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Summary 

One of the challenging issues in the development of crystallization processes for 

active pharmaceutical ingredients (APIs) is to obtain the desired polymorphic form of the 

product. Though chemically identical, polymorphs are structurally different crystalline 

solids. Consequently, they exhibit different physico-chemical properties which can 

impact both the processability and performance of the drug. Unfortunately, crystallization 

process may go out of control even with a small variation in the process conditions such 

as cooling rate, feed conditions etc. which can impact the polymorphic outcome. Given 

such a situation, a deeper understanding about the fundamental aspects of polymorphism 

and crystallization mechanisms governing the polymorph formation and transformation is 

necessary. Only then a robust process can be developed to isolate the desired crystal 

form. Having said this, the objective of this work is to understand the polymorphism and 

crystallization aspects of an anti-diabetic drug, Tolbutamide (TB), to develop a robust 

crystallization process for the isolation of the desired form for this drug.        

In the first part, the structural and stability features of various TB polymorphs 

(Forms (IL, IH) and II–IV) were characterized using various analytical techniques. It has 

been found that the conformational flexibility of the TB molecule and strong hydrogen 

bonding ability of secondary amide via carbonyl and sulfonyl groups facilitate TB to 

crystallize into different polymorphic forms. The rich torsional freedom available for the 

terminal alkyl chain mainly assists TB molecule to adopt various conformers and 

crystalline packing arrangements. By elucidating the crystal structures of various 

polymorphic forms of TB, the present work resolves several discrepancies in the 

published data on structural features of the polymorphs of this API. The relative 
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thermodynamic relationships of TB polymorphic pairs were evaluated and the stability 

domains were elucidated in the form of a schematic energy-temperature diagram. Form II 

is found to be the thermodynamically stable polymorph from absolute zero to ~353 K and 

beyond which Form IH is the stable polymorph. The discrepancies in the literature related 

to the relative stability of TB polymorphs at ambient conditions are highlighted and 

partially resolved.   

 In the second part, using Quality by Design (QbD) based strategy, a robust cooling 

crystallization process was developed to achieve the desired polymorph, Form (IL, IH), of 

TB. In applying QbD, crystallization process characterization studies were carried out 

using process analytical technology (PAT). A polymorphic transformation study of TB 

polymorphs Form IL→ Form II suggests that the primary nucleation of the stable Form II 

is the controlling step for the transformation. Metastable zone width (MZW) 

measurements indicate that the cooling rate and solute concentration has a strong 

influence on the nucleation energy barrier and can be used as manipulators for achieving 

different TB polymorphs. Finally, using this information, a crystallization design space 

was derived in terms of metastability of Form (IL, IH) and a crystallization batch process 

was successfully operated within the design space to achieve the desired form.  

This work also demonstrates the application of two PATs, ATR-FTIR combined 

with orthogonal partial least squares (OPLS), a robust chemometric method and Raman 

combined with a dynamic principal component analysis (PCA) based multivariate 

statistical process monitoring (MSPM) in crystallization process characterization and 

monitoring. 
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CHAPTER 1 
 

Introduction 
 

 
1.1. Background and Motivation  
 

Solution crystallization is the most utilized technique in pharmaceutical industry for 

high purity separation (Variankaval et al., 2008). Being simple, flexible and energy 

efficient, it offers many advantages over other separation techniques. The main targets of 

crystallization are to produce crystals with high chemical purity and desired physical 

properties such as size, shape and crystal structure. However, despite the long history and 

widespread application, crystallization is not a well understood phenomena and suffers 

from poor control characteristics. It becomes more complex when multiple crystal forms 

(polymorphs) are produced. Therefore, crystallization process development and its 

control are regarded as challenging. 

1.1.1. Crystal Polymorphism and Its Importance  

Recently, there is a significant interest in crystal polymorphism in pharmaceutical 

industry (Henck et al., 1997; Rouhi, 2003). It is the ability of a molecule to crystallize in 

more than one crystal structure (also referred to as form or polymorph). It is a widespread 

phenomenon among drug molecules and more prevalent when the molecule has binding 

sites for solvent molecules in the crystal lattice leading to pseudopolymorphs or solvates 

(Bingham et al., 2001). Literature values suggest that 51% of the drug substances are 

truly polymorphic (Storey et al., 2004). If solvates are included this value goes up to 

87%. In fact, according to McCrone (1965), polymorphism is not limited to a few but 

exists in every compound and the number of polymorphs known for a given compound is 

proportional to the amount of time and money spent in investigating the molecule. This is 
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well supported by many reports on the discovery of new polymorphs either 

serendipitously (Rubin-Preminger and Bernstein, 2005; Vishweshwar et al., 2005; Day et 

al., 2006; Rafilovich and Bernstein, 2006) or by expansive search e.g. high throughput 

screening (Almarsson et al., 2003; Morissette et al., 2003), using high pressure (Fabbiani 

et al., 2007), using supercritical fluids (Bettini et al., 2009) etc.      

The practical importance of this phenomenon is based on the fact that the different 

solid forms may have different physical and chemical properties including chemical 

reactivity, solubility, stability, mechanical properties etc (Huang and Tong, 2004). The 

differences in surface and mechanical properties can influence the downstream 

processing of drug substances into drug products i.e. filtration, drying, handling in 

powder form, formulation activities etc. On the other hand, differences in thermodynamic 

properties like solubility may have profound effect on the bioavailability1

Hence, characterization of all possible polymorphs and identifying the desired form 

is a crucial step in drug development process. But, even after a thorough search for 

polymorphs, there are many instances where new polymorphs have been discovered later 

in development (

 of the drug by 

affecting its dissolution characteristics. This is critical particularly for low solubility 

compounds and any variations can lead to severe effects in patients. Another 

consideration is the physical stability of the drug substance which depends on the crystal 

form and unstable forms can spontaneously transform to more stable form over time 

during any stage of the drug manufacturing.   

Chemburkar et al., 2000; Desikan et al., 2005; Prashad et al., 2010). This 

can lead to serious manufacturing issues. Once new polymorphs appear, the previously 

                                                 
1 is a measurement of the extent of a therapeutically active drug that reaches the systemic circulation and is 
available at the site of action 
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known polymorphs may disappear (Dunitz and Bernstein, 1995; Henck et al., 2001) or 

become irreproducible (Bauer et al., 2001). Besides this, the late discovery of new 

polymorphs can also lead to patent litigations (Bernstein, 2002). This unpredictable 

nature of polymorphism clearly demonstrates our lack of understanding in this 

phenomenon. Hence, from both the customers and regulatory agencies point of view, 

such as Food and Drug Administration (FDA), understanding polymorphism to improve 

the control over solid-state of drug substances remains a major theoretical, technological 

and economical issue. 

1.1.2. Crystallization Process Development for a Specific Polymorph 

When a desired polymorph is chosen for drug manufacturing, it is vital to have a 

robust crystallization process which consistently produces that form. To this aim, it is 

essential to understand the factors which govern the polymorph formation and its 

transformation. In crystallization, once the solution enters into the metastable state (non-

equilibrium), the crystallization kinetic pathways will determine which form will 

crystallize and for how long it can survive (Bernstein, 2002). To achieve ultimate control 

over polymorphic crystallization, manipulation of these pathways to direct the process 

towards the desired polymorph is required. Over the last decade, many such strategies 

have been developed (Llinas and Goodman, 2008). Some important ones are using tailor-

made additives to stabilize the desired form (Davey et al., 1997; He et al., 2001), use of 

solvents to promote the nucleation of the desired polymorph (Blagden and Davey, 2003; 

Weissbuch et al., 2005; Kitamura et al., 2006) and control of nucleation using templates 

(Mitchell et al., 2001; Dressler and Mastai, 2007).  However, these methods are system 

specific and requires good understanding in molecular aspects of crystallization where 
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our knowledge is extremely poor and therefore limits the level of process control (Schuth, 

2001; Towler and Taylor, 2007).  

The other approach which has currently been practiced by industry is based on 

Quality by Design (QbD) which is motivated by the new recent initiatives from FDA to 

adopt modern technology to develop more science-based processes (McKenzie et al., 

2006). The underlying premise of QbD is that the quality cannot be tested into products, 

instead it should be built by process design. Bohlin et al. (2009) have discussed the 

concept of QbD, its benefits and application to develop robust crystallization processes 

with several examples. Some potential benefits of developing processes in QbD approach 

are the regulatory flexibility i.e. manufacturers are allowed to make changes to process, 

greater robustness and easy trouble shooting.   

Essentially, QbD involves experimental screening of input and process parameters 

to determine a design space2

Yu, 2008

 (operating region where the crystallization of the desired 

polymorph is guaranteed) and with appropriate controls installed to operate within the 

control space (upper and/or lower limits of operating parameters between which the 

process is controlled) to produce the desired form ( ). To this aim, in situ 

analytical technologies, usually referred to as PATs (process analytical technologies), 

play a crucial role in process characterization, analysis and control (Yu et al., 2004; 

Variankaval et al., 2008). FDA also strongly recommends the liberal use of PAT to assist 

the implementation of QbD. Some of the potential benefits of PATs are: improved 

process understanding (Howard et al., 2009; Chen et al., 2009), faster and focused 

process development (Starbuck et al., 2002; Birch et al., 2005; Desikan et al., 2005; 

                                                 
2 ‘Design space’ is also referred to as “crystallization space” or “occurrence domain” or “polymorphic 
window” 
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Saranteas et al., 2005; Muller et al., 2006; Zhou et al., 2009), online assessment of 

polymorphic quality (Ono et al., 2004; Scholl et al., 2006; Caillet et al., 2007; Borissova 

et al., 2009; Klimakow et al., 2010) and implementation of advanced control strategies 

(Abu Bakar et al., 2009; Kee et al., 2009a; Kee et al., 2009b).  

However, recent reviews on applications of PATs in crystallization suggest that 

there still exists a significant gap between research and industrial PAT implementations 

(Yu et al., 2004; Fevotte, 2007; Wu et al., 2007; Yu et al., 2007). Technology, system 

reliability and the necessity for chemometric calibration exercise limiting its progression 

to industrial environments (Barrett et al., 2010). Therefore, developing and implementing 

PAT to improve the control over industrial crystallization processes is one of the most 

important research topics currently emerging in this area.    

1.2. Research Objectives and Approach 

The main objective of this work is to gain fundamental understanding about various 

aspects of crystal polymorphism and crystallization mechanisms governing the 

polymorph formation and transformation to develop a process to achieve the desired 

polymorph. Tolbutamide (TB), an anti-diabetic drug, was chosen as the model 

compound. The thesis work will comprise the following milestones:  

 Determine the structural origin of polymorphism in TB by elucidating the internal 

arrangement of TB molecule in the crystal lattice of various polymorphs. To 

achieve this, X-ray diffraction experiments were conducted and crystal structures 

were solved. As a complementary technique, spectroscopic measurements were 

also performed.  
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 Establish the relative stabilities of TB polymorphs. To achieve this, thermal 

analysis, solubility measurements and slurry experiments were performed to 

understand the stability relationships between TB polymorphs. Finally, a 

schematic energy- temperature diagram was constructed to elucidate the stability 

domains.  

 Design a robust crystallization process for the isolation of the desired polymorph 

in a QbD paradigm. To achieve this, two PATs, ATR-FTIR and Raman 

spectroscopy were employed. Solubility curves, metastable zone widths and 

polymorph transformation kinetics were characterized. Finally, a crystallization 

design space was derived and a crystallization batch process was successfully 

demonstrated while operating in the design space to achieve the desired 

polymorph. 

1.3. Dissertation Outline  

 Chapter 2 introduces the fundamentals of crystal polymorphism, polymorph 

characterization techniques and crystallization aspects of polymorphs.  

 Chapter 3 introduces the model system (Tolbutamide) and its related previous work 

and describes the experimental techniques used for the characterization of crystal 

polymorphism of this system. 

 Chapter 4 reports the results on structural and thermodynamic features of TB 

polymorphs. Three new crystal structures of TB were solved and the thermodynamics 

were detailed in the form of an energy-temperature diagram. By reporting these results, 

several discrepancies in the published data on the structural and thermodynamic aspects 
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of polymorphs of this API have been resolved. It has also been highlighted the influence 

of anisotropic thermal motion of TB molecule on PXRD patterns of TB polymorphs. 

 Chapter 5 introduces PAT and QbD based crystallization process development and 

describes crystallization PATs used in the present work. Two novel chemometric 

methods which have been coupled with PATs were also introduced. The experimental 

setup, instrumentation and experimental methods used were outlined. 

 Chapter 6 reports the results on crystallization process development for the 

isolation of the desired polymorph of TB. Results obtained on crystallization 

characterization studies including solubility curves, transformation kinetics and 

metastable zone width were presented and discussed. Based on these results, a 

crystallization design space was derived and a crystallization batch was demonstrated 

while operating in the design space. This chapter also demonstrates the application of two 

PAT tools, ATR-FTIR combined with OPLS (PCA) and Raman combined with MSPM, 

in crystallization processes.      

 Chapter 7 gives a summary of the significant outcomes of this study together with 

the scope for future work. 
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CHAPTER 2 
 

Crystallization and Polymorphism 
 
 
2.1. Introduction  
 

Crystallization is a molecular assembly process by which a group of random 

molecules in a fluid come together to form an ordered structure which we call a crystal. 

As an esteemed purification technique, crystallization relies on the stringent structural 

requirement of the growing crystal which only accommodate similar molecular segments 

to exclude impurities. However, the internal structure adopted by the crystal is an 

important property which must be carefully controlled to achieve a desired product 

quality. A holistic understanding of crystallization mechanisms, influence of operating 

conditions and their relation with structural outcome is, therefore, a prerequisite for the 

design and development of a robust crystallization process for the consistent production 

of the desired crystal form. This chapter mainly aims at introducing fundamentals of 

crystal polymorphism, polymorph characterization and crystallization aspects of 

polymorphic compounds.  

2.2. Structural Aspects of Polymorphism 

Polymorphism (Greek: poly = many, morph = form) is the ability of a substance 

to exist as two or more crystalline phases that have different arrangements and/or 

conformations of the molecules in the crystal lattice (Grant, 1999). Mitscherlich (1820) is 

the first to discover this phenomenon in relation to inorganic materials. Wohler and 

Liebig (1832) discovered the first example of polymorphism in organic material, 

benzamide. Subsequently, Ostwald (1897) concluded that almost every substance could 

exist in two or more solid phases provided the experimental conditions are suitable. The 
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development of solid state chemistry during the twentieth century has confirmed and 

exemplified this statement and a large number of polymorphic compounds have been 

noted and catalogued (Kuhnert-Brandstatter, 1971; Borka and Haleblian, 1990; Borka, 

1991).  

2.2.1. Crystalline State: Fundamentals 

A crystal is a highly ordered solid constructed by identical structural units, termed 

unit cells, each of which contains all the structural features and symmetry elements and is 

repeated regularly in three-dimensional space. The dimensions of the unit cell are 

characterized by six quantities; three axial lengths (𝑎, 𝑏, 𝑐) and three interaxial angles 

(𝛼,𝛽, 𝛾). Each unit cell can be classified by one of the seven three-dimensional 

coordinate systems, which are the seven primitive crystal systems.  

The internal symmetry of the unit cell (lattice) is expressed by crystallographers 

as a space group which is a combination of symmetry operations (14 Bravais lattices and 

32 point groups) that enables a complete crystal structure to be generated from a single 

(or group of) molecule(s) called asymmetric unit (𝑍′). There are 230 space groups which 

describe all the possible ways in which identical objects can be packed in an infinite 

lattice. However, only certain space groups are seen frequently, whereas others have 

never been found in crystals. According to cambridge structural database (CSD), ~76% 

of all organic and organometallic compounds crystallize in only five space groups – 

P21/c, P212121, P1�, P21, and C2/c. 

2.2.2. Structural Origin of Polymorphism 

As polymorphs are the different crystal structures adopted by a given molecule, 

they possess different unit cell dimensions, lattice parameters, molecular conformation 
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etc. However, these differences can vary from subtle to huge depending upon the 

structural origin of polymorphism. Structural differences between the polymorphs 

originate through two mechanisms, namely, packing polymorphism and conformational 

polymorphism. Packing polymorphism is a mechanism by which molecules that are 

conformationally relatively rigid can be packed into different three-dimensional 

structures, e.g. p-nitrophenol (Kulkarni et al., 1998) and sulfathiazole (Blagden et al., 

1998). Conformational polymorphism is a mechanism by which conformationally 

flexible molecules can fold into different shapes that can pack into different crystal 

structures, e.g. anti-viral agent virazole (Prusiner and Sundaralingam, 1976). 

In general, the differences in packing arrangements invariably affect the 

molecular geometry and, conversely, the differences in molecular geometry cause the 

molecules to pack differently. As a result, most examples of polymorphism in organic 

crystals have a mixed origin and exhibit differences in both the conformation and packing 

arrangement of the constituent molecules, e.g. ROY (Yu et al., 2000), ritonavir (Bauer et 

al., 2001). 

2.3. Thermodynamics of Polymorphs  
 

In crystalline solids, because of the long range order, the molecules sit together 

more tightly and pack more efficiently thereby greatly reduce their intermolecular 

distances and occupy the lowest energy level on the potential energy curve (Grant, 1999). 

Thermodynamically, polymorphs can be described as energetically closely spaced 

minima on the potential energy curve. The differences in energy between the polymorphs 

arise from the variations in non-covalent interactions between the constituent molecules 

in the crystal lattice, such as hydrogen bonds, van der Waals forces, electrostatic 
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interactions etc. The polymorph with the lowest energy is the thermodynamically most 

stable form and polymorph with the higher energy will sooner or later convert to the most 

stable form. Kinetically, however, the conversion rate is variable and depends on many 

factors such as activation energy, impurities etc (Giron, 2005; Cui, 2007). 

2.3.1. Polymorphic Transformations 
 

Based on the structural criteria, Buerger (1951) has classified the phase 

transformations in solids into two types. If the two structures involved in the 

transformation are largely different, the transition may proceed via a reconstructive 

mechanism, i.e. disintegration of the unstable form and reconstruction of the new stable 

form.  This type of transformation requires higher activation energy and therefore would 

proceed in a sluggish fashion. Presence of solvent (solvent mediated transformation) or 

melt (melt mediated transformation) can facilitate the transformation by acting as a 

catalyst (Sato, 1993).  

On the other hand, if the two structures are similar, the transition may proceed via 

a displacive mechanism, i.e. molecules of the unstable structure are displaced to yield the 

new structure in such a way that the nearest neighbor interactions are preserved and only 

the second neighbors will change. Such transitions require low activation energy and 

therefore would proceed very rapidly as equivalent as the transmission of heat (Dunitz, 

1995). 

2.3.2. Thermodynamic Relationships 
 

Application of Gibbs phase rule to a polymorphic system derives that at constant 

pressure, two polymorphic forms can coexist in equilibrium only at one temperature, 

termed transition temperature (𝑇𝑡). In other words, the free energy (𝐺) of the two 
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polymorphs becomes equal at this temperature. Consequently, polymorphic systems can 

be divided into two categories – monotropic and enantiotropic. These relationships are 

illustrated in Fig. 2.1, where two polymorphs, Forms I and II are exemplified. 

 
Figure 2.1 Gibbs energy profiles of dimorphic systems (a) and (b) enantiotropic, and (c) 

monotropic. (𝑇𝑓𝑢𝑠𝐼 and 𝑇𝑓𝑢𝑠𝐼𝐼 are the melting temperatures of Forms I and II respectively). 

 
Fig. 2.1(a) and (b) show the enantiotropic case in which 𝑇𝑡 lies below the melting 

point of the lower melting polymorph. Therefore, the stability order reverses below and 

above 𝑇𝑡. However, this does not necessarily mean that the phase transformation to a 

more stable form is also reversible at 𝑇𝑡. As a result, enantiotropic systems are further 

divided into two types – kinetically irreversible and kinetically reversible. In kinetically 

irreversible systems, the transformation (reconstructive type) is kinetically hindered until 

it gains sufficient thermal energy to cross the energy barrier. The temperature at which 

transformation occurs is normally referred to as the experimental or kinetic transition 

temperature. In such case, both forms are experimentally accessible below and above 𝑇𝑡. 

On the other hand, in kinetically reversible systems, a reversible solid phase 

transformation (displacive type) occurs at 𝑇𝑡  and both forms are mutually exclusive. As a 

result, only the more stable forms are experimentally accessible at all the temperatures. In 
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Fig. 2.1b, the dotted line represents the virtual states of Forms I and II that cannot be 

obtained experimentally.  

In monotropic systems (Fig. 2.1c), 𝑇𝑡 lies above the melting points of the 

polymorphs and no change in the stability order with respect to temperature i.e. 𝐺𝐼𝐼 < 𝐺𝐼 

at all temperatures. However, a phase transformation still may occur from the less stable 

to the more stable polymorph at any temperature. 

2.3.3. Energy-Temperature Diagrams  
 

Energy-temperature (E-T) diagrams were first introduced in crystallography by 

Buerger (1951) and subsequently, Burger and Ramberger (1979) and Grunenberg et al. 

(1996) further developed these diagrams to extend the applications to polymorphic 

systems. They are often used to present the relative stabilities of polymorphs and phase 

transformations in a compact form and provide a graphical solution to derive 

thermodynamic relationships. Threlfall (2009) has recently provided a comprehensive 

guide on experimental work and methodology involved in constructing these diagrams.   

Typical E-T diagrams for a dimorphic system, Forms I and II, are shown in Fig. 2.2, 

for both enantiotropic and monotropic systems. They are semi schematic diagrams 

showing the relative positions and points of intersection of enthalpy (𝐻) and free energy 

(𝐺) curves of polymorphs at constant pressure, against temperature (𝑇) ranging from 

absolute zero to melting temperature (𝑇𝑓𝑢𝑠). Two additional isobars, the 𝐻𝐿𝐼𝑄 and 𝐺𝐿𝐼𝑄 

curves are also shown to represent the enthalpy and free energy of liquid. The theoretical 

foundation for the construction of these diagrams is based on three important 

observations related to a crystalline solid: 
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Figure 2.2 Schematic Energy-Temperature diagrams for a dimorphic system Forms I and II (a) 

monotropy and (b) enantiotropy. 𝑇𝑓𝑢𝑠 : Melting temperature, 𝑇𝑡 : Transition temperature, 𝐻 : 

Enthalpy, 𝐺 : Free energy, ∆𝑓𝑢𝑠𝐻 : Enthalpy of fusion, ∆𝐻 : Enthalpy of transition, LIQ : Liquid. 

 

 The molar heat capacity (𝐶𝑝) increases with increase in temperature and defines a 

positive slope for the 𝐻 isobar. 

 Based on third law of thermodynamics, entropy (𝑆) is shown as increasing with 

temperature starting from zero at absolute zero. This fixes as 𝐺 = 𝐻 at absolute 

zero. 

 As a result of first and second laws of thermodynamics, the 𝐺 isobar is shown as 

decreasing with increasing temperature. 

To predict the thermodynamic relations between the polymorphs, several empirical 

rules have been developed and popularly known as Burger and Ramberger’s rules 

(Burger and Ramberger, 1979). Three important rules which proved useful are: 

Heat of Transition Rule. This rule states that if the phase transformation observed at the 

kinetic transition temperature is endothermic, then the 𝑇𝑡 lies below this temperature and 
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we can conclude that the two polymorphs are enantiotropically related. If it is 

exothermic, then there is no 𝑇𝑡 below this temperature. This can occur either when the 

two polymorphs are monotropically related or when the two polymorphs are 

enantiotropically related with 𝑇𝑡 lying above the kinetic transition temperature. This rule 

makes correct predictions in 99% of cases (Lohani and Grant, 2006).   

Heat of Fusion Rule. This rule states that if the higher melting polymorph has the lower 

heat of fusion, then the two polymorphs are enantiotropic, otherwise they are monotropic. 

