
QUERY BY OUTPUT

TRAN QUOC TRUNG

B.Eng. in Computer Science

HCM City University of Technology

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2011

Acknowledgements

This thesis would not have been finished without the support and encouragement of

many people. I would like to reserve this section to express my gratitude to all of them.

The course of completing this thesis was a wonderful opportunity of interaction with

my supervisor, Prof. Chee-Yong Chan. His guidance, support, and dedication to re-

search have been a great inspiration to me. He had spent countless hours not only of

working days but also weekends and public holidays to help me develop ideas, elaborate

on details, write and present technical works. His insights and suggestions were invalu-

able for my work. Whenever I encountered difficulties in research or even in personal

life, I always felt comfortable to approach him for advice. I am deeply grateful to him.

My deep gratitude also goes to Prof. Srinivasan Parthasarathy, whom I had a chance

to collaborate with on my first research paper. He had many insightful comments on my

work. I would also like to thank Prof. Kian-Lee Tan and Prof. Wynne Hsu for being in

my thesis evaluation committee and providing constructive feedback to refine my work.

I would also say thank to Prof. Hon Wai Leong for helping me in the first year at NUS.

I wish to thank the following people: Hoang Viet Tung, Do Huy Hoang, Cao Thanh

Tung, Htoo Htet Aung, Nguyen Thi Hong Duyen, all the members of Database Research

Laboratories, many friends in NUS, and many Vietnamese friends for the open discus-

sions, valuable assistance, and enjoyable hours we spent together at the leisure time.

Last but not least, I wish to thank my family for taking care and supporting me over

the time. It is to my mother whom I dedicate this thesis.

i

ii

Table of Contents

1 Introduction 1
1.1 An Overview of Query by Output . 2
1.2 Deriving Instance Equivalent Queries 4
1.3 Explaining Why-Not Questions . 8
1.4 Instantiation & Evaluation of Partial Queries 12
1.5 Summary of Contributions . 16
1.6 Thesis Organization . 18

2 Literature Review 21
2.1 Deriving Instance Equivalent Queries 22
2.2 Reverse Query Processing . 24
2.3 Explaining Why-Not Questions . 25
2.4 Instantiation & Evaluation of Partial Queries 27

3 TALOS: A Classification-based Approach for Query by Output 31
3.1 An Overview of TALOS . 31

3.1.1 Instance-Equivalent Queries (IEQs) 34
3.1.2 TALOS: Conceptual Approach 37
3.1.3 TALOS: Challenges . 40

3.2 Handling At-Least-One Semantics . 43
3.2.1 Computing Optimal Node Splits 43
3.2.2 Updating Labels & Propagating Constraints 45

3.3 TALOS Framework . 47
3.3.1 Classifying Data in TALOS 48
3.3.2 Optimizations . 50

3.4 Ranking IEQs . 52
3.4.1 Minimum Description Length 53
3.4.2 F-measure . 53

3.5 Implementation of TALOS . 54
3.5.1 Implementation . 54

iii

3.5.2 Complexity Analysis . 58
3.5.3 Control Knobs . 60

3.6 Experimental Study . 61
3.6.1 At-Least-One Semantic Metric 61
3.6.2 Data sets and Queries . 62
3.6.3 Comparing TALOS, NI, and RD 65
3.6.4 Effectiveness of Optimizations 68
3.6.5 Strong and Weak IEQs . 70

3.7 Summary . 74

4 REQUERE: Reverse-Query Engineering System 75
4.1 An Overview of REQUERE . 75

4.1.1 Unknown Query . 76
4.1.2 Multiple Database Versions 76
4.1.3 Supporting More Expressive IEQs 77

4.2 Preliminaries . 78
4.2.1 Review of TALOS . 79
4.2.2 Multiple Database Version Organization 81

4.3 Unknown Query . 81
4.3.1 Naive solution . 82
4.3.2 Domain indices . 83

4.4 Multiple Database Versions & Single Unknown Result 85
4.4.1 Optimizing Matching Attributes Computation 86
4.4.2 Optimizing Join Relation Computation 88

4.5 Multiple Database Versions & Multiple Known Results 89
4.5.1 Append-Only Database Versions 90
4.5.2 Arbitrary Database Versions 93

4.6 Supporting More Expressive IEQs . 93
4.6.1 Finding SPJU-IEQs . 94
4.6.2 Finding SPJA-IEQs . 95

4.7 Experimental Study . 98
4.7.1 Effectiveness of Domain Indices 99
4.7.2 Multiple Database Versions 100
4.7.3 Supporting More Expressive IEQs 101

4.8 Summary . 102

5 ConQueR: Explaining Why-Not Questions 103
5.1 An Overview of ConQueR . 104

5.1.1 Why-not Questions & Refined Queries 106

iv

5.1.2 Metrics for Comparing Refined Queries 107
5.1.3 Explaining with ConQueR . 109

5.2 Explaining SPJ Queries . 112
5.2.1 Modifying Selection Predicates 112
5.2.2 Improving Precision with More Predicates 114
5.2.3 Refined Queries with Different Schema 115

5.3 Explaining SPJA Queries . 118
5.3.1 Basic Why-not Questions . 118
5.3.2 Complex Why-not Questions 123

5.4 ConQueR: Further Extensions . 123
5.4.1 Handling Categorical Attributes 123
5.4.2 Extensions of Explaining SPJ Queries 124
5.4.3 Explaining SPJU Queries . 126
5.4.4 Extensions of Explaining SPJA Queries 126

5.5 Alternative Approach: TALOS+ . 127
5.5.1 Explaining SPJ Queries . 128
5.5.2 Explaining Basic SPJA Queries 130
5.5.3 Explaining Complex SPJA Queries 131
5.5.4 ConQueR vs. TALOS . 132

5.6 Implementation of ConQueR . 134
5.6.1 Implementation . 134
5.6.2 Complexity Analysis . 135

5.7 Experimental Study . 138
5.7.1 Comparing ConQueR & TALOS+ 139
5.7.2 Comparison of Explanation Models 142

5.8 Summary . 146

6 Instantiation and Evaluation of Partial Queries 147
6.1 Partial Queries . 147

6.1.1 Complexity Results . 150
6.2 Evaluating Partial Queries . 151

6.2.1 Dynamic Programming Approach 151
6.2.2 Greedy Approach . 156

6.3 Instantiating Partial Queries . 159
6.3.1 Single Constraint . 160
6.3.2 Multiple Constraints . 162
6.3.3 Sampling-based Approach . 164

6.4 Experimental Study . 165
6.4.1 Evaluating Partial Queries . 166

v

6.4.2 Instantiating Partial Queries 168
6.5 Summary . 172

7 Conclusion 175
7.1 Contributions . 176
7.2 Future Directions . 177

Appendix 184
A Proof of Theorem 3.1 . 185
B Proof of Theorem 3.2 . 188
C Proof of Theorem 3.3 . 189
D Proof of the Optimality of TALOS . 191
E Proof of Theorem 6.1 . 194
F Proof of Theorem 6.2 . 196

vi

Summary

While database system research has made tremendous advances on functionality and

performance related issues over the years, research on improving database usability has

not attracted as much attention as it deserves. In this work, we propose a novel data-

driven approach, called Query by Output (QBO), targeted at improving the usability of

database management systems. The central goal of Query by Output is as follows: given

a database D and a result table T = Q(D), which is the output of some query Q on D,

the goal of QBO is to construct an alternative query Q′ such that the output of query Q′

on database D is equal to Q(D). We consider the following three variants of QBO.

In the first variant of QBO, the input query Q may be known or unknown, and the

result table T contains a set of specific tuples. One useful application of this variant is

to help users better understand their query results by augmenting the result of a query Q

(w.r.t. a database D) with instance-equivalent queries Q′, each of which produces the

same result as Q (w.r.t. D) and thus describing alternative characterizations of tuples

in Q(D).

The second variant of QBO requires the input query Q to be explicitly given and

the result table to be in the form T = Q(D) ∪ S , where S is a non-empty set of

expected tuples that are missing from Q(D). The problem is to derive some refined

query Q′ of Q such that Q′(D) includes all the tuples in Q(D) as well as the missing

tuples in S . This variant of QBO presents a new paradigm for explaining why a set

of tuples is missing in the result of a query Q w.r.t. a database D by automatically

generating one or more refined query Q′, whose result includes both the original query

vii

result and the missing tuples.

The third variant of QBO takes the following as inputs: (1) a database D, (2) a query Q

that is partially specified (e.g., only the from-clause and the join predicates of Q are

specified), and (3) a set C of aggregation constraints that must be satisfied by the query

result of each derived query Q′ from Q. The goal is to either (1) evaluate Q by returning

a set of tuples S ans ⊆ Q(D) satisfying all the constraints in C, or (2) instantiate Q into

one or more complete relational queries Q′ such that the execution of Q′ on D satisfies

all the constraints in C. One useful application of this setting is in the Targeted Query

Generation problem to generate test queries for database testing.

viii

List of Tables

1.1 Summary of Our Work’s Contributions 2

2.1 Comparison of PQE with respect to sum, count, group by & optimization
constraints (PP: pseudo-polynomial) 27

3.1 The Focus of Chapter 3 . 32
3.2 Optimizing Node Splits . 43
3.3 Table sizes (number of tuples) . 62
3.4 Test queries for experiments with TALOS 62
3.5 The characteristics of test queries . 63
3.6 Workload query sets for Adult . 64
3.7 The control knob values . 64
3.8 Comparison of decision trees for NI, RD, and TALOS 67
3.9 Detailed running times of TALOS and TALOS− (in seconds) 69
3.10 Weak IEQs on Adult . 71
3.11 Strong IEQs on Adult . 71
3.12 Strong IEQs on Baseball and TPCH 73

4.1 Summary of the Generalization of REQUERE over TALOS 76
4.2 Test queries . 98

5.1 The Focus of Chapter 5 . 104
5.2 The time complexity comparison of ConQueR and TALOS 137
5.3 Table sizes (number of tuples) . 138
5.4 Test queries for experiments with ConQueR 138
5.5 Why-not questions . 139
5.6 The dissimilarity (d) and the imprecision (i) values of refined queries . 139
5.7 Comparison of ConQueR and ConQueR− 142
5.8 Refined queries for test queries on Basketball data set 143

6.1 The Focus of Chapter 6 . 148
6.2 Table sizes (number of tuples) . 165

ix

6.3 Partial queries for experiments . 166
6.4 Instantiated queries for Q7 - Q10 . 172

7.1 Summary of the Three Settings of QBO 175

x

List of Figures

1-1 Problem Statement of Query by Output 2

1-2 Thesis Structure . 19

3-1 Running Example - Baseball Data Set D 34

3-2 Example of deriving IEQs for Q4 on D 39

3-3 Example data structures for Q4(D) . 48

3-4 The Architecture of TALOS . 56

3-5 Comparison of TALOS, NI and RD for queries in Adult 66

3-6 Comparison of TALOS, NI and RD for workload queries 66

3-7 Comparison of TALOS, NI and RD for queries in Baseball 68

3-8 Optimization of TALOS . 69

4-1 Example of finding IEQs on single database version 83

4-2 The mapping tables for Baseball database 84

4-3 The SQL query to derive matching attributes 85

4-4 Finding IEQs on multiple database versions 88

4-5 Example of finding IEQs for multiple input tables 91

4-6 Experimental Results of REQUERE 99

5-1 Running Example: Basketball Data Set D 105

5-2 Example 5.2 . 111

5-3 Example 5.5 . 120

5-4 Refined queries returned by TALOS and ConQueR 134

5-5 Running time comparisons among ConQueR, ConQueRs and TALOS+ . 141

6-1 Running Example: Song Database D 150

6-2 Example 6.1 . 154

6-3 Comparison between DP and Greedy 167

6-4 Quality of instantiated queries . 169

6-5 Running time comparison . 171

6-6 Quality of instantiated queries (without constraining selection attributes) 173

xi

A-1 Example to prove Theorem 3.1 . 186
C-2 An integer circuit example . 190
D-3 The domain space of f1 and f2 . 193

xii

Chapter 1

Introduction

While database system research has made tremendous advances on functionality and

performance related issues over the years, research on improving database usability has

not attracted as much attention as it deserves [23]. Since databases are currently hard

to design, modify, and query, there are many expected functionalities that database sys-

tems should provide for users to store and retrieve information easily and efficiently.

For instance, database systems should provide an explain capability for users to seek

clarifications on unexpected query results. The necessity for this functionality comes

from the fact that responses to queries might not contain information that users want,

or contain the results that are unexpected by users [15]. In another example, database

systems should provide novice users with a simple method to query the systems (e.g.,

using keyword search with flexible semantics), while still providing expert users with

tools that maximize their productivity (e.g., tools for database testers to automatically

generate test queries satisfying certain kinds of properties). Some recent approaches

have been proposed towards improving database usability. One example is the idea of

Précis queries [28, 44], which aims to augment a user’s query result with other related

information (e.g., relevant tuples from other relations). Another example includes some

explanation models (e.g., [9, 20, 22, 33]) to help users seek clarifications on the absence

of expected tuples in the query results.

1

Q

Q’(D) = T

T = Q(D)

D

Q’
Query by Output

(QBO)

Figure 1-1: Problem Statement of Query by Output

1.1 An Overview of Query by Output

In this work, we propose a novel data-driven approach, called Query by Output (QBO),

targeted at improving the usability of database management systems. The central goal of

Query by Output is as follows: given a database D and a result table T = Q(D), which is

the output of some query Q on D, the goal of QBO is to construct an alternative query Q′

such that the output of query Q′ on database D is equal to Q(D). We refer to Q as the

input query, D as the input database, T = Q(D) as the given result table, and Q′ as the

output query. The problem statement of QBO is visualized in Figure 1-1.

We investigate three variants of QBO corresponding to different settings of the two

over three input parameters, including the input query Q and the given result table T .

The main contributions of our work are summarized in Table 1.1.

Parameters
QBO Problem Input query Q Given result table T

The first variant - Q is known T = Q(D)
(published in [49]) - Q is unknown T is a set of specific tuples
The second variant Q is known T = Q(D)

⋃
S

(published in [48]) S is a set of tuples that are not present in Q(D)
The third variant Q is partially specified T is a set of constraints that must be satisfied
(published in [50]) by the query result of each derived query Q′

Table 1.1: Summary of Our Work’s Contributions

2

In the first variant of QBO, the input query Q may be known or unknown, and the

result table T contains a set of specific tuples. One useful application of this variant is

to help users better understand their query results by augmenting the result of a query Q

(w.r.t. a database D) with alternative queries Q′, each of which produces the same re-

sult as Q (w.r.t. D) and thus describing alternative characterizations of tuples in Q(D)

(Section 1.2).

The second variant of QBO requires the input query Q to be explicitly given and the

result table to be in the form T = Q(D) ∪ S , where S is a non-empty set of expected

tuples that are missing from Q(D). The problem is to derive some refined query Q′ of Q

such that Q′(D) includes all the tuples in Q(D) as well as the missing tuples in S 1. This

variant of QBO presents a new paradigm for explaining why a set of tuples is missing

in the result of a query Q w.r.t. a database D by automatically generating one or more

refined query Q′, whose result includes both the original query result and the missing

tuples (Section 1.3).

The third variant of QBO takes the following as inputs: (1) a database D, (2) a query Q

that is partially specified (e.g., only the from-clause and the join predicates of Q are

specified), and (3) a set C of aggregation constraints that must be satisfied by the query

result of each derived query Q′ from Q. The goal is to either (1) evaluate Q by returning

a set of tuples S ans ⊆ Q(D) satisfying all the constraints in C, or (2) instantiate Q into

one or more complete relational queries Q′ such that the execution of Q′ on D satisfies

all the constraints in C. One useful application of this setting is in the Targeted Query

Generation problem to generate test queries for database testing (Section 1.4).

Essentially, the second variant of QBO can be formulated as an instance of the first

variant of QBO as follows. By treating the query’s result Q(D) together with the missing

tuples S as the output result of some unknown query, the first variant of QBO will derive

alternative queries Q′ such that Q′(D) = Q(D) ∪ S . The alternative query Q′ in this

case can be considered as the refined query to explain why the set of tuples S is miss-

1For certain cases where S involves a constraint specification, the attribute values associated with the
constraints could be different between Q′(D) and Q(D).

3

ing from Q(D). Correspondingly, the first variant of QBO can also be formulated as an

instance of the second variant of QBO as follows. By considering all tuples in the given

result table T = Q(D) as the missing tuples (i.e., S = Q(D)) and constructing the input

query to return empty result, the second variant of QBO will generate refined queries Q′

such that Q′(D) = Q(D). Indeed, our proposed solutions for these two settings of QBO

can be applied in both cases. We will discuss which approaches should be used for each

of these two settings of QBO in Section 5.5.4.

1.2 Deriving Instance Equivalent Queries

The first variant of Query by Output (QBO) is a novel data-driven approach that aims

to derive interesting query-based characterizations of a given input query Q w.r.t. a

database D and tuples in its result. This setting is designed to work in the “reverse

direction” with the conventional querying that takes an input query Q and computes

its output, denoted by Q(D), w.r.t. an input database D. In contrast, the basic idea

of QBO is to take as input the query result Q(D) of some query Q, and compute a set

of queries Q′1, · · · , Q′n such that each Q′i(D) is (approximately) equal to Q(D). We

say that two queries Q and Q′ are instance-equivalent w.r.t. a database D (denoted by

Q ≡D Q′) if Q(D) and Q′(D) are equal. In this setting, the input query Q may be known

or unknown.

There are several scenarios where this setting of QBO is useful. In the following

discussions, we highlight some of the use-case scenarios of this setting.

Database Usability. The most obvious application of QBO is in database usability. Con-

sider the scenarios when a user wants to evaluate a query Q on a database D. Instead of

simply returning the query result Q(D) to the users, the database system can also apply

QBO to derive instance-equivalent queries Q′ of Q that describe alternative characteriza-

tions of tuples in the query result of Q.

Example 1.1 Consider the relation Movie(title, year, gross-revenue, director) in a movie

4

database. Suppose a user submitted a query Q1 to find movies that are directed by

“James Cameron” since 1997. The query result Q1(D) includes two movies: “Avatar”

and “Titanic”. QBO can be applied in this case to provide alternative characterizations of

the two movies in Q1(D). The inputs to QBO include the movie database D, the query Q1,

and the given result table Q1(D) = {(“Avatar”), (“Titanic”)}. There is an insightful

query that is instance-equivalent to Q1 w.r.t. D, and specifies “select the movies that are

the top-2 high gross-revenue movies”. �

As the above example illustrates, the ability to return instance-equivalent queries for

a given query Q can reveal interesting properties of the query result Q(D). In addition,

unusual or surprising IEQs can be useful for uncovering hidden relationships among the

data. In several instances, simpler or easier to understand relationships may be uncov-

ered; this can again aid in the understanding of the data contained within the complex

database. As an example, consider a skyline query Q2 looking for people with maximal

capital gain and minimal age in Adult data set2. An instance-equivalent query Q′2 of Q2

provides a simplification of this query: the people selected by this skyline query are very

young (age ≤ 17) and have low capital gain (< 5000), or they have very high capital

gain (> 27828) and work in the protective service.

Besides providing alternative characterizations of the query results, IEQs can also

help users to better understand the database schema. Since many enterprise data schema

are very complex and large, the part of the database schema that is referenced by the

user’s query may be quite different from that referenced by an IEQ. The discovery of

this alternative “part” in the schema to generate an instance-equivalent query can aid the

user’s understanding of the database schema, or potentially help refine the user’s initial

query.

Example 1.2 Consider the baseball data set3 and a query Q3 that finds managers of

“CIN” team during the years from 1982 to 1988. This query involves the join between

2http://archive.ics.uci.edu/ml/datasets/Adult
3http://baseball1.com/statistics/

5

two relations Manager and Team. An instance-equivalent query Q′3 of Q3 reveals that

some of these managers were also the players of “CIN” team at the same time they

managed the team. The IEQ Q′3 has revealed the alternative schema part that involves

the joins from a different set of relations (Manager, Team, Master, and Batting), and

provided users with useful information about these player-managers. �

QBO can also be applied to provide succinct query-based explanation for each par-

tition that is produced by some data partitioning algorithms. As a specific example,

consider a relational-cloud system, Schism, proposed in [13] that utilizes database par-

titioning to scale a single database to multiple nodes. Schism partitions data to place

different partitions into different nodes in such a way that most transactions should com-

pletely touch data at one node. Schism needs a succinct representation of these partitions

to route SQL queries into the correct place. The idea of QBO to derive predicate-based

characterization of each partition can be applied in this system [13].

Database Security. QBO may also have interesting applications in database security,

where attackers who have some prior domain knowledge of the data may attempt to de-

rive sensitive information. For example, if an attacker is aware of the existing correlation

structure in the data, they can easily use this information to formulate two or more sepa-

rate queries that on paper look very different (e.g., using different selection criteria), but

in reality may be targeting the same set of tuples in the database. Such sets or groups

of queries can potentially be used to reverse-engineer the privacy preserving protocol

in use. Subsequently, sensitive information can be gleaned. As a specific example, con-

sider a protocol such as ε-diversity [54], which relies on detecting how similar the current

query is with a previous set of queries (history) answered by the database, to determine if

the current query can be answered without violating the privacy constraints. The notion

of similarity used by such methods relies primarily on the selection attributes, and thus

such protocols will fail to recognize IEQs that use different selection attributes. Privacy

in such protocols will then be breached. Automatically recognizing such IEQs via the

methods proposed in this work and subsequently leveraging this information to enhance

6

such protocols may provide more stringent protection against such kinds of attacks.

Data Exploration & Analysis. Another important class of QBO applications is in sce-

narios where the input query Q is unknown. Specifically, consider a view V (defined on a

database D) which may have been derived manually (e.g., a user selected some tuples of

the database of interest to her), or by an application program that is no longer available

(e.g., the program is no longer maintained or is lost). Therefore, given only the view

result V on the database D, it will be very useful to be able to derive instance-equivalent

queries Q′ of the unknown query for V (i.e., V = Q′(D)) that describe the characteristics

of the tuples in V . In data exploration, such scenarios are more common where the doc-

umentation and meta-data for the data sets being analyzed are incomplete, inaccurate, or

missing. As an example, in AT&T’s Bellman project [24], the data set made available

to data analysts is often in the form of a delimited ASCII text file representing the out-

put result of some query, where the query is not available for various reasons. Clearly,

it will be useful to reverse engineer the queries to help make sense of the data before

performing further analysis tasks (e.g., data mining).

Materialized View Maintenance. Another useful application of QBO is in materialized

view maintenance, where a view V (defined on a database D) may have been derived

manually or by an application program that is no longer available. When D is modified

into D′, the challenge is how to propagate the data updates to the view V . One solution

here is to reverse-engineer a view definition Q that captures the relationship between V

and D, and then apply Q on D′ to derive the modified view for V [43].

Data Integration. In data integration systems, the goal is to combine data residing at

different sources to provide users with a unified view of these data [30]. The global-as-

view integration approach requires that the global schema be expressed in terms of the

data sources, which necessitates a query over the global schema to be reformulated in

terms of a set of queries over the data sources. Thus, the QBO problem in this context

is given a result table that is generated by the integration system to find the instance-

7

equivalent query that involves the union of sub-queries over the data sources.

1.3 Explaining Why-Not Questions

Our first variant of QBO to provide additional useful information about tuples in the query

result aims to address part of the problem when responses to queries do not contain infor-

mation that users want, or contain the results that are unexpected by users. In this section,

we present the second setting of QBO to address users’ concerns about unexpected query

results in the form of explaining why-not questions.

The second variant of QBO targets at providing an explain capability for users to seek

clarifications on query results, a useful feature that is missing from today’s database

systems. Although most database systems today provide an explain functionality to

help database administrators understand and tune the performance of unexpected slow-

running queries (e.g., SQL EXPLAIN command), there is no similar higher-level explain

feature available to help end users understand the unexpected results in their query out-

puts. There are two types of unexpected query results that are of interest: (1) the pres-

ence of unexpected tuples, and (2) the absence of expected tuples (i.e., missing tuples).

Clearly, it would be very helpful if users could pose follow-up why questions (i.e., why

is a certain tuple in the result) or why-not questions (i.e., why is a certain tuple miss-

ing from the result) to seek clarifications on unexpected query results. While the why

questions can be addressed by applying established data provenance techniques [47], the

problem of explaining the why-not questions has received very little attention [9].

Consider the following SQL query to find the recent high-scoring NBA players from

the NBA statistics4: SELECT P.name FROM Player P, Regular R WHERE P.pID =

R.pID AND R.year > 2000 AND R.pts > 2400. Among the players returned by the

query are many expected well-known NBA superstars such as “LeBron James” and

“Kobe Bryant”. However, the user is surprised to find that the superstar “Rick Barry” is

4http://www.basketballreference.com/.

8

absent from the query result. At this point, the user could try to figure out for himself

an explanation for the missing tuple by relaxing at least one selection predicate (e.g.,

adjusting the year to 1990 or lowering the points to 2000) to see if Barry satisfies the

revised query. Clearly, such a manual trial-and-error approach of seeking explanation is

rather tedious involving possibly many rounds of query refinement. Moreover, the user

could end up over-relaxing his refined query and obtaining many more additional result

tuples than just the tuple for Barry. Thus, it would be very helpful to the user if she could

simply pose a single why-not question to the database system to seek an explanation for

why “Rick Barry” is not in the result.

There are two main models for explaining why-not questions. One natural explana-

tion model for missing tuples is to identify the query operator(s) that is responsible for

eliminating the missing tuples from the result [9]. Thus, for the above example, a possi-

ble explanation is to identify the selection operator on the year attribute as the “culprit”

operator. For applications where a query result is computed by a workflow of black-box

processing steps, the ability to pinpoint the step that is responsible for the missing tuples

could be the most informative available explanation.

However, in general, an even more helpful explanation can go beyond merely iden-

tifying the culprit step/operator, and actually suggests one or more ways to “fix” the

original query such that the missing tuples become present in the result. Continuing

with the example, a more informative explanation would be a refined query that changes

the selection predicate on year to “R.year > 1970”. In this way, not only does the sys-

tem reveal the culprit operator to the user, it also explicitly shows the user how to revise

the original query to obtain the expected tuples. The automatic generation of refined

queries to explain unexpected query results can be useful even for applications that in-

teract with users via a form-based web-interface, where the SQL queries being issued to

the database are generated by a middleware component based on the completed forms.

Basically, what is needed is a component to map a refined query back to an interface-

based explanation. For example, an interface-based explanation could inform the user

9

that had she clicked on button X on the form and selected item Y from the pulled-down

menu, the expected missing tuple would have been included in the result.

A second model that has been proposed explains a missing tuple t in terms of mod-

ifications to the database such that t appears in the query result w.r.t. the modified

database [20, 21, 22]. This model was proposed in the context where some of the data in

the database are extracted from untrusted information sources that may not be accurate.

Thus, the intuition of this model is to explain in terms of how to modify some of the

untrusted data in order to produce the missing tuple. Clearly, this explanation model is

very flexible if arbitrary modifications to the database are allowed to derive the missing

tuples. However, this model may not be applicable in applications where all the data

stored are trusted (e.g., enterprise databases), and where it may not be meaningful to

make arbitrary changes to the stored data.

In this work, we propose a new explanation model that is based on automatically

generating one or more refined query, whose result includes both the original query’s

result as well as the missing tuples. With respect to the framework of QBO, the input

query to this setting is the original query, and the given result table is the union of the

result of the input query and the set of missing tuples (as shown in the second row

in Table 1.1). Our proposed model goes beyond identifying culprit query operator(s)

(in contrast to the first explanation model), and actually recommends refined queries,

instead of data changes (unlike the second explanation model), to “fix” missing tuples.

It is desirable for a refined query to be as similar as possible to the original input query

by making only minimal relaxations to appropriate selection predicates in the query.

However, doing so might not always generate the desired missing tuples, as the user’s

original query might actually be focused on the “wrong” part of the database schema and

needs to be reformulated. Thus, our proposed explanation strategy will try to generate

minimally modified refined queries to account for the missing tuples whenever possible,

and resort to more drastic query reformulation if minimally refined queries do not exist.

Besides handling why-not questions for select-project-join (SPJ) queries, our approach

10

can also explain why-not questions for SPJ queries with aggregation (SPJA queries) that

are not addressed by any of the previous explanation models. The later pieces of work

in [20, 33] also handle why-not questions for SPJA queries.

The following three examples illustrate the capabilities of our proposed approach.

The first example illustrates the need to sometimes refine query beyond simply relaxing

selection predicates by reformulating the query to retrieve from different relations in the

database schema.

Example 1.3 Consider a flight database, which includes two relations budget airline

and regular airline that describe airfare information for budget and regular airlines,

respectively. Suppose a user wants to buy a cheap airticket for vacation travel in July

with the criteria that the departure city is in Singapore and the ticket price is at most 400.

The user issues a query on the budget airline relation to find all the destination cities that

meet his requirement, and is surprised to learn that “Shanghai” is not listed in the result

even though one of his colleagues has recently booked a cheap airticket to “Shanghai”.

It could well be that there is no available air tickets from Singapore to Shanghai with the

budget airlines; however, there are promotion cheap airtickets available with the regular

airlines that meet his requirement. Thus, in this case, simply relaxing the predicates in

the original input query would not help to generate any explanation. Instead, the refined

query needs to be reformulated on both the budget airline and regular airline relations.

�

The next example illustrates why-not queries with constraints on aggregated values.

Example 1.4 Consider the following query to find the average points scored by high-

scoring recent basketball players: SELECT P.name, AVG(R.pts) FROM Player P, Reg-

ular R WHERE P.pID = R.pID AND R.pts > 2000 AND R.year ≥ 1994 AND R.year

≤ 2000 GROUP BY P.name. The result contains two tuples (Michael Jordan, 2200)

and (Gary Payton, 2800). The user might be expecting Jordan’s average score to be

higher, and would like to seek an explanation for why Jordan’s average score is not

11

higher than 3000. Our approach can process such why-not questions involving selection

constraints on an aggregated value. It turns out that Jordan actually did not perform

so well during 1994, and a refined query that replaces “R.year ≥ 1994” with “R.year

≥ 1995” would explain the user’s why-not question. Our approach can also support this

kind of why-not questions for missing tuples. For example, the user could ask why “Wilt

Chamberlain” is not in the result. Or even more specifically, the user asks why “Wilt

Chamberlain” is not in the result with an average score of at least 3000. �

The final example illustrates more complex why-not queries involving relative com-

parisons of aggregated values.

Example 1.5 Suppose Professor P issues the following query to check the academic per-

formance (in terms of average scores) of his students: SELECT G.name, AVG (G.score)

FROM Grade G GROUP BY G.name. P is surprised to find the tuples (Alice,70) and

(Bob, 90) in the result, as he has expected Alice to perform better than Bob. Thus, P

would like to ask why Alice’s average score is not higher than Bob’s. Our approach can

handle such sophisticated why-not questions that involve comparisons among multiple

aggregated values in the results. A possible explanation for this why-not question is

the following refined query: SELECT G.name, AVG (G.score) FROM Grade G WHERE

G.dept = “CS” GROUP BY G.name, which explains that Alice indeed performs better

than Bob if the average scores were computed for courses offered by the “CS” depart-

ment. �

1.4 Instantiation & Evaluation of Partial Queries

The third setting of QBO works towards providing novice users with a flexible method

to query the systems, while still providing expert users with tools that maximize their

productivity. We introduce the concept of partial queries, which is a class of extended

relational queries that allows flexible data retrieval using aggregation constraints. In

12

contrast to the conventional relational queries where there is a unique set of tuples satis-

fying each query, a partial query generally has multiple possible results arising from the

application of the aggregation constraints.

Informally, a partial query Q = (Qbase,Cans) consists of two components. The first

component is a base query Qbase, which is a conventional relational query that returns a

set S base of tuples to serve as the base data for the partial query. The second component

is a set Cans of constraints that must be satisfied by each result of Q, which is a subset

of S base. With respect to the framework of QBO, Qbase corresponds to the input query

and Cans corresponds to the given result table.

Example 1.6 Suppose that Alice wants to download a set of MP3 files into her iPhone

from a music database containing a relation Song(title, genre, album, artist, f ilesize, length)

satisfying the following three requirements: (1) the songs must be rock music, (2) the to-

tal size of the files must be as large as possible but not exceeding 500MB, and (3) the

total number of different artists for the downloaded songs should be between 5 and 7 (for

diversity). Observe that Alice’s retrieval request is not expressible in conventional rela-

tional query languages, but can be expressed using the following partial query Q. The

base query Qbase of Q retrieves the set S base of songs satisfying condition (1); i.e., Qbase

corresponds to the following SQL query: SELECT * FROM Song WHERE genre =

“rock”. The constraint set Cans of Q contains conditions (2) and (3). Each subset of S base

that satisfies C is a possible answer to Q. �

Besides the basic sum and count aggregation constraints illustrated by the example

above, partial queries also support content constraints to indicate the presence of certain

attribute values (or tuples) in each result. For example, Alice could indicate that each re-

sult must contain some song by “The Beatles” and some song by “Bob Dylan”. Another

useful type of constraints supported is group-by constraints on the query result. Contin-

uing with the previous example, Alice could also specify a “group-by-count” constraint,

requiring that there must not be more than two songs that belong to the same album; or

13

a “group-by-sum” constraint, requiring that the total length of the songs from the same

album cannot exceed 30 minutes.

Special cases of partial queries, which have restrictions on the type of constraints al-

lowed, have been proposed for various applications including optimization problems in

business applications [18], multiple-choice Knapsack problem (e.g., government budget-

ing with demands in different sectors) [26], and student course planning applications [2].

As the above example illustrates, a partial query could have multiple possible an-

swers depending on the number of subsets of S base that satisfies the constraints in Cans.

Given this property of partial queries, there are two different modes to process a par-

tial query resulting in two different use cases for partial queries. The first processing

mode is to evaluate the results of a partial query to return any answer, all answers, or

top-k answers based on some ranking criteria. This mode is very useful for data retrieval

applications.

The second processing mode is to instantiate a partial query into one or more com-

plete relational queries, where the result of each instantiated query is an answer to the

partial query. We say that a relational query Qinst is an instantiation of a partial query

Q = (Qbase,Cans) w.r.t. a database D if (1) the result of Qinst on D satisfies all the

constraints in Cans, and (2) Qinst is derived from Qbase by modifying its selection pred-

icates; the modifications include changing the constants in the existing selection predi-

cates of Qbase and/or introducing additional selection predicates.

The instantiation processing mode has application in the Targeted Query Generation

(TQG) problem to generate targeted queries for database testing [7, 35]. In the testing

of database systems, it is important to be able to generate test queries that satisfy cer-

tain cardinality constraints on the intermediate subexpressions of the queries. The TQG

problem was first studied by Bruno et al. [7], and subsequently generalized by Mishra

et al. [35]. The inputs to the TQG problem include a query Q, a database D, and a set

of cardinality constraints C on subexpressions of Q; and the objective is to derive a new

query Q′ from Q (by modifying the constant values in Q’s selection predicates) such that

14

the execution of Q′ on D satisfies all the cardinality constraints in C.

Example 1.7 As an example of a TQG problem specification, consider the following

input query Q and set C of cardinality constraints. Q is the following SQL query:

SELECT * FROM R1, R2, R3 WHERE p1 AND p2 AND p3 AND j1,2 AND j2,3,

where each pi is a conjunction of selection predicates on relation Ri, and each ji,k is a

join predicate between Ri and Rk. C contains the following cardinality constraints on Q

and two subexpressions, Q1 and Q2, of Q: (1) |Q1| = n1 where Q1 = SELECT * FROM

R1 WHERE p1, (2) |Q2| = n2 where Q2 = SELECT * FROM R1, R2 WHERE p1 AND p2

AND j1,2, and (3) |Q| = n3. �

Note that in the TQG problem, the specification of a subexpression Qi of the query Q

requires only identifying the subset of relations in Q that appear in Qi (i.e., its SQL

query’s FROM-clause). The selection and join predicates in Qi are simply all the ap-

plicable predicates from Q involving only the relations in Qi, and all the attributes are

projected in Qi. This property of subexpression specifications is due to the fact that the

subexpressions are intended to denote sub-plans of Q’s query plan [35].

By extending the definition of partial queries to support constraints on subexpres-

sions of the base query, a TQG problem can be specified in terms of a partial query

Q = (Qbase,Cans), where Qbase is equal to the TQG’s input query and Cans is equal to the

TQG’s set of cardinality constraints. For the TQG problem, each constraint in Cans is a

cardinality constraint specifying the number of intermediate tuples produced by a query

sub-plan. Thus, an answer to a TQG problem corresponds to an instantiation of a partial

query.

We use PQE to refer to the problem of evaluating partial queries, and PQI to refer

to the problem of instantiating partial queries. Between PQE and PQI, the problem of

PQI follows the spirit of QBO’s framework and the problem of PQE is a by-product of

manipulating partial queries. However, we expect PQE to be the most common usage of

partial queries, since PQE is very useful for data retrieval applications.

15

1.5 Summary of Contributions

It has recently been asserted that the usability of a database is as important as its ca-

pability [23]. Providing tools for users to understand the database schema, the hidden

relationships among attributes in the data, as well as for users to retrieve information

easily and efficiently plays an important role in this context. Subscribing to these view-

points, we make the following contributions in this work:

• Our first contribution is to introduce the novel problem of Query by Output (QBO)

that can enhance the usability of database systems. We propose a solution (TALOS)

that models the QBO problem as a data classification task with a unique property

that we term at-least-one semantics, which is inherent in the derivation of the

instance-equivalent queries (IEQs). To handle data classification with this new se-

mantics, we develop a new dynamic class labeling technique. In addition to the

basic framework, we design several optimization techniques to reduce processing

overhead, and introduce a set of criteria to rank order output queries by various no-

tions of utility. Our experimental evaluation of TALOS demonstrates its efficiency

and effectiveness in generating interesting IEQs. We also generalize the first set-

ting of QBO with the following three additional challenges: (1) the original query

is not given as part of the input, (2) the derived queries are more expressive and

go beyond the simple Select-Project-Join query fragment, and (3) there are mul-

tiple database versions. We present a generalized approach (REQUERE) to address

these issues, and demonstrate its effectiveness and efficiency with an experimental

evaluation on real data sets.

• Our second contribution is to propose a new paradigm for explaining a why-not

question that is based on automatically generating a refined query, whose result in-

cludes both the original query’s result as well as the user-specified missing tuples.

In contrast to the existing explanation models, our approach goes beyond merely

identifying the “culprit” query operator(s) responsible for the missing tuples, and

16

is useful for applications where it is inappropriate to modify the database to obtain

missing tuples. With this new paradigm for explaining why-not question, we in-

troduce a new framework, named ConQueR, to explain why-not questions based on

automatically generating refined queries. We propose novel algorithms to not only

handle basic SPJ queries, but also more sophisticated SPJA queries that involve

constraints or comparisons among aggregated values. We demonstrate the useful-

ness of our paradigm by comparing against the two existing explanation models

on both synthetic and real data sets, and show the efficiency of ConQueR by a

performance comparison against TALOS, the classification-based approach for the

first variant of QBO to generate instance-equivalent queries.

• Our third contribution is to introduce the concept of partial queries and two useful

modes of processing partial queries, including evaluating partial queries (PQE) and

instantiating partial queries (PQI). With respect to PQE, we first prove that even

for partial queries with only count constraints, the PQE problem is already NP-

complete in the strong sense. Although there are several problem formulations

that correspond to special cases of partial queries and are solvable with polyno-

mial [2] or pseudo-polynomial complexity [18, 26], there remains two open ques-

tions. First, there is the question of whether there are other non-trivial special

cases of partial queries that are amenable to polynomial/pseudo-polynomial eval-

uation algorithms. Second, the problem of evaluating general partial queries with

arbitrary constraints (sum, count, optimization, group-by, content) has not been

addressed to the best of our knowledge. In this work, we address these two ques-

tions by presenting two novel evaluation algorithms, DP and Greedy, respectively.

The first algorithm, DP, is a pseudo-polynomial algorithm for evaluating partial

queries with multiple sum constraints and at most one of either count, content, or

group-by constraint. The second algorithm, Greedy, is a heuristic approach for

evaluating general partial queries with any combination of constraints. Greedy

tries to find a solution that satisfies all the specified constraints but may return an

17

approximate solution that meets only some of the constraints.

With respect to PQI, we propose two approaches to instantiate partial queries. Our

first approach is a data-driven approach, which is more general than the state-of-

the-art approach in [35]. In contrast to [35], which produces the target test query

by modifying only the constants in the input query’s selection predicates, our ap-

proach of generating instantiated queries can also add new selection predicates

to the instantiated queries. This flexibility is important, as it may not be always

possible to generate an output query that satisfies all the cardinality constraints by

merely modifying the existing selection predicates in the input query. Our second

approach is a more efficient sampling-based method, but the generated instantiated

query might not satisfy all the constraints.

Parts of the materials of this work on TALOS, ConQueR, and evaluating partial queries

were previously published in [49], [48], and [50], respectively.

1.6 Thesis Organization

The remaining of this thesis is organized according to the techniques that we have intro-

duced to solve the three problem settings of QBO. The associated chapters that discuss

each of these problems are depicted in Figure 1-2. We summarize the main contents of

these chapters in more details next:

• Related Work: Chapter 2 presents the related work of each of the three settings of

QBO.

• Deriving Instance-Equivalent Queries: Chapter 3 describes our classification-

based approach, TALOS, to solve the first variant of QBO to derive instance-equivalent

queries (IEQs) of a given input query w.r.t. a given database, where the derived

IEQs are in the Select-Project-Join relational fragment. Chapter 4 then presents a

generalized system of TALOS, named REQUERE, which enhances TALOS along the

18

Ch.1 Introducation

Ch. 2 Related work

Ch.3 TALOS

Ch.4 REQUERE

Ch.5 ConQueR Ch.6 PQI & PQE

Ch.7 Conclusion

Instance Equivalent

Queries

Why-Not

Questions
Partial Queries

Figure 1-2: Thesis Structure

three parameters of the problem setting including: (1) the original query Q (e.g., Q

might not be given), (2) the database version D (e.g., there have multiple versions

of the database D), and (3) the derived query Q′ (e.g., Q′ is in the more expressive

fragments with the presence of union/aggregation operator).

• Explaining Why-not Questions: Chapter 5 describes our proposed techniques for

the second variant of QBO to provide a new explanation model with a more flexible

constraint-based method, ConQueR, for explaining why-not questions. We also

discuss how to use ConQueR and TALOS for explaining why-not questions and

deriving instance-equivalent queries in this chapter.

• Instantiating & Evaluating Partial Queries: Chapter 6 presents our proposed ap-

proaches to evaluate and instantiate partial queries. For PQE problem, we introduce

two evaluation algorithms, DP and Greedy. For PQI, we propose two approaches,

LA and LAe, to instantiate partial queries.

19

• Conclusion: Finally, Chapter 7 concludes our work and discusses some interesting

directions that future studies can undertake.

• Appendix: The proofs of the theoretical studies in our work are given in the Ap-

pendix.

20

Chapter 2

Literature Review

Although the title Query by Output (QBO) of our work is inspired by Zloof’s influential

work on Query by Example (QBE) [57], the problem addressed by QBE is completely

different from QBO. In particular, QBE receives an input query Q through a graphical

user interface that is a more intuitive form-based interface for database querying, and

computes its output Q(D) w.r.t. a given database D. In contrast, QBO takes the query

result Q(D) of some query Q on a database D as input, and computes a set of queries Q′1,

· · · , Q′n such that each Q′i(D) is (approximately) equal to Q(D).

In the following discussions, we classify the related work of QBO in terms of their

similarities/differences with the three settings of QBO. In particular, Section 2.1 presents

the related work of the first setting of QBO that aims to derive interesting characterizations

of tuples in the query result, and Section 2.2 presents the related works that share the

same broad principle of “reverse query processing” as QBO. Section 2.3 then discusses

existing explanation models to explain why-not questions (the second variant of QBO).

Finally, Section 2.4 presents the related work of the third setting of QBO to evaluate and

instantiate partial queries.

21

2.1 Deriving Instance Equivalent Queries

To the best of our knowledge, QBO is the first data-driven approach that aims to augment

query results with interesting query-based characterizations of the tuples in the query

result. A somewhat related problem of QBO, called View Definition Problem (VDP), is

introduced later on in [43]. VDP examines the problem of deriving a view definition Q

given an input database D and a materialized view V . However, VDP focuses on a

very basic scenario, where D consists of a single relation R and the derivation of Q is

essentially finding the selection predicate on R to generate V . In addition, since VDP

does not handle the at-least one semantics that is inherent in the derivation of the IEQs

in QBO problem but not in VDP problem, the solutions for VDP cannot be generalized to

solve QBO.

An area that is related and complementary to QBO is intensional query answering

(IQA) or cooperative answering, where for a given Q, the goal of IQA is to augment the

query’s answer Q(D) with additional “intensional” information in the form of a seman-

tically equivalent query1 that is derived from the database integrity constraints [15, 36].

While semantic equivalence is stronger than instance equivalence and can be computed

in a data-independent manner using only integrity constraints (ICs), there are several

advantages of adopting instance equivalence for QBO. First, in practice, many data se-

mantics are not explicitly captured using ICs in the database for various reasons [17].

For instance, the expense of integrity checking has always limited people’s use of ICs,

or it may be very hard to justify a useful semantic characterization as an integrity con-

straint. Hence, the effectiveness of IQA could be limited for QBO. Second, even when the

ICs in the database are complete, it can be very difficult to derive semantically equiva-

lent queries for complex queries (e.g., skyline queries that select dominant objects). By

being data-specific, IEQs can often provide insightful and surprising characterizations

of the input query and its result. Third, IQA requires the input query Q to be known.

IQA, therefore, cannot be applied to QBO applications where only Q(D) (but not Q) is

1Two queries Q and Q′ are semantically equivalent if for every valid database D, Q(D) = Q′(D).

