymmetric, most likely due to the presence of non-uniform field distribution regions, 

such as the one close to the entrance segmented electrodes and the one below the 

upper deflection plate at the spectrometer exit.   Figure 4.5b depicts the energy 

dispersion at the output Gaussian focal plane caused by energy spread in the beam, 

and as expected, it has a linear variation. 

 

 

Fig. 4. 4. Simulated ray paths of electrons through the spectrometer at the pass energy 
for a wide variety of entrance angles. The central ray enters in at 32.6o and 21 
trajectories are plot over uniform steps for an input angular spread varying from -6o to 
6o. 
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(a) 

 

(b) 

Fig. 4. 5. Simulated normalized trace width at the output Gaussian focal plane (all the 
values are normalized to the working distance W): (a) Due to spherical aberration; (b) 
Due to relative energy spread 

 

The energy resolution of the spectrometer is related to the trace-width created by 

spherical aberration, compared to the dispersion along the detection plane caused by 

energy spread. The energy resolution here is calculated from half of the full trace-
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width. For input angular spreads of  ± 6o, the trace width  at the Gaussian focal plane 

and the energy dispersion for an energy difference of 1% are predicted to be 26.9 μm 

and 122.2 μm respectively. Hence, the half-width relative energy resolution at the 

Gaussian focal plane is predicted to be 0.11% The transmittance for this angular 

spread is around 20%, assuming 2π collection in the azimuthal direction and a polar 

angle cosine distribution of emission. In practice, depending on the transparency of 

the input/output grids, this transmittance may reduce to around 15%. A well known 

property of second-order focusing analyzers is that the best energy resolution does not 

lie at the output Gaussian focal plane, but occurs a small distance before it.  For the 

present RMA design, the best simulated relative energy resolution is simulated to be 

0.025% for an input angular spread of  ±6o,  a factor of 4 times better than the 

Gaussian plane value.  

 

 

Fig. 4. 6. Simulated trajectories around the output focal plane for 3 emission energies EP 
– 0.1%EP, EP and EP + 0.1%EP, where Ep is the pass energy, and the input angles 
range from -6o to 6o around the central ray in uniform steps. 

 

This high energy resolution performance is graphically demonstrated in Fig. 4.6, in 

EP EP - 0.1%EP 

EP + 0.1%EP 
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which electrons for an input angular spread of ±6o at the detection plane for three 

different energies are plot, the energy spread is ±0.1% of the pass energy.  Fig. 4.6 

shows that the electrons at the detection plane for these energies are well separated 

and confirms that the best simulated relative energy resolution is around 0.025%.  

This predicted energy resolution is around an order of magnitude better than that of 

the CMA for the same entrance angular spread [4.2], and is comparable to the HDA 

operating in its retardation mode [4.1]. Its performance is also comparable to the 

recent high performance analyzers proposed by Cubric [4.6].  

 

4.2.3 The parallel energy acquisition mode 

The simulation work carried out here predicts that the RMA design has a parallel 

energy mode of operation, considerably wider than the energy band, about 3%, 

normally achievable by the HDA in its high energy resolution mode (3%) [4.1]. Fig. 

4.7 shows electron trajectory ray paths leaving a point on axis for a range of different 

emission energies, with no angular dispersion. Sixteen electron trajectories are plot in 

uniform steps over an energy range spanning 84% to 114%  of the pass energy (EP 

=1.75Vd) . The output focal plane, calculated from tracing rays emitted at different 

angles for each energy, is superimposed on to these rays paths at the spectrometer 

exit. The spectrometer’s output focal plane is not simply a conical surface as it is in 

the case of the conventional fountain spectrometer, but is a curved surface that can be 

approximately divided into two separate detection planes. The first detection plane is 

a conical surface, similar to the one generated by the conventional fountain 

spectrometer, and is orientated at an angle of 10.2o with respect to the horizontal axis. 

