
Mining Non-Contiguous Mutation

Chain in Biological Sequences based

on 3D-structure

Huang Wei

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48641811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mining Non-Continguous Mutation

Chain in Biological Sequences based

on 3D-structure

Huang Wei
(B.COMP, SCU)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF

SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF

SINGAPORE

2011

2

Acknowledgment

I am thankful to Prof. Wynne Hsu and Prof. Mong Li Lee for their constant

encouragement, guidance and support. I appreciate their vast knowledge in

many areas, and their insights and suggestions that have helped to shape

my research skills. I am also grateful to Dr Tong Joo Chuan and Dr Feng

Mengling from A*STAR. They help me to verify the experiment results on

the real world influenza A virus dataset in bioinformatics domain. Finally, I

would like to thank Dr. Sheng Chang for providing me the data generator

source code.

I offer my regards and blessings to all the students in the database group.

I have enjoyed all the discussions we had on various topics, and I have lots

of fun being a member of this fantastic group. I would especially like to

thank Zhao Gang, Li Xiaohui, Han Zhen, Chen Qi, Patel Dhaval and all the

other current members in Database lab 2. They are such good and dedicated

friends who are always ready to lend a helping hand to me. Lastly, I thank my

family for always being there when I needed them most and for supporting

me in all these years.

3

Summary

Understanding how an infectious agent mutates from one form to another

can provide insights into the mechanisms of disease pathogenesis and epi-

demiology. Existing methods of sequence analysis which focus on identifying

regions of similarity may help explain functional or phenotypic variability.

However, these approaches do not take into account the spatio-temporal

dynamics of virus evolution. Recently, Sheng et. al [42] introduced an ap-

proach that incorporated spatio-temporal information to analyze mutation

chains in influenza A proteomes. However, this work was restricted to mining

contiguous subsequences of mutations, not taking into account the practical

3D-structure of the protein.

In this thesis, we generalize the definition for mutation chain to allow

for mining of non-contiguous mutations. We design an efficient algorithm,

termed ptMutationChian −Miner, to search for non-contiguous mutation

chains in influenza A proteomes. This algorithm utilizes three pruning strate-

gies local hot positions, valid Mutation Space and increment join to reduce

the search space. Experiments on both synthetic and real world influenza

A virus datasets show that the algorithm is effective in discovering non-

continuous mutations that occur geographically over time.

4

Contents

Acknowledgments 3

Summary 4

Contents 5

List of Figures 7

List of Tables 8

1 Introduction 9

1.1 Objectives and Contributions 11

1.2 Organization . 12

2 Related Work 13

2.1 Sequential Pattern Mining . 13

2.1.1 Apriori-based Sequential Mining 14

2.1.2 Pattern-Growth-based Approaches 15

2.2 Interestingness Measures in Association Patterns Mining . . . 16

2.3 Spatio-temporal Sequential Patterns Mining 17

2.4 Bioinformatics domain . 18

3 Preliminaries and Definitions 19

5

CONTENTS 6

4 Mining Non-Contiguous Mutation Chains 25

4.1 Mining k point mutations . 26

4.2 Mining the mutation Chain 34

5 Performance Study 38

5.1 Experiments on Synthetic Datasets 38

5.2 Experiments on Influenza A Virus Dataset 40

6 Conclusion and Future Work 45

List of Figures

1.1 Example of non-continuous mutations on a folded protein. . . 9

3.1 Spatio-temporal representation of the viruses in Table 1.1. . . 19

3.2 Examples of mutation chains. The mutation chain in (a) is a

sub mutation chain of the mutation chain in (b) 23

4.1 The mutation chains mining framework. 25

4.2 Example to show the generation of sets of k point mutations . 27

4.3 PointMutation tree. 30

4.4 < 17 : N → T >’s conditional PointMutation tree 34

5.1 Comparative study on effect of pruning techniques 39

5.2 Proposed geographical spread of the Pandemic Hong Kong flu

(H3N2) between 1968 and 1969 (1: 1968; 2: 1968-69; 3: 1969) 42

5.3 Proposed geographical spread of the Pandemic influenza (H5N1)

in 2003 (1: 2002; 2: 2002-03; 3: 2002-04; 4: 2003; 5: 2003-04;

6: 2004) . 42

5.4 Proposed geographical spread of the Pandemic influenza (H5N1)

in 2005 (1: 2004; 2: 2005) . 43

7

List of Tables

1.1 An example of influenza A dataset 10

2.1 the example of sequence database 14

4.1 Mutation base: Virus pairs and their corresponding sets of k

point mutations . 28

4.2 Statistic table: Point mutations and their supporting virus

pairs. (min Support=2 and min Significance=0.4) 29

4.3 The < 17 : N → T >’s conditional mutation base 33

4.4 The< 17 : N → T >’s conditional statistic table. (min Support=2

and min Significance=0.4) . 33

8

Chapter 1

Introduction

The influenza A virus is a major human pathogen. In order to infect the host,

the pathogen can change its coat proteins from time to time by mutation and

spread quickly across geographical regions by air-borne transmission. These

factors account for seasonal influenza and occasional pandemic influenza [51].

Understanding how the fast evolving influenza A virus mutates from one

form to another can provide insights into the mechanisms of disease patho-

genesis and epidemiology, as well as the design of new therapeutic agents.

In particular, it is important to know how the geographical spread of the in-

fluenza A virus evolving over time, and the trajectories of the said evolution.

rrr

r

Mutation

Site

Figure 1.1: Example of non-continuous mutations on a folded protein.

In nature, a protein folds into a particular 3-D structure that allows it

9

INTRODUCTION 10

to effect a function. Therefore, as graphically demonstrated in Figure 1.1,

functional changes of proteins are often caused by non-contiguous mutations.

Incorporating space and time information, we develop the definition of the

mutation chain whose co-mutations mostly occur in non-contiguous positions.

Table 1.1: An example of influenza A dataset

ID Year Country Host Aligned Sequences

vs1 1986 Canada Human ANTCV LEETKPGTQLFNHPD

vs2 1988 USA Avian DNTCV LEETKSGY QLFTHPD

vs3 1989 Russia Human DNTCV LEETKSGTQLFTHPD

vs4 1990 Canada Swine DN−CV LEETKPGY QLF−HPD

vs5 1989 Vietnam Human −NTCV LEETKPGTQLF−HPD

vs6 1994 Spain Human −NMDV LEETKSGY QLF−HPD

vs7 1992 USA Avian ANMDV LEETKSGTQLFNHPD

vs8 1994 Mexico Swine DN−−V LEETK−GY QLFTHPD

An example of influenza A dataset is presented in Table 1.1. All virus

subsequences are aligned and a representative sequence segment of twenty

positions(1 . . . 20) is shown for illustration, including gaps (denoted as ”-”).

To understand how a virus mutates from one strain to another, let us first

analyze two highly conserved sequences, vs4 and vs7, with four amino acid

differences between them. These two viruses are isolated in Canada and USA

(i.e. countries which share a common border) within a viable period of two

years. These factors suggest that vs7 may have mutated from vs4 as follows:

”D”,”C”,”P”,”Y” mutate to ”A”,”D”,”S”,”T” at positions 1,4,11,13 in order.

Similarly, vs7 could possibly mutate to vs8 as there are only three amino acid

differences between the two sequences. A closer examination reveals that vs8

was isolated in Mexico after vs7 in USA. This implies that the virus could

have originated from Canada, spread to USA, and then move on to Mexico.

We denote this movement of mutation as < 1, 13 : DY → AT → DY >,

where 1 and 13 denote the positions where mutations have occurred. Finding

INTRODUCTION 11

such co-occurrences of the mutations over different time points is computa-

tionally expensive as the influenza viruses mutate continuously, resulting in

a large number of variants. Existing algorithms are unable to scale up to

such high complexity.

1.1 Objectives and Contributions

In this thesis, we define the concept of a non-contiguous mutation chain.

To the best of our knowledge, the problem of discovering spatio-temporal

patterns of non-contiguous mutation chains in influenza A virus has not been

explored in current bioinformatics research. We summarize the contributions

of this thesis as follows:

• We define the problem of mining non-contiguous mutation chain and

introduce an interesting measurement, Significance, to capture the

significance of the mutations.

• We present an integrated algorithm to discover non-contiguous subse-

quences of mutation chain. The algorithm utilizes a data structure, the

PointMutation tree, to facilitate the mining process.

• We propose three pruning strategies to improve the mining efficiency.

The first strategy prunes off the positions of each sequence that are

unlikely to participate in the formation of valid point mutations. The

second and third strategies aim to reduce the number of candidates

generated by pruning away those sequence chains that are unlikely to

support any valid mutation chains.

• We evaluate our algorithm on both synthetic and real world datasets.