22

available. Thus, we view IQA and our proposed data-driven approach to compute IEQs

as complementary techniques for QBO.

More recently, an interesting direction of using Précis queries [28, 44] has been pro-

posed. The idea is to augment a user’s query result with other related information (e.g.,

relevant tuples from other relations) and also allow the results to be personalized based

on user-specified or domain requirements. The objectives of this work are orthogonal

to QBO; and as in IQA, it is a query-driven approach that requires the input query to be

known.

In the data mining literature, a somewhat related problem to ours is the problem of re-

description mining introduced by Ramakrishnan [40]. The goal in redescription mining

is to find different subsets of data that afford multiple descriptions across multiple vocab-

ularies covering the same data set. At an abstract level, our work is different from these

methods in several ways. First, we are concerned with a fixed subset of the data (the out-

put of the query). Second, none of the approaches for redescription mining accounts for

structural (relational) information in the data (something we explicitly address). Third,

redescription mining, as it was originally posited, requires multiple independent vocab-

ulary descriptions to be identified. We do not have this requirement, as we are simply

interested in alternative query formulations within an SQL context. Finally, the notion

of at-least-one semantics described in our work is something redescription mining is not

concerned with, as it is an artifact of the SQL context of our work.

A somewhat related work of our proposed approach to derive instance-equivalent

queries (TALOS) is the CrossMine approach for multi-relational classification [56]. Cross-

Mine solves the following classification problem: Given a target relation Rt with tuples

that have fixed class labels (i.e., positive or negative), build a decision tree classifier for

tuples in Rt using the attributes in Rt as well as the attributes from other relations that

have primary-foreign key relationships with Rt. TALOS differs from CrossMine in sev-

eral ways. First, there is the notion of free tuples in TALOS, which are the tuples that

can be dynamically assigned positive or negative class labels satisfying some constraints

23

uniquely imposed in QBO problem (i.e., at-least-one semantics, exactly-k semantics, ag-

gregation constraints). In contrast, CrossMine does not handle the free tuples due to

the nature of the problem solving. The formal definition of free tuples is given in Sec-

tion 3.1.3. Second, TALOS guarantees to find the optimal splitting condition at each step

of building decision trees whereas the solution of CrossMine is a greedy approach.

2.2 Reverse Query Processing

There are several recent works [3, 4, 7, 31, 35] that share the same broad principle

of “reverse query processing” as QBO but differ totally in the problem objectives and

techniques.

The three problems addressed in [3, 4, 31] all aim to generate test databases. In

particular, Binnig et al. [3] introduced the Reverse Query Processing problem, which

receives a query Q and a desired result R to generate a database D such that Q(D) = R.

Binnig et al. [4] introduced the QAGen problem, which takes as inputs a query Q and a

set of target cardinality constraints on intermediate subexpressions in Q’s evaluation plan

and generates a test database as output such that the evaluation plan of Q on D satisfies

the cardinality constraints. A recent work in [31] extends QAGen by replacing the input

query Q by a set of workload queries in the inputs. The goal of [31] is to generate a

minimal set of database instances such that the workload queries, when executing on

these database instances, will satisfy the cardinality constraints. Our QBO problem aims

to generate instance-equivalent queries and not test databases, which are the goals of

these problems.

In another set of related work of QBO in terms of reverse query processing principle,

Bruno et al. [7] and Mishra et al. [35] examined the problem of Targeted Query Gener-

ation (TQGen) that aims to generate test queries to meet certain cardinality constraints.

TQGen takes as inputs a query Q, a database D, and a set of target cardinality constraints

on intermediate subexpressions in Q’s evaluation plan. TQGen will modify Q (by mod-

24

ifying the constant values in Q’s selection predicates) to generate a new query Q′ such

that the evaluation plan of Q′ on D satisfies the cardinality constraints. Different from

TQGen problem, the first setting of QBO aims to generate instance-equivalent queries

that satisfy the “content constraint” of the query result. In addition, TQGen requires the

input query Q to be known whereas QBO allows the input query to be unknown. We will

clarify the relationship between TQGen and our third setting of QBO in Section 2.4.

2.3 Explaining Why-Not Questions

There are currently two existing models in literature to explain why-not questions. The

first approach explains by modifying some tuples in the database so that the result of

the query on the modified database will include both the original result and the specified

missing tuples [22]. This explanation model is very flexible if arbitrary modifications

to the database are allowed to derive the missing tuples. However, this model may not

be applicable in applications where it may not be meaningful to make arbitrary changes

to the stored data. This work is orthogonal to our approach, which is based on modi-

fying the input query. Unlike our work, [22] focuses only on SPJ queries and does not

address why-not questions on SPJ queries with aggregation (SPJA queries). A recent

work, called Artemis [20, 21], extends [22] by supporting a set of why-not tuples over

a set of SPJUA (SPJ with union and/or aggregation operator) queries with constraints

among why-not tuples using variables. Our work can also handle SPJUA queries with

constraints on why-not tuples.

The second approach, introduced in [9], explains missing tuples by identifying the

manipulation operation(s) in the query plan that is responsible for excluding the missing

tuples. The work here focuses only on SPJ queries and does not consider SPJA queries.

The idea of identifying the “culprit” operator to explain unexpected query results also

appears in [14] in the context of explaining mismatches in schema matching. A recent

work in [33], which can be categorized in the same class with [9], utilizes the notion of

25

causality in Logic to explain why-not questions by also pointing out culprit operators in

the query evaluation plans that have eliminated the missing tuples. This model achieves

the same goals as [9]; moreover, it can explain both why and why-not questions under

the same framework. Our explanation focuses on explaining why-not questions, and

goes beyond merely identifying culprit query operator(s) in contrast to [9, 33].

There is also some related work on query refinement to modify an input query so that

its query result can satisfy some cardinality constraints. The work in [27, 38] relaxes

the failed queries that return empty result so that the modified queries will yield some

answers. As the goal there is to refine the query to return any non-empty result, the

techniques there cannot be applied to our problem, which has stronger constraints to

satisfy. Another related direction in [34, 10] deals with the problem when a query returns

too many/few answers by refining the query to satisfy some constraint on the query result

size. Similar to the work in [27], the focus there is on the size of the output but not on

the content of the output, which we have to deal with in this context.

Another related direction is the work on provenance [12] and OLAP [42]. The work

in [12] can trace the provenance of an aggregated value by finding the data that derived

a given aggregated value. However, the techniques in [12] cannot be extended to handle

the why-not questions that we address for SPJA queries. The reason is that in our case

for explaining why-not questions for SPJA queries, we need to take into account other

data that contributes to produce an aggregated value in addition to the data selected

by the original query. The work in [42] addresses explanations for OLAP applications

to explain why an aggregated value in a data cube cell is lower/higher than the value

in another cell. The main focus there is to compute a compact summarization of the

data tuples at the detailed lower levels to account for the phenomena. The work there

cannot be generalized to solve our problem related to complex why-not questions on

SPJA queries, since we need to take into consideration tuples both in the lower levels

and in combination with tuples in the higher and neighbor cells.

Essentially, our proposed framework, TALOS, to generate instance-equivalent queries

26

of an input query to solve the first setting of QBO can be applied to derive refined queries

to explain why-not questions. Indeed, we have extended TALOS as an alternative solution

for this work. Our experimental results reveal that TALOS is a more precision-oriented

approach; thus, the queries generated can be rather different from the input query. In

some applications, it may not be too meaningful to explain missing tuples using refined

queries that are very different from the input query. Moreover, the performance of TALOS

is also slower than the proposed approach for explaining why-not questions by up to

factor of 6 times due to its costly data classification step.

2.4 Instantiation & Evaluation of Partial Queries

There are two threads of related work corresponding to the two problems of evaluating

and instantiating partial queries.

Number of constraints Type of
Technique group by group by optimization Time

count sum count sum constraint complexity
CourseRank[2] 1 0 0/1 0 unbounded sum polynomial

Knapsack[26, 18] 0 ≥ 1 0 0/1 unbounded sum PP
Subset sum[26] 0 ≥ 1 0 0/1 bounded sum, none PP

1 ≥ 0 0 0 sum
DP(our work) 0 ≥ 0 x 1 − x sum PP

0 ≥ 0 0 0 count
Greedy(our work) ≥ 0 ≥ 0 x 1 − x sum, count, none heuristic

Table 2.1: Comparison of PQE with respect to sum, count, group by & optimization
constraints (PP: pseudo-polynomial)

For PQE, there are three related problem formulations [2, 18, 26] that have been stud-

ied and correspond to special cases of partial queries, as shown in Table 2.1. Table 2.1

compares these related works with our proposed evaluation algorithms, DP and Greedy,

in terms of evaluating partial queries containing different combinations of sum, count,

group by, and optimization constraints. Each row (or collection of rows) describes one

technique. Columns 2 to 5 indicate the properties of the partial query fragment consid-

27

ered in terms of the number of count, sum, group by count, and group by sum constraints

supported. Column 6 indicates the type of optimization constraints supported in the par-

tial query fragment considered. An optimization constraint is classified as a bounded

constraint if it limits the upper value (resp. lower value) of the aggregated function when

the condition is “≤” (resp. ≥). Otherwise, an optimization constraint that is not bounded

is classified as unbounded. As an example, the constraint maximize(sum(Ai)) ≤ c is a

bounded optimization constraint on sum, while the constraint maximize(sum(Ai)) is an

unbounded optimization constraint on sum. The formal definitions of the constraints

supported by PQE are presented in Section 6.1. Finally, the last column indicates the

complexity of the proposed approach if it is an optimal algorithm; otherwise, the last

column indicates that the proposed approach is a heuristic solution.

The two classic knapsack problem (KP) and subset-sum problem (SSP) [26] cor-

respond to the second and third row in Table 2.1. In KP, given a set of items, where

each item j has a profit p j and a weight w j, the goal is to select a subset of items such

that its total profit is maximized and its total weight does not exceed an input capacity

value. A variant of KP was studied in [18] for solving optimization under parametric

aggregation constraints (OPAC) query, which takes the following as inputs: (1) a rela-

tion R(A1, · · · , An, P), (2) a set of parametric sum-aggregation constraints of the form

sum(Ai) ≤ ci with ci as a parameter, and (3) a sum optimization constraint sum(P) to

be maximized. Given a parameterized OPAC query, [18] proposed an algorithm to con-

struct indices to efficiently provide approximate answers with guarantee bound on its

accuracy for any instantiated OPAC query with specific values for the parameters in the

sum constraints.

A second variant of KP, which corresponds to the fragment of PQE with multiple sum

and a single group-by sum constraints, is the multiple-choice Knapsack problem [26].

This is useful in budgeting applications to select a set of projects to be funded such

that the total cost for all projects is bounded by some limit, the total cost for projects

belonging to the same department is bounded by another limit, and the total project profit

28

is maximized. This problem can be solved in pseudo-polynomial time using a two-step

dynamic programming approach [26] which is similar to our proposed DP. However, the

formulations of the dynamic programming in each method are different from the other,

since DP needs to take into account the count/content constraints, which [26] does not

consider.

Another related work is the CourseRank (CR) project [2] which is motivated by

course planning applications. CR considers constraints of the form “take at least a and

at most b courses from a set S i”, where a and b are non-negative integers and S i is a set

of related courses (e.g. CS courses), and each course is associated with a use-preference

score. For example, a student might be required to complete 2 or 3 courses from a given

set of six math courses. Given such constraints, CR finds a set of courses that satisfies

all requirements such that the number of selected courses is equal to some given value

and the total score of the selected courses is maximized. A polynomial-time algorithm

based on maximal flow was proposed for the CR problem [2].

A somewhat related work of PQE is the problem introduced in [1], which is motivated

by online shopping applications to recommend “satellite items” (e.g., case, speaker)

related to a given “center item” (e.g., iPhone). Given a budget B and a central item, [1]

finds (approximately) all maximal sets of satellite items associated with the central item

such that the cost of each maximal set does not exceed the given budget B. Different

from [1], we do not consider “maximal set” constraints, which will make the problem of

evaluating partial queries even harder. However, partial queries support other constraints

(e.g., count, group-by, content) which [1] does not handle.

In summary, although several special cases of partial query evaluations have been

studied in different contexts, none of these specialized approaches can be applied to

evaluate the general partial queries that our heuristic approach, Greedy, is designed to

address.

For PQI, the related work of Targeted Query Generation (TQG) problem has been ad-

dressed in [7, 35]. Our approach of addressing the problem via partial query instantiation

29

is more general, and therefore flexible as the targeted (i.e. instantiated) queries gener-

ated by our approach can involve both modifying the constants of the existing selection

predicates as well as adding new selection predicates. This flexibility is important, as

it may not be always possible to produce the targeted queries without adding additional

predicates.

30

Chapter 3

TALOS: A Classification-based

Approach for Query by Output

In this chapter, we present our classification-based approach, named TALOS, to handle the

first setting of Query by Output problem to derive instance-equivalent queries (IEQs) for

a given input query w.r.t. a given database, highlighted in Table 3.1. We start the discus-

sion with an overview about TALOS in Section 3.1, followed by the techniques of TALOS

to handle the at-least-one semantics, which is uniquely imposed in QBO, in Section 3.2;

and the general framework of TALOS in Section 3.3. We introduce the comparison met-

rics to rank the returned IEQs in Section 3.4. We describe the implementation details and

analyze the complexity of TALOS in Section 3.5. We then conduct experimental studies

in Section 3.6 to evaluate the usefulness of TALOS as well as the interestingness of the

returned IEQs. Finally, we summarize our work on deriving IEQs in Section 3.7. Part of

the contents and materials in this chapter were previously published in [49].

3.1 An Overview of TALOS

The QBO problem takes as inputs a database D, an optional query Q, and the query’s

output Q(D) (w.r.t. D) to compute one or more IEQs Q′, where Q and Q′ are IEQs if

31

Parameters
QBO Problem Input query Q Given result table T

The first variant - Q is known T = Q(D)
- Q is unknown T is a set of specific tuples

The second variant Q is known T = Q(D)
⋃

S
S is a set of tuples that are not present in Q(D)

The third variant Q is partially specified T is a set of constraints that must be satisfied
by the query result of each derived query Q′

Table 3.1: The Focus of Chapter 3

Q(D) = Q′(D). We refer to Q as the input query, Q(D) as the given result table, and Q′

as the output query.

First, let us state the following theoretical results that we have established for variants

of the QBO problem.

Theorem 3.1 Given an input query Q, we define QBOS to be the problem to find an

output query Q′ w.r.t. a database D, where Q′ involves only selection (with predicates

in the form “Ai op c”, Ai is an attribute, c is constant, and op ∈ {<,≤,=,,, >,≥}) such

that: (1) Q′(D) = Q(D), and (2) the number of operators (AND, OR and NOT) used in

the selection condition is not greater than a given constant s. Then, QBOS is believed

not to be in P.

Proof Sketch: We prove Theorem 3.1 by reducing the Minimization Circuit Size Prob-

lem to QBOS . Details are given in Appendix A. �

Theorem 3.2 Given an input query Q, we define QBOU to be the problem to find an

output query Q′ w.r.t. a database D in the form Q′ = Q1 union · · · union Qk, with

each Qi is an SPJ query and the select-clause of Qi refers to only attributes of relations

in Qi, such that: (1) Q′(D) = Q(D), and (2) k is not greater than a given constant n.

Then QBOU is NP-hard.

Proof Sketch: We prove Theorem 3.2 by reducing the Set-Covering to QBOU . Details

are given in Appendix B. �

32

Theorem 3.3 Given an input query Q, we define QBOG to be the problem to find an

output query Q′ w.r.t. a database D such that: (1) Q′(D) = Q(D), and (2) users can

specify any constraints on the clauses of Q′ (e.g., the select clause of Q′ can contain

arbitrary arithmetic expressions or the where-clause of Q′ must contain some specific

selection conditions). Then QBOG is PSPACE-hard.

Proof Sketch: We prove Theorem 3.3 by reducing the Integer Circuit Evaluation Prob-

lem to QBOG. Details are given in Appendix C. �

In this work, we consider relational queries Q where the select-clause refers to only

attributes (and not to constants or arithmetic/string expressions) to ensure that Q′ can

be derived from Q(D) efficiently. We also require that Q(D) , ∅ for the problem to be

interesting.

For simplicity, we first consider Select-Project-Join (SPJ) queries for the IEQ Q′

where all the join predicates in Q′ are foreign-key joins. Thus, our approach requires

only very basic database integrity constraint information (i.e., primary and foreign key

constraints). Based on the knowledge of the primary and foreign key constraints in the

database, the database schema can be modeled as a schema graph, denoted by SG. Each

node in SG represents a relation, and each edge between two nodes represents a foreign-

key join between the relations corresponding to the nodes. We defer the discussions on

finding IEQs in more expressive fragments (e.g., SPJ queries with union or aggregation

operations) to Chapter 4.

For ease of presentation and without loss of generality, we express each Q′ as a

relational algebra expression. To keep our definition and notations simple and without

loss of generality, we shall assume that there are no multiple instances of a relation in Q

and Q′.

Running example. We use a database housing baseball statistics for our running exam-

ple as well as in our experiments. Part of the schema is illustrated in Figure 3-1, where

the key attribute names are shown in bold. The Master relation describes information

33

pID name country weight bats throws
P1 A USA 85 L R
P2 B USA 72 R R
P3 C USA 80 R L
P4 D Germany 72 L R
P5 E Japan 72 R R

pID year salary
P1 2003 80
P3 2002 35
P5 2004 60

(a) Master (b) Salaries

pID year stint team HR
P1 2001 2 PIT 40
P1 2003 2 ML1 50
P2 2001 1 PIT 73
P2 2002 1 PIT 40
P3 2004 2 CHA 35
P4 2001 3 PIT 30
P5 2004 3 CHA 60

team year rank
PIT 2001 7
PIT 2002 4

CHA 2004 3

(c) Batting (d) Team

Figure 3-1: Running Example - Baseball Data Set D

about each player (identified by pID): the attributes name, country, weight, bats, and

throws refer to his name, birth country, weight (in pounds), batting hand (left, right, or

both), and throwing hand (left or right) respectively. The Salaries relation specifies the

salary obtained by a player in a specific year. The Batting relation provides the number

of home runs (HR) of a player when he was playing for a team in a specific year and

season (stint). The Team relation specifies the rank obtained by a team for a specified

year.

Notations. Given a query Q, we use rel(Q) to denote the collection of relations in-

volved in Q (i.e., relations in SQL’s from-clause); proj(Q) to denote the set of projected

attributes in Q (i.e., attributes in SQL’s select-clause); and sel(Q) to denote the set of

selection predicates in Q (i.e., conditions in SQL’s where-clause).

3.1.1 Instance-Equivalent Queries (IEQs)

Our basic definition of instance-equivalent queries (IEQs) requires that the IEQs Q

and Q′ produce the same output (w.r.t. some database D); i.e., Q(D) = Q′(D). The

34

advantage of this simple definition is that it does not require the knowledge of Q to de-

rive Q′, which is particularly useful for QBO applications where Q is either missing or

not provided. However, there is a potential “accuracy” tradeoff that arises from the sim-

plicity of this weak form of equivalence: an IEQ may be “semantically” quite different

from the input query that produced Q(D) as the following example illustrates.

Example 3.1 Consider the following three queries on the baseball database D in Fig-

ure 3-1:

Q1 = πcountry(σbats=“R”∧throws=“R”(Master)),

Q2 = πcountry(σbats=“R”∧weight≤72(Master)), and

Q3 = πcountry(σbats=“R”(Master)).

Observe that although all three queries produce the same output after projection

({USA, Japan}), only Q1 and Q2 select the same set of tuples {P2, P5} from Master.

Specifically, if we modify the queries by replacing the projection attribute “country”

with the key attribute “pID”, we have Q1(D) = { P2, P5}, Q2(D) = {P2, P5}, and

Q3(D) = {P2, P3, P5}. Thus, while all three queries are IEQs, we see that the equiv-

alence between Q1 and Q2 is actually “stronger” (compared to that between Q1 and Q3)

in that both queries actually select the same set of relation tuples. �

If Q is provided as part of the input, then we can define a stronger form of instance

equivalence as suggested by the above example. Intuitively, the stricter form of instance

equivalence not only ensures that the instance-equivalent queries produce the same out-

put (w.r.t. some database D), but it also requires that their outputs be projected from the

same set of “core” tuples. We now formally characterize weak and strong IEQs based

on the concepts of core relations and core queries.

Core relations. Given a query Q, we say that S ⊆ rel(Q) is a set of core relations

of Q if S is a minimal set of relations such that for every attribute Ri.A ∈ pro j(Q): (1)

Ri ∈ S , or (2) Q contains a chain of equality join predicates “Ri.A = · · · = R j.B” such

that R j ∈ S .

35

Intuitively, a set of core relations of Q is a minimal set of relations in Q that “cover”

all the projected attributes in Q. As an example, if Q = πR1.Xσp(R1 × R2 × R3) where

p = (R1.X = R3.Y) ∧ (R2.Z = R3.Z), then Q has two sets of core relations, {R1} and {R3}.

Core queries. Given a query Q and a set of relations S ⊆ rel(Q), we use QS to denote

the query that is derived from Q by replacing pro j(Q) with the key attribute(s) of each

relation in S . If S is a set of core relations of Q, we refer to QS as a core query of Q.

Strong & weak IEQs. Consider two IEQs Q and Q′ (w.r.t. a database D); i.e., Q(D) =

Q′(D). We say that Q and Q′ are strong IEQs if Q has a set of core relations S such that:

(1) Q′S is a core query of Q′, and (2) QS (D) and Q′S (D) are equal. IEQs that are not

strong are classified as weak IEQs.

The strong IEQ definition essentially requires that both Q and Q′ share a set of core

relations such that Q(D) and Q′(D) are projected from the same set of selected tuples

from these core relations. Thus, in Example 3.1, Q1 and Q2 are strong IEQs whereas Q1

and Q3 are weak IEQs.

Note that in our definition of strong IEQ, we only impose moderate restrictions on Q

and Q′ (relative to the weak IEQ definition) so that the space of strong IEQs is not overly

constrained, and that the strong IEQs generated are hopefully both interesting as well as

meaningful.

As in the case with weak IEQs, two strong IEQs can involve different sets of rela-

tions. As an example, suppose query Q selects pairs of records from two core relations,

Supplier and Part, that are related via joining with a (non-core) Supply relation. Then

it is possible for a strong IEQ Q′ to relate the same pair of core relations via a different

relationship (e.g., by joining with a different non-core Manufacture relation).

We believe that each of the various notions of query equivalence has useful applica-

tions in different contexts depending on the available type of information about the input

query and database. At one extreme, if both Q and the database integrity constraints

are available, we can compute both weak and strong IEQs. At the other extreme, if

only Q(D) and the database D are available, we can only compute weak IEQs.

36

Precise & approximate IEQs. It is also useful to permit some perturbation so as to

include IEQs that are “close enough” to the original. Perturbations could be in the form

of extra records or missing records or a combination thereof. Such generalizations are

necessary in situations where there are no precise IEQs, and useful for cases where the

computational cost for finding precise IEQs is considered unacceptably high. Moreover,

a precise IEQ Q′ might not always provide insightful characterizations of Q(D), as Q′

could be too “detailed” with many join relations and/or selection predicates.

The imprecision of a weak IEQ Q′ of Q (w.r.t. D) can be quantified by |Q(D) −
Q′(D)| + |Q′(D) − Q(D)|; the imprecision of a strong IEQ can be quantified similarly.

Thus, Q′ is considered an approximate (strong/weak) IEQ of Q if its imprecision is

positive; otherwise, Q′ is a precise (strong/weak) IEQ.

3.1.2 TALOS: Conceptual Approach

In this section, we give a conceptual overview of our approach, named TALOS (for Tree-

based classifier with At Least One Semantics), for the QBO problem.

Given a given result table Q(D), to generate an SPJ Q′ that is an IEQ of Q, we ba-

sically need to determine the three components of Q′: rel(Q′), sel(Q′), and pro j(Q′).

Clearly, if rel(Q′) contains a set of core relations of Q, then pro j(Q′) can be trivially

derived from these core relations1. Thus, the possibilities for Q′ depend mainly on the

options for both rel(Q′) and sel(Q′). Between these two components, enumerating differ-

ent rel(Q′) is the easier task, as rel(Q′) can be obtained by choosing a subgraph G of the

schema graph SG such that G contains a set of core relations of Q: rel(Q′) is then given

by all the relations represented in G. Note that it is not necessary for rel(Q) ⊆ rel(Q′),

as Q may contain some relations that are not core relations. The reason for exploring dif-

ferent possibilities for rel(Q′) is to find interesting alternative characterizations of Q(D)

that involve different join paths or selection conditions from those in Q. TALOS enumer-

1Note that even though the definition of a weak IEQ Q′ of Q does not require the queries to share a set
of core relations, we find this restriction to be a reasonable and effective way to obtain “good” IEQs.

37

ates different schema subgraphs by starting out with minimal subgraphs that contain a

set of core relations of Q, and then incrementally expanding the minimal subgraphs to

generate larger, more complex subgraphs.

We now come to the most critical and challenging part of our solution, which is

how to generate “good” sel(Q′)’s such that each sel(Q′) is not only succinct (without

too many conditions) and insightful, but also minimizes the imprecision between Q(D)

and Q′(D) if Q′ is an approximate IEQ. We propose to formulate this problem as a data

classification task as follows.

Consider the relation J that is computed by joining all the relations in rel(Q′) based

on the foreign-key joins represented in G. Without loss of generality, let us suppose

that we are looking for weak IEQs Q′. Let L denote the ordered listing of the attributes

in pro j(Q′) such that that the schema of πL(J) and Q(D) are equivalent2. J can be

partitioned into two disjoint subsets, J = J0 ∪ J1, such that πL(J1) ⊆ Q(D) and πL(J0) ∩
Q(D) = ∅. For the purpose of deriving sel(Q′), one simple approach to classify the tuples

in J is to label the tuples in J0, which do not contribute to the query’s result Q(D), as

negative tuples, and label the tuples in J1 as positive tuples.

Given the labeled tuples in J, the problem of finding a sel(Q′) can now be viewed

as a data classification task to separate the positive and negative tuples in J: sel(Q′)

is given by the selection conditions that specify the positive tuples. A natural solution

is to examine if off-the-shelf data classifier can give us what we need. To determine

what kind of classifier to use, we must consider what we need to generate our desired

IEQ Q′. Clearly, the classifier should be efficient to construct and the output should

be easy to interpret and express using SQL; i.e., the output should be expressible in axis

parallel cuts of the data space. These criteria rule out a number of classifier systems such

as neural networks, k-nearest neighbor classification, Bayesian classifiers, and support

vector machines [46]. Rule based classifiers or decision trees (a form of rule-based

classifier) are a natural solution in this context. TALOS uses decision tree classifier for

2If the search is for strong IEQs, then the discussion remains the same except that L is the ordered
listing of the key attributes of a set of core relations S of Q, and we replace Q(D) by QS (D).

38

pID name country weight bats throws year team stint HR
t1 P1 A USA 85 L R 2001 PIT 2 40
t2 P1 A USA 85 L R 2003 ML1 2 50
t3 P2 B USA 72 R R 2001 PIT 1 73
t4 P2 B USA 72 R R 2002 PIT 1 40
t5 P3 C USA 80 R L 2004 CHA 2 35
t6 P4 D Germany 72 L R 2001 PIT 3 30
t7 P5 E Japan 72 R R 2004 CHA 3 60

(a) J = Master ./pID Batting

N1

N2 N3

stint 1 stint > 1

DT1

{ t3, t4 }

{ t7 }

N2 N3

HR 50 HR > 50

{ t1, t2, t5, t6 }

N1

N2 N3

HR 50 HR > 50

DT2

{ t1, t2, t4, t5, t6 } { t3, t7 }

(b) Decision trees DT1 and DT2

Figure 3-2: Example of deriving IEQs for Q4 on D

generating sel(Q′).

We now briefly describe how a simple binary decision tree is constructed to classify

a set of data records D. For expository simplicity, assume that all the attributes in D

have numerical domains. A decision tree DT is constructed in a top-down manner. Each

leaf node N in the tree is associated with a subset of the data records, denoted by DN ,

such that D is partitioned among all the leaf nodes. Initially, DT has only a single leaf

node (i.e., its root node), which is associated with all the records in D. Leaf nodes

are classified into pure and non-pure nodes depending on a given goodness criterion.

Common goodness criteria include entropy, classification error and the Gini index [46].

At each iteration of the algorithm, the algorithm examines each non-pure leaf node N

and computes the best split for N that creates two child nodes, N1 and N2, for N. Each

split is computed as a function of an attribute A and a split value v associated with the

attribute. Whenever a node N is split (w.r.t. attribute A and split value v), the records

in DN are partitioned between DN1 and DN2 such that a tuple t ∈ DN is distributed into DN1

if t.A ≤ v; and DN2 , otherwise.

39

A popular goodness criterion for splitting, the Gini index, is computed as follows.

For a data set S with k distinct classes, its Gini index is Gini(S) = 1−∑k
j=1(f 2

j), where f j

denotes the fraction of records in S belonging to class j. Thus, if S is split into two

subsets S 1 and S 2, then the Gini index of the split is given by

Gini(S 1, S 2) =
|S 1| Gini(S 1) + |S 2| Gini(S 2)

|S 1| + |S 2| ,

where |S i| denotes the number of records in S i. The general objective is to pick the

splitting attribute whose best splitting value reduces the Gini index the most (the goal is

to reduce Gini to 0 resulting in all pure leaf nodes).

Example 3.2 To illustrate how decision tree classifier can be applied to derive IEQs,

consider the following query on the baseball database D: Q4 = πname (σbats=“R”∧throws=“R”

Master). Note that Q4(D) = {B, E}. Suppose that the schema subgraph G considered

contains both Master and Batting; i.e., rel(Q′4) = {Master,Batting}. The output of J =

Master ./pID Batting is shown in Figure 3-2(a). Using ti to denote the ith tuple in J, we

observe that J is partitioned into J0 = {t1, t2, t5, t6} and J1 = {t3, t4, t7}. Figure 3-2(b)

shows two example decision trees, DT1 and DT2, constructed from J. Each decision

tree partitions the tuples in J into different subsets (represented by the leaf nodes) by

applying different sequences of attribute selection conditions. By labeling all tuples

in J1 as positive, the IEQ derived from DT1 is given by Q′4 = πname(σstint≤1∨(stint>1∧HR>50)

(Master ./ Batting)). �

3.1.3 TALOS: Challenges

There are two key challenges in adapting decision tree classifier for the QBO problem.

At Least One Semantics. The first challenge concerns the issue of how to assign class

labels in a flexible manner without over constraining the classification problem and limit-

ing its effectiveness. Contrary to the impression given by the above simple class labeling

scheme, the task of assigning class labels to J is actually a rather intricate problem due

40

to the fact that multiple tuples in J1 can be projected to the same tuple in πL(J1). Recall

that in the simple class labeling scheme described, a tuple t is labeled positive if and

only if t ∈ J1. However, note that it is possible to label only a subset of tuples J′1 ⊆ J1

as positive (with tuples in J − J′1 labeled as negative), and yet achieve πL(J′1) = πL(J1)

(without affecting the imprecision of Q′). In other words, the simple scheme of labeling

all tuples in J1 as positive is just one (extreme) option out of many other possibilities.

We now discuss more precisely the various possibilities of labeling positive tuples

in J to derive different sel(Q′). Let πL(J1) = {t1, · · · , tk}. Then J1 can be partitioned into k

subsets, J1 = P1 ∪ · · · ∪ Pk, where each Pi = {t ∈ J1 | the projection of t on L is ti}.
Thus, each Pi represents the subset of tuples in J1 that project to the same tuple in πL(J1).

Define J′1 to be a subset of tuples of J1 such that it consists of at least one tuple from

each subset Pi. Clearly, πL(J′1) = πL(J1), and there is a total of
∏k

i=1(2|Pi |−1) possibilities

for J′1. For a given J′1, we can derive sel(Q′) using a data classifier based on labeling the

tuples in J′1 as positive and the remaining tuples in J1 − J′1 as negative.

Based on the above discussion on labeling tuples, each tuple in J can be classified as

either a bound tuple or free tuple depending on whether there is any freedom to label the

tuple. A tuple t ∈ J is a bound tuple if either (1) t ∈ J0, in which case t must be labeled

negative, or (2) t is the only tuple in some subset Pi, in which case t must certainly be

included in J′1 and be labeled positive. Otherwise, t is a free tuple; i.e., t is in some

subset Pi that contains more than one tuple.

In contrast to the conventional classification problem where each record in the input

data comes with a well defined class label, the classification problem formulated for QBO

has the unique characteristic where there is some flexibility in the class label assignment.

We refer to this property as at-least-one semantics. In the scenarios when there is a con-

straint on the number of instances of some specific tuple in the query result (e.g., when

there is no “distinct” keyword in the select-clause), the at-least-one semantics becomes

exactly-k semantics. More specifically, assume there are k instances of a tuple ti in the

query result Q(D), the exactly-k semantics requires that J′1 must contain exactly k tuples

41

from the subset Ji ⊆ J corresponding to ti. To the best of our knowledge, we are not

aware of any work that has addressed this variant of the classification problem. For sim-

plicity and without loss of generality, we will mainly focus on the at-least-one semantics

in the following discussion. We defer the discussion about the exactly-k semantics to

Section 3.2.2.

An obvious approach to solve the at-least-one semantics variant is to map the prob-

lem into the traditional variant by first applying some arbitrary class label assignment

that is consistent with the at-least-one semantics. In our experimental study, we compare

against two such static labeling schemes, namely, (1) NI, which labels all free tuples as

positive, and (2) RD, which labels a random non-empty subset of free tuples in each Pi as

positive3. However, such static labeling schemes do not exploit the flexible class label-

ing opportunities to optimize the classification task. To avoid the limitations of the static

scheme, TALOS employs a novel dynamic class labeling scheme to compute optimal node

splits for decision tree construction without having to enumerate an exponential number

of combinations of class labeling schemes for the free tuples.

Example 3.3 Continuing with Example 3.2, J1 is partitioned into two subsets: P1 =

{t3, t4} and P2 = {t7}, where P1 and P2 contribute to the outputs “B” and “E”, respec-

tively. The tuples in J0 and P2 are bound tuples, while the tuples in P1 are free tuples.

To derive an IEQ, at least one of the free tuples in P1 must be labeled positive. If t3 is

labeled positive and t4 is labeled negative, DT2 in Figure 3-2(b) is a simpler decision

tree constructed by partitioning J based on a selection predicate on attribute HR. The

IEQ derived from DT2 is Q
′′
4 = πname σHR>50 (Master ./ Batting). �

Performance Issues. The second challenge concerns the performance issue of how to

efficiently generate candidates for rel(Q′) and optimize the computation of the single in-

put table J required for the classification task. To improve performance, TALOS exploits

3We also experimented with a scheme that randomly labels only one free tuple for each subset as
positive, but the results are worse than NI and RD.

42

Number of free tuples Exactly-One
to be labeled positive Labeling of free tuples Constraint Propagation

Case f1 f2 positive negative S 1 S 2

C1
∑m

i=1 ni,1
∑m

i=1 ni,2 S 1 ∪ S 2 - - -
C2

∑m
i=1 ni,1 T2 S 1 S P12-sets in S 2 - S P2-sets

C3 T1
∑m

i=1 ni,2 S 2 S P12-sets in S 1 S P1-sets -
C4 T1 m − T1 - S P12-sets in S 1 S P1-sets All subsets
C5 m − T2 T2 - S P12-sets in S 2 All subsets S P2-sets

Table 3.2: Optimizing Node Splits

join indices to avoid a costly explicit computation of J, and constructs mapping tables to

optimize decision tree construction.

3.2 Handling At-Least-One Semantics

In this section, we address the first challenge of TALOS and present a novel approach for

classifying data with the at-least-one semantics. At the end of Section 3.2.2, we will

discuss how to adapt the technique of TALOS for at-least-one semantics to handle the

exactly-k semantics.

3.2.1 Computing Optimal Node Splits

The main challenge for classification with the at-least-one semantics is how to optimize

the node splits given the presence of free tuples that offers flexibility in the class label

assignment. We present a novel approach that computes the optimal node split without

having to explicitly enumerate all possible class label assignments to the free tuples. The

idea is based on exploiting the flexibility offered by the at-least-one semantics.

Let us consider an initial set of tuples S that has been split into two subsets, S 1

and S 2, based on a value v of a numeric attribute A (the same principle applies to cate-

gorical attributes as well); i.e., a tuple t ∈ S belongs to S 1 iff t.A ≤ v. The key question

is how to compute the optimal Gini index of this split without having to enumerate all

possible class label assignments for the free tuples in S such that the at-least-one se-

43

mantics is satisfied. Without loss of generality, suppose that the set of free tuples in S

is partitioned (as described in Section 3.1.3) into m subsets, P1, · · · , Pm, where each

|Pi| > 1.

Let ni, j denote the number of tuples in Pi ∩ S j, and f j denote the number of free

tuples in S j to be labeled positive to minimize Gini(S 1, S 2), where i ∈ [1,m], j ∈ {1, 2}.
We classify Pi, i ∈ [1,m], as a S P1-set (resp. S P2-set) if Pi is completely contained in S 1

(resp. S 2); otherwise, Pi is a S P12-set (i.e., ni,1 > 0 and ni,2 > 0).

To satisfy the at-least-one semantics, we need to ensure that at least one free tuple in

each Pi, i ∈ [1,m], is labeled positive. Let T j, j ∈ {1, 2}, denote the minimum number of

free tuples in S j that must be labeled positive to ensure this. Observe that for a specific

Pi, i ∈ [1,m], if Pi is a S P1-set (resp. S P2-set), then we must have T1 ≥ 1 (resp. T2 ≥ 1).

Thus, T j is equal to the number of S P j-sets. More precisely, T j =
∑m

i=1 max{0, 1−ni,3− j},
j ∈ {1, 2}.

Thus, f1 and f2 must satisfy the following two conditions:

(A1) T j ≤ f j ≤ ∑m
i=1 ni, j, j ∈ {1, 2}; and

(A2) f1 + f2 ≥ m.

Condition (A1) specifies the possible number of free tuples to be labeled positive for

each S j, while condition (A2) specifies the minimum combined number of tuples in S

to be labeled positive in order that the at-least-one semantics is satisfied for each Pi.

Based on conditions (A1) and (A2), it can be shown that the optimal value of Gini(S 1, S 2)

can be determined by considering only five combinations of f1 and f2 values as indicated

by the second and third columns in Table 3.2. The proof of this result is given in Ap-

pendix D.

These five cases correspond to different combinations of whether the number of pos-

itive or negative tuples is being maximized in each of S 1 and S 2. Case C1 maximizes the

number of positive tuples in both S 1 and S 2. Case C2 maximizes the number of positive

tuples in S 1 and maximizes the number of negative tuples in S 2. Case C3 maximizes

44

the number of negative tuples in S 1 and maximizes the number of positive tuples in S 2.

Finally, cases C4 and C5 maximize the number of negative tuples in both S 1 and S 2. The

optimal value of Gini(S 1, S 2) is given by the minimum of the Gini index value derived

from the above five cases.

3.2.2 Updating Labels & Propagating Constraints

Once the optimal Gini(S 1, S 2) is determined for a given node split, we need to update

the split of S by converting the free tuples in S 1 and S 2 to bound tuples with either

positive/negative class labels. The details of this updating depend on which of the five

cases the optimal Gini value was derived from, and are summarized by the last four

columns in Table 3.2.

For case C1, which is the simplest case, all the free tuples in S 1 and S 2 will be con-

verted to positive tuples. However, for the remaining cases, which involve maximizing

the number of negative tuples in S 1 or S 2, some of the free tuples may not be converted

to bound tuples. Instead, the maximization of negative tuples in S 1 or S 2 is achieved

by propagating another type of constraints, referred to as “exactly-one” constraints, to

some subsets of tuples in S 1 or S 2. Similar to the principle of at-least-one constraints, the

idea here is to make use of constraints to optimize the Gini index values for subsequent

node splits without having to explicitly enumerate all possible class label assignments.

Thus, in Table 3.2, the fourth and fifth columns specify which free tuples are to be con-

verted to bound tuples with positive and negative labels, respectively; where an ‘-’ entry

means that no free tuples are to be converted to bound tuples. The sixth and seventh

columns specify what subsets of tuples in S 1 and S 2, respectively, are required to sat-

isfy the exactly-one constraint; where an ‘-’ entry column means that no constraints are

propagated to S 1 or S 2.

We now define the exactly-one constraint and explain why it is necessary. An exactly-

one constraint on a set of free tuples S ′ requires that exactly one free tuple in S ′ must

become labeled as positive with the remaining free tuples in S ′ labeled as negative.

45

Consider case C2, which is to maximize the number of positive (resp. negative) tuples

in S 1 (resp. S 2). The maximization of the number of positive tuples in S 1 is easy to

achieve by converting all the free tuples in S 1 to positive, the at-least-one constraints

on the S P1-sets and S P12-sets are also satisfied. Consequently, for each S P12-set Pi, all

the free tuples in Pi ∩ S 2 can be converted to negative tuples (to maximize the number

of negative tuples in S 2) without violating the at-least-one constraint on Pi. However,

for a S P2-set Pi, to maximize the number of negative tuples in Pi while satisfying the

at-least-one semantics translates to an exactly-one constraint on Pi. Thus, for case C2,

an exactly-one constraint is propagated to each S P2-set in S 2, and no constraints is

propagated to S 1. A similar reasoning applies to cases C3 to C5.

Therefore, while the at-least-one constraint is applied to each subset of free tuples Pi

in the initial node split, the exactly-one constraint is applied to each Pi for subsequent

node splits. This second variant of the node split problem can be optimized by techniques

similar to what we have explained so far for the first variant. In particular, the first

condition (A1) for f1 and f2 remains unchanged, but the second condition (A2) becomes

f1 + f2 = m. Consequently, the optimization of the Gini index value becomes simpler

and only needs to consider cases C4 and C5.

Example 3.4 To illustrate how class labels are updated and how constraints are prop-

agated during a node split, consider the following query on the baseball database D:

Q5 = πstint (σcountry=“USA” Master./pID Batting). Suppose that the weak-IEQ Q′5 being

considered has rel(Q′5) = {Master, Batting}. Let J = Master./pID Batting (shown in

Figure 3-2(a)). Since Q5(D) = {1, 2}, we have J0 = {t6, t7}, P1 = {t1, t2, t5} (correspond-

ing to stint = 2), and P2 = {t3, t4} (corresponding to stint = 1). The tuples in J0 are

labeled negative, while the tuples in P1 and P2 are all free tuples.

Suppose that the splitting attribute considered is “weight”, and the optimal splitting

value for “weight” is 72. The Gini(S 1, S 2) values computed (w.r.t. “weight ≤ 72”) for

the five cases, C1 to C5, are 0.29, 0.48, 0.21, 0.4 and 0.4, respectively. Thus, the optimal

value of Gini(S 1, S 2) is 0.21 (due to case C3). We then split tuples with weight ≤ 72

46

(i.e., {t3, t4, t6, t7}) into S 1, and tuples with weight > 72 (i.e., {t1, t2, t5}) into S 2. Thus, P1

is a S P2-set while P2 is a S P1-set. Since the optimal Gini index computed is due to case

C3 (i.e., maximizing negative tuples in S 1 and maximizing positive tuples in S 2), all the

free tuples in S 2 (i.e., t1, t2 and t5) are labeled positive, and an exactly-one constraint is

propagated to the set of tuples P2 ∩ S 1 (i.e., {t3, t4}). �

Handling Exactly-k Semantics. In the following, we discuss how to extend the above

technique to solve the exactly-k semantics. The exactly-k semantics is required when

there is a constraint on the number of instances of some specific tuple in the query

result. The exactly-k semantics applied on a set of free tuples S ′ requires that exactly k

free tuples in S ′ must become labeled as positive, while the remaining free tuples in S ′

are labeled negative. To simplify the presentation, assume that the exactly-k semantics

is required on every set of P1, · · · , Pm.

This variant of the node split problem can be optimized by techniques similar to what

we have explained so far for the at-least-one semantic. In particular, the first condition

(A1) for f1 and f2 becomes T ′j ≤ f j ≤ ∑m
i=1 ni, j, j ∈ {1, 2}; where T ′j =

∑m
i=1 max{0, k −

ni,3− j}, j ∈ {1, 2}. The second condition (A2) becomes f1 + f2 = mk. Consequently, the

optimization of the Gini index value becomes simpler and only needs to consider cases

C’4 and C’5; where (C’4): f1 = T ′1, f2 = mk − T ′1, and (C’5): f1 = mk − T ′2, f2 = T ′2.

In summary, TALOS is able to efficiently compute the optimal Gini index value for

each attribute split value considered without enumerating an exponential number of class

label assignments for the free tuples.

3.3 TALOS Framework

In this section, we first explain how TALOS adapts a well-known decision tree classifier

for performing data classification in the presence of free tuples where their class labels

are not fixed. We then explain the performance challenges of deriving Q′ when rel(Q′)

involves multiple relations, and present optimization techniques to address these issues.

47

val row
A 1
B 2
C 3
D 4
E 5

rM rB rT

1 1 1
2 3 1
2 4 2
3 5 3
4 6 1
5 7 3

rM S rJ

1 {1}
2 {2, 3}
3 {4}
4 {5}
5 {6}

nid cid sid
1 0 0
1 -1 1
1 -1 1
1 0 0
1 0 0
1 1 2

(a) ALname (b) Jhub (c) MMaster (d) CL

Figure 3-3: Example data structures for Q4(D)

For ease of presentation and without loss of generality, the discussion here assumes weak

IEQs.

3.3.1 Classifying Data in TALOS

We first give an overview of SLIQ [32], a well-known decision tree classifier, that we

have chosen to adapt for TALOS. We then describe the extensions required by TALOS

to handle data classification in the presence of free tuples. Finally, we present a non-

optimized, naive variant of TALOS. It is important to emphasize that our approach is

orthogonal to the choice of the decision tree technique.

