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Summary

Objective image quality measures have been developed to quantitatively predict

perceived image quality. They are of fundamental importance in numerous ap-

plications, such as to benchmark and optimize different image processing systems

and algorithms, to monitor and adjust image quality, and to develop perceptual

image compression and restoration technologies, etc. As an important approach for

objective image quality assessment, no-reference image quality assessment seeks to

predict perceived visual quality solely from a distorted image and does not require

any knowledge of a reference (distortion-free) image. No-reference image quality

measures are desirable in applications where a reference image is expensive to ob-

tain or simply not available. The intrinsic complexity and limited knowledge of the

human visual perception pose major difficulties in the development of no-reference

image quality measures. The field of no-reference image quality assessment remains

largely unexplored and is still far from being a mature research area. Despite its

substantial challenges, the development of no-reference image quality measures is

a rapidly evolving research direction and allows much room for creative thinking.
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The number of new no-reference image quality measures being proposed is grow-

ing rapidly in recent years. This thesis focuses on the development of no-reference

image quality measures.

One contribution of this thesis is the kurtosis-based no-reference quality mea-

sures developed for JPEG2000 compressed images. The proposed no-reference im-

age quality measures are based on either 1-D or 2-D kurtosis in the discrete cosine

transform domain of general image blocks. They are simple, they do not need to

extract edges/features from an image, and they are parameter free. Comprehensive

testing demonstrates their good consistency with subjective quality scores as well

as satisfactory performance in comparison with both representative full-reference

image quality measures and state-of-the-art no-reference image quality measures.

The second contribution of this thesis is a pixel activity-based no-reference

quality measure developed for JPEG2000 compressed images. Based on the ba-

sic activity of general pixels, the proposed no-reference quality measure overcomes

the limitations imposed by structure/feature extraction of distorted images. The

structural content-weighted pooling approach in the proposed image quality mea-

sure does not require any parameters and avoids additional procedures and training

data for parameter determination. The proposed image quality measure exhibits

satisfactory performance with reasonable computation load and easy implementa-

tion. It proves a no-reference quality measure of choice for JPEG2000 compressed

images.

The third contribution of this thesis is the development of a structural activity-

based framework for no-reference image quality assessment. Under the assumption

that human visual perception is highly sensitive to the structural information in a

scene, such a framework predicts image quality through quantifying the structural



Summary ix

activities of different visual significance. As a specific example, a model named

structural activity measure is developed. The model is validated with a variety of

distortions including white noise, Gaussian blur, and JPEG and JPEG2000 com-

pression. The effectiveness of the model is demonstrated through the comparison

with subjective quality scores as well as representative full-reference image quality

measures. The structural activity-based framework proves effective for no-reference

image quality assessment.

The work presented in this thesis is not limited to the development of effec-

tive techniques for no-reference image quality assessment. It may also contribute

to a better understanding of the working mechanisms underlying human visual

perception.
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Chapter 1
Introduction

The goal of objective image quality assessment is to develop computational models

to quantitatively predict perceived image quality. No-reference (NR) image qual-

ity assessment does not require a distortion-free image as reference and predicts

image quality solely from a distorted image. NR image quality measures are highly

desirable in practical applications where a reference image is expensive to obtain or

simply not available. As an open research field with enormous practical potential,

NR image quality assessment is a promising direction with many possibilities and

is currently an active and rapidly evolving research area.

In this chapter, the motivation for developing NR image quality measures is

presented in Section 1.1, the background of image quality assessment is introduced

in Section 1.2, the contributions of this thesis are summarized in Section 1.3, and

the outline of this thesis is provided in Section 1.4.

1
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1.1 Motivation

As the saying goes, seeing is believing. Human beings rely highly on visual informa-

tion to perceive the world. As our world becomes increasingly digital, digital images

and videos rapidly proliferate. Digital images are the representation of visual infor-

mation in a discrete form suitable for storage and transmission. They are subject

to diverse distortions during acquisition, compression, processing, transmission,

and reproduction. It is crucial to recognize and quantify the quality degradation

of images. For example, lossy compression techniques, which are widely applied to

reduce bandwidth for the storage and transmission of images, produce artifacts in

the reconstructed images and may result in decreased visual quality. It is important

to evaluate the visibility of compression artifacts so as to optimize the parameter

settings of the related systems and applications. As another example, images are

subject to errors, loss, or delay when they are distributed in various communica-

tion networks. All these transmission impairments may lead to the poorer quality

of the received images. It is imperative for the network server to recognize image

quality degradation so as to control streaming resources in transmission.

Given that the human visual system (HVS) is the ultimate receiver of most

visual information resulting from various applications, the most reliable way for

quality assessment is to resort to the judgement of human observers. However, such

subjective quality assessment is time-consuming, expensive, and impractical in real-

world applications especially for real-time applications. It is desirable to develop

computational models that are able to quantitatively and automatically predict

perceived image quality. This is the basic motivation for developing objective

image quality measures. The final goal of objective image quality measures is to
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predict quality the way the HVS does.

Objective image quality measures play an important role in a broad range of

applications, including:

• benchmarking different image processing techniques and systems;

• optimizing image processing systems and algorithms;

• monitoring and adjusting image quality;

• developing perceptual image compression and restoration technologies.

Besides the distorted images under quality evaluation, three types of knowledge

may be employed in objective image quality assessment: knowledge about the origi-

nal distortion-free image which is assumed to have perfect quality, knowledge about

the distortion process, and knowledge about the HVS. In many real-world applica-

tions, knowledge of a distortion-free image is not always available. In this situation,

image quality can only be predicted from the distorted images themselves. The fact

that the HVS can easily perceive image quality without any reference motivates

the kind of image quality assessment without referring to a distortion-free image.

Thus, both the practical requirements and the working mechanism of the HVS mo-

tivate the kind of image quality assessment without reference to a distortion-free

image, i.e., NR image quality assessment.

1.2 Background

The standard objective image quality assessment is the full-reference (FR) ap-

proach in which a reference image of perfect quality (free of distortion) is assumed
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to be completely known to compare with the image under assessment. Another

type of objective image quality assessment is known as the reduced-reference (RR)

approach, which assumes that the reference image is only partially available, such

as certain features extracted from a reference image, to provide side information for

image quality prediction. The third type is the NR approach, which is also referred

to as blind or single-ended or univariant image quality assessment in the literature.

NR image quality assessment appraises quality solely from a distorted image with-

out any reference to a distortion-free image. NR image quality measures are highly

desirable in practical applications where a reference image is expensive to obtain

or simply not available. Due to its intrinsic difficulty, the field of NR image quality

assessment is still in its preliminary stages and remains largely unexplored to date.

So far, the development of NR image quality measures largely lags the advances

in the field of FR image quality assessment. More detailed descriptions of image

quality assessment can be found in [1–3].

1.3 Thesis Contributions

This thesis focuses on the development of NR image quality measures. Three dif-

ferent kinds of novel NR image quality measures are presented, including kurtosis-

based quality measures, a pixel activity-based quality measure, and a structural

activity-based framework. As application-specific NR image quality measures, the

kurtosis and pixel activity -based quality measures are developed particularly for
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JPEG2000 compressed images. General-purpose NR image quality assessment ap-

plicable to all kinds of distortions is an extremely difficult task. We seek to ap-

proach the general-purpose goal by developing a structural activity-based frame-

work that is applicable to a variety of distortions. The major contributions of this

thesis are summarized below.

(a) Kurtosis-Based No-reference Image Quality Measures: JPEG2000

In this study, kurtosis-based quality measures operating in the discrete cosine

transform (DCT) domain are developed for NR quality assessment of JPEG2000

compressed images. The proposed quality measures are based on either 1-D or 2-D

kurtosis of general image blocks. Specifically, three NR image quality measures are

developed, which are based, respectively, on frequency band-based 1-D kurtosis,

basis function-based 1-D kurtosis, and 2-D kurtosis. The proposed image quality

measures have these advantages: they are simple, they do not need to extract

edges/features, they are parameter free, and their quality predictions are shown to

be in good agreement with subjective quality scores.

(b) Pixel Activity-Based No-reference Image Quality Measure: JPEG2000

In this study, a pixel activity-based quality measure is developed for NR quality

assessment of JPEG2000 compressed images. The proposed image quality mea-

sure is designed with reasonable computation expense and easy implementation.

Instead of extracting structures/features from an image, the proposed quality mea-

sure predicts image quality based on the basic activity of general pixels. Specif-

ically, pixel activity is expressed in terms of the monotonically-changing and the

zero-crossing activity. The proposed quality measure thus overcomes the limita-

tions imposed by structure/feature extraction of distorted images, i.e., decreased
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extracted structures/features under severe distortion and inconvenience incurred

by the associated threshold operation. A pooling approach, which is given the

name structural content-weighted pooling, is also proposed. This approach does

not require any parameters and avoids additional procedures and training data for

parameter determination. The proposed NR image quality measure exhibits con-

sistently close correlation with subjective quality scores when the processing block

size is subject to a wide range.

(c) Structural Activity-Based Framework for No-Reference Image Qual-

ity Assessment

In this study, a structural activity-based framework is proposed for NR image

quality assessment. Based on this framework, a structural activity indicator is

developed. Under the assumption that human visual perception is highly sensitive

to the structural information in a scene, the structural activity framework estimates

image quality by quantifying structural activity in an image. The effectiveness of

the structural activity-based framework is validated with a variety of distortions,

including white noise, Gaussian blur, and JPEG and JPEG2000 compression.

1.4 Thesis Organization

Since the knowledge of the HVS plays a fundamental role in the design of objective

image quality measures, Chapter 2 provides a brief overview of the HVS and focuses

on those aspects of the physiological and psychophysical properties that are relevant

to the image quality assessment models discussed in this thesis.

Chapter 3 reviews some representative work reported in the fields of FR, RR,

and NR image quality assessment, as well as the research effort devoted to the
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validation of objective quality measures.

Chapter 4 presents the proposed kurtosis-based NR image quality measures. It

includes the calculation of 1-D and 2-D kurtosis in the DCT domain, the demon-

stration of the working principle of kurtosis in image quality prediction, the ap-

proach of kurtosis-based image quality measures, qualitative and quantitative per-

formance evaluations, and outlier analysis.

Chapter 5 presents the proposed pixel activity-based NR image quality mea-

sure. It describes the expressions of pixel activity, the structural activity-based

pooling approach, qualitative and quantitative performance evaluations, and out-

lier analysis.

Chapter 6 presents the proposed structural activity-based NR image quality

assessment framework together with a model named structural activity indicator.

It presents the concept of structural activity, the model of structural activity indi-

cator, qualitative and quantitative performance evaluations, and outlier analysis.

Chapter 7 provides a summary, highlights the contributions of this thesis, and

gives the recommendations for the future work.



Chapter 2
Human Visual System

The human visual system (HVS) is extremely complex. Numerous psychophysical

and physiological studies in the past century have gained considerable knowledge

about the HVS. However, due to the intrinsic complexity of the HVS, current

knowledge is largely limited to the early vision stage, and many properties and

working mechanisms of the later visual pathways and higher-level cognitive pro-

cesses that occur in the visual cortex are still not well understood. Since the final

goal of objective image quality assessment is to emulate or at least perform close to

human quality perception, the knowledge of HVS plays a fundamental role in the

design of objective image quality measures. This chapter provides a brief overview

of the HVS and focuses on those aspects of the physiological and psychophysical

properties that are relevant to the image quality assessment models discussed in

this thesis. Specifically, the anatomy of the early HVS and its related psychophys-

ical properties are provided in Sections 2.1 and 2.2, respectively. More detailed

knowledge of the HVS can be found in [4, 5].

8
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2.1 Anatomy of the Early Human Visual System

A schematic diagram of the early HVS is shown in Figure 2.1. During its extensive

exposure to the visual environment in the long evolution, the HVS is well adapted

to extracting useful information for visual perception. There are roughly two ma-

jor stages in the human vision. In the early stages, the eyes capture light and

convert the visual stimulus into signals which can be interpreted by the neurons

in the human brain. In the later stages, the human brain extracts the higher-level

cognitive information for visual perception.

Visual cortex

Lateral geniculate nucleus

Eye Eye

Optic nerve

Optic chiasm

Optic tract

Optic radiation

Figure 2.1: Schematic diagram of the early HVS.

As an important component of the HVS, the eye plays a role equivalent to

a photographic camera. A simplified transverse section of the human left eye is

illustrated in Figure 2.2. It is shown that the optical components of the eye are

mainly composed of the cornea, the pupil (a circular opening in the center of
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Cornea

Iris

Lens

Retina

Fovea

Optic nerve

Vitreous humor
Aqueous humor

Visual axis

Figure 2.2: The simplified transverse section of the human left eye.

the iris), the lens, and the fluids filling the eye including the aqueous humor and

vitreous humor. The visual stimulus in the form of light first encounters the eye

at the cornea which provides the major optical power of the HVS. Then the light

enters the eye through the pupil. Depending on the exterior light levels, the size of

the pupil can be changed under muscular control, and the amount of light entering

the eye is controlled. This makes the pupil equivalent to the eye’s aperture. After

passing through the watery fluid of aqueous humor, the light enters the lens of the

eye. An important characteristic of the lens is that its optical power can be altered

with accommodation, a process in which the curvature of the lens is modified

by the contraction of the muscles attached to it. The process of accommodation

enables the HVS to focus objects at different distances onto the back of the eye.

The main body of the eyeball is filled with the gelatinous fluid of vitreous humor.

After passing through the vitreous humor, the light coming from objects is finally

focused on the retina, which is a membrane of neural tissue at the back of the

eye. The projection of the visual stimulus onto the retina is a blurred image of the

visual field due to the inherent limitations and imperfections of the optical system
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in the human eye.

As an extension of the central nervous system, the retina is composed of several

layers of neurons. The layer of photoreceptors in the retina are light-sensitive

neurons and converts light into signals that can be understood by the human

brain. There are two types of photoreceptor cells, namely the rods and the cones.

The rods are sensitive to luminance at low light levels and are responsible for

vision under very low light conditions, while the cones are sensitive to color at

high light levels and are responsible for vision under normal light conditions. The

distribution of photoreceptors varies largely over the surface of the retina. Cones

are concentrated in the fovea and its density rapidly declines with the distance

from the fovea, while rods dominate the region outside the fovea and the central

fovea contains no rods at all. The fovea (as shown in Figure 2.2) is a small area at

the center of the retina. The concentrated distribution of cones in the fovea results

in high-resolution vision only over a small region around the point of fixation

(projected onto the fovea) and quickly decreased resolution with distance from

the fixation point. The sampled signals from photoreceptors are further processed

by several layers of interconnecting retinal neurons and then transmitted to the

ganglion cells where the optic nerves carry the output signal of the retina to the

brain.

As illustrated in Figure 2.1, the optic nerves carry visual information leaving

from the retina via the optic chiasm, the optic tract, the lateral geniculate nu-

cleus, the optic radiation, to the visual cortex in the brain. The visual cortex is

responsible for the high-level aspects of human vision. The primary visual cortex

is the layer of visual cortex that makes up the largest part of the HVS. It is found

that a large number of neurons in the primary visual cortex respond strongly to
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certain types of information, such as some specific spatial and temporal frequen-

cies, orientations, phases, colors, velocities, and directions of motions, etc. The

receptive fields of neurons could be well described using localized, band-pass, and

oriented functions. The visual streams generated in the visual cortex are carried

off to other parts of the brain for further processing, such as motion sensing and

high-level cognitive understanding. Current knowledge is largely limited to the

low-level processes of human vision. The precise functional mechanisms of the

high-level processes occurring in the human brain remains an active research area

in vision science.

2.2 Psychophysical Properties of the Human Vi-

sual System

This subsection describes those psychophysical properties that are relevant to the

image quality measures discussed in this thesis.

Light Adaptation - The HVS is able to adapt to a wide range of light inten-

sities from a few photons to bright sunlight. This phenomenon is known as light

adaptation, which operates mainly via the mechanical variation of the pupillary

aperture to control the quantity of light entering the eye, and the chemical pro-

cesses in the photoreceptors of rods and cones. The HVS is more sensitive to the

relative variation of luminance than to the absolute luminance over a wide range

of background luminances. This property allows the HVS to better discriminate

the relative intensity variations at each light level. The human visual perception
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of luminance can be approximated by the Weber-Fechner law:

∆I

I
= K (2.1)

where I is the background luminance, ∆I is the just noticeable incremental lu-

minance perceived by the HVS over the background, and K is a constant. The

Weber-Fechner law holds over a wide range of background luminance which covers

the luminances in most image processing applications.

Contrast Sensitivity Functions - The contrast sensitivity functions model

the variations in the visual sensitivity to different spatial and temporal frequencies

in visual stimulus. In the modeling of the HVS, the contrast sensitivity func-

tions are typically implemented as filtering operations or weighted subbands after

frequency decomposition. Contrast sensitivity is also a function of temporal fre-

quencies, which has been modeled as temporal filters in video quality assessment.

Masking - Masking refers to the reduction in the visibility of one visual stim-

ulus (called the signal) due to the simultaneous presence of another (called the

mask). It is basically due to the limitations in sensitivity of the retinal neurons in

relation to the activity of its surrounding neurons. The masking effect is strongest

when the mask and the signal have similar characteristics, such as similar spa-

tial locations, frequency components, orientations, and colors, etc. Two typical

visual masking effects are luminance masking and texture masking. Luminance

masking refers to the effect that the visibility of a visual stimulus is maximum for

medium background intensity, and the visibility reduces when the visual stimulus

occurs against a very low or very high intensity background. Luminance masking

is mainly due to the brightness sensitivity of the HVS. The average brightness of
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the surrounding background can alter the visibility threshold of the visual stimu-

lus. Texture masking refers to the effect that a visual stimulus is more visible in

homogeneous areas than in textured or detailed areas. In textured image regions,

small variations in the texture are masked by the macro properties of genuine

high-frequency details, and therefore, are not easily perceived by the HVS.

Pooling - Pooling refers to the task of making a perceptual decision from the

visual streams. It is still not well understood how the HVS performs the task of

pooling, but high-level cognitive understanding should play an important role. In

image quality measures, the Minkowski pooling strategy with the expression given

below is usually employed to pool the error signals across spatial locations or differ-

ent channels (usually in terms of different frequency and orientation components)

to obtain a single scalar as image quality score.

E({el,k}) = (
∑

l

∑

k

|el,k|
β
)

1

β (2.2)

where el,k is the normalized error of the kth coefficient in the lth channel, and β is

a constant exponent typically chosen between 1 and 4. Minkowski pooling may be

implemented in the spatial space (indexed by k) and then over different channels

(indexed by l), or vice versa.



Chapter 3
Literature Review

This chapter reviews the related work in the field of image quality assessment. FR

image quality measures are reviewed in Section 3.1, RR image quality measures in

Section 3.2, NR image quality measures in Section 3.3, and the validation of image

quality measures is detailed in Section 3.4.

3.1 Full-Reference Image Quality Assessment

Assuming full access to a reference image, FR image quality measures predict

quality through the comparison between a reference and a distorted image. A

reference image is distortion-free and is assumed to have “perfect” quality. As a

standard approach of image quality assessment, FR image quality measures have

received a great deal of attention over the past decades. A considerable percentage

of the literature is devoted to the development of FR image quality measures, or

more precisely, image fidelity or similarity measures. However, only in recent years

have the relatively “easier” FR approaches been developed to predict image quality

in good consistency with perceived visual quality.

15
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The classical FR image quality measures of mean-squared error (MSE) and

its variant peak signal-to-noise ratio (PSNR) have found widespread use due to

their simplicity and mathematical convenience. Assume that I denotes the orig-

inal image and Î denote a distorted version of I, both with n-bit pixel values

(i.e., intensities) in the range [0, 2n − 1] (e.g., [0, 255] for 8-bit images). With the

distortion E = I− Î, the MSE between I and Î is expressed by

MSE =
‖E‖2
N

=
1

N

N
∑

i=1

E2
i (3.1)

and the PSNR by

PSNR = 10 log10

(

(2n − 1)2

MSE

)

= 20 log10(2
n − 1)− 20log10

(‖E‖√
N

)

(3.2)

where ‖·‖ denotes the L2-norm, Ei denotes the ith distortion value in E, and N

denotes the number of pixels. The PSNR is useful when the images being compared

have different ranges of pixel values, but it contains no new information relative to

the MSE. The definitions (3.1) and (3.2) show that MSE and PSNR operate based

on the energy of pixel-wise distortions ‖E‖. Despite being widely used over a very

long time, MSE and PSNR have been widely criticized for their limited accuracy

when estimate perceived visual quality, e.g., [6–10].

With an intention to predict image quality in a similar way as the HVS, the

perceptual image quality measures following a “bottom-up” approach have been

developed to mathematically model the functional components in the HVS that

are relevant to image quality assessment. Although the HVS is extremely com-

plex and its many properties are still not well understood, it is of great interest

in the past three decades to deploy the relevant features of the HVS to predict



3.1 Full-Reference Image Quality Assessment 17

image quality [11,12]. Some representative HVS-based image quality measures are

reviewed below.

Lubin’s (or Sarnoff’s) model [13–15] predicts image quality by estimating the

probability of the differences between two images being compared. To obtain the

probability map, the model filters and resamples an image in a way to simulate

eye optics and the retinal photoreceptor sampling, and decompose the image using

a Laplacian pyramid [16] followed by the band-limited contrast calculations [17].