Experiments on the real world Influenza A virus dataset provide in-

sights into the spread and mutation of the highly pathogenic Avian

H5N1 influenza virus and the H3N2 subtype. The discovered mutations

have also been validated against the outbreaks of influenza historically.

INTRODUCTION 12

1.2 Organization

The thesis is organized as follows: Chapter 2 surveys the related work. Chap-

ter 3 introduces some definitions. Chapter 4 describes our algorithm to

mine non-contiguous mutation chains. Experimental results are presented

in Chapter 5. We conclude this thesis and propose some future work in

Chapter 6.

Chapter 2

Related Work

In this chapter we review existing works that are related to this thesis. We

first introduce sequential pattern mining in Chapter 2.1 and describe the

interestingness measures used in frequent pattern mining in Chapter 2.2.

Next, we survey existing algorithms for spatio-temporal sequential patterns

mining in Chapter 2.3. In Chapter 2.4, we examine the recent progress in

bioinformatics domain.

2.1 Sequential Pattern Mining

Sequential pattern mining aims to discover frequent subsequences as patterns

in a sequence database consisting of ordered elements or events. It has many

useful applications such as the analysis of customer purchase behaviors, web

access patterns, telephone calling patterns, science and engineering processes,

medical and disease treatments, natural disasters (e.g., earthquakes), DNA

sequences and gene structures, market stocks data, and so on.

Agrawal et. al. introduced the problem of sequential pattern mining

problem in [5]. Given a set of sequences, where each sequence consists of a

list of elements and each element consists of a set of items. Items within an

element are unordered. Given a user-specified support threshold, sequential

pattern mining is to find complete set of the frequent subsequences that occur

13

RELATED WORK 14

frequently in the dataset.

Given two sequences α = < a1, a2 . . . an > and β = < b1, b2 . . . bm >. α is

called a subsequence of β or β is a super sequence of α, denoted as α ⊆ β, if

there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m such that a1 ⊆ bj1, a2 ⊆ bj2,

. . . , an ⊆ bjn.

Table 2.1: the example of sequence database

SID sequence

1 <b(bcd)(bd)e(dg)>

2 <(be)d(cd)(bf)>

3 <(fg)(bc)(eg)dc>

4 <fh(bg)dcd>

Take the example of the sequence database in Table 2.1, the sequence

<b(cd)ed> is a subsequence of <b(bcd)(bd)e(dg)>. Suppose the support

threshold min sup = 2, then <(bc)d> is a sequential pattern.

There are two popular approaches to perform sequential pattern mining,

namely: Apriori-based approach and pattern-growth-based approach.

2.1.1 Apriori-based Sequential Mining

The Apriori property states that if a sequence S is not frequent, then none of

the super-sequences of S is frequent. For example, consider the example in

Table 2.1, suppose the support threshold min sup = 2, if <gb> is infrequent,

then <g(bc)e> is also not frequent.

Both GSP [46] and SPADE [54] utilize this property to reduce the search

space by pruning the unpromising candidates.

GSP adopts a multiple-pass, candidate-generation-and-test approach. The

basic idea is as follows: Initially, every item in the database is a candidate of

length 1. For each level (i.e., sequences of length-k), we scan the database to

RELATED WORK 15

compute support count for each candidate sequence and generate candidate

length-(k+1) sequences from length-k frequent sequences. The algorithm

terminates when no new sequential pattern is generated.

SPADE (Sequential PAttern Discovery using Equivalent Class) [54] em-

ploys a vertical formatting method with a lattice search technique. A se-

quence database is mapped to a large set of <SID, EID> in the form of a

vertical id-list database format. And we associate each sequence with a list

of objects, in which it occurs, along with the time-stamps. Therefore all

frequent sequences can be enumerated via simple temporal joins (or inter-

sections) on id-lists. Another lattice-theoretic approach is to decompose the

original search space (lattice) into smaller pieces (sub-lattices) which can be

processed independently in main-memory. This approach usually requires

three database scans, or only a single scan with some pre-processed informa-

tion.

There are many other studies [9, 14, 16, 29, 31, 36, 45] which have utilized

the Apriori property to aid in the efficient mining of sequential patterns or

other frequent patterns in time related data. However, these methods all

suffer from the limitations of requiring multiple scans of the database and

generating a huge set of candidate sequences. As a result, they are not

suitable for mining long sequential patterns.

2.1.2 Pattern-Growth-based Approaches

Inspired by Agarwal et al. [2] and J. Han et al. [19], pattern-growth-based ap-

proaches have been proposed to mine long sequential patterns. The basic idea

is to facilitate sequential pattern mining through projecting the database.

There are two typical pattern-growth-based methods: FreeSpan [18] and

PrefixSpan [38].

FreeSpan (Frequent pattern projected Sequential pattern mining) uses

the frequent items to recursively project sequence databases into a set of

smaller projected databases and grow subsequence fragments in each pro-

jected database. This process partitions both the data and the set of fre-

RELATED WORK 16

quent patterns to be tested, and confines each test being conducted to the

corresponding smaller projected database. However, since a subsequence

may be generated by any substring combination in a sequence, projection in

FreeSpan has to keep the whole sequence in the original database without

length reduction. Moreover, since the growth of a subsequence is explored at

any split point in candidate sequence, it is costly.

In order to overcome the bottleneck of FreeSpan, J. Pei et al. proposed the

PrefixSpan [38] algorithm. Instead of projecting sequence databases by con-

sidering all the possible occurrences of frequent subsequences in FreeSpan, the

projection of PrefixSpan is based only on frequent prefixes because any fre-

quent subsequence can always be found by growing a frequent prefix. Hence,

PrefixSpan examines only the prefix subsequences and project only their

corresponding postfix subsequences into the projected databases. In each

projected database, sequential patterns are grown by exploring only local

frequent patterns which support the short frequent patterns for the mining

of longer patterns.

However, these algorithms do not adapt well to the problem of mining

mutation chains where the transactions consists of exponential number of

mutations and is positional-dependent.

2.2 Interestingness Measures in Association

Patterns Mining

The essence of association rule mining is to analyze the relationships among

variables and find those interesting association rules [4]. There are many

applications of association rules mining, particularly in finding associations

among items in customer transactions [6, 17, 20, 21, 32, 37, 41, 1, 47, 53].

To identify the interesting association rules, correlation has been adopted

as an interestingness measure. This measure aims to identify groups of vari-

ables which are strongly correlated with each other or with a specific target

variable. Based on the correlation measure, we are able to capture the de-

RELATED WORK 17

pendencies among variables.

Another interestingness measure is the lift measure as proposed by Brin

et. al. [10]. However, the lift measure does not satisfy the downward

closure property [7]. As a results, several other interestingness measurements

have been proposed and extensively studied to capture the interestingness of

association patterns [27, 43, 3, 44, 28]. In addition, the works in [34, 48]

mention about the criteria for selecting the suitable interestingness measures

for different applications.

2.3 Spatio-temporal Sequential Patterns Min-

ing

Spatio-temporal sequential patterns are useful in the investigation of spatio-

temporal evolutions of phenomena in many application fields. However,

straightforward application of existing sequential pattern mining methods

to spatio-temporal data by ”transactionization” of spatial and temporal do-

mains may be unnatural due to the continuity of space and time [23]. The

main problem is that it is highly possible to miss the spatial, temporal, or

spatio-temporal relationships which are across partition/transaction bound-

aries in a disjoint partitioning; and because of an overlapping partitioning,

a relationship may be counted more than once. Recently, Huang et. al [24]

proposed a framework for mining sequential patterns from event data. They

defined the neighborhood of an event within the space-time dimension and

proposed a significance measure that considers the density of event type.

Another type of spatio-temporal data is the trajectory data. A trajectory

is a sequence of the locations and timestamps of a moving object. Mamoulis

et al. [30, 11, 15] discussed the indexing, querying and mining of trajectory

data. Retrieving similar trajectories can reveal the underlying traveling pat-

terns of moving objects in the data. Example applications include homeland

security (e.g., border monitoring), law enforcement (e.g., video surveillance),

weather forecast, traffic control, location-based service. Mamoulis et. al.

RELATED WORK 18

proposed models and algorithms to investigate the trajectories of objects

for mining frequent periodic subtrajectory, which consists of a sequence of

frequently visited places on trajectories.

2.4 Bioinformatics domain

In the bioinformatics domain, sequential pattern mining techniques have

been applied to biological databases to find interesting protein or genome

patterns [50, 22]. A biosequence has the following characteristics:

• It has a very small alphabet. For example, 20 for protein sequences

and 4 for DNA sequences.

• It has a vary long sequence length of few hundreds, sometime thou-

sands.

• It may contain gaps over long regions.

Because of the above characteristics, it is infeasible to enumerate the

entire solution space. The works in [33, 49, 25, 40] make use of heuristics or

structural constraints, such as the maximum gaps allowed or the maximum

pattern length, to reduce the search space.