Overview of SLIQ. To optimize the decision tree construction on a set of data records D,

SLIQ uses two key data structures. First, a sorted attribute list, denoted by ALi, is pre-

computed for each attribute Ai in D. Each ALi can be thought of as a two-column table

(val, row), of the same cardinality as D, that is sorted in non-descending order of val.

Each record r = (v, i) in ALi corresponds to the ith tuple t in D, and v = t.Ai. The sorted

attribute lists are used to speed up the computation of optimal node splits. To determine

the optimal node split w.r.t. Ai requires a single sequential scan of ALi.

Second, a main-memory array called class list, denoted by CL, is maintained for D.

This is a two-column table (nid, cid) with one record per tuple in D. The ith entry in CL,

denoted by CL[i], corresponds to the ith tuple t in D, where CL[i].nid is the identifier of

leaf node N, t ∈ DN , and CL[i].cid refers to the class label of t. CL is used to keep track

48

of the tuples location (i.e., in which leaf nodes) as leaf nodes are split.

Class List Extension. In order to support data classification with free tuples where

their class labels are assigned dynamically, we need to extend SLIQ with the following

modifications. The class list table CL(nid, cid, sid) is extended with an additional col-

umn “sid”, which represents a subset identifier, to indicate which subset (i.e., Pi) a tuple

belongs to. This additional information is needed to determine the optimal Gini index

values as discussed in the previous section. Consider a tuple t that is the ith tuple in D, the

cid and sid values in CL are maintained as follows. If t belongs to J0, then CL[i].cid = 0

and CL[i].sid = 0. If t is a bound tuple in P j, then CL[i].cid = 1 and CL[i].sid = j.

Otherwise, if t is a free tuple in P j, then CL[i].cid = −1 and CL[i].sid = j.

Example 3.5 Figure 3-3 shows some data structures created for computing IEQs for

Q4(D). Figure 3-3(a) shows the attribute list created for attribute Master.name; and

Figure 3-3(d) shows the initial class list created for Jhub, where all the records are in a

single leaf node (with nid value of 1). �

Naive TALOS (TALOS−). Before presenting the optimizations for TALOS in the next sec-

tion, let us first describe a non-optimized, naive variant of TALOS (denoted by TALOS−).

Suppose that we are considering an IEQ Q′ where rel(Q′) = {R1, · · · ,Rn}, n > 1, that is

derived from some schema subgraph G. First, TALOS− joins all the relations in rel(Q′)

(based on the foreign-key joins represented in G) to obtain a single relation J. Next,

TALOS− computes attribute lists for the attributes in J and a class list for J. TALOS− is

now ready to construct a decision tree DT to derive the IEQ Q′ with these structures.

The decision tree DT is initialized with a single leaf node consisting of the records in J,

which is then refined iteratively by splitting the leaf nodes in DT . TALOS− terminates

the splitting of a leaf node when (1) its tuples are either all labeled positive or all labeled

negative; or (2) its tuples have the same attribute values w.r.t. all the splitting attributes.

Finally, TALOS− classifies each leaf node in DT as positive or negative as follows: a

leaf node is classified as positive if and only if the ratio of the number of its negative

49

tuples to the number of its positive tuples is smaller than a threshold value given by τ 4.

The selection condition of the IEQ Q′ is then derived from the collection of positive leaf

nodes in DT as follows. Each internal node in DT corresponds to a selection predicate

on some attribute of J, and each root-to-positive-leaf path P j in DT corresponds to a

conjunctive predicate C j on J. Thus, each decision tree enumerated for G yields a selec-

tion predicate for Q′ of the form C1 or C2 · · · or C`. In the event that all the leaf nodes

in DT are classified as negative, the computation of Q′ is not successful (i.e., there is no

IEQ for rel(Q′)), and we refer to Q′ as a pruned IEQ.

3.3.2 Optimizations

The naive TALOS described in the previous section suffers from two drawbacks. First,

the overhead of computing J can be high; especially if there are many large relations

in rel(Q′). Second, since the cardinality of J can be much larger than the cardinality of

each of the relations in rel(Q′), building decision trees directly using J entails the com-

putation and scanning of correspondingly large attribute lists, which further increases

the computation cost. In the rest of this section, we present the optimization techniques

used by TALOS to address the above performance issues.

Join Indices & Hub Table. To avoid the overhead of computing J from rel(Q′), TALOS

exploits pre-computed join indices [52], which is a well-known technique for optimizing

joins. For each pair of relations, R and R′, in the database schema that are related by

a foreign-key join, its join index, denoted by IR,R′ , is a set of pairs of row identifiers

referring to a record in each of R and R′ that are related by the foreign-key join.

Based on the foreign-key join relationships represented in the schema subgraph G,

TALOS computes the join of all the appropriate join indices for rel(Q′) to derive a rela-

tion, called the hub table, denoted by Jhub. Computing Jhub is much more efficient than

computing J, since there are fewer number of join operations (i.e., number of relevant

join indices) and each join attribute is a single integer-valued column.

4In our experiments, we set τ = 1.

50

Example 3.6 Consider again query Q4 introduced in Example 3.2. Suppose that we are

computing IEQ Q′4 with rel(Q′4) = {Master, Batting, Team}. Figure 3-3(b) shows the hub

table, Jhub, produced by joining two join indices: one for Master ./pID Batting, and the

other for Batting ./team,year Team. Here, rM, rB, and rT refer to the row identifiers for

Master, Batting, and Team relations, respectively. �

Mapping Tables. Instead of computing and operating on large attribute lists (each with

cardinality equal to |J|) as in the naive approach, TALOS operates over the smaller pre-

computed attribute lists ALi for the base relations in rel(Q′) together with small mapping

tables to link the pre-computed attribute lists to the hub table. In this way, TALOS only

needs to pre-compute once the attribute lists for all the base relations, thereby avoiding

the overhead of computing many large attribute lists for different rel(Q′) considered.

Each mapping table, denoted by Mi, is created for each Ri ∈ rel(Q′) that links each

record r in Ri to the set of records in Jhub that are related to r. Specifically, for each

record r in Ri, there is one record in Mi of the form (j, S), where j is the row identifier

of r, and S is a set of row identifiers representing the set of records in Jhub that are created

from r.

Example 3.7 Figure 3-3(c) shows the mapping table MMaster that links the Master rela-

tion in Figure 3-1 and Jhub in Figure 3-3(b). The record (2, {2, 3}) in MMaster indicates

that the second tuple in Master relation (with pID of P2), contributed to two tuples,

located in the second and third rows, in Jhub. �

Computing Class List. We now explain how TALOS can efficiently compute the class

list CL for J (without having explicitly computed J) by using the attribute lists, hub

table, and mapping tables. The key task in computing CL is to partition the records in J

into subsets (J0, P1, P2, etc.), as described in the previous section.

For simplicity and without loss of generality, assume that the schema of Q(D) has n

attributes A1, · · · , An, where each Ai is an attribute of relation Ri. TALOS first initial-

izes CL with one entry for each record in Jhub with the following default values: nid = 1,

51

cid = 0, and sid = 0. For each record rk that is accessed by a sequential scan of Q(D),

TALOS examines the value vi of each attribute Ai of rk. For each vi, TALOS first retrieves

the set of row identifiers RIvi of records in Ri that have a value of vi for attribute Ri.Ai

by performing a binary search on the attribute list for Ri.Ai. With this set of row iden-

tifiers RIvi , TALOS probes the mapping table Mi to retrieve the set of row identifiers JIvi

of the records in Jhub that are related to the records referenced by RIvi . The intersection

of the JIvi’s for all the attribute values of rk, denoted by Pk, represents the set of records

in J that can generate rk. TALOS updates the entries in CL corresponding to the row

identifiers in Pk as follows: (1) the sid value of each entry is set to k (i.e., all the entries

belong to the same subset corresponding to record rk), and (2) the cid value of each entry

is set to 1 (i.e., tuple is labeled positive) if |Pk| = 1; otherwise, it is set to −1 (i.e., it is a

free tuple).

Example 3.8 We illustrate how TALOS creates CL for query Q4, which is shown in Fig-

ure 3-3(d). Initially, each row in CL is initialized with sid = 0 and cid = 0. TALOS

then accesses each record of Q4(D) sequentially. For the first record (with name = “B’),

TALOS searches ALname and obtains RIB = {2}. It then probes MMaster with the row iden-

tifier in RIB, and obtains JIB = {2, 3}. Since Q4(D) contains only one attribute, we have

P1 = {2, 3}. The second and the third rows in CL are then updated with sid = 1 and

cid = −1. Similarly, for the second record in Q4(D) (with name = “E”), TALOS searches

ALname and obtains RIE = {5}, and derives JIE = {6} and P2 = {6}. The sixth row in CL

is then updated with sid = 2 and cid = 1. �

3.4 Ranking IEQs

In this section, we describe the ranking criteria we adopt to prioritize results presented to

the user. Specifically, we consider a metric based on the Minimum Description Length

(MDL) principle [41], and two metrics based on the F-measure [53].

52

3.4.1 Minimum Description Length

The Minimum Description Length (MDL) principle argues that all else being equal, the

best model is the one that minimizes the sum of the cost of describing the data given

the model and the cost of describing the model itself. If M is a model that encodes

the data D, then the total cost of the encoding, cost(M,D), is defined as: cost(M,D) =

cost(D|M) + cost(M). Here, cost(M) is the cost to encode the model (i.e., the decision

tree in our case), and cost(D|M) is the cost to encode the data given the model. We can

rely on succinct tree-based representations to compute cost(M). The data encoding cost,

cost(D|M), is calculated as the sum of classification errors. The details of the encoding

computations are given elsewhere [32]. The smaller the MDL of an IEQ is, the better

the query is.

3.4.2 F-measure

We now present two useful metrics based on the popular F-measure [53] that represents

the precision of the IEQs. The first variant follows the standard definition of F-measure:

the F-measure for two IEQs Q and Q′ is defined as Fm =
2×|pa |

2×|pa |+|pb |+|pc | , where pa =

Q(D) ∩ Q′(D), pb = Q′(D) − Q(D), and pc = Q(D) − Q′(D). We denote this variant

as F-measure in our experimental study. In contrast to the MDL metrics, the higher the

F-measure of an IEQ is, the more precise the query is and therefore the better the query

is.

Observe that the first variant of F-measure is useful only for approximate IEQs, and

is not able to distinguish among precise IEQs, as this metric gives identical values for

precise IEQs since pb and pc are empty. To rank precise IEQs, we introduce a second

variant, denoted by Fest
m , which relies on estimating pa, pb, and pc using some data prob-

abilistic models (as opposed to using the actual values from the data set). Fest
m captures

how the equivalence of queries is affected by database updates, and the IEQ with high

Fest
m is preferable to another IEQ with low Fest

m . For simplicity, we use a simple inde-

53

pendent model to estimate Fest
m ; other techniques such as the Bayesian model by Getoor

and others [16] can be applied too. The second variant has the benefit that estimates,

which are computed from a global distribution model, may more accurately reflect the

true relevance of the IEQs than one computed directly from the data. This of course

pre-supposes that future updates follow the existing data distribution.

Details on computing the F-measure (Fm and Fest
m) are given in Section 3.5.

3.5 Implementation of TALOS

In this section, we describe the implementation details of TALOS and analyze the running

time and the space complexity of TALOS. We also discuss some control knobs that can

be used to restrict the search space in TALOS.

3.5.1 Implementation

TALOS is implemented at the application level and interacts with the DBMS by issuing

appropriate SQL queries. The architecture of TALOS is depicted in Figure 3-4, and its

procedures are sketched in Algorithm 1. We now elaborate on the details of the steps of

TALOS to derive the IEQs of a given input query Q and a database D.

TALOS first computes the query result Q(D) by posing Q into the DBMS (line 1).

We choose this simple implementation to ease TALOS from evaluating the input query Q,

which can be in complex fragments (e.g., SQL query with sub-queries). The next step

of TALOS is to enumerate different schema subgraphs G, each of which contains a set

of core relations R of Q. For each derived schema subgraph G, TALOS computes the

following four main data structures, including (S1) to (S4).

(S1) The hub table (Jhub), which is stored as a view in the DBMS. TALOS com-

putes Jhub by issuing a query Qhub that joins the join indices corresponding to the edges

in the corresponding schema subgraph G that is being considered (line 6).

(S2) The mapping table (Mi) between each relation Ri ∈ G and Jhub. Each Mi is

54

derived by issuing a query Qmap to scan the column of Jhub corresponding to Ri (line 7).

(S3) The attribute list (ALA) for each splitting attribute that can be used in sel(Q′).

By default, TALOS uses all attributes in each relation Ri ∈ G except the primary keys as

potential splitting attributes for the IEQs to be interesting5. Each attribute list ALA of an

attribute A ∈ Ri is derived by issuing a query Qal to retrieve tuples from the column A of

the corresponding relation Ri (line 9). Note that TALOS has a knob to control the set of

attributes that can be used in sel(Q′) (to be discussed later).

(S4) The class list (CL) is derived using the attribute lists of attributes in pro j(Q)

and Q(D) (line 10).

Among these structures, the hub tables and attribute lists are stored inside the DBMS;

the class list and mapping tables are stored in the main memory. If the main memory is

large enough (we present how to compute the memory usage of TALOS in Section 3.5.2),

TALOS will store the attribute lists and/or hub tables in the main memory to enhance

the performance. After these data structures have been built, TALOS proceeds to build

the decision trees DT to derive the IEQs w.r.t. each schema subgraph G (line 11). The

basic task is to scan all attribute lists at each leaf node of the decision tree to determine

the optimal node split6. After deriving a decision tree DT from G, if users want to

find more than one decision tree w.r.t. G, TALOS removes the splitting attribute that is

used in the first level of DT 7 from the set of possible splitting attributes, and derives

other DT ’s from G. The default setting of TALOS is to try computing more than one

IEQs from a schema subgraph G; TALOS allows users to disable this option if necessary.

Lastly, TALOS derives the IEQ Q′ from each computed DT , and calculates its MDL and

F-measure metrics (line 13 - 14).

To complete the discussion of TALOS’s procedures, we will explain how TALOS enu-

merates schema subgraphs containing a set of core relations of Q (line 4), and computes

the F-measure of a derived IEQ (line 14) next.

5It is trivial to require TALOS to use the primary keys in sel(Q′) also.
6TALOS actually scans each attribute list one time to compute the optimal node splits at all the leaf

nodes that are being considered simultaneously to improve the performance.
7Another possibility is to remove all the splitting attributes used in DT .

55

rM

r1

….

….

SrJ

{t1,t2}

….

….
nid

…

…

…

...

t1
t2

cid

…

…

…

...

nid

N2

N2

N2

N3
t3
t4

N1

N2 N3Mi

CL

DT

…. ….

Main memory

DBMS

rM

…

…

…

...

t1
t2

rB

…

…

…

...
t3
t4

Jhub

Qhub Qmap

val

1

2

….

ALbat

row

r2

r1

….

Qal

...

…

...

…

Q(D)

Q Q’TALOS

Figure 3-4: The Architecture of TALOS

Algorithm 1: TALOS(Q,D)
Compute the query result Q(D);1

Compute sets of core relations of Q;2

foreach set of core relations R do3

Enumerate schema subgraphs G containing R;4

foreach schema subgraph G do5

Compute Jhub corresponding to G;6

Derive mapping tables Mi between each relation Ri ∈ G and Jhub;7

Enumerate splitting attributes that can be used in sel(Q′);8

Compute attribute lists ALA for each splitting attribute A;9

Compute the class list CL for Jhub;10

Build the decision trees on Jhub;11

foreach derived decision tree DT do12

Derive the corresponding IEQ Q′;13

Compute the MDL and F-measure of Q′;14

end15

end16

end17

56

Enumerating Schema Subgraphs. The technique of TALOS to enumerate schema sub-

graphs G containing a set of core relation (R) is based on a bread-first search traversal of

the schema graph SG starting from an arbitrary vertex Rs in R. TALOS keeps a queue QG
of “active” schema subgraphs; QG is initialized with one schema subgraph Gs contain-

ing the vertex Rs. In each round, TALOS picks from QG an active schema subgraph G,

and outputs G as a derived schema subgraph if G contains vertices corresponding to all

the core relations in R. TALOS also expands G into larger subgraphs G′ by adding one

edge that connects a vertex V in G with a neighbor of V that is currently not in G, and

places the resultant graph G′ into QG. TALOS introduces a control knob, denoted as nmax,

to constraint the maximum number of vertices in a derived subgraph not to exceed nmax

for efficiency reason. Therefore, TALOS will not expand a subgraph G if the number of

vertices in G is equal or greater than nmax.

Computing F-measure. To compute the F-measure of an IEQ Q′ derived from a deci-

sion tree DT , we observe that the set of tuples selected by Q′, denoted as JQ′ , has been

collected in the corresponding class list CL. Thus, TALOS scans the class list CL to de-

rive JQ′ , where a tuple t ∈ CL belongs to JQ′ if t.nid is one of the identifiers of the leaf

nodes in DT that are used to derive Q′.

With the presence of JQ′ , TALOS scans the attribute lists of attributes in pro j(Q) to

derive Q′(D) as follows. For each row rk = (v, r) in the attribute list ALA with A ∈
pro j(Q) and Mi is the mapping table between the relation Ri containing A and Jhub,

TALOS probes Mi with the value r to retrieve the set of row identifiers JIv of the records

in Jhub that are related to rk. For every row identifier rid ∈ JIv such that the corresponding

tuple tr of rid belongs to JQ′ , TALOS updates tr.Ai = v. After Q′(D) has been derived,

TALOS computes the F-measure of Q′ using its definition given in Section 3.4.2.

Computing Fest
m . We present how TALOS computes the Fest

m for a pair of IEQs Q and Q′.

For simplicity and without loss of generality, assume that sel(Q) = C1 or · · · or C` and

sel(Q′) = C′1 or · · · or C′m.

To compute the Fest
m of Q′, TALOS estimates |pa| as the probability in the event that

57

an inserted tuple τ into the database satisfies both Q and Q′. Thus, TALOS estimates |pa|
as the probability that τ satisfies at least one predicate Ci in sel(Q) and at least one

predicate C′j in sel(Q′). In other words, |pa| is computed: |pa| =

C j∈sel(Q′)∑

Ci∈sel(Q)

s(Ci ∧ C j),

where s(Pi) denotes the selectivity of the selection condition Pi. TALOS uses a simple

independent model to estimate the selectivity of (Ci ∧ C j), which is the product of the

selectivity of Ci and C j.

TALOS estimates |pb| and |pc| in the same way as what have explained for comput-

ing |pa|. For instance, since pb represents the set of tuples that satisfy Q and do not

satisfy Q′, |pb| is estimated as the probability for the event that an inserted tuple τ sat-

isfies sel(Q) but does not satisfy sel(Q′). In other words, |pb| is the probability that τ

satisfies both sel(Q) and ¬sel(Q′).

3.5.2 Complexity Analysis

We now analyze the running time and the space complexity (in the worst case) of TALOS

to derive IEQs for a given input query Q w.r.t. a schema subgraph G containing n rela-

tions R1, · · · , Rn. We further assume that the set of projected attributes of Q consists of k

attributes A1, · · · , Ak, where each Ai is an attribute of relation Ri. In the following, we

use |X| to denote the number of tuples in a relation X.

Time Complexity. The running time of TALOS is proportional to the summation of the

following four main components, including (T1) to (T4).

(T1) The time T talos
hub to compute the hub table Jhub corresponding to G. T talos

hub is com-

puted depending on the join algorithms used inside the DBMS.

(T2) The time T talos
al to derive attribute lists. T talos

al is in the order of
∑n

i=1 ni(|Ri| log |Ri|)
with ni denotes the number of attributes in Ri, since TALOS needs to sort order all the

attribute lists for the task of computing optimal node splits.

(T3) The time T talos
cl to derive the class list CL. Recall that the basic step of TALOS

to derive CL is for each row r = (v1, · · · , vk) of Q(D), TALOS probes the correspond-

58

ing attribute list of Ai with a value vi in O(log |Ri|) time, and intersects the sets of de-

rived row identifiers of Jhub corresponding each vi’s. The intersection operation runs in

O(|Jhub|) in the worst case and O(1) in the best case. Hence, T talos
cl is in the order of

O(|Q(D)|∑k
i=1 log |Ri| + |Q(D)||Jhub|).

(T4) The time T talos
dt to build a single decision tree. If TALOS derives more than

one decision tree, then T talos
dt increases in proportion with the number of the decision

trees derived. Since TALOS needs to scan all the attribute lists to derive the optimal

splitting condition at each leaf node that is being considered, T talos
dt is in the order of

O(`
∑n

i=1 ni|Ri|Cgini), where ` is the maximum height of the derived decision tree, and Cgini

is the computation cost to derive the optimal Gini value. We have Cgini = O(|Q(D)|),
since TALOS basically updates the number of free tuples in each partition of the class

list CL that have been split into the left and right child nodes to derive the domain of f1,

f2
8 for the computation of the optimal Gini value.

Space Complexity. Similar to SLIQ, TALOS keeps the class list CL in the main memory

and the attribute lists in the disk when there is not enough available main memory. The

mapping tables are kept in the main memory for TALOS to look up whenever scanning

the attribute lists.

The space complexity of TALOS can be computed as follows. Since the mapping

table between a relation Ri and Jhub contains (|Jhub| + |Ri|) integer values, the total size

for the mapping tables is proportional to (n|Jhub| + ∑n
i=1 |Ri|). The size of the class list

is also proportional to |Jhub|. Thus, the space complexity of TALOS is in the order of

((n + 1)|Jhub| + ∑n
i=1 |Ri|).

In the event that the available main memory cannot account for all the mapping

tables, TALOS selects the mapping tables in the decreasing order of their memory’s usage

to force these mapping tables into the disk until the memory is enough to store the

remaining data structures. Without loss of generality, assume that the mapping tables of

8Recall that f1 (resp. f2) represents the number of free tuples to be labeled positive in the left (resp.
right) child node.

59

relations R1, · · · , Rm need to be disk-resident. In this case, TALOS updates the attribute

list ALA of every attribute A ∈ Ri, i ∈ [1,m], by joining ALA with the mapping table Mi

so that the resultant ALA contains tuples in the form (v, t), where t refers to the row

identifiers of tuples in Jhub instead of row identifiers in Ri. The purpose of this step is to

avoid probing each row of ALA, for A ∈ Ri and i ∈ [1,m], with the mapping tables in the

disk.

3.5.3 Control Knobs

As the search space for IEQs can be very large, particularly with large complex database

schema where each relation has foreign-key joins with other relations, users should be

able to restrict the search space by specifying hints/preferences in the form of control

parameters. Some examples include the following four control knobs.

(K1) Constraining the number of relations in the from-clause of each IEQ to be in the

range [nmin, nmax]. This control knob constraints the number of vertices in each derived

schema subgraph to be in the range [nmin, nmax].

(K2) Constraining the number of selection predicates in each conjunction of sel(Q′)

in the range [hmin, hmax]. Recall that the selection condition of an IEQ is presented in the

disjunctive normal form “C1 or C2 · · · or C`”, where each Ci is a conjunction of selection

predicates. Thus, this control knob constraints the number of predicates in each Ci to be

in the range [hmin, hmax]. This knob is implemented by setting the height of the derived

decision trees to be in the range [hmin, hmax].

(K3) Specifying a specific set of relations to be included (excluded) in (from) Q′.

This knob is imposed in the step of enumerating different schema subgraphs containing

core relations.

(K4) Specifying a specific set of attributes to be included (excluded) in (from) the

selection predicates in Q′. This knob is implemented by not deriving the attribute lists

for attributes that are required to be excluded from sel(Q′), and forcing the decision tree

to use the attributes to be included in sel(Q′) for the splitting conditions.

60

3.6 Experimental Study

In this section, we evaluate the performance of our proposed approaches for computing

IEQs and study the relevance of the results returned. The algorithms being compared

include our proposed TALOS approach, which is based on a dynamic assignment of class

labels for free tuples, and two static class labeling techniques: NI labels all the free tu-

ples as positive, and RD labels a random number of at least one free tuple in each subset

as positive. We also examine the effectiveness of our proposed optimizations by com-

paring against a non-optimized naive variant of TALOS (denoted by TALOS−) described

in Section 3.3.1.

The database system used for the experiments is MySQL Server 5.0.51; and all al-

gorithms are coded using C++ and compiled and optimized with GNU C++ compiler.

Our experiments are conducted on dual core 2.33GHz machine with 3.25GB RAM and a

250GB hard disk, running Linux. The experimental result timings reported are averaged

over 5 runs with caching effects removed.

3.6.1 At-Least-One Semantic Metric

To represent the flexibility in dynamically assigning class labels for free tuples under

the at-least-one semantics, we use the following metric, called the average number of

free tuples per one partition (afp). The afp of an input query Q is computed as the

ratio between the total number of free tuples and the number of tuples in Q(D). More

precisely, given a query Q, let J denote the join result of joining all relations in rel(Q)

using their foreign-key joins. Let J1 ⊆ J be the maximal set of tuples corresponding

to Q(D); i.e., πpro j(Q)(J1) = Q(D). The afp of Q is computed as |J1 |
|Q(D)| . Intuitively, afp

represents the number of free tuples, of which at least one tuple must be labeled positive

to produce the corresponding tuple in the query result of the IEQs. The higher the afp

of a query Q is, the more flexibility we have to derive the IEQs for Q.

61

Table # Tuples
adult 45222
Master 16639
Batting 88686
Pitching 37598
Fielding 128426
S alaries 18115
Team 2535
Manager 3099

Table Symbol # Tuples
lineitem L 6001215
order O 1500000
partsupp PS 800000
part P 200000
customer C 150000
supplier S 10000
nation N 25

(a) Adult & Baseball (b) TPCH

Table 3.3: Table sizes (number of tuples)

Query
A1 πnc σocc=“Armed-Force” (adult)
A2 πedu,occ (σms=“Never-married”∧64≤age≤68∧race=“White”∧gain>500∧sex=“F” adult)
A3 πnc,gain (σms=“Never married” adult)
A4 πid (σS KY-LINE(gain MAX,age MIN) adult)
B1 πM.name (σteam=“ARI”∧year=2006∧HR>10 (Master ./ Batting))
B2 πM.name (σsum(HR)>600 (Master ./ Batting))
B3 πM.name (σS KY-LINE(HR MAX,S O MIN) (Master ./ Batting))
B4 πM.name,T.year,T.rank (σteam=“CIN”∧1982<year<1988 (Manager ./ Team))
T1 πS .name,N.name σS .acctbal>4000∧N.regionkey<4 (supplier ./ nation)
T2 πC.name,N.name σC.acctbal>3000 (customer ./ nation)
T3 πP.name,S .name σPS .avaiqty>3000∧S .acctbal>9500 (part ./ partsupp ./ supplier)
T4 πO.clerk,L.extendedprice σL.quantity<2∧O.orderstatus=“P” (lineitem ./ order)

Table 3.4: Test queries for experiments with TALOS

3.6.2 Data sets and Queries

We use three real data sets: one small size (Adult), one medium size (Baseball), and

one large data set (TPCH). The size of the test data is shown in Table 3.3, and the test

queries are given in Table 3.4. The characteristics of test queries are shown in Table 3.5,

where columns 2 & 3 indicate the number of tuples in the query result of Q and its core

query QS
9, respectively. The last column shows the average number of free tuples per

one partition (afp) of Q.

Adult. The Adult data set, from the UCI Machine Learning Repository10, is a single-

9Recall that the core query QS of Q is derived from Q by replacing pro j(Q) by a set S of primary keys
of core relations containing attributes in pro j(Q).

10http://archive.ics.uci.edu/ml/datasets/Adult

62

Query |Q(D)| |QS (D)| afp

A1 1 14 41292
A2 4 5 637
A3 137 15000 312
A4 4 4 1
B1 7 7 8.3
B2 4 4 22.3
B3 35 35 8.8
B4 6 6 1
T1 4383 4383 1
T2 95264 95264 1
T3 24672 24672 1
T4 3719 3719 1

Table 3.5: The characteristics of test queries

relation data set that has been used in many classification works. We use this data set

to illustrate the utility of the IEQs for the simple case when both the input query Q as

well as the output IEQ Q′ involve only one relation. The four test queries for this data

set are A1, A2, A3 and A4
11. The first three queries have different afp’s values: very high

(A1), high (A2), and medium (A3). Query A4 is used to illustrate how TALOS handles

skyline queries.

In addition, we also run three sets of workload queries with varying average num-

ber of free tuples per one partition (afp) factor (very high, high, medium) as shown in

Table 3.6. Each workload set Wi consists of five queries denoted by Wi1 to Wi5. The

average afp of the queries in W1, W2, and W3 are, respectively, 14243, 325, and 60.

Baseball. The baseball data set is a more complex, multi-relation database that contains

Batting, Pitching, and Fielding statistics for Major League Baseball from 1871 through

2006 created by Sean Lahman. The queries used for this data set (B1, B2, B3, B4) are

common queries that mainly relate to baseball players’ performance. The afp of these

queries is low and in the order of 10.

TPC-H. To evaluate the scalability of our approach, we use the TPC-H data set (with a

11We use gain, ms, edu, loss, nc, hpw, and rs, respectively, as abbreviations for capital-gain, marital-
status, education, capital-loss, native-country, hours-per-week, and relationship.

63

Query afp

W11 πms (σ19≤age≤22∧edu=“Bachelors” adult) 17826
W12 πnc (σocc=“Armed-Force” adult) 41292
W13 πocc,ms (σnc=“Phillipines”∧30≤age≤40 adult) 1106
W14 πedu (σms=“Married-AF”∧race=“Asian” adult) 7570
W15 πedu (σ23≤age≤24∧nc=“Germany” adult) 3422
W21 πocc,edu (σgain>9999 adult) 447
W32 πocc,edu (σms=“NM”∧64≤age≤68∧race=“White” σgain>500∧sex=“F” adult) 637
W23 πage,wc,edu (σhpw≤19∧race=“White”∧nc=“England” adult) 197
W24 πedu,age (σms=“Separated”∧wc=“State-gov” σrace=“White” adult) 238
W25 πedu,age (σwc=“Private”∧race=“Asian” adult) 107
W31 πage (σms=“Divorced”∧wc=“State”∧age>70 adult) 82
W32 πage,wc,edu (σhpw≤19∧race=“White” adult) 42
W33 πedu,age,ms (σwc=“Private”∧race=“Asian” adult) 54
W34 πedu,age,gain (σms=“Married-civ”∧race“Asian” σ30≤age≤37 adult) 109
W35 πedu,gain (σgain>5000∧nc=“Vietnam” adult) 11

Table 3.6: Workload query sets for Adult

size of 1GB), and four test queries T1 - T4, involving large relations.

Control Knobs. In our experiments, we set the following three control knobs, as shown

in Table 3.7, for efficiency reason : (K1) the number of relations in the from-clause of the

IEQs, (K2) the number of selection predicates in each conjunction of sel(Q′), and (K4)

the attributes used in sel(Q′). For Adult and Baseball data set, we use the default setting

that allows any attributes (except the primary keys) to appear in the selection predi-

cates of the IEQs. For TPCH, the attributes that can be used in the selection predicates

of the IEQs are selected from the set S tpch = {C.acctbal, C.mktsegment, O.orderstatus,

O.orderpriority, PS.availqty, PS.supplycost, S.acctbal, P.retailprice, N.regionkey, L.quantity}.

Control knob Adult Baseball TPCH
(K1) # relations in the from-clause [1, 1] [2, 4] [2, 3]
(K2) # selection predicates in each [0,∞) [0,∞) [0, 4]
conjunction of sel(Q′)
(K4) Attributes in sel(Q′) all all S tpch

Table 3.7: The control knob values

64

3.6.3 Comparing TALOS, NI, and RD

In this section, we compare TALOS against the two static class labeling schemes, NI and

RD, in terms of their efficiency as well as the quality of the generated IEQs.

Figures 3-5(a) and (b) compare the performance of the three algorithms in terms

of the number of weak IEQs generated and their running times, respectively, using the

queries A1 to A4. Note that Figure 3-5 only compares the performance for weak IEQs

because the Adult data set is a single-relation database, all the tuples are necessarily

bound when computing strong IEQs. Thus, the performance results for strong IEQs are

the same for all algorithms and are therefore omitted. Similarly, the results for query A4

are also omitted from the graphs because it happens that all the tuples are bound for

query A4; hence, the performance results are again the same for all three algorithms.

The results in Figures 3-5(a) and (b) clearly show that TALOS outperforms NI and RD

in terms of both the total number of (precise and approximate) IEQs computed12 as well

as the running time. In particular, observe that the number of precise IEQs from TALOS

is consistently larger than that from NI and RD. The flexibility of dynamic assignment

of class labels for free tuples increases TALOS’s opportunities to derive precise IEQs. In

contrast, the static class label assignment schemes of NI and RD are too restrictive and

are not effective for generating precise IEQs.

In addition, TALOS is also more efficient than NI and RD in terms of the running time.

The reason for this is due to the flexibility of TALOS’s dynamic labeling scheme for free

tuples, which results in decision trees that are smaller than those constructed by NI and

RD. Table 3.8 compares the decision trees constructed by TALOS, NI, and RD in terms of

their average height and average size (i.e., number of nodes). Observe that the decision

trees constructed by TALOS are significantly more compact than that by NI and RD.

Figures 3-5(c) and (d) compare the quality of the IEQs generated by the three algo-

12For clarity, we have also indicated in Figure 3-5(a) the number of pruned IEQs (defined in Sec-
tion 3.3.1) computed by each algorithm. Since the number of decision trees considered by all three algo-
rithms is the same, the sum of the number of precise, approximate, and pruned IEQs generated by all the
algorithms are the same.

65

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

A1 A2 A3

NI
RD
TALOS

 0

 10

 20

 30

 40

 50

 60

 70

 80

A1 A2 A3

T
im

e
(i

n
se

c)

(a) Number of IEQs (b) The running time
NI
RD
TALOS

 1

 10

 100

 1,000

 10,000

A1 A2 A3

M
D

L
(lo

g−
sc

al
e)

NI
RD
TALOS

 0

 0.2

 0.4

 0.6

 0.8

 1

A1 A2 A3

F
−

m
ea

su
re

(c) MDL metric (d) F-measure metric

Figure 3-5: Comparison of TALOS, NI and RD for queries in Adult

NI
RD
TALOS

 0

 50

 100

 150

 200

 250

 300

 350

W1 W2 W3

T
im

e
(i

n
se

c)

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

W11 W12 W13 W14 W15

(a) The running time (b) Number of IEQs for W1

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

W21 W22 W23 W24 W25

Pruned
Approx
Precise

 0

 2

 4

 6

 8

 10

 12

 14

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

W31 W32 W33 W34 W35

(c) Number of IEQs for W2 (d) Number of IEQs for W3

Figure 3-6: Comparison of TALOS, NI and RD for workload queries

66

Average height Average size
Query NI RD TALOS NI RD TALOS

A1 14.9 19.8 2.1 5304 9360 4.7
A2 16.1 21.8 6.5 3224 2970 19.2
A3 16 20 12 4386 8103 334

Table 3.8: Comparison of decision trees for NI, RD, and TALOS

rithms using the MDL and F-measure metrics, respectively. The results show that TALOS

produces much better quality IEQs than both NI and RD: while the average value of the

MDL metric for TALOS is low (under 700), the corresponding values of both NI and RD

are in the range of [4000, 22000]. For the F-measure metric, the average value for TALOS

is no smaller than 0.7, whereas the values for NI and RD are only around 0.4.

Figure 3-6 compares the three algorithms for the three sets of workload queries,

W1, W2, and W3, on the Adult data set. As the results in Figure 3-6(a) show, TALOS again

outperforms both NI and RD in terms of the running time. For workloads W1 and W2,

the results in Figures 3-6(b) and (c) show that TALOS is able to find many more precise

IEQs for all queries compared to NI and RD. The reason for this is that such queries have

a larger number of free tuples per one partition, which gives TALOS more flexibility to

derive precise IEQs. Figure 3-6(d) shows the comparison for the query workload W3.

As the average number of free tuples per one partition is smaller for queries in W3, the

flexibility for TALOS becomes reduced; however, TALOS still obtains about 1.5 to 9 times

larger number of precise IEQs compared to NI and RD.

Figure 3-7 shows the comparison results for the Baseball data set for strong IEQs 13.

The results also demonstrate similar trends with TALOS outperforming NI and RD in both

the running time as well as the number and the quality of IEQs generated for queries B1

to B3. It happens that all the tuples are bound for query B4; hence, the performance

results are the same for all three algorithms.

We observe that the benefit of TALOS over NI and RD is higher for queries A1 - A3

in Adult data set than that for queries B1 - B3 in Baseball data set. For example, TALOS

13The strong IEQs for the queries B1 to B3 actually turn out to be weak IEQs as well.

67

Pruned
Approx
Precise

 0

 50

 100

 150

 200

N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S N
I

R
D

T
A

L
O

S

N
um

be
r

of
 I

E
Q

s

B1 B2 B3 B4

NI
RD
TALOS

 0

 50

 100

 150

 200

B1 B2 B3 B4

T
im

e
(i

n
se

c)

(a) Number of IEQs (b) The running time

NI
RD
TALOS

 0

 100

 200

 300

 400

B1 B2 B3 B4

M
D

L

NI
RD
TALOS

 0

 0.2

 0.4

 0.6

 0.8

 1

B1 B2 B3 B4

F
−

m
ea

su
re

(c) MDL metric (d) F-measure metric

Figure 3-7: Comparison of TALOS, NI and RD for queries in Baseball

runs 3 - 10 times faster than NI and RD for queries A1 - A3, whereas TALOS runs 1.2 -

1.5 times faster than NI and RD for queries B1 - B3. As another example, the MDLs of

the IEQs for A1 - A3 returned by TALOS are 10 - 1000 times lower than those of NI (and

RD); whereas the MDLs of the IEQs for B1 - B3 returned by TALOS are two times lower

than those of NI (and RD). The reason is that the number of free tuples per one partition

for queries in Baseball data set is smaller (i.e., in the order of 10) than that of Adult’s

queries (i.e., in the order of 100). The flexibility for TALOS, therefore, reduces in queries

B1 - B3; however, TALOS still produces higher quality IEQs than NI and RD.

3.6.4 Effectiveness of Optimizations

Figure 3-8(a) shows the number of strong IEQs produced by TALOS for test queries in

TPCH data set; and Figure 3-8(b) examines the effectiveness of the optimizations by

comparing the running times of TALOS and TALOS− on both the Baseball and TPCH data

sets. Note that the number and quality of the IEQs produced by TALOS and TALOS− are

68

Pruned
Approx
Precise

 0

 1

 2

 3

 4

 5

T
1

T
2

T
3

T
4

N
um

be
r

of
 I

E
Q

s

TALOS
TALOS−

 0

 50

 100

 150

 200

 250

 300

 350

 400

B1 B2 B3 B4 T1 T2 T3 T4

R
un

ni
ng

 ti
m

e
(s

ec
s)

0.50.6

(a) Number of IEQs in TPCH queries (b) The running time

Figure 3-8: Optimization of TALOS

T3 T4

Step TALOS TALOS− TALOS TALOS−

Join relation 41 61 22 106
Decision tree 198 202 147 267

Table 3.9: Detailed running times of TALOS and TALOS− (in seconds)

the same as these qualities are independent of the optimizations. The results show that

TALOS is about 1.1 - 2 times faster than TALOS−. The reason is that the computation of

the hub table Jhub by TALOS using join indices is more efficient than the computation of

the join relation J by joining relations directly in TALOS−. In addition, the attribute lists

accessed by TALOS, which correspond to the base relations, are smaller than the attribute

lists accessed by TALOS−, which are based on J.

To illustrate the observations above, we analyze the running time comparisons be-

tween TALOS and TALOS− to derive the IEQs for queries T3 and T4 with respect to two

main steps of each algorithm including: (1) deriving the join relation, and (2) building

decision trees. The results in Table 3.9 clearly demonstrate the effectiveness of TALOS

over TALOS− in these steps. For instance, the step to derive the join relation for T3

by TALOS is 1.5 times slower than that of TALOS−, since TALOS only needs to join the

corresponding join dices of part-partsupp and partsupp-supplier consisting of integer-

valued columns. In contrast, TALOS− needs to perform the join among partsupp, part,

and supplier relations. In another example, the step to derive the join relation for T4

by TALOS is 4.5 times slower than that of TALOS−, since TALOS only needs to read

69

the corresponding join index (lineitem-order); whereas TALOS− needs to perform the

join between lineitem and order relations. The attribute lists used by TALOS are also

more compact than these used by TALOS−; for instance, the attribute list constructed by

TALOS− for attribute “O.orderstatus” for query T4 is 4 times larger than that constructed

by TALOS. This fact helps the steps to build decision trees in TALOS run more efficiently

than TALOS−.

Storage Overhead. The storage overhead of TALOS consists of pre-computed join in-

dices built for pairs of relations that have foreign-key relationships. Basically, for every

pair of relations R and S that have foreign-key relationship, TALOS builds a join index

relation IR,S (rR, rS) consisting of k pairs of integers, where k is the number of tuples in

the join result of R and S . In addition, TALOS also builds two B+-indices on rR and rS

column of IR,S to speed up the joins of using join indices. In our experiments, the pre-

computed join indices built for TPCH data set consist of 460MB versus 1GB of the

whole database. Correspondingly, the join indices for Baseball data set consist of 16MB

over 35MB size of the database. Note that we do not build any join indices for Adult

data set, since Adult includes only a single relation.

Average Time to Derive One IEQ. For queries B1 - B4 on the Baseball data set, the

number of IEQs (both precise and approximate) generated by TALOS is in the range

[60, 100] with an average running time of about 100 seconds. Thus, it takes TALOS

about one second to generate one IEQ, which is reasonable. For the queries T1 - T4

on TPCH data set, TALOS returns one IEQ for T1 - T4 in averagely 0.3, 22, 60 and 56

seconds, respectively. Overall, even for the large TPCH data set, the running time for

TALOS is still reasonable.

3.6.5 Strong and Weak IEQs

In this section, we discuss some of the IEQs generated by TALOS for the various queries.

The samples of weak and strong IEQs generated from Adult data set are shown in Ta-

70

Q IEQ |pa| |pb| |pc| Fest
m

A1,1 σgain>7298∧ms=“Married-AF” (adult) 1 0 0 0.63
A1,2 σedu=“Preschool”∧race=“Eskimo” (adult) 1 0 0 0.25
A1,3 σloss>3770 (adult) 1 0 0 0.24
A2,1 σ(age≤85∧hpw≤1∧edu>13)∨(age>85∧edu=“Master”∧hpw≤40) (adult) 4 0 0 0.004
A3,1 σsex=“Female” (adult) 111 78 26 -

Table 3.10: Weak IEQs on Adult

Q IEQ |pa| |pb| |pc|
A1,4 σp1∧p2 (adult) 1 1 13

p1 : 48 < hpw ≤ 50 ∧ race < {“Eskimo”,“Asian”}
p2 : 6849 < gain ≤ 7298 ∧ loss ≤ 0 ∧ edu num > 14

A2,2 σ(63<age≤66∧edu>15∧ms=“NM”)∨(66<age≤68∧ms=“NM”∧gain>2993) (adult) 5 0 0
A3,2 σms=“Never married” (adult) 15000 0 0
A4,1 σ(1055<gain≤27828∧age≤17)∨(gain>27828∧occ=P∧race,O) (adult) 4 0 0

Table 3.11: Strong IEQs on Adult

bles 3.10 and 3.11, respectively. Table 3.12 shows sample strong IEQs generated from

Baseball and TPCH data sets14. For each IEQ, we also show its value for the F-measure

or Fest
m metric. In Tables 3.10 - 3.12, the F-measure metric values are shown in terms of

their |pa|, |pb| and |pc| values; an IEQ is precise iff |pb| = 0 and |pc| = 0. We use Xi, j to

denote an IEQ for a query Xi, X ∈ {A, B,T }.

Adult. In query A1, we want to know the native country of people whose occupation is

in the Armed Force. The query result is “U.S”. From the weak IEQs, we learn that the

people who are married to someone in the Armed Force and have high capital gain (A1,1)

have the same native country “U.S”; or people with high capital loss (> 3770) also have

“U.S” as their native country (A1,3).

In query A2, we want to find the occupation and education of white females who are

never married with age in the range [64, 68], and have capital gain > 500. The strong IEQ

A2,2 provides more insights about this group of people: those in the age range [64, 66]

are highly educated, whereas the others in the age range [67, 68] have high capital gains.

In query A3, we want to know the native country and capital gain of people who have

14The strong IEQs shown in Table 3.12 actually turn out to be strong IEQs as well for the queries B1 to
B3.

71

marital status as “never-married”. The query selects 15000 people and has 137 distinct

pairs of the attribute values of (native country, capital gain) in the query result. The weak

IEQ A3,1 shows that all the females (in the data set) have their native country and capital

gain attribute values cover 111 over 137 tuples the query result of A3.

Query A4 is a skyline query looking for people with maximal capital gain and min-

imal age. Both strong and weak IEQs return the same IEQs for this query. Interest-

ingly, the precise IEQ A4,1 provides a simplification of A4: the people selected by this

skyline query are either (1) very young (age ≤ 17) and have capital gain in the range

1055 − 27828, or (2) have very high capital gain (> 27828), work in the protective

service, and whose race is classified as “others”.

Baseball. In query B1, we want to find all players who belong to team “ARI” in 2006

and have a high performance (HR > 10). The result includes 7 players. From the IEQ

B1,1, we know more information about these players’ performance (G, RBI, etc.), and

their personal information (e.g., birth year). In addition, from IEQ B1,2, we also know

that one player in this group got an award when he played in “NL” league.

