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ABSTRACT 

The growing economic pressure and complexity of power systems has necessitated 

the development of intelligent tools to seek a cost-effective maintenance strategy to 

keep substations operating both reliably and economically. This thesis investigates the 

application of multi-objective evolutionary algorithms and fuzzy logic techniques for 

optimization and implementation of preventive maintenance scheduling. The overall 

objective is the development of an adaptive condition-based maintenance scheme to 

achieve a balance between the reliability benefits and costs of preventive maintenance 

in the presence of uncertainty and constraints. 

Preventive maintenance is performed to extend component lifetime in power systems, 

and at the same time, the maintenance cost is one of the main expenditure items. In 

order to evaluate and optimize preventive maintenance schedules, a two-level model 

for establishing a quantitative relationship between maintenance and reliability at the 

component level and overall system level has been developed. The strength of this 

reliability model lies in its ability to easily incorporate various failure modes, 

protection actions, and constraints in complex system.  

Based on prediction of reliability, Pareto-optimal maintenance schedules are obtained 

using multi-objective evolutionary algorithms. This powerful technique identifies the 

existence of several objectives, operational cost, expected energy not served, and 

failure cost, all of which are mutually exclusive. A holistic view of relationship 

between the conflicting objectives of substations has been provided by Pareto front, 

and the most compromised schedule for achieving certain requirements has been 
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identified for the decision maker. In cooperation with the two-level reliability model, 

an integrated maintenance optimizer suitable for substations and their connected 

power grid has been developed. It has been tested on different basic substation 

configurations and medium-size power system (Roy Billinton Reliability Test System 

and IEEE Reliability Test System) and impressive results were obtained.  

Implementation of maintenance schedules according to actual operational variations 

and uncertainties is crucial for offshore substation because it is often remotely located 

and the information collected during implementation can rarely avoid uncertainties. 

Updating the reliability indices of key elements in offshore substations requires re-

establish the Pareto-optimal maintenance schedules. A hierarchical fuzzy logic has 

been developed for effectively handling the operational variations and uncertainties. 

This approach avoids complex inference process, and it significantly reduces the 

computational complexity and rule base than conventional Type-1 fuzzy logic.  

The adaptive condition-based maintenance scheme described in this thesis provides 

an explicit framework for analyzing system reliability and costs under different 

maintenance strategies, and produces the optimal maintenance schedules for power 

systems. Simulation carried on an offshore substation shows that this approach is 

effective in re-establishing the optimal maintenance schedules in presence of 

continually updated operational variations during implementation. 
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CHAPTER 1 INTRODUCTION 

Maintenance scheduling is essential for operating power systems both reliably and 

economically. The first chapter introduces the background of this research, including 

different maintenance types, the approaches to optimize and implement the 

maintenance schedules. A systematic and integrated approach is outlined to find the 

optimal maintenance schedule which obtains a tradeoff between the reliability 

benefits and costs of maintenance in power systems.  
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1.1. Overview of maintenance management 

Maintenance plays an important role in keeping reliability levels in power systems, 

and at the same time, the maintenance cost is one of the main expenditure items for 

power utilities. The amount of money spent on maintenance can reach 15-70% of 

overall cost [1, 2]. The need to satisfy the reliability requirement while at the same 

time to minimize the costs has led to the development of cost-effective maintenance 

management for power systems. The main task of cost-effective maintenance 

management includes optimization and implementation of maintenance schedules.  

The primary goal of maintenance is to avoid or mitigate the consequences of failure 

of the component. Maintenance can be firstly categorized into two types: corrective 

maintenance and preventive maintenance [3]. Corrective maintenance is conducted 

after the failure occurs to restore the component by repairing it. Corrective 

maintenance is the strategy which first appeared in the industry [4]. However, this 

type of maintenance often causes serious damage to related equipment and personnel. 

Therefore, high competition among utilities encourages more effective maintenance, 

known as preventive maintenance, to be applied. Preventive maintenance is 

conducted before the failure occurs, aiming to extend the life of component by 

maintaining the component in satisfactory condition. In accordance with statistical 

analysis of electric equipment, the preventive maintenance is scheduled periodically 

to avoid possible failures. However, the periodic preventive maintenance cannot 

satisfy the requirement of the electric power systems. In the 1970s, condition-based 

maintenance was proposed to maintain the correct equipment at proper time, and it 
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has been greatly applied in recent years, especially in electric power industry. 

Therefore, two divisions of preventive maintenance are further developed based on 

the techniques: time-based maintenance and condition-based maintenance. Nowadays 

condition-based maintenance has largely replaced time-based maintenance because it 

is essential to avoid the negative effects of failure by detecting the condition of 

system for performing preventive maintenance. In the literatures, predictive 

maintenance often refers to the same maintenance strategy with condition-based 

maintenance [5]. In the condition-based maintenance, diagnostic inspection is often 

used to assess the extent of deterioration of individual components and therefore 

determine the need and extent for its subsequent maintenance [6]. According to the 

efforts and effects of the maintenance activities, the preventive maintenance can be 

divided into two categories: minor maintenance and major maintenance. Minor 

preventive maintenance was proposed to reduce the deterioration with limited effort 

and effects [7]. In contrast, major maintenance eliminates the accumulated 

deterioration [8] but with sharply increased maintenance cost.  

Frequent inspections usually give rise to high chances of detecting deterioration but at 

the expense of significant increase in the inspection and subsequent maintenance costs 

[9].  Furthermore, less or excessive maintenance could lead to deterioration rather 

than improvement. As stated in [5], almost one third of all the maintenance costs is 

wasted due to unnecessary or improper maintenance policies. Therefore, cost-

effective strategies should be worked out to strike a balance between these two 

extremes to optimize both the costs and benefits of maintenance. Additionally, most 

substations are equipped with various components which are connected in various 
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configurations. The configuration- and cost-dependency of the maintenance strategies 

for each component make the optimization of maintenance polices more complicated. 

The problem of optimizing the maintenance has been widely approached in the 

literature [10-17].  

It is inadequate to perform the maintenance activities which are scheduled in the 

beginning of long term maintenance horizon, because the operational conditions of 

the components could vary from time to time due to many operational variations. 

Consequently, the deterioration process of the components varies, and makes the 

maintenance policy no longer optimal. The operational variations include continuing 

ageing, set-point, weather and load factors, uncertainties of measurement and human-

judgment, and so on. In particular, the offshore power systems are often remotely 

located and their access for data acquisition, inspection and maintenance may be 

extremely difficult, especially during adverse weather conditions. The information 

collected can hardly avoid uncertainties. Therefore, powerful tools are needed to 

handle the operational variations and uncertainties in the modeling of deterioration 

process and adjust the maintenance schedules according to the operational variations 

realistically [4, 12, 13, 18]. 

Faced with the increasing complexity of power systems over the past years, the 

optimization and implementation of preventive maintenance schedules are becoming 

complicated. This problem usually involves multiple objectives, various substation 

configurations, multiple constraints, and real-time condition monitoring. Currently, 

artificial intelligence techniques are incorporated to overcome such difficulties. This 
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work focuses on the application of multi-objective evolutionary algorithms and fuzzy 

logic system for the optimization and implementation of maintenance schedules. The 

following sections first review some of the important works in related area, and then 

outline the main objectives and overall approach for this research.  

1.2.  Literature review 

1.2.1. Maintenance models 

In order to relate spending on maintenance to reliability benefits, abstract models 

rather than analogous description need to be created. Various maintenance models 

were reviewed [14] for different maintenance strategies of systems. In order to 

represent the stochastic deterioration of component, probabilistic models are usually 

adopted in the prediction of component reliability and the evaluation of maintenance 

policies. Also, these models can be used to evaluate the costs and benefits of 

maintenance strategies either directly (analytical method) or by numerical 

experiments (simulation method). A comparative study of these two fundamental 

methods is discussed later in this section and summarized in Table 1.1. A conclusion 

is presented at the end of this section, constituting the methods adopted in this work.  
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Table 1.1 Comparison of Analytical Method and Simulation Method  

 Analytical method Simulation method 

Computation time 

required 

Short 

 

Long [17] 

 

Same model producing the 
same results 

Random results highly 
depending on repeated times 

Results 

Probabilistic value of 
reliability indices 

Probability distribution of 
reliability indices 

1.2.1.1. Individual component  

The name Markov model is derived from one of the assumptions which allows this 

model to be analyzed, namely the Markov property. It makes it very easy to represent 

the multiple deterioration levels of individual component with finite number of states. 

The changes of state are called transitions, which follow the corresponding transition 

matrix of Markov process [19]. Condition monitoring technology enables it to collect 

the data which carries the performance signs of component. The experts then interpret 

the data to understand the deterioration level of component, such as motors [20], 

circuit breakers [12], and transformers [18, 21, 22].  

In addition to the deterioration states, the inspection and maintenance activities can 

also be represented by Markovian states, and the transition between states follows the 

matrix of Markov model, where the rates can be estimated based on historical data [8, 

9, 15, 16, 23-25]. The reliability indices of individual component can be calculated 

following standard methods [19].  
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Markov chain model is very useful to establish a quantitative connection between 

reliability and costs of maintenance [7, 9, 15, 16, 24-26]. A Markov model of 

transformers [9] and circuit-breaker [25] relating inspection frequencies with 

reliability and cost was established. The multi-unit maintenance problem cannot be 

reduced to single-unit maintenance problem, except if all units are independent of one 

another. Therefore, impacts of topological interdependency of multiple components 

cannot be optimized by considering individual components alone, but by the 

substation as a whole.  Markov model can also be used for a multi-unit system by 

representing every combination of failures in a system. However, one of the 

shortcomings of Markov model is that the number of states grows in an exponential 

manner as the problem size increases. 

1.2.1.2. Overall system  

The configuration, protection schemes, and operating procedures of a power system 

directly affect the reliability of the power supply to the load points. There are several 

recognized reliability methodologies for evaluating the reliability of overall power 

systems [27]. Network reduction method creates an equivalent system by gradually 

combining the components to be connected in series or parallel [19]. One reason for 

the popularity of network reduction technique is its simplicity and the similarity 

between the network modeling and the configuration of power system. However, the 

network reduction method cannot be applied to the system containing meshed 

network, and it is not able to identify the components critical to the reliability of the 

system due to over simplification of this method. The Zone Branch Model [28-31] is 
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then proposed to represent the actual circuit in terms of protective zones and accounts 

for the open- and short-circuit failure modes of protective devices. In this 

methodology, a zone is defined as a part of a power system in which a failure at any 

location within this zone will cause the upstream protective device to isolate the 

faulted component. The total loss of continuity (TLOC), which arises from all failures 

or a combination of failures within a substation, can be evaluated using the Zone 

Branch Model. Unfortunately, the methods are not able to assess the failure and 

violation of transfer limit between substations, leading to a partial loss of continuity 

(PLOC).  

Two methods, Monte-carlo simulation method and minimum cut set method are able 

to overcome the shortcomings of the methods above. Monte-Carlo-based 

methodologies have been proposed to simulate behaviors of multiple components for 

evaluating the chronological performance of system [17, 32, 33]. However, it is 

pointed out in [17] that it is impractical to run the Monte-carlo simulation with 

accurate statistics for each feasible maintenance strategy when there is a great number 

of potential alternatives. Minimum cut set method is believed to be particularly well 

suited to the reliability analysis of power systems[27, 34]. This method is systematic 

and hence easily implementable on a computer. By definition, a minimal cut set is a 

unique and necessary combination of component failures which cause system failure. 

From a reliability point of view, all the component failures in a minimum cut set can 

be viewed as connected in parallel, while all the minimum cut set associated with one 

event can be viewed as connected in series. Therefore, a system can be converted into 
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a reliability block diagram based on its minimum cut sets and then be evaluated easily 

following the rules used for the simple configurations (series or parallel).  

1.2.2. Optimization techniques of maintenance schedules 

In power-system studies, maintenance scheduling often involves multiple objectives. 

Life-cycle cost and reliability are the two major objectives each with several attributes:  

 Life-cycle cost—inspection and maintenance costs, failure cost; 

 Reliability—interruption cost of load point, expected loss of energy due to 

TLOC and PLOC. 

With the reliability models for individual component and overall system, the 

reliability benefits and costs of maintenance can be expressed in the form of 

quantitative performance criteria. However, they are incommensurable, and it is 

impossible to establish a strict hierarchical order of the goals. Therefore, it is 

necessary to determine acceptable tradeoffs between those objectives. Various 

traditional methods, such as integer programming [35, 36], dynamic programming [37, 

38], and heuristic techniques [39, 40], have been reported in the literature pertaining 

to the optimization of maintenance scheduling problem. Unfortunately, these 

techniques require specific domain knowledge, and some solutions could be stuck in 

local optima. Furthermore, the computational time increases exponentially with 

system complexity.  
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Several approaches using evolutionary computation were proposed to eliminate the 

shortcomings with traditional methods [41]. Evolutionary algorithms (EAs) utilize the 

principle of natural selection, and are readily used for searching in high-dimension 

space [42, 43]. They are relatively independent of problem formulation, making them 

easily applicable to a wide-range of problems without modeling every constraint and 

relationship in mathematical equations, or designing the objective functions in certain 

required form. EAs are increasingly applied to optimal scheduling of preventive 

maintenance [44] for both generation and transmission. Meta-heuristic-based 

optimization techniques like GA, TS and SA are known for their ability of solving 

real world problems, and are shown to be able to produce near-optimal solutions 

within reasonable timing. A hybrid approach of GA and simulated annealing (SA) has 

been used to optimize maintenance schedules of generators [45, 46]. However, all 

these works were formulated as single-objective problem. For solving multi-objective 

problems, many approaches optimize only one objective, while treating the other 

objectives as constraints. Other approaches linearly convert all participating 

objectives into a single objective as a weighted sum. One such work applies a mix of 

tabu search, GA and SA for optimal maintenance scheduling of thermal units [47], 

linearly combining all participating objectives into a weighted sum as an equivalent 

single objective. The weighted-sum method has the advantage of flexibility by simply 

varying the weights. Unfortunately, the approach requires multiple runs for all 

combinations of weights, whose choices are often subjective.  

Through several stages of development, multi-objective evolutionary algorithms 

(MOEAs) have overcome the major shortcoming of multiple running of optimization 
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process N times in order to obtain N Pareto-optimal solutions. Pareto-based Multi-

objective Evolutionary Algorithm was shown to be advantageous over the 

aggregation-based approach in maintenance scheduling of aircraft engines [48]. 

Pareto Fronts give equal treatment to all objectives, which reach optima where none 

of the objectives can be further improved without degrading the others. More details 

about the Pareto optimality are given in Chapter 2. Difficulties of traditional methods, 

such as non-continuous objective functions and large scale search space, can also be 

eased with this approach.  

Typically, operators like mutation, crossover and selection improve the quality of 

solutions in consecutive generations. Many different variants of evolutionary 

algorithms are being reported to solve multi-objective problems. Among them, Multi-

objective Genetic Algorithm based on [49, 50], Non-dominated Sorting Genetic 

Algorithm (NSGA) [51], and Elitist Non-dominated Sorting Genetic Algorithm 

(NSGA II) [52] have reported to attain better spread of solutions and convergence 

near the true Pareto front with favourable comparisons over other well-known 

MOEAs, like strength Pareto evolutionary algorithm 2 (SPEA 2) [53] and others [54].  

1.2.3. Implementation of maintenance schedules 

The overall reliability performance of a system depends on the effectiveness of 

implementing a preventive maintenance schedule. However, a desirable reliability 

level cannot be achieved due to factors outside the engineer’s control, such as adverse 

weather, varying load demand, available maintenance resources, and so on. Several 

studies have examined the topic of reliability assessment using historical data as a 
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basis to calculate the expected reliability of distribution system [55-57].  This method 

has the drawback that the historical data may not be accurate due to changes of 

conditions or lack of upgrading of database [58]. In power-system applications, 

operational uncertainties and variations occur continually, which can degrade the 

reliability and cost-effective maintenance scheduling of power systems. Such 

degradations can be more pronounced for off-shore power systems. Hence more 

powerful tools are needed to take into account those uncertainties in the reliability 

evaluation of offshore power substations.  

Fuzzy sets theory was proposed by Zadeh [59] to resemble human reasoning under 

uncertainties by using levels of possibility in a number of categories. The application 

of fuzzy logic systems is simple to design, and can be easily understood and 

implemented. Known as type-1 fuzzy logic, the methodology has been successfully 

used in many applications, especially in power systems [60-63].  It is the most 

promising theory for efficiently incorporating the uncertainties and unpredictable 

information associated with the reliability data. Fuzzy set theory has been used to 

analyze the impact of uncertainties on adequacy assessment of a composite power 

system, and its feasibility has been demonstrated in [64]. Fuzzy sets theory has also 

been applied to evaluate the reliability of substations [65] and distribution systems [62, 

66]. Besides, it is an effective tool in transformer asset management, identifying its 

criticality rank, rate of ageing, and remnant life [18, 67]. Consistent estimate of 

reliability measures has been carried out using type-1 fuzzy logic to handle 

uncertainties related to the component state probabilities [58] and transition rates [68] 

in power systems.  
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The ability of Type-1 fuzzy logic to model uncertainties is restricted due to absence of 

fuzziness in type-1 membership functions. Zadeh further proposed the alternative 

type-2 fuzzy logic [69], demonstrating greater success than type-1 fuzzy sets in 

various fields to handle uncertainties [60, 69-72]. However, type-2 implementation 

for large-scale problems can be limited due to its heavy computational requirements.  

Viewed as one of the type-2 fuzzy sets, the qualitative fuzzy sets theory is proposed in 

[73] by tolerating a “small amount” of perturbations on each degree of membership 

functions. In contrast, non-stationary fuzzy sets are proposed in [74] by introducing 

perturbations to the parameters defining each membership function such as location, 

width, noises and others, without changing the inference process of the type-1 fuzzy 

logic. This method greatly reduces the computational complexity compared to type-2 

fuzzy logic for solving the same the problem. Such perturbations may also be 

introduced in a hierarchical fuzzy system, which employs a set of high- or 

supervisory-level fuzzy rules for adjusting the settings of variables or input scaling 

factors of low-level rules as in a conventional fuzzy controller for tracking set-point 

changes and load disturbance [75]. 

1.3. Research objectives 

Although work has been reported for evaluating reliability and optimizing the 

maintenance schedules of industrial systems, little effective work has been found in 

the area of power systems on improvement of overall system reliability by evaluating 

and optimizing the maintenance schedules of each individual unit. Only the threshold 

of preventive maintenance has been determined for multiple components in a system 
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[17].  Software commonly used for industry, such as ETAP [76] and PSCAD [77], 

only assesses the system reliability/stability without consideration of maintenance. 

Furthermore, the maintenance activities of the power substations are usually 

performed over the whole maintenance horizon once they are scheduled, which 

ignores the dynamic impact of operational variations and uncertainties on the 

reliability. 