Recently, the framework proposed by Huang et. al [24] can discover

long, single point mutations (i.e., mutations which occur multiple times at

a specific position) across multiple sequences. However, they are unable to

find co-mutations involving multiple positions. Other works try to utilize the

translation probability matrix to estimate the future composition of amino

acids [52, 26], but these works only consider the mutation in one position

and cannot analyze how the mutations spread geographically over time.

Sheng et. al [42] proposed a different framework to mine co-mutations

across multiple sequences. However, the algorithm does not take into account

the 3D-structure of protein and mines only the mutations that occur in k

contiguous positions. This restriction to continuous positions may result in

missing some biologically meaningful patterns.

Chapter 3

Preliminaries and Definitions

A virus protein sequence dataset vPSD consists of a set of virus protein

records, vs1, vs2, . . . , vsn, where n is the size of the dataset. Each record

has a unique id, virus host, time, location, and the protein sequence. The

virus sequences are preprocessed by a multiple sequence alignment so that

all sequences have identical number of positions where each position is an

amino acid or a gap, denoted as “-” (see Table 1.1).

X

Y

time

1996

1991

1986

...

γ

ξ
vs2

vs4

vs6

vs1

vs3 vs5

vs7

NB(vs1)={vs2,vs3}

NB(vs2)={vs3,vs5}

NB(vs3)={vs4}

NB(vs4)={vs5,vs6,vs7}

NB(vs5)={vs6,vs8}

NB(vs7)={vs8}

vs8

Figure 3.1: Spatio-temporal representation of the viruses in Table 1.1.

Suppose we have two virus sequences vs and vs′ that are near in space

and time. We say that vs′ is in the neighbourhood of vs, denoted by vs′

19

PRELIMINARIES AND DEFINITIONS 20

∈ NB(vs). Then vs mutates to vs′ if we can find a transformation that

maps vs to vs′. Consider the two virus sequences vs1 and vs2 in Figure 3.1.

We observe that vs1 and vs2 are within the same cylinder indicating they

are near in space and time. Also, we can transform vs1 to vs2 by changing

A,P ,T ,N to D,S,Y ,T at positions 1,11,13,17 in order. Hence, we say vs1

mutates to vs2.

Definition Let ci to be the i-th character of sequence vs and c′i to be the

i-th character of sequence vs′. vs is said to point mutate or 1-mutate to

vs′, if and only if vs′ ∈ NB(vs) and there exists p ∈ [1, n] such that cp ̸= c′p
but for all i ̸= p, ci = c′i. We denote the point mutation at position p as

⟨p, cp → c′p⟩. Moreover, the virus sequence pair,(vs, vs′), is said to support

the point-mutation.

We denote a set of k point mutations as M = {< p1 : cp1 → c′p1 >,< p2 :

cp2 → c′p2 > · · · < pk : cpk → c′pk >}. The set of positions where the point

mutations occur is given by Pos = {p1, p2, · · · , pk}. A virus sequence pair

(vsi, vsj) is said to support M if vsj ∈ NB(vsi), and ∀ p ∈ Pos, cp ∈ vsi

and c′p ∈ vsj.

For example, given a virus sequence vs = ACDE and another sequence

vs′ = ARDF and vs′ ∈ NB(vs). Suppose M = {< 2 : C → R >,< 4 : E →
F >} with Pos = {2, 4}. Then (vs, vs′) supports M .

Definition Given a set of virus pairs (vsi, vsj) that support M , let V S[i]

be the set of distinct vsi and V S[j] be the set of distinct vsj. Then

Support(M) = min(|V S[i]|, |V S[j]|)

Definition Let V Pairsp be the set of virus pairs that support the point

mutation at position p in M . We define the mutation significance of M as

follows:

Significance(M) =
Support(M)

maxp∈Pos(|V Pairsp|)

PRELIMINARIES AND DEFINITIONS 21

The Significance measure indicates the likelihood of M occurring with

respect to the individual point mutations. A value close to 1 implies that the

likelihood of M occurring is high.

For example, in Figure 3.1, we have a set of 2 point mutations

M = {< 1 : A → D >,< 11 : P → S >}

The set of virus pairs that support M is {(vs1, vs2), (vs1, vs3)}. Then

V S[i] = {vs1} and V S[j] = {vs2, vs3}. We have

Support(M) = min(|V S[i]|, |V S[j]|)
= min(1, 2) = 1

In order to calculate Significance(M), we first need to compute the

sets of virus pairs that support the point mutations at positions 1 and

11 respectively. We have V Pair1 = {(vs1, vs2), (vs1, vs3), (vs7, vs8)} and

V Pair11 = {(vs1, vs2) , (vs1, vs3) , (vs4, vs6) , (vs4, vs7) , (vs5, vs6)}. Then

Significance(M) =
Support(M)

max(|V Pair1|, |V Pair11|)

=
1

max(3, 5)
= 0.2

Definition Suppose we have a set of k point mutations M = {< p1 : cp1 →
c′p1 >,< p2 : cp2 → c′p2 > · · · < pk : cpk → c′pk >} with Pos = (p1, p2,. . . , pk).

For ∀ pi ∈ Pos, if (cpi , c
′
pi
) ∈ M , we can get (cpi , c

′
pi
) ∈ M ′ (another set of k

point mutations). Then M is the sub k point mutations of M ′, denoted as

M ⊑ M ′.

For example, a set of 2 point mutations M = {< 1 : C → R >,< 3 :

E → F >} is a sub k point mutations of a set of 3 point mutations M ′ =

{< 1 : C → R >,< 3 : E → F >,< 6 : G → H >}.
To capture the sequence of mutations that happen over multiple time

points, we define the concept of a mutation chain.

PRELIMINARIES AND DEFINITIONS 22

Definition A mutation chain MC of length (T + 1) is given by M1 →
M2 → . . .Mi → . . . MT , where Mi is the set of k point mutations at the ith

time point. The Pos of MC denoted its mutation positions set. M1 . . . Mi

and MC, where i ∈ [1, T], have the same Pos; and for each sequence pair

(vsj, vsh) ∈ the set of virus pairs that supports Mi, there must be sequence

pair (vsh, vsq) ∈ the set of virus pairs that supports M(i+1), where j ̸= h, h

̸= q, j, h, q ∈ [1, n], vsh ∈ NB(vsj) and vsq ∈ NB(vsh).

A chain of sequences, vs1 → vs2 → vs3 → . . . →vs(T+1), is said to support

the mutation chain MC, if (vsi, vsi+1) supports the Mi, i ∈ [1, T].

In Figure 3.1, we can see that vs7 ∈ NB(vs4) and vs8 ∈ NB(vs7). The

chain of sequences vs4 → vs7 → vs8 is said to support the mutation chain

MC = M1 → M2, where M1 = {< 1 : D → A >,< 13 : Y → T >}, M2 =

{< 1 : A → D >,< 13 : T → Y >} (or MC = < 1, 13 : DY → AT → DY >

in short).

Definition A mutation chain MC = M1 → M2 → · · · → MT with Pos,

if MC is a sub mutation chain of another mutation chain MC ′ = M ′
1 →

M ′
2 → · · · → M ′

T ′ with Pos′, denoted as MC ⊑ MC ′, if and only if

1) Pos ⊆ Pos′; T ≤ T ′.

2) ∀i ∈ [1, T], ∃r ∈ [0, T ′ − T] such that Mi ⊑ M ′
(i+r).

Specifically, MC = MC ′ if MC ⊑ MC ′ and MC ′ ⊑ MC.

Figure 3.2 shows a mutation chain with |Pos|=5, and another mutation

chain with |Pos| = 9, and the first chain is a sub mutation chain of the

second one.

Definition The support of MC = M1 → M2 → . . .Mi → . . .MT , is defined

as

Support(MC) = mini∈[1,T]{Support(Mi)}

Definition The mutation significant of MC = M1 → M2 → . . .Mi →
. . .MT , is defined as

Significance(MC) = mini∈[1,T]{Significance(Mi)}

PRELIMINARIES AND DEFINITIONS 23

1 2 52 53 98

vs1

vs2

vs3

A R I Y D

M F P S W

Q H D V C

NB

NB

(a) One mutation chain

1 2 3 50 51 52 53 98 99

vs1

vs2

vs3

vs4

A R D G H I Y D C

M F A S W P S W K

Q H E T M D V C E

T S G I Y A F K A

NB

NB

NB

(b) Another mutation chain

Figure 3.2: Examples of mutation chains. The mutation chain in (a) is a sub

mutation chain of the mutation chain in (b)

For example, in Figure 3.1, we have a mutation chain MC = M1 → M2,

where M1 = {< 1 : D → A >,< 13 : Y → T >}, M2 = {< 1 : A → D >,<

13 : T → Y >}.

Support(MC) = min(Support(M1), Support(M2))

= min(1, 2) = 1

,where we can easily calculate that Support(M1)=1 and Support(M2)=2.

