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Summary 

The completion of the human genome sequencing project has provided a 

wealth of new information about the genomic blueprint of the cell. The promise of 

this information is likely to re-define the way researchers approach the study of 

complex biological systems and drug development. But genes do not tell the entire 

story of life and living processes until proteins are translationally produced and post-

translationally modified. Proteins are not only integral part of life but also are 

required for its regulation and diversification. Diseases can be caused by minor 

changes in protein dysfunction. Although there are roughly 20,000 genes in the 

human genome, only a few proteins have known functions. Little is understood about 

the physiological roles, substrate specificity, and downstream targets of the vast 

majority of these important proteins. The major challenge for fighting human disease 

lies in translating genomic information into understanding of the cellular functions of 

these proteins in both normal and pathological process.  A key step toward the 

biological characterization of proteins, as well as their adoption as drug targets, is the 

development of global solutions that bridge the gap in understanding these proteins 

and their interactions. Recently developed chemical proteomics approaches are 

alternative and complementary approaches for gene expression analysis and thus are 

ideal utensils in decoding this flood of genomic information. This approach makes 

use of synthetic small molecules that can be used to covalently modify a set of 

related proteins and subsequently allow their purification and/or identification as 

valid drug targets. Furthermore, such methods enable rapid biochemical analysis and 

small molecule screening of targets there by accelerating the often difficult process 

of target validation and drug discovery.   
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This thesis examines and addresses these challenges by introducing a 

series of chemical proteomics tools that span various analytical modes, effectively 

expanding the chemical proteomics labelling’s application on both specificity and 

scope. These include chemical (small molecules inhibitor) labelling (Chapter 2, 3 and 

4) and metabolites (endogenous small molecules) analogue labelling (Chapters 5) 

platforms, for which I demonstrate with examples, novel strategies to garner implicit 

understanding of protein functions, enzyme-substrate interactions, protein-drug 

interactions, protein localizations and protein’s post-translational modifications. 

Cohesively, these methodologies are applied (but not limited) to different phases of 

drug development--- protein targets identification, lead discovery and drug efficacy 

assessment. 
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Chapter 1. 

 

 

Introduction 

 

 

1.1 Summary 

The complete sequence of the human genome (Lander et al., 2001; 

Venter et al., 2001), in addition to the larger framework of other model 

organisms have established a firm foundation for modern biological 

investigations to unveil the blueprint of life. Rapid functional assignment and 

global characterization of every protein from the sequence data of tens of 

thousands of genes (so called functional genomics) is the next major step for the 

human genome project. Proteomics aims to accelerate this process by developing 

methods for the parallel analysis of large numbers of proteins. (Saghetalian et al., 

2005) By large-scale studying the dynamic description of gene’s product, 

proteomics offers powerful utensils to decipher gene functions (Abersold et al.,  

2001; Mann et al., 2003). It holds promises to impact our understanding of the 

molecular composition and function of cells significantly. Moreover, by 

studying the entire complement of proteins, including the modifications made to 
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a particular set of proteins, it provides a global, integrated and comprehensive 

view of disease states and cellular processes (Hanash, et al. 2003). The alteration 

of the protein functional profiles, upon perturbation by extracellular and 

intracellular cues, may also be monitored and quantified, which provides a 

powerful tool to identify proteins that are potential targets for therapeutics and 

interventions (Lindsay, M.A. et al. 2003). Researchers studying proteomics aims 

to accelerate this process by developing state-of-the-art methods for the parallel 

analysis of large numbers of proteins. The following section will discuss the 

impact of proteomics in the post-genomic era and summarize the its advances 

and applications in various phases of drug development.   

1.2 Proteomics in Post-Genomics Era 

Proteins are involved in almost all biological activities and they also have 

diverse properties, which collectively contribute greatly to our understanding of 

biological systems. Proteomics systematically study such diverse properties of 

proteins in a high-throughput manner and aim to provide detailed descriptions of the 

structure, function, interaction, modification of proteins in health and disease state. It 

deals with the large-scale determination of gene and cellular function directly at the 

protein level, thus it is an extension of genomics study. To highlight the importance 

of proteomics study in post-genomic era, we will discuss the significance of both 

genomics and proteomics, the two field deeply connected with each other at different 

levels. 

1.2.1 Genomics and Human Genome Sequencing 

Genomics was firstly coined by Thomas H. Roderick in 1986 as a term to 

define the study of the complete set of genetic information of an organism (Mckusick, 
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et al. 1997). It mainly dealt with mapping, sequencing and analysis of the whole 

genome of an organism. The significance of genomics was highlighted by the 

initiation of the Human Genome Project (HGP) in 1985 with the primary goal of 

determining the sequence of chemical base pairs which make up DNA and to identify 

and map the approximately 20,000-25,000 genes of the human genome from both a 

physical and functional standpoint  (Watson and Cook-Deegan, et al. 1991).  In 2001, 

after more than a decade of efforts from international collaboration, the draft of the 

human genome sequence was produced and made available (Lander et al., 2001; 

Venter et al., 2001). The complete sequence of the human genome holds an 

extraordinary trove of information waiting to be further analyzed. However, the 

major challenge is how to rapidly annotate all the function and characterize the roles 

of genes from the overgrowing sequence data.  

1.2.2 Challenges in Deciphering the Human Genome  

To overcome this issue, the term genomics rapidly expanded from focused 

efforts on mapping and sequencing of complete genomes to a nearly all-inclusive 

combination of genome scale experimental and computational enterprises. 

Comparative genomics, one of the most insightful approaches to interpret genomic 

data, was born almost immediately upon landmark reports of completely sequenced 

bacterial genomes of Haemophilus ifluenzae and Mycoplasma genitalium in 1995, 

followed by the first archaeal (Methanococcus jannaschii) and eukaryotic 

(Saccharomyces cerevisiae) genomes in 1996. This is attempted by the analysis of 

linear sequence motifs or higher order structural motifs that indicate a statistically 

significant similarity of a sequence to a family of sequences with known function or 

by other means such as comparison of homologous protein functions across species. 

These efforts will lead to a more richly annotated sequence database and, not by 
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themselves, to an explanation of the structure, function, and control of biological 

processes. 

With the development of high-throughput platform technologies, functional 

genomics is developed to make use of the vast wealth of data produced by genomic 

projects to describe gene functions (Hieter and Boguski, et al. 1997). Such functional 

analysis includes the large-scale characterization of genes and their derivatives 

dynamic in aspects of gene transcription, translation, and protein-protein interactions 

(Eisenberg et al., 2000). Functional genomics as a means of assessing phenotype 

differs from more classical approaches primarily with respect to the scale and 

automation of biological investigations. A classical investigation of gene expression 

might examine how the expression of a single gene varies with the development of 

an organism in vivo. Functional genomics approaches, however, using a high-

throughput tool like DNA microarray, functional genomics would examine the 

profiling of 1,000 to 10,000 genes at the transcriptional level as a function of 

development (Lockhart and Winzeler, et al. 2000). Up to date, unprecedented 

amounts of genome-wide data on gene expression patterns have been generated and 

the gene’s transcript profiles from different cellular states have been compared on a 

genome-wide scale from DNA microarray experiments. These extension and 

variation of genomics did provide a first clue about gene function at different cellular 

states and thus a more complete picture of how biological function arises from the 

information encoded in an organism's genome. These -omics have changed the way 

we plan and perform our research in the most profound way. However, the intrinsic 

limitations of the study of gene functions at the prediction or transcriptional level 

should be noticed. Firstly, in the time scale of most biological processes, except 

evolution, the genomic DNA sequence can be viewed as static and a genomic 
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sequence database therefore represents only a stationary information resource. 

Secondly, even in the most state-of-the-art transcriptome study, there is accumulating 

evidence indicating that the data of mRNA abundance gathered do not corroborate 

well with the protein expression level (Pandey and Mann, et al. 2000). It has been 

reported that variation between certain protein abundance and the corresponding 

mRNA transcripts could be as high as 30 folds (Gygi and Rochon et al., 1999; Tian 

et al., 2004). Besides this poor correlation between mRNA levels and protein 

abundance, characterization of gene products in a sophisticated biological network is 

inevitably complicated by the un-expected numbers of gene products from a single 

gene as a result of alternative splicing and posttranslational modifications. Moreover, 

localization change and protein-protein interaction change, representing another level 

of protein function profiling, is also an obstacle that cannot be overcome through 

traditional genomics study of genetic sequence.  

1.2.3 the Promise of Proteomics 

Unlike static genomic sequences, proteins inside the cell are perpetually 

being created and discarded. Besides, proteins, as highly diverse entities inside the 

cells and key structural scaffolds, signal transducers, functional executors, reaction 

catalysts, are dynamic in every aspects of view like the types of expressed proteins, 

abundance, state of modification, sub-cellular location, and etc., being dependent on 

the physiological state of the cell or tissue (Hanash, et al. 2003). Understanding these 

properties of proteins is one of the grand goals of the post-genomic era, and has been 

given a disciplinary title of its own: proteomics. As a consequence, the large-scale 

parallel analysis of proteins, termed proteome profiling, is a more accurate and 

comprehensive description which reflects the cellular state or the external conditions 

encountered by a cell than genomics information alone. Therefore, direct 
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examination of the properties of proteins, such as expression level and protein 

activity, localization and etc., with the aid of DNA sequence information, will be 

more meaningful for our comprehensive understanding of cellular processes. This 

multidisciplinary field relies on a collection of various technologies, all of which 

contribute to proteomics. These include cell imaging by light and electron 

microscopy, array and chip experiments, and genetic readout experiments, as 

exemplified by the yeast two-hybrid assay. Such studies typically challenge the high 

complexity of cellular proteomes and the low abundance of many of the proteins, 

which require highly sensitive analytical techniques. This advance has major 

implications for our understanding of cellular organisation in health and disease, and 

for pharmaceutical biotechnology. Indeed, proteomics is already yielding important 

findings that will accelerate the process of drug discovery. The following section 

discusses new concepts, innovative technologies and biological applications in 

proteome research. 

1.3 Core Technologies of Proteomics 

Most proteomics research is aiming the goal of investigating protein 

expression and function under specified physiological conditions. Many proteomics 

strategies emerged and aimed to monitor the expression of large number of proteins 

in a specified cell or tissue and quantify the expression pattern changes under 

different cellular conditions like in the presence of drug or in the diseased tissue. 

Such study makes it possible to identify disease-specific proteins, drug targets and 

markers of drug efficacy and toxicity. Today, all proteomics studies reply on two 

core technologies---two-dimentional electrophoresis (2DE) and Mass Spectrometry 

(MS). Both these core technologies have been significantly advanced during the past 
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years.  

1.3.1 Two Dimentional Gel Electrophoresis 

More than three decades ago, O’Farrell et al. (1975) and Klose et al. (1975) 

first demonstrated large-scale protein separation by 2-DE. In their works, proteins 

were separated by isoelectric focusing (IEF) in the first dimension, followed by 

separation on SDS-PAGE according to the molecular weight of the protein in the 

second dimension. E. coli, a simple model organism, was chosen in O’Farrell’s work 

and more than 1000 proteins from E. coli were resolved in 2DE. Since then, it has 

been the technique of choice for separation of complex protein mixtures into their 

individual polypeptide components and for analyzing protein composition. One 

could expect to visualize around 1000 proteins using 2D-polyacrylamide gel 

electrophorasis. However, this fraction is still short of the total number of proteins 

that may be present in a eukaryotic cell. Missing polypeptides do not enter the gel 

due to not being resolved by the pH gradient (too basic or too acidic) or simply are 

not detected due to limitations in the sensitivity of the current procedures. Ideally, 

every protein would be resolved as an isolated and detectable spot by 2D-PAGE. But 

it is estimated that at least 1000 copies of a protein have to be present in a cell for 

them to be detected by 2D and as much as 90% of the total protein of a typical cell is 

made up of only 10% of the 10 000-20 000 different protein species (Gygi, S.P., et al. 

2000). Thus, many low-abundance proteins might not be detectable by 2D-PAGE 

Therefore these low abundance proteins are unintentionally omitted from the 

subsequent analysis. 

More recently, the resolution and reproducibility of IEF was further increased 

by the introduction of immobilized pH gradients (IPG), which also enable 

researchers to tune the pH separation to any desired range. Using narrow-range IPG 
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strips allowed a larger number of proteins to be separated than had been possible 

with standard 2D-PAGE because a narrower pH range was spread out over a greater 

physical distance. This spread allowed proteins with similar isoelectric point (pI) 

values to be separated with higher resolution. In the initial study, Hoving et al. (2000) 

developed a 2D-PAGE method in which they applied narrow range IPG strips in the 

first dimension. The IPG strips were typically 1-3 pH U wide and overlapped one 

another by at least 0.5 pH U. Six IPG strips covering the pH range of 3.5 to 10 were 

used. Proteins from a B-lymphoma cell line were applied to each strip and separated 

using IEF. Each strip was then applied to an individual SDS-PAGE gel plate and 

proteins were separated in the second dimension based on their molecular weight. 

Approximately 5000 distinct spots were detected using the six IPG strips, compared 

with 1500 spots detected using a single IPG strip with a pH range of 3-10 and a 

single standard 2D-PAGE gel plate.  

Another important technological advance in 2DE to improve the detection 

limit is the development of sensitive protein stains, including the ammoniacal silver 

stain, which permits detection of proteins at or below nanogram quantities. Although, 

silver staining, which is far more sensitive than Coomassie staining methods, has 

been widely used for high sensitivity visualisation on 2D-PAGE, it is not suitable for 

quantitative analysis with a limited dynamic range. Moreover, recently developed  

Sypro post-electrophoretic fluorescent stains (Molecular Probes, Eugene, Oregon, 

USA) have emerged as alternatives, offering a better detection limit and dynamic 

range and ease of use (Yan, J.X. et al. 2000; Malone, J.P. et al. 2001). Sypro Ruby 

has been shown to be more sensitive than silver, and is compatible for subsequent 

peptide mass mapping (Lopez, M.F. et al. 2000).   

With improved detection limit and resolving power, 2D-PAGE has also been 
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used for comparison of protein expression profiles of sample pairs (normal versus 

transformed cells, cells at different stages of growth or differentiation, etc.). 

Moreover, 2D-PAGE also urged researchers to analyze the global pattern changes of 

protein expression in response to the addition of a cytokine or a drug in a given cell 

type or tissue. 

However, when 2D-PAGE is more and more used for comparison, it was 

found that the application of conventional 2D-PAGE in quantitative proteomics has 

been largely hampered by its poor reproducibility from lab to lab. This is typically 

caused by the discrepancy of proteins absorbed by the IEF strips, protein transfer 

from IEF to PAGE gels and in-homogeneities of the gel composition and pH 

gradients during manufacture (Van den Bergh, G. & Arckens, 2004). Although the 

in-homogeneities of the gel composition and pH gradients could be improved with 

more strict quality control, it is still accepted that any subtle changes in experimental 

conditions may render the quantities of two aliquots of proteins analyzed in separate 

2-D gels unequal, making it difficult to overlay and compare proteins with altered 

expression level and especially quantify them on different gels. This makes it 

difficult to distinguish between system errors and real changes in the proteome 

arising from biological perturbations. Since the amount of proteins transferred from 

the first dimension to the second dimension is usually inconstant, the poor 

reproducibility thus makes the comparison less significant and necessitates the 

running of replicate gels for the same protein Apart from being waste of samples and 

a tedious process, the accuracy of this method is highly in doubt, particularly when 

quantificatoin of protein expression by 2-DE is required. 

To address this issue, a relatively new technique (i.e. Difference in gel 

electrophoresis, refered as DIGE) was developed by Unlu et al. (1997), where two 
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different protein samples can be labeled with two structurally similar fluorescent 

dyes respectively prior to 2D-PAGE and co-separated in the same gel. 2D DIGE 

technology is based on the specific properties of two sets of spectrally resolvable 

dyes— Cyanine- 2 (Cy2), Cyanine-3 (Cy3) or Cyanine-5 (Cy5), which have been 

designed to be both mass- and charge-matched. Therefore, identical proteins labeled 

with each of the dyes will migrate to the same position on a 2D-PAGE gel. 

Resolving two or even up to three different samples on single gel separates system 

variation from biological variation and thus allows the ratio of relative abundance of 

the same protein in different samples to be compared directly. Even small differences 

in expression levels can be determined by comparing the ratio obtained from one 

fluorescently labeled sample directly with another. As a result, it is possible to see 

small differences in protein abundance between samples, with high statistical 

confidence, enabling accurate analysis of differences in protein abundance between 

samples. In addition, only biological replicates are required rather than replicates of 

the same sample. This is an advantage over conventional 2-D electrophoresis. Using 

2D-DIGE approach, minimal effort is required to gain meaningful statistical data. 

Moreover, labeling with Cy-Dye is very sensitive with a detection limit of around 

500 pg of a single protein. It offers greater sensitivity and a broader linear dynamic 

range, comparing to fluorescent staining of 2-D gels (Patton, et al. 2002).  

Although these important technological advances gives 2D-PAGE 

considerable resolving power, this technology still cannot fulfill the ultimate goal of 

displaying in one experiment an entire cell or tissue proteome. Several types of 

proteins have proven especially understated by 2DE, including low and high 

molecular mass proteins, membrane proteins, proteins with extreme isoelectric points 

(pIs) and low abundance proteins (Corthals, G.L. et al. 2000; Gygi, S.P. et al. 2000) 
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In one example, Gygi et al. found that the products of six genes migrated to the same 

faint spot on a silver-stained, narrow pH range gel of a yeast cell extract. . In Gygi, 

S.P.’s study, capacity and sensitivity of 2DE have been pushed to their limits, 

however, this inadequacy of resolution also confounds further accurate quantification 

and mass spectrometric identification. Unfortunately, the conclusion of the study is 

that 2DE as a separation method for the comprehensive analysis of the yeast 

proteome has limitations and without sample pre-enrichment, 2DE is not suitable for 

the detection of lower abundance classes of proteins, which collectively comprise at 

least one-half of the predicted proteome. Besides, the inadequacy in detecting low 

abundance proteins, membrane proteins is another un-resolved issue. About 30% of 

proteins are recently estimated to be membrane proteins (Paulsen, I.T. et al. 1998 ). It 

is well know that these membrane proteins are difficult to work with. There has been 

a report finding that only about 1% of integral membrane proteins are actually 

resolved on current 2DGE gels (even when thio-urea is used in the lysis buffer)  

(Garrels, J.I. et al. 1997) Moreover, even with continued development of sample 

preparation protocols using various detergents, there has still been an important and 

un-resolved problem of isolating highly hydrophobic membrane proteins using 2DE 

(Santoni, V., et al. 1999). Considering those limitations of 2D-PAGE, alternative 

and/or complementary separation strategies must be developed in order to permit a 

global characterization of the protein expression. 

1.3.2 Mass Spectrometry 

Apart from 2D-PAGE, MS is another technology overwhelmingly utilized in 

proteomics study. It emerged as a base for protein identification from 2D-PAGE gels 

in the late 1980s. Traditionally, protein identification involves de novo sequencing, 

most frequently by the automated, stepwise chemical degradation (Edman 
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degradation) of proteins or isolated peptide fragments.( Hewick, R. M. et al. 1981; 

Aebersold, R. H. et al.1987). As the size of sequence databases grow, even relatively 

short and otherwise imperfect sequences (gaps, ambiguous residues) became useful 

for the identification of proteins. This was realized by correlating sequences obtained 

experimentally from the peptides analysis with sequence databases. And these 

sequence information required for mapping sequence database could be easily 

generated by mass spectrometry when two technical breakthroughs made in the late 

1980s. These breakthroughs were the development of the two ionization methods 

electrospray ionization (ESI) and matrix-assisted laser desorption/ionization 

(MALDI) (Fenn, J. B. et al.1989; Cole, R.B. et al.1997; Karas, M. et al.1995). 

ESI gained immediate popularity because of the ease with which it could be 

interfaced with popular chromatographic and electrophoretic liquid-phase separation 

techniques and quickly supplanted fast atom bombardment as the ionization method 

of choice for protein and peptide samples dissolved in a liquid phase. Furthermore, 

due to the propensity of ESI to produce multiply charged analytes, simple quadrupole 

instruments and other types of mass analyzers with limited m/z range could be used 

to detect analytes with masses exceeding the nominal m/z range of the instrument. 

For different but no less compelling reasons, MALDI also rapidly gained 

popularity. The time-of-flight (TOF) mass analyzer most commonly used with 

MALDI is robust, simple, and sensitive and has a large mass range. MALDI mass 

spectra are simple to interpret due to the propensity of the method to generate 

predominantly singly charged ions. The method is relatively resistant to interference 

with matrixes commonly used in protein chemistry. For MALDI, analytes are spotted 

onto a metal plate either one at a time or, in a higher throughput format, multiple 

samples on the same plate. The samples are usually tryptic digests from proteins 
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separated by 2DE, although proteins purified by other separation methods are also 

compatible with the method. Before deposition of the analytes, the matrix is placed 

on the plate or mixed in with the sample. The matrix will absorb energy from the 

laser causing the analytes to be ionized by MALDI. The m/z ratio of the ions is then 

typically measured based on the flight time in a field-free drift tube (as opposed to 

ion mobility MS where a field pushes ions through a gas) that constitutes the heart of 

the time-of-flight mass (TOF) analyzer. Using internal calibration on monoisotopic 

masses, a mass accuracy of 5 ppm at 1000 u can be achieved. An additional bonus 

for samples isolated from biological sources is that MALDI is compatible with 

biological buffers such as phosphate and Tris and low concentrations of urea, 

nonionic detergents, and some alkali metal salts. Peptide m/z ratios are calculated 

based on the energy equation ion E = 1/2mv2 that accounts for contributions from 

kinetic energy, mass, and velocity. At a constant energy, low molecular weight ions 

will travel faster than high molecular weight ionsflight times of ions are inversely 

proportional to the square root of their molecular mass. 

These methods solved the difficulty for generating ions from large, 

nonvolatile analytes such as proteins and peptides without analyte fragmentation. 

Since then, identifying proteins by correlating information extracted from a protein 

or peptide with sequence databases rather than by de novo sequencing gradually 

became a concept accepted.  Moreover, the implementation of mass spectrometric 

methods for protein identification was further accelerated, because the methods 

initially developed for Edman sequencing to isolate small amounts of proteins and 

peptides were directly compatible with peptide analysis by LC-MS and LC-MS/MS 

(Aebersold, R.H. et al. 1987; Larive, C.K. et al. 1999). Correlating of sequence 

information generated from MS with the databases also rely on the development of 
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novel search algorithms. Such algorithms use available constraints in a decision-

making process that distinguishes the correct match from all other sequences in the 

database. As the sequence databases were complete, breakthroughs in mass 

spectrometric methods were made, and the search algorithms were set up, a rapid and 

sensitive technology for protein identification became dramatically advanced and 

mature. All these converged as the basis of protein identification by MS and also 

basis of the emerging field of proteomics.  

Today, there are in general two unveiling methods for protein identification, 

either using multiple related peptide (peptide mass mapping) or single peptide 

sequencing. Protein identification by peptide mass mapping was conceptually simple 

and reported by several groups independently at approximately the same time (Yates, 

J. R., III et al. 1993; James, P. et al. 1993).  The principle is that, after proteolysis 

with a specific protease, proteins of different amino acid sequence will produce 

groups of peptides. And the masses of these peptides constitute mass fingerprints 

unique for a specific protein. Therefore, if these selected masses (the observed 

peptide mass fingerprint) are searched in a sequence database containing the specific 

protein sequence, then it is expected to correctly identify the protein within the 

database.  

These methods implemented almost at the same time by different groups vary 

in specific details but share the following sequence of steps. Firstly using sequence-

specific proteases, peptides can be generated from the sample protein by digestion 

leaving the carboxyl- or amino-terminus fixed for the search. For instance, the most 

widely used protease trypsin leaves arginine (R) or lysine (K) at the carboxyl-

terminus after cleavage. Secondly, accuracy of mass spectrometer is in need to 

generate peptide as accurately as possible. Accuracy in mass will decrease the 
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number of peptides for any given mass in a sequence database and therefore increase 

the stringency of the search.  Thirdly, the sequences of the protein available in the 

database are then in-silico digested under the rules of the proteolytic method used in 

the experiment. This will generate a theoretical list of masses which will be 

compared with the set of measured masses. Lastly, an algorithm matches the 

measured peptide masses with those sets of masses predicted for each protein in the 

database and ranks the quality of the matches by assigning a score to each match. It 

is obvious that, the sequence of the protein to be identified has to exist in the 

sequence database being used for comparison. If DNA sequence databases are being 

used, the DNA sequences will be translated into protein sequences prior to the in-

silico digestion. Thus, genetically well-characterized organisms with genome 

sequenced will be best suited for this approach. However, since the protein 

identification by this approach depends on the correlation of multiple peptide masses 

generated from the same protein, it is neither suited for EST databases nor for 

identification of proteins in complex mixtures if the proteolyzed sample consists of 

un-separated mixtures. The problem with EST database is that it only represents a 

fragment of a gene's coding sequence and such fragment may not be long enough to 

cover a sufficient number of peptides observed in the mass spectrometry analysis to 

allow an unambiguous identification. Digests of unseparated protein mixtures is also 

problematic because it is not obvious which peptides in the complex peptide mixture 

come from the same protein. The peptide mass mapping approach is therefore most 

compatible with the identification of proteins from species of which complete 

genome sequences have been determined and for those sample proteins purified by 

2D gel electrophoresis whereby protein molecular weight and isoelectric point 

information is available to aid unambiguous identification.  When a pure protein is 
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digested and peptide masses are compared with the list of peptide masses calculated 

for the protein, typically there could be two observations. First, not all of the in-silico 

predicted peptides are detected in real experiment. Second, some of the measured 

peptide masses in mass analysis are not present in the list of masses predicted from 

the protein. The first observation, the missing masses are usually caused by a number 

of problems such as poor solubility, ion suppression, and selective ionization. There 

are many reasons that unassigned masses being observed. Firstly, changes in the 

expected peptide masses by post-translational modification (e.g., phosphorylation 

adds a net 80 u to an amino acid mass), and artificial modifications from sample 

handling (such as oxidation of methionine) could lead to unassigned masses. Some of 

these changes can be anticipated and incorporated into the search algorithm but some 

cannot. Secondly, un-expected proteolysis due to the presence of contaminating 

proteases can sometimes produce peptides unanticipated by the search algorithm 

(e.g., the presence of chymotryptic activity in a trypsin preparation). Thirdly, the 

presence of more than one protein in the sample is a frequent problem for protein 

bands in SDS gels and spots in 2D.  

Other than peptide mass mapping, protein identification can also be achieved 

by single peptide sequencing. Not like peptide mass mapping, where several peptide 

masses from the same protein are required for unambiguous identification, using 

peptide sequencing, amino acid sequence of even a relatively small peptide can 

uniquely identify a protein, because the amino acid sequence of a peptide is more 

constraining than its mass for protein identification by sequence database searching. 

This approach largely depends on tandem mass spectrometry for the generation of 

sequence-specific spectra for peptides. In a tandem mass spectrometer, peptide ions 

are fragmented and the resulting fragment ion spectra are recorded. In tandem mass 
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spectrometers such as triple quadrupole, ion trap, or quadrupole/TOF instruments, 

fragment ion spectra are generated by cleavage at the amide bonds in a process called 

collision-induced dissociation (CID) where the peptide ion to be analyzed is isolated 

and fragmented in a collision cell. Such spectra generated are much less complex 

than the high collision energy spectra generated in magnetic sector or TOF/TOF 

instruments. Therefore these spectra are relatively simple to interpret To interpret 

and annotate the spectra generated from CID, a nomenclature has been adapted to 

differentiate fragment ions according to the amide bond that fragments and the end of 

the peptide that retains a charge after fragmentation. For example, if the positive 

charge associated with the parent peptide ion remains on the amino-terminal side of 

the fragmented amide bond, then this fragment ion is referred to as a b ion. On the 

contrary, if the charge remains on the carboxyl-terminal side of the broken amide 

bond, then the fragment ion is referred to as a y ion. These individual fragment ion 

m/z values contain redundant pieces of information from the same peptide and this 

redundancy makes fragment ion spectra a rich source of sequence-specific 

information. Currently, either for single isolated proteins or on a proteome wide scale, 

peptide sequencing is most often carried out by CID in a triple quadrupole (TQ), ion-

trap (IT) or quadrupole time-of-flight (QTOF) mass spectrometer. Besides these core 

instruments, a particularly successful implementation of the peptide sequencing 

approach uses a variation in ESI called nanospray. In nanospray, a peptide sample is 

introduced at very low flow rates. Such low sample consumption afforded by the this 

technique allows for extended observation and accumulation of the ion signals and 

generally yields CID spectra of excellent quality. 

These sequencing instrumentations, when coupled with gel-free, 

chromatography-based separation methods, can even overcome the limitation of the 
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resolving power of 2D-PAGE approach and accomplish identification of the 

components in protein mixtures without the need for separation of the mixture into 

the individual protein components. It is realized by the digestion of the un-separated 

proteins and the analysis of the resulting complex peptide mixture by LC-MS/MS. 

Andrew, J.L. described a rapid and sensitive method for comprehensively 

identifying proteins in macromolecular complexes that uses multidimensional liquid 

chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and 

fragment peptides. This combination is able to identify individual proteins in even 

the most complex macromolecular complex in the cell without first purifying each 

protein component to homogeneity. With this method, they have identified more than 

100 proteins in a single run and a novel protein component of the yeast and human 

40S subunit in Saccharomyces cerevisiae ribosome (Link, A. J. et al. 1999).  

In addition to protein identification from protein mixture, these newly 

developed MS methods can be further tuned to determine the protein expression 

levels (relative quantity) between two different pools of proteins when the stable 

isotope labeling technique has been adapted. The method involves the addition to a 

sample of chemically identical but stable isotope (e.g., 2H, 13C, 15N, etc.) labeled 

internal standards. Quantitative protein profiling is therefore accomplished when a 

protein mixture (reference sample) is compared to a second sample containing the 

same proteins at different abundances and labeled with heavy stable isotopes. 

Therefore all the peptides in the sample form pairs of identical sequence but different 

mass because of the heavy stable isotope. The same physicochemical properties of 

these the peptide pairs allow them to behave identically the same during isolation, 

separation, and ionization. Thus, an accurate measure of the relative abundance of 

the peptides could be achieved by comparing the the ratio of intensities of the lower 
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and higher mass components. This ratio of peptides to some extent reflects the ratio 

of proteins in the original protein mixtures. Three groups initially and independently 

reported measuring quantitative protein profiles based on stable isotopes (Pasa-Tolic, 

L., et al.1999; Oda, Y., et al.1999; Gygi, S.P. et al. 1999).   

Gygi S.P. has recently developed a novel method for quantitative protein 

profiling based on isotope-coded affinity tags (ICAT) (Gygi S.P. et al. 1999). An 

ICAT reagent is specific toward sulfhydryl groups and has an eightfold deuterated 

linker, and a biotin affinity tag. In this strategy, the side chains of cysteinyl residues 

in a reduced protein sample representing one cell state are derivatized with the 

isotopically light form of the ICAT reagent. And equivalent groups in a sample 

representing a second cell state are derivatized with the isotopically heavy reagent. 

Afterwards, two groups are combined and enzymatically cleaved to generate peptide 

fragments while only cysteine containing peptides are tagged and isolated by avidin 

affinity chromatography to reduce the complexity. Finally, isolated csyteine 

containing peptides are analyzed by LC-MS/MS. During LC-MSMS analysis, both 

the quantity of the tagged peptides and identity of the sequence of the peptide are 

determined by automated multistage MS. The sequence information was then used to 

deduct the protein from which these peptides originate. This method is compatible 

with any amount of protein harvested from bodily fluids, cells, or tissues under any 

growth conditions and any type of biochemical, immunological, or physical 

fractionation for low abundance proteins. However, the size of the ICAT label (500 

Da) is a relatively large modification remaining throughout the MS analysis which 

can complicate the database searching algorithms, especially for small peptides. 

Similarly, stable isotope labeling with amino acids in cell culture (SILAC) is 

an in-vivo approach developed for incorporation of a label into proteins for mass 
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spectrometry (MS)-based quantitative proteomics. This method involves metabolic 

incorporation of a given 'light' or 'heavy' form of the amino acid into the proteins. In 

an experiment, two cell populations are grown in culture media that are identical 

except that one of them contains a 'light' and the other a 'heavy' form of a particular 

amino acid (e.g. 12C and 13C labeled L-lysine, respectively). When the labeled 

analog of an amino acid is supplied to cells in culture instead of the natural amino 

acid, it is incorporated into all newly synthesized proteins. After a number of cell 

divisions, each instance of this particular amino acid will be replaced by its isotope 

labeled analog. Since there is hardly any chemical difference between the labeled 

amino acid and the natural amino acid isotopes, the cells behave exactly like the 

control cell population grown in the presence of normal amino acid. After harvest, 

the proteins from both cell populations can be combined and analyzed together by 

mass spectrometry. Pairs of chemically identical peptides of different stable-isotope 

composition can be differentiated in a mass spectrometer owing to their mass 

difference. The ratio of peak intensities in the mass spectrum for such peptide pairs 

reflects the abundance ratio for the two proteins. 