This thesis therefore aims to develop an integrated approach to optimize the 

condition-based maintenance schedules and dynamically update the schedule 

according to the operational variations for power systems. This objective can be 

achieved by three steps: a) first establish the quantitative relationship among multiple 

conflicting objectives of maintenance scheduling, b) find the best tradeoff among the 

multiple objectives, and c) dynamically re-establish the optimal solutions after 

evaluating the impacts of actual operational conditions on system reliability. The 

overall structure of this research is illustrated in Fig. 1.1, consisting of two functional 

blocks: maintenance optimizer for accomplishing the first two tasks and intelligent 

maintenance advisor for the third task by coordinating with the optimizer.  

The specific aims of this thesis are: 

1) to develop a two-level reliability model which is able to assess the reliability 

benefits and costs of various maintenance activities on individual component 

as well as overall system. The model of component-specific level would be 

able to predict the stochastic deterioration process of individual component 

under various inspection frequencies and subsequent maintenance schedules 
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and extents. The model of system-specific level would allow assessing the 

collective effects arising from all connected components in substations and 

composite power systems considering various failure modes, constraints, and 

structural and failure dependence.  

2) to propose a multi-objective optimization method which is able to find the 

optimal maintenance schedules for a trade off between the reliability and costs 

of maintenance. This maintenance optimizer would optimize (i) the inspection 

frequencies of substations, (ii) maintenance schedules and extents of 

substations, and (iii) maintenance schedules and extents of medium-size 

power systems based on respective reliability model. The computational 

complexity increased with the size of system would be handled efficiently.  

3) to develop a hierarchical fuzzy logic to estimate the changes of reliability 

parameters of key components in offshore substations due to the planned and 

unplanned operational variations during operation. Its two-level structure 

would provide greater flexibility and relieve the computational burden in 

dealing with additional uncertainties. 

4) to design an integrated adaptive condition-based scheme, enabling it to re-

establish optimal maintenance schedules dynamically according to the actual 

operational variations and uncertainties occurring continually in the offshore 

substation connected to a medium-size power grid. The maintenance advisor 

residing in each offshore substation should be linked to the maintenance 

optimizer of its connected power grid so that it is able to send the updated 
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reliability parameters to the maintenance optimizer.  The optimizer either 

adopts the present maintenance schedule or adjusts the schedule on a day-to-

day basis according to actual operational conditions for meeting the desired 

reliability at lowest possible cost. 

 
Fig. 1.1 Adaptive Maintenance Scheme for Optimization and Implementation of 

Maintenance Schedules 

This proposed approach should contribute to a better optimization and 

implementation of preventive maintenance schedules for power systems.  

This study is restricted to the development of probabilistic approach producing the 

average reliability gains and costs brought by the maintenance of electrical 

components over the investigated period. The chorological behaviors of the 

components are beyond the scope of this study. The investigation of other operating 

strategies for improving the reliability, such as load forecasting, load shedding, load 

transferring, or unit commitment, are interesting topics, but not the focus of this study 

either.  
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1.4. Thesis organization 

The structure of this thesis follows the same order as the proposed approach being 

developed and furnished. The overall thesis can be broken into seven chapters, which 

are briefly described as below: 

Chapter 1 introduces different maintenance strategies for asset management of 

industrial system, and identifies the necessity to optimize the condition-based 

maintenance of power systems. Previous work relevant to this thesis is reviewed. An 

overview of the proposed approach and the main objectives of this work are also 

presented.  

Chapter 2 introduces the fundamentals pertaining to the adopted multi-objective 

evolutionary algorithms in this research work.  

Chapter 3 presents a multi-objective approach to find a balance between the two 

objectives (reliability and operating cost) of substations by optimizing the inspection 

frequencies required for each component. This includes how to relate the impact of 

inspection frequencies with the deterioration process of individual component as well 

as the overall reliability of different basic substation configurations. The procedure to 

apply the Pareto-based multi-objective evolutionary algorithms with dynamic sharing 

distance method is descried in detail, and the set of Pareto-optimal inspection 

frequencies are obtained. 

The assumption in Chapter 3 that all extents of maintenance activities will be 

performed probabilistically after each inspection will lead to excessive or insufficient 
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maintenance policies. Therefore Chapter 4 optimizes the frequency of different 

maintenance extents (minor maintenance and major maintenance) of various 

substation configurations as an extension to the work in Chapter 3. Furthermore, 

models for more accurate prediction of system reliability are set up, which can 

analyze more complex substation configurations and incorporate various failure 

modes as well as protection and switching actions.   

Chapter 5 further extends the approach for applying it to composite power systems. 

The previous approach evaluates only the total loss of continuity (TLOC), which 

arises from all failures or a combination of failures within a substation. Realizing that 

it is crucial in composite reliability analysis to include the power flow constraints, this 

approach is extended by including the failure and violation of transfer limit of all 

substation interconnections, which leads to a “partial loss of continuity” (PLOC). 

Another difficulty with the implementation of multi-objective evolutionary algorithms 

proposed in Chapters 3 & 4 is that the number of elements in each chromosome tends 

to increase in an exponential manner with the size of the system. Thus, a novel 

representation method of solutions is proposed and compared with previous method in 

Chapters 3 & 4. Optimization results of medium-size power systems are presented. 

Chapter 6 addresses the issues involved in implementing maintenance schedules for 

offshore substations. This includes the planned and unplanned operational variations 

that affect the reliability, how to model them with great flexibility, and how to 

estimate the changes of reliability parameters accordingly with efficiency. Simulation 
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results of the adaptive condition-based maintenance scheme on an offshore substation 

are presented. 

Chapter 7 presents conclusions and recommendation for future research in the areas 

of optimization and implementation of maintenance schedules of power systems. 

Some limitations of the proposed approach are discussed.  

Appendix A presents the background materials on Fuzzy Logic System. Appendices 

B, C, and D provide the data of studied substations, RBTS, and IEEE RTS. 
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CHAPTER 2 MULTI-OBJECTIVE OPTIMIZATION 

TECHNIQUES  

Genetic algorithms (GAs) were developed by Holland in the early 1970s based on the 

principles of natural selection and genetics [78]. GAs use multiple solutions, known 

as population, and probabilistic rules to generate better solutions, which is more 

efficient in finding the optimal solutions [42]. In addition, GAs use information on the 

objective function itself rather than other information such as the function’s gradients, 

which greatly simplifies the optimization problems in the mathematical aspect.  

As reviewed in Section 1.2.2, since the early 1990’s, GAs have been widely used in 

the problems of maintenance scheduling optimization. Optimization of maintenance 

scheduling is a combinatorial problem which often involves multiple contradictory 

objectives. Pareto-based multi-objective evolutionary algorithms are useful tools for 

the ability in trading off between multiple contradictory objectives. This chapter 

introduces the fundamentals pertaining to adopted multi-objective evolutionary 

algorithms in this research work. 

Some material in this chapter has also appeared in [2-6, 10-14] of the candidate’s 

publications.
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2.1. Operations of genetic algorithms 

GAs work with a population of candidate solutions, rather than a single solution. Each 

solution is characterized by a chromosome representing each individual. A population 

of individuals undergoes a sequence of transformation by means of genetic operators 

(selection, crossover, and mutation) to form a new population. Individuals less fit on 

the given problem are discarded, while more fit ones are copied and used to produce 

variants of themselves. As a result, the population will improve over time and produce 

optimal solutions.  Typically, a GA consists of the following steps: 

1) Initialization – An initial population is generated. 

2) Evaluation of fitness value– The fitness value for each individual in the 

population is calculated according to its fitness function. 

3) Selection – More highly fit individuals receive higher number of copies in the 

“mating” pool. 

4) Crossover and mutation – They are applied in the “mating” pool to form a new 

population. 

5) Repeat steps 2-4 until some conditions are met. 

2.2. Pareto-optimal set 

A multi-objective optimization problem can be stated as follows: 

  

Minimize F(x) = ( f1(x), f2 (x),, fM (x))T

subject to x ∈Ω  (2.1) 
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where Ω is the decision variable space, and M is the number of objectives.  

Since most objectives contradict with each other, there is no point in Ω that minimizes 

all the objectives simultaneously. One has to balance them. Therefore, unlike the 

single-objective optimization problems, multi-objective optimization problems output 

a group of non-dominated solutions known as Pareto-optimal set of solutions.  The 

corresponding values in the objective space line themselves up in a Pareto front.  

To illustrate the Pareto-optimality concept, let us consider N candidate solutions 

belonging to the set Ω, i.e.  X1, X2, X3 … XN  ∈ Ω. As can be seen in Fig. 2.1, X2 is 

said to be dominated by (or inferior to) X3 if  is partially more than , i.e. 

 for  and for  with . 

X1 is said to be Pareto-optimal (or non-dominated), if there do not exist in the set 

X Ω such that Xi dominates X1. In other word, any improvement in a Pareto optimal 

point in one objective must lead to deterioration in at least one other objective.  
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Fig. 2.1 Pareto Front  

2.3.  Selection of most compromised solution 

It is subjective and imprecise to solely depend on the decision maker’s judgment to 

select one solution from the set of Pareto-optimal solutions. On the other hand, the 

decision maker may not be interested in having a large number of Pareto optimal 

solutions to deal with due to the overflow of information. Therefore, a real-life multi-

objective optimization problem prefers to get good representatives of the entire Pareto 

optimal set. It is necessary to introduce the membership function to evaluate the 

solutions in the Pareto-optimal set [79]. The best compromise solution is the one with 

the maximum . The steps for calculating are given as follows: 

First, the ith objective function of a solution is presented by a membership function 

as : 



CHAPTER 2 MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES 

 

 

24 

   (2.2)  

where Fi
max and Fi

min: the maximum and minimum values of the ith objective function, 

respectively. 

The normalized membership function for solution k is calculated by:  

    (2.3)  

where N is  the number of non-dominated solutions. 

2.4. Adopted multi-objective evolutionary algorithms 

In this research work, MOEA with dynamic sharing distance, NSGA II and NSGA II-

DE are used for finding the Pareto-optimal maintenance schedules of substations and 

power grid. As stated in Section 1.2.2, many different variants of evolutionary 

algorithms are reported to solve multi-objective problems [80]. A multi-objective 

evolutionary algorithm incorporating advanced features, like dynamic sharing 

distance, is reported to be effective in a benchmark optimization problem [49]. The 

main attraction of NSGA II is its fast non-dominated sorting algorithm that is more 

computationally efficient than most available non-dominated sorting techniques. A 

crowding distance assignment algorithm with a parameter-free niching operator for 
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maintaining the diversity and spread of solutions adds to the attraction of this 

algorithm. NSGA II is currently one of the most successful MOEAs, which is 

reported to find better spread of solutions and convergence near the true Pareto front 

with favourable comparisons over other well-known MOEAs.  

Within a few years, multi-objective DE-based techniques are reported in works like 

[81] and [82]. Notably, a similar attempt to replace the crossover and mutation rates 

by a rotationally invariant DE variant was reported in [83]. In this work, a variant of 

DE is proposed to replace the crossover and mutation operators of the original NSGA 

II algorithm, termed NSGAII-DE.  

2.4.1. MOEA with dynamic sharing distance 

2.4.1.1. Flow chart of MOEA 

The main steps of MOEA are described as follows: 

1) Set g =0       (the tth iteration) 

2) Randomly generate N solutions, variables of which are within the upper bound 

and lower bound.  This is known as the parent population P(g). 

3) Use crossover and mutation to generate an offspring population Q(g) of size N. 

4) R(g) = P(g) U Q(g) 

5) Non-dominated sorting R(g) 

6) Until the next parent population P(g+1) is filled with N solutions from R(g) by 

perform crowding distance estimation and comparison Fi . 

7) g = g + 1. 



CHAPTER 2 MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES 

 

 

26 

8) Loop back to (3) until terminating condition is achieved.  

2.4.1.2. Non-dominated sorting scheme 

In the absence of preference of objectives, ranking scheme based on the Pareto 

optimality is regarded as an appropriate approach to represent the strength of each 

individual [50]. In step (5), the non-dominated sorting scheme assigns the same 

smallest cost for all non-dominated individuals. The rank of an individual corresponds 

to the number of chromosomes in the current population by which it is dominated. 

Consider, for example, an individual xi is dominated by  individuals in the current 

generations. Its current position in the population can be given as equation (2.4): 

   rank(xi ) = 1+ ni  (2.4)  

In order to find the solutions that belong to the first non-dominated front, each 

solution has to be compared with every other solution in that generation. After that, 

the solutions in the first non-dominated front will be discarded temporarily. The 

procedure above is repeated to find the solutions in the second and higher non-

dominated front.  

2.4.1.3. Dynamic computation of sharing distance 

In order to obtain equally distributed solutions along the Pareto front, a sharing 

function is often used in evolutionary algorithms [42, 84, 85]. This method degrades 

an individual fitness upon the existence of other individuals in its neighborhood 

defined by the sharing distance 

� 

σshare. Unfortunately, 

� 

σshare  needs to be estimated 
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upon the usually unknown trade-off surface [84]. The performance of sharing 

function largely depends on the chosen 

� 

σshare value. Therefore, an approach of 

dynamic sharing distance computation is proposed [49]. It adaptively computes the 

sharing distance 

� 

σshare at generation g as half of the distance between each individual 

in the (M-1) hyper-volume in terms of the diameter and the population size θ by: 

  

� 

σshare
(g) = θ 1/(1−M ) × (d(g) /2)  (2.5) 

where is the diameter of (M-1) dimensional hyper-volume covered by the non-

dominated solutions at generation t. It can be approximated by the average distance 

between the possible shortest and longest diameters and respectively, as 

shown in Fig. 2.2. and are the objective values of two individuals with 

maximum distance within each other. Then can be approximated as 

� 

d1
(g) + d2

(g) . 

 
Fig. 2.2 The of a Trade-off Curve 
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Equation (2.5) provides a simple method to compute 

� 

σshare which is able to evenly 

distribute the population along the Pareto front without any a-priori knowledge of the 

trade-off curve. Furthermore, it is more effective than conventional sharing methods 

because 

� 

σshare is adaptively computed based on each generation instead of using a 

pre-assumed constant value. 

2.4.2. Features of NSGA II  

Compared with the flow chart of MOEA introduced above, NSGA II is mainly 

different in two steps, (5) and (6). The operations, fast non-dominated sorting and 

crowing distance estimation, to replace steps (5) and (6) will be further introduced in 

the following paragraphs. 

2.4.2.1. Fast non-dominated sorting 

A fast non-dominated approach is proposed for NSGA II, which reduces the 

computational complexity than the conventional non-dominated sorting algorithm 

[52]. In this approach, for each individual, besides the domination count  , another 

entity , a set of solutions that dominates, is calculated. All the individuals with 

belong to the first non-dominated front. Then, for each individual with , 

each member  in the set  is visited and its domination count  is reduced by one. 

If , the solutions  belongs to the second non-dominated front. The 

procedure above will be repeated with each individual in the second non-dominated 
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front, and the third non-dominated front can be identified. This process continues 

until all the fronts are identified.  

2.4.2.2. Crowding distance estimation 

In the NSGA II, a crowded distance estimation approach is used to replace the sharing 

function approach. After ranking all the individuals, crowding distance estimation is 

performed as follows: 

1) Sort population according to each objective function value and 

normalize the objective function. 

2) Assign an infinite distance value to the solutions with smallest and 

largest function values.  

3) Calculate the crowding distance idistance, which is defined as the distance 

of two individuals on either side of this individual along each of the 

objectives is calculated. As shown in Fig. 2.3, the crowding distance of 

the ith solution in its front is the side length of the cuboid (dashed box).  
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Fig. 2.3 Crowding-distance Calculation.  

The points are solutions of the same non-dominated front 

2.4.3. NSGA II-DE 

The main idea of Differential Evolution (DE) is a scheme for generating the trial 

population member [86]. Basically, DE generates a new member by adding a 

weighted difference between two members to a third member.  For a minimization 

problem, the newly generated member will replace the predetermined member in the 

next generation if the new one produces a lower objective value than the one with 

which it is compared.  

The new population member Vi,G+1 is generated by: 

  ,  (2.6)  

where r2 and r3∈ [1, N] are randomly chosen solutions from the population of size N. 

In the single objective case, XrBest,G is merely the best solution for the Gth generation. 



CHAPTER 2 MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES 

 

 

31 

In the multi-objective case, however, the notion of 'best' is no longer a single optimum 

term, but can either be chosen from a set of non-dominated or Pareto-optimal 

solutions. The same operations of fast non-dominated sorting, crowding distance 

estimation and comparison as in NSGA II are conducted to identify the Pareto-

optimal solutions. Including the term XrBest,G equation (2.6) in this work speeds up 

convergence by encouraging non-dominated solutions to be generated near the 

regions of XrBest,G.  The random nature of how XrBest,G is chosen and the diversity 

mechanism in the NSGA II ensures that solutions do not cluster around one region of 

the Pareto-front, which is undesirable. 

The 'crossover' operation of DE generates a trial vector Ui,G+1 as presented in equation 

(2.7): 

 
, (2.7)  

where CR is the crossover rate. j denotes the jth decision variable of the ith candidate 

solution. r(j) is a randomly chosen number in [0, 1]. Thus, if the randomly generated 

r(j) of the jth decision variable is smaller or equal to the crossover rate CR, Uji,G+1 will 

take the value of the mutated vector Vji,G+1, or else it will take the value of the original 

candidate solution Xji,G. In addition, to prevent degeneration, the term rn(i) is a 

randomly chosen decision variable j in the ith candidate solution which will be chosen 

to be replaced by the mutant vector.  
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Unlike in the single objective problem, Ui,G+1 does not replace the current Xi,G if it is 

better, but it is treated as a member of the child population candidate as provided in 

the NSGA II structure. 

The above scheme has been modified and applied to two real world problems: (i.) a 

mass rapid transit scheduling problem and (ii.) the optimization of inspection 

frequencies for power substations in [6] of the candidate’s publications. The case 

studies on optimization of maintenance extents for power substations are presented in 

Chapter 4. 

2.5. Diversity preservation 

The diversity of solutions obtained from MOEA with dynamic sharing distance, 

NSGA II, and NSGA II-DE is guaranteed by the selection process based on two 

attributes of every individual in the population: 1) non-domination rank ( ), 

and 2) shared cost or crowding distance idistance. Between two solutions with different 

non-domination ranks, the one with lower rank is preferred. Otherwise, if both 

solutions have the same rank, the one with lower shared cost or located in a less 

crowded region is preferred.  

2.6. Conclusion 

This chapter presents the fundamental aspects of multi-objective evolutionary 

algorithms which are adopted in this work. The operations of standard genetic 

algorithms are introduced. Non-dominated sorting scheme, sharing distance 

calculation methods, Pareto-optimal set, and other fundamentals are presented. 
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Evolutionary algorithms application on case studies will be given in details in the 

following chapters. 



