
Query Authentication and Processing

on Outsourced databases

by

Weiwei Cheng
(Bachelor of Computing, National University of Singapore)

A thesis

submitted for the degree of Master of Science

in

Department of Computer Science

School of Computing

National University of Singapore

December 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48641784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

Acknowledgment vi

Summary vii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Backgrounds 8

2.1 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Authenticating Window Query Results in Data Publishing 12

3.1 System and Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Signature Chain in Multi-Dimensional Space . . . . . . . . . . . . . . 15

3.3 Verifying the Data Partitions . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 A Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Effect of Number of Dimensions . . . . . . . . . . . . . . . . . 25

ii



iii

3.4.2 Effect of Different Data Distributions . . . . . . . . . . . . . . 25

3.4.3 Effect of Dataset Sizes . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Effect of Node Capacity . . . . . . . . . . . . . . . . . . . . . 27

3.4.5 Client Computation Cost . . . . . . . . . . . . . . . . . . . . . 27

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Authenticating KNN Query Results 29

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Enforcing Minimality: Hiding Non-answer Points . . . . . . . . . . . . 31

4.2.1 Collaborative Digest Computation . . . . . . . . . . . . . . . . 32

4.2.2 Hiding Non-Answer Points . . . . . . . . . . . . . . . . . . . . 32

4.3 Query Answer Verification . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 The Basic Solution . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Generalizing to Other Query Types . . . . . . . . . . . . . . . 37

4.4 kNN Authentication in Native Space . . . . . . . . . . . . . . . . . . . 43

4.5 kNN Authentication in Metric Space: iDistance Based Scheme . . . . . 46

4.6 Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.1 Effect of Number of Dimensions . . . . . . . . . . . . . . . . . 50

4.6.2 Effect of Different Dataset Size . . . . . . . . . . . . . . . . . 51

4.6.3 Effect of Different Data Distributions . . . . . . . . . . . . . . 52

4.6.4 I/O Access Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Conclusion and Future Work 55

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Trust-Preserving Set Operations . . . . . . . . . . . . . . . . . 56



iv

5.2.2 Authenticating Aggregation Queries in Outsourced Database Sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures

1.1 Data Publishing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Partitioning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Chaining of Partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 The Verification R-tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Client Computation Cost . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Sample Queries on a 2-dimensional Dataset (A Running Example). . . . 30

4.2 Authentication Overhead on different Dataset Size . . . . . . . . . . . 35

4.3 Illustration of the two-phase RNN algorithm in [17]. . . . . . . . . . . 39

4.4 Authentication of RNN point (Case (a)) . . . . . . . . . . . . . . . . . 40

4.5 Authentication of RNN point (Case (b)) . . . . . . . . . . . . . . . . . 42

4.6 iDistance based scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Authentication Overhead on Different Data Dimension . . . . . . . . . 51

4.8 Authentication Overhead on different Dataset Size . . . . . . . . . . . 52

4.9 Authentication Overhead on different Data Distribution . . . . . . . . . 53

4.10 I/O Access Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



Acknowledgment

I would like to express my sincerest gratitude to my supervisor, Professor Kian-Lee Tan,

whose encouragement, guidance and support throughout my study period. I especially

appreciate his kindness, generous and patient during the past two years, it would have

been next to impossible to write this thesis without his help and guidance.

I also express my regards and blessings to all of those who supported me in any re-

spect during the completion of this work. Moreover, I would like to thank my family

members, especially my parents, and my husband, Xu Le, for their support and encour-

agement during the past few years.

vi



vii

Summary

In Outsourced Database model, data owners publish their data management requests

through a number of remote, un-trusted external service providers. Service providers

host owners’ databases and offer seamless mechanisms to create, store, update and access

(query) their databases. This model introduces several research issues related to data

security. In this thesis, we introduce a mechanism for users to verify that their query

answers on a multi-dimensional dataset are correct, in the sense of being complete and

authentic. Two instantiations of the approach are studied:(1) Verifiable KD-tree (VKD-

tree) that is based on space partitioning, and (2)Verifiable R-tree (VR-tree) that is based

on data partitioning. The schemes are evaluated on window queries, and results show

that VR-tree is highly precise, meaning that few data points outside of a query result

are disclosed in the course of proving its correctness. Moreover, as an extension of

the VR-tree, we proposed a mechanism that extend the signature-based mechanism for

users to verify that their answers for k nearest neighbors queries on a multidimensional

dataset are complete (i.e. no qualifying data points are omitted), authentic (i.e. no answer

points are tampered) and minimal (i.e., no non-answer points are returned in the plain).

Essentially, our scheme returns k answer points in the plain, and a set of (p̃, q)-pairs

of points, where p̃ is the digest of a non-answer point p in the dataset to facilitate the

signature chaining mechanism to verify the authenticity of the answer points, and q is a

reference point (not in the dataset) used to verify that p is indeed further away from the
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query point than the kth nearest point. We study two instantiations of the approach - one

based on the native data space using space partitioning method (a.k.a. R-tree) and the

other based on the metric space using iDistance. We conducted an experimental study,

and report our findings here.