Everley, P.A. et al. (2004) applied SILAC to the study of metastatic prostate 

cancer. They added 12C- and 13C-labeled amino acids to the growth media of 

different prostate cancer cell lines with various metastatic potential, giving rise to 

cells containing either “light” or “heavy” proteins, respectively. By mixing lysates 

harvested from these cells, proteins can be identified by tandem mass spectrometry at 

the same time allowing a quantitative comparison between the two samples. The 

expression levels for more than 440 proteins in the microsomal fractions of prostate 

cancer cells were compared and 60 of them were found to be elevated greater than 3-

fold in the highly metastatic cells, while 22 were reduced. Further validation was 
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carried out with western blotting to confirm the mass spectrometry-based 

quantification.  

For proteomics in general, the separation sciences continue to make great 

strides in analyzing complex mixtures and offer the potential for circumventing gel 

electrophoresis as a preparative tool for MS. Over the past decade, gel 

electrophoresis followed by proteolysis of individual stained protein bands has been 

the most common method for separating proteins prior to MS identification 

(Patterson, S.D. et al. 1994). However, a number of laboratories have been 

investigating the use of chromatography only based approaches that bypass the 

electrophoretic based preparative gel methods altogether, except for diagnostic 

purposes. Two-dimensional or orthogonal chromatography approaches such as cation 

exchange followed by reverse-phase on-line with tandem MS have been successfully 

used to identify proteins in complex mixtures after proteolysis (Link, A. J. et al. 1999; 

Opiteck, G. J. et al.1997; Opiteck, G. J. et al. 1997). Even more complex approaches 

have used computer-controlled setup with an autosampler, five columns, and three 

10-port switching valves to allow a series of steps to be performed on-line, obviating 

the need for any manual transfers of materials. The strategy included the following: 

immunoaffinity chromatography, desalting and buffer exchange on a mixed-bed 

strong ion-exchange absorbent, enzymatic digestion on an immobilized trypsin 

column, capture of peptides on a short perfusion capillary reversed-phase column, 

and final separation on an analytical reversed-phase column with on-line MS/MS 

analysis (Hsieh et al.1996). These orthogonal chromatography techniques have as a 

common goal the circumvention of the weakness of data-dependent analysis of 

complex mixtures, namely, that very complex mixtures of peptides exceed the 

capacity of these computer routines to carry out CID on all of the peptides present in 
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a given full-scan mass spectrum. Thus, by fractionating complex peptide mixtures 

on-line, these two-dimensional chromatography methods help extend the dynamic 

range of the overall analysis. 

1.4 Emerging field of Chemical Proteomics 

Although 2DE and MS methods allow researchers to analysis the relative 

levels of parallel proteins across multiple proteomic samples, these methods only 

focus on measuring protein abundance changes. Therefore these methods are limited 

in providing direct information on protein function and a series of protein post-

translational regulation, including protein-protein, protein-small-molecule 

interactions and etc. Such information will increase the quality of the data obtained 

from 2D and MS experiment and therefore bring our study more steps towards the 

fundamental goal of biological research to understand complex physiological and 

pathological processes at the different level.  

To facilitate the analysis of protein function, protein-protein interaction and 

protein-small-molecule interactions, which is complementary to abundance analysis, 

several proteomic methods have been developed including large-scale yeast two-

hybrid screens (Uetz, P. et al. 2000; Ito, T. et al. 2001) and epitope-tagging 

immunoprecipitation experiments (Gavin, A.C. et al. 2002；Ho, Y. et al. 2002) 

aiming to delineate a comprehensive profile of protein-protein interactions. Besides, 

high-throughput platforms like protein microarrays (Macbeath G. et al. 2000) were 

also developed to facilitate the rapid analysis of protein activities. Although these 

methods have the advantage in annotating specific molecular functions of individual 

protein products, one of their limitation is that they all rely on the recombinant 

expression of proteins in artificial environments. Therefore, these approaches do not 
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directly assess the functional state of these biomolecules in their native environment. 

To address this issue, the multidisciplinary science of chemical proteomics 

has emerged. These approaches utilize synthetic small molecules that can be used to 

covalently modify or being installed on a set of related proteins in-vitro or in-vivo 

and subsequently allow their purification, identification, and analysis of their 

function. The following sections will highlight the development of such chemical 

proteomic tools and their application to functional proteomic studies. 

The field of chemical proteomics makes use of small molecules probes to tag 

and monitor distinct sets of proteins within a complex proteome. These chemical 

probes offers a means to systematically analyze proteins at various levels (activity, 

localization, interaction, co- or post-translaitional modifications and etc.) other than 

simple protein abundance . 

Depending on the means through which these covalent chemical labels are 

introduced into proteins, vast majority of these strategies can be classified into three 

group: activity based (Section 1.4.2), affinity based (Section 1.4.3) or metabolic 

incorporation based (Section 1.4.4). In the following sections, we will discuss these 

probe families developed in the past decades. But before that, we will firstly 

summarize various reporters or chemical handles used to report probes once they are 

covalently linked to their target proteins (Section 1.4.1).  

1.4.1 Tagging and Detection Strategies for Chemical Proteomics 

By allowing quick and simple detection, identification and purification of 

probe-modified proteins from a complex proteome, reporters or chemical handles are 

one of the key component of a chemical probe and it distinguish a chemical probe 

from any other small molecule that can be covalently linked to a protein. Commonly 

used reporters include fluorophores and affinity tags.   
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1.4.1.1 Fluorophores 

The use of small molecule fluorophores is probably the greatest advance in 

tagging methods for chemical proteomics. Fluorescent tags can be visualized by 

direct in-gel scanning with a fluorescent scanner such as the Typhoon scanner from 

Amersham Biosciences. Fluorescent tag is advantageous in several aspects over 

affinity tags like biotin for the purpose of detection and quantification, such as 

minimal handling, higher sensitivity and a greater dynamic range. Especially when 

using recently developed fluorescent tags with non-overlapping excitation/emission 

spectra, researchers can carry out multiple chemical proteomics experiments with 

different colors and obtain all results on a single gel (Greenbaum, D. et al. 2002; 

Patricelli, M.P. et al.2001). Thus far, diverse types of fluorophores with broad range 

of structural properties and absorbance and emission spectra have been developed as 

fluorescent tags for chemical proteomics strategies. These fluorophores includes 

fluorescein and rhodamine (Patricelli, M.P. et al.2001), dansyl (Berkers, C.R. et 

al.2002), NBD (nitrobenz-2-oxa-1,3-diazole)( Schmidinger, H., et al.2005), 

BODIPY (dipyrromethene boron difluoride) (Greenbaum, D. et al. 2002) and the 

cyanine (Cy)-dyes (Chan EW, et al. 2004). Fluorescein and rhodamine is relatively 

inexpensive, but the disadvantage of these fluorophores is that they photobleach 

rapidly making them less suitable for most imaging applications. BODIPY and Cy-

dyes display high absorption coefficients, high quantum yields, narrow absorption 

peaks and relatively large stoke shifts. In addition, BODIPY and Cy-dyes are 

hydrophobic and can freely penetrate cell membranes. Therefore, these fluorophores 

are widely used for a variety of biological applications.  

1.4.1.2 Affinity tags 

Regardless of the advantages of fluorescent tags for detection, affinity tag is 
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still the most commonly used tag for chemical proteomics strategy because of its 

ability to provide a method for purification of labeled proteins. Among various 

affinity tags, biotin is the most commonly used affinity tag since biotin-streptavidin 

bond is one of the strongest known non-covalent interactions allowing for tight 

binding of low abundance biotinylated proteins. Such purification and enrichment of 

probe-bound proteins is essential for the identification of probe’s targets in a 

complex proteome.  

However, there are still limitations using biotin as a tag in chemical 

proteomics strategies. One of the limitations is that once a biotin-labeled protein is 

bound to an avidin resin, elution of the bound protein usually requires harsh 

conditions such as detergents or denaturants that release nonspecific, unlabeled 

background proteins. Moreover, a significant number of endogenously biotinylated 

proteins exist in most cells and tissue extracts therefore they are also co-purified by 

the avidin affinity resin. Recently cleavable linkers were developed to overcome 

these problems by facilitating probe specific release from the beads without using 

harsh conditions. 

Another limitation is the low cell permeability properties, of biotin preventing 

in situ and in vivo applications. Besides, sometimes, reporter tags such as biotin and 

even fluorophores can influence the specificity of chemical probes and also limit 

their utility in living cells. These shortcomings have recently been addressed with the 

advent of tandem bioorthogonal labeling methods that enable biotin/fluorophore tag 

to be added after the probe finds its target protein. The following section discusses 

the development of such bio-orthogonal ligation methods.  

1.4.1.3 Tandem Bio-Orthogonal Tagging 

The main advantage of tandem bio-orthogonal labeling is the ability to use 
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small chemical functionality that has minimal effects on target binding and cell 

permeability and that can be later used for chemical modification with any various 

reporter tags (Figure 1.1). Therefore, highly specific bioorthogonal ligation 

chemistry that can function under physiological environments will be highly 

desirable to install the reporter tag after chemical probes have reacted with target 

proteins.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Bioorthogonal reactions commonly employed for labeling of biological 
molecules. A) The bioorthogonal functionality (highlighted in oval orange), reacts 
with its counterpart (orange square), to label a biomolecule in cell lysates or live cells 
or organisms. B) Click Chemistry: copper-catalyzed azide−alkyne cycloaddition C) 
Staudinger ligation utilizing azide and phosphine reagent. 

The development of two chemoselective reactions, the Staudinger ligation 

(Saxon E. et al. 2000) and the Huisgen [3 + 2] cycloaddition or ‘click-chemistry’ 

(Rostovtsev V.V., et al. 2002; Tornoe C.W., et al. 2002; Wang Q., et al. 2003), has 
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enabled such installation. The Staudinger ligation involves the reaction between 

alkyl/aryl azides with methylester-modified triphenylphosphines, which results in the 

formation of a covalent amide bond between the two reactants Alternatively, 

alkyl/aryl azides can undergo Cu(I)-catalyzed [3 + 2] cycloadditions with terminal 

alkynes to yield triazole products Importantly, these reactions proceed with high rate 

in aqueous environments and exhibit extreme selectivity and biocompatibility with 

chemical functionality in biomolecules (nucleic acids, proteins and metabolites) and 

have consequently been termed ‘bioorthogonal’ (Prescher J.A., et al. 2005). The 

invention of these bioorthogonal reactions enables the use of alkyl azides and 

alkynes as small chemical reporters on chemical probes that can be subsequently 

converted into detection tags. This strategy has realized new in vivo applications for 

chemical proteomic methods. 

1.4.2 Affinity/Activity Based Chemical Proteomic Tools 

A popular approach of chemical proteomics relies on design and synthesis of 

chemical probes that can react with proteins specifically utilizing the distinct 

enzymatic mechanism of the target proteins (Activity or Mechanism Based Probes 

refered as ABP) or depending on its affinity to a certain class of proteins (Affinity 

Based Probe, refered as AfBP). 

1.4.2.1 General design of an Affinity/Activity based chemical probe 

In their most basic form, these chemical probes, either ABP or AfBP consist 

of three fundamental building blocks with distinct function (Figure 1.2): a reactive 

group for targeting to the conserved mechanistic or structural feature of a set of 

proteins, a tag or handle for identification and purification of modified proteins 

which we have discussed previously and a linker region that can modulate reactivity 

and specificity of the reactive group by connecting reporter and the reactive group 
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and providing enough space between reporter to the reactive group, the reactive 

group. In this section, we will mainly discuss the design and development of reactive 

groups for ABPs and AfBPs. 

For ABPs, the reactive groups of many of the successful examples have been 

developed based on covalent, mechanism-based inhibitors (suicide inhibitors) of 

various enzyme families. The selective targeting of these inhibitors depends largely 

on the conserved mechanistic differences of each protein classes. Therefore, many of 

the best examples of ABPs have been designed to target hydrolases, like serine 

hydrolases and cysteine proteases, which have a reactive nucleophilic residue in the 

active site and distinct a catalytic mechanism. It may be extrapolated that, the design 

of ABPs for enzyme classes with known covalent inhibitors is, at least in concept, 

straightforward. However, not like serine hydrolases and cysteine proteases, the 

majority of proteins do not yet have a known covalent inhibitor attacking a conserved 

residue. Therefore, AfBPs adopting an alternative strategy utilizing photo reactive 

variants of reversible inhibitors, have been developed for such proteins, (Sieber S.A., 

et al. 2006, Saghatelian A, et al. 2004, Chan EW, et al. 2004). The major difference 

is that these photoreactive AfBPs achieve target selectivity through binding affinity, 

rather than “mechanism-based” reactivity. Covalent labeling is accomplished by 

exposure to UV light, which induces the photoreactive group (e.g. diazirine, 

benzophenone and tosyl functionality) to modify proteins in close spatial proximity 

to the probes. Probes for metallohydrolases—the metalloproteases (MPs) and histone 

deacetylases (HDACs) are standard examples of AfBPs. In addition, alternative 

strategy aiming to discover labeling reagents for proteins lacking known suicide 

inhibitor is in need. For this purpose, a combinatorial or nondirected strategy has 

been introduced in which libraries of candidate probes are synthesized and screened 
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against complex 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Structure of an Activity (Affinity) based chemical probe. A chemical 
probe has three basic components: a reactive group for covalent attachment to the 
protein of interest; a linker region to provide spacing and specificity; and a tag to 
allow for identification and/or purification.  

proteomes to identify “specific” protein-labeling events, which were defined as those 

that occurred in native proteomes (Adam G.C., et al. 2001; Adam G.C., et al. 2002; 

Barglow, K. T. et al. 2004 Evans, M.J. et al. 2006). 

Since the concept of chemical proteomics profiling brought up, research 

efforts over the past decade have bred the development of chemical probes for 

numerous protein classes. These probes have been widely used to offer impressive 
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insights into enzyme function in a various biological systems. Up to date, chemical 

probes for more than a dozen protein classes have been developed including serine 

dydrolases, cysteine proteases, kinases, phosphatases, glycosidases, and 

oxidoreductases. The following discussions summarize the development of chemical 

probes, either ABPs or AfBPs, for different enzyme classes.  

1.4.2.2 Activity based Chemical probes  

1.4.2.2.1 Activity based probes for Serine hydrolases 

 Serine hydrolases is a large and diverse enzyme class constitutes 

approximately 1% of the predicted protein products encoded by most eukaryotic 

genomes. This enzyme class includes proteases, peptidases, lipases, esterases, and 

amidases. These enzymes utilize a common catalytic mechanism involving the 

activation of a conserved serine nucleophile and they are most susceptible to 

covalent modification by many types of electrophiles. Among these electrophiles, 

fluorophosphonates (FPs) has emerged as a particularly powerful class of reactive 

group for the design of ABPs targeting serine hydrolases.  

In 1997, Cravatt’s group described the first method for monitoring dynamics 

in the expression and function of an entire enzyme family. In this study, they 

synthesized an active-site directed probe based on the general and irreversible serine 

hydrolases inhibitor FP. FP was chemically modified and a small molecule reporter 

group was added to make the FP probe. The key concept here is that the reactivity of 

FPs with serine hydrolases requires that the enzymes be in a catalytically active state. 

As expected, this probe is able to covalently label serine hydrolases in cell extract 

and report the presence of serine hydrolases using in-gel fluorescence scan. 

Additionally, FP probe is able to differentiate free (active) from inhibitor-bound 

(inactive) proteases in these samples, meaning that it covalently labels these proteins 
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in an activity-dependent manner. This probe was shown to be capable of 

simultaneously monitoring the activities of multiple serine hydrolases on a systems 

level. 

1.4.2.2.2 Activity based probes for Cysteine proteases 

Like serine hydrolases (SHs), cysteine protease is another huge enzyme class 

in the genome of both prokaryotic and eukaryotic organism. This class of enzymes 

shares a common catalytic mechanism that involves a nucleophilic cysteine thiol in a 

catalytic triad. This distinct mechanism makes them susceptible to inactivation by 

different electrophiles like epoxides, vinyl sulfones, diazomethyl ketones, α-halo 

ketones, and acyloxymethyl ketones. The first activity based chemical probes for 

cysteine proteases is developed by Bogyo and colleagues based on the cathepsins 

inhibitor E64 with an activated epoxide functionality. These reagents were shown to 

be able to covalently label various cathepsins and several unidentified polypeptides 

likely to be proteases. Among these probes, both highly selective probe reporting 

cathepsin B activity and broad spectrum probes simultaneously targeting multiple 

cathepsins were identified. These probes were then used to monitor different cysteine 

protease activity in primary human tumor tissue and cells derived from human 

placenta. These probes appended with a range of reporter tags including 

radioisotopes, fluorophores, and biotin were widely utilized for the functional 

proteomic analysis of cathepsins. 

Besides for Cathepsins, chemical probes have also been developed for Clan 

CD cysteine proteases including caspases which play key roles in apoptosis-mediated 

cell death. The most popular probes targeting caspases are developed by chemically 

modifying the peptide acyloxymethyl ketone (AOMK) with various reporter tags. 

Peptide AOMK was reported for its high activity against cysteine proteases and low 
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reactivity with other weak nucleophiles. It inhibits cysteine proteases by alkylating 

the active site cysteine residue and a wide variety of peptides can be incorporated 

into AOMK structures allowing control of the selectivity and reactivity toward 

different cysteine proteases. Bogyo and colleagues chemically synthesized a library 

of probes with varying P1 position linked to AOMK structure and found that Asp-

AOMK probe efficiently labeled caspase-3, caspase-6, caspase-7 and caspase-8 but 

not caspase-9. Starting from this initial library, probes with varying P2 and P3 

positions were synthesized and the lead to the discovery of the Asp-Glu-Val-Asp 

(DEVD) substrate sequence which was most commonly used for these probes. 

Although this probe is optimal for caspase-3 and caspase-7, it is also efficiently 

recognized by several other cysteine proteases like the cathepsins and legumain. 

Further, to decrease the potency of these probes toward legumain, a screen for P3 

amino acids that direct selectivity away from legumain was conducted. This screen 

thus identified the optimized the probe AB50-Cy5, containing a nonnatural amino 

acids biphenylalanine at P3, showing most selectivity against caspases-3 and 

caspases-7. Not only used for in gel analysis, this probe, producing a maximum 

fluorescent signal allowing non-invasive imaging, can be used to monitor the kinetics 

of apoptosis in live mice, whole organs and tissue extracts.  

1.4.2.3.3 Activity based probes for protein kinases 

Following these pioneering studies, research efforts over the past decade have 

bred the development of chemical probes for numerous enzyme classes. These 

probes have been widely used to offer impressive insights into enzyme function in a 

various biological systems. This section summarizes the development chemical 

probes for individual enzyme classes. Up to date, chemical probes for more than a 

dozen enzyme classes have been developed including proteases, kinases, 
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phosphatases, glycosidases, and oxidoreductases. Like chemical probes previously 

discussed for serine hydrolases and cysteine proteases, up to now at least 518 protein 

kinases has been determined in human genome. These protein kinases are clustered 

into 17 groups and 134 families. Although these kinases are diverse in their sequence 

and structure, they all recognize a common substrate ATP, which is the key 

phosphate donor in protein or peptide substrate’s phosphorylation. Therefore, these 

kinases all share highly homologous consensus motif in their ATP binding sites. 

Protein kinases are main modulators of various cellular signaling pathways and have 

emerged as major drug targets for therapeutics. Not unexpected, the development of 

chemical tools to analyze the kinases has been an important focus. Not like 

previously discussed serine and cysteine hydrolases, protein kinases catalyze 

phosphate transfer from ATP to substrate by a direct transfer mechanism that does 

not involve covalent enzyme intermediates. Therefore, the kinase active site does not 

contain any unusually nucleophilic residues and the design is not as straight forward 

as for serine or cysteine hydrolases. Kinases do share a common conserved active-

site lysines residue and this lysine residue has been the major target residue for the 

design of ABP probes. Therefore many kinase probes have been developed based on 

an appropriately placed electrophile that could efficiently react with the equilibrating 

deprotonated lysine.   

Among these methods, Patricelli and colleagues reported a kinase probe 

relying on a reactive acyl phosphate-containing nucleotides, prepared from a biotin 

derivative and ATP or ADP (Patricelli MP, et al. 2007). A 6 carbon chain linker was 

inserted between the acyl phosphate and the biotin to distance the biotin from the 

nucleotide. The probe design has been proved to be successful to bind selectively and 

react covalently at the ATP-binding sites of at least 75% (400) of the known human 
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protein kinases in cell lysates. With this probe, the biotinylated kinases could then be  

analyzed by LC-MS/MS to determine the identity of the labeled protein and the 

functional state of many kinases could be profiled in parallel directly in native 

proteomes. Potency and selectivity of kinase inhibitors could be analyzed with 

competitive assay using this probe s to determine inhibitor potency and selectivity 

against native protein kinases as well as against hundreds of other ATPases.  

Yee MC et al. (2005) reported a targeted kinase probe labeling 

phosphoinositide 3-kinase (PI 3-kinase) and the PI 3-kinase-related kinase (PIKK) 

families (Yee MC, 2005). This probe is based on potent and covalent inhibitor 

Wortmannin, which targets members of the PI3K and the PIKK families and 

covalently modify the lysine in the active site. In this study, biotin- and fluorophore-

based probes of wortmannin were synthesized and were used to label PI3K and 

PIKK family members, consistent with the presence of the conserved active-site 

lysine. The high sensitivity of these probe to detect PI3K and PIKK family in 

complex proteomes allow accurate quantitation of known protein targets, as well as 

the identification of new targets of Wortmannin like polo-like kinase 1 (PLK1) and 

polo-like kinase 3 (PLK3). 

1.4.2.2.4 Activity based probes for cytochrome P450 

The cytochrome P450 superfamily (CYP) is a large and diverse group of 

enzymes. The function of most CYP enzymes is to catalyze the oxidation of organic 

substances. The substrates of CYP enzymes include metabolic intermediates such as 

lipids and steroidal hormones, as well as xenobiotic substances such as drugs and 

other toxic chemicals. CYPs are the major enzymes involved in drug metabolism and 

bioactivation, accounting for ∼75% of the total metabolism. The human genome 

encodes 57 distinct P450 enzymes (Guengerich F.P., et al. 2005) and many of these 
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enzymes’ function are uncharacterized. Wright & Cravatt have developed ABP 

probes for P450 enzymes on the basis of mechanism-based inhibitor 2-

ethynylnaphthalene (2EN). They modified 2EN with an alkyl (unconjugated) 

acetylene group which enables tagging of probe-modified enzymes with reporter tags 

after the proteome labeling step via the Click Chemistry. This probe has been shown 

to be capable of labeling multiple P450 enzymes in vitro and in vivo In addition the 

labeling was dependent on the presence of NADPH and was blocked by P450 

inhibitors indicating its activity based nature of labeling.  

1.4.2.3 Affinity based Chemical Probes  

1.4.2.3.1 Affinity based Chemical probes for Metalloproteases (MPs) 

Function of MPs is modulated by multiple posttranslational mechanisms in 

vivo, including zymogen activation and inhibition by endogenous protein-binding 

partners (e.g., TIMPs). These post-translaitional events complicate the analysis of 

MPs’ function using traditional genomic or proteomic methods. Therefore the 

development of chemical probes to analyze its function in a complex proteome is 

highly desired and has been the focus of intense study. Saghatelian and colleagues 

reported the first chemical probe for Matrix Metalloproteases (MMPs) based on 

several broad-spectrum, tight-binding reversible inhibitors of MMPs (Saghatelian A, 

et al. 2004). Most of these inhibitors contain a hydroxamic acid (hydroxamate) group 

that tightly binds the conserved active-site zinc atom of MMPs. They replaced the 

hydrophobic P2 group of the hydroxamate-based inhibitor GM6001 with a 

photoreactive benzophenone and appended a rhodamine reporter tag onto the 

molecule. The resulting probe has been shown to be able to selectively label active, 

but not in-active forms, such as zymogen or inhibitor-bound, forms of MMPs. Later 

on the same group developed an advanced version of probes containing an alkyne 
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group in place of the bulky rhodamine reporter tag (Sieber SA, et al. 2006). These 

probes were found to display higher-labeling selectivity and efficiencies than the 

original probe for several MMPs. 

1.4.2.3.2 Affinity based Chemical probes for HDAC 

Lysine residues’ acetylation and deacetylation on histone proteins is a critical 

event modulating transcriptional activation and repression. (Bolden JE, et al. 2006 

ssThe deacetylation event is regulated by a class of enzyme named histone 

deacetylases (HDAC) which functions as parts of larger protein complexes and 

removes acetyl groups from the lysine residue (Marks PA, et al. 2007). Depending 

on sequence identity and motif organization, HDACs are classified into four groups. 

Among these Classes, Class I and II HDACs are zinc-dependent metallohydrolases 

and their inhibitor suberoylanilide hydroxamic acid (SAHA) has been shown to be 

potent and selective inhibitor in vivo and are used to induce differentiation in cancer 

cell lines and reduce tumor volume (Michael S. et al.1999). Using SAHA as scaffold, 

Salisbury & Cravatt developed the first AfBP for class I/II HDACs by introducing 

benzophenone photo-reactive group into SAHA structure to covalently label HDACs 

via UV irradiation-induced reaction (Salisbury C.M., et al. 2007). Alkyne groups 

were also introduced into the probe thus making it a clickable probe through click 

chemistry-based tagging. The resulting probe, named SAHA-BPyne, was shown to 

target multiple class I and II HDACs complex in native proteomic preparations. 

Further optimization demonstrated that SAHA-BPyne was markedly superior for 

profiling HDAC activities in live cells. (Salisbury C.M., et al.2008) 

1.4.2.4 Applications of Affinity/Activity based chemical probes 

Affinity/Activity based chemical probes can be used to study many aspects of 

proteomics from protein expression, activity to identification and even inhibitor 



 

 37 

discovery. This section will discuss the applications of chemical probes. 

1.4.2.4.1 Comparative target discovery 

The most common application of chemical probes is for “target discovery” in 

biological systems (Figure 1.3). Target discovery is one of the primary challenges 

faced in drug discovery in pharmaceutical companies. One of such target 

identification experiment would comparatively analyze two or more proteomes by 

chemical probes to identify targets with differing levels of activity. The concept 

behind is that, if the proteomes under comparison display distinct biological 

properties (e.g., normal versus disease, drug treated versus un-treated), then any 

enzyme activities differences identified can potentially be a target that regulating 

these phenotypes. Such identification requires further experimentation to confirm its 

validity.  

For example, chemical probes have been used for comparative study of 

enzyme activities among different cancer cell lines for target identification. This is 

 

 

 

 

 

 

 

 

Figure 1.3 Proteomic analysis with activity (affinity) based probes. Small molecules 
modified with reactive electrophiles or photocrosslinkers enable covalent labeling of 
specific protein targets depending on the chemical scaffolds of the probes. In-gel 
comparative analysis of different proteome will lead to identification of proteins with 
different levels of activity. Alternatively, the probe-labeled proteins can be identified 
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by mass spectrometry-based proteomics after affinity enrichment. 

accomplished by identification of enzyme activities selectively expressed by tumor 

cells or tissues. Such target identification provides a rich source of potential new  

biomarkers and targets for the diagnosis and treatment of cancer. Jessani and 

colleagues selected a panel of human cancer cell lines for comparative analysis using 

FP probes (rhodamine-tagged and biotin tagged) targeting the serine hydrolase 

superfamily of enzymes developed by Cravatt’s group (Jessani, N., et al. 2002). They 

functionally profiled serine hydrolases activities of different subcellular localization 

across a panel of human breast and melanoma cancer cell lines. Specifically, secreted, 

membrane, and soluble fractions of cell extracts from different cancer cell lines were 

prepared accordingly before reaction with a rhodamine-tagged FP probe. 

Fluorescently labeled proteins were then separated by SDS/PAGE and visualized by 

in-gel scanning with a fluorescence scanner. To identify these protein targets, biotin-

tagged FP probes were used to affinity enrich the active enzymes, which are further 

analyzed by mass spectrometry methods. Based on the serine hydrolase activity 

profiles of the secreted, membrane, and soluble proteomes obtained, they further 

hierachically clustered different cancer cell lines and identified a cluster of proteases, 

lipases, and esterases down-regulated in the most invasive cancer lines examined. 

Most interestingly, the activity of KIAA1363, an integral membrane serine hydrolase 

without any link to cancer made, was found to be consistently up-regulated in 

invasive cancer lines origin from several different tumor types. Together, this finding 

suggests that this enzyme may support the progression of tumors from a variety of 

origins and thus represent attractive targets for the diagnosis and treatment of cancer.  

Another example highlights the use of such activity based chemical probes 

for target identification from plasmodium falciparum proteome (Greenbaum, D.C. et 
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al. 2002). In this study, Greenbaum and colleagues reported comparative study of 

cysteine protease activities across different malaria parasite life cycles. Firstly, with 

cysteine protease specific probes, they detected four cysteine protease activities in 

whole-cell lysates from mixed blood stages of P. falciparum parasites with the 

radiolabeled cysteine protease probe 125I-DCG-04. These cysteine protease 

activities were identified as a member of the papain family of cysteine proteases, 

refered as falcipains. This was accomplished by a single-step purification of all 

labeled proteins through the biotin affinity tag of DCG-04 followed by MS-based 

sequencing. Further, they used highly synchronized parasite populations to profile 

protease activities throughout the multiple developmental stages of the parasite and 

found that each of these falcipains was differentially regulated throughout different 

life cycles of the parasite. This distinguished activity profile suggests a primary role 

for falcipain 1 either in red blood cell rupture or during re infection of new host red 

blood cells. Further, the role of falcipain 1 in live cultures of P. falciparum were 

determined by treating parasites with the falcipain 1-specific inhibitor YA29-

Eps(S,S). Dose dependent effect of this inhibitor at the late schizont stage suggests 

that falcipain 1 has a specific role in the invasion of red blood cells by extracellular 

merozoites and further validated its legitimate drug targets for treating the infection 

of malaria pasasite.  

Comparing to classical expression-based genomics and proteomics, chemical 

proteomics strategies for target identification have multiple advantages. Firstly, it 

measures the activity of proteins which is a final output of all post-translational 

events like localization, interaction and post-translational modifications rather than 

the expression level. Secondly, chemical probes with biotin tag allow these reagents 

to affinity enrich low-abundance proteins in samples of high complexity and 
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therefore molecule identification of the targets is accelerated. 

1.4.2.4.2 Competitive inhibitor discovery 

Not only served as powerful tools for the discovering protein targets 

associated with distinct physiological and pathological processes, chemical probes 

have also been applied to discover irreversible inhibitors for certain enzyme classes 

such as cysteine proteases, serine hydrolases, metalloproteases and even HDACs.  

This application involves chemical probe labeling of protein targets in a 

competitive manner (Figure 1.4), in other words, inhibitors of enzymes are identified 

by their ability to block probe labeling in the complex proteome (Greenbaum DC, et 

al. 2002; Kidd D, et al. 2001; Leung, D. et al. 2003).  

Such competitive proteome labeling approach offers several advantages over 

traditional inhibitor screening assay. Firstly, enzymes are tested in their native 

environment, alleviating the requirement for recombinant expression and purification. 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Inhibitor discovery by competitive activity-based protein profiling. The 
selectivity and potency of inhibitors can be determined by initial incubation of a 
proteome with inhibitors followed by probe treatment. Inhibitor-bound proteins are 
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detected by a reduction in probe labeling intensity.  

Secondly, probe labeling acts as a substitution for substrate assays therefore 

providing a convenient activity assessment for novel enzymes lacking known 

substrates. Finally, potency and selectivity of the inhibitor can be simultaneously 

determined when broad spectrum chemical probes labels many enzymes in parallel 

from the complex proteome.  

For instance, Leung and colleagues adapted chemical proteomic labeling to 

competitive screening to assess the activity of a library of candidate reversible 

inhibitors against serine hydrolase activities expressed in mouse tissue proteomes 

(Leung, D., et al. 2003). This approach was based on the well developed, serine 

hydrolase specific FP-rhodamine (rhodamine-tagged fluorophosphonate). Firstly, 

they reacted FP-rhodamine with mouse tissue proteomes and identified a condition 

that allows measurement of the extent of probe labeling for the majority of enzymes. 