In the same reason, we can compute the Significance(M1) and Significance(M2),

and they are 0.25, 0.4 in order, then

Significance(MC) = min(Significance(M1), Significance(M2))

= min(0.25, 0.4) = 0.25

Both Support(MC) and Significance(MC) satisfy anti-monotone prop-

erty and the proof about Significance(MC) is as follows: (Support(MC) is

PRELIMINARIES AND DEFINITIONS 24

obviously satisfiable)

Lemma 3.0.1. Anti-monotonicity Property. Given two mutation chains

MC ⊑ MC ′, Significance(MC ′) ≤ Significance(MC).

Proof: Given a mutation chain MC= M1 → M2 → . . .Mi · · · → . . .MT

with Pos and another mutation chain MC ′= M ′
1 → M ′

2 → . . .M ′
i · · · →

. . .M ′
T with Pos′. Without loss of generality, MC ⊑ MC ′, so that 1) Pos ⊆

Pos′ 2) ∀ i ∈ [1, T] ∃ r ∈ [0, T ′ − T] such that Mi ⊑ M ′
(i+r). By definition

of sub mutation chain, if a sequence chain vs1 → vs2 → vs3 → . . . → vsT

supports MC ′, it must also support MC. So ∀ 1≤i<T , we have

Significance(M ′
(i+r))

=
Support(M ′

(r+i))

maxq∈Pos′(|V Pairsq in M ′
(i+r)|)

≤
Support(M ′

(r+i))

maxq∈Pos(|V Pairsq in M ′
(i+r))|)

≤ Support(Mi)

maxq∈Pos(|V Pairsq in Mi|)
= Significance(Mi)

Significance(MC ′)

= min{Significance(M ′
t), . . . , Significance(M

′
T ′)}

≤ min{Significance(M ′
(1+r)), . . . , Significance(M

′
(T+r))}

≤ min{Significance(M1), . . . , Significance(MT)}
= Significance(MC) �

Given a mutation significance threshold min Significance and a sup-

port threshold min Support, a mutation chain MC is valid if and only if

Support(MC) ≥ min Support, and Significance(MC) ≥ min Significance.

Chapter 4

Mining Non-Contiguous

Mutation Chains

Algorithm 3:

ptMutationChain-Miner

vPSD Virus sequences

Algorithm 1:
PointMutation tree

construction

PointMutation tree
Algorithm 2:

ptMutationTree-Miner

Procedure:

ChainMiner

The complete set

of valid mutation

chains

The completely valid sets

of K point mutations

Figure 4.1: The mutation chains mining framework.

Figure 4.1 shows the proposed framework for mining non-contiguous mu-

tation chains. Given the virus protein sequence dataset vPSD, we first

construct the PointMutation tree which keeps track of the complete sets of k

point mutations. To obtain the valid sets of k point mutations, we traverse

the constructed PointMutation tree recursively, generating the sets of k point

mutations that are both frequent and significant by concatenating the suffix.

Having obtained the valid sets of k point mutations, we initiate procedure

25

MINING NON-CONTIGUOUS MUTATION CHAINS 26

ChainMiner to generate the complete set of valid mutation chains by linking

the mutations across different time points.

4.1 Mining k point mutations

Given a virus protein sequence dataset vPSD, we first generate the set of

single point mutations. We then extend this set of single mutation to k point

mutations by constructing the PointMutation tree. Based on the constructed

PointMutation tree, we design a recursive algorithm to mine the valid sets

of k point mutations.

Finding the set of k point mutations is computationally expensive, es-

pecially when the length of the virus sequence is long. In order to reduce

the complexity, we introduce the notion of local hot positions to identify

positions that have a high probability of mutation. We use the entropy mea-

sure to determine the likelihood of mutation occurring at a position. This

measure is defined as follows:

Definition Given a virus vs, let V = NB(vs)
∪
{vs} and Freq(c,vs,p) be the

number of times the character c appears at position p in the virus sequences

in V . We have

Entropy(vs, p) = −
∑
c∈A

Prob(c, vs, p) log2 Prob(c, vs, p)

where Prob(c, vs, p) =
Freq(c, vs, p)

|V |

and A is the set of 20 standard amino acids characters and the gap character

’-’.

If the entropy value exceeds a certain user-given threshold, we say that the

position is a local hot position.

Consider vs1 in Figure 3.1. We have NB(vs1) = {vs2, vs3} and V =

{vs1}
∪
NB(vs1) = {vs1, vs2, vs3}. The characters that occur in position 1

MINING NON-CONTIGUOUS MUTATION CHAINS 27

of the virus sequences in V are A,D.

Prob(A, vs1, 1) =
freq(A, vs1, 1)

|V |
= 1/3

Prob(D, vs1, 1) =
freq(D, vs1, 1)

|V |
= 2/3

The entropy value for vs1 at the first position,

Entropy(vs1, 1) = −1

3
log2

1

3
− 2

3
log2

2

3
≈ 0.918295.

Suppose the threshold is 0.5, we conclude that position 1 of vs1 is a lo-

cal hot position. Repeating the same analysis, the local hot positions for

vs1, vs2, vs3, vs4, vs5, vs7 are (1,11,13,17), (1,11,13,17), (1,3,11,13,17),

(1,3,4,11,13,17), (1,3,4,11,13,17), (1,3,4,11,13,17) in order, and because NB(vs6)

and NB(vs8) is null, then all the positions of vs6 and vs8 are hot positions

in default.

A

1

T

11 13 17

P N
vs1

<1: A->D> <11: P->S>

D

1

Y

11 13 17

S T
vs2

D

1

T

11 13 17

S T
vs3

<13: T->Y><17: N->T>

Figure 4.2: Example to show the generation of sets of k point mutations

After finding all the local hot positions in the virus sequences in vPSD,

we generate the sets of k point mutations by comparing the common local hot

positions between the virus and its neighborhood without regard to the gaps.

For example, consider virus vs1 in Figure 4.2 where NB(vs1) = {vs2, vs3}.
For the virus pair (vs1, vs2), their common local hot positions are 1, 11, 13

and 17. From them, we generate a set of 4 point mutations {< 1 : A → D >,

< 11 : P → S >,< 13 : T → Y >,< 17 : N → T >}. Next, we consider

MINING NON-CONTIGUOUS MUTATION CHAINS 28

the virus pair (vs1, vs3). Their common local hot positions are 1, 11, 13, 17.

We observe that the characters at position 13 in both vs1 and vs3 are the

same T, hence we have a set of 3 point mutations {< 1 : A → D >,< 11 :

P → S >,< 17 : N → T >}. In the same reason, based on all the virus

pairs in Figure 3.1, we can generate the mutation base (Table 4.1) of our

example, which is composed by virus pairs and their corresponding sets of k

point mutations.

As every set of k point mutations M is generated, we need to evaluate the

Support(M) and Significance(M) values to determine whether M is valid.

However, this evaluation is computationally expensive as it involves finding

the supporting virus pairs for all possible subsets of M which, in the worst

case, is exponential to the length of the virus sequences.

Table 4.1: Mutation base: Virus pairs and their corresponding sets of k point

mutations
virus pair k point mutations

(vs1, vs2) < 1 : A → D >, < 11 : P → S >, < 13 : T → Y >, < 17 : N → T >

(vs1, vs3) < 1 : A → D >, < 11 : P → S >, < 17 : N → T >

(vs2, vs3) < 13 : Y → T >

(vs2, vs5) < 11 : S → P >, < 13 : Y → T >

(vs3, vs4) < 11 : S → P >, < 13 : T → Y >

(vs4, vs5) < 13 : Y → T >

(vs4, vs6) < 4 : C → D >, < 11 : P → S >

(vs4, vs7) < 1 : D → A >, < 4 : C → D >, < 11 : P → S >, < 13 : Y → T >

(vs5, vs6) < 3 : T → M >, < 4 : C → D >, < 11 : P → S >, < 13 : T → Y >

(vs5, vs8) < 13 : T → Y >

(vs7, vs8) < 1 : A → D >, < 13 : T → Y >, < 17 : N → T >

We transform this problem to the problem of frequent itemset mining

[5]: a point mutation corresponds to an item in the frequent itemset mining

problem. The sets of k point mutations(mutation base) correspond to the

transaction dataset. Finding the sets of valid k point mutations is equivalent

to finding the set of frequent k itemsets. For each single point mutations that

can be found in the mutation base (Table 4.1), we generate a statistic table

consisting of the support and significance values (see Table 4.2). The point

MINING NON-CONTIGUOUS MUTATION CHAINS 29

Table 4.2: Statistic table: Point mutations and their supporting virus pairs.