Chapter 1

Introduction

Continued growths of the Internet and advances in networking technology have fuelled a

trend toward outsourcing data management and information technology needs to external

Application Service Providers. By outsourcing, organizations could operate their core

task and other business applications via the Internet, while the involved maintenance of

database could be operated in house (without connected to the Internet).

Database outsourcing [15] is an important manifestation of this trend. In this model,

data owners engage third-party data servers (called publishers or service providers) to

manage their data and process queries on their behalf [15, 23], and publishers are re-

sponsible for offering adequate software, hardware and network resources to host data

owner’s databases as well as mechanisms for the client to efficiently create, update and

access the outsourced data.

This model is applicable to a wide range of computing platforms, including database

caching [20], content delivery network [40], edge computing [21], P2P database [18],

etc.

Comparing to the conventional client-server architecture where the owner also under-

takes the processing of user queries, the Outsourced Database Model reduces Network

1
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Latency by pushing application logic and data processing from the owner’s data cen-

ter out to multiple publisher servers situated near user clusters. Rather than fortifying

the owners’s data and provisioning more network bandwidth for every user, by adding

publisher servers, scalability is much easier to be achieved. Moreover, the separation of

business and maintaining tasks avoids the single point of failure in the data’s own center,

hence reducing the database’s susceptibility to denial of service attacks and improves

service availability.

The database outsourcing by Third-party Publisher poses numerous research chal-

lenges which influence the overall performance, usability and scalability. One of the

foremost challenges is the security of stored data - it is essential to provide adequate

security service measures to protect the stored data from both malicious outside attack-

ers and the publisher itself. Security in this sense includes maintaining data integrity

and guarding data privacy, moreover, how query processing can be efficiently performed

over the secured data is closely relevant.

1.1 Motivation

High-value information, such as geophysical(or cartographic) data, pharmacological in-

formation, and business data, which are used in high-value decisions, are frequently

made available for online-querying. Customers dependent upon highly reliable and effi-

cient access to accurate information need assurance that their queries will be answered

promptly, reliably, and accurately; incorrect information may lead to substantial losses.

Simple digital signature scheme and trusted-third party data publishing model are not

suitable to solve this problem, both of them suffer from several problems.

With digital signature, the owner of the data operates an online database server, which

processes queries and signs the results using a resident private signing key skowner. Users
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can verify the authenticity of the answers using the corresponding public key,pkowner.

Although this approach could provide both integrity and non-repudiation of the answers,

it is impractical due to system vulnerability problem, as well as the expensive signing key

protection mechanism. Moreover, the approach is generally too expensive to implement

in the application domain.

A more scalable approach is to use a trusted third-party publishers of the data, in

conjunction with a key management mechanism which allows certification of the signing

keys of the publisher to speak for the author of the data. However, this approach also

suffers from the problem and expense of maintaining a secure system accessible from

the internet. Furthermore, to get a client to trust him to provide really valuable data, the

publisher would have to adopt careful and stringent administrative policies, which might

be more expensive for him (and thus also for the client).

In this work, we focus on query authentication and processing in an untrusted third-

party data publishing model(in this thesis, we would only address the untrusted third-

party data publishing model as Outsourced Database Model, and we will use these two

terms exchangeably), especially concerned with data that is updated infrequently and

queried much more often, such as financial histories, pharmacological data, cartography

etc.

There are three main entities in the Outsourced Database Model: the data owner,

the database service provider(publisher) and the client. Figure 1.1 depicts the model, in

general, many instances of each entity may exist.

• The data owner maintains a master database, and distributes it with one or more

associated signatures that prove the authenticity of the database. Any data that has

a matching signature is accepted by the user to be trustworthy.

• The publisher hosts the database, and executes queries on behalf of the owner.
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Figure 1.1: Data Publishing Model

There could be several publisher servers that are situated at the edge of the net-

work, near the user applications. The publisher is not required to be trusted, so the

query results that it generates must be accompanied by some “correctness proof”,

derived from the database and signatures issued by the owner.

Moreover, as it is difficult for an attacker to successfully compromise multiple

independent servers without being detected, security can be improved substantially

when those servers are independent of each other in different part of the building

or even belong to different data center.

• The user issues queries to the publisher explicitly, or else gets redirected to the

publisher, e.g. by the owner or a directory service. To verify the signatures in the

query results, the user obtains the public key of the owner through an authenticated

channel, such as a public key certificate issued by a certificate authority.

There are several security considerations in the data publishing model. Query au-

thentication is important for a client as it is necessary to ensure the results provided by

the untrusted third party publisher is both inclusive and complete. Since the publishers

are outside of the administrative domain of the data owner, and in fact may reside on

poorly secured platforms, the query results that they generate cannot be accepted at face

value, especially when they are used as basis for critical decisions.
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Several existing works provide for checking the authenticity [25, 30] and complete-

ness [15, 29] of query results. However, most of them only deal with one-dimensional

datasets. Devanbu’s scheme[15] handles multiple key attributes by essentially concate-

nating them in some preferred order key1|key2|...|keyn; this scheme is expected to be

very inefficient for symmetric queries, such as window and nearest neighbor queries,

that are typical in multi-dimensional context.

