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Summary VII

Summary

The control of dynamical systems in the presence of all kinds of repetitiveness is of great

interest and challenge. Repetitiveness that is embeded in systems includes the repetitive-

ness of system uncertainties, the repetitiveness of control processes, and the repetitiveness

of control objectives, etc, either in the time domain or in the spatial domain. Learning-

type control mainly aims at improving the system performance via directly updating the

control input, either repeatedly over a fixed finite time interval, or repetitively (cycli-

cally) over an infinite time interval. In this thesis, the attention is concentrated on the

analysis and design of two learning-type control strategies: adaptive control (AC) and

iterative learning control (ILC), for dynamic systems with repetitiveness.

In the first part of the thesis, two different AC approaches are proposed to deal with

nonlinear systems with periodic parametric repetitiveness in continuous-time domain and

in discrete-time domain respectively, where the periodicity could be temporal or spatial.

Firstly, a new spatial periodic control approach is proposed to deal with nonlinear rotary

machine systems with a class of state-varying parametric repetitiveness, which is in

an unknown compact set, periodic, non-vanishing, and the only prior knowledge is the

periodicity. Unlike most continuous time adaptation laws which are of differential types,

in this work a spatially periodic type adaptation law is introduced for continuous time

systems. The new adaptive controller updates the parameters and the control signal

periodically in a pointwise manner over one entire period along the position axis, in the

sequel achieves the asymptotic tracking convergence.

Consequently, we develop a concise discrete-time adaptive control approach suitable for
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nonlinear systems with periodic parametric repetitiveness. The underlying idea of the

new approach is to convert the periodic parameters into an augmented constant para-

metric vector by a lifting technique. As such, the well-established discrete-time adaptive

control schemes can be easily applied to various control problems with periodic parame-

ters, such as plants with unknown control directions, plants in parametric-strict-feedback

form, plants that are nonlinear in parameters, etc. Another major advantage of the new

adaptive control is the ability to adaptively update all parameters in parallel, hence

expedite the adaption speed.

ILC, which also can be categorized as an intelligent control methodology, is an approach

for improving the transient performance of systems that operate repetitively over a fixed

time interval. In the second part of the thesis, the idea of ILC is applied in four different

topics under the repetitiveness of control processes or control tasks.

As the first application, an initial state ILC approach is proposed for final state control

of motion systems. ILC is applied to learn the desired initial states in the presence of

system uncertainties. Four cases are considered where the initial position or speed are

manipulated variables and final displacement or speed are controlled variables. Since the

control task is specified spatially in states, a state transformation is introduced such that

the final state control problems are formulated in the phase plane to facilitate spatial

ILC design and analysis.

Then, a dual-loop ILC scheme is designed for a class of nonlinear systems with hysteresis

input uncertainty. The two ILC loops are applied to the nominal part and the hysteresis

part respectively, to learn their unknown dynamics. Based on the convergence analysis

for each single loop, a composite energy function method is then adopted to prove the
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learning convergence of the dual-loop system in iteration domain.

Subsequently, the ILC scheme is developed for a class of nonlinear partial differential

equation processes with unknown parametric/non-parametric uncertainties. The control

objective is to iteratively tune the velocity boundary condition on one side such that the

boundary output on the other side can be regulated to a desired level. Under certain

practical properties such as physical input-output monotonicity, process stability and

repeatability, the control problem is first transformed to an output regulation problem

in the spatial domain. The learning convergence condition of iterative boundary learning

control, as well as the learning rate, are derived through rigorous analysis.

To the end, we propose an optimal tuning method for PID by means of iterative learning.

PID parameters will be updated whenever the same control task is repeated. In the pro-

posed tuning method, the time domain performance or requirements can be incorporated

directly into the objective function to be minimized, the optimal tuning does not require

as much the plant model knowledge as other PID tuning methods, any existing PID

auto-tuning methods can be used to provide the initial setting of PID parameters, and

the iterative learning process guarantees that a better PID controller can be achieved.

Furthermore, the iterative learning of PID parameters can be applied straightforward

to discrete-time or sampled-data systems, in contrast to existing PID auto-tuning meth-

ods which are dedicated to continuous-time plants. Thus, the new tuning method is

essentially applicable to any processes that are stabilizable by PID control.
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Chapter 1

Introduction

1.1 Learning-type Control Strategies and System Repeti-

tiveness

The control of dynamical systems in the presence of all kinds of repetitive uncertain-

ties is of great interest and a challenge. Among existing control methods, learning-type

control strategies play an important role in dealing with systems with repetitive charac-

teristics. These methods include adaptive control, repetitive control, iterative learning

control, neural networks, etc. In fact, learning can be regarded as a bridge between

knowledge and experience [29]. In control engineering, knowledge represents the mod-

elling, environment, and related uncertainties while experience can be obtained from the

previous control efforts, and some resulting errors through system’s repetitive operations.

Investigating the learning behavior of human beings, a person learns to know his/her

living environment from the daily activities, and acquires knowledge through the past

events for future actions. In the learning process, similar or same activities occur again

and again, hence the inherent and relevant knowledge also repeats. Thus, repetitiveness

is always a key point to any successful learning of human beings. Similarly, the systems

considered with learning-type control strategies should at least take some repetitiveness,

1
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including repetitiveness of system uncertainties, repetitiveness of control processes, and

repetitiveness of control objectives, etc. In the next, let us address the three kinds of

repetitiveness separately.

(1) Repetitiveness of system uncertainties. This class of repetitiveness refers to the

periodic invariance of parametric components, non-parametric components, and external

disturbances since periodic variations are invariant under a shift by one or more peri-

ods. They are often a consequence of some rotational motion at constant speed, and

encountered in many real systems such as electrical motors, generators, vehicles, heli-

copter blades, and satellites, etc. These uncertainties may be periodic in the time domain

or the spatial domain, and the period is usually assumed to be known and stationary.

Obviously, constant unknowns in system should also belong to this category.

(2) Repetitiveness of control processes. Here, we usually consider the processes that

repetitively perform a given task over a finite period of time. Thus, every trial (cycle,

batch, iteration, repetition, pass) will end in a fixed time of duration. In a strict point of

view, invariance of the system dynamics, repetition of outer disturbances, and repetition

of the initial setting must be ensured throughout these repeated iterations. It is worth

noticing that different from the repetitiveness in scenario (1), repetitiveness of control

processes is often demonstrated in the iteration domain, instead of the time or state

domain.

(3) Repetitiveness of control objectives. In many learning-type control objectives, the

desired output/input trajectory periodically varies in an infinite time horizon. Thus, the

control objective shows the repetitiveness with a periodicity in the time domain. Notice

that the control process for this scenario may not show any repeatability.

In practice, system repetitiveness could be a combination of the above three types
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of repetitiveness, or more other repetitiveness that is not mentioned here. For instance,

a robotic manipulator consecutively draws a circle in Cartesian space with the same

radius but different periods, or on the contrary, draws the circle with the same period

but different radii. Although non-repetitiveness is contained in control objectives and

control processes, repetitiveness still exists as a main characteristic in them.

Corresponding to different repetitive environment, learning control methods exhibit

different learning procedures. For instance, AC [60,67, 101] is a technique of applying

some system identification techniques to obtain a model of the process and its environ-

ment from input-output experiments and using this model to design a controller. The

parameters of the controller are adjusted during the operation of the plant as the amount

of data available for plant identification increases. AC is good at the control of systems

with parametric repetitiveness. On the other hand, ILC [7, 15, 148] is based on the no-

tion that the performance of a system that executes the same task multiple times can be

improved by learning from previous executions. Its objective is to improve performance

by incorporating error information into the control for subsequent iterations. In doing

so, high performance can be achieved with low transient tracking error despite large

model uncertainty and repeating disturbances. Most of works relating to ILC are based

on the repetitiveness of control process and considered for repetitive tracking tasks. As

another learning-type control scheme, repetitive control (RC) [41, 47, 81, 85] is perhaps

most similar to ILC except that RC is intended for continuous operation, whereas ILC

is intended for discontinuous operation. In RC, the initial conditions are set to the final

conditions of the previous trial. In ILC, the initial conditions are set to the same values

on each trial. RC is often efficient to systems that operate in the whole time space. Neu-

ral networks (NN) [42, 122], or artificial neural networks to be more precise, represent
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an emerging technology rooted in universal approximation (input-output mapping), the

ability to learn from and adapt to their environment, and the ability to invoke weak

assumptions about the underlying physical phenomena responsible for the generation of

the input data. It performs useful computations through a process of “learning”. NN is

a good choice when non-parametric uncertainties are encountered.

Despite the existence of difference in learning process, it is a fact that the consistent

target of all the learning-type control approaches is to achieve the asymptotic convergence

property in tracking a given trajectory.

As two of the dominant components in learning-type control strategies, in this thesis,

we put more effort to the design and analysis of adaptive control and iterative learning

control. More introduction is given in the following for both of them.

1.1.1 Adaptive control

Adaptive Control is a systematic approach for automatic adjustment of the controllers

in real time, in order to achieve or to maintain a desired level of performance of the control

system when the parameters of the plant dynamic model are unknown and/or change in

time.

Consider first the case when the parameters of the dynamic model of the plant to be

controlled are unknown but constant (at least in a certain region of operation). In such

case, while the structure of the controller will not depend in general upon the particular

values of the plant model parameters, the correct tuning of the controller parameters

cannot be done without the knowledge of those parametric values. Adaptive control

techniques can provide an automatic tuning procedure in closed loop for the controller

parameters. In such case, the effect of the adaptation vanishes as time increases. Changes

of the operation conditions may require a re-start of the adaptation procedure.
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Consider now the case when the parameters of the dynamic model of the plant change

unpredictably in time. These situations occur either because the environmental condi-

tions change or because we have considered simplified linear models for nonlinear systems.

These situations may also occur simply because the parameters of the system are slowly

time-varying. In order to achieve and to maintain an acceptable level of performance

of the control system when large and unknown changes in model parameters occur, an

adaptive control approach has to be considered. In such cases, the adaptation will op-

erate most of the time and the non-vanishing adaptation fully characterizes this type of

operation (sometimes called also continuous adaptation).

Extracting the constant feature and the time-varying feature of parameters simultane-

ously from the above two scenarios, there exists one special case in which the parameters

of the dynamic model of the plant to be controlled are unknown but periodic, in the time

domain or the space domain. These situations can be encountered in many rotational

systems. Projection-based or least square-based algorithm can be adopted to adaptively

learn their values in a pointwise way in each period. Considering this scenario as a direct

extension from the constant unknown case, the linear growth condition and the linear

structure in parameters are often assumed beforehand. Due to the fact that periodic

variation of parameters could make the controller design much more complex, some use-

ful techniques, e.g. the lifting technique in this thesis, are proposed to facilitate the AC

design in the case.

An adaptive control system measures a certain performance index of the control

system using the inputs, the states, the outputs and the known disturbances. From the

comparison of the measured performance index and a set of given ones, the adaptation

mechanism modifies the parameters of the adjustable controller and/or generates an
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auxiliary control in order to maintain the performance index of the control system close

to the set of given ones. Note that the control system under consideration is an adjustable

dynamic system in the sense that its performance can be adjusted by modifying the

parameters of the controller or the control signal. The above definition can be extended

straightforwardly for “adaptive systems” in general. A conventional feedback control

system will monitor the controlled variables under the effect of disturbances acting on

them, but its performance will vary (it is not monitored) under the effect of parameter

disturbances (the design is done assuming known and constant process parameters). An

adaptive control system, which contains in addition to a feedback control with adjustable

parameters a supplementary loop acting upon the adjustable parameters of the controller,

will monitor the performance of the system in the presence of parameter disturbances.

While the design of a conventional feedback control system is oriented firstly toward

the elimination of the effect of disturbances upon the controlled variables, the design

of adaptive control systems is oriented firstly toward the elimination of the effect of

parameter disturbances upon the performance of the control system. An adaptive control

system can be interpreted as a feedback system where the controlled variable is the

performance index.

Many topics in adaptive control have been enthusiastically pursued over the past

four decades. For instance, the effect of external disturbance, slow parameter variations,

small discontinuities in parameters, sudden changes in reference inputs, unknown control

directions, etc., have been investigated, methods for achieving robust controllers have

been studied. Among the many questions that arise naturally in the context of adaptive

systems, the most critical one concerns the stability of the overall adaptive system. It

is only after the proof of stability for such a system was given in the late 1970s that
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adaptive control became an accepted design methodology.

1.1.2 Iterative learning control

ILC is an approach for improving the transient performance of systems that oper-

ate repetitively over a fixed time interval. Although control theory provides numerous

design tools for improving the response of a dynamic system, it is not always possible

to achieve desired performance requirements, due to the presence of unmodeled dynam-

ics or parametric uncertainties that are exhibited during actual system operation or to

the lack of suitable design techniques. Thus, it is not easy to achieve perfect tracking

using traditional control theories. ILC is a design tool that can be used to overcome

the shortcomings of traditional controller design, especially for obtaining a desired tran-

sient response, for the special case when the system of interest operates repetitively. For

such systems, ILC can often be used to achieve perfect tracking, even when the model

is uncertain or unknown and we have no information about the system structure and

nonlinearity.

ILC has been widely applied to mechanical systems such as robotics, electrical systems

such as servomoters, chemical systems such as batch realtors, as well as aerodynamic

systems, etc. ILC has been applied to both motion control and process control areas such

as wafer process, batch reactor control, IC welding process, industrial robot control on

assembly line, etc. Learning control system can enjoy the advantage of system repetition

to improve the performance over the entire learning cycle.

Up to now, there are many approaches which can be employed to analyze ILC conver-

gence property such as contraction mapping and energy function. Contraction mapping

method is a systematic way of analyzing learning convergence. The global Lipschitz con-

dition is a basic requirement which limits its extending to more general class of nonlinear
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systems. Moreover, generally the contraction mapping design only cares the tracking con-

vergence along learning horizon, while the system stability, which is an important factor

in system control, is ignored. Therefore, energy function based ILC convergence analysis

is widely applied for nonlinear systems. The most recent development of ILC focuses on

several problems: ILC for non-repetitive task or plant, ILC for input nonlinearity, ILC

for stochastic processes, and ILC for distributed parameter systems, etc.

1.2 Motivations

Adaptive control theory is one of the most well established theories in control area,

and numerous results have been reported, e.g., [35, 60, 67, 90, 101]. By introducing a

parametric adaptation mechanism, which essentially consists of a number of integrators,

the adaptive control system is able to achieve asymptotic tracking convergence in the

presence of parametric uncertainties. These uncertainties may be constant form, time-

varying or state-varying. Most of previous efforts have been focused on the first two

types. For instance, Ahn and Chen solved a time periodic adaptive friction compensation

problem in [3]; Fidan et. al. discussed the adaptive control of a class of slowly time-

varying systems with modelling uncertainties in [36]; Liu and Peng developed a method of

time-varying disturbance compensation based on an observer in [78] and Xu introduced

a time-periodic adaptive learning controller in [138]. In these references, the desired

trajectories are always assumed to be time periodic or time dependent.

However, if control methods are always devised in time domain, then the information

available through the underlying nature of the system will possibly not be fully captured

and utilized, such as state-periodicity of system uncertainties. As a result, the control

problem can not be solved properly. Thus, to discuss state-dependent system in state
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(e.g., position or speed) domain sometimes is more reasonable and meaningful.

In practice, the state-dependent external uncertainties (e.g., position dependent or

velocity dependent uncertainties) exist in various engineering problems. For example,

in [22] and [168], the engine crankshaft speed pulsation was expressed as Fourier series

expansion as a function of position; in [43], the external disturbance of the satellite was

modelled as a function of the position; in [167], for a Permanent Magnet Synchronous

Motor (PMSM) system the uncertainty of the observer-based robust adaptive control was

also related to rotor position. Moreover, [165] proposed an angle-based control method

to rotate the pendulum and to stabilize the base link, which is designed by the state-

dependent Riccati equation based on zero-dynamics of the pendulum; and [13] discussed

how to handle state-dependent nonlinear tunnel flows in short-term hydropower schedul-

ing. More examples can be seen from appliances of alternating current, investigation of

nonlinear frictions, vehicle systems and other rotary machine systems.

In the rotary machine systems mentioned above, the existent uncertainties are usually

periodic in state domain but not in time domain. Relatively, few research efforts have

been devoted to these state-dependent problems from the view of generality. Among

the literature, [24] and [26] were devoted to the problem of rejecting oscillatory position-

dependent unknown disturbance (eccentricity) with a sinusoidal form, where they for-

mulate and globally solve the adaptive cancelation problem in the spatial domain coor-

dinates. In [40], the speed of the servo-motor was controlled with a position-dependent

unknown disturbance using iterative learning control. More generally, [4] extended this

sort of problem to a general wave form, which portraits the unknown position-dependent

periodic disturbance.

Basing on the known results for time-dependent and state-dependent parametric
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uncertainties, in order to deal with spatial periodic control for rotating machine systems,

a fundamental task is how to control the plant with highly nonlinear components, such as

local Lipschitzian and continuous functions, to track a nonlinear reference model, either

periodic or even non-periodic. In the first part of the thesis, our attention is paid to this

issue.

Moreover, as we stated before, periodic variations are invariant under a shift by one

or more periods, and they are often a consequence of some rotational motion at con-

stant speed and encountered in many real systems such as electrical motors, generators,

helicopter blades and satellites [27, 28, 31, 61, 64, 95, 127, 150]. As in the case of linear

periodic systems, many results have been achieved to deal with their adaptive control,

robustness and identification [54,91,120]. Recently, discrete-time periodic adaptive con-

trol (PAC) has been proposed and the underlying idea of PAC is to update parameters

in the same instance of two consecutive periods [1, 45]. Due to the time-varying na-

ture, it would be very difficult, if not impossible, to design appropriate periodic adaptive

controllers for more general scenarios such as plants with unknown control directions,

plants in parametric-strict-feedback form, plants with nonlinear parameterization, plants

not satisfying any growth conditions, etc. For instance, the periodic updating law [1]

is not extendable to the plants without any growth conditions in nonlinearities as was

achieved in [65], due to the fundamental difference between classical adaptive control and

PAC: the former is updated between two consecutive time instances whereas the latter

is updated between two consecutive period which incurs a delay of one period.

Actually, many effective adaptive control methods have been developed for discrete-

time systems with time-invariant parametric uncertainties, such as [166] for parametric-

strict-feedback form, [39, 74] for unknown control direction, [65] for plants without any
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growth conditions in nonlinearities. It would be highly desirable if we can apply these well

established adaptive control methods to plants with periodic parameters. To achieve this

objective, we adopt a lifting technique to convert periodic parameters into an augmented

vector of time-invariant parameters, in the sequel all existing adaptive control methods

can be applied. Although a simple lifting idea is proposed and applied over here, many

open problems to periodic parametric systems can be solved clearly.

AC is an efficient method to deal with systems with parametric repetitiveness, and

the ultimate tracking convergence is derived in time space. Nevertheless, many systems

with other kinds of repetitiveness can not be addressed by this technique. Next, we

state some motivations relevant to systems with repetitiveness that can be solved by

ILC methodology.

ILC was firstly proposed by Arimoto et al. [8]. After that, many research work has

been carried out in this area and a lot of systematic approaches have been developed

for a large variety of linear or nonlinear systems to deal with repeated tracking control

problems or periodic disturbance rejection problems. ILC has been proposed and de-

veloped as a kind of contraction mapping approach to achieve perfect tracking under

the repeatable control environment which implies a repeated exosystem in a finite time

interval with a strict initial reseting condition, [9], [114], [88], [132], etc.

Recently, new ILC approaches based on Lyapunov function technology [96], [97] and

Composite Energy Function (CEF) [133], [134] have been developed to complement the

contraction mapping based ILC. For instance, by means of CEF based ILC, we can extend

the system nonlinearities from global Lipschitz continuous to non-global Lipschitz contin-

uous [133], extend target trajectories from uniform to non-uniform ones [135], remove the

requirement on the strict initial resetting conditions [136], deal with time varying and
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norm bounded system uncertainties [134], and incorporate nonlinear optimality [137],

etc.

Different from many known applications of ILC method, there are some circumstances

in which one can not control an object any more after an initial command signal is given

to it. For example, in basket ball shooting, once the ball has left the player’s hand, it is

impossible to modify the flight trajectory of the ball by means of any sensory feedback.

Actions of this type are called ballistic [23]. The ballistic characteristic is the main feature

of many sports items, such as archery, bowling, dart, or any ball games. Ballistic control

is also widely encountered in military training and practice, such as projectile, shooting,

etc. The well known instantaneous feedback, or on-line feedback, is not applicable to

this class of control tasks while it is still necessary to work out beforehand the desired

command needed in order to achieve the goal. Usually, the initial command signal is

characterized by the initial state of system. Note that for these circumstances, initial

state is just the adjustable system input. Thus, such an Initial State Learning (ISL)

problem is fully different from the discussed ISL problems before, such as in [29], where

input term exists instantaneously in the discussed dynamic system and the initial state

is only an initial condition of system operation.

However, it is often difficult to calculate the proper command signal sequences in

advance. Such a prior calculation requires the complete knowledge of the entire process

involved in the control, such as the object dynamic model, parameters, interactions with

environment, the actuation mechanism, precise sensory information, etc.. In the real

world it is hard to have the perfect knowledge. What we do in practice is to build up an

internal model via repeated learning. This internal model will generate the appropriate

command signals directly for a given task, instead of deriving a perfect model for the
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task and conducting a model based calculation. Hence it is meaningful to develop a

powerful scheme which can efficiently characterize the learning process of this class of

ISL problems.

Consider another typical example: the process for a train slipping into a station,

where the friction of rail is an uncertainty. Define our control objective firstly as to

implement the behaviors like traction and brake as least as possible to control spatial

states of system, i.e., make the train go across the desired position with a desired speed.

This is meaningful since it can depress the oil consumption and reduce the damage

towards train and rail. If the train can be controlled to slip freely from an appropriate

position with an appropriate initial speed, then the aim can be attained. Obviously, this

problem also belongs to ISL category.

The ultimate aim of ISL is obviously to realize the final state regulation. We know

that final state control problems have been widely explored, such as in [15, 147, 164].

However the control signals used in these methods are continuously applied throughout

the operation period. Two-point boundary-value problems also consider initial and final

state relations [50], but the solutions are numerically solvable only when the dynamics

is completely known. As the first application of ILC, we formulate this problem as a

motion control problem and focus on the learning convergence of spatial initial states in

planar autonomous systems. Our analysis reveals that ILC is an efficient method to deal

with the sort of control task and all the learning behaviors can be illustrated very well.

In recent decades, nonlinear system control with input uncertainties has received

a great deal of attention, since input uncertainties are quite common phenomenon in

engineering applications. Examples of input uncertainties include saturation, deadzone,

hysteresis and so on. The existence of these input uncertainties may severely deteriorate
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the control performance or cause oscillations, even lead to system instability [118, 143–

146].

As one of the well-known control techniques, ILC has demonstrated its ability to deal

with this sort of issue when the control environment is repeatable. In [143,144], an ILC

scheme is designed for a class of nonlinear uncertain systems with input saturation. The

analysis of convergence in the iteration domain is based on composite energy function,

which consists of both input and state information along the time and iteration axes.

More early, [32] extended the ILC method of Arimoto et al. [8] for MIMO system to the

scenario that each component of input is bounded and rate-limited. Using discrete-time

Lambda norm, monotonic convergence was derived in norm for the input error sequence.

In the above three works, a fundamental fact is used: the saturation operator for control

input will not enlarge its error to the desired input that lies in this interval. Besides

these, we can see that the tracking problem of linear systems with input constraints was

formulated as a constrained convex optimization problem, namely a linearly constrained

quadratic program, and an interior point algorithm, specifically the barrier method, was

adopted to solve the proposed ILC problem in [87]; the robust stability criteria of a

single-input-single-output (SISO) ILC system with friction and input saturation process,

using frequency domain methods and 2-D system theory, was investigated in [51]. It is

proved in [145,146] that ILC methodology remains effective for systems having an input

deadzone that could be nonlinear, unknown and state-dependent. Despite the presence

of the input deadzone, the simplest ILC scheme retains its ability to achieve satisfactory

performance. Recently, as can be seen in [117], ILC is further considered with a general

input uncertainty which may take saturation or deadzone form, where a dual iterative

learning loop is constructed to learn both the unknown nominal dynamics and the input
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static mapping.

So far, however, much less work has been done to dynamic systems with hysteretic

input uncertainty, although ILC design for hysteresis system has been frequently dis-

cussed [52, 53, 72, 79]. The difficulty in proving convergence of ILC algorithms for hys-

teretic systems arises due to two reasons: (i) branching effects and (ii) nonlinearity of

each branch [21]. The latter issue can be addressed by standard ILC methods. For

example, the convergence of ILC on a single branch was shown in [52], in which the hys-

teresis nonlinearity was modeled as a single branch (using a polynomial). Alternatively,

a functional approach was proposed for systems that satisfy the incrementally strictly

increasing operator (ISIO) property [125]; however, the branching effect in hysteresis re-

sults in loss of the ISIO property [77]. The reason branching causes problems in proving

convergence is because branching prevents the ILC algorithm from predicting the direc-

tion in which the input needs to be changed based on a measured output error. In [71],

this problem has been addressed by constructing the monotonic property between input

and output for a Preisach model.

Hysteresis is a very complex phenomenon and there exist many hysteresis models

in literature, e.g., the Bouc-Wen model, Duhem model, the Jiles-Atherton model, the

Prandtl-Ishlinskii model, and the Preisach model. A fact is that almost all the previous

ILC design schemes are focused on the Preisach model, if hysteresis is addressed. How-

ever, as another typical class, the Bouc-Wen model for smooth hysteresis has received

an increasing interest due to its capability to capture in an analytical form a range

of shapes of hysteretic cycles which match the behavior of a wide class of hysteretic

systems [56–58, 92, 105, 112]. In particular, it has been used experimentally to model

piezoelectric elements, magnetorheological dampers, wood joints and base isolation de-
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vices for buildings. The obtained models have been used either to predict the behavior

of the physical hysteretic element or for control purposes.

As the second application of ILC strategy, we address the ILC problem for a simple

scalar nonlinear dynamic system with a hysteresis input uncertainty, which takes the

structure of the Bouc-Wen model. By analyzing the input-output monotonicity of the

hysteresis part in plant and considering a dual loop ILC structure, the output tracking

convergence can be derived by a rigorous Lyapunov function based analysis.

While for processes described by ordinary differential equations (ODEs) many control

schemes have been proposed, fewer control schemes have been developed for processes

described by partial differential equations (PDEs). A major portion of established PDE

control schemes focus on the use of distributed actuation, namely, the control action

depends on the spatial coordinates. However, in many important industrial processes

the control actuation is achieved through the boundary of the process, such as the case

of chemical and biochemical reactors where the manipulated input is the fluid velocity

at the feed of the process [37,63].

In [107]- [110], the boundary control of PDEs with adaptive control methodology

is extended to cope with either stable or unstable PDEs. These works are built upon

explicitly parameterized control formulae to avoid solving Riccati or Bezout equations

at each time step. Backstepping is also adopted to solve the problem of stabilization

of some PDEs by using boundary control in [111] [69]. In practice, however, simple

controllers such as PI or PID compensators are most widely used by process engineers in

the chemical and biochemical industry, owing to many reasons such as implementability,

the long history of proven operation and robustness, and the fact that these simple

controllers are well understood by industrial practitioners.
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A major difficulty in PDE control is how to optimally tune the controller gains. When

process uncertainties are present, it is almost impossible to find the values or bounds of

the controller gains such that the closed-loop performance can be guaranteed for the

PDE processes, as can be seen from [63].

As the third application of ILC strategy, we assume that the considered PDE pro-

curess is strictly repeatable, which is one of the main features in certain types of real

process control including industrial chemical [34] and biochemical reactors [37], and then

develop the ILC for a class of single-input single-output (SISO) nonlinear PDE processes

with boundary control and containing unknown parameters affecting the interior of the

domain. The control objective is to iteratively tune the velocity boundary condition on

one side such that the boundary output on the other side can be regulated to a desired

level.

Assuming the repetitiveness of PID control process, we are now at the position of

considering the optimal tuning of PID parameters using iterative learning approach.

Among all the known controllers, the proportional-integral-derivative (PID) controllers

are always the first choice for industrial control processes owing to the simple structure,

robust performance, and balanced control functionality under a wide range of operat-

ing conditions [33,62]. Although being widely used in industry, tuning PID parameters

(gains) remains a challenging issue and directly determines the effectiveness of PID con-

trol [33,66]. To address the PID design issue, much effort has been invested in developing

systematic auto-tuning methods. These methods can be divided into three categories,

where the classification is based on the availability of a process model and model type,

(i) model free methods; (ii) non-parametric model methods and (iii) parametric model

methods.
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In model free methods, no model or any particular points of the process are identified.

The non-parametric model methods use partial modelling information, usually including

the steady state model and critical frequency points. These methods are more suitable

for online use and applied without the need for extensive priori plant information [62].

Relay feedback tuning method [12,124] is a representative method of the second category.

The parametric model methods require a linear model of the process – either transfer

function matrix or state space model. To obtain such a model, standard off-line or on-line

identification methods are often employed to acquire the model data. Thus parametric

model methods are more suitable for off-line PID tuning [10].

It should be noted that in many industrial control problems such as in process indus-

try, the process is stable in a wide operation range under closed-loop PID, and the major

concern for a PID tuning is the transient behaviors either in the time domain, such as

peak overshoot, rise time, settling time, or in the frequency domain such as bandwidth,

damping ratio and undamped natural frequency. From the control engineering point of

view, it is one of the most challenges to directly address the transient performance, in

comparison with the stability issues, by means of tuning control parameters. Even for a

lower order LTI process under PID, the transient performance indices such as overshoot

could be highly nonlinear in PID parameters and an analytical inverse mapping from

overshoot to PID parameters may not exist. In other words, from the control specifi-

cation on overshoot we are unable to decide the PID parameters analytically. The first

objective we want to realize is to link these transient specifications with PID parameters

and give a systematic tuning method.

In practice, when the process model is partially unknown, it would be difficult to

calculate the PID parameters even if the nonlinear mapping between the transient spec-
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ifications and PID parameters can be derived. In existing PID tuning methods, whether

model free or model based, test signals will have to be injected into the process in order

to find certain relevant information for controller parameter setting. This testing process

may however be unacceptable in many real-time control tasks. On the other hand, many

control tasks are carried out repeatedly, such as in batch processors. Thus, we want to

further explore the possibility of fully utilizing the task repetitiveness property, conse-

quently provide a learning approach to improve PID controllers through the iteratively

parameter tuning when the transient behavior is of the main concern.

In most learning algorithms including neural learning and iterative learning, the

process Jacobian or gradient plays the key role by providing the greatest descending

direction for the learning mechanism to update inputs. The convergence property of these

learning algorithms is solely dependent on the availability of the current information

on the gradient. The gradient between the transient control specifications and PID

parameters, however, may not be available if the plant model is unknown or partially

unknown. Further, the gradient is a function of PID parameters, thus the magnitude

and even the sign may vary. The most difficult scenario is when we do not know the sign

changes a priori. In such circumstances, traditional learning algorithms cannot achieve

learning convergence. Lastly, we hope to extend the iterative learning approach to deal

with the unknown gradient problem for PID parameter tuning.

Another issue is concerned with the redundancy in PID parameter tuning when only

one or two transient specifications are required. In order to fully utilize the extra degrees

of freedom, the most common approach is to introduce an objective function and opti-

mize the PID parameters accordingly. This traditional approach is however not directly

applicable because of the unknown process model, and in particular the unknown varying
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gradient. A key to the solution of this problem is still iterative learning. An objective

function, which is accessible, is chosen as the first step for PID parameter optimization.

Since the goal is to minimize the objective function, the control inputs will be updated

along the greatest descending direction, namely the gradient, of the objective function.

In other words, the PID parameters are chosen to directly reduce the objective function,

and the objective function is treated as the process output and used to update the PID

parameters. When the gradient is varying and unknown, extra learning trials can be

conducted to search the best descending direction.

1.3 Objectives and Contributions

In this thesis, the research is focused on developing several learning-type control ap-

proaches for nonlinear dynamic systems with repetitiveness. The main contributions lie

in the following aspects: AC design for systems with periodic repetitiveness in paramet-

ric form, ILC design for systems with process repetitiveness, and more iterative tuning

or identification of parameters for systems with certain repetitiveness. The contributions

of the thesis are summarized in Table 1.1. In details, the contributions of this thesis are

as follows:

(1). In Chapter 2, a new spatial periodic adaptive control approach is proposed to deal

with nonlinear rotary machine systems with a class of state-varying parametric uncertain-

ties, which are in an unknown compact set, periodic, non-vanishing, and the only prior

knowledge is the periodicity. In this process, we make full use of the system information

regarding uncertainties and nonlinearities w.r.t. spatial states. For instance, since any

periodic function is cycle-invariant, we design our control actions with this invariance.

Moreover, we also focus on the relationship between the systems with state-dependent
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Dynamic System Repetitiveness Control Method Performance

Linear Control task, PID with Asym. conv. in

system System uncertainties ILT iteration domain

Semilinear Control task, ILC based Mono. conv. in

PDE system System uncertainties on CM iteration domain

Periodicity ‖ · ‖L

of Spatial SPAC based convergence in

para. domain on LKF spatial domain

Nonlinear Continuous uncertainties

Spatial ILC based Mono. conv. in

Control task, domain on CM iteration domain

time Para. Time ILC based on Uniformly

uncertainties domain CM and CEF bounded

Periodicity

system Discrete of Time AC with the Asym. conv.

time para. domain lifting technique in time domain

uncertainties

Table 1.1: The contribution of the thesis. AC: adaptive control, ILC: iterative learning

control, ILT: iterative learning tuning, PAC: periodic adaptive control, SPAC: spatial

periodic adaptive control, CM: contraction mapping, CEF: composite energy function,

LKF: Lyapunov-Krasovskii functional, Asym. conv.: asymptotical convergence, Mono.

conv.:monotonic convergence, Para.: Parametric, ‖ · ‖L
4
= sups≥L

∫ s
s−L ‖ · ‖2dτ .
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uncertainties and the systems with time-dependent uncertainties. On the one hand, by

making full use of the system information regarding uncertainties and nonlinearities in

state space, the tracking problem becomes possible. On the other hand, to solve such

tracking problem pushes us to investigate the relationship between the systems with

state-dependent uncertainties and the systems with time-dependent uncertainties and

try to apply them. As a result, by applying these known achievements, our difficulty is

overcome properly in spatial control for the plant with highly nonlinear components.

(2) In Chapter 3, a concise discrete-time adaptive control approach suitable for non-

linear systems with periodic parametric uncertainties is proposed, based on the lifting

technique. By using such a technique, the periodic parameters are converted into an aug-

mented constant parametric vector, and then the well-established discrete-time adaptive

control schemes can be easily applied to various control problems with periodic parame-

ters, such as plants with unknown control directions, plants with unknown control gains,

and plants in parametric-strict-feedback form, plants that do not meet the linear growth

condition, etc. Another major advantage of the new adaptive control is the ability to

adaptively update all parameters in parallel, hence expedite the adaption speed.

(3). An initial state ILC approach is proposed for final state control of motion sys-

tems in Chapter 4. ILC is applied to learn the desired initial states in the presence of

system uncertainties. Four cases are considered where the initial position or speed are

manipulated variables and final displacement or speed are controlled variables. In these

cases, the motion system could have discontinuous damping or discontinuous frictions

but Lipschitzian in position. By duality, we further explore other four cases if the motion

system is Lipschitz continuous in speed. Since the control task is specified spatially in

states, a state transformation is introduced such that the final state control problems are
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formulated in the phase plane to facilitate spatial ILC design and analysis.

(4). In Chapter 5, a dual-loop ILC scheme is designed for a class of nonlinear systems

with hysteresis input uncertainty. The two ILC loops are applied to the nominal part

and the hysteresis part respectively, to learn their unknown dynamics. Based on the

convergence analysis for each single loop, a composite energy function method is then

adopted to prove the learning convergence of the dual-loop system in iteration domain,

where the input-output monotonicity in each branch of hysteresis is a key point. When

the strict input-output monotonicity is violated in the hysteretic loop, the ILC law is

revised by adding a forgetting factor and incorporating a time-varying learning gain,

and then ensure the corresponding ILC operator to be contractible. Using the Banach

fixed-point theorem, we show that the output tracking error of the inner ILC loop and

then the dual ILC loop can enter and remain ultimately in a small neighborhood of zero.

(5). In Chapter 6, the ILC scheme is developed for a class of nonlinear PDE processes

with boundary control and containing uncertainties affecting the interior of the domain.

The control objective is to iteratively tune the velocity boundary condition on one side

such that the boundary output on the other side can be regulated to a desired level.

Under certain practical properties such as physical input-output monotonicity, process

stability and repeatability, the problem is simplified as an output regulation problem in

spatial domain only. By means of rigorous analysis, the learning convergence is achieved

under repeatable process environment.

(6). It is proposed in Chapter 7 that an iterative learning tuning method – an optimal

tuning method for PID parameters by means of iterative learning. PID parameters are

updated whenever the same control task is repeated. The first novel property of the new
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tuning method is that the time domain performance or requirements can be incorporated

directly into the objective function to be minimized. The second novel property is that

the optimal tuning does not require as much the plant model knowledge as other PID

tuning methods. The new tuning method is essentially applicable to any plants that are

stabilizable by PID controllers. The third novel property is that any existing PID auto-

tuning methods can be used to provide the initial setting of PID parameters, and the

iterative learning process guarantees that a better PID controller can be achieved. The

fourth novel property is that the iterative learning of PID parameters can be applied

straightforward to discrete-time or sampled-data systems, in contrast to existing PID

auto-tuning methods which are dedicated to continuous-time plants. In this chapter, we

further exploit efficient searching methods for the optimal tuning of PID parameters.

Through theoretical analysis, comprehensive investigations on benchmarking examples,

and real-time experiments on the level control of a coupled-tank system, the effectiveness

of the proposed method is validated.



Chapter 2

Spatial Periodic Adaptive Control

for Rotary Machine Systems

2.1 Introduction

Rotary machine systems are widely used in industries. Two representative classes

of rotary machines are the electrical motor drives and vehicle engines. Electrical motor

drives, including DC servos, induction motors, permanent magnetic synchronous motors

(PMSM), switched reluctance motors, are typical rotary machine systems that convert

electrical energy into mechanical energy. We can find numerous applications of such

rotary mechanisms as hard disk drives, robot manipulators, conveyors, etc. Engine

systems in vehicles and aircrafts are another class of rotary machine systems that convert

fuel energy into rotational work.

A fundamental property of any rotary machine systems is the spatial periodicity

in terms of angular displacement, that is, the angular displacement will come back to

the same angular position after rotating certain degrees. This spatial periodicity is

independent of the speed of rotational machines. On the other hand, a large class of

system uncertainties in rotary machines are related to the angular position. In [22]
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and [168], the unknown engine crankshaft speed pulsation is expressed as Fourier series

of the angular position. In [43], the external disturbance of the satellite is modelled as a

function of the position. In [13], the position-dependent nonlinear tunnel flows in short-

term hydropower scheduling was discussed. In general, this class of uncertainties can be

modeled as either periodic unknown parameters or periodic unknown disturbances with

respect to (w.r.t.) the angular displacement.

Adaptive and learning control approaches were proposed to deal with the position

or state-dependent periodic uncertainties. In [40], learning control was used when the

position-dependent disturbance torque is presented in servo motor under velocity control.

In [26], adaptive compensation was developed to reject oscillatory position-dependent

disturbance in a sinusoidal form without knowing the amplitude and frequency. In [4]

and [5], periodic adaptation was developed to handle the unknown position-dependent

periodic disturbance. In [104], a feedback linearization was developed for temporal-

spatial conversion where rotational hydraulic drive was under consideration.

In this work, we extend the spatial periodic adaptive control (SPAC) approach to

more generic classes of control problems with periodic parameters or periodic distur-

bances. In practical rotary machine systems, these unknown parameters or disturbances

are either smooth functions or continuous functions of the angular displacement, hence

can be approximated by Fourier series or other function approximation methods. Since

it is impossible to implement an infinite series in a practical controller, we introduce

a delay type periodic adaptation law which consists of only two terms but of infinite

dimensions.

Another extension is to high order rotary systems with the tool of feedback lineariza-

tion. The extension of the SPAC to high order systems is not straightforward, even if
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the original high order system is in the canonical form in the time domain. In SPAC,

the system dynamics is converted from the time domain to the spatial domain. The

objective of the temporal-spatial conversion is to capture and fully utilize the spatial

periodic characteristic of the process uncertainties, so that the controller and the spatial

periodic adaptation can be designed in the spatial domain. The extra difficulty arises

when the temporal-spatial conversion is carried out. A canonical dynamics in the time

domain is no longer canonical in the spatial domain. In this chapter, to address this

issue, a feedback linearization is proposed such that both the process dynamics and the

reference model can be strictly linearized into the canonical form.

The third extension is to high order systems with multiple periods or pseudo-periods.

In the presence of multiple periods which are rational numbers, the periodic adaptation

can be carried out according to the lowest common multiple. However, the use of the

common period will make the periodic adaptation inefficient. For example, suppose a

period is 3 and another is 100. The lowest common multiple is 300. As a result, the

periodic adaptation for the period of 3 has been delayed by 100 cycles. If possible, the

periodic adaptation should be conducted according to individual periods. In pseudo-

periodic circumstances where periods are mixed with rational and irrational numbers

such as 3 and
√

3, or irrational numbers such as
√

3 and π, there does not exist a

common period. To address this issue, we develop a SPAC which can conduct periodic

adaptation in parallel for all parameters with different periods.