(min Support=2 and min Significance=0.4)
M {(vsi, vsj)} V S[i] V S[j] Sup(M) Signi(M)

< 1 : A → D > {(vs1, vs2),(vs1, vs3),(vs7, vs8)} {vs1, vs7} {vs2, vs3, vs8} 2 0.67

< 1 : D → A > {(vs4, vs7)} {vs4} {vs7} 1 1

< 3 : T → M > {(vs5, vs6)} {vs5} {vs6} 1 1

< 4 : C → D > {(vs5, vs6),(vs4, vs6),(vs4, vs7)} {vs4, vs5} {vs6, vs7} 2 0.67

< 11 : P → S > {(vs1, vs2),(vs1, vs3),(vs4, vs6), {vs1, vs4, vs5} {vs2, vs3, 3 0.6

(vs4, vs7),(vs5, vs6)} vs6, vs7}
< 11 : S → P > {(vs3, vs4),(vs2, vs5)} {vs2, vs3} {vs4, vs5} 2 1

< 13 : T → Y > {(vs1, vs2),(vs3, vs4),(vs5, vs6), {vs1, vs3, {vs2, vs4, 4 0.8

(vs7, vs8),(vs5, vs8)} vs5, vs7} vs6, vs8}
< 13 : Y → T > {(vs2, vs3),(vs2, vs5),(vs4, vs5), {vs2, vs4} {vs3, vs5, vs7} 2 0.5

(vs4, vs7)}
< 17 : N → T > {(vs1, vs2),(vs1, vs3),(vs7, vs8)} {vs1, vs7} {vs2, vs3, vs8} 2 0.67

mutations whose support and significance values fall below the thresholds

are invalid and will not participate in the generation of the valid sets of k

point mutations, k > 1.

Next, we extend the valid single point mutations to find valid sets of k

point mutations by constructing a PointMutation tree. The tree has a root

labeled as null at level 0 and a set of nodes labeled with a point mutation.

A path from the root to a level k node corresponds to a set of k point

mutations. It is similar to the FP-tree [19] but with one subtle difference. Due

to the interesting measurements used in this application, simply summing the

number of occurrences of supported virus pairs is insufficient. Consider two k

point mutations in the Figure 4.3: M = { < 13 : T → Y >, < 11 : P → S >,

< 4 : C → D > } and it’s supported virus pair is (vs5, vs6); another one

is M ′ = { < 13 : T → Y > } and it’s supported virus pair is (vs5, vs8).

We observe that M ′′ = { < 13 : T → Y > } is a common sub k point

mutations of both M and M ′. However, the support of M ′′ is not support of

M + support of M ′. Instead, can only be calculated based on its supported

virus pairs(vs5, vs6) and (vs5, vs8). To overcome this, we store the set of the

supported sequence pairs instead of just one count value.

Now, based on Table 4.2, we remove the non valid point mutations <

1 : D → A > and < 3 : T → M > in mutation base and reorder each

virus pair’s valid point mutations in the support-descending order. Then, we

MINING NON-CONTIGUOUS MUTATION CHAINS 30

Root

1
<13: T->Y>

<11: P->S>

<1: A->D>

<17: N->T>

(vs1,vs2)

(vs5,vs8)

(vs3,vs4)

<1: A->D>

<17: N->T>

(vs7,vs8)

(vs5,vs6)

<4: C->D>

<11: S->P>

<13: Y->T>

(vs2,vs5)

<13: Y->T>

(vs2,vs3) (vs4,vs5)

<11: P->S>

<4: C->D>

<13: Y->T>

<1: A->D>

<17: N->T>

(vs4,vs6)

(vs4,vs7)

(vs1,vs3)

<11: S->P>

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 4.3: PointMutation tree.

can generate the PointMutation tree of our example as shown in Figure 4.3.

The leftmost branch in the tree indicates a set of 3 point mutations {< 11 :

P → S >,< 1 : A → D >,< 17 : N → T >}. We associate each path

with its supporting virus pairs. For example, the set of 3 point mutations

{< 11 : P → S >,< 1 : A → D >,< 17 : N → T >} is supported by the

virus pair (vs1, vs3). Clearly, if a virus pair supports a length k path of the

PointMutation tree, it will support all its prefix paths. Hence, a bottom-up

recursive algorithm is utilized to discover all valid sets of k point mutations.

Algorithm 1 gives the details of the PointMutation tree construction pro-

cess. Based on the neighborhood relationships, lines 9-13 generate the set of

k point mutations for each virus pair in vPSD and store them in MBase.

Given the min Support and min Significance, line 14 determines whether

the single point mutations in Mbase are valid. The invalid single point

mutations are removed from further consideration in lines 15-19. Line 20

initializes the PointMutation tree. Lines 21-29 construct the PointMutation

tree by inserting each set of k point mutations from MBase into the tree.

Lines 31-34 give the insertTree, which handles every point mutation in all

sets of k point mutations. Its main task is to determine whether this point

mutation is equal to some existing tree node and whether can combine them

MINING NON-CONTIGUOUS MUTATION CHAINS 31

Algorithm 1: PointMutation tree construction

1: input:

2: vPSD: influenza A virus protein sequence database;

3: Localhot: the threshold value for local hot positions;

4: min Support: the minimal support;

5: min Significance: the minimal mutation significance;

6: output:

7: PointMutation tree, the PointMutation tree of vPSD;

8:

9: perform local hot position pruning strategy;

10: for virus pair (vsi, vsj) that satisfies the neighborhood constraint do

11: M = {point mutations corresponding to the hot positions of both vsi

and vsj) };
12: MBase = MBase ∪{M}
13: end for

14: Generate the statistic table for all the single point mutations found in

MBase

15: for M ∈ MBase do

16: if ∃ a single point mutations in M that is invalid then

17: MBase = MBase - {M}
18: end if

19: end for

20: initialize the node root of PointMutation tree, T , and label it as ”null”;

21: for M ∈ MBase do

22: Let M1 be the first single point mutation in M and M ′ be the

remaining set of point mutations.

23: insertTree(M1,M
′,T).

24: while M’ is not empty do

25: Let M1 be the first single point mutation in M ′ and M ′ be the

remaining set of point mutations.

26: insertTree(M1,M
′,T).

27: end while

28: update the corresponding supporting virus pairs.

29: end for

30:

31: Procedure insertTree(M , M ′,T)

32: if T doesn’t have a child P and P .(point mutation) = M .(point

mutation) then

33: create a new node P , with its parent-link linked to T

34: end if

MINING NON-CONTIGUOUS MUTATION CHAINS 32

or not.

Lemma 4.1.1. The PointMutation tree contains the completely candidate

sets of k point mutations.

Proof: We prove this by induction. When |MBase| = 1, the set of k

point mutations corresponds to the single path from the root node. Suppose

we do not miss any candidate set of k point mutations when |MBase =

{M1,M2, · · · ,Mn}| = n. Now, for Mbase = {M1,M2, · · · ,Mn,Mn+1}, we
have the following three cases:

1. Mn+1 is the same as one of theMi, 1 ≥ i ≥ n. In this case, no additional

nodes are created in the PointMutation tree, we only need to update

the supporting virus pairs. The set of k point mutations remains the

same.

2. There exists a continuous sub k point mutations M ′ between Mn+1

and one of the Mi, 1 ≥ i ≥ n. If M ′ corresponded to a direct child

of the root node, we follow the path of this direct child until we come

upon the first node that deviates from M ′. From this node, we create

a new branching path for the remaining mutations of M ′. If M ′ does

not correspond to any direct child of the root node, we simply create

a separate path corresponding to Mn+1 and insert it as a direct child

of root node. In this manner, all possible mutations from Mn+1 are

incorporated into the PointMutation tree.

Hence, no candidate mutations will be missed. �

Continuing with our example, the valid point mutation < 17 : N → T >

has the lowest support value. We observe that < 17 : N → T > occurs three

times in the PointMutation tree (see Figure 4.3). The paths corresponding

to these occurrences are:(< 11 : P → S >-< 1 : A → D >-< 17 : N → T >,

< 13 : T → Y >-< 1 : A → D >-< 17 : N → T >,< 13 : T → Y >-

< 11 : P → S >-< 1 : A → D >-< 17 : N → T >. We extract the prefix

MINING NON-CONTIGUOUS MUTATION CHAINS 33

of these three paths to form the conditional mutation base(Table 4.3) for

< 17 : N → T >. For each path, its supporting virus pairs are equal to those

of corresponding < 17 : N → T > in the PointMutation tree.