CHAPTER 3 OPTIMIZATION OF INSPECTION FREQUENCIES FOR 
SUBSTATION 

 

 

34 

CHAPTER 3 OPTIMIZATION OF INSPECTION 

FREQUENCIES FOR SUBSTATION 

Improving the overall reliability and reducing the operating cost are the two most 

important but often conflicting objectives for substation. Condition-based substation 

maintenance provides a means of balancing these objectives. This chapter proposes a 

multi-objective approach to best compromise these two objectives for substations by 

optimizing the inspection frequencies required for each component. A Markov-chain 

model is developed to assess the impact of changing individual inspection frequencies 

on reliability and operating cost. A multi-component model is employed to evaluate 

the overall reliability of interconnected components. Pareto fronts are generated to 

optimize the trade-off between the two objectives for comparisons with other 

substation configurations. In this chapter, two typical different substation 

configurations are examined to demonstrate the effectiveness and potential of the 

proposed approach. 

Some material in this chapter has also appeared in [14] of the candidate’s publications. 
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3.1. Need for inspection optimization 

Condition-based maintenance is gradually replacing time-based maintenance as a 

more effective approach to compromise the operating cost with reliability of 

substations. In recent years, many diagnostic techniques, such as transformer oil 

analysis and circuit breaker trip coil current signature, have been proposed to inspect 

conditions of the equipments and determine the need and extent for its subsequent 

maintenance [6]. Frequent inspections usually give rise to high chances of detecting 

deterioration but at the expense of high inspection and subsequent maintenance costs. 

Furthermore, a lack of proper maintenance or excessive maintenance after each 

inspection could result in failure rather than improvement. It is thus necessary to 

optimize the frequency of inspection as well as the extent of maintenance.  In this 

chapter, only the inspection frequencies are optimized. Optimization of maintenance 

extents will be reported in the following Chapters 4, 5, and 6. 

Fig. 3.1 demonstrates the proposed approach with three-block: component-specific 

level Markov model, system-specific reliability model, and a multi-objective 

evolutionary algorithm. A sound two-level reliability model addresses adequately the 

costs and benefits of inspection. On the device-specific level, only conditions of 

individual components are of interest. Therefore, the aim of this level is to obtain the 

reliability indices for each component, but the topological inter-dependence of 

components is not considered. The model in the system-specific level mainly focuses 

on the overall impact of individual components to the substation. Impacts due to 

changes of substation configuration and operation, as well as inspections on the 
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overall reliability and cost are examined in an easy-to-use system reliability model. A 

brief description is given as follows: 

o Using inspection frequencies as input, the Markov model will generate 

reliability indices for individual components, 

o Using the system-configuration-related parameters and the load demand as 

inputs, the system reliability model will then generate the indices of the cost and 

availability at individual load points, and 

o Outputs of the system reliability model are used to calculate the two objectives 

(expected energy not served & overall cost) to be evaluated by the optimization 

method, which will guide the search towards optimal inspection frequencies. 

 

Fig. 3.1 Integrated Approach for Inspection Frequency Optimization 
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3.2.  Modeling of inspection-dependent reliability of individual 

component 

A Markov model is formulated to relate the deteriorations of each component with its 

inspection frequency. Each deterioration process of individual component is described 

in this work in a finite number of states. If such deterioration can be detected, 

preventive maintenance thus will be initiated to restore the respective condition back 

to a better state. Therefore, the inspection, which diagnoses the condition of the 

component, is important to trigger off such maintenance process.  

The deterioration process of individual component is modeled by a multi-state 

Markov chain (Fig. 3.2), taking into consideration the effects of inspection and its 

subsequent probabilistic maintenance activities. 

 
Fig. 3.2 Inspection-dependant Markov Model 
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A brief description of the states is given below: 

o As-good-as-new state (D1): In this state, the component operates well with no 

deterioration. 

o Deterioration states (D2, …, DN ): The deterioration level of these states from 

D1 can be identified by maintenance crew through inspections. 

o Maintenance (M1, M2, and M3): They represent the three extents of 

maintenance as determined by the inspection. M1 represents no maintenance 

action, and M2 and M3 are minor and major maintenance respectively.  

Maintenance action Mk will be taken in state i with the probability Pik. Consequently, 

this component transits from states i to j with the corresponding probability Pikj. The 

probability Pik is assigned corresponding to the component state. If the present state of 

a component is D1, only M1 is chosen. On the other hand, if the component is in state 

D2, three maintenance actions are available and are assigned with different 

probabilities. P22 for M2 will be higher than P23 for M3.  

From the as-good-as-new state, the component progresses to a deteriorated state with 

the transition rate λi,i+1(occurrence/year), meaning that it takes 1/λi,i+1 years in 

average to transit from state i to i+1. The duration in each deterioration state follows 

an exponential distribution with a constant rate λi,i+1. From the deteriorated state, this 

component can either continue to deteriorate with a transition rate λi+1,i+2, or go back 

to a better state with transition rate μi,j(i>j) because of an appropriate maintenance 

action. μi,j was influenced by the inspection frequency.  
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Specifically, μi,j will increase as  inspection frequency increases, which means that 

the component can transit from a more deteriorated state to a better one within a 

shorter period. The restoration rate μ is assumed to be related with inspection and 

probabilistic maintenance by a known function (3.1). Based on historical operation 

data, parameter d in equation (3.1) is approximated to be equal to 2. Thus the 

restoration rate can be calculated by substituting 2 for d in equation (3.1) [87]. 

  µi, j =
1− exp(−d ⋅ Ii × PikPikj

k=1

3

∑ )

1+ exp(−d ⋅ Ii × PikPikj
k=1

3

∑ )
 ( 3.1 ) 

where Ii is the inspection frequency in state i.  

For completeness, the model also incorporates random failures, where the system can 

transit directly from any present state to the failure state. However, inspection will not 

result in any warning before these failures occur, so this type of failure cannot be 

avoided by inspections. Transition rates λi,f governing this type of failures can be 

estimated from historical data.  

To investigate the impact of inspection frequency in every deterioration state, the 

quantitative relationship between inspection frequency and reliability is established. 

As usual, two of the most important reliability indices, mean time to repair (MTTR) 

and mean time to failure (MTTF), of individual component is used to indicate its 

reliability during the entire life-span [88] . The meaning of MTTF for repairable 

system are slightly different from that for non-repairable system. For a repairable 
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system, MTTF can represent one of two things: (1) mean time to first failure 

(MTTFF), and (2) mean uptime (MUT) within a failure-repair cycle in a long run. 

Therefore, the term “MTTF” and “MTTFF” are interchangeable for repairable system. 

MTTF and MTTR of component n can be calculated by equations (3.2)-(3.5) [89]: 

Truncated transitional matrix Q is constructed by deleting the 4th row and the 4th 

column of which are related to the absorbing states [90] from the transition matrix: 

 Q =
1− (λ12 + λ13) λ12 λ13

µ21 1− (µ21 + λ23) λ23
µ31 µ32 1− (µ31 + µ32 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 ( 3.2 ) 

    ( 3.3 ) 

Thus, the MTTF is the summation of the elements in the 1st row of N, given the 

starting state i. MTTF and failure rate λ can be calculated as follows: 

   

� 

MTTF = N1 j
j=1

n

∑  ( 3.4 ) 

   

� 

λ =1/MTTF  ( 3.5 ) 

 
where n is the number of deteriorated states before failure, and N1j the jth element in 

row 1 of matrix N. 

MTTR can be calculated in the same way by treating the first state D1 as the 

absorbing state when constructing the transitional matrix Q and N. The component 

availability (Aa) is given as the total operating time over the total time (equation (3.6)): 
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   ( 3.6 )                             

The steady state probability (pi) is the ith element in vector P, which can be calculated 

by equation (3.7): 

  ( 3.7 ) 

For component a, the expected maintenance cost, ECm.a, and the expected repair cost, 

ECr,a, are calculated by the equations (3.8) & (3.9) : 

 

� 

ECm ,a = (Ii,a × pi,a × Cins,a + Ii,a × pi,a × pik,a × Cmk,a
k=1

3

∑ )
i=1

n

∑  ( 3.8 )  

where Ii,a is the inspection frequency in state i for component a, Cins,a is the inspection 

cost for component a, Cmk,a is the average maintenance cost for maintenance activity 

Mk. pi,a is the probability of state i for component a.  

   ( 3.9 ) 

where Cr,a is the average failure cost for component a. 

The more frequently the inspections are taken together with appropriate maintenance 

actions, the more reliable the system will be. But inevitably, it will lead to higher 

operating cost. The collective effects on substations with multiple components are 

somewhat more complicated. Therefore, optimization of inspection frequencies for 
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substations must be extended from component level to system level. In such context, a 

system reliability model for a substation connected in series and parallel is used in 

addition to the Markov model. 

3.3. Reliability assessment of substation configuration connected in 

series and parallel 

The adopted system reliability model is developed for assessing the composite 

reliability of power generation and distribution based on the model proposed by the 

Petroleum and Chemical Industry Committee of the IEEE Industry Application 

Society [28-31] Calculations of reliability in this model are based on the network 

reduction method, which views substation configurations as being connected in series 

or parallel or a combination of both (Section 1.2.1). The procedure for evaluating the 

reliability of overall system in this model is shown in Fig. 3.3.  

 
Fig. 3.3 Flow Chart for Evaluating System Reliability  

As shown in Fig. 3.3, the substation is firstly divided into zones before evaluating the 

load-point reliability. In each zone, the failure at any point would bring about the 

same impact to the upstream protective device of this zone. Consequently, the 

protective devices will take action to isolate the system after a failure. Therefore, the 
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failure rates of any location within this segment are always the same, and the 

upstream protective devices are used as the boundary between the zones [28].  

Normally, we draw a circle around sections of the one-line diagram from the bottom 

(load side) of a protective device down to and including the bottom of the next 

downstream protective device. Fig. 3.4 [28] shows how zones are typically sketched 

onto the diagram of one substation.  

 
Fig. 3.4 Definition of Zones on One-line Diagram of Substation 

The failure and repair rates of electrical component ( ) which are reciprocals 

of the corresponding MTTF and MTTR are two of the most essential parameters for 

this model. As discussed earlier, using equations (3.4)-(3.6), the component reliability 

data are obtained. Once the zones are defined and the necessary parameters are 

available, the reliability of each zone as well as whole system is calculated relatively 

straightforward based on the network reduction method by equations (3.10) & (3.11) 

depending on the topological characteristics of each zone and whole system.   

For the zone or system with components in series, the zone availability is obtained 

from equation (3.10). 
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    ( 3.10 )  

For the zone or system with redundant components, the system availability is given 

by equation (3.11). 

     ( 3.11 )  

Hence, the yearly loss of expectation at load point p can be calculated by equation 

(3.12): 

    ( 3.12 )  

3.4. Formulation of two conflicting objectives  

The overall cost (containing the capital and operating costs) and the expected energy 

not served (EENS) are the two criteria to evaluate the performance of various 

configurations of substations under different inspection schemes. The operating cost 

is brought by inspection, maintenance, and repair actions.  Normally, the best 

configuration is the one with minimum overall cost and maximum reliability. 

Therefore, we formulate the mathematic representations of the two objectives so that 

they can be optimized.  

 a) Economic objective—overall cost.  The overall cost of a substation in this work 

consists of two parts, capital cost and expected operating cost (EOC). 

The expected operating cost is the sum of expected inspection, maintenance, and 

repair costs of the components in this system, which is calculated by equation (3.13). 
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Therefore the expected overall cost (EC) in one substation can be easily calculated by 

equation (3.14): 

   
 ( 3.13 ) 

where M is the number of components in the system. 

    ( 3.14 )  

where CapC is the capital cost, and Rate is the interest and depression rate. 

2) Reliability objective—EENS.  It measures the reliability worth associated with 

the cost of the customers due to the failure, which is expressed as: 

   

� 

EENS = Lp × Dup
p=1

m

∑  ( 3.15 )  

where m is the number of load points in one substation, and Lp is  the loss of load 

(MW) due to the failure at load point p.  

Normally, the load demand usually varies with time at the same load point, and is not 

the same at different load points. In this work, the load demand is assumed to be 

constant over the maintenance period. 

Basically, the increase of expected overall cost will improve the reliability in terms of 

decrease of EENS. To demonstrate the relationship between the two objectives 

explicitly, a substation is taken as an example (Fig. 3.5). The normalized values of 
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EENS and overall cost as functions of inspection frequency have been plotted in Fig. 

3.6. The normalization of EENS can be done by equation (3.16), and the value of 

overall cost can be normalized in the same way. 

  

� 

Normalise(EENS) =
EENSmax − EENS
EENSmax − EENSmin

 ( 3.16 )  

EENSmax and EENSmin are the maximum and minimum values of EENS. 

As seen in Fig. 3.6, as more inspections are carried out, the EENS will decrease, 

while the expected overall cost will increase. Since both of them are functions of the 

inspection frequency, they can be considered as two conflicting objectives. Thus, the 

multi-objective problem can be easily formulated as follows: 

     

� 

MinimizeF(x) = ( f1(x), f2(x))   ( 3.17 )  

where f1(x) is the economic objective—expected overall cost, f2(x) is the reliability 

objective—EENS, and x is the decision vector containing inspection frequencies.  

 
Fig. 3.5 Typical Substation Configuration 
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Fig. 3.6 EENS VS. Overall Cost with Varying Inspection Frequency (Normalized 

Value) 

Fig. 3.6 is obtained only considering the inspection in the 3rd state of Transformer 1 

(T1 in Fig. 3.5). In fact, if all the inspections are taken into account, it will definitely 

make the decision-making more complicated. 

3.5. Implementation of MOEA with dynamic sharing distance 

Unlike the conventional computation of sharing distance used in MOEAs, which 

requires a-priori knowledge of the usually unknown trade-off curve [91], an adaptive 

sharing algorithm based on current population is used. The procedure to apply MOEA 

with dynamic sharing distance for this problem is given in Fig. 3.7.  
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Fig. 3.7 Flowchart of Applying MOEA with Dynamic Sharing Distance  

As shown in Fig. 3.7, an initial set of candidate solutions is generated randomly at the 

beginning. Each inspection frequency is represented by a binary string. The decoding 

then converts the binary alphabet into real-value inspection frequencies. High-fitness 
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individuals, providing high reliability and low cost, stand a better chance of being 

selected as parents for the next generation. Tournament selection is employed in this 

work. Selection pressure is easily adjusted by changing the tournament size. If the 

tournament size is larger, weak individuals have a smaller chance to be selected. After 

selection, 1-point crossover is used, and mutation is applied by preventing the 

chromosomes from becoming too similar to each other. These two random-based 

evolutionary operators evolve the populations towards optimality. 

The results of MOEA toolbox developed by A/P Tan, K. C.[92] are used as a 

reference starting point to assess if other algorithms are able to produce a consistent 

and reliable Pareto-front across multiple runs. ‘Trail and error’ method is used to 

obtain the proper parameters of evolutionary algorithms. In the empirical studies in 

this thesis, the outcome of a run is not only viewed as a set of approximate non-

dominated solutions, but more as the boundary which such solutions define in 

objective space. As long as that boundary provides decision maker a convenient 

means for comparing relative merits of substation configurations and for examining 

the effects of maintenance, the application of algorithms could be considered as being 

successfully applied. Those matrices to measure the divergence, convergence or other 

performance of algorithms are not within the scope of this work. 
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3.6. Case studies on typical substation configurations 

3.6.1. Study parameters 

Single-line diagrams of the two basic substation configurations analyzed here are 

shown in Fig. 3.8. Several assumptions are made before the simulation is conducted: 

o Sub-transmission lines feeding the substations are completely reliable with 

availability of 100%. 

o Only the transformers (T1 and T2) and circuit breakers (B1~B5) are modeled 

with the Markov-chain model and the system reliability model. 

 
Fig. 3.8 Typical Substation Configurations 

The number of breakers, transformers and other system equipment are used to 

calculate the capital cost based on typical data. The interest and depreciation rate is 

12%. The main equipment used as well as their relative capital cost is listed in Table 

3.1. Initial parameters used in the two reliability models are given in Tables 3.2 & 3.3, 

and the set of parameters for the optimization is given in Table 3.4. 
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Table 3.1 Equipment and Relative Cost for Substation Designs 

Number of components Equipment Required Cost, k$, 

Configuration 1 Configuration 2 

Bus-50’ 76.5 2 2 

Main Breaker Section 33.8 2 2 

MV Tie Breaker Section 42.0 0 1 

MV Feeder Breaker 
Section 

34.4 2 2 

500mcm MV Cable-750’ 41.3 2 2 

Transformer 31.0 2 2 
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Table 3.2 Parameters of Transformers and Breakers for Markov-chain Model  
                                             
Parameters 

Components 

 

λ12 

 

Λ23 

 

λ3f 

 

λ1f 

 

λ2f 

 

P11 

 

P12 

T1 ~ T2 1/5 1/3 1/2 1/30 1/15 0.80 0.15 

B1 ~ B5 1/4 1/7 1/4 1/40 1/20 0.85 0.10 

           Parameters 

Components 

 

P13 

 

P21 

 

P22 

 

P23 

 

P31 

 

P32 

 

P33 

T1 ~ T2 0.05 0.10 0.80 0.10 0.05 0.15 0.80 

B1 ~ B5 0.05 0.05 0.70 0.25 0.05 0.10 0.85 

           Parameters 

Components 

 

P111 

 

P112 

 

P113 

 

P121 

 

P122 

 

P123 

 

P131 

T1 ~ T2 1.00 0.00 0.00 0.99 0.01 0.00 0.97 

B1 ~ B5 1.00 0.00 0.00 0.95 0.03 0.02 0.90 

           Parameters 

Components 

 

P132 

 

P133 

 

P211 

 

P212 

 

P213 

 

P221 

 

P222 

T1 ~ T2 0.02 0.01 0.00 1.00 0.00 0.25 0.65 

B1 ~ B5 0.07 0.03 0.00 1.00 0.00 0.30 0.60 

          Parameters 

Components 

 

P223 

 

P231 

 

P232 

 

P233 

 

P311 

 

P312 

 

P313 

T1 ~ T2 0.10 0.50 0.45 0.05 0.00 0.00 1.00 

B1 ~ B5 0.10 0.55 0.40 0.05 0.00 0.00 1.00 

          Parameters 

Components 

 

P321 

 

P322 

 

P323 

 

P331 

 

P332 

 

P333 

 

µf 

T1 ~ T2 0.05 0.25 0.70 0.10 0.55 0.35 52 

B1 ~ B8 0.05 0.35 0.60 0.10 0.65 0.25 122 
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Table 3.3 Cost-related Parameters ($×103) 

             Parameters 

 

Components 

 

B1~B4 

 

B5  

 

T1 ~ T2 

 

LB 

 

HB 

CM1 /inspection(k$) 0.1 0.1 0.2 --- --- 

CM2 (k$) 0.5 0.5 1.0 --- --- 

CM3 (k$) 2.0 2.0 4.0 --- --- 

Cr (k$) 5 5 8 10 20 

MTTR(hours) 48 10 168 --- --- 

 
Table 3.4 Parameters for Optimization Method 

 Configuration 1 Configuration 2 

Population 100 110 

Crossover rate 0.8 0.8 

Mutation rate 0.01 0.01 

Generation  50 70 

3.6.2. Comparison of two substation configurations and discussions 

The simulation is conducted on the two substations for assessing relative merits of the 

tie breaker in Configuration 2. As can be seen from the Pareto fronts in Fig. 3.9, 

EENS can be effectively reduced in Configurations 2 by the isolation of failure when 

a normally closed tie breaker was installed between two bus-bars, but inevitably the 

extra component would lead to more capital cost.   
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Fig. 3.9 also shows that Configuration 2 requires higher cost than Configuration 1. 