In order to facilitate the property analysis in SPAC especially for pseudo-periodic

circumstances, we introduce a Lyapunov-Krasovskii functional (LKF) as a generic tool.

By virtue of the LKF, we can show the asymptotic convergence of the speed tracking

error, and the boundedness of the system states and the control input.
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The chapter is organized as follows. In Section 2.2, some preliminaries with regard

to convergence properties are provided for subsequent sections. In Section 2.3, we focus

on SPAC by considering high order systems with the feedback linearization. In Section

2.4, SPAC is further extended to systems with pseudo-periodic parameters. In Section

2.5, two illustrative examples are provided.

2.2 Preliminaries

Definition 2.1 When analyzing a vector valued function f(s), an important quantity is

the integral over an interval of length L, namely
∫ s
s−L ‖f(τ)‖2dτ , where ‖ · ‖ is the 2-

norm. f(s) is L-bounded if sups≥L

∫ s
s−L ‖f(τ)‖2dτ is finite, and that f(s) is L-convergent

if lims→∞ sups≥L

∫ s
s−L ‖f(τ)‖2dτ = 0.

Definition 2.2 A matrix-valued function Γ(s, L) = diag{γ1(s, L), · · · , γm(s, L)} is de-

fined in the interval [0,∞), satisfying

Γ(s, L) =





0, s = 0,

A(s), 0 ≤ s < L,

B, s ≥ L,

(2.1)

where A = diag{α1(s), · · · , αm(s)} and B = diag{β1, · · · , βm} are diagonal matrices,

αi(s) is a strictly increasing function for s ∈ [0, L] with αi(0) = 0, αi(L) = βi, and

βi > 0 is a constant.

To facilitate the convergence analysis of SPAC, the following Lyapunov-Krasovskii

functional (LKF) is adopted

V (s, e,φ) =
1
2
eTe +

1
2

∫ s

max{0,s−L}
φT (τ)B−1φ(τ)dτ, (2.2)

where e ∈ Rn, φ ∈ Rm. For simplicity denote V (s, e,φ) by V (s) in subsequent context.
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The L-convergence property associated with the LKF in (2.2) can be derived as shown

the Proposition 2.1. Define a differential operator ∇ = d/ds where s is a coordinate.

Proposition 2.1 For the LKF defined in (2.2), if ∇V ≤ −g(e) for s ∈ [L,∞) where

g(e) ≥ 0 ∀e ∈ Rn, and the LKF is finite at s = L for any constant L > 0, that is,

V (L) <∞, then

lim
s→∞

∫ s

s−L

g(e)dτ = 0. (2.3)

Proof: Suppose that lims→∞
∫ s
s−L g(e)dτ 6= 0. There exist an ε > 0, sm ≥ L, a

sequence si → ∞ with i = 1, 2, · · · and si+1 ≥ si + L such that

∫ si

si−L
g(e)dτ > ε

when si > sm. Hence,

lim
s→∞

V (s) = V (L) + lim
s→∞

∫ s

L

∇V (τ)dτ ≤ V (L)− lim
s→∞

∫ s

L

g(e)dτ

≤ V (L) − lim
i→∞

i∑

j=1

∫ sj

sj−L
g(e)dτ ≤ V (L)− ε · lim

i→∞
i.

Since V (L) is finite, the above relationship implies lims→∞ V (s) = −∞, a contradiction

to the non-negativeness property of V (s). Thus the L-convergence property (2.3) must

hold.

Next we derive the boundedness of the LKF in the interval [0, L] under certain con-

ditions. Denote φ(s) = a(s) − â(s), where a, â ∈ Rm and a has a vector valued upper

bound ā.

Proposition 2.2 For s ∈ [0, L], V (s) is bounded if the following equality holds

∇V (s) = −λ‖e‖2 + φTA−1(s)â +
1
2
φTB−1φ. (2.4)
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Proof: (2.4) can be rewritten as

∇V (s) = −λ‖e‖2 − φTA−1(a − â− a) +
1
2
φTB−1φ

= −λ‖e‖2 − φT (A−1 − B−1/2)φ + φTA−1a, (2.5)

where A−1−B−1/2 > 0 because αi(s) is strictly increasing with the upper limit βi. Using

Young’s inequality, we have for any C = diag{c1, · · · , cm} > 0

φTA−1a ≤ φTCA−1φ +
1
4
aTCA−1a. (2.6)

Choose C such that A−1 − B−1/2 − C > 0. Substituting (2.6) into (2.5) yields

∇V (s) = −λ‖e‖2 − φT (A−1 − B−1/2 − C)φ +
1
4
aTCA−1a.

Accordingly ∇V (s) for s ∈ [0, L] is negative definite outside the region

{
(‖e‖, ‖φ‖) ∈ R2 : λ‖e‖2 + λ1‖φ‖2 ≤ λ2‖ā‖2

}
, (2.7)

where λ1 > 0 is the minimum eigenvalue of the matrix A−1 −B−1/2−C, and λ2 <∞ is

the maximum eigenvalue of the matrixCA−1/4. From (2.7) we conclude the boundedness

of V (s) in the interval [0, L].

Now investigate the relationship between the spatial and temporal coordinates. De-

note t the time axis, s the angular displacement of rotary systems, and x1 = ds/dt is the

angular speed. The spatial differentiator, or the ∇-operator, is defined below and linked

to the temporal differentiator

∇ =
d

ds
=

d

dt

(
ds

dt

)−1

=
1
x1

d

dt
. (2.8)

Let us further explore the relationship between the temporal coordinate t and spatial

coordinate s, so as to facilitate the conversion between t and s. From ds = x1dt we have

s =
∫ t

0
x1(τ)dτ

4
= f(t). (2.9)
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When the angular speed x1 > 0, s is a strictly increasing function of t, hence the

relationship between t and s is bijective. The function s = f(t) is analytic and the

inverse function t = f−1(s) exists globally. Therefore a variable, x(t), which is a temporal

function, can also be expressed as a spatial function x(f−1(s)) .

Throughout this chapter, we make the following assumption.

Assumption 2.1 The rotary system under consideration is evolving in one direction,

and the speed of the rotary system is strictly above zero, that is x1 > 0 ∀t.

Remark 2.1 For rotary systems, rotating direction and rotating speed are most impor-

tant characteristics. In many circumstances, speed regulation is often the aim of control.

Many motion systems run around an operating point specified by a constant speed, such

as the electrical drives used in escalators, engines used in vehicle cruise. When the ro-

tational motion speed occasionally crosses zero but most time run at a nonzero speed,

we can simply switch to another controller at near zero speed, and back to the periodic

adaptive control when the speed is near the operating point. If the rotational motion speed

frequently crosses zero such as in car parking, the angular displacement of the rotational

mechanism is unlikely to show any cyclic behavior. In such circumstances, the periodic

adaptive control is not a suitable control method.

To facilitate the analysis of SPAC, the algebraic relationship

(a− b)TB(a− b) − (a− c)TB(a − c) = (c− b)TB[2(a− b) + (b− c)], (2.10)

is introduced, where a, b, c are vectors with same dimensions and B is the diagonal gain

matrix.

For simplicity, we omit all the arguments from a function where no confusion arises,

e.g. denote f(·, ·) by f .
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2.3 SPAC for High Order Systems with Periodic Parame-

ters

Consider the canonical system




ds

dt
= x1,

dxi

dt
= xi+1, i = 1, 2, · · ·, n− 1,

dxn

dt
= aT (s)ζ0(x) + b(s)u,

(2.11)

where x = [s, x1, · · · , xn]T . a = [a1, · · · , am]T are unknown, bounded and s-periodic

parameters without knowing the upper bounds. ζ0 = [ζ0
1 , · · · , ζ0

m]T is a known vector

valued local Lipschitz and continuously differentiable function w.r.t. arguments x. b(s) ∈

C1[0,∞) is an unknown, bounded and s-periodic gain of the system input. The prior

information about b(s) is that b(s) is positive for all s. Unknown parameters ai(s) may

have different periods Li for i = 1, · · · , m and b(s) has a period Lm+1. In this section we

assume that all the periods are rational numbers. In such circumstances, there exists a

lowest common multiple L for all unknown coefficients ai(s) and b(s). We can use the

common period L as the updating period.

Remark 2.2 In rotary machine systems, s represents the angular displacement. Due to

the angular periodicity of 2π, most rotary machines will present certain cyclic behavior

along the s axis. For example, due to the inherently spatially distributed structure in

stators and rotors, most electrical motors produce torque ripples which can be modelled

as spatially cyclic parameters in s domain. In our daily life and industry, we can observe

many such examples as engines, turbines, gyros, conveyors, in which the rotary machine

systems will inevitably produce periodic impacts that can be modelled as cyclic parameters

or disturbances.
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Since the rotary system (2.11) is spatially periodic in s, we can first apply the ∇-

operator (2.8), convert the dynamics from the t-domain to the s-domain, then design an

appropriate controller with both feedback and periodic adaptation in the s-domain.

2.3.1 State transformation for high order systems by feedback lin-

earization

Applying the ∇-operator to convert the system (2.11) from t domain to s domain,

we have




∇xi =
xi+1

x1
, i = 1, · · · , n− 1,

∇xn = aT (s)ζ(x) + b(s)x−1
1 u.

(2.12)

where ζ = ζ0/x1. Note that (2.12) is not in canonical form. To facilitate the SPAC de-

sign, we can apply feedback linearization to transform the system (2.12) into a canonical

form.

First define a state transformation z = T (x1, · · · , xn) as

z1 = x1, z2 = ∇x1, · · · , zn = ∇n−1x1, (2.13)

where z = [z1, · · · , zn]T , ∇k = ∇ · ∇k−1. For a scalar function h with the arguments

x1, · · · , xn, denote the Lie derivative of h with respect to a vector f = [f1, · · · , fn]T as

Lfh = L[f1,···,fn]h =
[
∂h

∂x1
, · · · , ∂h

∂xn

]



f1
...

fn


 . (2.14)

The property of T is summarized in Proposition 2.3.

Proposition 2.3 The transformation (2.13), which is a diffeomorphism, transforms the

system (2.12) to the canonical form




∇zi = zi+1, i = 1, · · · , n− 1,

∇zn = aT (s)ξ0(z) + ρ(z) + b(s)η(z)u,
(2.15)
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where η, ξ0, ρ are generated by substituting x = T −1(z) into functions ηx(x), ξ0
x(x) and

ρx(x) defined below

ηx =
1
xn

1

, ξ0
x(x) = x1ηxζ(x), ρx =

x1L[x2,···,xn]Nn−1 − (2n− 3)x2Nn−1

x2n−1
1

,

Nn−1 is a polynomial with arguments x1, · · · , xn and its recursive form is given in the

proof of this proposition.

Proof: See Appendix A.1.

In speed regulation problems, x1 is to track a given speed x1,r(t) which is generated

by a reference model




dxi,r

dt
= xi+1,r, i = 1, 2, · · · , n− 1,

dxn,r

dt
= w0(xr, r),

(2.16)

where xr = [x1,r, · · · , xn,r]T is a vector of states, r is a constant reference input. To

facilitate the controller design in the s domain, ∇-operator is applied to the reference

model




∇xi,r =
xi+1,r

x1
, i = 1, · · · , n− 1,

∇xn,r =
w0(xr, r)

x1
.

(2.17)

Define zr = [z1,r, · · · , zn,r]T and the new state transformation zr = Tr(x1,r, · · · , xn,r)

z1,r = x1,r, z2,r = ∇x1,r, · · · , zn,r = ∇n−1x1,r. (2.18)

Analogous to the derivation procedure shown in Proposition 2.3, the state transformation

(2.18) is a diffeomorphism and the inverse xr = T −1
r (zr, z) exists. The reference model

(2.17) is transformed into a new canonical model




∇zi,r = zi+1,r , i = 1, · · · , n− 1,

∇zn,r = w(zr, z, r),
(2.19)
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where w(zr, z, r) is generated by substituting x = T −1(z) and xr = T −1
r (z, zr) into the

function wx(xr,x, r) defined below

wx(xr,x, r) =
x1L[x2,···,xn,x3,r ,···,xn,r ]Nn−1,r − (2n− 3)x2Nn−1,r

x2n−1
1

+
1

x2n−2
1

∂Nn−1,r

∂xn,r
w0(xr, r).

and Nn−1,r is a polynomial of arguments x, xr derived recursively in a similar way as

Nn−1 in Proposition 2.3.

To illustrative the spatial transformation, consider a 3rd order process. The state

transformation T is z1 = x1, z2 = x2/x1, z3 = (x1x3 − x2
2)/x

3
1, and the inverse T −1 is

x1 = z1, x2 = z1z2, x3 = z1(z1z3 + z2
2), or in matrix form




x1

x2

x3


 =




1 0 0

0 z1 0

0 z1z2 z2
1







z1

z2

z3


 .

Similarly, the state transform and the inverse transform of the reference model, Tr

and T −1
r are respectively z1,r = x1,r, z2,r = x2,r/x1, z3,r = (x1x3,r − x2,rx2)/x3

1 and

x1,r = z1,r, x2,r = z1z2,r, x3,r = z2
1z3,r + z1z2z2,r.

2.3.2 Periodic adaptation and convergence analysis

Define the tracking error to be e = [e1, · · · , en]T = z − zr. From the system (2.15)

and the reference model (2.19), the error dynamics is




∇ei = ei+1, i = 1, · · · , n− 1,

∇en = aT (s)ξ0(z) + ρ(z) + b(s)η(z)u− w(xr, z, r),
(2.20)

or simply

∇e = Ae + b[aT ξ0 + (σ + ρ− w) + bηu], (2.21)

where b = [0, · · · , 0, 1]T , σ = ce and c = [c1, · · · , cn−1, 1] is chosen such that

A
4
=




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 0 1

−c1 −c2 −c3 · · · −cn−1 −1




(2.22)
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is asymptotically stable. The periodic adaptive control mechanism is constructed below

u(s) = − 1
η(z)

[
kσ(s) + θ̂

T
(s)ξ(s, e)

]
, (2.23)

where k > 0 is a constant feedback gain, θ̂ = [θ̂1, · · · , θ̂m+2]T is the estimate of the

extended parametric vector

θ(s) =
[
1
b
aT ,

1
b
,

1
b2
∇b
]T

and

ξ(s, e) =
[
(ξ0)T , c1e + ρ− w, −σ

2

]T

where c1 = [0, c1, · · · , cn−1]. Note that θ ∈ C1([0,∞);Rm+2).

The parametric updating law is

θ̂(s) = θ̂(s− L) + Γ(s, L)ξ(s)σ(s),

θ̂(s) = 0, ∀s ∈ [−L, 0],
(2.24)

where Γ > 0 is the learning gain matrix defined in (2.1). The SPAC convergence property

is summarized in Theorem 2.1.

Theorem 2.1 For the system (2.15) and the reference model (2.19), the control law

(2.23) and the periodic adaptation law (2.24) achieve the L-convergence of the tracking

error e.

Proof. Substituting the learning control law (2.23) into (2.21) yields the closed-loop

error dynamics

∇e = Ae + b
[
aT ξ0 + (σ + ρ− w) + bη

(
−1
η
(kσ + θ̂

T
ξ)
)]

= Ae + b
[
−bkσ + aT ξ0 + (σ + ρ− w) − bθ̂

T
ξ
]
. (2.25)

The error dynamics (2.25) and the parametric updating law (2.24) form a set of differen-

tial and continuous-space difference equations of neutral type. The existence of solution
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for this class of systems has been discussed in [149]. Thus we focus on the convergence

property.

Notice the facts cb = 1, cA + c = c1 and σ = ce, multiplying c on both sides of

(2.25) yields

c∇e = cAe + cb
[
−bkσ + aT ξ0 + (σ + ρ− w) − bθ̂

T
ξ
]

= −bkσ + aT ξ0 + (c1e + ρ− w) − bθ̂
T
ξ. (2.26)

First prove the convergence for s ≥ L by using the LKF

V (s) =
1
2b
σ2 +

1
2

∫ s

s−L
φT (τ)B−1φ(τ)dτ, (2.27)

where φ(τ) = θ(τ)− θ̂(τ). The upper right hand derivative of V w.r.t. s is

∇V =
1
b
σc∇e− 1

2b2
∇b · σ2 +

1
2
[
φTB−1φ − φT (s− L)B−1φ(s− L)

]
(2.28)

where c∇e = ∇σ. Substituting the dynamics (2.26) into the first two terms on the right

hand side of (2.28)

1
b
σc∇e− 1

2b2
∇b · σ2 =

1
b
σ
[
−bkσ + aTξ0 + (c1e + ρ− w) − bθ̂

T
ξ
]
− 1

2b2
∇bσ2

= −kσ2 + σ

[
1
b
aT ξ0 +

1
b
(c1e + ρ− ω) +

1
b2
∇b(−σ

2
) − θ̂

T
ξ

]

= −kσ2 + σ
[
θT ξ − θ̂

T
ξ
]

= −kσ2 + σφT ξ. (2.29)

Applying the parametric adaptation law (2.24) where Γ = B for s ≥ L, the periodic

property θ(s) = θ(s − L), and the algebraic relationship (2.10), the third term on the

right-hand side of (2.28) is

1
2
[
φTB−1φ − φT (s− L)B−1φ(s− L)

]

=
1
2

[
(θ − θ̂)TB−1(θ − θ̂) −

(
θ − θ̂(s− L)

)T
B−1

(
θ − θ̂(s− L)

)]
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=
1
2

[
−2(θ − θ̂)TB−1

(
θ̂ − θ̂(s− L)

)
−
(
θ̂ − θ̂(s− L)

)T
B−1

(
θ̂ − θ̂(s− L)

)]

= −φTξσ − 1
2
ξTBξσ2. (2.30)

It can be seen that the system uncertainty φT ξσ appears on (2.29) and (2.30) with

opposite signs. Thus by substituting (2.29) and (2.30) into (2.28), the upper right hand

derivative of V is

∇V = −kσ2 − 1
2
ξTBξσ2 ≤ −kσ2, (2.31)

that is, ∇V is negative semi-definite for s ∈ [L,∞). From Proposition 2.1, we can derive

the boundedness of σ and the L-convergence property lims→∞
∫ s
s−L σ

2(τ)dτ = 0 when

V (L) is finite. Notice the relationship

σ = ce = en + cn−1en−1 + · · ·+ c1e1 = (∇n−1 + cn−1∇n−2 + · · ·+ c2∇ + c1)e1,

where ∇n−1+cn−1∇n−2 + · · ·+c2∇+c1 is a stable polynomial of the differential operator

∇. Therefore, the boundedness of σ implies the boundedness of e, and the L-convergence

of σ implies the L-convergence of e.

Next prove the finiteness of V (L). According to Proposition 2.2, we need only to

prove the boundedness of V (s) during the interval [L1, L), where 0 < L1 ≤ L. From

(2.24) and the definition of the gain matrix (2.1), the adaptation law is

θ̂(s) = A(s)ξ(s)σ(s) (2.32)

or ξσ = A−1θ̂. Define V (s) = 1
2bσ

2 + 1
2

∫ s
0 φT (τ)B−1φ(τ)dτ. Using the relationship

(2.29), the upper right hand derivative of V is

∇V = −kσ2 + φTξσ +
1
2
φTB−1φ = −kσ2 + φTA−1θ̂ +

1
2
φTB−1φ (2.33)

By virtue of the analogy between (2.4) and (2.33), the boundedness of V (L) is immedi-

ately obvious from Proposition 2.2.
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2.4 SPAC for Systems with Pseudo-Periodic Parameters

In this section the parallel parametric adaptation is explored. The unknown param-

eter b is assumed to be an unknown positive constant.

From (2.21), the dynamics of the tracking error e is

∇e = Ae + b[aTξ0 + (σ + ρ− w) + bηu] = Ae + bb
[
θTξ + µ(σ + ρ− w) + ηu

]
,(2.34)

where θ = b−1a, ξ = ξ0, µ = b−1. Using Lyapunov stability theory for LTI systems, for

a given positive definite matrix Q ∈ Rn×n, there exists a unique positive definite matrix

P ∈ Rn×n satisfying the Lyapunov equation

ATP + PA = −Q.

Denote λQ the minimum eigenvalue of the matrix Q such that −xTQx ≤ −λQxTx for

any x ∈ Rn. The spatial control mechanism is constructed as

u(s) = −1
η
[θ̂(s)T ξ0 + µ̂(σ + ρ− w)], (2.35)

where θ̂(s) = [θ̂1, · · · , θ̂m]T is the parameter estimate of θ and µ̂ is the parameter estimate

of µ. Note that we have periodic parameters θ and time invariant parameter µ, hence

use mixed periodic adaption and differential adaption laws

θ̂i(s) = θ̂i(s− Li) + γi(s, Li)ξi(s)v(s), ∇µ̂(s) = γ[σ + ρ− w]v(s),

θ̂i(s) = 0, ∀s ∈ [−Li, 0], i = 1, · · · , m
(2.36)

where v(s) = bTPe(s), Li denotes the period of the unknown parameter ai or θi, the

adaptation gain γi(s, Li) is defined in (2.1), γ > 0 is a constant gain, ξi is the i-th entry

of vector ξ.

The SPAC convergence property is summarized in Theorem 2.2 below.

Theorem 2.2 For the system (2.34), the spatial control mechanism (2.35) and (2.36)

ensures the L-convergence of the tracking error e.
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Proof. Substituting the spatial control law (2.35) into the dynamics (2.34) yields the

closed-loop error dynamics

∇e = Ae + bb[θTξ + µ(σ + ρ− w)− θ̂
T
ξ − µ̂(σ + ρ− w)]

= Ae + bb[φT ξ + ψ(σ+ ρ− w)], (2.37)

where φ = [φ1, · · · , φm]T = θ − θ̂, ψ = µ − µ̂. Define the LKF

V (s) =
1
2b

eTPe +
1
2

m∑

i=1

1
βi

∫ s

max{0,s−Li}
φ2

i dτ +
1
2γ
ψ2. (2.38)

First consider the interval [L,∞) where L = max{L1, · · · , Lm}. The upper right hand

derivative of V w.r.t. s is

∇V =
1
2b
(
∇eTPe + eTP∇e

)
+

1
2

m∑

i=1

1
βi

[
φ2

i (s) − φ2
i (s− Li)

]
− 1
γ
ψ∇µ̂. (2.39)

Substituting the dynamics (2.37) into the first term on the right-hand side of equation

(2.39),

1
2b

(∇eTPe + eTP∇e) =
1
2b
[
eTAT + bbT

(
φTξ + ψ(σ + ρ− w)

)]
Pe

+
1
2b

eTP
[
Ae + bb

(
φTξ + ψ(σ + ρ− w)

)]

=
1
2b

eT (ATP + PA)e + φTξbTPe + ψ(σ + ρ− w)bTPe

≤ −λQ

2b
‖e‖2 + φT ξv + ψ(σ + ρ− w)v. (2.40)

The second term on the right-hand side of equation (2.39), by substituting the para-

metric updating law (2.36), the spatial periodicity θi(s) = θi(s− Li), and the algebraic

relationship (2.10), is

1
2

m∑

i=1

1
γi

[
φ2

i − φ2
i (s− Li)

]
=

1
2

m∑

i=1

1
γi

[(
θi − θ̂i

)2
−
(
θi − θ̂i(s− Li)

)2
]

=
m∑

i=1

[−(θi − θ̂i)ξiv −
1
2
γi(ξiv)2]

= −φT ξv − 1
2

m∑

i=1

γi(ξiv)2. (2.41)
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The third term on the right-hand side of equation (2.39), by substituting the parametric

updating law (2.36), becomes

− 1
γ
ψ∇µ̂ = −ψ(σ + ρ− w)v. (2.42)

The parametric uncertainties in (2.41) and (2.42) appear in (2.40) with opposite signs.

As a result, substituting (2.40), (2.41) and (2.42) into (2.39) yields ∇V ≤ −λQ

2b ‖e‖
2 ≤ 0,

that is, ∇V is negative semi-definite for s ≥ L. From Proposition 2.1, we can derive

the boundedness of e and the L-convergence property lims→∞
∫ s
s−L ‖e‖2(τ)dτ = 0 when

V (L) is finite.

The remaining is to prove the boundedness of V (s) for s ∈ [0, L]. Without the loss

of generality, assume the periods satisfy the relationship

L1 < L2 < · · · < Lm = L,

and the interval [0, L] is divided into m different sub-intervals [Lj , Lj+1]. Suppose s ∈

[Lj , Lj+1], the LKF (2.38) renders to

V (s) =
1
2b

eTPe +
1
2

j−1∑

i=1

1
βi

∫ s

s−Li

[θi(τ) − θ̂i(τ)]2dτ

+
1
2

m∑

i=j

1
βi

∫ s

0
[θi(τ) − θ̂i(τ)]2dτ +

1
2γ

(µ − µ̂)2 . (2.43)

The upper right hand derivative of the functional V w.r.t. s is

∇V =
1
2b
(
∇eTPe + eTP∇e

)
+

1
2

j−1∑

i=1

1
βi

[
φ2

i (s) − φ2
i (s− Li)

]

+
1
2

m∑

i=j

1
βi
φ2

i (s) − ψ∇µ̂. (2.44)

The differential adaptation law for the constant parameter µ is the same for the entire

time horizon [0,∞). On the other hand, the periodic parameter adaption (2.36) can be

divided into two groups

θ̂i(s) = θ̂i(s− Li) + βiξi(s)v(s) i = 1, · · · , j − 1 (2.45)
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and

θ̂i(s) = αi(s)ξi(s)v(s) i = j, · · · , m. (2.46)

Since the parameter estimates and the LKF associated with parameters µ and θi, i =

1, · · · , j− 1, are the same as the preceding circumstance s ≥ L, they appear in ∇V with

negative semi-definite results. Thus we need only focus on the parameters θi, i = j, · · · , m

and the upper right hand derivative of the LKF (2.43) is

∇V ≤ −
λQ

2b
‖e‖2 +

m∑

i=j

φiξiv +
1
2

m∑

i=j

1
βi
φ2

i (s). (2.47)

For the ith term in (2.47), by substituting the adaptation law (2.46) we have

φiξiv +
1
βi
φ2

i =
1
αi
φiθ̂i +

1
βi
φ2

i ,

which is analogous to (2.4) as the scalar case. Therefore by applying Proposition 2.2 we

can directly conclude the boundedness of ∇V in (2.47), in the sequel the finiteness of

V (s) in [0, Lj+1).

2.5 Illustrative Examples

Consider a simplified permanent magnet synchronous motor with a single link and

under speed control [140]. The rotary part of the motor dynamics is




ds

dt
= x1,

dx1

dt
= 1

J (Tm − Tl − Bx1),
(2.48)

where s and x1 are motor angular position and speed, J = 0.03 kgm2 is the rated inertia,

B = 0.2 is the unknown damping factor, Tm is the motor torque in the form

Tm = (1 + 0.2 cos6s+ 0.1 cos12s)(1 + 0.5 coss + 0.3 cos2s)u Nm
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with u the current. The 1st and 2nd harmonics in Tm are generated by the current

measurement off-set and scaling errors [140]. The 6th and 12th harmonics in Tm are due

to the distortion of the stator flux linkage distribution and variable magnetic reluctance

at the stator slots. All harmonics are unknown. Tl = sin s Nm is the unknown load

torque. Rewrite the system (2.48) in the form as (2.11)




ds

dt
= x1,

dx1

dt
= aT (s)ζ0(s, x1) + b(s)u.

where

a(s) =
[
−sin s

0.03
− 0.2

0.03

]T

, ζ0(s, x1) = [1 x1]T ,

and b(s) =
(1 + 0.2 cos6s + 0.1 cos12s)(1 + 0.5 coss+ 0.3 cos 2s)

0.03
.

It can be seen that m = 2 and the updating period is 2π. The initial states are

{s(0), x1(0)} = {0, 0.1}. The reference motor speed is x1,r = 25 rad/s. Choose k = 0.05,

βi = 1, αi(s) = sin(s/2 − π/2)/2 + 1/2 for i = 1, 2, 3, 4. Applying the SPAC, the speed

tracking error is shown in Fig.2.1. SPAC achieves satisfactory speed response despite the

presence of rather large periodic parametric uncertainties in the state and input.

Figure 2.1: The speed tracking error profile in the time domain. The fast tracking

convergence can be observed.
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Next, to show the effect of SPAC with parallel adaptation for parameters with dif-

ferent periods, consider a dynamics




ds

dt
= x1,

dx1

dt
= x2,

dx2

dt
= 2 sin

(
2π
3 s
)
x2

1 + 3 cos
(

2π
100s

)
x2 + u.

(2.49)

The lowest common multiple is 300. The reference model is in the form of (2.16) with

n = 2 and

ω0(xr, r) = −4π2

25
x1,r +

32π2

5
,

which generates a sinusoidal reference speed x1,r in time domain with a period of 5 and

magnitude of 3. Fig.2.2 (a) shows the error profile with L = 300, and (b) shows the

error profile with two separate adaptation periods L1 = 3 and L2 = 100, both in the s

domain. The performance improvement can be clearly seen by comparing the results in

(a) and (b).

(a) SPAC with a common period

L = 300.

(b) SPAC with two separate periods

L1 = 3 and L2 = 100.

Figure 2.2: The speed tracking error profiles in the s domain. Parallel adaptation can

effectively reduce the convergence time in SPAC.

When implementing the spatial adaptive control law with a digital controller, two

practical issues arise: the sampling is done with a fixed time interval instead of a fixed

spatial interval, and the memory size is finite.
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Due to the time sampling and speed variation, quantities such as state variables at a

specific position s may not be available, but available at two neighbouring positions s1

and s2, s1 < s < s2, corresponding to two adjacent sampling instances. Consequently

θ̂(s− L) may not be available when updating θ̂(s). In such circumstances, θ̂(s− L) can

be interpolated by θ̂(s1 − L) and θ̂(s2 − L), or replaced by either of the neighbouring

points when the sampling frequency is sufficiently higher than the process bandwidth.

Analogously, a digital controller can only store a finite number of data due to a finite

buffer. Since the periodicity and sampling interval are fixed, it is adequate to choose the

memory size equal or greater than the quotient equal to the periodicity divided by the

sampling interval.

2.6 Conclusion

In this chapter a SPAC approach was proposed for rotary machines by using the

repetitiveness of system in spatial domain. The SPAC can achieve L-convergence for

any rotary machines systems that have spatially periodic parameter uncertainties or dis-

turbances. The spatial periodic adaptation mechanism can work well even through the

spatially periodic parameters may be aperiodic along the time axis. The main contribu-

tions of this work were to provide a feedback linearization method for high order rotary

systems, and extend the periodic adaptation to pseudo-periodic parameters without a

common period. The Lyapunov-Krasovskii functional provides a useful mathematical

tool for SPAC property analysis.

In the next chapter, we will consider the AC with lifting technique for a more complex

system structure in which the uncertainties show periodic repetitiveness in time domain.



Chapter 3

Discrete-Time Adaptive Control

for Nonlinear Systems with

Periodic Parameters: A Lifting

Approach

3.1 Introduction

Periodic variations are invariant under a shift by one or more periods. They are

often a consequence of some rotational motion at constant speed, and encountered in

many real systems such as electrical motors, generators, helicopter blades and satellites

[27, 28, 31, 61, 64, 95, 127, 150]. As in the case of linear periodic systems, many results

have been achieved to deal with their adaptive control, robustness and identification

[54,91,120]. Recently, discrete-time periodic adaptive control (PAC) has been proposed

and the underlying idea of PAC is to update parameters in the same instance of two

consecutive periods [1, 45]. Due to the time-varying nature, it would be very difficult,

if not impossible, to design appropriate periodic adaptive controllers for more general

scenarios such as plants with unknown control directions, plants in parametric-strict-
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feedback form, plants not satisfying any growth conditions, etc.

On the other hand, many effective adaptive control methods have been developed

for discrete-time systems with time-invariant parametric uncertainties, such as [166] for

parametric-strict-feedback form, [39, 74] for unknown control direction, [65] for plants

without any growth conditions in nonlinearities. It would be highly desirable if we can

apply these well established adaptive control methods to plants with periodic parameters.

To achieve this objective, we adopt a lifting technique to convert periodic parameters

into an augmented vector of time-invariant parameters, in the sequel all existing adaptive

control methods can be applied.

The underlying idea of the proposed approach is shown in Fig. 3.1. Denote θo
k a

periodic unknown parameter with a periodicity N that is θo
k = θo

k−N where N is a

positive integer, and ξk a known nonlinear regressor of the system states. Figure 3.1

shows that the product θo
kξk can be converted to the product of two augmented vectors

θT ξk where θ consists of constant unknowns, and ξk has only one non-trivial element

at each time k. From the figure, we can see that the idea is to extend the periodic

θo
k to N constant unknown parameters, and meanwhile let the position of ξk rotate

in the augmented vector ξk , such that the equality θo
kξk = θT ξk holds for every time

instant. In this way, the time-varying parametric uncertainties are simplified into time-

invariant ones, while the known nonlinear regressor is changed to a more sophisticated

structure. Note that the increasing complexity in the augmented regressor vector ξk

with the structural rotation does not hinder the adaptive controller designs because the

augmented vector is known. As a consequence adaptive control methods developed for

time-invariant parameters can be applied to periodic cases by reformulating the problem

with the lifting and conversion.
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Figure 3.1: The concept of the proposed approach that converts periodic parameters

into time-invariant ones using the lifting technique. Let the original periodic parameter

be θo
k with a periodicity N = 5, then θo

k has at most five distinguished constant values,

denoted by a augmented vector θ = [θ1, θ2, θ3, θ4, θ5]T . Let the known regressor be ξk, it

can be extended to an augmented vector-valued regressor ξk = [ξ1,k, ξ2,k, ξ3,k, ξ4,k, ξ5,k]T ,

in which there is only one non-trivial element and the remaining four are zeros at every

time instance k. The non-trivial element locates at 3rd position when k = sN + 3,

s = 0, 1, · · ·, and in general at jth position when k = sN + j. As the time k evolves,

the position of the non-trivial element will keep rotating rightwards, returning from the

rightmost position to the leftmost position, and starting over again. It is easy to verify

the equality θo
kξk = θTξk.

The lifting technique has been used to convert periodic parametric uncertainties into

augmented time-invariant ones [83, 84]. The results developed hitherto are limited to

linear systems. In this work, the lifting technique is applied to nonlinear plants and in

particular to adaptive control problems.

It is worthwhile pointing out some existing adaptive control approach developed for

time-varying parameters [169,172–174]. The main differences between their results and

the results in this work lie in that theirs do not require the periodic condition and achieve

a bounded tracking error that would vanish when the parameters become time-invariant.
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On the contrary, in our work we require the parameters be periodic, but achieve the

asymptotic convergence property.

It is also worthwhile highlighting the differences between the PAC approach and

the approach proposed in this work. Due to the difficulty in dealing with time-varying

parameters by adaptive control, in PAC [1] the updating period is chosen to be the least

common multiple for all periodic parameters. This way simplifies the control problem and

facilitates the convergence analysis for PAC, but also leads to slower convergence as the

common period could be much larger than individual periods. For instance, the common

period could be as large as 1155 while the periods of four parameters are respectively 3,

5, 7 and 11. By using the proposed adaptive control approach with lifting, parametric

updating can be carried out in parallel for the four parameters, which is more than 100

times shorter than the common period.

The Chapter is organized as follows. In Section 3.2, we present the lifting technique

which converts time-varying parameters into time-invariant ones and verify the equiva-

lence between the proposed adaptive control law and the PAC law. Sections 3.3 extends

the lifting approach to general nonlinear plants with multiple unknown parameters, pe-

riodic input gain, nonlinear growth condition, nonlinear parameterization, and tracking

tasks. Section 3.4 extends the lifting approach to plants with parametric-strict-feedback

structure and periodic unknown input gains. To the end, several illustrative examples

are provided in Section 3.5.
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3.2 Problem Formulation and Lifting Approach

In order to clearly illustrate the underlying idea of the new lifting approach, we focus

on an one-dimensional system in this section and consider the regulation problem

xk+1 = θo
kξk + uk , (3.1)

where θo
k ∈ R1 is periodic with the periodicity N ≥ 1, namely θo

k = θo
k−N , and the

nonlinear regressor ξk = ξ(xk) satisfies the Lipschitz continuity or sector-bounded condi-

tion. Note that, when N = 1, the periodic parameter renders to time-invariant because

θo
k = θo

k−1. Therefore PAC is the generalization of adaptive control that deals with

time-invariant parameters.

3.2.1 Discrete-time PAC revisited

PAC designs for N ≥ 2 are presented in [1] and [45], and briefly summarized below

uk = −θ̂kξk, θ̂k = θ̂k−N +
xk−N+1

c+ ξ2k−N
ξk−N , θ̂j = ε0, j ≤ N − 1, (3.2)

where c > 0 and ε0 is an arbitrary constant. The stability of PAC (3.2) for system (3.1)

can be derived as follows. Substituting (3.2) into (3.1), we have

xk+1 = θ̃kξk. (3.3)

Since θo
k = θo

k−N , using (3.2) and (3.3) yields

θ̃k = θ̃k−N − xk−N+1ξk−N
c+ ξ2k−N

= θ̃k−N −
ξ2k−N

c+ ξ2k−N
θ̃k−N =

c

c+ ξ2k−N
θ̃k−N .

Next consider the incremental change of θ̃k between two cycles

θ̃2k+N − θ̃2k =
(

c2

(c+ ξ2k)
2
− 1
)
θ̃2k

=
(

c2

(c+ ξ2k)
2
− 1
)(

c+ ξ2k
ξ2k

)
ξ2kθ̃

2
k

c+ ξ2k

= −
2c+ ξ2k
c+ ξ2k

ξ2kθ̃
2
k

c+ ξ2k
. (3.4)
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We observe that θ̃2k is a bounded nonincreasing function. Summarizing (3.4), we have

∥∥∥θ̃k
∥∥∥

2
=
∥∥∥θ̃k−jN

∥∥∥
2
−

j∑

s=1

2c+ ξ2k−sN
c+ ξ2k−sN

x2
k−sN+1

c+ ξ2k−sN

where k − jN ∈ [0,N ) and j = [ k
N ] is an integer equal to or nearest to k/N from

below. Since θ̃2k is nonnegative, we can conclude limk→∞
∑[ k

N ]

s=1

x2
k−sN+1

c+ξ2
k−sN

<∞. Therefore,

limk→∞
x2

k+1

c+ξ2
k

= 0, and by the Key Technique Lemma xk → 0 as k → ∞.

3.2.2 Proposed lifting approach

In this part we present the lifting technique to convert periodic parameters to time-

invariant ones. This idea can be applied to general discrete-time systems with any

periodic parametric uncertainties. Subsequently, we can simply construct well established

adaptive controllers that are developed for time-invariant parameters, even though the

original plant parameters are periodic in essence.

Consider a sequence of finite intervals with the length of N > 0. Let j ∈ {1, · · · ,N},

then any time instance can be denoted to be k = sN + j, s = 0, 1, 2, · · ·. Define an

augmented parametric vector θ = [θ1, · · · , θN ]T ∈ RN , and a vector-valued regressor

function ξk =
[

0, · · · , 0, ξk, 0, · · · , 0
]T

∈ RN for k = sN + j, where ξk is the

jth element of the regressor ξk and the only element that may not be zero at the time

instance k. It can be seen that the position of ξk rotates in the regressor ξk . The jth

element of ξk will be ξk for k = sN + j, s = 0, 1, 2, · · ·, and zero for the rest of time. In

other words, ξk rotates in ξk with the periodicity of N .

Notice the fact θo
k = θo

sN+j = θj by virtue of the periodicity N , and ξk has only the

j-th element, we have θTξk = θjξk = θo
kξk, and the system (3.1) can be rewritten as

xk+1 = θTξk + uk. (3.5)

The uncertainty in (3.5) is time invariant and the nonlinear regressor ξk satisfies the
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Lipschitz continuity or sector-bounded condition only if the original ξk does. This implies

that the original problem with periodic parameters has been converted to the time-

invariant problem, hence various existing adaptive control methods for time-invariant

parametric uncertainties can be applied directly. For the system (3.5), the classical

adaptive control law is

uk = −θ̂
T

k ξk , θ̂k = θ̂k−1 +
xkξk−1

c+ ‖ξk−1‖2
, c > 0, θ̂0 = ε0[1, · · · , 1]T , (3.6)

where θ̂k = [θ̂1,k, · · · , θ̂j,k, · · · , θ̂N ,k]T .

Theorem 3.1 The adaptive control law (3.6) with the lifting approach, and the PAC

law (3.2), are equivalent.

Proof: Consider time instances k = sN + j, s = 0, 1, · · ·, j = 1, · · · ,N . For a given j,

the only non-zero elements in ξk is the jth element, ξk, hence θ̂
T

k ξk = θ̂j,kξk. If we can

prove θ̂j,k = θ̂k , then θ̂
T
k ξk = θ̂j,kξk = θ̂kξk.