Next, the signal is further decomposed using a bank of steerable filters [18] to

reflect the orientation selectivity of the HVS, followed by a normalization operation

determined by the contrast sensitivity functions and an implementation of point

nonlinearity to account for the intra-channel masking of the HVS. The normalized

error signal is then convolved with disk-shaped kernels before a Minkowski pooling

across scales. The errors across the spatial space after the pooling stage are then

converted into a probability-of-detection map.

The Teo-Heeger Model [19, 20] involves two major components: a steerable

pyramid transform [21] and contrast normalization. Specifically, a steerable pyra-

mid decomposition is used to accomplish the channel decomposition to account

for the observation that a large number of neurons in the primary visual cortex

are tuned to visual stimuli with specific spatial locations, frequencies, and orien-

tations, and the normalization scheme is motivated from those models that have

been widely used to explain physiology data in early visual systems.

Watson’s DCT model [22] was originally designed for JPEG optimization. In

this model, an image is divided into distinct blocks, and a visibility threshold

is calculated for each DCT coefficient in each block. The visibility threshold is

determined by three factors to simulate the properties of the HVS, namely, baseline
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contrast sensitivity, luminance masking, and contrast/texture masking. The errors

between the reference and distorted images are normalized using the visibility

threshold, and are pooled spatially and across frequencies to obtain the final image

quality estimation.

Karunasekera et al. [23] developed a distortion measure based on the human

visual sensitivity to horizontal and vertical edge artifacts resulting from block DCT-

based image compression.

Miyahara et al. [24] reported a picture quality scale which combines a num-

ber of human visual properties for both global features and localized distortions,

including light adaptation according to the Weber-Fechner law, contrast sensitiv-

ity, and visual masking of the HVS. Winkler [25] developed a perceptual distortion

metric for color images based on the following properties of visual perception: color

perception and the theory of opponent colors, the response properties of neurons

in the primary visual cortex, and contrast sensitivity and contrast masking of the

HVS.

Damera-Venkata et al. [26] models the degradation as the linear frequency dis-

tortion and additive noise injection. Two complementary measures were thus de-

veloped to quantify the separate distortions. Specifically, the frequency distortion

is quantified based on a model of the frequency response of the HVS over visible

frequencies, and the noise distortion is quantified by taking into account the HVS

properties including the variation in contrast sensitivity, the variation in the lo-

cal luminance mean, the contrast interaction between spatial frequencies, and the

contrast masking effects of the HVS.

Wang et al. [27] developed an image quality index in the wavelet transform

domain, namely the foveated wavelet image quality index, which takes into account
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the following HVS factors: the space variance of the contrast sensitivity function,

the spatial variance of the local visual cut-off frequency, the variance of human

visual sensitivity in different wavelet subbands, and the influence of the viewing

distance on the display resolution and the HVS features.

Based on the noticeable local contrast changes as perceived by the HVS, Lin

et al. [28] presented a distortion metric by discriminatively analyzing the impact

of pixel differences in visual quality. A scheme for estimating just-noticeable dis-

tortion is proposed in [29]. This scheme proposes a new formula for luminance

adaptation adjustment and incorporates block classification for contrast masking

of the HVS.

Chandler et al. [30, 31] developed a metric named the visual signal-to-noise

ratio which quantifies the visual fidelity of natural images based on near-threshold

and supra-threshold properties of the human vision. In Chandler’s metric, it is

first determined that whether the distortions are visible through the comparison

with contrast thresholds that are computed via wavelet-based models of visual

masking and visual summation. If the distortions are below the threshold of visual

detection, the distorted image is deemed to have perfect visual fidelity. If the

distortions are supra-threshold, the distortions are quantified based on the low-

level visual property of perceived contrast and the mid-level visual property of

global precedence.

Different from the “bottom-up” HVS-based approaches, the “top-down” image

quality measures treat the HVS as a black box and only the input-output relation-

ship of the HVS is of concern. They are based on the hypotheses regarding the

overall functionality of the HVS. A notable feature of the top-down approaches

is that they may provide much simplified computational models for image quality
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assessment.

A representative top-down approach is the structural similarity (SSIM) ap-

proach advanced by Wang et al. [32,33], which is employed as a benchmark for the

performance evaluation of the NR image quality measures developed in this thesis.

The algorithm of the SSIM approach is detailed below.

Based on the assumption that the HVS is highly adapted to extract structural

information from visual scenes, the basic idea of the SSIM approach is that a

measurement of SSIM or structural distortion should provide a good prediction of

perceived image quality. The SSIM index performs the task of similarity measure-

ment based on the comparison of three aspects: luminance, contrast, and structure.

First, the mean intensity is employed as the estimate of the signal luminance:

µx =
1

N

N
∑

i=1

xi (3.3)

where i is the index and N is the total number of signal samples. Second, the

standard deviation is employed as the estimate of the signal contrast:

σx =

(

1

N − 1

N
∑

i=1

(xi − µx)
2

)

1

2

(3.4)

Third, the correlation coefficient between the two signals being compared is em-

ployed as the measure to quantify the structural similarity:

ρ =
σxy

σxσy
=

1

σxσy

(

1

N − 1

N
∑

i=1

(xi − µx)(yi − µy)

)

(3.5)

Suppose that x and y are local image patches taken from the same location of two

images being compared. The similarity l(x,y) of the local luminance, the similarity
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c(x,y) of the local contrasts, and the similarity s(x,y) of the local structures are

combined to form the local SSIM S(x,y):

S(x,y) = l(x,y)·c(x,y)·s(x,y) =
(

2µxµy + C1

µ2
x + µ2

y + C1

)α

·
(

2σxσy + C2

σ2
x + σ2

y + C2

)β

·
(

σxy + C3

σxσy + C3

)γ

(3.6)

where µx and µy are respectively the local mean of x and y, σx and σy are respec-

tively the local standard deviations of x and y, and σxy is the cross correlation of x

and y. α > 0, β > 0, and γ > 0 are parameters used to adjust the relative impor-

tance of the three components. C1, C2, and C3 are small positive constants used

to stabilize each term, so that near-zero means, variances, or correlations do not

lead to numerical instability. The choice of C1 = C2 = C3 = 0 defines the initial

version of SSIM, namely the universal image quality index [34, 35]. The dynamic

range of S(x,y) is −1 < S(x,y) ≤ 1 where a large value indicates greater similar-

ity between a reference and a distorted image. The maximum value S(x,y) = 1

occurs if and only if x = y for all i = 1, 2, ..., N . The SSIM index is symmetric

with S(x,y) = S(y,x), so that two images being compared give the same index

value regardless of their ordering. With α = β = γ = 1 and C3 = C2/2, the specific

form of the SSIM index in [32] is given by

S(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.7)

The SSIM index is computed locally within a sliding window that moves pixel-by-

pixel across an image, resulting in an SSIM map. The SSIM score of the entire
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image is then computed by pooling the SSIM map:

Q(X,Y) =
1

M

M
∑

j=1

S(xj,yj) (3.8)

where X and Y are respectively a reference image and a distorted image; xj and yj

are the local image patches at the jth sliding window corresponding to the reference

and distorted images, respectively; and M is the total number of local windows

of the images being compared. The SSIM index [32, 33] is the implementation

of the SSIM approach at a single scale in the spatial domain. There also exists

other forms of the SSIM approach. The implementation of SSIM over multiple

scales [36,37] supplies more flexibility than the single-scale method by incorporating

the variations of viewing conditions. An image synthesis method was proposed

to calibrate the parameters which are used to define the relative importance of

different scales. A complex wavelet domain version of SSIM [38] alleviates the

sensitivity of SSIM in the spatial domain to geometric distortions, such as relative

translations, scalings, and rotations of images.

Based on the statistical modeling of source, channel distortion, and receiver,

the visual information fidelity approach developed by Sheikh et al. [39–42] seeks

to relate image quality to the amount of information that is shared between a

reference and a distorted image. Specifically, a reference image (i.e., the source) is

modeled by a wavelet-domain Gaussian scale mixture [43], the distortions between

a reference and a distorted images (i.e., the channel distortion) are modeled as a

combination of a uniform wavelet-domain energy attenuation with the subsequent

independent additive noise, and the visual distortion process (i.e., the receiver)

is modeled as a stationary, zero-mean, additive white Gaussian noise process in
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the wavelet domain. Finally, an image quality estimate is obtained by quantifying

the shared information between a reference and a distorted images in terms of the

mutual information, a widely used statistical measure of information fidelity in

information theory.

Weken et al. [44] resort to the similarity measures in the fuzzy set theory for

image quality assessment. The image quality estimate is given as the weighted

average of the local similarities between the disjoint image patches taken from a

reference and a distorted images. Specifically, the local similarity is calculated

using one of the thirteen fuzzy similarity measures presented in [44] that were

found appropriate for the comparison of images, and the weight is defined as the

similarity between the homogeneities of the corresponding image patches where the

homogeneity is computed as the similarity between the maximum and minimum

intensities of an image patch.

Shnayderman et al. [45] presented a singular value decomposition-based image

quality measure that can be used as either a graphical or a scalar measure. Han

et al. [46] proposed to use LU factorization to represent the structural information

of an image. Based on the LU factorization of a reference and a distorted image,

a two-dimensional distortion map is constructed and an image quality score is

computed from the distortion map.

Although the bottom-up and top-down approaches are motivated from sub-

stantially different design principles, they are complementary in many respects

and have no sharp boundary. On one hand, it is impossible for a bottom-up ap-

proach to simulate all the related functional components in the complicated HVS.

Many hypotheses have to be made in the bottom-up approaches to simplify the
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simulation so as to achieve a tractable solution. On the other hand, a good un-

derstanding of the relevant functional components in the HVS is quite useful for

a top-down approach to make reasonable hypotheses about the the overall func-

tionality of the HVS. Indeed, it is desirable to find solutions that may combine

the principles underlying the top-down and bottom-up approaches in the common

task of image quality assessment.

3.2 Reduced-Reference Image Quality Assessment

RR image quality measures do not require full access to a reference image, and

instead utilize only partial information such as the features extracted from a refer-

ence image to predict quality. The RR approach provides a compromise between

the FR and the NR approaches. In concept, RR image quality assessment is easier

than the NR approach at the cost of transmitting additional side information. The

standard deployment of a RR image quality assessment system is to send the side

information through a separate data channel which, however, may be inconvenient

or expensive to provide in practical applications. An alternative solution is to send

the side information using the same channel as the images being transmitted. In

this case, the limited available data rate in practical applications lay some basic

requirements for the selected RR features: they should provide efficient informa-

tion to represent a reference image; they should be sensitive to image distortions;

and they should have good perceptual relevance, etc. Based on the features ex-

tracted from a reference image together with a distorted image, a final scalar score

is computed to describe the quality of a distorted image.
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Quite a few RR image quality measures or systems were reported in the litera-

ture. Wang et al. [47] proposed a RR image quality measure based on a natural im-

age statistics model in the wavelet transform domain. In Wang’s quality measure,

the Kullback-Leibler distance [48] is applied between the marginal distributions

of wavelet coefficients of a reference and a distorted image. With a generalized

Gaussian density model [49] to represent the marginal distribution of wavelet co-

efficients of an image, image quality is described by the fitting error between the

wavelet coefficients of a distorted image and the Gaussian distribution of a refer-

ence image. Based on this RR image quality measure, a subsequent quality-aware

image system was developed in [50], which combines the techniques of information

data hiding, robust image communication, information data decoding, and RR

image quality assessment. The basic concept of quality-aware image is to embed

the features extracted from an original (high-quality) image into the image data

as invisible hidden messages. When a distorted version of this image is received,

users can decode and use the hidden messages to predict image quality by an RR

quality measure.

Gao et al. [51] developed a RR framework by incorporating the merits from mul-

tiscale geometric analysis, contrast sensitivity functions, and the Weber-Fechner

law of just noticeable difference (Section 2.2). In this framework, the multiscale ge-

ometric analysis is utilized to decompose images and extract features to mimic the

multichannel structure of the HVS. The multiscale geometric analysis also offers a

series of transforms to capture different types of image geometric information. To

take into account the nonlinearities inherent in the HVS, contrast sensitivity func-

tions are applied to weight the coefficients obtained by the multiscale geometric

analysis. And the just noticeable difference is introduced to produce a noticeable
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variation in sensory experience.

3.3 No-Reference Image Quality Assessment

In contrast to the FR and the RR image quality measures, which require full and

partial access to a distortion-free image, NR image quality measures predict quality

solely from a distorted image without any reference. Without any knowledge of

a distortion-free image as reference, NR image quality assessment is no doubt a

difficult approach to predict quality. Despite their intrinsic difficulty, NR image

quality measures are highly desirable in real-world applications where a reference

image is expensive to obtain or simply not available.

The development of NR image quality measures is largely motivated by the fact

that human beings can easily identify image quality without seeing a distortion-

free image, and moreover, different individual observers tend to have similar image

quality opinions. However, the HVS is enormously complex and current knowledge

of the human visual perception is far from complete. In particular, there exists such

factors like learning, visual context, and cognitive relevance in the human visual

perception that can hardly be quantified. NR image quality assessment thus turns

out to be an extremely difficult task. The field of NR image quality assessment

has experienced fast advances in recent years and the number of new approaches

that are being proposed is growing rapidly. At present, most existing NR image

quality measures are designed with prior knowledge of the distortion. Fortunately,

the distortion process is known in many applications, and the task of developing

distortion-specific NR quality measures is of practical importance.

The progress made in NR image quality assessment is closely related to the
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advances in the technologies of image acquisition, display, compression, transmis-

sion, and reproduction. The distortions of blur and noise are usually generated

in image acquisition and display systems, so the early NR quality measures were

usually designed for blur/sharpness and noise measurement. With the evolution of

high-quality image acquisition and display systems as well as the rapid prolifera-

tion of digital images, compression techniques are widely used to reduce bandwidth

for the storage and transmission of digital images in numerous applications. Lossy

image compression contains an inherent irreversible information loss, which pro-

duces visible and undesirable artifacts in the reconstructed images and leads to

degraded visual quality, especially in the case of compression at low bit rates. In

fact, compression artifacts and transmission errors are two major distortions in the

experiments conducted by the Video Quality Experts Group (VQEG) [52] which

aims to provide industrial standards for video quality assessment. These exper-

iments indicate that compression and transmission have become two significant

sources of image distortions in practical applications. The scope of this thesis

concerns images subject to a single distortion. Considering that the distortion of

transmission errors is basically a kind of multiple distortions composed of compres-

sion artifacts followed by the distortions during transmission, we do not discuss

transmission errors in this thesis. The rest of this section will review those NR

image quality measures in the literature that work with the distortions created

by two widely used compression technologies, i.e., the block DCT and the wavelet

-based image compressions.

In the standard block DCT-based JPEG compression [53], an image is parti-

tioned into non-overlapping 8 × 8 blocks and the DCT is applied to each block.

Then each DCT coefficient in each block is subject to independent quantization
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and subsequent entropy coding. Due to the coarse quantization of block-based

DCT coefficients at low bit rates, it is noted that blurring occurs within blocks,

and blocking artifacts appear across block boundaries in JPEG compressed im-

ages [54]. The blurring distortion within coding blocks is due to the loss of high

frequency components during the process of quantization and blocking artifacts,

characterized by periodic horizontal and vertical discontinuities at the boundaries

of the blocks, due to independent quantization within coding blocks. Since block-

ing artifacts are usually the most annoying distortion in JPEG compressed images,

most NR quality measures are designed based on the adjustment over the quantifi-

cation of blocking artifacts, either in the spatial domain [55–59] or in the frequency

domain [60–62]. Some other approaches formulate the NR quality assessment of

JPEG compressed images as a machine learning problem in which the functional

relationship between image features and subjective quality ratings is learned by a

training procedure [63–65].

Wu et al. [55] took into account the luminance masking effect and developed

a generalized impairment metric at block edges to quantify the blocking artifacts.

According to the subjective experiments carried out in [56], it was claimed that the

quality of JPEG compressed images could be described based on a single distortion

since the subjective data regarding the individual distortions were found to be

highly correlated. Relying on this finding, Meesters et al. [56] proposed an image

quality measure based on the blocking artifacts alone. The Hermite transform [66],

a signal decomposition technique in which signals are locally approximated by

polynomials within a Gaussian window, was used to detect the low-amplitude

edges resulting from blocking artifacts, and edge amplitudes were estimated as the

amount of blockiness.
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Wang et al. [57] proposed to estimate the average luminance differences across

block boundaries to indicate blockiness, and the average absolute difference be-

tween block image pixels together with the zero-crossing rate within coding blocks

to indicate the activity of a JPEG compressed image. All these factors are com-

bined to yield a quality score for a JPEG compressed image.

In [58], it was claimed that simple edge detection around block boundaries

should be sufficient for the measurement of blocking artifacts, since the likeli-

hood that a horizontal or vertical edge happens to be located exactly at the block

boundary is small in natural images. Li [58] proposed to use the Prewitt oper-

ator to detect horizontal and vertical edges, and discard those gradients above a

specified threshold since the blocking artifacts are usually weak edges. With the

existence of blocking artifacts determined by a majority vote on the significance of

local gradients, the effect of blockiness is indicated by the overall edge detection

ratio at block boundaries.

In the quality measure reported in [59], blockiness is evaluated via block-by-

block analysis based on inter-pixel differences at and near block boundaries, and

flatness (blur) is evaluated in terms of the proportion of zero crossings within

8× 8 regions near block boundaries. Contrast and spatial masking effects are also

incorporated.

With a blocky image modeled as a nonblocky image interfered with by a pure

blocky signal, Wang et al. [60] proposed to assess the blocking effect by evaluating

the energy of the blocky signal in the frequency domain. The power spectra of the

absolute difference signals in either the horizontal or vertical direction are estimated

using the fast Fourier transform. The effect of blockiness is estimated as the power

of the blocky signal which is computed after smoothing the power spectrum by
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a median filter. Wang’s blockiness measure also incorporates the luminance and

texture masking effects.

In [61], an approach working in the DCT domain was developed for the blind

measurement of blocking artifacts. The blocking artifacts are modeled as 2-D step

functions within the shifted blocks constructed across two adjacent coding blocks,

and the amount of blocking artifacts is estimated as the amplitude of the 2-D step

function. The luminance and texture masking effects are also integrated into the

quality measure.

In [62], the proposed image quality measure is based on natural scene statistics

of the DCT coefficients whose distribution is modeled by a Laplace probability

density function. The resulting coefficient distributions are used to estimate the

local error due to JPEG encoding. The resulting local errors perceptually weighted

by Watson’s model [22] are pooled together to obtain an image quality score.

In [63], neural networks were used to predict image quality. The principle is to

first “teach” a neural network to assess image quality using the features extracted

from example images and subjective quality data provided by human observers,

and then the “calibrated” neural network is used to assess the quality of images to

be evaluated.

In [64], a circular back-propagation model-based neural network is trained to

simulate the quality scoring process of human evaluators to perform the task of

image quality assessment.

In [65], a NR quality measure was developed based on a sequential learning

algorithm for growing and pruning radial basis function network. The network is

trained to approximate the functional relationship between the features extracted

from an image and subjective quality scores.
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Although blocking artifacts are avoided in the subsequent wavelet-based JPEG2000

compression [67], blur and ringing artifacts arise from the coarse quantization of

discrete wavelet transform (DWT) coefficients and are generally considered as the

most significant distortions in JPEG2000 compressed images. The coarse quanti-

zation results in the truncation of the high-frequency DWT coefficients. It leads to

visible irregularities around edges in the spatial domain, since the high-frequency

components basically correspond to the edges in the spatial domain. These ir-

regularities from natural appearance are usually referred to as ringing artifacts.

Characterized by ripples or oscillations around sharp edges and contours in an

image, the ringing artifacts can range from imperceptible to very annoying in a

compressed image, depending on the data source, target bit rate, or underlying

compression scheme. In contrast to the blocking artifacts that appear as periodic

horizontal and vertical edges at predictable locations (i.e., boundaries of coding

blocks), the ringing artifacts are strongly dependent on image content and com-

pression degree without regularity to follow and largely complicate the task of NR

quality assessment. Only a handful of NR quality measures in the literature are

able to work with JPEG2000 compressed images.

In [68], binary morphological operators are used to isolate the regions of an

image where the ringing artifacts are most visually prominent while preserving

genuine edges and other fine details present in an image. The effect of ringing

artifacts are evaluated by computing the image intensity variance in the vicinity

of edges.

In [58], an approach was proposed to measure the ringing effect by examining

the noise spectrum filtered out by anisotropic diffusion [69] implemented on an

image. The basic idea is that the ringing artifacts would be mostly assimilated
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into the noise spectrum since anisotropic diffusion is effective in deringing, and the

noise spectrum would thus be colored if an image contains ringing artifacts. So

the percentage of energy measured at high frequencies is employed to indicate the

ringing effect.

The blur measures reported in [70, 71] are based on the measurement of edge

spread which is virtually the number of pixels with monotonically-changing inten-

sities along the gradient orientation at an extracted edge pixel. Both measures

are applied to predict quality of JPEG2000 compressed images. The differences

between [70] and [71] include: edges are detected by the Sobel operator in [70], and

by the Canny operator [72] in [71]; edge spread is measured along the horizontal

direction of a vertical edge in [70], and along the gradient orientation at a general

edge pixel in [71].