Often, phase transformations are too slow to be observed before melting and in such 

cases, heat of fusion rule may be applied. This rule is based on the assumption that the 

heat of transition can be approximated by the difference between the heats of fusion of 

the polymorphs (Hess’s law of heat summation3

Giron, 1995

). Exceptions to this rule may arise when 

the enthalpy curves of the two polymorphs diverge significantly, or when the difference 

between the melting points of the two polymorphs is larger than ~30 K ( ). 

Density Rule. This rule states that if a polymorph has highest density than others at room 

temperature, then it may be assumed that at absolute zero this form is the most stable. 

This rule assumes that most stable form has closest packing i.e. shorter intermolecular 

distances, thus lowest free energy. However, in some cases, directional hydrogen bonds 

dominate and stabilize the polymorph with lower density (Robertson and Ubbelohde, 

1938; Haisa et al., 1974).  

To construct the E-T diagrams for a compound which crystallizes in 𝑛 

polymorphs, 2𝑛 parameters are needed. These include the melting temperatures (𝑇𝑓𝑢𝑠) 

and heat of fusions (∆𝑓𝑢𝑠𝐻) of all the polymorphs. Melting temperatures fix the stability 

                                                 
3 Hess’s law of heat summation: the enthalpy change accompanying a transformation is the same whether 
the process occurs in one or many steps and total enthalpy change is the summation of all steps. 
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order of polymorphs at higher temperatures whereas the fusion data fix the stability order 

at absolute zero. The melting points and fusion data are usually measured calorimetrically 

(refer to section 2.5.3).  

2.3.4. Determination of Transition Temperature  

There are several methods currently available to experimentally determine or 

estimate the transition temperature (𝑇𝑡) (Higuchi et al., 1963; Yu, 1995; Gu and Grant, 

2001; Hu et al., 2007). The most commonly used method is the measurement of 

solubilities of the polymorphs (solubility extrapolation method). This method is based on 

the fundamental relationship between solubility and free energy of the polymorph.  

Solubility expresses the maximum amount of material that can be dissolved in a 

known amount of solvent at a given temperature and pressure (Bennema et al., 2008). 

Thermodynamically, this corresponds to the balance of free energy (𝐺) of solid phase 

against that of the solute in the solution phase. Therefore, at solid-liquid equilibrium, 

                                 𝐺𝑠𝑜𝑙𝑖𝑑 = 𝐺𝑠𝑜𝑙𝑢𝑡𝑒 = 𝐺0 + 𝑅𝑇𝑙𝑛 (𝑎𝑠𝑜𝑙𝑢𝑡𝑒)                                              (2.2) 

where 𝐺0 is the free energy of pure substance, 𝑅 the gas constant and 𝑎𝑠𝑜𝑙𝑢𝑡𝑒 the solute 

activity. With 𝑎𝑠𝑜𝑙𝑢𝑡𝑒 = 𝛾𝑠𝑜𝑙𝑢𝑡𝑒𝐶𝑒𝑞, with 𝛾𝑠𝑜𝑙𝑢𝑡𝑒 being the activity coefficient of solute 

and 𝐶𝑒𝑞 the solubility, Eq. 2.2 can be rewritten as: 

                                 𝐺𝑠𝑜𝑙𝑖𝑑 = 𝐺𝑠𝑜𝑙𝑢𝑡𝑒 = 𝐺0 + 𝑅𝑇𝑙𝑛 (𝛾𝑠𝑜𝑙𝑢𝑡𝑒𝐶𝑒𝑞)                                       (2.3) 

This important result shows that the free energy curve of solids can be followed by 

measuring the solubilities at different temperatures. Thus, transition temperature can be 

accurately located at which solubilities of two polymorphs crossover each other. For 

practical purposes, vant Hoff’s plots i.e. 𝑙𝑛(𝐶𝑒𝑞) versus (1/𝑇) are used. The solubility 
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curve is then linearized and can be interpolated and extrapolated (Beiny and Mullin, 

1987). 

2.4. Polymorph Screening - the Search for Polymorphs 

The search for polymorphs of a given compound can be dealt with two different 

approaches; experimental and computational (Guillory, 1997; Hilfiker et al., 2006).  

Experimental approach mainly depends on the primary nucleation kinetics of the solid 

phase (Aaltonen et al., 2009; Mangin et al., 2009). Primary nucleation mainly depends on 

three parameters; solvent (which determines the interfacial energy γ  between nucleus and 

solution), supersaturation (𝜎) and temperature (for more details, refer to section 2.7.2). 

Therefore, the strategy is to vary these parameters to cover a large range of experimental 

space to explore polymorphism.  

The most commonly used experimental techniques are crystallization from 

solution (cooling, evaporation, anti-solvent and slurry conversion) and crystallization 

from neat compound (melt crystallization, sublimation and thermal treatment). For 

solvent based methods, the selection of right set of solvents is important. Ideally, solvents 

as diverse as possible in properties including polarity, hydrogen bond acceptor/donor 

propensity, dielectric constant etc. should be selected. In this regard, some recent work on 

solvent diversity can greatly facilitate rational and rapid selection of solvents (Gu et al., 

2004; Alleso et al., 2008). To accelerate the screening process, high-throughput (HT) 

methods which utilizes an automated robotic system capable of performing thousands of 

crystallizations has been developed (Morissette et al., 2004; Alvarez et al., 2009). Such 

new technologies not only accelerate screening but also provide more insights into the 

relationships between crystallization outputs and inputs (McCabe, 2010). 



Chapter 2                                                                        Crystallization and Polymorphism 
 

 18 

Computational approach is based on molecular modeling and global optimization 

techniques which energetically evaluate all possible packing arrangements of a given 

molecule in all reasonable space groups with all possible conformations (Lewis et al., 

2003; Gavezzotti, 2005; Young and Ando, 2007). The resulting crystal structures of low 

lattice energy are regarded as the potential polymorphs. This approach has been able to 

generate the previously known polymorphs of molecules such as progesterone (Payne et 

al., 1999). However, computational methods generally overestimate the propensity of 

polymorphism and outputs too many structures in which many are never observed 

(Davey, 2003; Price, 2008). Further reduction in predicted structures requires inclusion of 

kinetic effects as well as more accurate thermodynamic models (Price, 2004; Price, 

2008). Nevertheless, analysis of predicted structures provides useful information such as 

common hydrogen bonding motifs etc. which can be used in designing experimental 

strategies to crystallize specific predicted packing motifs (Cross et al., 2003; Florence et 

al., 2006; Hulme et al., 2007).  

2.5. Polymorph Characterization Techniques 
 

Solid-state characterization is a crucial step in drug development to understand 

the solid-state properties to provide the drug in a solid form that has optimum 

performance in various stages of drug manufacturing. It also renders useful information 

in devising methods for analysis and control of the desired form (Byrn et al., 1994; 

Newman and Byrn, 2003). Several analytical techniques are commonly used for 

polymorph characterization. A brief discussion of some commonly used methods is 

presented here. 
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2.5.1. X-ray Crystallography 

X-ray crystallographic techniques are concerned with the structural aspects of 

polymorphs and provide the clearest indication of the existence of polymorphism. These 

techniques are based on the remarkable discovery made by Laue (1912) that crystals can 

diffract X-rays. However, Bragg (1913) was the first to exploit this finding to deduce a 

simple relationship, now known as the Bragg’s law― 𝑛𝜆 = 2𝑑 sin𝜃  in which 𝑑 is the 

distance between the crystal planes, 𝜃 is the angle of diffraction of the X-rays, 𝜆 is the 

wavelength of X-rays and 𝑛 is an integer. When Bragg’s law is satisfied at a crystal 

plane, X-rays are reflected from the plane and the intensity of the radiation is maximized. 

With a single crystal brought into all orientations with respect to the X-ray beam, a 

unique set of Bragg’s reflections representing the internal structure can be obtained. 

Together with 2𝜃 positions of diffraction maxima and their vector parameters (magnitude 

and phase) in the lattice space, the complete crystal structure which includes the unit cell, 

lattice parameters and positions of all the atoms in the crystal lattice can be determined 

(Glusker et al., 1994). 

 These techniques can be performed with either single crystal or crystalline powder. 

Single crystal X-ray diffractometry (SCXRD) gives the most precise structural 

information for polymorphs and provides greatest understanding related to molecular 

conformation, packing differences and hydrogen bonding pattern etc. However, the 

stringent requirement of high quality single crystals of suitable size (0.05–0.1mm) and 

longer data processing time (1–2 days) preclude it from being used on a routine basis for 

characterization (Datta and Grant, 2004). Special procedures are often required to prepare 
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satisfactory crystals such as slow cooling, solvent diffusion, vapor diffusion, seeding etc 

(Etter et al., 1986; Etter and Baures, 1988; Vandersluis and Kroon, 1989).  

Powder X-ray diffractometry (PXRD) is the other and the most utilized technique 

for the study of polycrystalline materials. It is fast, flexible and well suited for the routine 

characterization of polymorphs. In principle, it captures the same information as obtained 

by SCXRD, but with three dimensional data compressed into one dimension, thus 

yielding a unique powder pattern for each polymorph (Brittain, 1999). Moreover, recent 

advances in this field have made possible, although challenging, complete structural 

solution from the powder pattern (refer to section 2.6).  

One common problem with PXRD is the preferred orientation effects from 

crystals which are non-isometric such as plates, needles etc. These may result in 

inconsistent patterns which are difficult to interpret (Pecharsky and Zavalij, 2003). 

Grinding may significantly improve the results, but this is risky as applying energy may 

induce polymorphic transformation.      

2.5.2. Solid-State Spectroscopy 

Solid-state spectroscopy is another category of techniques complementary to 

diffraction techniques. Infrared (IR), Raman and solid-state nuclear magnetic resonance 

(SS-NMR) are the most prominent in this category. The basic principles and applications 

of spectroscopy in crystal polymorphism are summarized in a number of reviews 

(Threlfall, 1995; Brittain, 1997; Bugay, 2001). Typically, the purpose of spectroscopic 

investigation in polymorphic systems is to gather information about the underlying 

structural aspects that give rise to the observed crystallographic differences. This analysis 
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is particularly useful when crystallographic data is not available (Brittain et al., 1993; 

Raghavan et al., 1993; Raghavan et al., 1994).  

IR and Raman Spectroscopy. IR and Raman are based on transitions between molecular 

vibrational states upon interaction with electromagnetic radiation (Chalmers and Dent, 

2006). In IR spectroscopy, radiation passing through the sample is selectively absorbed 

by molecular vibrations of the same frequency as incident radiation to transit to a higher 

vibrational state. In Raman spectroscopy, a high energy monochromatic radiation (laser) 

is incident upon a sample to affect the electron cloud of a molecular bond and makes it to 

oscillate from its equilibrium position to an unstable excited state and back. For a small 

portion of incident light, inelastic relaxation occurs; the electron relaxes to a higher or 

lower level than what it started from, leading to stokes or anti-stokes scattering with 

energy displacements (Raman shift) corresponding to the molecular vibrational transition 

frequencies. 

While in IR and Raman spectrum, the band position i.e. absorption frequency in 

IR and wavenumber shift  (∆ cm-1) in Raman depends on the molecular vibrational 

frequency, the intensity depends on how effectively the photon energy is transferred to 

the molecule (Colthup et al., 1990). The mechanism by which photon energy transfers 

differs in both techniques; in IR, it is associated with a change in dipole moment where as 

in Raman, it is associated with a change in polarizability. As a result, these two 

techniques complement one another and IR inactive vibrations can be strong in Raman 

spectra and vice versa.   

When applied to polymorphic systems, Raman has some important advantages 

over IR (Findlay and Bugay, 1998; Vankeirsbilck et al., 2002). (1) Raman spectra are 
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collected readily in the 40–400 cm-1 spectral region (typically unavailable on an IR 

spectrometer) where crystal lattice vibrations occur (Carteret et al., 2009). (2) No sample 

preparation is required (3) Glass is transparent to excitation and emitted radiation and 

gives no interfering bands therefore, spectra can be obtained without removing the 

sample from the specimen tube (Threlfall, 1995). (3) Insensitive to moisture effects 

owing to the weak scattering nature of water and hence much easier to study aqueous 

based systems.  

However, a major problem with Raman measurements is the fluorescence 

(intrinsic or caused by impurities) of the sample which masks the Raman bands. 

However, in most cases, this can be avoided by increasing the laser wavelength at the 

expense of loss in signal intensity (Romero-Torres et al., 2009).  

SS-NMR spectroscopy. SS-NMR is based on the differences in energy absorption by the 

observed nuclei in a magnetic field (Bugay, 1993). Most SS-NMR spectra of 

pharmaceutical solids are acquired using cross polarization with magic-angle spinning 

(CP-MAS), most often with 13C nuclei detections (Tishmack et al., 2003; Geppi et al., 

2008). CP-MAS is a double resonance technique with cross polarization (CP) facilitating 

magnetization transfer from abundant nuclei (usually 1H) to dilute nuclei (e.g. 13C, 15N). 

1H to 13C CP results in a four-fold increase in the sensitivity of 13C nuclei and reduction 

in relaxation delay between successive pulse sequences (Brittain, 1997). Magic-angle 

spinning (MAS) serves to reduce or eliminate the inhomogeneous broadening effects of 

chemical shift anisotropy (CSA), such that only the isotropic chemical shift is observed. 

These two techniques, coupled with high power 1H decoupling can enable acquisition of 

SS-NMR spectra that approach the resolution attainable in solution NMR experiments. 
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  SS-NMR is well-suited for the study of polymorphism because small changes in 

conformation and/or local electronic structure can cause analogous nuclei to resonate at 

different frequencies and observable differences in chemical shift (Apperley et al., 1999; 

Harris, 2006). When compared to IR and Raman, it can provide some ‘extra’ information 

on crystallographic aspects such as number of molecules in the asymmetric unit in a unit 

cell (Doherty and York, 1988; Harris et al., 1997), molecular dynamics and short-range 

order (Gao, 1998; Masuda et al., 2006). In fact, NMR-crystallography is a growing 

subject area which focuses on the complete crystal structure solution from SS-NMR data 

alone (Harris, 2004; Brouwer et al., 2005).  

2.5.3. Thermal Techniques 

Thermal techniques are those in which a property of the analyte is determined as a 

function of an externally applied temperature. In the context of polymorphism, they play 

a crucial role in elucidating the energetic aspects of polymorphs including 

thermodynamic relationships, E-T diagrams etc. Applications of thermal techniques in 

solid-state characterization are extensively reviewed in the literature (Barnes et al., 1993; 

Giron, 1995; Giron, 2002; Giron et al., 2004; Craig, 2006).  

Under this category, the most widely used technique is differential scanning 

calorimetry (DSC). Conceptually, DSC measures the change in enthalpy of the analyte 

(the heat differential between the sample and a reference) as a function of temperature. 

Intrinsically, the measured quantity is the heat capacity (𝑑𝐻 𝑑𝑇� ) and as the analyte 

undergoes any thermal event, the total heat capacity of the system changes due to the 

latent heat associated with it. The commonly observed thermal events in a DSC 

thermogram are melting (endotherm), crystallization (exotherm), phase transition 
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(endotherm or exotherm) and glass transition (change of heat capacity without either 

absorption or emission of heat) etc. The area under the curve for a thermal event will be 

proportional to the energy involved in the process; hence, by suitable calibration with 

standards, properties like heat of fusion and heat of transition can be quantitatively 

determined (Clas et al., 1999). 

In addition to DSC, there are a few other thermal methods which have been 

proven useful for the study of polymorphism. Thermogravimetry (TG) measures the 

change in mass of the analyte upon heating a sample is useful in the study of 

pseudopolymorphs (Giron, 1995). Solution calorimetry which measures the heat of 

solution as the solid dissolves in an excess of solvent is an elegant method for detecting 

and characterizing polymorphic transitions (Canotilho et al., 1997; Royall and Gaisford, 

2005). High-speed DSC which gives the flexibility of using high heating rates was 

proven useful in studying metastable forms (McGregor and Bines, 2008). 

Thermal methods are often combined with X-ray diffraction or spectroscopic 

techniques to get deeper insight into the physical and chemical processes which occur 

upon heating. Variable temperature X-ray diffractometry (VT-XRD) is the commonly 

used technique in which controlled environment allows the study of polymorphic 

transformations as a function of temperature (Asnani et al., 2009). TG-mass spectroscopy 

(TG-MS) and TG-IR are the two combined techniques also proved useful in the study of 

pseudopolymorphs to identify the volatile compound (Materazzi and Curini, 2001; 

Materazzi and Curini, 2001). 
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2.5.4. Microscopy 

Microscopic techniques are preliminary tools which can be used to identify 

crystal forms based on the differences in morphological and optical properties 

(birefringence, indices of refraction, dispersion colour etc.). They are divided into two 

types; light microscopy (LM) that probe features on the order of a micron or larger and 

electron microscopy (EM) that study materials at sub-micron level.  

LM combined with fusion methods (hot stage microscopy (HSM)) is a powerful 

technique in which a sample is heated or cooled to observe any physical or chemical 

change e.g. melting, crystallization, polymorphic transformation, desolvation etc. 

Kuhnert-Brandstatter and his co-authors used HSM alone in his extensive search for new 

polymorphs/solvates of pharmaceutical compounds and to determine their stability 

relationships (Kuhnert-Brandstatter, 1971). LM can also be interfaced with spectroscopy, 

for example, hot stage IR microscopy, has been used to characterize polymorphic purity 

and conversions (Giron, 2002). 

Under EM, two important techniques are scanning electron microscopy (SEM) 

and atomic force microscopy (AFM). In polymorphism research, SEM is commonly used 

to obtain high resolution images of crystals to characterize the habit and surface features 

etc (Borka, 1991). AFM has been used mainly to study the crystal growth mechanisms 

(Bauer et al., 2001).  

2.6. Crystal Structure Solution from Powder X-ray Diffraction Data  
 

The ab initio crystal structure determination of molecular materials from PXRD 

data is a rapidly expanding field, and has grown substantially in the last ten years (Harris 
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et al., 2002). This section highlights some of the difficulties associated with structure 

solution method and recent advances in this field to overcome them.     

2.6.1. Why are Powders more difficult than Single Crystals?  

As mentioned before, in the case of powders, the diffraction data is compressed 

into one dimension. As a consequence, the Bragg’s reflections from different crystal 

planes are averaged over directions and there is a considerable overlap of peaks in PXRD 

pattern. This obscures the information on intensities of individual diffraction maxima 

which are required for the construction of the underlying crystal structure (Harris et al., 

2001). Moreover, space group determination using powders is more ambiguous because 

the regions in the pattern, which should be free of peaks because of systematic absences, 

are often overlaid with peaks of other reflections (Datta and Grant, 2004). In addition to 

these, a more general problem is the preferred orientation of crystals which can affect the 

relative intensities of peaks and hinders the correct solution of the pattern. 

2.6.2. Powder Indexing – the Crucial Step  

Two key steps in structure solution from diffraction data are indexing and 

structure solution. Indexing involves the determination of unit cell parameters and space 

group by analyzing the peak positions in the powder pattern. Structure solution focuses 

on the determination of atomic co-ordinates from the peak intensities. Clearly, if the 

correct unit cell is found at the indexing stage, it is possible to proceed further to solve 

the structure. The three indexing programs most commonly in use are ITO (Visser, 1969), 

TREOR (Werner et al., 1985) and DICVOL (Boultif and Louer, 1991) which typically 

require the first 20–25 well resolved peaks. Using this input, a number of possible 

solutions are generated and ranked according to their figure of merit (Jenkins and 
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Gilfrich, 1992). However, the existing algorithms frequently fail due to the occurrence of 

peak overlap and the correct unit cell is difficult to distinguish from the large number of 

incorrect solutions with similar figures of merit.   

2.6.3. Recent Advances  

Despite these difficulties, significant progress has been made in this area mainly 

due to the advances in diffraction instrumentation and computational power. On the 

instrumental side, improvements in resolution, particularly with synchrotron X-ray 

sources, have lead to dramatic reductions in peak overlap and allowed highly accurate 

measurements of peak positions and intensities (Hastings et al., 1984; Cheetham and 

Wilkinson, 1991). This has given the opportunity to use single crystal structure solution 

techniques (e.g. direct methods or Patterson methods) to powder diffraction data 

(Altomare et al., 2004) and much success has been reported. However, these techniques 

which are referred to as traditional methods have certain intrinsic limitations. The 

extraction of accurate intensities from PXRD pattern, which is a crucial requirement for 

success of this approach, is not always possible and limits the complexity of structures 

that can be solved by traditional methods (Knudsen et al., 1998).  

Because of the above limitation, much recent interest has focused on the 

development of new methods for solving crystal structures from PXRD data. Direct 

space approach is such a method which is based on global optimization methods (Harris 

et al., 1994). In this approach, instead of extracting the intensity data from PXRD pattern, 

the molecular fragments within the unit cell are directly manipulated to vary the position, 

orientation and conformation to generate trial structures independent of the experimental 

PXRD data. The suitability of each trial structure is assessed by direct comparison 
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between the PXRD pattern calculated for the trial structure and the experimental PXRD 

pattern. This comparison is quantified via a least-squares fit parameter Rwp, known as 

weighted powder profile R-factor. This process is equivalent to exploring a hyper surface 

Rwp(Г) to find the global minimum, where Г represents the set of variables that define 

the structure (structural degrees of freedom). A number of different optimization 

algorithms have been applied as part of direct space strategy including Monte Carlo 

simulated annealing (MC/SA), genetic algorithm techniques etc. 

On the other hand, with the emergence of direct space strategies and scoring high 

success in obtaining crystal structures from PXRD pattern, powder indexing has emerged 

as a new important bottleneck. Improved versions of the existing algorithms such as X-

cell (Neumann, 2003), N-TREOR (Altomare et al., 2000) were developed to address 

various issues typically encountered in indexing such as  contamination, strong peak 

overlap, zero-point shift etc. Kariuki et al. (1999) described a new approach aiming at 

indexing PXRD data by using a whole profile fitting technique and a global optimization 

method based on genetic algorithm.  

Recently, Harris and Cheung (2004) have provided a tutorial review on 

methodology for structure determination from PXRD pattern using direct space strategies 

with many examples ranging from simple to complex molecules. Stephenson (2000) has 

examined the application of this method to solve structures of true/pseudo polymorphs of 

pharmaceutical molecules and highlighted the role of complementary spectroscopic 

techniques in assessing the correct solution. 
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2.7. Crystallization Fundamentals 

Essentially, crystallization is a kinetic process occurs in a boundary fixed by 

thermodynamics. In crystallization of polymorphs, each crystal form is associated with a 

different kinetic path and a thermodynamic boundary. To achieve ultimate control over 

polymorphic crystallization, it is essential to understand the factors which govern the 

kinetics and thermodynamics of polymorphs.    

Supersaturation. Supersaturation (𝜎), a dimensionless parameter, is commonly used to 

quantify the thermodynamic driving force for crystallization. The generic definition of 

supersaturation is, the difference of chemical potential of a molecule in its supersaturated 

state (𝜇𝑠𝑠), and in its equilibrium state (𝜇𝑒𝑞). In terms of measurable quantities, 

supersaturation can be defined using solute activity (𝑎𝑠𝑜𝑙𝑢𝑡𝑒) or concentration (𝐶) as 

(Davey and Garside, 2000): 

ln𝜎 = (𝜇𝑠𝑠 − 𝜇𝑒𝑞)
𝑘𝑇� = 𝑙𝑛 �

𝑎𝑠𝑜𝑙𝑢𝑡𝑒𝑠𝑠

𝑎𝑠𝑜𝑙𝑢𝑡𝑒
𝑒𝑞 � ≈ 𝑙𝑛 �

𝐶𝑠𝑠

𝐶𝑒𝑞
�                                            (2.2) 

If 𝜎 < 1, the solution is undersaturated and the existing crystals will dissolve; if 

𝜎 > 1, the solution is supersaturated and crystals can nucleate and grow; and if 𝜎 = 1, 

the solution is at equilibrium. Supersaturation can be achieved in several ways – for 

example cooling a solution, or by solvent evaporation, or by addition of an anti-solvent 

etc. 