Therefore, Configuration 1 should be preferred if the budget is limited. Providing the 

same reliability, Configuration 2 costs more than Configuration 1 (points (2.1) to 

(2.2)). However, higher reliability can be guaranteed by Configurations 2 if given 

more cost (from points (2.2) to (2.3)).  

An overall Pareto front is useful to guide a decision maker in selecting a substation 

configuration. This Pareto front should consist of the front of Configuration 2 from 

points (2.3) to (2.2), the front of Configuration 1 between points (1.2) and (1.1).   

 
Fig. 3.9 Pareto Fronts of Overall Cost vs. EENS of Four Configurations.  

3.7.  Conclusion 

The proposed methodology has been successfully applied to optimal inspection 

frequencies of a study substation, which is typically used for connecting a power 

source to load points. Both the objectives of overall cost and expected energy not 

served are optimized for the study configurations. Both objectives are seen sensitive 
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to inspection frequencies.  Pareto Fronts provide decision makers a convenient means 

for comparing relative merits of substation configurations leading to the optimal 

choice of inspection frequencies to fulfill different budgetary and reliability needs. 

Through case studies, the work has demonstrated the potential of the proposed 

approach for application to more complicated substations. 
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CHAPTER 4  OPTIMIZATION OF MAINTENANCE 

EXTENTS 

In Chapter 3, a trade-off between the reliability and cost is found for the substations 

by optimizing the inspection frequency in each deterioration state of individual 

component. Besides, proper scheduling of preventive maintenance provides a more 

effective means to tradeoff between the two objectives. As an extension of the work 

in Chapter 3, this chapter optimizes the frequency of different maintenance extents 

(minor maintenance and major maintenance). A series of decision-varying Markov 

models relating the deterioration process with various maintenance actions are 

proposed to predict the reliability of individual component. Minimum Cut-sets 

Method is employed to evaluate the overall reliability of substation. A multi-objective 

evolutionary algorithm, NSGA II, is proposed to optimize the two objectives to 

provide Pareto-fronts or trade-off curves for a holistic view of the conflicting 

relationships between them.  

Some material in this chapter has also appeared in [4-5,13] of the candidate’s 

publications. 
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4.1. Need for optimizing maintenance extents 

It is assumed in this research that each inspection is followed by no maintenance 

necessary, a minor or major maintenance. Minor preventive maintenance [7] aims to 

restore components to a healthier state with limited efforts and yield. On the other 

extreme, major maintenance restores components towards “as good as new” states but 

with sharply increased maintenance cost [8]. In Chapter 3, the effect of each 

inspection is a probabilistic combination of the effects after performing all the extents 

of maintenance actions (no maintenance, minor maintenance, and major maintenance).  

It assumes that all the extents of maintenance actions rather than one specific 

maintenance action are probabilistically performed. The probability of performing a 

maintenance action k when the component is in state i (Pik), is previously assigned 

corresponding to the component state. More specifically, if the present state of a 

component is “as good as new”(state 1), the probability of performing no maintenance 

is 1 (P11=1, P12=P13=0). On the other hand, if the component is in more deterioration 

state, like state 2, three maintenance actions are available and P22 for minor 

maintenance is assigned to be higher than P23 for major maintenance. However, this 

assumption is not practical, and therefore a cost-effective strategy should be worked 

out to strike a balance between the costs and benefits of different maintenance extents.  

There is another reason which makes it inadequate to only optimize the inspection 

frequency discussed in Chapter 3. Take one optimal inspection frequency as an 

example. If this solution recommends inspection in the 2nd state every four month, the 

optimal reliability and cost can only be achieved when this component is still in state 
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2 four months later. Unfortunately, this is always not the case in reality because of the 

stochastic nature of the deterioration process. Therefore, it is expected that we can get 

higher reliability and lower cost if the next inspection/ maintenance action could be 

optimized dynamically according to the deterioration process after last 

inspection/maintenance.  

In order to optimize the maintenance frequencies and extents according to component 

conditions, the models and techniques used in Chapter 3 have to be improved. The 

layout of model is shown in Fig. 4.1. Compared to Section 3.1, four improvements are 

made in this chapter: 

• Variables to be optimized are the frequencies of maintenance activities to be 

taken on individual components during decision interval t (fm,t, fM,t). The entire 

scheduling horizon is first divided into T intervals and maintenance decision 

(no maintenance, minor maintenance or major maintenance) is made in each 

interval. The time length of each interval can be adjusted according to practical 

requirements or varying importance for each component. 

• Multiple decision-dependent Markov models are used to evaluate the reliability 

of each component over the whole maintenance horizon in place of one 

Markov model in order to incorporate the impacts of different extents of 

maintenance. Each Markov model represents one decision interval.  

• The minimum cut sets method has been used at the system-specific level for 

the assessment of the reliability of substations with more complex 

configurations and protective actions. 
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Fig. 4.1 Integrated Approach of Maintenance Optimization 

4.2.  Assessment of maintenance-dependent reliability of individual 

component 

4.2.1. Homogeneous Markov model within one decision interval 

The deterioration process and maintenance within one decision interval are modeled 

by a discrete time N-state Markov process [15] as in Fig. 4.2, where the definition of 

each state is the same as in Section 3.2. fm,t and fM,t represent the frequencies of minor 

and major maintenance activities during the decision interval t (t≤T). Markov chain 

[90] relates conditions of each component with different maintenance policies.  
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Fig. 4.2 Maintenance-dependent Markov Model 

Transitions between states obey the transition matrix P of the Markov chain. Unlike 

the Markov model in Section 3.2, the element in matrix P is transition probabilities pij, 

which can be easily converted following the procedure given in equation (4.1).  

   pij = λij ⋅ Δt  (4.1) 

where pij is the transition probability, and λij is the transition rate from state i to j, Δt is 

the time interval. 

As time progresses, the component undergoes a transition from state i (i<N) to the 

next state i+1(i+1≤ N) with a given probability pi,i+1. From the deteriorated state i+1, 

this component can either continue to deteriorate with a transition probability 

pi+1,i+2(i+2≤ N), or be restored to a better state with probability pi,j (i, j≤ N, i>j) by the 

appropriate maintenance. pi,j is updated according to the maintenance actions 

performed in the last interval. Generally, pi,j after a major maintenance increases more 
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than after minor maintenance. Therefore, preventive maintenance is able to reduce or 

even eliminate accumulated deterioration by increasing the probability of transition to 

a better state. The method for updating pi,j will be presented in detail in Section 4.2.2. 

This model also incorporates the transition from any present state to a chance failure, 

the probability of which is governed by pi,f.  

4.2.2. Decision-dependent Markov models in different decision intervals 

Homogeneous Markov chain is used within each decision interval. However, it will 

become more likely to make a transition from a deteriorated state to a better one when 

more frequent and more effective maintenance is performed. As a result, a new set of 

transition probabilities needs to be deduced as the model advances to the next interval. 

The present and future transition matrices Pt-1 and Pt are utilized in this model for 

decision intervals t-1 and t. The transition probability from a worse state to a better 

state is a function of maintenance activities. Here, the mathematical relationship 

between Pt and (fm,t-1, fM,t-1) can be estimated from existing maintenance and failure 

data. The rest of transition probabilities are related to each other by assuming that the 

ratio of the two present transition probabilities and the ratio of two future transition 

probabilities are equal [93]. It is a property of Markovian model that the future 

transition matrix largely depends on the present one. The assumption “the ratio of two 

future transition probabilities is equal to that of two present transition probabilities” is 

just one of feasible assumptions for this application. The parameters of Markov model 

are difficult to obtain, but the parameters can be easily elaborated further if given real-

world long-term history data. In this work, this relationship can be elaborated by: 
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    (4.2) 

where  and  are the transition probabilities from states i1 to j1 and i2 to j2 

respectively in interval t, and and  are the transition probabilities from 

states i1 to j1 and i2 to j2 respectively in interval t-1. 

Based on the updated probability, the transition probabilities in the future transition 

matrix are computed by equation (4.3) [94]:  

 Pt ( fm,t−1, fM ,t−1) = P
t ( fm,t−1, fM ,t−1 | St−1 = i)P(St−1 = i)  (4.3) 

where is the conditional transition probability matrix, 

influenced by the maintenance actions taken in interval t-1, given the component is in 

the state i. is the probability of being in the state i at the beginning of 

interval t-1.  

Using this model, the deterioration level of the component in terms of state 

probabilities at the beginning of interval t can be inferred from past history, which 

involves all of the maintenance performed and previous deterioration process. 

Therefore, the probabilistic law of transitions can be influenced dynamically by 

making maintenance decisions. Fig. 4.3 illustrates a decision-varying Markov process. 

Each box contains a Markov model for one decision interval.  
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Fig. 4.3 Complete Maintenance Model 

In decision interval t, availability is used to measure the reliability of a component. 

Availability is the sum of the probabilities of all working states. Therefore: 

   

� 

Aa = P(St = i)
i=1

N

∑  (4.4) 

where P(St=i) is the probability of being in the state i. 

For component a, the operational cost (Co,a), including the inspection cost, 

maintenance cost, and expected failure cost, is calculated by: 

 
 

� 

Co,a = T × Cins,a + (Cmin,a × Tm ,t +Cmaj ,a × TM ,t +Cf ,a × pf ,t)
t=1

T

∑  (4.5) 

where Cins,a is the cost of inspection of component a, Pf,t is the probability of failure in 

interval t, Cf,a is the cost of failure for component a, Cmin,a is the cost of minor 

maintenance for component a, and Cmaj,a is the cost of major maintenance for 

component a.  

Reliability of component can generally be improved at expense of higher cost with 

more frequent maintenance. Reliability of each substation is related to its 

configuration in a unique way, which requires careful evaluation for all substation 
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components in totality. In such context, a system reliability model using minimum cut 

set method is used in addition to the Markov chain model. 

4.3.  Reliability assessment of system with complex configurations and 

various failure modes 

Similar to the optimization problem in Chapter 3, the optimization can only be 

achieved when the optimization of maintenance schedules is extended from 

component-specific to system-specific. There are several advantages to use minimum 

cut sets method. First, the technique is easily implemented on a digital computer. 

Second, the technique can handle “bridges” or meshed structure in a network that 

cannot be characterized by either a series connection or a parallel connection. Third, 

minimum cut sets can give insight on critical component. The failure modes 

considered include: 

• first-order failure event, 

• second-order passive failures,  and 

• primary protection failures (additional active failure of the first-order failure 

and additional active failure with a switching device being jammed). 

Following the procedure shown in Fig. 4.4, all the minimum cut sets leading to the 

failure of individual load point can be identified. 
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Fig. 4.4 Flowchart of Minimum Cut Sets Analysis for Substations 

From a reliability point of view, the reliability of one system can be represented as a 

block diagram consisted of minimum cut sets leading to the failure of this system, 

which is shown in Fig. 4.5, where Fmn represents the failure n in minimum cut set m, 

and n1, n2, …, nn are the number of failure events involved in minimum cut set 1, 2, …, 

n. As can be seen in Fig. 4.5, all the failures within one minimum cut set can be 

viewed as being connected in parallel, and all the minimum cut sets are in series. 
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Therefore, the reliability of a system can be evaluated easily following the rules used 

for the simple configurations (series or parallel). 

 

Fig. 4.5 Block Diagram of Minimum Cut Sets 

The order of minimum cut set in this work is up to two, and higher contingencies are 

neglected due to their small probabilities. The availability for a cut set of two 

components can be calculated following the methods for the parallel outage as: 

   

� 

As =1− (1− A1)(1− A2)   (4.6) 

where A1, A2 are the availabilities of two components respectively.   

The system indices can therefore be evaluated by applying the methods for series 

components: 

   

� 

Asys = As
s=1

n

∑  (4.7) 

where As is the availability of the sth cut set.    
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4.4. Calculating two objective values of optimization 

Unlike Section 3.4, different objectives are chosen here due to the changes of model 

of individual component and the method used for evaluating the system reliability. 

Overall cost including the capital and maintenance costs and expected energy not 

served (EENS) are calculated in the following paragraphs. Normally, the 

configuration with minimum overall cost and maximum reliability is the best one.  

1) Economic objective—overall cost.  The overall cost, C, of a substation consists of 

two parts—capital cost and operational cost, which can be calculated by: 

   
  (4.8) 

where M is the number of component in this substation, Co,a is the operational cost of 

component a, CapC is capital cost in one substation, and Rate is the interest and 

depression rate.  

2) Reliability objective—EENS.  It is the expected energy not-served which 

evaluates the system reliability at all the load points: 

  

� 

EENS = ( 8760 × (1− Ap)
p=1

m

∑ × Lp)t /T
t=1

T

∑   (4.9) 

where m is the number of load points in one substation, Ap is the availability at load 

point p,  Lp is the loss of load (MW) due to failure at load point p in one decision 

interval, and T is the number of decision intervals. 
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Since the load demand at each load point is time-varying, the EENS in each decision 

interval (year) has to be calculated separately. In this work, load growth is reasonably 

considered to be 5% as suggested in [95]. EENS is the average expected energy un-

served per year over the whole scheduling horizon. 

In this work, both of the two objectives are functions of the maintenance frequencies 

(fm,t, fM,t). They can be handled as two non-commensurable and contradictory 

objectives. Therefore, the multi-objective problem can be easily formulated using 

equation (3.15) (pp. 45), where represents the overall cost, and is EENS, 

and x is the vector containing the maintenance frequencies over the scheduling 

horizon. 

4.5. Application of NSGA II and NSGA II-DE 

4.5.1. Representation of solutions 

Due to the computational burden of binary representation, the proposed approach has 

been improved by using real-coded genetic algorithm [96]. In each interval t (1≤ t≤ T), 

two integers which are chosen from 0, 1, or 2 are used to represent the frequencies of 

minor and major maintenance for each component. In this way, the number of 

elements in the chromosome equals to 2 equals to 2×M×T (where M is the number of 

component and T is the number of time intervals in years), which could be large in a 

complex system. An example of this representation method is given in Fig. 4.6. 
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Fig. 4.6 Representation of Solution 

4.5.2. Flowchart to apply NSGA II & NSGA II-DE 

The approximation of Pareto-optimal solutions involves two objectives: (i) 

convergence over successive generations and (ii) diverse and even spread across the 

Pareto Front. NSGA II [52] has been improved over the earlier NSGA [51], by 

incorporating elitism for good convergence of solutions. In addition, NSGA II does 

not need any sharing of parameters for diversity assignment to be chosen as a priori. 

All these advantages guarantee NSGA II a powerful but simple tool to be 

implemented. NAGA II and NSGA II-DE as introduced in Section 2.4 are applied to 

solve this problem. In the simulation, the flow chart to apply NSGA II to this work is 

presented in Fig. 4.7.  
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Fig. 4.7 Flowchart of Optimization Technique (NSGA II & NSGA II-DE)   

The crossover and mutation operators in this integer-coded genetic algorithm are 

described as follows: 

• Uniform crossover: the elements for offspring are randomly copied from the 

first parent or from the other parent. 

• Mutation: new values of selected elements are chosen as 0, 1, and 2. 
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4.6. Case studies on four substation configurations 

4.6.1.  Configuration descriptions and parameters 

The proposed approach is applied to four substation configurations as in Fig. 4.8 to 

assess potentials of the proposed approach for optimizing large maintenance problems 

with the following assumptions: 

• availabilities of transmission lines feeding the substations are 100%, or can be 

set by other connected substations being considered, 

• transformers (T1 and T2) and circuit breakers (B1~B6) are modeled each with 

a three-deteriorated-state Markov chain model and the system reliability model, 

• average load demand during individual decision interval at each load point is 

constant, while it varies from one interval to another. 

 

Fig. 4.8 Typical Substation Configurations 
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The capital cost of equipment is also the same as that in Table 3.1(pp. 51). Key 

parameters used in equations (4.8) and (4.9), Rate = 12%, N = 3, and T = 24. Other 

parameters are given in Table 4.1 and Table 4.2. 

Table 4.1 Initial Parameters of Transformers and Circuit Breakers used in Markov 
Model 

 T1~T2 B1~B4 B5~B6 

p11 27/40 44/64 45/64 

p12 ¼ ¼ 5/32 

p13 2/40 3/64 3/32 

p1f 1/40 1/64 3/64 

p22 16/20 26/30 13/15 

p23 3/20 3/30 8/75 

p2f 1/20 1/30 2/75 

p33 6/7 9/10 21/25 

p3f 1/7 1/10 4/25 

pf1 1 1 1 

 
Table 4.2 Cost-related Parameters 

 B1~B4 B5 ~ B6 T1 ~ T2 

Minor Maintenance ($×103) 0.50 0.50 0.35 

Major Maintenance ($×103) 2.00 2.00 1.50 

The capital cost is calculated based on the typical data about the bus configuration, 

and number of breakers, transformers and other system equipment.  
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The population size of NSGA II and NSGA II-DE is set at 200, and maximum 

iteration number is 600. Crossover and mutation probabilities for NSGA II are chosen 

as 0.9 and 0.05 respectively. Tournament size is set as 2. 

4.6.2.  Optimization results and suggestions for decision makers 

(a) Comparison between configurations 1 & 2: NSGA II is implemented here. 

Configurations 1 and 2 are compared in Fig. 4.9, highlighting the impact of tie 

breaker B5. Should very low costs be preferred, the lower end of Pareto front 1 (from 

points (1.3) to (1.4)) should be chosen at the expense of very high EENS. In the 

intermediate range where the costs for configurations 1 and 2 are comparable, 

configuration 2 should be preferred to configuration 1 for providing higher reliability 

as seen between points (2.1) and (2.2). The higher end of Pareto front 1 should be 

least considered since it provides less reliability with higher cost than configuration 2. 

The benefit of B5 is apparent in Fig. 4.9. 

(b) Comparison between configurations 3 & 4: Fig. 4.10 shows the relative impact 

from the operation of B6 between normally close (configuration 3) and normally open 

(configuration 4). B5 is installed in both configurations. In the lower ends of both 

configurations, the costs are comparable, but configuration 4 provides higher 

reliability (from points (4.1) to (4.2)). Between the points (3.1) and (3.2), 

configuration 3 costs more but does not provide higher reliability than configuration 4. 

Therefore, configuration 4 should be always preferred.  
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(c) Best overall Pareto front: Fig. 4.11 shows the overall “best” Pareto front 

considering the four configurations simultaneously. Configuration 2 is always the 

most reliable among all the four configurations. As a result, configuration 2 should be 

chosen as part of the overall best Pareto front. At the other hand, configuration 1 has 

the least overall cost (from points (1.2) to (1.3)). Summing up, the overall best Pareto 

front should cover points (2.1), (2.2), (1.2) & (1.3), as shown in Fig. 4.11. Should two 

load points instead of one load point be required, configuration 4 should be selected 

based on the analysis in part (b).  