Tong et al. [73] proposed the use of principal component analysis to extract

local features by viewing all edge points as “distorted” or “un-distorted” in a

JPEG2000 compressed image. The relationship between the local features and the

local distortion metric is modeled based on the probability of an edge point being

“distorted” or “un-distorted”.

In [74], the blurring measure is formulated as the ratio of edge activity weighted

by the probability of edge occurrence in the middle/low frequencies, while the

ringing artifact measure is formulated as the ratio of the activity in the middle

low over middle high frequencies in the ringing regions around strong edges. The

blurring measure, the blocking artifact measure, and the percentage of strong edges

in a compressed image are finally pooled together to yield an image quality score.

Sheikh et al. [75,76] developed a model operating in the wavelet domain which

incorporates both a natural image statistic model and an image distortion model
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to predict quality of JPEG2000 compressed images. The basic idea is to investigate

how the quantization processes in JPEG2000 compression modify the statistics of

the image wavelet coefficients. Specifically, a natural image statistic model [77] is

utilized to describe what a typical wavelet coefficient distribution of natural images

should be like, and a distortion model associated with quantization is employed to

quantify the departure from the natural image statistic model.

Sazzad et al. [78] proposed a quality measure based on pixel distortions and

edge information. The pixel distortions are estimated using the local standard

deviation and the absolute difference measure of a central pixel from the second

closest neighborhood pixels. Edge information is estimated using the zero-crossing

rate and the histogram measure with and without edge preserving filter. Finally,

the pixel distortions and edge information are combined to quantify image quality.

To quantify the effect of ringing artifacts, the measure in [79] first uses a ringing

region detection method [80] to extract the potential regions which are likely to be

impaired by the ringing artifacts. For each individually detected ringing region, a

ringing annoyance score is calculated by estimating the local visibility of ringing

artifacts and comparing it with the local background activity. An overall ringing

annoyance score is obtained by averaging the local annoyance scores over all ringing

regions. The ringing region detection method [80] consists of two steps: extraction

of edges relevant to ringing artifacts and detection of perceived ringing regions. For

the edge extraction, a bilateral filter-based advanced edge detector [81] is adopted

to extract the potential edges relevant to ringing regions, and the subsequent Canny

edge detector [72] is applied on the filtered image to obtain the most relevant edges.

Most existing NR image quality measures are designed for specific distortions

with prior knowledge of distortion type or distortion process, just like the image
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quality measures developed for JPEG and JPEG2000 compression. Despite its

intrinsic difficulty, several general-purpose NR image quality measures have been

reported.

Moorthy et al. [82, 83] proposed a framework based on natural scene statis-

tics [84] in the wavelet domain. The framework does not require any knowledge

of the distortion process once it has been trained. The framework consists of a

classifier based on a support vector machine [85] and a quality measure. When

predicting image quality, the classifier gauges the probability of each distortion

from a predefined distortion set. The quality measure provides a quality index for

each distortion within the distortion set. An image quality score is computed as the

probability-weighted summation of the measured probabilities and quality indexes

of different distortions. In Moorthy’s study, the predefined distortion set consists of

JPEG compression, JPEG2000 compression, white noise, Gaussian Blur, and fast

fading. With respect to the implementation of the component of quality measure,

support vector regression [85] is utilized for the distortions of JPEG2000 com-

pression, white noise, Gaussian blur, and fast fading, and the algorithm presented

in [57] is employed for JPEG compression.

Another exploration towards the general-purpose goal is a blind image quality

index developed by Saad et al. [86,87]. Based on the statistics of DCT coefficients,

the index first extracts features to construct a feature vector to represent an im-

age. The constructed feature vector consists of DCT-based contrast, kurtosis of

DCT coefficients histograms, and anisotropy in the DCT domain. Then a proba-

bilistic prediction model, following the multivariate Gaussian distribution and the

multivariate Laplacian distribution, is used to perform the task of image quality
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prediction. Saad’s quality index was tested with distortions of white noise, Gaus-

sian blur, compression, fast fading channel distortions, and JPEG and JPEG2000

compression.

3.4 Validation of Objective Quality Measures

Validation is essential for the successful development of objective image quality

measures. Since the goal of objective quality measures is to estimate perceived

visual quality, the standard approach of validation is to compare the outputs of

objective quality measures with the “ground truth” data of subjective quality scores

provided by human observers for an extensive database of test images. In this sec-

tion, two widely used approaches for subjective quality evaluation are introduced in

Section 3.4.1, and the evaluation criteria recommended by the VQEG are reviewed

in Section 3.4.2.

3.4.1 Subjective Quality Evaluation

Subjective quality evaluation is determined by complicated experiments which in-

volve many aspects of human psychology and viewing conditions, such as the vision

ability of observers, translation of human quality perception into ranking scores,

stimulus content, display devices, ambient light levels, etc. Two methods are

widely employed for subjective quality evaluation, namely single-stimulus contin-

uous quality evaluation (single-stimulus method) and double-stimulus continuous

quality scale (double-stimulus method). These two methods have been adopted as

parts of an international standard by the International Telecommunications Union.

In the single-stimulus method, subjects continuously indicate their impression of
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quality on a linear quality scale that is divided into five equal segments. The five

segments are not marked numerically and instead are labeled with adjectives of

“Bad”, “Poor”, “Fair”, “Good”, and “Excellent” to serve as guides. The subjects

are instructed to move a slider to any point on the scale that best reflects their im-

pression of quality. The position of the slider is later converted into a quality score.

The double-stimulus method is a form of discrimination-based method, in which

a reference and a distorted image are presented one after the other in the same

session with a small time segment of a few seconds each. Subjects evaluate the ref-

erence and the distorted image using sliders similar to those in the single-stimulus

method. The difference between the scores of the reference and the distorted im-

ages gives the subjective distortion judgement. With subjective quality evaluation

conducted using either the single- or double-stimulus method by multiple subjects,

the resultant scores can be further averaged and processed to yield the mean opin-

ion score (MOS) or difference mean opinion score (DMOS), two widely used forms

of subjective quality scores. The standard deviation among individual scores may

also be used to measure the consistency among different subjects.

Sheikh et al. performed an extensive subjective image quality assessment study

and developed the LIVE image database [88] which has been widely used to evalu-

ate the performances of image quality measures in the literature. In the LIVE

image database, a total of 779 distorted images was evaluated by about two

dozen judges, and the subjective image quality scores in terms of DMOS were

obtained from about 25000 individual human quality judgments. The entire im-

age database was derived from twenty-nine color images (mostly 768× 512 pixels

in size) with diverse image contents, including pictures of faces, people, animals,

closeup shots, wide-angle shots, nature scenes, man-made objects, images with
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Figure 3.1: Sample source images in the LIVE image database.

distinct foreground/background configurations, and images without any specific

object of interest, etc. Figure 3.1 shows some sample source images of the LIVE

image database. The distorted images are generated by a wide range of distortion

types and distortion levels. Specifically, the image distortion type includes white
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noise, Gaussian blur, JPEG and JPEG2000 compression, and transmission errors

in the simulated fast fading rayleigh channel. The details of the five distortions

are given below:

• White noise: A total of 145 distorted images was generated by adding white

Gaussian noise of standard deviation σN to the RGB components of an image.

The values of σN range from 0.012 to 2.0.

• Gaussian blur: A total of 145 distorted images was generated by filtering the

RGB components using a circular-symmetric 2D Gaussian kernel of standard

deviation σB pixels. The values of σB range from 0.42 to 15 pixels.

• JPEG compression: A total of 175 distorted images was generated by using

JPEG compression at bit rates ranging from 0.15 bits per pixel (bpp) to 3.34

bpp.

• JPEG2000 compression: A total of 169 distorted images was generated by

using JPEG2000 compression at bit rates ranging from 0.028 bpp to 3.150

bpp.

• Transmission errors: A total of 145 distorted images was generated by bit

errors during the transmission of compressed JPEG2000 bitstream over a

simulated wireless channel.

In the development of the LIVE image database, the single-stimulus method

was employed for the tests in which the reference images were also evaluated in

the same experimental session as the test images. After seven such independent

sessions, a set of 50 images was collected from the individual sessions for a separate

realignment experiment using a double-stimulus method to realign the obtained
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quality scales. Based on the raw scores obtained in these tests, DMOS scores on a

scale of 0-100 were computed after outlier detection, subject rejection, and other

processings, with a larger resultant DMOS indicates poorer visual quality. More

details of the LIVE image database can be found in [89].

3.4.2 Performance Evaluation Criteria

The VQEG [52] is a group of experts from various backgrounds and affiliations

working in the field of video quality assessment. The group was formed in 1997 to

validate and standardize objective measurement methods for video quality. The

VQEG has established a systematic way to evaluate the performance of objec-

tive quality measures. According to the reports released by VQEG [90–92], the

performance of objective quality measures can be evaluated by three criteria:

• Prediction accuracy - the ability to predict the subjective quality ratings with

low error.

• Prediction monotonicity - the degree to which the model’s predictions agree

with the relative magnitudes of subjective quality ratings.

• Prediction consistency - the degree to which the model maintains prediction

accuracy over the range of video test sequences, i.e., the model’s response is

robust with respect to a variety of video impairments.

For the fitting in scales between the objective and the subjective quality data, it

is generally acceptable for an objective quality measure to predict subjective qual-

ity scores with the compensation by a mapping function. In the testing conducted

by the VQEG, a nonlinear mapping between the outputs of objective quality mea-

sures, i.e., objective quality scores, and subjective quality scores was allowed. All
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the performance evaluation criteria were computed after the compensation by the

mapping function. According to the explanation given by the VQEG, the data of

subjective quality scores are usually compressed at the ends of the rating scales,

and it is not reasonable for objective quality measures to mimic this weakness of

the subjective quality data. Different logistic functions have been used in the lit-

erature for the mapping. In this thesis, the mapping is constructed via the logistic

function:

Qp(Qo) =
β1

1 + exp [−β2(Qo − β3)]
+ β4 (3.9)

where Qo is the objective quality score calculated by quality measures, Qp is the

compensated objective quality score, which, in other words, is the predicted sub-

jective quality score, and βk with k = 1, 2, 3, 4 are parameters. The parameter βk

is determined through the nonlinear regression analysis [93] over the objective and

the subjective quality data.

After the compensation of objective quality scores, different performance eval-

uation criteria can be calculated. The Pearson correlation coefficient (CC) on a

scale of -1 to 1 is employed as a measure for the prediction accuracy criterion:

CC =

N
∑

i=1

(Qs(i)− Q̄s)(Qp(i)− Q̄p)

√

N
∑

i=1

(Qs(i)− Q̄s)2

√

N
∑

i=1

(Qp(i)− Q̄p)2

(3.10)

where i denotes the index of image/video samples, Qs(i) denotes the subjective

quality score, Qp(i) denotes the the predicted subjective quality score as computed

in equation (3.9), Q̄s and Q̄p respectively denotes the average of Qs(i) and Qp(i),
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and N denotes the total number of images/video samples under tests. The Spear-

man rank order correlation coefficient (ROCC) is employed as a measure for the

prediction monotonicity criterion. To compute ROCC, Qs(i) and Qp(i) in equa-

tion (3.10) are converted to ranks and ROCC is calculated with the data of ranks.

The computation of ROCC can be independent of the compensation by a mapping

function since it is calculated based on the ranks of quality data. With each im-

age/video sample deemed as a point, the criterion of prediction consistency can be

measured by the outlier ratio (OR) which represents the ratio of outlier points to

total points N :

OR =
total number of outliers

N
(3.11)

An outlier is a point whose prediction error, as defined in equation (3.12), ex-

ceeds a threshold. Usually, the threshold is chosen as twice the standard deviation

of individual subjective quality scores assigned to an image/video sample. The

identification of an outlier point can be mathematically described by

Perror(i) = Qs(i)−Qp(i) (3.12)

|Perror(i)| > 2σDMOS(i) (3.13)

Besides, root mean square error (RMSE) also provides an informative performance

measure to judge the relative performance between the quality measures under

comparison. Based on the prediction error in equation (3.12), RMSE can be cal-

culated by

RMSE =

√

√

√

√

1

N − d

N
∑

i=1

(Perror(i))2 (3.14)
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where N denotes the total number of image/video samples, and d is the number of

degrees of freedom of the mapping function. In the case of the mapping function

(3.9), d = 4 since there are 4 coefficients.



Chapter 4
Kurtosis-Based No-Reference Image

Quality Measures: JPEG2000

Kurtosis-based NR quality measures for JPEG2000 compressed images are pre-

sented in this chapter. The proposed image quality measures operate in the DCT

domain of an image. Their implementation comprises two stages. In the first stage,

kurtosis is computed with DCT coefficients of non-overlapping image blocks. In

the second stage, a pooling approach is employed to combine all the kurtosis val-

ues into a single image quality score. This chapter is organized as follows. Section

4.1 provides the motivation of this study. Section 4.2 introduces the definition of

kurtosis. The proposed computation of kurtosis in the DCT domain is detailed in

Section 4.3, which includes the frequency band-based 1-D kurtosis, basis function-

based 1-D kurtosis, and 2-D kurtosis. The working principle of kurtosis in image

quality prediction is described in Section 4.4. Section 4.5 presents the kurtosis-

based image quality measures. The effectiveness and limitations of the proposed

NR image quality measures are discussed in Section 4.6. This chapter ends with a

43
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summary in Section 4.7.

4.1 Motivation

Most existing NR image quality measures are developed with prior knowledge of

the distortion. Fortunately, the distortion process is known in many applications,

and the task of developing distortion-specific NR image quality measures is of

practical importance. Compression techniques are widely used nowadays to reduce

bandwidth for the storage and transmission of digital images. Due to the coarse

quantization of DWT coefficients, blur and ringing artifacts are generally consid-

ered as the most significant distortions in JPEG2000 compressed images. These

distortions are heavily dependent on image content and make NR quality assess-

ment of JPEG2000 compressed images complicated. This chapter focuses on NR

quality assessment of JPEG2000 compressed images.

As reviewed in Section 3.3, only a handful of reported NR quality measures

are able to work with JPEG2000 compressed images. Although the researchers

claimed good results with their respective techniques, these reported image qual-

ity measures have their limitations. The image quality measures presented in

[70,71,73,74,79] are heavily dependent on reliable edge information. Given the de-

creased number of detected edges with increased blurring, the effectiveness of these

image quality measures would inevitably decline when images are subject to severe

distortion. A sophisticated edge detection method, such as a bilateral filter-based

advanced edge detector used in [79] and the Canny edge detector in [71, 79], may

help to alleviate the problem but is definitely not a solution. The implementation

issue is another concern with respect to existing NR image quality measures. The
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threshold operation associated with the image quality measures [70,71,73,74,79] for

edge extraction is usually experience/image-dependent and would be inconvenient

in practical applications. Similarly, the choice of projection axes in [73] is made in

an ad hoc manner, and the parameters in [79] are determined empirically. Besides,

all the measures in [73–75,78,79,82,86] require additional procedures and training

data for model parameter determination. This imposes a constraint when data are

limited and incurs inconvenience in practical applications. Additionally, an obvi-

ous shortcoming of the image quality measure in [58] is the absence of adequate

performance validation.

The feasibility of kurtosis for NR image quality assessment has already been ex-

plored in the literature for sharpness/blur quantification. Kurtosis-based sharpness

measures were developed either in the Fourier transform domain over the entire

image [94] or in the DCT domain over the edge regions of an image [95]. Based

on multivariate kurtosis, the sharpness measure reported in [94] fails to provide

local sharpness information and solely assigns a score for the entire image. With

image quality assessment still an open question, an effective quality measure is

expected to provide not only global but also local quality information. Based on

2-D kurtosis of edge regions, the sharpness measure developed in [95] is subject to

the limitations imposed by edge extraction as well, i.e., decreased extracted edges

under severe distortion and inconvenience incurred by the associated threshold

operation.

In this study, kurtosis is utilized in the DCT domain to blindly appraise the

quality of JPEG2000 compressed images. Specifically, three NR image quality

measures are proposed, which are based, respectively, on frequency band-based 1-

D kurtosis, basis function-based 1-D kurtosis, and 2-D kurtosis. The proposed NR
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image quality measures have these advantages: they are simple, they do not need

to extract edges/features, they are parameter free, and their quality predictions

are shown to be in good agreement with subjective quality scores.

4.2 Kurtosis

The statistical measure of kurtosis describes the departure of a probability distri-

bution from the normal (Gaussian) distribution in shape. A brief definition of 1-D

and 2-D kurtosis in the discrete case is provided below.

For a univariate random variable X with mean µX and finite moments up to

at least the fourth, 1-D kurtosis is defined as:

K1 =
m4

m2
2

(4.1)

where

mk = E[(X − µX)
k] =

∑

i
(xi − µX)

kP (xi) k = 2, 4 (4.2)

µX = E[X ] =
∑

i
xiP (xi) (4.3)

mk is the kth central moment, E[·] denotes the expectation operator, and xi is the

sample of X whose probability density function (PDF) is represented by P (X).

For a bivariate random vector (X Y ) with PDF P (X, Y ), 2-D kurtosis can be

calculated by

K2 =
C4,0 + C0,4 + 2C2,2 + 4C1,1(C1,1C2,2 − C1,3 − C3,1)

(1− C2
1,1)

2
(4.4)
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where

Ck,l =
E[(X − µX)

k(Y − µY )
l]

(E[(X − µX)2])k/2(E[(Y − µY )2])l/2

=

∑

i

∑

j (xi − µX)
k(yj − µY )

lP (xi, yj)

(
∑

i (xi − µX)2P (xi))k/2(
∑

j (yj − µY )2P (yj))l/2

k, l = 0, 1, ..., 4 (4.5)

P (xi) =
∑

j
P (xi, yj) (4.6)

P (yj) =
∑

i
P (xi, yj) (4.7)

Compared with the shape of the normal distribution, a distribution with excess

kurtosis indicates a higher peak and/or smaller shoulder and/or heavier tail, while a

distribution with less kurtosis indicates a flatter top and/or larger shoulder and/or

lighter tail. More information pertaining to kurtosis can be found in [96].

4.3 Kurtosis in the Discrete Cosine Transform

Domain

Suppose that D(u, v) denotes the DCT coefficient of an M ×M image block with

u, v = 0, 1, ...,M − 1. The following calculation of kurtosis is performed within the

DCT coefficient matrices of non-overlapping M ×M blocks over the entire image

and exclude the DC coefficient D(0, 0). The DC coefficient is discarded in com-

putation because its magnitude is usually much larger than the higher-frequency

DCT coefficients and largely influences kurtosis to reflect the shape change of the

distribution of the higher-frequency components. The basic principle of the fol-

lowing kurtosis calculations is to construct a 1-D or 2-D frequency distribution
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in order of increasing frequency, and then compute 1-D or 2-D kurtosis with the

normalized frequency distribution treated as a univariate or bivariate PDF.

4.3.1 Frequency Band-Based 1-D Kurtosis

Figure 4.1: Example frequency bands in an 8× 8 DCT coefficient matrix.

The DCT coefficients of an M × M image block are classified into different

frequency bands. The DCT coefficients with the same frequency index n = u + v

are grouped into the nth band, which is composed of approximately equal radial

frequency components [97]. In Figure 4.1, two frequency bands of an 8 × 8 DCT

coefficient matrix are indicated as examples. With the increased frequency index

n, the frequency band corresponds to the higher frequency content of the image

block. Generalizing the definition given in [97], the average amplitude of the nth

frequency band is represented by

B(n) =
1

N

∑

u+v=n
|D(u, v)| n = 1, 2, ..., 2M − 2 (4.8)
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where

N =











n + 1 1 ≤ n < M

2M − 1− n M ≤ n ≤ 2M − 2
(4.9)

A 1-D frequency distribution is thus constructed in the form of FB = {B(n) n =

1, 2, ..., 2M − 2} where the frequency components are arranged in the sequence of

increasing frequencies according to the increased frequency index n. Regarding the

normalized FB as a univariate PDF P (X), the frequency band-based 1-D kurtosis

with the representation of K1FB can be calculated according to equations (4.1)-

(4.3).