Nucleation. The formation of crystals in a supersaturated solution begins with 

‘nucleation’ which is a kinetic process of molecular aggregation and formation of 

nanoscopically small molecular clusters of the new crystalline phase (Kashchiev and van 

Rosmalen, 2003). Nucleation can be either primary, which occurs in the absence of 

crystalline surfaces, or secondary, which requires the presence of a crystal surface for 
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further generation of crystal nuclei. Primary nucleation can be divided into two types; 

primary homogeneous which occurs in the pure bulk solution and primary heterogeneous 

which is catalyzed by surface or interface of different composition than the crystallizing 

solute. These mechanisms are thoroughly discussed by Mullin (1993) and Zettlemoyer 

(1969).  

 The general behavior of supersaturated solutions is well described by classical 

nucleation theory (CNT) based on the work of Gibbs (1948) and Volmer (1939). This 

theory assumes that the formation of nuclei arises from a sequence of bimolecular 

reactions of solute molecules. The thermodynamic description of this process defines the 

free energy change (∆𝐺) for formation of a nucleus of size 𝑛, as the balance between the 

energy gained by formation of bulk phase (−𝑛𝑘𝑇𝑙𝑛 𝜎) and the energy required to form 

new surface area (γ𝐴𝑐). The equation can be written as: 

𝐺𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = ∆𝐺 = −𝑛𝑘𝑇𝑙𝑛 𝜎 +  γ𝐴𝑐                                           (2.3) 

where γ is the interfacial tension of the cluster-solution interface, 𝑘 is the Boltzmann’s 

constant, and 𝐴𝑐 is the surface area of the cluster. Therefore, as the cluster size increases  

∆𝐺 goes through a maximum at a critical size 𝑛∗, above which the ∆𝐺 decreases 

continuously and growth becomes energetically favorable, resulting in the formation of 

crystal nuclei. Assuming spherical clusters, the homogeneous nucleation rate  𝐽, the 

number of supernuclei (𝑛 > 𝑛∗) generated in the solution of constant supersaturation per unit 

time per unit volume, can be written in an Arrhenius-type expression: 

𝐽 = 𝐴 exp �
−∆𝐺∗

𝑘𝑇
� = 𝑁𝑜𝑣  exp�

−16πυ2γ3

3(𝑘𝑇)3(𝑙𝑛 σ)2�                                     (2.4) 
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where ∆𝐺∗ is the critical free energy change, 𝐴 is the preexponential factor, 𝑁𝑜 is the 

number of solute molecules in a unit volume of solution, 𝑣 is the frequency of atomic or 

molecular transport at the nucleus-liquid interface, and υ is the molecular volume. 

One of the key outcomes of this theory is the concept of kinetic barrier for 

nucleation. Thus, even though 𝜎 > 1 nucleation does not occur unless 𝜎 exceeds certain 

threshold value which is called the metastable zone width (MZW) (the maximum 

allowable supersaturation before solid phase separation occurs). Eq. 2.4 also suggests that 

the nucleation kinetics and the kinetic barrier depend not only on supersaturation 𝜎 but 

also on kinetic parameters such as molecular transport (hidden in preexponential factor 𝐴) 

and solid-liquid interfacial tension etc.  

Crystal Growth. Once the nuclei are formed and exceed the critical size, they become 

crystals which grow around the nuclei as the solute molecules deposit from the 

supersaturated solution. The rate of crystal growth 𝐺𝑐, the incremental mass of solute 

deposited per unit surface area per unit time is generally expressed as the following 

empirical equation (Garside et al., 2002):  

𝐺𝑐 = 𝑘𝑔𝜎𝑔                                                                          (2.5)    

where 𝜎 is the supersaturation, 𝑘𝑔 is an empirical coefficient depending on temperature 

and agitation, 𝑔 is a numerical known as growth rate order. 

 Crystal growth involves two consecutive and independent processes: transport of 

the solute molecules from the bulk of the solution to the surface of the crystal and 

incorporation of the incoming molecules into the crystal lattice. Therefore, crystal growth 

kinetics depends on both external factors (supersaturation, temperature, solvent, 

impurities, and hydrodynamics) and internal factors (structure, crystal defects). The rate 
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limiting step may be one or the other depending on the growth conditions. The crystal 

growth and rate controlling mechanisms are discussed in detail by Nyvlt et al. (1985) and 

Mullin (1993). 

2.8. Polymorphic Crystallization 

Let us consider a monotropically related dimorphic system of Forms I and II. Fig. 

2.3, is a schematic representation of the solubility curves of the two solid phases with 

Form II being less soluble i.e. more stable phase. Let us suppose we prepare a saturated 

solution with respect to Form II which corresponds to point A in Fig. 2.3. When it is 

cooled to point B, the solution becomes supersaturated with respect to both Forms I and 

II, however, crystals will not nucleate because the activation energy for nucleation (∆𝐺) 

is too high. As the process cools further, the supersaturation level increases and ∆𝐺 

decreases and finally reaches the MZW where spontaneous nucleation of crystals occur 

(point C). However, the interesting question here is which polymorph will nucleate at 

point C.  

Ostwald (1897) who systematically studied many polymorphic systems observed 

that a chemical system does not directly tend towards equilibrium but rather towards the 

closest metastable state. Therefore, according to his rule, the metastable Form I is always 

expected to nucleate prior to the more stable Form II. Though there are many examples 

that support this rule, there are also many exceptions. Later, Etter (1991) based on CNT 

proposed that, in a polymorphic system, there may exist several types of aggregates or 

clusters in solution resembling the structure of matured crystal forms which can compete 

for molecules. The polymorph which favored to crystallize is the one that nucleates the 
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fastest. Using this hypothesis and Eq. 2.3, three possibilities can be expected at point C in 

Fig. 2.3. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.3 Schematic solubility-temperature diagram for a cooling crystallization process for a 

dimorphic system Forms I and II. A: Saturated solution with respect to Form II, B: Metastable 

solution supersaturated with respect to both Forms I and II, C: Metastable zone width, D: 

Solubility of Form I, E: Solubility of Form II. 

 
1. If all the kinetic parameters are similar for both Forms I and II, nucleation rate 

will increase by increasing the supersaturation. This favors the condition (𝐽𝐼𝐼 > 𝐽𝐼) 

leads to nucleation of more stable Form II. 

2. At constant supersaturation, increase in molecular transport favors the condition 

(𝐽𝐼 > 𝐽𝐼𝐼). Because, metastable forms have higher solubility, thus 𝐴𝐼 > 𝐴𝐼𝐼 is 

expected. 
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3. At constant supersaturation, decrease in interfacial energy (γ) favors the condition 

(𝐽𝐼 > 𝐽𝐼𝐼). Because, it has been proven that γ decreases with decreasing heat of 

dissolution and increasing value of solubility, both generally favor the metastable 

forms (Sangwal, 1989). 

Though CNT successfully predicts the general behavior of nucleation, its applications 

in polymorphism are very limited because of its implicit assumptions (Oxtoby, 1998). 

Moreover, it does not capture the contribution from structural factors such as solute-

solvent interactions, therefore, it cannot provide any information on the structure of 

aggregates and the pathways leading the solution to solid crystal (Schuth, 2001). If the 

structure of aggregates could be identified and related to structure in the final solid form, 

then a greater amount of control over the structural outcome of the crystallization might 

be achieved. A much recent work on nucleation both from simulations and experiments 

reveal that crystals obtained from solution are often not formed via the much simplified 

classical pathways but by much more complex routes in which specific intermolecular 

interactions play an important role (Anwar and Boateng, 1998; Vekilov, 2004; Davey et 

al., 2006). These studies suggest that our understanding on nucleation is very limited and 

prediction of polymorphic outcome is only possible if we fully understand the structural 

aspects of nucleation.  

However, in Fig. 2.3, at point C, if we suppose that experimental conditions 

favored the nucleation of metastable Form I. Then, crystallization continues further by 

the growth of Form I crystals. During this, solution concentration drops as solute 

molecules transfer from the liquid phase to the growing crystals until equilibrium is 

reached at point D, which is the solubility of Form I. However, at this point, the solution 
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is still supersaturated with respect to Form II and ultimately, Form I will have to 

transform to Form II by a process which is described below. 

2.9. Solvent Mediated Polymorphic Transformations (SMPT) 

In crystallization, a metastable form can transform to the more stable form via 

solvent mediated polymorphic transformation (SMPT) in which the solvent molecules 

facilitate the molecular rearrangement and crystal growth. The basic phenomenon 

involved in SMPT is well understood and expressed as a three step process (Cardew and 

Davey, 1985). 

 

Figure 2.4 Solute concentration (C) and polymorph fraction (P) Vs time profiles during a 

polymorphic transformation in solution, Ceq
I and Ceq

II are the solubilities of Forms I and II, (a) 

General solute concentration profile and (b) Transformation is controlled by growth of the stable 

Form II (c) Transformation is controlled by dissolution of the metastable Form I (Cardew and 

Davey, 1985; Mangin et al., 2009). 

 

1. Primary nucleation of the stable phase. This is the trigger for the transformation 

process and it can be homogeneous or heterogeneous (Croker and Hodnett, 2010).  

2. Dissolution of the metastable phase. As the nuclei of the stable phase grow, the 

solution concentration drops below the solubility of metastable phase. The 

metastable crystals thus dissolve producing supersaturation for the continued 

growth of stable phase. 
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3. Growth of the stable phase. This step simultaneously occurs with the step 2 and 

dissolution-growth process continues until all of the metastable crystals disappear. 

The growth of stable form continues further and finally transformation ends when 

solubility of stable form is reached. 

Depending on both the properties of solute and solvent, (1) or (2) or (3) can be the 

slowest step. When step (1) is rate controlling, any factor that affects nucleation kinetics 

(see Eq. 2.4) will determine the overall kinetics. When step (2) or (3) is controlling, the 

factors which can influence the solute mass transfer such as particle size, agitation etc. 

will determine the overall kinetics.  

Experimentally, transformation kinetics can be characterized by a combination of 

measurements of solid phase composition and solute concentration with respect to time 

(Davey et al., 1986). Fig. 2.4a shows the general behavior of solute concentration during 

a transformation process. It indicates that there exists a plateau concentration between the 

solubility of two forms as a result of the balance between kinetics of dissolution and 

growth. Based on the position of the plateau, two extreme cases are possible. (1) The 

consumption of solute by growth is slower than the production of solute by dissolution, 

and the plateau is located in a “high” position, in the vicinity of the solubility of the 

metastable polymorph (see Fig. 2.4b). Therefore, the nucleation and growth mechanism 

of the stable polymorph limits the transformation and thus is the rate-controlling step. 

There are many examples in the literature for this type of transformation: L-glutamic acid 

α→β in water (Kitamura, 1989), glycine α→γ in water (Yang et al., 2008), irbesartan 

Form A → Form B in water (Garcia et al., 2002), taltireline α→β transformation in water 

(Maruyama et al., 1999), carbamazepine anhydrate → hydrate transformation in 
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ethanol/water solution (Qu et al., 2006), citric acid anhydrate → monohydrate 

transformation in water (Caillet et al., 2006), sulfamerazine Form I → Form II in various 

solvents (Gu et al., 2001). (2) The concentration plateau is just above the solubility of the 

stable polymorph (see Fig. 2.4c). The dissolution mechanism of the metastable phase 

limits the transformation and is thus the rate-controlling step. To our knowledge, only 

one example available in the literature: glycine β→α in ethanol/water solution (Ferrari et 

al., 2003).  

2.10. Closing Remarks 

 Crystal structure is an important property which needs to be carefully controlled 

during crystallization to achieve the desired product quality. A thorough understanding of 

fundamentals of crystal polymorphism and the crystallization mechanisms which govern 

the polymorph formation and transformation is a prerequisite for the design and control 

of a robust crystallization process for the isolation of desired polymorph. 
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CHAPTER 3 
 

Experimental – Materials, Methods and Analytics 
 
 

In this chapter, experimental methods used for polymorph characterization of the 

model compound are presented. In addition, the computational procedure for the structure 

determination from PXRD pattern is also described. 

3.1. Model System - Tolbutamide 
 
 

 

 

 

 

 

 

 
Figure 3.1 Chemical diagram of Tolbutamide (TB) with several rotational degrees of freedom (τ 

= torsional angle). 

 
Sulfonylurea compounds are considered as an important class of therapeutical 

agents in medicinal chemistry for their hypoglycemic activity (Patlak, 2002). 

Tolbutamide (1-Butyl-3-(4-methylphenylsulfonyl) urea, TB) is a first generation oral anti-

diabetic drug that belongs to this class. It is used in the treatment of non-insulin 

dependent (type II) diabetes as an adjunct to diet control. It controls the blood glucose 

levels by stimulating the pancreas for secretion of insulin. TB tablets are marketed under 

the brand name Orinase®. The chemical structure of TB (Fig. 3.1) shows that apart from 

the rigid benzene ring, it has seven bonds that can rotate freely along the alkyl chain. Due 
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to this flexibility, one can expect this molecule to crystallize into different polymorphic 

structures. 

3.1.1. Previous Work 

The first study on polymorphism of TB was reported in the extensive study 

carried out by Kuhnert-Brandstatter and Wunsch (1969) on polymorphism and drugs 

using hot stage microscopy. The existence of three polymorphic forms with melting 

points of 127 °C, 117 °C and 106 °C were reported. Subsequently, the system was 

studied by Simmons et al. (1972) who reported two polymorphic forms which were 

prepared by crystallization experiments and named them as Forms A and B. Later, 

Burger (1975) further investigated the polymorphism of this drug and was able to prepare 

four polymorphic forms (Forms I–IV). He claimed that Forms I and III were identical 

with Simmon's Forms A and B. The stability order was estimated to be Form I > Form 

III > Form II > Form IV with Form I being the most stable form at ambient conditions. 

Later, Rowe and Anderson (1984) further examined the stability order of Forms I and III 

and observed that Form I readily transforms to Form III in solution at ambient 

conditions. Hence, they claimed that Form I is less stable than Form III. 

In CSD, two crystal structures of TB, reference codes ZZZPUS01 (Nirmala and 

Gowda, 1981) and ZZZPUS02 (Donaldson et al., 1981), are indexed and both correspond 

to Form I. Form I crystallizes in the orthorhombic, Pna21 space group (𝑍 = 4; a = 20.23 

Å, b = 7.83 Å, c = 9.09 Å). The unit cell data for Form III has been reported but without 

atomic co-ordinates (Leary et al., 1981). Form III crystallizes in the monoclinic, P21 

space group (𝑍 = 2; a = 8.11 Å, b = 8.96 Å, c = 10.19 Å, β = 101°). More recently, 

Kimura et al. (1999) further characterized Burger’s Forms II and IV using various 
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physical methods. The unit cell data of Form II was determined and deposited in CSD 

(refcode: ZZZPUS03) without atomic co-ordinates. This form crystallizes in the 

monoclinic, P21/n space group (𝑍 = 4, a = 11.81 Å, b = 9.06 Å, c = 13.98 Å, β = 104.5°). 

From the previous studies, it is evident that TB can crystallize in at least four 

polymorphic forms which have been well characterized by various techniques. However, 

there is some confusion about the stability order of TB polymorphs at ambient conditions. 

Except for Form I, the crystal structures of other polymorphic forms (Forms II–IV) have 

not been reported to date. Since the unit cell data of Forms II and III were already 

reported, it can be assumed that the crystal structures have been determined but not 

reported in the literature. In the case of Form II, the comparison of calculated X-ray 

powder pattern from its crystal structure with the experimental powder pattern was 

reported (Kimura et al., 1999). 

While this work is underway, Hasegawa et al. (2009) reported a detailed analysis 

on the thermal behavior of Form I and showed that this form undergoes a reversible 

structural transformation to a new crystal form upon heating beyond 38 °C. The newly 

transformed phase has been named as Form IH and the phase below 38 °C as Form IL. 

We adopt this naming convention for our discussion in this work. Recently, in an attempt 

to co-crystallize TB resulted in a novel polymorph Form V whose structure is also 

reported (Nath and Nangia, 2011). 
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3.2. Characterization Techniques  

3.2.1. Light Microscopy 

The crystal habit was examined using an optical polarized light microscope 

(Olympus, BX51) connected to a CCD camera. The image was collected using a Soft 

Imaging System’s Analysis image capture software. 

3.2.2. Differential Scanning Calorimetry (DSC) 

DSC analysis was carried out using a Perkin-Elmer Diamond DSC (Perkin-Elmer, 

Beaconsfield, UK). The samples (2–5 mg) were hermetically sealed in aluminum pans 

and heated from 25 to 150 °C at a scanning rate of 10 °C min-1 under nitrogen purge at a 

flow rate of 20 mL min-1. Prior to analysis, the heat of fusion was calibrated with indium 

(purity, 99.999%; melting point, 156.4 °C; heat of fusion, 28.47 mJ mg-1; heating rate; 10 

°C min-1). 

3.2.3. Hot Stage Microscopy (HSM) 

Thermomicroscopic investigations were performed with an optical polarizing 

microscope (Olympus, BX51) equipped with a Linkam hot stage THMS 600 connected 

to a TMS 94 temperature controller (Linkam Scientific Instruments Ltd., Tadworth, 

Surrey, UK). The microscopic images were recorded with a CCD camera attached to the 

Olympus BX-51 microscope (Olympus Optical GmbH, Vienna) at every 10 s time 

interval using Soft Imaging System’s Analysis image capture software. Samples were 

heated over the temperature range of 25 to 150 °C at a constant heating rate of 5 °C min-1. 

3.2.4. Powder X-Ray Diffraction (PXRD) 

PXRD experiments were conducted in Bragg-Brentano geometry with a Bruker 

D8 Advance (Bruker AXS GmbH, Germany) X-ray powder diffractometer  equipped 
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with Cu-Kα source ( λ = 1.5406 Å), a Nickel-filter, 0.3° divergence slit, a linear position 

sensitive detector (Vantec-1) and an Anton Paar Model HTK 1200 high temperature 

chamber. Data were collected at room temperature (RT) over a 2θ range of 5–50° with an 

equivalent step size of 2θ = 0.018° at a scan rate of 0.02° sec-1. For Form IV, data were 

collected over the same 2θ range and with same step size, but at a reduced scanning rate 

of 0.01° sec-1. All samples were rotated to improve the counting statistics. To collect the 

PXRD pattern of Form IH, Form IL was heated to 50 °C at a heating rate of 0.4 °C/sec 

and delayed for 10 minutes for stabilization. Then, the data were collected with the same 

scanning parameters as used before for Form IL. Due to the crystal habit of Forms II and 

III, their experimental peak intensities were strongly affected by preferred orientation 

resulting in severe differences in relative intensities of observed and computed PXRD 

patterns. Hence, their samples were hand ground to a fine powder before collecting the 

powder pattern. 

3.2.5. Scanning Electron Microscopy (SEM) 

Morphology of the TB polymorphs was examined using a high resolution SEM 

(JSM-6700F, JEOL Ltd, Tokyo, Japan) operating at 5 keV under secondary electron 

imaging (SEI) mode. Each sample was mounted on an aluminum stub and platinum 

coated for 1 min by a sputter coater (Cressington 208HR, Cressington Scientific 

Instruments Inc, Watford, UK), prior to analysis. 

3.2.6. Fourier Transform-Infrared Spectroscopy (FTIR) 

A Perkin-Elmer 2000 FTIR spectrometer was used in KBr diffuse reflectance 

mode for collecting the IR spectra of the polymorphs. A total of 32 scans were collected 

over the range of 400–4000 cm-1. 
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3.2.7. Solid-State Nuclear Magnetic Resonance Spectroscopy (SS-NMR) 

Solid-state 13C NMR spectra were collected at RT on a Bruker Avance 400 

spectrometer with a CP-MAS pulse sequence operating at a frequency of 100.61 MHz 

(13C frequency). The samples were packed in zirconium rotors, spun at typical speeds of 

around 6 kHz at the magic angle. A contact time of 2 ms and a relaxation delay of 15 sec 

were used between each scan. Toss program was used to suppress the spinning side 

bands. The chemical shift data was referenced to an external standard of Adamantane. 

3.2.8. Single Crystal X-Ray Diffraction (SCXRD) 

X-ray reflections were collected on a Rigaku Saturn CCD area detector with 

graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). Data were collected and 

processed using CrystalClear (Rigaku) software. For data collection at different 

temperatures, the crystal was allowed to equilibrate at the desired temperature for 15 min 

in a stream of cold nitrogen supplied by Rigaku Cryostat. The structure was solved by 

direct methods and expanded using Fourier techniques. The non-hydrogen atoms were 

refined anisotropically. All hydrogen atoms were fixed at idealized positions except for 

N-H protons which were located from the difference Fourier map and allowed to ride on 

their parent atoms in the refinement cycles. 

3.3. Computational Procedure for Structure Solution of Form IV 

To solve the crystal structure of Form IV, Reflex Plus module in Materials Studio 

molecular modeling (Accelrys Software Inc. Version 4.3.) has been used. Reflex Plus is a 

complete package for structure determination from PXRD data, including indexing, 

Pawley refinement, structure solution and Rietveld refinement. The successive dichotomy 

indexing program X-cell (Neumann, 2003) was used to index the first 23 reflections (2θ < 
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25°) which were shown along with the tabulated values in Fig 3.2. The proposed unit cell 

and the function profile parameters (background coefficients, zero-point shift and peak 

width parameters) were refined over a 2θ range of 5−50° by the Modified Pawley 

method. Pseudo-Voigt function was used for approximating the peak shape profile. The 

background was determined by linear interpolation using 20 terms. Asymmetric 

corrections were applied in the range of 2θ < 45° using Berar-Baldinozzi correction. 

After Pawley refinement, the Rwp value was found to be 4.13%.  

 
 

 

Figure 3.2 The first 23 observed 2θ values used for powder indexing in the structure 

determination of Form IV from powder X-ray diffraction. 

 

The subsequent structure solution was performed by Monte Carlo/parallel 

tempering method using PowderSolve (Engel et al., 1999). The initial molecular model of 

TB was taken from Form II crystal structure and placed in the refined unit cell. A total of 
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13 degrees of freedom (position of the molecule defined by three co-ordinates, 

orientation of the molecule defined by three rotation angles and seven torsional angles as 

shown in Fig. 3.1) were assigned inside an asymmetric unit and the structure solution was 

executed. Hydrogen atoms were not used during the structure solution. March-Dollase 

method (Dollase, 1986) was used to model the preferred orientation effects in the powder 

pattern because this crystal form grows into thin needles.  

For final Rietveld refinement, hydrogen atoms were included and refined by using 

the same degrees of freedom as used for the structure solution. Global isotropic 

temperature factors were applied for modeling the temperature effects on atoms. The 

final Rwp value was converged at 5.38%. The feasibility of hydrogen bonding and close 

contacts were verified before accepting the final solution. 

3.4. Solubility Measurements  

The solubilities of TB were measured at different temperatures starting from 15 to 

60 °C using a UV-Vis spectrophotometer (Varian Cary 50 Conc) which was calibrated at 

229 nm in ethanol solvent. Using a 20 ml crystallization vessel, an excess of TB was 

placed in 10 ml of ethanol, which was maintained at the desired temperature (± 0.1 °C) 

by circulating water in the outer jacket using a Julabo circulator. Immediately after 

addition, 400 rpm agitation was applied by means of a magnetic stirrer. Samples were 

taken at different intervals and measured until constant concentration was achieved.  For 

all samples, the equilibration time was approximately 2–3 hours. During sampling, the 

agitation was stopped and solution was allowed to settle for 1 hour. Approximately, 1 ml 

of the supernatant was then filtered through a millipore (0.2 µm) syringe filter. After 

sufficient dilution, the concentration of the filtered supernatant was determined by 
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measuring the absorbance at 229 nm. PXRD was used to confirm that no polymorphic 

transformation had occurred at the end of the solubility measurement. The solubility of 

each sample is measured in duplicate. 
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CHAPTER 4 
 

Structural and Stability Features of Tolbutamide 
Polymorphs 

  
  
 Central to the understanding of the origin and control of polymorphism is the 

ability to describe and interpret the similarities and differences in intermolecular 

interactions in the possible polymorphic structures. In this chapter, crystal structures of 

four polymorphic forms of TB (Forms IL, II–IV) were presented and analyzed to 

understand the structural origin of polymorphism in TB. Spectroscopy has been used as a 

complementary technique to further understand the structural features of TB. 