In query B2, we want to find the set of high performance players who have very high

total home runs (> 600). The IEQ B2,1 indicates that some of these players play for

“NY1” team. The IEQ B2,2 indicates one player in this group is very highly paid and has

a left throwing hand.

Query B3 is a skyline query that looks for players with maximal number of home

runs (HR) and minimal number of strike outs (SO). The result has 35 players. The

IEQs provide different characterizations of these players. Query B3,1 indicates that two

players in this group are also the managers of “WS2” and “NYA” teams; while query B3,2

indicates that two players in this group are averagely paid.

Query B4 is an interesting query that involves multiple core relations. This query asks

for the managers of team “CIN” from 1983 to 1988, the year they managed the team as

well as the rank that the team gained. There are 3 managers in the result. In this query,

we note that TALOS found alternative join-paths to link the two core relations, Manager

72

Q IEQ |pa| |pb| |pc|
B1,1 σp1∨p2 (Master ./ Batting) 7 0 0

p1 : (team = “ARI” ∧ G ≤ 156 ∧ 70 < RBI ≤
79 ∧ year > 1975)
p2 : (team = “ARI” ∧G > 156 ∧ BB ≤ 78)

B1,2 σlg=“NL”∧month=12∧71<height≤72∧nc,“D.R” (Master ./
AwardsPlayer)

1 0 6

B2,1 σp1∨p2∨p3 (Master ./ Batting) 4 0 0
p1 : (BB ≤ 162∧HR > 46∧birthCity = “Mobile”∧
RBI ≤ 127)
p2 : (BB ≤ 162 ∧ HR > 46 ∧ teamID = “NY1” ∧
BB > 74)
p3 : (BB > 162)

B2,2 σsalary>21680700∧throws=“L” (Master ./ S alaries) 1 0 3
B3,1 σ(team=“WS2”∧R≤4)∨(team=“NYA”∧state=“LA”) (Master ./

Manager)
2 0 33

B3,2 σ(p1∨p2) (Master ./ S alaries) 2 0 33
p1 : (height ≤ 78∧weight > 229∧ country = “DR”
∧180000 < salary < 195000)
p2 : (height > 78∧state = “GA”∧salary > 302500)

B4,1 σ21<L≤22∧S B≤0∧67<W≤70 (Mananger ./ Master ./
Batting ./ Team)

1 0 5

T1,1 σ(N.regionakey≤3) (supplier ./ nation) 4383 3598 0
T2,1 (customer ./ nation) 95264 54736 0
T3,1 σ3000<PS .availqty≤3001∧P.retailprice≤953 (part ./

partsupp ./ supplier)
1 0 24671

T4,1 πO.clerk,L.extendedprice σL.quantity≤1∧orderstatus=“P”

(lineitem ./ order)
3719 0 0

Table 3.12: Strong IEQs on Baseball and TPCH

73

and Team. The first alternative join-path (shown by B4,1) involves Manager, Master,

Batting, and Team. The second alternative join-paths (not shown) involves Manager,

Master, Fielding, and Team. The IEQ B4,1 reveals the interesting observation that there

is one manger who was also a player in the same year that he managed the team with

some additional information about this manager-player.

3.7 Summary

In this chapter, we have described our proposed solution, TALOS, that models the problem

to derive instance-equivalent queries as a data classification task with a unique property

that we term at-least-one semantics, which is inherent in the derivation of IEQs. To

handle data classification with this new semantics, we developed a new dynamic class

labeling technique. In addition to the basic framework, we designed several optimization

techniques to reduce processing overhead, including join indices and mapping tables.

Furthermore, as there can be multiple IEQs, we introduced a set of criteria to rank order

output queries by various notions of utility, including the minimum description length

and F-measure. Our experimental evaluation of TALOS demonstrates its efficiency and

effectiveness in generating interesting IEQs.

74

Chapter 4

REQUERE: Reverse-Query

Engineering System

In the previous chapter, we have described the framework of TALOS to derive Select-

Project-Join relational query Q′ that is instance-equivalent to a given input query Q w.r.t.

a single database version D; i.e., Q′(D) = Q(D). Such queries can shed light on hidden

relationships within the data, provide useful information on the relational schema, as

well as potentially summarize the original query.

In this chapter, we present a generalized framework of TALOS, named REQUERE for

Reverse Query Engineering, that generalizes TALOS along three key dimensions of the

problem setting including (1) the original query Q (i.e., Q can be unknown), (2) the

database version D (i.e., there have multiple database versions), and (3) the derived

query Q′ (i.e., Q′ is in more expressive fragments). These generalizations are important

to broaden the range of applications of QBO.

4.1 An Overview of REQUERE

The generalization of REQUERE over TALOS is summarized in Table 4.1. We discuss these

generalizations in details next.

75

Parameter TALOS REQUERE
Database Single version D Multiple versions D1, D2, · · · , Dk

Original Query Q Q is known Q is unknown
Case 1: Q(Di) is known for some i ∈ [1, k]
Case 2: Q(Di) is known for each i ∈ [1, k]

Derived Query Q′ Q′ is a SPJ query Q′ is a SPJ, SPJU, or SPJA query

Table 4.1: Summary of the Generalization of REQUERE over TALOS

4.1.1 Unknown Query

First, unlike TALOS, REQUERE also considers the scenarios where the input to the problem

consists of only a given result table T = Q(D) but not the original Q itself. The given

result table T in these contexts may have been derived manually (e.g., a user selected

some tuples of the database of interest to her), or by an application program that is no

longer available (e.g., the program is no longer maintained or is lost). Such scenarios

are more common in data exploration, where the documentation and meta-data for the

data sets being analyzed are incomplete, inaccurate, or missing (e.g., AT&T’s Bellman

project [24]).

The absence of the input query Q makes it more challenging to identify the core

relations to be included in the instance-equivalent query Q′ of the given result table T .

REQUERE makes use of domain indices to efficiently identify core relations for the given

result table T .

4.1.2 Multiple Database Versions

Second, in contrast to TALOS, which solves the problem where the specific database D is

known and given as part of the input, the setting considered by REQUERE is often more

general where there could have multiple database versions. We consider two specific

scenarios of this generalization and the additional challenges introduced by them.

In the first data exploratory/analysis scenario, a user might need to reverse-engineer

a query Q′ from a result table T that was generated some time ago by some unknown

query Q. Thus, it may not be meaningful or possible to derive Q′ from the current

76

version of the database, as this could be very different from the version that T was gen-

erated from. Specifically, given a result table T and a sequence of database versions

< D1,D2, · · · ,D` >, a specific goal may be to determine the most recent database ver-

sion Di and an IEQ Q′ such that Q′(Di) = T . Depending on the applications, other

variations of the problem (e.g., finding the earliest database version or all versions) are

also possible. The performance challenge is how to determine both Di as well as Q′ for

a given result table T efficiently.

In the second data analysis scenario, the user is provided with more information

in the form of a sequence of database versions and result pairs (D1,T1), (D2,T2), · · · ,
(D`,T`); where each Ti is the result of the same unknown query Q on database version Di

(i.e., Ti = Q(Di)). For example, the Ti’s could correspond to weekly reports generated

by the same query on weekly versions of the database, or Q could be a continuous

long standing query that is run periodically on different snapshots of the database. In

this more general setting with multiple database and result versions, the challenge is to

efficiently reverse-engineer a query Q′ such that Q′(Di) = Ti for each i ∈ [1, `]. REQUERE

introduces a new labeling scheme to solve this problem setting efficiently.

4.1.3 Supporting More Expressive IEQs

Third, while TALOS derives IEQs that belong to the simple fragment of Select-Project-

Join (SPJ) relational queries, REQUERE is designed to be able to handle more expressive

classes of queries beyond SPJ-queries. REQUERE can support not only SPJ-IEQs, but also

SPJ-IEQs with union operators (referred to as SPJU-IEQs), and SPJ-IEQs with group-

by aggregation operators (referred to as SPJA-IEQs). With this enhanced expressiveness,

REQUERE becomes useful in more application domains such as data integration, where

SPJU-IEQs are predominant. In data integration systems, the goal is to combine data

residing at different sources to provide users with a unified view of these data [30].

The global-as-view integration approach requires that the global schema be expressed

in terms of the data sources, which necessitates a query over the global schema to be

77

reformulated in terms of a set of queries over the data sources. Thus, the QBO problem

in this context is: Given a result table T that is generated by the integration system,

derive the query that is a union of sub-queries over the data sources. Another application

domain that is supported by the enhanced expressiveness of IEQs is in data analysis,

where SPJA-IEQs are very common due to aggregation computations (e.g. group-by

aggregation queries in OLAP applications).

For efficiency reasons, the default mode of operation for REQUERE is first to try to

derive IEQs that belong to a simpler fragment before proceeding to the more complex

fragments. Specifically, REQUERE derives IEQs using the following sequence of query

fragments: SPJ, SPJU, and SPJA. Thus, given a result table T = Q(D), REQUEREwill first

attempt to derive an IEQ Q′ that is an SPJ query. If such an IEQ is found, REQUERE will

return this IEQ and terminate; otherwise, REQUERE will proceed to derive an SPJU-IEQ,

and so on. However, depending on the user’s preference or application need, REQUERE

can easily reorder this default fragment sequence. As an example, if a user has prior-

knowledge that a result table Q(D) has at least one aggregated attribute, then she may

want REQUERE to consider only SPJA-IEQs.

Organization. The remaining of this chapter is organized as follows. Section 4.2

presents the preliminaries for REQUERE. Section 4.3 introduces the proposed domain

indices technique that REQUERE adopts to solve the issue of unknown input query. Sec-

tions 4.4 and 4.5 discuss how REQUERE handles multiple database versions. Section 4.6

presents the techniques of REQUERE to derive the IEQs in more expressive fragments.

Section 4.7 presents an experimental evaluation of REQUERE. Finally, Section 4.8 sum-

marizes our work on REQUERE.

4.2 Preliminaries

In this work, we consider three fragments of SPJ relational queries for IEQs, where each

projected attribute is either some relation’s attribute, or a value computed by an aggrega-

78

tion operator (COUNT, SUM, or AVG) that does not involve any arithmetic expression

in the operator’s argument. Specifically, SPJ queries are the basic select-project-join

queries. SPJU queries are of the form Q1 union Q2 · · · union Qn, where each Qi is

an SPJ query. SPJA queries correspond to simple SPJ SQL queries with aggregation

operators in the select-clause and an optional group-by clause.

We useSG to denote the schema graph of a database D. Each node inSG represents a

relation in D, and an edge in SG represents a foreign-key join between a pair of relations

associated with the two connected nodes. We refer to the attributes in the database

schema as schema attributes.

In the rest of the discussions, we focus on finding precise instance-equivalent queries

(IEQs) Q′ for a given result table T ; i.e., Q′(D) is exactly equal to T . The techniques

to derive approximate IEQs Q′ (i.e., Q′(D) differs from T in some tuples) require minor

modifications and are omitted here.

4.2.1 Review of TALOS

Since REQUERE is built on TALOS, we first review TALOS that is designed for the setting

of QBO where the original query Q is known with a single database version D and the

derived IEQs are limited to simple SPJ queries. The procedure of TALOS is sketched in

Algorithm 2.

Algorithm 2: TALOS − basic(Q,D)
Compute sets of core relations of Q;1

foreach set of core relation R do2

Enumerate schema subgraphs G containing R;3

foreach schema subgraph G do4

Compute the join relation J(G);5

Build decision trees on J(G);6

end7

end8

To generate an SPJ query Q′ that is instance-equivalent to an input query Q, TALOS

basically needs to determine the three components of Q′: pro j(Q′), rel(Q′), and sel(Q′).

79

The first two components are easily derived when Q is given; i.e., TALOS requires Q′

to include all the projected attributes of Q in its select-clause. Therefore, Q′ must at

least contain a minimal set of relations, called the set of core relations (denoted as R),

such that every projected attribute of Q belongs to one relation in R (line 1). Note

that there could have more than one sets of core relations for a given query Q. For

example, consider a query Q: πS .AσS .A=T.B(S × T); there are two sets of core relations

for Q including R1 = {S } and R2 = {T }.

For each computed set of core relations R, TALOS considers different schema sub-

graphs G of SG, each of which contains all relations in R (line 3); thus, G determines

both the relations that appear in the from-clause of Q′ as well as the foreign-key join

predicates that appear in the where-clause of Q′. The main challenge for TALOS is de-

riving the selection predicates for the IEQ Q′. The approach adopted by TALOS is to

model the problem as a data classification task, which is solved by constructing different

decision trees to generate different sets of selection predicates and hence different IEQs

(w.r.t. G) for Q as follows.

Conceptually, TALOS computes a join relation J(G) by joining all the relations in G

based on the foreign-key joins represented in G (line 5). To build the decision trees

on J(G) (line 6), TALOS partitions J(G) into two disjoint subsets J(G) = J0 ∪ J1 such

that: πpro j(Q)(J1) = Q(D), and πpro j(Q)(J0) ∩ Q(D) = ∅. For the purpose of deriving

sel(Q′), TALOS labels the tuples in J0, which do not contribute to the query result Q(D),

as negative tuples. TALOS labels a subset J′1 ⊆ J1 as positive tuples (with tuples in J1− J′1

as negative) such that: (1) πpro j(Q)(J′1) = πpro j(Q)(J1) (without affecting the imprecision

of Q′), and (2) sel(Q′) is succinct (without too many conditions). The first condition is

due to the fact that multiple tuples in J1 can be projected to the same tuple in πpro j(Q)(J1).

Given the labeled tuples in J(G), the problem of finding a sel(Q′) can now be viewed

as a data classification task to separate the positive and negative tuples in J(G): sel(Q′)

is given by the selection conditions derived from the decision tree built to specify the

positive tuples. We will not go into details on how TALOS derives J′1, as it does not affect

80

our discussions for REQUERE.

There are some optimization techniques introduced in TALOS; for instance, since

the computational for J(G) is costly, TALOS optimizes the performance by actually not

computing J(G) as described. We will also not go into details of TALOS’s optimizations,

as it will not affect our discussions for REQUERE.

4.2.2 Multiple Database Version Organization

Multiple database versions are typically organized using a reference version (either the

earliest or the latest version) together with a sequence of forward/backward deltas be-

tween successive versions (e.g., [45]). In this work, without loss of generality, we assume

the “backward” delta storage organization; i.e., given a sequence of database versions

D1, D2, · · · , D`, the database stores the most recent version D` together with δ`(`−1), · · · ,
δ21; where each D j can be derived from Di and δi j. For simplicity, we assume that each

tuple update operation is modeled by a pair of tuple delete and insert operations. Thus,

each delta δi j consists of a set of tuple insert and delete operations.

4.3 Unknown Query

This section addresses the first challenge of REQUERE to derive SPJ-IEQs Q′ given a

specific database D and a result table T = Q(D) without the knowledge of Q. The key

issue is how to efficiently determine sets of core relations of T (corresponding to the

first step of TALOS in Algorithm 2-line 1). REQUERE introduces a simple but effective

indexing technique, called domain indices, to solve this issue.

Essentially, for each column C in the given result table T , REQUERE needs to de-

termine some schema attribute Ai that can “completely cover” C in the sense that the

column of attribute values for Ai contains all values in the column C. We refer to a

schema attribute Ai that completely covers a column C as a matching attribute of C. Once

REQUERE has determined a set S of matching attributes, each of which completely cov-

81

ers a different column of T such that all columns of T are completely covered, REQUERE

considers S as a set of projected attributes of Q′ (i.e., pro j(Q′) = S). The set of core

relations R for Q′ corresponding to S is given by the set of relations in D containing

attributes in S . REQUERE then executes the remaining steps of TALOS to derive the IEQs

for T w.r.t. the set of core relations R, as described in Algorithm 2.

We note that for some value v that appears more than one time in a column C,

REQUERE only requires the column of a matching attribute A j of C to contain v at least

one time. The reason is that after joining all relations in the derived subgraph G con-

taining R, the A j’s column in the join relation J(G) might contain enough the number of

instances of v. For simplicity and without loss of generality, we assume that each col-

umn C of T does not contain any duplicate values from now on; otherwise, we simply

pre-process C to eliminate duplicates.

4.3.1 Naive solution

To find matching attributes of a column C of data type d (e.g., categorical, numerical)

in T , a straightforward solution is to intersect C with the column of each schema at-

tribute A j of the same data type d one at a time. If the intersection result between A j

and C contains all values in C, then A j is a matching attribute of C. We can optimize

this process further by intersecting the column of each schema attribute A j with a single

“domain” column CB, which is the result of merging all columns C in T that have the

same data type as A j, instead of intersecting A j with each column C separately. We refer

to this naive solution as REQUERE−.

Example 4.1 Consider a given result table T1 in Figure 4-1(a) consisting of two columns

C1 and C2. To reverse-engineer an IEQ Q′ of T1, REQUERE− first finds matching at-

tributes for C1 and C2. REQUERE− intersects C1 with the column of each categorical

attribute in D, and observes that only Master.name’s column contains all distinct values

in C1. Thus, Master.name is the matching attribute of C1. In a similar way, REQUERE−

82

C1 C2

C 35
E 60

Column Matching attributes
C1 {Master.name}
C2 {Salaries.salary, Batting.HR}

(a) Given result table T1 (b) Matching attributes

Set of matching attributes Set of core relations
S 1 = {Master.name, Salaries.salary} R1 = {Master, Salaries}
S 2 = {Master.name,Batting.HR} R2 = {Master,Batting}

(c) Core relations

Figure 4-1: Example of finding IEQs on single database version

intersects column C2 with the column of each numerical attribute in D, and derives that

Salaries.salary and Batting.HR are the two matching attributes of C2.

Therefore, there are two sets of matching attributes S 1 and S 2, and correspond-

ingly two sets of core relations R1 and R2 (shown in Figures 4-1(b) and (c)). With R1,

REQUERE− derives an IEQ Q′1,1 = πname,salary σbats=“R” (Master ./ Salaries). Similarly,

withR2, REQUERE− derives another IEQ Q′1,2 = πname,HR σbats=“R”∧stint>1 (Master ./ Batting).

�

4.3.2 Domain indices

REQUERE optimizes the process of finding matching attributes by using a simple but yet

effective indexing technique, called domain indices. Unlike a conventional index that

is defined on attribute(s) within a single relation, a domain index is defined on all the

attributes in the database that have the same attribute domain. By indexing on a database

domain instead of a relation attribute, domain indices enable matching attributes to be

determined efficiently.

For each data type d (e.g., categorical, numerical), REQUERE maintains a three-

column mapping table Md(v, attr, countv), where v is a value of type d in the database,

attr is the schema attribute that contains v in its column, and countv is the number of

times that v appears in attr’s column. This table has one composite key consisting of v

and attr, which is indexed by a B+-tree that we refer to as a domain index. When database

83

v attr countv
A Master.name 1
C Master.name 1
E Master.name 1
P1 Batting.pID 2
P1 Salaries.pID 1
· · · · · · · · ·

v attr countv
35 Salaries.salary 1
60 Salaries.salary 1
35 Batting.HR 1
60 Batting.HR 1
1 Batting.stint 2
· · · · · · · · ·

(a) Categorical attributes (b) Numeric attributes

Figure 4-2: The mapping tables for Baseball database

records are modified, countv is updated accordingly. Whenever countv is 0, the corre-

sponding value v will be removed from the table Md and its domain index. The column

“countv” is mainly used to facilitate index maintenance.

Conceptually, to determine the matching attributes for a column C of data type d in T ,

REQUERE joins C with the mapping table of the same data type (Md) using the domain

index. The join result is a relation RM(v, attr). REQUERE further performs a group-by

aggregation on RM to derive a relation RMg(attr, num matching) with num matching

is derived by applying a COUNT operation on v’s column. Each row (A, num) of RMg

indicates the number of distinct values (i.e., num) in the column of C that are contained

in the column of the attribute A. Therefore, a schema attribute A is a matching attribute

of C if (A, num) is a tuple in RMg with num is equal to the number of distinct values

in C.

Similar to REQUERE−, REQUERE also further optimizes this process by joining a col-

umn CB, which is the result of merging all columns C in T of the same data type d,

with the mapping table of type d (Md) one at the time instead of joining each C with Md

separately.

Example 4.2 We illustrate how REQUERE uses domain indices to find matching attributes

for columns C1 and C2 of T1 in Example 4.1. The mapping tables built for categor-

ical and numeric attributes are shown in Figures 4-2(a) and (b). REQUERE joins col-

umn C1 with the mapping table of categorical attributes, and derives a relation RM =

{(C,Master.name), (E,Master.name)}. REQUERE further groups RM on RM.attr to de-

84

SELECT Md.attr, CT.cid, count(Md.v) AS num matching
FROM Md, CT
WHERE Md.v = CT.v
GROUP BY Md.attr, CT.cid

Figure 4-3: The SQL query to derive matching attributes

rive RMg = {(Master.name, 2)}. Base on the resultant relation RMg, REQUERE con-

cludes that Master.name is a matching attribute of C1 since the number of distinct values

in C1 is also 2. In a similar way, REQUERE derives Salaries.salary and Batting.HR as the

matching attributes of C2. �

Implementation Details. For efficiency, REQUERE stores attr as an integer value repre-

senting the schema attribute’s identifier. Furthermore, REQUERE does not compute RM
as described. Instead, REQUERE derives a temporary relation CT (v, cid), where v is a

value of data type d appeared in T and cid is the identifier of the column in T that

contains v. Computing RM and deriving the matching attributes are implemented by

executing the SQL query in Figure 4-3. From the result of this query, a schema at-

tribute corresponding to “Md.attr” is a matching attribute of the column corresponding

to “CT.cid” in T if num matching is equal to the number of values in CT.cid’s column.

4.4 Multiple Database Versions & Single Unknown Re-

sult

This section explains how REQUERE derives IEQs in the presence of multiple database

versions and a single unknown result, where the goal is to derive IEQs w.r.t. the most

recent possible database version. The inputs to the problem considered in this section

are a given result table T = Q(D) and a sequence of ` database versions organized in the

form D`, D`−1, · · · , D1; where Di = Di+1 ⊕ δ(i+1)i for i ∈ [1, ` − 1] and D` is the current

database version. Here, we use the notation “X⊕δX” to denote applying the insert/delete

“delta” tuples in δX to update X, where X is a database version or a relation. The goal

85

is to efficiently identify the most recent database version Di such that there exists an

IEQ Q′ with Q′(Di) = T .

The most straightforward solution is to apply the previous solution developed for a

single database version by trying to find the IEQs starting from the most recent database

version, and progressively working “backwards” to the next recent version and so on

until an IEQ is derived (or none is found). For each database version Di considered,

REQUERE basically identifies sets of matching attributes S i for T , followed by sets of

core relations R corresponding to S i (Algorithm 2-line 1), and a schema subgraph G

containing R. After deriving G, REQUERE joins all the relations in G using the foreign-

key joins in G to derive a relation Ji(G) (Algorithm 2-line 5), and then derives the IEQs

for T w.r.t. Ji(G).

In the following discussions, we present how REQUERE optimizes the computation

of S i and Ji(G). The main ideas of REQUERE are to utilize the computations for S i

and Ji(G) in the previously considered version to the current database version being

considered. Our basic techniques are based on the well-known join view maintenance

techniques [5, 37].

4.4.1 Optimizing Matching Attributes Computation

Suppose that REQUERE has already computed the matching attributes for database ver-

sion Dx+1, and is currently considering database version Dx where Dx = Dx+1 ⊕ δ(x+1)x.

To simplify the presentation, we discuss how REQUERE finds the matching attributes for

numerical columns of T ; the same principles are applied for columns in T of different

data types (e.g., categorical) as well. Similar to the discussions in Section 4.3, we also

preprocess each column C in T so that C does not contain any duplicate values.

Let Mi denote the mapping table of numeric attributes for database version Di, i ∈
[1, `]. Recall that to find the matching attributes for a numeric column C in T w.r.t.

a database version Dx+1, REQUERE basically joins C with the mapping table Mx+1 to

derive a relation RMx+1(v, attr, countv), from which REQUERE can derive the matching

86

attributes for C. Therefore, a straightforward solution to find matching attributes for C in

the database version Dx is to derive the mapping table Mx (w.r.t. the database version Dx)

by updating Mx+1 with the inserted/deleted numeric values in δ(x+1)x, and then join C

with Mx to derive a relation RMx in the same role with RMx+1.

REQUERE optimizes this process by treating RMx as a view of the join between Mx

and C, where Mx is modified from Mx+1. There are two benefits of this optimization: (1)

leveraging the join result between Mx+1 and C for Dx+1 (the result has already been stored

in RMx+1), and (2) avoiding the costly operation of updating the mapping table Mx+1.

Algorithm 3: REQUEREM

δn
(x+1)x ← {(v, attr, ca, cr)};1

Mn ← ∅;2

foreach (v, attr, ca, cr) ∈ δn
(x+1)x do3

Mn ← Mn
⋃ {(v, attr, ca − cr)};4

end5

RMn ← Mn ./ Mn.v=C.v C;6

RMx ← πv,attr,RMx+1.countv+RMn.countv(RMx+1 d|><|d v,attr RMn);7

We present the approaches of REQUERE to computeRMx in Algorithm 3. Since δ(x+1)x

contains the set of inserted/deleted tuples into Dx+1 to derive Dx, REQUERE first con-

structs a set δn
(x+1)x that will contain tuples in the form (v, attr, ca, cr), where ca (resp. cr)

represents the number of times that the corresponding numeric value v is inserted (resp.

deleted) into (from) the column of the schema attribute attr. REQUERE then derives a re-

lation Mn(v, attr, countv) that represents the “nett change” of the number of times that a

value v is inserted into the column of attr (line 4)1. Thus, Mx is equivalent to Mx+1⊕Mn.

It derives that the resultant relation RMx of the join between Mx and C is equivalent to

(Mx+1 ⊕Mn) ./ C. The next two steps in lines 6 & 7 are then to compute RMx using this

formula. In line 7, we use the notion d|><|d to denote the full outer join operator.

Example 4.3 Consider a sequence of two database versions: (1) the current version D2,

which is the baseball database given in Figure 3-1, and (2) the database version D1,

1If countv < 0, it implies that v is deleted (−countv) times from attr’s column.

87

insert(P6, D, Korea, 75, R, R) into Master
insert (P6, 2004, 3, SFN, 60) into Batting
insert (P2, 2003, 1, PIT, 73) into Batting

C1 C2

B 73
D 60

(a) Delta δ21 (b) Input table T2

Figure 4-4: Finding IEQs on multiple database versions

which is given by the “delta” δ21 (shown in Figure 4-4(a)). The input table T2, shown in

Figure 4-4(b), has two columns C1 and C2.

To derive the IEQs for T2, REQUERE starts with the current database version D2, and

determines S 2 = {Master.name, Batting.HR} as the set of matching attributes of T2

w.r.t. D2. REQUERE then derives a schema subgraph G including one edge Master-

Batting, computes J2(G) = Master ./ Batting, and concludes that there does not exist

any IEQs w.r.t. D2, since T2 * πname,HR(J2(G)).

Therefore, REQUERE needs to find IEQs of T2 on D1. REQUERE first derives the

matching attributes for C1 and C2 w.r.t D1. Using Algorithm 3, REQUERE derives a rela-

tion Mn = {(75,weight, 1), (60,HR, 1), (73,HR, 1), (1, stint, 1), (3, stint, 1),(2003, year,

1),(2004, year, 1)}. REQUERE then derives RMn = {(60,HR, 1), (73,HR, 1)}. Note that

when computing matching attributes on D2, REQUERE has already computed RM2 =

{(73,HR, 1), (60,HR, 1)}. Finally, REQUERE computes RM1 by performing a full outer

join between RM2 and RMn to derive RM1 = {(60,HR, 2), (73,HR, 2)}. Based on

RM1, REQUERE concludes that Batting.HR is the matching attribute for C2. In a similar

way, REQUERE derives Master.name as the matching attribute for C1. �

4.4.2 Optimizing Join Relation Computation

We now explain how REQUERE efficiently derives the join relation Jx(G) w.r.t. the

database version Dx and a schema subgraph G, given that REQUERE has already derived

the join relation Jx+1(G) w.r.t. Dx+1 and G.

One straightforward solution is to update the relations that are used to derive Jx(G)

with the inserted/deleted tuples in δ(x+1)x, and then join the (updated) relations corre-

88

sponding to the nodes in G to derive Jx(G). REQUERE optimizes this process by treat-

ing Jx(G) as a view and applying the join view maintenance techniques [5] to derive the

set of delta tuples δJ(x+1)x such that Jx(G) = Jx+1(G) ⊕ δJ(x+1)x. There are two benefits

of this optimization technique: (1) avoiding the cost of updating the involved relations

corresponding to nodes in G, and (2) exploiting the existing computation of the joins

among the relations corresponding to G before modification (i.e., Jx+1(G)).

Example 4.4 Continuing with Example 4.3, REQUERE derives R ={Master, Batting} as

the set of core relations for T2, and a schema subgraph G consisting of one edge Master-

Batting to derive the IEQs. Since J2(G) has been computed in the previous step, REQUERE

computes J1(G) from J2(G) using the view maintenance techniques. Finally, REQUERE

uses TALOS to derive an IEQ Q′1,1 w.r.t. J1(G): πname,HRσHR>50(Master ./ Batting). Thus,

REQUERE returns Q′1,1 as an IEQ of T2 w.r.t the latest version D1. �

4.5 Multiple Database Versions & Multiple Known Re-

sults

This section addresses the second application scenario of deriving IEQs in the context of

multiple database versions. The input to the problem consists of a sequence of database

version and input table pairs, (D1,T1), (D2,T2), · · · , (D`,T`); where Ti is produced by

executing the same (unknown) query Q on the database version Di. We assume that all

databases Di have the same schema, and that the query Q is monotonic (i.e., if D ⊆ D′,

then Q(D) ⊆ Q(D′)).

To simplify the presentation and without loss of generality, we discuss the solutions

of REQUERE assuming ` = 2; the techniques can be generalized to the case with ` > 2.

The key challenge here is to optimize the derivation of an IEQ Q′ such that Q′(Di) = Ti

for each i ∈ [1, `]. The intuition behind the optimization technique of REQUERE is to

derive the following two data structures: (1) a “unified” database version D that is a

89

combination of Di’s in some way, and (2) a “unified” input table T that is a combina-

tion of Ti’s in some way such that the IEQs for T on D are also the queries that can

reverse-engineer each Ti from Di correspondingly. In the next discussions, we present

the algorithms of REQUERE in two cases depending on whether the delta between D2

and D1 includes only the insertion operations or arbitrary operations.

4.5.1 Append-Only Database Versions

We first consider the simpler case where the database versions are “append-only” (i.e.,

Di+1 ⊇ Di).

Straightforward Approach (REQUERE−). To motivate the optimizations adopted by

REQUERE to derive IEQs, we first present a simpler variant of REQUERE, denoted by

REQUERE−, which finds the IEQs on each Ji(G) separately.

For each considered database version Di, REQUERE− basically identifies sets of match-

ing attributes S i for Ti. Since REQUERE− needs to reverse-engineer the same query Q′

for T1 and T2, each set of derived matching attributes for T1 and T2 must necessarily be

the same. For each common set of matching attributes S , REQUERE− computes a set of

core relations R corresponding to S and schema subgraphs G containing R; followed by

the join relation Ji(G) by joining all the relations in G using foreign-key joins for Di,

i ∈ {1, 2}. REQUERE− will derive the IEQs of T1 w.r.t. D1, and the IEQs of T2 w.r.t. D2

separately until it can derive a common IEQ that is used to reverse-engineer Ti from Di,

i ∈ {1, 2}. The obvious drawback of this approach is that it might incur very high com-

putational costs to generate IEQs before obtaining an IEQ that is derivable from both D1

and D2.

Example 4.5 Consider two database versions: (i) D1, the database example given in

Figure 3-1, and (ii) D2, given by the “delta” δ21 in Figure 4-4(a). Consider the follow-

ing two given result tables T1 = {(B, 73)} and T2 = {(B, 73), (F, 80)}, which are produced

by executing the same (unknown) query Q on the database version D1 and D2 corre-

90

pID name year stint team HR Class label
τ1 P1 A 2001 2 PIT 40 -
τ2 P1 A 2003 2 ML1 50 -
τ3 P2 B 2001 1 PIT 73 +

τ4 P2 B 2002 1 PIT 40 -
τ5 P3 C 2004 2 CHA 35 -
τ6 P4 D 2001 3 PIT 30 -
τ7 P5 E 2004 3 CHA 60 -
τ8 P6 F 2004 3 SFN 80 +

τ9 P2 B 2003 1 PIT 73 AL
J2(G) = Master ./ Batting

Figure 4-5: Example of finding IEQs for multiple input tables

spondingly.

To derive the IEQ Q, REQUERE− first finds the set of matching attributes S for both

T1 and T2, and derives S = {Master.name, Batting.HR}. The set of core relations is R =

{Master,Batting}, and the considered subgraph G consists of one edge Master-Batting.

The join relation J2(G) is shown in Figure 4-5, and the join relation J1(G) = {τi, i ∈
[1, 7]}. REQUERE− then derives an IEQ Q′1 of T1 w.r.t. D1: σname,HRσHR>60 (Master ./

Batting). Correspondingly, REQUERE− also derives Q′1 as an IEQ of T2 w.r.t. D2. Thus,

REQUERE− concludes that Q′1 is an IEQ that can reverse-engineer Ti from Di. �

Optimization. In contrast to the simple approach of REQUERE− to find the IEQs for Ti

w.r.t. Ji(G) separately, our key optimization ideas for REQUERE are to find a “unified”

relationJ(G) that is a combination of J1(G) and J2(G), and a labeling scheme for tuples

in J(G) such that the following two conditions are satisfied. First, the IEQs Q′ derived

from J(G) (if possible) are the IEQs of Ti w.r.t. Di. Second, if there do not exist

any IEQs on J(G), then there also do not exist any IEQs that can reverse-engineer Ti

from Di, i ∈ {1, 2}, at the same time.

Observe that J2(G) ⊇ J1(G) and T2 ⊇ T1, since D2 is derived from D1 by combining

with only inserted tuples. Therefore, REQUERE considers J2(G) as the unified relation in

this case; i.e., J(G) = J2(G).

Assume T2 = {t1, · · · , tk}, REQUERE partitions J2(G) into (k + 1) disjoint partitions

91

J2(G) = J0 ∪ P1 ∪ · · · ∪ Pk, where each Pi is the maximal subset of J2(G) that

produces ti when they are projected on pro j(Q); i.e., πpro j(Q)(Pi) = ti. If we need to

reverse-engineer only T2 from D2, then we need to label at least one tuple in each Pi

as positive tuples for ti to be present in the query result of the derived IEQ Q′. This

semantics, referred to as at-least-one semantics, has been solved in TALOS. However,

in our context, since we need to also reverse-engineer the same query Q′ for T1 w.r.t.

D1, the semantics is rather intricate. REQUERE proposes a new labeling scheme to solve

this problem as follows. First, REQUERE labels tuples in J0 as negative tuples, since they

do not contribute to produce any tuples in T2 (and T1 as well). For the remaining tuples

of J2(G), observe that Pi∩ J1(G) is the maximal subset of J1(G) that produces ti when the

tuples in this set are projected on their pro j(Q)’s values. In the following, we describe

how REQUERE labels the remaining tuples in J2(G) depending on whether Pi ∩ J1(G) is

empty or not.

1. If Pi ∩ J1(G) = ∅, it indicates that ti ∈ T2 − T1. Therefore, REQUERE labels at least

one tuple in Pi as positive for ti to be present in Q′(D2).

2. If Pi ∩ J1(G) , ∅, REQUERE considers the following two cases:

(a) If ti ∈ T1, then REQUERE labels at least one tuple in Pi ∩ J1(G) as positive

tuples for ti to be present in Q′(D1). With this constraint, REQUERE also en-

sures that ti will be present in Q′(D2) since Q′(D1) ⊆ Q′(D2). The remaining

tuples in Pi − (Pi ∩ J1(G)) are free to be labeled positive or negative tuples.

(b) If ti ∈ T2 − T1, then all tuples in Pi ∩ J1(G) must be labeled negative. Oth-

erwise, when some tuple in Pi ∩ J1(G) is labeled positive, ti will belong

to Q′(D1); this fact contradicts to our assumption that ti < T1. For ti to be

present in Q′(D2), REQUERE labels at least one tuple in Pi − (Pi ∩ J1(G)) as

positive tuples.

The core semantics in the two cases above are the at-least-one semantics, which

REQUERE can utilize the existing techniques of TALOS to handle.

92

Example 4.6 We discuss the optimization technique of REQUERE for Example 4.5. The

unified relation in this case is J2(G). REQUERE partitions J2(G) into: J2(G) = J0 ∪ P1 ∪ P2,

where P1 = {τ3, τ9} and P2 = {τ8}. Since P1 ∩ J1(G) = {τ3} and t1 ∈ T1, using the rea-

soning in case (2a), REQUERE labels τ3 as positive and allows τ9 to be labeled positive

or negative. Correspondingly, since P2 ∩ J1(G) = ∅, using the reasoning in case (1),

REQUERE labels τ8 as positive tuple. Using this labeling scheme, REQUERE derives Q′1:

σname,HRσHR>60 (Master ./ Batting) as an IEQ that can reverse-engineer Ti from Di at

the same time. �

4.5.2 Arbitrary Database Versions

The ideas presented for the simpler case of append-only database versions can be ex-

tended to the general case of arbitrary database versions, where each “delta” version

can consist of both inserted and deleted tuples. The unified join relation considered in

this case is the combined join relation with inserted tuples only (without considering the

deleted tuples). The way to label the tuples in this unified relation also follows the same

scheme as described for the append-only case.

4.6 Supporting More Expressive IEQs

In this section, we present the techniques of REQUERE to support more expressive frag-

ments of IEQs beyond the basic SPJ queries. The increased expressiveness is important

to broaden the range of applications of QBO. To simplify the presentation, we assume the

context of a single database version; the techniques can be easily extended to the general

context with multiple database versions. Thus, in this section, the inputs to the QBO prob-

lem are a specific database D and an input table T , and the goal is to derive an IEQ Q′

that belongs to a more expressive query fragment (i.e., Q′ is a SPJU or SPJA query).

The basic heuristic of REQUERE is to try to derive IEQs that belong to a simpler fragment

before proceeding to the more complex fragments. Specifically, REQUERE derives IEQs

93

using the following sequence of query fragments: SPJ, SPJU, and SPJA.

4.6.1 Finding SPJU-IEQs

REQUERE resorts to derive SPJU-IEQs when it fails to derive any SPJ-IEQs. Since an

SPJU-IEQ Q′ is a union of some n number of SPJ queries (n > 1), Q′ is derived by

partitioning T = Q(D) into n subsets, Q1(D), · · · ,Qn(D), where each of Qi(D) is pro-

duced by some SPJ-IEQ Q′i . It is desirable to generate a succinct SPJU-IEQ Q′ where

n is minimized; however, this optimization problem is a hard problem (shown in The-

orem 3.2). The heuristic adopted by REQUERE is to generate SPJ sub-queries Q′i that

form Q′ iteratively in the non-increasing order of the number of tuples of T that Q′i(D)

can contain.

Algorithm 4: REQUEREU(T,D, n, k)
foreach column Ci of T do1

MAi ← {(A, L)} where A is a schema attribute, L = A ∩Ci, and |L| > 0;2

end3

Enumerate sets S L ⊆ ∪k
i=1MAi, where each S L contains one element from each4

MAi;
S MA = ∅;5

foreach S L = {(A1, L1,), · · · , (Ak, Lk)} do6

S MA← S MA ∪ {(A1, · · · , Ak, (L1 ∩ · · · ∩ Lk))};7

end8

i = 1;9

while (i ≤ n) ∧ |T | > 0 do10

Pick an element (A1, · · · , Ak, L) from S MA such that |L ∩ T | is largest among11

all possible elements from S MA;
T ′ ← L ∩ T ;12

Use TALOS to derive an IEQ Q′i using the set of matching attributes13

{A1, · · · , Ak} w.r.t. the input table T ′;
i← i + 1;14

T ← T − T ′;15

end16

return Q′1 ∪ · · · ∪ Q′i ;17

The technique of REQUERE to derive SPJU-IEQs for T is sketched in Algorithm 4.

Assume that there are k columns C1, · · · , Ck in the given result table T . REQUERE first de-

rives “partially” matching attributes for each column Ci of T , where a schema attribute A

94

partially matches Ci if the column of A contains some (not necessarily all) tuples of Ci

(line 2). REQUERE then enumerates all sets of partially matching attributes, and stores

in S MA (line 4-7). Each element of S MA is of the form (A1, · · · , Ak, L); where Ai is a

partially matching attribute of the corresponding Ci column, and L is the set of tuples

of T that these attributes’ columns together contain. In the next steps, REQUERE uses

S MA to derive the SPJU-IEQs as follows.

Initially, all tuples in T are considered to be uncovered. REQUERE performs at most n

iterations; at iteration i, REQUERE picks an element (A1, · · · , Ak) from S MA that contains

the largest number of uncovered tuples in T , denoted as T ′, and marks tuples in T ′ as

covered (line 11). REQUERE then uses TALOS to generate an SPJ-IEQ Q′i using the set of

matching attributes {A1, · · · , Ak} w.r.t. the input table T ′ (line 13). REQUERE repeats the

loop until the number of iterations exceeds n or all the tuples of T become covered.

4.6.2 Finding SPJA-IEQs

REQUERE resorts to derive SPJA-IEQs when it fails to derive any IEQs in the simpler

fragments (i.e., SPJ and SPJU).

Consider the simplest scenario when T consists of two columns Cg and Ca, where Cg

is completely covered by a schema attribute Rg.Ag and Ca is not covered by any schema

attributes. REQUERE will generate an SPJA-IEQ Q′ with the group-by operation on Rg.Ag

and an aggregation function (SUM, AVG, or COUNT) on some schema attribute Aa to

account for the column Ca. The key challenge for REQUERE is to determine Ra.Aa and

the aggregation function.

The framework of REQUERE to derive SPJA-IEQs is described in Algorithm 5. To find

candidate attributes for Aa, REQUERE enumerates different schema subgraphs G, each of

which contains Rg. For each schema subgraph G that is being considered, REQUERE

computes the join relation J(G) by joining all the relations in G based on the foreign-key

joins among relations corresponding to vertices in G (line 1-3). Each of the attributes

in J(G) (except for Ag) will be considered as a candidate for Aa. The key task is to

95

Algorithm 5: REQUEREA(T,D,Rg.Ag)

Enumerate different schema subgraphs G, each of which contains Rg;1

foreach schema subgraph G do2

Compute the join relation J(G);3

foreach attribute Ax in J(G), Ax , Ag do4

Label tuples of J(G) when Ax takes the role of Aa;5

f ound ← Find IEQs w.r.t. the labeled J(G);6

if f ound = true then7

return;8

endif9

end10

end11

determine whether an attribute Ax in J(G) can take the role of Aa, and which aggregation

function can be used with Ax (line 5).

Suppose that T contains n tuples in the form (gi, ai), where gi is the domain value

in Cg’s column and ai is the domain value in Ca’s column. Conceptually, REQUERE

partitions J(G) into (n + 1) disjoint partitions: J(G) = J0 ∪ P1 ∪ · · · ∪ Pn, where each

Pi, i > 0, is the maximum subset of tuples in J(G) that have the projection on Ag as gi;

i.e., Pi = {t ∈ J(G) | t.Ag = gi}.
Because the tuples in J0 do not contribute to produce any tuples in T , REQUERE labels

them as negative tuples. For each partition Pi, i > 0, REQUERE needs to label tuples

in a subset P′i ⊆ Pi as positive tuples (with tuples in Pi − P′i are labeled as negative)

such that P′i can account for the corresponding tuple (gi, ai) in T . In other words, the

aggregation function applying on Ax attribute values of tuples in P′i will produce ai. To

derive a subset P′i of Pi, REQUERE considers the following two cases:

• If ai is an integer value and 0 < ai < |Pi| for all i ∈ [1, n], then REQUERE will

first use COUNT as the aggregation function, and then use SUM or AVG as the

aggregation function.

• If ai is a real value or there exists some ai such that ai > |Pi| or ai < 0, then

REQUERE uses SUM or AVG as the aggregation function.

96

SPJA-IEQs with COUNT function. In this case, REQUERE has the flexibility to assign

positive class labels to exactly ai tuples of Pi. This constraint can be formulated as the

exactly-k semantics, where the technique to handle this semantics has been described in

Section 3.2.

SPJA-IEQs with SUM/AVG function. Consider a partition Pi that has n tuples; assume

that the values on Ax column of these tuples are x1, · · · , xn. The problem of deriving a

subset P′i ⊆ Pi can be formulated as selecting some values among {x1, · · · , xn} to put

into P′i s.t. the summation (or averaging) of values in P′i is equal to ai. This problem is

formalized as the subset-sum/subset-average problem, stated as follows [11].

Problem 4.1 (Subset-Sum/ Subset-Average) Given an array of n numbers A = {x1, · · · , xn}
and a number K, the subset-sum problem (resp. subset-average problem) is to find an as-

signment for a set of n binary variables ci (i.e., ci = 0 or ci = 1) such that:
n∑

i=1

xi · ci = K

(resp.
∑n

i=1 xi · ci∑n
i=1 ci

= K). �

The subset-sum problem is a well-known NP-hard problem; REQUERE uses the stan-

dard pseudo-polynomial algorithm to solve the subset-sum problem in O(Kn) and the

subset-average problem in O(Kn2) [11].

After deriving each set P′i from Pi, REQUERE labels the tuples in J(G) correspond-

ingly, and applies the remaining steps of TALOS to derive the IEQs on J(G).

SPJA-IEQ Generalization. In the general case where T = Q(D) contains more than two

columns, the additional challenge for deriving an SPJA-IEQ Q′ is to determine which of

the columns in T are to be computed in Q′ based on group-by operations. The heuristic

adopted by REQUERE is to consider all the columns of T that are completely covered by

some matching attributes to be used together with the group-by operator. Given a set of

candidate group-by attributes S , each of the remaining columns in T will be derived in Q′

by an aggregation function. The techniques to solve the basic scenarios when T contains

two columns as described above can be extended to derive more complex SPJA-IEQs

with multiple aggregation functions in this case.