4.3.2 Basis Function-Based 1-D Kurtosis

With an 8 × 8 image block as an example, a 1-D frequency distribution is con-

structed in equation (4.10) according to the following principles: (a) following a

zigzag pattern, the DCT coefficients are basically reordered in the fashion of in-

creasing frequency; and (b) the pair of DCT coefficients which are symmetrical

with respect to the diagonal is grouped and represented by the maximum coeffi-

cient of the pair. The second principle is based on DCT basis functions, which

are basically frequency components. The DCT transforms the input signal into a

linear combination of weighted DCT basis functions. These weight values are re-

ferred to as DCT coefficients. With reference to the DCT basis functions shown in

Figure 4.2, it can be observed that each pair of basis functions that are symmetrical

with respect to the diagonal is basically the same frequency pattern distributed

in the horizontal and vertical orientations. In fact, each DCT coefficient indicates

how much the corresponding basis function is present in an image. It is therefore
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Figure 4.2: Visualization of DCT 8× 8 basis functions.

concluded that the pair of DCT coefficients that are symmetrical about the diag-

onal have essentially the same frequency significance. Only the magnitude of the

frequency components is taken into consideration here and the orientation infor-

mation is not utilized in image quality prediction. Hence, each pair of symmetrical

DCT coefficients is grouped together and the maximum coefficient of the pair is
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employed in the construction of the frequency distribution BF:

BF = {

max(|D(0, 1)| , |D(1, 0)|),max(|D(2, 0)| , |D(0, 2)|), |D(1, 1)| ,

max(|D(0, 3)| , |D(3, 0)|),max(|D(1, 2)| , |D(2, 1)|),max(|D(4, 0)| , |D(0, 4)|),

max(|D(3, 1)| , |D(1, 3)|), |D(2, 2)| ,max(|D(0, 5)| , |D(5, 0)|),

max(|D(1, 4)| , |D(4, 1)|),max(|D(2, 3)| , |D(3, 2)|),max(|D(6, 0)| , |D(0, 6)|),

max(|D(5, 1)| , |D(1, 5)|),max(|D(4, 2)| , |D(2, 4)|), |D(3, 3)| ,

max(|D(0, 7)| , |D(7, 0)|),max(|D(1, 6)| , |D(6, 1)|),max(|D(2, 5)| , |D(5, 2)|),

max(|D(3, 4)| , |D(4, 3)|),max(|D(7, 1)| , |D(1, 7)|),max(|D(6, 2)| , |D(2, 6)|),

max(|D(5, 3)| , |D(3, 5)|), |D(4, 4)| ,max(|D(2, 7)| , |D(7, 2)|),

max(|D(3, 6)| , |D(6, 3)|),max(|D(4, 5)| , |D(5, 4)|),max(|D(7, 3)| , |D(3, 7)|),

max(|D(6, 4)| , |D(4, 6)|), |D(5, 5)| ,max(|D(4, 7)| , |D(7, 4)|),

max(|D(5, 6)| , |D(6, 5)|),max(|D(7, 5)| , |D(5, 7)|), |D(6, 6)| ,

max(|D(6, 7)| , |D(7, 6)|), |D(7, 7)|

} (4.10)

where max(·) denotes the operation for the maximum. The maximum operation

is employed because it is simple and preserves the principal frequency component.

The validation of the use of the maximum operation is given in Section 4.6.2.

With 35 frequency components constructed from an 8× 8 DCT coefficient matrix,

the 1-D frequency distribution BF in equation (4.10) is normalized and treated

as a univariate PDF, P (X). Then the basis function-based 1-D kurtosis with the

representation of K1BF can be calculated according to equations (4.1)-(4.3). The
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computation of K1BF can be easily applied to different block sizes.

4.3.3 2-D Kurtosis

The computation of 2-D kurtosis follows the algorithm presented in [95]. A 2-

D frequency distribution of an M × M image block is constructed based on the

magnitude of its DCT coefficient matrix with the representation of {|D(u, v)| u =

0, ..., (M−1), v = 0, ..., (M−1)}. With the normalized 2-D frequency distribution

treated as a bivariate PDF, P (X, Y ), 2-D kurtosis with the representation of K2

can be calculated according to equations (4.4)-(4.7).

4.4 Working Principle of Kurtosis in Image Qual-

ity Prediction

Blur distortion occurs due to the attenuation of high spatial frequencies in an

image. With the normalized frequency distribution treated as a PDF, the PDF

of a more severely blurred image would have a higher peak, smaller shoulder, and

heavier tail. In other words, kurtosis tends to increase with increased blurring. It

is the basic principle underlying the image quality measures reported in [94, 95].

For a better understanding of kurtosis, we discuss how kurtosis provides a measure

of blur in this section. The kurtosis under study includes the frequency-band based

1-D kurtosis K1FB, basis function-based 1-D kurtosis K1BF, and 2-D kurtosis K2.

Some illustrative examples are provided in Figure 4.3, where the original “Build-

ings” image (Figure 4.3a) has been subject to JPEG2000 compression (Figures
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Table 4.1: K1FB, K1BF, and K2 of the image blocks shown in Figures 4.3f-4.3h.
K1FB: frequency-band based 1-D kurtosis. K1BF: basis function-based 1-D kur-
tosis. K2: 2-D kurtosis. BR (bpp): bit rate in JPEG2000 compression.

Kurtosis
Figure 4.3f Figure 4.3g Figure 4.3h
BR = 0.85 BR = 0.40 BR = 0.20

K1FB 4.36 4.04 6.77
K1BF 2.57 2.56 5.82
K2 10.94 11.08 14.45

4.3b-4.3d) at different bit rates BR (in bpp). We divide the image into non-

overlapping 8×8 blocks and take a closer look at a specific block selected from the

edge of a roof (Figure 4.3e). The corresponding distorted blocks extracted from the

distorted images in Figures 4.3b-4.3d are shown in Figures 4.3f-4.3h, respectively.

K1FB, K1BF, and K2 are computed for the 8 × 8 edge blocks shown in Figures

4.3f-4.3h and the results are listed in Table 4.1. The data in Table 4.1 suggest that

K1FB, K1BF, and K2 generally increase as blurring increases. It is noted that the

two JPEG2000 compressed edge blocks shown in Figures 4.3f and 4.3g have similar

kurtosis, be it K1FB, K1BF, or K2, which actually coincides with the similar blur

levels observed in these two blocks. With the normalized frequency distribution

treated as a PDF, it is further investigated how kurtosis reflects the shape change

of PDF as blurring increases in Figures 4.3f-4.3h. Here we only take a look at

K1FB and K1BF, whose PDFs are plotted in Figures 4.3i and 4.3j, respectively.

The PDF tails are considered as those consecutive sample points whose probabili-

ties are close to zero. It can be seen that the PDF with the largest K1FB = 6.77 in

Figure 4.3i and the PDF with the largest K1BF = 5.82 in Figure 4.3j both have the

highest peaks (both at the frequency index of 1), heaviest tails (the PDF in Figure

4.3i starts from the frequency index of 8 and the PDF in Figure 4.3j from 20), and
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 4.3: Illustration of the working principle of kurtosis in image quality predic-
tion. (a) The original “Buildings” image. (b)-(d) JPEG2000 compressed images
with bit rate BR = 0.85, 0.40, 0.20 bpp, respectively. (e) An 8 × 8 block selected
from the edge of a roof. (f)-(h) The corresponding distorted blocks extracted
from (b)-(d), respectively. (i) Frequency band-based PDF for (f)-(h). (j) Basis
function-based PDF for (f)-(h).

smallest shoulders between peak and tail in their respective plots. As indicated by

their similar kurtosis values, the PDF pair with K1FB = 4.36 and 4.04 in Figure

4.3i and the PDF pair with K1BF = 2.57 and 2.56 in Figure 4.3j both exhibit sim-

ilar distributions in shape in their respective plots. Compared with the PDF with
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(i)

(j)

Figure 4.3: Illustration of the working principle of kurtosis in image quality predic-
tion. (a) The original “Buildings” image. (b)-(d) JPEG2000 compressed images
with bit rate BR = 0.85, 0.40, 0.20 bpp, respectively. (e) An 8 × 8 block selected
from the edge of a roof. (f)-(h) The corresponding distorted blocks extracted
from (b)-(d), respectively. (i) Frequency band-based PDF for (f)-(h). (j) Basis
function-based PDF for (f)-(h).
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the largest kurtosis, both PDF pairs exhibit lower peaks (both at the frequency

index of 1), lighter tails (the PDF pair in Figure 4.3i starts from the frequency

index of 13 and the PDF pair in Figure 4.3j from 33), and larger shoulders in their

respective plots.

4.5 Kurtosis-Based Image Quality Measure

With kurtosis calculated within non-overlapping blocks over the entire image, the

image quality score is computed in equation (4.11) as the average of local kurtosis

after the difference operation with the median value.

Qo =

∑N
t=1 |(q)t − (q)med|

N
(4.11)

where Qo is the image quality score, t is the block index, N represents the total

number of image blocks, (q)t indicates local kurtosis with q = {K1FB, K1BF, K2},

and (q)med denotes the median of {(q)t t = 1, 2, ..., N}. The motivation for the

difference operation with the median in equation (4.11) is to reduce the over-

sensitivity of kurtosis to the blurring in JPEG2000 compressed images. To il-

lustrate this point, we sort the kurtosis values of the sample images shown in

Figures 4.3b-4.3d in ascending order and plot them in Figure 4.4. The images

shown in Figures 4.3b-4.3d are 768×512 pixels in size, with each image generating

96 × 64 = 6144 blocks after dividing into 8 × 8 blocks. The sorted kurtosis, be it

K1FB, K1BF, or K2, exhibits gentle slopes at the beginning and middle portions

of the plots, which comprise the major bulk (80-90%) of the kurtosis in quantity,

while the steep slopes at the far end of the plots comprise only a small portion
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(a)

(b)

Figure 4.4: Plots of sorted kurtosis in ascending order for the images shown in
Figures 4.3b-4.3d. (a) The frequency band-based 1-D kurtosis K1FB. (b) The
basis function-based 1-D kurtosis K1BF. (c) 2-D kurtosis K2.
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(c)

Figure 4.4: Plots of sorted kurtosis in ascending order for the images shown in
Figures 4.3b-4.3d. (a) The frequency band-based 1-D kurtosis K1FB. (b) The
basis function-based 1-D kurtosis K1BF. (c) 2-D kurtosis K2.

(<20%) in quantity. This observation is not limited to the sample images but oc-

curs with most of the test images. If objective quality scores are simply computed

as the spatial average of local kurtosis, we find those kurtosis values corresponding

to steep slopes do not correlate well with the subjective quality scores provided by

human observers. Therefore, the difference operation with the median is employed

to reduce the effect of those over-sensitive kurtosis values. The pooling strategy

expressed in equation (4.11) proves effective in the tests in Section 4.6.2 as well as

the image quality measures reported in [45,46]. In fact, it is also possible to assign

weights to local kurtosis for the computation of image quality scores depending on

different applications. For instance, it is observed that different image regions may

attract visual attention at different degrees. Based on visual importance, differ-

ent weights therefore can be assigned to local kurtosis to determine their relative
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contribution in the computation of image quality score [98, 99]. Since the major

objective in this study is to design simple and effective image quality measures, we

choose uniform weights.

4.6 Results and Discussion

The performances of the proposed image quality measures are evaluated with the

JPEG2000 compressed images in the LIVE image database [88, 89], which has

been widely employed for the performance evaluation of image quality measures.

A total of 169 JPEG2000 compressed images was generated by the application

of JPEG2000 compression at bit rates ranging from 0.028 to 3.150 bpp. The

subjective quality scores are given in terms of the realigned DMOS on a scale of 0

to 100, with a larger DMOS indicating poorer visual quality. More details of the

LIVE image database can be found in Section 3.4.1. In the following content, the

performance of the proposed image quality measures is investigated through the

kurtosis visualization, quantitative performance evaluation, and outlier analysis.

4.6.1 Visualization of Kurtosis

A set of intuitive examples is seen in Figure 4.5 where K1FB, K1BF, and K2

are shown for the JPEG2000 compressed images of Figures 4.3b-4.3d. Here K1FB,

K1BF, andK2 are computed using a block size of 8. In comparison, DMOS together

with QK1FB
, QK1BF

, and QK2, which represent the image quality score computed

based on K1FB, K1BF, and K2 respectively, are also given in Table 4.2. With the

normalization operation performed for the same type of kurtosis, the brightness

of the plots in each column of Figure 4.5 represents the relative magnitude, with
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Figure 4.5: Visualization of kurtosis over the JPEG2000 compressed images shown
in Figures 4.3b-4.3d. The plots in each row corresponds to one of the images shown
in Figures 4.3b-4.3d, with the 1st row corresponding to Figure 4.3b, 2nd row to
Figure 4.3c, and 3rd row to Figure 4.3d. The plots in the left column correspond
to the frequency band-based 1-D kurtosis K1FB, the middle column to the basis
function-based 1-D kurtosis K1BF, and the right column to 2-D kurtosis K2. The
brightness of the plots obtained by the same type of kurtosis (in each column of
the figure) represents the relative magnitude: a brighter pixel indicates a larger
local kurtosis.

a brighter pixel indicating a larger local kurtosis. It is seen that the increased

K1FB, K1BF, and K2 all reflect the increased blurring in JPEG2000 compressed

images, as confirmed by the increased brightness together with increased image

quality scores listed in Table 4.2. Furthermore, comparing the plots in each row

of Figure 4.5, we can observe that (a) K1FB and K1BF appear more sensitive to
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the blurring of JPEG2000 compressed images compared to K2, which is confirmed

by the generally brighter plots supplied by K1FB and K1BF; and (b) there is no

visible difference between the plots provided by K1FB and K1BF.

Table 4.2: QK1FB
, QK1BF

, and QK2 together with the realigned DMOS of the
images shown in Figures 4.3b-4.3d. QK1FB

, QK1BF
, and QK2: the image quality

score computed based on the frequency-band based 1-D kurtosis, basis function-
based 1-D kurtosis, and 2-D kurtosis, respectively. BR (bpp): bit rate in JPEG2000
compression.

Image quality score
Figure 4.3b Figure 4.3c Figure 4.3d
BR = 0.85 BR = 0.40 BR = 0.20

DMOS=31.28 DMOS=46.68 DMOS=63.64
QK1FB

2.43 4.17 5.38
QK1BF

1.66 3.09 3.88
QK2 3.13 4.61 5.36

4.6.2 Quantitative Performance Evaluation

Hereafter, K1-FB, K1-BF and K2-QM are used to denote the image quality mea-

sures developed using the frequency band-based 1-D kurtosis, basis function-based

1-D kurtosis, and 2-D kurtosis, respectively. Based on the ground truth data of

the realigned DMOS provided by the LIVE image database, two representative

FR image quality measures of PSNR and SSIM index [32] (introduced in Section

3.1) are employed as the benchmarks to study the performances of the proposed

NR image quality measures. Some state-of-the-art NR image quality measures are

also included for comparison. The performance evaluation of the proposed image

quality measures follows the procedures recommended by the VQEG as detailed

in Section 3.4.2.
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4.6.2.1 Performances with Different Image Block Sizes

Table 4.3: Performances of K1-FB, K1-BF, and K2-QM with different image block
sizes.

K1-FB
Block size CC RMSE OR ROCC

5 0.920 9.991 0.598 0.913
6 0.908 10.690 0.639 0.898
7 0.903 10.951 0.645 0.895
8 0.912 10.457 0.604 0.906
9 0.888 11.720 0.657 0.880
10 0.879 12.192 0.657 0.873
11 0.869 12.634 0.645 0.864
12 0.876 12.315 0.657 0.868

K1-BF
Block size CC RMSE OR ROCC

5 0.926 9.609 0.621 0.921
6 0.923 9.829 0.627 0.916
7 0.923 9.834 0.633 0.915
8 0.922 9.904 0.621 0.915
9 0.915 10.307 0.645 0.908
10 0.912 10.447 0.621 0.904
11 0.909 10.623 0.633 0.901
12 0.912 10.491 0.621 0.903

K2-QM
Block size CC RMSE OR ROCC

5 0.887 11.781 0.651 0.882
6 0.889 11.692 0.657 0.883
7 0.901 11.088 0.633 0.891
8 0.920 10.007 0.627 0.911
9 0.898 11.223 0.657 0.890
10 0.891 11.605 0.645 0.886
11 0.885 11.885 0.639 0.877
12 0.898 11.214 0.663 0.887

The performances of K1-FB, K1-BF, and K2-QM are studied with different

image block sizes. The results with evaluation criteria are summarized in Table
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4.3 where the block size ranges from 5 to 12 pixels. It is observed that all the pro-

posed image quality measures achieve consistently close correlation with subjective

quality scores when the block size varies across a large range. It is noted that the

overall performance of K1-BF is the best for most evaluation criteria (higher CC

and ROCC, and lower OR and RMSE), K1-FB is more advantageous than K2-QM

when the block size is below 8 pixels, while K2-QM is generally superior to K1-FB

when the block size is 8 pixels and above.

Table 4.4: Performances of K1-BF-mean with different image block sizes.

K1-BF-mean
Block size CC RMSE OR ROCC

5 0.923 9.834 0.580 0.918
6 0.919 10.067 0.615 0.912
7 0.919 10.091 0.615 0.911
8 0.918 10.138 0.592 0.911
9 0.912 10.501 0.633 0.902
10 0.908 10.713 0.639 0.898
11 0.905 10.848 0.627 0.894
12 0.908 10.709 0.615 0.897

The maximum operation in equation (4.10) in Section 4.3.2 merits further val-

idation. For comparison purposes, the mean operation is employed to replace the

maximum operation in K1-BF and the resultant tentative implementation is re-

ferred to as K1-BF-mean. Table 4.4 lists the results with evaluation criteria when

K1-BF-mean is implemented using a block size ranging from 5 to 12 pixels. Two

important observations may be noted. First, K1-BF-mean provides consistently

good correlation coefficients not lower than 0.900 with subjective quality scores

for different block sizes. Comparing Table 4.3 with Table 4.4, it can be seen that

K1-BF-mean outperforms K1-FB and K2-QM for most evaluation criteria. The
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effectiveness of K1-BF-mean further validates K1-BF since the only difference be-

tween K1-BF and K1-BF-mean is the different way of representing the symmetrical

DCT coefficient pairs. Second, the comparison between Table 4.3 and Table 4.4

suggests that K1-BF outperforms K1-BF-mean for most evaluation criteria when

their implementations are subject to a large range of block sizes. The better overall

performance of K1-BF thus validates the maximum operation in equation (4.10).

Apart from the simple mean and maximum operations, other more complicated

operations may exist for the representation of symmetrical DCT coefficient pairs.

The maximum operation is chosen in the design of K1-BF with the intention to

achieve low complexity without sacrificing effectiveness.

4.6.2.2 Performance Comparisons of Image Quality Measures

Table 4.5 lists the results of evaluation criteria pertaining to all the image quality

measures employed in the performance tests. The proposed image quality measures

are implemented using a block size of 8 in the following tests since this block size

is widely used. The negative sign of ROCC in Table 4.5 indicates an inversely

proportional relationship between the subjective and objective quality scores. This

Table 4.5: Performance evaluation of the proposed NR image quality measures with
the FR quality measures of PSNR and SSIM index as benchmarks. The proposed
image quality measures are implemented using a block size of 8.

Quality measure Type CC RMSE OR ROCC
PSNR FR 0.900 11.151 0.615 -0.895

SSIM index FR 0.967 6.551 0.473 -0.961
K1-FB NR 0.912 10.457 0.604 0.906
K1-BF NR 0.922 9.904 0.621 0.915
K2-QM NR 0.920 10.007 0.627 0.911
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does not occur with CC because of the compensation by nonlinear mapping (refer

to Section 3.4.2). It means the magnitude of ROCC when ROCC is referred to in

the following content. From the results in Table 4.5, PSNR proves an effective FR

quality measure for JPEG2000 compressed images, and the FR quality measure

of SSIM index performs better than the other quality measures being tested in

terms of lowest RMSE, best prediction accuracy (highest CC), best prediction

monotonicity (highest ROCC), and best prediction consistency (lowest OR). It is

noted that K1-FB performs better than PSNR for all the evaluation criteria (higher

CC and ROCC, and lower OR and RMSE); K1-BF and K2-QM perform better

than PSNR in terms of lower RMSE, better prediction accuracy (higher CC), and

better prediction monotonicity (higher ROCC), while PSNR is better than K1-BF

and K2-QM in terms of better prediction consistency (lower OR).

Furthermore, the proposed image quality measures are compared with the state-

of-the-art NR image quality measures. The performance tests for the image quality

measures in [70,73–75,78,82,86] used JPEG2000 compressed images from the LIVE

image database. All the results reported in [70,73–75,78,82,86] together with those

obtained by the proposed image quality measures are listed in Table 4.6. Due to the

different versions of the subjective quality data, different test procedures, and also

limited information and results released in [70,73–75,78,82,86], the results in Table

4.6 provide an intuitive but instructive comparison. With respect to the proposed

image quality measures, we would like to highlight the additional advantages that

have not been revealed in Table 4.6: (a) the proposed image measures are simple;

(b) they do not require any specific edge/feature extraction; (c) they are not subject

to the limitations imposed by decreased edges/features under severe distortion;

and (d) they are parameter free and avoid additional procedures and training
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data for parameter determination. Based on these advantages together with the

results listed in Table 4.6, it may be concluded that the overall performances of the

proposed image quality measures are comparable to the state-of-the-art NR image

quality measures.

Table 4.6: Performance comparison between the proposed NR image quality mea-
sures and the state-of-the-art NR image quality measures. The proposed image
quality measures are implemented using a block size of 8.