 

Fig. 4.9 Pareto Fronts of Configurations 1 and 2  
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Fig. 4.10 Pareto Fronts of Configurations 3 and 4 

 

Fig. 4.11 Pareto Fronts of Configurations 1, 2, 3 and 4  

(d) Overall impression on each configuration: On some occasions, the decision 

maker may like to have an overall impression on each configuration without closely 
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examining the Pareto fronts. The procedure described in Section 2.3 provides a means 

of normalizing the two objectives for each point on the Pareto front using the 

membership function with equal priority given to each objective. This procedure is 

applied for all the four configurations with the best compromised solutions given in 

Table 4.3. The best compromised solutions on each Pareto front are highlighted in Fig. 

4.9 & Fig. 4.10. Based on these, configuration 3 can be described as costly and 

unreliable. Configuration 1 is the cheapest and unreliable, and should be chosen for its 

low cost. Configuration 4 is inferior to configuration 2 in terms of both cost and 

reliability. The latter should thus be preferable for most occasions, as confirmed in 

Fig. 4.11. Other best compromised solutions would be chosen, should unequal 

priorities be given to the two objectives. 

Table 4.3 Best Compromised Solution 

 Cost ($×103)) EENS (MWh/Yr ×103 ) 

Configuration 1 283.56 2.459 

Configuration 2 287.27 2.138 

Configuration 3 396.98 2.432 

Configuration 4 340.41 2.243 

 

(e) Impact of maintenance on load availability: Fig. 4.12 and Fig. 4.13 show the 

impact of maintenance on load-point availability for configurations 2 and 4. The 

availability variations of other configurations have similar trend. Rapid deterioration 

of availability occurs without any maintenance taken. According to the maintenance 
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schedule, no maintenance has been performed for both configurations until the 8th 

interval for configuration 2 and 7th interval for configuration 4. Maintenance is seen 

to improve the availability progressively over the 24-year scheduling horizon.  

 

Fig. 4.12 Availability Variations under Maintenance Configuration 2 

 

Fig. 4.13 Availability Variations under Maintenance Configuration 4 
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(f) Performance of NSGA II-DE: Ten different runs of NSGA II and NSGA II-DE 

are compared. On a computer with Intel Pentium 4, 3.00GHz CPU and 512 MB RAM, 

the average computational time over ten different runs are tabulated in Table 4.4. 

NSGA II-DE saves in average up to half of the computational time used by NSGA II. 

However, on all the four configurations studied, NSGA II generates Pareto fronts 

which are more widely spread than NSGA II-DE. 

Table 4.4. Computational Time of Two Optimization Algorithms 
Computational	  time	  (s)	  	  

Case	  1	   Case	  2	   Case	  3	   Case	  4	  

NSGA	  II	   9219	   26568	   29652	   28263	  

NSGA	  II-‐DE	   5948	   15223	   18022	   19027	  

 

4.7. Conclusion 

A modular and integrated methodology is proposed to effectively schedule preventive 

maintenance on individual components in substation by optimizing the two objectives 

of overall cost and reliability of the substation as a whole. A series of Markov models 

is proposed to predict the availability of individual components based on the 

maintenance decision over the scheduling horizon. Minimum cut sets method is 

employed to identify the effects of various failure modes on the overall reliability of 

multi-components in complex configuration. Pareto fronts formulated using the two 

objectives provide a holistic view showing the relative advantages of one substation 
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configuration over the others. Results presented on four different configurations 

demonstrate potentials and ease of application of the proposed approach for handling 

more complicated configurations. 



CHAPTER 5 OPTIMIZATION OF MAINTENANCE SCEHDULES FOR 
COMPOSISTE POWER SYSTEMS 

 

 

80 

CHAPTER 5 OPTIMIZATION OF MAINTENANCE 

SCHEDULES FOR COMPOSITE POWER SYSTEMS 

Based on the successful optimization of maintenance schedules and extents for 

substations in Chapter 4, this chapter improves each of the three functional blocks in 

the proposed approach for handling larger systems. Instead of using a series of 

maintenance-dependent Markov chains described in Section 4.2 in the first block, a 

stochastic deterioration process of individual components is formulated as a time-and 

maintenance-dependent continuous-time Markov model. The second block extends 

the original minimum cut sets in Section 4.3, by identifying the loss of energy of a 

load point due to not only a loss of continuity within a substation, but also a loss of 

continuity and a violation of transfer limit between these substations. A novel 

representation of maintenance activities is introduced in this chapter specifying both 

the maintenance timings and extents, and is proven to outperform the previous 

representation, specifying the maintenance frequencies only. Optimization of the 

reliability, maintenance and failure costs is carried out on the Roy Billinton Test 

System (RBTS) and IEEE Reliability Test System (IEEE RTS) demonstrating the 

potential of this approach in handling complex systems, and substantiating its 

improvement over the previously work reported in Section 4.5.1. 

Some material in this chapter has also appeared in [2,3] of the candidate’s 

publications. 
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5.1. Improvement of overall approach for composite power system 

Fig. 5.1 illustrates the present algorithmic structure, which is similar to that of 

previous approach as shown in Fig. 3.1 & Fig. 4.1. However, as can be seen in Fig. 

5.1, all of the three blocks have been improved in this chapter to handle larger 

systems. Instead of using a series of decision-dependent Markov chains as in Section 

4.2, a continuous-time Markov process is used to simulate stochastic deteriorations of 

individual components, the transition rates of which are updated not only based upon 

maintenance decision but also based upon time. In addition, fault tree analysis [97] 

replaces visual identification in previous work to generate minimum cut sets for 

investigating large-size problem. Besides, an improved evaluation of the loss of 

energy at a load point has been proposed. Our previous approach evaluates only the 

total loss of continuity (TLOC), which arises from all failures or a combination of 

failures within a substation. We extend this approach by including the failure and 

violation of transfer limit of all substation interconnections, which leads to a “partial 

loss of continuity” (PLOC). We are using the “reliability trip” to describe such events 

of PLOC. DC load flow is used to represent all potential overload and loss of angle 

stability on substation interconnection, and identify the minimum cut sets for 

assessing such events. More complex power systems, such as RBTS [95] and IEEE 

RTS [98] are studied instead of the four simple substation configurations in Fig. 4.8 

(pp. 71). 

In addition, this work extends the application of multi-objective optimization 

algorithm in Chapters 4, which employs Elitist Non-dominated Sorting Genetic 
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Algorithm (NSGA II), to optimize both preventive-maintenance timings and extents. 

This chapter describes the optimization of the extent of maintenance (for no, minor 

and major activities) in each time interval of each equipment’s life span by employing 

a novel and more efficient method to represent solutions. Furthermore, the cost 

objective in Section 4.4 has been split to bring in a third and a second cost objectives. 

The present formulation has thus three objectives, namely: the operation cost, 

expected energy not served, and expected failure cost, which are minimized in a 

global search for the maintenance of individual components of the study system in 

every time interval.  

 
Fig. 5.1 Integrated Approach for Maintenance Optimization 
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5.2. Improvement of two-level reliability model 

5.2.1. Time- and maintenance-dependent Markov process on component level 

The deterioration rate of a component usually depends on time, with the rate varying 

over the life cycle of the system. A continuous-time Markov model can be easily 

viewed as a Markov process with time-dependent transition rates. Therefore, the 

improved Markov model is able to incorporate the varying rather than constant 

transition rates between different deterioration states.  

If Q is defined as the transition matrix for this continuous-time Markov process, the 

elements 

� 

λij (t)of Q indicate the rate of transition from states i to j at time t for i≠j. If 

i=j, 

� 

λij (t) = − λij (t)
i≠ j
∑ .  

The state at time t is denoted as D(t), the probability that the process is in the state j at 

time t is denoted as 

     (5.1)  

where 

� 

p j (t)  is the element of vector 

� 

P(t) . Given Q, the time-dependent state 

probability 

� 

P(t) can be calculated as: 

   

� 

dP(t)
dt

= P(t)Q  (5.2) 

In the long run towards steady-state conditions, all time derivatives disappear; 

equation (5.3) is used to calculate the failure probability: 
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 (5.3) 

The undergoing deterioration of each component during maintenance is modeled here 

in 4 states as in Fig. 5.2, and the definitions of Di, i=1, … , N and the rules of 

transition among multiple states are the same as that in Chapters 3 & 4. The procedure 

to measure the reliability and economic cost of individual components is 

demonstrated in Fig. 5.3. The mean time to active failure (MTTFa), mean time to 

passive failure (MTTFp), failure duration (r), and failure probability (pf) are calculated 

using the standard methods given in [19, 88].  

 
Fig. 5.2 Time- and Maintenance-dependent Markov Model 
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Fig. 5.3 Flow Diagram of Markov model 

The component operation cost for component a (Co,a), including the inspection cost 

and maintenance cost, is calculated by:  
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� 

Co,a = T × Cins + (Cmin,D × Tmin,D +Cmaj ,D × Tmaj ,D )
D=1

3

∑

Tmin,D = (Tmin
t × pD(t)

t=1

T

∑ )

Tmaj ,D = (Tmaj
t × pD (t))

t=1

T

∑

 (5.4)  

where Cins is the inspection cost of component a, Tmin,D and Tmaj,D are the times of 

minor and major maintenance in state D, and Cmin,D and Cmaj,D are the average costs of 

minor and major maintenance for component a in state D. 

Expected failure cost of component a, Cf,a, is calculated by: 

   
 (5.5)  

where is the failure probability in interval; and Cavef,a is the average cost of 

failure for component a. 

When the system size grows, it is necessary to use a more effective system reliability 

model for assessing the collective effect of maintenance on overall system. 

5.2.2. Fault tree analysis on system level 

Fault-tree analysis is one principal method for the reliability evaluation of complex 

system, which includes three main steps—definition of the top event, construction and 

evaluation of fault tree. A fault tree is so structured that the sequence of events 

leading to the undesired event are linked under the top event and related to the 
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undesired event by logic gates (OR and AND). These undesired events are further 

developed until they reach the basic causes, known as “basic events”.  

After the identification of the fault tree for the load-point failure, minimum cut sets 

method is used to perform the quantitative evaluation of fault tree. By definition, a 

minimum cut set is the smallest set of basic events which can lead to the top event 

[99]. 

Reliability analysis has been carried out in the RBTS and IEEE RTS. The failure of 

each load point is defined as the top event, and individual or combined failure modes 

of components, which can cause top events, are those lower level events. Besides 

providing the visibility of overall system, fault-tree analysis also allows focus on one 

particular part of system at a time. For example, in RBTS, A1, A2 and A3 in Fig. 5.5 

are relatively independent in view of functions they serve. The influences on 

reliabilities due to other sub-systems are only brought about by transmission lines 

connecting them. Therefore, it is convenient for the decision maker to assess 

individual subsystem without analyzing the bulk power system.  

The order of minimum cut sets considered here is limited to four. The higher orders 

are neglected because of their small probabilities of occurrence. For the four-order 

events, the failure rate and failure duration can be evaluated with the methods of 

parallel outage given in equation (5.6). The evaluation of events of lower-order can be 

deduced following the same rule. 
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     (5.6) 

where λcs and µcs are the failure rate and duration of one cut set, respectively, λA, λB, λC, 

and λD are the failure rates of events A, B, C, and D,  rA, rB, rC, and rD are the duration 

of events A, B, C, and D, and Ucs is the annual duration of one cut set. 

 As discussed earlier, the duration of a load point failure is obtained by applying the 

methods for series components equation (5.7) 

     (5.7) 

where Utop is the annual duration of top event in one interval, Up is the annual failure 

duration of load point p, and n is the number of minimum cut sets leading to the top 

event. 

5.3. Optimization of maintenance schedules with three objectives 

5.3.1. Adding in the third objective 

Power systems are expected to operate as economically as possible (low cost), while 

providing good reliability (low EENS). Besides the expected energy not served and 

operation cost, the failure cost due to the repair of failed components are also included 

as an extension to the work in Chapters 3 & 4. Therefore, the problem is formulated 

as a three-objective search, aiming at searching for a set of maintenance schedules 



CHAPTER 5 OPTIMIZATION OF MAINTENANCE SCEHDULES FOR 
COMPOSISTE POWER SYSTEMS 

 

 

89 

which are comparatively ‘equally good’ for multiple objectives (minimization of 

operational cost, failure cost, and EENS). 

The reliability objective is EENS, which is the approximated average expected energy 

not-served caused by the deterioration failure and chance failure. Including all the 

load points, EENS is calculated by equation (5.8):  

  

� 

EENS = ( (Up × Lp)
p=1

m

∑
t=1

T

∑ ) /T  (5.8) 

where m is the number of load points in one substation, Lp is the loss of load at load 

point p in one decision interval t, and T is the number of decision interval. 

Economic objective includes the overall operational cost, CsysO, and expected failure 

cost, CsysF , of a substation, which is calculated by: 

     

     (5.9) 

where M is the number of component in the system, Co,a and Cf,a are the operation 

cost and failure cost of component a respectively.  

In this study, all three contradictory objectives are functions of maintenance actions. 

Therefore, the multi-objective problem is easily formulated as follows: 

 

� 

MinimizeF(x) = Minimize{ f1(x), f2(x), f3(x)} (5.10) 
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where , and are overall operational cost, EENS, and expected failure 

cost of overall system; x is the variable containing the potential maintenance 

schedules and extents over the scheduling horizon.  

5.3.2. Implementation of NSGA II with new representation of maintenance schedules 

There are three maintenance extents, no maintenance, minor and major maintenance, 

which are represented by integers 0, 1, and 2. The left-to-right order list of T integers 

indicates the maintenance actions in T intervals for each component. An example for 

a solution is shown in Fig. 5.4. The number of elements in the chromosome is equal to 

the number of components (M) times the number of time intervals (T Yrs), or M×T 

(=51×30=1530) in the RBTS and ((89+86)×20=3500) in the IEEE RTS. In this way, 

the new method has only half the number of the elements in one chromosome 

compared with our previous method in Section 4.5.1, which uses the frequencies of 

two maintenance actions (minor and major) in every interval for each individual 

component.  

As mentioned before, the approximation of Pareto-optimal solutions involves two 

objectives: one is the convergence over successive generations, and the other is the 

spread (diverse or even) across the Pareto Front. In this work, the diversity of 

solutions is further guaranteed by incorporating domain-knowledge in the 

initialization. The initial generation has three specially added solutions, which are 

obtained by minimizing the three objectives individually. The three solutions could be 

maintained with high probability by elitism employed in NSGA II. Therefore, a set of 
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solutions covering the whole approximated Pareto front can be obtained at the end of 

optimization. 

 
Fig. 5.4 Representation of Solution 

5.4. Case study 1: RBTS 

5.4.1. Description of RBTS and advantage of new representation of solutions 

The system studied here is the RBTS as shown in Fig. 5.5. The initial transition rates 

in Markov models of breakers and transformers are tuned according to the reliability 

parameters given in [95]. In equation (5.8), T is set at 30, and in equation (5.9), M is 

set at 51. The population size is set at 50, and the iteration number is 150. The 

crossover and mutation probabilities are chosen as 0.8 and 0.05 respectively. As 

stated in Section 5.3, the new representation method greatly saves the storage space 

than the previously proposed method in Chapter 4. Furthermore, the average 

computation time required by new representation is 2.115×103s, while by previous 

method is 2.564×103s. The initial model parameters regarding the average costs of 
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inspection, maintenance, and failure are reported in Appendix C. This set of data is 

chosen according to reviewers’ recommendation of [100]. 

Before we assess the potential of proposed approach for solving the maintenance 

optimization problem, we make the following assumptions:  

• availability of transmission lines feeding the substation are 100%,  

• the loss of continuity between substations is not included in this case study, 

• only transformers and circuit breakers are modelled with the three-deteriorated-

state Markov and the system reliability model, and 

• the average load demand during individual decision interval at each load point 

is constant, which can be varied from one interval to another for other case 

studies. 

The assumptions above may not be true in practical systems. However, our proposed 

approach has been extended to incorporate the unavailability of transmission line as 

well as the violation of transfer limits between substations. More results on this issue 

will be reported in Section 5.5.    
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Fig. 5.5 Single Line Diagram of the RBTS 

5.4.2. Pareto-optimal solutions of RBTS 

NSGA II has successfully solved this multi-objective problem. A holistic view of 

optimal solutions is given with Pareto fronts of entire system in Fig. 5.6. It can also be 

seen in Fig. 5.6 that the solutions occupying two extremes of each Pareto front are 

consistent with those obtained by optimising each individual objective. That means 

A1 

A3 

A2 
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that elitism of NSGA II has effectively maintained the extreme solutions, which are 

initialized at the beginning so that more diverse choices can be provided for decision 

makers. 

The most compromised solution is provided to decision maker by normalizing the 

three objectives for each solution with equal priority (Section 2.3). The most 

compromised solution is marked on the Pareto fronts in Fig. 5.6 (a)&(b). 

(a) 
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(b) 
Fig. 5.6 Pareto Front of Entire System: (a) Operational Cost VS. EENS, and (b) 

Operational Cost VS. Failure Cost  

Table 5.1 shows the cost-effectiveness of the most compromised maintenance. As can 

be seen in Table 5.1, the most compromised solution will result in an additional 

operational cost of $609.97×103 over a thirty-year maintenance horizon, which will 

lead to a decrease of the EENS by 0.33×104MWh/Yr (28.2% of EENS under no 

maintenance) and a decrease of expected failure cost by $23.56×103 (12.2% of that 

under no maintenance). The large percentage decreases in EENS and expected failure 

cost mean that they have led to a very significant improvement in overall reliability.   
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Table 5.1 Cost-effectiveness of Most Compromised Maintenance 

 
Overall 
Operational Cost 
($×103) 

Expected Energy 
Not Served 
(MWh/Yr×104) 

Failure Cost 
($×103) 

No maintenance/ 
inspection 

0 1.17 192.61 

Most Compromised 
maintenance 

609.97 0.84 169.05 

5.4.3. Comparison of different maintenance strategies on chosen components 

The concept of a life curve is used to illustrate the effects of the aging and different 

maintenance actions on chosen equipment. Fig. 5.7 shows the life curves of two 

chosen equipment under four maintenance strategies. As can be seen in Fig. 5.7, if a 

more effective maintenance action is taken, the equipment can operate longer and at a 

particular time, its condition will be better.  

With no maintenance, we assume the life curve is a smooth line, and the percentage of 

condition deterioration during one stage is proportional to the time duration of that 

stage. A percentage of 100 is used to represent the condition of a new component, 

while a percentage of 0 is a failed component. With maintenance, the deterioration 

towards the same percentage takes longer time. Therefore, the life curve is no longer 

smooth. Accordingly, the borderlines lie between different deterioration stages D1, D2, 

and D3, in terms of the percentage equipment condition can be decided. In Fig. 5.7, 

the borderlines are marked on the vertical axis, and four points on each curve are 

included to highlight the starting and ending of each deterioration stage.  
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It is impossible to investigate all maintenance schedules and extents during the whole 

maintenance period. For demonstrational purpose, we select three maintenance 

strategies (no maintenance, minor maintenance and major maintenance) and one most 

compromised maintenance solution for each type of equipment. The effects of 

different maintenance strategies can be seen in Fig. 5.7. It should be noted that the 

effect of most compromised solution on reliability is dependent on the setting of 

parameters in the model.  In this case study, the improvement of reliability obtained 

by taking the most compromised maintenance is lower than that by taking minor 

maintenance. However, changes of some parameter may produce different results.  