Under this condition and at this single, kinetically relevant time point, the probe 

labeling of all different targets is not completed. Therefore the rate of reaction 

between probe and protein should be slowed down by the binding of competitive 

reversible inhibitors to the protein, and this competitive effect should be detected as a 

decrease in fluorescence signal intensity. Then each inhibitor was initially tested for 

its competitive effect against FP-rhodamine’s labeling of multiple targets in the 

mouse brain membrane proteome at varied concentrations. Further, IC50 values were 

generated from these data for each inhibitor with corresponding target(s) in the 

proteome. As reported, these calculated IC50 values measured by chemical 

proteomics labeling, matched well with Ki values determined by conventional 

substrate assays. With this approach, they are able to identify nanomolar reversible 

inhibitors of several enzymes simultaneously, including the endocannabinoid-
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degrading enzyme fatty acid amide hydrolase (FAAH), triacylglycerol hydrolase 

(TGH) and an uncharacterized membrane-associated hydrolase that lacks known 

substrates.  

In addition, Greenbaum and colleagues reported another screening platform 

utilizing chemical proteomic labeling approach (Greenbaum DC, et al. 2002). In 

their study, this screening platform was developed with chemical probes targeting 

cysteine proteases in plasmodium falciparum (Falcipains). Similarly, the parasite 

extracts were pre-incubated with each inhibitor, followed by reaction with the 

general cysteine protease activity-based probe 125I-DCG-04 with a radioactive tag.  

The radioactive readout serves as a measurement for the potency of specific inhibitor 

scaffolds by comparing the ratio of labeled proteases after inhibitor treatment to an 

untreated control. Additionally, the specificity element of the chemical probe in this 

study also serves as a starting point for small-molecule inhibitor design. The inhibitor 

libraries was generated with a fixed single amino acid residue on a tripeptide 

inhibitor scaffold and variations on the remaining two positions based on the activity 

based probe 125I-DCG-04. This method produces a series of sublibraries made up of 

several hundred compounds, each having a single different fixed amino acid residue. 

From these sub-libraries, several falcipain 1-specific P2 amino acid residues were 

identified and were used to design a series of specific inhibitors. Screening of these 

optimized inhibitors in parasite extracts over a range of concentrations give rise to 

the discovery of the most selective inhibitors, YA29-Eps(S,S), showing greater than 

25-fold selectivity for falcipain 1 over all other cysteine proteases. Such chemical 

approach with a selective inhibitor that renders a specific target protease inactive 

serves as an alternative of traditional gene ablation or knockout study which usually 

results in lethal phenotype. Therefore Such a “chemical genetic” approach  allows 
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dissection of the protease's biochemical function. and phenotypic evaluation at 

specific stages within the life cycle of the parasite. 

However, such competitive approaches of inhibitor discovery target only a 

portion of the whole proteome, thus inhibitor’s selectivity determined by this 

approach does not represent proteome-wide specificity. Therefore, approaches that 

assessing inhibitor selectivity in a whole proteome level is of significant value. 

1.4.3 Metabolic Incorporation Based Chemical Proteomic Tools 

Other popular approaches involves metabolic incorporation of the reagent 

(usually chemically modified unnatural metabolites with an analyzable chemical 

handle) utilizing the tolerant selectivity of endogenous enzymes during the process of 

protein synthesis or post-translational modifications in-vivo. 

Instead of utilizing the reactivity between a chemical probe and a conserved 

site of a protein, several groups have adopted a strategy to re-engineer metabolites to 

tolerate the selectivity of the protein synthesis machinery or in some cases the 

endogenous translational/post-translational machinery without any manipulations to 

incorporate a unique chemical handle during translation or post-translational 

modification into proteins. 

This strategy involves two steps. The first step is metabolic labeling, which is 

very similar to traditional labeling with radioactive methionine or cysteine. In this 

first step, chemically synthesized, Azide/alkyne bearing metabolites are fed to cells 

or organisms and integrated by cellular machinery into various proteins. This azide 

or alkyne functionality serves to distinguish metabolically labeled protein from other 

proteins. In the second step, the azide/alkyne bearing unnatural metabolites are then 

covalently tagged with fluorescent tags or affinity tags, employing bioorthogonal 

reactions. either ex vivo or in vivo (Figure 1.5). 
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Figure 1.5 Metabolic based incorporation of chemically synthesized probes. Cells 
are incubated with unnatural metabolites bearing azide or alkyne functional groups. 
After incubation, cells are lysed and then coupled to an alkyne (or azide)-bearing 
reporter tag, followed by SDS-PAGE and visualization by in-gel fluorescence or 
avidin blot.  

There are two general reaction classes that have been developed qualifying 

for bioorthogonal reactions: the Staudinger ligation with phosphines (Saxon, E., et al. 

2000) and the [3+2] cycloaddition with alkynes. Two forms of the latter reaction 

have been described: the copper-catalyzed reaction with terminal alkynes, also called 

'click chemistry'(Speers, A.E., et al. 2003), and the strain-promoted cycloaddition 
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with cyclooctynes(Agard, N.J., et al. 2004). Among these three reactions, click 

chemistry is most utilized for tagging from cell or tissue lysates because of its fast 

reaction rate (Agard, N.J., et al. 2006). However, this reaction can not be used for 

applications with live cells or in living animal owing to the cytotoxicity of the copper 

catalyst used in this reaction. Instead, the Staudinger ligation and strain-promoted 

cycloaddition are therefore a better and preferred choic for in vivo applications.  

The following section discusses the development and application of such 

metabolic labeling based chemical proteomic strategies.   

1.4.3.1 Metabolic Incorporation of unnatural amino acids 

Tirrell and colleagues developed the two of the most widely used unnatural 

amino acids, Azidohomoalanine (AHA) and homopropargylglycine (HPG), both of 

which are susceptible to selective modification via the click chemistry reaction. They 

have been able to shown that the methionyl tRNA synthetase (MetRS)’s promiscuity 

can tolerate the chemically modified amino acids AHA and HPG in place of 

methionine. AHA-charged or HPG-charged methionyl tRNAs can be used by 

ribosomes for protein translation/synthesis in the absence of the competing natural 

counterpart methionine. With this metabolic incorporation technology, Tirrell and 

coworkers successfully incorporated the methionine surrogate into overexpressed 

proteins in Escherichia coli (Kiick, K.L. et al. 2002). Later, Schuman and Tirrell 

reported an extension of this metabolic incorporation technology introducing 

BONCAT (bioorthogonal non-canonical amino acid tagging) to monitor global 

protein synthesis in different cell types and culture systems with high specificity 

(Dieterich, D.C., et al. 2006). As reported, the presence and incorporation of AHA is 

non-toxic to the cell. Besides, the global rates of protein synthesis and degradation 

are not affected by the presence of AHA. This metabolic incorporation of AHA 
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endows newly synthesized protein with the azide functionalities which are covalently 

coupled to an alkyne-bearing affinity tag in the subsequent click chemistry tagging 

reaction. After affinity purification with avidin beads and on-resin digestion with 

trypsin, the resulting peptide mixture is subjected to tandem mass spectrometry for 

identification.  

Moreover, this technique has been applied to a broad range of biological 

study. Recently, Letourneau and colleagues used AHA to visualize local protein 

synthesis in axonal growth cones (Roche, F.K. et al.2009), and the Schuman lab used 

the technology (which is named FUNCAT for fluorescent non-canonical amino acid 

tagging) to monitor basal and neurotrophin-induced protein dynamics both in time 

and space in hippocampal neurons. The authors also studied newly synthesized 

protein’s dynamics by combining this technology with single particle tracking using 

Quantum Dots (Dieterich, D.C. et al. 2010). In a recent study, Tirrell and Schuman’s 

group explore the possibility to exclusively target this residue-specific incorporation 

of non-natural methionine surrogates to specified cells in a complex cellular mixture. 

To achieve this aim, they developed a new non-canonical amino acid 

Azidonorleucine (ANL), which is rejected by the endogenous MetRS due to its long 

side-chain. And they over-expressed a mutant MetRS in a specified cell line 

therefore ANL is only recognized and utilized in the cell line over-expressing mutant 

MetRS. Therefore, de novo synthesized proteins are exclusively visualized in this 

specified cell in a cell selective manner (Ngo, J.T. et al. 2010). This cell-selective 

metabolic labeling approach could be applied to a mammalian context in 

combination with live-tagging methods using strain-promoted cycloaddition. It 

would be interesting to track proteome dynamics of distinct types of neurons or 

astrocytes in co-culture systems or even in living animals.  
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1.4.3.2 Metabolic Incorporation of Unnatural Monosaccharide 

Apart from chemical modified, unnatural amino acids restricted to monitor 

global de novo protein synthesis, metabolic labeling of proteins with other classes of 

unnatural metabolites like carbohydrates and lipids is also well explored. Even 

before AHA and HPG were developed for monitoring de novo protein synthesis, 

Bertozzi’s group implemented the metabolic labeling strategy to track glycoproteins 

with different, chemically engineered unnatural monosaccharides.  

Metabolic incorporation of chemically modified, unnatural oligosaccharide is 

conceptually similar with incorporation of unnatural amino acid. It introduces subtle 

modifications into monosaccharide residues within cellular glycans. By taking 

advantage of the tolerance of a cell’s biosynthetic machinery, unnatural 

monosaccharides can be activated with nucleotide sugars and further transported into 

the Golgi compartment. In the Golgi compartment, activated monosaccharides is 

transferred to glycoconjugates, like glycoproteins which are processed for secretion, 

delivery to various cellular compartments, or to the cell surface. The site of 

modification of the unnatural monosaccharide is represented in its biosynthetic 

product, permitting subsequent tagging, purification and identification.   

The first example of metabolic incorporation of oligosaccharide followed by 

chemoselective ligation was reported by Mahal et al. They demonstrated that the 

modified oligosaccharide, ManLev, when fed to cells, is transformed to the 

corresponding sialic acid within cell surface glycoproteins. The ketone functionality 

is unique in the context of the cell surface and can be further tagged with bio-

orthogonal reactions using hydrazine. Following the first study, Hang reported that 

the unnatural ketone analogue of GalNAc, in which a ketone group substituted for 

the N-acetyl group, is accepted by the GalNAc salvage pathway. This study 
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demonstrated that unnatural GalNAz (N-azidoacetylgalactosamine, refered as 

GalNAz)analogue can be incorporated into cell-surface glycans. 

To overcome the limitation of ketone functionality that ketone condensation 

reactions is relatively slow at physiological pH, alternative chemoselective reactions 

like Staudinger ligation or copper catalyzed 3+2 cyclo-addition (click chemistry) 

have been used for covalent tagging of unnatural sugars incorporated 

biosynthetically into cell surface glycans. One of these examples is by using 

chemically modified ManNAc bearing an azido functional group on the N-acyl 

substituent, (N-azidoacetylmannosamine, refered as ManNAz), which can be 

converted to the corresponding sialic acid on human cells (Saxon, E. et al. 2000; 

Saxon, E. et al. 2002). The azide is then available for tagging with various reporters 

based on bio-orthogonal reactions. Afterwards, more and more unnatural 

oligosaccharide bearing azido groups, like GalNAz and GlcNAz, have been shown to 

be tolerated by corresponding salvage pathways. As demonstrated by Vocadlo, and 

Pamela’s study, GalNAz is able to be incorporated into O-linked glycoproteins and 

GlcNAz is able to be incorporated into nuclear and cytosolic proteins as an analog of 

O-GlcNAc (Vocadlo, D.J. et al. 2003; Pamela V. et al. 2007). Rabuka and colleagues 

synthesized azido fucose analogues and exploits the fucose salvage pathway for the 

incorporation of azido analogues into fucosylated glycans in the human T lymphoma 

cell line Jurkat. These techniques provide a new means for proteomics analysis of 

glycosylation (discussed in later section). 

Up to now, there are five azido sugars described for metabolic labeling of 

glycoproteins: N-azidoacetylmannosamine (ManNAz)1, 5, N-azidoacetyl sialic acid 

(SiaNAz)9, N-azidoacetylgalactosamine (GalNAz)2, 10, N-azidoacetylglucosamine 

(GlcNAz)11, 12 and 6-azido fucose (6AzFuc)13. ManNAz is metabolically 
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converted to SiaNAz.and thus used for profiling of sialic acid modified proteins. This 

could also be achieved through a salvage pathway using SiaNAz. GalNAz is utilized 

by cells as a substitute for GalNAc as the core residue of mucin-type O-linked 

glycans and therefore is mainly used for profiling of mucin-type O-linked 

glycoproteins. As GalNAc is also found in chondroitin sulfate proteoglycans and as a 

terminal modification of rare N-linked glycans, these glycoproteins might also be 

analyzed with GalNAz. In mammalian cells, GlcNAz was used to selectively label 

nuclear and cytosolic glycoproteins modified by O-GlcNAc. This subset of 

glycoproteins can also be labeled robustly with GalNAz, which is partially 

metabolically converted to GlcNAz in vivo. Finally, fucosylated glycoproteins can 

be labeled with 6AzFuc through a salvage pathway. In all cases, the azido sugar is 

typically administered in peracetylated form, which ensures entry into cells by 

passive diffusion and is followed by deacetylation by cytosolic esterases. 

Gurcel, C. and coworkers have demonstrated the application of GlcNAz 

probe for the proteomic analysis of protein O-GlcNAcylation, a form of 

glycosylation that is unique to cytosolic and nuclear proteins (Gurcel, C., et al. 

2008). This dynamic post-translational modification occurs on serine and threonine 

residues of nuclear proteins or cytoplasmic proteins. It is thought to modulate 

numerous cellular processes including transcription and translation. However, the 

precise functions of the ‘O-GlcNAc’ modification and the complete list of O-

GlcNAc modified proteins are not fully uncovered. In their study, researchers used 

GlcNAz to analyze and identify proteins modified by O-GlcNAc in a proteomic scale. 

In detail, cells were cultured with GlcNAz , which was incorporated onto 

cytoplasmic and nuclear proteins in place of O-GlcNAc. The nucleocytoplasmic 

fraction of these cells was allowed to react with a biotin-phosphine capture reagent, 
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followed by affinity purification of labeled glycoproteins on streptavidin beads. The 

affinity-purified glycoproteins were trypsinized and the fragments identified by 

nano-high-performance LC-MS/MS analysis. O-GlcNAc-azido-tagged proteins have 

been identified by this approach with LC-MS/MS analysis in an MCF-7 cellular 

model and 14 of these proteins were previously unreported.  

To achieve the same purpose, Zhao and co-workers, exploited this discovery 

using similar approach to capture O-GlcNAcylated proteins for a comprehensive 

proteomic analysis of cell lysates (Nandi, A. et al. 2006; Sprung, R., et al.2005). This 

global identification study confirmed 21 known, and discovered 178 novel, O-

GlcNAc-modified proteins present in HeLa cells. The identification of 21 previously 

known O-GlcNAc-modified proteins represents almost 20% coverage of previously 

reported O-GlcNAc-modified proteins. This coverage serves as a good positive 

control and this technology enable the identification of most previously reported O-

GlcNAc-modified proteins in a single study. In addition, this study nearly tripled the 

list of putative O-GlcNAc-modified proteins, extending the list to >200.  

Not only used for cell culture, unnatural saccharides have also been used to 

profile glycoproteins in mice (Prescher, J.A., et al. 2004; Dube, D.H. et al. 2006). 

Bertozzi’s group have successfully shown that both the metabolic labeling and 

subsequent Staudinger ligation could proceed in living mice. The obvious advantages 

of performing metabolic labeling in living animal is that cellular glycosylation 

pattern could be profiled within organs. Specifically, they administered living mice 

with ManNAz to probe sialic acid modified proteins in various organs. Interestingly, 

after lysis, tagging and separation of proteins from various organs, discrete protein 

bands in SDS-PAGE analysis were observed from heart, kidney and liver lysates, but 

not from brain or thymus homogenates. The liver is known to secrete numerous 
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sialylated glycoproteins and is a target of first-pass metabolism, factors that may 

explain the robust labelling observed in that organ. Notably, the kidney and heart 

lack significant levels of UDP-GlcNAc 2-epimerase (Stasche, R. et al. 1997), the 

enzyme that produces endogenous ManNAc. 

Further, researchers tested the ability to tag cells coated with SiaNAz in vivo 

within their native physiological environment. Therefore, phosphine probes were 

injected into these living animals and the results demonstrated that these injected 

probes undergo the Staudinger ligation and accumulate on cell surfaces in an azide-

dependent manner, indicating Staudinger ligation successfully function on cells 

within living animals. This ligation reaction displayed extraordinary chemical 

selectivity and the reactants displayed exquisite biological compatibility, no harmful 

side effects were produced and the product is not prone to metabolic breakdown on 

the timescale of the reaction. Successful tagging of cell-surface glycoproteins in 

living animals offers a method to monitor these protein modifications in a 

physiologically relevant system. Potentially this could be used for non-invasive 

imaging of cells with various glycosylation pattern. Changes in glycosylation pattern 

associated with different stages of organ development or disease progression could 

be visualized by this approach. 

Further, imaging reagents that target azides are developed by different groups, 

reporting the development of phosphine- or alkyne-functionalized dyes that fluoresce 

only upon reaction with azides and thereby label cell surface glycans with low 

background staining (Lemieux, G. A. et al. 2003; Sawa, M. et al. 2006; Hsu, T. L. et 

al. 2007).  However, these reagents are limited in its slow kinetics in living animals 

and toxicity caused by Copper catalyst. To overcome these problems, Bertozzi’s 

group developed a difluorinated cyclooctyne reagent, termed DIFO. The advantage 
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of DIFO is that its reaction rate with azides in living animals is good and it is 

nontoxic in mice (Baskin, J. M. et al. 2007; Codelli, J. A. et al. 2008). This 

DIFO−azide reaction thus was applied to monitor the dynamics of cellular 

glycosylation during zebrafish embryo development due to its fast reaction kinetics. 

Laughlin, S. T. (2008) used Zebrafish embryos as a model system and metabolically 

labeled the embryo with GalNAz followed by tagging with fluorescently labeled 

DIFO reagents. This approach allowed them to image the fish’s total O-linked 

glycosylation. Further, to extend this technique, they performed spatiotemporal 

analysis of glycan expression and trafficking by quenching unreacted azide groups 

on labeled cells with TCEP, pulsing the embryos with additional GalNAz, and 

probing the embryos with a multicolor detection strategy. Areas of rapid O-linked 

glycan biosynthesis including the fins, jaw, and olfactory organs showed increased 

labeling with the blue-shifted conjugate. Low or no toxicity of these reagents was 

observed with zebrafish after labeling which continues normal development. The 

further application of these metabolic labeling reagents might be extended to 

mammalian systems enabling imaging of tumors and sites of microbial infection. 

1.4.3.3 Metabolic Incorporation of Unnatural Lipids 

Apart from glycans, metabolic incorporation of bioorthogonal reporters, in 

combination with azide-alkyne ligation has also been applied to analyze lipid 

modified proteins. Major forms of lipid modification include N-myristoylation, S-

palmitoylation or farnesylation. The identification of lipid modified proteins and 

characterization of their biosynthetic pathways have significant implication for our 

understanding of protein’s role in many physiological processes. 

Traditionally, lipid modified proteins in cells has been detected by metabolic 

labeling with radioactive (3H, 14C) lipids followed by autoradiography of labeled 
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proteins (Resh, M.D., et al. 2006). However, this approach suffers extremely long 

exposure times and its hazardous (Buglino, J.A., et al. 2008). The development of 

metabolic incorporation of chemical probes (azide/alkyne-modified lipids) in 

combination with bioorthogonal labeling reactions has provided improved methods 

for profiling lipid modified proteins. Conceptually similar with chemical probes 

based on amino acids and oligo-saccharide, an lipid analogue bearing an 

azide/alkyne handle can be utilized by mammalian cells lipid transferring machinary, 

installed onto proteins’ lipid modification site and readily visualized by tagging with 

fluorescent or affinity reporter tag after bio-orthoghonal reactions. (Hang, H.C., et al. 

2007; Charron, G., et al. 2009; Martin, B.R., et al. 2009) 

Hang and colleagues in 2007 reported the synthesis of ω-azido-fatty acids as 

non-radioactive chemical probes for the rapid detection of fatty-acylated proteins in 

mammalian cells (Hang, H.C. et al. 2007). This method is based on metabolic 

incorporation of the fatty acid analogues bearing azide functional groups onto target 

proteins by cellular machinery. Following incorporation, fatty-acylated proteins are 

selectively tagged with biotin using a phosphine based biotin tag via the Staudinger 

ligation. The detection was achieved by streptavidin blot. By varing the fatty acid 

chain length of the azide bearing analogue, this method could be applied to the 

detection of both N-myristoylated and S-palmitoylated proteins in cell lysates. Based 

on this work, the same group further explored this technology by synthesizing alkyne 

bearing analogues of fatty acids with various chain lengths which is compatible with 

tagging by click chemistry reaction (Charron, G. et al. 2009). By comparing this set 

of probes with previous set in Staudinger ligation and click chemistry, this study 

reported significantly improved detection of fatty acid modified proteins using either 

biotin (alkyne-biotin, azide-biotin) or fluorescence (alkyne-rhodamine, azide-
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rhodamine) detection tags. In addition, fatty acid modification of protein exhibited 

chain length-dependent protein activity and competitive incorporation with naturally 

occurring fatty acids. Further by comparing the labeling profile of different 

mammalian cell types (HeLa, 3T3, DC2.4 and Jurkat), the comparative analysis 

displayed significantly diverse profiles of fatty-acylated proteins among different cell 

types. 

With this technology developed for detecting lipid modified proteins, Martin, 

D.O. et al. (2008) exploited this new technique to demonstrate the existence of 

several post-translationally myristoylated proteins in Jurkat T cells undergoing 

apoptosis. They investigated if post-translational myristoylation is a widely used 

modification process during the onset of apoptosis. To do this, they induced Jurkat T 

cell apoptosis with staurosporine (STS) and cycloheximide (CHX) and metabolically 

labeled cell with azido-myristate to detect post-translational myristoylation of 

caspase-cleaved proteins. After metabolic labeling, phosphine-Flag tagging and 

PAGE separation, results demonstrate that at least 15 proteins appear to be post-

translationally myristoylated. Among these 15 myristoylation targets, 5 of them are 

not reported before and are identified as new post-translationally myristoylatable 

proteins (PKCε, CD-IC2, Bap31, MST3, and the catalytic subunit of glutamate 

cysteine ligase). In addition, detection with phosphine-Flag and in-gel fluorescence 

scan represents over a million-fold signal amplification in comparison to using 

radioactive labeling methods. These results indicate that the nonradioactive chemical 

detection method is useful for detection of myristoylated proteins in a proteome scale. 

There might be additional proteins that are post-translationally myristoylated during 

apoptosis and that this phenomenon might play an important role in the regulation of 

apoptosis. 
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Cravatt’s group used similar chemical proteomic method to detect protein S-

palmitoylation, which is a pervasive post-translational modification required for the 

trafficking, compartmentalization and membrane tethering of many proteins (Martin, 

B.R., 2009). Their method uses the palmitic analogue 17-octadecynoic acid (17-

ODYA) in a bioorthogonal metabolic labeling approach. As reported, 17-ODYA can 

be used as a bioorthogonal probe which is metabolically incorporated on proteins’ S-

palmitoylation sites for profiling endogenous protein targets of S-palmitoylation. 

After incorporation, proteins covalently modified by 17-ODYA  can be further 

detected via the Cu(I)-catalyzed azide-alkyne [3 + 2] cycloaddition reaction (click 

chemistry) to commercially available rhodamine-azide or biotin-azide reporter 

groups. To identify the targets of palmitoylation, the membrane fractions of Jurkat T 

cell proteome were reacted with biotin-azide, enriched with avidin beads and further 

ananlyzed by the multidimensional protein identification technology (MudPIT). 

From this analysis, a total of 125 palmitoylated proteins were identified in Jurkat T 

cells. Among these 125 proteins identified were known GTPases, G-protein-subunits, 

receptors as well as many new candidate fatty-acylated proteins. And  many of these 

identified palmitoylated proteins are homologs of known palmitoylated proteins 

discovered in yeast. To further validate the efficacy of this method, 18 proteins, 

including 12 high confidence targets and 6 medium confidence targets, were 

overexpressed in 293 T cell and membrane fraction of the cell lysates were directly 

labeled with rhodamine-azide, analyzed by SDS-PAGE . Of the 18 proteins analyzed, 

16 show evidence of palmitoylation in 293T cells suggesting the low false positive 

rate of this method in identification of S-palmitoylation modified protein in a 

proteomic scale. Corresponding approaches have also been developed for analysis of 

proteins farnesylation and geranylgeranylation as well (Kho, Y., 2004).  
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Although metabolic incorporation of chemical probes has lead to the 

discovery of a great numbers of glycoproteins or lipid modified proteins, it requires 

long incubation time to detect proteins of low level modification, transient 

modification or reversible modification, therefore, its ability to discover regulated 

PTM events has been severely impeded. Chemical approaches capturing the 

modification states in a temporal regulated time window will be of great importance. 

 

1.5 Objectives  

Chemical proteomic tools discussed in the previous section offered methods 

that are complimentary to 2D and MS analysis by labeling, detecting and separating 

various subsets of low abundance proteins, for example serine hydrolases 

subproteome, kinase subproteome, newly-synthesized protein sub-proteome, 

glycoprotein sub proteome, lipid modified sub-proteome and etc. These tools have 

already proved their usefulness and provided important insight for our understanding 

of protein activity, localization, protein de-novo synthesis and even protein’s co- or 

post-translational modificaitions (glycosylation, lipid acylation, farnesylation and 

etc.). However, chemical proteomics is still a new discipline and novel chemical 

tools addressing more different subproteomes need be developed. Besides, there are 

limitations for the current chemical proteomic tools. Firstly, proteomic wide analysis 

with ABP/AfBP are currently not available for many protein classes. Secondly, many 

of ABP/AfBP’s approaches target only a portion of the whole proteome, thus 

inhibitor’s selectivity determined by this approach does not represent proteome-wide 

specificity. Thirdly, many PTMs are transient and sometimes even reversible 

preventing them to be detected by standard metabolic incorporation approaches 

which require long incubation time. It is the aim of this thesis to improve existing 
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and develop novel chemical proteomic tools targeting different aspects/components 

of the proteome and to expand the types of experiment could be performed by 

chemical proteomics. We hope this improvement and expansion of repertoire will 

enrich our understanding of the biology of life and the pathology of disease and offer 

rapid methodology for accelerating target identification, drug design and assessment.  
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Chapter 2. 
 
 
Developing Mechanism Based Cross-Linker for 
Functional Profiling, Identification and Inhibition 
of Protein Kinases 
 
 

2.1 Summary 

To offer valuable information from drug target discovery, different aspects of 

the proteome need be addressed other than simply the level of protein abundance and 

activity. For instance, with the high degree of substrate promiscuity of kinases, 

protein phosphorylation level is not linear with only one executioner kinase’s activity 

but many. When one protein kinase’s activity is inhibited, other kinases will become 

a back up executioner responsible for that phosphorylation event and thus 

compromises the analysis. Therefore, searching for upstream kinase responsible for a 

known substrate in a proteomic level will provide complimentary information to 

kinase activity level addressed by ABPs and global phosphorylation site 

identification through MSMS.  

In this chapter, we describe an improved mechanism-based crosslinker for 

functional profiling, identification and inhibition of protein kinases-substrate pairs. 

Based on the mechanism-based crosslinker OPA-AD reported by Shokat recently, we 

designed and synthesized NDA-AD. We demonstrated for the first time a general 

chemical approach for the identification of multiple kinase activities directly from 

the whole proteome. With both purified enzymes as well as kinases present in a 

crude lysate, we showed unequivocally that the strategy is compatible with not only 
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serine/threonine kinases, but also tyrosine kinases. Preliminary results indicated that 

the method is robust enough to crosslink endogenous kinases in mammalian cells. 

Our results also indicated that the approach was useful for multiplexed detection and 

kinase activities present in a proteome, and is amenable for potential screenings of 

potent and selective inhibitors of kinases in their native environments. The 

establishment of the highly specific and sensitive NDA-adenosine guided 

crosslinking reactions with desired kinase-substrate pairs in their native states 

represents a step forward towards the creation of novel chemical tools in cell 

signaling and drug discovery. Studies are in progress to extend the use of this method 

for the cross-linking of other kinases and their protein substrates.   

2.2 Introduction 

Protein phosphorylation is the most prevalent event in cell signaling 

(Manning, G., et al. 2002). Despite decades of intensive research, there exist several 

major challenges in the field of phosphoproteomics: 1) how does one identify new 

kinase-substrate pairs in the ever-expanding phosphosignaling cascades, 2) how can 

one detect multiple kinases in their native environment, and subsequently 3) look for 

potent and selective small-molecule inhibitors (Ubersax, J. A. et al. 2007)? Existing 

biological and chemical methods have offered invaluable tools for the identification 

of phosphorylated proteins, as well as sites of phosphorylation (McLachlin, D. T. et 

al. 2001; McLachlin, D.T. et al. 2003). Shokat et al. recently developed a 

mechanism-based cross-linker, o-phthalaldehyde adenosine (OPA-AD), that 

potentially allows researchers to use known phosphoproteins/phosphopeptides to 

identifytheir upstream kinases (Maly, D. J. et al. 2004). To detect kinases in their 

native environments, protein-based biosensors have routinelybeen used but offer 
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limited success (Zhang, J. et al. 2002). Imperiali et al. recently developed a 

homogeneous fluorescence-based assaythat enables multiplexed kinase detection in 

cell lysates (Shults, M. D. et al. 2005), Activity-based probes (ABPs), based on 

either reversible small-molecule kinase inhibitors or irreversible ATP analogues, 

have also demonstrated good utilities in large-scale kinase detection and 

identification (Evans, M.J. et al. 2006; Hagenstein, M.C. et al. 2003; Patricelli,M. P. 

et al. 2007; Blair,  J. A. et al. 2007). None of these kinase-detecting methods, 

however, has thus far been expanded to the screening and identification of inhibitors 

against specific kinase-substrate pairs in their native states. In order to expand these 

strategies for multiplexed detection and inhibition of kinase-substrate pairs in a 

complex proteome, we aimed to improve the mechanism-based cross-linker OPA-

AD reported by Shokat.  

2.3 Results and Discussion 

2.3.1 Design and Synthesis of NDA based Cross-linker 

Based on the originally reported OPA-AD, When it was initially used in a 

complex proteome, we un-expectedly discovered that it produces a large number of 

nonspecific cross-linking bands (Figure 2.1 and 2.2) in addition to the one 

corresponding to the desired kinase pseudosubstrate pair (i.e., a kinase peptide 

substrate in which the S/T/Y phosphorylation site was replaced by cysteine). This 

severely limits its potential applications. Thus we aimed to modify the highly 

reactive o-phthaldialdehyde (OPA) moiety in OPA-AD and make it compatible with 

proteomic experiments. Consequently, naphthalene-2,3-dicarboxaldehyde adenosine 

(NDA-AD) was designed to covalently trap the transient kinase-substrate-ATP 
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ternarycomplex formed during the phosphorylation (Maly, D. J. et al. 2004).  With 

an adenosine moiety guiding NDA-AD to the ATP-binding  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic representation of the substrate−kinase cross-linking reaction. 
A) Structures of ATP, OPA-AD and NDA-AD. B) Scheme showing the cross-linking 
reaction of the kinase/pseudosubstrate/2 ternary complex. C) Improved cross-linking 
specificity of kinase/substrate pair in a crude proteome by 2 vs 1. The reactions were 
done with Pka/PKAtide under identical conditions (see Supporting Information for 
details). (left) Coomassie gel.  

pocket of a kinase, the naphthalene-2,3-dicarboxaldehyde (NDA) group serves as a 

bifunctional chemical that cross-links the proximal catalytic lysine residue (from the 

kinase) and the cysteine residues (from the pseudosubstrate); this generates a stable 

isoindole linkage between the kinase-substrate pair (Figure 2.1). The chemical 
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synthesis of the NDA-AD and pseudosubstrates was performed by my collaborators 

(see Chapter 8.2) We reasoned that NDA would cross-link kinase-substrate pairs 

more specifically than OPA, because of its more desirable chemical properties and 

better structural fit in the kinase active site.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 OPA-adenosine guided cross-linking of Pka/PKAtide in the crude 
bacterial proteome.  

2.3.2 NDA-AD as a general mechanism based cross linker 

We first assessed whether NDA-AD could serve as a general mechanism-

based cross-linker for both Tyrosine and Serine/Threonine kinases. The cross-linking 

reactions were tested with a set of 6 purified kinases, of which three are Tyr kinases 

(Csk, Src & Abl) and the other three Ser/Thr kinases (Erk1, Erk2 & Pka).  

All kinases were recombinantly expressed and tested to ensure their purity as well as 

enzymatic activities. Fluorescein-labelled, cysteine-containing kinase 

pseudosubstrates were chemically synthesized based on their known peptide 

substrate sequences (Table 2.1) (Casnellie,J.E. et al. 1991; Cheng, H.C. et al. 1992; 
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Gonzalez,F.A. et al. 1991; Kemp,B.E. et al. 1997; Sekimoto, H. et al. 2003). As 

shown in Figure 2a, incubation of each the six kinases, regardless of whether they are 

Tyr or Ser/Thr kinases, with their cognate pseudosubstrates in the presence of NDA-

AD led to the successful cross-linking of kinase-substrate complex, as indicated by a 

fluorescence band on the SDS-PAGE. All three components (i.e. kinase, 

pseudosubstrate and NDA-AD) were necessary, as labelling was not observed in the 

absence of any of them. No cross-linking was seen with heat-denatured kinases, 

indicating the cross-linking was dependent upon the active conformation of kinases.  