Quality measure CC RMSE OR ROCC
[70] 0.86 N/A N/A 0.84
[73] 0.857 N/A N/A N/A
[74] 0.896 N/A N/A 0.872
[75] 0.93 N/A N/A N/A
[78] 0.93 9.20 0.0396 0.99
[82] 0.8086 14.8427 N/A 0.7995
[86] N/A N/A N/A 0.9219

K1-FB 0.912 10.457 0.604 0.906
K1-BF 0.922 9.904 0.621 0.915
K2-QM 0.920 10.007 0.627 0.911

4.6.3 Outlier Analysis

The scatter plots of DMOS versus image quality scores computed by K1-FB, K1-

BF, and K2-QM are shown in Figure 4.6. Each point in the figure, marked by

asterisk or “+”, represents one test image. With most points close to the fitted

logistic curve (corresponding to equation (3.9)) in the scatter plots, the proposed

image quality measures are observed to provide satisfactory prediction of DMOS

for most test images. As described in Section 3.4.2, the outliers (denoted by “+” in

Figure 4.6) are those data points whose prediction error exceeds twice the standard

deviation of individual subjective quality scores. We take a close look at some
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(a)

Figure 4.6: Scatter plot of DMOS versus image quality scores computed by K1-FB,
K1-BF, and K2-QM. Each point, marked by asterisk or “+”, represents one test
image with “+” denoting outliers. The curve corresponds to the logistic function
(3.9) with parameters fitted over dataset. (a) K1-FB. (b) K1-BF. (c) K2-QM.

representative outliers in this section.

It is found that the most significant outliers correspond to the compressed

“Monarch” images, a sample image of which is shown in Figure 4.7a. It is evident

that the out-of-focus blurred flowers in the background are due to a macro shot

rather than distortion. Unfortunately, the proposed image quality measures are

not able to recognize macro shots and under-predict image quality in this scenario.

A similar situation arises from a close-up shot in the compressed “Parrots” images

of which a sample image is shown in Figure 4.7b. Likewise, the blurred background

leads to quality-under-prediction of the proposed image quality measures, which

fail to realize that the blur in the background is actually not quality degradation.

In fact, the issue uncovered here is not limited to the proposed image quality
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(b)

(c)

Figure 4.6: Scatter plot of DMOS versus image quality scores computed by K1-FB,
K1-BF, and K2-QM. Each point, marked by asterisk or “+”, represents one test
image with “+” denoting outliers. The curve corresponds to the logistic function
(3.9) with parameters fitted over dataset. (a) K1-FB. (b) K1-BF. (c) K2-QM.
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(a) (b)

(c) (d)

Figure 4.7: Sample images corresponding to the outliers marked in Figure 4.6.
(a) The “Monarch” image compressed to 0.1028 bpp. (b) The “Parrots” image
compressed to 0.3819 bpp. (c) The “Statue” image compressed to 0.3777 bpp. (d)
The “Sailing1” image compressed to 0.1157 bpp.

measures but is intrinsic to most NR image quality measures. With increased

knowledge of human visual perception and especially the role of high-level cognitive

understanding, a better emulation of the HVS would help to overcome this kind of

outliers.

The compressed “Statue” image shown in Figure 4.7c exemplifies another im-

portant case of outliers. As presented in Section 4.5, the simple uniform weighting
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(i.e., spatial average) is utilized to calculate image quality scores in this study. Nev-

ertheless, the fact is that different image regions having diverse features/textures

are of varying interest to the human eye and attract visual attention at different

degrees. For instance, the almost blank background in the “Statue” image, which

takes up around one third of the entire image, can hardly be appealing to human

eyes, while the statue in the image is apparently a region of interest and undoubt-

edly attracts much more visual attention. However, the blank background and

statue are assigned the same weights by uniform weighting. As previously men-

tioned in Section 4.5, a sophisticated pooling strategy based on visual importance

may provide an alternative solution to this problem.

Additionally, a large number of outliers correspond to highly compressed im-

ages. A sample image is shown in Figure 4.7d, where the distortions of blur and

ringing artifacts are clearly visible in the sea and the sailing boat. This kind of

outliers arises mainly because the proposed quality measures predict image qual-

ity based on the distortion of blur alone and fail to take into account ringing

artifacts. Perceived as annoying ripples and overshoots around sharp edges, the

pseudo-structures of ringing artifacts easily mislead the proposed image quality

measures to under-estimate the amount of blur and over-predict quality. It is rea-

sonable to believe that the performance of the proposed image quality measures

could be further improved with the incorporation of additional quantification of

ringing artifacts.
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4.7 Summary

Kurtosis-based NR image quality measures operating in the DCT domain are pro-

posed for JPEG2000 compressed images in this chapter. Specifically, three kinds of

kurtosis are discussed in this study, including frequency band-based 1-D kurtosis,

basis function-based 1-D kurtosis, and 2-D kurtosis. In the frequency band-based

1-D kurtosis, the DCT coefficients with the same frequency index are grouped into

a frequency band with an increased frequency index indicating higher frequency

content. A 1-D frequency distribution thus can be constructed with frequency

bands arranged in the sequence of increasing frequencies. Regarding the normal-

ized 1-D frequency distribution as a univariate PDF, the frequency band-based

1-D kurtosis can be calculated. In the basis function-based 1-D kurtosis, the DCT

coefficients are basically reordered following a zigzag pattern in the fashion of in-

creasing frequency, and the pair of DCT coefficients which are symmetrical with

respect to the diagonal is grouped and is represented by the maximum coefficient of

the pair. A 1-D frequency distribution thus can be constructed from the resulting

frequency components. Regarding the normalized 1-D frequency distribution as a

univariate PDF, the basis function-based 1-D kurtosis can be calculated. In 2-D

kurtosis, a 2-D frequency distribution can be constructed based on the magnitude

of the DCT coefficient matrix. With the normalized 2-D frequency distribution

treated as a bivariate PDF, 2-D kurtosis can be calculated. A final image quality

score is computed as the average of local kurtosis, be it frequency band-based 1-D

kurtosis, basis function-based 1-D kurtosis, or 2-D kurtosis, after the difference

operation with the median kurtosis value. The proposed kurtosis-based NR image

quality measures are simple; they do not need to extract edges/features; they are
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parameter free; and their quality predictions are shown to be in good agreement

with subjective quality scores.



Chapter 5
Pixel Activity-Based No-Reference Image

Quality Measure: JPEG2000

A pixel activity-based NR quality measure for JPEG2000 compressed images is

presented in this chapter. The proposed image quality measure works with the

luminance component of the image. Its implementation comprises two stages. In

the first stage, the local pixel activity is evaluated within non-overlapping image

blocks, resulting in an activity map. In the second stage, a pooling approach is

employed to combine the activity map into a single image quality score. This

chapter is organized as follows. Section 5.1 provides the motivation of this study.

Section 5.2 introduces the representation of pixel activity. Section 5.3 presents the

structural content-weighted pooling approach. The effectiveness and limitations

of the proposed image quality measure are discussed in Section 5.4. This chapter

ends with a summary in Section 5.5.

73
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5.1 Motivation

The proliferation of digital images in wide applications motivates the development

of various image compression technologies. Lossy image compressions produce

artifacts in the reconstructed images and lead to a drop in visual quality. The

distortions created by JPEG2000 compression have attracted substantial research

interest. Due to the coarse quantization of DWT coefficients, blur and ringing arti-

facts are created in JPEG2000 compressed images. The blurring distortion is char-

acterized by the loss of image details, while ringing artifacts by ripples/oscillations

around high-contrast edges. Both of them are dependent on image content and

make NR quality assessment of JPEG2000 compressed images complicated. De-

spite its intrinsic difficulty, NR image quality assessment is desirable in practical

applications where a reference image is expensive to obtain or simply not available.

This chapter focuses on NR quality assessment of JPEG2000 compressed images.

A study of existing NR quality measures for JPEG2000 compressed images

reveals the following issues. First, in the case of image quality measures based

on the analysis of extracted edges/features [70, 71, 73, 74, 79], their effectiveness

would inevitably decline when images are subject to severe distortion, given that

the number of extracted edges/features decreases with increased blur. Second, the

practical implementation is another concern. The threshold operation associated

with the image quality measures [70,71,73,74,79] for structure/feature extraction

is usually experience or image dependent. Besides, the parameters/procedures

in the image quality measures [73, 79] are determined in an ad hoc manner. It

would impose much inconvenience in practical applications. Third, many image

quality measures require additional procedures and training data for parameter
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determination [73–75,78,79,82,86]. This imposes an obvious restriction in practical

applications especially when data are limited.

In this study, a NR quality measure is developed for JPEG2000 compressed im-

ages. Instead of extracting edges/features, the proposed quality measure predicts

image quality based on the basic activity of general pixels. It therefore avoids the

limitations imposed by edge/feature extraction of distorted images, i.e., decreased

extracted edges/features under severe distortion and the associated inconvenient

threshold operation. Besides, the proposed pooling approach does not involve any

parameters and avoids additional procedures and training data for parameter deter-

mination. The proposed image quality measure exhibits satisfactory performance

at reasonable computation load and easy implementation. It proves a NR quality

measure of choice for JPEG2000 compressed images in practice.

5.2 Pixel Activity

With an image divided into non-overlapping blocks, pixel activity is evaluated

within the individual image blocks independently.

5.2.1 Representation of Pixel Activity

Let Bt(i, j) represent the intensity of a pixel (i, j) within an M ×N image block,

where i and j are indices of block-wide spatial locations with 1 ≤ i ≤ M and

1 ≤ j ≤ N , and the superscript t denotes the block index. The horizontal difference

at a pixel (i, j) is calculated by

Bt
HD(i, j) = Bt(i, j)−Bt(i, j − 1) 1 ≤ i ≤ M 2 ≤ j ≤ N (5.1)
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The sign change with respect to adjacent horizontal intensity differences can be

indicated by

Bt
HS(i, j) = Bt

HD(i, j) · Bt
HD(i, j + 1) 1 ≤ i ≤ M 2 ≤ j ≤ N − 1 (5.2)

According to the sign of Bt
HS(i, j), a pixel (i, j) within the effective block region of

1 ≤ i ≤ M and 2 ≤ j ≤ N − 1 can be classified into the following types:

• Horizontal monotonic-changing (MC) pixel if Bt
HS(i, j) > 0

• Horizontal zero-crossing (ZC) pixel if Bt
HS(i, j) < 0

• Inactive pixel if Bt
HS(i, j) = 0

From the mathematical perspective, the horizontal MC pixel is related to

monotonically-changing intensities in its horizontal neighborhood. For a group

of consecutive horizontal MC pixels which starts at (i, j1) and ends at (i, j2) with

j2 ≥ j1, the horizontal MC spread is defined as the number of general pixels with

monotonically-changing intensities:

MCSt
H(k) = j2 − j1 + 3 (5.3)

where k denotes the group index, and the constant 3 is derived by including the

end pixels. Since each horizontal MC pixel is related to monotonically-changing

intensities, the horizontal MC activity of the group is defined in equation (5.4) as

the product of two components, namely, the horizontal MC spread and the number

of MC pixels which is expressed by subtracting the end pixels from the horizontal

MC spread:

MCt
H(k) = MCSt

H(k) · (MCSt
H(k)− 2) (5.4)
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The horizontal MC activity of an M × N block is obtained by adding up the

corresponding activities from all the groups within the block:

MCt
H =

1

MN

∑

k
MCt

H(k) (5.5)

Different from the horizontal MC pixels, the horizontal ZC pixels deal with

the local intensity extrema in their horizontal neighborhood. The horizontal ZC

activity is defined as the number of horizontal ZC pixels within an M ×N image

block:

ZCt
H =

M
∑

i=1

N−1
∑

j=2

sign−(B
t
HS(i, j)) (5.6)

where

sign−(x) =











1 x < 0

0 otherwise
(5.7)

Similarly, the vertical MC activity MCt
V and vertical ZC activity ZCt

V can be

obtained by transposing the image block and using the same algorithm as described

above.

Finally, the maximum of the horizontal and the vertical MC activity is taken as

the overall MC activity of the image block, and the sum of horizontal and vertical

ZC activity is taken as the overall ZC activity of the image block:







MCt

ZCt






=







max
{

MCt
H,MCt

V

}

sum
{

ZCt
H,ZC

t
V

}






(5.8)
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5.2.2 Meaning of Pixel Activity

Structures in an image are normally related to monotonically-changing intensities

with strong structures characterized by large intensity changes and weak structures

by relatively small changes. Based on the MC spread, either the horizontal or verti-

cal MC activity is indirectly related to structures. It is intuitively evident that blur

leads to increased MC spread in the horizontal direction or vertical direction or

both directions. The horizontal and vertical MC activity thus turns out to provide

a blur measure, with an increased value indicating increased blur. The maximum

operation in equation (5.8) is intended for the sensitivity to distortion. Based on a

similar principle, a feature of edge spread was proposed in [70,71] for blur measure-

ment. Despite the different presentations in [70] and [71], edge spread is basically

defined as the distance between the local intensity extrema closest to an edge pixel

along its gradient orientation. The significant differences between edge spread and

the proposed MC activity include the following respects. First, edge spread is

measured at the extracted edges of relatively high strength, while MC activity is

applied to general pixels and is related to structures of different strength levels.

Second, edge spread is measured along the gradient orientation, while MC activity

is measured along the horizontal and vertical directions. The general measurement

along the horizontal and vertical directions provides a meaningful approximation

given that the HVS pays much attention to structures along these two directions in

comparison with other orientations [4]. Third, edge spread is measured across the

image space, while MC activity is measured within non-overlapping image blocks

with an intention to simplify operations and reduce complexity. Furthermore, we

would like to point out the major advantages of the proposed MC activity over edge

spread. First, edge extraction and the associated threshold selection are avoided.
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Second, more stable performances can be expected since MC activity works with

general pixels and is not subject to the limitation imposed by the decreased ex-

tracted edges with increased distortion.

Given that monotonically-changing intensities of structures normally end with

local intensity extrema, either the horizontal or vertical ZC activity is indirectly

related to structures with a large value indicating the structured image content.

Here the structures from both the original image content and ringing artifacts

are considered as structures of a JPEG2000 compressed image. Considering that

ringing artifacts mainly occur around strong structures and produce zero crossings

in their neighborhood as well, it is advantageous for the ZC activity in reflecting

the structural information in a JPEG2000 compressed image. The summation

operation in equation (5.8) is intended to reflect the full-scale structural content.

Both qualitative and quantitative evaluations are used in Section 5.4 to validate

the effectiveness of ZC activity as a structural content indicator of a JPEG2000

compressed image.

5.3 Structural Content-Weighted Pooling

A spatial pooling approach is required to combine the pixel activity across an

image into a single image quality score. In the proposed image quality measure, a

structural content-weighted pooling approach is utilized with the general expression

given by

Qo =

∑

twtqt
∑

t wt

(5.9)

where Qo is the image quality score, t is the index, qt is the local quality mea-

surement, and wt is a structural content-based local weight with a large value
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indicating substantial structural information. Under the assumption that human

visual perception is highly adapted for extracting structural information from a

scene, the basic idea of the proposed pooling approach is to determine the relative

contribution of the local quality measurement according to its associated structural

information.

The pooling approach with the mathematical expression of weighted average in

equation (5.9) has been studied in the literature. In [100], Wang et al. evaluated

several pooling approaches among which the quality-weighted and information-

weighted approaches prove the good potential to improve image quality prediction.

In the quality-weighted approach, the weight is defined as the monotonic function

of the local quality/distortion measure. It is intended to largely weight the image

regions of poor quality. A limitation of this approach is that the weight function

is still not well defined, such as the simple power-law function employed in [100].

In the information-weighted approach, the weight is defined as the function of

local information content with the intention to largely weight the image regions

containing much information. However, this approach is currently developed only

for FR image quality measures and has not yet been extended to NR image quality

measures. In [98], Moorthy et al. presented two pooling approaches with the

same mathematical expression of weighted average, namely, visual fixation-based

weighting and quality-based weighting approaches. Both approaches define quality

weight based on visual importance, with the former approach predicting visual

fixation points and the latter approach using percentile scoring. Whatever the

approach, the parameters are selected empirically and experimentally without clear

rules. In contrast, the weight in the proposed pooling approach is independent

of the local quality measurement and is determined by the structural information
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instead. In the comparison between the reported and proposed pooling approaches,

it is observed that the difference in mathematical expression is subtle whereas the

concept difference is significant.

The specific expression of the proposed pooling approach in the developed image

quality measure is given in equations (5.10) and (5.11) where the image quality

score Qo is calculated as the weighted average of non-zero MC activities with valid

ZC activities as weights. The ZC activity is considered valid at the spatial locations

where the local MC activity is non-zero.

Qo =

∑

t ZC
t ·MCt

∑

t ZC
t · sign+(MCt)

(5.10)

where

sign+(x) =











1 x > 0

0 otherwise
(5.11)

A salient feature of this pooling approach is that it is parameterless, which avoids

additional procedures and training data for parameter determination. According

to equation (5.10), a local MC activity with a large ZC activity is given much

emphasis in image quality score calculation. The MC activity is thus shown the

basic component and the ZC activity is used to adjust the importance of MC

activity in image quality score computation. Based on the analysis in Section

5.2.2, the MC activity provides a blur measure with increased value indicating

increased blur, while the ZC activity provides a structural content indicator with a

large value indicating substantial structural information. As a result, an increased

image quality score is generated for the declining image quality. It is a somewhat

simply strategy which does not include the specialized quantification of ringing
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artifacts. However, the experimental results presented in Section 5.4 indicate that

this simple strategy is sufficient for the proposed image quality measure to deliver

satisfactory results.

5.4 Results and Discussion

The performance of the proposed image quality measure is evaluated with the

JPEG2000 compressed images in the LIVE image database [88, 89], which has

been widely employed for the performance evaluation of image quality measures.

A total of 169 JPEG2000 compressed images was generated by the application

of JPEG2000 compression at bit rates ranging from 0.028 to 3.150 bpp. The

subjective quality scores are given in terms of DMOS on a scale of 0 to 100, with

a larger DMOS indicating poorer visual quality. More details of the LIVE image

database can be found in Section 3.4.1. In the following content, the performance of

the proposed image quality measure is investigated through the visualization of ZC

activity, study of the sensitivity to block size, quantitative performance evaluation,

and outlier analysis.

5.4.1 Visualization of the Zero-Crossing Pixel Activity

Different expressions may be used for the structural content-based quality weight

in the proposed pooling approach (introduced in Section 5.3). Unlike the proposed

ZC activity, the feature of gradient captures structural information in terms of

strength. To better illustrate the perceptual meaning of ZC activity, gradient is

employed as a tentative expression of quality weight for comparison purposes. An

intuitive comparison is provided in Figure 5.1 where the distributions of gradient
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(a) (b)

(c) (d)

Figure 5.1: Visualization of the ZC activity over a sample JPEG2000 compressed
image. (a) The original “Monarch” image. (b) Compressed to 0.1028 bpp. (c)
The gradient map with gradient computed using the Sobel operator. (d) The ZC
activity map with ZC activity computed using a 5 × 5 sliding window. Both the
maps shown in (c) and (d) are normalized and contrast stretched for visibility, with
a brighter pixel indicating a larger value.

and ZC activity are visualized over a sample JPEG2000 compressed image. The

brightness of the normalized gradient and ZC activity maps in the figure represents

the relative magnitude, with a brighter pixel indicates a relatively larger gradient

or ZC activity. For satisfactory resolution, the gradient and ZC activity in Figure

5.1 are computed pixel-by-pixel across the image with gradient computed using the

Sobel operator and ZC activity using a 5× 5 sliding window. As shown in Figure

5.1b, blur and ringing artifacts are clearly visible in the compressed “Monarch”

image, e.g., in the region of the wings. In the gradient map (Figure 5.1c), the
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contours of flecks and stripes in the body and the wings are observed to have

large gradient values. In contrast, ringing artifacts around the stripes in the wings

have small gradient values because of their relatively low strength. The fact is that

ringing artifacts disturb the natural behavior exhibited in an image and are usually

a major attraction of visual attention in practice. A clear gap is consequently seen

between the distributions of gradient and visual interest. In contrast to the clear

details shown in the gradient map, the ZC activity map delivers relatively low

resolution, as indicated by the quite general content in Figure 5.1d. It is mainly

because the ZC activity operates solely over the sign of intensity changes. This

leads to the variation among ZC activity values being not so obvious and the details

not so clear. Despite the low resolution of the ZC activity map, it is clearly seen

that the ZC activity effectively reflects the structural information in the image,

and its distribution coincides with visual interest as a whole. In particular, the ZC

activity is advantageous in capturing the weak structures of ringing artifacts, as

confirmed by the notable ZC activity distributed at ringing artifacts around the

stripes in the wings.

5.4.2 Quantitative Performance Evaluation

Based on the ground truth data of DMOS provided by the LIVE image database,

two representative FR image quality measures of PSNR and SSIM index [32] (intro-

duced in Section 3.1) are employed as the benchmarks to study the performance of

the proposed NR image quality measure. Some state-of-the-art NR image quality

measures are also included for comparison. The performance evaluation of the pro-

posed image quality measure follows the procedures recommended by the VQEG

as detailed in Section 3.4.2.
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5.4.2.1 Sensitivity to Image Block Size

Table 5.1: Performances of the proposed image quality measure implemented using
non-overlapping square image blocks of different sizes

Block size CC RMSE OR ROCC
5 0.923 9.849 0.568 0.910
6 0.930 9.375 0.562 0.922
7 0.930 9.384 0.556 0.922
8 0.937 8.901 0.533 0.931
9 0.932 9.270 0.538 0.925
10 0.932 9.275 0.556 0.925
11 0.931 9.296 0.544 0.926
12 0.932 9.264 0.562 0.928
13 0.931 9.313 0.556 0.926
14 0.930 9.407 0.568 0.925
15 0.930 9.362 0.562 0.926

The sensitivity of the proposed image quality measure to different image block

sizes is studied in this section. A minimum block size of 5 is selected so as to

effectively compute the MC and the ZC activity. With the proposed image quality

measure implemented using non-overlapping square blocks of size ranging from 5 to

15 pixels, the results indicated by the evaluation criteria are summarized in Table

5.1. It can be seen that the proposed image quality measure achieves consistently

close correlation with subjective quality scores and remarkably stable performance

when the processing block size is subject to a wide range.