Take the most compromised maintenance strategy for one breaker CB12 (Fig. 5.7 (a)) 

as an example, maintenance schedules will only cost $25.2×103 over the thirty-year 

planning horizon. It, however, will lead to an increase of average life of the breaker 

by 13.9% (from 77.8 years to 88.7 years) compared to the expected life without any 

maintenance. The minor maintenance over 30 intervals will cost $37×103, and will 

extend the life of the breaker further from 88.7 years to 95.0 years. It also can be seen 

in Fig. 5.7(a) that the major maintenance will extend the breaker’s life to the utmost 

extent of 114.1 years, but the cost will sharply increase to $138×103. Such results 

show that the most compromised solution provides the most cost-effective 

maintenance strategy by extending the breaker’s life at a relatively low cost. Similar 

results are also seen in Fig. 5.7(b) for the transformer. 
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(a)  

 

(b) 
Fig. 5.7 Life Curves under Three Maintenance Strategies (a) circuit breaker, (b) 

transformer 
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5.5. Evaluation of loss of continuity between substations  

In case study 1, the “total loss of continuity” (TLOC) of load point within each 

substation has been identified. However, it is crucial in composite reliability analysis 

to include the power flow constraints and unavailability of transmission lines. 

Therefore, the loss of continuity due to the violation of flow constraints and failures 

of transmission lines between substations is included in the following work. 

The approach of evaluating TLOC is extended by including the failure and violation 

of transfer limit of all substation interconnections, which leads to a “partial loss of 

continuity” (PLOC). The “reliability trip” is used to describe such events of PLOC. 

DC load flow is used to represent all potential overload and loss of angle stability on 

substation interconnection, and to identify the minimum cut sets for assessing such 

events.  

The minimum cut sets method is used to cooperate with DC load flow analysis in the 

reliability evaluation of IEEE RTS (Fig. 5.8). The order of minimum cut sets 

considered in this work is limited to two. Higher orders are neglected because of their 

small probabilities of occurrence. Unlike case study 1, minimum cut sets in this work 

are grouped according to the type of energy loss they caused. As a result, the 

reliability of one substation can be represented as a block diagram consisting of 

minimum cut sets leading to TLOC and “reliability trip” which are connected in series. 

Fn (n = 1, 2, …) in Fig. 5.9 represents the failure event. 
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Fig. 5.8 Single Line Diagram of the IEEE RTS with Substations 



CHAPTER 5 OPTIMIZATION OF MAINTENANCE SCEHDULES FOR 
COMPOSISTE POWER SYSTEMS 

 

 

101 

 
Fig. 5.9 Reliability Block Diagram of One Load Point 

The aim of TLOC analysis is to identify the minimum cut sets that lead to total 

disconnections of either load point or transmission lines within each substation. 

Various failure modes are taken into account, including bus bar failure, breaker 

failure (active and passive), and malfunction of breakers in different protection zones. 

The reliability indices of minimum cut sets causing the disconnection of the same 

load point or transmission line are combined using the equations for system in series: 

    (5.11) 

    (5.12) 

where Up is the average annual disconnection duration of load point p, Ui,j is the 

average annual disconnection duration of line j caused by the component failures 

within a substation i. Ucs is the average annual duration of one cut set cs for load point, 

U’cs’ is the average annual duration of one cut set cs’ for transmission line, and n and 

n’ are the number of minimum cut sets for the load point and transmission lines 

respectively.  

The energy loss brought by “total loss of continuity” (Etotal,i) in substation i is caused 

by disconnection of load point, which can be calculated by equation (5.13): 
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       (5.13)  

where Loadp is the load demand of load point p.  

Furthermore, “reliability trip” caused by the violation of transfer limits between 

substations may also lead to the loss of energy, which is evaluated by the following 

procedure: 

(i). Identify the transmission line whose outage will lead to the overloading on other 

lines, and then form the minimum cut sets for the overloading events with those 

identified transmission lines. One of the network sensitivity factors [101], line outage 

distribution factor, is used in this approach. dl,k denotes the line outage distribution 

factor when monitoring line l after an outage on line k. This line outage distribution 

factor can be calculated beforehand and stored such that each row and column 

corresponds to one line in the network. For example, dl,k can be obtained by finding 

line l along the rows and then finding line k along that row in appropriate column. 

This factor has the following meaning:  

   
  (5.14) 

where Δfl is the change in MW flow on line l, and fk
0 is the original flow on line k 

before it was outaged.  

Once dl,k  is found, the flow on line l with line k out is determined: 

    (5.15) 
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where , are the pre-outage flows on lines l and k, respectively, and fl is the 

flow on line l with line k out. 

If , then line k belongs the minimum cut sets of the overloading 

events. This approach is illustrated in Fig. 5.10. 

All the of every transmission line is computed and saved in a matrix as a lookup 

table. For each interval, the minimum cut sets leading to the violation of transfer limit 

can be easily identified with significant savings in term of computational time. 

(ii). Modify the reliability parameters of transmission lines belonging to the minimum 

cut sets in order to include the effects of maintenance and reliability of substation 

component into the evaluation of “reliability trip” duration [102]. By doing this, the 

outage duration of transmission line is the sum of its original outage duration and the 

duration of disconnection caused by the component failures within the substation 

being connected [102]. With two ends of line k connecting substations i1 and i2, the 

new outage duration of link k, Unew,k, is calculated by equation (5.16). The duration of 

overloading or “reliability trip” of line l caused by the outage of line k, Ul,k, is thus 

obtained by equation (5.17). 

    (5.16) 

    (5.17)  
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where Uorg,k is original annual failure duration of line k, Ui1,k  and Ui2,k are annual 

disconnection durations of line k due to the failures of components within substation 

i1 and substation i2, respectively.  

(iii). Evaluate the expected energy not served caused by “reliability trip” in substation 

i with equation (5.18) as: 

         (5.18) 

where OLl,k is the overloading amount on line l due to failure of line k, and MCSl is 

the minimum cut set for line l. 
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Fig. 5.10 Procedure to Identify the Minimum Cut Sets of “reliability trip”  

Based on the previous analysis, the expected energy not served (EENS) of all the 

substations in a system is obtained by equation (5.19): 

  

� 

EENS = (Etotal,i + E partial,i )
i∈sys
∑  (5.19) 



CHAPTER 5 OPTIMIZATION OF MAINTENANCE SCEHDULES FOR 
COMPOSISTE POWER SYSTEMS 

 

 

106 

5.6. Case study 2: IEEE RTS 

5.6.1. Description of IEEE RTS  

Reliability analysis has been carried out on IEEE RTS as shown in Fig. 5.8. The 

transition rates among different states of each individual component are tuned 

according to the original reliability parameters as given in [98]. Other parameters used 

in this paper, such as load bus data, generation data, and transmission line data can be 

found in [102], and also given in Appendix D. 

IEEE RTS is analyzed here to assess the potential of proposed approach for solving 

the optimization of maintenance problem. The following assumptions are made:  

• circuit breakers and bus bars are the components to be maintained, and other 

components only participate the simulation without any maintenance, 

• the transmission lines are not always available, and their reliability parameters 

are provided [102], 

• the generation units are assumed to be 100% available,  

The simulation computation is made on this system with 24 buses, 29 generating units, 

38 transmission lines between substations and 168 circuit breakers. As proved in case 

study 1, the new representation has two advantages over the one in Section 4.5.1. First, 

it saves the storage space for variables. Among all the components, 89 circuit breakers 

and 70 bus bars are to be maintained in a twenty-year period. The new representation 

produces the chromosome of (89+70)×20=3180 elements, which is 3180 elements 

less than the previous method. Second, it reduces the computation time. In the 
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application of NSGA II, the population size is 60, the iteration number is 80, and the 

crossover and mutation probabilities are set at 0.8 and 0.05 respectively. The program 

was run on a Pentium 4 computer with 3.00GHz CPU and 512 M RAM. The average 

computation time for ten optimization runs with new presentation is 2.488×103s. In 

contrast, the optimization takes a longer time of 3.026×103s using the representation 

method in Section 4.5.1. 

5.6.2. Pareto-optimal solutions for IEEE RTS 

NSGA II has been implemented as the optimization technique to this problem. Pareto 

fronts of entire system are shown in Fig. 5.11&Fig. 5.12, giving a holistic view of 

optimal solutions. It is quite clear that the problem has been efficiently solved by this 

technique. 

As can be seen in Fig. 5.11&Fig. 5.12, the solutions occupying the two extremes of 

each Pareto front in the figures are consistent with those obtained from optimizing 

each individual objective. That means elitism of NSGA II has effectively maintained 

the extreme solutions so that more diverse choices can be provided for decision 

makers. The most compromised solutions on each Pareto front are highlighted in Fig. 

5.11&Fig. 5.12 in order to give the decision maker an overall impression of the 

system reliability.  
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Fig. 5.11 Pareto Front of Entire System: Operation Costs VS. Expected Energy Not 

Served  

 

Fig. 5.12 Pareto Front of Entire System: Operation Cost VS. Failure Cost 

Take the most compromised maintenance strategy as an example, this optimized 

maintenance actions will result in a decrease of the EENS by 3473.7MWh/Yr (9.2% 
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of EENS under no maintenance) and a decrease of expected failure cost by 36.7×103 

$/Yr (9.2% of that under no maintenance). It shows that a very significant 

improvement has been achieved by this solution. On the other hand, if comparing 

with the major maintenance, the most compromised solution will save $6.7×106 

maintenance cost (70.2% of major maintenance cost), while only causing an increase 

of EENS by 647.8MWh/Yr (1.9% of EENS under major maintenance) and an 

increase of expected failure cost $1.1×104 (3.2% of that under major maintenance). 

The small decreases in reliability with an appreciable percentage of saving in cost 

indicate that this solution is more cost-effective.  

Violation of inter-substation transfer limit on transmission line is a significant cause 

of energy loss. Fig. 5.13 shows the impact of “reliability trip” in terms of expected 

energy not served. As can be seen in Fig. 5.13, the Pareto front considering only 

TLOC lies on the left hand side of the diagram, meaning less loss of energy than the 

other one which includes “reliability trip”. For example, with the solution located at 

the lowest extreme of Pareto front (no maintenance) and no limits on power flow, the 

energy loss is 33793 MWh/Yr, which is 3997.7 MWh/Yr less than the one having 

power flow constraints. Therefore, ignoring the expected energy not served caused by 

overloaded lines will yield an overoptimistic result in the evaluation of system 

reliability. 
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Fig. 5.13 Evaluation of the Expected Energy Not Served Before and After Including 
“Reliability Trip” 

5.6.3. Improvement of different maintenance strategies on circuit breakers and bus 

bars  

Generally speaking, if a more effective maintenance actions are taken, the equipment 

can operate longer, and at a particular time, its condition will be better. Such effects 

of different maintenance actions on the circuit breaker and bus bar are illustrated in 

Fig. 5.14 with life curves.  

The concept of life curve has been introduced in Section 5.4.3, and the way to 

generate a life curve has been described in case study 1: RBTS. In this case study, two 

extreme maintenance strategies, namely no & major maintenance, and one most 

compromised maintenance solution are selected for demonstration purpose. The 

minor maintenance strategy is not shown here as in case study 1, because the relative 

merits of the most compromised maintenance with comparison to minor maintenance 

is sensitive to the setting of parameters of maintenance cost. Major maintenance aims 
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to restore components to “as good as new” with sharply increased costs [8]. Effects of 

both extreme and the most compromised maintenance strategies are shown in Fig. 

5.14.  

Take the most compromised maintenance strategy for one circuit breaker in Bus-01 as 

an example, maintenance will cost $1.61×105 over the twenty-year planning horizon; 

it however will lead to the increase of average life of the breaker by 13.5% (from 

114.3 years to 129.7 years).  

 

(a) 



CHAPTER 5 OPTIMIZATION OF MAINTENANCE SCEHDULES FOR 
COMPOSISTE POWER SYSTEMS 

 

 

112 

 

(b) 
Fig. 5.14 Life Curves under Different Maintenance Strategies of:  

(a) circuit breaker, and (b) bus bar 

5.7. Conclusion 

An integrated methodology is proposed to effectively schedule preventive 

maintenance for key components in a composite power system by optimizing the 

three objectives of reliability, maintenance and failure costs. A new time- and 

maintenance-dependent Markov process has been constructed for describing the 

impact of gradual deterioration and various maintenance strategies on the reliability of 

individual components over the maintenance horizon. The energy loss of each load 

point due to both the total loss of continuity within a substation and the loss of 

continuity and a violation of transfer limit between substations is evaluated using DC 

load flow and minimum cut set method. The three objectives have been evaluated by 
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the models above and Pareto fronts are formulated to provide a holistic view showing 

the outcomes of these optimal maintenance strategies. An improvement of the 

representation of maintenance strategies is presented. Simulation results on the RBTS 

and IEEE RTS as well as the individual components demonstrate the potentials and 

ease of application of the proposed approach for handling complex configurations. 
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CHAPTER 6 IMPLEMENTATION OF MAINTENANCE 

FOR OFFSHORE SUBSTATIONS 

Offshore systems are often remotely located and their access for data acquisition, 

inspection, and maintenance may be extremely difficult. The information collected 

during operation can rarely avoid uncertainties. Unlike traditional maintenance 

optimization methodologies that only consider the equipment’s lifetime distribution 

[103-107], a systematic approach including an adaptive maintenance advisor and a 

system maintenance optimizer are proposed here for effectively handling the planned 

and unplanned operational variations for continuous condition-based maintenance. 

First, the maintenance advisor receives and implements the maintenance plans for its 

key components from the system maintenance optimizer, which optimizes the 

maintenance schedules with multi-objective evolutionary algorithm by considering 

only design/ average operational conditions. During operation, equipment in all the 

substations will experience continual ageing, control shifts, changing weather and 

load factors, and uncertain measurements. Residing on each substation, the 

maintenance advisor receives initial maintenance plans for all its equipments; and 

estimates using hierarchical fuzzy logic their reliability changes caused by all these 

operational variations. It will also report to the maintenance optimizer any excessive 

reliability deterioration in each substation. The maintenance optimizer will then re-

optimize the maintenance activities in order to meet the overall reliability. An 

offshore substation connected to a medium-sized onshore grid will be studied here to 
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demonstrate the ability of this proposed approach for handling operational variations 

occurring during implementation with manageable computational complexity. 

Some material in this chapter has also appeared in [1] of the candidate’s publications. 
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6.1. Introduction 

In an offshore substation, operational uncertainties and variations occur continually, 

which can pronouncedly degrade the reliability and cost-effective maintenance 

scheduling of power systems. Unfortunately, it is often difficult to obtain exact 

reliability indices using conventional reliability analysis especially when conditions 

vary.  

Fuzzy sets theory was proposed by Zadeh [59] to resemble human reasoning under 

uncertainties by using approximate information [34] to generate proper decision. 

Some attempt using type-1 fuzzy logic has also been carried out to handle 

uncertainties related to component reliability [58] in power-system maintenance 

problems. Fuzzy Markov model was employed to describe transition rates [68]. 

Zadeh further proposed the alternative type-2 fuzzy logic [69] in order to handle the 

uncertainties in type-1 membership functions. In power-system applications, planned 

and unplanned operational variations occur continually, which can degrade the quality 

of maintenance scheduling of power systems. Such degradations can even be more 

pronounced for offshore power systems. The unplanned operational variations 

occurring in offshore substations are represented in [108] by an independent set of 

fuzzy memberships for ensuring the quality of maintenance scheduling. In this work, 

a hierarchical fuzzy system with a variable structure, which engages low-level fuzzy 

memberships that represent planned operational variations occurring in each offshore 

substation; as well as supervisory- or high-level fuzzy memberships that map the 

unplanned operational variations as perturbations in parameters defining each 
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respective membership function of the low-level system. As shown in Fig. 1.1, a 

maintenance advisor using the hierarchical fuzzy logic in each off-shore substation is 

linked to its connected power grid, for alternatively implementing and optimizing the 

maintenance schedules of the off-shore substation. This chapter will describe how 

these two tasks are efficiently carried out by careful management of computational 

complexity and design of fuzzy rule base. 

Chapter 5 presents an optimizer using Pareto-based multi-objective evolutionary-

algorithm is developed for synthesizing the maintenance schedules of a medium-sized 

power system, which provides the best tradeoff between its reliability and costs of 

maintenance. During implementation, the equipment reliability data will change 

according to the actual operational conditions. The initial optimal solutions will 

become sub-optimal, either under- or over-maintained. To re-establish the optimal 

solutions, the equipment reliability data will have to be re-estimated according to the 

new operational conditions and the maintenance schedules will have to be re-

optimized according to the re-estimated reliability data. 

Fig. 1.1 illustrates our proposed approach for re-establishing the Pareto-optimal 

maintenance solutions according to the actual operational variations during 

implementation. Residing on each substation, the maintenance advisor receives and 

implements the initial or updated maintenance plan for all its equipments from the 

system maintenance optimizer. In this process, the maintenance advisor will keep 

track of operational variations arising from ageing, weather, load factors, 

measurement and human-judgment uncertainties detected from key equipments. 
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Using a hierarchical fuzzy logic, the maintenance advisor estimates the change of 

reliability parameters due to the operational variations and uncertainties of its 

components and sends the changes back to the system maintenance optimizer. The 

maintenance optimizer assesses the load-point reliability and any drastic deterioration 

within the substation, which may lead to the dynamic re-optimization of the 

substation’s maintenance activities during operation for balancing the reliability 

benefits and the cost of maintenance.  

6.2. Updating reliability parameters for each component 

Reliability indices, such as mean time to failure (MTTF) and failure probability (pf), 

will not remain constant due to operational variations [108]. Changes of above 

reliability indicesΔΛ(t) = [ΔΛMTTF (t) ΔΛ f (t)] , which include MTTF (ΔΛMTTF (t) ) 

and pf (ΔΛ p f
(t) ), are calculated for each component using the following fuzzy logic 

system:  

   ΔΛ(t) = fH (C(t))  ( 6.1 )

where C(t) represents the set of operational variations of each component, and 

fH represents the mapping function of the proposed fuzzy logic system from input to 

output. 

Having calculated ΔΛ(t) , the actual reliability indices of components are updated 

according to operational variations by:  
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MTTF(t) = MTTF(t −1) + ΔΛMTTF (t)
pf (t) = pf (t −1) + ΔΛ p f

(t)  (6.2)               

where MTTF and pf  are the original reliability indices obtained from the Markov 

model, and MTTF’ and pf’ are the updated indices following the standard steps [90]. 