In this work, our primary concern is the threat that a dishonest publisher may return

incorrect query results to the users, whether intentionally or under the influence of an ad-

versary. An adversary who is cognizant of the data organization in the publisher server

may make logical alterations to the data, thus inducing incorrect query results. In addi-

tion, a compromised publisher server can be made to return incomplete query results by

withholding data intentionally. Therefore mechanisms for users to verify the complete-

ness as well as authenticity of their query results are essential for data publishing model.

Moreover, it is highly desirable that only answers are returned in the plain to facilitate

access control.

There are also other concerns that are not focused in our work. Given that the pub-

lisher servers are not trusted, one concern is Privacy of the data. Obviously, an adversary

who gains access to the operating system or hardware of a publisher server may be able

to browse through the database, or make illegal copies of the data. Solutions to miti-

gate this concern include encryption (e.g. [3, 2, 4]) and steganography (e.g. [7, 32, 1]).

Another concern relates to user access control, in specifying what actions each user is

permitted to perform. Those issues have also been studied extensively (e.g. [13],[32],

[26], [39]), and are orthogonal to our work here.
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1.2 Contributions

In this work, we first propose a mechanism for users to verify that their window query

results on a multi-dimensional dataset are authentic (i.e. no answer points are tampered)

and complete (i.e. no qualifying data points are omitted). In addition, our approach

guarantees minimality (i.e. no non-answer points are returned in the plain).

Our approach, which is described in chapter 3, builds authentication information

into a spatial data structure, by constructing certified chains on the points within each

partition, as well as on all the partitions in the data space. We introduce two schemes

based on this approach. The first, the Verifiable KD-tree (VKDtree), is based on the

space partitioning k-d tree. The second, the Verifiable R-tree (VRtree), employs data

partitioning and is based on the R-tree. The schemes are evaluated on window queries,

and results show that VRtree is highly precise, meaning that few data points outside of

a query result are disclosed in the course of proving its correctness. Moreover, both

schemes are computationally secure, and incur low processing and update overheads. To

the best of our knowledge, the authentication mechanism introduced in this thesis is the

first that enables a user to verify the completeness of a multi-dimensional query result

generated by an untrusted server.

However, the mechanism above can only deal with hyper-rectangle window queries.

While this scheme can be used for kNN queries, it will return more points in the plain

than the answer points and thus is vulnerable to access control violation.

As an extention of the VR-tree mechanism, in chapter 4, we present the authentica-

tion scheme for kNN queries. Moreover, we further show that the entire framework can

be nicely put together to support range, window, and RNN queries. While the extension

to range and window queries is straightforward, that for RNN queries is non-trivial.

Like existing works [11, 29], our authentication mechanism for kNN query is based

on the signature chain concept, and verifies that the k NN answers are complete (i.e. no
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qualifying data points are omitted), authentic (i.e. no answer points are tampered) and

minimal (i.e. no non-answer points are returned in the plain). The core of the scheme

is to return k answer points in the plain, and a set of (p̃, q)-pairs of points, where p̃

is the digest of a non-answer point p in the dataset to facilitate the signature chaining

mechanism to verify the authenticity of the answer points, and q is a reference point (not

in the dataset) used to verify that p is indeed further away from the query point than the

kth nearest point. The scheme is minimal since only the k answer points are revealed.

We study two instantiations of the approach - one based on the native data space using

space partitioning method (a.k.a. R-tree) and the other based on the metric space using

iDistance. We have implemented both techniques, and our results show that the R-tree-

based scheme has better performance when the number of dimensions is low (d < 8),

while iDistance-based scheme is superior in high-dimensional datasets (d > 8). To our

knowledge, this is the first reported work that addresses this problem.

We have implemented the proposed VR-tree and verification scheme, and conducted

experiments on kNN queries. Our results show that we can verify kNN queries with low

overheads.

1.3 Organization

The rest of the thesis proposal is organized as follows: In chapter 2, we discuss some

backgrounds such as cryptographic primitives and related work. Next,we present our

work on windows query authentication in data publishing model in chapter 3. Chap-

ter 4 presents the authentication scheme for kNN queries. Finally, chapter 5 gives the

conclusion and proposes some directions to pursue in the future work.



Chapter 2

Backgrounds

Before we present our solutions, in this chapter, we first describe some cryptographic

primitives that our proposed solution based on, next we discuss some related works.

2.1 Cryptographic Primitives

Our proposed solution and many of the related work are based on the following crypto-

graphic primitives:

One-way hash function: A one-way hash function, denoted as h(.), is a hash function

that works in one direction: it is easy to compute a fixed-length digest h(m) from a

variable-length pre-image m; however, it is hard to find a pre-image that hashes to a

given hash value. Examples include MD5 [33] and SHA [6]. We will use the terms hash,

hash value and digest interchangeably.