Figure 5.2 shows the change in processing time with the proposed image quality

measure implemented using different image block sizes. The data in Figure 5.2

are the average processing time over an image of 768 × 512 pixels with normal

computer configuration. The plot in Figure 5.2 indicates that the processing time

significantly decreases from around 3 seconds to less than 0.5 seconds when block
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size increases from 5 to 15 pixels.

Figure 5.2: Change in processing time with the proposed image quality measure
implemented using non-overlapping square image blocks of different sizes. The
time is the average processing time over an image of 768× 512 pixels in size.

From the results listed in Table 5.1 and the plot shown in Figure 5.2, it is

observed that the choice of block size, assuming within a reasonable range, largely

influences processing time but does not produce obvious differences in results. A

common image block size of 8 × 8 is employed to implement the proposed image

quality measure in the following tests.

5.4.2.2 Performance Comparisons of Image Quality Measures

The results of evaluation criteria pertaining to PSNR, SSIM index, and the pro-

posed image quality measure are provided in Table 5.2. The negative value of

ROCC in the table indicates an inversely proportional relationship between DMOS

and image quality scores computed by quality measures. It does not happen to
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CC because of the compensation by nonlinear mapping (refer to Section 3.4.2). It

means the magnitude of ROCC when ROCC is referred to in the following content.

As shown in Table 5.2, the performance of the proposed NR image quality mea-

sure is better than the FR quality measure of PSNR and is comparable to the FR

quality measure of SSIM index. The performance of the proposed image quality

measure is actually good for such a NR image quality measure.

Table 5.2: Performance evaluation of the proposed NR image quality measure with
the FR quality measures of PSNR and SSIM index as benchmarks. The proposed
image quality measure is implemented using 8× 8 image blocks.

Quality measure CC RMSE OR ROCC
PSNR 0.900 11.151 0.615 -0.895

SSIM index 0.967 6.551 0.473 -0.961
Proposed measure 0.937 8.901 0.533 0.931

Table 5.3: Performance comparison between the proposed NR image quality mea-
sure and the state-of-the-art NR image quality measures. The proposed image
quality measure is implemented using 8× 8 image blocks.

Quality measure CC RMSE OR ROCC
[70] 0.86 N/A N/A 0.84
[73] 0.857 N/A N/A N/A
[74] 0.896 N/A N/A 0.872
[75] 0.93 N/A N/A N/A
[78] 0.93 9.20 0.0396 0.99
[82] 0.8086 14.8427 N/A 0.7995
[86] N/A N/A N/A 0.9219

Proposed measure 0.937 8.901 0.533 0.931

The proposed image quality measure is further compared with those reported

NR image quality measures that are applicable to JPEG2000 compressed images.

The performance tests for the image quality measures in [70,73–75,78,82,86] used
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JPEG2000 compressed images from the LIVE image database. All the results re-

ported in [70,73–75,78,82,86] together with those obtained by the proposed image

quality measure are listed in Table 5.3. Due to the different versions of the sub-

jective quality data, different test procedures, and also limited information and

results released in [70, 73–75, 78, 82, 86], the results in Table 5.3 provide an intu-

itive but instructive comparison. It can be seen from the table that the proposed

image quality measure is competitive with the state-of-the-art NR image quality

measures. Besides, the proposed image quality measure takes around 1 second to

process an image using 8×8 blocks, and the processing time can be further reduced

with a larger block size. As an intuitive comparison, the model in [75] was reported

around 20 seconds and even 5 seconds with a simplified model to process an im-

age from the same image database, which had not yet taken into consideration

the time of the training procedure to determine its parameters. Apparently, the

proposed image quality measure is computationally efficient. Moreover, the pro-

posed image quality measure exhibits clear advantages in the following respects:

it avoids structure/feature extraction of distorted images, and it avoids additional

procedures and training data for parameter determination.

5.4.2.3 Quantitative Validation of the Zero-Crossing Pixel Activity

Besides the illustration in Section 5.4.1, the validity of ZC activity merits further

quantitative evaluation. The proposed image quality measure is compared with a

tentative implementation based on the feature of gradient instead of ZC activity.

Specifically, gradient is computed at each pixel using the Sobel operator, and the

gradient values within each processing block are added up to replace the role of

ZC activity for the image quality score calculation in equation (5.10). The results
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of evaluation criteria with respect to the proposed image quality measure and the

tentative implementation are listed in Table 5.4. It is observed that the tentative

implementation itself delivers good results that even outperform those of PSNR as

listed in Table 5.2. The good performance of the tentative implementation indi-

rectly validates the proposed pooling approach since the only difference between

the proposed image quality measure and the tentative implementation is the dif-

ferent expressions of the structural content-based quality weight. Furthermore,

the proposed image quality measure exhibits clear superiority over the tentative

implementation according to each evaluation criterion. Based on the qualitative

illustration in Section 5.4.1 and the quantitative evaluation here, we may conclude

that the effectiveness of ZC activity as a structural content-based quality weight

for JPEG2000 compressed images is fully validated.

Table 5.4: Performance comparison between the proposed image quality measure
and the tentative implementation. Both of them are implemented using 8×8 image
blocks.

Quality measure CC RMSE OR ROCC
Tentative implementation 0.911 10.515 0.609 0.908

Proposed Measure 0.937 8.901 0.533 0.931

5.4.3 Outlier Analysis

The scatter plot of DMOS versus image quality scores computed by the proposed

image quality measure is presented in Figure 5.3. Each point in the figure, marked

by asterisk or “+”, represents one test image. With most points close to the fitted

logistic curve (corresponding to equation (3.9)) in the scatter plots, the proposed

image quality measure is observed to provide satisfactory prediction of DMOS for
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Figure 5.3: Scatter plot of DMOS versus image quality scores computed by the
proposed image quality measure. Each point, marked by asterisk or “+”, represents
one test image with “+” denoting outliers. The curve corresponds to the logistic
function (3.9) with parameters fitted over dataset.

most test images. As described in Section 3.4.2, the outliers (denoted by “+” in

Figure 5.3) are those data points whose prediction error exceeds twice the standard

deviation of individual subjective quality scores. We take a close look at some

representative outliers in this section.

The most significant outliers correspond to the compressed “Monarch” images,

a sample image of which is shown in Figure 5.1b. Note that the blur of flowers

in the background is largely due to a close-up shot with very short depth-of-field

rather than distortion. Given that the HVS does not consider the out-of-focus

background as quality degradation whereas the proposed image quality measure

can not recognize this, the proposed quality measure under-predicts image quality

in this case. The problem of short depth-of-field was also reported in [70] and is

present in most NR image quality measures.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Sample images corresponding to the outlier marked in Figure 5.3. (a)
The original “Coins in fountain” image. (b) Compressed to 0.3285 bpp. (c) The
original “Stream” image. (d) Compressed to 0.1920 bpp. (e) The original “Carnival
dolls” image. (f) Compressed to 0.1235 bpp.
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Another important case of outliers corresponds to the compressed “Coins in

fountain” images, a sample image of which is shown in Figure 5.4b. It can be seen

that the blur of reflection and coins in the water is essentially the real image content

rather than distortion. However, the proposed image quality measure is not able

to distinguish blur between distortion and real image content and under-predicts

image quality in this scenario. In one form or another, this problem is intrinsic to

most NR image quality measures.

The compressed “Stream” image shown in Figure 5.4d exemplifies another typ-

ical case of outliers. It is noted that the stones at the banks are a kind of quasi-

texture where the visible distortion is not uniform with the distortion in other

regions. The proposed image quality measure does not take into account the mask-

ing property of the HVS (Section 2.2) and over-predicts image quality in this case.

The problem of texture is reported in [75] as well.

Another representative case of outliers corresponds to the compressed “Carnival

dolls” images, a sample image of which is shown in Figure 5.4f. Given that the ZC

activity only operates over the sign of intensity changes, the detailed structures of

web are given the same significance with the major structures of dolls in Figure

5.4f. Since the structures of web are nearly totally missing, it should come as little

surprise that the proposed quality measure under-predicts image quality in this

case. This case of outlier, in large part, results from the simple structural content

indicator of ZC activity in the proposed image quality measure. A sophisticated

structural content indicator is advantageous in overcoming this problem. However,

the major objective of this study is to design simple and effective image quality

measures, so we choose the ZC activity.
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5.5 Summary

A pixel activity-based NR image quality measure is developed for JPEG2000 com-

pressed images in this chapter. Instead of extracting edges/features, the proposed

quality measure predicts image quality based on the basic activity of general pixels

and avoids the issues imposed by edge/feature extraction of distorted images, i.e.,

decreased extracted edges/features with increased distortion and inconvenience in-

curred by the associated threshold operation. In this study, the pixel activity is

expressed in terms of the MC activity and the ZC activity within non-overlapping

image blocks. The MC activity proves related to structures in an image with in-

creased values indicating increased blurring; and the ZC activity turns out to be

also related to structures with a large value indicating structured image content.

Under the assumption that human visual perception is highly adapted for extract-

ing structural information from a scene, a structural content-weighted pooling ap-

proach is proposed with the basic idea to determine the contribution of the local

quality measurement according to its associated structural information. Specif-

ically, the image quality score in the proposed quality measure is calculated as

the weighted average of non-zero MC activities with valid ZC activities as quality

weight. The pooling approach is parameterless and avoids additional procedures

and training data for parameter determination. With satisfactory performance and

ease of implementation, the proposed NR image quality measure proves an effec-

tive alternative to those complicated quality measures for JPEG2000 compressed

images.



Chapter 6
Structural Activity-Based Framework for

No-Reference Image Quality Assessment

Under the assumption that human visual perception is highly sensitive to the

structural information in a scene, a concept of structural activity (SA) together

with a model of an SA measure is proposed as a new framework for NR image

quality assessment in this chapter. In this framework, image quality is estimated

by quantifying SA information of different visual significance in an image. This

chapter is organized as follows. Section 6.1 provides the motivation of this study.

Section 6.2 presents the concept of SA and generalizes the idea of SA from a

variety of NR image quality measures in the literature. Section 6.3 elaborates on

the model of SA measure and proposes some examples of its implementation. The

effectiveness and limitations of the SA measure are discussed in Section 6.4. This

chapter ends with a summary in Section 6.5.

94
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6.1 Motivation

The goal of objective image quality assessment is to develop computational models

to quantitatively predict perceived image quality. The issue of objective image

quality assessment has been approached from different perspectives. The classi-

cal fidelity measures of MSE and its variant PSNR have found widespread use

due to their simplicity and mathematical convenience. However, they have been

widely criticized for the limited accuracy when predicting perceived visual qual-

ity, e.g., [6–10]. Perceptual image quality measures have been developed to model

the relevant functional components in the HVS - see a review in [11, 12]. Based

on the assumption that the HVS is highly adapted to extracting structural infor-

mation from visual scenes, the structurally-oriented viewpoint claims to attribute

image quality degradation to the loss of structural information [32]. Despite being

founded on different principles, these image quality measures are fundamentally

connected to each other with the common theme of comparing a distorted image

with a reference image. In other words, they are all FR image quality measures

and require full access to a distortion-free image. However, a reference image is

expensive to obtain or simply not available in many practical applications. In

these applications, NR image quality measures, which appraise quality solely from

a distorted image without any reference, are highly desirable. Due to its intrinsic

difficulty, the field of NR image quality assessment is still in its infancy and remains

largely unexplored to date. So far, the development of NR image quality measures

lags the advances in FR image quality assessment. As an open research field with

substantial practical potential, NR image quality assessment has attracted increas-

ing research attention.
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We approach the issue of NR image quality assessment from the structural and

HVS-based perspectives. Under the assumption that human visual perception is

highly sensitive to the structural information in a scene, a concept of SA together

with a model of an SA measure is proposed as a new framework for NR image

quality assessment. In this framework, image quality is estimated based on the

quantification of comprehensive SA information in an image. Despite no explicit

HVS modeling, SA information is differentiated according to visual significance

and is assigned the corresponding importance in image quality prediction.

Due to the enormous difficulty and very early stages of NR image quality as-

sessment, it is necessary to limit the scope of the SA measure in this study. Most

existing NR image quality measures are developed with the foreknowledge of the

distortion. General-purpose NR image quality assessment applicable to all kinds

of distortions is an extremely difficult task. Some general NR image quality mea-

sures were reported [82, 86], with the framework of [82] based on natural scene

statistics, and the blind image quality index of [86] based on the statistics of

the DCT coefficients. Despite the progress in general-purpose NR image quality

assessment, the scope of these image quality measures [82, 86], i.e., the image dis-

tortions that these image quality measures apply to, heavily relies on the image

distortions under training. We assume the prior knowledge of the distortion and

work with those images corrupted by a single distortion in this study. Fortunately,

the distortion process is known in many applications, and the task of developing

distortion-specific NR image quality measures is of practical importance. Different

from those existing NR image quality measures that are developed for a particu-

lar distortion, the SA measure provides a more general quality assessment model
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with its scope extended to a number of distortion types. Specifically, the perfor-

mance of the SA measure is investigated in the context of white noise, Gaussian

blur, and JPEG and JPEG2000 compression in this study. We believe the effective

implementation of the SA measure or a hybrid quality measure combing the SA

measure and other suitable image quality measures could extend the scope to a

broader class of distortion types as well as multiple distortions.

6.2 Structural Activity

The concept of SA is defined as those properties, either in the spatial domain or

other domains, whose variation can indicate the change of structural information in

an image. SA can be a local concept concerned with the local structural information

or a global concept concerned with structural information across most or all the

image. In fact, SA is the underlying idea of many reported NR image quality

measures. We would like to take a close look at those measures to reveal the

implicit idea of SA.

The blur measures presented in [70, 71] are based on the measurement of edge

spread, which is counted as the number of pixels with monotonically-changing

intensities along the gradient orientation at an edge pixel. Apparently, the feature

of edge spread is the spatial extent of an edge pixel with increased value indicating

increased blur. Since edges deliver the most significant structural information in

an image, edge spread provides an SA feature in nature, namely, increased edge

spread indicates weakened SA and declining visual quality. A notable property of

edge spread is that it does not distinguish among blur sources. The property allows

the application of edge spread-based image quality measures to different types of
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blur.

Blocking artifacts in JPEG compressed images are a kind of pseudo structure

since they arise from the distortion and are not the genuine structures of the original

image content. Most existing image quality measures, e.g., [55,57,60,61], evaluate

the effect of blocking artifacts based on their visibility or strength. Structure

strength turns out to be another eligible SA feature; increased visibility of pseudo

structures indicates increased SA and declining image quality.

Among the NR quality measures that are able to work for JPEG2000 com-

pressed images, the model of [75] captures the nonlinear dependencies among

wavelet coefficients, and appraises quality via quantifying the deviation of these

dependencies from the expected statistics. Some researchers claimed that these

nonlinear dependencies could be explained solely by the presence of spatial struc-

tures in natural images [101]. Different from those SA features in the spatial

domain, the feature of nonlinear dependencies among wavelet coefficients reflects

SA in the wavelet domain. Another example is the ZC rate in [78], which is

defined as the number of local intensity extrema termed zero crossings in the lit-

erature. From the mathematical perspective, most structures are characterized

by the monotonically-changing intensities at different strength levels. Considering

that monotonically-changing intensities normally end with local intensity extrema,

the feature of ZC rate is indirectly related to structures with a large value indi-

cating an image region rich in structures. Apart from the genuine structures, the

pseudo structures of ringing artifacts created by compression generate zero cross-

ings in their neighborhood as well. It is shown that both the distorted genuine

structures and pseudo structures may influence the distribution of zero crossings.

In other words, the ZC rate reflects structural distortion and provides another SA
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feature. Additionally, the principal component analysis employed in [73] and the

anisotropic diffusion process in [58] are just different ways to extract SA, and their

derived features are lent to the idea of SA.

Although the researchers claimed good results, those reported image quality

measures have some limitations. The image quality measures [70,71,73] are heavily

dependent on reliable edge information. Given the reduction in extracted edges

with increased blur, the effectiveness of these measures would inevitably decline

when images are subjected to severe distortion. A sophisticated edge detection

method may help to alleviate the problem, such as using the Canny edge detector

in [71] instead of the Sobel operator in [70] for edge extraction, but this is not an

innovative solution. In addition, the operation of edge extraction easily leads to

the loss of useful structural information, since only the structures of relatively high

strength are kept whereas detailed structures of low strength are discarded during

edge extraction. Another concern is practical implementation. Since the image

quality measures [70,71,73] all rely on structure or feature extraction, the selection

of a suitable threshold, which is largely experience/image-dependent, would be

inconvenient in practical applications. Similarly, the choice of projection axes

in [73] is also made in an ad hoc manner. Moreover, the measures developed in

[57,73,75,78] require additional procedures and training data for model parameter

determination. This imposes a restriction especially when data are limited.

As can be seen, the implicit idea of SA is generalized from a variety of NR image

quality measures. With both strengths and weaknesses of these SA-motivated

quality measures in mind, a new model of an SA measure is developed in the

following section.
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6.3 Structural Activity Measure

A new model of an SA measure, with its block diagram illustrated in Figure 6.1,

is applied to the luminance component of an image. The flexible structure of the

SA measure allows the easy incorporation of additional components and facilitates

the extension of the model to various applications. The implementation of the SA

measure comprises two stages. In the first stage, both the model components of SA

weight and local SA are evaluated pixel-by-pixel over the entire image, resulting

in an SA weight map and an SA map, respectively. In the second stage, the model

component of global SA combines the two maps into a single numerical value as

an image quality score. The three model components, together with some example

implementations, are elaborated on in the following content. The implementations

described here mainly serve to demonstrate the effectiveness of the SA measure.

Start, image 

 SA Weight Local SA

Global SA 

End

Figure 6.1: Block diagram of the SA measure.

6.3.1 Structural Activity Weight

The motivation for SA weight is to automatically adjust the relative contribu-

tion among the local SA information according to visual significance. Due to
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the complexity and limited knowledge of the HVS, there is so far no widely ac-

cepted way to interpret visual attention. A number of studies regarding visual

importance-motivated image quality assessment have been reported in the litera-

ture, e.g., [98,102,103]. Visual importance is expressed using some well-recognized

influencing factors in [102], color contrast, texture contrast, motion, and cogni-

tive features in [103], and fixation points together with local quality levels in [98].

Assuming that human visual perception is highly sensitive to the structural in-

formation, visual significance is described from the structural perspective in this

study: a larger SA weight is assigned to the spatial location where the SA infor-

mation is more likely to attract visual attention. As specific examples, SA weight

is expressed in terms of structure strength (denoted by SAW-SS) and zero-crossing

activity (SAW-ZC) in the following content.

6.3.1.1 Structure Strength-Based Structural Activity Weight

As discussed in Section 6.2, strong structures are more visible to the HVS and are

inclined to attract more visual attention as compared to weak structures. Structure

strength is therefore employed as an alternative expression of SA weight. A number

of methods are available for structure strength calculation, such as the widely used

Sobel operator. A multistage median filter (MMF)-based approach is proposed to

compute structure strength with the intention to indirectly reinforce the detailed

structures of relatively low strength. First, the definition of MMF is introduced

below.

Let W be a (2w + 1)× (2w + 1) square filter window centered at a pixel (i, j)

with integers i and j as spatial indices. The pixels in W can be divided into four



6.3 Structural Activity Measure 102

subsets:

W1(i, j) = {I(i, j −m);−w ≤ m ≤ w}

W2(i, j) = {I(i−m, j);−w ≤ m ≤ w}

W3(i, j) = {I(i+m, j −m);−w ≤ m ≤ w}

W4(i, j) = {I(i−m, j −m);−w ≤ m ≤ w}

(6.1)

Let zk(i, j) denote the median pixel of the subset Wk(i, j), where the integer k with

1 ≤ k ≤ 4 is the index:

zk(i, j) = med(Wk(i, j)) 1 ≤ k ≤ 4 (6.2)

With

ymin(i, j) = min1≤k≤4(zk(i, j))

ymax(i, j) = max1≤k≤4(zk(i, j))
(6.3)

the output of MMF at pixel (i, j) is defined by

IMMF(i, j) = med(ymin(i, j), ymax(i, j), I(i, j)) (6.4)

where min(·), max(·), and med(·) denote the operations for the minimum, max-

imum, and median, respectively. In our implementation, w = 2. A detailed de-

scription of MMF can be found in [104].