A hierarchical fuzzy logic system is proposed here for handling planned and 

unplanned operational variations of key components in each substation. Each 

operational variation as in C(t) is connected with the others by fuzzy linguistic rules, 

which are derived from both the expert knowledge and mathematical strategies [60, 

69]. Once the rules are established, the fuzzy logic system is used as a mapping 

function fH from the input C(t) to the output ΔΛ(t). 

6.3. Overall scheme of hierarchical fuzzy logic system 

The proposed fuzzy logic system has a computationally efficient two-level structure 

for each component (see Section 6.5.2 for case studies). Inputs in the low level collect 

the amount of all planned operational variations occurring in each component. Fuzzy 

rules at this level then update the collective impacts of all planned operational 

variations on reliability indices on each respective component. The supervisory level 

deals with all the unplanned operational variations on each component in a similar 

manner. Several parallel fuzzy logic units in the supervisory level are engaged with 

each using one unplanned operational variation as the input for evaluating its 

respective impact on the component’s reliability. The low level also connected all 
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planned and unplanned operational variations on each component for evaluating their 

overall impacts ΔΛ(t)on its reliability indices.   

Mathematically, all planned and unplanned operational variations are considered in 

parallel as follows: 

 ΔΛ(t) = f1L (X1L , f2L
(1)(X2L

(1) ),..., f2L
(i ) (X2L

(i ) ),..., f2L
(n) (X2L

(n) )  ( 6.3 ) 

where X1L represents the input of planned operational variations to the low-level fuzzy 

logic system, and X2L
(i ) represents the input of unplanned operational variation to the ith 

supervisory-level fuzzy logic unit. f1L  and f2L
(i )  are the mapping functions from inputs 

X1L & X2L
(i )

 to the output of the low-level fuzzy logic system and the ith supervisory-

level fuzzy logic unit respectively. n is the number of parallel fuzzy logic units in the 

supervisory level, which is equal to the number of unplanned operational variations 

considered for each component. 

Taking for example the transformer in our study offshore substation, X1L is an input 

vector representing variations of age, load, and operating temperature. Two 

supervisory-level fuzzy logic units are used in parallel, within which X2L
(1) and X2L

(2)
 

represent respectively variations of insulation degradation level [109] and ambient 

temperature of the transformer. As shown in Fig. 6.1, f2L
(1)(X2L

(1) )  and f2L
(2)(X2L

(2) )  give 

the corresponding impacts on reliability indices, which are considered together with 

the planned operational variations X1L (age and operating temperature) in the low 

level for calculating the overall impacts ΔΛ(t). For the circuit breaker, X1L denotes the 
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age variation from the design age in the low level. Only one supervisory-level fuzzy 

logic unit with X2L
(1)

 as the input is used for the circuit breaker for representing its 

defects level [12], which brings together the impact on the reliability indices with 

variation of age in the low level.   

 

 

Fig. 6.1 Structure of Hierarchical Fuzzy Logic System for Each Transformer 

6.4. Fuzzy representation of planned and unplanned operational 

variations and fuzzy inference process 

The change of MTTF, ΔΛMTTF (t) , is used here as the output to assess the impacts of 

operational variations on component reliability. The change in pf ,ΔΛ p f
(t) , can be 

treated as the output of a low-level fuzzy logic system obtained in a similar fuzzy 

inference process. The universe of discourse of each input and its output is quantized 
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in overlapping fuzzy sets as represented by their corresponding low- or supervisory-

level fuzzy membership functions: 

(i) Low-level Fuzzy Membership Functions: Ageing, load and operating temperature 

increases, will worsen reliability. Figs. 6.2 (a)-(c) show these operational variations 

represented in various linguistic levels. Five output linguistic levels [MW, SW, UC, 

SB, MB] in Fig. 6.2(d) represent the change of MTTF of each transformer as in 

“Much Worse”, “Slightly Worse”, “UnChanged”, “Slightly Better”, and “Much 

Better”. Similar to Fig. 6.2(a), Fig. 6.4(a) shows the representation of age variations 

of circuit breaker. In Fig. 6.4(b), three low-level fuzzy logic variables [MW, UC, MB] 

are used to represent the change of MTTF for each circuit breaker. Each planned 

operational variation and the change of MTTF, are connected by the “IF-THEN” rules 

in the low-level fuzzy logic system. For example, in Figs. 6.2 (a)-(d), if inputs are 

[(a)(the age variation is “older”) and (b)(the load factor variation is “heavier”), and 

(c)(the operating temperature variation is “higher”)], then the output is [(d)(the 

change of MTTF for this transformer will be “MW”)].  

(ii) Supervisory-level Fuzzy Membership Functions: The set of unplanned operational 

variations represented in this work are for each transformer its insulation degradation 

and ambient temperature variation, and each circuit breaker its defects such as those 

occurring in trip coils.  Degradation in transformer insulation can be detected with 

Dissolved Gas Analysis [109] with transformer-oil samples. The universe of discourse 

of insulation degradation is quantized into [better, same, worse] as in Fig. 6.4(a); 

whereas variations of ambient temperature are quantized into [lower, same, higher] as 
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shown in Fig. 6.4(b). The trip-coil defects in circuit breakers can be detected by 

current signature [12], which are quantized in [better, same, worse] as in Fig. 6.5(a). 

 

 

(a) Input: Age Variation (Yr)  

  

(b) Input: Load Factor Variation (%) (d) Output due to Figs. 6.2 (a)-(c) & Figs. 
6.4 (c)-(d) 

 

 

(c) Input: Operating Temperature Variation 
(°C) 

 

 
Fig. 6.2 Low-level Membership Functions for Each Transformer 
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(a) Input: Age Variation (Yr) (b) Output due to Fig. 6.3 (a) & Fig. 6.5 (b) 
Fig. 6.3 Low-level Membership Functions for Each Circuit Breaker 

 

  

(a) Input: Variation of Insulation 
Degradation Level (%) 

(c) Impacts on Functions in  
Fig. 6.2 (a) due to Variations in Fig. 6.4 (a) 

  

(b) Input: Ambient Temperature Variation 
(°C) 

(d) Impacts on Functions in  
Fig. 6.2 (c) due to Variations in Fig. 6.4 (b) 

Fig. 6.4 Supervisory-level Membership Functions for Each Transformer 
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(a) Input: Variation of Trip-coil Defects 
Level (%) 

(b) Impacts on Functions in Fig. 6.3 (a) due 
to Variations in Fig. 6.5 (a) 

Fig. 6.5 Supervisory-level Membership Functions for Each Circuit Breakers 

(iii) Connecting Low- and Supervisory-level Fuzzy Membership Functions: Each 

unplanned operational variation brings about impact on reliability indices by 

influencing respective planned operational variation in the low level, as illustrated in 

Fig. 6.1. Taking for example Figs. 6.4 (a) and 6.2(a) as well as Figs. 6.4(d) and 6.2(c), 

the degradation of transformer insulation will speed up transformer ageing; whereas 

the change of ambient temperature will have an impact on each transformer’s 

operating temperature. The influence on respective low-level input can be achieved 

by shifting its corresponding membership function along the universe of discourse. 

The resultant shifting is quantized into [LS, UC, RS] to represent “Left Shift”, 

“UnChanged”, and “Right Shift”, as in Figs. 6.4(c)&(d) and Fig. 6.5(b). Each 

unplanned operational variation and the consequent shifting are connected by the “IF-

THEN” rules in each supervisory-level fuzzy logic unit. For example, in Figs. 6.4 (a) 

&(c), if the input is [(a)(the variation of insulation degradation level is “worse”)], then 

the output is [(c)(the shifting of membership function for the age variation 

(represented in Fig. 6.2(a)) will be “LS”]. The resultant shifting the low-level 

membership functions is represented by the shaded area in Figs. 6.2(a) & (c) and Fig. 

6.3(a).  
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6.5. Results and discussions 

6.5.1. Description of offshore substation used in case studies  

Fig. 6.6 shows the ring substation of Bus 07 of IEEE-RTS [98], whose load-point 

reliabilities are affected by the reliabilities of transformers T1-T5 and circuit breakers 

CB1-CB5. Reliabilities of generators G1-G3 are assumed constant. As Bus 07 is 

assumed to be an offshore substation, the transformer and circuit breaker reliability 

are affected by planned as well as unplanned operational variations. The study period 

is set for 20 years.  

 
Fig. 6.6 One Line Diagram of Bus 07 in IEEE-RTS 

The two load points in Fig. 6.6 are assigned different priorities with load point 2 

having a higher priority because it transfers most of the output from generators G1—

G3 to the connected grid. Load point 1 has a lower priority because it provides a 

smaller part of the output from generators G1—G3 to local consumers. The 

population size for NSGA II is set at 80, the number of generations is 90, and the 
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crossover and mutation rates are set at 0.8 and 0.05 respectively. The maintenance 

cost data is listed in [100]. 

6.5.2. Specification of the base case and the three scenario-study cases 

Three scenario-study cases are specified as below for showing the application of our 

proposed approach for re-establishing the optimal maintenance schedules during 

implementation and meeting new operational variations.  For comparison, a base-case 

study is also carried out. 

Specification of Base Case with maintenance plans previously optimized using 

assumed average operational conditions (Table 6.1). We assume a linear ageing 

process and the same age for all components from the beginning of the maintenance 

period. Other planned operational conditions (load and operating temperature) are 

assumed constant throughout the maintenance period. No unplanned operational 

conditions are considered. In other word, the unplanned operational variations are 

assumed to be zero.  

Specification of the Three Scenario-study Cases: 

During implementation, all components will experience different ageing and/ or 

different operational variations. To demonstrate this, three scenario study cases are 

listed below: 

Scenario 1: worse-than-anticipated ageing & deteriorations where each 

transformer and each circuit breaker in Fig. 6.6 are suffering from worse ageing than 
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the base case from the beginning of the study period. These elements will also 

experience a new set of insulation degradation and trip-coil defects as shown in Fig. 

6.7. Consequently, the base-case maintenance activities will not be able to meet the 

required reliability leading to higher energy-not-served and failure cost. Therefore, 

maintenance activities will need to be re-optimized according to the excessive ageing 

and deteriorations for providing higher reliability. 

Scenario 2: lower-than-anticipated transformer loading where reliability indices 

of the respective transformers have to be re-estimated according to the new loads (Fig. 

6.8), which will necessitate re-optimization and scale-down of maintenance activities. 

Scenario 3: worse-than-anticipated working environment and ambient 

temperature where transformer reliabilities are deteriorating excessively as in Fig. 

6.9, which will necessitate re-optimization and scale-up of maintenance activities. 

This is similar but not exactly the same as Scenario 1, where our methodology will 

deal with them differently.  

The remaining section will show how the proposed hierarchical fuzzy logic system is 

effective for re-establishing the optimal maintenance schedules for the four above 

study cases. We assume the same operational conditions for all the components of 

each same type in each scenario. 
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Table 6.1 Average Operational Conditions for Base Case Optimization 

                        Component 

Condition 

Transformer Circuit breaker 

Age (Yr) 

Increase from 1 

(beginning of study 

period) to 20 (end of 

study period) 

Increase from 

1(beginning of study 

period) to 20 (end of 

study period) 

Load factor (%) 50 -- 

Average operating temperature 

(°C) 
30 -- 
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Fig. 6.7 Worse-than-anticipated Ageing & Deterioration 

 

Fig. 6.8 Better-than-anticipated Transformer Load Factor  
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Fig. 6.9 Worst-than-anticipated Working Environment & Ambient Temperature 

6.5.3. Study results -- impacts of operational variations and on optimal maintenance 

schedules 

Scenario 1 Results: worse-than-anticipated ageing & deteriorations Age 

variations of each transformer and circuit breaker are represented by the low-level 

membership function as in Figs. 6.2(a)&6.3(a). Variations of insulation degradation 

level of each transformer and the trip-coil defects level of each circuit breaker are 

assessed as shown in Fig. 6.7 and each represented by the supervisory-level 

membership functions in Figs. 6.4(a)&6.5(a). 

Figs. 6.10 (a) & (b) show the variation of MTTF of the transformer (T1) and circuit 

breaker (CB1) by implementing the base-case maintenance plan. Comparing with the 

base case, it is seen that due to excessive ageing and deteriorations, the MTTF’s of 

each transformer and circuit breaker are lower than those under Scenario 1. The 
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overall expected energy not served (EENS) in Scenario 1 is also more than the base 

case as shown in Fig. 6.11.   

The Pareto front in Fig. 6.12 shows that the proposed fuzzy expert system helps to re-

establish optimal maintenance schedules and maintain the schedules “Opt1” on the 

pareto-optimal front. As shown in Fig. 6.12, one solution on the Pareto-optimal front 

for the base case, Opt-base, is chosen as the best solution with EENS of 

1.204×104MWh/y, failure cost of $2.231×105, and operational cost of $4.890×105. 

However, Opt-base will no longer be optimal for Scenario 1 due to new operating 

conditions. Implementing Opt-base to Scenario 1 will result in higher EENS of 

1.247×104 MWh/y and higher failure cost of $2.314×105, as denoted by Sub1 in Fig. 

6.12 (a)&(b). Therefore, a new Pareto-optimal front is obtained by re-optimizing the 

maintenance schedules. A new optimal schedule Opt1 is obtained as a result of the 

collaborative effort of the maintenance optimizer and the maintenance advisor (Fig. 

1.1), providing a higher reliability than Sub1 with the same operational cost. The 

maintenance gains and costs of Sub1 and Opt1 are listed in Table 6.2. 

 

(a) Transformer 
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(b) Circuit Breaker 
Fig. 6.10 Variations of MTTF after Implementing Base-case Maintenance Plan 

 

 

Fig. 6.11 Variation of Expected Energy Not Served after Implementing Base-case 
Maintenance Plan 



CHAPTER 6 IMPLEMENTATION OF MAINTENANCE FOR OFFSHORE 
SUBSTATIONS 

 

 

134 

 

(a) Operational Cost VS. Expected Energy Not Served 

 

(b) Operational Cost VS. Failure Cost 
Fig. 6.12 Pareto fronts of Base-case and Scenario 1 Studies 

Scenario 2 Results: lower-than-anticipated transformer loading The load factor 

variation of each transformer is represented by the low-level membership functions in 

Fig. 6.2(b). In this scenario, maintenance activities will become excessive if the base-

case schedules are implemented directly. Sub2 and Opt2 in Table 6.2 show the 

reliability gains and costs of directly implementing Opt-base to this scenario and re-
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optimizing the schedules, respectively. Comparing Sub2 with Opt2, it is seen that 

Opt2 provides lower EENS and failure cost than Sub2 with the same operational cost. 

The result here demonstrates the necessity of re-establishing optimal schedules for 

this scenario.   

Scenario 3 Results: worse-than-anticipated temperature The operating 

temperature and ambient temperature of each transformer are each represented by the 

low- and supervisory-level membership functions in Figs. 6.2(c)&6.4(b). Our 

proposed hierarchical fuzzy logic indicates correctly that higher-than-anticipated 

operating temperature and ambient temperature degrade reliability. As a result, it is 

necessary to re-establish maintenance schedules. Sub3 in Table 6.2 shows the 

reliability and costs from directly implementing Opt-base to this scenario, and Opt3 is 

one re-established solution. It is obvious that Sub3 is not optimal because it causes 

worse reliability with the same operational cost than Opt3. 
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Table 6.2 Reliability Gains & Maintenance Costs  

Study 

scenarios 

Maintenance 

schedules 

Operational 

cost ($×105) 

Expected 

Energy not 

served (EENS) 

(MWh/y×104) 

Failure cost 

($×105) 

Base case Opt-base 4.890 1.204 2.231 

Different Scenarios of Planned and Unplanned Operational Variations 

Sub1 4.890 1.247 2.314 Scenario 1  

Opt1 4.890 1.234 2.279 

Sub2 4.890 1.196 2.229 Scenario 2 

Opt2 4.890 1.180 2.201 

Sub3 4.890 1.261 2.346 Scenario 3 

Opt3 4.890 1.250 2.324 



CHAPTER 6 IMPLEMENTATION OF MAINTENANCE FOR OFFSHORE 
SUBSTATIONS 

 

 

137 

6.5.4. Computational simplicity of our proposed hierarchical fuzzy system 

The proposed low-level fuzzy logic system for the transformer contains 33 rules 

with the 3 planned operational variations as inputs, each of which is quantized 

into 3 linguistic variables. In addition, the proposed supervisory-level fuzzy logic 

takes 2 unplanned operational variations as inputs, each of which is quantized into 

3 linguistic variables. Altogether, our hierarchical fuzzy system for the 

transformer contains 33(=33+3×2) rules. On the other hand, the standard type-1 

fuzzy logic will need 243(=3(3+2)) rules to contain the same number of planned 

and unplanned operational variations. Therefore, the proposed hierarchical fuzzy 

is superior to the standard type-1 fuzzy logic in terms computational simplicity 

and rule-base size. 

6.6. Conclusion 

This chapter proposes a modular and flexible architecture for updating the change of 

load-point reliability resulting from operational variations during implementation of a 

system-optimized maintenance plan. The proposed maintenance advisor will report 

any excessive deterioration of load-point reliability within each substation, and 

require the maintenance optimizer to dynamically re-establish the substation’s optimal 

maintenance activities for meeting the desired reliability with lowest cost during 

operation.  

Hierarchical fuzzy logic is demonstrated to be computationally more efficient than 

standard type-1 fuzzy logic for handling planned and unplanned operational variations 
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arising from ageing, load factor, and working condition and environment of 

transformers and circuit breakers. These operational variations are shown to have 

significant impacts on the maintenance scheduling of offshore substations.  

One main contribution of this work is on development of an online platform residing 

on each offshore substation for providing users with a library of automatic, robust, 

flexible, modular, expandable and intelligent algorithms for optimizing and 

implementing condition-based maintenance on offshore power systems, while 

responding promptly and efficiently to unpredictable operational and weather 

variations frequently encountered during offshore operations. The platform will also 

facilitate incorporating other techniques for performance comparison and further 

development. 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

This chapter concludes the study on optimization and implementation of preventive 

maintenance schedules in power systems presented in former chapters. Contributions 

made in this research and the improvements comparing to previous studies in this area 

are summarized. Some recommendations for future work on the condition-based 

maintenance scheduling for power systems are presented.  
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7.1.  Conclusions 

This thesis reports successful optimization and implementation of maintenance 

schedules using multi-objective evolutionary algorithms and hierarchical fuzzy logic 

system. The objectives of this work as defined in Section 1.3 have been fulfilled. The 

contributions are summarized in the following paragraphs. 

7.1.1. Optimization of maintenance schedule 

The two-level reliability model in every stage of this work successfully establishes the 

quantitative relationship between the reliability and costs of inspections and various 

maintenance activities.  

The Markov model in the component-specific level allows predicting the deterioration 

process of individual component. Compared to the ideal maintenance models in [16, 

110], The Markov model in this work increases the accuracy of predicting reliability 

by incorporating the probabilistic failures undetected by periodic inspections. 