97

Original query Size
T1 πS .name,N.name σS .acctbal>4000∧N.regionkey<4 (supplier ./ nation) 4383
T2 πC.name,N.name σC.acctbal>3000 (customer ./ nation) 95264
T3 πP.name,S .name σPS .avaiqty>3000∧S .acctbal>9500 (part ./ partsupp ./

supplier)
24672

T4 πO.clerk,L.extendedprice σL.quantity<2∧O.orderstatus=“P” (lineitem ./ order) 3719
T5 πC.name,N.name σmktsegment=“BUILDING”∧C.acctbal>100 (customer ./ nation) 32554⋃

πS .name,N.name σS .acctbal>4000 (supplier ./ nation)
T6 πP.name,S UM(PS .supplycost)GP.name σPS .retailprice>2000 (part ./ partsupp) 4950
T7 πC.name,S UM(O.totalprice)GC.name σC.acctbal>3000 (order ./ customer) 63533

Table 4.2: Test queries

4.7 Experimental Study

In this section, we evaluate the effectiveness and efficiency of REQUERE for the gener-

alized setting of the first variant of QBO with the three additional challenges: (1) the

input query is unknown (Section 4.7.1), (2) there are multiple database versions (Sec-

tion 4.7.2), and (3) the IEQs are in more expressive fragments (Section 4.7.3).

We used TPCH data set (with a database size 1GB) as the test database. Table 4.2

shows the seven test queries used in our experiments, where the third column shows

the “query size” (i.e., the number of tuples in each test query’s result Ti(D)). The four

test queries T1 to T4 have been used in the experiments for TALOS in Section 3.6. The

control knobs for the experiments in this section are set in the same way as described in

the experiments for TALOS in Section 3.6.

We used MySQL Server 5.0.51 for our database system, and all algorithms were

coded using C++ and compiled and optimized with GNU C++ compiler. Our experi-

ments were conducted on a dual-core, 2.33GHz PC with 3.25GB RAM running Linux.

For each test query Ti, we first evaluated the query on the relevant data set D to com-

pute its result Ti(D), and then used this result as inputs for running REQUERE. Thus, our

test queries in the experiments are really the result tables Ti(D) and not the queries Ti,

as the goal of this study is to reverse-engineer the queries for the given result tables.

The timings reported in this experiment are the time to derive the first precise IEQs for

the given result tables. The comparisons between REQUERE and the corresponding non-

98

DT
MA

 0

 50

 100

 150

 200

 250

 300

 350

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
un

ni
ng

 ti
m

e
(s

ec
s)

1

T1 T2 T3 T4

DT
MA

 0

 50

 100

 150

 200

 250

 300

 350

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
un

ni
ng

 ti
m

e
(s

ec
s)

5

T1 T2 T3 T4

(a) Domain indices (b) Single unknown result
DT
MA

 0

 50

 100

 150

 200

 250

 300

 350

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
E

Q
U

E
R

E

R
E

Q
U

E
R

E
−

R
un

ni
ng

 ti
m

e
(s

ec
s)

4.3 4.5

T1 T2 T3 T4

DT
SS

 0

 10

 20

 30

 40

 50

 60

T
5

T
6

T
7

R
un

ni
ng

 ti
m

e
(s

ec
s)

(c) Multiple known results (d) Expressiveness

Figure 4-6: Experimental Results of REQUERE

optimized approach, REQUERE−, are on the running time only; the number and quality of

IEQs produced by REQUERE and REQUERE− are the same, as these qualities are indepen-

dent of the optimizations.

In the first two sets of experiments (Sections 4.7.1 and 4.7.2), we analyze the running

time to derive the IEQs for a given result table T , which consists of two components: (1)

MA, the time to find the matching attributes for columns in T , and (2) DT , the time to

derive an IEQ after the matching attributes have been determined.

4.7.1 Effectiveness of Domain Indices

In this section, we consider the setting of QBOwhen the inputs include a single result table

and a single database version. We used four given result tables Ti(D), i ∈ [1, 4], which

are the results of evaluating Ti on the current version of TPCH data set. This experiment

evaluates the efficiency of using domain indices to find matching attributes by comparing

REQUERE with its variant, REQUERE−, which does not make use of domain indices. The

running times of REQUERE and REQUERE− differ from each other for the first component

99

to derive matching attributes (i.e., MA), and are the same for the second component (i.e.,

DT). The result in Figure 4-6(a) shows that REQUERE runs much more efficiently than

REQUERE− in finding matching attributes (i.e., MA component); i.e. REQUERE performs

this step in the order of less than 10 seconds versus 90 seconds by REQUERE−. Totally,

REQUERE runs in the order of 1.5 and up to two-magnitude times faster than REQUERE−.

For these queries, REQUERE can successfully reverse-engineer the original queries Ti for

the four given result tables Ti(D).

Storage Overhead. The storage overhead of REQUERE consists of pre-computed domain

index tables. In our experiment, the domain indices built for TPCH data set consist of

272MB over 1GB size of the database.

4.7.2 Multiple Database Versions

In this section, we study the effectiveness of REQUERE to derive IEQs when there are

multiple database versions. We created one database delta including the modifications

on supplier, customer, partsupp, order relations (these relations are used in the test

queries T1 to T4). The modification in each relation R consists of 10% (of the number of

tuples in R) randomly inserted tuples. Thus, there are two database versions, the current

database version of TPC-H is the second version. We run the experiments for REQUERE

in the following two scenarios.

Single Unknown Result. We study the efficiency of REQUERE to derive IEQs for a single

unknown result table w.r.t. multiple database versions. For this task, we created the given

result table Ti(D) as the result of evaluating Ti on the first database version. Note that

if we set Ti(D) as the result of evaluating Ti on the current (i.e., the second) database

version, both REQUERE and REQUERE− run in the same time, since both methods could

reverse-engineer the queries w.r.t. the current database version in these cases.

Figure 4-6(b) shows that REQUERE− runs slower than REQUERE in the magnitude

of 1.5 times. The reason is that REQUERE− spends a lot of time for the first step of finding

100

matching attributes (i.e., MA component). In contrast, with the optimization strategy,

REQUERE saves a lot of computation; i.e., MA is in the order of 10 seconds in REQUERE

versus 60 seconds in REQUERE−.

Multiple Known Results. In this set of experiments, we evaluate Ti on two database

versions D2 and D1 to obtain two given result tables T 2
i (D) and T 1

i (D). Thus, the inputs

to QBO include two pairs: (D2,T 2
i (D)) and (D1,T 1

i (D)).

We compare the optimization technique of REQUERE to derive the IEQs given a se-

quence of database version and input table (Di,Ti) against a non-optimized approach

(REQUERE−) that finds the IEQs on each pair (Di,Ti) separately. Figure 4-6(c) shows

the effectiveness of REQUERE outperforming REQUERE− by a factor of 1.4 times faster.

Among the two components of the running time to derive the IEQs, both REQUERE and

REQUERE− spend the same time to derive matching attributes (i.e., MA); their difference

lies in the time to derive the IEQs (i.e., DT). While REQUERE only needs to derive the

IEQs on one “unified” hub table, REQUERE− needs to derive the IEQs on two separate

hub tables. Therefore, REQUERE runs more efficiently than REQUERE−.

For all the cases studied in this section, REQUERE can successfully reverse-engineer

the original query Ti for the given result table Ti(D) w.r.t. the correct database version.

4.7.3 Supporting More Expressive IEQs

In this section, we evaluate the effectiveness of REQUERE to derive IEQs in more expres-

sive fragments (i.e., SPJ + union/aggregation operator). We analyze the running time

of REQUERE in this section including two components: (1) S S , the time to derive the

candidate attributes for the aggregated column (to derive SPJA-IEQs), and (2) DT , the

other steps to derive the IEQs. Note that the first component does not appear for deriving

SPJU-IEQs.

Query T5 is an example of SPJU query; REQUERE was able to reverse-engineer the

query from the corresponding result table T5(D) in 22 seconds.

Queries T6 and T7 are examples of SPJA queries. REQUERE was also successful to

101

reverse-engineer the original queries for the given result tables T6(D) and T7(D). The

time to derive the candidate attributes for aggregated column (by solving the derived

subset-sum/subset-average problem) consists of 20% the total running time to derive the

IEQs.

4.8 Summary

In this chapter, we have generalized the first setting of QBO to derive instance-equivalent

queries with the following three additional challenges: (1) the original query is not given

as part of the input, (2) the derived queries are more expressive and go beyond the simple

Select-Project-Join query fragment, and (3) there are multiple database versions. We

presented a generalized approach (REQUERE) to address these issues, and demonstrated

its effectiveness and efficiency with an experimental evaluation on real data sets.

102

Chapter 5

ConQueR: Explaining Why-Not

Questions

One useful feature that is missing from today’s database systems is an explain capability

that enables users to seek clarifications on unexpected query results. There are two types

of unexpected query results that are of interest: the presence of unexpected tuples, and

the absence of expected tuples (i.e., missing tuples). Clearly, it would be very helpful to

users if they could pose follow-up why and why-not questions to seek clarifications on,

respectively, unexpected and expected (but missing) tuples in query results. While the

why questions can be addressed by applying established data provenance techniques, the

problem of explaining the why-not questions has received very little attention.

In this chapter, we introduce our new paradigm for explaining a why-not question,

highlighted in Table 5.1, that is based on automatically generating a refined query, whose

result includes both the original query’s result as well as the user-specified missing tu-

ples. We present an overview of our explanation model and a novel framework, named

ConQueR, to explain why-not questions in Section 5.1, followed by the techniques of

ConQueR in Sections 5.2 - 5.4. We then discuss an alternative solution TALOS+, which

is adapted from TALOS designed for the first variant of QBO problem, to provide expla-

nations for why-not questions in Section 5.5. We also discuss how to use TALOS+ and

103

ConQueR for deriving IEQs and explaining why-not questions in Section 5.5. We de-

scribe the implementation details of ConQueR in Section 5.6. To conclude this part of

work, we present the experiment studies in Section 5.7 to compare the performance of

ConQueR against TALOS+ in terms of the processing efficiency and the quality of the de-

rived refined queries. We also compare the effectiveness of our query-refinement based

approach of explaining why-not questions against the two existing approaches in [9, 22].

Finally, we summarize our work on explaining why-not questions in Section 5.8. Part of

the contents and materials in this chapter were previously published in [48].

Parameters
QBO Problem Input query Q Given result table T

The first variant - Q is known T = Q(D)
- Q is unknown T is a set of specific tuples

The second variant Q is known T = Q(D)
⋃

S
S is a set of tuples that are not present in Q(D)

The third variant Q is partially specified T is a set of constraints that must be satisfied
by the query result of each derived query Q′

Table 5.1: The Focus of Chapter 5

5.1 An Overview of ConQueR

In this work, we consider three fragments of SQL queries in ConQueR, where each pro-

jected attribute is either a relation’s attribute or a value computed by an aggregation

operator (COUNT, SUM, or AVG) that does not involve any arithmetic expression in the

operator’s argument. The first fragment is the basic Select-Project-Join (SPJ) queries,

where the selection condition is a conjunction of predicates C1 ∧ · · · ∧ C`. Each Ci

is either a selection predicate “A j op c” or a join predicate “A j op Ak”, where Ai is an

attribute, c is a constant, and op is a comparison operator. The second fragment is SPJ

queries with aggregation (SPJA queries), which are SPJ SQL queries with aggregation

operators in the select-clause and an optional group-by clause. The third fragment is

SPJ queries with union operator (SPJU) of the form Q1 union Q2 · · · union Qn, where

104

pID name
P1 “A”
P2 “B”
P3 “C”
P4 “D”
P5 “E”

pID team year pts blk stl reb
P1 GSW 1973 2009 30 150 40
P2 SEA 1994 1689 35 200 281
P2 SEA 1995 1563 50 240 339
P3 CHI 1992 2541 45 220 361
P4 LAL 1995 1567 30 162 359

(a) Player (b) Regular

pID team year pts blk stl reb
P1 GSW 1973 2029 40 100 30
P2 SEA 1994 3000 65 150 181
P2 CHI 1995 2200 50 120 161
P2 LAL 1996 2500 70 110 200
P4 LAL 1995 2300 70 150 150
P5 DEN 2000 1689 35 200 381

(c) Playoff

Figure 5-1: Running Example: Basketball Data Set D

each Qi is an SPJ query.

For simplicity and without loss of generality, we assume all attributes are numerical

and consider only the “≤” comparison operator for selection predicates. Our approach

can be easily extended to other comparison operators. In Section 5.4, we will discuss

how ConQueR handles categorical attributes in the query’s selection conditions.

Based on the knowledge of the primary and foreign key constraints in the database,

the database schema can be modeled as a schema graph, denoted by SG. Each node in

SG represents a relation, and each edge between two nodes represents a foreign-key join

between the relations corresponding to the nodes.

Running example. We use the NBA statistics database on basketball players as our

running example. The Player relation contains the identifier (pID) and name (name) of

each player. The Regular (resp. Playoff) relation provides the number of points (pts),

block (blk), steal (stl), and rebound (reb) statistics of a player when he was playing for a

team (team) in a specific year (year) in regular season (resp. playoff) games. Figure 5-1

shows our running example data.

105

5.1.1 Why-not Questions & Refined Queries

Given an input query Q on a database D, let Q(D) denote the output of Q on D. In

the most basic form, a why-not question on Q(D) is represented by a non-empty set of

why-not tuples S = {t1, · · · , tn}, n ≥ 1, where each why-not tuple ti has the same schema

as Q and ti < Q(D). Essentially, the why-not question is asking why S is not a subset

of Q(D); i.e., why each ti ∈ S is not in Q(D). Each component value in a why-not tuple

can be in one of three forms: (1) a constant value compatible with the corresponding

attribute’s domain; (2) a don’t-care value (denoted by); or (3) a variable (denoted by

a $ symbol followed by a sequence of letters; e.g., $x). A don’t-care value is used for

an attribute Ai when the user is not interested in the specific value of attribute Ai in the

why-not tuple. A variable is used for an attribute Ai when the user wishes to impose a

selection condition on that attribute in the why-not tuple with respect to some constant

value or another attribute appearing in the same or another why-not tuple, as illustrated

by the SPJA queries in Examples 1.4 and 1.5. Thus, in the most general form, a why-not

question on Q(D) is represented by (S ,C); where S is a non-empty set of why-not tuples,

and C is a (possibly empty) set of selection conditions defined on the variables appearing

in S . In Example 1.5, the why-not question is represented by S = {(Alice,$x), (Bob,$y)}
and C = {$x > $y}.

Given a why-not question (S ,C) on Q(D), we say that Q′ is a refined query of Q that

explains the why-not question (S ,C) if (1) Q′(D) contains1 Q(D), and (2) for each why-

not tuple tw ∈ S , there exists a matching tuple t ∈ Q′(D) such that all the constraints in C

are satisfied by the matching tuples. A tuple t ∈ Q′(D) is a matching tuple for a why-not

tuple tw ∈ S if for every component of tw that is a constant value, the corresponding com-

ponent in t has the same constant value. Thus, if t is a matching tuple for tw, then every

component of tw that is a variable becomes instantiated with the corresponding attribute

value in t, and the collection of instantiated variables must satisfy all the constraints in C

1For certain cases where C involves a constraint specification, the attribute values associated with the
constraints could be different between Q′(D) and Q(D).

106

for Q′ to be a refined query of Q w.r.t. D.

5.1.2 Metrics for Comparing Refined Queries

Since there are generally many refined queries for a given why-not question, it is useful

to have some metric to compare the quality of refined queries so that only the “good”

refined queries are returned as possible explanations. There are two obvious desiderata

for refined queries that can be used for this purpose.

Dissimilarity metric. First, a refined query should be as similar as possible to the origi-

nal input query. This has intuitive appeal since a refined query that is minimally modified

from the original query is likely to retain as much of the intention of the original input

query. Moreover, by comparing the small differences between the two queries, it also

serves to pinpoint to the user the “errors” she has made in her initial query. Thus, a

refined query that simply modifies only one of the selection predicate is more similar to

the input query than another refined query that involves a different set of relations from

the original query.

Given an input query Q and a refined query Q′, we compare the similarity of Q and Q′

by measuring the minimum edit distance of transforming Q to Q′. Thus, two queries

are more similar (or less dissimilar) if their edit distance is smaller. Since the output

of Q and Q′ are union-compatible (i.e., the lists of attributes in the select-clause of Q

and Q′ are the same), we only consider edit operators to transform Q to Q′ in terms of

modifying the query’s from-clause and where-clause. The corresponding modifications

to the query’s select-clause and group-by-clause are trivial and not considered in the

edit distance computation. The four key edit operations considered are: (O1) modify

the constant value of a selection predicate in the where-clause, (O2) add a selection

predicate in the where-clause, (O3) add/remove a join predicate in the where-clause, and

(O4) add/remove a relation in the from-clause. Note that there is no explicit edit operator

for removing a selection predicate as this can be modeled by O1; i.e., the removal of

a selection predicate is effectively equivalent to modifying its range of selection values

107

to cover the whole domain of the attribute. Furthermore, when O4 is used to remove

a relation Ri in the from-clause, all the selection and join predicates that are associated

with Ri are also removed as a part of the edit operation.

Let wi denote the cost of the edit operation Oi, i ∈ [1, 4]. It is reasonable to assume

that w1 < w2 < w3 < w4
2. Let ni denote the total number of Oi operations used in a

transformation of Q to Q′, i ∈ [1, 4]. The edit distance for this transformation is given

by
∑

1≤i≤4(wi × ni). We refer to the minimum edit distance to transform Q to Q′ as the

dissimilarity measure between Q and Q′, which can be computed efficiently for a given

pair Q and Q′.

Imprecision metric. Second, the refined query should be as precise as possible in terms

of its result. Ideally, the result of the refined query Q′ should contain only the result

of the original query Q and the set of matching tuples for the why-not tuples. Any

additional tuples returned in Q′(D) are considered to be irrelevant tuples that should be

minimized. Given a refined query Q′ for a why-not question (S ,C), let R ⊆ Q′(D) denote

a minimal set of matching tuples in Q′(D) for the why-not tuples in S . The imprecision

metric for Q′ is defined to be the number of irrelevant tuples in Q′(D), which is given by

|Q′(D) − Q(D) − R|.

Skyline refined queries. Thus, a refined query is considered to be good if both its

dissimilarity and imprecision metrics are low. Among all the possible refined queries

for a why-not question, we are interested in the set of skyline refined queries defined as

follows [6]. Given two different refined queries Q1 and Q2, we say that Q1 dominates Q2

if (1) both the metrics of Q1 are at least as low as those of Q2, and (2) for at least one of

the metrics, Q1’s value is strictly lower than that of Q2’s. We define a refined query Q′ to

be a skyline refined query (or skyline query) if Q′ is not dominated by any other refined

query. Thus, given a why-not question, our goal is to compute skyline refined queries to

explain the question.

2In our experimental study, we use w1 = 1, w2 = 3, w3 = 5 and w4 = 7.

108

Example 5.1 Consider a query Q1 on the Basketball data set that finds players who

have “block” statistics no greater than 30 and “steal” statistics no greater than 150;

i.e., Q1: SELECT name FROM Player P, Regular R WHERE P.pID = R.pID AND

blk ≤ 30 AND stl ≤ 150. The output includes only one player “A”. The why-not question

S = {(“B”)} asks why player “B” is excluded from the result.

Consider the following refined query Q′1: SELECT name FROM Player P, Regular

R WHERE P.pID = R.pID AND blk ≤ 35 AND stl ≤ 200. Observe that Q′1 is derived

from Q1 by applying O1 edit operation on both the selection predicates of Q1, and the

output of Q′1 is {“A”, “B”, “D”}. Thus, the dissimilarity and the imprecision of Q′1

(w.r.t. Q1) are 2w1 and 1, respectively.

Consider yet another refined query Q′′1 : SELECT name FROM Player P, Regular R

WHERE P.pID = R.pID AND blk ≤ 50 AND stl ≤ 240. The output of Q′′1 is {“A”, “B”,

“C”, “D”}; and the dissimilarity and imprecision of Q′′1 are 2w1 and 2, respectively.

Thus, Q′1 dominates Q′′1 , and Q′1 is considered to be a better refined query than Q′′1 . �

5.1.3 Explaining with ConQueR

In this section, we present an overview of our approach named ConQueR, for Constraint-

based Query Refinement, to explain why-not questions by automatically generating one

or more refined queries.

Indeed, we have extended TALOS, the classification-based approach designed for the

first variant of QBO, as an alternative solution for explaining why-not questions (the de-

tails are provided in Section 5.5). Since TALOS is a more precision-oriented approach,

the queries generated can be rather different from the input query. In some applications,

it may not be too meaningful to explain missing tuples using refined queries that are very

different from the input query. Moreover, the performance of TALOS is also slower than

ConQueR due to its costly data classification step. A more detailed comparison between

ConQueR and TALOS will be given in Section 5.5.4.

ConQueR is designed to be a similarity-driven approach in that it tries to generate

109

refined queries with low dissimilarity values before considering more precise refined

queries that have higher dissimilarity values. Given a why-not question (S ,C) for a

query Q on database D, ConQueR will first consider refined queries Q′ that have the

same query schema (i.e., queries with the same from-clause and join predicates) as Q.

That is, ConQueR tries to derive Q′ by simply modifying selection predicate(s) in Q to

explain the why-not tuples while minimizing the imprecision metric. If such refined

queries exist, ConQueR will only generate skyline refined queries that all share the same

query schema as Q. However, if no such refined query exists, ConQueR then looks for

refined queries that have a slightly different query schema (i.e., with a slightly higher

dissimilarity value), and so on. Thus, ConQueR effectively iterates over a sequence of

query schemas QS 1, · · · ,QS k to search for refined queries: QS 1 is the query schema of

the input query Q, and schema QS i+1 is considered only if there are no refined queries

with schema QS 1, · · · ,QS i. The sequence of query schemas considered are (approxi-

mately) of increasing dissimilarity metric values, and if QS k is the first query schema in

the sequence to contain refined queries, ConQueR will generate all skyline refined queries

with schema QS k as possible explanations to the why-not question.

The architecture of ConQueR consists of two key components, ConQueRs and ConQueRp.

Given a query Q on a database D and a why-not question (S ,C) on Q(D), ConQueRs will

first compute a refined query Q′s for the why-not question such that Q′s is as similar as

possible to Q (i.e., Q′s has a low dissimilarity value). Next, ConQueRp will use Q′s to de-

rive skyline refined queries Q′p that are more precise than Q′s. Specifically, Q′p is derived

from Q′s by adding various additional predicates to Q′s to improve its precision.

Notations & Definitions. Given a SQL query Q, we use rel(Q) to denote the set of

relations in the from-clause of Q; pro j(Q) to denote the set of attributes in the select-

clause of Q; sel(Q) to denote the set of selection predicates in the where-clause of Q;

and join(Q) to denote the set of join predicates in the where-clause of Q. Thus, the query

schema of a query Q is given by rel(Q) and join(Q). We use ` to denote the number of

selection predicates in Q; i.e., |sel(Q)| = `.

110

pID name team year pts blk stl reb
t1 P1 A GSW 1973 2009 30 150 40
t2 P2 B SEA 1994 1689 35 200 281
t3 P2 B SEA 1995 1563 50 240 339
t4 P3 C CHI 1992 2541 45 220 361
t5 P4 D LAL 1995 1567 30 162 359

Q∗∅(D) = Player ./pID Regular

Figure 5-2: Example 5.2

Consider the generation of a refined query Q′ for a why-not question (S ,C) on Q(D)

that shares the schema as Q. Conceptually, ConQueR first computes an intermediate

query, denoted by Q∗∅, on D, where rel(Q∗∅) = rel(Q), join(Q∗∅) = join(Q), sel(Q∗∅) = ∅,
and pro j(Q∗∅) consists of all the distinct attributes in rel(Q∗∅). The refined query Q′ is

derived from Q∗∅(D) as follows: Q′ = πL(σP(Q∗∅)), where L ⊆ pro j(Q∗∅) is a list of

appropriate attributes corresponding to pro j(Q) so that Q and Q′ are union-compatible,

and P contains an appropriate set of selection predicates such that Q′ is a refined query

for the why-not question. Determining L from Q and pro j(Q∗∅) is straightforward, and

the main challenge in the derivation of Q′ is determining P (i.e., sel(Q′)).

For each why-not tuple ti ∈ S , let Mi ⊆ Q∗∅(D) denote the subset of tuples in Q∗∅(D)

that are the matching tuples of ti. Note that for Q′ to be a refined query of Q that explains

all the why-not tuples, it is necessary for each Mi to be non-empty; otherwise, if some M j

is empty, then Q′ will not be able to account for the why-not tuple t j.

Example 5.2 Consider again query Q1 in Example 5.1, where Q1(D) = {(“A”)}. Con-

sider the derivation of a refined query Q′ (with the same schema as Q1) to explain

a why-not tuple tw =(“B”). The intermediate query Q∗∅ to derive Q′ has rel(Q∗∅) =

{Player,Regular} and join(Q∗∅) = {Player.pID = Regular.pID}. The output of Q∗∅

on D is shown in Figure 5-2, and the set of matching tuples in Q∗∅(D) for tw is given

by Mw = {t2, t3}. Thus, Q′(D) needs to include t2 or t3 in order to account for the why-not

tuple tw. �

111

5.2 Explaining SPJ Queries

This section presents how ConQueR generates refined queries Q′ to explain why-not

questions (S ,C) on SPJ queries Q. We first consider the simpler case where Q′ and Q

share the same schema: Section 5.2.1 explains how ConQueRs generates refined queries

with low dissimilarity values, and Section 5.2.2 explains how ConQueRp enhances these

queries to improve their precision. Section 5.2.3 considers the more general case where

the schema of Q and Q′ are different.

For simplicity, we assume that there are no variables in the why-not tuples, and

therefore also no constraints on the why-not tuples (i.e., C = ∅). Details on how ConQueR

handles general SPJ queries are given in Section 5.4.

5.2.1 Modifying Selection Predicates

In this section, we explain how ConQueRs generates a refined query Q′ that has the same

schema as Q. To maximize the similarity of Q′ and Q, ConQueRs derives Q′ from Q

by simply modifying some selection predicate(s) in Q. To simplify the presentation, we

first consider the scenario where there is exactly one why-not tuple (i.e., S = {t1}), and

discuss the handling of the general scenario with multiple why-not tuples at the end of

this section.

For simplicity and without loss of generality, let the selection predicates in Q be of

the form: sel(Q) = {A1 ≤ v1, · · · , A` ≤ v`}, ` ≥ 1. Since Q′ is derived from Q by

modifying some selection predicates, let v′i denote the modified value of vi in Q′, for

i ∈ [1, `].

Let Q∗ denote the query that is exactly the same as Q except that pro j(Q∗) includes

all the distinct attributes in rel(Q); i.e., Q∗ = σP(Q∗∅) where P = sel(Q). Thus, Q∗(D)

is the subset of tuples in Q∗∅(D) that form Q(D) when Q∗(D) is projected on pro j(Q).

For each selection predicate attribute Ai, i ∈ [1, `], define vmax
i = maxt∈Q∗(D)(t.Ai). For

Q′(D) ⊇ Q(D), we must have v′i ≥ vmax
i , for i ∈ [1, `].

112

For Q′ to account for the why-not tuple t1, Q′(D) must contain at least one tuple

from M1
3. However, to minimize the imprecision of Q′, Q′(D) should not contain more

than one tuple from M1. Thus, each tuple in M1 contributes to a refined query Q′.

For Q′(D) to contain a tuple tm ∈ M1, we must have v′i ≥ tm.Ai, for i ∈ [1, `]. Therefore,

combining the two requirements above, for Q′(D) to contain tm and Q′(D) ⊇ Q(D),

sel(Q′) is specified by setting v′i = max{vmax
i , tm.Ai}, for i ∈ [1, `]. Note that while it is

possible to generate other refined queries Q′′ that also satisfy the two requirements by

setting some v′j > max{vmax
j , tm.A j}, the imprecision of Q′′ will be at least as high as that

of Q′; it means that Q′′ will be dominated by Q′. Therefore, to generate only skyline

refined queries, we must have v′i = max{vmax
i , tm.Ai}, for i ∈ [1, `].

In addition, since we are interested only in skyline refined queries, the number of re-

fined queries considered can be reduced by considering only the “skyline” tuples in M1.

Consider two tuples tx, ty ∈ M1, and let Q′x and Q′y denote the refined queries correspond-

ing to tx and ty, respectively. We say that tx dominates ty if (1) tx.Ai ≤ ty.Ai for i ∈ [1, `],

and (2) at least one of the inequalities in (1) is strict. The skyline tuples in M1 are the

tuples that are not dominated by any tuple in M1. If tx dominates ty, it follows that Q′x

dominates Q′y. Thus, to generate skyline refined queries, we only need to consider the

skyline tuples in M1.

Example 5.3 Reconsider Example 5.1, where the input query is Q1 and the why-not

tuple is t =(“B”). Let A1 and A2 denote the two selection attributes blk and stl, respec-

tively. We have Q∗ = σblk≤30∧stl≤150(Q∗∅). Thus, Q∗(D) = {t1}, vmax
1 = 30, and vmax

2 = 150.

Since M1 = {t2, t3}, there are two possible refined queries corresponding to these match-

ing tuples for t. To generate the refined query Q′1 such that Q′1(D) contains t2 ∈ M1,

ConQueRs modifies the two predicates in sel(Q) into blk ≤ 35 and stl ≤ 200, and obtains

the refined query Q′1 as shown in Example 5.1.

Similarly, to generate the refined query Q′′1 such that Q′′1 (D) contains t3 ∈ M1,

3Note that since pro j(Q′) ⊆ pro j(Q∗∅) and Mi ⊆ Q∗∅(D), when we say that Q′(D) must “contain” one
tuple t from Mi, what we mean is that Q′(D) must contain one tuple t that is a projection of some tuple tint

from Mi; i.e., t = πL(tint), where L = pro j(Q′).

113

ConQueRs modifies the two predicates in sel(Q) into blk ≤ 50 and stl ≤ 240, and obtains

the refined query Q′′1 as given in Example 5.1.

However, by considering only the skyline tuples in M1, ConQueRs actually would not

have considered Q′′1 since t3 is dominated by t2, which means that Q′′1 is not a skyline

refined query. �

Finally, to generate the skyline refined queries from the set of queries corresponding

to the skyline tuples in M1, ConQueRs needs to compute and compare the imprecision

values of these queries by computing their results.

Handling multiple why-not tuples. The above technique can be easily extended to

handle the general case where there are multiple why-not tuples; i.e., S = {t1, · · · , tn},
n > 1. Specifically, for each Mi, i ∈ [1, n], ConQueRs first computes the set of skyline

tuples, denoted by S Li, in Mi. Next, ConQueRs enumerates different refined queries Q′

that correspond to different subsets M′ ⊆ ∪n
i=1S Li of matching tuples, where each M′

consists of one tuple from each of S Li, i ∈ [1, n]. For example, if t′j is the tuple selected

from each S L j, j ∈ [1, n], then the selection condition in the refined query Q′ is specified

by setting v′i = max{vmax
i , t′1.Ai, · · · , t′n.Ai}, i ∈ [1, `].

5.2.2 Improving Precision with More Predicates

Since the refined queries Q′ produced by ConQueRs are generated by simply modifying

the selection predicates in Q, there are likely to be many irrelevant tuples in Q′(D). In

this section, we explain how ConQueRp improves the precision of the refined queries Q′

produced by ConQueRs by adding additional selection predicates to Q′ to reduce the

irrelevant tuples in Q′(D), while ensuring that the enhanced query Q′ remains a refined

query for the input why-not question. Thus, the refined queries produced by ConQueRp

tradeoffs low dissimilarity values for low imprecision values.

Consider a refined query Q′ produced by ConQueRs that corresponds to the subset

of matching tuples T ⊆ ⋃
i∈[1,n] Mi to explain the set of why-not tuples S = {t1, · · · , tn}.

114

Let A denote the set of attributes in rel(Q′) that do not have a selection predicate in

sel(Q′). For each attribute Ai ∈ A, ConQueRp can add the following predicate4 to try to

reduce the irreverent tuples in Q′(D): “Ai ≤ maxt∈Q∗(D) ∪ T (t.Ai)”.

Thus, there are a total of |A| possible additional predicates that ConQueRp can in-

troduce into Q′ to reduce its imprecision. As the problem to maximize the elimina-

tion of irrelevant tuples using the minimum number of additional predicates is NP-hard

(shown by reduction from the Set-Covering problem5), ConQueRp uses a standard greedy

heuristic to select the additional selection predicates. In particular, ConQueRp chooses

the predicates in non-increasing order of the number of irrelevant tuples that they can

eliminate.

5.2.3 Refined Queries with Different Schema

When ConQueR is unable to find refined queries having the same query schema as Q,

ConQueR will consider other similar schemas, roughly in increasing order of their dis-

similarity metrics. In this section, we explain how ConQueR enumerates alternative query

schemas and generates refined queries for such schemas.

Enumerating schemas. ConQueR uses a simple heuristic to enumerate query schemas

approximately in increasing order of dissimilarity metrics. Let S R denote the set of the

relations in rel(Q) that contain the attributes in pro j(Q). ConQueR retains these relations

in Q′ so that the pro j(Q′) and pro j(Q) are equal and Q′ is more similar to Q6. Thus,

ConQueR generates a different schema that contains all relations in S R. The approach of

ConQueR is similar to that of TALOS, which performs a bread-first-search traversal of the

schema graph SG starting from an arbitrary vertex Rs in S R. ConQueR keeps a queue QG
of “active” schema subgraphs; QG is initialized with one schema subgraph Gs containing

the vertex Rs. In each round, ConQueR picks from QG an active schema subgraph G, and

4In practice, ConQueR also considers to add the following predicate: “Ai ≥ mint∈Q∗(D) ∪ T (t.Ai)”.
5The proof of this result is similar to the proof of Theorem 6.2.
6Strictly speaking, ConQueR can retain in Q′ other relations that are not in rel(Q) and contain a “match-

ing attribute” A′i of some column Ci in Q(D) such that the set of constant values in Ci is contained by the
values in A′i . However, this strategy is likely to produce refined queries with higher dissimilarity values.

115

records G as a candidate schema subgraph if G contains vertices corresponding to all

relations in S R. ConQueR also expands G into larger subgraphs G′ by adding one edge

that connects a vertex V in G with a neighbor of V that is currently not in G, and places

the resultant graph G′ into QG. ConQueR constraints the maximum number of vertices

in a candidate subgraph not to exceed some threshold value for the refined queries to be

meaningful7. Finally, ConQueR ranks the candidate schema subgraphs in the increasing

order of their dissimilarities.

Generating refined queries. Consider the general case where refined queries Q′ are

to be generated for a schema that is different from that of Q and involves a set of rela-

tions R and a set of join predicates J . ConQueR first rewrites the input why-not ques-

tion (S ,C) into an equivalent question as follows. ConQueR transforms the why-not

question into (S ′,C), where S ′ = Q(D) ∪ S (i.e., tuples in Q(D) are also considered

as why-not tuples), and assume that the input query returns empty result. The trans-

formed why-not question can be processed using the previously discussed techniques as

follows. First, ConQueRs generates a refined query Q′ with low dissimilarity value such

that rel(Q′) = R, join(Q′) = J , sel(Q′) = ∅, and pro j(Q′) contains the corresponding

attributes in pro j(Q). Note that if Q′(D) cannot account for all the why-not tuples in S ′,

then there are no refined queries for this schema and ConQueR will consider another

query schema for possible refined queries.

If Q′ is a refined query, ConQueRp will try to enhance the precision of Q′ by adding

additional selection predicates. Assume there are n why-not tuples in S ′. Similar to the

discussion in Section 5.2.2, ConQueRp derives the set of skylines tuples S Li of each Mi

w.r.t. all attributes in rel(Q′) 8. ConQueRp then enumerates different refined queries Q′

that correspond to different subsets M′ ⊆ ∪n
i=1S Li of matching tuples, where each M′

consists of one tuple from each of Mi. When the number of attributes in rel(Q′) is high,

7In our implementation, the threshold value is set to be 5 by default.
8ConQueRp considers to add the selection predicates in the form “A ≤ v” to reduce the search space in

this case. Thus, a tuple tx dominates another tuple ty if (1) tx.A ≤ ty.A for every attribute A in rel(Q′), and
(2) at least one of the inequalities in (1) is strict

116

the number of skyline tuples in each Mi becomes large. This event leads to high com-

putation for ConQueRp to enhance sel(Q′). To avoid this computational issue, ConQueRp

finds k-dominant skyline tuples in each Mi instead of finding all skylines in Mi. A tu-

ple tx is said to k-dominate another tuple ty if there are k dimensions in which tx is better

than or equal to ty and is better in at least one of these k dimensions. A tuple that is not

k-dominated by any other tuples is in the k-dominant skyline [8]. In our experiment, we

set k to be 2/3 times the number of attributes in rel(Q′).

Example 5.4 Consider again query Q1 in Example 5.1 and another why-not question

S = {tw} where tw = (“E”). Here, ConQueR is unable to derive any refined query

with the same schema as Q1, since tw does not have any matching tuples in Q∗∅(D). To

generate refined queries with a different schema from Q1, ConQueR transforms the why-

not question to become S ′ = {(“A”), (“E”)}, and is now able to derive a refined query Q′3

that involves the join between Player and Playoff: SELECT name FROM Player, Playoff

WHERE Player.pID = Playoff.pID AND pts ≤ 2029. �

In the event that ConQueR cannot find any SPJ refined queries, ConQueR will resort

to derive SPJU refined queries Q′ of the form: Q′ = Q union Qs, such that Qs accounts

for the why-not tuples in S . To derive Qs, ConQueR first needs to determine rel(Qs).

Since the why-not tuples in S are essentially contained in a |pro j(Q)|-column table T ,

rel(Qs) must be selected such that for each column Ci in T , there must be a “matching

attribute” A′i in some relation in rel(Qs) such that the set of constant values in Ci are

contained by the values in A′i . The domain indices technique described in Section 4.3

can be applied here to derive the matching attributes for each column of T . For each

potential candidate for rel(Qs), Qs is constructed by ConQueRs as follows: sel(Qs) is

defined to be an empty set, join(Qs) is defined to be the set of foreign-key join predicates

among the relations in rel(Qs), and pro j(Qs) is defined to be set of matching attributes.

If Qs(D) derived from the resultant query schema (defined by rel(Qs) and join(Qs)) can

account for all the why-not tuples, then the query Qs produced by ConQueRs can be

further enhanced by ConQueRp to improve its precision.

117

5.3 Explaining SPJA Queries

In this section, we explain how ConQueR generates refined queries for SPJA queries.

For simplicity and without loss of generality, we assume there is only a single aggre-

gated attribute in pro j(Q) based on SUM operator, and we use Aa to denote the attribute

in pro j(Q) being aggregated and Aagg to denote S UM(Aa). We also assume that the

domain of Aa contains positive values. Details on how the techniques can be generalized

for other cases (e.g., the domain of Aa contains negative values) are given in Section 5.4.

As the examples in Section 1.3 illustrated, ConQueR can handle two types of why-not

questions on SPJA queries. In the first basic type of why-not questions, each why-not

tuple corresponds to either some existing tuple ti ∈ Q(D) or some missing tuple ti, and

the question asks why ti.Aagg is not greater than some value Ki. In the second more

complex type of why-not questions, it involves at least two why-not tuples, t1 and t2

(which may be existing or missing tuples), and the explanation sought is to clarify on the

relationship between their Aagg attribute values. For example, if t1 and t2 are two existing

tuples in Q(D) with t1.Aagg ≤ t2.Aagg, then the why-not question asks why t1.Aagg is not

greater than t2.Aagg.

To simplify the presentation, we shall assume that for each why-not tuple t in S , the

components corresponding to the non-aggregated values (i.e., group-by attributes) in t

all have constant values.

While the processing of why-not questions on SPJ queries requires Q′(D) to contain

a single matching tuple from Mi for each why-not tuple ti ∈ S , the processing for SPJA

queries is more complex, as Q′(D) needs to contain a subset of matching tuples from Mi

to satisfy the aggregation constraint of each why-not tuple ti ∈ S .

5.3.1 Basic Why-not Questions

Let us consider the case where Q and Q′ have the same query schema, and there is

exactly one why-not tuple S = {t1} that is a missing tuple (i.e., t1 < Q(D)) and the

118

constraint in C requires t1.Aagg > K.

As in Section 5.2.1, we assume that sel(Q) = {A1 ≤ v1, · · · ,A` ≤ v` }, ` ≥ 1.

Let v′i denote the modified value of vi in Q′, for i ∈ [1, `]. The definition of Q∗(D)

and vmax
i in Section 5.2.1 is used here as well. Let Jq denote the subset of tuples in Q∗∅(D)

that are matching the tuples of Q(D); i.e., for every tuple tq ∈ Jq, there exists one tuple

t ∈ Q(D) such that for every non-aggregated attribute component of tq, the corresponding

component of t has the same value.

Naive ConQueR (ConQuerR−). To motivate the optimizations adopted by ConQueR

to process why-not questions on SPJA queries, we first present a simpler variant of

ConQueR, denoted by ConQueR−.

For each selection predicate attribute Ai, i ∈ [1, `], let lbi denote the smallest Ai value

among {t.Ai| t ∈ M1} that satisfies the constraint
∑

t∈M1,t.Ai<lbi
(t.Aa)≤ K <

∑
t∈M1,t.Ai≤lbi

(t.Aa).

It follows that for Q′ to be a refined query for the why-not question, we must have

v′i ≥ lbi, for i ∈ [1, `]. Moreover, for Q′(D) ⊇ Q(D), we must have v′i ≥ vmax
i , for

i ∈ [1, `] as explained in Section 5.2.1.

Thus, based on the above two constraints, ConQueR− enumerates all potential values

for each v′i ∈ Vi, where Vi = {t.Ai | t ∈ M1 ∧ t.Ai ≥ max{lbi, vmax
i }}. Each combina-

tion (v′1, · · · , v′`) considered corresponds to a potential refined query Q′. Therefore, if

(1) Q′(D) can account for all the why-not tuples in S , and (2) Q′(D) ⊇ Q(D); then Q′

is a refined query for the why-not question. Note that for Q′(D) ⊇ Q(D), it is necessary

that Q′(D) does not contain any tuples in Jq − Q∗(D)9.

Even with the use of constraints, the total number of potential refined queries to be

considered, given by
∏`

i=1 |Vi|, is rather large. For efficiency reason, ConQueR− adopts

a two-step approach to generate refined queries. In the first step, a heuristic is used to

choose a subset A′ of selection attributes in sel(Q). In the second step, A′ is used to

generate the potential refined queries. Thus, the number of refined queries considered

9Suppose Q′ selected a tuple tq ∈ Jq − Q∗(D), and let td ∈ Q(D) be the tuple in Q(D) that corresponds
to tq. Then td.Aagg in Q′(D) will be greater than td.Aagg in Q(D); i.e., Q′(D) + Q(D).

119

pID name team year pts blk stl reb
t1 P1 A GSW 1973 2029 40 100 30
t2 P2 B SEA 1994 3000 65 150 181
t3 P2 B CHI 1995 2200 50 120 161
t4 P2 B LAL 1996 2500 70 110 200
t5 P4 D LAL 1995 2300 70 150 150
t6 P5 E DEN 2000 1689 35 200 381

Q∗∅(D) = Player ./pID Playoff

Figure 5-3: Example 5.5

is reduced to
∏

A j∈A′ |V j|. While this approach improves efficiency, the tradeoff is that

the refined queries generated have higher dissimilarity values, since not all the selection

attributes in sel(Q) appear in Q′. In ConQueR−, the heuristic for selecting A′ uses an input

control parameter θ10 so that
∏

A j∈A′ |V j| is no larger than θ. To minimize the dissimilarity

values of the refined queries, ConQueR− uses a simple greedy heuristic to maximize the

number of selected attributes in A′ by selecting the attributes A j in non-descending order

of |V j|.

Example 5.5 Consider a query Q2 on the Basketball data set that finds players and

their total points scored in play-off games that satisfy some conditions on their block and

steal statistics: SELECT name, SUM(pts) FROM Player, Playoff WHERE Player.pID =

Playo f f .pID AND blk ≤ 40 AND stl ≤ 100 GROUP BY name. The output contains

only one tuple (“A”, 2029). Consider the why-not question S = {tw} with tw = (“B”, $x)

and C = {$x > 3500}, which asks why “B”, with a total score of greater than 3500, is

missing from the output.

ConQueR− is able to derive refined queries Q′ that have the same schema as Q2 for

this why-not question. The output of the intermediate query Q∗∅ to derive Q′ is shown in

Figure 5-3. Let A1 and A2 denote the two selection predicates blk and stl, respectively.

We have Q∗ = σblk≤40∧stl≤100(Q∗∅). Thus, Q∗(D) = {t1}, vmax
1 = 40, and vmax

2 = 100. The

set of matching tuples in Q∗∅(D) for tw is given by Mw = {t2, t3, t4}. ConQueR− derives

lb1 = 65 and lb2 = 120; therefore, V1 = {65, 70} and V2 = {120, 150}.
10In our experiments, we set θ = 100000.