Structures are characterized by abrupt intensity changes and correspond to

the high-frequency components in an image. With the low-frequency component

estimated as the mean of local median pixels in equation (6.5), the high-frequency

component is computed as the difference between the filtered image and the low-

frequency component. The structure strength and also the local SA weight at pixel

(i, j) is thus expressed in equation (6.6) as the magnitude of the high-frequency
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component:

Imean(i, j) =

∑4
k=1 zk(i, j)

4
(6.5)

SAWSS(i, j) = |IMMF(i, j)− Imean(i, j)| (6.6)

For a better understanding, the proposed approach is compared with Wang’s

MMF-based edge detector [105]. The major difference between these two methods

include: (a) MMF serves to keep image details while smoothing noise in Wang’s

detector, but preserves details from distorted images with the distortion not lim-

ited to noise in the proposed approach; and (b) the low-frequency component is

estimated as the mean of the general pixels in Wang’s detector, but the mean of

the median pixels in the proposed approach. Given that MMF basically works with

the median pixels rather than general pixels, the mean of median pixels has more

dependencies with MMF output in comparison with the mean of general pixels. As

a result, structure strength is quantified at different degrees by these two methods.

Specifically, in comparison with Wang’s detector, structure strength obtained by

the proposed approach tends to have a moderate distribution, which is intended

to indirectly enhance the detailed structures of relatively low strength. Both qual-

itative and quantitative studies are used in Section 6.4 to reveal and validate the

perceptual implication of the proposed approach.

6.3.1.2 Zero Crossing-Based Structural Activity Weight

LetW be aN1×N2 filter window centered at a pixel (i, j). The horizontal difference

at a pixel (m,n) is calculated by

dH(m,n) = I(m,n)− I(m,n− 1) 1 ≤ m ≤ N1, 2 ≤ n ≤ N2 (6.7)
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where m and n are window-wide spatial indices. In our implementation, N1 =

N2 = 5. The horizontal ZC activity at pixel (i, j) is defined by

ZCH(i, j) =
∑N1

m=1

∑N2−1

n=2
sign−(sign(dH(m,n)) · sign(dH(m,n + 1))) (6.8)

where

sign(x) =























1 x > 0

−1 x < 0

0 otherwise

(6.9)

and

sign−(x) =











1 x < 0

0 otherwise
(6.10)

Similarly, the vertical ZC activity ZCV(i, j) can be computed by transposing win-

dowW and using the same algorithm as that for the horizontal ZC activity. Finally,

ZC activity and also the local SA weight at pixel (i, j) is defined by

SAWZC(i, j) = ZCH(i, j) + ZCV(i, j) (6.11)

As analyzed in Section 6.2, the feature of ZC activity is indirectly related to

structures with a large value indicating an image region rich in structures. Based on

the assumptions that the HVS is highly sensitive to the structural information and

the image regions rich in structures tend to attract visual attention, ZC activity is

employed as another alternative expression of SA weight.
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6.3.2 Local Structural Activity

The feature of direction spread is proposed as an example of the local SA expres-

sion in this section. The basic principle of direction spread measurement is to

track the pixels with monotonically-changing intensities along the horizontal and

vertical directions at a general pixel. Specifically, the number of pixels with strictly

increasing or decreasing intensities is first counted along the horizontal and vertical

directions respectively, and then direction spread is given as the maximum of these

two counts.

As illustrated in Figure 6.2, horizontal (H) and vertical (V) directions are de-

fined at a pixel (i, j). Their positive and negative sub-directions are denoted by

+H & -H and +V & -V, respectively. Directional traces, starting from a pixel (i, j)

+H

H-

-V

+
V

(i,j)

Figure 6.2: Directions at a pixel (i, j).
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1 -1

1

-1

Figure 6.3: Masks applied to an image with the weight “1” aligned with pixels from
the directional traces. The mask on the left is applied to the pixels from T+H(i, j)
& T+H(i, j), and the mask on the right to the pixels from T+V(i, j) & T+V(i, j).

and extending along the different sub-directions, are represented by

T+H(i, j) =

{

I(i, j +m+H); m+H = 0, 1, 2, ...

}

T−H(i, j) =

{

I(i, j −m−H); m−H = 1, 2, ...

}

T+V(i, j) =

{

I(i+m+V, j); m+V = 0, 1, 2, ...

}

T−V(i, j) =

{

I(i−m−V, j); m−V = 1, 2, ...

}

(6.12)

where integers m+D and m−D with D = {H,V} (denote H and V directions)

orderly index pixels along the positive and negative sub-directions and limit the

pixel location within the effective image region. Different masks, as shown in Figure

6.3, are applied to the image with the weight “1” aligned with the pixels from the

respective directional traces. The measurement of direction spread at a pixel (i, j)

follows several steps below.

Step 1. Initial judgment.

Start from the first pixels T 0
+D(i, j) and T 1

−D(i, j) of the respective directional

traces. T 0
+D(i, j) is T

m+D

+D (i, j) with m+D = 0, and T 1
−D(i, j) is T

m
−D

−D (i, j) with

m−D = 1, where T
m+D

+D (i, j) and T
m

−D

−D (i, j) specify the pixels within the direc-

tional traces in equation (6.12) along the positive and negative sub-directions,

respectively. Apply the corresponding masks and compute the correlation results
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MT 0
+D(i, j) and MT 1

−D(i, j). If sign+(sign(MT 0
+D(i, j)) · sign(MT 1

−D(i, j))) = 0 ,

the direction spread in the D direction is set as zero; otherwise, proceed to step 2.

Here

sign+(x) =











1 x > 0

0 otherwise
(6.13)

Step 2. Tracking.

Continuously move the masks along the directional traces pixel-by-pixel as

long as sign+(sign(MT
m+D

+D (i, j)) · sign(MT 0
+D(i, j))) = 1 m+D = 1, 2, ... and

sign+(sign(MT
m

−D

−D (i, j)) · sign(MT 1
−D(i, j))) = 1 m−D = 2, 3, ... . The tracking

operation is implemented in the respective directional traces independently.

Step 3. Compute direction spreads in the H and V directions.

Compute the direction spread in the D direction by

DSD(i, j) = m+D +m−D + 1 (6.14)

Step 4. Compute direction spread at pixel (i, j).

The direction spread at pixel (i, j) is defined in equation (6.15) as the maximum

of the direction spreads in H and V directions. The maximum operation is intended

to make direction spread sensitive to distortion:

DS(i, j) = max
D={H,V}

(DSD(i, j)) (6.15)

We would like to compare direction spread with the feature of edge spread

reported in [70,71]. Their significant difference includes: (a) edge spread works with

the extracted edges of relatively high strength, while direction spread is applied to

general pixels and serves to cover structures of different strength levels; and (b)
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edge spread is measured along the gradient orientation, while direction spread is

measured along the horizontal and vertical directions. The general measurement

along the horizontal and vertical directions provides a meaningful approximation

given that the HVS pays much attention to structures along these two directions

in comparison with other orientations [4]. Furthermore, we would like to point

out the major advantages of direction spread over edge spread: (a) the operation

of extracting edges is avoided; (b) more stable performance can be expected since

direction spread overcomes the limitations imposed by structure/feature extraction

of severely distorted images; and (c) more complete SA information is preserved.

A special case comes from JPEG compressed images. The quantization opera-

tion in JPEG compression is implemented in each coding block independently and

leads to non-uniformly distributed distortions. We propose to restrict the measure-

ment of direction spread within 8×8 coding blocks (the default DCT block size) of

a JPEG compressed image rather than across the image space. However, it leads

to no SA defined at block boundaries since direction spread should be measured

within the effective image region. Assuming an image of M × N in size and t

as the index of the inter-block boundaries, the SA at horizontal block boundaries

is defined in equation(6.16) and at vertical block boundaries in equation(6.17) to

complete the local SA definition in the case of JPEG compression. According to

Weber-Fechner law as introduced in Section 2.2, the HVS is sensitive to the relative

variation of luminance. As can be seen, equations (6.16) and (6.17) are essentially

consistent with Weber-Fechner law. The SA at block boundaries is thus shown to

be quantified in a perceptually meaningful manner.

BH(t) =

∑0
k=−7 |I(8i, 8j + k)− I(8i+ 1, 8j + k)|
∑0

k=−7 I(8i, 8j + k) + I(8i+ 1, 8j + k)
(6.16)
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BV(t) =

∑0
k=−7 |I(8i+ k, 8j)− I(8i+ k, 8j + 1)|
∑0

k=−7 I(8i+ k, 8j) + I(8i+ k, 8j + 1)
(6.17)

where i = 1, 2, ..., ⌊M/8⌋−1 and j = 1, 2, ..., ⌊N/8⌋−1, t = (⌊N/8⌋−1)×(i−1)+j

and 1 ≤ t ≤ (⌊M/8⌋− 1)× (⌊N/8⌋− 1), and ⌊·⌋ denotes the operation of rounding

the operand to the nearest integer towards minus infinity.

6.3.3 Global Structural Activity

A pooling approach is required to combine all the SA weights and local SA into a

single scalar of global SA as image quality score. In this study, a visual significance-

weighted pooling approach is proposed with the general expression

Qo =

∑

i wiqi
∑

i wi

(6.18)

where Qo is the image quality score, i is the index, qi is the local quality/distortion

estimate, and wi is visual significance-based local weight with a large value indi-

cating substantial visual interest. The basic idea is to determine the relative con-

tribution of local quality/distortion estimate according to visual significance. It is

motivated by the fact that the HVS, as the only “correct” quality assessment model,

should determine the importance of the local quality/distortion estimate. For a

good understanding of the proposed pooling strategy, we compare it with Wang’s

two pooling approaches [100]. The two approaches presented in [100], namely, lo-

cal quality/distortion-weighted pooling and information content-weighted pooling,

prove the good potential to improve image quality prediction. Hereafter, these two

approaches are referred to as quality- and information-weighted approaches. In the

quality-weighted approach, the weight is defined as the monotonic function of the
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local quality/distortion measure with the intention to emphasize the image regions

of poor quality. In the information-weighted approach, the weight is defined as the

function of local information content with the intention to emphasize the image

regions with substantial information. In fact, both approaches may converge to the

common idea of visual significance, with visual attention assumed to be attracted

by the image regions of poor quality in the quality-weighted approach and the im-

age regions of substantial information in the information-weighted approach. With

respect to the proposed model of the SA measure, some examples of SA weight ex-

pression are already proposed in Section 6.3.1 to interpret visual significance from

the structural perspective.

The specific expressions of the proposed pooling approach are presented accord-

ing to different distortion types in the following subsections. A common feature

of these expressions is that they are parameterless, which avoids additional proce-

dures or training data for parameter determination.

6.3.3.1 Gaussian Blur and White Noise

When an image is subject to Gaussian blur or white noise, the proposed pooling

approach is expressed by

SAm =

∑

i

∑

j SAWm(i, j) · DS(i, j)
∑

i

∑

j SAWm(i, j) · sign+(DS(i, j))
m = {SS,ZC} (6.19)

With valid SA weights assigning spatially varying importance, the global SA is

calculated in equation (6.19) as the weighted average of non-zero local SA (i.e.,

direction spread). SA weights are deemed valid at the spatial locations where

the local direction spread is non-zero. Increased global SA indicates declining
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image quality in the case of Gaussian blur, while decreased global SA reflects

degraded image quality in the case of white noise. Compared with the observation

that increased direction spread indicates weakened SA due to blur, the relation

between direction spread and white noise is not so explicit. Although the individual

direction spread is interrupted by noise in a random way, it is found that the

overall direction spread statistically decreases and reflects the increased SA of

pseudo structures produced by noise. This observation regarding white noise will

be further validated in Section 6.4.2.1.

6.3.3.2 JPEG Compression

As presented in Section 6.3.2, the local SA is expressed differently at the inner

pixels and boundaries of coding blocks in JPEG compressed images. Accordingly,

the global SA of a JPEG compressed image is computed in two steps. First, the

part of SA at inner pixels of coding blocks is calculated using equation(6.20) and

the part of SA at block boundaries using equation(6.21). Here, SA weight comes

into play only at the inner pixels of coding blocks in equation(6.20) and has no

effect at block boundaries in equation(6.21). Second, the global SA is computed

in equation(6.22) as the combination of the two component SA:

SAm(inner) =

∑

(i,j)∈{(i,j)}
inner

SAWm(i, j) · DS(i, j)
∑

(i,j)∈{(i,j)}
inner

SAWm(i, j) · sign+(DS(i, j))
(6.20)

SAboundary =

∑(⌊M/8⌋−1)×(⌊N/8⌋−1)
t=1 BH(t) + BV(t)

∑(⌊M/8⌋−1)×(⌊N/8⌋−1)
t=1 sign+(BH(t)) + sign+(BV(t))

+ 1 (6.21)

SAm = (SAm(inner))
α · (SAboundary)

β (6.22)
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where m = {SS,ZC}, {(i, j)} inner represents the set of spatial indices regarding

all the inner pixels of coding blocks, the constant 1 in equation(6.21) represents a

baseline minimal value, α > 0 and β > 0 in equation(6.22) are parameters used to

adjust the relative emphasis between the two parts SA. α = β = 1 is chosen in this

study. It is easy to see SAm(inner) increases with increased blur, SAboundary increases

when blockiness becomes more visible, and the resulting global image quality score

SAm increases with declining image quality.

6.3.3.3 JPEG2000 Compression

According to the presentation in Section 6.3.2, direction spread has meaningful

values at structures with gradual intensity changes, while zero value at structures

characterized by abrupt intensity changes with a representation of 2-D step func-

tion. Although the structures with abrupt intensity changes are an ideal case and

seldom appear in natural images, it is inadequate for direction spread to cover

the SA of ringing artifacts in JPEG2000 compressed images. The computation of

global SA is complemented in equation(6.23) by incorporating SA weights at spa-

tial locations where direction spread has no effect. When blur and ringing artifacts

become more visible, the global SA increases and indicates degraded image quality.

SAm =

∑

i

∑

j SAWm(i, j) ·DS(i, j) + SAWm(i, j) · sign0(DS(i, j))
∑

i

∑

j SAWm(i, j)
m = {SS,ZC}

(6.23)

where

sign0(x) =











1 x = 0

0 otherwise
(6.24)
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6.4 Results and Discussion

The performance of the proposed model of the SA measure is evaluated using the

LIVE image database [88,89], which has been widely employed for the performance

evaluation of image quality measures. Specifically, the tests involve the datasets of

white noise contaminated images, Gaussian blurred images, JPEG and JPEG2000

compressed images. Table 6.1 provides the information regarding the number of

images in each dataset, parameters of distortion, and subjective quality scores.

The distortion parameter varies according to distortion type. Specifically, the

parameter is the standard deviation of white Gaussian noise (in pixels) in the

case of white noise, the standard deviation of Gaussian filter (pixels) in the case of

Gaussian blur, and bit rate (bpp) in the case of JPEG and JPEG2000 compression.

The subjective quality scores are given in terms of the realigned DMOS on a scale

of 0 to 100, with a larger DMOS indicating poorer visual quality. More details of

the LIVE image database can be found in Section 3.4.1. In the following content,

the performance of the SA measure is investigated through the visualization of SA

weight, quantitative performance evaluation, and outlier analysis.

Table 6.1: Information of the LIVE image database: number of images in each
dataset, parameters of the distortion, and subjective quality scores.

Dataset Number of images Parameters Subjective quality scores
White noise 145 0.012-2.00

Realigned DMOS
(exclude the reference
images)

Gaussian blur 145 0.42-15.00
JPEG 175 0.15-3.34

JPEG2000 169 0.028-3.15
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Visualization of structure strength and SA weight over a sample
JPEG2000 image. (a) The “Ocean” JPEG2000 image compressed to 0.1914 bpp.
The structure strength map shown in (b) is obtained by Wang’s detector, (c) by
the Sobel operator, and (d) by implementing an additional thresholding over (c).
The thresholding in (d) is performed in a way that all the structure strength values
larger than 10% of the largest value are set as zero. The SA weight map shown in
(e) is obtained by SAW-SS and (f) by SAW-ZC. All the maps are normalized and
contrast stretched for visibility, with a brighter pixel indicating a larger value.
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6.4.1 Visualization of Structural Activity Weight

We first illustrate the perceptual implication of the proposed MMF-based approach

with a set of intuitive examples. Based on a sample “Ocean” JPEG2000 compressed

image shown in Figure 6.4a, a set of structure strength maps are obtained in differ-

ent ways and are visualized in Figures 6.4b-6.4e. The brightness of these normalized

structure strength maps represents the relative magnitude, with a brighter pixel

indicating a relatively larger strength value. We discuss the relative rather than

the absolute magnitude of structure strength in the following content. Specifically,

Figure 6.4b is obtained by Wang’s detector [105], Figure 6.4c by the Sobel operator,

Figure 6.4d by applying an additional thresholding step to Figure 6.4c, and Figure

6.4e by the proposed MMF-based approach (denoted by SAW-SS in Figure 6.4).

Thresholding in Figure 6.4d is utilized only for demonstration purposes and is im-

plemented such that all the structure strength values larger than 10% of the largest

value are set as zero. Note the visible blur and ringing artifacts in the compressed

“Ocean” image (Figure 6.4a), especially in the region of the ocean. With reference

to the structure strength maps obtained by Wang’s detector (Figure 6.4b) and the

Sobel operator (Figure 6.4c), it is observed that the contours of the clouds, island,

trees, and the waves of the ocean have high strength. In contrast, the detailed

structures like ringing artifacts at the waves have much lower strength. The fact is

that the pseudo structures of ringing artifacts disturb the natural behavior exhib-

ited in an image, and are usually a major attraction of visual attention. A clear

gap is consequently seen between the distributions of structure strength and visual

interest. To better illustrate this issue, an additional thresholding step is applied

to the image of Figure 6.4c to ignore the largest structure strength values, and a

new map is derived (Figure 6.4d). Comparing Figures 6.4c with 6.4d, it can be
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observed that the strength of ringing artifacts is clearly enhanced in Figure 6.4d,

which is obtained with the thresholding step. Obviously, a practical solution to

the revealed issue, i.e., the gap between the distributions of structure strength and

visual interest, can not be set up in this way. As theoretically analyzed in Section

6.3.1.1, the proposed MMF-based approach is intended to automatically moderate

the distribution of structure strength so as to indirectly enhance the detailed struc-

tures of relatively low strength. As can be seen, the structure strength computed

by the MMF-based approach (denoted by SAW-SS in Figure 6.4e) indeed appears

more moderate in distribution in comparison with Wang’s detector (Figure 6.4b)

and the Sobel operator (Figure 6.4c), as exemplified by the distinctly decreased

strength at the contours of the clouds, island, and trees in Figure 6.4e. As a re-

sult, the strength of the ringing artifacts in the structure strength distribution is

indirectly enhanced, and the MMF-based approach is shown to accomplish its goal.

More SA weight maps are shown in Figures 6.4 and 6.5, where SA weight is

expressed in terms of SAW-SS and SAW-ZC, and the image distortions include

Gaussian blur, and JPEG and JPEG2000 compression. The brightness of these

normalized SA weight maps represents the relative magnitude, with a brighter

pixel indicating a relatively larger SA weight. It is noted that SAW-SS provides

better resolution than SAW-ZC, as confirmed by the more distinct details shown in

Figures 6.4e, 6.5c, and 6.5d (obtained by SAW-SS) in comparison with the coarse

content shown in Figures 6.4f, 6.5e, and 6.5f (SAW-ZC). It is mainly because

SAW-SS is derived based on the magnitude of intensity changes, while SAW-ZC is

based on the sign of intensity changes. Despite their different expressions, SAW-SS

and SAW-ZC are demonstrated perceptually meaningful with their distributions

consistent with visual interest as a whole.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Visualization of SA weight over sample Gaussian blurred and JPEG
compressed images. (a) The “Monarch” Gaussian blurred image with the param-
eter of 1.8515. (b) The “Painted house” JPEG image compressed to 0.2994 bpp.
The SA weight maps shown in (c) and (d) are obtained by SAW-SS, and (e) and
(f) by SAW-ZC. All the SA weight maps are normalized and contrast stretched for
visibility, with a brighter pixel indicating a larger value.
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6.4.2 Quantitative Performance Evaluation

Hereafter, SA-SS and SA-ZC are used to denote the implementations of the SA

measure based on SAW-SS and SAW-ZC, respectively. Based on the ground truth

data of DMOS provided by the LIVE image database, two representative FR image

quality measures of PSNR and SSIM index [32] (introduced in Section 3.1) are

employed as the benchmarks to study the performance of the SA measure. The

performance evaluation of the SA measure follows the procedures recommended

by the VQEG as detailed in Section 3.4.2. Table 6.2 lists the results of evaluation

criteria regarding all the image quality measures under study. The negative sign

of ROCC in Table 6.2 indicates an inversely proportional relationship between

subjective and objective quality scores. This does not occur with CC because of

the compensation by nonlinear mapping (refer to Section 3.4.2). It means the

magnitude of ROCC when ROCC is referred to in the following content.

6.4.2.1 White Noise

From Table 6.2, it is shown that all the image quality measures under test exhibit

good performances. PSNR delivers the best results and proves an excellent FR

quality measure in the case of white noise. SA-SS outperforms SA-ZC according

to each evaluation criterion, and the performance of SA-SS is basically as good

as that of SSIM index. The validity of the SA measure, be it SA-SS or SA-ZC,

is justified through its good prediction of subjective quality scores. We further

validate the logic underlying the SA measure presented in Section 6.3.3.1: the

overall direction spread statistically decreases and reflects increased noise. With

image quality scores calculated as the average of non-zero direction spreads across

an image, the following results can be obtained: CC of 0.959, RMSE of 8.016,
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Table 6.2: Performances of image quality measures over the LIVE image database.