Using the fact ‖ξk‖2 = ξ2k , from the updating law (3.6) we obtain

θ̂k−N+1 = θ̂k−N +
xk−N+1

c+ ξ2k−N
ξk−N . (3.7)

Since k − N = (s − 1)N + j, the only non-zero element in the vector-valued regressor

ξk−N is the jth element, ξk−N , while other elements are zero. Thus among N parameters

in (3.7), the only one updated at k − N + 1 is the jth component, namely

θ̂j,k−N+1 = θ̂j,k−N +
xk−N+1

c+ ξ2k−N
ξk−N . (3.8)

Since the non-zero element in the vector-valued regressor rotates with the periodicity

of N , from k − N + 1 to k the element at the jth place is zero. In other words, from

k − N + 1 to k, there is no updating for the jth parameter, thus

θ̂j,k−N+1 = θ̂j,k−N+2 = · · · = θ̂j,k . (3.9)
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Substituting the relationship (3.9) into (3.8) yields

θ̂j,k = θ̂j,k−N +
xk−N+1

c+ ξ2k−N
ξk−N (3.10)

which is the same as (3.2). By choosing the same initial conditions for (3.2) and (3.10),

we have θ̂j,k = θ̂k .

3.3 Extension to General Cases

In this section, we explore possible extensions to various scenarios with multiple

periodic parameters, periodic input gain, nonlinear growth condition, nonlinear parame-

terization, tracking task, respectively. Meanwhile, the advantage of the lifting approach

will be made clear.

3.3.1 Extension to multiple parameters and periodic input gain

For simplicity, consider a scalar system

xk+1 = (θo
k)

Tξk + bokuk , x(0) = x0, (3.11)

where θo
k = [θo

1,k, · · · , θo
m,k]

T are unknown periodic parameters, ξk = [ξ1,k, · · · , ξm,k]T is

a known vector-valued regressor, and bok ∈ C[0,∞) is a periodic uncertain gain of the

system input. Note that each unknown parameter, θo
i,k or bok, may have its own period

Ni or Nb. To avoid control singularity, it is assumed that bok has a lower bound, that is,

bok ≥ bmin where bmin > 0 is known. The PAC designs will still be applicable by using

the least common multiple of Ni and Nb as the updating period N [1,45]. However, the

use of the common period will make the periodic adaptation inefficient. If possible, the

periodic adaptation should be conducted according to individual periods. To address

this issue, we reconsider system (3.11) by using the lifting approach. The presence of
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the uncertain periodic input gain presents another difficulty for PAC designs and leads

to complicated controllers as shown in [45]. By converting the periodic parameters into

time-invariant, the adaptive control design can be simplified.

To derive the lifting adaptive control law, first define the augmented parametric vector

and corresponding vector-valued nonlinearity regressor. Note that the i-th element of θo
k

is periodic with period Ni, thus there exist Ni values [θi,1, · · · , θi,Ni ]
T . We can construct

an augmented vector including all m periodic parameters

θ̄
4
=

[
θ̄

T
1 , · · · , θ̄

T
m

]T

= [θ1,1, · · · , θ1,N1, θ2,1, · · · , θm,1, · · · , θm,Nm ]T ∈ RN1+···+Nm , (3.12)

with all elements being constant. Accordingly, we can define an augmented regressor

ξ̄k =
[
ξ̄

T
1,k, · · · , ξ̄

T
m,k

]T
∈ RN1+···+Nm , (3.13)

where ξ̄i,k = [0, · · · , 0, ξi,k, 0, · · · , 0]T ∈ RNi , and the element ξi,k appears in the jth

position of ξ̄i,k only if k = sNi + j, for j = 1, 2, · · · ,Ni. It can be seen that m functions

ξi,k, i = 1, · · · , m, rotate according to their own periodicity, Ni, respectively. As a result,

for each time instance k, we have

(θo
k)

Tξk = θ̄
T
ξ̄k (3.14)

which converts periodic parameters into an augmented time-invariant vector.

Analogously we convert bok into an augmented vector b = [b1, · · · , bNb
]T and mean-

while define a regressor ζk = [0, · · · , 0, 1, 0, · · · , 0]T ∈ RNb, where the element 1 appears

in the jth position of ζk only when k = sNb+j. Hence for every time instance bok = bTζk ,

i.e. bok is converted into an augmented time-invariant parametric vector. Consequently

the system (3.11) can be rewritten as below

xk+1 = θ̄
T
ξ̄k + bTζkuk, x(0) = x0. (3.15)
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where all parametric uncertainties in (3.15) are time invariant.

Now we are in a position to apply existing adaptive control methods. First consider

a specific case where bok is a known constant. This problem has been addressed in [166].

Second consider another specific case where bok is an unknown constant. This problem has

been solved by introducing a discrete Nussbaum gain [74]. Third consider the periodic

bok and only the control direction is assumed known. Using the least common multiple

of Ni and Nb, the PAC [45] can handle this problem but the adaptation speed would be

slow. By using the lifting approach, we can address parametric uncertainties in (3.15)

in a more efficient way. Note that none of the existing discrete-time adaptive control

methods consider the scenario where the input gain is the product of two vectors bT ζk

as in (3.15). Thus in the following we extend the preceding adaptive controller design

(3.6) to the generic system (3.15).

Define φ̂k = [θ̂
T

k , b̂T
k ]T be the estimation of time-invariant parametric uncertainties

θ̄ and b, φ̃k = [θ̃
T
k , b̃T

k ]T be the estimation errors where θ̃k = θ̄ − θ̂k, b̃k = b− b̂k, and

ξ∗k =

[
ξ̄

T
k ,−

ˆθ
T

k
¯ξk

b̂T
k ζk

ζT
k

]T

. Design the adaptive control law

uk = − θ̂
T
k ξ̄k

b̂T
k ζk

, (3.16)

φ̂k = L

[
φ̂k−1 +

xkξ
∗
k−1

c+ ‖ξ∗k−1‖2

]
, c > 0, φ̂(0) = ε0I, (3.17)

where the projector L is to guarantee each element of b̂k not below the bound bmin.

Denote [aT
1,k, a

T
2,k]

T the vector φ̂k, where a1,k is the update of θ̂k, and a2,k is the update

of b̂k. By the projector we have L[a1,k] = a1,k, and for each element a of a2,k

L[a] =





a a > bmin

amin a ≤ bmin.

The convergence analysis can be conducted similarly as in the PAC [1] by choosing the

periodicity N = 1.
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The performance improvement of the lifting approach based adaptive control can be

seen from the construction of the vectors ξ̄k , where the element ξi,k appears in the jth

position of ξ̄i,k only if k = sNi+j, for j = 1, 2, · · · ,Ni. Them regression components, ξi,k,

i = 1, · · · , m, rotate according to their own periodicity, Ni, respectively. In other words,

the parameter estimate θ̂i,k will be updated repeatedly after every Ni steps, namely

updated according to its own periodicity. The same is for the update of b̂k because the

only non-zero element, which is 1, rotates in the augmented regressor ζk and returns to

the same position after Nb steps. Figure 2 illustrates the concept of the lifting method.

Here m = 1, N1 = 3, Nb = 2, therefore 5 parameters are updated.

Figure 3.2: Illustration of lifting based concurrent adaptation law (3.17) with the pe-

riodicities N1 = 3 and Nb = 2. It can be seen that θ̂1,k is updated at k = s × 3 + 1,

i.e. k = 1, 4, · · ·; θ̂2,k is updated at k = s × 3 + 2, i.e. k = 2, 5, · · ·; θ̂3,k is updated at

k = s× 3 + 3, i.e. k = 3, 6, · · ·; b̂1,k is updated at k = s× 2 + 1, i.e. k = 1, 3, · · ·; and b̂2,k

is updated at k = s× 2 + 2, i.e. k = 2, 4, · · ·.

Next consider in (3.11) a more generic scenario where the sign of the periodic bok, i.e.

the control direction, is unknown to us. For simplicity we consider m = 1, i.e. θo
kξk that
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can be expressed as θTξk, and

xk+1 = θTξk + bokuk = bok
[
(bok)

−1θT ξk + uk

]
. (3.18)

Define a new augmented parametric vector θ̄ =
[
b−1
1 θT , · · · , b−1

Nb
θT
]T

∈ RNbN , and a

new regressor ξ̄k =
[
0, · · · , 0, ξT

k , 0, · · · , 0
]T ∈ RNbN , where the only non-zero element,

ξk, appears at the jth place for k = sNbN + j, j = 1, 2, · · · ,NbN , s = 0, 1, · · ·, and

rotates with the periodicity of NbN . The model (3.18) can be rewritten to be

xk+1 = bok

[
θ̄

T
ξ̄k + uk

]
. (3.19)

Since the sign of bok is unknown, discrete Nussbaum gain scheme must be adopted. Similar

to the work [162], a discrete-time adaptive control law with Nussbaum gain can be

constructed to solve regulation problems

uk = −θ̂
T
k ξ̄k, θ̂k = θ̂k−1 + γNkξ̄k−1

εk
dk
, θ̂0 = ε0I, γ > 0, (3.20)

εk =
γxk

gk
, dk = 1 + ‖ξ̄k−1‖2 + |Nk| + ε2k, gk = 1 + |Nk|,

where Nk is the discrete Nussbaum gain defined to be

Nk = zs,kSN,k, zk = zk−1 +
gk−1ε

2
k−1

dk−1
, z0 = 0, zs,k = sup

k′≤k
{zk′}, (3.21)

and SN,k is the sign function of the discrete Nussbaum gain, i.e., SN,k = ±1.

3.3.2 Extension to more general nonlinear plants

In most of discrete-time adaptive control works the nonlinearities are restricted

to sector-bounded or Lipschitz continuous, i.e., satisfying the linear growth condition.

In [65], a least-squares estimator with nonlinear data weighting is developed and used to

adaptively control a discrete-time nonlinear system with constant unknown parameters,
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where the nonlinear regressor does not satisfy the linear growth condition. Using the lift-

ing technique, this result can be extended to plants with periodic parameters. Consider

the plant (3.5) that is the lifted version of the plant (3.1)

xk+1 = θTξk + uk,

but here we only assume the regressor ξk bounded for bounded xk . By combining a

certainty-equivalence controller with a least-squares estimator as below

uk = −θ̂
T

k ξk, θ̂k = θ̂k−1 +
(
1 + ξT

k ξk

)
ekPkξk−1, θ̂0 = ε0I, (3.22)

ek = xk − uk−1 − θ̂
T

k−1ξk−1,

Pk = Pk−1 −
(
1 + ξT

k ξk

)
Pk−1ξk−1ξ

T
k−1Pk−1

1 +
(
1 + ξT

k ξk

)
ξT

k−1Pk−1ξk−1

, P0 = PT
0 > 0,

a global stability result can be derived using the same Lyapunov analysis given in [65].

On the contrary, this extension does not hold for the PAC method [1] that employs

direct periodic updating. The difficulty to extend the Lyapunov analysis [65] from time-

based adaptation to period-based adaptation is due to the mixed time and period based

operations in the latter, which is far more complicated than the former.

Next we consider extension to systems with convex/concave parameterizations. For

simplicity consider a class of nonlinear discrete-time systems with a single periodic pa-

rameter with the periodicity N .

xk+1 = f(xk, θ
o
k) + uk, (3.23)

where f(·) is either a convex or concave function with respect to the argument θo
k . In [80],

an adaptive control method was proposed to deal with this problem when unknown

parameters are time invariant. Now, using the lifting technique, we can write two aug-

mented vectors fk = [f(xk, θ1), · · · , f(xk, θN )]T , ζk = [0, · · · , 0, 1, 0, · · · , 0]T ∈ RN , where
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θi for i = 1, · · · ,N are constant unknown parameters, and the unity element appears at

the jth position only if k = sN + j and rotates. As such, we have f(xk, θk) = fT
k ζk, and

can rewrite (3.23) as

xk+1 = fT
k ζk + uk , (3.24)

which contains time-invariant parameters only, hence the design [80] can be applied with

minor changes.

3.3.3 Extension to tracking tasks

Consider the plant (3.11) with multiple unknown parameters and the unknown peri-

odic input gain. It is required that the state xk follows a given reference trajectory r(k).

Specifying the tracking error as ek = xk − rk, we have

ek+1 = xk+1 − rk+1 = θo
k
T ξk + bokuk − rk+1. (3.25)

Using the same lifting technique applied in (3.11), (3.25) can be rewritten in the following

form

ek+1 = θ̄
T
ξ̄k + bT ζkuk − rk+1. (3.26)

To accommodate the tracking task, the adaptive control law (3.31) can be revised as

uk =
1

b̂T
k ζk

(
rk+1 − θ̂

T
k ξ̄k

)
, φ̂k = L

[
φ̂k−1 +

ekξ
∗
k−1

c+ ‖ξ∗k−1‖2

]
, c > 0, φ̂(0) = ε0I,(3.27)

where φ̂k =
[
θ̂

T

k , b̂T
k

]T
and ξ∗k =

[
ξ̄

T
k ,
rk+1 − θ̂

T

k ξ̄k

b̂T
k ζk

ζT
k

]T

. The closed-loop system is

then given by

ek+1 = φ̃
T
k ξ∗k . (3.28)
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The convergence analysis can be conducted analogous to the tracking problem discussed

in [1] by choosing the periodicity N = 1. What differs from [1] is that the adaptation

law of (3.27) is a parallel updating.

3.4 Extension to Higher Order Systems

In the preceding extensions, all the plants are kept in one dimensional case. Next, we

consider more extensions to higher order systems, where the plant takes the canonical

form or the parametric-strict-feedback form.

3.4.1 Extension to canonical systems

First consider the single input higher order system in canonical form




x1,k+1 = x2,k,
...

xn−1,k+1 = xn,k,

xn,k+1 = (θo
k)Tξk + bokuk ,

yk = x1,k,

x(0) = x0, (3.29)

where x = [x1, x2, · · · , xn]T ∈ Rn, uk, and yk represent the system states, input and

output, respectively. θo
k = [θo

1,k, · · · , θo
m,k]

T ∈ Rm are unknown periodic parameters,

ξk = ξ(xk) = [ξ1,k, · · · , ξm,k]T ∈ Rm is a known vector-valued regressor which is sector

bounded, ‖ξ‖ ≤ c1 + c2‖x‖ (c1 and c2 being arbitrary positive constants), and bok ∈

C[0,∞) is a periodic uncertain gain of the system input. To avoid control singularity, it

is assumed that bok has a lower bound, that is, bok ≥ bmin where bmin > 0 is known. The

control objective is to design an adaptive control law consisting of parameter estimation

laws θ̂
o

k, b̂
o
k and a control law u(k, θ̂

o

k, b̂
o
k) such that the system output yk can follow a

desired trajectory rk in the presence of the parametric uncertainties θo
k and bok.

To derive the lifting adaptive control law, we define the augmented parametric vector
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and corresponding vector-valued nonlinearity regressor as in Extension A of Section III,

by noticing that the n-th subsystem in (3.29) is similar to the plant (3.11). Consequently

the plant (3.29) can be rewritten as below




x1,k+1 = x2,k,
...

xn−1,k+1 = xn,k,

xn,k+1 = θT ξ̄k + bTζkuk ,

yk = x1,k,

x(0) = x0, (3.30)

where all parametric uncertainties in (3.30) are time invariant.

Now we are in a position to apply existing adaptive control methods. Define φ̂k =

[θ̂
T

k , b̂T
k ]T be the estimation of time-invariant parametric uncertainties θ and b, φ̃k =

[θ̃
T
k , b̃T

k ]T be the estimation errors where θ̃k = θ − θ̂k, b̃k = b − b̂k, and ξ∗k =
[
ξ̄

T
k ,

rk+n−
ˆθ

T

k
¯ξk

b̂T
k ζk

ζT
k

]T

. Assuming that all the states are available, the following adap-

tive control law is proposed

uk =
1

b̂T
k ζk

(
rk+n − θ̂

T

k ξ̄k

)
, (3.31)

φ̂k = L
[
φ̂k−1 + Pkξ∗k−1en,k

]
, φ̂0 = ε0I, (3.32)

Pk = Pk−1 −
Pk−1

(
ξ∗k−1

)T
ξ∗k−1Pk−1

1 +
(
ξ∗k−1

)T
Pk−1ξ

∗
k−1

, P0 = PT
0 > 0, (3.33)

where en,k = xn,k − rk+n−1, and the covariance Pk is a positive definite matrix derived

from the relationship P−1
k = P−1

k + ξ∗k−1

(
ξ∗k−1

)T . Note that the parameter estimate

(3.32) is dependent on xn,k where the subscript n denotes the n-th state variable. Define

the tracking error as ek = xk − xr,k = [eT
a,k en,k ]T , where xr,k = [rk, rk+1, · · · , rk+n−1]T .

Substituting the control (3.31) into (3.30), the closed-loop system is

ea,k+1 =


 0 In−2

0 0


 ea,k +


 0

1


 en,k , (3.34)

en,k+1 = φ̃
T
k ξ∗k . (3.35)
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Theorem 3.2 Under the lifted adaptation law (3.32) and (3.33), the closed-loop dynam-

ics (3.34) and (3.35) are asymptotically stable.

Proof. The convergence analysis can also be conducted analogous to the PAC [1] by

choosing the periodicity N = 1.

3.4.2 Extension to parametric-strict-feedback systems

Consider the adaptive control of parametric-strict-feedback systems with periodic

uncertainties, described by

x1,k+1 = (θo
1,k)

T ξ1,k + bo1,kx2,k,
...

xn−1,k+1 = (θo
n−1,k)

Tξn−1,k + bon−1,kxn,k ,

xn,k+1 = (θo
n,k)

Tξn,k + bon,kuk,

yk = x1,k,

(3.36)

where xl = [x1, x2, · · · , xl]
T are system states, yk is the system output, θo

l,k ∈ Rml ,

bol,k ∈ R, l = 1, · · · , n, are unknown periodic parameters (ml’s are positive integers), ξl,k
4
=

ξl(xl,k) ∈ Rml denotes the known nonlinear regressor which is Lipschitz continuous.

Assume that each control gain bol,k always takes a positive or negative sign for all k, the

periodicity of the i-th element of θo
l or θo

i,l is Ni,l for i = 1, · · · , ml and l = 1, · · · , n,

and the periodicity of bol is Nl,b for l = 1, · · · , n. Without loss of generality, assume Ni,l

and Nl,b are all relatively prime. The control objective is to make the output yk track a

bounded reference trajectory rk and at the same time guarantee the boundedness of all

the closed-loop signals.

When the control gains bol,k = 1 and θo
l,k are constant unknowns, the system (3.36) is

in the parametric-strict-feedback form and has been studied in [166], [169]- [174]. When

all the unknown parameters in (3.36) are constant, a robust adaptive control scheme is

proposed [39], which uses a future state predictor and a discrete Nussbaum gain. When
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the control directions are known a priori, [45] a PAC scheme is proposed in which the

least common multiple is used as the sole updating period. It is an open issue when the

control directions are uncertainties and periodic. In the following, by applying the lifting

technique the adaptive control [39] is extended to (3.36).

Rewrite the plant (3.36) as

yk+n = (θo
1,k+n−1)

T ξ1,k+n−1 + bo1,k+n−1x2,k+n−1,

xl,k+n−l+1 = (θo
l,k+n−l)

Tξl,k+n−l + bol,k+n−lxl,k+n−l ,

xn,k+1 = (θo
n,k)

Tξn,k + bon,kuk,

(3.37)

with l = 2, · · · , n− 1. By iterative substitution, the output equations can be written as

yk+n =
n∑

l=1

l−1∏

i=1

boi,k+n−i(θ
o
l,k+n−l)

Tξl,k+n−l

+
n∏

i=1

boi,k+n−iuk . (3.38)

Define

Θo
k =

[
(θo

1,k+n−1)
T , bo1,k+n−1(θ

o
2,k+n−2)

T , · · · ,
n−1∏

i=1

boi,k+n−i(θ
o
n,k)T

]T

∈ R
∑n

l=1 ml ,

Ψo
k+n−1 = [ξT

1,k+n−1, · · · , ξT
n,k ]T ∈ R

∑n
l=1 ml ,

go
k =

n∏

i=1

boi,k+n−i ∈ R,

the output equation (3.38) can be further written in a compact form as

yk+n = (Θo
k)T Ψo

k+n−1 + go
kuk. (3.39)

Note that Θo
k and go

k are still periodic unknowns.

Future state prediction

In (3.39), a key issue is the noncausal problem due because functions Ψo
k+n−1 de-

pend on the furture states. It is noted from (3.36) that the future states xl,k+n−l, l =
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1, 2, · · · , n− 1, are deterministic at the k-th step because they are independent of control

input uk .

Comparing (3.36) with (3.11), we can see that every xl subsystem in (3.36) takes

a form analogous to (3.11). Using the lifting technique, θo
l,k can be converted into an

augmented vector θl ∈ RNl that is exactly the same as that derived in (3.12), where

Nl =
∑ml

i=1 Ni,l. Likewise, note that similarity between ξl,k in (3.36) and ξk in (3.11),

ξl,k can be converted to an augmented vector-valued regressor analogous to ξ̄k as we did

for ξk. Referring to (3.13), we have

ξ̄l,k =
[
ξ̄

T
l,1,k, · · · , ξ̄

T
l,ml,k

]T
∈ RNl, (3.40)

where ξ̄l,i,k = [0, · · · , 0, ξl,i,k, 0, · · · , 0]T ∈ RNi,l , and the element ξl,i,k appears in the jth

position of ξ̄l,i,k only if k = sNi,l + j, for j = 1, 2, · · · ,Ni,l. Here the first index in the

subscript of ξl,i,k denotes the lth subsystem in (3.36), the second index in the subscript of

ξl,i,k denotes the ith element of ξl,k, and the third index in the subscript of ξl,i,k denotes

the time instance k.

Similarly we can convert bol,k to bT
l ζl,k, with bl = [bl,1, · · · , bl,Nl,b

]T being time in-

variant, and ζl,k = [0, · · · , 0, 1, 0, · · · , 0]T ∈ RNl,b , where the only non-zero element, 1,

appears in the jth position of ζl,k when k = sNl,b + j.

Subsequently, the first n − 1 state equations in (3.36) are equivalent to

xl,k+1 = θT
l ξ̄l,k + bT

l x̄l+1,k, l = 1, · · · , n− 1, (3.41)

where x̄l+1,k = ζl,kxl+1,k ∈ RNl,b, and all the unknowns are time invariant. Then, by

extending the result in [39] from scalar unknown case to vector unknown case, a state

predictor can be derived. The derivation procedure is shown in Appendix A.2.
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Controller design

In designing the controller for the plant (3.39), two subcases are taken into consider-

ation (i) the control directions are known, and (ii) the control directions are unknown.

In (3.39), using the lifting technique, Θo
k can be converted into an augmented constant

vector Θ ∈ Rκ, κ
4
=
∑n

l=1

∏l−1
j=1 Nj,bNl, Nl =

∑ml
i=1 Ni,l, and the associated Ψk+n−1 =

[ΨT
1 (x1(k+ n− 1)), ΨT

2 (x2(k+ n− 2)), · · · ,ΨT
n (xn(k))]T ∈ Rκ is an extended regressor,

satisfying

(
Θo

k+n−1

)T Ψo
k+n−1 = ΘT Ψk+n−1 . (3.42)

Thus, (3.39) is equivalent to

yk+n = ΘT Ψk+n−1 + go
kuk. (3.43)

Similarly, it is convenient to convert the control gain go
k to gT ζk, with g ∈ Rκb, κb

4
=

∏n
j=1 Nj,b being time invariant, and ζk = [0, · · · , 0, 1, 0, · · · , 0]T ∈ Rκb , where the only

non-zero element, 1, appears in the jth position of ζk when k = sκb + j. Thus, (3.43)

can be further expressed as

yk+n = ΘT Ψk+n−1 + gT ζkuk. (3.44)

Case (i): The control directions are known.

Since (3.43) is transformed to a system with unknown time-invariant parameters Θ

and g, we can design a discrete-time adaptive backstepping control law so far as the

control directions are known a priori. Define φ̂k = [Θ̂T
k , ĝT

k ]T be the estimation of

time-invariant parametric uncertainties Θ and g, and

Ψ∗
k+n−1 =

[
ΨT

k+n−1 ,
rk+n − Θ̂T

k Ψ̂(k + n− 1|k)
ĝT

k ζk

ζT
k

]T

.



Chapter 3. Discrete-Time Adaptive Control for Nonlinear Systems with Periodic
Parameters: A Lifting Approach 66

The following adaptive control law is proposed

uk =
1

ĝT
k ζk

(
rk+n − Θ̂T

k Ψ̂(k + n − 1|k)
)
, (3.45)

φ̂k = L
[
φ̂k−n + PkΨ∗

k−1ek

]
, (3.46)

φ̂j = ε0I, j = 0,−1, · · · ,−n+ 1,

Pk = Pk−n −
Pk−n

(
Ψ∗

k−1

)T Ψ∗
k−1Pk−n

1 +
(
Ψ∗

k−1

)T
Pk−nΨ∗

k−1

, (3.47)

where Pj = PT
j > 0, ek = yk − rk, and Ψ̂(k+n− 1|k) is the prediction of Ψk+n−1 at step

k.

Theorem 3.3 Consider the adaptive closed-loop system consisting of system (3.36),

adaptive control (3.45) with the corresponding parameter updating law (3.46) and (3.47),

future state prediction (8.55)–(8.18) and parameter estimation law (8.19). All the sig-

nals in the closed-loop system are guaranteed to be bounded and the tracking error ek

converges to zero asymptotically.

Proof. Substituting the adaptive control (3.45) into the n-step predictor (3.43) and

subtracting rk+n on both hand sides, we obtain the following error dynamics

ek+n = φ̃
T
k Ψ∗

k+n−1 + Θ̂T
k (Ψk+n−1 − Ψ̂(k + n− 1|k)) (3.48)

with φ̃k = [Θ̃T
k , g̃T

k ]T , where Θ̃k = Θ − Θ̂k and g̃k = g − ĝk . Select a nonnegative

function Vk = φ̃
T
k P

−1
k φ̃k and consider its difference with respect to n

∆Vk = Vk − Vk−n

≤ φ̃
T
k−n(Ψ∗

k−1(Ψ
∗
k−1)

T )φ̃k−n − 2φ̃
T
k−nΨ∗

k−1ek

+ (Ψ∗
k−1)

TPkΨ∗
k−1e

2
k

= −e2k + (Θ̂T
k−n(Ψk−1 − Ψ̂(k − 1|k − n)))2
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+
(Ψ∗

k−1)
TPk−nΨ∗

k−1

1 + (Ψ∗
k−1)

TPk−nΨ∗
k−1

e2k

= −
e2k

1 + (Ψ∗
k−1)TPk−nΨ∗

k−1

+ (Θ̂T
k−n(Ψk−1 − Ψ̂(k − 1|k − n)))2. (3.49)

Due to the linear growth condition of nonlinear regressors in system (3.36) and the

boundedness of reference signal rk, two properties with respect to the augmented regres-

sor Ψk+n−1 in (3.43) can be obtained from Lemma 2 and Lemma 7 in [39] as follows.

a) Ψk+n−1 = O[ek+n−1], namely, there exist positive constants c1, c2 and k0 such that

‖Ψk+n−1‖ ≤ c1 maxi≤k+n−1 |ei| + c2, for all k ≥ k0;

b) Ψk+n−1 − Ψ̂(k + n − 1|k) = o[ek+n−1], namely, there exists a sequence sat-

isfying limi→∞ αi → 0 and a constant k0 such that ‖Ψk+n−1 − Ψ̂(k + n − 1|k)‖ =

αk+n−1 maxi≤k+n−1 |ei|, for all k ≥ k0.

From properties a) and b), it is easy to see that Ψ∗
k−1 = O[ek−1] = O[ek]. Subse-

quently, the parametric adaptation law (3.46)–(3.47) induces that φ̂k = O[1], or further-

more

Θ̂T
k−n(Ψk−1 − Ψ̂(k − 1|k− n)) = o[ek−1] = o[ek ].

From (3.49), the nonnegative property of Vk implies that

e2k
1 + (Ψ∗

k−1)TPk−nΨ∗
k−1

→ 0. (3.50)

Considering the Key Technical Lemma under the sector condition ‖Ψ∗
k−1‖ ≤ c1 maxi≤k |ei|+

c2, ek → 0. The proof is complete.

Case (ii): The control directions are unknown.

In this case, the adaptive control design is a mixture of the lifting and periodic updat-

ing algorithms. The classic Nussbaum gain method [74] is limited to time-invariant scalar
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control gains. As we can see from the above reformulation with the lifting approach, the

periodic input gain go
k becomes the product of two vectors g and ζk .

To overcome this difficulty, we adopt periodic adaptations to deal with the periodic

input gains, meanwhile apply the lifting technique to convert the remaining periodic

parameters, θo
l,k, into time-invariant Θ, as shown in (3.44). Note that κb is the periodicity

of gain function go
k. Thus the periodic updating mechanism for go

k consists of κb elements,

each is a constant with respect to the periodicity κb. Consequently the application of

Nussbaum gain becomes feasible. The proposed controller for this case is a combination

of the lifting technique and periodic adaptation, which is given in Appendix A.3.

From the dynamics yk+n = ΘT Ψk+n−1 +go
kuk in (3.43), one can derive the ideal input

uk = − (go
k)

−1 ΘT Ψk+n−1 + (go
k)

−1 rk+n. (3.51)

Referring to (3.13) and (3.40), the lifting technique gives

uk = −ΘT
g Ψ̄k+n−1 + gT

0 rk+n, (3.52)

where Θg ∈ Rκκb and g0 ∈ Rκb are time-invariant unknown vectors, Ψ̄k+n−1 and rk+n
4
=

ζkrk+n are the corresponding regressors, satisfying

1
gTζk

ΘT Ψk+n−1 = ΘT
g Ψ̄k+n−1 ,

1
gTζk

rk+n = gT
0 rk+n.

Considering the prediction of Ψ̄k+n−1 at step k, ˆ̄Ψ(k+ n− 1|k), and the adaptation law

of system uncertainties (8.22) and (8.23), the control law (3.52) can be revised into

uk = −Θ̂T
g (k) ˆ̄Ψ(k + n − 1|k) + ĝT

0 (k)rk+n. (3.53)

Substituting (3.53) into (3.43), the error dynamics is

ek+n = yk+n − rk+n
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= ΘT Ψk+n−1 − go
kΘ̂

T
g (k) ˆ̄Ψ(k + n− 1|k)

+ go
kĝ

T
0 (k)rk+n − rk+n (3.54)

= −go
kΘ̃

T
g (k)Ψ̄k+n−1 + go

kg̃
T
0 (k)rk+n − go

kβk+n−1,

where βk+n−1 = Θ̂T
g (k) ˜̄Ψ(k + n− 1|k) 4

= Θ̂T
g (k)( ˆ̄Ψ(k + n − 1|k)− Ψ̄k+n−1).

Theorem 3.4 Consider the adaptive closed-loop system consisting of the plant (3.36),

adaptive control law (3.53), parameter updating law (8.22)–(8.23), future state prediction

(8.55)–to (8.18) with parameter estimation law (8.19). All the signals in the closed-

loop system are guaranteed to be bounded and the tracking error ek converges to zero

asymptotically.

Proof. Substituting the error dynamics (3.54) into the augmented error εi,s defined

in (8.21), one obtains

γΘ̃T
g (κb(s− n) + i)Ψ̄κb(s−n)+n+i−1

−γg̃T
0 (κb(s− n) + i)rκb(s−n)+n+i (3.55)

= − 1
go
κb(s−n)+i

εi,sGi,s − γβi,s +
1

go
κb(s−n)+i

Ni,sφi,sβi,s,

where the quantities φi,s, βi,s, Ni,s, and Gi,s are given in (8.24), (8.26), (8.27), and (8.28)

respectively, and γ > 0 is an arbitrary constant. Consider positive definite functions Vi,s,

i = 0, 1, · · · , κb − 1, as below

Vi,s =
n∑

j=1

Θ̃T
g (κb(s− n+ j) + i)Θ̃g(κb(s− n+ j) + i)

+
n∑

j=1

g̃T
0 (κb(s− n+ j) + i)g̃0(κb(s− n+ j) + i).

Noticing the parametric estimate (8.22) and (8.23), the difference of Vi,s between two

consecutive steps in s can be derived below

∆Vi,s = Vi,s − Vi,s−1
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=
[
Θ̃T

g (κbs+ i)Θ̃g(κbs+ i)

−Θ̃T
g (κb(s− n) + i)Θ̃g(κb(s− n) + i)

]

+
[
g̃T

0 (κbs+ i)g̃0(κbs+ i)

−g̃T
0 (κb(s− n) + i)g̃0(κb(s− n) + i)

]

=
[(

Θ̃g(κbs + i)− Θ̃g(κb(s− n) + i)
)T

×
(
Θ̃g(κbs+ i)− Θ̃g(κb(s− n) + i)

)

+2Θ̃T
g (κb(s− n) + i)

(
Θ̃g(κbs+ i)− Θ̃g(κb(s− n) + i)

)]

+
[
(g̃0(κbs + i) − g̃0(κb(s− n) + i))T

(g̃0(κbs+ i)− g̃0(κb(s− n) + i))

+2g̃T
0 (κb(s− n) + i)

× (g̃0(κbs+ i)− g̃0(κb(s− n) + i))]

= γ2
N2

i,s

D2
i,s

ε2i,s

(
Ψ̄T

κb(s−n)+n+i−1Ψ̄κb(s−n)+n+i−1

+ rT
κb(s−n)+n+irκb(s−n)+n+i

)

+2Ni,s

γΘ̃T
g (κb(s− n) + i)Ψ̄κb(s−n)+n+i−1

Di,s
εi,s

−2Ni,s

γg̃T
0 (κb(s− n) + i)rκb(s−n)+n+i

Di,s
εi,s.

Note the relationships [39]

∆χi,s = ∆zi,s + φi,s∆φi,s +
[∆φi,s]2

2
,

0 ≤ ∆zi,s ≤ 1, 0 ≤ |∆φi,s| ≤ 1,

|Ni,s|[∆φi,s]2 ≤ ∆zi,s,
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where φi,s, zi,s, χi,s are defined in (8.24), (8.25), and (8.27), we have

∆Vi,s ≤ γ2
Gi,sε

2
i,s

Di,s
− 2γ

Ni,sβi,sεi,s
Di,s

− 2
go
κb(s−n)+i

Ni,s

Gi,sε
2
i,s

Di,s

+
2

go
κb(s−n)+i

Ni,s
Ni,sφi,sβi,sεi,s

Di,s

≤ γ2∆zi,s + 2γ∆φi,s −
2

go
κb(s−n)+i

Ni,s

×
(

∆zi,s + φi,s∆φi,s +
[∆φi,s]2

2

)

+
1

|go
κb(s−n)+i

| |Ni,s|[∆φi,s]2

≤ c1∆zi,s + 2γ∆φi,s −
2

go
κb(s−n)+i

Ni,s∆χi,s,

where c1 = γ2 + 1
|go

κb(s−n)+i
| . Since go

κb(s−n)+i is a constant for each i, taking summation

with respect to s on both sides of the above inequality yields

Vi,s ≤
s∑

s′=0

[
− 2
go
κb(s′−n)+i

Ni,s′∆χi,s′

]

+c1zi,s + c1 + 2γφi,s + 2γ + Vi,−1

≤ − 2
go
κb(s−n)+i

s∑

s′=0

Ni,s′∆χi,s′

+c1(zi,s +
φ2

i,s

2
) + c1 +

2γ2

c1
+ 2γ + Vi,−1

≤ − 2
go
κb(s−n)+i

s∑

s′=0

Ni,s′∆χi,s′ + c1χi,s + c2, (3.56)

where c2 = c1 + 2γ2

c1
+ 2 + Vi,−1. Applying the oscillating-unbounded sum property of

discrete Nussbaum gain [74] to (3.56) yields the boundedness of Vi,s and χi,s, and thus

the boundedness of zi,s which is a non-decreasing sequence.

The remaining part of proof is similar to that of Theorem 1 in [39].
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3.5 Illustrative Examples

First consider a regulation problem with the dynamics (3.11). Assume m = 1, θo
k =

3.0 + 0.5 cos(2πk/3), ξk = cos(xk + 0.5), the input gain bok = 1.3 for odd k and bok = 2.1

for even k. The known lower bound for bok is 0.1. Figure 3.3 shows the results of the

proposed adaptive control with a common period 6 for the parameter updating. A long

transient period of adaptation is observed and the error converges after more than 1600

time units. Figure 3.4 shows the results of the proposed method (3.16) and (3.17), where

the plant is converted into time-invariant one (3.15) by using the lifting technique. The

updating periods are 3 for θo
k and 2 for bok, thus there are 5 unknown time-invariant

parameters. The results reveal that a much shorter transient response, less than 200

time units, is achieved.

(a) (b)

Figure 3.3: PAC with a common period of 6: (a) regulation error profile; (b) parametric

updating profiles.

Next consider a trajectory tracking task for the same plant but the control direction

is assumed unknown. The given reference is rk = 1.6− 0.8 cos(πk/5). Apply the discrete

Nussbaum gain (3.21) with γ = 1, and ε0 = 2. The output tracking convergence can
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(a) (b)

Figure 3.4: Proposed method using lifting technique: (a) regulation error profile; (b) 5

parametric adaptation profiles.

be achieved, as can be seen from Fig. 3.5(a). Note that since bk takes positive sign in

this example, the discrete Nussbaum gain Nk and its corresponding function zk always

coincide together, as shown in Fig. 3.5(b).

(a) (b)

Figure 3.5: Proposed method using lifting technique and discrete Nussbaum gain: (a)

tracking error profile; (b) discrete Nussbaum gain Nk and the corresponding function zk .

Further consider the same tracking reference and the high-order dynamics (3.29).

Assume n = 3, m = 1, x(0) = [0.1 0.1 0.1]T , θo
k = 3.0 + 0.5 cos(2πk/3), and ξk =

cos(x1,k +2x3,k +0.5). The input gain is bok = 1.3+0.5(k−10[k−1
10 ]−2), where [·] denotes
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the round-down operator. The known lower bound for bok is 0.1. Figure 3.6 shows the

results of the PAC with a common period 30 for the parameter updating and the proposed

adaptive control with the lifting technique. The proposed method outperforms the PAC.

(a) (b)

Figure 3.6: Output tracking error profiles for higher order canonical systems: (a) PAC

with a common period of 30; (b) Proposed method using lifting technique.

Finally, consider the following second-order system in parametric-strict-feedback form

with unknown control directions

x1,k+1 = θo
1,k cosx1,k + bo1,kx2,k,

x2,k+1 = θo
2,k sin(x1,k + x2,k) + bo2,kuk,

where θo
1,k = −0.3, θo

2,k = 0.5, bo1,k = 0.8, bo2,k = 0.2 for odd k and θo
1,k = 0.7, θo

2,k = −0.5,

bo1,k = 0.4, bo2,k = 0.5 for even k. The tracking reference sequence is rk = 8 sin(0.04πk).

The initial system states are x2,j = [1, 1]T , j = −3, · · · , 0. The tuning factor is chosen

as γ = 5. The simulation results are presented in Figs. 3.7 and 3.8. It can be seen that

the output tracking achieves a fast convergence even under periodic uncertainties and

unknown control directions.
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(a) (b)

Figure 3.7: Proposed method for the parametric-strict-feedback system with periodic un-

certainties and unknown control directions: (a) output tracking error profile; (b) control

input profile.

(a) (b)

Figure 3.8: Proposed method for the parametric-strict-feedback system with periodic un-

certainties and unknown control directions: (a) discrete Nussbaum gains; (b) augmented

tracking errors εi,s.

3.6 Conclusion

In this chapter we demonstrate that periodic parameters can be converted into time-

invariant ones by using a lifting technique. As a result, most existing discrete-time

adaptive control methods can be directly applied, even though the original plant is not
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satisfying the linear growth condition, nonlinear in parameters, having unknown con-

trol directions, or in parametric-strict-feedback form. These issues are open in periodic

adaptive control. Using the lifting technique based conversion, we provide a bridge to

link control problems characterized by periodic parameters with the existing adaptive

control methods, and ultimately provide solutions for these control problems. Further,

comparing with the existing periodic adaptive control methods, an immediate advantage

of the proposed approach is to expedite the adaptation process greatly owing to the

concurrent parametric updating.

In the preceding two chapters, parametric adaptive control schemes are proposed for

systems with periodic repetitiveness of uncertainties, in time or spatial domain and in

continuous-time or discrete-time space. Actually, besides these, there are many control

tasks that are strictly repeatable over finite time intervals. ILC would be efficient to cope

with the control of systems with such kind of repetitiveness. In the next four chapters,

we shift to those topics.



Chapter 4

Initial State Iterative Learning

For Final State Control In Motion

Systems

4.1 Introduction

Motion control tasks can be classified into set-point control and tracking control.

Set-point control problems arise because of two reasons – only the final states are of

concern and specified, and/or the control system is constrained such that only the final

states can be controlled. For instance, stopping a moving vehicle at a desired position

is a set-point control task. Another example is to shoot a ball into basket, which can

only be a set-point control task because it is unnecessary and impossible to specify and

control the entire motion trajectory of the ball when only the initial shooting angle and

speed are adjustable. Further from energy saving or ecological point of view, we may

not want to continuously apply control signals if the desired states can be reached with

appropriate initial state values. For instance we can let a train slip into and stop at a

station with certain initial speed and initial distance. Even if a braking is applied to

shorten the slipping time, we may not want to change the braking force so as to keep
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a smooth motion for the train. In such circumstances, it is imperative to start slipping

from certain appropriate initial position and speed. In this work we focus on final state

control of motion systems with initial state manipulation.