Furthermore, influence of TB molecular dynamics on PXRD patterns is also highlighted.  

4.1. Preparation of Polymorphs  

Form IL of TB was prepared by dissolving TB (3 g) in 6 ml of acetonitrile at 60 

°C and naturally cooled to RT. Form II was prepared by dissolving 1.2 g of TB in 10 g of 

acetonitrile in a 20 ml vial followed by slow addition of 5 ml of water using a pipette into 

the unagitated solution. After one week, crystals were harvested and dried in vacuum at 

40 °C.  

For preparing Form III, the method used by Simmons et al. (1972) was employed 

but this resulted in a mixture of Forms IL and III in our experiments. The microscopic 

observations revealed that these two polymorphs nucleate simultaneously under these 

conditions and it is one of the cases of dimorphic concomitant crystallization (Bernstein 

et al., 1999). To obtain this form, a slightly modified procedure was designed in which a 

saturated solution of TB in ethanol was prepared and then, water was slowly added into 

the unagitated solution using a pipette till spontaneous nucleation of Form III crystals 
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occurred. The crystals were allowed to grow for one day before they were harvested and 

dried in vacuum at 40 °C. The crystals obtained for Forms IL, II and III were pure and of 

suitable size for SCXRD experiments. 

 

  
 

Figure 4.1 Scanning electron microscope images of TB polymorphs (a) Form IL (b) Form II (c) 

Form III (d) Form IV. 

 

To prepare Form IV, a slow evaporation method was used which was otherwise 

prepared only by either spray drying (Kimura et al., 1999) or from melt crystallization 

(Burger, 1975). TB (0.5 g) was dissolved in 10 ml of acetonitrile, filtered and then 

transferred to a 20 ml conical flask. The mouth of the flask was covered with aluminum 

foil (a few holes were made in the foil) and left at ambient temperature for slow 

evaporation of the solvent. The crystals of Form IV obtained by this method were not of 

suitable size for SCXRD experiment. Fig. 4.1 shows the SEM images of TB polymorphs. 
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Form IL is of prismatic shape and Form II grows into thin plates. Form III consists of 

long bladed needles whereas Form IV grows like very thin needles. 

4.2. Structural Features of TB Polymorphs 

The crystal structures of TB polymorphs Forms IL and II–IV were determined and 

the corresponding crystallographic data was given in Table 4.1. The comparison between 

the unit cell parameters determined in this work and those reported in the literature 

reveals some interesting observations. (1) The unit cell data reported for Form III (Leary 

et al., 1981) does not match with any of our crystal data; and (2) The unit cell data 

reported for Form II (Kimura et al., 1999) is found to be different from that of ours, but, 

matches with our Form III. A careful examination of the calculated PXRD pattern of 

Form II reported in Kimura et al. (1999) and of the unit cell given for Form II by the 

same authors (CSD refcode ZZZPUS03), reveals a clear discrepancy - the calculated 2θ 

positions of ZZZPUS03 do not match with the 2θ positions reported in their publication. 

It may be possible that they presented the PXRD pattern of Form II but gave the unit cell 

data of Form III.  

4.2.1. TB Conformers and Packing Schemes 

In all the polymorphic forms, TB molecule adopts different conformations hence 

it is another representative case of conformational polymorphism. The conformers found 

in the crystal structures can be divided into two types (U and chair, Fig. 4.2) based on the 

phenyl and alkyl tail orientation with respect to S-N1-C8-N2-C9 plane (refer to Fig. 3.1 

for atom numbering). In the U-type conformation, both the phenyl ring and alkyl tail are 

on the same side of the S-N1-C8-N2-C9 plane, whereas, in chair-type, these are oriented 

in the opposite side of the plane. 
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Table 4.1 Summary of crystallographic data of TB polymorphs. 
 

Crystal data Form IL Form II Form III Form IV 

Empirical 
formula C12H18N2O3S C12H18N2O3S C12H18N2O3S C12H18N2O3S 

Formula weight 270.34 270.34 270.34 270.34 
Crystal habit Prism Plate Needle Needle 
Sample type Single crystal Single crystal Single crystal Powder 

Crystal system Orthorhombic Monoclinic Monoclinic Monoclinic 
Temperature (K) 153 153 153 298 

Color Colorless Colorless Colorless White 
Space group Pna21 Pc P21/n P21/c 

a/Å 19.626(9) 9.087(8) 11.735(2) 10.091 
b/Å 7.803(4) 17.228(3) 9.042(8) 15.646 
c/Å 9.058(4) 17.951(4) 13.732(3) 9.261 
α/° 90 90 90 90 
β/° 90 95.01(3) 103.57(3) 100.49 
γ/° 90 90 90 90 

V/Å3   1387.3(11) 2799.8(10) 1416.4(5) 1438.9 
𝑍 4 8 4 4 

dcalc/g cm-3 1.294 1.283 1.268 1.248 

µ (mm-1) 0.236 0.234 0.231 0.227 
(calculated) 

Reflections 
collected 6197 14332 11123 -- 

Unique 
reflections 2118 8617 3514 -- 

Observed 
reflections 2002 8016 2669 -- 

R1[I > 2σ(I)] 0.0572 0.0555 0.0976 Rp = 3.96 % 
wR2 [all] 0.1559 0.1434 0.2742 Rwp = 5.38 %  

Goodness-of-Fit 1.115 1.070 1.159 -- 

Diffractometer Rigaku Saturn CCD 
area detector 

Rigaku Saturn CCD 
area detector 

Rigaku Saturn CCD 
area detector Bruker AXS 

 

Based on this classification, the molecular packing arrangements in Forms IL and 

II–IV can be classified into four schemes (A–D) as shown in Fig. 4.2. These schemes 

were derived based on the orientation of phenyl ring and alkyl tail of adjacent molecules 

in a hydrogen bonding network. For example, in scheme A, the two adjacent molecules 

are arranged in such a way that the phenyl ring and alkyl tail of TB molecule are laid on 

the opposite side of the S-N1-C8-N2-C9 plane, whereas in scheme B, they are on the 

same side of the plane.  
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Figure 4.2 Types of conformers and packing schemes observed in TB polymorphs Forms IL and 

II−IV. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.3 Overlay of conformers observed in TB polymorphs Forms IL and II–IV (Red-U1 

(Form IL); Green-U2 (Form III); Brown-U3 (Form IV); Pink-Ch1, Yellow-Ch2, Light blue-Ch3, 

Thick blue and Grey-Ch4 (Form II). 
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Table 4.2 The calculated torsional angles (τ1 to τ7) of conformers observed in TB polymorphs (U: 
U-type and Ch: chair type); Occupancy factors for Ch4, a 0.34, b0.66, c0.5. 
 

Torsion angle (°) Form IL 
(U1) 

Form III 
(U2) 

Form II Form IV 
Ch1 Ch2 Ch3 Ch4 U3 

τ1(C6−C5−S−N1)  141.9 57.7 81.5 141.4 137.2 87.5 94.3 
τ2(C5−S−N1−C8) -50.8 -73.6 -84.7 -67.8 -73.7 -75.6 63.2 
τ3(S−N1−C8−N2) 147.6 163.3 -176.6 164.8 -173.3 176.0 -154.3 
τ4(N1−C8−N2−C9) -174.3 -176.6 174.5 172.7 -177.5 172.3 -174.4 
τ5(C8−N2−C9−C10) 81.5 100.4 -77.8 -83.9 -105.1 -90.8 -85.7 
τ6(N2−C9−C10−C11) -178.8 -67.3 -60.4 -66.0 61.7 -102.4a  -172.3b -179.3 
τ7(C9−C10−C11−C12) -69.3 -176.9 175.5 -175.4 -178.9 -159.7c -179.9c 162.6 

 
 
Table 4.3 Hydrogen bond distances and angle parameters with neutron normalized N−H (1.009 
Å) distances in TB polymorphs. 
 
Crystal 
structure D−H···Aa H···A [Å] D···A [Å] D−H···A [°] 

Form IL N1−H2···O3 1.77 2.739(5) 161 
 N2−H2A···O3 2.03 2.939(5) 148 
 N2−H2A···O1 2.35 3.070(5) 127 
Form III N1−H1···O3 1.83 2.771(5) 154 
 N2−H2A···O3 2.24 3.141(5) 143 
 N2−H2A···O2 2.16 2.903(5) 133 
Form II N1−H1···O3 2.05 2.949(6) 147 
 N2−H2···O3 1.85 2.787(5) 154 
 N1−H1···O1 2.43 3.131(6) 126 
 N3−H3···O4 1.77 2.754(5)   164 
  N4−H4···O4 2.23 3.115(5) 145 
 N4−H4···O5 2.22 3.021(5) 135 
 N8−H5···O12 1.78 2.722(5)         153 
 N7−H6A···O12 2.11 2.972(5) 142 
 N7−H6A···O10 2.25 3.045(5)         135 
 N5−H7···O9 1.78 2.730(5) 155 
  N6−H8···O9 2.13             3.012(5)             145 
 N6−H8···O7 2.61 3.228(5) 120 
Form IV N1−H1···O1 1.96 2.756 151 
 N2−H2···O1 2.40 3.132 152 
 N1−H2···O2 2.35 3.017 119 
For geometric description of hydrogen bond interactions, the following criteria has been used: 
H···A distance < r(A) + r(H) (A: acceptor, D: donor and r: van der Waals radius). 
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Despite forming various schemes, the usual “head-to-tail” packing mode, which is 

typically observed in the crystal structures of urea derivatives persists in all the TB 

polymorphs (Kim et al., 1999). The traditional urea tape motif, a chain of bifurcated 

N−H···O hydrogen bond between NH donors and the carbonyl oxygen acceptor is the 

dominant supramolecular synthon (key intermolecular interaction) in all the crystal 

structures (George et al., 2004). In addition to that, one of the sulfonyl oxygens engaged 

in hydrogen bonding with alkyl amide. The torsional angles for various TB conformers 

were tabulated in Table 4.2 and the extent of conformational diversity of TB molecule 

was highlighted with the overlay of conformers in Fig. 4.3. The geometrical features of 

hydrogen bonding were listed in Table 4.3. 

4.2.2. Crystal Structure Analysis  
 
Forms IL and III. Form IL crystallizes in the orthorhombic, Pna21 space group whereas 

Form III crystallizes in the monoclinic, P21/n space group. Both polymorphs crystallize 

with one molecule of TB in the crystallographic asymmetric unit (𝑍′ = 1) and adopt the 

U-type conformation. However, significant differences were observed in the orientation 

of the terminal alkyl chain of these two conformers. The torsional angles τ6 and τ7 are in 

anti- and gauche- conformation in Form IL, whereas they are in gauche- and anti- 

conformation in Form III, respectively (see Table 4.2).   

The crystal packing diagrams of Forms IL and III were shown in Fig. 4.4 and 

both forms adopt the packing scheme A. They are also similar in terms of hydrogen 

bonding and the other structure stabilizing interactions (see Table 4.3). The one-

dimensional (1D) chains involving N−H···O hydrogen bonds run along [0 0 1] and [0 1 0] 

in Forms IL and III, respectively. The concomitant nucleation of these two forms from 
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the crystallization batches could be because of their similarities in conformation, 

hydrogen bonding and crystal packing ability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Crystal packing diagrams of TB polymorphs (a) Form IL (b) Form III. 
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Form II. Form II crystallizes in the monoclinic, Pc space group with four molecules of 

TB in the crystallographic asymmetric unit (𝑍′ = 4). Unlike the conformers in Forms IL 

and III, the TB molecule adopts the chair type conformation in this polymorph. It is 

interesting to note that all symmetry independent molecules (Ch1, Ch2, Ch3 and Ch4) are 

conformationally different (i.e., conformational isomorphism) (Nangia, 2008).  

 

Figure 4.5 Crystal packing diagram of Form II (Pink-Ch1; Yellow-Ch2; Light blue-Ch3; Thick 

blue and Grey-Ch4). 

 
The major differences were observed in τ1 and τ6 torsion angles. In Ch1 and Ch4, 

the torsion around τ1 is in gauche- conformation, whereas in Ch2 and Ch3 it is in anti- 

conformation. The torsion around τ6 is in gauche- conformation except for Ch4 which is 

found to be in anti- conformation. In Ch4, the two terminal carbon atoms (C55 and C57) 

were found to be disordered. The disorder at C55 was modeled over two sites with an 

occupancy ratio of 66:34, whereas C57 was modeled with an occupancy ratio of 50:50. 

For clarity, these disordered atoms were shown in two different colors (thick blue and 

grey) for Ch4 molecule in the overlay (Fig. 4.3) and packing diagrams (Fig. 4.5).  
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As shown in Fig. 4.5, the crystal structure of Form II reveals two types of packing 

schemes (C and D). Conformers Ch1 (pink molecule) and Ch2 (yellow molecule) follow 

scheme D i.e. phenyl rings and alkyl tails on opposite side of the plane. They form 1D 

chains along [1 0 0] direction involving N−H···O hydrogen bonds. Conformers Ch3 (thick 

blue) and Ch4 (light blue) form another 1D network which runs perpendicular to the 1D 

tape motif formed by Ch1 and Ch2 molecules. There are some significant differences in 

the orientation of molecules in the formation of these networks. When Ch1 and Ch2 are 

involved, the asymmetric molecules were related by a mere translation followed by a 2-

fold rotation whereas in the other network with Ch3 and Ch4, they are related by a glide 

plane followed by a 2-fold rotation. Because of these differences, a single packing 

scheme (D) was observed between Ch1 and Ch2 while two types of packing schemes (C 

and D) were observed between Ch3 and Ch4. The structure is further stabilized by 

various C−H···π and C−H···O (2.86 – 3.96 Å and 100 –164°) interactions.  

Form IV. Despite several attempts to obtain the single crystals suitable for X-ray data 

collection, Form IV resulted only in crystalline powder. An alternative is the structure 

solution from the PXRD pattern. In this work, the direct space approach with the Monte 

Carlo method followed by Rietveld refinement has been used and the structure solution 

was implemented in Materials studio environment. The powder indexing unambiguously 

found a monoclinic unit cell with P21/c space group with one molecule in the asymmetric 

unit (𝑍′ = 1). The high values of absolute figure of merit (Fa) of 1999 (0.0055, 35)) and 

relative figure of merit (Fr) of 3.45 strongly suggest that the converged solution is the 

correct one (Neumann, 2003). From the calculated unit cell volume, four molecules (𝑍 = 
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4) were expected in the unit cell. Fig. 4.6 shows the difference plot of Rietveld simulated 

profile and experimental profile. 

 
Figure 4.6 The difference plot of Rietveld simulated and experimental powder patterns of Form 

IV. 

 
The unit cell (a = 10.09 Å, b = 15.64 Å, c = 9.27 Å, β = 100.5°, V = 1440 Å3) was 

found to be closely related with that of Form IL. The a-axis is halved and b-axis is 

doubled in the case of Form IV when compared to Form IL. The TB molecule adopts the 

U-type conformation. When compared to other U-type conformers, major differences 

were observed in the alkyl tail orientation. The torsion angles τ6 and τ7 are both found to 

be in anti conformation. The crystal packing diagram was shown in Fig. 4.7. The adjacent 

molecules were related by a mere translation followed by a 2-fold relation. This leads to a 

unique packing scheme, scheme B, however, the 1D hydrogen bond urea tape motif 

persists in the crystal structure involving N−H···O  hydrogen bonds which runs along [0 0 

1] direction. 
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Figure 4.7 Crystal packing diagram of Form IV. 
 

4.3. IR Spectroscopy  

Comparison of FTIR spectra of TB polymorphs was shown in Fig. 4.8. The 

carbonyl stretching was observed at 1662, 1659, 1666 and 1665 cm-1 for Forms IL and II–

IV, respectively. This suggests that carbonyl group is involved in a similar hydrogen 

bonding in all the polymorphs. This is consistent with the hydrogen bonding patterns 

observed in the crystal structures. The symmetric and asymmetric stretching frequencies 

of sulfonyl group are observed at 1336, 1156 cm-1 for Form IL, 1347 and 1164 cm-1 for 

Form II, 1342, 1166 cm-1 for Form III and 1349, 1166 cm-1 for Form IV. This suggests 

that sulfonyl group was involved in a stronger hydrogen bonding in Form IL compared to 

other forms.  

In all the crystal structures, the sulfonyl group involves in hydrogen bonding with 

alkyl amide and in other intermolecular C−H···O interactions. The N−H···O distances are 

3.07 Å, 3.106 Å, 2.903 Å and 3.01 Å for Forms IL, II, III and IV, respectively. This 

comparison suggests that sulfonyl group in Form III has a stronger hydrogen bonding 
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with alkyl amide among others. This is inconsistent with IR absorption data and the lower 

IR absorption frequency for Form IL can be attributed to other strong intermolecular 

interactions around sulfonyl oxygens. The IR absorption for the sulfonyl amide stretching 

is observed at 3328, 3338, 3331 and 3338 cm-1 for Forms IL and II–IV, respectively. This 

is consistent with the hydrogen bonding involving sulfonyl amide and carbonyl group. 

 

Figure 4.8 FTIR spectra of TB polymorphs. 

 
The alkyl amide N−H stretch is observed at 3172, 3179, 3178 and 3182 cm-1 for 

Forms IL and II−IV, respectively. This group involves in hydrogen bonding with both 

carbonyl and sulfonyl groups in all the polymorphs and these interactions are strongest in 

Form IL and weakest in Form IV and in accordance with IR absorption. Apart from 

hydrogen bonding features, another difference in IR spectra was observed in the aliphatic 

C-H stretching region (2800−3000 cm-1). The respective methyl group (one at the end of 

the tail and another connected to aromatic group) stretching frequencies were observed at 
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2960, 2931 cm-1 for Form IL, 2955, 2932 cm-1 for Form II, 2952, 2922 cm-1 for Form III 

and 2966, 2929 cm-1 for Form IV. This represents the conformational variations observed 

in the orientations of alkyl tail and aromatic ring in various polymorphs. 

4.4. Solid-State NMR Spectroscopy 

 
Figure 4.9 SS-NMR spectra of TB polymorphs. 

 
CPMAS 13C spectra of Forms IL and II–IV were shown in Fig. 4.9. The 13C 

resonances were assigned according to Kimura et al. (1999). NMR chemical shifts are 

indicative of molecular arrangement in the crystal lattice and for NMR principle and its 

data interpretation refer to section 2.5.2. In the case of Forms IL and III, the number of 

resonances is equal to the number of carbon atoms in the molecule, so it can be 

concluded that the asymmetric unit consists of one molecule. This is consistent with our 

crystal data. Between these two forms, the major differences in the chemical shifts were 
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observed around C5 and C10 (131.8, 31.8 for Form IL and 140.6, 33.6 for Form III for 

C5 and C10, respectively). These differences can be attributed to the torsional differences 

observed around C5−S (phenyl ring orientation) bond and C10−C11 bond (alkyl tail 

orientation) in the conformers found in these two forms.  Apart from these differences, 

the spectra look quite similar. This can be easily recognized from the fact that they adopt 

the same type of packing scheme and form similar hydrogen bonding networks. In the 

case of Form II, there are three resonances for each of the carbon atoms of TB molecule 

indicating that at least three crystallographically nonequivalent molecules are present in 

the unit cell. This is in accordance with the crystal structure of Form II as it has four 

molecules in the asymmetric unit.  

The NMR spectrum of Form IV is highly consistent with the determined crystal 

structure from powder diffraction in that all carbons were crystallographically equivalent 

resulted in single resolved peaks indicating that this polymorph has a single molecule in 

the asymmetric unit. Though this form adopts the U-type conformation like Forms IL and 

III, major differences in carbon resonances were observed at alkyl tail carbons (C9–C12) 

due to the different packing scheme adopted by this polymorph. In all the TB 

polymorphs, the chemical shift for C8 observed in a narrow range (154.5–155.3), 

presumably because in all the cases it is participating in hydrogen bonding as an acceptor. 

4.5. Powder X-Ray Diffraction Analysis  

To verify the differences between Forms IL and IH, we have collected the PXRD 

pattern of Form IH and compared with that of Form IL as shown in Fig. 4.10. The 

differences were mainly evident in the 2θ region of 19−21°. The similarity in the low   
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angle region (5° < 2θ < 19°) highlights the isomorphous characteristic of these two forms 

with minor conformational changes (Hasegawa et al., 2009). 

 
Figure 4.10 Comparison of experimental (RT) and calculated (153 K and RT) PXRD patterns of 

TB polymorphs. 

 
Fig. 4.10 also shows the comparison of experimental PXRD patterns of TB 

polymorphs with the calculated patterns from their respective crystal structures 

determined at RT and 153 K. To our surprise, when compared with 153 K structures, 

significant differences were observed particularly in the 2θ region of 19–25°. Typically, 

deviation in peak positions in powder patterns is expected due to thermal contraction of 

the lattice at low temperature (Stephenson, 2006). If the unit cell contraction is isotropic, 

these differences reflect in shifting of peak positions to higher angles. If it is anisotropic, 

some peaks may shift to lower angles and some to higher angles. Rarely, severe 
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differences in intensities may also occur which can be attributed to molecular motion in 

the solid state (Cruickshank, 1956).  

In the case of TB polymorphs, the differences in the PXRD patterns are 

manifested not only in peak shifting to both higher and lower 2θ values but also in peak 

splitting. These differences are so severe that it is difficult to identify the polymorphic 

phase. Hence, the crystal structures were redetermined at RT and the calculated PXRD 

patterns were compared with the experimental patterns as shown in Fig. 4.10. Now, the 

powder patterns are in good agreement and this implies that the differences observed in 

low temperature powder patterns were due to thermal effects.  

To verify the lattice contraction and its effect on crystal structures, we have 

compared the unit cell data and the molecular conformations of the three polymorphs at 

RT and 153 K. In the case of Form II, we have determined the crystal structures at 

different temperatures between RT and 153 K to track the changes occurring in its crystal 

structure. In the case of Form IL, the anisotropy of lattice contraction is ∆a/a × 100 = 

2.95 %, ∆b /b × 100 = 0.35% and ∆c/c × 100 = 0.35%. The contraction along the b- and 

c-axis is similar but the contraction along the a-axis is nearly 10 times more. In the case 

of Form III, the anisotropy is ∆a/a × 100 = 0.85%, ∆b /b × 100 = 0.33%, ∆c /c × 100 = 

2%. In the case of Form II, it is ∆a/a × 100 = 0.73%, ∆b /b × 100 = 0.24%, ∆c /c × 100 = 

1.63%. The overall anisotropy and contraction in the cases of Forms II and III are 

relatively less compared to Form IL. This explains the greater deviation observed in peak 

positions for Form IL compared to other forms. These differences are much more severe 

at higher 2θ values.  
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Table 4.4 Torsional changes calculated in the alkyl tail of TB conformers observed in Forms IL, 

II and III at different temperatures (Ch4 is not shown because of disorder in the alkyl tail). RT-

Room Temperature; LT-Low Temperature (153K); τ∆ - Absolute torsional change. 