Table 4.3: The < 17 : N → T >’s conditional mutation base
virus pair k point mutations

(vs1, vs2) < 13 : T → Y >, < 11 : P → S >, < 1 : A → D >

(vs1, vs3) < 11 : P → S >, < 1 : A → D >

(vs7, vs8) < 13 : T → Y >, < 1 : A → D >

With the conditional mutation base, we compute support and significance

values of these different point mutations in it to form the conditional statistic

table(Table 4.4). These point mutations are < 1 : A → D >, < 11 : P →
S > , < 13 : T → Y >, whose suffix sets of k point mutations are all

{< 17 : N → T >} and support values are 2, 1, 2 in order. Now, we

can calculate the significance values of those point mutations. For example

Significance(< 1 : A → D >) = Support(<1:A→D>)
max{|V Pair1(<1:A→D>)|,|V Pair17(<17:N→T>)|} =

2
max{3,3} ≈ 0.67, the other significance values are 0.2, 0.4 in order.

Table 4.4: The < 17 : N → T >’s conditional statistic table.

(min Support=2 and min Significance=0.4)

M {(vsi, vsj)} V S[i] V S[j] Support(M) Significance(M)

< 1 : A → D > {(vs1, vs2),(vs1, vs3),(vs7, vs8)} {vs1, vs7} {vs2, vs3, vs8} 2 0.67

< 11 : P → S > {(vs1, vs2),(vs1, vs3)} {vs1} {vs2, vs3} 1 0.2

< 13 : T → Y > {(vs1, vs2),(vs7, vs8)} {vs1, vs7} {vs2, vs8} 2 0.4

Based on < 17 : N → T >’s conditional statistic table, we can remove the

invalid point mutation < 11 : P → S > in the < 17 : N → T >’s conditional

mutation base, resulting in three sets of k point mutations: (< 1 : A → D >,

< 1 : A → D >-< 13 : T → Y >, < 1 : A → D >-< 13 : T → Y >). The

< 17 : N → T >’s conditional PointMutation tree is shown in Figure 4.4.

This tree is then mined recursively and the whole process repeats until no

new valid mutations are found.

MINING NON-CONTIGUOUS MUTATION CHAINS 34

Root

1
<13: T->Y>

<1: A->D>

(vs1,vs2)(vs7,vs8)

<1: A->D>

(vs1,vs3)

0

2

3

Figure 4.4: < 17 : N → T >’s conditional PointMutation tree

Algorithm 2 gives the details of the recursive mining process.Line 8 calls

the recursive procedure ptMutationTree-Miner. Line 11 starts the loop with

mutation Mi that has the lowest support value. Line 12 constructs Mi’s con-

ditional mutation base. Given min Support and min Significance, Line 13

computes Mi’s conditional statistic table. In Line 14, the invalid point muta-

tions are removed. Line 15 constructs the PointMutation tree corresponding

to this mutation base by calling PointMutation treeMi
. Line 16 determines

whether PointMutation treeMi
is null or not. If it is not null, then, line 17

links this point mutation Mi with its suffix set of k point mutations M to

form new suffix set of k point mutations M ′ for PointMutation treeMi
. Line

18 calls the procedure ptMutationTree-Miner to recursively increase the k

value of the valid sets of k point mutations. Line 21 sums up the complete

sets of valid k point mutations.

4.2 Mining the mutation Chain

With the valid sets of k point mutations discovered, the next step is to extend

them to form valid mutation chains. We observe that certain sequence pairs

cannot form valid mutation chains if they do not form any valid set of k

point mutations in the previous step. Hence, we introduce another pruning

strategy valid Mutation Space: for each sequence pair (vs,vs′) in vPSD,

where vs′ ∈ NB(vs), if the pair does not support any valid set of k point

mutations. This means that there is no probability that vs could mutate to

vs′. Thus, we can remove vs′ from the NB(vs). This reduces the search

MINING NON-CONTIGUOUS MUTATION CHAINS 35

Algorithm 2: ptMutationTree-Miner

1: input:

2: PointMutation tree: the PointMutation tree of vPSD;

3: min Support: the minimal support;

4: min Significance: the minimal mutation significance;

5: output:

6: The completely valid sets of k point mutation

7: method:

8: call ptMutationTree-Miner(PointMutation tree,null);

9:

10: Procedure ptMutationTree-Miner(Tree,M(suffix set of k point

mutations))

11: for all Mi ∈ Tree (start from Mi that is the point mutation with

lowest support value in the Tree) do

12: construct Mi’s conditional mutation base;

13: construct Mi’s conditional statistic table based on the min Support

and min Significance;

14: remove the invalid point mutations in Mi’s conditional mutation base;

15: construct Mi’s conditional PointMutation treeMi
;

16: if PointMutation treeMi
̸= ∅ then

17: M ′ = Mi

∪
M ;

18: call ptMutationTree-Miner (PointMutation treeMi
,M ′);

19: end if

20: end for

21: return(the completely valid sets of k point mutations);

MINING NON-CONTIGUOUS MUTATION CHAINS 36

space for the generation of mutation chain.

A sequence chain vs1 → . . . → vsT−1 will join with a sequence vs′ to

support a new mutation chain of length T if and only if

1. vs1 → . . . → vsT−1 supports a valid mutation chain M1 → . . .MT−2

with length T − 1;

2. (vsT−1, vs
′) supports a valid set of k point mutationsM ′, vs′ ∈NB(vsT−1);

3. MT−2 and M ′ share a common subset of local hot positions Pos where

|Pos| ≥ min k.

Therefore, there is one important operation as a new pruning strategy:

increment join, denoted as onmin k:

SFT = SFT−1 onmin k vs′

,where SFT−1 is the set of sequence chains with length T − 1, T ≥ 3.

Algorithm 3 shows the ptMutationChain-Miner framework to mine the

complete set of valid mutation chains. Line 11 generates the sequence pairs.

Line 12 finds the local hot positions for each sequence. Line 13 generates the

completely valid sets of k point mutations through the ptMutationTree-miner

algorithm. Line 14 performs the valid mutation space pruning strategy and

resets the neighborhood relationships in the vPSD, SF2. Line 15-17 find all

the valid mutation chains. Line 18 returns the complete set of valid mutation

chains of vPSD.

MINING NON-CONTIGUOUS MUTATION CHAINS 37

Algorithm 3: ptMutationChain-Miner

1: input:

2: vPSD: influenza A virus protein sequence dataset;

3: Localhot: the threshold value for local hot positions;

4: min Support: the minimal support;

5: min Significance: the minimal mutation significance;

6: min k: the minimal |Pos|;
7: min L: the minimal mutation chain length;

8: output:

9: the complete set of valid mutation chains;

10:

11: SF2: the set of sequence pairs (vsi,vsj) that satisfies vsj ∈ NB(vsi);

12: perform local hot position pruning strategy;

13: generate the completely valid sets of k point mutations;

14: perform valid mutation space pruning strategy and reset SF2;

15: for all SF2
i ∈ SF2 do

16: call ChainMiner(SF2
i);

17: end for

18: return(the complete set of valid mutation chains);

19:

20: Procedure ChainMiner(SFT−1)

21: vsi is the last sequence of SFT−1;

22: for all vsj ∈ NB(vsi) do

23: SFT = SFT−1 onmin k vsj;

24: if SFT ̸= ∅ then

25: call ChainMiner(SFT);

26: end if

27: end for

Chapter 5

Performance Study

In this section, we report the results of our mining algorithms on both syn-

thetic and real world datasets. All the algorithms are implemented in C++

and the experiments are carried out on a server with Quad Intel 2.83GHZ

processors and 3GB memory, running Windows XP.

5.1 Experiments on Synthetic Datasets

We modify the data generator in [42] to generate the synthetic datasets

composed of those sequences with two parameters (location and time): K is

the length of virus sequences, D is the total sequence number in the Synthetic

Datasets and L is the length of the mutation chain. The spatial-temporal

dimensions are set to 1000× 1000× 1200, the alphabet size |Σ| is set to 21.

In order to test the effectiveness of the pruning strategies (local hot

positions, valid Mutation Space and increament join) and show the scal-

abilty of algorithm ptMutationChain-Miner. We introduce two variants:

ptMutationChain WP , ptMutationChain-Miner with pruning strategies; and

ptMutationChain NP , ptMutationChain-Miner without any pruning strat-

egy. The second one needs to take into account all the positions in any

sequence and join all instances to obtain instance chains. Then, we vary the

virus sequence length K, sequence number D and mutation chain length L

38

PERFORMANCE STUDY 39

respectively to finish three comparative studies.

 0

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000

R
un

tim
e(

se
c)

sequence length

ptMutationChain_WP
ptMutationChain_NP

(a) Effect of sequence length

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

R
un

tim
e(

se
c)

number of sequences

ptMutationChain_WP
ptMutationChain_NP

(b) Effect of database size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 2 3 4 5 6 7

R
un

tim
e(

se
c)

min-L

ptMutationChain_WP
ptMutationChain_NP

(c) Effect of mutation chain length min L

Figure 5.1: Comparative study on effect of pruning techniques

To fix the sequence length K = 100, set min k=4, and integrate three

mutation chains of length L (4≤L≤14 and 2≤ |Pos| ≤5) into the test-

ing datasets, we can get the first result in Figure 5.1(a) by varying se-

quence length |K| from 200 to 1000 and fixing |D| = 5k, and the second

result in Figure 5.1(b) by varying |D| from 2k to 20k and fixing |K| = 100.