120

ConQueR− generates four candidate refined queries as follows. First, ConQueR− se-

lects the set of attributes A′ = {A1, A2} to be used for the refined queries. Next, based

on V1 and V2, a candidate refined query is generated corresponding to each of the four

combinations of (v′1, v
′
2), where v′1 ∈ V1 and v′2 ∈ V2. Among these four candidates,

the query Q′2 corresponding to the combination (65, 120), given by: SELECT name,

SUM(pts) FROM Player, Playoff WHERE Player.pID = Playo f f .pID AND blk ≤ 65

AND stl ≤ 120 GROUP BY name, is not a valid refined query. The reason is that the out-

put of Q′2, which contains the tuples (“A”, 2029) and (“B”, 2200), does not account for

the why-not tuple tw. The candidates corresponding to the remaining three combinations

are valid refined queries. �

Optimizations. In this section, we present the optimizations adopted by ConQueR to

optimize the generation of refined queries. ConQueR is also based on the two-step ap-

proach as ConQueR−, where it first selects a subset of attributes A′ followed by using A′

to generate potential refined queries. However, ConQueR exploits additional properties

to prune away the useless candidate refined queries. Thus, ConQueR is able to generate

the same set of refined queries as ConQueR− more efficiently.

Let A′ = {A1, · · · , Am} denote the set of attributes selected by the greedy heuristic

in the first step, where |V1| ≤ · · · ≤ |Vm|. Let M1 = {x1, x2, · · · , xn}, where x1.A1 ≤
x2.A1 ≤ · · · ≤ xn.A1. Let xs be the “first” tuple in M1 such that

∑
t∈M1,t.A1≤xs.A1

t.Aa > K

and
∑

t∈M1,t.A1≤xs−1.A1
t.Aa ≤ K. Observe that for Q′ to be a refined query, Q′(D) must

contain at least one matching tuple from {xs, · · · , xn}. Otherwise, the selected matching

tuples will not be able to account for the missing why-not tuple t1. Based on this obser-

vation, we can view the collection of candidate refined queries as being partitioned into

(n − s + 1) groups Gs,Gs+1, · · · ,Gn such that for each refined query Q′ in group Gi, the

matching tuples in M1 that are selected by Q′ include xi and a (possibly empty) subset

of {x1, · · · , xi−1}.
Thus, ConQueR enumerates the candidate refined queries in (n − s + 1) iterations,

where at the jth iteration for j ∈ [1, n − s + 1], Q′ selects the matching tuples from M1

121

that contains xs+ j−1 and a subset of {x1, · · · , xs+ j−2}. More specifically, in the jth iteration,

j ∈ [1, n − s + 1], the following values of v′i , i ∈ [1,m] are being considered:

1. v′1 is set to max{vmax
1 , xs+ j−1.A1} to ensure that xs+ j−1 is selected from M1 and that

Q′(D) ⊇ Q(D).

2. For each v′i , i ∈ [2,m], the values considered for v′i are selected from the set S i =

{x1.Ai, · · · , xs+ j−1.Ai} that must satisfy the following constraints:

(a) v′i ≥ lbi to ensure that Q′ is a refined query;

(b) v′i ≥ vmax
i to ensure that Q′(D) ⊇ Q(D); and

(c) v′i ≥ xs+ j−1.Ai to ensure that xs+ j−1 is selected by Q′.

Thus, each combination (v′1, · · · , v′m) considered corresponds to a candidate refined

query Q′. The total number of combinations considered by ConQueR is
∑n

i=1(im−1) in the

worst case. Our experimental results in Section 5.7 showed that the pruning optimization

enables ConQueR to be 2 to 10 times faster than ConQueR−.

Example 5.6 This example reconsiders query Q2 in Example 5.5 to illustrate how the

above optimizations enable ConQueR to prune away the invalid candidate refined query

generated by ConQueR−. ConQueR first derives M1 = {x1, x2, x3}, where x1 = t3, x2 = t2

and x3 = t4 such that x1.A1 ≤ x2.A1 ≤ x3.A1. As before, we also have lb1 = 65

and lb2 = 120. The “smallest” tuple xs that satisfies the aggregation constraint is x2.

ConQueR enumerates the candidate refined queries in two iterations as follows.

In the first iteration, v′1 is set to 65 and v′2 is selected from the set S 2 = {120, 150}.
Since v′2 ≥ max{lb2, x2.A2}, it results in v′2 = 150.

In the second iteration, v′1 is set to 70 and v′2 is selected from the set S 2 = {110, 120, 150}.
We have v′2 ≥ max{x3.A2, lb2}; or, v′2 ∈ {120, 150}. Thus, ConQueR generates only the

candidate queries corresponding to the combinations (65, 150), (70, 120), and (70, 150),

which is a proper subset of those generated by ConQueR−. �

122

5.3.2 Complex Why-not Questions

The techniques presented in the previous section to process basic why-not questions on

SPJA queries can be extended to handle the more complex why-not questions as well.

Consider a complex why-not question on SPJA queries with S = {t1, · · · , tk} and the

constraint in C requires that t1.Aagg < · · · < tk.Aagg.

The approach for enumerating candidate refined queries in this case follows the same

approach discussed in the previous section except that each Vi is now defined as Vi =

{t.Ai | t ∈ P ∧ t.Ai ≥ vmax
i }, where P = M1 ∪ · · · ∪ Mk.

5.4 ConQueR: Further Extensions

In this section, we present the techniques of ConQueR to handle categorical attributes

appeared in the selection conditions of the input query, and the extensions of ConQueR

to derive refined queries in the general cases that are not considered in Sections 5.2

and 5.3.

5.4.1 Handling Categorical Attributes

Consider the scenarios when sel(Q) consists of predicates of both numeric and cate-

gorical attributes, including (1) n selection conditions on numeric attributes in the form

“Ai ≤ vi”, and (2) m selection conditions on categorical attributes in the form “A j ∈ S j”,

i ∈ [1, n] and j ∈ [n + 1, n + m].

SPJ queries. To simplify the presentation, consider an SPJ input query Q and a why-not

question (S ,C) with S = {t1} and C = ∅. ConQueR will modify the selection conditions

of Q into “Ai ≤ v′i” and “A j ∈ S j
⋃

S ′j”, for i ∈ [1, n] and j ∈ [n + 1, n + m], to account

for the why-not question.

Similar to the basic framework, ConQueR requires Q′(D) to contain only one tuple

from M1 to account for t1. For Q′(D) to contain a tuple τ ∈ M1, we must have v′i =

123

max{vmax
i , τ.Ai} and S ′j = S j ∪ {τ.A j}, for i ∈ [1, n] and j ∈ [n + 1, n + m].

With the presence of categorical attributes, the definition of skyline tuples in M1

changes slightly as follows. Consider two tuples tx, ty ∈ M1, we say that tx dominates ty

if (1) tx.Ai ≤ ty.Ai and tx.S j ⊆ ty.S j, for all i ∈ [1, n] and j ∈ [n + 1, n + m]; and (2) at

least one of the inequalities of numeric attributes in (1) is strict or one subset condition

on categorical attributes in (2) is a strict subset condition.

SPJA queries. With the presence of categorical attributes, ConQueR performs a two-

step heuristic approach by first deriving the candidate refined queries using only numeric

attributes based on the techniques in Section 5.3 to derive sel(Q′) = {A1 ≤ v′1, · · · , An ≤
v′n}. In the second phase, for each derived refined query Q′, ConQueR further reduces

the imprecision of Q′ by inserting the selection conditions of categorical attributes into

sel(Q′). In particular, let Ms ⊆ M1 be the set of tuples in M1 that is selected by Q′,

and S ′j be the set of distinct A j’s values of tuples in Ms, j ∈ [n + 1, n + m]. ConQueR then

modifies the selection condition on A j in sel(Q′) into “A j ∈ S ′j”.

In a special case when there does not exist any selection predicate of numeric at-

tributes in sel(Q) (i.e., n = 0), the heuristic of ConQueR is to modify the selection

conditions to select the matching tuples for each why-not tuple one at a time until the

aggregation constraints are satisfied. In particular, assume there is exactly one why-not

tuple S = {t1} that is a missing tuple (i.e., t1 < Q(D)) and the constraint in C requires

t1.Aagg > K on the aggregated attribute Aa. Let M1 = {x1, · · · , xn} be the set of match-

ing attributes of t1. ConQueR selects xi ∈ M1 in the non-increasing order of their Aa

values until the summation of the Aa values of the selected xi’s satisfies the constraint

(i.e.,greater than K). Finally, ConQueR modifies the selection conditions to account for

the selected xi’s.

5.4.2 Extensions of Explaining SPJ Queries

This section introduces the techniques of ConQueR to solve the general constraints on

variables of why-not tuples for SPJ queries. Consider the situation with an input SPJ

124

query Q and the why-not question is (S ,C), where S = {t1, · · · , tn} and the constraint C

requires the comparisons among the variables of some why-not tuples in S .

Example 5.7 Consider the following SQL query to find the recent high-scoring NBA

players and the teams they played for: SELECT P.name, R.team FROM Player P, Reg-

ular R WHERE P.pID = R.pID AND R.year > 2000 AND R.pts > 2400. A user asks

why two superstars “Magic Jackson” and “Kareem Abdul-Jabbar” do not appear in the

output; furthermore, Jackson and Jabbar played in the same team. The why-not question

in this case is (S ,C) with S = {(Jackson,$x), (Jabbar,$y)} and C = {$x = $y}. �

To handle this general setting, ConQueR enumerates different refined queries Q′ cor-

responding to different subsets M′ ⊆ ∪n
i=1Mi of matching tuples, where each M′ consists

of one tuple from each Mi, i ∈ [1, n]. With a candidate refined query Q′, ConQueR deter-

mines the matching tuples in Q′(D) for each why-not tuple, and returns Q′ as a refined

query if the matching tuples selected by Q′ satisfy the imposed constraints in C.

Example 5.8 Continuing with Example 5.7, assume that the sets of matching tuples for

“Jackson” and “Jabbar” are M1 = {t1, t2} and M2 = {t3}; where the (year, pts, team) val-

ues of t1, t2 and t3 are (2000, 2500,“DEN”), (2002, 2000,“LAL”) and (1999, 3000,“DEN”),

correspondingly. By selecting t1 ∈ M1 and t3 ∈ M2 to account for Jackson and Jabbar,

ConQueR derives a refined query Q′: SELECT P.name, R.team FROM Player P, Regular

R WHERE P.pID = R.pID AND R.year ≥ 1999 AND R.pts > 2400. The refined query Q′

is a valid one, since the matching tuples of Jackson and Jabbar have the same “team”

attribute values. ConQueR also selects t2 ∈ M1 and t3 ∈ M2 to cover the why-not tuples;

however, the refined query Q′′ corresponding to this pair of selected tuples is not appro-

priate, since the matching tuples selected by Q′′ have different “team” attribute values.

�

125

5.4.3 Explaining SPJU Queries

In this section, we explain how ConQueR explains why-not questions for an SPJU input

query Q in the form Q1 union · · · union Qk, where each Qi is an SPJ query and the select-

clauses of Qi are union-compatible. To simplify the presentation, we first consider the

why-not question with one why-not tuple: S = {t1} and C = ∅, and generalize ConQueR

for multiple why-not tuples at the end of this section.

ConQueR first derives an intermediate query Q
′
int,i corresponding to the sub-query Qi,

for i ∈ [1, k]. Let Mi denote the set of matching tuples of t1 in each Q
′
int,i. It is possible

that Mi = ∅ for some i ∈ [1, k]. ConQueR then derives the set of “skyline tuples” S Li

from each Mi using the procedure in Section 5.2. To account for the why-not tuple t1,

ConQueR needs to select only one tuple from∪k
i=1(S Li). Therefore, each tuple in each S Li

corresponds to one candidate refined query, which ConQueR computes their dissimilarity

and imprecision to derive the skyline refined queries.

Handling multiple why-not tuples. Assume there are n why-not tuples S = {t1, · · · , tn}.
Let Mi, j denote the set of matching tuples of ti in the intermediate query Q

′
int, j, for

i ∈ [1, n] and j ∈ [1, k]. ConQueR also computes the set of skyline tuples S Li, j from

each Mi, j. Next, ConQueRs enumerates different refined queries Q′ corresponding to dif-

ferent subsets M′ ⊆ ∪n
i=1 ∪k

j=1 (S Li, j) of matching tuples, where each M′ consists of one

tuple from each of ∪k
j=1(S Li, j), i ∈ [1, n], to account for each why-not tuple ti.

5.4.4 Extensions of Explaining SPJA Queries

This section presents the extensions of ConQueR to find refined queries for an SPJA input

query Q.

Multiple aggregated functions. Assume there are m aggregated attributes Bi’s, and the

why-not question (S ,C) consists of one why-not tuple with S = {t1} and C = {t1.Bi > Ki}
for some constant Ki, i ∈ [1,m].

The techniques of ConQueR for the basic case are applied here as well, except that

126

the lower bound for an attribute A in sel(Q) is set to be the maximum value of all the

lower bounds lb j’s with j ∈ [1,m]; where lb j is defined as
∑

t∈M1,t.A<lb j
(t.B j) ≤ K j <

∑
t∈M1,t.B j≤lb j

(t.B j).

Negative domain. In case the domains of aggregated attributes contain negative values,

the basic framework of ConQueR remains the same, except that the lower bound lbi for

each selection predicate attribute Ai is not used any more. Therefore, the derivation of

each Vi’s set becomes Vi = {t.Ai | t ∈ M1 ∧ t.Ai ≥ vmax
i }.

COUNT/AVG operator. When the operator on an aggregated attribute Aa is COUNT,

ConQueR creates a “virtual” aggregated attribute Av with a domain value of 1 for all tu-

ples. The constraint on COUNT (Aa) is now converted into the corresponding constraint

on S UM(Av).

Similarly, consider the scenarios when the operator on the aggregated attribute Aa

is AVG, ConQueR changes the domain values of Aa and the constraints correspond-

ingly. Specifically, assume the constraint requires AVG(Aa) > K. For every tuple

t ∈ Q∗∅(D), ConQueR replaces t.Aa by t.Aa − K, and the constraint on the why-not tu-

ple by S UM(Aa) > 0.

5.5 Alternative Approach: TALOS+

In this section, we present an alternative approach to generate refined queries for ex-

plaining why-not questions that is based on extending TALOS, which is designed for the

first variant of QBO to derive instance-equivalent queries.

Recall that given a query Q on a database D, the goal of TALOS is to generate

query-based characterizations of the query result Q(D) by deriving instance-equivalent

queries (IEQs) Q′. Two queries Q and Q′ are defined to be instance-equivalent w.r.t. a

database D if their results on D are equal; i.e., Q(D) = Q′(D). TALOS generates instance-

equivalent queries Q′ for Q on D by considering various query schema for Q′ based

on the pro j(Q) and join(Q). For each candidate schema, TALOS can easily determine

127

rel(Q′), join(Q′), and pro j(Q′). In contrast to ConQueR which uses a constraint-based

approach to derive sel(Q′), TALOS uses a classification-based approach to determine

sel(Q′) by constructing decision trees. By enumerating different decision trees to gener-

ate different sets of selection predicates for sel(Q′), different IEQs Q′ are derived for Q.

The framework of TALOS is described in details in Chapter 3.

We have extended TALOS to generate refined queries for explaining why-not ques-

tions. We refer to this extended approach as TALOS+. The basic idea of TALOS+ is to

treat Q(D) together with the why-not tuples as the output result of some query Q′, and

apply TALOS to derive the IEQs for Q′. A key challenge in extending TALOS, which is a

precision-oriented approach, to TALOS+ is the modification of the data classification step

to construct “linear” decision trees so that the refined queries generated are more similar

to the input queries. In addition, TALOS+ needs to handle the new semantics imposed on

SPJA queries.

In the following discussions, we describe how TALOS+ derives the refined queries

for the SPJ and SPJA input queries in Sections 5.5.1 to 5.5.3. Finally, we discuss how

to use TALOS+ and ConQueR for deriving IEQs and explaining why-not questions in

Section 5.5.4.

Notations. The definitions of Q∗∅(D), Q∗(D), Mi described in Section 5.1.3, and Jq de-

scribed in Section 5.3.1 are used here as well. At a high level, Q∗∅(D) is the join result

of joining all relations in rel(Q) using the join predicates in join(Q). Q∗(D) is the sub-

set of tuples in Q∗∅(D) that satisfy sel(Q). Mi is the subset of tuples in Q∗∅(D) that are

the matching tuples of the why-not tuple ti. Jq is the subset of tuples in Q∗∅(D) that are

matching the tuples of Q(D).

5.5.1 Explaining SPJ Queries

For simplicity and without loss of generality, we discuss the techniques of TALOS+ to

derive refined queries that have the same query schema with the given SPJ query Q to

explain the why-not question (S ,C) with C = ∅.

128

Let Q′(D) = Q(D) ∪ S , and assume that Q′(D) contains k tuples. TALOS+ parti-

tions Q∗∅(D) into (k + 1) disjoint subsets: Q∗∅(D) = J0 ∪ J1 ∪ · · · ∪ Jk; where each

subset Ji, i > 0, contains the matching tuples of the ith tuple of Q′(D). TALOS+ needs

to construct a “linear” decision tree for the selection condition of the derived refined

query to be in the conjunctive form; the objective is to make the refined queries more

similar to the input query. For this task, TALOS+ builds a decision tree DT with the root

node N containing all tuples in Q∗∅(D), and modifies the process of finding the optimal

node splits in the decision tree construction as follows.

Consider the set of tuples Q∗∅(D) in the root node N to be split into two child nodes N1

and N2 based on a value v of a numeric attribute A. Each subset Ji of Q∗∅(D) is partitioned

into two subsets: Ji,1 (in node N1) and Ji,2 (in node N2); where a tuple t ∈ Ji is partitioned

in Ji,1 iff t.A ≤ v. TALOS+ needs to ensure that either N1 or N2 will contain all tuples

of Ji that will be assigned positive tuples. Otherwise, TALOS+ needs to recursively split

both N1 and N2; thus, the refined queries will not be in the conjunctive form. To account

for this requirement, TALOS+ considers the following two cases, and selects the smaller

Gini(N1,N2) value in these cases as the optimal Gini index:

(C1) All tuples of Ji,3− j are labeled negative, and all tuples of Ji, j are labeled positive,

for i ∈ [1, k] and j ∈ {1, 2};

(C2) All tuples of Ji,3− j are labeled negative, and exactly-one tuple in each Ji, j is

labeled positive, for i ∈ [1, k] and j ∈ {1, 2}.

If the optimal value of Gini(N1,N2) is due to case (C1) with j = jsat where jsat = 1

or jsat = 2, then all tuples of Ji, jsat are assigned positive labels and all tuples of Ji,3− jsat

are assigned negative labels, for every i ∈ [1, k]. In contrast, if the optimal value of

Gini(N1,N2) is due to case (C2), then all tuples of Ji,3− jsat are assigned negative labels

and the semantic to select exactly-one tuple in each Ji, jsat , i ∈ [1, k], is propagated to

the process of finding the optimal node split at the child node N jsat . With the exactly-

one semantics, the process of finding the optimal node split can be optimized by the

techniques similar to what we have explained so far except that TALOS+ needs to consider

129

only case (C2).

The optimality of the node split computed by TALOS+ is proven in the same way as

TALOS, which is presented in Appendix D.

5.5.2 Explaining Basic SPJA Queries

For simplicity and without loss of generality, we assume that there is exactly one why-not

tuple S = {t1} which is a missing tuple (i.e., t1 < Q(D)), and the constraint in C requires

that t1.Aagg > K with Aa denotes the attribute in pro j(Q) that is being aggregated; i.e.,

Aagg = S UM(Aa). To simplify the presentation, we discuss the scenarios when TALOS+

derives refined queries that have the same query schema with Q.

While the processing of why-not questions on SPJ queries requires Q′(D) to contain

at-least one single matching tuple from Mi for each why-not tuple ti ∈ S , the processing

for SPJA queries is more complex, as Q′(D) needs to contain a subset of matching tuples

from Mi to satisfy the aggregation constraint of each why-not tuple ti ∈ S .

For Q′(D) ⊇ Q(D), similar to ConQueR, TALOS+ labels tuples of Q∗(D) as positive,

and tuples in Jq − Q∗(D) as negative. For the why-not tuple t1, TALOS+ must assign a

subset of tuples Ms ⊆ M1 as positive tuples such that the summation of the Aa’s values

of records in Ms is greater than K. To account for this constraint, TALOS+ also modifies

the process to find the optimal splitting conditions in the decision tree construction as

follows.

Consider the set of tuples Q∗∅(D) in the root node N of the decision tree DT to be

built. Assume node N is being split into two child nodes N1 and N2 based on a value v

of a numeric attribute Asplit. With the splitting on Asplit and v, M1 is also partitioned

into two subsets: M1,1 (in node N1) and M1,2 (in node N2); where a tuple t ∈ M1 is

partitioned into M1,1 iff t.Asplit ≤ v. As before, for the derived refined query Q′ to be

in the conjunctive form, TALOS+ needs to ensure that either N1 or N2 will contain all

positive tuples. Assume that all bound positive tuples (i.e., the positive tuples belong

to Q∗(D)) are partitioned into N1. TALOS+ computes the Gini index of the following two

130

cases, and selects the smaller value among these two cases as the optimal Gini index:

(A1) All tuples in M1,2 are labeled negative, and tuples in a subset Ms ⊆ M1,1 are

labeled positive such that: (1)
∑

t∈Ms
(t.Aa) > K, and (2) the number of tuples in Ms is

maximized. Let M1,1 = {x1, x2, · · · , xm} where x1.Aa ≥ x2.Aa · · · ≥ xm.Aa. Let x f be

the “last” tuple in M1,1 such that:
∑

t∈M1,1,t.Aa≥x f−1.Aa
(t.Aa) > K, and

∑
t∈M1,1,(t.Aa)≥x f .Aa

(t.Aa)

≤ K. It derives that Ms = {x1, x2, · · · , x f−1}.
(A2) All tuples in M1,2 are labeled negative, and tuples in a subset Ms ⊆ M1,1 are

labeled positive such that (1)
∑

t∈Ms
(t.Aa) > K, and (2) the number of tuples in Ms is

minimized. Let M1,1 = {x1, x2, · · · , xm} where x1.Aa ≥ x2.Aa · · · ≥ xm.Aa. Let x f be

the “first” tuple in M1,1 such that:
∑

t∈M1,1,t.Aa≥x f−1.Aa
(t.Aa) ≤ K, and

∑
t∈M1,1,(t.Aa)≥x f .Aa

(t.Aa)

> K. It derives that Ms = {x1, x2, · · · , x f }.
After the optimal Gini value is computed, all the free tuples will necessarily become

bounded; i.e., the tuples in the derived subset Ms are assigned positive labels whereas

tuples in M1,1 − Ms as well as in M1,2 are assigned negative labels.

The optimality of the node split computed by TALOS+ is proven in the same way as

TALOS, which is presented in Appendix D.

5.5.3 Explaining Complex SPJA Queries

For simplicity and without loss of generality, consider a complex why-not question on

SPJA queries with S = {t1, · · · , tk}, and the constraint C requires t1.Aagg < · · · < tk.Aagg,

with Aa denotes the attribute in pro j(Q) that is being aggregated; i.e., Aagg = S UM(Aa).

To construct a linear decision tree, TALOS+ also modifies the process to find the optimal

node split in the decision tree construction process as follows.

Consider the set of tuples Q∗∅(D) in the root node N of the decision tree DT to be

built. Assume node N is being split into two child nodes N1 and N2 based on a value v of

a numeric attribute Asplit. With the splitting on Asplit and v, each Mi is partitioned into two

subsets: Mi,1 (in node N1) and Mi,2 (in node N2). For the derived refined query Q′ to be in

the conjunctive form, TALOS+ needs to ensure that either N1 or N2 must contain all pos-

131

itive tuples. Assume that all bound positive tuples are partitioned into N1. TALOS+ will

label all tuples in Mi,2 as negative, and choose the smaller Gini(N1,N2) value between

the following two cases as the optimal Gini value:

(G1) TALOS+ maximizes the number of selected tuples in N1 by first maximizing

the number of selected tuples in Mn,1. After selecting tuples in Mn,1, TALOS+ finds a

maximum number of tuples in Mn−1,1 so that the summation on Aa values of selected

tuples in Mn−1,1 is less than the summation of selected tuples in Mn,1. TALOS+ continues

to select tuples for other sets Mi,1, for i ∈ [n − 2, 1], with the objective to maximize the

number of selected tuples in these sets. TALOS+ derives Mi,1 in a similar way to what we

have described for case (A2) in Section 5.5.2.

(G2) TALOS+ minimizes the selected tuples in N1 by first finding a minimum number

of selected tuples in M1,1, and then deriving the minimum number of selected tuples

in M2,1 so that the summation on Aa values of tuples in M2,1 is greater than the summation

of selected tuples in M1,1. TALOS+ continues this process to derive the selected tuples for

other Mi,1, with i ∈ [3, n].

The node split procedure of TALOS+ in this section is a heuristic solution.

5.5.4 ConQueR vs. TALOS

In this work, we have introduced two classes of algorithms, named TALOS 11 and ConQueR

that solve the two settings of QBO. In particular, TALOS is a precision-oriented approach

that derives an IEQ Q′ of an input query Q such that Q′(D) is as precise as possible

(compared with Q(D)). ConQueR is a similarity-oriented approach that derives a refined

query Q′′ for a given input query Q and a why-not question (S ,C) such that Q′′ is as

similar as possible to Q. The issue is whether we can apply ConQueR to generate IEQs,

as well as applying TALOS to generate refined queries for explaining why-not questions.

It turns out that both TALOS and ConQueR can be applied for the two settings of QBO.

Essentially, it is possible to apply ConQueR for the first variant of QBO to derive alter-

11We use TALOS to refer to both the basic framework and its derivations including REQUERE and TALOS+.

132

native characterizations of a given result table Q(D) by formulating a why-not question

(S ,C) where S = Q(D) (i.e., all tuples in Q(D) are considered as why-not tuples) and

C = ∅, and treating the input query to return empty result. ConQueR will generate refined

queries Q′ such that Q′(D) = Q(D); the refined queries can be considered as instance-

equivalent queries of Q(D) in this case. Correspondingly, it is also possible to apply

TALOS for explaining why-not questions by treating Q(D) together with the why-not tu-

ples as the output result of some query Q′. We then apply TALOS to derive the IEQs

of Q′; the IEQs in this case can be considered as the refined queries to explain why the

set of tuples is missing from Q(D).

Since each technique is tailored for the specific purpose of each variant of QBO,

TALOS should be used for the first variant of QBO rather than ConQueR. The reason is

that ConQueR is a similarity-driven approach; thus, the instance-equivalent queries Q′

derived by ConQueR are quite similar to Q and might contain irrelevant tuples. The

queries derived by ConQueR, therefore, might not be too meaningful to give alternative

characterizations of tuples in the query results.

At the other extreme, ConQueR should be used for explaining why-not question rather

than TALOS, since TALOS is a more precision-oriented approach, the queries generated

can be rather different from the input query. In some applications, it may not be too

meaningful to explain missing tuples using refined queries that are very different from

the input query. Moreover, the performance of TALOS is also slower than ConQueR due

to its costly data classification step.

Figure 5-4 visualizes the comparisons of refined queries returned by TALOS and

ConQueR in term of the similarity and the precision metrics, which guide the usage of

TALOS and ConQueR in each of the two settings of QBO. Our experimental studies in Sec-

tion 5.7 have validated the trend of ConQueR and TALOS shown in Figure 5-4. It is also

interesting to design a hybrid approach that combines the advantages of both ConQueR

and TALOS to give users more flexibility to control the precision and the similarity met-

rics of the returned queries, which future studies can undertake.

133

x ConQueR

Precision

Similarity

TALOS

Figure 5-4: Refined queries returned by TALOS and ConQueR

5.6 Implementation of ConQueR

This section presents the implementation details of ConQueR and the comparisons be-

tween ConQueR and TALOS in terms of the running time and the space complexity.

5.6.1 Implementation

Similar to TALOS, ConQueR is also implemented at the application level and interacts

with the DBMS by issuing relevant SQL queries. For simplicity and without loss of

generality, we discuss the implementation details of ConQueR to derive refined queries

to explain a why-not question (S ,C) for an input SPJ query Q w.r.t. a database D in

Algorithm 6. All the steps in Algorithm 6 are self-explained. In the following, we

describe how ConQueR utilizes the join indices techniques, which are also used in TALOS,

to improve its performance.

Optimization with Join Indices. If the join conditions corresponding to edges in G are

foreign-key joins, then the optimization of using the join indices introduced in TALOS

(Section 3.3) can be applied here as well. Specifically, ConQueR actually does not com-

pute Q∗∅(D) but instead computes a hub table Jhub, which is the result of the joins among

the appropriate join indices corresponding to the edges in G. From Jhub, ConQueR also

134

Algorithm 6: ConQueR(Q,D, S ,C)
Compute sets of core relations of Q;1

foreach set of core relations R do2

Enumerate schema subgraphs G containing R in the (approximately)3

increasing order of their dissimilarity metrics;
foreach schema subgraph G do4

Compute Q∗∅(D) corresponding to G by joining the relations in G using the5

join conditions corresponding to the edges in G;
Derive Jq and Mi;6

exist← Compute refined queries;7

if exist = true then8

return;9

endif10

end11

end12

derives the mapping tables Mi between each relation Ri ∈ G and Jhub. Each Mi links each

record r in Ri to the set of records in Jhub that are related to r: for each record r in Ri,

there is one record in Mi of the form (j, S), where j is the row identifier of r, and S is a

set of row identifiers representing the set of records in Jhub that are created from r.

ConQueR also builds a set of attribute lists ALA for each attribute A ∈ R with R ∈ G.

Each attribute list ALA, where A ∈ R, is a two-column table (val, row) of the same cardi-

nality as R. Each record r = (v, i) in ALA corresponds to the ith tuple t in R, and v = t.A.

Different from TALOS, ConQueR does not necessarily sort order ALA for computational

efficiency.

5.6.2 Complexity Analysis

For simplicity and without loss of generality, we analyze the running time and the space

complexity of ConQueR to derive the refined queries for an SPJ input query Q and a set of

why-not tuples S = {t1} w.r.t. the schema subgraph G of Q containing n relations R1, · · · ,
Rn. We further assume that the set of projected attributes of Q consists of k attributes Ai,

· · · , Ak; where each Ai is an attribute of relation Ri. We also compare the performance of

ConQueR with TALOS+. The analysis takes into account the optimizations (i.e., domain

135

indices) in both ConQueR and TALOS+.

Time Complexity. The running time of ConQueR is proportional to the summation of

the following four main components, including (T1) to (T4).

(T1) The time Tconquer
hub to derive Q∗∅(D), which depends on the join algorithms used

inside the DBMS.

(T2) The time Tconquer
al to derive the set of attribute lists, which is in the order of

O(
∑n

i=1 |Ri|), since ConQueR needs one scan over each relation Ri. Note that ConQueR

does not sort order the attribute lists; thus ConQueR saves some computations compared

with TALOS in this step.

(T3) The time Tconquer
cl to derive Q∗ and Mi, which is in the order of O(

∑k
i=1 |Ri| +

|S ||Q∗∅(D)|), since ConQueR basically scans the corresponding attribute lists of attributes

in pro j(Q) and intersects the set of the retrieved tuples.

(T4) The time to derive refined queries, Tconquer
rq , which consists of two components.

The first component (ConQueRs) is to compute skyline tuples in M1. It is reasonable

to assume that M1 is small enough to be cached in the main memory. ConQueR uses

the proposed algorithm in [29] to find a maximal set of vectors for the step of deriv-

ing skyline tuples in M1. The running time of ConQueRs is, therefore, no greater than

|M1| log |M1|d−2; where d denotes the number of attributes in sel(Q). The second com-

ponent (ConQueRp) basically scans the attribute lists and intersects the sets of row iden-

tifiers of tuples satisfying the derived selection conditions. Thus, ConQueRp runs in

O(
∑n

i=1 ni|Ri| + `KL), where (1) K is the number of skyline tuples derived by ConQueRs,

(2) L is the maximum number of tuples in Q∗∅(D) that satisfy a modified selection con-

dition derived by ConQueRp, and (3) ` is the maximum number of predicates that are

allowed to be inserted into sel(Q′). In the worst case, K = |M1| and L = |Q∗∅(D)|. How-

ever, we note that, in practice, K is usually much smaller than |M1|, and L is also smaller

than Q∗∅(D).

Space Complexity. The space complexity of ConQueR is similar to that of TALOS, which

is in the order of ((n + 1)|Jhub| + ∑n
i=1 |Ri|).

136

Time ConQueR TALOS

Hub Table Tconquer
hub T talos

hub
Attribute Lists O(

∑n
i=1 |Ri|) O(

∑n
i=1 ni|Ri| log |Ri|)

Class List O(
∑k

i=1 |Ri| + |S ||Q∗∅(D)|) O(|Q(D)|∑k
i=1 log |Ri| + |Q(D)||Jhub|)

Derive Queries O(
∑n

i=1 ni|Ri| + `KL) O(`
∑n

i=1 ni|Ri||Q(D)|)

Table 5.2: The time complexity comparison of ConQueR and TALOS

Performance Comparison. Intuitively, ConQueR runs more efficiently than TALOS,

since while ConQueR mainly manipulates with records of Q∗∅(D) corresponding to the

why-not tuples, TALOS needs to manipulate the whole set of tuples in Q∗∅(D) to trade-

off low performance for higher precision refined queries. In the following, we compare

the running time of each step of ConQueR with the corresponding one in TALOS; the

summaries of these comparisons are provided in Table 5.2.

Both TALOS and ConQueR incur the same computation cost to derive the hub table

(in TALOS) or intermediate table (in ConQueR) in the first step. Note that |Q∗∅(D)| = |Jhub|.

In the next step to derive the attribute lists, ConQueR runs faster than TALOS, as TALOS

needs to sort the attribute lists whereas ConQueR does not.

In the third step, ConQueR also runs more efficiently than TALOS, since the number of

why-not tuples (i.e., |S |) is usually smaller than the number of tuples in the query result

(i.e., |Q(D)|).

Finally, in the last step, ConQueR also runs faster than TALOS, since ConQueR only

needs to intersect the sets of row identifiers selected by the derived refined queries. In

contrast, TALOS needs to compute the optimal Gini index for each possible splitting

attribute by scanning the attribute lists of the involved attributes at each level of the

decision tree.

Our experimental results reveal that the performance of TALOS is slower than ConQueR

by up to factor of 6 times due to its costly data classification step.

137

Table # Tuples
Player 3863
Regular 21376
Playoff 8347
Team 100

Table # Tuples
order 1500000
partsupp 800000
part 200000
customer 150000
supplier 10000
nation 25

(a) Basket ball (b) TPCH

Table 5.3: Table sizes (number of tuples)

Query Size
Q1 πnameσyear≥2000∧pts>2300 (Player ./ Regular) 7
Q2 πname,teamσyear>2000∧stl>50∧o pts≥5000 (Player ./ Playoff ./ TeamS eason) 1
Q3 πname,AVG(pts)Gnameσyear≤1970∧pts>2600 (Player ./ Regular) 3
Q4 πname,S UM(pts)Gnameσyear>2000∧pts>2300∧blk>70 (Player ./ Regular) 2
Q5 πteam,S UM(won)Gteamσlost<30∧dpts>8000∧year≥2008 (Team ./ TeamSeason) 2
Q6 πpart.nameσretailprice>2000 (part ./ partsupp) 4950
Q7 πsupplier.nameσacctbal>5000∧availqty>3000 (supplier ./ partsupp) 4593
Q8 πcustomer.nameσacctbal>9000∧totalprice>20000 (customer ./ order) 9069

Table 5.4: Test queries for experiments with ConQueR

5.7 Experimental Study

In this section, we evaluate the effectiveness and efficiency of our proposed approach to

find explanations for why-not questions. In the first set of experiments (Section 5.7.1),

we compare the performance of our constraint-based approach, ConQueR, against the

classification-based approach, TALOS+, in terms of the processing efficiency as well as

the quality of the derived refined queries. We also validate the efficiency of the prun-

ing optimization in ConQueR for SPJA queries. In the second set of experiments (Sec-

tion 5.7.2), we compare the effectiveness of our query-refinement based approach of

explaining why-not questions against the two existing approaches [9, 22].

We used two data sets for the experiments: the NBA Basketball statistics, and TPC-H

data set (with a database size of 1GB). The test data is shown in Table 5.4. The five test

queries (Q1-Q5) for the Basketball data set and three test queries (Q6-Q8) for the TPCH

data set are shown in Table 5.4, where the third column indicates the number of tuples

138

Why-not questions
W1 S = {(Rick Barry), (Wilt Chamberlain)}
W2 S = {(Michael Jordan, WAS)}
W3 S = {(Kareem Abdul-Jabbar, $x)}, C = {$x > 2000}
W4 S = {(Dwyane Wade,$x), (LeBron James, $y)}, C = {$x < $y}
W5 S = {(CHI,$x), (DEN, $y), (LAL, $z)}, C = {$x < $y < $z}
W6 S = {(coral forest), (chiffon papaya), (lemon dark), (azure beige),

(tomato midnight)}
W7 S = {Supplier4, Supplier50, Supplier60}
W8 S = {(Customer105155), (Customer90145), (Customer65407),

(Customer78322), (Customer82661), (Customer35273), (Customer48008),
(Customer101203), (Customer78421), (Customer127777)}

Table 5.5: Why-not questions

ConQueRs ConQueR TALOS+

Query d i d i d i
Q1 2 24 14 6 17 1
Q2 47 9562 74 696 59 0
Q3 1 0 1 0 2 0
Q4 3 0 3 0 12 0
Q5 3 8 9 0 12 0
Q6 1 941 1 941 4 941
Q7 2 428 2 428 5 426
Q8 2 1849 2 1849 5 1848

Table 5.6: The dissimilarity (d) and the imprecision (i) values of refined queries

in the output of each test query. Table 5.5 shows the why-not questions used for these

queries, where the why-not question Wi is asked on query Qi, i ∈ [1, 8].

We used MySQL Server 5.0.51 for our database system, and all algorithms were

coded using C++ and compiled and optimized with GNU C++ compiler. Our experi-

ments were conducted on a dual-core, 2.33GHz PC running Linux with 3.25GB of RAM

and a 250GB hard disk.

5.7.1 Comparing ConQueR & TALOS+

In this section, we compare the performance of ConQueR and TALOS+. We also included

the performance of ConQueRs to understand the tradeoffs between the two key compo-

139

nents of ConQueR.

For both ConQueR and TALOS+, we limit the maximum number of selection pred-

icates in refined queries to be 3 times the number of selection predicates in the input

query. The time taken to process each why-not question is measured as follows. For

ConQueRs, the time reported refers to the processing time to derive all the refined sky-

line queries. For ConQueR, the time reported is a sum of two components: (1) the time

incurred by ConQueRs to generate a set of refined skyline queries, and (2) the time taken

by ConQueRp to maximize the precision of each refined query produced by ConQueRs

and output the final skyline refined queries. For TALOS+, the time reported refers to

the processing time to generate only the first skyline refined query (i.e., the query cor-

responding to the first constructed decision tree). The quality of the refined queries are

compared in terms of the dissimilarity and the imprecision metrics, where smaller values

indicate better quality. Note that if we had measured the total time for TALOS+ to gener-

ate all skyline refined queries, the time reported for TALOS+ would have been higher by

a factor of 4 to 7 times.

Quality of Refined Queries. Table 5.6 compares the quality of the refined queries. Ob-

serve that the refined queries computed by ConQueRs have the lowest dissimilarity values

but the highest imprecision values. At the other extreme, the refined queries generated

by TALOS+ have the lowest imprecision values but the highest dissimilarity values. In

contrast, the refined queries produced by ConQueR are not only similar to the original

queries but also nearly as precise as these generated by TALOS+. For TALOS+, the rea-

son for the high dissimilarity values for its refined queries is that the refined queries can

include many selection attributes that are not in the original queries. ConQueR, on the

other hand, first uses ConQueRs to derive refined queries with low dissimilarity values,

and then enhances their precision with additional selection predicates. The overall qual-

ity of the refined queries generated by ConQueR is, therefore, rather good in terms of

both the dissimilarity and imprecision metrics. For some queries (e.g., Q1, Q4), although

the number of the selection attributes in the refined queries generated by ConQueR and

140

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q1 Q2 Q3 Q4 Q5

R
un

un
g

tim
e

(in
 s

ec
s)

ConQueRs

ConQueR
TALOS+

 0

 20

 40

 60

 80

 100

 120

 140

 160

Q6 Q7 Q8

R
un

un
g

tim
e

(in
 s

ec
s)

ConQueRs

ConQueR
TALOS+

(a) Basketball (b) TPCH

Figure 5-5: Running time comparisons among ConQueR, ConQueRs and TALOS+

TALOS+ are nearly the same, the refined queries computed by ConQueR are relatively

more similar to the input queries, because ConQueR uses more attributes that appear

in the original queries than TALOS+. The imprecision of the refined query for Q2 by

ConQueRs is much higher than that of ConQueR and TALOS+, since ConQueRs finds the

refined queries on the alternative query schema and does not add any selection predicates

into sel(Q′) in this case.

Processing Efficiency. The running time performance comparisons are shown in Fig-

ures 5-5(a) and (b), respectively, for the Basketball and TPC-H data sets. Since ConQueRs

is only one component of ConQueR, the performance of ConQueRs is, not surprisingly,

better than that of ConQueR. The experimental results show that ConQueR outperforms

TALOS+ by a factor of 1.5 to 6 times, indicating the efficiency of the constraint-based ap-

proach over the classification-based approach. The classification-based approach incurs

a high computation overhead to determine optimal node splits.

Effectiveness of Pruning Optimization. To validate the effectiveness of the pruning

optimization in ConQueR for processing SPJA queries, we also compare the performance

of ConQueR against ConQueR−.

Table 5.7 compares the number of considered candidate refined queries and the run-

ning times of ConQueR and ConQueR− for the SPJA queries Q3, Q4, and Q5. The results

clearly demonstrate the effectiveness of the pruning optimization. For queries Q3 and Q4,

141

Candidate queries Running time (s)
Query ConQueR ConQueR− ConQueR ConQueR−

Q3 18 380 0.44 0.65
Q4 31 600 0.38 0.70
Q5 1263 63455 0.55 53.50

Table 5.7: Comparison of ConQueR and ConQueR−

ConQueR is 1.5 to 2 times faster than ConQueR−, while for query Q5, ConQueR is two or-

ders of magnitude faster than ConQueR−. This huge performance difference is due to the

significant pruning of useless candidate refined queries: the number of candidate refined

queries considered by ConQueR and ConQueR− are, 1263 and 63455, respectively.

5.7.2 Comparison of Explanation Models

In this section, we evaluate the usefulness of our proposed query refinement approach

to explain why-not questions. We also compare the explanations obtained from the two

existing approaches: the approach that is based on identifying the culprit operators that

filtered out the missing tuples [9], which we denote by CO, and the approach that is

based on database modifications to produce the missing tuples [22], which we denote by

DM.

We used the test queries on the Basketball data set (i.e, Q1 to Q5 in Table 5.4) and

their corresponding why-not questions (i.e., W1 to W5 in Table 5.5). Table 5.8 shows the

refined queries, denoted by RM
i , computed for the why-not question Wi on query Qi using

approach M, where M ∈ {conquers, conquer, talos+}. The last column in Table 5.8 shows

the number of refined queries returned by each method. When ConQueR or ConQueRs

returns more than one refined query, we only report the one that is the most similar to

the input query.

Query Q1 finds the recent high-scoring NBA players. Although some expected well-

known superstar players such as “LeBron James” and “Kobe Bryant” are included in

the result, other superstar players such as “Rick Barry” and “Wilt Chamberlain” are

142

Refined query Num
Rconquers

1 πnameσyear≥1965∧pts≥2302 (Player ./ Regular) 1
Rconquer

1 πnameσyear≥1965∧pts≥2302∧dreb≤121∧asts≥282∧oreb≤507∧weight≥165

(Player ./ Regular)
1

Rtalos+

1 πnameσpts>2345∧asts>403∧ f tm≤675∧gp≤80∧p f≤286∧reb>223 (Player ./
Regular)

1

Rconquers

2 πname,team(Player ./ Regular ./ TeamSeason) 1
Rconquer

2 πname,teamσo f ga≤6664∧hinch≤6∧oto≤1201∧o f tm≤1658 1
σweight≤210∧doreb≤960∧oreb≤3533∧ f irstseason≤2003∧op f≤1871 (Player ./
Regular ./ TeamSeason)

Rtalos+

2 πname,teamσ f ga>1526∧o reb≤3312∧p f≤178∧weight>165 1
(Player ./ Regular ./ TeamSeason)

Rconquers

3 πname,AVG(pts)Gnameσyear≤1970∧pts≥2596 (Player ./ Regular) 1
Rconquer

3 πname,AVG(pts)Gnameσyear≤1970∧pts≥2596 (Player ./ Regular) 1
Rtalos+

3 πname,AVG(pts)Gnameσyear≤1971∧pts>2637 (Player ./ Regular) 1

Rconquers

4 πname,S UM(pts)Gnameσyear≥2007∧pts≥2250∧blk≥81 (Player ./ Regular) 2
Rconquer

4 πname,S UM(pts)Gnameσyear≥2007∧pts≥2250∧blk≥81 (Player ./ Regular) 2
Rtalos+

4 πName,S UM(pts)Gnameσyear≤2003∧ f irst season>2002∧ f tm>202∧tpm≤63

(Player ./ Regular)
1

Rconquers

5 πteam,S UM(won)Gteamσlost≤28∧d pts≥8109∧year≥1992 (Player ./
Regular)

1

Rconquer
5 πteam,S UM(won)Gteamσlost≤28∧d pts≥8109∧year≥1992 1

σd f gm≤3139∧o blk≥410 (Player ./ Regular)
Rtalos+

5 πteam,S UM(won)Gteamσo f ga≤3989∧d f gm≥1708∧d oreb≤628 (Player ./
Regular)

1

Table 5.8: Refined queries for test queries on Basketball data set

missing from the result. The why-not question W1 seeks an explanation for these two

missing players. The CO approach would have simply identified the selection predicate

“year ≥ 2000” as the reason for Q1 to have excluded the missing tuples. The DM ap-

proach would have suggested several possible ways to modify the data set for the two

why-not tuples to be selected by Q1. For instance, if all the attributes of sel(Q1) were

allowed to be modified, then there will be a total of 224 ways to modify the existing

tuples: there are 12 ways to modify the tuples in Regular relation to include Barry,

and there are 12 ways to modify the tuples in Regular relation to include Chamberlain.