The second detection plane  is a horizontal one, formed by the fact that higher energy 

electrons travel closer to the non-uniform field distribution region below the upper 
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deflection electrode at the spectrometer exit, and therefore experience a greater 

focusing focus than electrons of lower energy. The horizontal part of the detection 

plane is preferable, since it is easier to make a ring detector than one which lies on a 

conical surface.  

 

Fig. 4. 7. Simulated zero angle electron trajectories at 16 emission energies spread 
uniformly from 84% to 114% of the pass energy. The parallel detection plane is 
marked at the exit of the spectrometer. 

 

The orientation of the conical surface output focal plane shown in Fig. 4.8, 10.2° with 

respect to the horizontal direction, is selected in order to maximize the width of the 

output energy band.  Fig. 4.8a shows a set of simulated electron ray paths having 

different emission energies and angles traced from the specimen through the 

spectrometer collected on the first part of the output focal plane. There are 13 

different energies uniformly spread over an energy interval ranging from 84% to 

116% (32%) of the central-band energy, E0. For each energy, there are 13 trajectories 

whose input angles are uniformly spread between -6o to 6o around the central entrance 

angle (32.6o). Fig. 4.8b depicts a magnified diagram of  electron trajectories around 

the conical shaped detection plane shown in Fig. 4.8a.  The simulated energy 
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resolution of different energies along this detection plane is shown in Fig. 4.9, and lies 

well below 0.07% for the whole energy band, a spread of  20% (± 10%) of the central-

band energy. For an energy band of more than 30% (± 15%) of the central-band 

energy , the predicted energy resolution drops to around 0.15% at the edge of the 

detector.  

 

 
Fig. 4. 8. Simulated parallel energy acquisition for the detection plane 1: (a) 13 emission 
energies ranging from 84% to 116% of the central energy and 11 input angles from -6o 
to 6o around the central ray in uniform steps tracing from the specimen through the 
spectrometer and to be detected on the detection plane; (b) Magnified trajectories 
around the detection plane. E0 defines the central-band energy. 
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Fig. 4. 9. Simulated energy resolution across the energy band spanning 84% to 114% of 
the central energy along detection plane 1. 

 

Fig. 4.10a shows simulated ray paths having different emission energies and angles 

traced on the second part of the output focal plane, the horizontal section. The energy 

ranges from 92.5% to 107.5% of the central-band energy (15 different energies plot in 

uniform steps), and each energy has thirteen trajectories corresponding to  input 

angles uniformly spread between -6o and 6o around the centre angle. A magnified 

view of this diagram around the horizontal detector plane is depicted in Fig. 4.10b. It 

is clear that the trace-width of the electron beams does not change much within this 

energy band. The quantitative simulated energy resolution corresponding to this is 

shown in Fig. 4.11. The energy resolution is predicted to be well below 0.06% for the 

output energy range of 12% (± 6%) of the central-band energy. This output energy 

range in parallel energy acquisition mode, is around 4 times greater than the typical 

energy band of the HDA (3%) for same high energy resolution (>0.05%) in its 

retardation mode [4.1]. The energy resolution distribution along the detection plane is 
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also much more uniform than in the HDA.  This energy resolution is predicted to drop  

by approximately a factor of two at the edge of the detector when the output energy 

bandwidth is increased to 15% (±7.5%) of the central-band energy. The parallel 

detection capability along a horizontal flat plane detector is one of the strong points of 

the RMA design compared to other high performance energy analyzer designs such as 

the SEA reported by Cubric [4.6]. 

 

Fig. 4. 10. Simulated parallel energy acquisition for the detection plane 2: (a) 16 
emission energies ranging from 92.5% to 107.5% of the central energy and 11 input 
angles from -6o to 6o around the central ray in uniform steps tracing from the 
specimen through the spectrometer and to be detected on the horizontal detection flat-
plane 2; (b) Magnified trajectories around the detection plane. E0 defines the central 
band energy. 