The final state control of motion systems can expressed as (1) achieving a desired

displacement at a prespecified speed or (2) achieving a desired speed at a prespecified

position. It is worth to note the difference between the above two cases. In the first

case, imagine that an observer sits in a train and checks the displacement when the train

speed drops to a prespecified value. In the second case, imagine that an observer stands

in a station and checks the speed when the train enters. In the first case, the information

used for control should be the position displacement, whereas in the second case the

information used for control should be the speed.

In practice, it is not an easy task to find the appropriate initial states when the desired

final states are given, due to two reasons. First, we do not know the exact model of a

motion system due to the unknown friction coefficients, unknown load, or other unknown

environmental factors such as slope. Thus it is impossible to compute the required initial

states as the control inputs. Second, a motion system such as vehicle could be highly

nonlinear due to its internal driving characteristics [121] and external interactions with

environment in the air, water or on ground such as nonlinear frictions [18]. It is in

general impossible to obtain an analytic solution trajectory for such a highly nonlinear

dynamics.

On the other hand, many motion control tasks are frequently repeated under the

same circumstances, for example the repeated basketball shot exercise, a train entering

the same station regularly, an airplane landing on the same runway, etc. The performance

of a motion system that executes the same tasks repeatedly can be improved by learning
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from previous executions (trials, iterations, passes). Iterative learning control is a suitable

method to deal with repeated control tasks [2, 16, 19, 86, 89, 93]. In this chapter, we

further demonstrate that ILC is also a suitable method to learn appropriate initial states

as control inputs while only the final state information is available.

It should also be noted that the control problems we deal with here are spatial learning

tasks. The control specifications are given spatially as the final states where the final

states are defined according to a spatial quantity such as the prespecified position or

speed, instead of a specific time. In order to build up the direct link between initial and

final states and eliminating the time factor, we introduce a state transformation such that

motion systems originally described in the time domain become a first order dynamics in

the phase plane. Taking one of the initial states as the control input, a simple ILC law

updated using one of the final state information can achieve the asymptotic convergence

in the iteration axis. Through analysis the convergence conditions for this scenario are

made clear.

The chapter is organized as follows. In Section 4.2, some assumptions and induced

properties are provided for subsequent sections. In Section 4.3, we focus on initial state

iterative learning for final state control, where the system satisfies Lipschitzian condition

in position. In Section 4.4, the initial state iterative learning is applied to the motion

systems which are Lipschitz continuous in speed. In Section 4.5, initial state iterative

learning with optimality is considered when feedback learning control is applied simul-

taneously. Finally, an illustrative example is provided.
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4.2 Problem Formulation and Preliminaries

Consider a motion system




dx

dt
= v,

dv

dt
= −f(x, v),

(4.1)

where f is continuous on the domain R2
+

4
= [0,∞)× [0,∞), x is the displacement and v

is the speed.

The control objective is to bring the system states (x, v) to an ε-neighbourhood

of the desired final state xd > 0 or vd ≥ 0 by means of adjusting initial state x0 or

v0. Clearly the initial states are control inputs. The ε-neighbourhood is defined as

|xd − x| ≤ ε or |vd − v| ≤ ε, where ε is a positive constant. Consider two sets of initial

states x0 = 0, v0 = uv, or x0 = ux, v0 = A, where the control inputs ux and uv are

respectively the initial position and speed, A is a fixed speed greater than vd.

In real world most motion systems without control are stable or dissipative in nature.

Therefore it is reasonable to assume that a motion system will stop when no exogenous

driving control applies. In this work it is assumed that the position x(t) is monotonically

increasing, or equivalently

Assumption 4.1 v ≥ 0.

In motion systems the desired final states may be defined in a very generic manner

with the position and speed linked together, that is, defining the final states in the

spatial domain. For instance in final position control, the desired final displacement

shall be achieved at a prespecified speed, not necessarily at a zero speed. Analogously,

in final speed control the desired final speed shall be achieved at a prespecified position.

Now, by eliminating the time t we convert the motion system into the phase plane



Chapter 4. Initial State Iterative Learning For Final State Control In Motion
Systems 81

(v, x). Dividing the first equation in (4.1) by the second equation yields

dx

dv
= −g(v, x), (4.2)

where g = v/f . According to (4.2), the state x is a function of the argument v and

control inputs. For simplicity, we write x(v, ux) when the initial speed is fixed at A and

the control input is the initial position, and write x(v, uv) when the initial position is

fixed at zero and the control input is the initial speed. As far as g is well defined near

f = 0, the existence and uniqueness of solution ensure that two solution trajectories of

(4.1) and (4.2) describe the same physical motion for v ∈ [0,∞), one in the time domain

and the other in the phase plane. As such, we can derive the same control property when

the same control law is applied.

Note that g(v, x) can be viewed as the inverse of generalized damping or friction

coefficient. The characteristics of the motion system (4.2) is solely determined by g(v, x).

Assumption 4.2 For v, x1, x2 ∈ R+, there exists a known integrable Lipschitz function

L(v) such that

|g(v, x1) − g(v, x2)| ≤ L(v)|x1 − x2|. (4.3)

Remark 4.1 Assumption 4.2 states that the inverse of generalized damping or friction

coefficient should meet the Lipschitz continuity condition. In the theory of differential

equation, Lipschitz continuity condition is necessary to ensure the existence and unique-

ness of the solution trajectory. In motion systems, the solution trajectory should be

existing and unique under the same dynamics and same initial condition.

In practice, many motion systems are discontinuous when speed is zero, due to the
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presence of static friction. Consider the Gaussian friction model [18]





dx
dt = v,

dv
dt = − 1

m

((
fc + (fs − fc)e

−( v
vs

)δ
)

sgn(v) + fvv
) (4.4)

where fc is the minimum level of kinetic friction, fs is the level of static friction, fv is the

level of viscous friction, vs > 0 and δ > 0 are empirical parameters. The signum function

from static friction represents a non-Lipschitzian term, and owing to this term a vehicle

running on ground can always stop in a finite time interval instead of asymptotically

stop. The choice of the dx/dv relationship enables the inclusion of the static friction

because, according to definition in (4.2), g is continuous both in x and v.

Next define the final position and final speed in spatial domain. In position control,

the final displacement, xe is observed at a prespecified speed vf . If the initial speed is

lower than vf , vf cannot be reached. In such circumstance, the final displacement is

defined to be

xe(u)
4
=





x(v, u), when v = vf

0, vf cannot be reached
(4.5)

where x(vf , u) is the position of the system (4.2) at the speed vf with the control input

u.

In speed control, the final speed, ve, is observed at a prespecified position xf . How-

ever, if the initial speed is low, the final position may not reach xf while the final speed

already drops to zero. In such circumstances, the final speed is defined to be zero.

Therefore the final speed is defined in two cases

ve(u)
4
=





v(x, u), when x = xf

0, xf cannot be reached
when motion stops.

(4.6)

In (4.5) and (4.6), the control input u is either initial position or speed.
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From Assumptions 4.1 and 4.2, we can derive an important property summarized

below.

Property 4.1 For any two initial quantities uj 6= u∗j where (uj , u
∗
j) are either initial

positions or speeds, we have (uj − u∗j )[xe(uj) − xe(u∗j )] > 0 in final position control and

(uj − u∗j)[ve(uj) − ve(u∗j)] > 0 in final speed control.

Proof: See Appendix A.4.

4.3 Initial State Iterative Learning

With initial or final position and speed, we have four cases

(i) initial position iterative learning for final position control;

(ii) initial speed iterative learning for final position control;

(iii) initial position iterative learning for final speed control;

(iv) initial speed iterative learning for final speed control.

Denote xi,e and vi,e the final position and speed defined in (4.5) and (4.6) respectively at

the ith iteration, where i = 1, 2, · · · denotes the iteration number. The ILC algorithms

corresponding to the four cases are

(i) ux,i+1 = ux,i + γ(xd − xi,e)

(ii) uv,i+1 = uv,i + γ(xd − xi,e)

(iii) ux,i+1 = ux,i + γ(vd − vi,e)

(iv) uv,i+1 = uv,i + γ(vd − vi,e)

(4.7)

where γ > 0 is a learning gain, ux,i is the initial position and uv,i is the initial speed at

the ith iteration.
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Let u denote either initial speed or position, and z either final speed or position, from

Property 4.1 we have

|ud − ui+1| = |(ud − ui) − γ(zd − zi)|

= ||ud − ui| − γ|zd − zi|| . (4.8)

To achieve learning convergence, a key issue is to determine the range of values for the

learning gain γ, which is summarized in the following Lemma.

Lemma 4.1 Suppose there exists a constant λ such that |zd − zi| ≤ λ|ud−ui|, and there

exists a M < ∞ such that |ud − u1| = M . For any given ε > 0, by applying the control

law (4.7) and choosing the learning gain in the range

1 − ρ

λ
< γ <

1 + ρ

λ
, 0 < ρ < 1, (4.9)

the output zi will converge to the ε-neighbourhood of the desired output zd with a finite

number of iterations no more than

N =
log

ε

Mλ

log
(
1 − (1 − ρ)

ε

Mλ

) + 1.

Proof: See Appendix A.5.

Remark 4.2 The existence of a finite M can be easily verified as ud is finite, and u1 is

always chosen to be a finite initial state in practical motion control problems.

Remark 4.3 The fastest convergence speed is |1 − γλi| = 0 or γ = 1/λi. Since the

specific value for λi is unknown to us, it would be more practical to discuss the relationship

between the number of iterations N in Lemma 4.1 and the design parameters (ε, ρ).
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First let ε→ 0, then

log
ε

Mλ
→ −∞

and

log
(
1− (1− ρ)

ε

Mλ

)
→ 0−.

Consequently N → ∞ when ε → 0, that is, the higher the precision, the larger the

iteration number N .

Next consider the design parameter ρ. From (8.107) we can see that the convergence

factor reaches minimum, or the learning speed reaches the maximum, when ρ→ 0. This

property can also be derived from Lemma 4.1, because the magnitude of

log
(
1 − (1− ρ)

ε

Mλ

)

is maximized when ρ→ 0.

In terms of Lemma 4.1, all we need to do is to find λ from the motion system so that

the range of the learning gain γ can be determined. In Theorem 4.1, we derive the value

of λ for all four cases.

Theorem 4.1 The ILC convergence is guaranteed for cases (i) – (iv) when the learn-

ing gain is chosen to meet the condition (4.9), and the values of λ can be calculated

respectively for four cases below.

(i) In the initial position iterative learning for final position control, choose

λ = exp

(∫ A

vf

L(v)dv

)
.

(ii) In the initial speed iterative learning for final position control, choose

λ = max
v∈[vf ,A]

g1(v) exp

(∫ A

vf

L(v)dv

)
,
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where g1 is an upper bounding function satisfying g(v, x) ≤ g1(v).

(iii) In the initial position iterative learning for final speed control, choose

λ =
1
c

exp
(∫ A

vd

L(v)dv
)
,

where c is a lower bound satisfying 0 < c ≤ g(v, x).

(iv) In the initial speed iterative learning for final speed control, choose

λ =
1
c

max
v∈[vd,A]

g1(v) exp
(∫ A

vd

L(v)dv
)
.

Proof: See Appendix A.6.

The prior knowledge required for four cases differs. The first case from position to

position requires minimum prior knowledge from the motion system, the lower and upper

bounds of g(v, x) are not required. In the second case from speed to position, only the

upper bounding function is required. In the third case from position to speed, only the

lower bounding function is required. In the fourth case from speed to speed, however,

both the lower and upper bounding functions are required.

Since g is the inverse of generalized damping or friction coefficient, the lower bound for

g is to rule out the scenario where the generalized damping or friction coefficient would be

infinity. Physically an overlarge damping or overlarge friction coefficient implies that an

immediate stop-motion may occur, and we are unable to achieve the final speed control

at a prespecified position xf . Therefore the lower bound is required in cases (iii) and

(iv) for final speed control.

The upper bound for g is required for initial speed learning to rule out the scenario

where the generalized damping or friction coefficient would be too small. Look into the

proof of case (ii), if the generalized damping or friction is too small, trajectories ÂB
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and ĈD will be very steep. As a result, a small change in the initial speed CA yields

a significant position difference AE. In other words, the system gain is extremely large

and an extremely lower learning gain should be used. g1 confines the system gain so that

the lower bound of the learning gain can be determined.

4.4 A Dual Initial State Learning

In (4.1), consider such a scenario where f may drop to zero due to environmental

changes, such as extremely low surface friction at certain places, meanwhile f could

remain continuous with v > 0, vf > 0 and ve > 0. In such circumstances, it is appropriate

to consider dv/dx in the phase plane

dv

dx
= −f

v
= −g(x, v), (4.10)

where the generalized damping or friction coefficient is g(x, v) = f/v. Comparing with

(4.2), in the dual problem (4.13) the positions of x and v are swopped, x is the argument

and v is a function of x and the control inputs. The control tasks remain the same

as the final position or speed control by means of the initial position or speed tuning.

Thus the analysis in Theorem 4.1 can be directly extended to this dual scenario because

Assumption 4.1 does not change and Assumption 5.1 holds with x and v swapped. Since

the two control problems associated with (4.2) and (4.13) are the same except for the

swapping between x and v, by employing the same ILC algorithms (4.7), the learning

convergence properties for the four cases can be derived in a dual manner by swapping

xi with vi, xd with vd, xf with vf , as summarized in Theorem 4.2.

Theorem 4.2 The ILC convergence is guaranteed for cases (i) – (iv) when the learn-

ing gain is chosen to meet the condition (4.9), where the value of λ can be calculated

respectively for four cases.
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(i) In initial position iterative learning for final position control, choose

λ =
1
c

max
x∈[0,xd]

g1(x) exp
(∫ xd

0
L(x)dx

)
.

(ii) In initial speed iterative learning for final position control, choose

λ =
1
c

exp
(∫ xd

0
L(x)dx

)
.

(iii) In initial position iterative learning for final speed control, choose

λ = max
x∈[0,xf ]

g1(x) exp
(∫ xf

0
L(x)dx

)
.

(iv) In initial speed iterative learning for final speed control, choose

λ = exp
(∫ xf

0
L(x)dx

)
.

4.5 Further Discussion

Initial state learning in final state control implies that motion time and motion con-

sumption for moving from initial desired state to final desired state are definite. As

a compensation, it is meaningful to further consider the optimization among these in-

dices. For example, try to shorten motion time but not increase motion consumption too

much. Such optimization can be realized based on initial state learning and the following

feedback learning.

4.5.1 Feedback learning control

Consider a class of motion systems with manipulated variables

−kh(x, v), (4.11)
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which denote the feedback information that is related to system states, where h(x, v) ≥ 0

and h = 0 iff v = 0. In such circumstance, the control input k can be set as the

constant feedback gain. Different from learning the initial state in final state control, an

alternative approach with ILC is proposed to achieve final state control through adjusting

the feedback coefficient iteratively. In this case, the dynamic system (4.1) becomes




dx
dt = v,

dv
dt = −f(x, v)− kh(x, v).

(4.12)

Note that v = 0 are still equilibria of system (4.12). Without loss of generality, consider

final speed control only later. Similarly as before, instead of considering system (4.12)

directly, we may consider the system

dv

dx
= −f

v
− k

h

v
:= −g(x, v, k), v(0, k) = A (4.13)

under Assumption 4.1 and the following Assumption 4.3.

Assumption 4.3 For x, v1, v2 ∈ R+, and k1, k2 ∈ R, there exist two known integrable

bounding functions L1(x) and L2(x) such that

|g(x, v1, k1) − g(x, v2, k2)| ≤ L1(x)|v1 − v2| + L2(x)|k1 − k2|.

Define a final speed control

ki+1 = ki − γ (vd − vi,e) , k0 = 0, (4.14)

where 1−ρ
λ < γ < 1+ρ

λ , 0 < ρ < 1, λ = exp
(∫ xf

0 L1dx
) ∫ xf

0 L2dx.

Theorem 4.3 Assume vd > 0. For system (4.13), under Assumptions 4.1 and 4.3, the

learning control law (4.14) implies a desired control input kd satisfying

v(xf , kd) = vd. (4.15)
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Proof: See Appendix A.7.

4.5.2 Combined initial state learning and feedback learning for opti-

mality

Now, consider system




dx
dt = v, x(0) = 0,

dv
dt = −f(x, v)− kh(x, v), v(0) = u.

(4.16)

Final state control can be performed by tuning the initial state u and feedback variable

gain k together. Because the dimensions of the solution space are larger than that of

the task space, the solution (u, k) is not unique. The extra degree of freedom offers an

opportunity to find the “best” solution that meets certain optimization criteria. Anal-

ogous to optimization or optimal control problems, an objective function is introduced

for final state control. In this work we consider the objective function

J(u, k) = L1(e) + L2(u, k) + L3(u, k) (4.17)

where L1(e) is a penalty to the final speed error, L2(u, k) is a penalty to the energy

consumption in the whole process and L3(u, k) is corresponding to motion time.

A widely adopted penalty for the speed error is a quadratic function L1(e) = c1[vd −

vi,e]2 with the weighting factor c1 > 0. In the motion process, the energy consumption L2

is directly proportional to the integration of the square of speed v along the displacement

x, thus the penalty L2(u, k) can be chosen to be

c2
2

∫ xd

0
(v(u, k))2 dx

with the weighting factor c2 > 0. Besides to minimize the energy consumption for the

whole process, motion time is another important index we need to minimize. Thus,
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it is feasible to let L3(u, k) = c3T with T being the motion time consumed from the

initial state to final state and c3 > 0. It is worthy to point out that equipment such

as chronograph and speed visualizer is necessary for obtaining the objective function

value for each u and k since the uncertainty of system induces that such value cannot be

estimated only from the final state of motion systems.

The optimization problem (4.17) can be solved either analytically or numerically.

However, both analytical and numerical methods require the system gradient components

D1 = ∂J/∂u and D2 = ∂J/∂k, thus require the exact model knowledge and other more

information. Hence it is difficult to directly solve the optimization problem (4.17) arising

from the combined final state control. Note that in preceding motion control, iterative

learning can find appropriate control inputs without knowing the exact model and needs

only the bounding knowledge of the system gradient. It would be interesting to explore

iterative learning approach to solve the optimization problem (4.17), when only the

bounding information of the gradient is available. Let αj and βj denote the lower and

upper bounds of Dj , j = 1, 2 for any u or k. Choose the iterative learning control law

ui+1 = ui − γ1,iJi

ki+1 = ki − γ2,iJi,

where Ji
4
= J(ui, ki). By substitution of the learning law

Ji+1 = Ji + (Ji+1 − Ji)

= Ji +D1,i(ui+1 − ui) +D2,i(ki+1 − ki)

= (1 − γ1,iD1,i − γ2,iD2,i)Ji.

Since Ji > 0, a minimum J can be reached if Ji+1 < Ji. The key step in the optimal

problem solving is to properly choose the learning gains γ1,i and γ2,i such that 0 ≤

1 − γ1,iD1,i − γ2,iD2,i < 1. Let us consider two scenarios associated with the gradient
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that is iteration dependent.

First consider the scenario where the gradient does not change signs for all ui and

ki. Therefore the property αj ≤ Dj,i ≤ βj < 0 or 0 < αj ≤ Dj,i ≤ βj , j = 1, 2, holds for

all iterations. The learning gains can be designed to satisfy the convergence condition.

For illustration, assume α1 ≤ D1,i ≤ β1 < 0 and 0 < α2 ≤ D2,i ≤ β2. We can choose

γ1,i = 1/2α1 and γ2,i = 1/2β2. In the sequel

0 ≤ 1 − D1,i

2α1
− D2,i

2β2
< 1

is guaranteed. Note that the above quantity equals 1 only when D1,i = D2,i = 0,

namely a minimum point of Ji is reached. When the signs of the gradient components

are unknown, more learning trials can be conducted to detect the signs of the gradient

components. Choose the learning gains

γj,i = ± 1
2 max{|αj|, |βj|}

j = 1, 2.

The pair (γ1,i, γ2,i) can take 4 sets of signs {1, 1}, {−1, 1}, {−1,−1} and {1,−1}, corre-

sponding to all possibles signs of the gradient (D1,i, D2,i). Therefore, at least one pair of

learning gains satisfy

0 ≤ 1 −D1,iγ1,i −D2,iγ2,i < 1

and Ji+1 < Ji. Although the signs of (D1,i, D2,i) may not be available, by at most 4

trials it is guaranteed to find a set of (γ1,i, γ2,i) with consistent signs. Note that we

may encounter situations with one correct gain and one wrong gain however still lead

to a convergent result when the correct action overwhelms the wrong action. However

this situation cannot guarantee the convergence for all subsequent learning iterations,

because the magnitudes of gradient components may vary with respect to iterations.
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Therefore it is necessary to consider all four gain sets to find the one with the greatest

descending direction.

Next consider the scenario where the gradient components may change signs at dif-

ferent iterations. In such circumstances, the learning gains, once learned, may not be

correct for subsequent iterations. Thus more learning trials are needed to detect the

signs of the gradient components. Similar discussion can be done as in the above cases.

4.6 Illustrative example

Consider system (4.4) with parameters m = 1, fc = 3.5, fs = 3.65, fv = 1.06, vs =

0.1, δ = 0.05. The target is to bring the motion system to a final state (xd, vf) = (20, 0),

i.e., let the motion system reach a displacement 20 m and stop. Since g is independent

of x, Lipschitz function L(v) is chosen to be zero.

Note that

g(v, x) =
mv

(fc + (fs − fc)e
−( v

vs
)δ

+ fvv
<
m

fv
,

holds for any values of v, we can choose the upper bounding function g1(v) = m
fv

= 0.9434.

In terms of Theorem 4.1, when applying initial position learning which is case (i), λ = 1;

and when applying initial speed learning which is case (ii), λ = 0.9434. The ILC law

is given by (i) or (ii) in (4.7). In this example, choose the factor ρ = 0.4. According

to Theorem 4.1, 0.6 < γ < 1.4 for (i) initial position learning and 0.64 < γ < 1.48

for (ii) initial speed learning. The ε-neighbourhood is chosen with ε = 0.001 m. Now,

set a uniform learning gain γ = 0.95 and the learning results are shown in Fig.4.1 and

Fig.4.2. In both cases, a quick learning convergence is achieved after repeating the

learning process a few iterations.
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Figure 4.1: Initial position learning for final position control: ux,1 = 0.0m, A = 20.0 m/s.

(a) The observed final position; (b) The learning results of initial position.

Figure 4.2: Initial speed learning for final position control: uv,1 = 20.0 m/s. (a) The

observed final position; (b) The learning results of initial speed.

4.7 Conclusion

In this chapter we addressed a class of final state control problems for motion systems

where the manipulated variables are initial states or feedback gains. Through iterative

learning with the final state information, the desired initial states and/or feedback gains

can be generated despite the existence of unknown nonlinear uncertainties in the motion

systems. Both theoretical analysis and numerical simulations verify the effectiveness
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of the proposed learning control schemes. It is worth pointing out that the learning

convergence is achieved in terms of the absolute quantity or infinity norm, thus is a

monotonic transient behavior in learning.

As another application of ILC, we consider the control problem of systems with input

uncertainties in the next chapter, where the repetitiveness refers to the repetitiveness of

control processes.



Chapter 5

A Dual-loop Iterative Learning

Control for Nonlinear Systems

with Hysteresis Input Uncertainty

5.1 Introduction

Recently, nonlinear system control with input uncertainties has received a great deal

of attention, since input uncertainties are quite common phenomenon in engineering

applications. Examples of input uncertainties include saturation, deadzone, hysteresis

and so on. The existence of these input uncertainties may severely deteriorate the control

performance or cause oscillations, even lead to system instability [118,143–146].

ILC, as one of the well-known control techniques, has demonstrated its ability to

deal with this sort of issue when the control environment is repeatable, see [32, 51, 87,

117, 143–146] for systems with saturation or deadzone nonlinearities. So far, however,

much less work has been done to dynamic systems with hysteretic input uncertainty,

although ILC design for hysteresis system has been frequently discussed [52, 53, 72, 79].

The difficulty in proving convergence of ILC algorithms for hysteretic systems arises due

to two reasons: (i) branching effects and (ii) nonlinearity of each branch [21]. The latter
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issue can be addressed by standard ILC methods. For example, the convergence of ILC

on a single branch was shown in [52], in which the hysteresis nonlinearity was modeled as

a single branch (using a polynomial). Alternatively, a functional approach was proposed

for systems that satisfy the incrementally strictly increasing operator (ISIO) property

[125]; however, the branching effect in hysteresis results in loss of the ISIO property

[77]. The reason branching causes problems in proving convergence is because branching

prevents the ILC algorithm from predicting the direction in which the input needs to be

changed based on a measured output error. In [71], this problem has been addressed by

constructing the monotonic property between input and output for a Preisach model.

Hysteresis is a very complex phenomenon and there exist many hysteresis models

in literature, e.g., the Bouc-Wen model, Duhem model, the Jiles-Atherton model, the

Prandtl-Ishlinskii model, and the Preisach model. A fact is that almost all the previous

ILC design schemes are focused on the Preisach model, if hysteresis is addressed. How-

ever, as another typical class, the Bouc-Wen model for smooth hysteresis has received

an increasing interest due to its capability to capture in an analytical form a range

of shapes of hysteretic cycles which match the behavior of a wide class of hysteretic

systems [56–58, 92, 105, 112]. In particular, it has been used experimentally to model

piezoelectric elements, magnetorheological dampers, wood joints and base isolation de-

vices for buildings. The obtained models have been used either to predict the behavior

of the physical hysteretic element or for control purposes.

In this chapter, we address the ILC problem for a nonlinear dynamic system with a

hysteresis input uncertainty, which takes the structure of the Bouc-Wen model. In nor-

mal cases, this class of systems does not show any standard cascaded structure. Thus,

the method of backstepping design will lose its efficiency here, especially when consider-



Chapter 5. A Dual-loop Iterative Learning Control for Nonlinear Systems with
Hysteresis Input Uncertainty 98

Figure 5.1: The schematic block diagram of the dual ILC loop. The operator z−1 denotes

one iteration delay, and q, qh are the learning gains for two sub-loops respectively.

ing convergence of tracking error along the iteration axis. Similarly as in [117], a dual

iterative learning loop is applied to systems to learn both the unknown nominal dynam-

ics and the input dynamics respectively, and then ensure the output of the system enter

a prespecified neighborhood of the desired trajectory. More specifically, the first loop

is a normal ILC scheme, which can guarantee the convergence of the output of dynam-

ics without input uncertainty by using the composite energy function (CEF) method.

Since this method is not a contraction mapping (CM) method, P-type ILC is proven to

be enough for the system tracking; otherwise, D-type ILC should be adopted and the

derivative information of tracking error in time domain must be available. The second

loop is another ILC scheme to deal with the input dynamics. The input signal of loop

1 becomes the desired output for the loop 2. Subsequently, the ILC scheme in loop 2

drives the output of the input uncertainty to this desired output, achieved from loop

1. It should be noted that since both saturation and deadzone can be characterized as

static mappings, many known iterative numerical algorithms are available for loop 2 to

deal with input uncertainties. But for the hysteresis scenario, such an ILC law should

be considered based on not a single mapping but its dynamics. After analyzing the

input-output monotonicity property for the hysteretic input uncertainty, we can see that

under certain conditions the simple ILC law is still efficient in this case. Based on the
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convergence results for the two single loops separately, the convergence analysis for the

dual-loop structure can then be discussed with the CEF method again.

When the strict input-output monotonicity does not hold for the hysteresis input

part, the proposed ILC law can not work any more. This is because there exist a number

of points on which the system gradient may vanish or change signs. In the sequel,

we consider two more singular cases by adding a forgetting factor and incorporating

a time-varying learning gain, and then ensure the corresponding ILC operator to be

contractible. By using the Banach fixed-point theorem, we show that the output tracking

error of the inner ILC loop (loop 2) can enter and remain ultimately in a sufficiently small

neighborhood of zero. The dual-loop ILC convergence can then be discussed similarly as

in the normal cases.

This chapter is organized as follows. Problem formulation is provided in Section 5.2.

The ILC schemes for each single loop are presented in Sections 5.3 and 5.4, respectively.

The convergence analysis for the dual-loop structure is considered in Section 5.5. Two

singular scenarios are further considered in Section 5.6. To the end, illustrative examples

are given in Section 5.7.

5.2 Problem Formulation

Consider the following SISO nonlinear dynamic system

ẋ = η(x, t) + u(v, z), (5.1)

ż = D−1(Av̇ − β|v̇||z|n−1z − γv̇|z|n), z(0) = 0, (5.2)

u = αkv + (1− α)Dkz, (5.3)

where v(t) and x(t) are system input and output separately. The x-subsystem (5.1)

with input u represents a nominal model, where η(x, t) : R × R≥0 → R is a lumped
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uncertainty, continuous in t and global Lipschitz continuous in x, i.e.

|η(x1, t) − η(x2, t)| ≤ Lη|x1 − x2|,

where Lη is a Lipschitz constant. The z-subsystem (5.2)-(5.3) denotes a physical model

with a hysteretic component that takes the so-called Bouc-Wen type, where the unknown

parameter vector θ = {n,A,D, k,α, β, γ} satisfying [56]

n ≥ 1, A 6= 0, D > 0, k > 0, 0 ≤ α < 1, β + γ 6= 0. (5.4)

Among these model parameters, D is the yield constant displacement and α is the postto

pre-yielding stiffness ratio. The hysteretic part involves a nondimensional auxiliary vari-

able z, which is the solution of the nonlinear first-order differential Eq. (5.2). In this

equation, A, β, γ and n are nondimensional parameters, which control the shape and the

size of the hysteresis loop [59]. The control task for system (5.1)-(5.3) is to drive the

output signal x(t) to track the reference signal xr(t), t ∈ [0, T ], T > 0, which is uniquely

determined by the following dynamics

ẋr = η(xr, t) + ur, (5.5)

żr = D−1(Av̇r − β|v̇r||zr|n−1zr − γv̇r|zr|n), (5.6)

ur = αkvr + (1 − α)Dkzr, zr(0) = 0. (5.7)

Here, we assume the system state x and the output of hysteresis dynamics u are mea-

surable, and the control task would repeat itself along iteration axis in [0, T ]. This kind

of control issue is frequently encountered in many industrial processes, such as assembly

lines and chemical batch processes. Intuitively, the information achieved from last itera-

tion would be useful to improve the control performance in current iteration. However,

due to the highly nonlinearity and severe uncertainty in system, not only in the nominal
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part but also in the hysteresis input part, it is challenging to design an ILC law to realize

the tracking task in a simple way.

In the first step, the plant (5.1)-(5.3) is decomposed into two sub-control systems:

ẋ = η(x, t) + u(t), (5.8)

and

ż(t) = D−1(Av̇ − β|v̇||z|n−1z − γv̇|z|n), z(0) = 0, (5.9)

u(t) = αkv + (1− α)Dkz. (5.10)

If regarding u(t) as the input of system (5.8), an ILC control law can be designed directly.

Thus, the second control system (5.9)-(5.10) should be ignored during the nominal control

design for (5.8) because it destroys the feedback structure of the x-subsystem. On the

other hand, different from saturation or deadzone case, the subsystem (5.9)-(5.10) does

not take a static form but a dynamic one when denoting v(t) and u(t) as input and

output respectively. Even this, we may prove in the following that a simple ILC law is

still efficient to achieve tracking task for output u(t). In the sequel, the dual-loop ILC

for system (5.1)-(5.3) can be designed to achieve the real tracking for output x(t).

5.3 Iterative Learning Control for Loop 1

The aim of loop 1 ILC design is to find a sequence of ui(t) to ensure the perfect

tracking performance for (5.1) only. In other words, when there is no input uncertain

dynamics, namely u = u(v, z) = v, the ILC scheme in loop 1 updates ui(t) iteratively to

achieve perfect tracking performance. To facilitate the ILC design for (5.1), the following

identical initialization condition (i.i.c.) is assumed.

Assumption 5.1 xi(0) = x0(0) = xr(0), for all i ∈ N.
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Remark 5.1 From the practical point of view, the i.i.c. condition may not be satisfied.

A possible way to solve the problem is to modify the target trajectory at the initial stage

by making an appropriate interpolation [115], in the sequel guarantee xr(0)− xi(0) = 0.

Denote the tracking error at i-th iteration as ei(t) = xr(t)−xi(t), the error dynamics

of the system should be

ėi = (η(xr, t) + ur) − (η(xi, t) + ui) , (5.11)

where ur
4
= u(vr, zr) is the desired input in this loop.

Usually, there are two types of proof methods for ILC input or output error con-

vergence, one is based on contraction mapping (CM) and the other one is based on

Lyapunov functional, e.g., the composite energy function (CEF). If the relative degree

is zero, generally, only the CM method is suitable, and monotonic convergence with the

time weighted norm along the iteration axis can then be derived. If the relative degree is

one, both the CM method and the CEF method can be used to derive the error conver-

gence. The difference between them lies in that: the CM method requires the uniqueness

of desired input signal, and a D-type ILC should be adopted over there so as to achieve

a pointwise convergence; the CEF method does not need the uniqueness of desired input

signal but its existence, and asymptotical convergence along the iteration axis can be

guaranteed.

In order to avoid using the derivative information of output tracking error signal,

which may not be accessible in real application, a simple ILC scheme is used in loop 1

as follows

ui(t) = ui−1(t) + qei(t), t ∈ [0, T ], (5.12)
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where q > 0 is the learning gain. The following theorem shows that the perfect tracking

can be achieved by using (5.12).

Theorem 5.1 Assume that Assumption 5.1 holds true for system (5.1). Then, the

perfect tracking performance is achieved with the updating law (5.12).

Proof: See Appendix A.8.

The updating law (5.12) iteratively modifies ui(t), which is actually the output of

the hysteretic system (5.2)-(5.3), to realize tracking in loop 1. However, owing to the

uncertainties in input dynamics, it is almost impossible to choose an appropriate vi(t)

such that ui = u(vi(t), zi(t)), without any additional effort. In the next part, another

ILC loop is presented to address this point.

5.4 Iterative Learning Control for Loop 2

Consider the ILC for the hysteretic subsystem (5.9)-(5.10) under parametric condition

(5.4), which can be regarded as the second loop for the whole system (5.1)-(5.3). In this

loop, the desired input and output should be vi and ui respectively, where the latter is

actually the input of loop 1 in the i-th iteration given by the ILC law (5.12). In the

sequel, we use vi,r and ui,r to denote them to avoid confusion.

5.4.1 Preliminaries

A true physical hysteretic element should be BIBO stable, which means that for any

bounded input signal v(t) the hysteretic response is also bounded. Thus, the Bouc-Wen

model (5.10) should keep the BIBO stability property in order to be considered as an

adequate candidate to model real physical systems. Moreover, the boundedness and

smoothness of internal variable z(t) should also be addressed. Reference [56] concerned
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these points and gave the following result.

Lemma 5.1 Let v(t), t ∈ [0, T ] be a C1 input signal. Assume the parametric condi-

tion (5.4) holds. Then, the Bouc-Wen model (5.9)-(5.10) is BIBO stable if one of the

following four scenarios holds.

(C1) : A > 0, β + γ > 0, and β − γ ≥ 0,

(C2) : A > 0, β − γ < 0, and β ≥ 0,

(C3) : A < 0, β − γ > 0, and β + γ > 0,

(C4) : A < 0, β + γ < 0, and β ≥ 0.

For all the classes (C1) − (C4), the signal z(t) is C1 bounded. Additionally, |z(t)| is

upper bounded by za
4
= n

√
A

β+γ in classes (C1) and (C2), while |z(t)| is upper bounded by

zb
4
= n

√
A

γ−β in classes (C3) and (C4).

Figure 5.2: Graphic illustration of conditions C1 and C2 in γ-β plane, as A > 0.

Figs. 5.2 and 5.3 give the graphic illustration of the condition sets C1-C4 in γ-β

plane. Actually, the parametric condition (5.4) represents all the normal cases and two

limit cases (n = 1 and α = 0) for the Bouc-Wen model. Noticing the i.i.c. for z, z(0) = 0,

the BIBO property of hysteresis and the boundedness of z(t) for the normal cases can be

achieved directly from [56, Theorem 2] while the result corresponding to n = 1 and α = 0
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Figure 5.3: Graphic illustration of conditions C3 and C4 in γ-β plane, as A < 0.

was discussed in the Limit Cases analysis therein. The C1 property of z(t) can be derived

similarly as discussed in [56, Theorem 3]. In detail, a state-space system realization of

(5.9) is

ẋ1 = x2,

ż = D−1(Ax2 − β|x2||z|n−1z − γx2|z|n), (5.13)

where x1 = v. Since (5.13) is locally Lipschitz, a C1 solution exists over some time

interval [0, t0). We have seen that z and x2 are bounded for every C1 bounded signal

v. This implies that the C1 property of z can be extended to the interval [0, T ], only if

t0 < T .

More limit cases including A = 0, α = 1, and β + γ = 0 are also analyzed briefly

in [56], where the dynamics of hysteresis show some abnormal properties. For the case

A = 0 or α = 1, the hysteresis part in Eq. (5.9) is zero so that the system (5.10) is

linear in v and thus does not give a hysteretic nonlinearity. For the case β + γ = 0, the

upper bound on the variable z may depend on the input v, and thus the input-output

gradient is a function of v. This will induce some difficulties when estimating the bound

for gradient and subsequently choosing the learning gain for ILC law, if no prior bound

information is available for v. Figs. 5.4-5.5 show the hysteretic behavior for such limit
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case in phase plane and time domain respectively. In the next, we only consider the

Bouc-Wen model under conditions (C1)-(C4).

Figure 5.4: Hysteretic behavior with input v(t) = 2 sin t + cos 2t + 0.8, t ∈ [0, 10], for

β + γ = 0. It can be seen that the input-output monotonicity still holds.

Figure 5.5: Profiles of input signal v(t) and its corresponding output signal u(t) in time

domain for the hysteresis model as β + γ = 0.

Before proceeding to the convergence analysis of Loop 2, it is necessary to make clear

how the input signal v(t) affects the internal variable z(t). Consider the equivalence of

(5.9)

ż = v̇
[
D−1(A− S(v̇)β|z|n−1z − γ|z|n)

]
, (5.14)
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where S(v̇) takes the sign of v̇, namely S(v̇) = 1 if v̇ > 0, S(v̇) = −1 if v̇ < 0, and

S(v̇) = 0 otherwise. At each monotone branch of v(t) satisfying S(v̇(t)) = 1, (5.14) is

ż = ˙ v
[
D−1(A− β|z|n−1z − γ|z|n)

]
, t ∈ (ts, ts+1), (5.15)

where ts and ts+1 are the nearest time instants backward and forward from time t sat-

isfying v̇(ts) = 0 and v̇(ts+1) = 0. By multiplying dt on both sides of (5.15), it yields

that

dz = dv
[
D−1(A− β|z|n−1z − γ|z|n)

]
,

or equivalently

dz

dv
= D−1(A− β|z|n−1z − γ|z|n). (5.16)

Since the right hand side of (5.16) is continuous, locally Lipschitz, and |z(t)| is always

bounded by za or zb, as stated in Lemma 5.1, there exists a unique solution for (5.16)

z(t) = f1(v(t), v(ts), z(ts)), t ∈ (ts, ts+1), (5.17)

where (v(ts), z(ts)) is the initial condition for (5.16) at t = ts. Because of the continuous

dependence of solution z(t) to initial values, the following equality uniformly holds for

v(t) ∈ (v(ts), v(ts+1)),

lim
(v̄(ts),z̄(ts))→(v(ts),z(ts))

f1(v(t), v̄(ts), z̄(ts)) = f1(v(t), v(ts), z(ts)). (5.18)

Similarly, at each monotone branch of v(t) satisfying S(v̇(t)) = −1, t ∈ (ts, ts+1), (5.14)

is

ż = ˙ v
[
D−1(A+ β|z|n−1z − γ|z|n)

]
, (5.19)

whose unique solution is assumed to be

z(t) = f2(v(t), v(ts), z(ts)), t ∈ (ts, ts+1), (5.20)
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satisfying

lim
(v̄(ts),z̄(ts))→(v(ts),z(ts))

f2(v(t), v̄(ts), z̄(ts)) = f2(v(t), v(ts), z(ts)) (5.21)

uniformly for v(t) ∈ (v(ts+1), v(ts)).

Summarily, the solution of (5.14) corresponding to different monotone branches of

input v(t) can be written into a compact form

z(t) = f(v(t), v(ts), z(ts), sign(v̇(t))), t ∈ (ts, ts+1), (5.22)

where

f =





f1(v(t), v(ts), z(ts)), if S(v̇(t)) = 1,

f2(v(t), v(ts), z(ts)), if S(v̇(t)) = −1.
(5.23)

According to Lemma 5.1, under the parametric conditions (C1)-(C4), z(t) is C1 bounded

if v(t) is C1. Noticing the hysteresis output expression (5.10), u(t) is also a function of

v(t), v(ts), z(ts), and S(v̇(t)) at each monotonic branch of input v(t), i.e.,

u(t) = u(v(t), v(ts), z(ts),S(v̇(t))), t ∈ (ts, ts+1). (5.24)

5.4.2 Input-output gradient evaluation

Define the ILC law as follows

vj(t) = vj−1(t) + qh∆uj−1(t), t ∈ [0, T ], (5.25)

where ∆uj−1 = ui,r − uj−1, and qh > 0 is the constant ILC gain. It is known that

to determine the gain qh is highly related to the system information, or input-output

gradient information. Therefore, in order to achieve the learning convergence of (7.4), it

is necessary to estimate in advance the gradient of u with respect to v in the presence of

system uncertainties. In general, most of the ILC applications are based on input-output
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monotonicity, i.e., a monotonic input (in time) causes a monotonic output (in time).