Table 2.1 Sequences of kinase Pseudosubstrates used in our studies. 

Peptide [a] Pseudosubstrate sequence[b] 

CSKtide Fluorescein-GG-KKKKEEICFFF 
SRCtide Fluorescein-GG-KVEKIGEGTCGVVYK 
ABLtide Fluorescein-GG-EAICAAPFAKKK 
PKAtide Fluorescein-GG-LRRACLG 
ERKtide Fluorescein-GG-ELVEPLCPSGEAPNQ 

[a] The Fluorescein-labelled, cysteine-containing pseudosubstrate for each kinase 
was denoted “XXXtide” after the name of each kinase. [b] The sequences of the 
pseudosubstrates were based on reported optimal peptide substrates for the kinases, 
with a cysteine mutation in the phosphorylation site (bold and in red). 

 

 

 

 

 

 
 
Figure 2.3 NDA-AD Cross-linking of purified kinases. Fluorescence-scanned gels 
showing cross-linking profiles of NDA-AD against three different Tyr kinases (left) 
and three different Ser/Thr kinases (right). 

2.3.3 Tolerance of NDA-AD guilded cross-linking towards 
active-site non-specific or specific competitors 
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To test the tolerance of the cross-linking towards non-specific competitors 

like exogenous thiols or amines, Pka-PKAtide pair was incubated with NDA-AD 

with increasing concentrations of β -mercaptoethanol (BME) or lysine (Figure 

2.4A&B). Similar to previous reports with OPA-AD, NDA-AD guided cross-linking 

reactions were not affected by 200-fold excess of exogenous thiols or 1000-fold 

excess of exogenous amines. Competition experiments were performed with ATP 

and LRRASLG-OH (a Pka peptide substrate); an 1000-fold excess of either ATP or 

LRRASLG-OH was necessary to completely block the cross-linking (Figure 

2.4C&D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Effects of an exogenous thiol/amine/ATP/peptide susbstate on cross-
linking. % Labeling = (fluorescence band intensity in the presence of 
competitor/fluorescence band intensity without competitor) x 100. BME/PKAtide 
indicates the folds of exogenous BME over pseudosubstrate. Lysine/Pka indicates the 
folds of exogenous lysine over kinase’s active-site lysine.  
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2.3.4 Dose dependent and active kinase dependent nature of 
NDA-AD guided cross-linking 

To further optimize the cross-linking reaction, dose-dependent experiments 

were carried out by varying the concentration of each component in the reaction 

(kinase, pseudosubstrate and NDA-AD). Two kinases, Pka and Csk, were chosen as 

model proteins. Firstly, the concentration of the pseudosubstrate in the cross-linking 

reaction was optimized. Varied concentrations of the pseudosubstrate peptide (0 to 1 

M) were used in cross-linking reaction. Results showed that the cross-link reaction 

using peptide pseudosubstrate (1 μM) gave the strongest labeling signal with 

minimum background (Figure 2.5A&B). Next, NDA-AD concentration was 

optimized. Varied concentrations of NDA-AD (0 to 20 M) were used in cross-

linking reaction. Results showed that the cross-link reaction using NDA-AD (20 μM) 

gave the strongest labeling signal with minimum background (Figure 2.5C&D).  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 Cross-linking experiments with varied amounts of peptide 
pseudosubstrate, or NDA-adenosine. 

To assess whether the degree of cross-linking depends proportionally on the 

availability of the kinase active site, different amounts of the kinase were cross-
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amounts of kinases in the cross-linking reactions, indicating that the fluorescence 

band intensity observed is proportional to the amount of kinases used in the 

reactions. As little as 300 fmol (15 nM x 20 L) of Pka or 1400 fmol (70 nM x 20 

L) of Csk, respectively, could be easily detected. A higher amount of Csk was 

needed for detection was probably due to the lower enzymatic activity of this kinase.  

 

 

 

 

 

 

 

 

Figure 2.6 Cross-linking experiments with varied amounts of kinase. 

In addition, the same amount of a kinase was cross-linked in the presence of 

different amounts of Staurosporine, a general kinase inhibitor (Meggio, F. et al. 

1995).  Both results confirmed the dose-dependent nature of the cross-linking against 

the active kinase (Figure 2.7). Also shown in Figure 2.7, the gel-based inhibition 

results could be conveniently plotted to generate the corresponding IC50 curves so as 

to obtain quantitative data of the tested kinases against ST; results gave an IC50 

value of  1016 nM and 19.9 nM for Csk and Pka, respectively, which is in close 

agreement with previous literature values (Meggio, F. et al. 1995).  All these lines of 

evidence indicate the robustness of the cross-linking reaction by NDA-AD and its 
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potential applications to study kinase-substrate interactions and inhibition in a 

complex proteome. 

 

 

 

 

 

 

 
Figure 2.7 Cross-linking of NDA-AD with purified kinases in the presence of varied 
amounts of Staurosporine. “ST” indicates Staurosporine. “% Labeling” indicates the 
relative fluorescence of cross-linked kinase in the presence of the inhibitor (100% = 
no inhibitor). All experiments were done in duplicate.  

2.3.5 Specificity of NDA-AD assisted cross-linking 

To determine the specificity of the cross-linking, Csk and Pka were taken as 

model kinases and tested against the full set of five fluorescein-labelled 

pseudosubstrates. As shown in Figure 2.8, the strongest labelling was observed for a 

kinase with its cognate pseudosubstrate. Some noticeable “cross-talks”, however, 

were observed between the kinase and other pseudosubstrates. For example, as much 
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between Pka and SRCtide (assume 100% cross-linking for Pka/PKAtide). We 

wondered if this was due the well-documented promiscuous nature of the kinases in 

their substrate recognition.(Maly, D. J. et al. 2004).  We therefore performed in situ 

phosphorylation assay using the commercially available Kinase-Glo™ Plus Kit. Both 

results from the cross-linking experiments and the phosphorylation assay were 
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compared (Figure 2.8 and Table 2.2). In general, the substrate preferences of the two  

kinases showed good consistency across the set of substrates (or pseudosubstrates) 

from the two independent kinase screening platforms. The high fidelity of 2-guided 

cross-linking of specific kinase-substrate pairs again indicates the potential of its 

application in real proteomic experiments. 

 

 

 

 

 
Figure 2.8 Specificity of NDA-AD guided cross-linking. (top) Fluorescence gel 
images of Csk (left) and Pka (right) cross-linked with 5 pseudosubstrates. (bottom) 
Comparison of kinase substrate preferences as determined by cross-linking and 
phosphorylation assay. “% Activity” indicates the relative extent of cross-linking or 
phosphorylation of a kinase vs different substrates (100% = kinase with its cognate 
substrate).  
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substrate specificity determined by in vitro phosphorylation assay 

Kinase 
Peptide 

CSKtide PKAtide ERKtide SRCtide ABLtide

Csk 
Phosophate 

transfered [a] (nmol) 0.9 0 0 0.239 0.096 

% Activity [b] 100% 0% 0% 27% 11% 

Pka 
Phosophate 

transfered (nmol) 0 1.84 0 0 0 

% Activity 0% 100% 0% 0% 0% 
[a] the amount of phosphate transferred to peptide substrate in 20 min, at rt, in 20 
μL reaction [b] % Activity indicates the reactivity obtained with certain 
kinase/substrate pair divided by the reactivity obtained with target kinase/ 
substrate pair.  
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2.3.6 NDA-AD assisted cross-linking in crude proteome 

We next assessed the NDA-AD guided cross-linking of specific kinase- 

substrate pairs in a crude proteome. Lysates from the E. coli DE3 strain were used as 

the crude proteome and were spiked with the target kinase (i.e. Csk or Pka).  

Subsequently, the corresponding fluorescein-labelled pseudosubstrate together with 

NDA-AD was added. For comparison, identical experiments were performed with 1,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 NDA-AD guided cross-linking of kinase-substrate pair in a bacterial 
proteome (A) Pka/pseudosubstrate pair, and (B) Csk/pseudosubstrate pair. Both 
fluorescence (top) and Coomassie gels (bottom) were shown. The only fluorescent 
band observed in each gel was that of the desired cross-linked pair.   
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OPA-AD.  As shown in Figure 2.9, highly specific cross-linking between 

Csk/CSKtide and Pka/PKAtide pairs was observed with NDA-AD, but not with 

OPA-AD (Figure 2.2), in the presence of the bacterial proteome. It should be noted 

that no known kinases are present in the E coli DE3 proteome.  

Further, to eliminate gel-to-gel variation of labeling results with OPA-

adenosine and NDA-adenosine, the cross-linking reactions were set up side by side, 

under identical conditions, and the samples were resolved on a single gel (Figure 

2.10). Results unambiguously confirmed that, compared to its OPA-adenosine 

counterpart, NDA-adenosine consistently produced much higher quality labeling 

profiles (in terms of specificity, labeling intensity and background labeling).  

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Comparison NDA-AD and OPA-AD guided crosslinking in bacterial 
proteome on the same gel. 
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kinase; as little as 20 ng (0.3 % of total proteome) for Pka and 200 ng (3 % of total 

proteome) for Csk were detectable (Figure 2.11). The 10 folds higher in the detection 

limit of Csk could be attributed to its intrinsically lower enzymatic activity (Sondhi, 

D. et al. 1998). Our results thus provide the first documented example of cross-

linking kinase-substrate pairs in a proteomic experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11 Detection limit of NDA-AD guided cross-linking in bacterial proteome 
Upper panel: Fluorescence gels profile showing cross-linking in bacterial proteome; 
Lower panel: commassie stain of mammalian proteome spiked with different % of a 
kinase.  

2.3.8 NDA-AD assisted cross-linking for detecting potential 
kinase inhibitors 

Many kinases are proven therapeutic targets. Yet highly potent and specific 

inhibitors against select kinases are relatively scarce due to their propensity to inhibit 

multiple kinases (Baselga, J. et al. 2006; Knight,Z.A. et al. 2005). Therefore, much 

effort in kinase research has been spent on developing strategies capable of rapidly 

screening potential kinase inhibitors that address issues related to efficacy, selectivity 

and safety (Karaman, M.W. et al. 2008).  Most kinase inhibitors developed thus far 

have been identified from in situ assays involving the use of recombinant enzymes. 

As a result, off-targets of the inhibitors often escape unnoticed. Recent advances in 

 

Kinase/100X (ng)
(% Proteome)

56

8
(12)

6
(9)

3
(4.5)

4
(6)

2
(3)

0.8
(1.2)

1
(1.5)

0.4
(0.6)

0
(0)

56

40

34

Csk

4
(6)

3
(4.5)

1
(1.5)

2
(3)

0.8
(1.2)

0.4
(0.6)

0.6
(0.9)

0.2
(0.3)

0
(0)

Pka

95

40

34

95

Csk Pka

Kinase/100X (ng)
(% Proteome)

56

8
(12)

6
(9)

3
(4.5)

4
(6)

2
(3)

0.8
(1.2)

1
(1.5)

0.4
(0.6)

0
(0)

56

40

34

Csk

4
(6)

3
(4.5)

1
(1.5)

2
(3)

0.8
(1.2)

0.4
(0.6)

0.6
(0.9)

0.2
(0.3)

0
(0)

Pka

95

40

34

95

Csk Pka



 

 72 

activity-based protein profiling (ABPP) have shown that, with suitably designed 

activity-based probes targeting specific enzymes, one can screen inhibitors against 

multiple enzymes in their native environment, thus ensuring both the potency and 

selectivity of these inhibitors be concurrently evaluated (Leung, D. et al. 2003). In 

our study, the highly efficient and specific cross-linking ability of NDA-AD has 

presented a good opportunity for the strategy to be used for inhibition studies of 

kinases in the crude proteome. To confirm this, we performed dose-dependent 

inhibition of Csk/CSKtide and Pka/PKAtide pairs in the bacterial proteome. As 

shown in Figure 2.12, a concomitant decrease in the fluorescent band was observed 

with increasing amounts of Staurophorine. The cross-linking results were further 

quantified and plotted to generate the corresponding inhibition curves. The obtained 

IC50 values (6.49 M and 40.24 nM for Csk and Pka, respectively) were only 2-5 

times higher than that obtained with pure enzymes (Figure 2.7). 

 

 

 

 

 

 

 

 

Figure 2.12 Detection of kinase inhibition in a complex proteome assisted by NDA-
AD guided cross-linking. Left: Kinase Inhibition by ST in a complex proteome; right; 
the corresponding IC50 curves (right). “% Labeling” indicates the relative 
fluorescence of cross-linked kinase in the presence of the inhibitor (100 % = no 
inhibitor).   
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2.3.9 Multiple kinase detection assisted by NDA-AD guided 
cross-linking 

Next, we assessed whether the cross-linking strategy could be used for 

multiplexed detection of kinase activities, as well as their inhibition, under their 

native environment. Specifically, we asked whether this approach could selectively 

identify the activity of one kinase in the presence of another, and whether the 

quantification of the activity of one kinase would be affected by another more 

abundant kinase. As shown in Figure 2.13, by spiking increasing amounts of Pka (0 

to 200 ng) and a fixed amount of Csk (400 ng) into the same bacterial proteome, 

followed by cross-linking with 2 and either PKAtide or CSKtide individually, or 

together, we were able to detect highly specific cross-linking of Pka/PKAtide and 

Csk/CSKtide pairs separately and/or in a multiplex manner. Furthermore, the 

presence of the more abundant Csk (400 ng in this case) did not appear to have any 

noticeable effect on the detection of the lowly abundant Pka (40 ng in lanes 2). This 

is a crucial feature of multiplexed experiments in a crude proteome where multiple 

endogenous kinases may be inevitably present at different expression levels (Shults, 

M. D. et al. 2005). Next, to assess how the multiplexed kinase detection strategy 

could be extended for inhibitor discovery, the above experiments were repeated with 

increasing amounts of Staurosporine (Figure 2.13); between 10 to 500 nM of ST was 

sufficient to completely abolish the Pka/PKAtide cross-linking, consistent with its 

earlier determined IC50 of ~ 40 nM against Pka. Partial cross-linking of 

Csk/CSKtide pair was still observed even with 25 M of ST, further confirming the 

poor potency of ST against Csk. Taken together, results herein indicate multiplexed 

kinase detection and inhibition in a complex proteome is possible with NDA-AD and 
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our reported strategy. Studies are underway to further validate these findings with 

more kinases and inhibitors.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.13 NDA-AD-guided multiplexed kinase detection and inhibition A) 
Multiplexed kinase detection in a complex proteome. An increasing amount of Pka 
(0 to 200 ng) and a fixed amount of Csk (400 ng) were used. Gels (left to right) 
represent cross-linking with CSKtide, PKAtide or a CSKtide/PKAtide mixture, 
respectively. Bottom graphs: quantification of fluorescent bands in lanes above. B) 
Multiplexed kinase inhibition in a complex proteome with increasing amounts of 
Staurosporine (ST). 

2.3.10 NDA-AD assisted cross-linking of endogenous kinase in 
mammalian proteome 

Finally, we tested whether NDA-AD guided cross-linking experiments could 

be extended to the detection of kinases expressed endogenouslyin cells. Pka was 

again used as our model kinase as it is ubiquitously expressed in most mammalian 
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cells. To do this, CHOK1 lysate was treated with NDA-AD and PKAtide, followed 

by SD S-PAGE analysis, fluorescence scanning, and Western blotting with an anti-

Pka antibody. As shown in Figure 6 (left), a number of cross-linked bands were 

detected, one of which was attributed to the endogenous Pka and was unambiguously 

confirmed by both Western blot (right) and Pka-spiked experiments. Other 

fluorescent bands were likely cross-linked products between other endogenous 

kinases and PKAtide. This is possible because PKAtide might be the substrate of 

multiple kinases in addition to Pka).( Casnellie,J.E. et al. 1991; Cheng, H.C. et al. 

1992; Gonzalez, F.A. et al. 1991; Kemp,B.E. et al. 1997; Sekimoto, H. et al. 2003). 

Work is underway to further characterize the identity of these unknown bands and 

results will be reported in due course. 

 

 

 

 

 

 

 

 

 

Figure 2.14 Detection of endogenous Pka expression in CHO-K1 cell lysate by 
NDA-AD guided cross-linking. CHO-K1 cell lysates (6 mg), with or without spiked 
Pka (400 ng), pseudosubstrate (2 mm), NDA-adenosine (20 mm) in the reaction 
buffer were incubated for 40 min at room temperature before SDSPAGE analysis. 
After fluorescence scanning, proteins were transferred to PVDF membrane and 
probed with anti-Pka antibody. 



 

 76 

2.4 Conclusion 

To conclude, by using an improved mechanism based cross-linker, we 

demonstrated here a general approach for identifying multiple kinase activities 

directly from the whole proteome. Given the fact that peptide pseudosubstrates of 

any sequences could be synthesized easily, and the increasing information available 

in phosphor-proteome database, this approach would be compatible for detecting 

activities of any diverse sets of kinases. This platform is also useful in a 

competitively inhibition profiling assay for the discovery of potent and selective 

inhibitors for kinases. The establishment of the NDA-adenosine guided 

kinase/peptide cross-linking reaction and the initial application represents a new step 

toward the creation of novel chemical tools targeting phosphorylation signalling and 

drug discovery. Study is still in progress to extend the use of this new cross-linker for 

the cross-linking of kinases and their protein substrates. 
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Chapter 3. 
 
 
Functional Profiling, Identification and Inhibition 
of Plasmepsins in Intraerythrocytic Malaria 
Parasites 
 
 

3.1 Summary 

Another obvious challenge is that, more classes of proteins should be covered 

by expanding the proteome coverage of ABPs or AfBPs. For example, aspartic 

proteases do not have chemical probes that are selective enough for comparative 

proteomic analysis and competitive inhibitor analysis. Small molecules known to 

interrogate with this family of proteins need be converted to chemical probes. And 

this process need not only the synthesis effort of these probes but more effort in 

optimization in probe design, candidate probe screening and even tuning of 

compatible analysis platform. This chapter describes the development of first 

affinity-based probes for functional profiling of all 4 plasmepsins (PMs) in 

intraerythrocytic malaria parasites. Subsequent in situ screening of parasites with 

these probes has led to the identification of a compound, G16, which show good 

inhibition against all 4 PMs and parasite growth in infected red blood cells (RBCs). 

Our finding indicates that feasibility of using ABP approaches for identification of 

inhibitors against less-characterized enzymes (i.e. Histoaspartic Protease, or HAP).  

We anticipate that these new chemical tools should facilitate discovery of new 

parasite biology and new anti-malaria drugs. 
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3.2 Introduction 

Malaria is a global disease, affecting 300-500 million people annually and 

killing 1-2 million. The most deadly form of the disease is caused by the pathogen 

Plasmodium falciparum. Currently, quinolines and antifolates are the most common 

anti-malaria drugs (Snow, R.W. et al. 2005). The cost of the drugs, as well as the 

emergence of multidrug resistance, is however a major problem, highlighting the 

need for new drugs against this devastating disease. P. falciparum has two sexual and 

asexual stages of growth. The human asexual erythrocytic phase (blood stage) is the 

cause of most malaria-associated pathology. Upon invasion of RBCs, the parasites 

differentiate (ring stage), metabolize hemoglobin (trophozoite stage), and replicate 

(schizont stage) over the next 48 hours before being released (by rupture of the host 

cell) into the blood stream. Proteases, including cysteine (i.e. falcipains) and aspartic 

proteases (i.e. plasmepsins, or PMs), are required for parasite growth through 

digestion of human hemoglobin and delivery of necessary nutrients. They are 

promising anti-malaria targets (Boss, C. et al. 2006). Genomic data obtained for P. 

falciparum predict at least 10 genes encoding aspartic proteases, four of which (PM-I, 

-II, -IV and HAP) have been validated and are found in the food vacuole of the 

parasite. The functional redundancy of these PMs calls for inhibition of all four of 

them in order to effectively kill the parasite ( Fidock, D. A. et al. 2008; Rosenthal, P. 

J., et al. 2004; Goldberg, D. E. et al. 2005). At present, most inhibitors developed are 

only effective against selected PMs (Liu, J. et al. 2006; Drew, M. E. et al. 2008).  

This is due to difficulties associated with recombinant expression and insufficient 

biochemical characterizations of certain PMs (i.e. PM-I and HAP) in vitro, and the 

lack of methods that allow simultaneous screening of PMs’ activity in situ (Hof, F. et 

al. 2006; Nezami, A. et al. 2003). So we aimed to develop chemical proteomic tools 
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for functional profiling of activities of multiple PMs in the crude proteome of 

intraerythrocytic malaria parasites.  

3.3 Results and Discussion 

3.3.1 Design and synthesis of AfBPs and inhibitors library  

Previously, activity-based probes (ABPs) were successfully used for in situ 

screening of malaria cysteine proteases (Ersmark, K. et al. 2006). We report herein 

the first chemical proteomic approach for functional profiling of all 4 PMs in 

intraerythrocytic malaria parasites. This could be made possible by the development  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Assembly of affinity-based probes (AfBPs) and the 152-member 
inhibitors against all four plasmepsins in P. falciparum.  
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of affinity-based probes (AfBPs) against PMs (Figure 1) ( Xiao, H. et al. 2006; Xiao, 

H. et al. 2007). In situ screening of PMs with these probes against a focused library 

of 152 hydroxyethyl-containing small molecules has led to the identification of G16 

as an effective inhibitor against the parasite in infected RBC cultures. Unlike other 

known aspartic protease probes, which were based on specific inhibitors against their 

respective targets (e.g. presenilin and 　-secretase), we aimed to establish a general 

approach that could be applicable for a variety of aspartic proteases. As shown in 

Figure 3.1 (top), the 7 AfBP probes (A-G), each containing a hydroxyethyl-based 

warhead (WH) with a varied P1 and P2 group (assuming the orientation of probe-

enzyme was as drawn and Figure 9.1), were assembled from the corresponding 

azide-containing WH and the alkyne, which contains a benzophenone (BP) photo-

crossing unit and a tertraethylrhodamine (TER) reporter (Figure 9.3), using click 

chemistry. Hydroxyethyl-containing scaffolds are general transition state analogs of 

aspartic proteases. In probes A-G, aliphatic/aromatic groups were strategically 

chosen since they are preferred in three of the four PMs (PM-I, -II & -IV; HAP is not 

well-characterized) (Liu, J. et al. 2006; Drew, M. E. et al. 2008). Other aspartic 

proteases may be targeted by structurally tuning the WH in future. The use of click 

chemistry for efficient chemical assembly of complex ABPs was well documented 

(Chan, E.W.S. et al. 2004). In our case, it also provided rapid access to the 152 

hydroxyethyl inhibitors against the PMs (A1-H19; see Figure 9.1, 9.2 for complete 

structures). The 8 hydroxyethyl WHs were chemically synthesized. Upon “click” 

assembly of the probes and the inhibitors, they were further characterized and 

purified (where necessary).  

3.3.2 Labeling of recombinantly purified aspartic proteases by 
AfBPs  
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3.3.2.1 UV initiated labeling by AfBPs 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Distinct labeling profiles of different aspartic proteases against the 7 
AfBPs. (top) Fluorescence gels of five different recombinant aspartyl proteases 
labeled by the 7 AfBPs; (bottom) The treeview representation of the labeled bands.   

To demonstrate the capability of the probes for UV-initiated proteomic 

profiling of aspartic proteases, pepsin, rennin, recombinant PM-I, -II, -IV and HAP 

were initially used; highly distinct labeling profiles against different aspartic 

proteases were observed, indicating the variable P1/P2 group exerted a strong 

influence over specific enzyme/probe interactions.  

3.3.2.2 Competitive labeling by AfBPs with known inhibitors  

To confirm our AfBPs label plasmepsins in an activity-dependent manner, we 

carried out the in-gel fluorescence labeling experiments of the plasmepsins with 

probe G in the presence of different concentrations of each inhibitor. (Liu, K. et al. 

2008; Leung, D. et al. 2003).  
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Figure 3.3. Characterizations of several well-known inhibitors against recombinant 
FV plasmepsins in gel-based competitive labeling assay (top in each panel). IC50 
values were subsequently determined (bottom in each panel). HAP belongs to a 
unique class of aspartic proteases which require an actives-site serine residue.1 Thus 
its enzymatic activity is sensitive towards PMSF. 

3.3.2.3 Comparative Profiling of HAP Active Site Mutants 

The exact catalytic mechanism of HAP is still debatable (Parr, C. L. et al. 

2008, Xiao, H. et al. 2007, Xiao, H. et al. 2006). In order to further validate the 

activity-based nature of our AfBPs, and to determine the key catalytic residues of 

HAP, we compare the in-gel fluorescence labeling profile of wtHAP and four of its 

active site mutants (H34A, S37A, K78A, E278A, respectively)  (Parr, C. L. et al. 

2008, Xiao, H. et al. 2007, Xiao, H. et al. 2006) with probe AfBP-G. The results 

were compared with the kcat of the proteins as determined using conventional 

enzymatic assays (Xiao, H., 2007,). We noticed that probe AfBP-G was able to 

accurately report the relative enzymatic activity of the different HAP mutants. Silver 
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stained protein bands indicate that the labeling intensity is not due to uneven protein 

amount loaded. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4. Comparative Profiling of HAP Active Site Mutants (A) kcat obtained for 
the wtHAP and different mutants from traditional enzymatic assays. (B) (bottom) In-
gel fluorescence labeling profiles of wtHAP and its mutants with probe AfBP-G and 
silver stained protein band; (top) graphical summary/comparision of kcat and in-gel 
fluorescence labeling profiles of wt HAP and its mutants.  

3.3.3 Labeling of Plasmepsins by AfBPs in Malaria Parasite 
lysates 

3.3.3.1 Profiling of PM Activities throughout Different Blood Stages 
of P. Falciparum 

The probes were subsequently used to label proteomes of highly synchronized 

parasites obtained at different development stages (ring, trophozoite and schizont) 

(Figure 3.5); a 37-KDa protein band, which corresponds to the molecular weight of 

all 4 PMs, was highly visible, albeit with varied labeling intensities. To determine 

whether the labeling was dependent on the activity of the labeled proteins, the same 

experiments were repeated in the prescence of Pepstatin (1 M). Results show that 

the labeling was abolished by the addition of pepstatin demonstrating the activity 

dependent nature of the labeling. Across probes A-G, probe G consistently gave the 

Protein kcat (s
-1) 
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strongest labeling profile and thus was chosen for further studies. 3.3.3.2 

Identification of PMs by 2DGE & MS, and Western Blotting. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Labeling of Plasmepsins by 7 AfBPs in Malaria Parasite lysates; (Top) 
In-gel fluorescence scanning showing specific labeling of the 37-kDa band across 
different stages using all seven AfBPs, with spectral counts of  the labeled bands 
(bottom left). (Bottom right) Schizont stage parasite extracts were labeled by probe G, 
followed by 2D-GE/MS analysis to identify the 4 PMs (spots 1-4 were identified as 
PM-II, -I, HAP & -IV, respectively in the next section).  

3.3.3.2 Identification of PMs by 2DGE, MS, and Western Blotting 

To positively confirm the 37-KDa fluorescent band in the schizont stage parasite 

extract corresponds to the four known plasmepsins (PM-I, PM-II, HAP and PM-IV), 

2D-PAGE followed by MS analysis of the fluorescent spots and affinity pulldown 

followed by westernblot were carried out. Both 2D-PAGE/MS and immuno-

pulldown analysis indicates that the 37-KDa band corresponds to all 4 labeled PMs 

(inset in Figure 3.5 and Figure 3.6, Table 3.1 & 3.2), thus confirming the probes 

could be used to profile all 4 PMs’ activities from the parasite. Neither zymogens of 
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PMs nor other proteins were detected, indicating the specificity of the probes in 

targeting only active PMs. 

Table 3.1. Summary of 2D-MS/MS Identification for Probe G-Labeled Plasempsins 
 
 
 
 
 
 
 

Table 3.2. Mascot MS/MS searching match of PM-I, PM-II, HAP and PM-IV 
peptides 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. anti-TMR immuno pull-down of probe labeled protein; experiment 
showing that all four plasmepsins were labeled by probe G. Lane 1, unlabeled lysate; 
lane 2, labeled lysate; lane 3, anti-TMR pull-down fraction from labeled lysate; lane 
4, anti-TMR pull-down from unlabeled lysate 
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Protein Name Peptide Precursor Score Expect 

PM-I 
GYLTIGGIEDR 1192.61 55 0.00017 

LPTLEFR 874.49 50 0.00052 

PM-II 
HTGFLTIGGIEER 1428.74 114 2.5e-10 

FYEGPLTYEK 1246.58 38 0.0065 

HAP 
GYLTIGGIEER 1206.62 34 0.017 

FFDGPLNYEK 1228.576
4 

32 0.025 

PM-IV 
DGTKVEISYGSGT

VR
1567.78 35 0.011 

Protein 
Name 

Spot No. Accession No. 
Predicted 

pI 
Observed 

pI 
MW 
(kDa) 

PM-I 2 gi|124808172 4.7 4~5 37 
PM-II 1 gi|858754 4.6 4~5 37 
HAP 3 gi|124808181 5.0 4~5 37 

PM-IV 4 gi|21730846 4.4 4~5 37 
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3.3.3.3 Membrane/Soluble Sub-proteome Profiling of PM Activities 

Subsequently, to gain insight into the functional roles of specific aspartic 

proteases, we used highly synchronized parasite populations to profile PM activities 

throughout the multiple developmental stages of the parasite. For each stage, PM 

activity was determined by labeling total lysates, detergent soluble and -insoluble 

lysates from each stage with probe G. As shown in Figure 3.7, results indicated that 

the activity profiles of FV plasmepsins in either soluble or in-soluble fractions are 

highly regulated. Interestingly, PM activity peaked at the trophozoite stage for the 

insoluble fraction. This is consistent with the role of these PMs in hemoglobin 

degradation which occurs in the food vacuole. The distinct profile of soluble-fraction 

activities peaked at the schizont stage; this peak probably indicates a change in the 

subcellular localization of the PMs (PM-II was previously shown to be released from  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 Characterizations of PMs activities from total lysates, NP-40 soluble and 
insoluble fractions across different intraerythrocytic stages of P. falciparum; R 
indicates Ring stage; T indicates Trophzoite stage; S indicates Schizonts stage. 
Upper panel shows the spectral counts of respective bands. lower panel shows the 
labeling profile of parasite lysate from different stages with probe G and respective 
PM level in different fractions detected by specific antibodies 
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the FV in the late schizont stage). Western blotting with antibodies against the four 

PMs also indicated that their absolute protein expression levels corroborated 

well.with labeling profiles observed with probe G. Thus, the utility of our probes for 

the accurate reporting of the activities of PMs from crude malaria proteomes was 

further confirmed  

3.3.4 In-Situ Inhibitor library Screening and effect of selected 
compounds against PMs 

3.3.4.1 In-situ library screening by competitive AfBP labeling 

One of the key advantages of these AfBPs is the ability to use them for the 

simultaneous detection of the activities of multiple PMs in their native environment. 

This so-called in situ screening method, originally described by Cravatt and 

coworkers for other enzymatic systems (Leung, D. et al. 2003) enabled us to identify 

potential inhibitors against all four PMs directly from the malaria proteome without 

the recombinant production of every active PM. To identify the most potent 

inhibitors against all four PMs, we preincubated each compound of the 152-

membered hydroxyethyl-based library with the parasite lysate and then added probe 

G and subjected the samples to UV irradiation. We determined the relative potency 

of each inhibitor by measuring the decrease in fluorescence intensity in the 37 kDa 

labeled band. The relative fluorescence intensity of the 37-Kda band labeled by G 

were quantified using ImageQuant™ software. The potency of specific inhibitor 

scaffolds was measured as a ratio of the percent residual labeled proteases after 

inhibitor treatment relative to an untreated control. For analysis, the inhibition data 

were displayed in a colorimetric format and clustered on the basis of similarities in 

inhibitor profiles using treeview software. Results are shown in Figure 3.8, from 

which representative hits potently inhibiting entire FV family plasmepsins in the  
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Figure 3.8. Single-point In situ screening of 152 member library and selected 
compounds  

 

 

 

 

 

 

 

Figure 3.9. In-situ Dose dependent inhibition by selected compounds. In-gel fluorescence 
profiles of the parasite lysate labelled by probe G in the presence of different dosages of an 
inhibitor (top). The 37-KDa labeled band was quantified and plotted to generate the 
corresponding IC50 curve (bottom).    

complex proteome were identified: C7, C12, C16 and G16. As controls, the 152-

member library was also screened against each of the three recombinant plasmepsins 

(PM-I, PM-II, HAP) using a standard microplate-based enzymatic assay or 
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competitive labeling assay. From these screening results, four more candidate “hits” 

were identified: H3, H19, G15 and G19. Each of these hits was potent against at least 

one, but none was potent against all, of the three plasmepsins tested. These eight 

compounds were resynthesized and purified, and their potency was confirmed in a 

dose-dependent in situ screening assay (Figure 3.9). 