 

Vd 
V1 

V2 

V3 

0V shielding 

Detection  
Plane 2 

PE 

Specimen 

Rotational axis 

Detection  
Plane 1 

E0 ± 7.5%E0 

Detection plane 2 

(a) 

(b) 



 

133 
 

 

Fig. 4. 11. Simulated energy resolution across the energy band spanning 92.5% to 
107.5% of the central energy along the horizontal detection flat-plane 2. 

 

4.3 Conclusions 

A high performance electron energy analyzer, called a RMA, suitable for use as an 

attachment inside the specimen chambers of  conventional SEMs, has been reported. 

The analyzer is designed to fit around a conical shaped objective lens pole-

piece/electrode, allowing for a relatively short minimum working distance, 5 mm or 

less. Simulation results for the analyzer design predict that it can combine high energy 

resolution with high transmission: a relative energy resolution of  0.025% for an 

entrance angular spread of ±6º, corresponding to a transmission of  better than 15%. 

This energy resolution is around an order of magnitude better than the well-known 

Cylindrical Mirror Analyzer (CMA) for the same entrance angular spread.  

 

The analyzer design allows for a parallel mode of operation in which the energy 

bandwidth on a conical-shaped detection plane is predicted to be as high as 30% 

(±15%) of the central-band energy. On a flat ring-shaped detection plane, the energy 
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bandwidth is predicted to be around 15% (±7.5%) of the central-band energy, over 

which the simulated relative energy resolution varies from  0.05% to 0.15% for 

angular spreads of ±6º.   

 

The RMA can be used not only for electron spectroscopy inside the SEM but also for 

other electron spectroscopy applications such as Auger electron or photoelectron 

spectrometry, where high resolution and high transmission are required. 
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Chapter 5: Conclusions 

 

5.1 Conclusions  

The main objectives of this thesis were to develop electron energy spectrometers for 

the Scanning Electron Microscope (SEM), in order to make it a more powerful 

instrument for nano-scale material and device inspection.  Three electron energy 

spectrometers were designed, a circular magnetic beam separator spectrometer, a 

second-order focusing spectrometer, and a Radial Mirror Analyzer (RMA). 

 

The first spectrometer is designed for high resolution SEMs, where the specimen is 

located in a strong electric retarding/magnetic field. A circular magnetic deflection 

field separates scattered electrons from the primary beam and directs them to three 

retarding field magnetic sector post-deflectors, after which their energies are detected 

in parallel. The effect of angular dispersion at the detector plane is significantly 

reduced by the use of a transfer lens, pre-focusing scattered electrons into the centre 

of the beam separator. It is predicted that the spectrometer can acquire the entire 

energy range of scattered electrons from the specimen in parallel with high 

transmittance (around 30% for the AE range, 50% for the BSE range, and up to 100% 

for the SE range), much better than most existing spectrometer designs, whose 

transmittance is usually much less than 20%. Its energy resolution is simulated to be 

comparable to that of the CMA for the AE range (0.2% - 0.8%) and to be acceptable 

for the SE range (less than 0.2eV) and BSE range (less than 1%). Initial experimental 

results confirmed that a circular beam separator can function as an energy 

spectrometer for scattered electrons in the SEM.  
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The second electron energy spectrometer is a fully 2π radian collection second-order 

focusing toroidal spectrometer for conventional objective lens SEMs. Simulations 

based upon direct ray tracing predict that the relative energy resolution of this 

spectrometer is around 0.146% for an angular spread of ± 6º, comparable to the 

theoretically best resolution of the CMA, and an order of magnitude better than 

existing first-order focusing toroidal spectrometers. Furthermore, its energy resolution 

is predicted to be greatly improved by use of a pre-collimating lens at its entrance, a 

simulated relative energy resolution of 0.021% was achieved for an angular spread of 

±6º. Also predicted for the spectrometer is a parallel energy acquisition mode of 

operation, where the energy bandwidth is expected to be greater than ±10% of the 

pass energy. Experimental results from a prototype toroidal spectrometer attachment 

to the SEM confirmed its predicted energy resolution. Preliminary experimental 

results from the secondary electron and backscattered electron spectra, acquired by 

the prototype, indicate that the spectrometer has useful applications for quantitative 

voltage and material contrast. 