Conformer τ5 5τ∆  τ6 6τ∆  τ7 7τ∆  

U1(LT) 

U1(RT) 

81.5 

79.9 

 

1.6 

-178.8 

-176.2 

 

2.6 

-69.3 

-75.9 

 

6.6 

U2(LT) 

U2(RT) 

-100.3 

-99 

 

1.3 

67.2 

61.4 

 

5.8 

176.8 

174.2 

 

2.6 

Ch1(LT) 

Ch1(RT) 

77.8 

88.7 

 

10.8 

60.4 

-4.68 

 

65.08 

-175.5 

-179.5 

 

4 

Ch2(LT) 

Ch2(RT) 

-83.9 

-93.9 

 

10 

-66.0 

-22.9 

 

43.1 

-175.4 

-175.6 

 

0.2 

  Ch3(LT 

Ch3(RT) 

105.1 

97.6 

 

7.5 

-61.7 

-52.2 

 

9.5 

178.9 

178.6 

 

0.3 

 

Table 4.4 lists the torsional variation observed in TB conformers found in the 

structures determined at RT and 153 K. The major changes were observed in the alkyl tail 

of the TB molecule (τ5, τ6 and τ7). According to Threlfall, upon decreasing the 

temperature, the molecule releases the extra thermal energy by weakening of shortest 

intermolecular interactions followed by unwinding the structure with intermolecular 

torsional changes around the hydrogen bonds (Threlfall, 2003). In the case of TB, we 

could rationalize that, as the temperature decreases, the strongest interactions such as 

N−H···O hydrogen bonds loosen up to allow conformational changes in the alkyl tail 

(probably this part of the molecule has the lowest energy barrier). This would have forced 

the cell axes to contract anisotropically to accommodate these conformational changes. 

Fig. 4.11 shows the calculated PXRD patterns of Form II at different temperatures 

ranging from RT to 153 K. As the temperature decreases, the peak at 19.6° corresponding 

to (2 0 0) plane was observed to split into two peaks. The new peak appeared 
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corresponded to (0 0 4) plane for which the intensity increased as the temperature 

dropped further. These changes can be attributed to the variation in the unit cell 

parameters and molecular conformational changes. The fact that the nature of this 

variation is continuous indicates that the differences in PXRD patterns are not due to 

phase transformation. 

 
Figure 4.11 Comparison of calculated PXRD patterns of Form II at different temperatures. 

 
4.6. Thermal Analysis 

DSC thermograms of the TB polymorphs were shown in Fig. 4.12 and the 

corresponding data was summarized in Table 4.5. The calculated enthalpy values were 

the averages of three independent experiments. Hess’s law of heat summation (∆𝑓𝑢𝑠𝐻 +

∆𝑡𝑟𝑠𝐻) was used to estimate the heat of fusion as no direct melting was observed except 

Form IH. The thermogram of Form IL shows two peaks; a small endotherm at 40 °C 

followed by another endotherm at 128 °C. The first peak was ascribed to a kinetically 
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reversible polymorphic transition to Form IH (Kawakami, 2007; Hasegawa et al., 2009) 

and the second peak was ascribed to melting of Form IH. 

 
Figure 4.12 DSC thermograms of TB polymorphs at a heating rate of 10 °C min-1. 

 
 
Table 4.5 DSC data of TB polymorphs. 
 

TB Polymorph Melting 
temperature (°C) 

Transition 
temperature 

(°C) 
a∆𝑡𝑟𝑠𝐻 (KJ mol-1) b∆𝑓𝑢𝑠𝐻 (KJ mol-1) 

Form IH 128 -- -- 23.8 
Form IL -- 40 +1.9 (IL→IH) 25.7 
Form II 117 -- +2.2 (II→IH) 26 
Form III -- 106 +1.72 (III→IH) 25.6 
Form IV -- 94 -1.3 (IV→IH) 19.8 

aheat of transition bheat of fusion (calculated by Hess’s law of heat summation) 

 
In the case of Form II, a sharp endothermic melting peak at 117 °C was observed 

followed by an exotherm due to recrystallization of Form IH from the melt of Form II. 

An endotherm at 128 °C due to the melting of Form IH was subsequently observed. This 

behavior was visually observed under hot stage microscope (HSM) and shown in Fig. 
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4.13. When Form II crystals were heated on the hot stage, in a temperature range of 

120−123 °C, a series of events like melting, nucleation and growth of new crystals from 

the melt were observed simultaneously. The prismatic shape and melting point (128 °C) 

of the newly formed crystals revealed that they belong to Form IH.  

 

 

 

 

 

 

 

 

 

 
Figure 4.13 Hot stage microscope images of Form II (a) plated crystal of Form II at 40 °C (b) 

plated crystal of Form II at 100 °C (no change observed) (c) melting of Form II at 120 °C (d) and 

(e) prism like crystals characteristic of Form IH growing from the melt of Form II (f) melting of 

Form IH at 130 °C. 

 
On the other hand, Forms III and IV undergo an endothermic transition at 106 °C 

and an exothermic transition at 94 °C to Form IH, respectively. The thermal behavior of 

Forms I–IV is consistent with Burger’s forms (Burger, 1975). However, some differences 

in the thermal behavior of Forms II and III were observed when compared to Kimura’s 

forms (Kimura et al., 1999). The DSC thermograms of Forms II and III in the current 

work closely matches with those of Forms III and II in Kimura’s work, respectively. 

4.7. Energy-Temperature Diagram of TB Polymorphs  

Based on the DSC data listed in Table 4.5, the relative thermodynamic 

relationships among TB polymorphs are estimated and a schematic energy-temperature 
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diagram (E-T diagram, Fig. 4.14) was constructed. For more details on constructing E-T 

diagrams, refer to section 2.3.3. In the case of Forms IL and IH, the nature of transition is 

reversible and only one of the two forms is experimentally accessible. So for clarity, the 

virtual states of these two forms were shown as dotted lines in the E-T diagram.  

From the DSC analysis, it is clear that all the TB polymorphs undergo transition 

to a high temperature stable Form IH. According to the heat of transition rule, the 

polymorphic pairs III/IH and IV/IH should be enantiotropically and monotropically 

related respectively. On the other hand, Form II shows a melting transition to Form IH 

and according to the heat of fusion rule, these two polymorphs should be 

enantiotropically related. The stability relationships between other polymorphic pairs 

cannot be derived from DSC data because the melting points of Forms IL, III and IV are 

not known. However, the constructed E-T diagram allowed us to derive these 

relationships. 

In the case of Form IV, the course of its 𝐺 isobar clearly suggests that it should be 

monotropically related to all the other forms. It is also clear from E-T diagram that 𝐺 

isobars of Forms III and IL should intersect below the transition temperature of Forms IL 

and IH (~ 40 °C) to make this pair enantiotropic. This suggests that Form III is less stable 

than Form IL below their transition temperature after which Form III becomes more 

stable. Our previous experiments suggest that Forms III and IL concomitantly crystallize 

at RT and finally only Form IL survives. This implies that the transition temperature 

between these two forms should be between RT and 40 °C. The only thermodynamic 

relationship that is not clear is that between II/III pair. It is difficult to conclude from E-

T diagram because the melting point of Form III is not available.  
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Figure 4.14 Schematic energy-temperature diagram of TB polymorphs. 𝑇𝑓𝑢𝑠: Melting 

temperature, 𝑇𝑡: Transition temperature, ∆𝑡𝑟𝑠𝐻: Enthalpy of transition, ∆𝑓𝑢𝑠𝐻: Enthalpy of 

fusion, 𝐺: Gibbs free energy, 𝐻: Enthalpy, LIQ: Liquid phase (melt). The horizontal double 

headed arrows mark temperature ranges where either Form II or IH is the thermodynamically 

stable form. 

  
The E-T diagram suggests that the stability order of TB polymorphs at ambient 

conditions should be Form II > Form IL > Form III > Form IV with Form II being the 

most stable form. To confirm the stable form at RT and also to establish the transition 
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temperature of Forms IH and II, we have measured the solubilities of Forms IH, IL and II 

in the temperature range from 15 to 60 °C in ethanol. Fig. 4.15 shows the Van’t Hoff’s 

plot. We have not measured the solubilities of Form IL between 30–40 °C because the 

transformation from Form IL to IH is highly probable in this range. These measurements 

suggest that Form II is less soluble than Form IL and hence it should be the 

thermodynamically stable form at RT. The Van’t Hoff’s plot of Form II intersects that of 

Form IH at ~80 °C. This suggests that these two forms are enantiotropically related and 

Form IH is the stable form above ~80 °C. 

Figure 4.15 Van’t Hoff’s plot of TB polymorphs in ethanol (The lines are extrapolated to the 

intersection point to estimate the transition temperature showed as dotted line), T: temperature in 

Kelvin, Solubility: g of TB per g of ethanol. 

 
4.8. Further Verifications 

These measurements were further verified by solution mediated transformation 

experiments. Fig. 4.16 (a) shows the microscope image showing the transformation of 
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Form IL to the more stable Form II in a saturated solution of ethanol at RT. The high 

temperature transition from Form II to IH was verified using the HSM. Form II crystals 

were suspended in paraffin oil in a hot stage crucible and heated to 100 °C. During the 

heating, the crucible was rotated to dissolve the crystals. Then, the crucible was kept at 

100 °C for a few minutes and cooled down to 95 °C at a rate of 1 °C min-1. The growth of 

prismatic crystals typical of Form IH was observed (see Fig. 4.16 (b)). This suggests that 

the transition temperature from Form II to IH exists between RT and 95 °C. 

 

 

Figure 4.16 (a) Polymorphic transformation of Form IL → II in ethanol solution at RT (b) 

Polymorphic transformation of Form II → IH in paraffin oil at 95 °C.  

 
The calculated densities from the crystal structures at RT are: 1.246, 1.252, 1.233 

g/cm3 for Forms IL, II and III, respectively. The density rule (refer to section 2.3.3) 

suggests that the stability order should be Form II > Form IL > Form III at absolute zero, 

and this is consistent with our previous results. But, the calculated densities of low 

temperature crystal structures are: 1.294, 1.283 and 1.268 g/cm3. In this case, density rule 

is still valid for IL/III and II/III pairs but fails to predict the stability order of IL/II pair. 

200 µm

Form I

Form II
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This is not surprising because these two forms show different thermal contraction 

properties and 𝑍′ parameter, and density rule often fails in such cases (Sun, 2007). 

The crystal lattice energies were calculated using COMPASS with force field 

assigned parameters in Materials Studio (Accelrys Software Inc. Version 4.3.). These 

values at 153 K are: -50.6, -46.9, and -46.2 kcal/mol and at RT are: -49.1, -45.9 and -44.8 

kcal/mol for Forms IL, II and III, respectively. Again, the energy order at both 

temperatures is consistent with IL/III and II/III pairs, but fails with respect to IL/II pair. 

This can be attributed to the disorder found in the alkyl chain of TB molecule in Form II 

structure which leads to a higher R-factor. The calculated density and lattice energy 

values of Form IV are 1.248 g/cm3 and -43.3 kcal/mol. We cannot compare these values 

with other forms because this structure is determined from the PXRD data. But, the 

higher lattice energy and lower density (compared to low temperature structures) 

indicates that it is the least stable among the others. 

4.9. Further Discussion  

Although we could identify the TB polymorphic forms prepared in this work with 

Burger’s Forms I–IV, discrepancies were observed in their relative stability. Results from 

different studies variously suggest that the thermodynamically stable polymorph at 

ambient conditions should be Form I (Burger’s work); Form III (Rowe’s work); and 

Form II (present work). Hence, we have decided to scrutinize their results to find the 

reasons for these discrepancies. In Rowe’s work, it is difficult to identify the stable 

polymorph because no characteristic data was provided. But, the morphological 

description indicates that it crystallizes with a very fine needle shaped morphology which 

tends to form a highly flocculated structure. Interestingly, this morphology closely 
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matches with Form II obtained from our slurry experiments (refer to Fig. 4.16 (a)). 

Hence, we suspect that they might have misinterpreted the more stable phase as Form III 

which was actually Form II.  

In Burger’s case, the discrepancy is mainly observed in the stability of Form II. 

Burger reported that Form II is a metastable polymorph, but the present work suggests 

that it is the stable polymorph. Kimura et al. who further investigated Burger’s forms and 

studied the transition behavior of Form IV under different humidity conditions suggested 

that Form IV transforms to Form II which then converts to Form I at 75% RH in the 

temperature range of 35–70 °C. This is consistent with Burger’s stability order but 

contradicts our observation that Form II is the thermodynamically stable polymorph in 

this temperature range. When we tested our Form II at 75% RH and 45 °C for several 

months, no such transformation was observed. This raises the question of whether our 

Form II is the same as Burger’s reported Form II (or Kimura et al.’s Form II). Further 

structural investigations may be needed to fully answer this question.  To clarify the 

nomenclature amongst the various publications referring to TB, a table summarizing the 

known reports on TB polymorphs and inconsistencies in nomenclature was provided 

(Table 4.6). The discrepancies found in their relative stability and structural data and 

clarifications provided by current work were also shown. 

4.10. Summary 

The conformational flexibility of the TB molecule and strong hydrogen bonding 

ability of secondary amide via carbonyl and sulfonyl groups facilitate this drug to 

crystallize into different polymorphic forms (Forms (IL, IH) and II–IV). All the 

polymorphs show similar hydrogen bonding motif (urea tape motif and hydrogen 
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bonding to sulfonyl group) with different orders of magnitude. The major differences 

were observed due to the rich torsional freedom available for the terminal alkyl chain of 

TB molecule. Forms IL, III and IV adopt different U-type conformations, whereas Form 

II adopts four different chair type conformations (Ch1–Ch4). These molecular features 

clearly suggest that this system is a representative case of conformational polymorphism. 

Due to conformational differences, the molecular orientations in hydrogen bonding 

networks are considerably different and result in different packing arrangements in each 

polymorph. 

By reporting the crystal structures of various polymorphic forms of TB, the present 

work resolves several discrepancies in the published data on the structural information of 

the polymorphs of this API. This study also highlights the influence of anisotropic 

thermal motion of molecules on PXRD patterns of solids. 

Based on the DSC data, the relative thermodynamic relationships of TB 

polymorphic pairs were evaluated and graphically visualized in a schematic energy-

temperature diagram. Form II is found to be the thermodynamically stable polymorph 

from absolute zero to ~353 K and beyond which Form IH is the stable polymorph. These 

observations were further verified by solution mediated transformation experiments. The 

discrepancies in the literature related to the relative stability of TB polymorphs at 

ambient conditions are highlighted and discussed. 
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Table 4.6 Comparison of current work with previous work reported in the literature on TB 
polymorphs. 
 
Author and  
Publication Year 

Polymorphs 
Reported  

Characterization and Relative 
Stability 

Forms Equivalent in Present Work and 
Comments on Relative Stability and 
Structure 

Kuhnert-
Brandstätter and 
Wunsch (1969)  
 

Forms I, II and 
III  

Hot stage microscopy 
 

Forms (IL, IH)a, II and IV 

Simmons et al. 
(1972)  
 

Forms A  and B DSC, FTIR and PXRD Forms (IL, IH) and III  

Burger (1975)  Forms I, II, III 
and IV 

DSC, FTIR and  Hot-stage  
microscopy  
 
Stability order (ambient): 
Form I  > Form III > Form II  > 
Form IV 
 
Stability relationship with Form I: 
Form II: enantiotropic, Tt < 37°C 
Form III: enantiotropic, Tt < 37°C 
Form IV: monotropic 

Forms (IL, IH), II, III and IV 
 
Stability order (ambient): 
Form II > Form IL > Form III > Form 
IV 
 
Stability relationship with Form (IL, 
IH): 
Form II: enantiotropic 
Tt

b (II →IH) ( ~ 80 °C) 
Form III: enantiotropic  
25 °C < Tt (IL →III) < 40 °C 
40 °C < Tt (IH →III) < 106°C 
Form IV: monotropic 
 

Nirmala et al. 
(1981) & 
Donaldson et al. 
(1981) 
 

Form A 
 

Single crystal XRD 
 
Orthorhombic, Pna21, Z = 4 
a = 20.23 Å, b = 7.83 Å, c = 9.09 
Å 
 

Form IL 
 
Crystal structure agrees with present 
work. 

Leary et al. (1981)  Forms A and B DSC and Single crystal XRD 
 
Form B:  monoclinic, P21, Z = 2, 
 a = 8.11 Å, b = 8.96 Å, c = 10.19 
Å,   β = 101o 
 

Forms (IL, IH) and III 
 
Unit cell data does not match with any 
form. 
 

Rowe and 
Anderson (1984) 
 

Forms I and III 
 

Form III is more stable than Form 
I below 75oC (using solubility 
measurements). 
 

Forms (IL, IH)  and II 
 
Stability order and transition 
temperature agree with current work. 
 

Kimura et al. 
(1999) 

Forms I, II, III 
and IV 
 

DSC, PXRD, FTIR, SS-NMR  and 
Single-Crystal XRD 
 
Form II: monoclinic, P21/n, Z = 4, 
a = 11.81 Å, b = 9.06 Å, c = 13.98 
Å, β = 104.5o 
 
Stability order (ambient): 
Form I > Form III > Form II > 
Form IV 
 

Forms (IL, IH), II, III and IV 
 
DSC thermograms of Forms II and III 
probably correspond to those of Forms 
III and II in the current work, 
respectively. 
 
Unit cell data reported for Form II was 
actually that of Form III. 
 
Stability order (ambient) : 
Form II > Form IL > Form III > Form 
IV 
 

a Form IL: Form I below 38°C; Form IH: Form I above 38°C  b Tt : Thermodynamic transition temperature
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CHAPTER 5 
 

PAT AND EXPERIMENTAL SETUP 
 
 
5.1. FDA’s PAT Initiative 

Pharmaceutical production has historically involved the manufacture of the 

finished product via fixed batch recipes, followed by laboratory testing to ensure its 

quality. Such a Quality by Testing (QbT) approach may satisfy the customer needs, but 

sometimes at the expense of cost and loss of profit to the company e.g. longer cycle 

times, product variability, failed batches etc. To address this issue, FDA has changed its 

regulatory approach from focusing on end product to process and released a new 

guidance to the industry. The desired goal is to design and develop well understood 

processes that will consistently ensure a predefined quality at the end of the process. This 

new approach is referred to as Quality by Design (QbD).  

PAT is the critical element in QbD approach which includes process analyzers, 

chemometrics (e.g. data based modeling techniques) and process monitoring and control 

techniques (multivariate supervision and diagnosis strategies). Process analyzers are in 

situ sensors which collect the data related to process variables and product quality 

attributes. Chemometrics are necessary to extract the ‘relevant information’ from the 

highly correlated data generated by process analyzers to develop quantitative models. 

Process monitoring and control techniques facilitate detecting faults and diagnosing in 

real time to ensure process control. 

5.2. QbD based Crystallization Process Development for the Desired Polymorph    

QbD based strategies for the design of robust crystallization of the specific 

polymorph have been discussed by a few authors (Threlfall, 2000; Lin et al., 2007; 
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Bohlin et al., 2009). These are based on interacting with thermodynamics and 

crystallization kinetics of polymorphs to identify regions (design space) where 

spontaneous nucleation of the targeted form is guaranteed. Experimental characterization 

of design space has been reported in the case of stavudine (Lu and Rohani, 2009), 

famotidine (Lu et al., 2007) and stearic acid (Sato and Boistelle, 1984).     

Essentially, to determine a design space for obtaining a specific polymorph, the 

following basic information must be gathered. 

1. Selection of the desired form 

2. Solubility curves of polymorphs 

3. Metastable zone width 

4. Polymorph transformation kinetics 

5.2.1. Selection of the Desired Form  

Once a comprehensive screening for all possible polymorphs has been performed, 

the desired one should be selected based on careful characterization including the 

stability and formulation properties. The ideal solid form should be thermodynamically 

stable, have robust chemical and physical stability, appropriate solubility and suitable 

drug substance and drug product processability (Ticehurst and Docherty, 2006). 

According to Miller et al. (2005), the thermodynamically most stable form is almost 

always considered the most desired crystal form because it has the lowest propensity to 

phase transformation. However, metastable forms are sometimes deliberately chosen 

usually for better solubility and thus enhanced bioavailability (Singhal and Curatolo, 

2004). 

      



Chapter 5                                                                                 PAT and Experimental Setup 
 

 78 

5.2.2. Solubility Data of Polymorphs 

  Accurate solubility data is a crucial part of the design, development and operation 

of crystallization process. As solubility defines the crystallization boundary, it is 

important in assessing process yield, level of supersaturation and polymorph stability. A 

typical experimental procedure for solubility measurement involves agitation of a 

solution that contains excess solids at a constant temperature for sufficient time (4–24 

hours) to allow for equilibration followed by sampling the solution and analyze to 

determine the solute concentration (Mullin, 1993). There are various techniques available 

for solution concentration analysis which includes gravimetry or using analytical 

instruments such as HPLC, UV-Vis spectroscopy etc (Rohani et al., 2005).  

 A more modern solubility measurement method uses online PAT tools for 

monitoring the concentration changes in the solution. Such a real time, inline monitoring 

allows the user to optimize the equilibration time, thus preventing any solid phase 

changes which may occur when metastable polymorphs are involved. Apart from 

solubility measurements, reliable in situ monitoring of solute concentration is a 

prerequisite for the control of supersaturation which is a key parameter in crystallization 

process control.  

There are a wide variety of PATs available for this purpose. The feasibility of 

Attenuated Total Reflectance-Fourier Transfer Infrared Spectroscopy (ATR-FTIR) for 

the in situ measurement of solute concentration in dense liquid slurries has been 

demonstrated (Dunuwila et al., 1994; Dunuwila and Berglund, 1997). Currently, it is the 

most widely used PAT in crystallization and a number of applications have been reported 

where ATR-FTIR has been utilized for process monitoring and control (Lewiner et al., 
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2001; Togkalidou et al., 2001; Fujiwara et al., 2002; Doki et al., 2004; Liotta and 

Sabesan, 2004; Pollanen et al., 2005; Scholl et al., 2006; Cornel et al., 2008; Borissova et 

al., 2009; Kee et al., 2009a). Conductometric probes (Amathieu and Boistelle, 1988; 

Garcia et al., 2002), density meters (Gutwald and Mersmann, 1990), NIR spectroscopy 

(Zhou et al., 2006) and ATR UV-Vis spectroscopy (Howard et al., 2009) have  also been 

applied for in-line concentration measurement. 

5.2.3. Metastable Zone Width Measurements 

MZW measurements reflect the nucleation kinetics of a crystallizing system and 

they have long been used to estimate primary nucleation kinetics (Nyvlt, 1968; Nyvlt et 

al., 1985; Kim and Mersmann, 2001). In a polymorphic system, nucleation kinetics of 

different polymorphs can be experimentally determined by measuring MZW 

corresponding to each polymorph (Teychene and Biscans, 2008). Unlike solubility, 

MZW is a kinetic property typically influenced by a variety of operating parameters 

including saturation temperature, rate of supersaturation generation, impurity level, 

mixing and solution history (Ulrich and Strege, 2002). It is therefore important to 

characterize MZW under a specific set of operating conditions. 

For a given solute-solvent system, MZW can be measured either by isothermal or 

polythermal method (Garside et al., 2002). In the isothermal method, induction time (i.e., 

the time elapsed between creation of supersaturation and the formation of crystals) is 

measured. This is achieved by the rapid cooling of a saturated solution to a predefined 

temperature and isothermally kept until the nucleation is detected. In a polythermal 

method, a saturated solution is cooled at a fixed cooling rate until nucleation occurs. 

MZW can be calculated as the difference between the nucleation and saturation 
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temperatures. However, when dealing with polymorphic compounds, in addition to 

measuring induction time/nucleation temperature, the solid crystallized should also be 

characterized.  

For MZW measurements, a wide variety of techniques have been applied to detect 

the onset of nucleation. Kubota (2008) classified them into two categories; first category 

includes those techniques which detect changes related to the amount of grown nuclei. 