One of the most potent inhibitors identified, G16, showed an IC50 value of 

937.5 nM. In contrast, G15, a “false positive” identified from standard enzymatic 

assays by using selected recombinant PMs, showed significantly weaker inhibition 

(IC50=21.6 M) (Figure 3.10). To show that the difference in labeling intensities 

were due to competitive inhibition of the PM labeling by G16 rather than loading 

error, specific antibodies were used to confirm consistent PMs level acrosss all lanes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10 In situ screening assay and determination of the IC50 values of G15 and 
G16 against all four PMs in the parasite proteome 

 

0.0 2.5 5.0
0

50

100

G15 (IC50= 21.6 M)

G16 (IC50= 937.5 nM)

Log [Inh]/nM

%
 L

ab
e
lin

g

G16

G15

[Inh]

anti-PM-I

anti-HAP

anti-PM-II

anti-PM-IV



 

 90 

3.3.4.2 Effect of selected compounds in live culture of Parasite 

infected RBC 

The inhibitory effect of these candidate compounds was tested with parasite-infected 

RBC cultures. The distinct activity/solubility profiles of PMs (Figure 3.7) prompted 

us to test the inhibitory effect of the inhibitors against schizontstage PMs, which 

showed the highest activity in the detergent nonyl phenoxylpolyethoxylethanol (NP-

40). RBCs were treated with the inhibitors 40 h after parasite invasion (i.e. in the late  

schizont stage). Upon cell rupture, we measured the percentage of parasites in the 

ring and schizont stages. Respectively, G16 gives the best potency in live parasite 

culture with an EC50 of 1.038 M, followed by C16 with EC50 of 3.191 M, C12 

with EC50 of 8.924 M, C7 with EC50 > 20 M (Figure 3.11).  Compound G16, but 

not G15, caused a marked decrease in the number of newly formed ring-stage 

parasites, and at the same time an increase in free extracellular merozoites (Figure 

3.12). 

Thus, as well as blocking parasite development at the trophozoite/schizont stage, as 

one might expect, the inhibition of PM activity also caused the blockage of either the 

escape of the parasites from RBCs, or their reinvasion of RBCs. This speculation is 

further supported by previous findings that PM-II was able to digest an RBC 

membrane-skeleton protein in the late schizont stage at neutral pH, and that the 

invasion of P. falciparum merozoites was affected by treatment with pepstatin (a 

general aspartic protease inhibitor) (Le Bonniec, 1999; Dejkriengkraikhul, P.,1983). 

The inhibition of parasites by G16 was dose-dependent, whereby the estimated EC50 

value of 1.04 M was similar to that obtained from the in situ proteomic screening 

(IC50=937.5 nM). In contrast, G15 showed little or no inhibition towards infected  
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Figure 3.11. Inhibition effects of live parasite-infected RBC cultures treated with 
selected compounds. EC50 was plotted by calculating from the inhibition effect of 
newly formed ring stage parasites compared to DMSO control.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Inhibition of parasite growth in infected RBC at Schizont stage. Top, 
dose dependent inhibition effect of G15 and G16; Lower panel, representative 
images of parasite infected RBC treated with G15 and G16 with arrows showing 
abnormal development of parasite. 

RBCs, even at the highest concentration tested. Finally, G16 showed no apparent 

cytotoxicity against common mammalian cell lines (Figure 3.13). These results 

underscore the importance of our in situ screening assay for the future discovery of 

general PM inhibitors (Table 3.3) 
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Figure 3.13 . Cytotoxicity analysis in mammalian cell cultures for selected hits 
identified from the proteomic/parasite screening. 

 

Table 3.3 Summary of Inhibitors identified from proteomic competitive assay 

Inhibitor 
IC50 in competitive 

proteomic assay 
EC50 in live RBC 

culture 
CC50 against 

mammalian cells 

C7 2.063 M > 20 M >100 M 

C12 1.016 M 8.924 M >100 M 

C16 0.674 M 3.191 M >100 M 

G16 0.938 M 1.038 M >100 M 

 

3.3.4.3 Prediction of Binding Mode by Molecule Docking 

To gain insight into the binding mode of G16 to FV PMs, molecular docking 

studies were performed. The results showed that the molecule binds nicely in the 

active site confined by D34 and D214 aspartic acid pair in the structure of PM-II and 

PM-IV or by the H32 and D214 in the structure of HAP (Figure 3.14 A, B, C). 
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G16 in PM-II, PM-IV as well as the non-classical HAP (Figure 3.14 G, H, I). The 

results also show that the hydroxyl group of G16 has close interaction with D34 and 

D214 in PM-II and PM-IV just like proposed; while binding to HAP, G16 assumes a 

position with its hydroxyl group fitted between H32 and D214 which is observed for 

the statine hydroxyl group of pepstatin12 (Figure 3.14 D, E, F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.14 Molecular docking of G16 into the active site of PM-II, HAP and PM-
IV A), G16 binds to the active site binding pocket of PM-II, B), HAP and C) PM-IV; 
D) Hydroxyl group of G16 closely interact with D34 and D214 in PM-II; E) D32 and 
D214 in HAP; F) D34 and D214 in PM-IV; G) Prefered conformation of G16 in the 
binding pocket of PM-II; H) of HAP; I) of PM-IV 

3.4 Conclusion 

In summary, we have developed the first affinity-based probes for the 

functional profiling of all four PMs in intraerythrocytic malaria parasites. Subsequent 
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in situ screening of parasites with these probes led to the identification of a 

compound, G16, which showed good inhibition against all four PMs and parasite 

growth in infected RBCs. Molecular modeling indicated that this inhibitor binds to 

the active site of the plasmepsins tested, as originally designed. Our results indicate 

the feasibility of using AfBP approaches for the identification of inhibitors of less-

characterized enzymes (such as HAP) and inhibitors of multiple targets. We 

anticipate that these new chemical tools should facilitate the discovery of unknown 

parasite biology and new antimalarial drugs. In the current study, we were unable to 

detect previously predicted but unidentified aspartic proteases from the malaria 

proteome. Thus, G16 might have further targets, other than the four plasmepsins, in 

the malaria proteome. Future research will focus on the development of new 

chemical probes to address these issues. 
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Chapter 4. 
 
 
Activity-Based Proteome Profiling of Potential 
Cellular Targets of Orlistat - An FDA-Approved 
Drug with Anti-Tumor Activities 

 

 

4.1 Summary 

Since small molecule inhibitor’s selectivity addressed by ABP/AfBP 

approach only represents the selectivity within this class of enzyme targeted by the 

ABP/AfBP, profiling of a small molecule drug’s targets in a whole proteome level is 

of significant value.  This chapter describes an activity-based profiling of small 

molecule-protein interactions approach for unbiased, empirical identification of off-

targets of development-stage or even marketed drugs. Tetrahydrolipstatin is a natural 

product-derived drug that is a lipase inhibitor used against obesity that may also be 

useful in cancer therapy. Its action is based on acylation of active-site nucleophiles 

by its beta-lactone unit. Cellular off-targets and potential side effects of Orlistat in 

cancer therapies, however, have not been extensively explored thus far. In this 

chapter, we describe the application of THL-like protein-reactive probes, in which 

extremely conservative modifications were introduced in the parental THL structure 

to maintain the native biological properties of Orlistat, while providing the necessary 

functionality for target identification via the bio-orthogonal click chemistry. With 
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these natural productlike, cell-permeable probes, we were able to demonstrate, for 

the first time, this chemical proteomic approach is suitable for the identification of 

previously unknown cellular targets of Orlistat. In addition to the expected fatty acid 

synthase (FAS), we identified a total of eight new targets, some of which were 

further validated by experiments including Western blotting, recombinant protein 

expression, and site-directed mutagenesis. Our findings have important implications 

in the consideration of Orlistat as a potential anticancer drug at its early stages of 

development for cancer therapy. Our strategy should be broadly useful for off-target 

identification against quite a number of existing drugs and/or candidates, which are 

also covalent modifiers of their biological targets. 

4.2 Introduction 

Drug discovery is a long and costly process, yet most drugs have side effects, 

ranging from simple nuisances to life-threatening complications (Giacomini, K. M. et 

al. 2007). Unanticipated effects of a drug, often revealed either during clinical trials 

or sometimes after the drug enters the market, could lead to termination of a drug 

development program/recall of the drug, or, in some rare cases where the effects are 

beneficial, new drug applications (Campillos, M. et al. 2008, Crunkhorn, S et al. 

2008). Therefore one of the most critical steps in the drug discovery process is the 

effective identification of the so-called off-targets and anticipation of their potential 

side effects a priori.  

Orlistat™, or tetrahydrolipstatin (THL), is an FDA-approved anti-obesity 

drug, which works primarily on pancreatic and gastric lipases within the 

gastrointestinal (GI) tract (Guerciolini, R et al. 1997). Recently, Orlistat was found to 
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inhibit the thioesterase domain of fatty acid synthase (FAS), an enzyme essential for 

the growth of cancer cells, but not normal cells (Kridel, S. J. et al. 2004；Menendez, 

J. A. et al. 2007). By effectively blocking the cellular FAS activity, Orlistat induces 

endoplasmic reticulum stress in tumor cells, inhibits endothelial cell proliferation and 

angiogenesis, and consequently delays tumor progression on a variety cancer cells, 

including prostate, breast, ovary, and melanoma cancer cells (Little, J. L. et al. 2007). 

As a result, this compound (as well as other Orlistat-like analogs with improved 

potency and bioavailability) is being pursued as a promising anti-cancer drug (Ma, G. 

et al. 2006；Richardson, R. D. et al. 2008). Cellular off-targets and potential side 

effects of Orlistat in cancer therapies, however, have not been extensively explored 

thus far (Filippatos, T. D. et al. 2008). Our long-term research goals focus on 

developing novel chemical proteomic strategies that enable large-scale studies of 

therapeutically relevant enzymes, as well as small molecules (i.e. potential drug 

candidates) that can modulate these enzymes’ cellular activities (Uttamchandani, M. 

et al. 2009). In our study, we set out to look for new cellular targets, including off-

targets, of Orlistat at its early stages of development for cancer therapy. In the next 

section, we describe for the first time, the identification and putative validation of 

several previously unknown cellular targets of Orlistat by using a natural product-

based, chemical proteomic approach. 

4.3 Results and Discussion 

4.3.1 THL-R Design and Synthesis of Orlistat-like Probes.  

Our strategy is based on the well-established activity-based protein profiling 

(ABPP) approach (Evans, M. J., 2006; Uttamchandani, M., 2008), by making use of 
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THL-like protein-reactive probes THL-R, -L and -T (structure 1, 2, 3 Figure 4.1). We 

took advantage of several key properties known to THL in the design of our activity- 

based probes: (1) THL (being derived from a natural product) is cell-permeable,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.THL-R. Overall strategy for activity-based proteome profiling of potential 
cellular targets of Orlistat using alkyne-containing, cell-permeable THL analogs 
(THL-R, -L & -T). The alkyne handles in the probes are shaded (purple circle). The 
“Click”-based reporters used in the manuscript are shown (in red rectangle). 
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making our probes applicable for direct in situ cell-based screening; (2) THL reacts 

with its known cellular targets via a covalent reaction through its reactive -lactone 

moiety and the nucleophilic active-site residue (typically Ser/Cys residues, e.g. 

Ser2308 in FAS (Pemble, C. W. et al. 2007) of the target protein, resulting in the 

formation of an isolatable protein/THL complex; (3) previous minor structural 

modifications at either the 16-carbon or 6-carbon aliphatic chains of THL did not 

significantly alter its native biological activities (Richardson, R. D. et al. 2008).  

These extremely conservative modifications of introducing an alkyne handle in the 

parental THL structure were aimed at maintaining the native biological properties of 

Orlistat, while providing the necessary functionality for identification and 

characterization (i.e. imaging) of previously unknown cellular targets by downstream 

conjugation of the protein/probe complex to reporter tags via the bio-orthogonal click 

chemistry (Kalesh, K. A. et al. 2007; Uttamchandani, M. et al. 2008). 

4.3.2 Comparing the Cellular Effects of THL and THL-based 
probes  

Next, the three probes were evaluated against Orlistat (as a positive control) 

for potential biological activities. Three different types of cellular assays based on 

previously established Orlistat biology were used (Kridel, S. J. et al. 2004; Knowel, 

L. M. et al. 2008; Little, J. L. et al. 2007). First, the anti-proliferation activity of the 

four compounds (THL-R, -L, -T & Orlistat) against HepG2 cells (a human 

hepatocellular liver carcinoma cell line) were evaluated using the XTT assay (Kridel, 

S. J. et al. 2004;); all four compounds showed a dose-dependent inhibition of tumor 

cell proliferation over a 72-h time period with comparable potency  (Figure 4.2A). 

Secondly, we carried out comparative analysis of the compounds in their ability to 

induce phosphorylation of eIf2  in the prostate cancer PC　 -3 cells (Knowel, L. M. et   
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Figure 4.2 Cellular Effects of THL and THL-based probes (A) Dose-dependent 
inhibition of HepG2 cell proliferation by Orlistat and three analogues (1, 2, and 3) 
using XTT assay. Data represent the average (s.d. for two trials. (B) Western blot 
analysis of eIF2R phosphorylation in PC-3 cells upon treatment with the four 
compounds. GAPDH was used as a loading control. (C) Inhibition of protein 
synthesis in HepG2 cells treated with the indicated concentrations of Orlistat, THL-R, 
or CHX (cycloheximide, an inhibitor of protein biosynthesis) for 12 h and then 
pulsed with AHA (L-azidohomoalanine) for 4 h. Cell lysates were prepared and 
subjected to click chemistry with rhodamine-alkyne (provided with the AHA kit) 
following vendor’s protocols, SDS-PAGE analysis, and in-gel fluorescence scanning 
(fluorescent gel is shown in grayscale). (D) Activation of caspase-8 in MCF-7 cells 
treated with the indicated concentrations of Orlistat/analogues. 

al. 2008;). Previous studies had shown that inhibition of FAS by Orlistat induces 

endoplasmic reticulum (ER) stress and results in the phosphorylation of the 

translation initiation factor eIF2. As shown in Figure 4.2 B, PC-3 cells treated with 

different amounts of each compound showed similarly elevated 
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eIF2 phosphorylation. Because the phosphorylation of eIF2 is known to inhibit 　 　　

cellular protein synthesis (Little, J. L. et al. 2007), we carried out metabolic labeling 

experiments with azidohomoalanine (Dieterich et al. 2006) to measure the level of 

newly synthesized proteins in cells treated with Orlistat, THL-R or cycloheximide (a 

well-known protein synthesis inhibitor). As shown in Figure 4.2C, greatly reduced 

levels of protein synthesis were observed in cells treated with each of the three 

compounds. The inhibition of protein synthesis was dose-dependent, which is 

consistent with previous findings carried out using radiolabeled 35S-methionine 

(Little, J. L. et al. 2007). Lastly, inhibition of FAS by Orlistat was previously shown 

to induce tumor cell apoptosis by activating caspase-8 (Knowel, L. M. et al. 2008;). 

We therefore tested the compounds against the invasive human breast cancer MCF-7 

cells (Figure 4.2 D); similar degrees of caspase-8 activation (as evidenced by the 

appearance of the p41/43 bands corresponding to cleaved caspase-8) were observed 

against all four compounds (at either 5 or 25 M). Collectively, these data show the 

introduction of a terminal alkyne handle at various designated locations in Orlistat 

scaffold did not noticeably affect its biological activities, and THL-R, -L, and -T 

were indeed suitable chemical probes for cell-based proteome profiling and 

identification of previously unknown cellular targets of Orlistat identification.   

4.3.3 In Situ and in Vitro Proteome Profiling.  

We next compared the in situ proteome reactivity profiles of the three probes 

to identify proteins which were covalently labeled by the probes in live HepG2 cells 

(Evans, M. J. et al. 2005). THL Probes (1-20 μM) were directly added to the cell 

culture medium, either alone or in the presence of 100 μM of the competing Orlistat. 

After two hours, the cells were washed (to remove excessive probes), homogenized, 

incubated with rhodamine-azide under click-chemistryconditions, separated by SDS- 
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PAGE gel, and analyzed by ingel fluorescence scanning. In addition to the expected 

FAS band (265 kDa, marked with red arrow; Figure 4.3A), confirmed by treatment 

with an anti-FAS antibody (Figure 4.4A), we also observed a number of Orlistat- 

sensitive targets, that is, those labeled bands that were competed away by treatments 

with excessive Orlistat (marked with blue arrows and asterisks in Figure 4.3A and B). 

Most of these labeled bands were clearly visible even at a low probe concentration 

(e.g., 1 μM of THL-R; lane 1 in Figure 4.3A). Both THL-R and -L gave similar 

proteome labeling profiles, whereas THL-T consistently produced weaker labeled 

bands (possibly caused by inefficient click-chemistry conjugation due to 

inaccessibility of the alkyne handle located at the N-formyl- L-leucine end, which, 

based on X-ray structure of FAS/Orlistat complex, was buried deep into the protein) 

(Pemble, C. W. et al. 2007). To assess which nucleophilic residue of the labeled 

proteins might have been covalently modified by our probes, SDS-PAGE gels from 

the in situ labeling were subjected to in-gel treatment with hydroxylamine (NH2OH), 

which preferentially cleaves thioesters, and esters to a lesser extent, under neutral pH 

conditions (Charron, G. et al. 2009). As shown in Figure 4.3D, the labeled FAS and 

most other Orlistat-sensitive bands showed a much reduced fluorescence signal upon 

treatment with NH2OH, suggesting likely involvemen of a cysteine/serine residue in 

the labeling between these proteins and THL (vide infra). It is interesting to note that 

the labeled FAS band was to some degree resistant to NH2OH treatment, clearly 

indicating the formation of a more chemically stable ester linkage between Ser2308 

in FAS and THL-R. In a related experiment, we also performed competitive ABPP 

with Cerulenin, a known FAS inhibitor which irreversibly inactivates the -ketoacyl-

ACP synthase domain but not the thioesterase domain of FAS (Martin Moche, M. et 

al. 1999); as expected (Figure 4.3C), Cerulenin did not abolish the 
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Figure 4.3 Proteome profiling of HepG2 cells using THL analogs. Both in situ (live 
cell) and in vitro (whole-cell lysates) labeling were carried out. (A) in situ proteome 
labeling of HepG2 cells, with or (B) without Orlistat (100 M), (C) Cerulenin (100 
M), followed by click chemistry with rhodamine-azide SDS-PAGE analysis, in-gel 
fluorescence scanning , . The labeled FAS (marked with red arrow) and multiple 
Orlistat-sensitive targets (marked with blue arrows) were isolated and identified 
subsequently using biotin-azide, and summarized in Table 4.1. In (B), asterisks show 
the expected locations of FAS and other Orlistat-sensitive bands. (D) showed the 
fluorescence profile of the gel from Figure 3A upon treatment with hydroxylamine. 
The fluorescence labeling of most proteins (but not FAS) were reversed by 
hydroxylamine, indicating a thioester linkage. (E) and (F) in vitro labeling of HepG2 
whole-cell proteome lysates with or without Orlistatlabeling of the THL probes 
toward FAS as well as most other Orlistat-sensitive proteins. This indicates that the 
labeling of our probes is both target- and domain-specific, and they may in the future 
be used to distinguish different domains of FAS. 

 

Cerulenin (100 mM)

A)                                            B)                                    C) 

D)                                             E)                                  F) 
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 As shown in Figure 4.3E and Figure 4.3F, when compared to in situ (live cell) 

labeling, similar proteome labeling profiles, albeit with significantly higher 

background labeling, were obtained when whole-cell lysate were used instead. This 

shows the importance of the in situ labeling (made possible by the cell-permeable 

property of the THL probes) as a prerequisite for accurate and specific target 

identification. 

4.3.4 Target identification and validation 

Subsequently, the labeled protein extract was enriched (following click-

chemistry conjugation with biotin-azide) by avidin-agarose beads, separated by SDS-

PAGE gel, confirmed by strepavidin blotting, subjected to in-gel trypsin digestion, 

and identified by MS/MS analysis (Figure 4.4A). In addition to FAS, eight new 

proteins were identified (numbered 1-8; in Figure 4.3A, 4.4A and Table 4.1), of 

which one is an unnamed protein. Two of the proteins, GAPDH and -Tubulin, are 

house-keeping genes constitutively expressed in most cell lines, but known to be 

expressed more highly in cancer cells (Mori, R. et al. 2008; Phadke, M. S. et al. 

2009). Both GAPDH (a dehydrogenase) and -tubulin (a hydrolase) possess 

nucleophilic active-site cysteine residues. It is therefore not surprising they were 

targets of Orlistat and their labeling was reversed by NH2OH treatment. It should be 

noted that tubulins are well-known targets of anticancer drugs (Kingston, D.G. et al. 

2007). Three other proteins identified, RPL7a, RPL14 and RPS9, are ribosomal 

proteins. They are known to be implicated in protein synthesis, control of cellular 

transformation, tumor growth, aggressiveness and metastasis. Overexpression of 

these proteins had previously been reported in colon, brain liver, breast and prostate 

carcinoma (Zhu, Y. et al. 2001; Liu, Y. et al. 2007; Wang, Y. et al. 2000; Vaarala, M. 

H. et al. 1998). In retrospect, our earlier findings that protein synthesis was greatly 
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inhibited in HEPG2 cells treated with Orlistat, as shown in Figure 4.2D, may also 

imply that these ribosomal proteins are probable cellular targets of the drug. The 

remaining two proteins, Annexin A2 and Hsp90AB1, are involved in cell 

proliferation/division and protein degradation, respectively.  

 

 

 

 

 

 

 

 

Figure 4.4 Silver staining of gels of pulled-down fractions from THL-R-labeled or 
DMSO-treated HepG2 live cell lysates. Only distinct bands appears in the pull-down 
fraction from THL-R-labeled sample were cut from the gel. None of the cut bands 
showed up in the DMSO-treated control sample (right lane), indicating they are 
specifically labeled proteins.  

In an effort to further validate the MS results, we carried out pull-down and 

western blotting experiments with the respective antibodies; results confirmed all 

proteins tested (including FAS) were indeed positively labeled by THL-R, and thus 

are likely true cellular targets of Orlistat (Figure 4.5A). Four of the proteins (  　　 -

tubulin, GAPDH, RPL7a and RPL14) were taken for additional validation 

experiments. First, the c-Myc fusions of these proteins were transiently expressed in 

HEK-293T cells (Figure 4.5B), labeled (by THL-R in situ), immune-purified (with c-

Myc agarose beads), subjected to click chemistry (with rhodamine-azide), and 
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analyzed by SDS-PAGE (Figure 4.5C); results unambiguously confirmed that all 

four proteins were fluorescently labeled by the probe. To confirm whether labeling of 

the probe is active site-directed, GAPDH, whose active site residue Cys151 had 

previously been characterized (Phadke, M.S. et al. 2009), was taken as an example 

for further site-directed mutagenesis experiments. GAPDH is a multi-function 

protein and well-known for its primary role as a glycolytic enzyme. Recently, 

increasing evidence has suggested that this enzyme is also involved in a variety of 

activities which are unrelated to energy production, including membrane fusion, 

microtubule bundling, DNA repair, and apoptosis (Phadke, M. S et al. 2009). An 

active site (Cys151 to Ala) mutant of GAPDH was therefore generated, transiently 

expressed and purified from HEK-293T cells, labeled with THL-R, reacted with 

rhodamine-azide, analyzed by SDS-PAGE and in-gel fluorescence scanning (Figure 

4.5D); as expected, probe THL-R only labeled the wild-type GAPDH and not the 

Cys151Ala mutant, thus confirming Cys151 as the residue in GAPDH being covalently 

labeled by THL-R, as well as the active site-directed nature of our probes. It should 

be noted that, in a series of recent reports (Bo¨ttcher, T. et al. 2008; Bo¨ttcher, T. et 

al. 2008; Bo¨ttcher, T. et al. 2009), Sieber et al had developed activity-based probes 

based on small molecule libraries containing a reactive -lactone moiety. The 

authors concluded that -lactones are promising privileged structures and could be 

used to identify a variety of mechanistically distinct enzymes. Our Orlistat-based 

probes, though structurally much more complex, appear to be capable of going after 

a number of other cellular targets, in addition to FAS. Even though the exact 

physiological roles of these proteins in connection with Orlistat and its 

pharmacological effects have not been established from this study, we believe these 
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putative cellular targets of Orlistat should be carefully evaluated when one considers 

using Orlistat in cancer therapy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Target validation of the identified “hits”. (A) Western blotting analysis of 
pulled-down fractions of HepG2 live cells treated with THL-R (or DMSO as 
negative controls; right lanes) with their respective antibodies. Biotin-azide 34 was 
used in the click chemistry with avidin-agarose beads for pull-down experiments. (B) 
Western blotting confirming the recombinantly expression of proteins with anti-c-
Myc. (C) In situ labeling of recombinantly expressed -tubulin, GAPDH, RPL7a, and 
RPL14 by THL-R (fluorescent gel shown in grayscale). (D) Comparative labeling 
analysis of wild-type GAPDH and Cys151Ala mutant (upper panel, fluorescent gel 
shown in grayscale); (lower panel, silver-stained gel) comparable amounts of protein 
loading were demonstrated in all three lanes. 
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Table 4.1. Proteins identified by pull down and mass spectrometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.5 Fluorescence microscopy of Orlistat cellular targets 

To demonstrate the utility of our cell-permeable probes for potential cellular 

imaging of Orlistat targets, we performed fluorescence microscopy to visualize 

probe-treated cells by colocalizing with ER (Figure 4.6) or FAS (Figure 4.7). Live 

HepG2 cells were first treated with THL-R, fixed with PFA, permeabilized with 

Triton X-100, conjugated to rhodamine-azide by click chemistry, and imaged 

(colored in red). Immunofluorescence was also carried out on the same cells to 

visualize the localization of endogenous FAS (colored in green in top panels). 

Minimal fluorescence was observed in samples treated with only DMSO, whereas, in 

# Protein 
Name 

Calc/Obs 
Mass 

Da/kDa 

Localization Protein Function 

2 Hsp90AB1 75088/72 Cytoplasm, 
Nucleus 

Molecule Chaperone with 
ATPase acitivity; Stress 
Response 

3 Unnamed 56156/56 Cytoplasm, 
Nucleus 

Protein biosynthesis; 
Translational elongation 

4 　-Tubulin 49671/52 Nucleus GTPase acitivity and cell 
division cell division 

5 ANXA2 38808/39 Cytoplasm, 
Nucleus 

Calcium binding; Cell division

6 GAPDH 36201/36 Cytoplasm, 
Nucleus 

Glycolysis; Energy production 

7 RPL7a 30148/30 Cytoplasm,  
Ribosome 

Biogenesis; Protein synthesis 

8 RPL14 23902/23 Cytoplasm,  
Ribosome 

Biogenesis; Protein synthesis 

9 RPS9 22635/22 Cytoplasm,  
Ribosome 

Biogenesis; Protein synthesis 
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THL probes (-R, -L and -T) treated cells, fluorescence was mostly distributed in 

endoplasmic reticulum (Figure 4.6). Note that endogenous FAS was mostly cytosolic 

(which includes ER, top panels). Thus, our imaging results are consistent with 

previous findings that inhibition of FAS with Orlistat induces ER stress specifically 

in tumor cells (Little, J. L. et al. 2007). We take note, however, that, at its current 

state, THL-R might not be the most suitable chemical probe for bioimaging of FAS, 

as it also labels a number of other cellular proteins (as evidenced from our studies 

herein). Work is in progress to develop other Orlistat analogues, which may confer 

much greater specificities, and results will be reported in due course. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Cellular imaging of HepG2 cells with probes. Live HepG2 cells were 
treated with 1 (20 μM) for 2 h, fixed, permeabilized, reacted with rhodamine-azide 
(10 μM, false-colored in red) under click-chemistry conditions, stained with Hoechst 
(blue), anti-FASN primary antibodies, followed by FITC-conjugated antimouse IgG 
antibody (green), or ER-Tracker Green (glibenclamide BODIPY FL), mounted, and 
imaged. Samples were imaged with an Olympus IX71 inverted microscope, equipped 
with a 60X oil objective (NA 1.4, WD 0.13 mm) and CoolSNAP HQ CCD camera 
(Roper Scientific, Tucson, AZ, USA). Images were processed with MetaMorph 
software (version 7.1.2., Molecular Devices, PA, USA). Scale bar ) 8 μm. All images 
were acquired similarly. Cells treated with DMSO (negative controls) are also shown 
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Figure, 4.7 Colocalizing in situ THL analogs target with FAS. HepG2 cells were 
incubated with THL-R, L, T or DMSO. Further, cells were tagged with Rhodamine-
azide  (Red), Anti-FAS and fluorecein tagged secondary Ab (Green) and Hoechst 
(Blue). Samples were imaged with an Olympus IX71 inverted microscope, equipped 
with a 60X oil objective (NA 1.4, WD 0.13 mm) and CoolSNAP HQ CCD camera 
(Roper Scientific, Tucson, AZ, USA). Images were processed with MetaMorph 
software (version 7.1.2., Molecular Devices, PA, USA). (Scale Bar: 8 mm). All 　
images were acquired the same way 

 4.4 Conclusion 

We have developed a novel chemical proteomic approach that enabled, for 

the first time, identification and putative validation of several previously unknown 

cellular targets of Orlistat. The potential of these cell-permeable probes to be used as 

future imaging probes has also been explored. Whereas further studies are needed to 

better understand the exact relevance of Orlistat and its pharmacological effects in 

relation to these newly identified cellular targets, our findings point to a likely 

scenario that these proteins might be potential off-targets of Orlistat. It is also 

possible that the antitumor activities of Orlistat might have originated from the 

drug’s ability to inhibit both FAS (Knowel, L. M. et al 2008) and some of these 

newly identified targets. In either case, our findings have important implications in 

consideration of Orlistat as a potential anticancer drug. Finally, our strategy should 
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be broadly useful for off target identification against quite a number of existing drugs 

and/or candidates, which are also covalent modifiers of their biological targets.  
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Chapter 5. 

 

Dynamic Profiling of Post-Translational 
Modifications on Newly Synthesized Proteins Using a 
Double Metabolic Incorporation Strategy 

 

 

 5.1 Summary 

  Post-Translational Modification (PTM) occurs in most eukaryotic proteins and 

directly modulates their function, localization and interactions. The process is highly 

regulated and at the same time, dynamic. To promote the identification of transient PTM 

events, we present in this study a methodology that enables the proteome-wide profiling 

of PTMs on proteins synthesized in defined time window, as well as their dynamics, by 

using a double metabolic incorporation strategy. We validated the feasibility of this 

approach with a number of proteins covering a total of eight different types of PTMs 

which occur on different time scales (rapid and enduring). We further applied the strategy 

to monitor the myristoylation of newly synthesized proteins in apoptotic Jurkat cells, and 

successfully identified Protein Kinase A (PKA), a key signaling enzyme, whose 

myristoylation appeared to be up-regulated in response to butyric acid (BA)-induced 
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apoptosis. We anticipate this new chemical proteomic tool may facilitate the discovery of 

primary PTM changes associated with different extracellular and intracellular cues.  

 5.2 Introduction  

  Post-translational modification (PTM) is a highly dynamic yet precisely controlled 

process by which most eukaryotic proteins are diversified chemically (Walsh, C.T. et al. 

2005). Many critical cellular responses are mediated through PTMs, leading to 

modulation of enzyme activity, protein conformation, protein-protein interaction and 

cellular localization. Analysis of these modifications at the proteome level could provide 

invaluable biological insights, but 
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Figure 5.1 Panels of methionine surrogates (in blue) and unnatural metabolite PTM 
probes (in orange) form bio-orthogonal pairs for compatible double metabolic 
incorporation. Note that those forming pairs are boxed in the same group. Azide/alkyne-
containing fluorophore/biotin reporters are also shown (bottom). 