The refined query computed by ConQueRs, however, not only implicitly points out that

missing tuples are excluded due to the predicate on the year attribute, but it also re-

143

veals the additional information that the missing players are actually superstars in the

1960’s. The refined query computed by ConQueR has higher precision as it further in-

troduces additional selection predicates on attributes such as weight, asts. The refined

query computed by TALOS+ has higher precision but lower similarity compared to the

refined query computed by ConQueR. In fact, for the other test queries, although the

refined queries computed by TALOS+ have slightly higher precision (relative to those

computed by ConQueR), the refined queries are very different from the original queries.

For instance, the refined query computed by TALOS+ for Q4 uses a very different set of

attributes from the attributes in sel(Q4).

Query Q2 finds the players and the teams that they were playing for when the teams

gained a large number of offense points and steal statistics. The why-not question W2

asks why “Michael Jordan” and his team “WAS” are missing in the result. The CO

approach would not be able to generate any explanation for this query, because when

Jordan was playing for “WAS”, he did not participate in any playoff games; thus, the

why-not tuple does not have any matching tuples in the join result of Player, Playoff and

TeamSeason. For the DM approach, if the projected attributes were not allowed to be

modified, then no explanation can be given for the same reason. Otherwise, there are

a total of 13 ways to modify the team attribute of the tuples corresponding to Jordan

to return the why-not tuple. Our query refinement approach, which can derive refined

queries that have different schema from the input query, is able to compute a refined

query that involves the relations Player, Regular, and TeamSeason. From this refined

query, the user can figure out why (“Jordan”, “WAS”) was missing from the original

query’s result: it is due to the fact that Jordan participated in only regular-season games

when he was playing for “WAS”.

For queries Q3, Q4, and Q5 that are SPJA queries with complex why-not questions,

the approach CO is not applicable. The approach DM, which is the most flexible ap-

proach, in general has many possible options to modify values in the data set to satisfy

the aggregation constraints for these complex why-not questions. In the rest of this sec-

144

tion, we will just focus on the explanations computed by ConQueR.

Query Q3 computes the average of the “high points” (defined to be more than 2600

points) scored by players in regular-season games for the period until 1970. The output

includes (“Rick Barry”, 2775), (“Wilt Chamberlain”, 3159) and (“Elgin Baylor”, 2719).

The why-not question W3 asks why “Kareem Abdul-Jabbar” with an average high-point

score of more than 2000 is missing from the result. The refined query computed by

ConQueR indicates that the missing tuple will be included if the predicate on pts is mod-

ified to become “pts ≥ 2596”. This refined query turns out to be a precise refined query

that returns exactly one additional tuple that matches the missing tuple.

Query Q4 computes the total points scored by players for regular-season games that

satisfy the following three conditions: year > 2000, pts > 2300, and blk > 70. The

result contains only two tuples: (“Dwyane Wade”, 2386) and (“LeBron James”, 2304).

The why-not question W4 asks why the total points of James are not higher than that of

Wade. The refined query computed by ConQueR modifies the three selection predicates

as follows: year ≥ 2005, pts ≥ 2304, and blk ≥ 66; and its output now contains (Wade,

2386) and (James, 4782).

Query Q5 computes the total games won by teams that satisfy the following con-

ditions: lost < 30, dpts > 8000, and year ≥ 2008. The result contains two tuples,

(“DEN”, 108) and (“LAL”, 65). The complex why-not question W5 asks why the team

“CHI” is not in the result such that among the three teams, (1) the total games won by

“CHI” is the minimum, and (2) the total games won by “LAL” becomes the maximum.

The refined query computed by ConQueR modifies the predicates as follows: lost ≤ 28,

dpts ≥ 8109 and year ≥ 1992; and its output now contains the tuples (“CHI”, 57),

(“DEN”, 108), and (“LAL”, 122).

145

5.8 Summary

In this chapter, we introduced a new paradigm for explaining why-not questions on query

results (the second variant of QBO). Our approach, named ConQueR, is based on automat-

ically generating a refined query, whose result includes both the original query’s result

as well as the user-specified missing tuples. In contrast to the existing explanation mod-

els [9, 22], our approach goes beyond merely identifying the “culprit” query operator

responsible for the missing tuples, and is useful for applications where it is inappropri-

ate to modify the database to obtain missing tuples. We have proposed novel algorithms

to generate good quality refined queries that are not only similar to the original query,

but also produce (approximately) precise query results with a small number of irrele-

vant tuples. Besides the basic SPJ queries, ConQueR can also answer complex why-not

questions on SPJ queries with aggregation that involve comparison constraints. Our ex-

perimental results demonstrated that ConQueR not only offers a more flexible approach

to explain why-not questions, but its constraint-based method of deriving refined queries

is also more efficient than the classification-based method of TALOS for the first variant

of QBO.

146

Chapter 6

Instantiation and Evaluation of Partial

Queries

It is desirable for database systems to provide novice users with a flexible method to

query the systems, while still providing expert users with tools that maximize their pro-

ductivity. Our third setting of QBO, highlighted in Table 6.1, introduces the concept of

partial queries, which works towards addressing this usability issue. We present the def-

inition of partial queries in Section 6.1, and our approaches to solve the two evaluation

modes relating to partial queries: (1) evaluation of partial queries (Section 6.2), and (2)

instantiation of partial queries (Section 6.3). We show the experimental results of eval-

uating and instantiating partial queries in Section 6.4. Finally, we summarize our work

on partial queries in Section 6.5. Part of the contents and materials in this chapter were

previously published in [50].

6.1 Partial Queries

A partial query Q = (Qbase,Cans) consists of two components: a base query Qbase and a

set of constraints Cans. The base query Qbase is a conventional relational query that re-

trieves a set S base of tuples, which serves as the base data for the partial query. Each sub-

147

Parameters
QBO Problem Input query Q Given result table T

The first variant - Q is known T = Q(D)
- Q is unknown T is a set of specific tuples

The second variant Q is known T = Q(D)
⋃

S
S is a set of tuples that are not present in Q(D)

The third variant Q is partially specified T is a set of constraints that must be satisfied
by the query result of each derived query Q′

Table 6.1: The Focus of Chapter 6

set S ans ⊆ S base that satisfies all the constraints in Cans is a result of the partial query Q.

The basic aggregation constraint in Cans is a numeric constraint of the form “X op c”,

where X is some expression (to be described), op is one of the standard comparison oper-

ators (=,≤,≥, <, >), and c is a non-negative integer constant. The constraints permitted

in Cans are of the following six types:

(C1) A sum constraint is a constraint on the sum of some attribute Ai in S ans, de-

noted by sum(Ai) op c.

(C2) A count constraint is a constraint on the number of distinct values of a sub-

set A′ of the attributes in S ans, denoted by count(A′) op c.

(C3) A cardinality constraint is a constraint on the number of tuples in a query

result (or the intermediate result of a subexpression of a query). We denote this constraint

by |Q| op c, where Q is either a query or a query’s subexpression.

(C4) An optimization constraint is specified to maximize/minimize an aggregated

value, and there are two forms of optimization depending on whether the aggregated

value is bounded. A bounded optimization constraint is of the form “opt (agg(X)) op c”,

and an unbounded optimization constraint is of the form “opt (agg(X))”. Here, opt is ei-

ther minimize or maximize; agg is an aggregation operator (sum, count, cardinality); X is

either a single attribute (if agg is sum or count), a sequence of attributes (if agg is count),

or a query subexpression (if agg is cardinality); and op is a non-equality comparison op-

erator. As an example, the constraint maximize(sum(Ai)) ≤ c is a bounded optimization

constraint on sum, while the constraint maximize(sum(Ai)) is an unbounded optimization

148

constraint on sum. Note that Cans can contain at most one optimization constraint.

(C5) A content constraint on S ans is of the form contain(A′,V), where A′ is a subset

of attributes in S ans, and V is a set of tuple values (of the same arity as the number of

attributes in A′). The constraint requires that the projection of S ans on A′ must contain

the set of tuples V .

(C6) A group-by constraint on S ans is of the form groupby(A′, agg, B′) op c, where A′

and B′ are subsets of attributes in S ans, and agg is an aggregation operator (i.e., sum,

count, or cardinality). The constraint requires that if S ans is partitioned into groups of

tuples having the same values for attribute(s) A′, then each group G must satisfy the

aggregation constraint agg(B′) op c. For the case where agg refers to cardinality aggre-

gation, the B′ parameter is unnecessary and is omitted. In addition to this basic form

of group-by constraint where the same count/sum constraint (i.e. c) is applied to each

group, it is also possible to specify individual count/sum constraint for each group by ex-

plicitly listing the desired values of c’s using the form: groupby(A′ = vi, agg, B′) op ci.

Note that Cans can contain at most one group-by constraint.

We will use PQE to refer to the problem of evaluating partial queries, and PQI to

refer to the problem of instantiating partial queries. For simplicity and without loss

of generality, in our discussion on PQE, cardinality constraints are treated as a form of

sum constraints (i.e., summing on a virtual attribute with a value of 1 for each tuple);

therefore, we will not explicitly mention cardinality constraints in Section 6.2. We refer

to cardinality constraints in Section 6.3 when we discuss PQI, where the constraints

relate to the cardinality of intermediate result sizes.

In this work, we require the domain of the attribute involved in a sum or optimiza-

tion constraint to be non-negative values. Since both PQE and PQI are generally hard

problems, we focus on finding some answer for PQE and PQI and leave the problems of

ranking and/or finding top-k answers for partial queries as part of our future work.

Running example. We use a song database for our running example. Part of the schema

is illustrated in Figure 6-1, where the key attribute names are shown in bold. The Song

149

title genre length filesize artist album
M1 rock 8 6 A1 AL4
M2 rock 5 3 A1 AL1
M3 rock 4 2 A2 AL1
M4 rock 10 2 A3 AL2
M5 rock 6 5 A4 AL3
M6 rock 5 4 A5 AL3
M7 blues 7 5 A2 AL3

album sales year
AL1 100 1980
AL2 75 1980
AL3 70 1975
AL4 120 1985
AL5 100 1990

(a) Song (b) Album

Figure 6-1: Running Example: Song Database D

relation describes information about each song (identified by title): the attributes genre,

length, filesize, artist, and album refer to its genre, duration (in minutes), file size (in

MB), the artist performing this song, and the album that the song belongs to. The Album

relation describes information about each album (identified by album): the attributes

sales and year refer to the number of albums sold and the year that it was released.

6.1.1 Complexity Results

In this section, we establish the hardness of the problem of evaluation and instantiation

of partial queries. The proofs of the following two theorems are given in Appendixes E

and F.

Theorem 6.1 Consider a partial query Q = (Qbase,Cans) with Cans containing only two

count constraints: count(A1) = n and (2) count(A2) = m, where A1 and A2 are attributes

of S ans. The problem of evaluating Q is NP-complete. �

Theorem 6.2 Consider a partial query Q = (Qbase,Cans) with Cans contains only one

cardinality constraint requiring that |Qbase| = n. The problem of instantiating Q into a

query Q′ such that the selection condition of Q′ is in the conjunctive form and consists

of at most ` predicates selected from a set of given predicates is NP-hard. �

150

6.2 Evaluating Partial Queries

In this section, we consider the problem of evaluating partial queries. Since some special

cases of partial queries have been studied with polynomial [2] or pseudo-polynomial

evaluation algorithms [18, 26], partial queries belonging to these specialized classes

could be evaluated using these techniques.

However, there remains two open issues. First, there is the question of whether there

are other non-trivial special cases of partial queries that are amenable to polynomial/pseudo-

polynomial evaluation algorithms. Second, the problem of evaluating general partial

queries with arbitrary constraints (sum, count, optimization, group-by, content) has not

been addressed to the best of our knowledge.

To address these two questions, we present two evaluation algorithms, DP and Greedy,

respectively. The first algorithm, DP, is a pseudo-polynomial algorithm that is designed

for evaluating partial queries with any number of sum constraints and at most one of ei-

ther count, content, or group-by constraint. Our second algorithm, Greedy, is a heuristic

approach for evaluating general partial queries with any combination of constraints.

6.2.1 Dynamic Programming Approach

We first explain how DP evaluates partial queries with multiple sum and a single count

constraints. For simplicity and without loss of generality, we explain the evaluation for

a partial query Q with the following two constraints on attributes A and B:

• Sum maximization constraint: maximize(sum(A)) ≤ K, and

• Count constraint: count(B) = m

Let the number of distinct B attribute values in S base be `. For simplicity and with-

out loss of generality, let the domain of the B attribute values in S base be dom(B) =

{1, 2, · · · , `}1.

1In general, we can easily map an arbitrary set of ` values into the set {1, 2, · · · , `}.

151

For each b ∈ dom(B), let S b
base and S ≤b

base defined as in Equations 6.1 and 6.2, re-

spectively. Let E[1 · · · `, 1 · · ·K] be a two-dimensional matrix, where each cell E[b,V]

is a boolean value defined in Equation 6.3. Each row E[b, .] is a subset-sum problem

that can be solved in O(K|S b
base|). Therefore, the entire matrix E can be constructed in

O(K|S base|).

LetD[1 · · · `, 1 · · ·m, 1 · · ·K] be a three-dimensional matrix, where each cellD[b, d,V]

is a boolean value defined in Equation 6.4.

S b
base = {t ∈ S base | t.B = b} (6.1)

S ≤b
base = {t ∈ S base | t.B ≤ b} (6.2)

E[b,V] = true iff ∃ S ⊆ S b
base s.t.

∑

t∈S
(t.A) = V (6.3)

D[b, d,V] = true iff∃ S ⊆ S ≤b
base s.t. |πB(S)| = d ∧

∑

t∈S
(t.A) = V (6.4)

DP can find a solution if there exists a maximum value Vmax ≤ K such that (1)

D[`,m,Vmax] = true, and (2) for other values V > Vmax, D[`,m,V] = f alse. We have

the following recurrence relation:

D[b, d,V] = D[b − 1, d,V] ∨

∃ V ′ ∈ [1,V] s.t. (E[b,V ′] = 1 ∧ D[b − 1, d − 1,V − V ′] = 1) (6.5)

The recurrence relation indicates thatD[b, d,V] can be derived from either (1)D[b−
1, d,V] if we do not select any tuples from S b

base, or (2) D[b − 1, d − 1,V − V ′] if we

select a subset of tuples S ′ from S b
base with

∑
t∈S ′ t.A = V ′.

The computation of each D[b, d,V] requires at most V look up operations on the

corresponding row E[b, .] in the E matrix. Thus, the time to build matrixD in the worst

case is O(m`
∑K

V=1(V)) = O(K2m`).

152

Deriving S ans. In addition to the main matrixD, DP uses another matrix DTrace[`,m,K]

that has the same dimensions with D to derive S ans. Each cell DTrace[b, d,V] is set to

either (1) a value 0 if D[b, d,V] is derived from D[b − 1, d,V], or (2) a value V ′ > 0 if

D[b, d,V] is derived fromD[b − 1, d − 1,V − V ′] and E[b,V ′].

To derive the set of returned tuples S ans, DP first determines the maximum value

Vmax ≤ K s.t. D[`,m,Vmax] = true. If DTrace[`,m,Vmax] = 0, then S ans is the set

of tuples that makes D[` − 1,m,Vmax] = true. Otherwise, if DTrace[`,m,Vmax] = V ′,

then S ans is the union of the set of tuples that makes D[`−1,m−1,Vmax−V ′] = true and

the set of tuples that makes E[`,V ′] = true. The technique to derive a set of tuples that

makes E[`,V ′] = true follows a standard procedure for solving the subset-sum problem.

We briefly describe this procedure in the following.

Assume that S `
base = {t1, · · · , ty}. To compute E[`, .], DP builds a two-dimensional

matrix F[1 · · · y, 1 · · ·K] with the following recurrence equation.

F[i,V] = F[i − 1,V] ∨ F[i − 1,V − ti.A] (6.6)

DPmaintains another matrix, denoted as FTrace[1 · · · y, 1 · · ·K], that has the same dimen-

sionality as F. Each FTrace[i,V] keeps track of how F[i,V] is derived; i.e., FTrace[i,V]

is set to either (1) f alse if F[i,V] is derived from F[i − 1,V]; or (2) true, otherwise.

To find a subset S ` of tuples that make E[`,V] = true, DP traces from FTrace[y,V].

If F[y,V] = f alse, then S ` is the set of tuples that makes F[y − 1,V] = true. Otherwise,

if F[y,V] = true, then S ` is the union of {ty} and the set of tuples that makes F[y−1,V −
ty.A] = true.

The space complexity of DP is O(K|S base| + Km`) to keep the matrices for the recur-

rence relations in Equations 6.5- 6.6 in the main memory.

Example 6.1 Consider a slightly modified Example 1.6 (with smaller constraint val-

ues) to retrieve a set of “rock” songs S ans such that (1) maximize(sum(f ilesize)) ≤ 6,

and (2) count(artist) = 2. Figure 6-2 shows a simple encoding of the artist’s domain

153

title artist filesize
t1 M1 A1 (1) 6
t2 M2 A1 (1) 3
t3 M3 A2 (2) 2
t4 M4 A3 (3) 2
t5 M5 A4 (4) 5
t6 M6 A5 (5) 4

S base = σgenre=“rock”(Song)

Figure 6-2: Example 6.1

values (e.g., “A1” is mapped to 1) from the Song relation in our running database.

To derive S ans, DP builds a matrix D[5, 2, 6]. According to the recurrence relation in

Equation 6.5, D[5, 2, 6] can be derived from D[4, 2, 6]. However, since D[4, 2, 6] = 0,

D[5, 2, 6] must be derived from the second case. In the second case of Equation 6.5,

since D[4, 1, 6 − 4] = 1 and E[5, 4] = 1, it derives that D[5, 2, 6] = 1. DP traces from

DTrace[5, 2, 6] to return a set S ans = {t3, t6} as the answer. �

Approximation version of DP. When K and/or ` is large, the space required by DP might

exceed the available memory. In these cases, DP needs to reduce the space requirement

by scaling down the domain values of the attribute used with the sum constraint (i.e., A

attribute) by some factor cf; thus, K will be replaced by K/cf. The solution of DP is

approximate in these cases.

Content constraint. We discuss the adaption of DP to solve PQE when Cans contains any

number of sum constraints and a single content constraint next.

For simplicity and without loss of generality, assume that Cans consists of two con-

straints: (1) maximize(sum(A)) ≤ K, and (2) content(B, S content). We also assume the

domain of the B attribute values in S base be dom(B) = {1, 2, · · · , `}.

The definitions of S b
base, S ≤b

base, and matrix E[., .] described above are used here as

well. DP builds a two-dimensional matrix Dcontent[1 · · · `, 1 · · ·K], where each Dcontent[b,V]

is a boolean value to indicate whether there exists a subset S ⊆ S ≤b
base such that

∑
t∈S (t.A) = V .

154

We have the following recurrence relation.

Dcontent[b,V] = Dcontent[b − 1,V] ∨

∃ V ′ ∈ [1,V] (E[b,V ′] = 1 and Dcontent[b − 1,V − V ′] = 1) (6.7)

To satisfy the content constraint, for each value b ∈ S content, we must select at least

one tuple from S b
base to insert into S ans. For this constraint, DP requires Dcontent[b,V] to

be derived from Dcontent[b−1,V −V ′] and E[b,V ′] (the second case of Equation 6.7) and

not from the first case, for all b ∈ S content. The reason is that if Dcontent[b,V] can only be

derived from Dcontent[b − 1,V] (the first case of Equation 6.7), then no tuple in S b
base has

been selected, which violates the content constraint.

DP can find a solution if there exists a maximum value Vmax ≤ K such that (1)

Dcontent[`,Vmax] = true, and (2) for other values V > Vmax, Dcontent[`,V] = f alse.

Group-by constraint. We discuss the adaption of DP to solve PQE when Cans contains

any number of sum constraints and a single group-by constraint. For simplicity and

without loss of generality, we assume that Cans consists of the following two constraints:

(1) Sum maximization constraint: maximize(sum(A)) ≤ K, and (2) Group-by sum con-

straint: groupby(B, sum, A) ≤ K′.

The definitions of S b
base and S ≤b

base described above are used here as well. Let F[1 · · · `,
1 · · ·K′] be a two-dimensional matrix, where each cell F[b,V] = true if ∃ S ⊆ S b

base

such that
∑

t∈S (t.A) = V . Each row F[b, .] is a subset-sum problem that can be solved in

O(K′|S b
base|). Therefore, the entire matrix F can be constructed in O(K′|S base|).

DP will build a two-dimensional matrix Dgb[1 · · · `, 1 · · ·K], where each Dgb[b,V]

is a boolean value indicating whether there exists a subset S ⊆ S ≤b
base such that: (1)

∑
t∈S (t.A) = V and (2) groupby(B, sum, A) ≤ K′ applied on S is true. We have the

following recurrence relation.

155

Dgb[b,V] = Dgb[b − 1,V] ∨

∃ V ′ ∈ [1,K′] (F[b,V ′] = 1 and Dgb[b − 1,V − V ′] = 1)

DP can find a solution if there exists a maximum value Vmax ≤ K such that (1)

Dgb[`,Vmax] = true, and (2) for other values V > Vmax, Dgb[`,V] = f alse.

6.2.2 Greedy Approach

In this section, we present our second algorithm, denoted by Greedy, which is a heuristic

approach for evaluating general partial queries with any combination of constraints. As

shown in Theorem 6.1, when there are only two count constraints, the PQE problem is

already NP-complete in the strong sense. For ease of presentation, our discussion is

organized into three cases from the simplest scenario to the most general.

Count Constraints. We first discuss the simplest scenario where all the constraints

in Cans are count constraints. For simplicity and without loss of generality, we consider

a partial query with two count constraints count(Bi) = mi, i ∈ [1, 2], where m1 ≤ m2.

The heuristics of Greedy bases on the following lemma.

Lemma 6.1 If there exists a subset S count ⊆ S base that has count(B1) = m1 and count(B2) ≥
m2, then there exists a subset S ans ⊆ S count that has count(B1) = m1 and count(B2) = m2.

Proof of Lemma 6.1. Given a subset S count ⊆ S base that has count(B1) = m1 and

count(B2) ≥ m2, we first pick m1 arbitrary tuples in S count that have m1 distinct B1 val-

ues to put into S ans. The number of distinct B2’s values in S ans is currently not greater

than m1, and therefore is also not greater than m2, since our assumption is m1 ≤ m2. We

then need to insert some tuples from (S count − S ans) into S ans to increase the number of

distinct B2’s values in S ans into m2. The task is executed by performing m2 − |πB2(S ans)|

156

steps. In each step, we pick a tuple in (S count − S ans) to insert into S ans in such a way that

the number of distinct B2’s values in the resultant S ans increases by 1. �

Using Lemma 6.1, Greedy derives a set S count ⊆ S ans that has count(B1) = m1 and

count(B2) is a large as possible. The rationale is that if S count has count(B2) ≥ m2, then

we can derive S ans from S count satisfying all the constraints. The details of Greedy are

as follows.

Greedy first partitions S base using the values of B1 attribute, and performs m1 iter-

ations to insert m1 partitions of S base into S count. At each iteration, Greedy considers

all potential partitions in S base, and chooses the “best” partition to insert into S count such

that the resultant S count has the largest number of distinct B2’s values. After m1 itera-

tions, there are two outcomes. If |πB2(S count)| ≥ m2, Greedy derives S ans that satisfies

all the count constraints from S count using Lemma 6.1. Otherwise if |πB2(S count)| < m2,

Greedy returns S ans = S count as an approximation solution that does not satisfy the count

constraint on B2.

The time complexity of Greedy is O(m1|S base|), since Greedy uses m1 iterations and

scans all tuples in S base in each iteration.

Count & Sum Constraints. We consider a more complex scenario where there is a

combination of count and sum constraints. For simplicity and without loss of generality,

we consider a partial query with two constraints: (1) maximize(sum(A)) ≤ K, and (2)

count(B) = m.

Greedy tries to satisfy the “easier” type of constraints before considering the “harder”

constraints. Specifically, Greedy considers the constraints in the following order: count

constraint, sum constraint, and finally the optimization constraint.

To satisfy the count constraint, Greedy can select an arbitrary subset S count ⊆ S base

that has |πB(S count)| = m. The heuristics of Greedy is based on the observation that

the more tuples that S count has, the more flexibility Greedy has to select a subset of

tuples from S count to satisfy other constraints. Therefore, Greedy will find S count that has

the maximum cardinalities among all possible S count’s. For this task, Greedy partitions

157

tuples in S base based on their B’s values, and picks m partitions that have the largest

cardinalities to form S count.

To satisfy the sum constraint, Greedy partitions tuples in S count based on their B

attribute values, and selects the tuple that has the smallest A value in each partition

of S count to insert into S ans. If
∑

t∈S ans
(t.A) > K, it implies that any other subsets of S count

will not satisfy both count and sum constraint; Greedy returns S ans as an approximation

result in this case.

Finally, Greedy handles the optimization constraint by adding some tuples from

(S count − S ans) into S ans to increase the summation of the A’s value of the selected tuples.

This task is a subset-sum problem: select a subset of tuples from (S count − S ans) that has

max(sum(A)) ≤ K − ∑
t∈S ans

(t.A). It is important to note that we cannot add any tuples

from (S base − S count) into S ans, since it increases the number of distinct B’s values in S ans

and thus makes S ans violate the count constraint.

The running time of Greedy is O(|S base| + TS S P), where TS S P is the running time of

the solver for the subset-sum problem in the last step of Greedy. In this work, Greedy

uses the conventional pseudo-polynomial algorithm to solve subset-sum problem; thus,

TS S P = O(K|S count|).

General Case. The techniques of Greedy described above can be extended to the gen-

eral case when Cans includes any combination of constraints. Following the “easier-

to-harder-constraint” heuristics, Greedy will consider the constraints in the following

order: (1) content constraints, (2) count constraints, (3) sum constraints, and (4) group

by together with optimization constraints. The absence of any constraints (e.g., count)

allows Greedy to skip the corresponding step(s) (e.g., skip the second step for count

constraints).

To simplify the presentation, we assume Cans includes the following four constraints:

(1) Content constraint: contain (A′, S content); (2) Count constraint: count(B) = m; (3)

Sum maximization constraint: maximize(sum(A)) ≤ K, and (4) Group-by constraint:

groupby(Agb, sum, A) ≤ K′.

158

First, Greedy satisfies the content constraint in such a way that will ease the con-

straints considered later. In particular, for each value t ∈ S content, let Pt ⊆ S base be the

maximal subset of S base that corresponds to t; i.e., πA′(Pt) = t. Greedy needs to select at

least one tuple in each Pt to put into S ans for t to be present in πA′(S ans). The heuristic

of Greedy is to select the tuple that has the smallest A value in each Pt to put into S ans

to ease the sum constraint. If S ans violates some of the remaining constraints, Greedy

returns S ans as an approximation solution and terminates at this step.

In the next step, Greedy aims to satisfy the count and then sum constraints in a

similar way as described above. More specifically, Greedy partitions S base based on

their B’s attribute, and inserts m − |πB(S ans)| partitions that have the largest cardinality

into S count. Greedy then selects the tuple that has the smallest A value in each partition

of S count to put into S ans.

Lastly, Greedy considers to insert some tuples from S count − S ans into S ans to satisfy

the group-by and optimization constraint at the same time. Since we only have sum

constraint(s) and a single group-by constraint in this step, Greedy will apply dynamic

programming approach of DP to solve this derived sub-problem.

The time complexity of Greedy is O(K′|S base| + KK′`) where ` denotes the number

of distinct Agb values in S base, since Greedy basically scans S base in the first and second

step and uses dynamic-programming approach in the last step.

6.3 Instantiating Partial Queries

In this section, we present our proposed algorithm, named LA for Look Ahead approach,

to instantiate partial queries. We focus on the context of generating targeted queries for

database testing, where the constraints are all cardinality constraints on the query result

or the query’s intermediate results (corresponding to subexpressions of the query) [7,

35].

The goal of our approach is to generate concise instantiated queries by modifying

159

the existing predicates’ constants or adding a small number of additional predicates.

We first present the techniques for the simple case with a single cardinality constraint

in Section 6.3.1, and then generalize the discussion to the general case with multiple

cardinality constraints in Section 6.3.2. In Section 6.3.3, we will present an alternative

sampling-based approach which is more efficient but may not always find a solution.

For simplicity and without loss of generality, we assume all the attributes in the query

schema have numeric domains; our techniques can be applied to categorical attributes as

well. We also assume, for simplicity, that the base query Qbase is a SPJ query; in practice,

our techniques can be applied to any SQL query that has no group-by clause.

6.3.1 Single Constraint

Consider a partial query Q with a single cardinality constraint |Q| = m. To simplify the

presentation, we assume that the base query Qbase does not have any selection predicates.

To avoid generating complex instantiated queries with many additional selection predi-

cates, LA uses a threshold parameter, denoted by hmax, to control the maximum number

of additional selection predicates in an instantiated query Qinst.

The instantiated query Qinst is first initialized to be Qbase. LA is based on a greedy

heuristics that iteratively adds one selection predicate to Qinst until we have |Qinst| = m.

At each iteration, LA considers all potential selection predicates “Ri.A j op c” where Ri

is a relation in Qinst, and chooses the “best” (or optimal) selection predicate, denoted

by Popt, such that the resultant query’s result size is at least m and is minimized; ties

are broken arbitrarily. At the end of each iteration, there are three possible outcomes.

If |Qinst| = m, LA terminates with the required instantiated query. If |Qinst| is reduced

(compare with the last iteration) and |Qinst| > m, LA continues with the next iteration

to pick another selection predicate to be added to Qinst. Otherwise, if |Qinst| remains

unchanged, LA either returns Qinst as an approximation solution, or backtracks to the

previous iteration to choose the next best selection predicate to replace the last chosen

predicate. The rationale behind the greedy of LA is to try to add the least number of

160

predicates to reduce the query result to satisfy the cardinality constraint.

LA introduces another control knob to derive more than one queries when the de-

rived instantiated query does not satisfy users’ requirements (e.g., |Qinst| differs largely

from m). Basically, LA repeats the same process and restricts the potential selection pred-

icates to involve only the attributes that have not been used in the selection conditions of

previous Qinst’s. The rationale is that LA tries to search in a new region to “escape” from

the local optimal region that previous instantiated queries are derived from.

Note that although our approach is more general than [35] in that the instantiated

queries can have additional selection predicates, our approach can be easily adapted to

produce instantiated queries without additional selection predicates by simply restrict-

ing the potential selection predicates to involve only the attributes in the base query’s

selection predicates.

Implementation. The selection of an optimal selection predicate at each iteration can

be efficiently implemented using appropriate data structures.

First, for each attribute A in S base, we maintain an attribute list of tuple records of the

form (v, i) corresponding to the ith tuple t ∈ S base where v = t.A; the attribute list is sorted

in non-descending order of v. With this sorted attribute list for attribute A, the number

of tuples in S base selected by a selection predicate can be determined in O(1) using the

following observation: for two consecutive tuples (v1, i) and (v2, j) in the attribute list

of A where v1 < v2; we have |σA≤v2(S base)| = |σA≤v1(S base)| + 1. Note that if the size

of S base is too large to fit into the main memory, some of the attribute lists have to be

kept on the disk.

Second, an array CR can be maintained in the main memory that has the same size

as S base, where each CR[i] is a boolean value to keep track of whether the ith tuple of S base

is still being selected after each iteration. Each CR[i] is initialized with a true value at

the beginning, and is updated at the end of each iteration based on whether the newly

selected optimal predicate Popt has pruned away the ith tuple.

Example 6.2 To give an example of how LA derives instantiated queries w.r.t. a single

161

cardinality constraint, consider a partial query Q on the Song database with Qbase =

“SELECT * FROM Album”, and Cans = {|Q| = 3}. Qinst is first initialized to be Qbase. LA

builds attribute lists for year and sales attributes and an array CR that has the size equal

to that of Album relation.

In the first iteration, among all selection predicates considered for attributes sales

and year, the best predicate is “sales > 75”, which reduces the result size to three tuples.

Hence, the instantiated query is “SELECT * FROM Album WHERE sales > 75”. �

Complexity. The selection of an optimal selection predicate at each iteration requires

at most one scan over each attribute of S base; thus, the time complexity is O(|S base|nattr),

where nattr denotes the number of attributes in S base. Since the number of iterations is

bounded by hmax, the time complexity to generate one instantiated query without back-

tracking is O(|S base|nattrhmax); and with n backtracks, the time complexity increases to

O(|S base|nattr(hmax + n)). The space complexity is O(|S base|) to keep CR in the main mem-

ory.

6.3.2 Multiple Constraints

In this section, we extend the approach of LA discussed in the previous section to in-

stantiate partial queries having multiple cardinality constraints. We explain LA using a

partial query Q with Cans containing k cardinality constraints of the form “|Qi| = mi”,

for i ∈ [1, k], where each Qi is a subexpression of the base query Qbase. In the following,

let S base,i be the result of each query subexpression Qi w.r.t. S base.

The idea of LA is to apply the techniques introduced in Section 6.3.1 to instantiate

the queries corresponding to the k subexpressions Qi of Q (w.r.t. the constraint mi)

sequentially in some sequence.

Consider two query subexpressions Qi and Q j where Qi is a subexpression of Q j.

Since the set of selection predicates in Qi is a subset of those in Q j, Qi is instantiated

before Q j. Otherwise, the instantiation of Qi after the instantiation of Q j might add new

162

selection predicates to Qi’s instantiation, and therefore also to Q j’s instantiation, which

possibly violates Q j’s constraint. The correct strategy is thus to first instantiate Qi be-

fore Q j, and to instantiate Q j such that no selection predicates related to Qi is introduced.

To determine the order of instantiating subexpressions of Q, LA constructs an order

graph G, where each subexpression Qi corresponds to a vertex of G and there exists a

directed edge from Qi to Q j if Qi is a subexpression of Q j. LA then obtains a topological

ordering of the vertices in G corresponding to the order of subexpressions of Q that LA

will investigate.

When considering a subexpression Q j and if |Q j| < m j, then it is impossible to satisfy

the constraint for Q j, since adding any selection predicates into Q j will further reduce

the size of Q j. Therefore, in the process of instantiating queries for a subexpression Qi,

at each iteration, LA chooses the “best” selection predicate, denoted by Popt, such that the

resultant query’s result size is at least mi and is minimized. In addition, LA further “looks

ahead” other subexpressions that have not been processed and are affected by Popt (i.e.,

the query subexpressions use the attribute in Popt) to ensure that the size of the resultant

query of each affected subexpression after using Popt does not violate its cardinality

constraint.

Implementation. Similar to the case with a single constraint, LA maintains k arrays CR,1,

· · · , CR,k in the main memory in the same role with CR. Each CR,i[j] is a boolean value

to keep track of whether the jth tuple of S base,i is still being selected after each iteration.

When considering a candidate selection predicate Pc that involves an attribute A

w.r.t. S base,i, LA sequentially scans the attribute list of A w.r.t. S base,i. Furthermore, LA

also scans the attribute lists of A w.r.t. all others S base, j’s that have not been processed

and have the attribute A in its schema to look ahead whether Pc violates the cardinality

constraints on S base, j’s.

Complexity. The running time of LA is O(
∑k

i=1(|S base,i|)), and the space complexity is

O(
∑k

i=1 |S base,i|).

163

Example 6.3 Consider a partial query Q on the Song database with Qbase:

SELECT * FROM S ong, Album WHERE S ong.album = Album.album

and Cans = {|Q1| = 3, |Qbase| = 4}, where Q1 is “SELECT * FROM Album”.

LA will instantiate queries for Q1 first and then Qbase. To instantiate queries for Q1,

LA considers all candidate selection predicates in the form “A op v” with A is either

year or sales. For sales attribute, although the selection predicate Psales: “sales > 75”

makes the resultant query’s size minimized (i.e., 3), this predicate is discarded since with

the “look ahead” strategy, LA observes that the resultant query’s size of Q after using

Psales is 3, which is less than the required constraint value (i.e., 4).

For year attribute, LA derives “year ≤ 1980” as the optimal selection condition,

which makes Q1 satisfy the constraint, and the constraint in Q is not violated. Finally, LA

initializes Q1 into σyear≤1980(Album ./ Song), and derives an instantiated query for Qbase:

SELECT * FROM S ong, Album WHERE S ong.album = Album.album AND

year ≤ 1980 AND length ≤ 6.

�

6.3.3 Sampling-based Approach

This section introduces a variant of LA, referred to as LAe for the estimation version of LA,

that utilizes a sampling-based approach to improve the efficiency at the cost of generating

approximate solutions. Our experimental results show that the results produced by LAe

to be reasonably comparable to LA.

For simplicity and without loss of generality, we consider the case with a single

cardinality constraint, which requires |Qbase| = m. Recall that the main idea of LA is to

initialize Qinst = Qbase, and select an optimal selection predicate Popt at each iteration so

that |σPopt(Qinst)| is minimized and at least m. LA currently computes copt = |σPopt(Qinst)|
exactly using a data-driven approach.

164

Table Symbol # Tuples
adult adult 45222
lineitem LI 6001215
order O 1500000
partsupp PS 800000
part P 200000
customer C 150000
supplier S 10000
track track 10000000

Table 6.2: Table sizes (number of tuples)

LAe, however, saves the computation by only estimating the value for copt. LAe basi-

cally takes a random sample from S base, denoted as S sample, and performs Popt on S sample

to estimate copt. LAe can utilize some well-known sampling-based procedures for esti-

mating join selectivity in literature (e.g., t index, p index [19]) that guarantee good error

bounds for estimating copt. In this work, LAe follows t index method; the other sampling-

based methods for estimating join selectivity can be applied into our framework too.

Therefore, the framework of LAe consists of two steps. First, LAe takes a sam-

ple S sample of S base using t index procedure, and then applies the methods of LAwhere S sample

takes the role of S base.

6.4 Experimental Study

In this section, we evaluate the effectiveness and the efficiency of our proposed tech-

niques to support the two modes of processing partial queries. In Section 6.4.1, we

evaluate the performance of DP and Greedy in terms of their running time and the qual-

ity of their computed results. In Section 6.4.2, we demonstrate the effectiveness of LA to

support PQI, and compare the trade-offs of LA and LAe in terms of the running time and

the quality of instantiated queries. We also compare the quality of instantiated queries

returned by our methods with those returned by TQGen, the state-of-art approach pro-

posed in [35].

165

Q1: Qbase = π∗(adult) Q2: Qbase = π∗(adult)
maximize(sum(capitalloss)) ≤ 1000 maximize(sum(edunum)) ≤ 1000
count(occupation) = 4 groupby(nativecountry, card) ≤ 5
Q3: Qbase = π∗(adult) Q4: Qbase = π∗(adult)
maximize(sum(capitalloss)) ≤ 3000 maximize(sum(edunum)) ≤ 2000
3 ≤ count(occupation) ≤ 4 count(nativecountry) = 2
content(occupation, “Sales”) count(race) = 2

content(nativecountry, “US”)
groupby(nativecountry, race, count, ∗) ≤ 2

Q5: Qbase = π∗σlength≥240000(track) Q6: Qbase = π∗(part)
maximize(sum(length)) ≤ 30000000
milliseconds

maximize(sum(retailprice)) ≤ 80000

count(artist) = 5 count(brand) = 4
content(artist, “Bob Dylan”)
Q7: π∗(partsupp) Q8: π∗(lineitem ./ order ./ customer)
Q9: π∗(partsupp ./ part) Q10: π∗(partsupp ./ part ./ supplier)

Table 6.3: Partial queries for experiments

We used three real data sets for the experiments: Adult2, TPCH (with a database size

of 1GB), and a music data set containing 10, 000, 000 songs and 500, 000 artists3. We

used ten test queries including four queries on Adult data set (Q1 to Q4), one query on

music data set (Q5), and five queries on TPCH data set (Q6 to Q10). Queries Q7 to Q10

are the test queries used in [35]. The size of the test data is shown in Table 6.2, and the

test queries are shown in Table 6.3.

We used PostgreSQL 8.3 for our database system, all algorithms were coded using

C++ and optimized with GNU C++ compiler. Our experiments were conducted on a

dual-core, 2.33GHz PC running Linux with 3.25GB of RAM and a 250GB hard disk.

6.4.1 Evaluating Partial Queries

This section compares DP and Greedy to evaluate partial queries in terms of the quality

of computed results and the running time. We used four partial queries (Q1 to Q4) that

involve small data sets and another two partial queries (Q5 and Q6) that involve large

data sets.

2http://archive.ics.uci.edu/ml/datasets/Adult
3http://musicbrainz.org/

166

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Q1 Q2 Q3 Q4 Q5 Q6

R
el

at
iv

e
ag

gr
eg

at
ed

 v
al

ue

DP
Greedy

 1

 10

 100

Q1 Q2 Q3 Q4 Q5 Q6

R
un

ni
ng

 ti
m

e
(lo

g-
sc

al
e)

 in
 s

ec
s DP

2.5

10

4.7

74

11

Greedy

1.7

10

2.4

1

29

9

(a) (b)

Figure 6-3: Comparison between DP and Greedy

Quality of Computed Results. Figure 6-3(a) compares the quality of the results com-

puted by DP and Greedy in terms of the relative aggregated value, defined as the ratio

between the actual aggregated value returned by a method and the required maximum

aggregated value. The results show that for queries Q1 to Q3, the aggregated values

returned by DP are optimal. The aggregated values derived by Greedy are reasonably

lower (i.e., 3% lower) than DP.

Query Q4 is an example of a general partial query that contains all kinds of con-

straints supported in this work and DP cannot handle. Thus, the DP result for Q4 is not

shown in Figure 6-3. For this query, Greedy can find one set of tuples that satisfies all

the constraints.

For queries that involve large data sets (Q5 and Q6), since the constructed matrices

for dynamic programming are too large to fit in the main memory, DP used its approxima-

tion version to scale down the domain values of the attributes used with the aggregated

constraints (e.g., length, retail price attributes). For Greedy, with the heuristic strategy,

Greedy first selected a set of tuples satisfying the count constraints, thus reducing the

number of tuples to be considered by the dynamic programming for the sum optimiza-

tion constraints. Therefore, the solution of Greedy can be better than DP in these cases.

In fact, the results of Greedy for Q6 is slightly better than DP. For queries Q5, with the

number of involved tuples and the number of distinct values of the attribute used with

167

the count constraint are really large (3727521 and 270352 tuples, respectively), Greedy

returns much better quality result than DP. The aggregated value returned by Greedy is

around 1.5 times larger than the ones by DP.

Running Time. Figure 6-3(b) compares the running time of Greedy and DP to return

one result set for each query. Greedy runs 1.5 - 2.5 times faster than DP. The result is

expected since Greedy is a heuristic solution.

In summary, DP can find better quality solutions with a trade-off of slower running

time compared to Greedy in the order of 1.5 - 2.5 times. The returned results by Greedy

are reasonably comparable to DP. In addition, Greedy can scale better than DP for large

data sets.

6.4.2 Instantiating Partial Queries

In this set of experiments, we compare the effectiveness of LA and LAe for PQI using

queries Q7 to Q10. We also compare our methods with TQGen, the state-of-art approach

proposed in [35]. We disabled the backtracking option for LA and LAe and reported the

first instantiated query returned by these methods for most of our test queries except for

query Q10 with five cardinality constraints, which will be described at the end of this

section.

Comparing LA & LAe. We compare these methods in terms of the quality of instantiated

queries and the running time. Following [35], we use the relative error to compare the

quality of an instantiated query, defined as Nr

N , where N is the target cardinality and Nr

is the actual cardinality of the instantiated query returned by a method.

Queries Q7 and Q8 each has a single cardinality constraint. Q7 is a selection query

on table PartS upp (PS) with the predicates on attributes availqty and supplycost. The

number of tuples in the result of Q7 is varied to be from 80K to 720K tuples; i.e. the

target selectivity is from 0.1 to 0.9. Query Q8 constraints the result of the join (LI ./

O ./ C) using four attributes C.acctbal, O.totalprice, L.extendedprice, and L.quantity.

168

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity

LA
LAe

TQGen

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity

LA
LAe

TQGen

(a) PS (b) LI ./ O ./ C

 0.96

 0.98

 1

 1.02

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity of Upper

Upper
Lower

 0.96

 0.98

 1

 1.02

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity of Upper

Upper
Lower

(c) PS ./ P (LA) (d) PS ./ P (LAe)

 0.96

 0.98

 1

 1.02

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity of Upper

Upper
Lower

 0

 5

 10

 15

 20

2 3 4 5

A
vg

 E
rr

or
 %

Number of constraints

LA
LAe

TQGen

(e) PS ./ P (TQGen) (f) PS ./ P ./ S

Figure 6-4: Quality of instantiated queries

169

Similar to the test on Q7, the target selectivity is also varied from 0.1 to 0.9. The results

(Figures 6-4 (a)&(b)) show that while LA returned instantiated queries that precisely

satisfy the cardinality constraints, the instantiated queries returned by LAe are reasonably

lower than these by LA; i.e., the relative error of instantiated queries by LAe is consistently

within 1 ± 0.06 (for Q7) and 1 ± 0.01 (for Q8).

Queries Q9 and Q10 each has multiple cardinality constraints. Query Q9 involves

the join between PS and P; the target cardinality of PS is fixed to 700K tuples and

the target selectivity of the join expression (P ./ PS) is varied between 0.1 and 0.9.

The results (Figures 6-4 (c)&(d)) show that both LA and LAe returned good instantiated

queries; i.e., the errors of instantiated queries by LA and LAe are 1 ± 0.02 and 1 ± 0.04,

respectively. Note that in Figures 6-4(c),(d),(e), Upper and Lower refer to the relative

error of (PS ./ P) and PS , respectively.