This means that the sign of input-output gradient is always positive or negative. For a

preisach type of hysteresis, the input-output monotonicity is assumed in [71,72], and the

bound information of gradient is given by the following inequalities

d1(v2 − v1)n ≤ (u2 − u1) ≤ d2(v2 − v1), (5.26)

where d1, d2 > 0 are constants, and n is a positive integer. Here, we present the corre-

sponding result on the Bouc-Wen model.

Lemma 5.2 Let

(C ′
3) : (C3) and

α

1 − α
+

2βA
β − γ

≥ ε

(1 − α)k
,

(C ′
4) : (C4) and

α

1 − α
+A ≥ ε

(1− α)k
, (5.27)

where 0 < ε ≤ αk is an arbitrarily small constant. The graphic illustration of these

two sets of conditions in γ-β plane are shown in Fig. 5.6. Under one of the cases

(C1), (C2), (C ′
3) and (C ′

4), the Bouc-Wen model (5.9)-(5.10) possesses the input-output

monotonicity in each monotone branch of v(t), with uniform gradient bounds

0 < ε ≤ ∂u(t)
∂v(t)

≤ kmax{1, α, 2A}. (5.28)

Proof: See Appendix A.9.

5.4.3 Asymptotical learning convergence analysis

The difficulty in proving convergence of ILC algorithms for hysteretic systems arises

due to two reasons: (i) branching effects and (ii) nonlinearity of each branch [21]. The

latter issue can be addressed by standard ILC methods. However, the branching effect
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Figure 5.6: Graphic illustration of conditions C ′
3 and C ′

4 in γ-β plane, where µ satisfies

µµ1 = ( α
1−α − ε

(1−α)k ), µ1 = 2A + α
1−α − ε

(1−α)k . (a): µ1 > 0. Then, the condition
α

1−α + 2βA
β−γ ≥ ε

(1−α)k
is equivalent to β ≥ µγ(> γ). (b): µ1 = 0. The condition

α
1−α + 2βA

β−γ ≥ ε
(1−α)k is equivalent to γ ≤ 0. (c): µ1 < 0 and µ ≤ −1. The condition

α
1−α + 2βA

β−γ ≥ ε
(1−α)k is equivalent to β ≤ µγ(≤ −γ). It is noted that C ′

3 is an empty set

as µ1 < 0 and µ > −1. (d): 0 > A ≥ ε
(1−α)k

− α
1−α . Otherwise, the set C ′

4 is empty.

Figure 5.7: Class (C1): Hysteretic behavior with input v(t) = 2 sin t + cos 2t + 0.8, t ∈

[0, 10] that satisfies the input-output monotonicity property, where n = 3, A = 1.5, D =

1, k = 1, α = 0.5, β = 0.9, γ = 0.1, and the initial state is (v(0), u(0)) = (1.8, 0.9).

in hysteresis would result in loss of the ISIO property [77]. The reason branching causes

problems in proving convergence is because branching prevents the ILC algorithm from
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Figure 5.8: Class (C1): Profiles of input signal v(t) and its corresponding output signal

u(t) in time domain for the hysteresis model, where n = 3, A = 1.5, D = 1, k = 1, α =

0.5, β = 0.9, γ = 0.1, and the initial state is (v(0), u(0)) = (1.8, 0.9).

Figure 5.9: Class (C2): Hysteretic behavior with input v(t) = 2 sin t + cos 2t + 0.8, t ∈

[0, 10] that satisfies the input-output monotonicity property, where n = 3, A = 1.5, D =

1, k = 1, α = 0.5, β = 0.9, γ = 2.1, and the initial state is (v(0), u(0)) = (1.8, 0.9).

predicting the direction in which the input needs to be changed based on a measured

output error. Using the input-output monotonicity property in each branch, we can

obtain the following lemma which can help us overcome the branching effect.

Lemma 5.3 Consider the Bouc-Wen model (5.9)-(5.10) under either of the conditions

from (C1), (C2), (C ′
3) to (C ′

4). Given a desired C1 bounded reference signal ui,r(t), t ∈
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Figure 5.10: Class (C2): Profiles of input signal v(t) and its corresponding output signal

u(t) in time domain for the hysteresis model, where n = 3, A = 1.5, D = 1, k = 1, α =

0.5, β = 0.9, γ = 2.1, and the initial state is (v(0), u(0)) = (1.8, 0.9).

Figure 5.11: Class (C3): Hysteretic behavior with input v(t) = 2 sin t + cos 2t + 0.8, t ∈

[0, 10] that does not satisfy the input-output monotonicity property, where n = 3, A =

−1.5, D = 1, k = 1, α = 0.5, β = 0.9, γ = 0.1, and the initial state is (v(0), u(0)) =

(1.8, 0.9).

[0, T ] that the hysteresis system is able to track. Let λ = kmax{1, α, 2A}, and 0 < qh ≤

1/λ for the ILC law (7.4). Assume the initial input v0(t), t ∈ [0, T ] is C1 bounded. If

S (v̇0(t)) = S (u̇i,r(t)), then the four quantities uj, vj , ui,r and vi,r take same monotonic

properties at time t for all j = 0, 1, 2, · · ·.
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Figure 5.12: Class (C3): Profiles of input signal v(t) and its corresponding output signal

u(t) in time domain for the hysteresis model, where n = 3, A = −1.5, D = 1, k = 1, α =

0.5, β = 0.9, γ = 0.1, and the initial state is (v(0), u(0)) = (1.8, 0.9).

Figure 5.13: Class (C ′
3): Hysteretic behavior with input v(t) = 2 sin t + cos 2t + 0.8, t ∈

[0, 10] that satisfies the input-output monotonicity property, where n = 3, A = −1, D =

1, k = 5, α = 0.8, β = 1.0, γ = 0.2, and the initial state is (v(0), u(0)) = (1.8, 7.2).

Proof: See Appendix A.10.

Based on the results in Lemmas 5.1, 5.2, and 5.3, we have

Theorem 5.2 Consider the Bouc-Wen model (5.10) in one of the cases (C1), (C2),

(C′
3), and (C ′

4). If applying the control law

vj(t) = vj−1(t) + qh∆uj−1(t), 0 < qh ≤ 1
λ
, t ∈ [0, T ], (5.29)
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Figure 5.14: Class (C ′
3): Profiles of input signal v(t) and its corresponding output signal

u(t) in time domain for the hysteresis model, where n = 3, A = −1, D = 1, k = 5, α =

0.8, β = 1.0, γ = 0.2, and the initial state is (v(0), u(0)) = (1.8, 7.2).

Figure 5.15: Class (C4): Hysteretic behavior with input v(t) = 2 sin t + cos 2t + 0.8, t ∈

[0, 10] that does not satisfy the input-output monotonicity property, where n = 3, A =

−1.5, D = 1, k = 1, α = 0.5, β = 0.9, γ = −2.1, and the initial state is (v(0), u(0)) =

(1.8, 0.9).

where both the initial input v0(t) and the desired output ui,r(t) are C1 bounded and

λ = kmax{1, α, 2A}, then there exist ρ ∈ (0, 1) such that

|∆uj | ≤ ρ|∆uj−1| + |σj(t)|, (5.30)

where limj→∞ σj(t) = 0.
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Figure 5.16: Class (C4): Profiles of input signal v(t) and its corresponding output signal

u(t) in time domain for the hysteresis model, where n = 3, A = −1.5, D = 1, k = 1, α =

0.5, β = 0.9, γ = −2.1, and the initial state is (v(0), u(0)) = (1.8, 0.9).

Figure 5.17: Class (C ′
4): Hysteretic behavior with input v(t) = 2 sin t + cos 2t + 0.8, t ∈

[0, 10] that satisfies the input-output monotonicity property, where n = 3, A = −1, D =

1, k = 5, α = 0.8, β = 1.0, γ = −1.2, and the initial state is (v(0), u(0)) = (1.8, 7.2).

Proof: See Appendix A.11.

Based on the convergence results on the two single ILC loops, the CEF method is

then adopted in the next section to derive the convergence of dual-loop ILC.
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Figure 5.18: Class (C ′
4): Profiles of input signal v(t) and its corresponding output signal

u(t) in time domain for the hysteresis model, where n = 3, A = −1, D = 1, k = 5, α =

0.8, β = 1.0, γ = −1.2, and the initial state is (v(0), u(0)) = (1.8, 7.2).

5.5 Dual-loop Iterative Learning Control

In the preceding two sections, ILC laws have been presented for the x-subsystem

and the hysteretic subsystem separately. Obviously, if these two ILC loops are only

combined in a simple cascaded way, or in more detail if every input in the first loop is

sought by infinite iterations in the second loop, this will make the control learning very

inefficient, or even results in a failure. For saturation or deadzone input uncertainty, [117]

combines these two simple loops into a dual loop: one is to learn the unknown nominal

dynamics while the other is to learn the unknown actuator, and both of them are learned

simultaneously. Specifically, the whole ILC law is constructed as follows.

ui,r(t) = ui−1,r(t) + qei(t), (5.31)

∆ui(t) = ui,r(t) − ui(t), (5.32)

vi(t) = vi−1(t) + qh∆ui−1(t), (5.33)

where q > 0, 0 < qh ≤ 1/λ, λ = kmax{1, α, 2A}, u0,r = 0, ui(t) = u(vi(t), zi(t)),

t ∈ [0, T ]. We will state that the dual ILC loop is still applicable for the hysteretic input
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case, although the input uncertainty shows a dynamic behavior.

Theorem 5.3 Let Assumption 5.1 and one of the sets (C1), (C2), (C ′
3) and (C ′

4) hold.

For the system (5.1)-(5.3), using the dual ILC law (5.31-5.33) will yield that for any

small ι > 0, there exists a finite iteration number iι such that the output tracking error

|ei(t)| < ι for all i ≥ iι and t ∈ [0, T ].

Proof: See Appendix A.12.

Remark 5.2 In this work, a simple scalar dynamic system is considered only. However,

the dual-loop ILC structure can be further applied to more complex scenarios with slight

modification, e.g., the input nonlinearity is a combination of saturation, deadzone, and

saturation, or the system is multi-input-multi-output.

5.6 Extension to Singular Cases

Up to now, we did not consider the scenarios in which (C3) or (C4) is satisfied but

(C ′
3) and (C ′

4) are not. In these cases, the Bouc-Wen model may not keep the input-

output monotonicity property, which however is essential to any ILC strategy. Moreover,

the existence of positive parameter ε(≤ αk) in Lemma 5.2 further confines our previous

discussion into the strict monotonic case. In a strict point of view, when the strict input-

output monotonicity does not exist in hysteresis, the system could become singular at

a number of points and the learnability condition will be violated at those points [151].

In the following, two types of singularities are considered by considering the hysteretic

part or the loop 2 part only. In the first situation, the system gradient does not change

signs (the control direction) on the two sides of singular points or segments. For this

case, we need merely to do a very minor modification to the typical ILC updating law by
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adding a forgetting factor close to unity. Then, by the fixed point theorem, the revised

contraction mapping will generate a control input sequence converging to a unique fixed

point uniformly, and this fixed point warrants the hysteresis output to ultimately and

uniformly enter a small neighborhood of the target trajectory. In the second situation,

the gradient changes its sign on two sides of a singular point. Different from the first

case, we have to get to know when a second type singularity occurs, and how the sign

changes. For this case, in addition to the forgetting factor, we further incorporate the

sign changes into the revised ILC operator. By using the revised ILC law, the control

input sequence will converge uniformly to a unique fixed point, and the system enters

a designed neighborhood of the target trajectory except for a number of subintervals

centered about the second type singular points.

5.6.1 ILC for the first type of singularities

Figure 5.19: The first singular case: α = 0, where the hysteresis behavior corresponds to

the desired input vr(t) = sin 2t + 10 cos t − 10, t ∈ [0, 10]. It can be seen that u̇r(t) = 0

in certain intervals of [0, T ].

The Bouc-Wen model was originally developed in the context of mechanical systems

in which v is a displacement and u(v(t), z(t)) is a restoring force. It represents the
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hysteretic force u as the superposition of an elastic component αkv and a purely hysteretic

component (1 − α)kDz. If we only take the pure hysteretic component into account or

equivalently let α = 0, the input-output monotonicity can be guaranteed as A 6= 0, or

specifically ∂u/∂v ≥ 0 as A > 0 and ∂u/∂v ≤ 0 as A < 0 but its strictness will be

violated in some segments. As a first extension, we consider this case in the following.

Now, only focus on the hysteretic part and the system (5.2)-(5.3) becomes

ż = v̇[D−1(A− |z|n(γ + βS(v̇z)))],

u = kDz, z(0) = 0. (5.34)

Subsequently,

u̇ = ˙ v
(
kA− |u|n

kn−1Dn
(γ + βS(v̇u))

)
, u(0) = 0, (5.35)

satisfying 0 ≤ ∂u/∂v ≤ 2kA in (C1) and (C2), and min{2kAβ/(β−γ), kA} ≤ ∂u/∂v ≤ 0

in (C3) and (C4) by similar discussion as in (8.44)-(8.49). The ILC algorithms corre-

sponding to the four cases are

vj(t) = (1− ζ0)vj−1(t) + qh∆uj−1(t), (5.36)

where ζ0 is a constant satisfying 0 < ζ0 � 1, qh > 0 in (C1) and (C2) while qh < 0 in

(C3) and (C4). ∆uj−1 = ur−uj−1, where ur is uniquely determined by the desired input

vr(t) and dynamics

u̇r = v̇r

(
kA− |ur|n

kn−1Dn
(γ + βS(v̇rur))

)
,

ur(0) = 0.

Different from the normal case, the hysteresis output u(t) is only relative to the variation

rate of the input, i.e. v̇(t), as shown in (5.35), although v(t) is the real system input in
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practice. Thus, it is rational to assume an i.i.c. in the ILC law (5.36), namely

vj(0) = v0(0) = ξv, j = 1, 2, · · · . (5.37)

Note that the value of constant ξv may be unknown to us and different from the initial

value of desired input vr(0).

Theorem 5.4 Consider the hysteresis dynamics (5.35) and let the magnitude of learning

gain qh satisfy

0 < |qh| ≤
1 − ζ0
λ

(5.38)

where λ = 2kA in (C1) and (C2) and λ = −min{2kAβ/(β − γ), kA} in (C3) and (C4).

Then, assuming v0 is C1 bounded, the ILC law (5.36) under condition (5.37) warrants a

convergent sequence vj to a unique fixed point v∗, and there exists a constant 0 < ρ < 1

such that the output error ∆uj satisfies

|∆uj(t)| ≤ ρ|∆uj−1(t)|+ |σj(t)|, t ∈ [0, T ], (5.39)

in which the function σj(t) is bounded and

|σj(t)| ≤
ζ0(1 − ρ)

|qh|
|v∗(t)|s

as j → ∞, where |v∗(t)|s represents the supreme norm of v∗(t) over [0, T ].

Proof: See Appendix A.13.

Remark 5.3 From (8.84), the residual part σj(t) will approach to zero with an error

of ζ0(1−ρ)
|qh| |v∗(t)|s, which could be small enough by tuning the parameters ζ0 and ρ. By

combining the results in Theorems 5.1 and 5.4, the convergence of dual loop ILC for the
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case of α = 0 can be achieved similarly as in Theorem 6.1. The only difference is that

in (8.76), i.e.,

Ei(t) ≤ E0 +
(

1 + ρ2

2q (1 − ρ2)ρ2

)∫ t

0

i∑

p=1

|σp(τ)|2dτ

−1
2
e−ζT

i−1∑

p=0

e2p−1, (5.40)

σp does not vanish any more but converges to a small neighborhood of zero. As such, the

positiveness of Ei(t) implies that as i→ ∞

1 + ρ2

2q (1 − ρ2)ρ2

∫ t

0

ζ0(1 − ρ)
|qh|

|v∗(t)|sdτ ≥ 1
2
e−ζT e2i (t)

Accordingly, the dual-loop tracking error should be finally bounded by
√
TeζT

1 + ρ2

q (1 + ρ)ρ2

ζ0
|qh|

|v∗(t)|s.

Since 0 < ζ0 � 1 is a tunable parameter, this bound could be very small.

5.6.2 ILC for the second type of singularities

As the parameter set (C3) or (C4) holds, the input-output monotonicity of the hys-

teretic subsystem may not hold, i.e., there exist singular points in which the following

gradient changes signs.

∂u

∂v
= αk + (1 − α)k (5.41)

×
(
A−

∣∣∣∣
u− αkv

(1 − α)Dk

∣∣∣∣
n (

γ + βS
(
v̇(u− αkv)
(1 − α)Dk

)))
.

Specifically, according to Lemma 5.2, in (C3)

αk + 2(1 − α)k
βA

β − γ
≤ ∂u

∂v
≤ kα, (5.42)

and in (C4)

αk + (1− α)kA ≤ ∂u

∂v
≤ kα. (5.43)
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If αk + 2(1 − α)k βA
β−γ < 0 in (C3) or αk + (1 − α)kA < 0 in (C4), the second type of

singularities occurs. For this scenario, more knowledge is needed for the desired gradient

variation such that we can derive a smooth control gain function qh(t) ∈ C1([0, T ],R) to

ensure qh(t)∂ur/∂vr ≥ 0.

Theorem 5.5 Consider the hysteresis dynamics (5.10) and the following ILC law

vj(t) = (1 − ζ0)vj−1(t) + qh(t)∆uj−1(t) (5.44)

where 0 < ζ0 � 2/3, 0 < |qh(t)| ≤ q0h ≤ ζ0

2λ , t ∈ [0, T ], and λ is the upper bound of the

gradient, i.e.,

λ = max
{∣∣∣∣αk + 2(1 − α)k

βA

β − γ

∣∣∣∣ , kα
}

in (C3) and

λ = max {|αk + (1− α)kA| , kα}

in (C4). Divide the interval [0, T ] into two subsets: Ω1 =
{
t ∈ [0, T ] : |qh(t)| = q0h

}
and

Ω2 = [0, T ]−Ω1, where Ω2 is composed of a number of open sets, each covering a singular

point ts with its length δ. Then, assuming v0 is C1 bounded, the ILC law (5.44) warrants

a convergent sequence vj to a unique C1 function v∗(t), and there exists a constant

0 ≤ ρ < 1 such that the output error ∆uj satisfies

|∆uj(t)| ≤ ρ|∆uj−1(t)|+ |σj(t)|, t ∈ [0, T ], (5.45)

in which the function σj(t) is bounded and

|σj(t)| ≤
ζ0(1 − ρ)

|q0h|
|v∗(t)|s + δ(1− ρ)

2∑

i=1

βi (5.46)

as j → ∞, where the constants βi satisfy

|u̇r(t)| ≤ β1, |u̇∗(t)| 4
= |u̇(v∗(t))| ≤ β2, t ∈ Ω2.
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Proof: See Appendix A.14.

Remark 5.4 As can be seen from (5.41), the gradient of the hysteretic subsystem is

highly nonlinear with respect to input v(t) and output u(t). By using only its bound

information, the asymptotical error bound for σj in (5.46) may not be small enough, due

to ζ0/|q0h| ≥ 2λ. One more point is that the exact value of such bound is unknown to us

beforehand. Therefore, the proposed dual-loop ILC could lose its efficiency in the case of

large λ, and a better choice is to do search of gradient direction, in a lazy or intelligent

way [154].

Remark 5.5 The dual-loop ILC design and convergence analysis under the second type

of singularity can be done similarly as in the first singularity case or the normal cases.

5.7 Illustrative Examples

Consider the tracking problem of the following dynamics

ẋ = −2x+ 3 sin
(x

2
+ t
)

+ u,

ż = D−1(Av̇ − β|v̇||z|n−1z − γv̇|z|n),

u = αkv + (1− α)Dkz, z(0) = 0, (5.47)

where the unknown function η(x, t) = −2x + 3 sin
(

x
2 + t

)
satisfies the global Lipschitz

condition with Lipschitz constant Lη = 7/2. The output x(t) is desirable to track the

reference signal xr(t), t ∈ [0, 10], which is determined by the reference controller input

vr(t) = 2 sin t + cos 2t − 1 and its initial value xr(0) = 1. In the simulation, the initial

input signal is originated by a PD controller with appropriate gains (kp = 0.2, kd = 0.01),

and the sampling time is set as 0.001 s.
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Assume n = 3, A = −1, D = 1, k = 5, α = 0.55, β = 1, and γ = −2, which satisfy the

scenario (C ′
4). Then, λ = 5 and 0 < qh ≤ 1/5. Design the learning law as follows,

ui,r(t) = ui−1,r(t) + 0.3ei(t), u0,r = 0,

∆ui(t) = ui,r − u(vi, z(vi, v̇i, t)),

vi(t) = vi−1(t) + 0.2∆ui−1(t). (5.48)

Figs. 5.20-5.23 give the simulation results. They reveal that the proposed dual learning

control scheme can work well under hysteresis input uncertainty.

Figure 5.20: The learning result of system output x(t), t ∈ [0, 10] with a stop condition

|ei| < 0.01. The reference trajectory xr(t) is determined by the whole system (5.1)-(5.3)

with a desired input vr(t) = 2 sin t + cos 2t− 1, t ∈ [0, 10].

Further simulate the scenario α = 0. Set n = 3, A = 0.1, D = 1, k = 5, β =

0.2, γ = 2.1, and the desired input be vr(t) = sin 2t + 10 cos t − 10, t ∈ [0, 10] for system

(5.47) so that the desired hysteresis behavior can show obvious singularities, as shown

in Fig. 5.19. This set of parameters belong to (C2), and the corresponding λ = 2kA = 1.

By (5.38), 0 < qh < 1 − ζ0. Choose ζ0 = 0.02 and qh = 0.2 in (5.36). Figs. 5.24-5.27

give the simulation results, which also reflect the effectiveness of ILC strategy as some

singularities involved.
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Figure 5.21: The learning result of the hysteresis input v(t), t ∈ [0, 10].

Figure 5.22: The learning result of the hysteresis output u(t), t ∈ [0, 10]. The reference

trajectory ur(t) is given by the hysteresis part (5.2) and (5.3) with the desired input

vr(t).

5.8 Conclusion

In this chapter, a dual-loop ILC scheme is designed for a class of nonlinear systems

with hysteresis input uncertainty. The two ILC loops are applied to the nominal part

and the hysteresis part respectively, to learn their unknown dynamics. Based on the

convergence analysis for each single loop, a composite energy function method is then

adopted to prove the learning convergence of the dual-loop system in iteration domain.
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Figure 5.23: The variation of the maximal output error |ei| with respect to iteration num-

ber. Asymptotical convergence of tracking for systems with hysteretic input nonlinearity

can be investigated with an acceptable error (≤ 0.01).

Figure 5.24: The learning result of system output x(t), t ∈ [0, 10] with a stop condition

|ei| < 0.01 as α = 0. The reference trajectory xr(t) is determined by the whole system

(5.1)-(5.3) with a desired input sin 2t+ 10 cos t− 10, t ∈ [0, 10].

We further generalize the ILC law to deal with two singular cases in which the strict

input-output monotonicity is violated. Note that the hysteretic output signal is assumed

to be measurable in our control design. Our next aim is to consider more practical ILC

design for the scenarios including that the internal hysteretic state is not accessible, and

experiment test for those systems having hysteresis input uncertainties.
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Figure 5.25: The learning result of the hysteresis input v(t), t ∈ [0, 10] as α = 0. It can

be seen that the learned input signal v(t), or the fixed-point input function v∗(t) in the

inner loop as i→ ∞ could show much deviation compared with the desired input vr(t).

Even so, they will yield similar hysteretic output profiles. Investigating the hysteresis

dynamics as α = 0, u̇ = ˙ v(kA− |u|n/(kn−1Dn)(γ + βS(v̇u))), the hysteretic output u(t)

is relevant to v̇ and its sign if the factor kA−|u|n/(kn−1Dn)(γ+βS(v̇u)) does not vanish,

and otherwise relevant to its sign only.

Figure 5.26: The learning result of the hysteresis output u(t), t ∈ [0, 10] as α = 0. The

reference trajectory ur(t) is given by the hysteresis part (5.2) and (5.3) with the desired

input vr(t) = sin 2t+ 10 cos t − 10, t ∈ [0, 10].

Compared with the process control governed by ODEs, the control of PDEs will

illustrate more different characteristics. In the next phase, we consider the boundary
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Figure 5.27: The variation of the maximal output error |ei| with respect to iteration

number as α = 0. Asymptotical convergence of tracking for systems with hysteretic

input nonlinearity can be investigated with an acceptable error (≤ 0.01).

control for a class of strictly repeatable biochemical processes, by adopting the idea of

ILC.



Chapter 6

Iterative Boundary Learning

Control for a Class of Nonlinear

PDE Processes

6.1 Introduction

Compared with the control of processes described by ODEs, fewer control schemes

have been developed for processes described by PDEs. A major portion of established

PDE control schemes focus on the use of distributed actuation, namely, the control action

depends on the spatial coordinates. However, in many important industrial processes

the control actuation is achieved through the boundary of the process, such as the case

of chemical and biochemical reactors where the manipulated input is the fluid velocity

at the feed of the process [37, 63]. In [107]- [110], the boundary control of PDEs with

adaptive control methodology is extended to cope with either stable or unstable PDEs.

These works are built upon explicitly parameterized control formulae to avoid solving

Riccati or Bezout equations at each time step. Backstepping is also adopted to solve

the problem of stabilization of some PDEs by using boundary control in [69, 111]. In

practice, however, simple controllers such as PI or PID compensators are most widely
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used by process engineers in the chemical and biochemical industry, owing to many

reasons such as implementability, the long history of proven operation and robustness,

and the fact that these simple controllers are well understood by industrial practitioners.

We know that the major difficulty in PDE control is how to optimally tune the

controller gains. When process uncertainties are present, it is almost impossible to find

the values or bounds of the controller gains such that the closed-loop performance can

be guaranteed for the PDE processes, as can be seen from [63].

In this chapter, we assume that the PDE procuress under consideration is strictly

repeatable, which is one of the main features in certain types of real process control

including industrial chemical [34] and biochemical reactors [37]. We develop an ILC for

a class of SISO nonlinear PDE processes with boundary control, and in the presence of

parametric/non-parametric uncertaitnies affecting the interior of the domain. The con-

trol objective is to iteratively tune the velocity boundary condition on one side such that

the boundary output on the other side can be regulated to a desired level. The main

result of the chapter shows that, under physically reasonable input-output monotonicity,

stability and steady-state assumptions, the desired regulation output can be achieved

with an acceptable small error by iteratively tuning the boundary velocity in finite iter-

ations, under input saturation and system uncertainties, where the feasible bound of the

IBLC gain and its learning rate are clearly analyzed.

This chapter is organized as follows. Section 6.2 presents the PDE systems and state

the control problem. Section 6.3 presents the main result. Section 6.4 gives an example

on a tubular bioreactor. Section 6.5 closes the work with some conclusions.
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6.2 System Description and Problem Statement

Consider the following SISO quasi-linear PDE processes with velocity boundary con-

trol [63]

∂c(z, t)
∂t

= −B∂(v(z, t)c(z, t))
∂z

+D
∂2c(z, t)
∂z2

+ f(c(z, t), z), (6.1)

∂v(z, t)
∂t

= −v(z, t)∂v(z, t)
∂z

, (6.2)

with the controlled output

y = h(c(L, t)), (6.3)

the boundary conditions

A1c(0, t) + B1
∂c(0, t)
∂z

= C1, (6.4)

A2c(L, t) + B2
∂c(L, t)
∂z

= C2, (6.5)

and

a1u(t) + b1
∂v(0, t)
∂z

= c1, (6.6)

a2v(L, t) + b2
∂v(L, t)
∂z

= c2, (6.7)

and the initial condition

c(z, 0) = c0(z), (6.8)

v(z, 0) = v0(z). (6.9)

Here, c ∈ H([0, L]× [0, T ],Rn) is the vector of process variables, v ∈ H([0, L]× [0, T ],R)

is the fluid velocity where 0 < L, T < ∞, and y = h(c) ∈ R denotes the controlled

output, the boundary condition u(t) = v(0, t) ∈ R denotes the manipulated variable,
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z ∈ [0, L] is the spatial coordinate, t ∈ [0, T ] is the time. Ai, Bi, i = 1, 2, B > 0 and

D > 0 are matrices of suitable dimension, and ai, bi, ci, i = 1, 2 are scalar parameters. In

Eqs. (6.1) and (6.3), f(c, z) and h(c) are C1 nonlinear functions, satisfying the Lipschitz

conditions, i.e., for c1, c2 ∈ H([0, L]×[0, T ],Rn), z ∈ [0, L], there exist a known integrable

Lipschitz function ωf (z) and another Lipschitz constant ωh such that

‖f(c1, z)− f(c2, z)‖ ≤ ωf (z)‖c1 − c2‖, (6.10)

and

‖h(c1) − h(c2)‖ ≤ ωh‖c1 − c2‖. (6.11)

The above PDE models generally describe the diffusion-convection phenomena in

some open-loop processes. Many important industrial processes can be formulated within

this modelling framework, e.g., industrial chemical [37], biochemical reactors [34], heat

exchangers [98], and biofilters for air and water pollution control [106]. For instance,

when regulating the total amount of output flow pollutions (e.g. toluene vapor) via

manipulations of the input flow rate in an airstream biofilter, the vector c(z, t) denotes

the distribution of pollutants, the parameters B and D are the convection and diffusion

coefficients of the pollutions in filter, and the term f(c(z, t), z) represents the bio-reaction

rate that affects the pollution concentration in filter. On the other hand, Eq. (6.2)

approximates the fluid velocity field along the process, and it keeps the basic feature

for our control design and analysis. When the fluid is incompressible, it can be written

as v(z, t) = u(t) directly. Actually, the plant (6.2) reveals that the disturbances in the

feed velocity u(t) are transported along the process, and it would induce certain delay

in the control action. Notice that even if f(c(z, t), z) is a linear function and the fluid is

incompressible, the control problem is still nonlinear due to the product v∂c/∂z. Our
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discussion in the Section III states that the proposed IBLC scheme is also applicable

when more sophisticated velocity field models are adopted.

For the PDE process (6.1)-(6.9), two restrictions or assumptions are usually involved:

velocity saturation and output measurement ability. The details are as follows:

Assumption 6.1 The process is operated within the velocity restriction v(z, t) ∈ [vmin, vmax],

with vmax > vmin ≥ 0.

Assumption 6.2 The controlled output y = h(c) is available for measurements with

certain time delay.

Remark 6.1 From the physical point of view, Assumptions 6.1 and 6.2 are fundamental

and rational. The output measurement ability enables us to use the feedback-type control

scheme while the existence of velocity bounds facilitate the convergence design by choosing

appropriate learning gains. Since only a rough estimation of the velocity bounds is needed

here, it can be available to us before implementing the proposed control law. Moreover,

since what we concern is in the steady-state period only, any finite measurement delay

would not degrade the control performance.

In this work, we also assume the PDE process is strictly repeatable in time domain

and spatial domain so that the ILC scheme can be utilized here in an iterative manner.

This kind of processes may be frequently encountered in chemical or biochemical industry.

Let y∗ ∈ R be any given set point that can be regulated for the process output by tuning

the boundary velocity u(t). The control task is to design a simple ILC law

ui+1(t) = ui(t) + ρ(y∗ − yi(t)), (6.12)
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where i is the iteration number, such that the regulation error y∗ − yi(t) can converge

into an acceptable neighborhood of zero pointwisely within finite iterations. ρ is the

undetermined learning gain.

Let

F1(c, v)
4
= −B∂(vc)

∂z
+D

∂2c
∂z2

+ f(c, z), (6.13)

F2(v)
4
= −v ∂v

∂z
. (6.14)

Consider a constant boundary velocity input u(t) = ū > 0, t ∈ [0, T ]. Then, the steady

state velocity, defined by v̄(z), satisfies F2(v̄(z)) = 0, or equivalently, v̄(z) = 0 or ∂v̄/∂z =

0. Since v̄(0) = ū > 0, it yields that

v̄(z) = ū, z ∈ [0, L]. (6.15)

Thus, the corresponding steady state of the process, denoted by c̄, satisfies the relation-

ship F1(c̄, ū) = 0. If c̄ is uniquely determined by the implicit function F1(c̄, ū) = 0, it

should be more rational to revise the IBLC law as follows

ūi+1 = ūi + ρ(y∗ − ȳi), ȳi
4
= h(c̄(ūi)), (6.16)

since the output set-point problem at the steady state stage is considered only. Therefore,

two more assumptions are given as follows to make valid of our subsequent discussion.

Assumption 6.3 Each steady state output ȳ
4
= h(c̄(ū)) is achieved by one and only one

constant boundary velocity input ū.

Remark 6.2 The above assumption implies that the map ū → h(c̄(ū)) is a bijection

map, or equivalently the strict monotonicity of input-output relationship holds, i.e.,

(
∂h

∂c

)T ∂c
∂ū

> (<)0, ∀ū ∈ [vmin, vmax].
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This is physically reasonable, and many control processes possess such a good property,

e.g., the anaerobic digestion process mentioned below where the steady-state output ȳ =

c̄(L) is a strictly increasing function of the steady-state velocity input ū. This condition

implies the fact that the larger the feed velocity, the smaller the residence time of the

pollutants, which yields lower degradation of pollutants.

Of course, a general application of ILC may not need the injectivity of input-output

map. As such, the desired input signal could become non-unique and the contraction

mapping method we used here will lose its efficiency.

Next, one more stability and steady state assumption is given.

Assumption 6.4 For all constant input ū ∈ [vmin, vmax], and all initial condition c0(z) ∈

H([0, L],Rn), v0(z) ∈ H([0, L],R), the solution of (6.1)-(6.9) is uniformly asymptotically

stable (uniform in the constant input ū), namely, the process will reach steady state after

a sufficient time interval.

Remark 6.3 The above stability assumption implies that the energy of the perturbation

variables c(z, t) − c̄(z) and v(z, t) − v̄(z) decays in an asymptotical way at any position

z. In a qualitative point of view, it states the diffusion-convection ability, source effect,

and boundary condition effect for the process. Actually, many real processes show their

exponential stability in time, and all kinds of methods, e.g., energy methods [113], are

utilized to detect the decay rate in analysis. The process example we presented in Sec-

tion IV was proven to satisfy the exponential stability in [63], and thus the asymptotical

stability assumption.

Based on Assumption 6.4, without loss of generality, we further assume that for any
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ε > 0 there exists Tε < T such that max{‖c(z, t) − c̄(z)‖, |v(z, t) − v̄(z)|} < ε for all

t ∈ [Tε, T ], ū ∈ [vmin, vmax].

6.3 IBLC for the Nonlinear PDE Processes

In this section, we first analyze the convergence of the IBLC algorithm, and then give

an estimation for its learning rate. In the end, a more complex fluid velocity dynamics

is addressed.

6.3.1 Convergence of the IBLC

Recall that gradient estimation of the input-output mapping is always crucial for any

ILC design, and its precise information should be helpful for us to design the learning

gain such that fast control convergence can be derived. Note that Assumptions 6.3 and

6.4 enable us to consider the IBLC at steady state stage only. As the first step, we

aim to derive a quantitative bound for the steady state of process c̄(z), whose existence

has been implied by Assumption 6.4, and it can be used to estimate the gradient in the

following.

Property 6.1 Under the above assumptions, the steady state of process c̄(z) is bounded

from the above by the quantity

Ξ0(z)

4
=

((
1 + vmaxz

∥∥D−1B
∥∥) ‖c̄(0)‖+ z

∥∥∥∥
∂c̄(0)
∂z

∥∥∥∥
)

× exp
(∫ z

0

[
vmax‖D−1B‖

+‖D−1‖(z − τ)ωf (τ)
]
dτ
)
.
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Proof: See Appendix A.15.

With the help of Property 6.1, we can achieve our main result.

Theorem 6.1 Consider the PDE process (6.1)-(6.9) satisfying Assumptions 6.1-6.4 and

under the ILC law (6.16). If ū∗ ∈ [vmin, vmax], where ū∗ is the desired constant boundary

velocity corresponding to y∗, and sign(ρ) = sign
((

∂h
∂c̄

)T ∂c̄
∂ū

)
and

1 − δ

λ
< |ρ| < 1 + δ

λ
, 0 < δ < 1, (6.17)

where λ = ωhΞ1 with

Ξ1 = ‖D−1B‖
(∫ L

0
‖Ξ0(z)‖dz + ‖c̄∗(0)‖L

)

× exp
(∫ L

0

(
vmax‖D−1B‖

+‖D−1‖(L− z)ωf (z)
)
dz
)
, (6.18)

then for any ε > 0 given in Assumption 6.4, |yi(t)− y∗| ≤ ωhε as i→ ∞ and t ∈ [Tε, T ].

Proof: See Appendix A.16.

In real process control, input saturation is another concern we have to address. Fol-

lowing the IBLC law (6.16), the control input signal may become not implementable.

With the saturation a control process becomes highly nonlinear, even for linear time-

invariant systems. The existence of input saturation might cause the exhibition of a

limit cycle or even unstable performance [143]. Therefore, the analysis of an iterative

learning control process with input saturation would be very meaningful and indispens-

able in practice. Next, we will show that the IBLC with input saturation can be discussed

in a similar way as the original IBLC without any input saturation.

Revise (6.16) to the actual case

ūi+1 = Proj (ūi + ρ(y∗ − ȳi)) , ȳi
4
= h(c̄(ūi)), (6.19)
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where the projection operator Proj(·) is defined as follows.

Proj(ū) =





vmin, ū ≤ vmin,

vmax, ū ≥ vmax,

ū, otherwise.

(6.20)

Property 6.2 For a given ū∗ ∈ [vmin, vmax], the following inequality holds:

|ū∗ − Proj(ū)| ≤ |ū∗ − ū|. (6.21)

Proof. Note that vmin ≤ ū∗ ≤ vmax. If ū ≥ vmax, then Proj(ū) = vmax ≤ ū, and

subsequently 0 ≤ vmax − ū∗ = Proj(ū)− ū∗ ≤ ū− ū∗, implying (6.21). If ū ≤ vmin, then

Proj(ū) = vmin ≥ ū, and subsequently 0 ≥ vmin − ū∗ = Proj(ū) − ū∗ ≥ ū − ū∗, also

implying (6.21). If ū ∈ [vmin, vmax], then Proj(ū) = ū and |ū∗ − Proj(ū)| = |ū∗ − ū|.

According to Property 6.2, the convergence of input error for (6.19) can be derived

as follows.

|∆ūi+1| = |ū∗ − ūi+1|

= |ū∗ − Proj (ūi + ρ(y∗ − ȳi)) |

≤ |ū∗ − ūi − ρ(y∗ − ȳi)|. (6.22)

Then, similar to the discussion from (8.103) to (8.105), we have that

|∆ūi+1| ≤ δ|∆ūi| < |∆ūi|,

where the relationships (6.17) and (8.100) are used.

6.3.2 Learning rate evaluation

Since the parameter ε could be arbitrarily small in Theorem 6.1, the output regulation

error yi(t)− y∗ in the IBLC can converge into a sufficiently small neighborhood of zero.
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However, this is due to the infinite iterations or experimental trials which may not be

feasible in real implementation. To evaluate the performance of proposed scheme in finite

iterations, we ignore the steady-state estimation error, that is, assume ε = 0, and present

the following result.

Theorem 6.2 Let all the notations be same as in Theorem 6.1. For any given ε1 > 0,

by applying the control law (6.16) and choosing the learning gain in the range as given

in (6.17), the output ȳi will converge to the ε1-neighborhood of the desired set-point y∗

with a finite number of iterations no more than

Nε1 =
log

ε1
(vmax − vmin)λ

log
(

1 − (1 − δ)
ε1

(vmax − vmin)λ

) + 1.

where λ is given below (6.17).

Proof: See Appendix A.17.

Remark 6.4 After Nε1 iterations, the actual output regulation error should be bounded

as follows:

|yi(t) − y∗| ≤ |∆ȳi| + |yi(t) − ȳi|

≤ ε1 + ωhε, t ∈ [Tε, T ].