 

 

 

 

 

Figure 5.2 Double metabolic incorporation strategy for proteome-wide PTM profiling of 
newly synthesized proteomes. (a) Overall flow of the strategy. (b) Dynamic monitoring of 
eight PTMs on newly synthesized proteomes (AHA/HPG feeding: 1 h; PTM probe 
feeding: three 4-h windows with tend represents the end time (4: 0-4 h; 8: 4-8 h; 12: 8-12 
h)). Each experiment was conducted in duplicate to ensure reproducibility. (Top) 
Fluorescence (FL) gels detecting PTM incorporation/profiles. (Bottom) Western blotting 
(WB) of the same gel was carried out to ensure newly synthesized proteins in three 
different lanes (0-4 h, 4-8 h, 8-12 h), upon isolation and loading on the gel, remained at a 
constant level. Each type of PTM was represented by a key protein (PKA for 
myristoylation, LCK for palmitoylation, LMNB1 for prenylation, LAMP1 for 
glycosylation). (Boxed in red) Representative examples of myristoylation showing 
significant differences in the PTM profiles between the “total proteome” and “newly 
synthesized proteome”. PD = pull down. See Figure 5.7 for full details.     

remains a technically challenging undertaking. Traditionally, PTMs have been studied by 

standard molecular biology techniques involving tedious isolation of individual proteins 

followed by direct detection/analysis of amino acids bearing the modification. Recent 

advances in mass spectrometry, when combined with stable isotope and/or metabolic 

labeling approaches, has witnessed the successful examples of several large-scale studies 

of PTMs and their dynamics (Mann, M. et al. 2003; Heal, W.P. et al. 2010; Hang, H.C. et 
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al. 2003; Hsu, T.L. et al. 2007; Hang, H.C. et al. 2007; Martin, B.R. et al. 2009; Kostiuk, 

M.A. et al. 2008; Davies, B.S. et al. 2008; Kratchmarova, I. et al. 2005; Matsuoka, S. et al. 

2007; Daub, H. et al. 2008). These methods, however, analyze PTM changes of total 

proteins (old and new) present in the cell at the time of sampling, and thus are only able to 

evaluate PTM dynamics at the ensemble level (Kratchmarova, I. et al. 2005; Matsuoka, S. 

et al. 2007; Daub, H. et al. 2008; Pedersen, S. et al. 1978).With unnatural metabolic 

building blocks and in vivo-compatible conjugation chemistries becoming increasingly 

available (Figure 5.1) (Johnson, J.A. et al. 2010; Agard, N.J. et al. 2009; Hannoush, R.N. 

et al. 2010; Sletten, E.M. et al. 2009), we sought to develop a proteomic strategy for the 

detection and identification of newly synthesized proteomes and their PTMs (Figure 5.2). 

We envisioned several advantages to study the PTM dynamics of newly synthesized 

proteomes: (i) it decreases the complexity of the proteome and enables the identification 

of PTM changes that occur in a pre-defined protein synthesis window; (ii) it gives an 

accurate estimate on the time scale of different PTM events in transforming newly 

synthesized, modification-free proteins into mature functional entities; (iii) it permits 

PTM analysis of primary protein synthesis responses to internal and external cues. To 

isolate a newly synthesized proteome, we made use of BONCAT (bio-orthogonal 

noncanonical amino acid tagging) (Johnson, J.A. et al. 2010; Dieterich, D.C. et al. 2006; 

Beatty, K.E. et al. 2006; Kramer, R.R. et al. 2009; Deal, R.B. et al. 2010), which uses 

known methionine surrogates, azidohomoalanine (AHA) and homopropargylglycine 

(HPG), for metabolic incorporation into newly synthesized proteins (Figure 5.1; in blue), 

and the corresponding alkyne- or azide-modified biotin reporter (Figure 5.1; bottom) for 

subsequent proteome isolation. To follow dynamic changes of an PTM event, we fed 

growing cells with an azide- or alkyne-containing sugar, fatty acid or lipid building block 
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(Figure 5.1; in orange) (Agard, N.J. et al. 2009; Hannoush, R.N. et al. 2010). It should be 

noted that, while our work was in progress, Hang and coworkers recently reported a 

tandem labeling and detection method to monitor the dynamic acylation of LCK (a 

tyrosine kinase) and its turnover (Zhang, M.M. et al. 2010). Their work focused on the 

study of single PTM events (i.e. protein palmitoylation) of a specific protein (i.e. LCK) in 

a total proteome. Our work herein, while conceptually similar, greatly expands the scope 

of this double metabolic incorporation strategy by successfully demonstrating, for the first 

time, simultaneous monitoring of PTM dynamics on multiple newly synthesized proteins 

(at the proteome scale) and against different types of PTMs (8 in total). As a result, 

unique primary PTM changes caused by external stimuli may be discovered. By further 

applying this improved strategy to monitor PTM changes of newly synthesized proteomes 

in Jurkat T cells, we discovered, for the first time, the up-regulation of myristoylated 

protein kinase A (PKA; a key signalling enzyme) was intimitely linked to butyric acid 

(BA)-induced apoptosis.  

In our double incorporation strategy (Figure 5.2), growing Jurkat cells were fed 

first with AHA/HPG at a pre-defined protein synthesis window (Step 1), then again with a 

desired “unnatural” PTM probe (orange structures shown in Figure 5.2a) (Step 2). Next, a 

copper-catalyzed azide-alkyne [3+2] cycloaddition reaction (i.e. 1st Click) was used to tag 

(with a biotin reporter), followed by affinity isolation (with avidin agarose beads) of, only 

the newly synthesized proteome (Step 3). “Old” proteins, modified or unmodified post-

translationally, were removed at this stage. Subsequent on-bead, 2nd-Click reaction (Step 

4; with a fluorophore reporter), followed by elution and SDS-PAGE analysis enabled the 

fluorescence visualization and quantitative analysis of any PTM event that might have 
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occurred on these newly synthesized proteins. The double incorporation of AHA/HPG 

and PTM probes may be carried out either simultaneously or sequentially.  

5.3 Results and Discussion 

5.3.1 Optimization of AHA/HPG incorporation 

In order to obtain optimized protocols suitable for the double incorporation 

strategy and subsequent proteomic studies, we first determined the optimal concentration 

and time needed for metabolic incorporation of AHA/HPG in Jurkat cells (Figure 5.3 & 

5.4); treatment of the cells with either 0.5 mM of AHA/HPG in 10 minutes or 50 M in 2 

hours, showed that sufficient and comparable amounts of newly synthesized proteins 

could be obtained. Concurrent addition of cycloheximide (CHX; a protein synthesis  

 

 

 

 

 

 

 

 

 

 
Figure 5.3 Time-dependent metabolic labeling of AHA/HPG in Jurkat T cells. Top: in-
gel fluorescence scanning of time-dependent metabolic incorporation of AHA (left) or 
HPG (right) in the presence or absence of CHX. Bottom: quantitative analysis of each 
lane from the corresponding fluorescence gels (top). Y-axis: relative total fluorescence 
(RF) of all bands in each lane.  
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Figure 5.4 Concentration-dependent metabolic labeling of AHA/HPG in Jurkat cells. 
Top: fluorescence gels showing AHA or HPG’s concentration-dependant incorporation 
(with 10 min AHA/HPG incorporation time). Bottom: quantitative analysis of each lane 
from the corresponding fluorescence gels (top). Y-axis: relative total fluorescence (RF) of 
all bands in each lane.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5 Recycling rate of AHA/HPG-labeled proteins in Jurkat cells. Top: 
fluorescence gels showing recycling rate of AHA/HPG-labeled proteins (50 M x 2 
hours); Bottom, quantitative analysis of each lane above. 
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inhibitor) during AHA/HPG feeding windows served as a convenient means to 

monitor/quantify newly synthesized proteomes from the resulting fluorescence gel, while 

the corresponding Coomassie-stained gel (which detects total proteomes) ensured that 

equal amounts of total proteomes across different gel lanes were loaded/compared. The 

AHA/HPG-labeled, newly synthesized proteomes were shown to retain at least 80% of 

their total original fluorescence intensities after 48 hours (Figure 5.5), indicating their 

overall recycling rate was insignificant under our assay windows. 

5.3.2 Optimization of PTM probes incorporation 

We also determined the incorporation efficiency of eight different PTM probes 

(structures shown in Figure 5.1) covering major protein PTM events - glycosylation, 

acylation (palmitoylation & myristoylation) and prenylation (farnesylation & 

geranylation); results showed that, with 50 M of a probe, as little as 4 hours was 　  

 

 

 

 

 

 

 

 

 

Figure 5.6 Time-dependent metabolic incorporation of PTM probes. Top: fluorescence 
gels showing metabolic labeling of PTMs (4, 24 and 72 h; 50 M). Center: quantitative 　
analysis of each lane. All distinguishable bands were quantified and plots in the same 
graph, with each curve in the graph representing one band. Y axis: relative normalized 
fluorescence (RF) of each individual band throughout the duration. Bottom: coomassie 
gels showing equal protein loading in each lane. 
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sufficient to detect incorporation on major protein bands for most PTM events (Figure 

5.6). PTM probe incorporation normally reached saturation after 1 day of feeding. 

Increasing probe dosage correspondingly shortened the time needed to achieve the same 

level of PTM incorporation. 

5.3.3 Identification of PTM probe modified proteins 

Large-scale pull-down and LC-MS/MS experiments were subsequently carried out 

to enrich these post-translationally modified proteins and unambiguously confirm their 

protein ID (Table S5.1); upon PTM probe incorporation, proteins were tagged with the 

corresponding biotin probe by Click chemistry, affinity-purified on avidin agarose beads, 

followed by SDS-PAGE separation. Subsequent LC-MS/MS analysis of gel slices led to 

the identification of a total of 177 post-translational modifications on 112 different protein 

entries (some proteins have more than one PTM). On average, the identification rate was 

about 22.1 modifications for each of the eight pull-down experiments. These proteins 

were then cross-checked with known literatures. At the end, we confirmed a total of 71 

modifications on 44 unique proteins with high confidence (that is, their PTM had 

previously been documented in the literature). It should be noted that our main goal in this 

study was not to exhaustively identify/validate unknown PTMs. Therefore, only 

previously identified, high-confidence PTMs were listed (in Table S5.1) and selected 

protein targets (i.e. LCK & PKA) were followed up.   
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Entry Protein Name Accession No. 
 

Calc/Obs 
Mass 

Da/kDa 

# 
Pep. 

Protei
n 

Score 

E value Ion 
Sc
ore 

PTM Probe Used Modificati
on1 

1 TFRC IPI00022462 85274/85 6 180 5.2e-007 86 Alk-C18，GlcNAz, ManNAz, A and G 
2 CANX IPI00941747 67982/68 21 280 2.8e-005 69 Alk-C18, Az-C12 A 
3 LCK IPI00394952 60878/58 7 103 2.5e-012 47 Alk-C18, Az-C12 A 
4 SLC1A5 IPI00019472 56201/56 6 61 2e-023 42 Alk-C18, ManNAz A and G 
5 PSMC1 IPI00011126 49325/49 9 83 0.00034 56 Alk-C18, Az-C12 A 
6 SCAMP3 IPI00306382 38661/38 1 62 0.00016 62 Alk-C18 A 
7 MLEC IPI00029046 32385/32 2 40 0.045 37 Alk-C18 A 
8 SURF4  IPI00005737 30602/30 2 52 0.00088 52 Alk-C18 A 
9 GNAI3 IPI00748145 40451/40 22 504 5.4e-008 97 Alk-C18, Az-C12 A 
10 CYB5R3 IPI00328415 38544/38 3 56 0.0052 43 Az-C12 A 
11 ARF1 IPI00215914 20741/21 28 345 1.3e-006 82 Alk-C18, Az-C12 A 
12 ARF4 IPI00215918 20612/21 12 240 0.0004 58 Alk-C18, Az-C12 A 

13 ARF5 IPI00215919    20631/21 11 163 0.00086 50 Alk-C18, Az-C12 A 
14 PPM1G IPI00006167 59919/60 8 103 0.00017 59 Az-C12 A 
15 GORASP2  IPI00743931    48929/49 1 45 0.0056 45 Az-C12 A 
16 FAM49B IPI00303318 37010/37 20 352 1.9e-005 70 Alk-C18, Az-C12 A 
17 CHCHD3 IPI00015833   26421/27 4 111 0.00037 57 Az-C12 A 
18 CHMP6 IPI00305423    23527/24 2 58 0.0048 46 Az-C12 A 
19 PKA IPI00217960    40590/41 10 192 1.8e-005 70 Az-C12 A 
20 MARCKSL1 IPI00641181     19574/20 7 92 0.00025 59 Az-C12 A 
21 RAB39 IPI00001618    25007/25 2 47 0.0032 47 Az-F-OH P 
22 RAB33B IPI00021475    25718/26 2 47 0.0032 47 Az-F-OH P 
23 RAB3A  IPI00023504    24984/25 2 47 0.0032 47 Az-F-OH P 
24 RAB35 IPI00300096    23296/23 3 41 0.0032 47 Az-F-OH P 
25 RAB7A IPI00016342    23760/24 3 76 0.00014 61 Az-F-OH P 

Table 5.1 Proteins identified by mass spectrometry
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1Summary of type of PTM detected from the experiment. A = Acylation (including palmitoylation and myristoylation); G = Glycosylation; P = 
Prenylation. 

26 RAB1A IPI00005719    22891/22 6 41 0.0032 47 Az-F-OH P 
27 RAB15 IPI00383449    23731/23 3 41 0.0032 47 Az-F-OH P 
28 LMNB1 IPI00217975    66653/67 7 107 7.1e-005 63 Az-F-OH&Az-GG-OH P 
29 NAP1L1 IPI00023860    45631/45 2 47 0.038 36 Az-F-OH &Az-GG-OH P 
30 HSP90B1 IPI00027230    92696/90 1 51 0.0013 51 Alk-Fuc, GalNAz, ManNAz, GlcNAz G 
31 LAMP1 IPI00884105    45367/45 2 36 0.02 36 Alk-Fuc, GalNAz, ManNAz, GlcNAz G 
32 ATP1B3 IPI00008167    31834/32 2 56 0.02 39 Alk-Fuc GalNAz, ManNAz, GlcNAz G 
33 NUP214 IPI00183294    214230/200 1 36 0.027 36 GlcNAz G 
34 SLC3A2 IPI00027493    58023/58 4 101 3.7e-005 66 GalNAz, ManNAz, and GlcNAz G 
35 NUP54 IPI00172580    55643/56 11 277 9.3e-008 92 GlcNAz G 
36 NUPL1  IPI00107122    60974/60 3 101 0.00012 59 GlcNAz G 
37 NUP62 IPI00293533    53394/54 4 53 0.0069 43 GlcNAz G 
38 NUP153 IPI00292059    155440/150 8 138 0.0043 48 GlcNAz G 
39 HCFC1 IPI00019848    210598/200 16 114 0.00064 49 GlcNAz G 
40 M6PR IPI00025049    31487/31 3 67 9.7e-005 63 GalNAz, ManNAz G 
41 PTPRC IPI00155168    132530/130 7 84 0.00014 58 GlcNAz G 
42 BSG IPI00019906    29431/29 10 118 2.2e-005 71 GalNAz, ManNAz G 
43 SPN IPI00027430    40297/40 2 35 0.027 35 GalNAz, ManNAz G 
44 LAMP2 IPI00009030    45503/45 2 35 0.034 35 GalNAz, ManNAz G 
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5.3.4 Double Metabolic Incorporation of AHA/HPG-PTM probe 
pairs 

We next carried out double metabolic incorporation using all eight pairs of 

AHA/HPG-PTM probe combinations and studied PTM dynamics on newly 

synthesized proteomes (Figure 5.2b). The most important feature of our double 

incorporation strategy is the ability to artificially “fix” a protein synthesis window 

while “varying” the timing of PTM. In doing so, we were able to quantitatively 

analyze the same pool of proteins at different intervals of a PTM event during the 

cellular process (e.g. comparing different lanes in each fluorescence gel in Figure 

5.2b), thus a potentially more accurate picture of PTM dynamics could be depicted. 

Briefly, protein lysates were obtained from cells treated with an one-hour feeding of 

AHA/HPG (0.2 mM) and each of the three successive 4-hour feedings with each of 

the eight PTM probes (0.2 mM; 0-4, 4-8 and 8-12 h, where t = 0 at start of 

AHA/HPG feeding). Following sequential Click chemistry, affinity purification and 

gel separation, PTM profiles of these newly synthesized proteomes were rendered 

visible by in-gel fluorescence scanning (Figure 5.2b, top gels); each fluorescent band 

may be assigned to a unique protein undergoing a specific type of post-translational 

modification. Equal protein loading in each lane was assured by Western blotting of 

the same gel (Figure 5.2b, bottom gels). Striking differences were observed between 

PTM profiles of the “total proteome” and “newly synthesized proteome”; 

representative examples of myristoylation profiles were shown in Figure 5.2b (boxed 

in red). This highlights the key advantage of our strategy over existing pulse-chase, 

isotope-based labeling methods; its ability to isolate/amplify newly synthesized  
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Figure 5.7 Dynamic profiling of PTMs on newly synthesized proteins by each of the 
8 AHA/HPG-PTM probe pairs. Dynamic profilings of 8 PTMs on proteins newly 
synthesized in an 1-hour window, then chased in three 4-hour windows (4: 0-4 hour; 
8: 4-8 hour; 12: 8-12 hour).AHA/HPG was tagged with biotin and PTM probes were 
tagged with a fluorophore, respectively. Left gel: fluorescence gel profile of the total 
proteome (before pull-down) and newly synthesized proteome (after pull-down); 
Right gel: avidin-blot of the same gel showing the total proteome (before pull-down) 
and newly synthesized proteome (after pull-down). (a) AHA and FC-Ak double 
incorporation; (b) HPG and Man-Az double incorporation; (c) HPG and Gal-Az 
double incorporation; (d) HPG and Glc-Az double incorporation; (e) HPG and FA-
Az double incorporation; (f) HPG and GA-Az double incorporation; (g) HPG and 
MA-Az double incorporation; (h) AHA and PA-Ak double incorporation. The first 
and last lanes of each gel were control lanes: (1st) - DMSO was added in 0-12 hour 
period in place of a PTM probe; (last) - both CHX and a PTM probe were 
simultaneously added to the “chase” reaction in 0-12 hour period. Selected lanes 
(boxed in Red) from each fluorescence gel were reproduced as Figure 5.2a in the 
maintext. 

proteomes and their changes which are normally undetectable in total proteomes 

(Kratchmarova, I. et al. 2005; Matsuoka, S. et al. 2007; Daub, H. et al. 2008; 

Pedersen, S. et al. 1978). Further quantitative fluorescence analysis of major 

fluorescent bands from each PTM event revealed different levels of temporal control 

on newly synthesized proteins (data not shown); most PTM probes, except GlcNAz, 

displayed the highest incorporation in the first 4-hour window upon protein 

synthesis, then gradually stopped in the subsequent two 4-hour windows, indicating 

most PTMs occurred quite rapidly as soon as the protein synthesis was complete. 

The most clear-cut temporal regulation was observed with the myristoylation profile, 

which showed little or no detectable Az-C12 incorporation after the first 4-h window, 

corroborating well with the co-translational nature of this type of PTM. Closer 

inspection of different bands in each gel also revealed dissimilar dynamic profiles 

amongst proteins undergoing the same type of PTM. 
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5.3.5 Monitoring the palmitoylation dynamics of newly 
synthesized proteomes  

We further obtained a more detailed profile of palmitoylation dynamics by repeating 

the AHA/Alk-C18 double incorporation experiment with newly synthesized 

proteomes fed with 0.5 mM of AHA for 10 minutes, then with 0.5 mM of Alk-C18 

for 20 minutes ending at 9 different time points (20 min, 40 min, 60 min, 2 h, 4 h, 8 h, 

24 h, 48 h & 72 h, respectively, after protein synthesis). Prior to affinity purification, 

the total proteome (including both “old” and newly synthesized proteins) displayed 

highly similar palmitoylation profiles across the nine 20-min palmitoylation windows 

(Figure 5.8a; right gel). Upon affinity enrichment of only the newly synthesized 

proteome and in-gel fluorescence scanning, the resulting palmitoylation profiles 

revealed significant differences for different proteins across the different 20-min 

windows (Figure 5.8a; left gel). To further delineate the palmitoylation dynamics of 

each protein target, eight distinct fluorescent bands, one of which was 

unambiguously validated to be LCK (WB gels in Figure 5.9), were quantified and 

graphically plotted (Figure 5.8b); even by looking at only these proteins, highly 

diverse palmitoylation profiles were already evident. Rapid palmitoylation was 

observed for six of the eight protein bands, most of which peaked within 20 to 40 

min following protein synthesis, and dropped to almost undetectable level after 2 

hours. In contrast, enduring palmitoylation was observed for the two remaining 

protein bands. LCK is a well-known N-myristoylated and S-palmitoylated non-

receptor tyrosine kinase, whose membrane localization has profound biological  
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Figure 5.8 Monitoring the palmitoylation dynamics of newly synthesized proteomes. 
(a) Comparing the palmitoylation profiles (FL) generated from newly synthesized 
proteomes (left) and total proteomes (right), as obtained from double incorporation 
experiments (AHA: 10 min; Alk-C18: nine 20-min windows). The fluorescence 
intensity of eight major bands (arrowed) were analyzied and plotted in b). The band 
corresponding to LCK was unambigiously validated by WB with anti-LCK antibody. 
Each of the other protein bands were characterized and tentatively assigned a unique 
protein ID by comparing with the corresponding silver-stained gel and MSMS 
analysis (Figure 5.9). In the newly synthesized proteome (left gels), bands 
corresponding to LCK was boxed (in red). WB analysis (bottom gels) confirmed 
equal amount of LCK protein expression in each lane despite obvious differences in 
fluorescence intensities which represent different levels of LCK palmitoylation (top; 
boxed). (b) Quantitative analysis of 8 different palmitoylated targets identified from 
the newly synthesized proteome shown in (a), sampled at nine 20-min windows. 
Each fluorescent band from the newly synthesized proteome was quantified and 
divided by that from the total proteome, then plotted. This analysis produced a ratio 
of a newly synthesized protein‘s palmitoylation count to that of the total protein over 
the described period after the protein was synthesized. Line graphs with error bars 
calulcated from duplicated experiments revealing the palmitoylation change for each 
protein target are shown in Figure 5.9. (c) Membrane association dynamics of newly 
synthesized LCK. Lysates from AHA-incorporated cells, upon isolation into soluble 
(S) and membrane (M) fractions, were affinity-purified to isolate newly synthesized 
proteomes, then immunoblotted with anti-LCK antibody. Cells were collected at 10, 
20, 40 or 60 min after addition of AHA, and analyzed in lanes 1/2, 3/4, 5/6 & 7/8 in 
the gel, respectively. (d) Comparing palmitoylation dynamics of newly synthesized 
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LCK with its membrane association within 60 min of protein synthesis. (Left) 
Relative % of accumulative palmitoylation level of LCK as obtained from (b). (Right) 
Relative % of membrane-associated LCK as obtained from (c). Each experiment was 
conducted in duplicate to ensure reproducibility. Error bars were generated from 
duplicated experiments. See Supporting Information for details. 
 
 

 

 

 

 

 

 
Figure 5.9 Silver-stained gel and western blotting validation of tandem pulled-down 
fractions from Alk-C18 labeled or DMSO-treated (negative control) Jurkat T cell 
lysates. (top) Only distinct bands in the pull-down fraction from Alk-C18-labeled 
sample matching those of the fluorescence gel were cut from the gel and analyzed by 
MSMS. (bottom) Western blotting analysis of pulled-down fractions with respective 
antibody (anti-LCK). 
 

Implications (Zhang, M.M. et al. 2010). We were interested to know whether the 

observed palmitoylation dynamics of newly synthesized LCK from our double 

incorporation strategy is related to this protein’s membrane association kinetics. To 

determine the subcellular localization changes of newly synthesized LCK, newly 

synthesized proteomes were isolated from the membrane and soluble fractions of 

Jurkat cells, analyzed (Figure 5.8c), and compared with the accumulated 

palmitoylation counts obtained from Figure 5.8b. As shown in Figure 5.8d, within 

one hour after protein synthesis, the increase of the membrane-associated LCK 

indeed coincided quite well with palmitoylation dynamics observed. It should be 
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highlighted that our findings herein would not have been possible, have we not 

successfully isolated and analyzed only the newly  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Quantitative analysis of the eight different palmitoylated proteins 
reproduced from Figure 5.8b. The intensity of each fluorescent band in Figure 5.8b 
from the newly synthesized sub-proteome in duplicates were quantified, averaged 
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and divided by that from the total proteome. Error bars were generated by calculation 
of the SE for the results of the duplicate experiments. 

 

synthesized proteome. We concluded this double incorporation strategy enables 

proteome-wide dynamic profiling of PTMs on newly synthesized proteomes. By 

adjusting metabolic feeding windows, the strategy is applicable to both rapid and 

enduring PTM events.  

 

5.3.6 Identification of up-regulated myristoylated PKA at the 
early stage (0-5 h after additon of BA) of BA-induced apoptosis. 

Lastly, we explored the feasibility of this approach to discover novel PTM 

regulations on newly synthesized proteomes. It is known that butyric acid (BA)-

induced protein synthesis in Jurkat T cells is critical for apoptosis to occur, but so far 

the molecular basis of this process is not well-understood (Medina, V. et al. 1997). 

We were interested to know whether the dynamic PTM regulation of any of the 

newly synthesized proteins at the early stage of apoptotic induction might play a role. 

By applying the double incorporation strategy (HPG/Az-C12) to BA-induced cells 

between the 0-5 hour window, followed by sequential Click chemistry (HPG labeled 

with Az-Biotin; Az-C12 labeled with Alk-Alx), enrichment of newly synthesized 

proteomes and in-gel fluorescence scanning, we obtained the corresponding 

myristoylation profiles (with and without myristoylation inhibitor HMA; lanes 2 & 3 

respectively in the center gel in Figure 5.11a), as well as those of the corresponding 

total proteomes (i.e. before avidin pull down; left gel). A close examination of the 

newly synthesized proteomes revealed a significant fluorescence increase in a 43-
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kDa band (labeled with an asterisk in Figure 5.11a) only in the BA-induced proteome. 

This 43-kDa protein was subsequently identified to be myristoylated PKA catalytic 

subunit alpha (PRKACA)  

 

 

 

 

 

 

Figure 5.11 Identification of up-regulated myristoylated PKA at the early stage (0-5 
h after additon of BA) of BA-induced apoptosis. (a) Comparing myristoylation 
profiles of the total proteome (left) and newly synthesized proteome (middle). In 
each gel, control lanes were obtained from cells treated with/without different 
BA/HMA (a myristoylation inhibitor) combinations. BA (5 mM) was added to 
growing Jurkat cells. Double incorporation was carried out by simultaneously 
feeding the cells, during 0-5 h, with HPG (50 M) and Az　 -C12 (0.2 mM). Newly 
synthesized proteomes were separated from total proteomes by affinity tagging and 
pull down (PD). Myristoylation profiles of the proteomes were visualized by 
fluorescence tagging. (Right) Validation of the 43-kDa band as myristoylated PKA 
catalytic subunit alpha by immunoprecipitation (IP) and immune-depletion (ID) with 
anti-PKA. To aid the view, the 43-kDa band corresponding to PKA in all three gels 
was boxed (in red). Western blotting results with anti-PKA were shown below each 
gel. (b) Quantitative analysis of the 43-kDa PKA bands from the first two gels in (a). 
Both the myristoylation counts (FL) and PKA expression count (WB) between the 
total proteome (left graph) and the newly synthesized proteome (right graph) were 
plotted. (*) highlighting the up-regulation of myristoylated PKA only became 
evident in the BA-induced, newly synthesized proteome. Means ± standard errors 
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were obtained from duplicates. (c) Validation of PKA’s up-regulation in newly 
synthesized proteomes. BA-induced cells were fed with HPG, fluorescently labeled. 
After immunoprecipitation (IP) with anti-PKA (lanes 4-6), noticeable up-regulation 
of newly synthesized PKA in lane 5 was evident (compared to lane 4). (d) DNA 
fragmentation assay showing effects of H89+HMA combination and siRNA 
knockdown of PKA in blocking BA-induced apoptosis. Western blotting analysis of 
the corresponding protein samples with anti-PKA reveals the knock-down of PKA 
expression by PKA siRNA while not scrambled siRNA. (e) Time-dependent BA-
induced apoptosis and its inhibition by H89+HMA combination or by siRNA 
knockdown of PKA. Each experiment was conducted in duplicate to ensure 
reproducibility. Means ± standard errors were obtained from duplicates.  

by immunoprecipitation (IP) and immune-depletion experiments (right gel in Figure 

5.11a). Further quantitative analysis was carried out on this fluorescent band 

(indicating PKA myrisoylation counts) and its Western-blotted counterpart 

(indicating PKA expression counts) for both the total proteomes and the newly 

synthesized proteomes (Figure 5.11b); up-regulation of both the myristoylated PKA 

and overall PKA expression in the newly synthesized proteomes was clearly evident 

(right graph), but not so in the total proteomes (left graph). Under our assay 

conditions, the newly synthesized proteome made up only a small fraction of the 

total proteome. This might have obscured the detection of PKA up-regulation in the 

total proteome of BA-induced apoptotic cells. Protein myristoylation is normally a 

co-translational event, and PKA myristoylation has been postulated to be involved in 

modulation of its translocation and membrane association (Breitenlechner, R. et al. 

2004). As a key signaling enzyme involved in energy metabolism, PKA might play a 

vital role in controlling BA-induced apoptosis of Jurkat cells by up-regulation of its 

expression level, which leads to myristoylation and subsequent  modulation of its 

enzymatic activity (Bijlmakers, M.J. et al. 2003; Franklin, R. et al. 2000). To confirm 

this, we determined the effect of H89 (a PKA inhibitor), HMA (a myristoylation 
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inhibitor) and siRNA of PKA in blocking BA-induced apoptosis (Figure 5.11d & e). 

DNA fragmentation assay revealed that only a combined H89+HMA treatment, or 

siRNA knockdown of PKA, was able to sufficiently block BA-induced apoptosis, but 

not H89 or HMA alone or scrambled siRNA (Figure 5.11d). A time-dependent assay 

lends further support to our observations (Figure 5.11e), thus unequivocally proving 

up-regulation of myristoylated PKA is needed for the occurrence of BA-induced 

apoptosis in Jurkat cells. 

5.4 Conclusion 

In summary, our double metabolic incorporation approach is capable of 

proteome-wide profiling of PTM dynamics on newly synthesized proteins. With this 

strategy, we had for the first time identified myristoylated PKA as the key enzyme in 

regulating butyric acid-induced apoptosis in Jurkat cells. Work is underway to 

further expand the utility of this new chemical proteomic tool with other powerful 

mass spectrometric techniques such as ICAT and SILAC (Gygi, S. P. et al. 1999；

Ong, S. E. et al. 2003). 
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Chapter 6. 
 
 
Experimental Procedures 
 

 

6.1 General  

All chemicals used in this dissertation were purchased from commercial 

vendors and used without further purification unless otherwise stated. All chemicals 

probes were synthesised by my collaborators in Chemistry lab (Dr. Kalesh for kinase 

cross-linkers; Shi Haibin for the hydroxylethyl-based probes and inhibitor library for 

aspartic proteases; Yang Pengyu for THL-based probes and Rhodamine/Biotin 

alkynes and azides).  

6.2 Chapter 2 

6.2.1 General 

All chemicals were purchased from commercial vendors and used without 

further purification, unless indicated otherwise. The 1H-NMR spectra were taken on 

a Bruker 300 MHz NMR spectrometer. Chemical shifts are reported in parts per 

million referenced with respect to residual solvent (CHCl3 = 7.26 ppm). All enzymes 

were expressed in E. coli strain BL21-DE3 and purified as described previously 

(Seeliger, M.A., 2007; Slice, L. W., 1989; Khokhlatchev, A., 1997; Bougeret, C., 

1993).They include ABL (human c-Abl, residues 229-512), CSK (human c-src 
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tyrosine kinase, residue 1-450), ERK1 (human mitogen activated protein kinase 3), 

ERK2 (human mitogen activated protein kinase 1), SRC (chicken c-src residue 251-

533), PKA (protein kinase A catalytic subunit). After purification, all kinases were 

prepared as 2-5 mg/ml solution in 100 mM sodium phosphate buffer (pH 7.5), 500 

mM NaCl, 10 % glycerol and stored at -20 °C as stock solution until use. Staurosporine 

was obtained from i-DNA Biotechnology Pte Ltd (Singapore). Fluorescence 

scanning of the SDS-PAGE gels was carried out with Typhoon 9200 fluorescence 

gel scanner (Amersham), and where applicable, the bands were quantified with the 

ImageQuant software installed on the scanner. For inhibition experiments, the IC50 

curves were generated using the Graphpad Prism software v.4.03 (GraphPad, San 

Diego, USA). 