Methods using naked eye (Sohnel and Mullin, 1988), a particle counter (Barrett and 

Glennon, 2002; Fujiwara et al., 2002) and turbidity meter (Gerson et al., 1991) come 

under this category. The second category includes those which detect changes in solution 

concentration. ATR-FTIR (Fujiwara et al., 2002), ultrasound sensor (Titiz-Sargut and 

Ulrich, 2003; Chaleepa et al., 2010), densitometer (Marciniak, 2002) and electrical 

conductivity (Lyczko et al., 2002) fall into this category. Since these techniques cannot 

distinguish the solid forms, the crystals are usually separated and subjected to analysis to 

detect the type of polymorph nucleated.  

Teychene and Biscans, (2008) measured the nucleation rates of eflucimibe 

polymorphs by measuring the induction time using naked eye followed by solid phase 

analysis using PXRD. Similar studies can be found in the literature (Anuar et al., 2009; 

Svard et al., 2009). However, this approach may lead to erroneous conclusions as it 

involves the risk of polymorphic transformation while handling the solid phase. Recently, 

Raman spectroscopy has been shown as a method for monitoring the onset of nucleation 

which detects the associated change in solution opacity at the time of nucleation with an 

additional advantage that it allows for the in situ detection of the type of polymorph 

nucleated (Hu et al., 2005; Owen et al., 2005; Wu et al., 2009).  
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5.2.4. Polymorph Transformation Kinetics 

Knowledge of possible phase transformations, their kinetics and rate controlling 

mechanism in a polymorphic system is essential when designing a process to isolate the 

desired form. This information is useful for determining crystallization operating 

parameters e.g. temperature, batch time etc. to enhance/prevent the desired/undesired 

transformations. Early work on SMPT characterization involved sampling of suspension 

at different time intervals to separate the solid and liquid phases and analyze to measure 

the solute concentration and polymorphic composition (Davey et al., 1985; Davey and 

Richards, 1985; Kitamura, 1989; Kitamura, 1993; Maruyama et al., 1999). Offline 

methods such as PXRD, DSC, microscopy and particle size analyzer etc. for polymorphic 

content and UV-Vis, HPLC, etc. for solute concentration measurements have been used, 

respectively. However, due to the dynamic nature of polymorphic transformation and the 

instability of certain polymorphs, offline-analysis is largely affected by sampling errors 

(Yu et al., 2004). Consequently, in line, real time measurements such as PATs would be 

more advantageous. Moreover, real time, in line detection of polymorphs and their 

transformation during crystallization is an asset for process control. Application of PATs 

for in situ monitoring of solute concentration has been discussed before (refer to section 

5.2.2).  The same methods can be employed for SMPT characterization. The following 

discussion emphasizes on PATs for in situ monitoring of polymorphs.  

In the past two decades, a wide variety of PATs have been applied for polymorph 

monitoring (Mangin et al., 2009). Among the many, near-infrared (NIR) and Raman 

spectroscopy are the most prominent because of their distinct advantage of operating in a 

remote manner using fiber-optic waveguides and transflectance probes (Stephenson et al., 
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2001). The potential of fiber optic NIR spectroscopy to quantitatively monitor 

polymorphic composition of a solid-state API during an industrial crystallization process 

has been demonstrated (Fevotte et al., 2004). Recently, Raman spectroscopy has become 

more popular in pharmaceutical research and is the most widely applied technique in 

SMPT studies. Its use for polymorph monitoring in suspensions was first demonstrated 

by Wang et al., (2000) with progesterone as a model system. Similarly, Starbuck et al. 

(2002) used Raman spectroscopy to determine the rate of polymorphic transformation of 

a complex multipolymorphic API, referred to as MK-A. The study of SMPT of pseudo 

polymorphs of citric acid and carbamazepine was also performed using Raman (Caillet et 

al., 2006; Qu et al., 2006).   

As polymorphic changes are often accompanied by a change in morphology, 

alternative techniques such as focused beam reflectance measurement (FBRM) and inline 

video microscopy have been used to monitor polymorphic transformations. FBRM is a 

probe-based particle counter which utilizes laser backscattering technology to measure, in 

real time, a chord length distribution (CLD) which is proportional to particle size 

distribution (O'Sullivan et al., 2003; Yu et al., 2007). In situ video probes such as process 

vision and measurement (PVM) provide in situ high resolution imaging of particles 

within the process environment. Relying on the distinct morphological difference  

between δ and β polymorphs, O'Sullivan and Glennon (2005) successfully monitored the 

polymorphic transformation of D-Mannitol in aqueous solution using FBRM. Similar 

studies can be found in the literature (Barthe et al., 2008; Dang et al., 2009; Liu et al., 

2009). However, these techniques rely on indirect measurements on polymorphs and 
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therefore, the information obtained remains qualitative and often the interpretation is 

difficult.        

5.3. PAT in the Present Work  

The PAT framework used in the present work mainly consists of two process 

analyzers, ATR-FTIR and Raman spectroscopy. They were coupled with chemometric 

techniques and automated for in situ monitoring of crystallization operations. Before 

going into experimental details, the following text introduces the working mechanism of 

these instruments and the coupled chemometric methods.  

5.3.1. ATR-FTIR  

 

Figure 5.1 Working principle of ATR-FTIR (Lewiner et al., 2001). 

 
The working principle of ATR-FTIR is shown in Fig. 5.1 (For theory, refer to 

section 2.5.2). A laser beam generated from the FTIR spectrophotometer is directed by 

optics to the prismatic ATR crystal located at the tip of the probe which is in contact with 

the slurry. Part of the beam is reflected at the ATR crystal/liquid interface. Another part 

propagates into the liquid phase where absorption takes place.  After being reflected back 

into the probe it is directed to the detector. 

Incident beam I0

Reflected beam IR

Absorbed reflected 
beam IAR

Sample with 
refractive index n2

dp, depth of 
penetration

ATR crystal with
refractive index n1
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The penetration depth 𝑑𝑝 can be calculated by Eq. 5.1: 

             𝑑𝑝 =
𝜆

2𝜋𝑛1[𝑠𝑖𝑛2𝜃 − (𝑛2 𝑛1⁄ )2]1 2⁄                                                                                 5.1 

The refractive index of ZnSe crystal used in this study is, 𝑛1 = 2.4 and 𝑛2 = 1.5 

for water. With 𝜃 = 45° the penetration depth at 𝜆 = 1000 cm-1 is 2 µm.  Such a depth is 

shorter than the boundary layer of laminar flow surrounding the ATR crystal.  Therefore 

the absorbance recorded in the absorbed reflected beam is from the liquid phase in 

immediate contact with ATR crystal only, with minimum interference from the solid 

phase. On occasion, the nucleation process can be observed if the nuclei are smaller than 

a few micrometers, but often the IR absorbance of the particles is weak compared to that 

of the dissolved species. A significant advantage of using ATR-FTIR compared to NIR is 

its measuring range which is mid-IR (400–4000 cm-1) where fundamental vibrations are 

active. Therefore, spectra are less complicated with well-resolved peaks compared to 

NIR. 

5.3.2. Chemometrics for ATR-FTIR 

The most commonly used chemometric methods with ATR-FTIR for relating the 

IR spectra to the solute concentration are partial least squares (PLS) and principal 

component regression (PCR). These methods are based on linear projection of the high 

dimensional spectral data (𝐗) onto the low dimensional latent variable space which 

contains most of the important information. Those underlying features of new data are 

used for regression on to a known solute concentration vector (𝐲) to develop quantitative 

models.  

However, one important issue with online measurements using IR spectra as well 

as any other multivariate data is the presence of 𝐲- unrelated variation in 𝐗 due to 
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external effects such as temperature, sample characteristics, light scattering, instrumental 

drift etc. For example, when ATR-FTIR is used in cooling crystallization, temperature 

varies over a large range which can affect the IR band shapes and such variation is 

unrelated to solute concentration (Wulfert et al., 2000). Similarly, anti-solvent 

interference in anti-solvent crystallization, presence of impurities etc. can vary the IR 

spectrum independent of solute concentration. Such variation is a non-linear phenomenon 

which complicates the linear multivariate techniques like PLS and PCR. Consequently, 

the model is forced to use more regression factors than is to be expected by the chemical 

rank (number of components in the sample). This non-ideal modelling can have adverse 

effects on model interpretability and robustness (Zeaiter et al., 2005). In order to promote 

ATR-FTIR as well as any other spectroscopic technique to real-life industrial 

applications one must consider these issues (Feundale et al., 2002).    

It is a common practice to pre-process 𝐗 to remove the 𝒚- unrelated variation 

before it is subjected to regression modelling. Zeaiter et al., (2005) theoretically proved 

that pre-processing can significantly enhance the model performance and robustness. The 

most commonly used methods are geometrical spectral pre-processing (standard normal 

variate (SNV) transformation, multiplicative scatter correction (MSC), smoothing and 

differentiation) and orthogonal projection. The main drawback of geometrical methods is 

that they are empirical in nature and thus they have the risk of removing the information 

which is relevant to model prediction. Orthogonal projection methods are more logical in 

that they remove only that part from spectra which is linearly unrelated i.e. 

mathematically orthogonal to 𝒚. Therefore, there is little scope for losing relevant 

information. Wold et al. (1998) first introduced this idea by developing orthogonal signal 
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correction (OSC) filters. They also investigated the applicability of OSC to calibration 

transfer to different instruments (Sjoblom et al., 1998). Pollanen et al. (2005) has applied 

OSC to pre-process ATR-FTIR data to develop a stable calibration model for monitoring 

solute concentration in crystallization operations. They found that OSC filtering has 

simplified the model and also enhanced the robustness.  

Subsequently, several authors have presented different OSC algorithms 

(Andersson, 1999; Fearn, 2000; Hoskuldsson, 2001; Westerhuis et al., 2001; Feudale et 

al., 2002; Trygg and Wold, 2002). Svensson et al. (2002) provided a comparison of 

various OSC algorithms and their effectiveness in improving model interpretability and 

performance. Among the many OSC algorithms, orthogonal projection to latent structures 

(OPLS) developed by Trygg and Wold (2002) is unique since it combines the features of 

PLS with orthogonal projection. This hybridization addresses some of the issues associate 

with OSC filters (Wold et al., 1998) which often lead to overfitting and degradation of 

calibration models. In OPLS, OSC filter is built in such a way that it removes only 

variation in 𝐗 explained in each PLS component that is not correlated to 𝒚. One important 

property of OPLS is that, for single 𝒚- variable cases, it will always reduce down to a 

single regression factor, thereby ensures good model interpretability and robustness. In 

the same reference in which OPLS is reported (Trygg and Wold, 2002), an extension 

referred to as OPLS (PCA) which uses principal component analysis (PCA) to remove 

orthogonal information was also presented. In the present work, OPLS (PCA) algorithm 

has been coupled with ATR-FTIR and applied for in situ monitoring of solute 

concentration.  
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5.3.3. Raman Spectroscopy 

Raman spectroscopy has emerged in recent years as ‘one of the fastest, most 

reliable and most suitable technique to identify crystal forms and can be easily exploited 

routinely for monitoring phase changes’ (Auer et al., 2003). Samples for Raman analysis 

may be solids, liquids, or gases, or any forms in between and in combination such as 

slurries, gels etc. Since crystallization is a multiphase phenomenon, Raman spectra will 

be a combination of Raman scattering from both the solids and the solution, with the 

solids dominating due to the greater scattering cross-section. Like ATR-FTIR, Raman 

also operates in mid-IR range, thus greater chemical selectivity with well-resolved peaks. 

 

Figure 5.2 Working principle of Raman Spectroscopy (adapted from Kaiser Optical Systems). 

 
The working mechanism of Raman spectroscopy is described below (For theory, 

refer to section 2.5.2). A typical Raman spectrometer is made up of three basic parts: the 

laser, probe, and the spectrograph (see Fig. 5.2). A laser beam generated in Raman 

spectrophotometer is directed by optics via a fiber to the probe tip which is in contact 
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with the slurry to excite Raman spectra. The probe collects the scattered photons via 

another fiber, filters out the Rayleigh scatter and any background signal from the fiber 

optic cables, and sends the Raman scatter to the spectrograph. In the spectrograph, 

Raman scattered photons pass through a transmission grating to separate them by 

wavelength and passed to a detector, which records the intensity of the Raman signal at 

each wavelength. This data is plotted as the Raman spectrum. 

5.3.4. Raman with Multivariate Statistical Process Monitoring 

The most commonly used chemometric method with Raman for relating the Raman 

spectra to the polymorphic composition is the PLS method. There are several studies 

which reported on quantitative monitoring of polymorphic composition during 

crystallization using PLS modelling (Starbuck et al., 2002; Scholl et al., 2006; Caillet et 

al., 2007; Cornel et al., 2008). Despite the success, there are several issues which 

remained to be addressed. Raman calibration is a time-consuming effort which involves 

preparing standards at different proportions of polymorphs and dispersing in solution to 

collect Raman spectra. If one wants to correct for the temperature effect, the whole 

procedure has to be repeated at different temperatures which is practically less desirable. 

The other issue is the presence of unrelated variation in Raman data which can 

complicate PLS models. Raman intensities are observed to be sensitive to external effects 

such as particle size, suspension density etc. which can vary during the crystallization 

operations. Some improvements have been reported by using pre-processing (Hu et al., 

2006), explicit calibration i.e. modelling the external effects by preparing an extensive set 

of calibration samples (Cornel et al., 2008) and advanced calibration methods (Chen et 

al., 2008). In the present work, multivariate statistical process monitoring (MSPM) has 
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been applied with Raman for polymorph monitoring. An advantage of MSPM is that it is 

completely data-based, therefore, no sophisticated calibration is required to apply these 

techniques. The following text provides more details on MSPM.  

MSPM using latent variable methods, PCA in particular, has been proven very 

useful for on line monitoring, analysis and control of industrial chemical processes 

(Nomikos and Macgregor, 1995; Kourti, 2005). The basis of this approach is to build an 

empirical PCA model of a historical set of on-line batch process data obtained under 

normal operating conditions. New batches are then monitored by collecting samples and 

projecting onto the model to check how good they fit the model. There are several model 

statistics available to evaluate the goodness of fit. In out of control situation, PCA also 

offers a means for a proper investigation for the root cause to the process abnormalities.  

However, use of spectroscopy in MSPM applications is quite rare. The main 

challenge is obtaining a reliable reference data for building a model which is valid over a 

period of time (Gurden et al., 2002). In comparison to engineering data such as 

temperature, pressure, flowrate etc. spectroscopic data are generally more sensitive to 

changes in process conditions such as variation in the background medium, temperature 

fluctuations etc. Recently, Pollanen et al. (2006) has introduced the concept of dynamic 

PCA based MSPM and applied it for monitoring the onset of crystallization process using 

ATR-FTIR. In this approach, a PCA reference model was dynamically built using the 

spectra collected in the undersaturated stage which is called the training period. 

Subsequent spectra were projected on to this model to detect the nucleation event. This is 

called the prediction period. In this way, the uncertainties associated with predefined off-

line reference models were eliminated and MSPM with spectroscopy was achieved. In 
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the present work, we adopted this idea and implemented it with Raman spectroscopy for 

monitoring polymorphs as well as for the detection of the nucleation event.        

5.4. Experimental Section 

5.4.1. Materials  

TB (≥ 98 % purity) was purchased from Junda Pharmaceutical Co.Ltd. (Jiangsu, PR 

China). The PXRD confirms that it belongs to Form IL and used as such without further 

purification. The solvents (ethanol and deionized water) used were of analytical reagent 

grade. A mixed solvent ethanol/water (60:40 w/w) was prepared and used for all the 

experiments. To prepare Form II, Form IL crystals were suspended in excess in solution 

at 30 °C and stirred for 4–5 hours to allow polymorphic transformation. The obtained 

Form II crystals were filtered and dried in vacuum oven at RT. Polymorphic purity was 

verified using PXRD. 

5.4.2. Experimental Setup and Instrumentation 

A schematic diagram of the experimental setup is shown in Fig. 5.3. All the 

experiments were performed in a 1-liter flat-bottomed glass crystallizer with an inner 

diameter of 100 mm. It was fitted with four glass baffles on the inner wall to enhance the 

mixing properties. A marine-type impeller made of stainless steel with a diameter of 42 

mm driven by a variable speed overhead stirrer motor was used to provide agitation. An 

agitation speed of 250 rpm was used which is sufficient to keep the crystals in 

suspension. The temperature in the crystallizer was controlled by a heating and 

refrigerated circulator (Julabo FP50-HL) and measured every 2 s using a Pt100 

thermocouple. 



Chapter 5                                                                                 PAT and Experimental Setup 
 

 91 

IR absorbance spectra were collected with a resolution of 4 cm-1 on a Nicolet 4700 

spectrophotometer (Nicolet Instrument Co.) equipped with a Dipper-210 ATR-FTIR 

immersion probe (Axiom Analytical Inc.). A conical ZnSe crystal is sealed to one of its 

end with two ATR reflections. Every spectrum was the average of 64 scans in the range 

of 600–4000 cm-1. Spectra of ethanol/water (60:40 w/w) solvent at 22 ºC were used as 

background. The FTIR was purged continuously by purge gas supplied by a FTIR purge 

gas generator (Parker Balston, model 75-52-12VDC). 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3 Experimental setup for crystallization experiments. 

 
In situ Raman spectra were collected using a Raman Rxn4 analyzer from Kaiser 

Optical System Inc. (Ann Arbor, MI) equipped with an Invictus NIR external cavity 

stabilized diode laser operating at 785.714 nm and 450 mW. The system was equipped 

with single grating f/1.8 holographic imaging spectrograph with a holographic notch filter 

and Holoplex transmission grating. The detector was a multichannel CCD array detector. 
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Backscattered radiation was collected from the sample via a 1
4�  - in. immersion probe 

sealed with a sapphire window coupled with the spectrometer fiber-optic cable. Raman 

spectra were acquired continuously after an exposure time of 5 s and the average of 5 

accumulations unless otherwise stated. 

In one of the MZW experiments, for a comparison, FBRM probe (Lasentec, model 

D600L) was also inserted along with Raman probe. FBRM chord length distributions of 

the TB crystals were obtained in situ with 10 sec measurement duration using the Control 

Interface Software, version 6.0b16. Data acquired were analyzed using the Data Review 

Software, version 6.0b16, which displays CLD and the corresponding statistics. In few 

experiments, Lasentec PVM probe was inserted to collect in situ images of slurry for 

visual inspection.  

 For off-line polymorphic verification, the slurry was sampled, filtered and dried 

overnight in vacuum oven at RT. PXRD measurements of dried crystals were conducted 

in Bragg-Brentano geometry with a Bruker D8 Advance (Bruker AXS GmbH, Germany) 

X-ray powder diffractometer  equipped with Cu-Kα source ( λ = 1.5406 Å), a Nickel-

filter, 0.3° divergence slit, a linear position sensitive detector (Vantec-1). Data were 

collected at RT over a 2θ range of 5 – 50° with an equivalent step size of 2θ = 0.018° at a 

scan rate of 0.02° sec-1. All samples were rotated to improve the counting statistics. 

 Solid-state Raman spectra of Forms IL, II and III were acquired using a Raman 

microscope (Invia Reflex, Renishaw) equipped with near infrared enhanced deep-

depleted thermoelectrically peltier cooled CCD array detector (576 × 384) pixels and a 

high grade Leica microscope. The Raman scattering was excited with a 50-mW NIR 

diode laser operating at 785 nm. Scans were performed in a spectral window ranging 
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from 100–2000 cm-1 with a sample exposure time of 10 sec and 4 accumulations. 20× 

objective lens was used to examine the sample. 

 For ATR-FTIR calibration modeling, OPLS (PCA) algorithm is implemented into 

PLS toolbox 4.0 (Eigenvector Research, Manson, WA) working under Matlab 7.9 

(Mathworks, Natick, MA). ATR-FTIR calibration and measurement of solute 

concentration were automated using a Visual Basic .NET program that communicates 

with ATR-FTIR and chemometrics. For polymorph monitoring, dynamic PCA based 

MSPM was built in Matlab and automated using Raman/Matlab interface. 

5.4.3. Mathematical Methods  

In the following text, matrices are denoted by bold uppercase letters. Vectors are 

assumed to be column vectors unless indicated by a transposition, for example 𝐱𝐓, and 

denoted by bold lowercase letters. Scalars are denoted by regular lowercase letters.   

For a set of mean centered spectral data matrix 𝐗(𝑛 × 𝑚) with 𝑛 samples and 𝑚 

variables (intensities at wavenumber) and the corresponding concentration vector 𝒚(𝑛 ×

1), the latent variable models are given by Eqs. (5.2) and (5.3). 

 𝐗 = 𝐭𝟏𝐩𝟏𝐓 +  𝐭𝟐𝐩𝟐𝐓 + ⋯+ 𝐭𝐊𝐩𝐊𝐓 + 𝐄 = 𝐓𝐏𝐓 + 𝐄                                                                 (5.2) 

 𝐲 = q𝟏𝐭𝟏 +  q𝟐𝐭𝟐 + ⋯+ qK𝐭𝐊 + 𝐟 = 𝐓𝐪𝐓 + 𝐟                                                                    (5.3) 

K is the number of latent variables (LVs). 𝐄 and 𝐟 are the residual matrices, 𝐓(𝑛 × K) is 

the matrix of 𝐗 scores, and 𝐏(𝑚 × K) and 𝐪(1 × K) are the loading matrices of 𝐗 and 𝐲, 

respectively. 𝐭𝐢 and 𝐩𝐢 are the column vectors of 𝐓 and P and qi is a scalar coefficient, 

corresponding to ith latent variable, respectively. Typically, the dimension K is quite small 

compared to the dimension of the original data (K ≪ 𝑚) which is normally determined 

by cross-validation or variance analysis. The loading vectors express how the original 
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variables are weighed together in a corresponding LV and the score vectors contain a 

score value for each spectrum and signify how each sample is related to other in a 

particular LV. Three latent variable methods were employed in this work whose 

mathematical details are described below.     

Principal Component Analysis (PCA). PCA models only single space 𝐗 by finding the 

latent variables called principal components (PCs) that explain the maximum variance 

in 𝐗. Mathematically, PCA relies upon the eigenvector decomposition of the covariance 

matrix (𝐗𝐓𝐗) to extract PCs. The loading vectors (𝐩𝐢) are the eigenvectors of the 

covariance matrix and the corresponding eigenvalues (𝜆𝑖’s) signify the amount of 

variance captured by a given PC. To derive an optimum PCA model, a good rule of 

thumb is to include PCs until the subsequent PC captures <2% variation in 𝜆𝑖’s. The 

corresponding scores vector 𝐭𝐢 is then generated by the linear projection of 𝐗 on to the PC 

space using the loading vector (𝐭𝐢 = 𝐗𝐩𝐢). The unmodeled variation in 𝐗 is considered 

noise and consolidated into the residual matrix 𝐄.  

There are several PCA statistics including the scores itself can be used for MSPM. 

For MSPM, score values for any new sample 𝐱T can be obtained by projecting the sample 

on to directions defined by loadings (ti = 𝐱𝐓𝐩𝐢). Two commonly used PCA statistics are 

T2 and Q statistics. T2 measures the distance of the new sample from the model centre 

within the model space. This determines whether the projected sample has any systematic 

deviation from the steady-state region. Q statistic is complementary to T2 and measures 

the orthogonal distance of the sample from the model space. It is useful in monitoring the 

nonsystematic variations which are not explained by the model. Fig. 5.4 shows the 

geometric interpretation of these statistics for a two-component PCA model. 
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T2 and Q statistics can be calculated by Eqs. (5.4) and (5.5). 

𝑇2 = �
𝑡𝑖2

𝜆𝑖
                                                                                                                                   (5.4)

K

𝑖=1

 

𝑄 = �(𝑥𝑗 − 𝑥𝚥�)2
𝑗=𝑚

𝑗=1

                                                                                                                      (5.5) 

ti is the sample score on ith PC. 𝑚 is the number of variables and 𝑥𝑗 and 𝑥𝚥�  are the 

measured and predicted spectral values of a new sample corresponding to 𝑗𝑡ℎ variable.  

Along with statistics, PCA also allows to extract variable contribution plots which 

show the contribution from individual variables to the calculated statistic. Such a plot is 

highly useful in assessing the process conditions and possible causes.  