Digital signature: A digital signature algorithm is a cryptographic tool for authenti-

cating the integrity and origin of a signed message. In the algorithm, the signer uses a

private key to generate digital signatures on messages, while a corresponding public key

is used by anyone to verify the signatures. RSA [34] and DSA [5] are two commonly-

8
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used signature algorithms.

Signature aggregation: As introduced in [10], this is a multi-signer scheme that aggre-

gates signatures generated by distinct signers on different messages into one signature.

Signing a message m involves computing the message hash h(m) and then the signa-

ture on the hash value. To aggregate t signatures, one simply multiplies the individual

signatures, so the aggregated signature has the same size as each individual signature.

Verification of an aggregated signature involves computing the product of all message

hashes and then matching with the aggregated signature.

Signature chain: In [29], a signature chain scheme is proposed that enables clients

to verify the completeness of answers of range queries. A very nice property of the

scheme is that only result values are returned, thus ensuring that there is no violation

of access control. The scheme is based on two concepts: (a) The signature of a record

is derived from its own digest as well as its left and right neighbors’. In this way, an

attempt to drop any value from the answer of a range query will be detected since it

would no longer be possible to derive the correct signature for the record that depends

on the dropped value. (b) For the boundaries of the answer, a collaborative scheme that

involves both the publisher and the client is proposed – the publisher performs partial

computation based on but not revealing the two records bounding the answer and the

query range, while the client completes the computation based on the two end points of

the query range.

2.2 Related Work

Previous work on query authentication can be categorized to approaches that based on

Merkle Hash Tree and approaches that based on Signature Chains.

Approaches [15, 14] utilize the Merkle Hash Tree to provide authentication. The
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owner builds a Merkle Hash Tree on the tuples in the database, based on the query

attribute. Subsequently, the server answers the selection query by returning all tuples t

covering the result as well as the minimum set of hashes necessary for the client to recon-

struct the subtree of the Merkle Hash Tree corresponding to the query result.The scheme

works for range queries, but not multi-point queries that pull back several segments of

tuples.

The work by Roos et al [35] also employs the MHT to authenticate range queries.

However, the focus is on encoding the VO in a compact form to minimize communica-

tion overhead; their scheme has the same limitations as [15].

In [16], Devanbu et. al. proposed a scheme that handles multiple key attributes by

essentially concatenating them in some preferred order key1|key2|...|keyn. However,

this scheme is expected to be very inefficient for symmetric queries, such as window and

nearest neighbor queries, which are typical in multi-dimensional context.

The MB-tree concept proposed by Li et al. [19] combines concepts from the B+-tree

and the MH-tree. The structure stores the actual records together with their digests into

the leaves and associated each node a digest that computed on the concatenation of its

children’s digests. The data owner signs the root digest and send to the publisher along

with the data. Range query results computed by the publisher are returned together with

the two boundary records, digests of siblings along the path from the root to the boundary

points are also returned. Upon receiving the results and VO, the client reconstructs the

root digest and matches it against the signature. Unfortunately, the above schemes are

applicable only for single dimensional data.

SearchDAG [22] transforms a wide class data structures into generalized authentica-

tion data structure. Authentication over peer-to-peer storage networks are proposed in

[36]. Pang et al. [30]proposed the VB-tree structure, which is basically a B+-tree that

incorporates hierarchically organized signed digest. This might be the first disk-resident
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authenticity data structure introduced; however, this structure doesn’t ensure query com-

pleteness.

There are also approaches based on signature chains [29], a signature chain scheme

is proposed that enables users to verify the completeness of answers of range queries. A

very nice property of the scheme is that only result values are returned, thus ensuring that

there is no violation of access control. The scheme is based on two concepts: (a) The

signature of a record is derived from its own digest as well as its left and right neighbors’.

In this way, an attempt to drop any value from the answer of a range query will be

detected since it would no longer be possible to derive the correct signature for the record

that depends on the dropped value. (b) For the boundaries of the answer, a collaborative

scheme that involves both the publisher and the user is proposed – the publisher performs

partial computation based on but not revealing the two records bounding the answer and

the query range, while the user completes the computation based on the two end points

of the query range.

Most of the above approaches only deal with one-dimensional datasets, and cannot

handle queries over multiple attributes. Recently, an efficient authentication scheme for

multi-attribute range aggregate queries was proposed in [31]. A multi-dimensional struc-

ture is used that maintains partial sums (or aggregates) at internal nodes of the structure.

However, this work only deals with traditional relational aggregates such as count, sum

and average, and is not designed for the more complex query types that we consider in

this paper.

We note that there are other security issues that the data outsourcing model poses

such as privacy, user authentication and access control. These have been studied exten-

sively (e.g. [3], [32], [26], [39]), and are orthogonal to our work here.



Chapter 3

Authenticating Window Query Results

in Data Publishing

In this chapter, we study the problem of authenticating window query results in data

publishing. Section 2.1 describes the system and threat model by introducing a running

example. Our authentication schemes are discussed in Sections 2.2 and 2.3, while Sec-

tion 2.4 presents results from a performance study. Finally, Section 2.5 concludes the

chapter.