 

The third electron energy spectrometer, named a Radial Mirror Analyzer (RMA), 

allows for relatively short working distances (5mm) under conventional objective 

lenses. Simulation results from direct ray tracing predict that the RMA has a much 

higher performance over previous spectrometer designs, a simulated relative energy 

resolution of 0.025% for an angular spread of ±6º was achieved, an order of 

magnitude better than the CMA for the same entrance angular spread. The RMA 

design has parallel modes of operation. One parallel detection mode has an energy 

bandwidth as high as 30% (±15%) of the central-band energy on a conical-shaped 

detection plane. Another mode has an energy bandwidth of around 15% (±7.5%) of 
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the central-band energy on a flat ring-shaped detection plane,  over which the 

simulated relative energy resolution keeps well within a range from 0.05% to 0.7% for 

an angular spread of ±6º.   

 

5.2 Suggestions for future work 

All the spectrometers designed in this thesis have the potential to become useful 

devices in scanning electron microscopy, the surface sciences and other areas in 

applied physics. Further development of the circular magnetic sector beam separator 

spectrometer requires enlarging the specimen chamber to reduce out-of-plane 

scattering, so that the sector diameter is significantly larger than the prototype 

attachment made in this work. A diameter of around 100mm is required. 

 

 

Fig. 5. 1. A schematic layout of a proposed parallel radial mirror analyzer (PRMA) 

 

The RMA promises significant improvement in performance over previous Auger 

spectrometers, and the next step is to make an experimental prototype and test its 

energy resolution in practice. Further developments of the RMA design can be made 
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in order to make it a wider band energy analyzer while maintaining its second-order 

focusing properties. Simulation results showed that the non-uniform field distribution 

near the input of the spectrometer, created by a set of segmented electrodes, is the 

most critical parameter for second-order focusing. This can be combined with 

elongating/segmenting the main mirror electrode in the radial direction, producing 

non-linear energy dispersion on the detection plane, thereby extending its energy 

range, as shown in Figure 5.1.  If this modification works, the design of a new second-

order focusing parallel energy acquisition analyzer may be possible, perhaps called a 

Parallel Radial Mirror Analyzer (PRMA).  
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Appendix A: A semi-analytical technique for 3D field 
distribution simulation 
 
 
The three-dimensional semi-analytical technique developed in this thesis, uses a two-

dimensional finite element solution in combination with a Fourier Series expansion, to 

simulate 3D field distribution for both the magnetic and electric fields. Fig. A.1 shows 

schematic layouts of sector plates having odd and even symmetry planes. The scalar 

potential Ψ(x,y,z) represents magnetic fields in the case of odd symmetry and electric 

fields in the case of even symmetry. Consider a box with dimensions (x,y,z)=(a,b,L). A 

finite element solution in the plane of the plates, Ψ(x,y,L)=g(x,y), is used as the 

potential distribution on top of a box as indicated in Fig. A.1.  

 

Fig. A. 1. Dimensions and boundary conditions for (a) the square magnetic sector 
deflector  (b) the square electric retarding sector unit. 

 

In the case of the square magnetic deflectors, where z = 0 represents the odd-

symmetry plane and other sides have zero magnetic potential as shown in Fig. A.1a, 

the three-dimensional magnetic potential inside the box can be expressed as a double 

Fourier series as following 
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where
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For the square electric retarding units where z = 0 represents the even-symmetry plane 

and other sides have zero electrical potential as shown in Fig. A.1b, the three 

dimensional electric potential inside the box can be expressed as the following double 

Fourier series as following 
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The magnetic and electric fields in the both cases can be simply obtained by 

differentiating the equations (A.1) and (A.2). 
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