 

 

 

 

 

 

 

 

 
 

Figure 5.4. Geometrical representation of T2 and Q statistics. 
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Contributions to T2 statistic:  

For any given new sample, the variable contribution to T2 value is given by   

𝑐𝑗 = �
𝑡𝑖𝑝𝑗𝑖
𝜆𝑖
1/2

𝑖=K

𝑖=1

                                                                                                                                (5.6) 

𝑐𝑗 is the T2contribution of  𝑗𝑡ℎ variable, 𝑡𝑖 is the score value on 𝑖𝑡ℎ PC, 𝑝𝑗𝑖is the loading 

on 𝑖𝑡ℎ PC corresponding to 𝑗𝑡ℎ variable, 𝜆𝑖 is the eigenvalue corresponding to 𝑖𝑡ℎ PC, 

respectively.                                                        

Partial Least Squares (PLS). PLS is a popular latent variable method which can model 

both 𝐗 and 𝐲 data. The objective of PLS is to find LVs that explain both the maximum 

variation in 𝐗 and correlates with the variation in 𝒚. A commonly used PLS NIPALS 

algorithm (see Table 5.1) operates sequentially to extract each LV and the corresponding 

model parameters (𝐰𝐢, 𝐭𝐢, 𝐩𝐢, qi). In this algorithm, a loading weight vector 𝐰𝟏 is 

computed in such a way that it maximizes the covariance between 𝐭𝟏 and 𝐲 (step 2). 

Using standard linear algebra, it can be shown that 

𝐰𝟏 =
𝐗𝐓𝐲
‖𝐗𝐓𝐲‖

                                                                                                                                (5.7) 

‖ ‖ is the eucledian norm. The corresponding scores and loading vectors 𝐭𝟏, 𝐩𝟏 and a 

scalar coefficient q1 are then generated (steps 3–5). 𝐰𝟐 is calculated in the same way 

with the deflated forms of 𝐗 and 𝐲, and so on and so forth. 

Mathematically, PLS extracts the eigenvectors of the covariance matrix 𝐗𝐓𝐲𝐲𝐓𝐗 as 

the loading weight vectors 𝐰𝐢. As the true rank of covariance matrix is only one, ideally 

PLS should extract only one 𝐰𝐢. However, the presence of 𝒚- unrelated variation in 𝐗 can 

disturb the extraction and as a result, PLS extracts additional LVs to satisfy the model 

requirements. This increase in model complexity can negatively affect the model 
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robustness and interpretation. To address these issues, the PLS algorithm has been 

modified to build simpler and robust PLS models. 

Table 5.1 Comparison of PLS and OPLS (PCA) algorithms. 

Step PLS OPLS (PCA) 
1 Center and scale Center and scale 
2 

𝐰 =
𝐗𝐓𝐲
‖𝐗𝐓𝐲‖

 𝐰 =
𝐗𝐓𝐲
‖𝐗𝐓𝐲‖

 

3 𝐭 = 𝐗𝐰 𝐭 = 𝐗𝐰 
4 q = 𝐲𝐓𝐭/(𝐭𝐓𝐭) q = 𝐲𝐓𝐭/𝐭𝐓𝐭 
5 𝐩 = 𝐗𝐓𝐭/(𝐭𝐓𝐭) 𝐩 = 𝐗𝐓𝐭/𝐭𝐓𝐭 
6  𝐰𝐨𝐫𝐭𝐡𝐨 = 𝐩 − �

𝐰𝐓𝐩
𝐰𝐓𝐰�

𝐰 

7  𝐭𝐨𝐫𝐭𝐡𝐨 = 𝐗𝐰𝐨𝐫𝐭𝐡𝐨 
8  𝐩𝐨𝐫𝐭𝐡𝐨 = 𝐗𝐓𝐭𝐨𝐫𝐭𝐡𝐨/𝐭𝐨𝐫𝐭𝐡𝐨𝐓 𝐭𝐨𝐫𝐭𝐡𝐨 
9 
 

 

𝐗𝐎𝐏𝐋𝐒 = 𝐗 − 𝐭𝐨𝐫𝐭𝐡𝐨𝐩𝐨𝐫𝐭𝐡𝐨𝐓  
For additional orthogonal 

components, return to step 3 and 
set 𝐗 = 𝐗𝐎𝐏𝐋𝐒, otherwise go to step 10 

10  𝐗𝐨𝐫𝐭𝐡𝐨 = 𝐓𝐨𝐫𝐭𝐡𝐨𝐏𝐨𝐫𝐭𝐡𝐨𝐓 
11  Run PCA on 𝐗𝐨𝐫𝐭𝐡𝐨 

 𝐗𝐨𝐫𝐭𝐡𝐨 = 𝐓𝐨𝐫𝐭𝐡𝐨(𝐩𝐜𝐚)𝐏𝐨𝐫𝐭𝐡𝐨(𝐩𝐜𝐚)
𝐓 + 𝐄𝐨𝐫𝐭𝐡𝐨(𝐩𝐜𝐚) 

12  𝐗𝐟𝐢𝐥𝐭 = 𝐗𝐎𝐏𝐋𝐒 + 𝐄𝐨𝐫𝐭𝐡𝐨(𝐩𝐜𝐚), now 𝐗𝐟𝐢𝐥𝐭 is the filtered  
data matrix 

13 𝐄 = 𝐗 − 𝐭𝐩𝐓, 𝐟 = 𝐲 − 𝐭q𝐓 
For additional latent variables, 

return to step 2 and 
set 𝐗 = 𝐄 and 𝐲 = 𝐟 

Run PLS using 𝐗𝐟𝐢𝐥𝐭 

 

Orthogonal Partial Least Squares (OPLS) (PCA). OPLS (PCA) is an extension of PLS 

based on NIPALS algorithm with few additional orthogonalization steps included (see 

Table 5.1). 

In OPLS (PCA), 𝐗 is decomposed into three distinct parts, correlated, 𝐲- unrelated 

and residual parts. The model can be written as 

𝐗 = 𝐭𝟏𝐩𝟏𝐓 +  𝐭𝟐𝐩𝟐𝐓 + ⋯+ 𝐭𝐊𝐩𝐊𝐓 + 𝐭𝐨𝐫𝐭𝐡𝐨𝟏𝐩𝐨𝐫𝐭𝐡𝐨𝟏𝐓 +  𝐭𝐨𝐫𝐭𝐡𝐨𝟐𝐩𝐨𝐫𝐭𝐡𝐨𝟐𝐓 + ⋯+ 𝐭𝐨𝐫𝐭𝐡𝐨𝐑𝐩𝐨𝐫𝐭𝐡𝐨𝐑𝐓 + 𝐄

= 𝐓𝐏𝐓 + 𝐓𝐨𝐫𝐭𝐡𝐨𝐏𝐨𝐫𝐭𝐡𝐨𝐓 + 𝐄                                                                                         (5.8) 

𝐲 = 𝐓𝐪𝐓 + 𝐟                                                                                                                                  (5.9) 
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𝑅 is the number of orthogonal components (OCs). 𝐓𝐨𝐫𝐭𝐡𝐨 and 𝐏𝐨𝐫𝐭𝐡𝐨 are the 

corresponding 𝒚- orthogonal scores and loading matrices. 𝐭𝐨𝐫𝐭𝐡𝐨𝐢 and 𝐩𝐨𝐫𝐭𝐡𝐨𝐢 are the 

column vectors of 𝐓𝐨𝐫𝐭𝐡𝐨 and 𝐏𝐨𝐫𝐭𝐡𝐨 corresponding to 𝑖𝑡ℎ OC.  

OPLS (PCA) NIPALS algorithm first computes one ordinary PLS component 

(steps 1–5). The obtained 𝐰 and 𝐩 are then used to compute a new weight vector 𝐰𝐨𝐫𝐭𝐡𝐨 

which is part of 𝐩 that remains orthogonal to 𝐰 (step 6). Using standard linear algebra, 

Trygg and Wold (2002) showed that this is equal to 

𝐰𝐨𝐫𝐭𝐡𝐨 = 𝐩 − �
𝐰𝐓𝐩
𝐰𝐓𝐰

�  𝐰                                                                                                          (5.10) 

Using 𝐰𝐨𝐫𝐭𝐡𝐨, the corresponding scores, loadings vectors 𝐭𝐨𝐫𝐭𝐡𝐨 and 𝐩𝐨𝐫𝐭𝐡𝐨 are then 

generated (steps 7 and 8). In step 9, the orthogonal component is removed from 𝐗. If 

further OCs have to be removed, the whole algorithm (steps 3–9) is repeated, including 

the first PLS step but with new 𝐗. Otherwise, the orthogonal variation removed from 𝐗 is 

collected into 𝐗𝐨𝐫𝐭𝐡𝐨 and decomposed using PCA to remove the residual part and added 

back into the new 𝐗 which forms the new filtered matrix 𝐗𝐟𝐢𝐥𝐭 (steps 10–12). Finally, an 

ordinary PLS algorithm is run on 𝐗𝐟𝐢𝐥𝐭 to extract the PLS model parameters (step 13). 

This OPLS (PCA) pretreated PLS model is then used for predictions of new samples. It is 

important to note that the new samples have to be corrected for orthogonal variation 

using OPLS (PCA) model parameters before PLS model prediction (For more details, 

refer to Trygg and Wold, 2002).       

Determination of Number of Latent Variables. Choosing the correct number of LVs into 

the model is critical. Too few LVs mean not all of the variation within 𝐗 explaining 𝒚 has 

been included in the model and predictions of new samples are compromised. Too many 

components in the model mean that irrelevant variation that does not predict 𝒚 (noise) is 
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included in the model, which can result in overfitting problems. Such models can be 

unstable, and although calibration samples fit very well to the model, the predictions for 

new samples are not accurate. Cross-validation is the common method used to determine 

the optimal number of LVs.  

During cross-validation, parts of the calibration set (test set) are left out of 

calculations and the model is built using a certain number of LVs and applied to estimate 

the test set. This procedure is repeated several times for different test sets and the root-

mean-square error of cross-validation (RMSECV) between predicted and known values is 

calculated using Eq. 5.11 to select the number of LVs.  

RMSECVK =     �
∑ (𝑦𝑖 − 𝑦�𝑖)2K
𝑖=1

𝑛
                                                                                          (5.11) 

K is the number of chosen LVs, 𝑦�𝑖 is the predicted value of sample 𝑖 using a model that 

was built using a set of samples that does not include sample 𝑖. 𝑦𝑖 is the known value of 

sample 𝑖. 𝑛 is the number of calibration samples. The optimal number of LVs is found 

where RMSECV as a function of the number of LVs reaches a minimum.  

There are various cross-validation methods that differ in how the samples are left 

out of the calibration set. In the present work, leave-one-out (LOO), in which each single 

sample in the calibration set is used as a test set, was used. The RMSECV value was 

examined to estimate the optimal number of LVs.  

Determination of Number of Orthogonal Components. For pre-processing based on 

orthogonal projection methods, the number of OCs to be removed is an important 

parameter. The correction may not be effective if too few components are removed. In 

contrast, removal of too many results in erosion of useful signal. The classic way is to 
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adjust this parameter according to RMSECV. In the present work, for OPLS model, OCs 

were removed until the number of LVs reduces down to one. In addition, the following 

statistics were also calculated to assess the model performance. The correlation 

coefficient (R2X) is a measure of how much of the variance in (𝐗) can be explained by the 

model. The cross-validated variance (Q2) explains how much of the variance in 𝐗 can be 

predicted by the model. 

R2X =
SStot − SSres

SStot
                                                                                                                (5.11) 

Q2 =
SStot − PRESSK

SStot
        where    PRESSK =  �(𝑦𝑖 − 𝑦�𝑖)2

n

𝑖=1

                                      (5.12) 

SStot and SSres are the sum of squares of measured data and model residuals, 

respectively. PRESSK is the cumulative predicted residual sum of squares (PRESS) 

corresponding to Kth LV.  

5.4.4. Experimental Procedures  

ATR-FTIR Calibration Experiments. Different solute concentrations of TB in 400 g of 

solvent (Table 5.2) were placed in the crystallizer and heated until all of the crystals 

dissolved. The solution was cooled at 0.5 °C/ min, while the IR spectra were collected at 

30 sec interval. The measurements were stopped once crystals started to appear by 

observing with naked eye.  

ATR-FTIR Calibration Modeling. The calibration experiments resulted in a data set of 

234 IR spectra collected from various TB concentrations. The IR spectra in the range 

1000–1650 cm-1 were used to construct the calibration model. The higher (2800–3500 

cm-1) and lower (650–1000 cm-1) wavenumber regions are excluded because of large 

frequency shifts with temperature which can make the model unstable. As an example, 
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the raw IR spectra collected for Cs3 in the selected range are shown in Fig. 5.5(a). A 

clear temperature effect and base-line variations independent of solute concentration were 

visible in the spectra. 

Table 5.2 ATR-FTIR calibration samples for solute concentration measurements. 

Calibration  
sample 

Concentration  
(mg/g solvent) 

Temperature range  
(deg C) 

Number of spectra  
collected 

Cs1 19.8 35 – 14.8 54 

Cs2 48.9 40 – 21.1 61 

Cs3 100.2 50 – 32.5 36 

Cs4 150.4 50 – 38.1 25 

Cs5 190.7 60.7 – 45.3 33 

Cs6 226.7 60.1 – 48 25 

  
Using the calibration set, PLS and OPLS (PCA) regression were applied and the 

resulted models were summarized in Table 5.3. The cross validation suggests a 7- LV 

model for PLS with RMSECV value of 0.23 mg/g. PLS extracts the first LV explaining 

93% variation in 𝐗 that correlates with 99% variation in 𝐲 with RMSECV value of 3 

mg/g. This low correlation can be attributed to the presence of orthogonal 𝐲- unrelated 

variation in IR spectra. As a result, PLS uses another 6 LVs to extract all the 𝐲- related 

variation in 𝐗 to improve the correlation. In OPLS (PCA), the data was pre-processed to 

remove 6 OCs to build a PLS model. The filtered spectra are shown in Fig. 5.5(b) for 

Cs3. OPLS (PCA) has effectively removed the temperature effect and base-line 

variations. This has significantly improved the covariance in calibration data and as a 

result PLS model achieves the optimum correlation with only 1 LV (see Table 5.3). 

Fig. 5.6 shows the comparison of regression coefficient vectors of 7- LV PLS 

model with OPLS (PCA) pretreated PLS model. The similarity of the regression vector of 

OPLS (PCA) model with the original IR raw spectra clearly suggests that the model is 
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free from 𝒚- unrelated variation. On the other hand, PLS regression vector is significantly 

changed particularly in 1000–1200 cm-1 region. It would be interesting to see which 

variables are mainly contributing to the disturbing variation in IR spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 ATR-FTIR raw calibration spectra (Cs3) (a) without pre-processing (b) 6 orthogonal 

components removed using OPLS (PCA). 
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Table 5.3 ATR-FTIR calibration model summary for solute concentration measurements. 

Ordinary PLS model  Orthogonal PLS (PCA) 

LV aR2Xcum bQ2cum RMSECV 
(mg/g)  LV R2Xcum Q2cum RMSECV 

(mg/g) 
1 93.54 99.83 3.02  1 99.99 100 0.23 

2 96.99 99.87 2.66      

3 99.85 99.92 2.04      

4 99.94 99.97 1.35      

5 99.98 99.98 1.15      

6 99.98 99.99 0.53      

7 99.99 100 0.23      
a R2Xcum = cumulative R2X          b Q2cum = cumulative Q2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6 Comparison of regression coefficient vectors of PLS model and OPLS (PCA) 

pretreated PLS model. 

 
Fig. 5.7 shows the principal orthogonal loadings extracted from variation removed 

from IR spectra. First two loadings explain 97 % of orthogonal variation removed and 

represent the temperature effect on IR spectra. It should be noted that the major 
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1145–1185 cm-1. This explains why PLS regression vector significantly changed in 

1000–1200 cm-1 region. The third loading explains 2% of orthogonal variation removed 

and represents the baseline variation. Though, OPLS (PCA) removed the 𝒚- unrelated 

information in the form of 6 OCs from the spectral data, it does not improve the model 

predictability since both models gave the same RMSECV value. However, the resulted 

simple model is expected to be more stable to experimental perturbations. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Plot of the 3 principal orthogonal loadings (𝐩𝐨𝐫𝐭𝐡𝐨 (𝐩𝐜𝐚)) removed from IR calibration 

spectra. The corresponding variation captured is 𝐩𝟏𝐨𝐫𝐭𝐡𝐨𝟏 (𝐩𝐜𝐚) (93.56%), 𝐩𝐨𝐫𝐭𝐡𝐨𝟐 (𝐩𝐜𝐚) (3.56%), 

𝐩𝟑𝐨𝐫𝐭𝐡𝐨 (𝐩𝐜𝐚) (1.96%).  

      
Solubility Measurements. Solubilities of TB polymorphs (Forms (IL, IH) and II) were 

measured in the chosen solvent by two different methods in the temperature range of 20 – 

55 °C. For all measurements, a 400 g of solvent was used. In the first method, an excess 

amount of corresponding polymorph was added to the solvent which was maintained at a 
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constant temperature and solute concentration was monitored using ATR-FTIR. As the 

concentration reaches a plateau, spectral measurement was stopped and the solution was 

allowed to settle for 1 hour to collect a sample from the supernatant for gravimetric 

measurements. At the end of each measurement, the suspension was filtered to collect the 

solid and polymorphic form was verified using PXRD.  

In the second method, a saturated suspension of TB was prepared at 20 °C and 

heated in two segments. Below 30 °C, at a heating rate of 2 °C/h and above 30 °C, at a 

heating rate of 3 °C/h. The heating rate is chosen such that it is slow enough to keep the 

suspension in thermodynamic equilibrium and a continuous solubility curve can be 

measured. Intermittently, crystals were added to the solution to keep it in a suspension 

state. Solution concentration was monitored using ATR-FTIR. In the case of Form (IL, 

IH) the measurement was disturbed by polymorphic transformation to more stable Form 

II.  Therefore, its solubility curve was measured in 2.5 hour intervals. After each interval, 

the measurement was stopped to drain the vessel contents and vessel was washed 

thoroughly with the solvent and a fresh batch was started again.   

Solution Mediated Polymorphic Transformation Experiment. A saturated solution (36 

mg/g solvent) of Form IL was prepared at 25 °C with 400 g of solvent. Then, 2.07 g of 

Form IL crystals were suspended in excess which corresponds to 0.5% suspension 

density. The suspension was stirred at 250 rpm while the solution concentration was 

measured using ATR-FTIR. To monitor the polymorphic changes, Raman spectroscopy 

was coupled with MSPM.  

Fig. 5.8 shows the Raman spectra of solvent, solute and different TB crystal forms 

(Forms IL, II and III) in the wavenumber range of 600–1800 cm-1. The major differences 
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between the three polymorphs were apparent in the aromatic ring deformation (785–825 

cm-1) and asymmetric stretching of sulfonyl group (1135–1190 cm-1) regions of TB 

molecule with strong Raman scattering and no overlap with solvent peaks. Therefore, this 

wavenumber region is selected for MSPM. To implement MSPM, a PCA-based reference 

model was built dynamically using the first 30 Raman spectra in the training period. The 

reference data was assumed to be free from abnormalities and number of spectra was 

chosen such that it captures enough variation for building a model. In the prediction 

period, samples were projected on to the model to estimate the corresponding T2 and Q 

statistics and their variable contributions to monitor the polymorphic variations. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Raman spectra of ethanol/water (60:40 w/w), TB solute and crystal forms of TB in the 

wavenumber range of 600–1800 cm-1. 
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ensure complete dissolution, the solutions were heated to 5 °C above the saturation 

temperature and kept constant for 30 min. The solution was then quickly cooled (0.5 

°C/min) to the corresponding saturation temperature and held there for another 30 min. 

Subsequently, the solutions were cooled at different cooling rates (1, 0.5 and 0.1 °C/min) 

with constant stirring (250 rpm). The Raman spectral acquisition was started immediately 

after the solution stabilizes at the corresponding saturation temperature.  

For MSPM, in the training period, a PCA-based reference model was built 

dynamically using the first 30 Raman spectra in the wavenumber range of 600-1200 cm-1. 

In the prediction period, spectra were projected to estimate T2 and Q statistics and their 

variable contributions. The temperature corresponding to a sharp dip in T2 statistic (due to 

explosive nucleation of crystals) was read as the nucleation temperature. For each 

measurement, the experiment was repeated twice and the average temperature was noted. 

Q contribution plots were diagnosed to detect the polymorph nucleated. At the end of 

each experiment, the solution was filtered and crystals were harvested, dried in vacuum 

oven at RT and analyzed using PXRD to verify the polymorph nucleated. 

Batch Crystallization Experiment. An undersaturated solution of TB at 55 °C was 

prepared by dissolving a known amount of TB in 400 g solvent corresponding to the 

solubility of Form II at 50 °C. The solution was then cooled at 0.08 °C/min. ATR-FTIR 

was used to continuously monitor the solute concentration. PVM probe was also inserted 

to collect the slurry images for visual inspection. The obtained crystalline product was 

filtered, dried in vacuum oven at RT and subjected to PXRD to verify the polymorphic 

purity.
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CHAPTER 6 
 

Crystallization Process Development for the Isolation of 
Desired Form of Tolbutamide 

  
  
 In this chapter, using the experimental setup described in chapter 5, a cooling 

crystallization process was developed for the isolation of the desired form of TB. QbD 

based strategy described earlier was applied by determining a design space in terms of the 

metastability of the desired form. A crystallization batch process was successfully 

operated to achieve the desired polymorph.   

6.1. Selection of the Desired Form of TB 

For the production of TB, Form II is the ideal form to select because it is 

thermodynamically most stable and has the lowest propensity for polymorphic 

transformation. However, its innate characteristic of crystallizing in a thin fiber needle 

shape (refer to Fig. 4.16a) is a major obstacle for its downstream processing such as 

filtration, drying etc. It has also been observed that Form II has the least tendency to 

nucleate directly from the solution. Therefore, a metastable form is a viable option for 

this system. In the hierarchy of stability of TB polymorphs, the next stable form is Form 

(IL, IH) which also has good processability characteristics. Therefore, in the present work, 

this polymorph has been chosen as the desired form for the crystallization of TB.    

6.2. Solubility Measurements of TB Polymorphs  

The solubility curves of Forms (IL, IH) and II are shown in Fig. 6.1. The 

continuous nature of solubility of Form (IL, IH) with respect to temperature in the region 

of 39–41 °C clearly suggests that the equilibrium conditions were prevailed during the 

measurements. Otherwise, we would have observed a dip in concentration in this region 



Chapter 6                                                                    Crystallization Process Development 
 

 109 

due to the delay in dissolution caused by the solid-state transformation of Form IL → IH 

(Kawakami, 2007). The concentrations measured using ATR-FTIR showed good 

agreement with the solubility data obtained using gravimetric method validating the 

calibration model built using OPLS (PCA). These measurements also suggest that Form 

II is more stable than Form (IL, IH) in this temperature range which agrees with our 

earlier characterization studies (Thirunahari et al., 2010).  

    
Figure 6.1 Solubility curves of TB Forms (IL, IH) and II in ethanol/water (60:40 w/w). 

 
6.3. Statistical Monitoring of Polymorphic Transformation 

As discussed earlier, SMPT is the main mechanism by which metastable 
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fundamental mechanisms governing the process. Such information is useful to determine 

optimum operating conditions for crystallization to prevent the transformation. To this 

aim, a seeded polymorphic transformation experiment was performed during which 

polymorphic content was monitored using Raman spectroscopy and solute concentration 

was monitored using ATR-FTIR.    