6.3.3 Extension to more general fluid velocity dynamics

Eq. (6.2) represents an approximate model of the fluid velocity field along the process

without fluid dispersion. Its structure simplifies our IBLC convergence proof because

v̄(z) = ū is a constant along the spatial coordinate z. Actually, more sophisticated
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velocity dynamics can be considered in a similar way. Next, assume the velocity part

takes the following structure

∂v(z, t)
∂t

= −Bv
∂v(z, t)
∂z

+Dv
∂2v(z, t)
∂z2

(6.23)

with boundary conditions

v(0, t) = u(t), (6.24)

a2v(L, t) + b2
∂v(L, t)
∂z

= c2, (6.25)

where the parameters Bv , Dv, a2, b2, and c2 are non-negative constants. For this case,

the steady state of v(z, t), determined by equation

F2(v̄, ū)
4
= −Bv

∂v̄(z)
∂z

+Dv
∂2v̄(z)
∂z2

= 0, (6.26)

is not of constant any more but a function of the constant boundary velocity ū and spatial

coordinate z. Specifically, solving (6.26) with boundary conditions v̄(0) = ū, a2v̄(L) +

b2dv̄(L)/dz = c2 yields that

v̄(z, ū)

=
−c2Dv + ū(a2Dv + b2Bv) exp

(
Bv
Dv
L
)

(a2Dv + b2Bv) exp
(

Bv
Dv
L
)
− a2Dv

− Dv(a2ū− c2)

(a2Dv + b2Bv) exp
(

Bv
Dv
L
)
− a2Dv

× exp
(
Bvz

Dv

)
, (6.27)

whose derivative with respect to ū is

(a2Dv + b2Bv) exp
(

Bv
Dv
L
)
− a2Dv exp

(
Bv
Dv
z
)

(a2Dv + b2Bv) exp
(

Bv
Dv
L
)
− a2Dv

. (6.28)

Noticing that 0 ≤ z ≤ L and the non-negativity of parameters Bv , Dv, a2, b2, and c2, we

can see that

0 ≤
b2Bv exp

(
Bv
Dv
L
)

(a2Dv + b2Bv) exp
(

Bv
Dv
L
)
− a2Dv

≤ ∂v̄

∂ū
,
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and

κ :=
(a2Dv + b2Bv) exp

(
Bv
Dv
L
)

(a2Dv + b2Bv) exp
(

Bv
Dv
L
)
− a2Dv

≥ ∂v̄

∂ū
. (6.29)

Thus, the bounds and sign information of the gradient ∂v̄/∂ū are known to us, and then

the IBLC for this scenario can be analyzed along the way we presented before.

Integrating F1(c̄(z), v̄(z)) = 0, where F1 is defined in (6.13), along the spatial coor-

dinate from 0 to z,

−Bv̄(z)c̄(z) +D
∂c̄(z)
∂z

+
(
Bv̄(0)c̄(0)−D

∂c̄(0)
∂z

)

+
∫ z

0
f(c̄(τ), τ)dτ = 0. (6.30)

Further integrating (6.30), it yields that

−B
∫ z

0

v̄(τ)c̄(τ)dτ +D(c̄(z)− c̄(0))

+
(
Bv̄(0)c̄(0)−D

∂c̄(0)
∂z

)
z

+
∫ z

0
(z − τ)f(c̄(τ), τ)dτ = 0, (6.31)

or equivalently

c̄(z) = c̄(0) +D−1B

∫ z

0
v̄(τ)c̄(τ)dτ

−
(
D−1Bv̄(0)c̄(0)− ∂c̄(0)

∂z

)
z

−D−1

∫ z

0
(z − τ)f(c̄(τ), τ)dτ. (6.32)

Noticing the velocity restriction v̄(z) ∈ [vmin, vmax], the Property 6.1, i.e. ‖c̄(z)‖ ≤ Ξ0(z),

still holds for this scenario by applying the generalized Gronwall inequality.

Now, we are in the position of deriving the relationship of input/output errors by

using the formula (6.32). Similarly as from (8.97) to (8.99), using the strict repeatable

assumption for the process, the boundedness property of c̄(z), the velocity restriction,
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and the Lipschitz condition of f(c̄(z), z) in i-th iteration will give that

‖∆c̄i(L)‖

=
∥∥∥∥D−1B

(∫ L

0
v̄∗(z)c̄∗(z)dz − v̄∗(0)c̄∗(0)L

)

−D−1

∫ L

0
(L− z)f(c̄∗(z), z)dz

−D−1B

(∫ L

0
v̄i(z)c̄i(z)dz − v̄i(0)c̄i(0)L

)

+D−1

∫ L

0
(L− z)f(c̄i(z), z)dz

∥∥∥∥

≤ ‖D−1B‖‖v̄i(0)c̄i(0)− v̄∗(0)c̄∗(0)‖L

+ ‖D−1B‖
∫ L

0

|v̄∗(z)|‖∆c̄i(z)‖dz

+ ‖D−1B‖
∫ L

0
|v̄∗(z) − v̄i(z)|‖c̄i(z)‖dz (6.33)

+ ‖D−1‖
∫ L

0
(L− z)

× ‖f(c̄∗(z), z)− f(c̄i(z), z)‖dz

≤ ‖D−1B‖‖c̄∗(0)‖L|v̄∗(0)− v̄i(0)|

+ ‖D−1B‖
∫ L

0
|v̄∗(z) − v̄i(z)|Ξ0(z)dz

+
∫ L

0

(
vmax‖D−1B‖ + ‖D−1‖(L− z)ωf (z)

)

× ‖∆c̄i(z)‖dz. (6.34)

In (6.34), the velocity error v̄∗(z)− v̄i(z) is relevant to the input error ∆ūi. By the Mean

Value Theorem, there exists a point ηi between ū∗ and ūi such that for z ∈ [0, L]

|v̄∗(z) − v̄i(z)| ≤
∣∣∣∣
∂v̄

∂ū
(z, ηi)

∣∣∣∣ |∆ūi| ≤ κ|∆ūi|, (6.35)

where κ, defined in (6.29), is the upper bound of ∂v̄/∂ū. Subsequently, the relationship

between input error and output error is determined by the following inequality

‖∆c̄i(L)‖
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≤ κ‖D−1B‖
(∫ L

0

Ξ0(z)dz + ‖c̄∗(0)‖L
)
|∆ūi|

+
∫ L

0

(
vmax‖D−1B‖ + ‖D−1‖(L− z)ωf (z)

)

× ‖∆c̄i(z)‖dz. (6.36)

Similar to the proof in Theorem 6.1, it yields by using the generalized Gronwall inequality

that

‖∆c̄i(L)‖ ≤ Ξ′
1|∆ūi|, (6.37)

where Ξ′
1 = κΞ1.

Now, substituting Ξ1 by Ξ′
1 in Theorems 6.1 and 6.2, the remaining part of the IBLC

convergence proof and its learning rate evaluation for this scenario can be done in a same

way as in the first two parts of this section.

6.4 Illustrative Example and Its Simulation

In this section, we consider an anaerobic digestion process control for wastewater

treatment by using the proposed IBLC scheme. The anaerobic digestion takes places in

a fluidized-like bio-reactor where biomass (bacteria consortium) is attached on a plastic

support. Once after biomass attains a stable structure and concentration, wastewater

is fed to the bio-reactor, in which pollutants are converted into methane and carbon

dioxide gases [25,63]. The process model is expressed as follows:

∂c(z, t)
∂t

= −B∂(v(z, t)c(z, t))
∂z

+D
∂2c(z, t)
∂z2

− µc(z, t), (6.38)

∂v(z, t)
∂t

= −v(z, t)∂v(z, t)
∂z

(6.39)
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with the controlled output y = c(L, t), the initial conditions c(z, 0) = c0, v(z, 0) = v0,

and the boundary conditions:

c(0, t) = C1,
∂c(L, t)
∂z

= 0, (6.40)

v(0, t) = u(t) = ū,
∂v(L, t)
∂z

= 0. (6.41)

In this model, the non-negative states c(z, t), v(z, t) ∈ R, z ∈ [0, L], t ∈ [0, T ] de-

note the pollutant concentration in the wastewater and the feed flow rate respectively,

f(c) = −µc is the bio-reaction rate at which pollutants are converted into bio-gas for

the scenario of low and moderate concentrations, B and D are the parameters rele-

vant to advection average velocity and dispersion respectively. The control task is to

keep the effluent pollutant concentration y(t) at a given constant value y∗ by tun-

ing the feed flow rate u(t) at the boundary z = 0. Efficient regulation of y(t) is

very important for environment conservation in both industrial and municipal wastew-

aters [119]. For the case of v(z, t) = v(t), [63] has considered this problem by us-

ing PI-type controller. Next, we will show that the proposed IBLC controller is effi-

cient to achieve effluent regulation under repeatable environment. For illustration, let

L = 1.0 m,T = 48 h,B = 1.0 mg−1h−1, D = 0.1 m2g−1h−1, µ = 0.17 h−1, vmin =

0.05 mh−1, vmax = 0.8 mh−1, C1 = 1.15 gl−1, c0 = 0, v0 = 0.25 mh−1, y∗ = 0.3 gl−1,

ε = 0.001, and δ = 0.8. With these values we can calculate that λ = 26.17, and

0.008 < |ρ| < 0.068 by (6.17).

At the steady state stage, the pollutant concentration in the wastewater c̄(z) satisfies

the following equation

D
d2c̄(z)
dz2

− Bū
dc̄(z)
dz

− µc̄ = 0, (6.42)

with its boundary conditions c̄(0) = C1 and dc̄(L)/dz = 0. For this linear system and
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its PDE correspondence (6.38)-(6.41), it is easy to check that Assumptions 6.3 and 6.4

are satisfied, where dȳ/dū > 0 for vmin ≤ ū ≤ vmax, as can be seen in [63]. Setting the

learning gain ρ be 0.06 and starting with ū0 = 0.75 mh−1, Figs. 6.1 and 6.2 give the

steady output error and constant input profiles respectively. With the learned optimal

input u(t) = ū = 0.1232 mh−1, Figs. 6.3 and 6.4 show the variations of the pollutant

concentration c(z, t) and the feed flow rate v(z, t) in three dimensional space.

Figure 6.1: Output regulation error profile by using the proposed IBLC controller with

ρ = 0.06. It can be seen that the output regulation achieves the desired set-point after

around 140 iterations.

Figure 6.2: Constant boundary velocity input profile updated by the IBLC law. The

desired constant input is 0.1232 mh−1. During all the iterations, control inputs always

lie in the saturation bound [0.05, 0.8].

Obviously, the gain constraint (6.17) is fully determined by the value of parameter λ,
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Figure 6.3: Variation of pollutant concentration c(z, t) in time domain and spatial do-

main, achieved by the learned feed flow rate ū = 0.1232 mh−1. At the boundary z = 1,

c(z, t) goes into the ε-neighborhood of desired output y∗ = 0.3gl−1 with 11 h.

Figure 6.4: Variation of the feed flow rate v(z, t) in time domain and spatial domain, by

setting the boundary condition be ū = 0.1232 mh−1 at z = 0. At the boundary z = 1,

v(z, t) goes into the ε-neighborhood of its steady state v̄ = ū within 10 h.

which is actually an upper bound of the input-output gradient. In (6.17), this bound is

the worst case estimation for general nonlinear systems. Therefore, an iterative learning

gain outside the allowable interval could also induce a learning convergence although it is

not theoretically guaranteed. For instance, choose ρ = 1.8 and the corresponding control

performance can be seen from Fig. 6.5, therein the steady output achieves the desired

set-point within 10 iterations.
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Figure 6.5: Output regulation error profile by using the proposed IBLC controller with

ρ = 1.8.

6.5 Conclusion

We proved that a class of nonlinear PDE processes can be regulated by the IBLC

control. Focusing on the steady-state performance of the system, the IBLC algorithm is

designed with rigorous analysis on convergence and learning rate. The advantages of the

proposed controller are its simple structure, strict convergence ensurance, and capability

of dealing with input saturations easily. We show that the proposed algorithm is also

applicable to more sophisticated PDE systems under certain rational assumptions.

Our last phase in this thesis is to apply the iterative learning approach to the PID

parameters’ tuning problem, as shown in the following chapter. The repetitiveness of

control processes is assumed as well.



Chapter 7

Optimal Tuning of PID

Parameters Using Iterative

Learning Approach

7.1 Introduction

Among all the known controllers, the proportional-integral-derivative (PID) con-

trollers are always the first choice for industrial control processes owing to the simple

structure, robust performance, and balanced control functionality under a wide range

of operating conditions. However, the exact workings and mathematics behind PID

methods vary with different industrial users. Tuning PID parameters (gains) remains a

challenging issue and directly determines the effectiveness of PID controllers [11,33,62].

To address the PID design issue, much effort has been invested in developing system-

atic auto-tuning methods. These methods can be divided into three categories, where

the classification is based on the availability of a plant model and model type, (i) non-

parametric model methods; (ii) parametric model methods; (iii) model free methods.

The non-parametric model methods use partial modelling information, usually in-

cluding the steady state model and critical frequency points. These methods are more
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suitable for closed-loop tuning and applied without the need for extensive priori plant

information [62]. Relay feedback tuning method [12, 76, 82, 116,124] is a representative

method of the first category.

The parametric model methods require a linear model of the plant – either transfer

function matrix or state space model. To obtain such a model, standard off-line or on-line

identification methods are often employed to acquire the model data. Thus parametric

model methods are more suitable for off-line PID tuning [10]. When the plant model

is known with a parametric structure, optimal design methods can be applied [55, 70].

As for PID parameter tuning, it can be formulated as the minimization of an objective

function with possible design specifications such as the nominal performance, minimum

input energy, robust stability, operational constraints, etc.

In model free methods, no model or any particular points of the plant are identified.

Three typical tuning methods are unfalsified control [100], iterative feedback tuning [75]

and extreme seeking [66]. In [100], input-output data is used to determine whether

a set of PID parameters meets performance specifications and these PID parameters

are updated by an adaptive law based on whether or not the controller falsifies a given

criterion. In [75], the PID controller is updated through minimizing an objective function

that evaluates the closed-loop performance and estimating the system gradient. In [66],

adaptive updating is conducted to tune PID parameters such that the output of the cost

function reaches a local minimum or local maximum.

In practice, when the plant model is partially unknown, it would be difficult to

compute PID parameters even if the relationship between transient specifications and

PID parameters can be derived. In many of existing PID tuning methods, whether

model free or model based, test signals will have to be injected into the plant in order to
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find certain relevant information for setting controller parameters. This testing process

may however be unacceptable in many real-time control tasks. On the other hand, many

control tasks are carried out repeatedly, such as in batch processors. The first objective

of this work is to explore the possibility of fully utilizing the task repetitiveness property,

consequently provide a learning approach to improve PID controllers through iteratively

tuning parameters when the transient behavior is of the main concern.

In most learning methods including neural learning and iterative learning, the process

Jacobian or gradient plays the key role by providing the greatest descending direction for

the learning mechanism to update inputs. The convergence property of these learning

methods is solely dependent on the availability of the current information on the gradient.

The gradient between the transient control specifications and PID parameters, however,

may not be available if the plant model is unknown or partially unknown. Further, the

gradient is a function of PID parameters, thus the magnitude and even the sign may

vary. The most difficult scenario is when we do not know the sign changes a priori. In

such circumstances, traditional learning methods cannot achieve learning convergence.

The second objective of this work is to extend the iterative learning approach to deal

with the unknown gradient problem for PID parameter tuning.

It should be noted that in many industrial control problems such as in process indus-

try, the plant is stable in a wide operation range under closed-loop PID, and the major

concern for a PID tuning is the transient behaviors either in the time domain, such as

peak overshoot, rise time, settling time, or in the frequency domain such as bandwidth,

damping ratio and undamped natural frequency. From the control engineering point of

view, it is one of the most challenges to directly address the transient performance, in

comparison with the stability issues, by means of tuning control parameters. Even for
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a lower order linear time invariant plant under PID, the transient performance indices

such as overshoot could be highly nonlinear in PID parameters and an analytical inverse

mapping from overshoot to PID parameters may not exist. In other words, from the

control specification on overshoot we are unable to decide the PID parameters analyti-

cally. The third objective of this work is to link these transient specifications with PID

parameters and give a systematic tuning method.

Another issue is concerned with the redundancy in PID parameter tuning when only

one or two transient specifications are required, for instance when only overshoot is

specified, or only the integrated absolute error is to be minimized. In order to fully

utilize the extra degrees of freedom of the controller, the most common approach is

to introduce an objective function and optimize the PID parameters accordingly. This

traditional approach is however not directly applicable because of the unknown plant

model, and in particular the unknown varying gradient. A solution to this problem is

still iterative learning. An objective function, which is accessible, is chosen as the first

step for PID parameter optimization. Since the goal is to minimize the objective function,

the control inputs will be updated along the greatest descending direction, namely the

gradient, of the objective function. In other words, the PID parameters are chosen to

directly reduce the objective function, and the objective function is treated as the plant

output and used to update the PID parameters. When the gradient is varying and

unknown, extra learning trials will be conducted to search the best descending direction.

The chapter is organized as follows. Section 7.2 gives the formulation of PID auto-

tuning problem. Section 7.3 introduces the iterative learning tuning approach. Section

7.4 shows the comparative studies on benchmark examples. Furthermore, Section 7.5

addresses the real-time implementation on a laboratory pilot plant. Section 7.6 concludes
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the work.

7.2 Formulation of PID Auto-tuning Problem

7.2.1 PID auto-tuning

In the following, we consider a fundamental PID controller in continuous or discrete-

time

C(s) = kp + ki
1
s

+ kds

C(z) = kp + ki
Tsz

z − 1
+ kd

z − 1
Tsz

where kp is the proportional gain, ki the integral gain, kd is the derivative gain, s is the

Laplace operator, z is the Z operator, Ts is the sampling period. Denote k = [kp, ki, kd]T .

The aim of PID tuning is to find appropriate values for PID parameters such that the

closed-loop response can be significantly improved when comparing with the open-loop

response. Since the PID control performance is determined by PID parameters k, by

choosing a set of performance indices x, for instance overshoot and settling time, there

exists a unique relationship or mapping f between x and k

x = f(k).

The PID auto-tuning problem can be mathematically formulated as to look for a set

of k such that x meet the control requirements specified by xd. If the inverse mapping

is available, we have k = f−1(xd). The mapping f , however, is a vector valued function

of x, k and the plant, and is in general a highly nonlinear mapping. Thus its inverse

mapping in general is either not analytic solvable or not uniquely existing. Above all, the

most difficult problem in PID auto-tuning is the lack of plant model, hence the mapping

f is unknown or partially unknown.
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The importance of PID and challenge in PID auto-tuning attracted numerous re-

searchers and come up with various auto-tuning or detuning methods, each has unique

advantages and limitations. In this work we propose a new auto-tuning method using

iterative learning and optimization, which complements existing PID tuning methods.

7.2.2 Performance requirements and objective functions

An objective function, or cost function, quantifies the effectiveness of a given con-

troller in terms of the closed-loop response, either in time domain or frequency domain.

A widely used objective function in PID auto-tuning is the integrated square error (ISE)

function

J(k) =
1

T − t0

∫ T

t0

e2(t,k)dt, (7.1)

where the error e(t,k) = r(t) − y(t,k) is the difference between the reference, r(t), and

the output signal of the closed-loop system, y(t). T and t0, with 0 ≤ t0 < T < ∞,

are two design parameters. In several auto-tuning methods such as IFT and ES, t0 is

set approximately at the time when the step response of the closed-loop system reaches

the first peak. Hence the cost function effectively places zero weighting on the initial

transient portion of the response and the controller is tuned to minimize the error beyond

the peak time. Similar objective functions, such as integrated absolute error, integrated

time weighted absolute error, integrated time weighted square error,

1
T − t0

∫ T

t0

|e|dt, 1
T − t0

∫ T

t0

t|e|dt, 1
T − t0

∫ T

t0

te2dt,

have also been widely used in the process of PID parameter tuning.

In many control applications, however, the transient performance, such as overshoot

Mp, settling time ts, rise time tr , could be of the main concern. An objective function
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that can capture the transient response directly, is highly desirable. For this purpose,

we propose a quadratic function

J = (xd − x)TQ(xd − x) + kTRk, (7.2)

where x = [100Mp, ts, tr]T , xd is the desired x, Q and R are two constant non-negative

weighting matrices. The selection of Q and R matrices will yield effects on the optimiza-

tion results, that is, produce different closed-loop responses. A larger Q highlights more

on the transient performance, whereas a larger R gives more control penalty.

7.2.3 A second order example

Consider a second order plant under a unity feedback with a PD controller. The PD

controller and plant are respectively

C(s) = kp + kds, G(s) =
k

s2 + as+ b
, (7.3)

where kp, kd, k, a, b are all non-negative constants. The closed-loop system is stable if

a+ d > 0 and b+ p > 0, where p = kkp and d = kkd.

The nonlinear mapping f between the closed-loop transient response x = [Mp, ts]

and the PD parameters k = [kp, kd] is derived in Appendix A, and shown in Fig. 7.1

and Fig. 7.2, where a = 0.1, b = 0, and k = 1. It can be seen that the mapping f is

nonlinear or even discontinuous.

The nonlinear mapping f for discrete-time control system can also be derived but

omitted here due to the complexity. Discretizing the plant in (7.3) with a sampling time

Ts = 0.1 s, the nonlinear mapping between Mp and (kp, kd) is shown in Fig. 7.3. It can

be seen that there exist local minima in the surface, and the gradient may vary and take

either positive or negative values.
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Figure 7.1: The nonlinear mapping between the peak overshoot 100Mp and PD gains

(kp, kd) in continuous-time.

Figure 7.2: The nonlinear mapping between the settling time ts and PD gains (kp, kd) in

continuous-time.

On the other hand, it can also been seen from those figures that the transient re-

sponses may vary drastically while the control parameters only vary slightly. This in-

dicates the importance for PID parameter auto-tuning and the necessity for finding an

effective tuning method.
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Figure 7.3: The nonlinear mapping between the peak overshoot 100Mp and PD gains

(kp, kd) in discrete-time. An upper bound of 100 is applied to crop the vertical values.

7.3 Iterative Learning Approach

Iterative learning is adopted to provide a solution to the PID auto-tuning. The

iterative learning offers a desirable feature that it can guarantee the learning convergence

even if the plant model is partially unknown.

7.3.1 Principal idea of iterative learning

The concept of iterative learning was first introduced in control to deal with a re-

peated control task without requiring the perfect knowledge such as the plant model or

parameters [8]. It learns to generate a control action directly instead of doing a model

identification. The iterative learning mechanism updates the present control action using

information obtained from previous control actions and previous error signals.

Let us first give the basic formulation of iterative learning in PID auto-tuning. From

preceding discussions, the PID auto-tuning problem can be described by the mapping

x = f(k)

where k ∈ Ωk ⊂ Rn and x ∈ Ωx ⊂ Rm, where n and m are integer numbers. The
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learning objective is to find a suitable set k such that the transient response x can reach

a given region around the control specifications xd.

The principal idea of iterative learning is to construct a contractive mapping A

xd − xi+1 = A(xd − xi),

where the norm of A is strictly less than 1, and the subscript i indicates that the quantity

is in the ith iteration or learning trial. To achieve this contractive mapping, a simple

iterative learning law is

ki+1 = ki + Γi(xd − xi) (7.4)

where Γi ∈ Rn×m is a learning gain matrix. It can be seen that the learning law

(7.4) generates a set of updated parameters from the previously tuned parameters, ki,

and previous performance deviations xd − xi. The schematic of the iterative learning

mechanism for PID auto-tuning is shown in Fig. 7.4.

When n = m, define the process gradient

F (k) =
∂f(k)
∂k

,

we can derive the condition for the contractive mapping A

xd − xi+1 = xd − xi − (xi+1 − xi)

= xd − xi −
∂f(k∗

i )
∂k

(ki+1 − ki)

= [I − F (k∗
i )Γi](xd − xi) (7.5)

where k∗
i ∈ [min{ki,ki+1}, max{ki,ki+1}] ⊂ Ωk . Therefore we have a contractive

mapping A

xd − xi+1 = A(xd − xi)
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Figure 7.4: The schematic block diagram of the iterative learning mechanism and PID

control loop. The parameter correction is generated by the performance deviations xd−xi

multiplied by a learning gain Γi. The operator z−1 denotes one iteration delay. The new

PID parameters ki+1 consists of the previous ki and the correction term, analogous to

a discrete-time integrator. The iterative learning tuning mechanism is shown by the

block enclosed by the dashed line. r is the desired output and the block M is a feature

extraction mechanism that records the required transient quantities such as overshoot

from the output response yi+1.

as far as the magnitude

|A| = |I − F (k∗
i )Γi| ≤ ρ < 1. (7.6)

When n > m, there exists an infinite number of solutions because of redundancy

in control parameters. With the extra degrees of freedom in PID, optimality can be

exploited, for instance the shortest settling time, minimum peak overshoot, minimum

values of control parameters, etc. A suitable objective function to be minimized could

be a non-negative function J(x,k) ≥ 0, where J is accessible, such as the quadratic one

(7.2). The minimization is in fact a searching task

min
k∈Ωk

J(x,k)
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where x = f(k). The optimal parameters kopt can be obtained by differentiating J and

computing

dJ

dk
=
∂J

∂x
dx
dk

+
∂J

∂k
=
∂J

∂x
F +

∂J

∂k
= 0. (7.7)

In most cases kopt can only be found numerically due to the highly nonlinear relationship

between k and quantities J , x. A major limitation of optimization methods is the demand

for the complete plant model knowledge or the mapping f . On the contrary, iterative

learning only requires the bounding knowledge of the process gradient. The principal

idea of iterative learning can be extended to solving the optimization problem under the

assumption that all gradient components with respect to k have known limiting bounds.

Since the learning objective now is to directly reduce the value of J , the objective function

J can be regarded as the process output to be minimized. The new iterative learning

tuning law is

ki+1 = ki − γiJ(ki), (7.8)

where γi = [γ1,i, · · · , γn,i]T and J(ki) denotes J(ki, f(ki)). To show the contractive

mapping, note that

J(ki+1) = J(ki) + [J(ki+1) − J(ki)]

= J(ki) +
(
dJ(k∗

i )
dk

)T

(ki+1 − ki)

where k∗
i ∈ Ωk is in a region specified by ki and ki+1. By substitution of the ILT law

(7.8), we have

J(ki+1) =

[
1 −

(
dJ(k∗

i )
dk

)T

γi

]
J(ki). (7.9)

The convergence property is determined by the learning gains γi and the gradient dJ/dk.
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7.3.2 Learning gain design based on gradient information

To guarantee the contractive mapping (7.9), the magnitude relationship must satisfy

|1−DT
i γi| ≤ ρ < 1, where

Di =
(
dJ(k∗

i )
dk

)

is the gradient of the objective function. The selection of learning gain γi is highly

related to the prior knowledge on the gradient Di. Consider three scenarios and assume

Di = (D1,i, D2,i, D3,i), that is, a PID controller is used.

When Di is known a priori, we can choose γj,i = D−1
j,i /3. Such a selection produces

the fastest learning convergence speed, that is, convergence in one iteration because

‖1 −DT
i γi‖ = 0.

When the bounding knowledge and the sign information of Dj,i are available, the

learning convergence can also be guaranteed. For instance assume 0 < αj ≤ Dj,i ≤ βj <

∞ for k∗
i ∈ Ωk, where αj and βj are respectively lower and upper bounds of the gradient

components Dj,i. In such circumstances, choosing γj,i = 1/3βj , the upper bound of the

magnitude is ρ = 1− α1/3β1 − α2/3β2 − α3/3β3 < 1.

The most difficult scenario is when bounding functions or signs of Dj,i are unknown.

In order to derive the iterative learning convergence, it can be seen from (7.9) that we

do not need the exact knowledge about the mapping f . It is adequate to know the

bounding knowledge (amplitude and sign) of the gradient D(k∗
i ) or F (k∗

i ). Although

an invariant gradient is assumed for most iterative learning problems, the elements in

D(k∗
i ) may change sign and take either positive or negative values. Without knowing

the exact knowledge of the mapping f , we may not be able to predict the varying signs

in the gradient. Now, in the iterative learning law (7.8) the learning gains will have to

change signs according to the gradient. Here the question is how to change the signs of
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the learning gains when we do not know the signs of the gradient components, i.e. how

to search the direction of the gradient, which obviously can only be done in a model free

manner if f is unknown.

A solution to the problem with unknown gradient is to conduct extra learning trials

to determine the direction of gradient or the signs of the learning gains directly

γi = [±γ1, · · · ,±γn]T , (7.10)

where γi are positive constants. From the derivation (7.5), when learning gains are chosen

appropriately, |A| < 1 and the learning error reduces. On the other hand, if learning

gains are chosen inappropriately, then |A| > 1 and the error increases after this learning

trial. Therefore, several learning trials are adequate for ILT mechanism to determine the

correct signs of the learning gains.

In general, when there are two gradient components (D1,i, D2,i), there are 4 sets of

signs {1, 1}, {1,−1}, {−1, 1}, and {−1,−1}, corresponding to all possibles signs of the

gradient (D1,i, D2,i). In such circumstances, at most 4 learning trials are sufficient to

find the greatest descending among the four control directions, as shown in Fig. 7.5.

Similarly, if there are three free tuning parameters, there will be 8 sets of signs in

the gradient (D1,i, D2,i, D3,i), as shown in Fig. 7.6. In general, if there are n control

tuning parameters, there will be n gradient components Dj,i. Since each γj,i takes either

positive or negative sign, there will be 2n combinations and at most 2n learning trials

are required.

In addition to the estimation of the gradient direction or learning direction, the mag-

nitudes of learning gains γi should also be adjusted to satisfy the learning convergence

condition |1−DT
i γi| ≤ ρ < 1. Since the gradient Di is a function of PID parameters ki,

the magnitude of Di varies at different iterations. When the magnitudes of the gradient
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Figure 7.5: There are four pairs of signs for the gradient (D1, D2) as indicated by the

arrows. Hence there are four possible updating directions, in which one pair gives the

fastest descending direction.

Figure 7.6: There are three gradient components D1, D2 and D3 with respect to three

control parameters. Consequently there are 8 possible tuning directions and at most 8

learning trials are required to find the correct updating direction.

is unknown, extra learning trials will be needed to search for suitable magnitudes of

learning gains.

In this work, we adopt a self-adaption rule [102] which scales learning gains up and

down by a factor ζ = 1.839, that is, each component γj,i will be adjusted to γj,iζ and

γj,i/ζ. Extra learning trials will be performed with the scaled learning gains. It is
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reported that the choice of such a scaling factor ζ will lead to a linear convergence

rate [102,103] .

To facilitate searching and reduce the number of trials, we can also estimate gra-

dient components Dj,i numerically using the values of the objective function and PID

parameters obtained from previous two iterations

D̂j,i =
J(ki−1)− J(ki−2)
kj,i−1 − kj,i−2

. (7.11)

The learning gain can be revised accordingly as γj,i = λjD̂
−1
j,i where λj is a constant gain

in the interval of (0, 1]. This method is in essence the Secant method along the iteration

axis, which can effectively expedite the learning speed [148].

Since gradient direction is a critical issue in searching, and the approximation (7.11)

may not always guarantee a correct sign, we can use the estimation result in (7.11)

partially by retaining the magnitude estimation, while still searching the correct control

direction

γj,i = ±λj

∣∣∣∣
kj,i−1 − kj,i−2

J(ki−1)− J(ki−2)

∣∣∣∣ . (7.12)

7.3.3 Iterative searching methods

Three iterative searching methods are considered for ILT in this work with verifica-

tions and comparisons. They are M0 – an exhaustive searching method in directions and

magnitude, M1 – an exhaustive searching method in directions, M2 – a lazy searching

method.

M0 does exhaustive searching in all 2n directions and exhaustive searching in all

2n magnitudes using self-adaptation with the factor ζ. Then PID parameters will be

updated using the set that generates the best closed-loop response or yields the biggest

drop of J in that trial. With the best tuned PID parameters as the initial setting, the
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ILT mechanism enters another run of exhaustive searching for the best response and best

PID parameters. The searching process repeats until the stopping criterion is met.

This is the worst case searching where neither the gradient directions nor the gradient

magnitudes are available. For each run of searching the greatest descending direction,

4n trials are performed. For PID tuning where n = 3, 64 trials are needed for one run of

searching. Clearly, this searching method is not efficient.

In M1 the entire searching and updating process is similar to M0 except that the

magnitudes of learning gains are determined using the formula (7.12). Hence it reduces

the total number of trials from 4n in M0 to 2n for each run of searching. For PID tuning

where n = 3, only 8 trials are needed.

M2 does exhaustive searching in directions in the first run of searching, and the

magnitudes of learning gains are determined using the formula (7.12). Then the greatest

descending direction will be used for subsequent runs of searching, with the assumption

that the mapping f is in general smooth and drastic variations in gradient rarely occur.

The exhaustive searching in directions will be activated again when the stopping criterion

is met. The searching process will permanently stop if the stop criterion is still met after

exhaustive searching in all directions.

The initial magnitudes of learning gains can be set as

[γ1,0, γ2,0, γ3,0] =
γ0

J0
[kp,0, ki,0, kd,0], (7.13)

where γ0 is a positive constant, and chosen to be 0.1 in this work. kp,0, ki,0, kd,0 are initial

values of PID parameters determined using any existing PID auto-tuning methods. J0

is calculated with kp,0, ki,0, kd,0 and the corresponding closed-loop response.
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7.4 Comparative Studies on Benchmark Examples

In this section we conduct comprehensive tests on 8 benchmark plant models. Four

plant models G1 to G4 were used in [66] to compare and validate several iterative tuning

methods

G1(s) =
1

1 + 20s
e−5s,

G2(s) =
1

1 + 20s
e−20s,

G3(s) =
1

(1 + 10s)8
,

G4(s) =
1 − 5s

(1 + 10s)(1 + 20s)
,

where G1 and G2 have relatively large normalized time delay (NTD), G3 has high-order

repeated poles, and G4 is nonminimum phase. The other four plant models G5 to G8

were used in [49,126] to validate their auto-tuning methods

G5(s) =
1

(s+ 1)(s+ 5)2
e−0.5s,

G6(s) =
1

(25s2 + 5s+ 1)(5s+ 1)
e−s,

G7(s) =
1

(s2 + 2s+ 3)(s+ 3)
e−0.3s,

G8(s) =
1

(s2 + s+ 1)(s+ 2)2
e−0.1s,

where G5 is a high-order plant with medium NTD, G6 is a high-order and moderately

oscillatory plant with short NTD, G7 is a high-order and heavily oscillatory plant with

short NTD, and G8 has both oscillatory and repeated poles.

To make fair comparisons, we choose initial learning gains with form (7.13) for PID

parameters in all case studies. In all searching results, we use N to denote the total

number of trials.
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7.4.1 Comparisons between objective functions

Objective function ISE (7.1) has been widely investigated and adopted in PID tuning.

The quadratic objective function (7.2), on the other hand, has more weights to prioritize

transient performance requirements. When control requirements are directly concerned

with transient response such asMp or ts, we can only use the quadratic objective function

(7.2). To show the effects of different objective functions and weight selections, we use

plants G1 – G4. To make fair comparisons, the learning process starts from the same

initial setting for PID gains generated by Ziegler-Nicholes (ZN) tuning method [10].

Exhaustive searching method M0 is employed. The tuning results through iterative

learning are summarized in Table 4.1. For simplicity only Mp and ts are taken into

consideration in (7.2). The learning process stops when the drop of an objective function

between two consecutive iterations is lower than ε = 10−6 for (7.1) and ε = 0.01 for

(7.2). In ISE, the parameters are T = 100, 300, 500, 200 s and t0 = 10, 50, 140, 30 s

respectively [66].

Usually settling time is much greater than overshoot, thus 100Mp is used. When

plants have much bigger settling time, we can choose ts instead of (ts)2 in the objective

function, as shown in cases of G2 and G3. By scaling down ts in objective functions,

overshoot decreases as it is weighted more. Meanwhile ts increases as it is weighted less.

Comparing ISE and quadratic objective function, we can see that latter offers more

choices.

7.4.2 Comparisons between ILT and existing iterative tuning methods

Now we compare iterative learning based tuning with other iterative tuning methods

such as extremum seeking (ES) tuning and iterative feedback tuning (IFT). ZN tuning
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Plant J PID Controller 100Mp ts N

ISE 3.59 + 0.13s−1 + 7.54s 4.48 21.35 768

G1 (100Mp)2 + 0.5t2s 3.38 + 0.13s−1 + 7.05s 1.99 12.17 1024

(100Mp)2 + 0.1t2s 3.25 + 0.12s−1 + 6.30s 0.63 12.83 832

(100Mp)2 + 0.01t2s 3.71 + 0.11s−1 + 9.11s 0.53 22.24 512

ISE 0.93 + 0.031s−1 + 5.67s 0.71 50.67 512

G2 (100Mp)2 + ts 0.99 + 0.032s−1 + 6.87s 1.06 47.99 1600

(100Mp)2 + 0.2ts 1.05 + 0.028s−1 + 9.79s 0.29 82.74 512

(100Mp)2 + 0.1ts 1.03 + 0.029s−1 + 9.18s 0.20 83.61 640

ISE 0.64 + 0.012s−1 + 11.3s 0.49 137.13 1024

G3 (100Mp)2 + ts 0.76 + 0.013s−1 + 16.65s 1.93 120.56 576

(100Mp)2 + 0.2ts 0.85 + 0.014s−1 + 25.77s 0.66 212.04 192

(100Mp)2 + 0.1ts 0.83 + 0.014s−1 + 24.91s 0.62 212.76 192

ISE 5.01 + 0.092s−1 + 25.59s 3.05 25.2 1216

G4 (100Mp)2 + 0.25t2s 4.31 + 0.075s−1 + 22.19s 1.81 18.63 512

(100Mp)2 + 0.1t2s 3.89 + 0.071s−1 + 22.28s 1.70 20.56 384

(100Mp)2 + 0.01t2s 4.51 + 0.075s−1 + 23.96s 0.06 19.27 1216

Table 7.1: Control performances of G1 −G4 using the proposed ILT method.
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method is also included for comparison. G1 – G4 and the same ISE [66] for each model

are used. The PID controller parameters given by ZN are used as a starting point for

ILT tuning. Exhaustive searching method M0 is employed in ILT.

The results verify that ILT, ES and IFT give very similar responses which are much

superior than that of ZN tuning method. Fig. 7.7 shows the ILT results for G1, (a)

shows the decreasing objective function J , (b) shows decreasing performance indices Mp

and ts, (c) shows the variations of the PID parameters, and (d) compares step responses

with four tuning methods. Fig. 7.8 shows the searching results of the gradient directions

and the variations of the learning gains through self-adaptation. It can be seen that

the gradients undergo changes in signs, hence it is in general a difficult and challenging

optimization problem.

Table 4.2 summarizes the comparative results with all four plants G1 – G4 when 4

tuning methods were applied. The iteration numbers when applying ILT for G1 – G4

are 786, 512, 1024 and 1216 respectively.

Although ILT shares similar performance as ES and IFT, it is worth to highlight

some important factors in the tuning process. In ES tuning, there are more than 10

design parameters to be set properly. From [66], design parameters take rather specific

values. In IFT, the initial values of the PID parameters must be chosen in such a way as

to give an initial response that is very slow and with no overshoot. Further, in IFT the

transient performance is purposely excluded from the objective function by choosing a

sufficiently large t0. On the contrary, in ILT only initial learning gains need to be preset,

and we choose all three learning gains with a uniform value γ0 = 0.1 in (7.13) for the

ease of ILT design. In fact, by choosing initial learning gains with different values, we

can achieve much better responses than those in Table 4.2. Needless to mention that
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Plant Method PID Controller 100Mp ts

ZN 4.06 + 0.44s−1 + 9.38s 46.50 47.90

G1 IFT 3.67 + 0.13s−1 + 7.74s 5.38 21.38

ES 3.58 + 0.13s−1 + 7.68s 3.31 21.35

ILT 3.59 + 0.13s−1 + 7.54s 4.48 21.35

ZN 1.33 + 0.043s−1 + 10.30s 21.75 109.4

G2 IFT 0.93 + 0.031s−1 + 5.64s 0.80 50.33

ES 1.01 + 0.032s−1 + 7.23s 1.37 76.61

ILT 0.93 + 0.031s−1 + 5.67s 0.71 50.67

ZN 1.10 + 0.015s−1 + 20.91s 13.95 336.90

G3 IFT 0.66 + 0.012s−1 + 12.08s 0.98 132.05

ES 0.68 + 0.013s−1 + 13.30s 0.96 130.41

ILT 0.64 + 0.012s−1 + 11.30s 0.49 137.13

ZN 3.53 + 0.21s−1 + 14.80s 53.70 86.12

G4 IFT 3.03 + 0.065s−1 + 18.42s 0.55 28.74

ES 3.35 + 0.068s−1 + 21.40s 0.18 29.80

ILT 5.01 + 0.092s−1 + 25.59s 3.05 25.21

Table 7.2: Control performances of G1 − G4 using methods ZN, IFT, ES and ILT.



Chapter 7. Optimal Tuning of PID Parameters Using Iterative Learning Approach 170

ILT can handle both types of objective functions (7.1) and (7.2) with the flexibility to

highlight transient behaviors.

Figure 7.7: ILT performance for G1. (a) The evolution of the objective function; (b) The

evolution of overshoot and settling time; (c) The evolution of PID parameters; (d) The

comparisons of step responses among ZN, IFT, ES and ILT, where IFT, ES and ILT

show almost the same responses.

7.4.3 Comparisons between ILT and existing auto-tuning methods

PID auto-tuning methods [10, 49, 126] provided several effective ways to determine

PID parameters. In this subsection we compare ILT with the auto-tuning method [10]

based on internal model control (IMC), and the auto-tuning method [126] based on pole-

placement (PPT) which shows superior performance than [49]. Comparisons are made
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Figure 7.8: ILT searching results for G1. (a) The evolution of the gradient directions;

(b) The evolution of the magnitudes of learning gains with self-adaptation.

based on plants G5 – G8 which were used as benchmarks. Using ISE as the objective

function and searching method M0 in ILT, the tuning results are summarized Table 4.3,

where the start points of PID parameters are adopted from the tuning results in [49].