3.1 System and Threat Model

Figure 1.1 in chapter One depicts the data publishing model, where we had described the

three distinct roles of this model.

Our primary concern addressed in this work is the threat that a dishonest publisher

may return incorrect query results to the users, whether intentionally or under the in-

fluence of an adversary. An adversary who is cognizant of the data organization in the

publisher server may make logical alterations to the data, thus inducing incorrect query

results. Even if the data organization is hidden, for example through data encryption

12
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or steganographic schemes (e.g., [32]), the adversary may still sabotage the database

by overwriting physical pages within the storage volume. In addition, a compromised

publisher server could be made to return incomplete query results by withholding data

intentionally. Therefore mechanisms for users to verify the completeness as well as au-

thenticity of their query results are essential for the data publishing model.

In this work, we assume a d-dimensional data space. Let L = (L1, L2, . . . , Ld) and

U = (U1, U2, . . . , Ud) be two points that bound the entire d-dimensional data space,

where Lr ≤ Ur for all r. L and U are known to all users. Suppose the space contains N

data points given by DB = {p1, p2, . . . , pN}. We also denote pi = (xi1, xi2, . . . , xid).

We would like design an authentication scheme for users to verify answers to the

following queries:

• Window query. Let pl = (xl1, xl2, . . . , xld) and pu = (xu1, xu2, . . . , xud) be two

points in the data space. A window query Qw = [pl, pu] returns all points within

the hyper-rectangle determined by the two bounding points in QW In other words,

a point pi = (xi1, xi2, . . . , xid) is in the answer if xlj ≤ xij ≤ xuj for 1 ≤ j ≤ d.

• Range query. Let pc = (xc1, xc2, . . . , xcd). A range query Qr = [pc, r] returns all

points bounded by the hyper-sphere centered at pc with radius r. In other words, a

point pi = (xi1, xi2, . . . , xid) is in the answer if dist(pc, pi) ≤ r, where dist(x, y)

is a function that computes the Euclidean distance between two points x and y.

• kNN query. Let pc = (xc1, xc2, . . . , xcd). A kNN query Qk = [pc, k] returns k

points A = {q1, q2, . . . , qk} such that

∀qi ∈ A, ∀pj ∈ DB −A, dist(pc, qi) < dist(pc, pj)

• RNN query. Let pc = (xc1, xc2, . . . , xcd). An RNN query RNN(pc) returns all
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points that have pc as their nearest neighbors, i.e.,

RNN(pc) = {p ∈ DB|∀pj ∈ DB − {p}, dist(p, pc) < dist(p, pj)}

In this chapter, we discuss the authentication of window queries in a multi-dimensional

dataset. The discussion of authenticating other query types are deferred to chapter 4.

A Running Example:

Consider a dataset containing 20 data points in two-dimensional space as shown in

Figure 3.1. The figure also includes a window query Q, for which {r13, r14} is the

correct result. A rogue publisher may return a wrong result {r13, r14, r100}, which

includes a spurious point r100, or {r13∗, r14} in which some attribute values of r13

have been tampered with. To detect such incorrect values, the user should be able to

verify the authenticity of query result.

r1

r2

r3

r4

r5
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r8 r9
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r11
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r13

r14

r15

r16

r17

r18

r19

r20

Q

xmin xmax

ymin

ymax

Schema:

[ id, x-coord, y-coord, user-name, account#, … ]

Data:

Figure 3.1: Running Example

A different threat is that the publisher may omit some result points, for example by

returning only {r13} for query Q. This threat relates to the completeness of query result.
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3.2 Signature Chain in Multi-Dimensional Space

The goal of our work in this chapter is to devise a solution for checking the correctness

of query answers on multi-dimensional datasets. The design objectives include:

• Completeness: The user can verify that all the data points that satisfy a window

query are included in the answer.

• Authenticity: The user can check that all the values in a query answer originated

from the data owner. They have not been tampered with, nor have spurious data

points been introduced.

• Precision: Proving the correctness of a query answer entails minimal disclosure of

data points that lie beyond the query window. We define precision as the ratio of

the number of data points within the query window, to the number of data points

returned to the user.

• Security: It is computationally infeasible for the publisher to cheat by generating

a valid proof for an incorrect query answer.

• Efficiency: The procedure for the publisher to generate the proof for a query an-

swer has polynomial complexity. Likewise the procedure for the user to check the

proof has polynomial complexity.

Without loss of generality, we assume that the data in the multi-dimensional space

are split into partitions – this can be done using a spatial data structure. To ensure that

the answer for a window query is complete, two issues must be addressed. First, we need

to prove that the answer covers all the partitions that overlap the query window. We refer

to these partitions as candidate partitions. Second, we need to prove that all qualifying

values within each candidate partition are returned. The first issue is dependent on the
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partitioning strategy adopted, and is deferred to Section 3.3. In the rest of this section,

we shall focus on the second issue.