6.2.2 Chemical Synthesis 

 The synthesis of o-phthalaldehyde adenosine (OPA-AD) and naphthalene-

2,3-dicarboxaldehyde (NDA-AD) was carried out by my collaborator Dr. Kalesh and 

the synthesis procedure was based on previously reported literature (Maly, D. J., 

2004; Liu, K., 2008). Five pseudosubstrates targeting 5 different kinases were made. 

based on known peptide substrate sequences in the literature (Casnellie, J.E., 1991 

Cheng, H.C., 1992; Gonzalez, F.A., 1991; Kemp, B.E., 1977; Sekimoto, H., 2003) 

and a cysteine residue was introduced in place of the Ser/Thr/Tyr phosphorylation 

site present in the original sequences. Where applicable, the original peptide 

substrate sequences were also synthesized.  
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Panel of Pseudosubstrates 
CSKtide (Fluorescein-GG-KKKKEEICFFF).  Pseudosubstrate 

for Csk kinase. Calculated MW: 1960; ESI-MS: m/z [M+H]2+ = 980.9. 
ERKtide (Fluorescein-GG-ELVEPLCPSGEAPNQ). 

Pseudosubstrate for Erk1 and Erk2 kinases. Calculated MW: 2096; ESI-MS: m/z 
[M+H]2+ = 1048.9. 

SCRtide (Fluorescein-GG-KVEKIGEGTCGVVYK). 
Pseudosubstrate for Src kinase. Calculated MW: 2122; ESI-MS: m/z [M+H]2+ = 
1062.0. 

ABLtide (Fluorescein-GG-EAICAAPFAKKK). Pseudosubstrate for 
Abl kinase. Calculated MW:1790; ESI-MS: m/z [M+H]2+ = 895.9. 

PKAtide (Fluorescein-GG-LRRACLG). Pseudosubstrate for Pka 
kinase. Calculated MW: 1300; ESI-MS: m/z [M+H]2+ = 651.3. 

 

Original Peptide Substrates 
Csk:     KKKKEEIYFFF,  
Erk (1 & 2):   ELVEPLSPSGEAPNQ,  
Src:    KVEKIGEGTYGVVYK,  
Abl:    EAIYAAPFAKKK and  
Pka:    LRRASLG 

6.2.3 Cross-Linking Experiments with Purified Kinases 

Unless otherwise indicated, all cross-linking experiments were carried out 

with the following optimized conditions: kinase (100-140 nM), pseudosubstrate (1 

μM), NDA-adenosine or OPA-adenosine (20 μM) in the reaction buffer (25 mM 

HEPES at pH 7.5, 150 mM NaCl, 2 mM MgCl2) were incubated for 20 min at RT 

before SDS-PAGE analysis and fluorescence scanning. 

6.2.4 Dose-dependent cross-linking studies 

To optimize the concentration of the pseudosubstrate in the cross-linking 

reaction, cross-linking reaction mixtures made up of varied concentrations of the 

pseudosubstrate peptide (0 to 1 M), NDA-adenosine (20 μM), kinase (125 nM for 

Pka and 140 nM for Csk, respectively) in the reaction buffer (25 mM HEPES at pH 
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7.5, 150 mM NaCl, 2 mM MgCl2).The reactions were incubated at RT for 20 min 

before SDS-PAGE analysis. Results showed that the cross-link reaction using 

peptide pseudosubstrate (1 μM) gave the strongest labeling signal with minimum 

background. To optimize the concentration of the NDA-adenosine in the cross-

linking reaction, cross-linking reaction mixtures was made up of the pseudosubstrate 

(1 μM), kinase (125 nM for Pka and 140 nM for Csk respectively), and NDA-

adenosine (0 to 20 M) in the reaction buffer (25 mM HEPES at pH 7.5, 150 mM 

NaCl, 2 mM MgCl2). The reactions were incubated at RT for 20 min before SDS-

PAGE analysis. Results showed that the cross-link reaction using NDA-adenosine 

(20 μM) gave the strongest labeling signal with minimum background. To determine 

whether the cross-linking experiments could be used to quantitatively measure the 

amount of kinase present in the reaction, and the lowest kinase detection limit, cross-

linking reaction mixtures made up of the pseudosubstrate (1 μM), kinase (0 to 125 

nM for Pka and 0 to 140 nM for Csk, respectively), and NDA-adenosine (20 M) in 

the reaction buffer (25 mM HEPES at pH 7.5, 150 mM NaCl, 2 mM MgCl2). The 

reactions were incubated at RT for 20 min. After SDS-PAGE, the fluorescence bands 

of the labeled proteins were quantified with the ImageQuant software (Amersham). 

6.2.5 Effect of exogenous thiols and amines on cross-linking 
efficiency.  

To determine cross-linking reaction’s tolerance by the presence of an 

exogenous competing thiol (b-mercaptoethanol) or amine (lysine). Cross-linking 

experiments with Pka and PKAtide were set up. Briefly, PKAtide (1 M), Pka (125 

nM), NDA-adenosine (20 M) in the reaction buffer (25 mM HEPES at pH 7.5, 150 
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mM NaCl, 2 mM MgCl2), in the presence of varied amounts of the exogenous 

competitor (0 to 200 M) for 20 min at RT before SDS-PAGE analysis.  

6.2.6 Competition effects of ATP/peptide substrate on cross-
linking.  

To determine whether there is competition effect of ATP/peptide substrate on 

crosslinking reaction, ATP and LRRASLG-OH, a known Pka peptide substrate 

(same as PKAtide except with Ser instead of Cys) were used as competitors in the 

cross-linking reactions. Briefly, cross-linking reactions with PKAtide (1 μM), Pka 

(125 nM), NDA-adenosine (20 μM) in the reaction buffer (25 mM HEPES at pH 7.5, 

150 mM NaCl, 2 mM MgCl2), in the presence of the competitor (0-20 mM for ATP; 

0 to 5 mM for LRRASLG-OH) were incubated for 20 min at RT before SDS-PAGE 

analysis. 

6.2.7 Inhibition experiments with Staurosporine.  

Pka and Csk were taken as the model kinases and cross-linking experiments 

were carried out with the corresponding pseudosubstrates, PKAtide and CSKtide, 

respectively, with or without Staurosporine. Briefly, pseudosubstrate (1 M), kinase 

(125 nM for Pka and 140 nM for Csk), NDA-adenosine (20 M), and Stauosporine 

(0 to 104 nM) in the reaction buffer (25 mM HEPES at pH 7.5, 150 mM NaCl, 2 mM 

MgCl2) were incubated for 20 min at RT before SDS-PAGE analysis and 

fluorescence scanning, followed by determination of IC50  

6.2.8 Cross-linking specificity of experiments using various 
kinase pseudosubstrates. 

In order to examine whether the cross-linking reaction of a given kinase was 



 

                                                                                                                              139                              
       

specific only towards its cognate peptide substrate (in our case the pseudosubstrate), 

we took Pka and Csk as model proteins and label them against the various 

pseudosubstrates. In addition, we carried out in vitro phosphorylation assay using the 

cognate peptide substrates (that is, the peptide substrates with a Ser/Thr/Tyr instead 

of a Cys mutation).   

9.2.8.1 Crosslinking specificity experiments  

For the cross-linking experiment with different pseudosubstrates, Pka or Csk 

(125 nM and 140 nM respectively), a pseudosubstrate (1 μM), NDA-adenosine (20 

μM) in the reaction buffer (25 mM HEPES at pH 7.5, 150 mM NaCl, 2 mM MgCl2) 

were incubated for 20 min at RT before SDS-PAGE analysis. % activity of the 

kinase against a peptide was calculated by comparing the relative cross-linking 

efficiency with that of the target pseudosubstrate (taken as 100 %). It appears that for 

Csk, in addition to its pseudosubstrate CSKtide, the kinase was able to cross-link 

SRCtide (~ 40 % activity). For Pka, in addition to its pseudosubstrate PKAtide, the 

kinase was able to cross-link SRCtide (~ 15 % activity).    

9.2.8.2 enzymatic phosphorylation specificity experiments  

In order to further examine whether the cross-linking profiles of the kinase 

against different pseudosubstrates were indeed due to the enzyme’s intrinsic 

promiscuous activity to phosphorylate different peptides, we carried out in situ 

enzymatic assay by measuring the phosphorylation ability of the kinase against the 

original peptide substrates. A Kinase-Glo™ Plus Kit (Promega) was used.[5] Briefly, 

the kinase (12.5 nM for Pka and 14 nM for Csk), an original peptide substrate (100 

µM) and ATP (100 µM) in kinase reaction buffer (20 µl; 25 mM HEPES at pH 7.5, 
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10 mM MgCl, 0.1 % b-mercaptoethanol, 100 M Na3VO4) were incubated for 20 

min at RT. Subsequently, 20 μL of the Kinase-GloTM Plus reagent was added. The 

resulting luminescence generated was detected by a Tecan microplate reader, and the 

amount of phosphorylation was calculated for each kinase/substrate pair following 

the vendor’s instructions. % activity of the kinase against a peptide was calculated by 

comparing the relative phosphorylation efficiency with that of the target peptide 

substrate (taken as 100 %). 

6.2.9 Cross-linking of Pka/Csk with their pseudosubstrates in 
crude lysates.   

In a typical reaction, lysate (6 g), kinase (125 nM for Pka and 140 nM for 

Csk, corresponding to 3.3 % and 6 % by weight, respectively, of the total proteome), 

pseudosubstrate (1 M), NDA-adenosine (20 M) in the reaction buffer (25 mM 

HEPES at pH 7.5, 150 mM NaCl, 2 mM MgCl2; final volume of reaction = 20 L) 

were incubated for 20 min at RT before SDS-PAGE analysis and fluorescence 

scanning.  

6.2.10 Detection limits of cross-linking in crude lysates.  

In order to determine the lowest amount of detectable kinase present in the 

crude lysate, different amounts of the kinase was spiked. Briefly, lysate (6 μg), 

kinase (0 to 800 ng for Csk and 0 to 400 ng for Pka, corresponding to 0-12 % and 0-6 

% of the total proteome), pseudosubstrate (1 μM), NDA-adenosine (20 μM) in the 

reaction buffer (final volume = 20 μL) were incubated for 20 min at RT before SDS-

PAGE analysis and fluorescence scanning.  
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6.2.11 Inhibition experiments with Staurosporine   

Pka and Csk spiked in the crude lysate were taken as the model kinases and 

cross-linking experiments were carried out with the corresponding pseudosubstrates, 

PKAtide and CSKtide, respectively, without or with Staurosporine. Briefly, 

pseudosubstrate (1 μM), kinase (125 nM for Pka and 140 nM for Csk), NDA-

adenosine (20 μM), and stauosporine (0 to 160 μM) in the reaction buffer (25 mM 

HEPES at pH 7.5, 150 mM NaCl, 2 mM MgCl2) were incubated for 20 min at RT 

before SDS-PAGE analysis and fluorescence scanning, followed by determination of 

IC50 

6.2.12 Multiplexed Kinase Detection and Inhibition in the 
Crdue Proteome. 

In order to demonstrate our approach could be used for simultaneous 

detection of multiple kinases in the crude proteome, and screening of their potential 

inhibitors, such that both potency and selectivity of a putative inhibitor could be 

concurrently evaluated, we carried out multiplexed kinase detection/inhibition 

experiments. Briefly, both Csk (400 ng) and Pka (0 to 200 ng) were spiked into the 

same lysate (6 μg), together with NDA-adenosine (20 μM) in the reaction buffer 

(final volume = 20 μL) and 1 μM of either (a) CSKtide, (b) PKAtide, or (c) a 

CSKtide/PKAtide mixture (1 μM each). The reactions were incubated for 20 min at 

RT before SDS-PAGE analysis and fluorescence scanning. For inhibition 

experiments, similar reactions were set up, in the presence of Staurosporine (0 to 25 

μM final concentration), and cross-linked with a mixture of CSKtide and PKAtide (1 

μM each).  
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6.3 Chapter 3 

6.3.1 General 

All chemicals were purchased from commercial vendors and used without 

further purification, unless indicated otherwise. The 1H-NMR spectra were taken on 

a Bruker 300 or 500 MHz NMR spectrometer. Chemical shifts are reported in parts 

per million referenced with respect to residual solvent (CDCl3 = 7.26 ppm). Pepsin 

and Renin (from Mucor miehei) were from Fluka. Enzyme stocks were made fresh 

using 10 mM HCl (for pepsin) or water (for renin). Plasmepsin I (PM-I), Plasmepsin 

II (PM-II), histoaspartic protease (HAP) and HAP mutant H34A, S37A, K78A  

E278A were expressed and purified as described previously (Helm, K.V.D., 1994; 

Parr, C. L., 2008)Anti-PM-I mouse serum mAb 1C6-24 , anti-PM-II rabbit serum 

737, anti-PM-IV mouse mAb 13.9.2 were requested from MR4 (USA). The anti-

HAP mouse mAb was kindly provided by Dr. Daniel E. Goldberg. In-gel 

fluorescence scanning of the SDS-PAGE gels was carried out with Typhoon 9200 

fluorescence gel scanner (GE), and where applicable, the bands were quantified with 

the ImageQuant™.2 For inhibition experiments, the IC50 curves were generated using 

the Graphpad Prism software v.4.03 (GraphPad, San Diego, USA). 

6.3.2 Chemical synthesis 

 The synthesis of all chemicals used in Chapter 3was carried out by my 

collaborator Dr.Shi Haibin and the synthesis procedure was reported elsewhere (Liu, 

K., 2009).  

6.3.3 Labeling of recombinantly purified aspartic proteases  
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The 7 AfBPs (A-G) were characterized with various recombinant aspartic 

proteases, respectively pepsin, renin, PM-I, PM-II and HAP. Each of the 7 probes 

was tested with each aspartic protease individually. Details of the labeling 

experiment are described below. Pepsin stocks were made fresh using 10 mM HCl. 

Renin stocks were made fresh by using water. Stocks of PM-I (350 ng/μl in 100 mM 

NaOAc, 10% glycerol, pH 4.5), PM-II (250 ng/μl in 100 mM NaOAc, 10% glycerol, 

pH 4.5) and HAP (1.5 mg/ml in 100 mM MES, 10% glycerol, pH 6.5) were diluted 

in appropriate buffers before use (100 mM NaOAc, 10% glycerol, pH 4.5 for PM-I 

and PM-II, 100 mM NaOAc, 10% glycerol, pH 6.5 for HAP, respectively). Labeling 

experiments were carried out with the following optimized conditions: desired 

enzyme amounts (100 ng for pepsin, 100 ng for renin, 50 ng for PM-I, PM-II and 

HAP, respectively) were individually incubated with each probe (5 μM final 

concentration) in appropriate buffer for 20 min at RT. For pepsin and renin, reaction 

buffer conditions were as follows: 50 mM Tris�Cl at pH 2.0. For PM-I, PM-II and 

HAP, reaction buffer condition was 100 mM NaOAc, 10% glycerol, pH 4.5. After 20 

min incubation at RT, samples were irradiated on ice for 25 min using a B100A lamp 

(UVP) at a distance of 5 cm. After irradiation, samples were boiled for 10 min with 4 

μl of 6 x loading buffer. The sample mixture (24 μl) was resolved by 12% SDS-

PAGE followed by in-gel scanning for fluorescence with a Typhoon 9200 gel 

scanner. Labeled bands were quantified by ImageQuant™ software. Results were 

analyzed/represented by cluster analysis software Treeview™ as previously 

described.(Wang, J., 2006; Uttamchandani, M; 2008; Kalesh, K.A., 2007), 

6.3.4 Labeling of Plasmepsins in malaria parasite lysates 
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Briefly, P. falciparum 3C7 strain was used in this study. Parasites were 

cultured in RPMI medium 1640 (Invitrogen, USA) supplemented with 0.29225 g of 

L-glutamine, and 0.05 g of hypoxanthine dissolved in 1 ml of 1 M NaOH. Parasites 

were synchronized twice 16 hours apart at ring stage using 2.5% sorbitol. Cultures 

were stored at 37 oC after gassing with a 5% CO2, 3% O2 and 92% N2 gas mixture 

and their hematocrit maintained at 2.5%. Parasitized red blood cells were collected 

by centrifugation and treated with 0.1% Saponin in PBS for 15 min at room 

temperature with shaking. The parasites were centrifuged and the pellet was 

resuspended (in 50 mM sodium Acetate at pH 5.5, 1 mM DTT, 0.1% NP-40) and 

homogenized. Proteome Labeling experiments were performed with desired amounts 

(20 μg) of parasite lysates from each blood stage in 200 μl reactions containing 

Reaction Buffer (100 mM sodium acetate, 10 % glycerol, pH 5.0) and 5 μM of each 

of the AfBP (A-G). Inhibition experiments were carried out in the presence of 1 μM 

Pepstatin. After 30 min incubation at RT, samples were irradiated on ice for 25 min 

using a B100A lamp (UVP) at a distance of 5 cm. After irradiation, samples were 

concentrated to 20 l using a Microcon column (GE healthcare). Then samples were 　

boiled for 10 min with 4 μl of 6 x SDS loading buffer, resolved on a 12% SDS-

PAGE followed by in-gel fluorescence scanning. The relative fluorescence intensity 

of the 37-KDa bands labeled by each of the 7 AfBPs were quantified using 

ImageQuant™ software. 

6.3.5 2D-PAGE analysis of AfBP labeled parasite proteome 

After labeling as earlier described, the sample was desalted and concentrated 

by acetone precipitation overnight at -20 oC. Precipitates were collected by 
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centrifugation at 13000 rpm. Samples were resuspended in 1 x re-swelling buffer (8 

M urea, 2% CHAPS and 2% IPG buffer and 0.002% bromphenol blue), and briefly 

sonicated. Just prior to use, DTT was added (final concentration: 3 mg/ml). 

Rehydration buffer and stock DTT (62.5 mg/ml) were stored at 20 °C. Rehydrated 

IEF strips were isoelectrically focused at RT under low viscosity oil with a gradient 

voltage of 0-200 V for 1 min, 200-3,500 V for 1.5 h, and a constant voltage of 3,500 

V for 1.5 h. After IEF separation, the gel strip was reduced and alkylated. The 

reduction step was performed for 15 min in 10 ml of equilibration buffer 1 (0.5% w/v 

DTT in 50 mM Tris-HCl pH 8.8, 6 M urea, 30% v/v glycerol, 2% w/v SDS, and 

0.002% w/v bromphenol blue). The alkylation step was performed for 15 min in 10 

ml of equilibration buffer 2 (4.5% w/v iodoacetamide in 50 mM Tris-HCl pH 8.8, 6 

M urea, 30% v/v glycerol, 2% w/v SDS, and 0.002% w/v bromphenol blue). The IEF 

strip was equilibrated in equilibration buffer stock solution (50 mM Tris-HCl pH 8.8, 

6 M urea, 30% v/v glycerol, 2% w/v SDS, and 0.002% w/v bromphenol blue). Next, 

the equilibrated IEF strips were each placed on a preparative well and sealed using 

1% agarose plus 0.002% (w/v) bromphenol.  

6.3.6 MSMS analysis of AfBP labeled protein  

After electrophoresis the two-dimensional gels were scanned with Typhoon 

fluorescence scanner. Fluorescence spots corresponding to each target gel spot were 

excised directly from the gel. Trypsin digestion was performed with In-Gel Trypsin 

Digestion Kit from Pierce. After digestion, digested peptides were then extracted 

from the gel with 50% ACN and 1% formic acid. Tryptic peptide extracts were 

evaporated by speedvac and reconstituted with 10 µl of 0.1% TFA, a volume of 2 µl 
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of the peptide extracts were manually spotted onto a Prespotted AnchorChip MALDI 

target plate for MALDI-TOF Mass Spectrometry (Bruker Daltonics) and incubated 

for 3 min, followed with washing step with 10 µl of 10 mM ammonium phosphate in 

0.1% TFA, then dried. MALDI TOF mass spectra were recorded using Ultraflex III 

TOF/TOF mass spectrometer (Bruker Daltonics) with the compass 1.2 software 

package including flexControl 3.0 and flexAnalysis 3.0, calibrated with PAC peptide 

calibration standards. MS/MS analysis for the major peaks in PMF spectra were 

carried out by autoLIFT on the MALDI-TOF/TOF instrument. MS and MS/MS Peak 

lists with intensity value were submitted to Matrix Science Mascot server 

(http://www.matrixscience.com/) through BioTools 3.0 (Bruker Daltonics) using 

database NCBInr with species of Plasmodium falciparrum (malaria parasite), 

variable modifications of carbamidometyl on cysteine (C) and oxidation on methione 

(M), allowing maxium of 1 trypsin missed cleavage, peptide mass tolerance at 200 

ppm; MS/MS mass tolerance of 0.7 Da. 

6.3.7 Pulldown of AfBP labeled protein targets 

Briefly, 1 mg of the lysate was labeled by probe G (5 μM) as earlier 

described, and acetone precipitated followed by resolubilization in 0.1% SDS in PBS 

with brief sonication. This resuspended sample was then precleared using protein G 

sepharose beads for 1 hr. The protein supernatant was further incubated with anti-

TMR antibody (100 μg/1.0 mg of protein) at 4 oC for 4 h. The samples were then 

added to pre-washed protein G Sepharose beads (300 μl/1 mg of protein) at 4 oC for 

2 h. Following centrifugation, the beads were washed with 1% SDS in PBS for 4 

times. After washing, the beads were boiled in elution buffer (200 mM Tris pH 6.8, 
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400 mM DTT, 8% SDS). The supernatant was collected after centrifugation and 

precipitated by acetone precipitation for 4 h at -20 oC. This pull-down sample was 

then separated on a 12% SDS PAGE gel (un-labeled lysate was run aloneside as a 

negative control). After in-gel fluorescence scanning, the gel was then transferred to 

a PVDF membrane and subsequently blocked with 2.5% (w/v) BSA/PBST. 

Membranes were incubated for 1 h at RT with antibodies that recognize each of the 

four plasmepsins (anti-PM-I mouse serum mAb 1C6-24, (1:5000), anti-PM-II rabbit 

serum 737 (1:5000), anti-HAP mouse mAb (1:5000), anti-PM-IV mouse mAb 13.9.2 

(1:5000)) in 2.5% (w/v) BSA/PBST, followed by appropriate secondary antibody 

incubation. After wash with PBST for three times the SuperSignal West Pico kit 

(Pierce) were used to develop the blot.   

6.3.8 Membrane/Soluble sub-proteome analysis  

Highly synchronized parasite total lysates were prepared as earlier described. 

Total lysates were further centrifuged at 13000g for 15 min and split into a pellet 

fraction and a soluble fraction. Protein concentrations of each fraction were 

quantified. Total lysates, Soluble and insoluble fraction lysates (20 μg each) from 

each intraerythrocytic stage were labeled by probe G under condition described 

above. Same samples were resolved on SDS-PAGE and transferred to PVDF 

membrane for analysis with specific antibodies. 

6.3.9 In-situ inhibitor screening  

In situ inhibitor screening and identification was carried out by incubating 

parasite lysates with each inhibitor, followed by incubation with probe G and UV 

irradiation. In detail, parasite lysates (20 μg) was incubated with each inhibitor at a 
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final concentration of 10 μM individually for 0.5 h in 20 μl Reaction buffer used for 

proteome labeling experiment in section 6. After incubation with inhibitors, G was 

added to a final concentration of 5 M and incubated for another 0.5 h followed by 

UV irradiation on ice for 25 min using a B100A lamp (UVP) at a distance of 5 cm. 

Then samples were boiled for 10 min with 4 μl of 6 x SDS loading buffer, resolved 

on a 12% SDS-PAGE followed by in-gel fluorescence scanning. The relative 

fluorescence intensity of the 37-Kda band labeled by G were quantified using 

ImageQuant™ software. The potency of specific inhibitor scaffolds was measured as 

a ratio of the percent residual labeled proteases after inhibitor treatment relative to an 

untreated control. For analysis, the inhibition data were displayed in a colorimetric 

format and clustered on the basis of similarities in inhibitor profiles using treeview 

software.  

6.3.10 Inhibition assay of live parasite-infected RBC cultures  

Parasites were grown to 5% parasitemia after synchronization. Cultures were 

treated with various concentrations of individual inhibitors at 40 h post invasion, and 

were harvested after 12 h of treatment. The parasites were then viewed after giemsa 

staining, and the percentage of ring and schizont stages present was calculated after 

counting 1500 cells. Synchronous 0.5% DMSO-treated cultures were used as 

controls. 

6.3.11 Cytotoxicity Analysis of Selected Compounds 

The cytotoxicity of the selected compounds were analyzed using a simple 

cytotoxicity assay in which Hela cells were treated with different concentrations of 
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each compound individually for 24 h followed by measurement of the mitochondrial 

dehydrogenase activity using XTT reagent. The XTT assay was performed as 

described below: 25 μl of XTT/PMS solution was added per 100 μl of culture giving 

a final concentration of 0.2 mg/ml XTT and 25 μM PMS. After incubation at 37 °C 

in a humidified atmosphere with 5% CO2 for 4 h the OD was determined on a Tecan 

scanner using a sample wavelength of 450 nm and a reference wavelength of 620 nm 

which was expressed in the data as corrected absorbance 450 nm. Cytotoxicity was 

measured by the inhibition of growth rate by toxic compounds expressed as growth 

rate of compound treated well over the growth rate of non-treated well. Cytotoxicity 

of compounds in various concentrations from 2 μM to 100 μM was evaluated, 

plotted.  

6.3.12 Molecule Modeling Prediction of the G16 binding mode 
in FV plasmepsins  

Molecular modelling and graphic manipulations were performed using 

Sybyl7.2 docking system. Published crystal structures of plasmepsins was retrieved 

from PDB database and was used as the structure model after deleting water 

molecule for docking experiment, respectively 1W6I for PM-II, 3FNT for HAP and 

1LS5 for PM-IV. The catalytic aspartic acid 214 in each structure was chosen as the 

centre of the docking site.  

6.4 Chapter 4 

6.4.1 general 
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Orlistat (98%), Tris(2-carboxyethyl) phosphine (TCEP), and the click 

chemistry ligand, tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (“ligand”), were 

purchased from Sigma-Aldrich. Antibody against FAS (Cat No. 610963) was from 

BD Transduction Labs (San Diego, CA). Antibodies against eIF2 (#9722), phospho-

eIF2 (#9721), and cleaved caspase-8 (#9746) were from Cell Signaling Technologies 

(Beverly, MA). Antibodies against HSP90b (sc-1057), Annexin A2 (sc-1492) and 

RPL14 (KQ-16; sc-100826) were from Santa Cruz Biotechnology, Inc.. Antibodies 

against RPL7a (ab70753) and RPS9 (ab74711) were from Abcam. 

6.4.2 Chemicals synthesis 

 The synthesis of all chemicals used in Chapter 4 was carried out by my 

collaborator Dr.Yang Pengyu and the synthesis procedure was reported elsewhere 

(Yang, P-Y., 2010).  

6.4.3 Cell lines and culture conditions 

Cell lines were obtained from the National Cancer Institute Developmental 

Therapeutics Program (NCI60 cell line panel). HepG2 and HEK293 were grown in 

DMEM (Invitrogen, Carlsbad, CA) containing 10% heat-inactivated fetal bovine 

serum (FBS; Gibco Invitrogen), 100 U/mL penicillin and 100 μg/mL streptomycin 

(Thermo Scientific, Rockford, IL) and maintained in a humidified 37 oC incubator 

with 5% CO2. MCF-7 and PC-3 were maintained in RPMI 1640 medium 

supplemented with 10% FBS and 100 U/mL penicillin and 100 μg/mL streptomycin. 

To generate protein lysates, cells were washed twice with cold phosphate-buffered 

saline (PBS), and harvested with a cell scraper, and collected by centrifugation. Cell 

pellets were resuspended in PBS and lysed by sonication. Protein concentration was 
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determined by the Bradford assay. Cell lysates were diluted with PBS to achieve 

final concentration of ~1 mg/mL for labeling reactions. 

6.4.4 Cell proliferation assay 

Cell viability was determined using the XTT colorimetric cell proliferation 

kit (Roche) following manufacturer’s guidelines. Briefly, cells were grown to 20-30% 

confluence (since they will reach ~90% confluence within 48 to 72 h in the absence 

of drugs) in 96-well plates under the conditions described above. The medium was 

aspirated, and then washed with PBS, and then treated, in duplicate, with 0.1 mL of 

the medium containing different concentrations of THL analogs (1-50 M) or 

Orlistat (1-50 M; as a positive control). Probes were applied from DMSO stocks 

whereby DMSO never exceeded 1% in the final solution. The same volume of 

DMSO was used as a negative control. Fresh medium, along with THL analogs or 

Orlistat, were added every 24 h. After a total treatment time of 72 h, proliferation 

was assayed using the XTT colorimetric cell proliferation kit (Roche) following 

manufacturer’s guidelines (read at 450 nm). Data represent the average ± s.d. for two 

trials. 

6.4.5 Western Blotting for eIF2 and caspase-8　 

To monitor the effects of THL analogs on inducing phosphorylation of 

eIF2　, PC-3 cells were treated with indicated concentrations of Orlistat and THL 

analogs for 16 h. Samples from treated cells were then separated on 12% SDS/PAGE 

gel and further transferred to PVDF membranes. Membranes were blocked with 5% 

BSA in TBS. After blocking, membranes were incubated with anti-eIF2 (#9722 from 
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Cell Signaling, 1/5000) or anti-phospho-eIF2 (#9721 from Cell Signaling, 1/2000). 

After incubation, membranes were washed with TBST for three times and then 

incubated with an appropriate secondary antibody [anti-mouse conjugated HRP 

(1/5000) or anti-rabbit conjugated HRP (1/5000)]. After secondary incubation, blots 

were washed again with TBST before the development with SuperSignal West Pico 

kit (Pierce). To monitor the effects of THL analogues on inducing activation of 

caspase-8 pathway, MCF-7 cells were treated with indicated concentrations of 

Orlistat and THL analogs for 36 h. Samples from treated cells were then separated on 

a 12% SDS/PAGE gel and further transferred to PVDF membranes. Membranes 

were blocked with 5% BSA in TBS. After blocking, membranes were incubated with 

anti-caspase 8 (#9746 from Cell Signaling, 1/2000). After incubation, membranes 

were washed with TBST for three times, and then incubated with anti-mouse 

conjugated HRP (1/5000). After secondary incubation, blots were washed again with 

TBST before the development with SuperSignal West Pico kit (Pierce).  

6.4.6 Measurement of Protein Synthesis.  

Live HepG2 cells were treated with the indicated concentrations of 

Orlistat/THL-R or CHX (Cycloheximide, an inhibitor of protein biosynthesis) for 12 

h, washed twice with PBS, and then pulsed with AHA (L-Azidohomoalanine; 20 μM) 

for 4 h. Cells were collected, washed, and cell lysates were prepared and subjected to 

click chemistry with rhodamine-azide 33, SDS-PAGE analysis, and in-gel 

fluorescence scanning. 

6.4.7 In vitro and in situ proteome labeling and analysis 
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For in vitro proteome labeling, probes were added to cell lysates (50 μg) in 50 

μL PBS at a final concentration of 1-20 μM in the presence or absence of excess 

Orlistat or Maleimide competitor (a final concentration of 100 μM). Unless indicated 

otherwise, samples were incubated for 2 h with varying concentrations of probe at 

room temperature. After incubation, 10 μL freshly premixed click chemistry reaction 

cocktail in PBS [rhodamine-azide (100 μM, 10 mM stock solution in DMSO), tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) (1 mM, 50 mM freshly prepared 

stock solution in deionized water), tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl] 

amine (TBTA) (100 μM, 10 mM stock solution in DMSO) and CuSO4 (1 mM, 50 

mM freshly prepared stock solution in deionized water)] was added and vortexed, 

then incubated for 2 h at room temperature with gentle mixing. The reactions were 

terminated by the addition of pre-chilled acetone (0.5 mL), placed at -20 °C for 30 

min and centrifuged at 13000 rpm for 10 min at 4 °C to precipitate proteins. The 

supernatant was discarded and the pellet washed two times with 200 μL of pre-

chilled methanol. The protein pellets were allowed to air-dry for 10 min, resuspended 

in 25 μL 1standard reducing SDS-loading buffer and heated for 10 min at 95 °C; ~ 

20 μg of protein was loaded per gel lane for separation by SDS-PAGE (12% or 8-16% 

gradient precast gel), then visualized by in-gel fluorescent scanning using a Typhoon 

9410 Variable Mode Imager scanner. 

For in situ labeling, Cells were grown to 80-90% confluence in 24-well plate 

under the conditions described above. The medium was removed, and then cells were 

washed twice with cold PBS, and treated with 0.5 mL of DMEM-containing probe 

(1-20 μM), with or without Orlistat or Maleimide (100 μM). Probes were applied 
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from DMSO stocks whereby DMSO never exceeded 1% in the final solution. The 

same volume of DMSO was used as a negative control. After 2 h of incubation at 37 

oC/5% CO2, the growth medium was aspirated, and cells were washed twice with 

PBS to remove the excessive probe, trypsined, and pelleted by centrifugation. The 

cell pellet was resuspended in PBS (50 μL), homogenized by sonication, and diluted 

to ~1 mg/mL with PBS. Probe targets were detected by click chemistry with  

rhodamine-azide, SDS/PAGE analysis, and in-gel fluorescence scanning. 