Comparing with the results auto-tuned by the IMC method and PPT method, ILT

achieves better performance after learning.

7.4.4 Comparisons between searching methods

Now we investigate the effects of searching methods M0, M1 and M2. Plants G1 –

G8 are used. The objective function to be used is

J = (100Mp)2 +
t2s

100
. (7.14)

Set λj = 0.2, j = 1, 2, 3 in (7.12) for M1 and M2. The stopping criterion for ILT is

ε = 0.01. The control performance after learning is summarized in Tables 4.4 and 4.5.

It can be seen that M1 and M2 achieve similar performance, which is slightly inferior
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Plant Method PID Controller 100Mp ts

IMC 33.46 + 16.67s−1 + 8.54s 2.09 5.71

G5 PPT 27.02 + 21.14s−1 + 6.45s 12.12 5.01

ILT 31.96 + 18.81s−1 + 11.01s 1.31 2.09

IMC 0.88 + 0.066s−1 + 1.20s 3.46 74.61

G6 PPT 0.44 + 0.074s−1 + 2.54s 5.10 49.81

ILT 0.57 + 0.075s−1 + 2.78s 1.17 23.91

IMC 7.06 + 5.29s−1 + 1.64s 5.15 8.37

G7 PPT 3.89 + 5.39s−1 + 2.15s 3.21 5.32

ILT 4.51 + 5.40s−1 + 2.53s 0.44 2.93

IMC 2.79 + 1.33s−1 + 1.19s 3.01 14.74

G8 PPT 1.50 + 1.37s−1 + 1.72s 3.04 9.44

ILT 2.18 + 1.48s−1 + 2.34s 1.18 4.61

Table 7.3: Control performances of G5 − G8 using IMC, PPT and ILT methods.

Plant M0 M1 M2

100Mp ts N 100Mp ts N 100Mp ts N

G1 0.53 22.24 512 0.24 22.13 160 0.23 22.23 29

G2 1.80 78.64 256 0.73 79.93 72 1.47 79.91 43

G3 1.81 121.29 192 1.36 209.77 48 1.81 205.35 41

G4 0.06 19.27 1216 0 15.92 120 0 22.93 41

G5 0.282 2.16 640 0.21 2.44 48 0 3.34 70

G6 0.605 25.04 320 0.03 48.04 40 0.03 48.04 19

G7 0 6.05 192 0 6.13 32 0 6.15 28

G8 0.19 8.25 768 0 10.53 32 0 10.74 18

Table 7.4: Control performance of G1 −G8 using searching methods M0, M1, M2.
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Plant M0 M1 M2

G1 3.59 + 0.13s−1 + 7.54s 3.42 + 0.11s−1 + 8.77s 3.38 + 0.12s−1 + 7.80s

G2 0.93 + 0.029s−1 + 9.43s 0.94 + 0.030s−1 + 7.28s 1.05 + 0.031s−1 + 8.98s

G3 0.75 + 0.013s−1 + 16.26s 0.87 + 0.012s−1 + 24.73s 0.72 + 0.012s−1 + 21.42s

G4 4.51 + 0.075s−1 + 23.96s 5.99 + 0.097s−1 + 30.70s 6.92 + 0.10s−1 + 39.18s

G5 31.52 + 18.31s−1 + 10.76s 29.63 + 17.65s−1 + 10.19s 17.00 + 13.68s−1 + 0.54s

G6 0.51 + 0.070s−1 + 2.14s 0.60 + 0.069s−1 + 2.17s 0.60 + 0.069s−1 + 2.17s

G7 5.34 + 4.86s−1 + 1.28s 5.02 + 4.81s−1 + 1.31s 4.11 + 4.81s−1 + 1.31s

G8 2.03 + 1.27s−1 + 2.71s 2.13 + 1.21s−1 + 0.94s 1.74 + 1.21s−1 + 0.94s

Table 7.5: Final controllers for G1 − G8 by using searching methods M0, M1, M2.

than M0. However, comparing with M0 the learning trial numbers in M1 and M2 have

been significantly reduced.

7.4.5 ILT for sampled-data systems

A promising feature of ILT is the applicability to sampled-data or discrete-time sys-

tems. To illustrate how ILT works for digital systems, consider plant G4 which can be

discretized using sampler and zero order hold

G4(z) =

(
−2.5e−.05Ts + 1.5e−.1Ts + 1

)
z + e−.15Ts − 2.5e−0.1Ts + 1.5e−.05Ts

z2 − (e−0.1Ts + e−0.05Ts)z + e−0.15Ts
,

where the sampling period Ts = 0.1 s. The digital PID controller is used. Choose

again (7.14) as the objective function, and use ZN to generate the initial values for PID

parameters. The closed-loop responses using ILT are summarized in Table 4.6. For

comparison all three searching methods M0, M1 and M2 are used.

It can be seen that in all cases the control responses have been improved drastically,

especially the reduction in overshoot.
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Ts Initial Performance Method Final Final Performance

100Mp ts kp, ki, kd 100Mp ts N

M0 3.56, 0.10, 21.62 0.13 14.77 896

0.01 39.16 64.14 M1 4.04, 0.12, 25.26 0.43 11.25 80

M2 3.24, 0.11, 21.12 1.12 17.64 43

M0 3.45, 0.10, 20.89 0.057 15.45 768

0.05 39.52 63.90 M1 4.04, 0.12, 25.26 0.55 10.85 80

M2 3.25, 0.11, 21.12 1.10 17.35 43

M0 3.53, 0.11, 21.76 0.060 13.60 1024

0.2 40.92 63.00 M1 4.08, 0.15, 28.21 1.02 11.80 96

M2 2.80, 0.090, 16.41 0.70 20.20 56

M0 3.39, 0.11, 21.60 0.00 11.50 832

0.5 44.26 77.00 M1 3.48, 0.13, 24.05 0.97 15.50 72

M2 2.69, 0.086, 15.61 0.74 20.00 48

M0 2.22, 0.082, 17.60 1.08 34.00 576

2 76.96 88.00 M1 2.19, 0.078, 15.22 0.32 34.00 128

M2 2.16, 0.075, 13.94 0.0020 18.00 81

Table 7.6: Digital Control Results. Initial performance is achieved by ZN tuned PID.

Final performance is achieved by ILT.
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7.5 Real-Time Implementation

In order to show the applicability and effectiveness of the proposed ILT, real-time

experiment has been carried out on a couple tank.

7.5.1 Experimental setup and plant modelling

The couple tank equipment consists of two small perspex tower-type tanks and in-

terconnected through an hole which yields a hydraulic resistance (Fig. 7.9). The ex-

perimental setup in this work was configured such that the level is measured from the

tank-2 while the water is pumped into the tank-1 as the control input. The outlet of

tank-2 is used to discharge the water into the reservoir. The measurement data is col-

lected from couple tank using NI data acquisition card USB-6008. The control method

is programmed using Labview. A window-type smoothing filter using 100 samples is

implemented to mitigate measurement noise. The sampling period is 0.125 second.

Figure 7.9: Diagram of couple tank apparatus
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A step response is conducted to approximate the couple tank dynamics with a first

order plus time delay model [10]

G(s) =
k

τs+ 1
e−sL (7.15)

where k is the plant DC gain, τ is the time constant, L is the transportation lag. As

shown in Fig. 7.10, after conducting a step response the obtained plant is

G(s) =
168

1 + 65s
e−3.6s. (7.16)

Figure 7.10: Step response based modelling

7.5.2 Application of ILT method

In the experiments, we conducts a series of tests to investigate ILT. The quadratic

objective function is

J = (100Mp)2 + qt2s

where two values q = 0.1 and q = 0.01 are used. The ISE is

1
T − t0

∫ T

t0

e2dt,

where T = 124 s and t0 = 27.4 s. All three search methods M0, M1 and M2 are applied.
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It is observed in the experiment that the calculated gradient components (7.11) or

(7.12) may be singular some times. This is due to the presence of measurement noise

and the closeness of the values of J at two adjacent iterations. On the other hand,

the learning process may become sluggish when the PID parameters at two adjacent

iterations are too close, yielding a very lower learning gains γj,i. To solve these two

problems, a constraint is applied when updating the learning gains

c1|kj,i| ≤ γj,i ≤ c2|kj,i|, (7.17)

where 0 ≤ c1 < c2 ≤ 1. The upper and lower learning gain bounds are made in proportion

to PID parameters. The rationale is clear. When a controller parameter is bigger, we

can update it with a larger bound without incurring drastic changes. If setting absolute

bounds for the learning gain, an overly small bound would limit the parameter updating

speed, and an overly large bound would make the constraint ineffective. In the real-time

application we consider 2 sets of boundaries

C1: c1 = 0.02 c2 = 0.2,

C2: c1 = 0.05 c2 = 0.4.

The initial PID controller is found using ZN tuning method

0.11 +
0.011
s

+ 0.26s.

The transient performance with ZN tuned PID is 100Mp = 30.02 and ts = 58.73 s. ILT

is applied to improve the performance.

7.5.3 Experimental results

The results are summarized in Table 4.7. It can be seen that searching methods M1

and M2 can significantly reduce the number of learning iterations while Mp and ts can be
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Method Constraint J PID Controller 100Mp ts N

M0 C1 (100Mp)2 + 0.01t2s 0.11 + 0.0029s−1 + 0.26s 0.089 16.65 384

C1 ISE 0.16 + 0.0045s−1 + 0.32s 4.18 34.04 56

C2 ISE 0.14 + 0.0039s−1 + 0.20s 4.29 30.22 32

M1 C1 (100Mp)2 + +0.01t2s 0.21 + 0.0036s−1 + 0.43s 0.11 16.58 56

C2 (100Mp)2 + 0.01t2s 0.16 + 0.0041s−1 + 0.34s 0.78 10.45 24

C1 (100Mp)2 + 0.1t2s 0.26 + 0.0037s−1 + 0.45s 1.40 9.35 48

C2 (100Mp)2 + 0.1t2s 0.22 + 0.0036s−1 + 0.44s 1.44 10.10 32

C1 ISE 0.26 + 0.0040s−1 + 0.62s 1.30 10.50 15

C2 ISE 0.23 + 0.0042s−1 + 0.56s 2.19 12.98 13

M2 C1 (100Mp)2 + 0.01t2s 0.32 + 0.0034s−1 + 0.76s 0.27 17.30 17

C2 (100Mp)2 + 0.01t2s 0.30 + 0.0034s−1 + 0.72s 0.50 16.63 14

C1 (100Mp)2 + 0.1t2s 0.30 + 0.0038s−1 + 0.72s 1.30 16.33 14

C2 (100Mp)2 + 0.1t2s 0.23 + 0.0037s−1 + 0.56s 1.71 15.99 10

Table 7.7: Experimental Results.

maintained at almost the same level. By changing the weight for ts, the final overshoot

Mp and settling time ts can be adjusted. The constraint C2 can also reduce the trial

number, because higher limits in learning gains will expedite the learning progress. In

experiments, it is observed that M2 can be further simplified by removing the last run

of exhaustive searching, so long as the variation of J reaches the preset threshold ε.

7.6 Conclusion

A new PID auto-tuning method is developed and compared with several well es-

tablished auto-tuning methods including ZN, IFT, ES, PPT, IMC. Iterative learning

tuning provides a sustained improvement in closed-loop control performance, and offers

extra degrees of freedom in specifying the transient control requirements through a new

objective function.
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The iterative learning tuning method proposed in this work can be further extended

to various optimal designs for controllers, owing to its model free nature. For instance,

by iterative searching and task repeatability, we can tune the parameters of lead and lag

compensators, filters, observers, and use both time domain and frequency performance

indices in objective functions.



Chapter 8

Conclusions

8.1 Summary of Results

In Chapters 2, and 3, the parametric adaptive control of nonlinear systems are con-

sidered, where the uncertainties are state-periodic in the first system and time-periodic

in the other system.

Specifically, in Chapter 2, a spatial periodic adaptive control approach is proposed to

deal with nonlinear rotary machine systems with a class of state-varying parametric un-

certainties. Since the parametric uncertainties are not time-periodic, more difficulties are

encountered in the process of controller design. By focusing on the relationship between

the systems with state-dependent uncertainties and the systems with time-dependent

uncertainties, the system is converted to a more complex one while possessing time-

periodic parameters as uncertainties. As a result, by applying those known achievements

for time-peridoic systems, our difficulty is overcome properly in spatial control for the

plant with highly nonlinear components.

As another theoretical development, in Chapter 3, we develop a general discrete-time

adaptive control approach suitable for nonlinear systems with periodic parametric uncer-

tainties. The underlying idea of the new approach is to convert the periodic parameters
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into an augmented constant parametric vector by a lifting technique. The novelty of

this approach is the establishment of a bridge between classical adaptive control prob-

lems and periodic adaptive control problems. As such, the well-established discrete-time

adaptive control schemes can be easily applied to various control problems with periodic

parameters, such as plants that do not meet the linear growth condition, plants that are

nonlinear in parameters, plants with unknown control directions, plants in parametric-

strict-feedback form, etc. Another major advantage of the new adaptive control is the

ability to adaptively update all parameters in parallel, hence expedite the adaption speed.

In Chapters 4, 5, 6, and 7, we apply the central idea of ILC to the learning of initial

system state, the learning of input nonlinearity, the learning of boundary condition for

PDE processes, and the tuning of PID parameters respectively. In all the four topics,

the system control process is always assumed to be strictly repeatable.

Firstly, an initial state ILC approach is proposed for final state control of motion

systems. ILC is applied to learn the desired initial states in the presence of system un-

certainties. Four cases are considered where the initial position or speed are manipulated

variables and final displacement or speed are controlled variables. In these cases, the mo-

tion system could have discontinuous damping or discontinuous frictions but Lipschitzian

in position. By duality, we further explore other four cases if the motion system is Lip-

schitz continuous in speed. Since the control task is specified spatially in states, a state

transformation is introduced such that the final state control problems are formulated in

the phase plane to facilitate spatial ILC design and analysis.

In Chapter 5, a dual-loop ILC scheme is designed for a class of nonlinear systems

with hysteresis input uncertainty. The two ILC loops are applied to the nominal part

and the hysteresis part respectively, to learn their unknown dynamics. Based on the
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convergence analysis for each single loop, a composite energy function method is then

adopted to prove the learning convergence of the dual-loop system in iteration domain.

When the strict input-output monotonicity does not exist in the hysteretic loop, the ILC

law is revised by adding a forgetting factor and incorporating a time-varying learning

gain, and then ensure the corresponding ILC operator to be contractible. By using the

Banach fixed-point theorem, we show that the output tracking error of the inner ILC

loop and then the dual ILC loop can enter and remain ultimately in a small neighborhood

of zero.

In Chapter 6, we further apply the idea of ILC to the velocity boundary control of

a class of quasi-linear PDE processes. When the whole process is strictly repeatable in

iteration domain and the steady state output on the other boundary is concerned only, we

simplified the system plant from PDE to ODE based on several important assumptions.

The advantages of the proposed controller are its simple structure, strict convergence

ensurance, and capability of dealing with input saturations and measurement delays

easily.

At last, an optimal tuning method for PID parameters is proposed by means of

iterative learning. In the scheme, the time domain performance or requirements are

incorporated directly into the objective function, and then the problem of PID tuning

is converted to minimizing the function in an iterative manner. By formulating it as an

iterative learning process, the optimal tuning does not require as much the plant model

knowledge as other PID tuning methods, and can be applied straightforward to discrete-

time or sampled-data systems, in contrast to existing PID auto-tuning methods which

are dedicated to continuous-time plants. In this chapter, through theoretical analysis,

comprehensive investigations on benchmarking examples, and real-time experiments on
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the level control of a coupled-tank system, the effectiveness of the proposed method is

validated.

8.2 Suggestions for Future Work

Past research activities have laid a foundation for the future work. Based on the

prior research, the following questions deserve further consideration and investigation.

1. The models discussed in the thesis are assumed to be precise. Unfortunately repeat-

able or non-repeatable noise cannot be omitted in the application. In order to improve

our controller design, it is inevitable to take the system noise into consideration.

2. Up to present, the spatial periodic adaptive control is considered only for systems

with canonical form. But in practice, the system dynamics could take a more general

structure, e.g., the cascaded form. In the future work, extensions should be done for

those general ones which could possess state-varying uncertainties.

3. More scenarios should be considered in the dual-loop ILC design, including (1) the

model is of MIMO form, (2) the state of the hysteresis output is not measureable, (3)

other types of hysteresis model, and (4) the input uncertainties take a more complex

structure, e.g., a combination of deadzone, saturation, and hysteresis.

4. The planar requirement for the motion system is important in the initial state ILC.

Without this requirement, the monotonicity and uniqueness of solution can not help us

fully solve the final state control task. So, one remaining problem is how to extend the

result in Chapter 4 to higher-order motion systems.

5. In all the proposed parametric adaptive control methodologies, the learning ability

for parameters does not guarantee that their values can be achieved after the learning

process. Whether a revised adaptive learning scheme can be found to compensate for
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the pity is a highly challenging problem.

6. In Chapter 6, only the set-point problem was conerned in the boundary control of

PDE processes. It is desirable to consider more general control problems for such a plant,

e.g. periodic tracking problem, and explore control schemes for other more complex PDE

processes.

7. Besides these points, more control problems with repetitiveness, which can be formu-

lated or solved with learning-type control strategies, stimulate our research in the near

future. They include stochastic learning in multi-agent systems, adaptive learning in

vibration control of hard disk drive, etc.
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Appendix A: Algorithms and

Proof Details

A.1: Proof of Proposition 2.3

First we apply the principle of induction to prove the relationship

zj+1 =
Nj(x1, x2, · · · , xj+1)

x2j−1
1

, (8.1)

where Nj is a polynomial of x1, x2, · · · , xj+1.

When j = 1,

∇z1 = ∇x1 =
x2

x1
.

From the state transformation (2.13),

z2 = ∇x1 =
N1(x1, x2)

x1

and N1 = x2.

When j = 2,

∇z2 = ∇2x1 = ∇
(
N1(x1, x2)

x1

)

=
x1∇N1 −N1∇x1

x2
1

(8.2)

Note that ∇xj = xj/x1,

∇N1 = L[∇x1, ∇x2]N1 = L[
x2
x1

,
x3
x1

]N1 =
1
x1
L[x2, x3 ]N1.
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Substituting ∇N1 into (8.2) yields

z3 = ∇2x1 =
x1L[x2, x3]N1 − x2N1

x3
1

=
N2

x3
1

(8.3)

N2
4
= x1L[x2, x3]N1 − x2N1.

It can be seen that N1 and N2 are polynomials. The expressions of z2 and z3 are

consistent with (8.1).

Now assume

zj =
Nj−1(x1, x2, · · · , xj)

x2j−3
1

. (8.4)

Our objective is to prove (8.1).

Note that Nj−1 is a function of the arguments x1, x2, · · ·, xj , by differentiation we

have

zj+1 = ∇jx1 = ∇zj = ∇

(
Nj−1

x
2j−3
1

)

=
x2j−3

1 ∇Nj−1 −Nj−1∇(x2j−3
1 )

x
2(2j−3)
1

. (8.5)

Analogous to the preceding derivation,

∇Nj−1 = L[∇x1,···,∇xj ]Nj−1 =
1
x1
L[x2,···,xj+1]Nj−1,

as well as

∇(x2j−3
1 ) = (2j − 3)x2j−4

1 ∇x1 = (2j − 3)x2j−5
1 x2.

Substituting the above relations into (8.5) yields

zj+1 =
x2j−5

1 L[x2,···,xj+1 ]Nj−1 − (2j − 3)x2j−5
1 x2Nj−1

x
2(2j−3)
1

=
x1L[x2,···,xj+1]Nj−1 − (2j − 3)x2Nj−1

x2j−1
1

(8.6)

which is consistent with (8.1).
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Next we derive the dynamics of ∇zn

∇zn = ∇
(
Nn−1

x2n−1
1

)
. (8.7)

The differentiation of Nn−1 is

∇Nn−1 = L[∇x1,···,∇xn]Nj−1 =
1
x1
L[x2,···,xn]Nn−1 +

∂Nn−1

∂xn
∇xn

and

∇xn = a(s)Tζ(x) + b(s)u.

Substituting the above relations into (8.7) we obtain

∇zn =
x1L[x2,···,xn]Nn−1 − (2n− 3)x2Nn−1

x2n−1
1

+
1

x2n−2
1

∂Nn−1

∂xn
[a(s)T ζ(x) + b(s)u]

= a(s)T ξ0
x(x) + ρx(x) + b(s)ηx(x)u (8.8)

where

ηx =
1

x2n−2
1

∂Nn−1

∂xn
, ξ0

x(x) = ηx(x)ζT (x);

ρx =
x1L[x2,···,xn]Nn−1 − (2n− 3)x2Nn−1

x2n−1
1

.

Finally we prove the transformation z = T (x1, · · · , xn) is diffeomorphism, i.e., its

inverse transformation exists and is smooth. Again we apply the principle of induction

to prove a general relationship

xj+1 = zj
1zj+1 +

fj+1(z1, · · · , zj)
z

lj+1

1

, (8.9)

∂Nj

∂xj+1
= xj−1

1 > 0,

where fj+1 is a polynomial of z1, z2, · · · , zj , and lj+1 is a non-negative integer.

First, we have

x1 = z1, x2 = z1z2
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and

∂N1

∂x2
= 1

which are consistent with (8.9). Next assume

xi = zi−1
1 zi + fi(z1,···,zi−1)

z
li
1

,

∂Ni−1

∂xi
= xi−2

1 ,

(8.10)

hold for i = 1, · · · , j. From (8.6) and using the relationship (8.10)

zj+1 =
x1L[x2,···,xj]Nj−1 − (2j − 3)x2Nj−1

x2j−1
1

+
∂Nj−1

∂xj

xj+1

x2j−2
1

=
x1L[x2,···,xj]Nj−1 − (2j − 3)x2Nj−1

x
2j−1
1

+
xj+1

x
j
1

. (8.11)

Since x1 = z1, from (8.11) solving for xj+1 yields

xj+1 = zj
1zj+1 +

x1L[x2,···,xj]Nj−1 − (2j − 3)x2Nj−1

xj−1
1

. (8.12)

The polynomial Nj−1 consists of x1, · · ·, xj . By substituting xi in the second term on

the right hand side of (8.12) with (8.10),

x1L[x2,···,xj]Nj−1 − (2j − 3)x2Nj−1

xj−1
1

becomes a function of z1, · · ·, zj , and the denominator consists of z1 only. As a result,

the relationship (8.9) holds.

In terms of (8.9), the relations between xj and zj can be summarized in a matrix

form




x1

x2

...

xn




=




1 0 0 · · · 0 0

0 z1 0 · · · 0 0

? ? z2
1 · · · 0 0

...
...

...
. . .

...
...

? ? ? · · · zn−2
1 0

? ? ? · · · ? zn−1
1







z1

z2
...

zn



, (8.13)
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where elements denoted by ? at the jth row are fractions of fj(z1,···,zj−1)

z
lj
1

and therefore

continuous and nonsingular when x1 > 0. (8.13) shows that the inverse transformation

x = T −1(z) exists and is smooth.

A.2: The procedure of future states prediction in Chapter

3

Let θ̂l,k and b̂l,k denote the estimates of θl and bl at the k-th step, respectively. For

convenience, we denote ϑ̂l,k =
[
θ̂

T

l,k , b̂
T
l,k

]T
. Define one-step prediction x̂l(k + 1|k), the

estimate of xl,k+1 is

x̂l(k + 1|k) = ϑ̂T
l,k−n+2ψl,k, l = 1, 2, · · · , n− 1 (8.14)

where ψl,k =
[
ξ̄

T
l,k, x̄T

l+1,k

]T
. Define two-step prediction x̂l(k+2|k), the estimate of xl,k+2

is

x̂l(k + 2|k) = ϑ̂T
l,k−n+3ψ̂l(k + 1|k), (8.15)

where l = 1, 2, · · · , n− 2, and

ψ̂l(k + 1|k) =
[
ξ̄l(x̂l(k + 1|k))T , x̄l+1(k + 1|k)T

]T
,

x̂l(k + 1|k) = [x̂1(k + 1|k), x̂2(k + 1|k),

· · · , x̂l(k+ 1|k)]T ,

x̄l+1(k + 1|k) = ζl,k+1x̂l+1(k + 1|k). (8.16)

Define j-step (j = 3, 4, · · · , n− 1) prediction x̂l(k + j|k), the estimate of xl,k+j is

x̂l(k + j|k) = ϑ̂T
l,k−n+j+1ψ̂l(k + j − 1|k), (8.17)

where l = 1, 2, · · · , n− j, and

ψ̂l(k + j − 1|k) =
[
ξ̄l(x̂l(k + j − 1|k))T , x̄l+1(k + j − 1|k)T

]T
, x̂l(k+ j − 1|k)
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= [x̂1(k + j − 1|k), · · · , x̂l(k + j − 1|k)]T , x̄l+1(k + j − 1|k)

= ζl,k+j−1x̂l+1(k+ j − 1|k). (8.18)

The parameter estimates in state prediction are calculated from the following updating

law

ϑ̂l,k+1 = ϑ̂l,k−n+2 −
x̃l(k + 1|k)ψl,k

1 + ψT
l,kψl,k

, (8.19)

x̃l(k + 1|k) = x̂l(k+ 1|k)− xl,k+1,

ϑ̂l,k =
[
θ̂

T
l,k, b̂

T
l,k

]T
, l = 1, 2, · · · , n− 1.

Thus, we can predict Ψk+n−1 as the following

Ψ̂(k + n− 1|k) =
[
ΨT

1 (x̂1(k + n − 1|k)), (8.20)

ΨT
2 (x̂2(k + n − 2|k)), · · · ,ΨT

n (xn(k))
]T

where each ΨT
i (x̂i(k + n − i|k)) is the prediction of ΨT

i (xi(k + n− i)).

A.3: Parallel parametric adaptation laws in Chapter 3

Assuming k = κbs+ i, i = 0, 1, · · · , κb − 1, the parameter estimates in the control law

are updated with respect to s by the following update law:

εi,s =
γeκb(s−n)+n+i +Ni,sφi,sβi,s

Gi,s
, γ > 0, s ≥ 0, (8.21)

Θ̂g(κbs+ i) = Θ̂g(κb(s− n) + i)

+γ
Ni,s

Di,s
Ψ̄κb(s−n)+n+i−1εi,s, (8.22)

ĝ0(κbs+ i) = ĝ0(κb(s − n) + i) (8.23)

−γNi,s

Di,s
rκb(s−n)+n+iεi,s,

Θ̂g(j) = 0κκb
, ĝ0(j) = 0κb

, j = 0,−1, · · · ,−κbn+ 1,
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φi,s
4
= φ(κb(s− n) + n+ i),

zi,s
4
= z(κb(s− n) + n+ i),

∆φi,s = φi,s+1 − φi,s =
−Ni,sβi,sεi,s

Di,s
, φi,−1 = 0, (8.24)

∆zi,s = zi,s+1 − zi,s =
Gi,sε

2
i,s

Di,s
, zi,−1 = 0, (8.25)

βi,s = β(κb(s− n) + n+ i− 1) (8.26)

= Θ̂T
g (κb(s − n) + i) ×

˜̄Ψ(κb(s− n) + n+ i− 1|κb(s− n) + i),

Ni,s = N(χi,s), χi,s = zi,s +
φ2

i,s

2
, (8.27)

Gi,s = 1 + |Ni,s|, (8.28)

Di,s = (1 + |φi,s|)(1 +N3
i,s)

×
(
1 + ‖Ψ̄κb(s−n)+n+i−1‖2

+ ‖rκb(s−n)+n+i‖2 + β2
i,s + ε2i,s

)
,

where εi,s are introduced as augmented errors, γ > 0 is the tuning parameter, and N(χi,s)

is the discrete Nussbaum gain defined to be

N(χi,s) = χ̄i,s$N(χi,s), χ̄i,s = sup
s′≤s

{χi,s′}

and $N (χi,s) is the sign function of the discrete Nussbaum gain, i.e., $N(χi,s) = ±1.

A.4: Proof of Property 4.1

(1) Initial position tuning for final position control

Look into the phase plane in Fig.8.1, two solution trajectories ÂB and ĈD represent

solution trajectories of the dynamics (4.2) with different initial positions u∗x < ux. By
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Figure 8.1: Initial position tuning for final position control.

virtue of the uniqueness of the solution, two trajectories do not intersect each other.

As a result, x(v, u∗x) < x(v, ux) and so is xe(u∗x) < xe(ux). Therefore we have (ux −

u∗x)[xe(ux) − xe(u∗x)] > 0.

Figure 8.2: Initial speed tuning for final position control.

(2) Initial speed tuning for final position control

In Fig.8.2, the trajectory ÂB starts from the initial speed u∗v and the trajectory

ĈD starts from the initial speed uv, while the initial displacements are zero. From

Fig.8.2 and the uniqueness of solution, uv > u∗v leads to the positions xe(uv) > xe(u∗v)

at the points D and B corresponding to the prespecified speed vf . As a result we have

(uv − u∗v)[xe(uv) − xe(u∗v)] > 0.

(3) Initial position tuning for final speed control

When ux > u∗x, from phase plane Fig. 8.3 we can see that the trajectory ĈD is above

the trajectory ÂB because of the uniqueness of solution. When both positions drop to
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Figure 8.3: Initial position tuning for final speed control.

the same level at xf , the speed D is obviously farther than the speed B. Therefore we

have (ux − u∗x)[ve(ux) − ve(u∗x)] > 0.

Figure 8.4: Initial speed tuning for final speed control.

(4) Initial speed tuning for final speed control

From Fig.8.4 and the uniqueness of solution, we can see that trajectory ÂB with

initial speed u∗v is always on the left of the trajectory ĈD with the initial speed uv ,

because uv > u∗v. Accordingly ve(uv) > ve(u∗v), that is, the point D is on the right of the

point B. As a result we have (uv − u∗v)[ve(uv) − ve(u∗v)] > 0.

A.5: Proof of Lemma 4.1

Since |zd − zi| ≤ λ|ud − ui|, there exists a quantity 0 < λi ≤ λ such that

|zd − zi| = λi|ud − ui|. (8.29)
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Let γ = r/λ, from the constraint of γ we have 1 − ρ < r < 1 + ρ. Substituting (8.106)

into (4.8) yields

|ud − ui+1| = |1 − γλi||ud − ui| = |1 − r
λi

λ
||ud − ui|.

The convergence of iteration learning is determined by the magnitude of the factor |1−

rλi
λ |. The upper bound for |1 − rλi

λ | indicates the slowest convergence rate. Next we

derive this upper bound with two cases.

Case 1. min{ λ
λi
, 1 + ρ} = λ

λi
. When 1 − ρ < r ≤ λ

λi
,

|1 − r
λi

λ
| = 1 − r

λi

λ
< 1 − (1 − ρ)

λi

λ

4
= ρi < 1.

When λ
λi
< r < 1 + ρ,

|1− r
λi

λ
| = r

λi

λ
− 1 < (1 + ρ)

λi

λ
− 1

≤ ρ = 1 − (1− ρ) ≤ ρi.

From (1 + ρ)λi
λ ≤ 1 + ρ we conclude (1 + ρ)λi

λ − 1 ≤ ρ and, thus,

(1 + ρ)
λi

λ
− 1 ≤ ρ = 1 − (1− ρ) ≤ ρi.

Case 2. min{ λ
λi
, 1 + ρ} = 1 + ρ. In this case, we have

|1− r
λi

λ
| = 1 − r

λi

λ
< 1− (1− ρ)

λi

λ
= ρi.

Thus the upper bound of the convergence factor is

ρi = 1 − (1 − ρ)
λi

λ
. (8.30)

for all iterations. Note that when ui 6= ud, zi 6= zd by the uniqueness of solution,

consequently λi 6= 0 by (8.106) and the upper bound ρi will be strictly less than 1 as far

as ui does not converge to ud.
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Let ε denote the desired ε-precision bound of learning, i.e. |zd−zi| < ε. Now we show

that the sequence zi can enter the prespecified ε-precision bound after a finite number

of iterations. Let M denote the initial input error |ud − ux| = M <∞.

First, considering the fact ρi ≤ 1, using (8.107) repeatedly yields

|zd − zi| = λi|ud − ui| = λi

i−1∏

j=1

ρj |ud − ux| ≤ λiM.

Before zi enters the ε-bound,

ε < |zd − zi| ≤ λi|ud − ux| ≤ λiM

which gives the lower bound of the coefficient λi, λi ≥ ε/M for all iterations before learn-

ing terminates. Similarly by using the relationship (8.107) repeatedly, and substituting

the lower bound of λi, we can derive

|zd − zi| ≤ λ|ud − ui| ≤ λ

i−1∏

j=1

ρj|ud − ux|

= λ
i−1∏

j=1

(
1 − (1− ρ)

λj

λ

)
M ≤Mλ

(
1 − (1 − ρ)

ε

Mλ

)i

which gives the upper bound of |zd − zi|. Solving for Mλ
(
1 − (1 − ρ) ε

Mλ

)i−1 ≤ ε with

respect to i, the maximum number of iterations needed is

i ≤
log

ε

Mλ

log
(
1 − (1 − ρ)

ε

Mλ

) + 1.

A.6: Proof of Theorem 4.1

For simplicity, in subsequent graphics we demonstrate ux,i > ux,d or uv,i > uv,d only.

By following the same derivation procedure, we can easily prove learning convergence for

opposite cases ux,i < ux,d or uv,i < uv,d. Denote ÂB the trajectories of (4.2) associated

with the desired control inputs, and ĈD the trajectories associated with the actual

control inputs at the ith iteration.
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Figure 8.5: Phase portrait of system (4.2) in v-x plane with initial position learning for

final position control.

(i) Initial position iterative learning for final position control

The initial speed is fixed at A. Denote ux,d the desired initial position that achieves

the desired final position xd at the prespecified speed vf , that is, applying ux,d to the

dynamics (4.2) yields xe = xd.

Integrating (4.2) yields

xd − xi,e

= ux,d − ux,i −
∫ vf

A
[g (v, x(v, ux,d))− g (v, x(v, ux,i))]dv.

Applying the Lipschitz continuity condition (4.3) yields

|xd − xi,e|

≤ |ux,d − ux,i|+
∫ A

vf

L(v)|x(v, ux,d) − x(v, ux,i)|dv. (8.31)

Define λ = exp
(∫ A

vf
L(v)dv

)
. Applying the generalized Grownwall inequality to (8.31) we

obtain |xd−xi,e| ≤ λ|ux,d−ux,i|. As shown in Fig. 8.5, BD = |xd−xi,e| ≤ λ|ux,d−ux,i| =

λAC. Therefore, choose a ρ < 1 and the learning gain according to λ and (4.9), the

learning convergence is obtained.

(ii) Initial speed iterative learning for final position control

As shown in Fig.8.6, draw a line AE starting from A such that it parallels the x-axis,
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Figure 8.6: Phase portrait of system (4.2) in v-x plane with initial speed learning for

final position control.

where E is the point intersected with ĈD. In order to find the relationship between the

initial speed and final position, we first derive the relationship between BD and AE,

then derive the relationship between AE and AC .

Using the result of case (i), we can obtain the relationship between the initial position

difference AE and final position difference BD

BD ≤ λ1AE, λ1 = exp

(∫ A

vf

L(v)dv

)
. (8.32)

Next investigate the relationship between the position difference AE and initial speed

difference AC . Denote x∗ the position at E. Integrating (4.2), the position difference

AE at the ith iteration can be estimated using the mean value theorem

AE = x∗ − 0 = −
∫ uv,d

uv,i

g (v, x(v, uv,i))dv

= g (v, x(v, uv,i)) (uv,i − uv,d) ∃v ∈ [uv,d, uv,i]

≤ max
v∈[uv,d,uv,i]

g (v, x(v, uv,i)) · |uv,i − uv,d|. (8.33)

Using this bounding condition g(v, x) ≤ g1(v) and (8.33), we obtain

max
v∈[uv,d,uv,i]

g (v, x(v, uv,i))

≤ max
v∈[uv,d,uv,i]

g1(v) ≤ max
v∈[vf ,A]

g1(v).
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Define λ2 = maxv∈[vf ,A] g1(v), we have AE ≤ λ2AC, BD ≤ λ1AE ≤ λAC where λ =

λ1λ2. Therefore, choose ρ < 1 and the learning gain according to λ and (4.9), the

learning convergence is guaranteed.

Figure 8.7: Phase portrait of system (4.2) in v-x plane with initial position learning for

final speed control.

(iii) Initial position iterative learning for final speed control

As shown in Fig.8.7, draw a line through point D such that it parallels the x-axis

and intersects the trajectory ÂB at the point E. Denote x∗ the position at E. In order

to find the relationship between the initial position and final speed, we first derive the

relationship between AC and ED, then derive the relationship between ED and BD.

Using the result of case (i), we can obtain the relationship between the initial position

difference AC and final position difference ED

ED ≤ λ1AC, λ1 = exp
(∫ A

vd

L(v)dv
)
. (8.34)

Next investigate the relationship between the initial position difference ED and the

final speed difference BD. Integrating (4.2), the speed difference ED at the ith iteration

can be estimated using the mean value theorem

ED = xf − x∗ =
∫ vi,e

vd

g (v, x(v, x∗))dv

= g (v, x(v, x∗)) (vi,e − vd) ∃v ∈ [vd, vi,e]
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≥ min
v∈[vd,vi,e]

g (v, x(v, x∗)) (vi,e − vd). (8.35)

Substitute the relationship minv∈[vd,vi,e] g (v, x(v, x∗)) ≥ c into (8.35) and note BD =

vi,e − vd, we have BD ≤ λ2ED, λ2 = 1/c. Finally using (8.34) it can be derived that

BD ≤ λ2ED ≤ λAC where λ = λ1λ2. Therefore, choose ρ < 1 and the learning gain

according to λ and (4.9), the learning convergence is guaranteed.

Figure 8.8: Phase portraying of system (4.2) in v-x plane with initial speed learning for

final speed control.

(iv) Initial speed iterative learning for final speed control

As shown in Fig.8.8, the learning convergence in this case can be derived directly

by using the results of cases (i), (ii) and (iii). Draw two straight lines ED and AF .

There exist three relations. The first relationship is between the initial speed difference

AC and the final position difference AF , which has been discussed in the second part of

case (ii). The second relationship is between the initial position difference AF and the

final position difference ED, which has been explored in case (i). The third relationship

is between the initial position difference ED and the final speed difference BD, which

was given in the second part of case (iii). Therefore the value of λ given in the theorem

consists of three factors

max
v∈[vf ,A]

g1(v), exp

(∫ A

vf

L(v)dv

)
,

1
c
.
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A.7: Proof of Theorem 4.3

The existence and monotonicity of solution v(x, k) with respect to k in system (4.13)

imply the existence and uniqueness of desired parameter kd. With similar discussion as

in Property 4.1, we can see that the positivity (negativity) of difference kd − ki always

induces the non-positivity (non-negativity) of vd − vi,e. Thus, it is sufficient to give the

ϑ-relationship between |vd − vi,e| and |kd − ki|.

(i) limt→∞ x(t, ki) > xf . Integrating system (4.13) in the interval [0, xf ] and using

Assumption 4.3 yield

|vd − vi,e| ≤
∫ xf

0
L1|v(x, kd) − v(x, ki)|dx+ |kd − ki|

∫ xf

0
L2dx,

which further implies |vd − vi,e| ≤ λ|kd − ki| by the generalized Grownwall Lemma.

(ii) limt→∞ x(t, ki) ≤ xf . In this case, vi,e = 0. Let k∗ be the unique parameter input

determined by

0 = v∗ = v(xf , k∗) = A−
∫ xf

0
g(x, v(x, k∗), k∗)dx.

By the monotonic decreasing property of vi,e with respect to ki, the relationship

vi,e = v∗ = 0 < vd implies that kd < k∗ ≤ ki. Thus,

|vd − vi,e| = |vd − v∗| ≤ λ|kd − k∗| ≤ λ|kd − ki|. (8.36)

A.8: Proof of Theorem 5.1

Define the following time weighted composite energy function (CEF)

Ei(t) =
1
2
e−λte2i (t) +

1
2q

∫ t

0
e−λτ (ui − ur)

2 dτ (8.37)

where λ > 2Lη is a finite positive constant. Next, we prove that the CEF (8.37) is

non-increasing along the iteration domain.
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Let ∆Ei(t)
4
= Ei(t) − Ei−1(t) and ∆h(ui)

4
= ui − ur. Then, a simple computation

yields

∆Ei =
1
2
e−λt

[
e2i (t) − e2i−1(t)

]

+
1
2q

∫ t

0
e−λτ

[
∆2

h(ui) − ∆2
h(ui−1)

]
dτ. (8.38)

We can compute each term on the right hand side of (8.38) separately. First, noting the

error dynamics (5.11), it follows that

1
2
e−λte2i (t) = −λ

2

∫ t

0
e−λτe2i (τ)dτ

+
∫ t

0

e−λτei(τ) [η(xr, τ) + ur(τ)]dτ

−
∫ t

0
e−λτei(τ) [η(xi, τ) + ui]dτ

≤ −λ− 2Lη

2

∫ t

0
e−λτ(e2i (τ))dτ

+
∫ t

0
e−λτei(τ) [ur − ui]dτ. (8.39)

Now looking into the third term on the right hand side of (8.38). Using updating law

(5.12) leads to

1
2q

∫ t

0
e−λτ

[
∆2

h(ui) − ∆2
h(ui−1)

]

=
1
2

∫ t

0

e−λτei(τ) [2ui − qei − 2ur]

≤ 1
2

∫ t

0
e−λτei(τ) [2ui − 2ur]

=
∫ t

0
e−λτei(τ) [ui − ur] . (8.40)

Substituting (8.39) and (8.40) into (8.38),

∆Ei ≤ −λ− 2Lη

2

∫ t

0
e−λτe2i (τ)dτ −

1
2
e−λte2i−1(t)

≤ −1
2
e−λte2i−1(t) ≤ 0, (8.41)

which shows that the energy function Ei is non-increasing along the iteration axis. The

proof is completed by following the similar steps in [143, Theorem 1].
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A.9: Proof of Lemma 5.2

Write (5.14) with a more concise form,

ż = v̇
[
D−1

(
A − βS(v̇)|z|n−1z − γ|z|n

)]

= v̇
[
D−1 (A− |z|n(γ + βS(v̇z)))

]
. (8.42)

Thus, in each monotonic branch of v(t)

∂z

∂v
= D−1 (A− |z|n(γ + βS (v̇z))) . (8.43)

Next, consider the input-output monotonicity of hysteresis in four sub-cases.