Assuming we have proven that the query answer covers all the candidate partitions,

we now need to ensure that all the qualifying values in those partitions have not been

dropped. Consider a candidate partition P for the window query Q = [(ql1, ql2, . . . , qld),

(qu1, qu2, . . . , qud)]. There are three possible cases: (a) Q contains P . Since the window

query bounds the partition, we need to ensure that all the points in P are returned. (b) P

contains Q. The query window is within the space covered by the partition. A naive

solution is to return all the points in P . A better solution, which we advocate, is to return

only those points that are necessary for users to check for completeness. In both cases,

our concern is to ensure the secrecy of points that are outside Q. (c) P overlaps Q. This

case can be handled by splitting P into two parts: the part of P that contains Q, and the

part of P that does not overlap Q. The former is handled in case (b), while nothing needs

to be done for the latter. Thus, we shall focus on cases (a) and (b), and not discuss case

(c) any further.

Our solution extends the signature chain concept in [29] to multi-dimensional space.

This is done by ordering the points within the partition, and then constructing the sig-

nature chain. In this chapter, we adopt a simple scheme of ordering the points based

on increasing (x1, x2, . . . , xd) value. In 2-d space, (x1, y1) is ordered before (x2, y2) if

x1 < x2, or x1 = x2 and y1 < y2. Based on this ordering, we need to return all the points

whose first dimension is within the range [ql1, qu1], as well as the bounding points. Of

course, some of these points may fall beyond the query window along the second dimen-

sion. For such points that should not be part of the answer, we return only their digests

rather than the actual values, in order to protect their secrecy and achieve high precision.

We choose this simple ordering scheme over more sophisticated space filling curves

[37] because: (a) A partition (corresponding to a 4K or 8K block/page) typically consists
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of a small number of points (100-200). Moreover, the actual number of points within a

partition would be smaller than the maximum capacity (since the page is typically not

full). As such, it may not be worthwhile to employ a complicated scheme. (b) None

of the existing space filling curves perform well in all cases. Thus, they really offer

no significant advantage over the simple scheme (especially given the small number of

points).

For the example in figure 3.1, assuming that the entire space corresponds to one

partition, the points would be ordered from r1 to r20. For case (a) where the query

bounds the partition, r1 to r20 would be returned; for case (b) where the query (i.e., the

box that bounds r13 and r14) is within the partition, we return the values of r13 and r14

and the digest of the various dimensions for r11, r12, r15, r16 and r17. We now present

the details of our solution that extends the signature chain scheme to multi-dimensional

setting.

Construction: Let L = (L1, L2, . . . , Ld) and U = (U1, U2, . . . , Ud) be two points that

bound the entire data space, where Lr ≤ Ur for all r. L and U are known to all users.

Consider a partition P bounded by two points p0 = (x01, x02, . . . , x0d) and pk+1 =

(x(k+1),1, x(k+1),2, . . . , x(k+1),d) where x0r ≤ x(k+1),r for all r. Suppose P contains k data

points p1 = (x11, x12, . . . , x1d), . . . pk = (xk1, xk2, . . . , xkd). Without loss of generality,

we assume that pi is ordered before pj for 1 ≤ i < j ≤ k. Clearly, p0 is ordered before

p1 and pk+1 is ordered after pk.

Our multi-dimensional signature chain constructs for each point within P an associ-

ated signature (based on [29]):

sig(pi) = s(h(g(pi−1)|g(pi)|g(pi+1))) (3.1)
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where s is a signature function using the owner’s private key, h is a one-way hash func-

tion, and | denotes concatenation. g(pi) is a function to produce a digest for point pi:

g(pi) =
d∑

r=1

hUr−xir−1(xir)|hxir−Lr−1(xir) (3.2)

where hj(xir) = hj−1(h(xir)) and h0(xir) applies a one-way hash function on x.1

Moreover, for the two delimiters,

sig(p0) = s(h(h(L1| . . . |Ld)|g(p0)|g(p1))) (3.3)

sig(pk+1) = s(h(g(pk)|g(pk+1)|h(U1| . . . |Ud))) (3.4)

In addition, each partition P has an associated signature:

sig(P ) = s(h(g(p0)|g(pk+1)|h(k))) (3.5)

Query Processing: Assuming that a partition P is returned. We have to prove that all

the data points within P that fall within the query window Q are returned.

Case (a): Q contains P . The verification process for this case is straightforward. The

publisher server returns p0 to pk+1, and k, together with the respective signatures sig(p0)

to sig(pk+1) and sig(P ). (To reduce traffic overhead, we could send just one combined

signature instead of the individual signatures, using the signature aggregation technique

in [10].) The user first verifies that

s−1(sig(P )) = h(g(p0)|g(pk+1)|h(k))

Then, for each pi, 1 ≤ i ≤ k, the user verifies that pi is indeed in P (by checking that

P bounds pi). Finally, for each pi, 1 ≤ i ≤ k, the user computes its digest and checks

whether

s−1(sig(pi)) = h(g(pi−1)|g(pi)|g(pi+1))

1To achieve tighter security, h0(xir) can be redefined as h0(xir|rand(pi)) where rand(pi) is a random
number associated with pi; in which case we will need to supply the corresponding rand(pi) with each
returned record. For ease of presentation, we shall adopt the simpler definition of h0(xir).
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If all the above checks are successful, the answer contains all the data points in P .