Quality measure Type
White noise

CC RMSE OR ROCC
PSNR FR 0.986 4.769 0.262 -0.985

SSIM index FR 0.970 6.883 0.531 -0.969
SA-SS NR 0.971 6.839 0.531 -0.959
SA-ZC NR 0.952 8.717 0.669 -0.931

Quality measure Type
Gaussian blur

CC RMSE OR ROCC
PSNR FR 0.783 11.641 0.738 -0.782

SSIM index FR 0.945 6.119 0.552 -0.952
SA-SS NR 0.907 7.876 0.669 0.888
SA-ZC NR 0.906 7.920 0.641 0.892

Quality measure Type
JPEG compression

CC RMSE OR ROCC
PSNR FR 0.888 14.826 0.634 -0.881

SSIM index FR 0.979 6.576 0.394 -0.976
SA-SS NR 0.937 11.234 0.554 0.932
SA-ZC NR 0.923 12.417 0.531 0.918

Quality measure Type
JPEG2000 compression

CC RMSE OR ROCC
PSNR FR 0.900 11.151 0.615 -0.895

SSIM index FR 0.967 6.551 0.473 -0.961
SA-SS NR 0.911 10.515 0.627 0.908
SA-ZC NR 0.929 9.426 0.574 0.925

OR of 0.621, and ROCC of -0.941. Clearly, the feature of direction spread itself

provides good image quality prediction. The results validate the logic and allow

us to make a reasonable conclusion: direction spread plays a leading role in SA-SS

and SA-ZC for the image quality prediction of white noise contaminated images.

6.4.2.2 Gaussian Blur

The performance of SSIM index is shown superior to and PSNR inferior to that

of other image quality measures under test. SA-SS performs slightly better than
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SS-ZC in terms of lower RMSE and better prediction accuracy (higher CC), while

SS-ZC is better than SA-SS in terms of better prediction consistency (lower OR)

and better prediction monotonicity (higher ROCC).

6.4.2.3 JPEG Compression

SSIM index delivers the best results, and SA-SS together with SA-ZC exhibit

satisfactory performances which are demonstrably better than PSNR according to

each evaluation criterion. SA-SS is superior to SA-ZC in terms of lower RMSE,

better prediction accuracy (higher CC), and better prediction monotonicity (higher

ROCC), while SA-ZC is better than SA-SS in terms of better prediction consistency

(lower OR).

6.4.2.4 JPEG2000 Compression

PSNR is shown as an effective measure for JPEG2000 compressed images. SSIM

index achieves further improvement over PSNR and supplies the best results among

the image quality measures under test. SA-ZC outperforms PSNR according to

each evaluation criterion. SA-SS is better than PSNR in terms of lower RMSE,

better prediction accuracy (higher CC), and better prediction monotonicity (higher

ROCC), while PSNR is better than SA-SS in terms of better prediction consistency

(lower OR).

6.4.2.5 Performance Summary

SA-SS and SA-ZC perform the best in the case of white noise, followed by JPEG

and JPEG2000 compression, and then Gaussian blur. SA-SS and SA-ZC are shown
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to be good NR image quality measures in the case of white noise, and the perfor-

mance of SA-SS is as good as that of the SSIM index. It is demonstrated that the

feature of direction spread plays a leading role in SA-SS and SA-ZC for the quality

estimation of white noise contaminated images. Moreover, the performances of

SA-SS and SA-ZC are generally better than that of PSNR over a majority of the

datasets including Gaussian blur and JPEG and JPEG2000 compression. With

the FR quality measures of PSNR and SSIM index as benchmarks, the results

in Table 6.2 suggest that the performances of the NR image quality measures of

SA-SS and SA-ZC are promising. Besides, comparing the two implementations of

the SA measure, SA-SS is generally superior to SA-ZC in the case of white noise

and JPEG compression, while SA-ZC outperforms SA-SS in the case of JPEG2000

compression, and SA-SS and SA-ZC have similar performances in the case of Gaus-

sian blur. Furthermore, we would like to point out some additional advantages of

SA-SS and SA-ZC that have not been revealed in Table 6.2: (a) they do not require

structure or feature extraction; (b) they are not subject to the limitations imposed

by structure or feature extraction of severely distorted images; and (c) they avoid

additional procedures and training data for parameter determination. Based on

their favorable performances in various respects, we may conclude that the overall

performances of SA-SS and SA-ZC are indeed satisfactory as far as such an NR

image quality assessment model is concerned.

6.4.2.6 Quantitative Validation of the Multistage Median Filter-Based

Approach

Besides the illustration in Section 6.4.1, the proposed MMF-based approach for

SAW-SS computation merits further validation. We employ the Sobel operator
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Table 6.3: Performance comparison between SA-SS and the tentative implementa-
tions.

Quality measure
Gaussian blur

CC RMSE OR ROCC
SA-Sobel 0.867 9.331 0.717 0.841
SA-Wang 0.882 8.824 0.703 0.855
SA-SS 0.907 7.876 0.669 0.888

Quality measure
JPEG compression

CC RMSE OR ROCC
SA-Sobel 0.908 13.498 0.611 0.903
SA-Wang 0.948 10.243 0.469 0.940
SA-SS 0.937 11.234 0.554 0.932

Quality measure
JPEG2000 compression

CC RMSE OR ROCC
SA-Sobel 0.826 14.393 0.740 0.822
SA-Wang 0.881 12.075 0.710 0.877
SA-SS 0.911 10.515 0.627 0.908

and Wang’s detector [105] to replace the proposed MMF-based approach to com-

pute SAW-SS in the implementation of the SA measure. We refer to the resultant

two tentative implementations as SA-Sobel and SA-Wang. The results of evalua-

tion criteria are provided in Table 6.3 where white noise is not included since the

leading role of direction spread is already justified in Section 6.4.2.1. Our obser-

vations of Table 6.3 include two aspects. On one hand, comparing Table 6.3 with

Table 6.2, it can be seen that SA-Wang outperforms PSNR in the case of Gaussian

blur, outperforms PSNR and SA-SS in the case of JPEG compression, and is com-

parable to PSNR in the case of JPEG2000 compression. The good performance of

SA-Wang further validates the model of the SA measure since the only difference

between SA-Wang and SA-SS is the different computation methods of SAW-SS.

On the other hand, SA-SS is generally superior to SA-Sobel and SA-Wang espe-

cially in the case of Gaussian blur and JPEG2000 compression. Note that all these
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three implementations achieve clear performance increases in the case of JPEG

compression. We believe that it is primarily due to the separate SA quantification

at block boundaries rather than the direct effect of SAW-SS. Based on the qual-

itative illustration in Section 6.4.1 and quantitative evaluation provided here, we

conclude that the proposed MMF-based approach for SAW-SS is fully validated.

6.4.3 Outlier Analysis

The scatter plots of DMOS versus image quality scores computed by SA-SS and

SA-ZC are shown in Figure 6.6, where SA-SS is selected for the distortions of

white noise and JPEG compression and SA-ZC for Gaussian blur and JPEG2000

compression. Each point in the figure, marked by asterisk or “+”, represents one

test image. With most points close to the fitted logistic curve (corresponding to

equation (3.9)) in the scatter plots, SA-SS and SA-ZC are observed to provide

good prediction of DMOS for most test images. The outliers (denoted by “+”

in Figure 6.6) are those data points whose prediction deviation exceeds twice the

standard deviation of individual subjective quality scores. We take a close look at

some representative outliers in this section.

With Gaussian blur, it is found that the most significant outliers arise from the

blurred “Monarch” images, a sample image of which is shown in Figure 6.5a. It

is easy for the HVS to recognize that the blur of the out-of-focus flowers in the

background is due to the macro shot rather than distortion, but it is difficult for

the SA measure to realize this. The SA measure fails to imitate the behaviors of

the HVS and under-predicts image quality in this case.

The sample image shown in Figure 6.7a exemplifies a typical case of the outliers

pertaining to JPEG compressed images. According to equations (6.16) and (6.17),
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(a) (b)

(c) (d)

Figure 6.6: Scatter plots of DMOS versus image quality scores computed by SA-SS
and SA-ZC. Each point, marked by asterisk or “+”, represents one test image with
“+” denoting outliers. The curve corresponds to the logistic function (3.9) with
parameters fitted over dataset. (a) SA-SS for white noise. (b) SA-ZC for Gaussian
blur. (c) SA-SS for JPEG compression. (d) SA-ZC for JPEG2000 compression.

SA-SS and SA-ZC are not able to identify the origin of the SA at the boundaries

of coding blocks which can be either compression distortion or the real image

content. Since so many horizontal fine structures of the waves in Figure 6.7a are

very likely to appear at the boundaries of coding blocks in part, it should come as

little surprise that SA-SS under-predicts image quality in this situation.
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(a) (b)

(c)

Figure 6.7: Sample images corresponding to the outlier marked in Figure 6.6. (a)
The “Man fishing” JPEG image compressed to 0.4229 bpp. (b) The “Stream”
JPEG2000 image compressed to 0.1920 bpp. (c) The “Coins in fountain”
JPEG2000 image compressed to 0.1874 bpp.

With respect to JPEG2000 compression, an important part of outliers are due

to the compressed “Stream” image, for which a sample image is shown in Figure

6.7b. Note that the stones at the banks are a kind of quasi-texture where the

perceived distortion is not as disturbing as elsewhere, e.g., the bush and trees, due

to the masking properties of the HVS. The SA measure fails to recognize textures

and over-predicts image quality in this case. Another significant part of outliers

result from the compressed “Coins in fountain” images, a sample image of which

is shown in Figure 6.7c. The HVS can easily recognize that the blur of reflection
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and coins in the water is image content rather than distortion, whereas the SA

measure can not recognize this and under-predicts image quality in this scenario.

To this end, the investigation into outliers provides us more insights into the

SA measure. Despite the promising performance of the SA measure, it is observed

that an NR image quality assessment model based on SA alone is not adequate for

universally accurate image quality prediction. It is desirable to take into account

the properties of the HVS, especially the role of high-level cognitive understanding

in visual perception. In fact, the issues exposed here are not limited to the SA

measure alone but intrinsic to most NR image quality measures. With increased

knowledge of the HVS, a better emulation of the HVS would help to further reduce

the gap between the SA measure and human visual perception for more accurate

image quality prediction.

6.5 Summary

Under the assumption that human visual perception is highly sensitive to the

structural information in a scene, an SA-based framework is proposed for NR

image quality assessment in this chapter. The proposed framework predicts image

quality based on the quantification of SA information of different visual significance.

Despite being a new concept, SA is shown to be an implicit idea underlying a variety

of existing NR image quality measures. With both strengths and weaknesses of

those SA-motivated image quality measures in mind, a new model of an SA measure

is developed. The components of the SA measure include SA weight, local SA, and

global SA. SA weight and local SA are evaluated pixel-by-pixel over the entire

image, and global SA combines the resulting two maps into a single numerical
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value as image quality score. The motivation of the SA weight is to automatically

adjust the relative contributions among the local SA information according to

visual significance. In this study, SA weight describes visual significance from the

structural perspective; a larger SA weight is assigned to the spatial location where

the associated SA information is more likely to attract visual attention. As two

specific examples, SA weight is expressed in terms of structure strength (SAW-

SS) and zero-crossing activity (SAW-ZC). For SAW-SS, an MMF-based approach

is proposed with the intention to indirectly reinforce the detailed structures of

relatively low strength. As to the model component of local SA, a feature of

direction spread is proposed. The basic principle of direction spread measurement

is to track the pixels with monotonically-changing intensities along the horizontal

and vertical directions at a general pixel. The feature of direction spread does not

require edge extraction, overcomes the limitations imposed by structure or feature

extraction of severely distorted images, and allows more complete SA information

to be preserved. Additionally, the local SA at the coding block boundaries is also

defined in the case of JPEG compression. For the model component of global SA, a

visual significance-weighted pooling approach is proposed. The specific expressions

of the pooling approach are developed for different distortion types. A common

feature of these expressions is that they are parameterless, which avoids additional

procedures or training data for parameter determination. It is demonstrated that

the SA measure predicts image quality in close consistency with subjective quality

scores over a variety of distortions, including white noise, Gaussian blur, and JPEG

and JPEG2000 compression. We consider the model of the SA measure together

with the proposed examples of its implementation in this study as an encouraging

starting point. The effort in this study may motivate the further exploration of
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the concept of SA and drive the success of other SA-motivated NR image quality

measures in the future.



Chapter 7
Conclusion and Future Work

7.1 Summary

This thesis focuses on the development of NR image quality measures. The goal is

to develop computational models to quantitatively predict perceived quality solely

from a distorted image without any reference to a distortion-free image. Because of

its intrinsic difficulty, the field of NR image quality assessment is still in its infancy

and is full of challenges.

Due to the widespread use of image compression technologies in numerous appli-

cations nowadays, compression has become a significant source of image distortions.

The distortions created by the widely used JPEG2000 compression are heavily de-

pendent on image content without regularity to follow and make the task of NR

image quality assessment complicated. A study of existing NR quality measures

for JPEG2000 compressed images reveals the following limitations. In the case

of structures/features-based NR image quality measures, their effectiveness would

inevitably decline when images are subject to severe distortion. It is mainly due

to the decreased number of detected structures/features with increased distortion.
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The thresholding operation associated with the structure/feature extraction is also

experience/image-dependent and would be inconvenient in practical applications.

Another concern comes from those NR image quality measures that involve param-

eters to be determined. In some image quality measures, parameters are calibrated

in an ad hoc manner without clear rules. And in some other image quality mea-

sures, parameters have to be learned from subjective quality data. In this case,

the resulting additional procedures for parameter learning usually increase imple-

mentation complexity, while the need for training data is an obvious constraint

when data are limited. With these limitations in mind, kurtosis-based NR image

quality measures were presented in Chapter 4 and a pixel activity-based NR image

quality measure was presented in Chapter 5, which all target the distortions result-

ing from JPEG2000 compression. One important objective in the design of these

NR image quality measures is to achieve low complexity and easy implementation

without sacrificing effectiveness. There is little doubt that a sophisticated quality

measure is advantageous in achieving good results. However, the implementation

expense is usually increased. With both satisfactory performances and easy im-

plementation, the developed NR quality measures prove effective alternatives to

those complicated quality measures for JPEG2000 compressed images.

General-purpose NR image quality assessment applicable to all kinds of dis-

tortions is an extremely difficult task. We seek to approach the goal of general

purpose by developing an SA-based framework in Chapter 6. With an intensive

investigation into the current techniques, the implicit idea of SA is generalized from

a variety of existing NR image quality measures, and a large part of the reported

NR image quality measures are shown to be motivated by the concept of SA. Tak-

ing into account both merits and demerits revealed from those SA-motivated NR



7.2 Contributions 131

image quality measures, a general model of an SA measure is developed to blindly

predict image quality. Different from the NR image quality measures presented

in Chapters 4 and 5, which are developed for the particular distortions resulting

from JPEG2000 compression, the SA measure provides a more general model with

its scope extended to a number of distortion types. Specifically, the effectiveness

of the SA measure is validated in the context of white noise, Gaussian blur, and

JPEG and JPEG2000 compression in this thesis. We believe the effective imple-

mentation of the SA measure or a hybrid image quality measure combing the SA

measure and other suitable measures could extend the scope to a broader class of

distortion types as well as to multiple distortions.

All the NR image quality measures developed in this thesis are able to work with

the distortion created by JPEG2000 compression. The pixel activity-based image

quality measure presented in Chapter 5 gives the best performances, followed by

the kurtosis-based image quality measures in Chapter 4 and the implementations

of the SA measure in Chapter 6. The kurtosis-based image quality measures and

the implementations of the SA measure generally perform similarly.

7.2 Contributions

Kurtosis-based NR image quality measures were presented in Chapter 4. They are

developed based on either 1-D or 2-D kurtosis in the DCT domain of general image

blocks. The major contributions of this study include the following aspects:

• To the best of our knowledge, 1-D kurtosis-based image quality measures do

not exist in the current literature. Although the validity of kurtosis-based

image quality measures has been established in the previous studies, the
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former work fails to clearly demonstrate how kurtosis works in image quality

prediction. In this study, we construct frequency distributions based on either

frequency bands or DCT basis functions for the calculation of 1-D kurtosis

in the DCT domain. Based on the proposed 1-D kurtosis, we explicitly

demonstrate the working principle of kurtosis in image quality prediction.

• The proposed image quality measures are simple and easy to implement;

they work with general image blocks and overcome the limitations imposed

by structure/feature extraction of distorted images; they do not involve pa-

rameters and avoid additional procedures and training data for parameter

determination; and they are proven effective in predicting perceived visual

quality of JPEG2000 compressed images.

• The investigation into outliers provides more insights into the proposed image

quality measures and sheds light on future directions.

A pixel activity-based NR image quality measure was presented in Chapter 5.

Instead of extracting structures/features from an image, the proposed NR quality

measure predicts image quality based on the pixel activity in terms of the MC

and the ZC activity. The major contributions of this study include the following

aspects:

• The proposed NR image quality measure is developed with reasonable com-

putation expense and easy implementation.

• With image quality predicted based on the basic activity of general pixels,

the proposed NR image quality measure overcomes the limitations imposed

by structure/feature extraction of distorted images.
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• The proposed structural content-weighted pooling approach does not involve

parameters from the HVS, training data, or stabilizing constants. This avoids

any additional procedures and training data for parameter determination.

• The proposed expressions of pixel activity for image quality prediction is

corroborated through both qualitative and quantitative evaluations.

• The proposed image quality measure achieves consistently close correlation

with subjective quality scores when the processing block size is subject to

a wide range. The performance of the proposed NR image quality measure

is shown better than the classical FR quality measure of PSNR, comparable

to the representative FR quality measure of SSIM index, and competitive

among the state-of-the-art NR image quality measures.

• The investigation into outliers provides a good understanding of the under-

lying deficiencies and points out the direction for the future work.

Assuming that human visual perception is highly sensitive to the structural

information in a scene, we propose to quantify SA as a good approximation of

perceived visual quality. An SA-based framework for NR image quality assessment

together with a model named the SA measure was presented in Chapter 6. The

major contributions of this study include the following aspects:

• The SA measure blindly predicts image quality based on the comprehen-

sive SA information of different visual significance in an image. The model

does not require structure/feature extraction and overcomes the limitations

imposed by structure/feature extraction of severely distorted images.
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• The model of the SA measure allows flexible implementations. As specific

examples, the feature of direction spread was proposed to implement the

model component of local SA and the features of structure strength and

zero-crossing activity to implement the model component of SA weight.

• The SA measure does not involve any parameters from the HVS, training

data, or stabilizing constants. It is independent of any additional procedures

or training data for parameter determination.

• The SA measure is validated with a variety of distortions including white

noise, Gaussian blur, and JPEG and JPEG2000 compression. The effective-

ness of the SA measure is demonstrated in the comparison with subjective

quality scores as well as the classical FR quality measure of PSNR and the

representative FR quality measure of SSIM index.

• The investigation into outliers in image quality prediction highlights the im-

portance of incorporating HVS features into the SA measure for the further

improvement in the accuracy of image quality prediction.

7.3 Future Work

A number of issues deserve further investigation.

First, the incorporation of suitable HVS features or an appropriate HVS model

at acceptable complexity may further improve the performances of the NR image

quality measures presented in this thesis. As indicated in the outlier analysis in

Chapters 4, 5, and 6, the incorporation of relevant properties of the HVS or an

appropriate HVS model could help to overcome outliers and allow more accurate
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image quality prediction. However, this may increase computational complexity.

The parameters introduced during the modeling of the HVS, which usually require

additional procedures or training data for parameter determination, may also in-

crease implementation complexity. It thus could be worthwhile investigating how

best to incorporate suitable HVS features or an appropriate HVS model at accept-

able complexity without compromising the overall performance.

Second, with respect to the kurtosis-based NR image quality measures pre-

sented in Chapter 4, current image quality prediction is based on the quantification

of the blurring distortion alone. A direct extension is to include the quantification

of ringing artifacts. It is also desirable to study how to incorporate appropriate

spatial features to compensate for the over-sensitivity of kurtosis so as to further

narrow the gap between the quantitative quality measures and human visual per-

ception. Additionally, other approaches of constructing frequency distribution for

the computation of kurtosis could also be a direction that is worth further investi-

gation.

Third, with respect to the pixel activity-based NR image quality measure pre-

sented in Chapter 5, the expression of pixel activity in image quality prediction is

not restricted to the expressions proposed in this study. Further exploration into

other suitable expressions of pixel activity may contribute to the further improve-

ment in performance.

Fourth, with respect to the SA-based NR image quality assessment framework

presented in Chapter 6, it would be beneficial to incorporate an additional model

component for the identification of distortion type. Despite a step towards general-

purpose NR image quality assessment, the SA measure still assumes the prior

knowledge of distortion type when predicting image quality. The incorporation of
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an additional model component to identify distortion type could be a promising

direction to allow a more general quality assessment model.

Finally, it would also be interesting to develop hybrid quality measures that

combine the image quality measures presented in this thesis with other suitable

quality measures to extend the scope to other single-distortion types as well as

to multiple distortions. Furthermore, the NR image quality measures proposed in

this thesis have the potential to be extended to color images and video sequences.
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