Query Q10 performs the join (P ./ PS ./ S) and the attributes used in the where-

clause are PS .availqty, PS .supplycost, P.retailprice, and S .acctbal. The number of

cardinality constraints imposed on subexpressions of Q10 is varied from 2 (the constraints

are on P and P ./ PS ./ S) to 5 (the constraints are on all subexpressions of Q10). We

compute the average relative error over the constraints in each test case (corresponding

to the selectivity from 0.1 to 0.9), and report the average of these errors over all the 9

test cases in Figure 6-4(f). The results show that the errors of LA are low and not greater

than 2%; whereas the errors of LAe are higher than those of LA and not greater than 15%.

Figure 6-5 illustrates the benefits of LAe over LA in terms of the running times where

LAe runs 10 times faster than LA. This result is expected since LAe manipulates much

smaller data structures (in the order of 100KB) whereas LA operates on larger data struc-

tures (in the order of 100MB).

Comparing with TQGen. We compare our methods with TQGen in terms of the qual-

ity of instantiated queries. The results of TQGen in Figures 6-4(a)-(f) are extracted

from [35]. We observe that the errors of TQGen are higher than those of LA and com-

parable with those of LAe. For instance, the relative errors of TQGen for Q8 are slightly

170

 1

 10

 100

Q7 Q8 Q9 Q10

R
un

ni
ng

 ti
m

e
(lo

g-
sc

al
e)

 in
 s

ec
s

Query

LA

14

250

40

61

LAe

1

28

2

9

Figure 6-5: Running time comparison

lower than those of LAe whereas the errors of TQGen for Q10 are slightly higher than

those of LAe.

In addition, we conduct another experiment to generate instantiated queries for Q7

to Q10 without constraining attributes to be used in the selection predicates of the query.

Note that TQGen cannot be applied to instantiate partial queries in these scenarios. The

results in Figures 6-6(a)-(e) show that both LA and LAe can also return high-quality in-

stantiated queries.

The refined queries reported in Figures 6-4(a)-(f) and Figures 6-6(a)-(d) are the first

one returned by LA and LAe. For query Q10 with five cardinality constraints on all of

its subexpression and when users do not constrain the attributes to be used the selection

predicates of the instantiated queries (Figure 6-6(e)), the first refined query returned by

LA and LAe has high relative error (e.g., larger than 100%). We turned on the control

knob for this case to search for the second refined query and yet obtained the good-

quality refined queries by both LA and LAe, as shown in Figure 6-6(e).

Examples of Instantiated Queries. We show some examples of instantiated queries

returned by LA and LAe in Table 6.4 for the scenarios when users restrict the attributes that

can be used in the selection predicates of the instantiated queries. Here Qi,s (resp. Qe
i,s)

represent the instantiated queries returned by LA (resp. LAe) for the constraint values

171

corresponding the selectivity factor of 0.1.

Instantiated Query
Q7,s πsupplycost≥900 (partsupp)
Qe

7,s πavailqty≤985 (partsupp)
Q8,s πtotalprice≤76413 (lineitem ./ order ./ customer)
Qe

8,s πextendedprice≤622087 (lineitem ./ order ./ customer)
Q9,s πavailqty≤8729∧retailprice≤1122 (part ./ partsupp)
Qe

9,s πavailqty≤6251∧retailprice≤1172 (part ./ partsupp)
Q10,s πsupplycost≥900∧retailprice≤1100∧acctbal≤219.83 (part ./ partsupp ./ supplier)
Qe

10,s πretailprice≤1093∧supplycost≤955∧acctbal≤6262 (part ./ partsupp ./ supplier)

Table 6.4: Instantiated queries for Q7 - Q10

6.5 Summary

In this chapter, we introduced the concept of partial queries, which allows a flexible way

to express a desired set of data using constraints (the third variant of QBO). In contrast

to the conventional “complete” relational queries where there is exactly a set of tuples

satisfying a query, a partial query could have multiple results due to the application of

the constraints. We have presented two modes of processing partial queries, which are

useful in different use-cases. The first evaluation mode, which evaluates a partial query

to compute one or more answers, is useful for data retrieval applications. The second

instantiation mode, which instantiates a partial query into one or more conventional re-

lational queries, each of which computes an answer to the partial query, is useful for

generating targeted queries in database testing. We have proposed novel algorithms for

both query evaluation and instantiation, and experimentally demonstrated their effective-

ness and efficiency.

172

 0.96

 0.98

 1

 1.02

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity

LA
LAe

 0.96

 0.98

 1

 1.02

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity

LA
LAe

(a) PS (b) LI ./ O ./ C

 0.96

 0.98

 1

 1.02

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity of Upper

Upper
Lower

 0.96

 0.98

 1

 1.02

 1.04

0.2 0.4 0.6 0.8 1

R
el

at
iv

e
E

rr
or

Selectivity of Upper

Upper
Lower

(c) PS ./ P (LA) (d) PS ./ P (LAe)

 0

 5

 10

 15

 20

2 3 4 5

A
vg

 e
rr

or
 %

Number of constraints

LA
LAe

(e) PS ./ P ./ S

Figure 6-6: Quality of instantiated queries (without constraining selection attributes)

173

174

Chapter 7

Conclusion

It has recently been asserted that the usability of a database is as important as its capa-

bility [23]. In this study, we have introduced a novel data-driven approach, called Query

by Output (QBO), that has many useful applications in not only database usability but

also in other fields such as data security, data exploration & analysis, database testing,

and data retrieval. In contrast to the conventional querying that takes an input query Q

and computes its output, denoted by Q(D), w.r.t. an input database D; the basic idea

of QBO is to take as input the query result Q(D) of some query Q, and compute a set of

instance-equivalent queries Q′1, · · · , Q′n such that each Q′i(D) is (approximately) equal

to Q(D). We investigated three settings of QBO in this work, the main contents of these

settings are summarized in Table 7.1.

Parameters
QBO Problem Input query Q Given result table T

The first variant - Q is known T = Q(D)
(published in [49]) - Q is unknown T is a set of specific tuples
The second variant Q is known T = Q(D)

⋃
S

(published in [48]) S is a set of tuples that are not present in Q(D)
The third variant Q is partially specified T is a set of constraints that must be satisfied
(published in [50]) by the query result of each derived query Q′

Table 7.1: Summary of the Three Settings of QBO

In the following, we summarize our main contributions w.r.t. each of the three vari-

175

ants of QBO that is considered in our work (Section 7.1). We conclude this thesis with

some interesting directions that are worthy of further exploration (Section 7.2).

7.1 Contributions

Our first contribution is to introduce the problem of QBO that aims to derive instance-

equivalent queries of a given input query Q w.r.t. a database D (the first variant of QBO).

Such queries can shed light on hidden relationships within the data, provide useful infor-

mation on the relational schema, as well as potentially summarize the original query. We

have developed an efficient system, called TALOS, for QBO that models the QBO problem

as a data classification task with a unique property that we term at-least-one semantics,

which is inherent in the derivation of the IEQs. To handle data classification with this

new semantics, we developed a new dynamic class labeling technique. In addition to

the basic framework, we designed several optimization techniques to reduce processing

overhead, and introduced a set of criteria to rank order output queries by various no-

tions of utility. Our experimental results on several real database workloads of varying

complexity highlighted the benefits of TALOS in generating interesting IEQs. We also

generalized the first setting of QBO with the following three additional challenges: (1)

the original query is not given as part of the input, (2) the derived queries are more ex-

pressive and go beyond the simple Select-Project-Join query fragment, and (3) there are

multiple database versions. We presented a generalized approach (REQUERE) to address

these issues, and demonstrated its effectiveness and efficiency with an experimental eval-

uation on real data sets.

Our second contribution is to introduce a new paradigm for explaining why-not ques-

tions on query results (the second variant of QBO). Our approach, named ConQueR, is

based on automatically generating a refined query, whose result includes both the origi-

nal query’s result as well as the user-specified missing tuples. In contrast to the existing

explanation models [9, 22], our approach goes beyond merely identifying the “culprit”

176

query operator responsible for the missing tuples, and is useful for applications where

it is inappropriate to modify the database to obtain missing tuples. We have proposed

novel algorithms to generate good quality refined queries that are not only similar to

the original query, but also produce (approximately) precise query results with a small

number of irrelevant tuples. Besides the basic SPJ queries, ConQueR can also answer

complex why-not questions on SPJ queries with aggregation that involve comparison

constraints. Our experimental results demonstrated that ConQueR not only offers a more

flexible approach to explain why-not questions, but its constraint-based method of deriv-

ing refined queries is also more efficient than the classification-based method of TALOS

for the first variant of QBO.

Our third contribution is to introduce the concept of partial queries, which allows a

flexible way to express a desired set of data using constraints (the third variant of QBO).

In contrast to the conventional “complete” relational queries where there is exactly a set

of tuples satisfying a query, a partial query could have multiple results due to the appli-

cation of the constraints. We have presented two modes of processing partial queries,

which are useful in different use-cases. The first evaluation mode, which evaluates a

partial query to compute one or more answers, is useful for data retrieval applications.

The second instantiation mode, which instantiates a partial query into one or more con-

ventional relational queries, each of which computes an answer to the partial query, is

useful for generating targeted queries in database testing. We have proposed novel al-

gorithms for both query evaluation and instantiation, and experimentally demonstrated

their effectiveness and efficiency.

7.2 Future Directions

There are many research venues relating to Query by Output problem that future studies

can undertake. We discuss below some of these interesting directions.

An Alternative Hybrid Solution for QBO. For the first variant of QBO, it is also inter-

177

esting to explore an alternative hybrid approach for QBO that includes an offline phase

to mine for soft constraints in the database and an online phase that exploits both the

database contents as well as mined constraints. It is expected that such hybrid approach

can run more efficiently than TALOS. There are two challenging questions to design such

hybrid approaches regarding what kinds of soft constraints to mine, and how to store and

retrieve these soft constraints in combination with the data-driven approach of TALOS.

Extending TALOS. Another future work is to extend the first variant of QBO for the

incremental version of the problem setting as follows. Consider the scenario when

users slightly modify the input tables; i.e., after finding the IEQs for a given input ta-

ble T , a user wants to generate the IEQs for another input table T ′, which differs slightly

from T by adding/removing some tuples from T . The current techniques of TALOS can

be applied to derive IEQs for T ′ from scratch. It is also useful to adapt TALOS for this

scenario to enhance the performance of finding IEQs for T ′ using the computation of

deriving IEQs for T , which has already been executed. This problem setting reminisces

the traditional incremental decision tree updates [51]. However, with the “at-least-one”

semantics introduced in QBO, it is challenging to adapt the existing techniques for the

incremental decision tree building into this incremental version of QBO.

Extending ConQueR. For the second variant of QBO, our current method of ConQueR

explains why-not questions w.r.t. queries in SPJ and SPJ + union/aggregation fragments.

It is also valuable to support other fragments of SQL queries such as top-k queries. For

instance, consider a query that finds top-5 favorite movies, and the result does not contain

the movie “Titanic”, which is one of the most favorite movie of the user. The question

is then why “Titanic” is not in the list of the returned movies. Explaining such situation

is non-trivial, since top-k queries involve ranking functions that are not handled by the

existing explanation models (and ConQueR as well) for why-not questions.

Reverse-engineering Dataflow Program. A recently popular data processing paradigm

is dataflow programming, where processing is organized in acyclic graphs. Source nodes

178

of the graph denote the input data sets, and sink nodes represent data sets to be gener-

ated. Intermediate nodes are the set-transformation operations from a suite of operator

templates [39]. Similar to programming paradigms, the process of creating a dataflow

is an iterative one: user makes an initial composition of the program, executes it, and

analyzes the results to make further changes. The process is repeated until the systems

generate desired results. Clearly, such a manual trial-and-error process is very cumber-

some and time-consuming. It is desirable to automatically or semi-automatically help

users to generate correct dataflow program. We can formulate this desirable function-

ality as a generalization of the “reverse-engineering” aspect of QBO problem as follows.

Given a template dataflow program where the input data sets are known, the output data

sets are also known or given in the form of the desired properties, and the intermediate

nodes are either known or selected from a set of templates. The problem is to select the

“correct” template(s) at each intermediate node so that the “instantiated” dataflow pro-

gram will produce the desired output. At a high level, our basic formulation of QBO is a

special case of this generalized setting where the dataflow program consists of only one

intermediate node (i.e., the query to be reverse-engineered). It is of challenges to support

this general setting of QBO, since we have to deal with multiple intermediate operators.

Furthermore, these operators can be of different types (e.g., user defined functions) in

addition to the conventional SQL queries that are handled in the basic setting of QBO.

179

180

Bibliography

[1] Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, and Cong Yu.
Constructing and exploring composite items. In SIGMOD, pages 843–854, 2010.

[2] Benjamin Bercovitz, Filip Kaliszan, Georgia Koutrika, Henry Liou, Aditya
Parameswaran, Petros Venetis, Zahra Mohammadi Zadeh, and Hector Garcia-
Molina. Social sites research through courserank. SIGMOD Rec., 38(4), 2009.

[3] Carsten Binnig, Donald Kossmann, and Eric Lo. Reverse query processing. In
ICDE, pages 506–515, 2007.

[4] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. QAGen: gener-
ating query-aware test databases. In SIGMOD, pages 341–352, 2007.

[5] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently updating
materialized views. SIGMOD Rec., 15(2):61–71, 1986.

[6] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator.
In ICDE, pages 421–430, 2001.

[7] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. Generating queries with
cardinality constraints for dbms testing. IEEE Trans. on Knowl. and Data Eng.,
18(12):1721–1725, 2006.

[8] Chee-Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and Zhenjie
Zhang. Finding k-dominant skylines in high dimensional space. In SIGMOD,
pages 503–514, 2006.

[9] Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–534,
2009.

[10] W. W. Chu and Q. Chen. A structured approach for cooperative query answering.
IEEE Trans. on Knowl. and Data Eng., 6(5):738–749, 1994.

[11] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms, Second Edition. McGraw-Hill Science, 2001.

[12] Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse
transformations. In VLDB, pages 471–480, 2001.

[13] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism:
a workload-driven approach to database replication and partitioning. PVLDB,
3(1):48–57, 2010.

181

[14] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro Domin-
gos. iMAP: discovering complex semantic matches between database schemas. In
SIGMOD, pages 383–394, 2004.

[15] Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of cooperative
answering. J. Intell. Inf. Syst., 1(2):123–157, 1992.

[16] Lise Getoor, Ben Taskar, and Daphne Koller. Selectivity estimation using proba-
bilistic models. In SIGMOD, pages 461–472, 2001.

[17] Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. Exploiting constraint-like data
characterizations in query optimization. In SIGMOD, pages 582–592, 2001.

[18] Sudipto Guha, Dimitrios Gunopoulos, Nick Koudas, Divesh Srivastava, and
Michail Vlachos. Efficient approximation of optimization queries under parametric
aggregation constraints. In VLDB, pages 778–789, 2003.

[19] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami. Fixed-
precision estimation of join selectivity. In PODS, pages 190–201, 1993.

[20] Melanie Herschel and Mauricio A. Hernández. Explaining missing answers to
spjua queries. PVLDB, 3(1):185–196, 2010.

[21] Melanie Herschel, Mauricio A. Hernández, and Wang-Chiew Tan. Artemis: a
system for analyzing missing answers. PVLDB, 2(2):1550–1553, 2009.

[22] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the prove-
nance of non-answers to queries over extracted data. PVLDB, 1(1):736–747, 2008.

[23] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li,
Arnab Nandi, and Cong Yu. Making database systems usable. In SIGMOD, pages
13–24, 2007.

[24] Theodore Johnson, Amit Marathe, and Tamraparni Dasu. Database exploration and
bellman. IEEE Data Eng. Bull., 26(3):34–39, 2003.

[25] Valentine Kabanets and Jin yi Cai. Circuit minimization problem. In ACM Sympo-
sium on Theory of Computing (STOC), pages 73–79, 2000.

[26] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin,
Germany, 2004.

[27] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. Relaxing join and
selection queries. In VLDB, pages 199–210, 2006.

[28] Georgia Koutrika, Alkis Simitsis, and Yannis Ioannidis. Précis: The essence of a
query answer. In ICDE, pages 69–78, 2006.

[29] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. J. ACM, 22:469–476, 1975.

182

[30] Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages
233–246, 2002.

[31] Eric Lo, Nick Cheng, and Wing-Kai Hon. Generating databases for query work-
loads. PVLDB, 3(1):848–859, 2010.

[32] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A fast scalable clas-
sifier for data mining. In EDBT, pages 18–32, 1996.

[33] Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern, Christoph Koch,
Katherine F. Moore, and Dan Suciu. The complexity of causality and responsi-
bility for query answers and non-answers. PVLDB, 4(1):34–45, 2010.

[34] Chaitanya Mishra and Nick Koudas. Interactive query refinement. In EDBT, pages
862–873, 2009.

[35] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. Generating targeted queries
for database testing. In SIGMOD, pages 499–510, 2008.

[36] Amihai Motro. Intensional answers to database queries. IEEE Trans. on Knowl.
and Data Eng., 6(3):444–454, 1994.

[37] Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mumick. Mainte-
nance of data cubes and summary tables in a warehouse. SIGMOD Rec., 26(2),
1997.

[38] Ion Muslea and Thomas J. Lee. Online query relaxation via bayesian causal struc-
tures discovery. In AAAI, pages 831–836, 2005.

[39] Christopher Olston, Shubham Chopra, and Utkarsh Srivastava. Generating exam-
ple data for dataflow programs. In SIGMOD, pages 245–256, 2009.

[40] Naren Ramakrishnan, Deept Kumar, Bud Mishra, Malcolm Potts, and Richard F.
Helm. Turning cartwheels: An alternating algorithm for mining redescriptions. In
KDD, pages 266–275, 2004.

[41] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

[42] Sunita Sarawagi. Explaining differences in multidimensional aggregates. In VLDB,
pages 42–53, 1999.

[43] Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Jennifer
Widom. Synthesizing view definitions from data. In ICDT, pages 89–103, 2010.

[44] Alkis Simitsis, Georgia Koutrika, and Yannis E. Ioannidis. Generalized précis
queries for logical database subset creation. In ICDE, pages 1382–1386, 2007.

[45] Michael Stonebraker. The design of the postgres storage system. In VLDB, pages
289–300, 1987.

[46] P.N. Tan, M.Steinbach, and V.Kumar. Introduction to Data Mining. Addison-
Wesley, 2006.

183

[47] Wang-Chiew Tan. Provenance in databases: Past, current, and future. IEEE Data
Eng. Bull., 30(4):3–12, 2007.

[48] Quoc Trung Tran and Chee-Yong Chan. How to ConQueR Why-Not Questions. In
SIGMOD, pages 15–26, 2010.

[49] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query by Out-
put. In SIGMOD, pages 535–548, 2009.

[50] Quoc Trung Tran, Chee-Yong Chan, and Guoping Wang. Evaluation of Set-based
Queries with Aggregation Constraints. In CIKM, 2011.

[51] Paul E. Utgoff. Incremental induction of decision trees. Mach. Learn., 4(2):161–
186, 1989.

[52] Patrick Valduriez. Join indices. ACM Trans. Database Syst., 12(2):218–246, 1987.

[53] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

[54] Xiaokui Xiao and Yufei Tao. Output perturbation with query relaxation. Proc.
VLDB Endow., 1(1):857–869, 2008.

[55] Ke Yang. Integer circuit evaluation is pspace-complete. In Journal of Computer
and System Sciences, 2001.

[56] Xiaoxin Yin, Jiawei Han, Jiong Yang, and Philip S. Yu. Efficient classification
across multiple database relations: A crossmine approach. IEEE Trans. on Knowl.
and Data Eng., 18:770–783, 2006.

[57] Moshé M. Zloof. Query by example. In AFIPS NCC, pages 431–438, 1975.

184

APPENDIX

A Proof of Theorem 3.1

For expository simplicity, we restate Theorem 3.1 in the following.

Theorem 3.1. Given an input query Q, we define QBOS to be the problem to find an

output query Q′ w.r.t. a database D, where Q′ involves only selection (with predicates in

the form “Ai op c”, Ai is an attribute, c is constant, and op ∈ {<,≤,=,,, >,≥}) such that:

(1) Q′(D) = Q(D), and (2) the number of operators (AND, OR and NOT) used in the

selection condition is not greater than a given constant s. Then, QBOS is believed not to

be in P.

We will reduce the Minimization Circuit Size Problem (MCSP) to QBOS to prove

Theorem 3.1.

Definition of MCSP. The MCSP problem takes as inputs the truth table of a Boolean func-

tion f , a positive integer number s, and answers the question if there exists a Boolean

circuit of size at most s that produces the same output as f [25]. As an example, con-

sider an instance of MCSP problem that takes as inputs a truth table T consisting of four

variables x1 - x4 (Figure A-1(a)), a number s = 2, and returns “yes” in this case, since

there exists a circuit that is equivalent to T and has size s = 2 (shown in Figure A-1(d)).

Reducing MCSP to QBOS . In the following, we describe how to reduce an instance of

MCSP into an instance of QBOS in polynomial time. Given the truth table T of a Boolean

function f involving n binary variables x1, · · · , xn of MCSP, we create a database D

containing a single relation R(A1, · · · , An). Each row (v1, · · · , vn) of T becomes a tuple

185

x1 x2 x3 x4 f
1 1 1 1 1
1 1 0 1 1
0 1 1 0 1
0 1 0 0 1
0 1 1 1 0
0 1 0 1 0
1 0 1 0 0

A1 A2 A3 A4

1 1 1 1
1 1 0 1
0 1 1 0
0 1 0 0
0 1 1 1
0 1 0 1
1 0 1 0

(a) Truth table T (b) Relation R

1 1 1 1
1 1 0 1
0 1 1 0
0 1 0 0

x1

¬x4

x2
f

(c) Q(D) (d) The circuit

Q = πA1,A2,A3,A4σ(A1=1 OR A4=0) AND (A2=1) (R)
(e) The IEQ

Figure A-1: Example to prove Theorem 3.1

of R, where vi belongs to the domain of Ai attribute. We formulate the given result

table Q(D) in QBOS to consist of all tuples of R corresponding to rows of T that have

f = true. The input number “s” of MCSP is transformed into constraining the maximum

number of operators (AND, OR, NOT) in the selection condition of the derived IEQs

of Q(D) to be at most s.

Continuing with our example, the equivalent QBOS problem of the MCSP problem

described thereof consists of a database D and a given result table Q(D); where D in-

cludes a single relation R (shown in Figure A-1(b)) and Q(D) is shown in Figure A-1(c).

We will prove that if QBOS returns some IEQ Q′, then we can transform sel(Q′) into

the circuit that satisfies the original MCSP problem; thus, MCSP returns “yes” in this case.

In contrast, if QBOS cannot find any IEQs, then MCSP returns “no” answer.

Case 1: QBOS returns some IEQ Q′. We will transform sel(Q′) into an “equivalent”

circuit C satisfying all the conditions in MCSP, where each AND (resp. OR, NOT) oper-

ator is transformed into the corresponding AND (resp. OR, NOT) gate, each selection

predicate “Ai op c” is transformed into the corresponding line of xi, ¬xi, 1, or 0. In the

186

following, we elaborate on the details of this process. Without loss of generality, assume

that sel(Q′) is given in the form “C1 AND · · · AND C`”, where each Ci is a disjunction

of some atomic predicates of the form “Ai op c” or its negation “NOT Ai op c”.

The circuit C contains (` − 1) two-input AND gates. The first AND gate has two

inputs, each of which is a circuit equivalent to the clauses C1 and C2, respectively. The

ith AND gate, i ∈ [2, ` − 1], includes two inputs: (1) the first one is the output of the

(i − 1)th AND gate, and (2) the other is a circuit equivalent to the clause Ci+1.

For a clause Ci, which is a disjunction of m atomic predicates U1, · · · , Um, we use

(m−1) two-input OR gates to represent Ci; the inputs to these OR gates are derived in the

similar way as described with AND gates. In particular, the first OR gate has two inputs,

each of which is a line corresponding to U1 and U2 (to be explained later). The ith OR

gate, i ∈ [2,m − 1], includes two inputs: (1) the first one is the output of the (i − 1)th OR

gate, and (2) the other is the line equivalent to the atomic Ui+1 predicate. Each atomic

predicate in the form “Ai = c” will be transformed into either (1) a single line of xi if

c = 1, or (2) a single line ¬xi if c = 0. Each atomic predicate that is evaluated to be

true (e.g., Ai ≥ 0) is transformed into a line of value 1. Correspondingly each atomic

predicate that is evaluated to be false (e.g., Ai < 0) is transformed into a line of value 0.

Observe that the number of gates used in C is equal to the number of operators used

in sel(Q′). In addition, when the input lines xi obtain the values from any arbitrary row

of the truth table T , the output of C is equal to the output of f ’s function. Thus, C is a

circuit that satisfies MCSP, and MCSP returns “yes” in this case.

Example 7.1 For the example in Figure A-1, after formulating the MCSP problem as an

QBOS problem, QBOS derives an IEQ Q′ of Q(D) as: πA1,A2,A3,A4σ(A1=1∨A4=0)∧(A2=1)(R).

We derive a circuit C from Q′, shown in Figure A-1(d), as follows. The derived circuit C
has one AND gate; its inputs include (1) a circuit that is equivalent to the clause C1:

(A1 = 1 ∨ A4 = 0), and (2) another circuit that is equivalent to the clause C2: A2 = 1.

The circuit equivalent to C1 includes one OR gate, the inputs of which contain x1 (rep-

resenting for the clause “A1 = 1”) and ¬x4 (representing for the clause “A4 = 0”).

187

�

Case 2: QBOS cannot find any IEQs. Assume that QBOS cannot return any IEQ Q′ for

Q(D) whereas MCSP returns “yes” answer; i.e., there exists a circuit C satisfying MCSP.

We prove that this assumption is invalid using contradiction.

More specifically, we transform the valid circuit C for MCSP into an “equivalent”

selection condition S as follows. We replace every occurrence of the variable xi by the

corresponding predicate “Ai = 1”. Similarly, we replace every occurrence of ¬xi by a

predicate “Ai = 0”. In a similar way, we transform any AND (OR, NOT) gate into the

corresponding AND (OR, NOT) operator. We then formulate a query Q′ = πA1,···AnσS (R).

Clearly, Q′ is an IEQ of Q(D), since Q′ selects tuples of R corresponding to rows of T

that have f = 1. Furthermore, the number of operators in sel(Q′) is equal to the size

of the circuit, and thus is at most s. Therefore, Q′ is an IEQ that needs to be found by

QBOS . This fact contradicts to our assumption.

In summary, we have reduced MCSP to QBOS in polynomial time. It has been proven

that MCSP is believed not to be in P [25]. Therefore, QBOS is believed not to be in P.

B Proof of Theorem 3.2

For expository simplicity, we restate Theorem 3.2 in the following.

Theorem 3.2. Given an input query Q, we define QBOU to be the problem to find an

output query Q′ w.r.t. a database D in the form Q′ = Q1 union · · · union Qk, with

each Qi is an SPJ query and the select-clause of Qi refers to only attributes of relations

in Qi, such that: (1) Q′(D) = Q(D), and (2) k is not greater than a given constant n. Then

QBOU is NP-hard.

We will reduce the Set-Covering problem to QBOU to prove Theorem 3.2. Recall

that the Set-Covering problem takes the following as inputs: (1) a set of items U =

{a1, a2, · · · , a`}, (2) a set S = {S 1, · · · , S m} where each S i is a (non-empty) subset of U

and
⋃m

i=1(S i) = U, and (3) a constant number n. The Set-Covering returns “yes” answer

188

if there exists k subsets S i such that the union of these subsets is equal to U and k ≤ n;

or “no” answer, otherwise.

We first construct m relations Ri(ci), where each Ri is a single-column relation con-

taining all elements in the corresponding set S i as its tuples. We formulate the given

result table to consist of all tuples in U (derived from the query that performs a union of

tuples from all S i, i ∈ [1,m]). We will prove that the result for the Set-Covering problem

depends on whether QBOU can find an IEQ for Q or not.

Assume that QBOU returns an SPJU-IEQ Q′ of T in the form of Q1 union Q2 · · ·
union Qk, with k ≤ n. Since the projected attributes in Qi only refer to the schema

attributes of Ri, for simplicity and without loss of generality, we shall assume that

pro j(Qi) = ci for i ∈ [1, k]. Since
⋃k

i=1(Ri) ⊇ ⋃k
i=1(Qi(D)) and

⋃k
i=1(Qi(D)) = T ,

it derives that
⋃k

i=1(S i) = U. Thus, Set-Covering problem returns “yes” answer with the

collection of S 1, · · · , S k having
⋃k

i=1(S i) = U.

In another case, assume that QBOU does not return any SPJU-IEQs of Q(D) but the

Set-Covering problem return “yes” answer; i.e., there exists k subsets S 1, · · · , S k such

that
⋃

i∈[1,k](S i) = U with k ≤ n. We formulate a new query Q′′:
⋃

i∈[1,k] πRi.ci(Ri). Clearly,

Q′′ is an SPJU-IEQ of T that should be returned by QBOU . This fact contradicts to our

assumption that there does not any exist any SPJ-IEQs for QBOU .

In summary, we have reduced from the Set-Covering problem to QBOU . Since Set-

Covering problem is an NP-complete problem, QBOU is an NP-hard problem.

C Proof of Theorem 3.3

For expository simplicity, we restate Theorem 3.3 in the following.

Theorem 3.3. Given an input query Q, we define QBOG to be the problem to find an

output query Q′ w.r.t. a database D such that: (1) Q′(D) = Q(D), and (2) users can

specify any constraints on the clauses of Q′ (e.g., the select clause of Q′ can contain

arbitrary arithmetic expressions or the where-clause of Q′ must contain some specific

189

1 2 3 5 6

U X

+

X

{ 1, 2 } { 15 }

{ 21 }

{ 21, 42 }

A1 A2 A3 A4 A5

U: union

X: times

+: plus

Figure C-2: An integer circuit example

selection conditions). Then QBOG is PSPACE-hard.

We prove Theorem 3.3 by reducing the Integer Circuit Evaluation problem (ICE) [55]

to QBOG.

Definition of ICE. An integer circuit (IC) takes singleton sets as inputs, each of which

contains one integer. There are three types of set operations that are considered as gates

in an integer circuit: (1) the union gate, denoted by A
⋃

B and defined as A
⋃

B =

{a | a ∈ A ∨ a ∈ B}; (2) the pair-wise multiplication gate, denoted as A × B and defined

as A × B = {a · b | a ∈ A, b ∈ B}; and (3) the pair-wise addition gate, denoted as A + B

and defined as A + B = {a + b | a ∈ A, b ∈ B}. The ICE problem takes an integer X,

an integer circuit C as its inputs, and determines whether X is contained in the output

produced by C.

Example 7.2 As an example of ICE, consider an integer circuit C shown in Figure C-

2 that has five inputs A1, · · · , A5. The integer circuit C calculates U12 = A1
⋃

A2,

M34 = A3 × A4, P345 = M34 × A5, and produces the output M12345 = U12 × P345. Given

one instance of ICE (C, A1 = {1}, A2 = {2}, A3 = {3}, A4 = {5}, A5 = {6}, X = 21), ICE

returns yes, since X is in the output of the circuit. �

Reducing ICE to QBOG. Given an instance of ICE = (C, X, X1 = {a1}, · · · , Xn = {an}),
we formulate an equivalent QBOG problem of ICE as follows. The database D of

190

QBOG consisting of n tables Ti(ci) corresponding to n singleton set Xi, and another table

Tn+1(cn+1) consisting of one tuple (X). Each table Ti contains one row (ai). The given

result table is Q(D) = {(X)} (derived from the input query Q: “SELECT cn+1 FROM

Tn+1”). Let R denote the view equivalent to the given circuit C of ICE in the sense that

the output of R on D is equivalent to the output of C on the given circuit. R is derived

recursively as follows:

(a) If C is one of the input set Xi, then R ≡ Ti;

(b) If C is the output of a union gate involving two inputs X j and Xk; then R is equiv-

alent to R j union Rk;

(c) If C is the output of a multiplication gate involving two inputs X j and Xk, then R
is equivalent to πR j.c j×Rk .ck(R j × Rk). Here, we use R j × Rk to denote the Cartesian

product between R j and Rk;

(d) If C is the output of an addition gate involving two inputs X j and Xk, then R is

equivalent to πR j.c j+Rk .ck(R j × Rk).

We impose a constraint on the where-clause of Q′ as part of the inputs to the QBOG

problem as follows. The where-clause of Q′ must be in the conjunctive form and contain

the predicate: “X IN R”. Clearly, if QBOG can return some IEQs of Q, then “X IN

R” must be true. It derives that X is accepted by the circuit C. Correspondingly, when

QBOG does not return any IEQs, then X is not accepted by ICE. It is because if X is

accepted by ICE , then QBOG must return at least one IEQ (e.g., “SELECT X FROM

R WHERE X IN R”). It has been shown that ICE is PSPACE-complete in [55]. Thus,

QBOG is in PSPACE-hard.

D Proof of the Optimality of TALOS

Let Pm+1 denote the bound tuples in S that are labeled positive, and Pm+2 denote the

bound tuples in S that are labeled negative. We have S = P1 ∪ · · ·∪ Pm ∪ Pm+1 ∪ Pm+2.

191

Define ni, j be the number of tuples in Pi ∩ S j, for i ∈ {m + 1,m + 2}, and j ∈
{1, 2}. When splitting S into S 1 and S 2, there are (nm+1, j + f j) tuples labeled positive and

(nm+2, j +
∑m

i=1 ni, j − f j) tuples labeled negative in S j. Thus, the Gini index of each set S j,

j ∈ {1, 2}, is given by Equation 7.1.

Gini(S j) = 1 −

nm+1, j + f j∑m+2

i=1 ni, j


2

−


nm+2, j +
∑m

i=1 ni, j − f j∑m+2
i=1 ni, j


2

(7.1)

The Gini index of the split S into S 1 and S 2 is computed by Equation 7.2.

Gini(S 1, S 2) = α1 ·Gini(S 1) + α2 ·Gini(S 2), (7.2)

where α j = (
∑m+2

i=1 ni, j)/(
∑2

k=1
∑m+2

i=1 ni,k), j ∈ {1, 2}. After simplifying Gini(S 1, S 2), we

obtain:

Gini(S 1, S 2) = c − (a1 · f1 + b1)2 − (a2 · f2 + b2)2, (7.3)

where c, a1, a2, b1, b2 are constants; and f1 and f2 are the variables.

Let F j =
∑m

i=1 ni, j, j ∈ {1, 2}. Intuitively, F j represents the total number of free

tuples in S j. Since there are totally m sets of “types” S P1, S P2 and S P12, the number of

S P1-sets and S P2-sets must be no greater than m. Therefore, T1 + T2 ≤ m (A3).

Furthermore, since T1 represents the number of S P1-sets, it derives that (m − T1)

equals to the number of S P2-sets and S P12-sets. In other words, (m − T1) is the number

of subsets of free tuples, each of which has at least one tuple in S 2. Because the number

of free tuples in S 2 (i.e., F2) must be no smaller than the number of subsets of free tuples

in S 2 (i.e., m − T1); it derives that F2 ≥ m − T1; or T1 + F2 ≥ m. Similarly, we also have

T2 + F1 ≥ m (A4).

Our problem to optimize the node splits of S into S 1 and S 2 becomes finding values

for the two variables (f1, f2) such that Gini(S 1, S 2) (defined in Equation 7.3) is mini-

mized, where the values of f1 and f2 satisfy the following four conditions:

192

A

B

C

D

E

G

N

Nl

Ns

M

Ml

Ms

T1 F1
m – T2

x

x

x

T2

F2

m – T1x

f1

f2

x x

Ns.f2

x

x

Nl.f2N.f2

x

f2

Quad

(a) Domain space (b) Quad graph

Figure D-3: The domain space of f1 and f2

(A1) T j ≤ f j ≤ F j, j ∈ {1, 2}

(A2) f1 + f2 ≥ m

(A3) T1 + T2 ≤ m

(A4) T j + F3− j ≥ m, j ∈ {1, 2}

The domain space of f1 and f2 satisfying the four conditions (A1) - (A4) is the region

confined by the polygon ABCDE in the two dimensional spaces of f1 and f2, as shown

in Figure D-3(a). For a data point N in the two-dimensional space of f1 and f2, we use

Gini(N) to represent the value of Gini(S 1, S 2) where f1 and f2 (in Equation 7.3) obtain

the values of the f1 and f2’s dimension values of the point N, respectively; i.e., f1 = N. f1

and f2 = N. f2. The optimality of TALOS is based on the following result.

Theorem 7.1 The minimum value of Gini(S 1, S 2), referred to as Ginimin, is the smallest

value in the set {Gini(A), Gini(B), Gini(C), Gini(D), Gini(E)}. �

We prove Theorem 7.1 by showing that Ginimin ≤ Gini(N) for an arbitrary point N

locating in the polygon ABCDE. We consider the following two cases depending on

whether N locates in the region ABEG or in the region CDEG.

193

Case 1: N locates in the region ABEG. Let Nl and Ns be the two points at the boundary

of ABEG that have the same f1 values with N; i.e., the dimensional values of Nl and Ns

are: Nl(N. f1, F2) and Ns(N. f1,T2). Since N, Nl, and Ns have the same values on their f1’s

dimension, the comparisons of Gini(S 1, S 2) at the points N, N1 and N2 are equivalent to

the comparisons of the function Quad(f2) = c− (a2 · f2 + b2)2, where f2 obtains the value

from the set {N. f2,Nl. f2,Ns. f2}. The graph of Quad(f2) is shown in Figure D-3(b). Since

Ns. f2 ≤ N. f2 ≤ Nl. f2, it derives that Quad(N) ≥ min{Quad(Nl), Quad(Ns)}.
Because the comparisons of Gini(S 1, S 2) at the points N, N1 and N2 are equivalent to

the comparisons of the function Quad, we derive that Gini(N) ≥ min{Gini(Nl),Gini(Ns)}.
Using the same argument, we obtain the following two inequalities: (1) Gini(Nl) ≥
min{Gini(A),Gini(C)}, and (2) Gini(Ns) ≥ min{Gini(B),Gini(E)}.

Without loss of generality, assume that Gini(A) ≤ Gini(B) ≤ Gini(C) ≤ Gini(D) ≤
Gini(E). It implicitly indicates that Ginimin = Gini(A). We have Gini(Nl) ≥ Gini(A),

and Gini(Ns) ≥ Gini(B). It derives that Gini(N) ≥ Gini(A); in other words, Gini(N) ≥
Ginimin.

Case 2: N locates in the region CDEG. Similar to the first case, let us consider

an arbitrary point M ∈ CDEG, and two other points at the boundary of CDEG that

have the same f1 values with M: Ml(M. f1, F2) and Ms(M. f1,T2). It is easily seen

that Gini(M) ≥ min{Gini(Ml),Gini(Ms)}; where Gini(Ml) ≥ min{Gini(C),Gini(A)}, and

Gini(Ms) ≥ min{Gini(D), Gini(E)}. Thus, we derive Gini(M) ≥ Ginimin.

In summary, Ginimin ≤ Gini(N) for all points N in the polygon ABCDE. Thus,

Ginimin is the optimal value of Gini(S 1, S 2).

E Proof of Theorem 6.1

For expository simplicity, we restate Theorem 6.1 in the following.

Theorem 6.1. Consider a partial query Q = (Qbase,Cans) with Cans containing only two

count constraints: count(A1) = n and (2) count(A2) = m, where A1 and A2 are attributes

194

of S ans. The problem of evaluating Q, referred to as PQE, is NP-complete.

It is clearly that PQE is in NP; i.e., we can verify the solution of PQE in polynomial

time by checking the number of distinct values in the column A1 and A2 of the returned

result set S ans. To prove the NP-hardness of PQE, we will reduce from Set-Covering

problem to PQE. Recall that the Set-Covering problem takes the following as inputs: (1)

a set of items U, (2) a set S = {S 1, · · · , S n} where each S i is a (non-empty) subset of U

and
⋃n

i=1(S i) = U, and (3) a constant number `. The Set-Covering returns “yes” answer

if there exists k subsets S i such that the union of these subsets is equal to U and k ≤ `;
or “no” answer, otherwise.

We create a relation R(A1, A2), the tuples of which are derived as follows. For every

set S i, with i ∈ [1, n], and each element a ∈ S i, we insert a tuple t = (i, a) into the

relation R (i.e., the A1 and A2 values of the tuple t are i and a, respectively). Thus,

there are totally
∑n

i=1(|S i|) tuples in R with |S i| denotes the number of elements in the

corresponding set S i. In addition, there are n distinct values in A1 column and |U | distinct

values in A2 column. We set S base to be equal to R and issue the following ` instances

of PQE problem: finding a subset of S base that have count(A1) = j, for j ∈ [1, `], and

count(A2) = |U |. There are two cases to consider depending on whether some instance

of PQE considered above or none of them returns a solution.

Consider the case when some instance of PQE that has the iterator j equal to some

value k (≤ `) returns an answer; i.e., there exists a subset S ans ⊆ S base that have

count(A1) = k and count(A2) = |U |. We note that the condition count(A2) = |U | implies

πA2(S ans) = U; i.e., the A2 column of S ans includes all elements of U. Without loss of

generality, assume the A1 column of S ans consists of k distinct values: 1, · · · , k. We

observe that
⋃k

i=1(S i) = U, since
⋃k

i=1(S i) ⊇ πA2(S ans) and πA2(S ans) = U. There-

fore, Set-Covering returns “yes” answer with the collection of S 1, · · · , S k satisfies the

constraint.

Consider the case when none of the considered instances of PQE above returns a

solution; i.e., PQE cannot find any subset S ans ⊆ S base that has count(A1) ≤ ` and

195

count(A2) = |U |. We prove that Set-Covering will return “no” answer using the contra-

diction as follows. Assume the Set-Covering problem returns “yes”, which implies that

there exists m subsets such that the union of these selected sets is equal to U and m ≤ `.
Without loss of generality, assume these subsets are S 1, · · · , S m; i.e.,

⋃m
i=1(S i) = U.

Consider a set of tuples S ans ⊆ S base that includes all tuples of S base which have

1 ≤ t.A1 ≤ m. Clearly, S ans has count(A1) = m and count(A2) = |U |. It derives that

an instance of the PQE problem with count(A1) = m ≤ ` and count(A2) = |U | has an

answer. This fact contradicts to our assumption.

In summary, we have reduced the Set-Covering to PQE. Since Set-Covering problem

is an NP-complete problem, PQE is also an NP-complete problem. �

F Proof of Theorem 6.2

For expository simplicity, we restate Theorem 6.2 in the following.

Theorem 6.2. Consider a partial query Q = (Qbase,Cans) with Cans contains only one

cardinality constraint requiring that |Qbase| = n. We define PQI to be the problem of

instantiating Q into a query Q′ such that the selection condition of Q′ is in the conjunctive

form and consists of at most ` predicates selected from a set of given predicates. Then,

PQI is NP-hard.

We will reduce the Set-Covering problem to PQI to prove Theorem 6.2. Consider an

instance of the Set-Covering problem, consisting of: (1) the universal set U, (2) m non-

empty subsets S i ⊂ U where
⋃m

i=1(S i) = U, and (3) a constant ` ≤ m. Let S ′i = U − S i,

i ∈ [1,m]. We construct a database D consisting of a single relation R(A1, · · · , Am). For

each element u ∈ U, we insert a corresponding tuple tu into R where tu.Ai = 1 if u ∈ S ′i ;

or tu.Ai = 0 if u < S ′i , for i ∈ [1,m]. We formulate an instance of PQI where Qbase:

“SELECT * FROM R”, and Cans contains a constraint |Qbase| = 0. The set of given

predicates consists of m predicates: A1 = 1, · · · , Am = 1.

We will prove that if PQI returns some answer, then Set-Covering returns “yes” an-

196

swer. Correspondingly, if PQI does not return any answer, then Set-Covering returns

“no” answer.

Case 1: PQI returns some answer. Without loss of generality, assume the k selection

predicates in sel(Q′) are A1 = 1, · · · , Ak = 1. It implies that |σ(A1=1) ∧ ··· ∧ (Ak=1)(Qbase)| = 0

with k ≤ `. We will prove that
⋃k

i=1(S i) = U and thus Set-Covering returns “yes” answer

by contradiction as follows.

Assumption: (A1)
⋃k

j=1(S j) = U − X with some non-empty set X ⊂ U

Implication: (I1) For every value x ∈ X, x < S i for all i ∈ [1, k]

(I2) x ∈ S ′i for all i ∈ [1, k]

(I3)
⋂k

i=1(S ′i) ⊇ {x}
(I4) |σ(A1=1)∧ ··· ∧(Ak=1)(R)| > 0

where (I4) contradicts to our assumption that |Qbase| = 0

Case 2: PQI does not return any answer. We will prove that Set-Covering also returns

“no” answer by using contradiction as follows.

Assumption: (A2) PQI returns no answer

(A3) There exists k sets S 1, · · · , S k such that ∪k
i=1(S i) = U and k ≤ `

Implication (I5) ∩k
i=1(S ′i) = ∅

(I6) Qbase = σ(A1=1)∧···∧(Ak=1)(R) has |Qbase| = 0

(I6) contradicts to (A2)
To derive the implication (I5), we again use the contradiction with the assumption

that | ∩k
i=1 (S ′i)| > 0; for instance, ∩k

i=1(S ′i) = {x} for some value x ∈ U. It implies that x

belongs to each S ′i , for every i ∈ [1, k]. Thus, x does not belong to any S i, i ∈ [1, k],

which leads to x < ∪k
i=1(S i). This fact contradicts to (A3).

In summary, we have reduced from Set-Covering problem to PQI in polynomial time.

Since Set-Covering is a known NP-complete problem, PQI is an NP-hard problem.

197