Both the two results show that ptMutationChain WP is much faster than

ptMutationChain NP , because our pruning strategies can prune more and

more positions of each sequence without the probability to form any valid

set of k point mutations and reduce more and more sequence chains without

the probability to support any valid mutation chain.

Finally, we get the third result in Figure 5.1(c) by varying the minimal

PERFORMANCE STUDY 40

mutation chain length min L. In this experiment, the size of dataset is 15k

and the length of each sequence is 100, and we integrate three mutation

chains (2≤L≤5 and 5≤ |Pos| ≤7). We see that ptMutationChain WP is

still faster than ptMutationChain NP and both them are slowly increasing,

because constructing longer mutation chain needs more time. When larger

than length 5, like 6 and 7, their runtime are all the same, because the

maximal mutation chain length in the testing dataset is 5 and program will

be terminated after the length of chain reached 5.

5.2 Experiments on Influenza A Virus Dataset

Two common mechanisms the influenza virus uses to escape detection by the

host immune system is changing antigens by antigenic shift or drift. Antigenic

shift is the process by which two or more different strains of the virus combine

to form a new subtype having a mixture of the surface antigens of the parent

strains, while antigenic drift refers to incremental accumulation of mutations

on the viral proteins over time resulting in changes in their antigenic makeup.

We next apply our algorithm ptMutationChain-Miner to our dataset [8] of

40326 influenza A virus sequences to detect mutations that may be indicative

of antigenic drift and shift events.

The influenza A virus protein dataset is composed of 11 influenza A virus

proteins; and for each virus sequence record, there are all relative informa-

tions, like subtype (e.g., H1N1,H3N2,H5N1), host (e.g., swine, avian,human),

country and year of isolation(e.g., Table 1.1). Next, we use MUSCLE 3.6 [13]

to finish the multiple sequence alignments of such 11 proteins. According to

the suggestions by our cooperators in bioinformatics, because that the viruses

spread and mutate gradually, instead of sudden changes and promulgation,

one protein sequence vs is likely to mutate to another sequence vs′ if vs′ oc-

curs within two years after the occurrence vs, and the geographical distance

between them is less than 1,000 kilometers. In addition, those cooperators

also help us to set the reasonable values for Localhot, min Support and

PERFORMANCE STUDY 41

min Significance are 0.5, 2 and 0.01 respectively.

Based those experiments on Influenza A Virus Dataset, we successfully

find some interesting mutation patterns which can reflect those famous pan-

demic influenzas in human history.

Hong Kong flu (H3N2) outbreak (1968-69)

The hemagglutinin (HA) and neuraminidase (NA) glycoproteins of influenza

A viruses comprise the major surface proteins and the main immunizing

antigens of the virus. HA is responsible for virion entry into host epithelial

cells while NA assists in the elution of virion progeny from the infected

cell. Neutralization of the virus is mediated through the HA, which is hence

subject to strong selective pressure by the host immune system as new strains

emerge to produce new epidemics [12]. We examined the spatio-temporal

spread patterns of the Pandemic Hong Kong flu (H3N2) between 1968 and

1969. The first incidence of disease was reported in Hong Kong in 1968,

which subsequently spread worldwide in the following two winters. Two sets

of 2 point mutations, i) {< 136 : P → H >,< 57 : N → S >} in NA

protein and ii) {< 250 : W → G >,< 542 : N → T >} in HA protein, were

identified that could reflect the overall transmission route of the Pandemic

Hong Kong flu (H3N2) between 1968 and 1969, including the virus entry

into the distant California from returning Vietnam War troops (Figure 5.2).

During the period of 1968, we also found evidence of the virus evolving within

Hong Kong and Australia.

H5N1 pandemic (2003)

We next applied our algorithm to analyze the spatio-temporal spread pat-

terns of the pandemic influenza (H5N1) in 2003. Previous studies had demon-

strated that the virulence of a highly pathogenic H5N1 virus might correlate

with polymerase activities [39], and play a central role in adaptive mutations

and potential reassortment [35]. For the 2003 H5N1 pandemic, two mutation

events were found in the polymerase proteins, which could biologically reflect

PERFORMANCE STUDY 42

(a) NA: {< 136 : P → H >,<

57 : N → S >}
(b) HA: {< 250 : W → G >,<

542 : N → T >}

Figure 5.2: Proposed geographical spread of the Pandemic Hong Kong flu

(H3N2) between 1968 and 1969 (1: 1968; 2: 1968-69; 3: 1969)

(a) PA: {< 128 : T → I >,<

203 : K → R >}
(b) PB1: {< 385 : K → R >,<

383 : L → S >,< 13 : V → A >}

Figure 5.3: Proposed geographical spread of the Pandemic influenza (H5N1)

in 2003 (1: 2002; 2: 2002-03; 3: 2002-04; 4: 2003; 5: 2003-04; 6: 2004)

PERFORMANCE STUDY 43

(a) M2: {< 30 : N → S >,< 25 :

I → L >,< 63 : A → S >}
(b) HA: {< 225 : K → R >,<

114 : P → I >}

Figure 5.4: Proposed geographical spread of the Pandemic influenza (H5N1)

in 2005 (1: 2004; 2: 2005)

the transmission route of 2003 H5N1 pandemic: i) a set of 2 point mutations

pattern {< 128 : T → I >,< 203 : K → R >} in the polymerase acidic (PA)

protein, and ii) a set of 3 point mutations pattern {< 385 : K → R >,< 383 :

L → S >,< 13 : V → A >} in the polymerase basic 1 (PB1) gene segment.

The spatio-temporal spread patterns of the two mutation events (Figure 5.3)

revolved around four countries in Asia: China, Hong Kong, Thailand and

Korea. The sets of k point mutations {< 128 : T → I >,< 203 : K → R >}
and {< 385 : K → R >,< 383 : L → S >,< 13 : V → A >} first reported

in China and Hong Kong respectively, undergone mutations within the re-

spective countries, and spread outwards to neighboring countries including

South Korea and Thailand.

H5N1 pandemic (2005)

Two mutation events were identified (Figure 5.4), which could possibly reflect

the transmission route of H5N1 pandemic in 2005. They include i) a set of

3 point mutations pattern {< 30 : N → S >,< 25 : I → L >,< 63 : A →
S >} in the matrix 2 (M2) protein and ii) a set of 2 point mutations pattern

{< 225 : K → R >,< 114 : P → I >} in HA. Based on these mutation

PERFORMANCE STUDY 44

patterns, it could be seen that the H5N1 pandemic influenza mainly occurred

in Asia and Europe during 2005. Thailand and Vietnam were the primary

source of the new strain, which spread rapidly to the surrounding countries

of China and Indonesia, and subsequently to Turkey, Mongolia and Russia.

Chapter 6

Conclusion and Future Work

In this thesis, we have proposed a framework for discovering mutation chains,

which are mostly non-continuous and take into account the 3D-structure

of the virus protein. We introduced the neighborhood of each sequence

to capture its mutation likelihood. We proposed an integrated algorithm

ptMutationChain-miner to mine mutation chains utilizes pruning strategies

to reduce the search space. Experiments on synthetic datasets showed that

our pruning strategies are effective. Experiments on the real world Influenza

A virus dataset revealed meaningful mutation patterns that correspond to

some episodes of influenza outbreak in human history. Our method is ex-

pected to provide an generally effective tool in the fight against emerging

and re-emerging infectious diseases with rapid mutations and transmissions.

In our future work, we plan to extend the mutation chains to find positions

that always co-mutate for each virus subtype taking into account the spatial

and temporal variations. Such positions are often a strong indication of

the function sites. This will allow us to predict the function sites of virus

subtype.

45

Bibliography

[1] E. Omiecinski A. Savasere and S. Navathe. Mining for strong negative

associations in a large database of customer transactions. IEEE Data

Eng. Conf., Feb,1998.

[2] R. Agarwal, C. Aggarwal, and V. Prasad. A tree projection algorithm

for generation of frequent itemsets. Parrallel and Distributed Computing

(Special Issue on High Performance Data Mining), 2000.

[3] C. Aggarwal and P. Yu. A new framework for itemset generation.

the 17th Symposium on Principles of Database Systems, pages 18–24,

June,1998.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining association ruls be-

tween sets of items in large database. 1993 ACM-SIGMOD Int. Conf.

on Management of Data, pages 207–216, May,1993.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, page 3,

Los Alamitos, CA, USA, 1995. IEEE Computer Society.

[6] R. Agrawal and R. Srikant. Fast algorithms for mining association rules

in large databases. 20th Intl Conf. Very Large Data Bases, Aug,1994.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining

association rules. pages 487–499, 1994.