Furthermore, unlike the conventional homogeneous Markov model with constant 

transition rates, the strength of this model comes from time- and decision-dependent 

transition probability/rate between each of the two deterioration states for 

incorporating the effect of ageing and maintenance. The life curve of individual 

component demonstrates that the impacts of different inspection frequencies and 

maintenance schedules on the reliability of individual component are successfully 

modeled. 
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The collective effects of maintenance are evaluated in the system-specific level that 

takes into account the impact of topological and other dependence among multiple 

components. Network modeling method allows direct simplifying all the series- or 

parallel-connected configurations of substations. Minimum cut set method can be 

easily applied either manually or by computer. Furthermore, the ability to handle 

complex configurations and combination of simultaneous failure events makes it 

more advantageous to incorporate various failure modes of components, protection 

and switching actions, and various constraints into the system reliability analysis. The 

use of a lookup table containing the line outage distribution factors for all 

transmission lines avoids repeating DC load flow analysis with every line outage 

event. Using this lookup table, the line whose outage leads to the overloading on 

another line can be easily and efficiently identified and treated as an event in the 

minimum cut set of corresponding overloaded line. The Pareto optimal maintenance 

schedules considering the energy loss due to both total loss of continuity and violation 

of transfer limit is compared with that only considering the total loss of continuity 

demonstrating that the load flow constraints between substations in a composite 

power system (IEEE RTS) are successfully incorporated.  

Based on the reliability model, a fast and effective maintenance optimizer, which uses 

multi-objective evolutionary algorithms, has been developed. Pareto-based multi-

objective evolutionary algorithms effectively deal with this combinatorial problem 

during the search process by evaluating all the potential maintenance schedules in 

parallel, and treat all the objectives with equal priority for optimization. An efficient 

and dynamic sharing algorithm based on the population distribution at current 
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generation has been added in generic MOEA, reducing the number of parameters 

required to be defined by the user through getting rid of the sharing parameter. Higher 

computational efficiency is obtained by using NSGA II and NSGAII-DE has been 

employed to further improve the efficiency of optimization. Furthermore, the elitism 

in NSGA II is further strengthened by adding the optimal solutions that are obtained 

from optimizing each individual objective into the initial solutions to achieve the most 

diverse spread of optimal solutions and provide the decision maker more feasible 

choices. A novel representation of solutions [94, 111] has been improved to 

significantly reduce the storage space and computational complexity compared to 

conventional representation methods.  

With the increasing awareness concerned with finding a balance between reliability 

and cost, the objective is to minimize simultaneously the overall operational cost, 

expected energy not served, and failure cost. Simulations carried out first on various 

basic substation configurations and then on medium-size power systems (RBTS and 

IEEE RTS), show that this optimizer is effective in scheduling the inspection 

frequencies and preventive maintenance schedules, ensuring an appropriate trade-off 

between reliability and costs. The use of multi-objective evolutionary algorithms 

simplifies the problem by avoiding the decision maker’s subjective preference before 

optimization. Instead, the Pareto front provides a holistic view of relationships 

between multiple conflicting objectives. It supplies the decision maker a set of 

optimal solutions rather than only one, where the decision maker can find his best 

choice according to his preference. Another important information among all the 

Pareto-optimal solutions is the most compromised solution. It is extracted by the 
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decision maker to achieve desired operating goals through adjusting the weights to the 

system reliability or cost. 

7.1.2. Implementation of maintenance schedule 

A unique adaptive condition-based maintenance advisor using hierarchical fuzzy logic 

has been developed for tracking the day-to-day operational conditions and 

accordingly updating reliability indices of components within offshore substation. 

Compared with the reliability under design/average operational conditions, reliability 

variations of both individual component and overall substation show the impact of 

planned and unplanned operational variations has been successfully captured by the 

maintenance advisor. Using a computationally efficient two-level fuzzy logic system, 

an innovative fuzzy inference method employing low- and supervisory-level 

membership functions has been developed. The influence of each unplanned 

operational variation on the component reliability is captured in each corresponding 

supervisory-level fuzzy logic unit by producing parametric perturbations to its 

respective low-level membership function. The strength of this technique comes from 

its powerful hierarchical structure in handling additional unplanned operational 

variations and remarkable reduction of rule base compared to the conventional type-1 

fuzzy logic.  

The ability of maintenance advisor to incorporate updated planned and unplanned 

operational variations makes it straightforward to cooperate with maintenance 

optimizer. Thus, an integrated approach consisting of adaptive maintenance advisor 

multi-objective optimizer is developed for re-estimating the component reliability 
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data according to the new operational variations and re-establishing the optimal 

maintenance schedules according to the updated reliability data. Simulations 

conducted on offshore substation show that the Pareto-optimal maintenance schedules 

obtained under design/average operational conditions become sub-optimal if 

implemented in the scenarios of new operational conditions. Pareto-optimal 

maintenance schedules are efficiently and successfully re-established and higher 

reliability is achieved than the sub-optimal schedules.  

7.2. Recommendations  

The successful application to the simple test systems and IEEE test systems has 

proved that this proposed scheme has its potential to be applied to large-scale real-

world power systems if given available data. To be applied to real-world problems, 

there are several investigations that are worth further exploration. These are 

enumerated as follows: 

Future improvement to the reliability model for individual component can be done by 

using real-world long-term historical data of conditions and maintenance schedule to 

further elaborate the parameters of Markov model.  

Future work can be done involving extensions and modifications of the proposed 

maintenance optimizer to include more constraints related to limited maintenance 

resources and manpower. Modification to this optimizer can be made to eliminate the 

unfeasible schedules during the search process or penalize the violation of constraints 

in the objective function.  
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Further improvement to the current maintenance advisor can be made using a more 

complete data and larger rule base and refining the fuzzy membership functions and 

fuzzy inference. This improvement may require mass data pertaining to the condition-

monitoring of key equipments in offshore substations and optimization technique to 

find the best suited parameters defining the membership functions. 
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APPENDIX A FUZZY LOGIC SYSTEM 

Fuzzy Set theory provides a means for representing uncertainties in the real world by 

resembling the process of human reasoning. It deals with uncertainty by attaching 

levels of possibility to a number of uncertain categories. Based on that, a fuzzy logic 

can be synthesized. A fuzzy logic system is a nonlinear mapping of a crisp input 

vector into a crisp output scalar. Its uniqueness is that it able to simultaneously deal 

with objective data and subjective knowledge. It has been used with great success in 

dealing with uncertainty in engineering. This Appendix provides the basic theories for 

synthesizing a fuzzy logic system. 

A.1 Fuzzy sets 

A fuzzy set is defined on a universe of discourse and it is characterized by a 

membership function  (Fig. A.1) which takes on values in the interval. The 

fuzzy sets overlap with each other and the membership functions provides a measure 

of the degree of similarity of an element in to each fuzzy set.  

 

Fig.  A.1 Fuzzy Sets 
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The membership functions can be chosen based on the users’ experience or designed 

by optimization procedures [112-114]. The number of membership functions is up to 

the designer. Greater resolution is achieved by using more membership functions at 

the cost of higher computational complexity. The most commonly used shapes of 

membership functions are triangular, trapezoidal, and Gaussian.  

A.2 Fuzzy rules of inference 

A fuzzy rule base consists of a collection of IF-THEN rules, which can be expressed 

as: 

 

where  are fuzzy sets in , respectively. x and y are 

linguistic variables. The premise of each rule uses the degree of each variable in the 

relevant fuzzy sets, and the conclusion assigns a membership function to each output. 

Rules can be provided by experts or can be extracted from numerical data.  

A.3 Fuzzy logic system 

A fuzzy logic system contains four steps: fuzzifier, rules, inference engine and 

defuzzifier, as shown in Fig. A. 2. Each of the steps is described in the following 

sections.  



APPENDIX A FUZZY LOGIC SYSTEM 

 

 

162 

 
Fig.  A. 2 Structure of Fuzzy Logic System 

A.3.1 Fuzzifier 

This step is to convert the crisp input variable into a set of fuzzy variables by giving 

the degree to which the input belongs to a linguistic class. For example, a fuzzifier 

splits the input x into three fuzzy levels. Trianglar membership functions are used in 

this example in Fig. A.3. Suppose the input x=12.5, the degree it belongs to the set of 

“young” is 0.9, and to the set of “mid-age” is 0.1.  

 
Fig.  A. 3 Sample Membership Functions for Input x 
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A.3.2 Inference 

The fuzzy inference is to compute the true value for the premise of each rule, namely 

aggregation, and then apply it to the conclusion part of the rule, namely composition.  

1) Aggregation 

The true value of the premise of each rule is computed in the aggregation and a fuzzy 

set is assigned to each output variable. For example, given the two rules as below: 

R1: IF x1 is young and x2 is fine weather, THEN y is good. 

R2: IF x1 is young and x2 is bad weather, THEN y is normal. 

The degree of membership of each input to the respective fuzzy set is calculated as: 

  

 (A.1) 

Hence, the true value of each rule is calculated based on the min operator: 

 
  (A.2) 

Fig. A. 4 gives an example to show how the membership function of each output is 

determined with triangular membership function. 
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Fig.  A.4 Example of Inference Process with Triangular Membership Function  

2) Composition 

All the fuzzy sets assigned to each output are combined together to form a single 

fuzzy set. Two operators, max and sum, are most commonly used in this step. Using 

the same example as above, in max composition, the combined fuzzy set is formed by 

taking the pointwise maximum over all of the fuzzy sets for that output variable: 

   (A.3) 

While in sum operation, the combined fuzzy set for each output is constructed by 

taking pointwise sum over all of the fuzzy sets. 

A.3.3 Defuzzifier 

This step is to convert the fuzzy linguistic variables to crisp output value. Among 

many defuzzification methods, Center-of-Area (COA) and Center-of-Maximum 

(COM) are the mostly common techniques [115]. The COA gives the crisp output 
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value by calculating the center of the area covered by the membership function of that 

fuzzy rule: 

  

  (A.4) 

where m is the number of segments the universe of discourse is divided into of the 

output, zi is the value of the variable at segment i, and represents its 

membership value in G. 

The COM is a simplified version of COA. If using COM, only the variable values at 

which the fuzzy sets have their maximum truth values are chosen to compute the 

output: 

      (A.5) 

where n is the number of Z values which have the maximum membership.
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APPENDIX B DATA OF SUBSTATIONS 

Table B.1 shows the assumed average load demand at each load point  

Table B.1 Load at Each Load Point 

Configuration Load point NO. Load  

MW 

1 1 120 

2 1 120 

1 60 3 

2 60 

1 60 4 

2 60 
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APPENDIX C DATA OF STUDIED RBTS 

Table C.1 Bus Load Data of RBTS 

Bus # Load  

MW 

Bus Load  

% of System Load  

2 30.0 10.81 

3 120.0 45.95 

4 60.0 21.62 

5 30.0 10.81 

6 30.0 10.81 

 Total 270.0 100.0 

 
Table C.2 Cost Parameters ($105) 

 Circuit Breaker Transformer 

Inspection 0.001 0.002 

D1 0.008 0.012 

D2 0.012 0.015 

Minor 

Maintenance 

D3 0.015 0.02 

D1 0.03 0.04 

D2 0.042 0.055 

Major 

Maintenance 

D3 0.06 0.07 

Failure 0.4 0.28 
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APPENDIX D DATA OF STUDIED IEEE RTS 

Table D.1 Bus Data of IEEE RTS 

Bus # Bus 
Type 

MW 
Load 

MVAR 
Load 

GL BL Sub 
Area 

Base 
Kv 

Zone 
# 

01 2 108 22 0 0 1 138 1 

02 2 97 20 0 0 1 138 2 

03 1 180 37 0 0 1 138 1 

04 1 74 15 0 0 1 138 1 

05 1 71 14 0 0 1 138 1 

06 1 136 28 0 1.0 1 138 2 

07 2 125 25 0 0 1 138 2 

08 1 171 35 0 0 1 138 2 

09 1 175 36 0 0 1 138 3 

10 1 195 40 0 0 1 138 3 

11 1 0 0 0 0 1 230 3 

12 1 0 0 0 0 1 230 3 

13 3 265 54 0 0 2 230 4 

14 2 194 39 0 0 2 230 6 

15 2 317 64 0 0 2 230 6 

16 2 100 20 0 0 2 230 6 

17 1 0 0 0 0 2 230 7 

18 2 333 68 0 0 2 230 7 
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19 1 181 37 0 0 2 230 5 

20 1 128 26 0 0 2 230 5 

21 2 0 0 0 0 2 230 7 

22 2 0 0 0 0 2 230 7 

23 2 0 0 0 0 2 230 5 

24 1 0 0 0 0 2 230 6 

  

Bus Type:  1 - Load Bus (no generation) 

 2 - Generation or Plant Bus 

 3 – Swing Bus 

MW Load:  load real power to be held constant 

MVAR Load:  load reactive power to be held constant 

GL:  real component of shunt admittance to ground 

BL:  imaginary component of shunt admittance to ground 
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Table D.2 Bus Load Data of IEEE RTS 

Bus # Bus Load Load If peak load 10% higher 

 % of 
System 
Load 

MW MVAR MW MVAR 

01 3.8 108 22 118.8 24.2 

02 3.4 97 20 106.7 22.0 

03 6.3 180 37 198.0 40.7 

04 2.6 74 15 81.4 16.5 

05 2.5 71 14 78.1 15.4 

06 4.8 136 28 149.6 30.8 

07 4.4 125 25 137.5 27.5 

08 6.0 171 35 188.1 38.5 

09 6.1 175 36 192.5 39.6 

10 6.8 195 40 214.5 44.0 

13 9.3 265 54 291.5 59.4 

14 6.8 194 39 213.4 42.9 

15 11.1 317 64 348.7 70.4 

16 3.5 100 20 110.0 22.0 

18 11.7 333 68 366.3 74.8 

19 6.4 181 37 199.1 40.7 

20 4.5 128 26 140.8 28.6 

 Total 100.0 2850 280 3135 638 
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Table D. 3 Data of Generations at each Bus 

Bus # Unit 
Type 

ID # PG 

MW 

QG 

MVAR 

Qmax 

MVAR 

Qmin 

MVAR 

Vs 

pu 

01 U20 1 10 0 10 0 1.035 

01 U20 2 10 0 10 0 1.035 

01 U76 3 76 14.1 30 -25 1.035 

01 U76 4 76 14.1 30 -25 1.035 

02 U20 1 10 0 10 0 1.035 

02 U20 2 10 0 10 0 1.035 

02 U76 3 76 7.0 30 -25 1.035 

02 U76 4 76 7.0 30 -25 1.035 

07 U100 1 80 17.2 60 0 1.025 

07 U100 2 80 17.2 60 0 1.025 

07 U100 3 80 17.2 60 0 1.025 

13 U197 1 95.1 40.7 80 0 1.020 

13 U197 2 95.1 40.7 80 0 1.020 

13 U197 3 95.1 40.7 80 0 1.020 

14 Sync 
Cond 

1 0 13.7 200 -50 0.980 

15 U12 1 12 0 6 0 1.014 

15 U12 2 12 0 6 0 1.014 

15 U12 3 12 0 6 0 1.014 
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15 U12 4 12 0 6 0 1.014 

15 U12 5 12 0 6 0 1.014 

15 U155 6 155 0.05 80 -50 1.014 

16 U155 1 155 25.22 80 -50 1.017 

18 U400 1 140 137.4 200 -50 1.050 
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Table D.4 Branch Data 
Perm I

D 

# 

Fro

m 

Bus 

To 

Bu

s 

L 

mile

s 

λp Du

r 

Tra

n  

λt 

R  

pu 

X  

pu 

B  

pu 

Con 

MV

A 

LTE 

MV

A 

STE 

MV

A 

Tr pu 

1 01 02 3 .2

4 

16 0.0 0.00

3 

0.01

4 

0.46

1 

175 193 200 0 

2 01 03 55 .5

1 

10 2.9 0.05

5 

0.21

1 

0.05

7 

175 208 220 0 

3 01 05 22 .3

3 

10 1.2 0.02

2 

0.08

5 

0.02

3 

175 208 220 0 

4 02 04 33 .3

9 

10 1.7 0.03

3 

0.12

7 

0.03

4 

175 208 220 0 

5 02 06 50 .4

8 

10 2.6 0.05

0 

0.19

2 

0.05

2 

175 208 220 0 

6 03 09 31 .3

8 

10 1.6 0.03

1 

0.11

9 

0.03

2 

175 208 220 0 

7 03 24 0 .0

2 

768 0.0 0.00

2 

0.08

4 

0 400 510 600 1.01

5 

8 04 09 27 .3

6 

10 1.4 0.02

7 

0.10

4 

0.02

8 

175 208 220 0 

9 05 10 23 .3

4 

10 1.2 0.02

3 

0.08

8 

0.02

4 

175 208 220 0 

10 06 10 16 .3

3 

35 0.0 0.01

4 

0.06

1 

2.54

9 

175 193 200 0 

11 07 08 16 .3

0 

10 0.8 0.01

6 

0.06

1 

0.01

7 

175 208 220 0 

12 08 09 43 .4 10 2.3 0.04 0.16 0.04 175 208 220 0 
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4 3 5 5 

13 08 10 43 .4

4 

10 2.3 0.04

3 

0.16

5 

0.04

5 

175 208 600 0 

14 09 11 0 .0

2 

768 0.0 0.00

2 

0.08

4 

0 400 510 600 1.03 

15 09 12 0 .0

2 

768 0.0 0.00

2 

0.08

4 

0 400 510 600 1.03 

16 10 11 0 .0

2 

768 0.0 0.00

2 

0.08

4 

0 400 510 600 1.01

5 

17 10 12 0 .0

2 

768 0.0 0.00

2 

0.08

4 

0 400 510 625 1.01

5 

18 11 13 33 .4

0 

11 0.8 0.00

6 

0.04

8 

0.10

0 

500 600 625 0 

19 11 14 27 .3

9 

11 0.7 0.00

5 

0.04

2 

0.08

8 

500 600 625 0 

20 12 13 33 .4

0 

11 0.8 0.00

6 

0.04

8 

0.10

0 

500 600 625 0 

21 12 23 67 .5

2 

11 1.6 0.01

2 

0.09

7 

0.20

3 

500 600 625 0 

22 13 23 60 .4

9 

11 1.5 0.01

1 

0.08

7 

0.18

2 

500 600 625 0 

23 14 16 27 .3

8 

11 0.7 0.00

5 

0.05

9 

0.08

2 

500 600 625 0 

24 15 16 12 .3

3 

11 0.3 0.00

2 

0.01

7 

0.03

6 

500 600 625 0 

: permanent outage rate (outages/year) 
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: permanent outage duration (hours) 

: transient outage rate (outages/year) 

Con: continuous rating 

LTE: long-time emergency rating (24 hour) 

STE: short-time emergency rating (15 min) 

Tr: Transformer off-nominal ratio 

Table D.5 Cost Parameters ($105) 

 Circuit Breaker Bus Bar 

Inspection 0.002 0.0018 

D1 0.01 0.012 

D2 0.015 0.022 

Minor  

Maintenance 

D3 0.03 0.03 

D1 0.03 0.04 

D2 0.042 0.055 

Major 

Maintenance 

D3 0.105 0.12 

Failure 0.6 0.85 

 

 