6.4.8 Hydroxylamine Treatment of Gels.  

After the proteins were separated by SDS/PAGESDS-PAGE gel, the gel was 

soaked in 40% MeOH, 10% acetic acid, shaking overnight at room temperature, 

washed with deionized water (2 × 5 min) and scanned for the prehydroxylamine 

treatment fluorescence. The gel was then soaked in PBS, shaking 1 h at room 

temperature, followed by boiling in neutralized hydroxylamine (Alfa Aesar) (2.5% 

final concentration) for 5 min, washing with deionized water (2 × 5 min), and 

soaking in 40% MeOH, 10% acetic acid, shaking overnight at room temperature. The 

gel was washed with deionized water (2 × 5 min) and scanned for the post-

hydroxylamine treatment fluorescence. 

6.4.9 Pull-Down and Mass spectrometry Identification 

To identify the in situ targets of THL-R in HepG2 cell line, pull-down 

followed by immunoblot or MS/MS identification experiments were carried out as 

described below. In situ labeling sample of HepG2 by THL-R were prepared as 

described previously. After in situ labeling, cells were detached from T75 culturing 

flask and pelleted by centrifuge for 1000 rpm for 15 min. 5 mg of the lysates were 
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reacted by click chemistry with biotin-azide under the conditions described above, 

acetone precipitated, and resolubilized in 0.1% SDS in PBS with brief sonication. 

This resuspended sample was then incubated with avidin-agarose beads (100 μL/1mg 

protein) at room temperature for 30 min. After centrifugation, supernatant were 

removed and the beads were washed with 1% SDS in PBS for 4 times. After washing, 

the beads were boiled in elution buffer (200 mM Tris pH 6.8, 400 mM DTT, 8% 

SDS). For immunoblot analysis, this pull down sample was then separated on 8-16% 

gradient precast gel (Biorad), transferred to PVDF membrane and probed with 

purified mouse anti-FAS (Cat No. 610963, BD Transduction Laboratories). 265 kDa 

FAS band was observed in the pull-down elute fraction while not in the negative 

control pull-down fraction. For MSMS identification, proteins from pull-down 

fraction were separated on 12% SDS/PAGE gel, followed by coomassie staining. 

Trypsin digestion was performed with In-Gel Trypsin Digestion Kit from Pierce for 

respective visible protein bands. After digestion, digested peptides were then 

extracted from the gel with 50% acetonitrile and 1% formic acid. Tryptic peptide 

extracts were evaporated by speedvac and reconstituted with 10 μL 0.1% TFA, a 

volume of 2 μL of the peptide extracts were manually spotted onto a Prespotted 

AnchorChip MALDI target plate for MALDI-TOF Mass step with 10 μL of 10 mM 

ammonium phosphate in 0.1% TFA, and allowed to dry at ambient temperature. 

MALDI TOF mass spectra were recorded using Ultraflex III TOF/TOF mass 

spectrometer (Bruker Daltonics) with the compass 1.2 software package including 

flexControl 3.0 and flexAnalysis 3.0, calibrated with PAC peptide calibration 

standards. MS/MS analysis for the major peaks in PMF spectra were carried out by 
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autoLIFT on the MALDI-TOF/TOF instrument. MS and MS/MS Peak lists with 

intensity value were submitted to Matrix Science Mascot server 

(http://www.matrixscience.com/) through BioTools 3.0 (Bruker Daltonics) using IPI 

database, variable modifications of carbamidometyl on cysteine (C) and oxidation on 

methione (M), allowing maxium of trypsin missed cleavage, peptide mass tolerance 

at 200 ppm; MS/MS mass tolerance of 0.7 Da. 

6.4.10 Target Validation by Western Blotting.  

Pull-down sample from labeled lysates was then separated on 12% SDS-

PAGE gel together with pull-down sample from DMSO-treated, un-labeled lysates 

(negative controls). After SDS-PAGE gel separation, proteins were then transferred 

to a PVDF membrane and subsequently blocked with 2.5% (w/v) BSA/PBST. 

Membranes were incubated for 1 h at room temperature with the respective 

antibodies (i.e. anti-RPL7a, anti-Annexin A2, anti-HSP90b, anti-RPS9, anti-GAPDH 

and anti-b-Tubulin). After 3 X washes with PBST, blots were further incubated with 

appropriate secondary antibody for 1 h at room temperature. After incubation, the 

blot was washed again with PBST for 3 times and the SuperSignal West Pico kit 

(Pierce) was used to develop the blot. 

6.4.11 Target Validation of 4 targets by Rrecombinant Protein 
Eexpression in HEK-293T Ccells.   

Mammalian expression vectors overexpressing each of the four targets were 

purchased from Origene. Vectors were transfected with Lipofectamine reagent at 80% 

confluence. After 24 hr of transfection, either non-transfected and transfected cell 

were incubated with THL-R. After THL-R incubation, small fractions of the samples 
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were analyzed by western blot with 1/2000 anti-c-Myc antibody from SantaCruz. 

The rest of the cells were lysed and immunopurified with c-Myc agarose beads (from 

Santa Cruz). Pull-down fractions were clicked with rhodamine-azide as previously 

described. After click chemistry, samples were separated on SDS-/PGAGE gel and 

fluorescence scanned by in-gel fluorescence with Typhoon Scanner.    

6.4.12 Identification of the labeling Ssite of GAPDH.  

The mMammalian expression vector overexpressing GAPDH wasere used as 

template for generating the GAPDH active- site mutant. Cys151 were mutated to Ala 

chosen as the mutation site.  Primers used for site-directed mutagenesis design was 

as shown bellow:  

5’ -ATCAGCAATGCCTCCGCCACCACCAACTGC-3’   

5’-GCAGTTGGTGGTGGCGGAGGCATTGCTGAT-3’  

Vectors overexpressing both wild-type and mutant GAPDH were transfected 

to HEK293T cell line. Recombinant protein was purified, labeled and clicked as 

previously described. Further, samples were separated on SDS gel and fluorescence 

scanned with Typhoon Scanner. After fluorescence scan, gel was fixed and silver 

stained to visualize the protein bands. 

6.4.13. Cellular Imagingolocalizing in situ targets of THL-R 
analogs with FAS.  

HepG2 cells were seeded onto 24-well plates containing sterile glass 

coverslips and grown until 70-80% confluence under the conditions described above. 

After 24 h, the growth medium was removed, and cells were washed twice with PBS. 

Further, cells were treated with 0.5 mL of DMEM with 20 μTHL-R or DMSO. 
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After fixation in 3.7% paraformaldehyde in PBS for 15 min at room temperature, 

cells were washed twice with cold PBS again. Cells were permeabilized with 0.1% 

Triton X-100 in PBS 10 min at room temperature, and blocked with 2% BSA in PBS 

for 30 min at room temperature, and then washed twice with PBS. Cells were then 

treated with a freshly premixed click chemistry reaction solution in a 250 μL volume 

at final concentrations of the following reagents: 1 mM CuSO4, 1 mM TCEP, 100 

M TBTA and 10 M rhodamine-azide  in PBS for 2 h at room temperature with 

vigorous shaking. Cells were washed with PBS three times, and then washed with 20 

mM HEPES, pH 7.5, 500 mM NaCl, 2% triton for overnight at room temperature, 

and then washed again by PBS for three times. If neccessary, indirect 

immunofluorescence and Hoechst staining were carried out thereafter. For 

colocalizing in situ targets of THL analogs with FAS, cells were further incubated 

with anti-FASN primary antibodies (1:200) for 1 h at room temperature (or overnight 

at 4 oC), and washed twice with PBS. The cells were incubated with FITC-

conjugated anti-mouse IgG (1:500) for 1 h, washed again. Cells were stained with 1 

g/mL Hoechst for 10 min at room temperature, washed again before mounting. 

Colocalizing in situ targets of THL analogs with ER. For colocalizing in situ targets 

of THL-R with ER, cells were further incubated with ER-TrackerTM Green 

(glibenclamide BODIPY® FL) for 1 h at room temperature (or overnight at 4 oC), 

and washed twice with PBS. Cells were stained with 1 g/mL Hoechst for 10 min at 

room temperature, washed again before mounting. 

6.5 Chapter 5 
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6.5.1 General 

All chemicals were purchased from commercial vendors and used without 

further purification, unless indicated otherwise. Click-iT® AHA (L-

azidohomoalanine) C10102 azide, Click-iT® HPG (L-homopropargylglycine) alkyne 

(C10186); Click-iT® farnesyl alcohol, azide (C10248) Click-iT® geranylgeranyl 

alcohol, azide (C10249); Click-iT® fucose alkyne (tetraacetylfucose alkyne) 

(C10264);  Click-iT® myristic acid, azide C10268 Click-iT® myristic acid, azide 

(C10268); Click-iT® Gal-Az (tetraacetylated N-azidoacetylgalactosamine) azide 

(C33365); Click-iT® Man-Az (tetraacetylated N-azidoacetyl-D-mannosamine) azide 

(C33366); Click-iT® Glc-Az (tetraacetylated N-azidoacetylglucosamine) azide 

(C33367) were commercially available from Invitrogen. In-gel fluorescence scanning 

was carried out with Typhoon 9410 fluorescence gel scanner (GE Amersham). All 

other reagents were purchased from Invitrogen. PA-Ak (17-Octadecynoic acid) were 

purchased from Cayman Inc.   

6.5.2 chemical synthesis 

The synthesis of azide/alkyne-containing fluorescent and affinity tags used in 

Chapter 5 was carried out by my collaborator Dr.Yang Pengyu and the synthesis 

procedure was reported elsewhere (Yang, P-Y., 2010).  

6.5.3 Metabolic Labeling with AHA and HPG  

Jurkat cells were grown in Growth Medium (RPMI medium containing 10% 

FBS and 2 mM glutamine). After cells reached confluence and before labeling, cells 

were centrifuged (1500 rpm x 10 min) to remove the medium. Cell pellets were 
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resuspended in an appropriate amount of Met-free Growth Medium (Met-free RPMI 

containing 10% dialyzed FBS and 2 mM glutamine). The cell density was adjusted to 

1 x 106 cells/ml. Subsequently, cells were starved for 30 min before addition of 50 

μM of AHA. Upon further incubation, cells were harvested at the desired time points. 

Briefly, the medium was removed by centrifugation (1500 rpm x 10 min), 

resuspended and washed with PBS for 3 times. To tag AHA-labeled, newly 

synthesized proteins with a fluorophore or biotin, cell pellets were re-suspended in 

1% SDS in PBS. When the pellets were completely dissolved, the volume of the 

solution was diluted 10-folds with PBS (to give a final 0.1% SDS solution).  The 

lysate was reacted with Alexa-647 Alkyne in 1 ml of PBS for 10 hour at 10 °C with 

gentle mixing. Standard click chemistry conditions involve the addition of 1-2 mg/ml 

of the proteome, 100 μM of Alexa-647 Alkyne (dissolved in DMSO), 1 mM of 

Tris(2-carboxyethyl)phosphine (TCEP, Sigma-Aldrich; dissolved in water), 100 μM  

of Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (Sigma-Aldrich; 

dissolved in DMSO), and 1 mM CuSO4 in PBS. The reactions were terminated by 

the addition of a 4-times volume of pre-chilled acetone, placed at -20 °C for 30 min 

and centrifuged (13000 rpm x 10 min) at 4 °C to precipitate proteins. The supernatant 

was discarded and the pellet washed with pre-chilled methanol (2 x). The protein 

pellets were allowed to air-dry and re-suspended in 1  standard reducing SDS-

loading buffer and heated for 10 min at 95 °C. An appropriate amount of protein was 

loaded per gel lane for separation by 12% SDS-PAGE, then visualized by in-gel 

fluorescence scanning using a Typhoon 9410 fluorescence scanner as described 

previously (Liu, K., 2009). To confirm the labeling of newly synthesized protein by 
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AHA, we added protein synthesis inhibitor Cycloheximide (CHX) to Jurkat T cell 

cultures alone with AHA. Fluorescence profile was quantified by ImageQuantTM 

software as described previously (Liu, K., 2009).  Above procedures were similarly 

followed to determine the time-dependent metabolic labeling of HPG. Briefly, Jurkat 

T cells were cultured to confluence, labeled with 50 μM of HPG, tagged with 

Rhodamine-Azide, washed, air-dried and re-suspended in 1  standard reducing 

SDS-loading buffer and heated for 10 min at 95 °C; appropriate amount of protein 

was loaded per gel lane for separation by 12% SDS-PAGE, then visualized by in-gel 

fluorescence scanning and quantified 

6.5.4 Metabolic Labeling with PTM probe 

To perform metabolic incorporation for each PTM probe, Jurkat T cells were 

first grown to confluence in Growth Medium. Upon centrifugation, cell pellets were 

collected, then resuspended in Maintainance Medium to minimize the effect of any 

trace amount of lipids or carbohydrates that might be present in the serum. The tested 

PTM probe was added (to a final concentration of 50 M). The cells were further 

grown and collected at desired time points. Preparation of protein samples and 

fluorescence tagging by Click Chemistry were carried out as previously described.  

6.5.5 Affinity pulldown of Post-Translationally Modified 
Proteins in Jurkat T cells  

To identify the targets of all 8 types of PTMs in Jurkat T cells, Jurkat T cells 

were incubated with each of the 8 PTM probes (50 μM x 3 days). After incubation, 

biotin tagging with Click Chemistry (i.e. 100 μM of Biotin-Azide or Biotin-Alkyne 

was used in place of Rhodamine-Azide or Alexa 647-Alkyne), washing and air-
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drying of PTM labeled protein samples were carried out as described in previous. 

Next, the protein samples were dissolved in 1% SDS in PBS by vortexing, then 

diluted 10-folds with PBS, and centrifuged (13000 rpm x 30 min) to remove any 

insoluble proteins. Subsequently, avidin-agarose beads (50 μL/mg protein) were 

added and the mixture was further incubated at room temperature for 30 min. After 

centrifugation, the supernatant was removed and the beads were washed with 0.1% 

SDS in PBS (3 times), 0.4% SDS in PBS (3 times), 0.1% SDS (3 times), then boiled 

with 50 μl of 1 x SDS loading dye at 95°C for 10 min. The samples were then 

separated on a 12% SDS-PAGE gel.  

6.5.6 LC-MS/MS identification of pull-down proteins. 

Each lane was cut into 1 mm slices. Proteins in the gel slices were reduced 

with DTT, alkylated by incubation with IAA and digested with modified porcine 

trypsin (Promega Corp., Madison, WI), as previously described. The resultant 

peptide mixture was extracted from the gel slices using a 60% ACN solution 

(containing 5% formic acid). The extract peptide was dried in vacuo and 

reconstituted to 40 µL with 0.1% formic acid before LCMS analysis. The LTQ-FT 

ultra (Thermo Electron, Bremen, Germany) was coupled with an online Shimadzu 

UFLC systems utilizing nanospray ionization. Peptides were first enriched with a 

Zorbax 300SB C18 column (5 mm × 0.3 mm, Agilent Technologies, Santa Clara, CA) 

followed by elution into an integrated nanobore column (75 μm × 100 mm, New 

Objective, Woburn, MA) packed with C18 material (5 μm particle size, 300 Å pore 

size, Michrom BioResources Inc.). Mobile phase A (0.1% formic acid in H2O) and 

mobile phase B (0.1% formic acid in acetonitrile) were used to establish the 90-min 
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gradient, consisting of 0-5% B (3 min), then 5-30% B (52 min), 30-60% B (12 min), 

80% B (8 min), then 5% B (15 min) for re-equilibration. The MS was operated in the 

data-dependent mode. Samples were injected into the MS with an electrospray 

potential of 1.8 kV without sheath and auxiliary gas flow, with an ion transfer tube 

temperature of 180 °C and a collision gas pressure of 0.85 mTorr. A full survey MS 

scan (350-2000 m/z range) was acquired in the 7-T FT-ICR cell at a resolution of 

100 000 and a maximum ion accumulation time of 1000 ms. Precursor ion charge 

state screening was activated. The linear ion trap was used to collect peptides where 

10 most intense ions were selected for collision-induced dissociation (CID) in MS2, 

which were performed concurrently with a maximum ion accumulation time of 200 

ms. Dynamic exclusion was activated for this process, with a repeat count of 1 and 

exclusion duration of 30 s. For CID, the activation Q was set at 0.25, isolation width 

(m/z) 2.0, activation time 30 ms, and normalized collision energy of 35%. The 

extract_msn (version 4.0) program found in Bioworks Browser 3.3 (Thermo Electron, 

Bremen, Germany) was used to extract tandem MS spectra in the dta format from the 

raw data of LTQ-FT ultra. These dta files were then converted into MASCOT 

generic file format using an in-house program. Intensity values and fragment ion m/z 

ratios were not manipulated. This data was used to obtain protein identities by 

searching against the IPI human protein database (version 3.34; 67758 sequences) by 

means of an in-house MASCOT server (version 2.2.03) (Matrix Science, Boston, 

MA). The search was limited to maximum 2 missed trypsin cleavages; #13C of 2; 

mass tolerances of 10 ppm for peptide precursors; and 0.8 Da mass tolerance for 

fragment ions. Fixed modification was carbamidomethyl at Cys residue, whereas 
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variable modifications were oxidation at Met residue, and phosphorylation at Ser, 

Thr or Tyr residues. Only proteins with a MOWSE score higher than 39, 

corresponding to p < 0.05 were considered significant. 

6.5.7 Dynamic Profiling of Palmitoylation on Newly Synthesized 
Proteins 

9 identical newly synthesized proteomes (“pulsed” with 0.5 mM AHA x 10 

min) from Jurkat T cells, were prepared, as previously described. They were each 

“chased” with PA-Ak (0.5 mM) for a duration of 20 min, at each of the 9 different 

time windows (assuming the start of AHA pulsing is time 0, PA-Ak was chased, 

each for 20-min duration, ending at 20 min, 40 min, 60 min, 2 hrs, 4 hrs, 8 hrs, 24 

hrs, 48 hrs and 72 hrs past, respectively), and resulting palmitoylation activities of 

these subproteomes were tracked by affinity tagging, isolation of newly synthesized 

proteins, fluorescence tagging, as previously described.  

6.5.8 DNA Fragmentation Assay 

To set up a butyric acid (BA)-induced apoptosis model system, we treated 

Jurkat T cells with 5 mM of butyric acid in Growth Medium and the induction of 

Jurkat cell apoptosis was determined by DNA fragment gel electrophoresis. In detail, 

after reaching confluence, Jurkat cells were resuspended in Growth Medium. Cells 

were cultured in 24-well tissue culture plates in the presence or absence of butyric 

acid. After 20 hours of BA treatment, cells were harvested and centrifuged (1500 

rpm x 15 min) and washed twice with ice-cold PBS. Cells were resuspended in 400 

l of hypotonic lysis buffer (0.2% Triton X　 -100, 10 mM Tris, 1 mM EDTA; pH 8.0) 

and centrifuged (15 min x 13,000 rpm). The supernatant was treated with an equal 
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volume of absolute isopropyl alcohol and 0.5 M NaCl to precipitate the DNA and 

stored at -20°C overnight. After centrifugation (13,000 rpm x 15 min), the pellet was 

washed with 70% ethanol and allowed to dry at room temperature. The DNA was 

resuspended in 20 l of TE solution (10 mM Tris　 -HCl, 1 mM EDTA; pH 7.4) and 3 

ml of loading buffer (50% glycerol, 13% TAE, 10% saturated bromphenol blue, 1% 

xylene cyanol), incubated at 37°C for 20 min, and then electrophoresed on 1.7% 

agarose gel containing 0.71 mg of ethidium bromide per ml for 1 h. Gels were 

photographed by using UV transillumination.  
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Chapter 7. 

 
 
Concluding Remarks 
 
 

7.1 Conclusion 

   

 

 

 

 

 

 

 

 

Figure 7.1 Strategies for proteomic labeling with synthesized small molecules in 
vitro and in vivo. (From top to bottom) Enzyme-substrate interactions can be 
captured with mechanism based cross-linkers (Chapter 2). Enzymes that are 
catalytically active can be specifically labeled with activity/affinity based probes 
bearing chemical reporters (Chapter 3). Inhibitor library can be screened with 
competitive probe labeling (Chapter 3). Drug efficacy can be assessed by profiling 
small molecule-protein interaction (Chapter 4). Glyco- or lipid-modification 
dynamics can be measured by assaying modification on newly synthesized proteins 
(Chapter 5). 
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Herein I have desribed a series of chemical proteomics strategies (Figure 7.1). 

The strategy describe in Chapter 2 potentially facilitate the identification of upstream 

excution kinases of phosphorylation substrates. For the first time we have 

demonstrated a general chemical approach for the identification of multiple kinase 

activities (not only derine/threonine kinases but also tyrosine kinases) directly from 

the whole proteome. This approach was useful for multiplexed detection and kinase 

activities present in a proteome, and is amenable for potential screenings of potent 

and selective inhibitors of kinases in their native environments. The establishment of 

the highly specific and sensitive NDA-adenosine guided crosslinking reactions with 

desired kinase-substrate pairs in their native states represents a step forward towards 

the creation of novel chemical tools in cell signaling and drug discovery.  This 

approach was further improved by Shokat and colleagues to detect endogenous 

excutioner kinases of known phosphorylation substrate in mamalian proteome 

(Statsuk, A.V., et Al. 2008).   

Strategies described in Chapter 3 realized the proteomic profiling of activities 

and inhibition of FV family aspartic proteases (FV plasmepsins) in P. falciparum. 

For the first time we have reported AfBPs that targeting FV plasmepsins. Subsequent 

in situ screening of parasites with these probes has led to the identification of a 

compound, G16, which show good inhibition against all 4 PMs and parasite growth 

in infected red blood cells (RBCs). Our finding indicates that feasibility of using 

ABP approaches for identification of inhibitors against less-characterized enzymes 

(i.e. Histoaspartic Protease, or HAP). Our finding indicates that feasibility of using 

AfBP approaches for identification of inhibitors against less-characterized enzymes 
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(i.e. Histoaspartic Protease, or HAP).   

Chapter 4 describes an activity-based profiling of small molecule-protein 

interactions approach for unbiased, empirical identification of off-targets of 

development-stage or even marketed drugs. We were able to demonstrate, for the 

first time, this approach is suitable for the identification of previously unknown 

cellular targets of Orlistat. This method determines inhibitor’s selectivity in a 

proteome-wide scale, unlike selectivity determined by standard ABP/AfBP approach 

only representing the selectivity within certain class of enzyme targeted by the 

probe.  . Our findings have important implications in the consideration of Orlistat as 

a potential anticancer drug at its early stages of development for cancer therapy. Our 

strategy should be broadly useful for off-target identification against quite a number 

of existing drugs and/or candidates, which are also covalent modifiers of their 

biological targets. 

In Chapter 5, we presented a methodology that enables the proteome-wide 

profiling of PTMs on proteins synthesized in defined time window, as well as their 

dynamics, by using a double metabolic incorporation strategy. We validated the 

feasibility of this approach with a number of proteins covering a total of eight 

different types of PTMs which occur on different time scales (rapid and enduring). 

We further applied the strategy to monitor the myristoylation of newly synthesized 

proteins in apoptotic Jurkat cells, and successfully identified Protein Kinase A (PKA), 

a key signaling enzyme, whose myristoylation appeared to be up-regulated in 

response to butyric acid (BA)-induced apoptosis. We anticipate this new chemical 

proteomic tool may facilitate the discovery of primary PTM changes associated with 



 

                                                                                                                              169                              
       

different extracellular and intracellular cues. 

These tools have been tested successfully and the results indicate that such 

chemical proteomic tools would provide comprehensive insight into the 

understanding of the proteome in various levels other than protein expression. These 

proteomic profiling methods contributes towards our understanding of proteins in 

their native environment and accelerate the process of drug target identification (by 

potentially identifying upstream executioner kinases, profiling FV family aspartic 

proteases, identifying regulated PTMs in cellular events); drug lead discovery (by 

facilitating inhibitor’s potency and selectivity screening in complex proteome) and 

drug efficacy assessement (by identifying drug’s potential off-targets in living cell). 

The probes developed may be applied for the annotation and discovery of novel 

enzymes. The inhibitors discovered may also be developed as next generation 

chemical probes for proteomic profiling or as potential drugs. To conclude, the 

technological advances here offer frontier capabilities towards the rapid evaluation 

and characterization of proteins in various levels other than protein expression. 
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Chapter 9. 
 
 
Appendix 
 
 

9.1 Supplemental Tables 

Table 9.1 List of 152 compound in the inhibitor library targeting plasmepsins in P. 
Falciparum. Identity of each compound as well as its quality confirmed by LC/MS 

# 
Product 

ID 
Alkyne 

Warhead 
Azide 

   

LCMS Results 

Est % 
Purity 

Cal. MW Obs. MW NMR & Scale up 

1 A1 A 

1 

25 571.17 572.168 - 

2 B1 B 30 547.25 548.253 - 

3 C1 C 80 537.19 538.183 - 

4 D1 D 50 513.27 514.266 - 

5 E1 E 80 587.17 588.187 - 

6 F1 F 30 563.25 564.268 - 

7 G1 G 30 523.17 524.191 - 

8 H1 H 70 499.25 500.296 - 

9 A2 A 

2 

>90 585.19 586.222 - 

10 B2 B >90 561.27 562.275 - 

11 C2 C >90 551.21 552.222 - 

12 D2 D - 527.29 - - 

13 E2 E - 601.19 - - 

14 F2 F - 577.27 - - 

15 G2 G - 537.19 - - 

16 H2 H - 513.27 - - 

17 A3 A 

3 

>95 551.17 552.187 - 

18 B3 B >90 527.25 528.261 - 

19 C3 C >95 517.19 518.202 - 

20 D3 D - 493.27 - - 

21 E3 E - 567.17 - - 

22 F3 F 63 543.25 544.258 - 

23 G3 G - 503.17 - - 
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24 H3 H - 479.25 - ν 

25 A4 A 

4 

60 551.17 552.179 - 

26 B4 B 80 527.25 528.261 - 

27 C4 C >90 517.19 518.198 - 

28 D4 D 70 493.27 494.277 - 

29 E4 E - 567.17 - - 

30 F4 F 40 543.25 544.258 - 

31 G4 G - 503.17 - - 

32 H4 H - 479.25 - - 

33 A5 A 

5 

60 579.16 580.173 - 

34 B5 B 50 555.24 556.258 - 

35 C5 C >95 545.18 546.172 - 

36 D5 D - 521.26 - - 

37 E5 E 40 595.16 596.15 - 

38 F5 F 50 571.24 572.236 - 

39 G5 G 70 531.16 532.192 - 

40 H5 H 60 507.24 508.236 - 

41 A6 A 

6 

70 555.12 556.111 - 

42 B6 B 70 531.2 532.169 - 

43 C6 C 50 521.14 522.126 - 

44 D6 D - 497.22 - - 

45 E6 E - 571.12 - - 

46 F6 F 60 547.2 548.191 - 

47 G6 G >90 507.12 508.116 - 

48 H6 H - 483.2 - - 

49 A7 A 

7 

>90 539.15 540.144 - 

50 B7 B >90 515.23 516.226 - 

51 C7 C >90 505.17 506.163 ν 

52 D7 D >90 481.25 504.221 - 

53 E7 E >85 555.15 556.136 - 

54 F7 F >90 531.23 532.215 - 

55 G7 G - 491.15 - - 

56 H7 H >90 467.23 468.226 - 

57 A8 A 

8 

- 557.14 - - 

58 B8 B - 533.22 - - 

59 C8 C - 523.16 - - 

60 D8 D - 499.24 - - 

61 E8 E - 573.14 - - 

62 F8 F - 549.22 - - 
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63 G8 G 50 509.14 510.134 - 

64 H8 H - 485.22 - - 

65 A9 A 

9 

>95 553.16 554.16 - 

66 B9 B - 529.24 - - 

67 C9 C >90 519.18 542.177 - 

68 D9 D - 495.26 - - 

69 E9 E 60 569.16 570.153 - 

70 F9 F >95 545.24 - - 

71 G9 G 60 505.16 506.16 - 

72 H9 H - 481.24 - - 

73 A10 A 

10 

70 546.15 547.147 - 

74 B10 B - 522.23 - - 

75 C10 C >95 512.17 513.169 - 

76 D10 D >95 488.25 489.242 - 

77 E10 E 40 562.15 563.158 - 

78 F10 F 40 538.23 539.221 - 

79 G10 G >85 498.15 499.167 - 

80 H10 H - 474.23 - - 

81 A11 A 

11 

40 607.14 608.1371 - 

82 B11 B 70 583.22 584.2211 - 

83 C11 C 60 573.16 574.1565 - 

84 D11 D >95 549.24 550.2378 - 

85 E11 E >95 623.14 624.132 - 

86 F11 F >95 599.22 600.213 - 

87 G11 G 80 559.14 560.136 - 

88 H11 H 80 535.22 536.222 - 

89 A12 A 

12 

50 607.14 608.137 - 

90 B12 B 50 583.22 584.219 - 

91 C12 C 70 573.16 574.158 ν 

92 D12 D 70 549.24 550.24 - 

93 E12 E >95 623.14 624.147 - 

94 F12 F >95 599.22 600.21 - 

95 G12 G 60 559.14 560.149 - 

96 H12 H >90 535.22 536.222 - 

97 A13 A 

13 

>95 593.11 594.11 - 

98 B13 B >95 569.19 570.191 - 

99 C13 C 50 559.13 560.129 - 

100 D13 D >95 535.21 536.26 - 

101 E13 E 40 609.11 610.105 - 
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102 F13 F 70 585.19 586.189 - 

103 G13 G >90 545.11 546.112 - 

104 H13 H 60 521.19 522.191 - 

105 A14 A 

14 

>90 599.14 600.136 - 

106 B14 B 70 575.22 576.223 - 

107 C14 C 80 565.16 566.157 - 

108 D14 D 70 541.24 542.232 - 

109 E14 E - 615.14 - - 

110 F14 F >85 591.22 592.217 - 

111 G14 G - 551.14 552.138 - 

112 H14 H >90 527.22 528.218 ν 

113 A15 A 

15 

70 585.16 586.159 - 

114 B15 B 50 561.24 562.236 - 

115 C15 C 50 551.18 552.177 - 

116 D15 D 50 527.26 528.254 - 

117 E15 E >95 601.16 602.161 - 

118 F15 F >90 577.24 578.235 - 

119 G15 G >90 537.16 538.1544 ν 

120 H15 H 70 513.24 514.248 - 

121 A16 A 

16 

60 591.09 592.078 - 

122 B16 B - 567.17 568.161 - 

123 C16 C >90 557.11 558.109 ν 

124 D16 D >85 533.19 534.184 - 

125 E16 E 90 607.09 608.081 - 

126 F16 F >90 583.17 584.168 - 

127 G16 G 70 543.09 544.084 ν 

128 H16 H 70 519.17 520.161 - 

129 A17 A 

17 

50 633.16 634.157 - 

130 B17 B 60 609.24 610.239 - 

131 C17 C 90 599.18 600.148 - 

132 D17 D 70 575.26 576.239 - 

133 E17 E >95 649.16 650.134 - 

134 F17 F >95 625.24 626.209 - 

135 G17 G >95 585.16 586.139 - 

136 H17 H 60 561.24 562.221 - 

137 A18 A 

18 

70 602.11 603.094 - 

138 B18 B 70 578.19 579.173 - 

139 C18 C 70 568.13 569.11 - 

140 D18 D 80 544.21 545.191 - 
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141 E18 E 30 618.11 619.088 - 

142 F18 F - 594.19 - - 

143 G18 G 60 554.11 555.097 - 

144 H18 H - 530.19 - - 

145 A19 A 

19 

70 599.17 600.149 - 

146 B19 B 70 575.25 576.224 - 

147 C19 C 80 565.19 566.174 - 

148 D19 D 70 541.27 542.245 - 

149 E19 E 80 615.17 616.136 - 

150 F19 F >95 591.25 592.226 - 

151 G19 G - 551.17 - - 

152 H19 H - 527.25 - ν 
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9.2 Supplemental Figures 

Eight hydroxyethyl-based WH (A-H). 
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Figure 9.1. Chemical structures of the eight hydroxyethyl-based warheads WH (A-
H). The eight Warheads (A-H; Figure 9.1) were synthesized and purified as mixtures 
of diasteromers by modifications of published procedures,3 and characterized as the 
followings.  

 

 

Figure 9.2. Structures of the 19 alkynes used, and the “click” synthesis of 152-
member plasmepsin inhibitors. 
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Alkyne-containing linker (≡-BP-TER). 
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Figure 9.3. Chemical structure of the alkyne-containing BP-TER linker. (≡-BP-
TER). The alkyne-containing linker (Figure 9.3) was synthesized based on 
previously published procedures.4 

 
 

Charaterization of 8 putative “hits” against plasmepsins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4 Chemical Structures of the 8 selected “hits” from in-situ screening with 
parasite extracts and screening with purified enzymes. 
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