46

REFFERENCES 47

[8] Y. Bao, P. Bolotov, D. Dernovoy, B. Kiryutin, L. Zaslavsky, T. Tatusova,

J. Ostell, and D. Lipman. The influenza virus resource at the national

center for biotechnology information. J. Virol., 82(2):596–601, 2008.

[9] C. Bettini, X.S. Wang, and S. Jajodia. Mining temporal relationships

with multiple granularities in time sequences. Data Engineering Bulletin,

21:32–38, 1998.

[10] S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Gen-

eralizing association rules to correlations. SIGMOD, May,1997.

[11] H. Cao, D.W. Cheung, and N. Mamoulis. Discovering partial periodic

patterns in discrete data sequences. Eighth PacificAsia Conf. Knowledge

Discovery and DataMining (PAKDD04), 2004.

[12] Kilbourne ED, Johansson BE, and Grajower B. Proc natl acad sci usa

1990. 87(786-790).

[13] R. C. Edgar. Muscle: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res., 32(5):1792–1797, 2004.

[14] M. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern

mining with regular expression constraints. 1999 Int. Conf. Very Large

Data Bases(VLDB99), pages 223–234, Sept.1999.

[15] N. Mamoulis H. Cao and D.W. Cheung. Mining frequent spatio-

temporal sequential patterns. Fifth IEEE Intl Conf. Data Mining

(ICDM05), pages 82–89, 2005.

[16] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic

patterns in time series database. 1999 Int. Conf. Data Engineering

(ICDE99), pages 106–115, Apr.1999.

[17] J. Han and Y. Fu. Discovery of multiple-level association rules from

large databases. Very Large Databases Conf., pages 420–431, Sept,1995.

REFFERENCES 48

[18] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu.

Freespan: Frequent pattern-projected sequential pattern mining. 2000

Int. Conf. Knowledge Discovery and Data Mining (KDD00), pages 355–

359, Aug. 2000.

[19] JIAWEI HAN, JIAN PEI, and YIWEN YIN. Mining frequent patterns

without candidate generation. the 2000 ACM SIGMOD international

conference on Management of data, pages 1–12, 2000.

[20] C. Hidber. Online association rule mining. ACM-SIGMOD Conf. Man-

agement of Data, pages 145–156, June,1999.

[21] M. Houtsma and A. Swami. Set-oriented mining of association rules.

Intl Conf. Data Eng., Mar,1995.

[22] Meng Hu, Jiong Yang, and Wei Su. Permu-pattern: discovery of mutable

permutation patterns with proximity constraint. In KDD ’08, pages

318–326, New York, NY, USA, 2008. ACM.

[23] Y. Huang, S. Shekhar, and H. Xiong. Discovering colocation patterns

from spatial datasets: A general approach. IEEE Trans. Knowledge and

Data Eng., 16(12), Dec,2004.

[24] Yan Huang, Liqin Zhang, and Pusheng Zhang. A framework for mining

sequential patterns from spatio-temporal event data sets. IEEE Trans.

on Knowl. and Data Eng., 20(4):433–448, 2008.

[25] I. Jonassen, J.F. Collins, and D.G. Higgins. Finding flexible patterns in

unaligned protein sequences. Protein Sci., 4:1587–1595, 1995.

[26] AK. Kashyap, J. Steel, AF. Oner, and MA. Dillon. Combinatorial an-

tibody libraries from survivors of the turkish h5n1 avian influenza out-

break reveal virus neutralization strategies. Proc Natl Acad Sci U S A,

105(598), 2008.

REFFERENCES 49

[27] M. Klemettinen, H. Mannila, P. Ronkainen, T. Toivonen, and

A. Verkamo. Fingding interesting rules from large sets of discovered

association rules. the 3rd int’lConf. on Information and Knowledge man-

agement(CIKM’94), pages 401–407, Nov,1994.

[28] B. Liu, W. Hus, and Y. Ma. Pruning and summarizing the discovered

associations. the Fifth Int’l Conference on Knowledge Discovery and

Data Mining, pages 125–134, 1999.

[29] H. Lu, J. Han, and L. Feng. Stock movement and ndimensional inter-

transaction association rules. 1998 SIGMOD Workshop Research Issues

on Data Mining and Knowledge Discovery (DMKD98), pages 12:1–12:7,

June 1998.

[30] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and

D.W.L. Cheung. Mining, indexing, and querying historical spatiotem-

poral data. 10th ACM SIGKDD, 2004.

[31] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent

episodes in event sequences. Data Mining and Knowledge Discovery,

1:259–289, 1997.

[32] H. Mannila, H. Toivonen, and A.I. Verkamo. Efficient algorithms for

discovering association rules. Knowledge Discovery and Data Mining

94: AAAI Workshop Knowledge Discovery in Databases, pages 181–192,

July,1994.

[33] A.F. Neuwal and P. Green. Detecting patterns in protein sequences. J.

Mol. Biol., 239:698–712, 1994.

[34] Edward R. Omiecinski. Alternative interest measures for mining associ-

ations in databases. IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, 15(1), 2003.

REFFERENCES 50

[35] Li OT, Chan MC, Leung CS, Chan RW, Guan Y, Nicholls JM, and Poon

LL. Full factorial analysis of mammalian and avian influenza polymerase

subunits suggests a role of an efficient polymerase for virus adaptation.

PLoS One, 4(5)(e5658), 2009 May 21.

[36] B. Özden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules.

1998 Int. Conf. Data Engineering(ICDE98), pages 412–421, Feb. 1998.

[37] J.S. Park, M-S. Chen, and P.S. Yu. An effective hash based algorithm for

mining association rules. ACM-SIGMOD Conf. Management of Data,

pages 229–248, May,1995.

[38] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, and Helen Pinto. Prefixs-

pan: Mining sequential patterns efficiently by prefix-projected pattern

growth. 2001 Int. Conf. Data Engineering(ICDE’01), pages 215–224,

April. 2001.

[39] Salomon R, Franks J, Govorkova EA, Ilyushina NA, and Yen HL. The

polymerase complex genes contribute to the high virulence of the human

h5n1 influenza virus isolate a/vietnam/1203/04. J Exp Med, 203(689-

697), 2006.

[40] M.F. Sagot and A. Viari. A double combinatorial approach to discov-

ering patterns in biological sequences. Symposium on Combinatorial

Pattern Matching, pages 186–208, 1996.

[41] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for

mining association rules. Very Large Databases Conf., pages 432–444,

Sept,1995.

[42] C. Sheng, W. Hsu, M.-L. Lee, J. C. Tong, and S.-K. Ng. Mining mutation

chains in biological sequences. Proceedings of the 26th International

Conference on Data Engineering., pages 473–484, 2010.

REFFERENCES 51

[43] A. Silberschatz and A. Tuzhilin. What makes patterns interesting in

knowledge discovery system. IEEE Transctions on Knowledge and Data

Eng., pages 8(6):970–974, 1996.

[44] C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Gener-

alizing association rules to dependence rules. Data Mining and Knowl-

edge Discovery, pages 2(1):39–68, 1998.

[45] R. Srikant and R. Agrawal. Mining sequential patterns:generalizations

and performance improvements. 5th Int. Conf. Extending Database

Technology (EDBT96), pages 3–17, Mar. 1996.

[46] R. Srikant and R. Agrawal. Mining sequential patterns:generalizations

and performance improvements. In EDBT, page 3C17, Avignon, France,

Mar.1996. 5th Int. Conf. Extending Database Technology.

[47] R. Srikant and R. Agrawal. Mining generalized association rules. Very

Large Databases Conf., pages 407–419, Sept,1995.

[48] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the

right interestingness measure for association patterns. SIGKDD 02 Ed-

monton, 2002.

[49] J.T.L. Wang, G.W.chirn, T.G. Marr, B. Shapiro, D.Shasha, and

K. Zhang. Combinatorial pattern discovery for scientic data: some pre-

liminary results. SIGMOD, 1994.

[50] Ke Wang, Yabo Xu, and Jeffrey Xu Yu. Scalable sequential pattern

mining for biological sequences. In CIKM, pages 178–187, New York,

NY, USA, 2004. ACM.

[51] R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers, and

Y. Kawaoka. Evolution and ecology of influenza a viruses. Microbi-

ological reviews., pages 152–179, 1992.

REFFERENCES 52

[52] Guang Wu. Prediction of mutations in h5n1 hemagglutinins from in-

fluenza a virus. Protein and Peptide Letters, 13:971–976(6), October

2006.

[53] M. Zaki. Generating non-redundant association rules. 2000 ACM

Knowledge Discovery and Data Mining Conf., pages 34–43, 2000.

[54] Mohammed J. Zaki. Spade: an efficient algorithm for mining frequent

sequences. In Machine Learning Journal, special issue on Unsupervised

Learning, pages 31–60, 2001.