Fig. 6.2 displays the time resolved Raman spectra collected in the selected 

wavenumber range during the seeded transformation experiment. As we can see, as time 

progressed, in 785–825 cm-1 region (Fig. 6.2(a)), the characteristic peaks of Form IL at 

798 and 812 cm-1 decreased in intensity. Towards the end, the peak at 812 cm-1 becomes 

a shoulder peak which is a characteristic of Form II. In 1140–1190 cm-1 region (Fig. 

6.2(b)), the peak at 1161 cm-1 gradually shifted to 1164 cm-1 which is a characteristic 

peak of Form II. These observations suggest that Raman spectroscopy is capable of 

detecting the polymorphic changes in TB crystals in suspensions. However, for a 

mechanistic understanding, the dynamic PCA based MSPM was applied with Raman 

which is discussed below. The main advantage of MSPM is that it decouples the spectral 

variations caused by stable and metastable forms, thus making the interpretations much 

easier. 

For dynamic PCA based MSPM with Raman, a reference PCA model was built in 

the training period which resulted in a two component model with PC1 capturing 89.9% 

and PC2 capturing 2.2% variation. Subsequent PCs were ignored and added into the 

model residual space because they capture negligible variation (< 2%). PC1 can be 

directly related to Form IL, since the corresponding loadings of PC1 are similar to the 

spectral features of Form IL. Physical interpretation of PC2 is difficult, but may be 
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attributed to the effect of particle size of Form IL crystals on Raman scattering. In the 

prediction period, Raman spectra were projected on to the model and T2 and Q statistics 

were estimated. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 Time resolved Raman spectra for a seeded polymorphic transformation of TB Form IL 

to Form II at 25 °C in ethanol/water (60:40 w/w) solvent (a) 785–825 cm-1 (b) 1140–1190 cm-1. 
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6.3.1. T2 and Q Plots  

 
Figure 6.3 T2 and Q statistic plots for a seeded polymorphic transformation of TB Form IL to II. 
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new variations brought about by the transformation into the process i.e. those variations 

related to the stable Form II. In Fig. 6.3, initially, both statistics were within the 95% 

confidence limit imposed by the model indicating that no variation in the suspended 

Form IL crystals. After 200 min, both statistics crossed the limit and moved away from 

the reference. This indicates that the polymorphic transformation of Form IL has been 

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

Time (min)

T2  s
ta

tis
tic

180 190 200 210
0

10

20

30

40

Time (min)

T2  s
ta

tis
tic

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7
x 10

6

Time (min)

Q
 s

ta
tis

tic

180 190 200 210
0

2

4

6

8

10
x 10

4

Time (min)

Q
 s

ta
tis

tic

95% confidence limit

95% confidence limit

Training period

Training period



Chapter 6                                                                    Crystallization Process Development 
 

 113 

triggered. Towards the end of the experiment i.e. after 300 min or so, both were stabilized 

at a higher value suggesting the end of transformation. 

To verify these interpretations, the variable contribution plots of T2 and Q were 

inspected. Fig. 6.4 shows the T2 and Q contribution plots. Here, the variables are the 

Raman intensities at different wavenumber. For T2 contribution calculations, only PC1 

was used as it captures the major portion of variation. The arrows shown indicate the 

direction of the contribution with respect to time.  

As we can see, the major contributions to T2 value during the transformation are 

from the Raman intensities corresponding to 798 and 810 cm-1 in 785–825 cm-1 region 

and 1161 cm-1 peak in 1140–1190 cm-1 region which are characteristics peaks of Form IL. 

The arrows indicate that these contributions are decreasing with respect to time 

suggesting that Form IL crystals are undergoing dissolution. In Q contribution plots, the 

major contributions to Q value in 785–825 cm-1 region are from 798, 811 and 817 cm-1. 

The arrows indicate that the contributions from 811 and 817 cm-1 are decreasing with 

respect to time. This is consistent with Raman characteristics of Form II, for which there 

is a shoulder peak in this region. On the other hand, a major contribution from 1140–

1190 cm-1 region is from 1164 cm-1 which is a characteristic of Form II which increases 

with time. All these Q contributions clearly suggesting that the jump in Q value is due to 

the nucleation and growth of Form II.  

There are a few other contributions, particularly to Q value, which may be due to 

the unrelated variation gathering in the Raman spectra during the transformation due to 

change in particle size, suspension density etc. However, contribution plots clearly 



Chapter 6                                                                    Crystallization Process Development 
 

 114 

provided the evidence that the increase in T2 and Q values is due to polymorphic 

transformation. 

 
Figure 6.4 Variable contribution plots of T2 and Q in the selected wavenumber range (A) 785–

825 cm-1 and (B) 1140–1190 cm-1. 
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equal to 0% of Form IL and 100% of Form II, respectively. Fig. 6.5 shows the time 

profiles of Form IL and Form II compositions along with the solute concentration profile 

measured using ATR-FTIR. 

Figure 6.5 Time profiles of solute concentration and polymorph composition of TB during 

seeded polymorphic transformation at 25 °C in ethanol/water (60:40 w/w) solvent. To get the 

polymorphic composition, T2 and Q values were uniformly scaled such that the maximum value 

equal to 0% Form IL and 100% Form II respectively. 
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Form IL and II, during which solution was supplied with more solute molecules from 

dissolution of Form IL, decreasing its solid composition. These molecules are transferred 

on to the growing Form II crystals increasing its solid composition.  

During this phase, if the dissolution is faster than growth, solute molecules 

accumulate and the solute concentration remains closer to the solubility of Form IL. If the 

growth is faster than dissolution, solution is depleted out of solute molecules and solute 

concentration remains closer to the solubility of form II. But here neither case happened. 

The solute concentration continuously decreased after the nucleation of Form II 

indicating that both the dissolution of Form IL and growth of Form II are equally fast. 

This phase is continued for another 90 min or so until all the Form IL crystals dissolved. 

By that time, solute concentration has almost reached the solubility of Form II and the 

remaining little supersaturation is quickly consumed by further growth of Form II and 

transformation is ended. This analysis clearly suggests that the rate controlling step for 

the transformation process is neither the dissolution of Form IL nor the growth of Form 

II. It is the primary nucleation of Form II which is controlling the transformation. 

However, towards the end, the rate of transformation is decreased as evident from 

the decrease in slope of solid composition profiles. This can be attributed to the 

morphology of Form II crystals which drastically changed the fluid dynamics of the 

vessel and vessel contents became stagnant towards the end of the transformation. For 

better evidence, a separate experiment was performed under similar experimental 

conditions with PVM inserted in the crystallizer to collect slurry images during the 

polymorphic transformation. Fig. 6.6 shows the PVM images. After 230 min, which 

corresponds to the initial phase of transformation, the crystals were observed to be freely 
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floating in the vessel. But, after 270 min i.e. towards the end of transformation, Form II 

crystals filled the entire vessel and vessel contents became stagnant. This could affect the 

rate of mass transfer and thereby decreasing the rate of transformation.   

      

     
Figure 6.6 PVM images of TB crystals during the seeded polymorphic transformation at 25 °C in 

ethanol/water (60:40 w/w) solvent (a) Seeded Form IL crystals (b) Form II nucleated and floating 

in the crystallizer (c) Towards the end of transformation, Form II crystals filled the entire vessel 

and vessel contents became stagnant.   
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reference model built in the training period resulted in a two component model with PC1 

capturing 88.5 % variation and PC2 capturing 2.1 % variation. PC1 can be directly 

related to the solution phase since the corresponding loadings are similar to the spectral 

features of solution. Interpretation of PC2 is difficult, possibly another independent 

variation in the solution phase. In the prediction period, Raman spectra were projected on 

to the model to estimate T2 and Q statistics. 

 
Figure 6.7 T2 and Q statistic plots of Raman spectra collected in a MZW experiment conducted 

with an initial concentration of 109 mg/g solvent and 0.1 °C/min cooling rate. 
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suggests that initially, both statistics were within the 95% confidence limit imposed by 

the model indicating that no variation in the solution. However, T2 and Q stay only for a 

short period of time and move out of the limit and keep moving away in a linear fashion. 

As the nucleation is approached, T2 sensed the event by a dip in T2 values followed by a 

rapid increase. On the other hand, Q statistic senses the event by a higher variation 

followed by a rapid change. 

Figure 6.8 T2 and Q contribution plots of Raman spectra collected in a MZW experiment 

conducted with an initial concentration of 109 mg/g solvent and 0.1 °C/min cooling rate. 
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with time. This explains why T2 value increased before the nucleation. The increase in 

Raman intensity can be attributed to the increase in solution density upon cooling due to 

reduction in volume of the solution (Hu et al., 2005). However, after a while, T2 

contributions suddenly dropped and decreased to zero and then decreased further in the 

negative region. This variation is reflected in the T2 value which initially decreased in its 

value in Fig. 6.7 as the contributions decreased and then increased as the contributions 

decreased further in the negative region. The sudden decrease in Raman contributions can 

be attributed to the fact that crystallization tends to reduce Raman intensity because a 

solution containing crystals is more opaque than the corresponding transparent solution 

containing molecular clusters prior to formation of crystals. Therefore, it is appropriate to 

measure the point at which T2 value showed a dip (this corresponds to the sharp decrease 

in Raman intensity) as the start of nucleation and the corresponding temperature as the 

nucleation temperature. 

On the other hand, Q contributions during cooling are minor and within the noise 

level, therefore, are not shown here. Possibly, the increase in Q value across the limit 

before the nucleation is due to these minor Raman contributions. However, after the 

nucleation, Raman contributions were increased as shown in Fig. 6.8. As we can see, the 

major Q contributions are from 785–825 cm-1 and 1140–1190 cm-1 which are the 

characteristic regions of TB polymorphs. This explains why Q value increased rapidly 

after nucleation. 

Fig. 6.9 provides a comparison of time profiles of a more conventional FBRM 

measurement during the MZW experiment with Raman based T2 statistic. FBRM detects 

the nucleation event by measuring the increase in particle counts. As we can see from 



Chapter 6                                                                    Crystallization Process Development 
 

 121 

Fig. 6.9, both techniques detected the nucleation event at the same time. However at the 

point of nucleation, FBRM counts were increased whereas Raman based T2 statistic 

decreased due to decrease in Raman scattering because of increase in solution opacity. In 

detecting the nucleation event, Raman has an additional advantage that it can distinguish 

the solid nucleated which is discussed in detail in the next section.   

 
Figure 6.9 Comparison of time profiles of FBRM total counts and Raman based T2 statistic for 

detecting the nucleation event in the MZW experiment conducted with initial concentration of 

109 mg/g solvent and 0.1 °C/min cooling rate. 
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PXRD peaks; 11.3° and 12.4°)) were crystallized in MZW experiments. Some 

experiments also resulted in a mixture of these two forms. 

However, the polymorphic information can be directly extracted from raw Raman 

spectra. Moreover, we observed that T2 and Q contribution plots are more revealing and 

informative than the corresponding raw Raman spectra as they contain Raman 

contributions exclusively from the solution and the solid phase. For illustration, three 

selected MZW experiments (A,B,C) carried out at same initial concentration (109 mg/g 

solvent) but different cooling rates which resulted in different polymorphic outcome were 

considered here. The corresponding PXRD patterns were provided in Fig. 6.10. Fig. 6.11 

shows a comparison of the raw spectra collected in experiments A, B and C, in the 

wavenumber range of 1130–1190 cm-1, at the time of nucleation with the corresponding 

T2 and Q contribution plots.  

Figure 6.10 Comparison of PXRD patterns obtained for three MZW experiments A, B and C 

which resulted in different polymorphic outcomes of Form IL, III and their mixture, respectively. 
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Experiment A resulted in the nucleation of Form III.  In Fig. 6.11, Raman detects 

the nucleation event by a rapid decrease in intensity at 1161 cm-1 which is a characteristic 

peak of the solute followed by a significant shift in the baseline with two new peaks 

arising at 1146 and 1163 cm-1 which are characteristic of Form III. The corresponding T2 

and Q contribution plots clearly decoupled these variations into contributions from 

solution and Form III crystals. A sharp decrease in T2 contributions from positive to a 

negative value within a span of one sample interval suggests that the nucleation rate of 

Form III is very high. Contributions to Q value clearly magnified the Raman 

characteristics of Form III which increased as crystals continue to grow facilitating the 

identification of type of polymorph nucleated. 

Figure 6.11 Comparison of raw Raman spectra and T2 and Q contribution plots for three different 

MZW experiments in which three different polymorphic outcome obtained (A) Form III (B) 

Form IL (C) Form IL + Form III. 
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Experiment B resulted in the nucleation of Form IL. Raman detects the nucleation 

event by a decrease in intensity at 1161 cm-1 which is a characteristic peak of both the 

solute and Form IL. Upon nucleation, T2 contributions were decreased slowly suggesting 

that the nucleation rate of Form IL is low compared to Form III.  In this case, on the 

contrary, Q contributions decreased with time suggesting that there are no new 

contributions to Raman spectra from Form IL crystals. Probably, the decrease in Q 

contributions is due to the continuous shift in baseline as more and more Form IL crystals 

formed which is reflected as a new change in the process upon nucleation. This is typical 

to Form IL and consistently observed whenever Form IL nucleated. 

Experiment C resulted in the nucleation of a mixture of Form III and Form IL. As 

we can see, a mixed behavior of experiments A and B was observed in the Raman spectra 

and the corresponding T2 and Q contribution plots, suggesting the nucleation of both 

Forms IL and III. However, one can clearly see in Q contribution plot, the first nucleated 

form is Form IL followed by the nucleation of Form III. 

6.4.3. Crystallization Design Space 

Fig. 6.12 shows the MZW measurements along with the solubility curves 

measured for TB-ethanol/water system. The corresponding polymorph nucleated was also 

shown. It should be noted that under the tested experimental conditions, nucleation of 

Form II is not observed. In Fig. 6.12, three domains (D1, D2 and D3) unique to each 

polymorph can be identified. In domain D1, sufficiently fast cooling rate and all initial 

concentrations favored the nucleation of Form III. In domain D2, sufficiently slow 

cooling rate and all initial concentrations favored the nucleation of Form (IL, IH). In 
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domain D3, intermediate cooling rates and all initial concentrations favored the nucleation 

of a mixture of both these forms.  

 

Figure 6.12 Design space for the isolation of Form (IL, IH) in terms of its metastability. 

 
Fig. 6.12 suggests that at constant concentration, nucleation energy barrier 

increases with increase in cooling rate as seen from the increase in MZW. On the other 

hand, at constant cooling rate, nucleation energy barrier decreases with increase in 

concentration. CNT suggests that if the energy barrier increases, the nucleation rate (𝐽) 

increases and vice versa. Therefore, one can expect that the cooling rate and initial 

concentration have an effect on nucleation kinetics of Forms (IL, IH) and III. Two 

important kinetic contributions to nucleation rate are interfacial energy (γ) and 

preexponential factor (𝐴). Faster cooling rate might have promoted the nucleation of 
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Form III by favoring  𝐽𝐼𝐼𝐼 > 𝐽𝐼𝐿 with conditions γ𝐼𝐼𝐼 < γ𝐼𝐿 and 𝐴𝐼𝐼𝐼 > 𝐴𝐼𝐿. On the other 

hand, slower cooling rates might have promoted the nucleation of Form (IL, IH) by 

favoring  𝐽𝐼𝐿 > 𝐽𝐼𝐼𝐼 with conditions γ𝐼𝐿 < γ𝐼𝐼𝐼 and 𝐴𝐼𝐿 > 𝐴𝐼𝐼𝐼. When intermediate cooling 

rates were used, the balance of these contributions to nucleation rates of Forms IL and III 

might have favored the condition   𝐽𝐼𝐿 = 𝐽𝐼𝐼𝐼 and promoted the nucleation of both forms.  

Nevertheless, this analysis clearly suggests that the design space for the isolation 

of desired form of TB is D2 where primary nucleation of Form (IL, IH) is guaranteed.     

6.5. Design and Operation of Selective Crystallization 

Figure 6.13 Desupersaturation profile measured using ATR-FTIR during batch crystallization 

while operating in the design space. Run 1: 0.08 °C/min cooling rate and 250 rpm stirring rate; 

Run 2: 0.08 °C/min cooling rate and 400 rpm stirring rate. 
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For selective crystallization, a cooling crystallization process was designed to 

operate within the design space. However, one possibility which cannot be ignored while 

operating in the design space is the primary nucleation of more stable Form II via SMPT. 

To prevent any possibility of undesired SMPT to Form II, crystallization should be 

designed such that the total crystallization time (excluding the induction time) should be 

within the induction period for the nucleation of Form II (~200 min). Keeping this in 

mind, a process was designed with a saturated solution corresponds to a temperature of 

50 °C which is cooled at 0.08 °C/min until 25 °C. 

Fig. 6.13 shows the desupersaturation profile measured using ATR-FTIR during 

the crystallization operation for runs 1 and 2. In run 1, a hump in concentration profile in 

the region of 39–41 °C which is due to the solid state transformation of Form IH → IL 

clearly indicates that the desired form has been achieved. However, as the crystallization 

proceeds, the stirring rate of 250 rpm was no longer sufficient to keep the growing 

crystals suspended and the crystals started to settle at the bottom of the crystallizer. 

Solute concentration would be lower around the crystals as the solute was continually 

incorporated into the crystals. A concentration gradient thus formed in the crystallizer 

with the lower concentration at the bottom and higher concentration at the top where the 

ATR probe was located. Therefore, the desupersaturation profile appeared to steer away 

from the solubility curve. Run 2 was performed by increasing the stirring rate from 250 to 

400 rpm. Now, the drift was suppressed and a desupersaturation profile with decreasing 

supersaturation was obtained. However, as we can see, increase in stirring rate decreased 

the MZW. Fig. 6.14 shows the PVM image of crystals obtained. The prismatic 

morphology typical of Form (IL, IH) further confirms that the desired form was achieved. 
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Hence, a robust crystallization process for the production of the desired form of TB has 

been successfully demonstrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 PVM image of Form IL crystals obtained during batch crystallization operation. 

6.6. Summary 

 A crystallization design space for the isolation of the desired polymorph Form (IL, 

IH) of TB has been determined and a crystallization batch process was operated within 

the design space to achieve the desired form. QbD based strategy not only assisted in 

developing a robust process but also provided a good understanding about the 

crystallization behavior of TB. Characterization of polymorphic transformation of TB 

polymorphs Form IL→ Form II suggests that the primary nucleation of the stable Form II 

is the controlling step for the transformation. MZW measurements indicate that the 

cooling rate has a strong influence on the nucleation energy barrier and can be used as a 

manipulator for achieving different TB polymorphs. 

 This work also demonstrates the application of two PATs, ATR-FTIR combined 

with OPLS (PCA) and Raman with MSPM in crystallization process characterization and 
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monitoring. OPLS (PCA) ensures the robustness of the calibration models which is 

particularly important in industrial environments where process disturbances are not 

uncommon. MSPM can be combined with Raman and used as a PAT tool for the 

characterization of polymorphic transformations and nucleation experiments with 

additional advantage of in situ detection of type of polymorph nucleated. The most 

appealing part of MSPM is that it is calibration free therefore it can reduce the 

experimental effort thereby speed up the process development. 
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CHAPTER 7 
 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 
  
 

Toward a robust crystallization process development for a specific polymorph, an 

understanding of the fundamentals of polymorphism and the role of crystallization 

mechanisms on crystal formation and transformation is essential. With this objective, 

crystallization of tolbutamide (TB), a polymorphic drug, was investigated in this work. 

The main findings are briefly reviewed herein. 

7.1. Significant Contributions 

7.1.1. Structural Origin of Polymorphism in TB 

The conformational flexibility of the TB molecule and strong hydrogen bonding 

ability of secondary amide via carbonyl and sulfonyl groups facilitate TB to crystallize 

into different polymorphic forms (Forms (IL, IH) and II–IV). The rich torsional freedom 

available for the terminal alkyl chain mainly assists TB molecule to adopt various 

conformers and crystalline packing arrangements. By elucidating the crystal structures of 

various polymorphic forms of TB, the present work resolves several discrepancies in the 

published data on structural features of the polymorphs of this API.  

7.1.2. Stability Aspects of TB Polymorphs 

The relative thermodynamic relationships of TB polymorphic pairs were 

evaluated and the stability domains were elucidated in the form of a schematic energy-

temperature diagram. Form II is found to be the thermodynamically stable polymorph 

from absolute zero to ~353 K and beyond which Form IH is the stable polymorph. The 

discrepancies in the literature related to the relative stability of TB polymorphs at 

ambient conditions are highlighted and partially resolved.    



Chapter 7                                                               Conclusions and Scope for Future Work 
 

 131 

7.1.3. Crystallization Process Development for the Isolation of Desired Form of TB 

 Using the QbD based strategy, a robust cooling crystallization process was 

developed for the isolation of desired Form (IL, IH) of TB. SMPT study of the desired 

Form (IL, IH) revealed that the primary nucleation of the stable Form II is the rate 

controlling step. MZW measurements indicated that the cooling rate has a significant 

influence on nucleation energy barrier of TB polymorphs. Using this information, a 

crystallization design space for the desired polymorph was derived and the process was 

successfully demonstrated by operating within the design space to achieve the desired 

polymorph.  

7.1.4. OPLS (PCA) and MSPM in Crystallization Operations 

 In the present work, two novel chemometric methods, OPLS (PCA) and MSPM, 

were applied for crystallization process characterization (solubility, MZW and 

polymorphic transformation measurements) and monitoring. OPLS (PCA) reduced the 

model complexity thereby enhanced the model robustness and interpretability which are 

particularly important when implementing PAT in industrial environments. On the other 

hand, MSPM is a completely data based and calibration free technique, therefore, 

significantly reduced the experimental effort and thereby speeding the process 

development. 

7.2. Scope for Future Work 

7.2.1. Raman with MSPM for Polymorph Monitoring and Control during 

Crystallization 

 Present work demonstrates the application of MSPM with Raman spectroscopy for 

monitoring polymorphic transformations, detection of nucleation and type of polymorph 
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nucleated during MZW measurements. The same idea can be extended to batch 

crystallization monitoring and control in which two dynamic PCA models can be 

separately built, one for undersaturated solution to monitor the polymorph nucleated and 

one for solid phase to monitor its polymorphic purity and can be integrated with feedback 

control strategies.     

7.2.2. Quantitative Application of Raman for Polymorph Monitoring using MSPM and 

OPLS (PCA) 

 Quantitative polymorph monitoring using Raman is proved challenging because of 

the presence of unrelated information in Raman data due to change in particle size, 

suspension density etc. We believe that MSPM analysis before building quantitative 

models may facilitate variable selection thereby enhance model performance. For 

example, in Fig. 6.4 (T2 and Q contribution plots), choosing Raman wavenumber regions 

which hold direct relationship with Forms IL and II i.e. 795–820 and 1160–1175 cm-1 

may lead to robust models. Furthermore, applying OPLS (PCA) to Raman data lead to 

simpler models and further improve the model robustness. 

7.2.3. Raman with MSPM – Can be a Powerful Tool for Monitoring Pre-nucleation    

 As discussed in chapter 6, Raman based Q contribution plots can monitor variations 

occurring in supersaturated solutions, therefore, are expected to provide valuable 

information on pre-nucleation mechanisms. An ultimate control of polymorphic 

crystallization can be achieved if one can identify these mechanisms and correlate them 

to predict the polymorph before nucleation. However, a systematic analysis is required 

before commenting on prediction of polymorphs using Q contribution plots which is part 

of our future work. 
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7.2.4. Fast Track Crystallization Process Development and Scale up  

 For any new chemical entity, application of QbD based strategy for crystallization 

process development requires a thorough screening of process parameters such as 

solvents, cooling rate etc. and their relationship with polymorphic outcome and 

transformation is desired. This results in wider design space and gives better regulatory 

flexibility to industry. To this aim, we believe that the calibration free MSPM can 

facilitate the process parameter screening and a fast track crystallization process 

development can be achieved. Furthermore, for process scale up studies, calibration 

transfer is a significant issue. We believe that OPLS (PCA) can perform better than the 

conventional PLS models and may facilitate calibration transfer in scale up studies.   
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