Case (b): P contains Q. Let pi = (xi1, xi2, . . . , xid). The data points in P can be

separated into: (a) pα, pα+1, . . . , pβ−1, pβ such that xi1 ∈ [ql1, qu1] for α ≤ i ≤ β. These

points can be further categorized into answer points (A) and false positives (F). For

each answer point pi ∈ A, ∀r xir ∈ [qlr, qur], whereas for each false positive pi ∈ F ,

∃r xir /∈ [qlr, qur]. (b) p1, . . . , pα−1, pβ+1, . . . , pk, which are clearly not answer points.

(i) For each point pi ∈ A, the server returns pi and sig(pi).

(ii) For each point pi ∈ F ∪ {pα−1, pβ+1}, the server returns several pieces of in-

formation: (i) if xir ∈ [qlr, qur], hUr−xir−1(xir)|hxir−Lr−1(xir) is returned; (ii) if

xir < qlr, hqur−xir−1(xir) and hxir−Lr−1(xir) are returned; (iii) if xir > qur,

hUr−xir−1(xir) and hxir−qlr−1(xir) are returned.

(iii) The server also returns p0, pk+1, k, sig(p0), sig(pk+1) and sig(P ).

With information from step (ii), the user can compute g(pi) without knowing the

actual value of pi:

• If xir < qlr, the user applies h on (hqur−xir−1(xir)) (Ur−qur) times to get (hUr−xir−1(xir)).

• If xir > qur, the user applies h on (hxir−qlr−1(xir)) (qlr−Lr) times to get (hxir−Lr−1(xir)).

• The user computes g(pi) using Equation (3.2).

The above procedure is secure against cheating by the publisher provided hi(p) for i < 0

is either undefined or computationally infeasible to derive. We use an iterative hash

function for hi(p), because there is no known algebraic function that satisfies the re-

quirement. To ensure that h−1(p) ̸= p, a hash function is chosen that outputs a different

digest length from the length of p.

Similar to case (a), the user verifies the completeness of the query answer as follows:



20

• Verify that the bounding box is correct using information from step (iii), and de-

termine whether s−1(sig(P )) = h(g(p0)|g(pk+1)|h(k)).

• Verify that each point p in A is in P by checking that p is bounded by P .

• Verify that each point pi ∈ A is authentic using information in step (ii) and the

derived information to check s−1(sig(pi)) = h(g(pi−1)|g(pi)|g(pi+1)).

Again, any attempt by the publisher server to cheat would lead to an unsuccessful match

in at least one of the above cases.

Finally, we emphasize that extra data points that are returned for proving complete-

ness are in the form of digests. Thus only the existence of the data points are revealed,

but not their actual content. If a non-answer pi ∈ F has the same coordinate as an

answer point pj ∈ A along some dimension, both points will have the same digest for

that dimension and pi’s coordinate will be revealed. This can be overcome by simply

adopting h0(xir|rand(pi)) as explained previously.

3.3 Verifying the Data Partitions

Having shown how to prove that all qualifying data points in a candidate partition (that

overlaps the query window) are returned correctly, we now look at the first issue of

verifying that the query answer covers all the candidate partitions.

A naive solution is to treat the entire data space as a single large partition, so that the

mechanism described in Section 3.2 alone suffices. However, we expect this solution to

have poor precision.

To achieve high precision, we adopt partition-based strategies so that only those par-

titions that contain some qualifying data points need to be considered for a query. In

this way, any potential information leakage is limited to only those partitions that con-

tribute to the query answer, rather than across the entire data space. We present our
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Figure 3.2: Partitioning Strategies

solution based on two partitioning techniques (see Figure 3.2): space partitioning and

data partitioning.

3.3.1 Space Partitioning

With space partitioning schemes, the partitions are disjoint but their union covers the

entire data space. As such, all we need to do is to verify that the bounding boxes of

the returned partitions are correct, and that the union of these partitions covers the query

scope. The former has already been addressed in Section 3.2, while the latter is just a

simple check on the partition boundaries.

To illustrate, Figure 3.2(a) shows the data space being partitioned through a k-d tree

[9]. In the figure, the window of the query Q overlaps three partitions, so only data from

these three partitions are returned in the answer.

Besides the k-d tree, other spatial indexing techniques like the grid file [27] and

quadtree [38] can also be employed to help the publisher to locate the candidate partitions

quickly. Our authentication mechanism entails no changes to the spatial data structures.

(As we shall see shortly, this is not the case for data partitioning schemes.)
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Figure 3.3: Chaining of Partitions.