Case (C1). Applying the facts |z(t)| ≤ za and γ+ β > 0 in this case, no matter what

is the sign of v̇z, we have

∂z

∂v
≥ D−1 (A− |z|n(γ + β))

≥ D−1 (A− zn
a (γ + β)) = 0. (8.44)

On the other hand, since γ − β ≤ 0 in (C1), it can be seen that

∂z

∂v
≤ D−1 (A− |z|n(γ − β))

= D−1 (A+ |z|n(β − γ))

≤ D−1

(
A+

A

β + γ
(β − γ)

)
≤ 2AD−1. (8.45)

Case (C2). In this case, γ − β > 0, β > 0 and |z| ≤ za. Subsequently, γ + β =

γ−β+2β > 0. Thus, the non-negative property (8.44) in (C1) still holds here. Moreover,

∂z

∂v
≤ D−1 (A − |z|n(γ − β)) ≤ AD−1. (8.46)

Case (C ′
3). Noticing that |z(t)| ≤ zb, γ + β > 0 and α

1−α + 2βA
β−γ ≥ ε

(1−α)k in this case,

we can similarly see that

∂z

∂v
≥ D−1 (A− |z|n(γ + β))
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≥ D−1 (A− zn
b (γ + β))

=
2βA

D(β − γ)
≥ − α

D(1 − α)
+

ε

(1− α)Dk
. (8.47)

On the other hand, owing to β > 0,

∂z

∂v
≤ D−1 (A− |z|n(γ − β))

≤ D−1 (A− zn
b (γ − β))

= D−1

(
A− A

γ − β
(γ − β)

)
= 0. (8.48)

Case (C ′
4). Note that β > 0 and |z(t)| ≤ zb in this case. Thus, the relationship (8.48)

is still valid here. Moreover, considering β + γ < 0, β ≥ 0, and α
1−α +A ≥ ε

(1−α)k ,

∂z

∂v
≥ D−1 (A− |z|n(γ + β))

≥ D−1A

≥ − α

D(1 − α)
+

ε

(1− α)Dk
. (8.49)

The bounds information for dz/dv is beneficial for us to estimate the bound of the

input-output gradient in each branch of hysteresis. From (5.10), it follows that

∂u

∂v
= αk + (1 − α)Dk

∂z

∂v
.

In the cases (C1) and (C2), by using the inequalities (8.44)-(8.46)

αk ≤ ∂u

∂v
≤ αk + 2(1− α)kA ≤ kmax{1, 2A}. (8.50)

In the cases (C ′
3) and (C ′

4), (8.47)-(8.49) imply that

ε = αk + (1− α)Dk
(
− α

D(1− α)
+

ε

(1 − α)Dk

)

≤ ∂u

∂v
≤ kα. (8.51)

Thus, combining (8.50) and (8.51) yields that

min{ε, αk} ≤ ∂u

∂v
≤ kmax{1, α, 2A},
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which is just (5.28).

A.10: Proof of Lemma 5.3

In the initial iteration, we have S(v̇0(t)) = S(u̇i,r(t)) by assumption. On the other

hand, S(v̇0(t)) = S(u̇0(t)) and S(v̇i,r(t)) = S(u̇i,r(t)) by the input-output monotonicity

property in each branch. Hence, the statement holds for j = 0. For any j ≥ 1, assume

S(v̇j(t)) = S(u̇j(t)) = S(v̇i,r(t)) = S(u̇i,r(t)). We further prove the statement holds in

the (j + 1)-th iteration. Specifically, differentiating the ILC law (7.4) in each monotonic

branch of the j-th iteration,

v̇j+1 = ˙ vj + qh∆u̇j = ˙ vj − qhu̇j + qhu̇i,r. (8.52)

If v̇j(t) = 0, then u̇j(t) = 0, implying that v̇j+1 = qhu̇i,r. Thus, S(v̇j+1) = S(u̇i,r(t)). If

v̇j(t) 6= 0,

v̇j+1 = v̇j

(
1 − qh

u̇j

v̇j

)
+ qhu̇i,r

= v̇j

(
1 − qh

duj

dvj

)
+ qhu̇i,r (8.53)

According to (5.28), we have ε ≤ duj/dvj ≤ λ, implying

1 − qh
duj

dvj
≤ 1− qhε < 1,

1 − qh
duj

dvj
≥ 1− qhλ ≥ 1 − 1

λ
λ = 0.

Then, the quantities 1−qhduj/dvj and qh always take a non-negative sign. Subsequently,

considering the fact S(v̇j(t)) = S(u̇i,r(t)), (8.53) will induce that S(v̇j+1) = S(u̇i,r(t)).

On the other hand, it follows that S(v̇j+1(t)) = S(u̇j+1(t)) and S(v̇i,r(t)) = S(u̇i,r(t))

by the input-output monotonicity property. Hence, S(v̇j+1(t)) = S(u̇j+1(t)) = S(v̇i,r(t)) =

S(u̇i,r(t)).
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A.11: Proof of Theorem 5.2

Under each of the conditions (C1), (C2), (C ′
3), and (C ′

4), the desired output ui,r and

its corresponding desired input vi,r take a same monotonicity. Thus, the concerned time

interval [0, T ] can be divided as follows.

[0, T ] = {t0} ∪ (t0, t1] ∪ (t1, t2] ∪ · · · ∪ (tn−1, tn], (8.54)

where t0 = 0, tn = T , and ts, s = 1, · · · , n − 1 are the extreme points of ui,r or vi,r

satisfying u̇i,r(ts) = v̇i,r(ts) = 0. The principle idea of the convergence proof is briefly

outlined below:

(1) first prove the learning convergence at the initial point t = t0 = 0;

(2) assume that the learning convergence has been guaranteed from branch 1 to

branch k − 1. Prove the learning convergence for branch k. Then by induction, the

learning convergence for every 1 ≤ k ≤ n can be derived.

Step 1: ILC convergence at the initial point t = t0. Considering the i.i.c. for z(t),

namely z(0) = 0, the hysteresis input-output mapping at the initial point becomes

u(0) = αkv(0). (8.55)

Thus, in two consecutive two iterations

|∆uj(0)| = |ui,r(0) − uj(0)|

= |(ui,r(0)− uj−1(0))− (uj(0) − uj−1(0))|

= |(ui,r(0)− uj−1(0))− αk(vj(0)− vj−1(0))|

= |∆uj−1(0)− αkqh∆uj−1(0)|

≤ |1− αkqh||∆uj−1(0)|, (8.56)
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where the ILC updating law (5.29) is used. Noticing the gain restriction in (5.29), we

have that |1 − αkqh| < 1. Therefore, if letting ρ = |1 − αkqh| and σj = 0, the inequality

(5.30) holds obviously.

Step 2: ILC convergence over the time interval (tk−1, tk]. Investigating from (5.24),

u(t) = u(v(t), v(tk−1), z(tk−1),S(v̇(t))), t ∈ (tk−1, tk]. (8.57)

Based on the learning convergence in branch k− 1, the effect of initial condition error to

the ILC convergence in the current branch can be ignored since what we concern is the

asymptotical behavior of hysteresis after a sufficient large amount of iterations. Thus,

we can write the hysteresis output as u(v(t),S(v̇(t))) if no confusion occurs. This means

that there are only two factors affecting the ultimate convergence of hysteresis: one is

input v(t) and the other one is its monotonicity.

Now, we are in the position of investigating the relationship of output errors in any

two consecutive iterations. First assume that S (v̇j−1) 6= 0 and the current iteration is

in the j-th iteration. By the Mean Value Theorem

uj − uj−1

= u(vj ,S (v̇j)) − u(vj−1,S (v̇j−1))

= u(vj ,S (v̇j)) − u(vj ,S (v̇j−1))

+u(vj ,S (v̇j−1)) − u(vj−1,S (v̇j−1))

= σj(t) +
∂u

∂v
(v̄j−1,S (v̇j−1))(vj − vj−1), (8.58)

where v̄j−1 lies in an interval determined by vj and vj−1, and

σj(t) = u(vj ,S (v̇j))− u(vj ,S (v̇j−1)).
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Subsequently,

|∆uj | = |ui,r − uj |

= |(ui,r − uj−1) − (uj − uj−1)|

= |(ui,r − uj−1)

− ∂u

∂v
(v̄j−1,S (v̇j−1))(vj − vj−1) − σj(t)

∣∣∣∣

≤
∣∣∣∣1 − qh

∂u

∂v
(v̄j−1,S (v̇j−1))

∣∣∣∣ |ui,r − uj−1| + |σj(t)|

= ρj−1(t)|∆uj−1| + |σj(t)|. (8.59)

where ρj−1(t) =
∣∣1 − qh

∂u
∂v (v̄j−1,S (v̇j−1))

∣∣.

Considering the other possibility, if S (v̇j−1) = 0 or equivalently v̇j−1 = 0,

u̇j−1 = αkv̇j−1 + (1 − α)Dkżj−1

= αkv̇j−1 + (1 − α)Dkv̇j−1 ×

(D−1 (A− |zj−1|n(γ + βS(v̇j−1zj−1))))

= 0,

and

v̇j = ˙ vj−1 + qh(u̇i,r − u̇j−1) = qhu̇i,r 6= 0.

Similar to (8.58) and (8.59), we have

uj − uj−1 =
∂u

∂v
(v̄j−1,S (v̇j))(vj − vj−1) + σj(t), (8.60)

and

|ui,r − uj | ≤ ρj−1(t)|ui,r − uj−1| + |σj(t)|, (8.61)

where σj(t) = u(vj−1,S (v̇j)) − u(vj−1,S (v̇j−1)) and ρj−1(t) =
∣∣1 − qh

∂u
∂v (v̄j−1,S (v̇j))

∣∣ .
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Applying Lemma 5.2, it can be seen that for any non-vanished sign function S(·),

0 < ε ≤ ∂u

∂v
(v̄j−1,S(·)) ≤ λ, (8.62)

inducing that

ρj−1(t) = 1− qh
∂u

∂v
(v̄j−1,S (·))

≤ 1− qhε
4
= ρ < 1. (8.63)

The remaining work in this step is to prove σj(t) → 0 as j → ∞, which quantifies

the effect of wrong estimation of hysteresis monotonicity to the learning convergence.

Without loss of generality, assume v̇l 6= 0, l = 0, · · · , j − 1. Otherwise, there exists

0 ≤ l0 ≤ j − 1 such that v̇l0 = 0, and then v̇l0+1 = qhu̇i,r 6= 0. By Lemma 5.3,

S(v̇l) = S(v̇l+1), l = l0 + 1, l0 + 2, · · · . (8.64)

Hence, there exist at most l0 pairs of (v̇l−1, v̇l), l ≤ l0 < ∞, such that S (v̇l) 6= S (v̇l−1)

and

σl(t) = u(ν,S (v̇l)) − u(ν,S (v̇l−1)) 6= 0,

where ν = vl−1 or vl.

Since v̇l 6= 0, l = 0, · · · , j − 1, differentiating the ILC law (5.29) will yield

v̇l+1 = δlv̇l + qhu̇i,r. (8.65)

where δl
4
= 1 − qh

u̇l
v̇l

. Note that 0 ≤ δl < 1 by Lemma 5.2. Iteratively, the relationship

(8.65) gives that

v̇j = δj−1(δj−2v̇j−2 + qhu̇i,r) + qhu̇i,r

...

= Λ1,j−1v̇0 + Λ2,j−1qhu̇i,r, (8.66)
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where

Λ1,j−1 =
j−1∏

l=0

δl, Λ2,j−1 =
j−1∑

l=0

l∏

p=1

δj−p,

satisfying 0 ≤ Λ1,j−1 < 1 and Λ2,j−1 ≥ 1. If S(v̇0) = S(qhu̇i,r), then S (v̇j) = S (v̇j−1) =

S(qhu̇i,r) for all j onward. If S(v̇0) 6= S(qhu̇i,r), noticing that

v̇j = Λ2,j−1

(
qhu̇i,r +

Λ1,j−1

Λ2,j−1
v̇0

)
,

S (v̇j) = S(v̇0) as Λ1,j−1/Λ2,j−1 > −qhu̇i,r/v̇0 and S (v̇j) = S(qhu̇i,r) as Λ1,j−1/Λ2,j−1 <

−qhu̇i,r/v̇0. Since it is easy to see that the sequence {Λ1,j−1}j∈N is monotonically decreas-

ing while the sequence {Λ2,j−1}j∈N is monotonically increasing, Λ1,j−1/Λ2,j−1 should be

monotonically decreasing. Thus, there exists at most one pair of (v̇j0−1, v̇j0), j0 < ∞

such that

S (v̇j0) 6= S (v̇j0−1) ,

namely, vj0 and vj0−1 take different monotonicities at the same time instant. In the

sequel, there exists one and only one j0 <∞ such that σj0(t) 6= 0.

Summarily, we can conclude that the function σj(t) will vanish after finite iterations,

which obviously means that σj → 0 as j → ∞, which complete the learning convergence

proof in the k-th branch.

A.12: Proof of Theorem 6.1

The following time weighted CEF is employed.

Ei(t) =
1
2
e−ζte2i (t) +

1
2q

∫ t

0
e−ζτ (∆ui,r)

2 dτ

+
1
2q

∫ t

0
e−ζτ (∆ui)

2 dτ, (8.67)

where

ζ > 2Lη + 2q +
8qρ2

1− ρ2
(8.68)
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is a finite positive constant, ρ is from (5.30), and ui,r is from (5.31). Here, ei = xr − xi,

∆ui = ui,r−ui, and ∆ui,r = ur−ui,r, where ur is the desired hysteresis output that leads

to the desired state output xr and ui,r is generated by ILC law (5.31). First, differencing

Ei(t) yields

∆Ei = Ei −Ei−1

=
1
2
e−ζte2i (t) −

1
2
e−ζte2i−1(t)

+
1
2q

∫ t

0
e−ζτ

[
(∆ui,r)2 − (∆ui−1,r)2

]
dτ

+
1
2q

∫ t

0
e−ζτ

[
(∆ui)

2 − (∆ui−1)
2
]
dτ. (8.69)

Each term on the right hand side of (8.69) is bounded separately. Using the error

dynamics (5.11), the first term on the right hand side of (8.69) can be bounded as

follows

1
2
e−ζte2i (t)

≤ −ζ − 2Lη

2

∫ t

0

e−ζτe2i (τ)dτ

+
∫ t

0
e−ζτei(τ) [(ur − ui,r) + (ui,r − ui−1,r)]dτ

+
∫ t

0
e−ζτei(τ)(ui−1,r − ui)dτ

≤ −ζ − 2Lη − 2q
2

∫ t

0
e−ζτe2i (τ)dτ

+
∫ t

0

e−ζτei(τ) (ur − ui,r)dτ

+
∫ t

0
e−ζτei(τ) (ui−1,r − ui) dτ. (8.70)

For the third term on the right hand side of (8.69), using the algebraic relationship

(a− b)2 − (a− c)2 = −2(a− b)(b− c)− (b− c)2 where a, b, c are scalars and the ILC law

(5.31),

1
2q

∫ t

0
e−ζτ

[
(∆ui,r)2 − (∆ui−1,r)2

]
dτ
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=
1
2

∫ t

0
e−ζτei(τ) [2ui,r − 2ur]dτ −

q

2

∫ t

0
e−ζτe2i (τ)dτ

=
∫ t

0
e−ζτei(τ) [ui,r − ur]dτ −

q

2

∫ t

0
e−ζτe2i (τ)dτ. (8.71)

Now consider the last term on the right hand side of (8.69). From the inequality (5.30)

in Theorem 5.2, it follows that

ρ2|∆ui−1|2 ≥ |∆ui|2 − 2ρ|∆ui−1| · |σi| − |σi|2. (8.72)

In the sequel, it yields that

(∆ui)
2 − (∆ui−1)

2

= (ui,r − ui)
2 − (ui−1,r − ui)

2

+ (ui−1,r − ui)
2

− (ui−1,r − ui−1)
2

≤ (ui,r − ui−1,r) (ui,r + ui−1,r − 2ui)

−1 − ρ2

ρ2
(ui−1,r − ui)

2

+
2
ρ
|ui−1,r − u(vi,S(v̇i), t)| · |σi| +

1
ρ2

|σi|2

= qei · (2ui−1,r + qei − 2ui)

−1 − ρ2

2ρ2
(ui−1,r − ui)

2

−1 − ρ2

2ρ2

[
(ui−1,r − ui)2

− 4ρ
1 − ρ2

|ui−1,r − ui| ·

|σi|+
(

2ρ
1 − ρ2

|σi|
)2
]

+
1 + ρ2

(1− ρ2)ρ2
|σi|2

≤ qei · (2ui−1,r + qei − 2ui)

−1 − ρ2

2ρ2
(ui−1,r − ui)

2

+
1 + ρ2

(1 − ρ2) ρ2
|σi|2 (8.73)
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Consequently,

1
2q

∫ t

0
e−ζτ

[
(∆ui)

2 − (∆ui−1)
2
]
dτ

≤
∫ t

0
e−ζτei(τ) (ui−1,r − ui) dτ

+
q

2

∫ t

0
e−ζτe2i (τ)dτ

− 1
2q

∫ t

0
e−ζτ 1− ρ2

2ρ2
(ui−1,r − ui)

2 dτ

+
1
2q

∫ t

0

e−ζτ 1 + ρ2

(1 − ρ2)ρ2
|σi|2dτ. (8.74)

Substituting (8.70), (8.71) and (8.74) into (8.69) yields

∆Ei ≤ −ζ − 2Lη − 2q
2

∫ t

0

e−ζτ (e2i (τ))dτ

+2
∫ t

0
e−ζτei(τ)(ui−1,r − uidτ

− 1
2q

∫ t

0
e−ζτ 1 − ρ2

2ρ2
(ui−1,r − ui)

2 dτ

−1
2
e−ζt(e2i−1(t))

+
1
2q

∫ t

0

e−ζτ 1 + ρ2

(1 − ρ2) ρ2
|σi|2dτ. (8.75)

Note that the inequality (8.68) and the following relationship

2ei(τ) (ui−1,r − ui)

≤ 4qρ2

1 − ρ2
e2i (τ) +

1 − ρ2

ρ2

1
4q

(ui−1,r − ui)
2 ,

we have

∆Ei ≤ −1
2
e−ζte2i−1(t) +

1
2q

∫ t

0

e−ζτ 1 + ρ2

(1 − ρ2)ρ2
|σi|2dτ,

which implies that

Ei = E0 +
i∑

p=1

∆Ep

≤ E0 −
1
2
e−ζt

i−1∑

p=0

e2p(t)
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+
(

1 + ρ2

2q (1 − ρ2)ρ2

)∫ t

0

e−ζτ
i∑

p=1

|σp(τ)|2dτ. (8.76)

Note thatEi is positive,E0 is finite because e0,∆u0,r, and ∆u0 are finite, and limp→∞ σp =

0. For any small ι > 0, there must exist a finite iteration number iι such that the output

tracking error |ei(t)| < ι for all i ≥ iι and t ∈ [0, T ]. This completes the proof.

A.13: Proof of Theorem 5.4

Differentiating the learning law (5.36), it yields that

v̇j(t)

= (1− ζ0)v̇j−1(t) + qh(u̇r(t) − u̇j−1(t))

= (1− ζ0)v̇j−1(t) + qhu̇r(t)− qh

×
(
kA− |uj−1|n

kn−1Dn
(γ + βS(v̇j−1uj−1))

)
v̇j−1(t).

Subsequently,

v̇j(t) = Θj−1v̇j−1(t) + qhu̇r(t),

where

Θj−1
4
= 1 − ζ0 − qh

(
kA− |uj−1|n

kn−1Dn
(γ + βS(v̇j−1uj−1))

)
.

Noticing that 0 ≤ qh(kA− |u|n
kn−1Dn (γ + βS(v̇u))) ≤ 1 − ζ0, we have

0 ≤ Θj−1 ≤ 1 − ζ0.

Due to the relationship S(v̇r) = S(qhu̇r) as u̇r 6= 0, the correct monotonicity for input v

can be learned within finite iterations, as discussed in (8.66). As u̇i,r = 0,

v̇j(t) = Θj−1v̇j−1(t).
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Although the correct monotonicity of input v may not be learned in finite iterations, the

relationship S(v̇j) = S(v̇j−1) always holds as j < ∞, due to Θj−1 > 0. In either of the

two cases, therefore, S(v̇j) = S(v̇j−1) after certain finite iterations. Then, we can ignore

the effect of input monotonicity to learning convergence and write the solution of Eq.

(5.35) as

u(t) = u(v(t), v(ts), u(ts)), t ∈ [ts, ts+1] ⊂ [0, T ],

in each monotone branch of v(t), t ∈ [ts, ts+1], when considering the asymptotical con-

vergence property of the system only.

To achieve the output convergence in such singular case, the main idea here is still

similar as in the normal cases: consider the learning convergence in each monotone branch

of hysteresis separately; the analysis in current branch is based on the convergence result

in the previous adjacent branch.

Step 1: Learning convergence in the first monotone branch. First prove that the

operator, induced by the ILC law (5.36),

T [v(t)] = (1 − ζ0)v(t) + qh∆u(t), (8.77)

is a contraction operator in the space C1([t0, t1],R, ‖ · ‖), where t0 = 0.

When ur(t), v(t) ∈ C1([t0, t1],R, ‖·‖), according to Lemma 5.1, z(t) ∈ C1([t0, t1],R, ‖·

‖). In the sequel, u(t) ∈ C1([t0, t1],R, ‖ · ‖) and then ∆u(t) ∈ C1([t0, t1],R, ‖ · ‖). From

(8.77), T is an operator which maps the elements of the Banach space C1([t0, t1],R, ‖ ·‖)

into itself.

Considering the i.i.c. for v and u separately, for any vs,∈ C1([t0, t1],R, ‖ ·‖), s= 1, 2,

the corresponding output is

us(t) = u(vs(t), vs(t0), us(t0)) = u(vs(t), ξv, ur(0)).
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Thus,

|T [v1(t)]− T [v2(t)]|

= |(1 − ζ0)(v1(t) − v2(t))− qh(u1(t) − u2(t))|

= |(1 − ζ0)(v1(t) − v2(t))− qh(u(v1(t), ξv, ur(0))− u(v2(t), ξv, ur(0)))|

=
∣∣∣∣(1− ζ0)(v1(t) − v2(t)) − qh

∂u

∂v
(v̄)(v1(t) − v2(t))

∣∣∣∣

≤
∣∣∣∣(1− ζ0) − qh

∂u

∂v
(v̄)
∣∣∣∣ |v1(t) − v2(t)| (8.78)

where v̄(t) is lied in the interval (v1, v2) or (v2, v1) by the Mean Value Theorem. Noticing

that qh∂u/∂v ≥ 0 and |∂u/∂v| ≤ λ, and considering the gain restriction (5.38), it is easy

to see that

∣∣∣∣(1− ζ0) − qh
∂u

∂v
(v̄)
∣∣∣∣ < 1,

that is, T is indeed a contaction operator in the Banach space C1([t0, t1],R, ‖ · ‖).

According to the Banach fixed-point theorem, T has a unique fixed point v∗1(t) ∈

C1([t0, t1],R, ‖ · ‖), and the input sequence, determined by (5.36), will converge to this

point.

Since v∗1 = T [v∗1], substituting v = v∗1 into (8.77), we finally have

lim
j→∞

|∆uj(t)| =
ζ0
|qh|

|v∗1(t)| ≤
ζ0
|qh|

|v∗1(t)|s (8.79)

where |v∗1(t)|s denotes the supreme norm of v∗1(t) as t ∈ [t0, t1].

Step 2: Learning convergence in the k-th monotone branch. Assuming the existence

of the fixed-point input function v∗k−1(t), t ∈ [tk−2, tk−1] for the (k − 1)-th branch, the

output function

u∗k−1(t) = u(v∗k−1(t), v
∗
k−2(tk−2), ur(tk−2)), t ∈ [tk−2, tk−1]
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is also fixed. By the same reason we presented in the normal cases, the output solution

in the current hysteresis branch can be simply written as

u(t) = u(v(t), v∗k−1(tk−1), u∗k−1(tk−1)), t ∈ [tk−1, tk], (8.80)

namely, the initial condition effect to the ILC convergence in [tk−1, tk] is ignored when

the asymptotical behavior of hysteresis along the iteration axis is concerned only. Similar

to the discussion in (8.78), (8.77) also defines a contraction operator T in [tk−1, tk], and

its fixed point is v∗k(t) ∈ C1([tk−1, tk],R, ‖·‖). The input sequence, determined by (5.36),

will converge to v∗k and the following relationship holds

lim
j→∞

|∆uj(t)| =
ζ0
|qh|

|v∗k(t)| ≤
ζ0
|qh|

|v∗k(t)|s (8.81)

as t ∈ [tk−1, tk].

Step 3: Learning convergence over [0, T ]. Define a new function v∗(t) as follows:

v∗(t) = v∗k(t), if t ∈ [tk−1, tk], k = 1, · · · , n. (8.82)

Obviously, (8.79) and (8.81) give that

lim
j→∞

|∆uj(t)| =
ζ0
|qh|

|v∗(t)| ≤ ζ0
|qh|

|v∗(t)|s, t ∈ [0, T ]. (8.83)

It is worthy of noticing that |∆uj| = ρ|∆uj−1| + (|∆uj| − ρ|∆uj−1|), where 0 < ρ < 1.

Let σj(t) = |∆uj | − ρ|∆uj−1|, and then (8.83) implies that

lim
j→∞

σj(t) = (1 − ρ) lim
j→∞

|∆uj(t)| ≤
ζ0(1− ρ)

|qh|
|v∗(t)|s. (8.84)

This completes the proof.

A.14: Proof of Theorem 5.5

Similar to the first singular case, as t ∈ Ω1

v̇j(t) = Θj−1v̇j−1(t) + q0hu̇r(t),
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where

Θj−1
4
= 1 − ζ0 − q0h

u̇j−1

v̇j−1
.

Noticing that −ζ0/2 ≤ q0h
u̇j−1

v̇j−1
≤ ζ0/2, we have

0 < 1− 3ζ0
2

≤ Θj−1 ≤ 1 − ζ0
2
< 1.

Then, the relationship S(v̇j) = S(v̇j−1) holds after certain finite iterations. Subsequently,

the operator, induced by the ILC law (5.44),

T [v(t)] = (1 − ζ0)v(t) + q0h∆u(t), (8.85)

is a contraction operator in the space C1([0, T ],R, ‖ · ‖), and there exists a unique fixed

input function v∗ such that v∗ = T [v∗]. Thus, a bound for the output tracking error can

be easily derived as in the preceding part

lim
j→∞

|∆uj(t)| ≤
ζ0
|q0h|

|v∗(t)|s, t ∈ Ω1. (8.86)

Next analyze the boundedness of the output tracking error in Ω2 = [0, T ]−Ω1, where

Ω2 is composed of a number of open sets, each covering a singular point ts with its length

δ. In each interval (ts − δ/2, ts + δ/2) of Ω2, denote u∗ the system state corresponding

to v∗. Then,

|ur(t) − u∗(t)| ≤ |ur(t) − ur(ts − δ/2)|

+|ur(ts − δ/2)− u∗(ts − δ/2)|

+|u∗(t)− u∗(ts − δ/2)|.

Considering the C1 boundedness of ur and applying the Mean Value Theorem,

|ur(t) − ur(ts − δ/2)| ≤ |u̇r(t̄)||t− ts + δ/2|

≤ β1δ (8.87)
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where |u̇r(t)| ≤ β1, t ∈ Ω2 for certain finite constant β1. On the other hand, the C1 prop-

erty of v∗ in [0, T ] also implies the C1 boundedness of u∗ by Lemma 5.1. Subsequently,

there exists another constant β2 such that |u̇∗(t)| ≤ β2, t ∈ Ω2 and

|u∗(t) − u∗(ts − δ/2)| ≤ β2|t− ts + δ/2| ≤ β2δ. (8.88)

Moreover, note that |ur(ts−δ/2)−u∗(ts−δ/2)| ≤ ζ0

|q0
h|
|v∗(t)|s by (8.86). Finally, we have

that

lim
j→∞

|∆uj(t)| ≤
ζ0
|q0h|

|v∗(t)|s + δ

2∑

i=1

βi, t ∈ Ω2. (8.89)

Let σj(t) = |∆uj | − ρ|∆uj−1|, satisfying |∆uj | = ρ|∆uj−1| + σj(t), and then (8.87)

and (8.89) imply (5.46) directly.

A.15: Proof of Property 6.1

Integrating F1(c̄(z), v̄(z)) = 0, i.e. F1(c̄(z), ū) = 0, along the spatial coordinate from

0 to z,

−Būc̄(z) +D
∂c̄(z)
∂z

+
(
Būc̄(0)−D

∂c̄(0)
∂z

)

+
∫ z

0
f(c̄(τ), τ)dτ = 0. (8.90)

Further integrating (8.90),we have that

−Bū
∫ z

0
c̄(τ)dτ +D(c̄(z)− c̄(0))

+
(
Būc̄(0)−D

∂c̄(0)
∂z

)
z

+
∫ z

0

∫ τ

0

f(c̄(ζ), ζ)dζdτ = 0, (8.91)

or equivalently

−Bū
∫ z

0
c̄(τ)dτ +D(c̄(z)− c̄(0))
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+
(
Būc̄(0)−D

∂c̄(0)
∂z

)
z

+
∫ z

0
(z − τ)f(c̄(τ), τ)dτ = 0. (8.92)

Write (8.92) with the following form,

c̄(z) = c̄(0) +D−1Bū

∫ z

0
c̄(τ)dτ

−
(
D−1Būc̄(0)− ∂c̄(0)

∂z

)
z

−D−1

∫ z

0
(z − τ)f(c̄(τ), τ)dτ. (8.93)

Noticing the Lipschitz condition for f(c̄(z), z), the velocity restriction ū ∈ [vmin, vmax],

and taking norm on both sides of (8.93), we can see that

‖c̄(z)‖ ≤
(
1 + vmaxz

∥∥D−1B
∥∥) ‖c̄(0)‖

+ z

∥∥∥∥
∂c̄(0)
∂z

∥∥∥∥

+ ‖D−1B‖vmax

∫ z

0
‖c̄(τ)‖dτ (8.94)

+ ‖D−1‖
∫ z

0
(z − τ)ωf (τ) ‖c̄(τ)‖dτ.

Since ‖D−1B‖vmax +‖D−1‖(z−τ)ωf (τ) ≥ 0 and
(
1 + vmaxz

∥∥D−1B
∥∥) ‖c̄(0)‖+z

∥∥∥∂c̄(0)
∂z

∥∥∥

is nondecreasing in z, applying the generalized Gronwall inequality [?] to (8.94) yields

that

‖c̄(z)‖

≤
((

1 + vmaxz
∥∥D−1B

∥∥) ‖c̄(0)‖+ z

∥∥∥∥
∂c̄(0)
∂z

∥∥∥∥
)

× exp
(∫ z

0

[
vmax‖D−1B‖

+‖D−1‖(z − τ)ωf (τ)
]
dτ
)
. (8.95)
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A.16: Proof of Theorem 6.1

Letting z = L in (8.93),

c̄(L) = c̄(0) +
∂c̄(0)
∂z

L

+ ūD−1B

(∫ L

0
c̄(z)dz − c̄(0)L

)

−D−1

∫ L

0

(L− z)f(c̄(z), z)dz. (8.96)

By Assumption 6.3, corresponding to the desired steady state output y∗, a unique pair

of (ū∗, c̄∗) exists, and satisfies

c̄∗(L) = c̄∗(0) +
∂c̄∗(0)
∂z

L

+D−1Bū∗
(∫ L

0
c̄∗(z)dz − c̄∗(0)L

)

−D−1

∫ L

0
(L− z)f(c̄∗(z), z)dz.

Let ∆c̄(z) = c̄∗(z) − c̄(z) and ∆ū = ū∗ − ū. Then, ∆c̄i(0) = 0 and ∂∆c̄i(0)/∂z =

0 in ith iteration due to the strict repeatable assumption of process. Subsequently,

the relationship of input/output errors in ith iteration can be given by the following

inequality:

‖∆c̄i(L)‖

=
∥∥∥∥D−1Bū∗

(∫ L

0
c̄∗(z)dz − c̄∗(0)L

)

−D−1

∫ L

0
(L− z)f(c̄∗(z), z)dz

−D−1Būi

(∫ L

0
c̄i(z)dz − c̄i(0)L

)

+D−1

∫ L

0
(L− z)f(c̄i(z), z)dz

∥∥∥∥

≤ vmax‖D−1B‖
∫ L

0

‖∆c̄i(z)‖dz (8.97)

+ ‖D−1B‖
∥∥∥∥
∫ L

0
c̄i(z)dz − c̄i(0)L

∥∥∥∥ |∆ūi|
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+ ‖D−1‖
∫ L

0

(L− z)

× ‖f(c̄∗(z), z)− f(c̄i(z), z)‖dz.

Using the boundedness property of c̄(z) and the Lipschitz condition of f(c̄(z), z), it is

easy to see that

‖∆c̄i(L)‖

≤ ‖D−1B‖
(∫ L

0
‖Ξ0(z)‖dz + ‖c̄∗(0)‖L

)
|∆ūi|

+
∫ L

0

(
vmax‖D−1B‖ + ‖D−1‖(L− z)ωf (z)

)

× ‖∆c̄i(z)‖dz. (8.98)

Similar to the proof in Property 6.1, we get by using the generalized Gronwall inequality

that

‖∆c̄i(L)‖ ≤ Ξ1|∆ūi|. (8.99)

where Ξ1 is given in (6.18).

Now, assume ∆ȳi = y∗ − ȳi. By the global Lipschitz condition of function h and

(8.99), the input/output errors satisfy

|∆ȳi| ≤ ωh‖∆c̄i(L)‖ ≤ λ|∆ūi| (8.100)

with λ = ωhΞ1, where ωh is the Lipschitz constant given in (6.11). The value of λ

quantifies the input-output gradient, and the input-output inequality (8.100) is important

for us to prove the convergence of IBLC.

Considering the steady-state input errors ∆ūi in two consecutive iterations, we have

that

|∆ūi+1| = |ū∗ − ūi+1|
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= |(ū∗ − ūi) − (ūi+1 − ūi)|

= |∆ūi − ρ∆ȳi|, (8.101)

where the IBLC law (6.16) is applied. Applying the Differential Mean Value Theorem

to function ȳ(ū) gives that

∆ȳi = y∗ − ȳi = ȳ(ū∗) − ȳ(ūi)

=
dȳ(ζ)
dū

(ū∗ − ūi) =
dȳ(ζ)
dū

∆ūi, (8.102)

where ζ lies in the interval [ū∗, ūi] or [ūi, ū
∗]. Notice that Assumption 6.3 implies the

strict monotonicity of input-output relationship, that is, for all ū ∈ [vmin, vmax]

dȳ(ū)
dū

=
(
∂h

∂c̄

)T ∂c̄
∂ū

∣∣∣∣∣
z=L

> (<)0.

If we choose the learning gain ρ such that sign(ρ) = sign
(

dȳ(ū)
dū

)
, then sign

(
ρdȳ(ū)

dū

)
= 1

for any ū ∈ [vmin, vmax]. Subsequently, multiplying by ρ and then taking sign operations

on both sides of (8.102) yield that

sign (ρ∆ȳi) = sign
(
ρ
dȳ(ζ)
dū

∆ūi

)

= sign
(
ρ
dȳ(ζ)
dū

)
sign (∆ūi)

= sign (∆ūi) . (8.103)

Thus, we can derive from (8.101) and (8.103) that

|∆ūi+1| = |∆ūi − ρ∆ȳi|,

= ||∆ūi| − |ρ||∆ȳi||

≤ |1− λ|ρ|| · |∆ūi|, (8.104)

where the inequality (8.100) is adopted. Noticing the gain range (6.17) for the learning

gain ρ, it is easy to see that

|∆ūi+1| ≤ δ|∆ūi| < |∆ūi|. (8.105)
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where 0 < δ < 1 is given in (6.17). Thus, ∆ūi and then ∆ȳi will converge to zero as

i→ ∞.

According to Assumption 6.4, ‖ci(L, t)− c̄i(L)‖ < ε as t ∈ [Tε, T ] for each iteration

i. In the sequel, yi(t) will enter into its steady state stage with an error less than ωhε in

each trial, i.e., |yi(t) − ȳi| < ωhε as t ∈ [Tε, T ]. Thus,

lim
i→∞

|yi(t) − y∗| ≤ lim
i→∞

(|ȳi − y∗| + |yi(t) − ȳi|)

= lim
i→∞

(|∆ȳi|+ |yi(t) − ȳi|)

≤ ωhε

as t ∈ [Tε, T ].

A.17: Proof of Theorem 6.2

As can be seen from (8.100), |∆ȳi| ≤ λ|∆ūi|, and then there exists a quantity 0 <

λi ≤ λ such that

|∆ȳi| = λi|∆ūi|. (8.106)

Let |ρ| = `/λ, from the constraint of |ρ| we have 1 − δ < ` < 1 + δ. Substituting (8.106)

into (8.104) yields

|∆ūi+1| = |1 − |ρ|λi||∆ūi| = |1− `
λi

λ
||∆ūi|.

The convergence of iteration learning is determined by the magnitude of the factor |1−

`λi
λ |. The upper bound for |1 − `λi

λ | indicates the slowest convergence rate. Next we

derive this upper bound with two scenarios.

Case 1. min{ λ
λi
, 1 + δ} = λ

λi
. When 1 − δ < ` ≤ λ

λi
,

|1 − `
λi

λ
| = 1 − `

λi

λ
< 1− (1− δ)

λi

λ

4
= δi < 1.



Appendix A: Algorithms and Proof Details 245

When λ
λi
< ` < 1 + δ,

|1− `
λi

λ
| = `

λi

λ
− 1 < (1 + δ)

λi

λ
− 1

≤ δ = 1 − (1− δ) ≤ δi.

From (1 + δ)λi
λ ≤ 1 + δ we conclude (1 + δ)λi

λ − 1 ≤ δ and, thus,

(1 + δ)
λi

λ
− 1 ≤ δ = 1 − (1− δ) ≤ δi.

Case 2. min{ λ
λi
, 1 + δ} = 1 + δ. In this case, we have

|1 − `
λi

λ
| = 1 − `

λi

λ
< 1 − (1 − δ)

λi

λ
= δi.

Thus the upper bound of the convergence factor is

δi = 1 − (1 − δ)
λi

λ
. (8.107)

for all iterations. Note that when ūi 6= ū∗, ȳi 6= y∗ by Assumption 6.3, consequently

λi 6= 0 by (8.106) and the upper bound ρi will be strictly less than 1 as far as ūi does

not converge to ū∗.

Let ε1 denote the desired ε1-precision bound of learning, i.e. |∆ȳi| < ε1. Now we

show that the sequence ȳi can enter the prespecified ε1-precision bound after a finite

number of iterations.

First, considering the fact δi ≤ 1, using (8.107) repeatedly yields

|∆ȳi| = λi|∆ūi| = λi

i−1∏

j=1

δj |∆ū0| ≤ λi(vmax − vmin).

Before ȳi enters the ε1-bound,

ε1 < |∆ȳi| ≤ λi|∆ū0| ≤ λi(vmax − vmin)
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which gives the lower bound of the coefficient λi, λi ≥ ε1/(vmax − vmin) for all iterations

before learning terminates. Similarly by using the relationship (8.107) repeatedly, and

substituting the lower bound of λi, we can derive

|∆ȳi| ≤ λ|∆ūi| ≤ λ
i−1∏

j=1

δj |∆ū0|

= λ

i−1∏

j=1

(
1 − (1 − δ)

λj

λ

)
(vmax − vmin)

≤ (vmax − vmin)λ
(

1 − (1− δ)
ε1

(vmax − vmin)λ

)i

which gives the upper bound of |∆ȳi|. Solving for (vmax−vmin)λ
(
1− (1− δ) ε1

(vmax−vmin)λ

)i−1
≤

ε1 with respect to i, the maximum number of iterations needed is

i ≤
log

ε1
(vmax − vmin)λ

log
(

1− (1− δ)
ε1

(vmax − vmin)λ

) + 1.
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