3.3.2 Data Partitioning

With data partitioning approach (e.g., R-tree), the union of all the partitions may not

cover the entire data space. Thus, space that contains no data points may not be cov-

ered by any partition, as illustrated in Figure 3.2(b). The existence of empty space poses

a challenge to verifying the completeness of query answers: How does the user know

that portions of a query window that are not covered by any returned partitions indeed

are empty spaces, without physically examining all the partitions? Referring to Fig-

ure 3.2(b), how can the user be sure that Q only intersects boxes B4 and B6 and not the

other partitions?

Our solution is to extend the signature chain concept to the partitions. Specifically,

we order the partitions by their starting boundaries along a selected dimension (as is done

for point data), then chain the partitions so that the signature of a partition is dependent

on the neighboring partitions to its left and right.

Let the bounding box of the ith partition be demarcated by [l, u] where l = (li1, li2, . . . , lid),
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and u = (ui1, ui2, . . . , uid). Each partition Pi has an associated signature (based on sig-

nature chaining):

sig(Pi) = s(h(g(Pi−1)|g(Pi)|g(Pi+1))) (3.6)

where Pi−1 and Pi+1 are the left and right sibling partitions of Pi, and g(Pi) is defined as

follows:

g(Pi) = h(h(li1| . . . |lid)|h(ui1| . . . |uid)|h(ki)) (3.7)

where ki is the number of points within Pi.

In addition, we define two fictitious partitions as delimiters. This is similar to what

we did in building the signature chain for data points in Section 3.2, so we shall not

elaborate further.

During query processing, all the partition information along with their signatures

are returned as part of the query answer. The user can be certain that no partition is

omitted, otherwise some signatures will not match. For those partitions that overlap the

query window, the user then proceeds to check their data points using the mechanism in

Section 3.2. The remaining partitions that do not intersect the query window are dropped

from further consideration.

To minimize the extra partitions that are disclosed to the user, and to reduce perfor-

mance overheads, we apply a hierarchical data partitioning indexing structure like the

R-tree on the data. The partitions within each internal node of the R-tree are chained

as described above. Given a window query, the publisher server iteratively expands the

child nodes corresponding to those candidate partitions in the current node, starting from

the root down to the leaf nodes. All the partition information and signatures along the

path of traversal are added to the query answer for user verification.
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Figure 3.4: The Verification R-tree.

3.4 A Performance Study

In this section, we report results of an experimental study conducted to evaluate the

effectiveness of our authentication mechanisms, which we have implemented in Java.

We study three schemes: Verifiable KDtree (VKDtree) scheme that is based on space

partitioning using the k-d tree; Verifiable Rtree (VRtree) scheme that is based on data

partitioning using the R-tree; and Z-ordering scheme which employs Z-ordering [28] on

the entire data space (as a single partition). The performance metric is the precision of

query answers. Again, a low precision reveals the existence of extra data points and

incurs traffic overhead, but not the actual content of those data points.

Unless stated otherwise, the following default parameter settings are used: the num-

ber of dimensions is 4, the data distribution is Gaussian, the number of data points is

1, 000, 000. The domain of each dimension is [1, 10M]. The node capacity is 50 (i.e.,

each node holds up to 50 data points). Queries are generated by picking a point ran-

domly from the dataset, then marking out the query window with the chosen point as

center. The length of the query window along each dimension is l × domain size; by

default, l is set to 0.1. For each experiment, we run 500 queries, and take the average

precision.
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3.4.1 Effect of Number of Dimensions

We first vary the number of dimensions from 2 to 5. The results are summarized in

Figure 3.5(a). As expected, as the number of dimensions increases, all the schemes lose

precision, because more non-answer points must be provided to verify the completeness

of the query answers.

We also observe that the VKDtree scheme performs well for two-dimensional space,

but its precision drops dramatically at higher dimensions. This is because more partitions

are returned as a result of their overlapping the query window. The result for Z-ordering

is, surprisingly, similar to the VKDtree scheme. In fact, it even performs better than

VKDtree in some cases. Investigation shows that this is because the coverage of the par-

titions returned under VKDtree may be larger than the region covered by the Z-ordering

scheme. Finally, the VRtree scheme achieves precisions of at least 60%, is least affected

by dimensionality, and appears to perform the best overall. This is because the data par-

titioning scheme is able to effectively limit the number of candidate partitions returned

in the query answers.

3.4.2 Effect of Different Data Distributions

In the second experiment, we study the effect of different data distributions. Figure 3.5(b)

shows the precisions of the various schemes under three different distributions: Expo-

nential, Uniform and Gaussian. The precisions of all the schemes are better with the

exponential dataset, because the data generated under the exponential distribution are

clustered toward one corner (the origin) of the data space, whereas they are more spread

out under the other two distributions.

The relative performance of the three schemes remain largely the same as before:

with VRtree performing the best, while VKDtree and Z-ordering exhibit similar perfor-

mance. We also note that VRtree is much more effective than VKDtree and Z-ordering
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Figure 3.5: Comparative Study

under uniform data distribution.

3.4.3 Effect of Dataset Sizes

With a fixed data space, the size of the dataset will have an effect on the performance of

the schemes. In particular, for large datasets, the data space becomes more densely pop-

ulated. For a fixed-size query, this means that the precision will, with high probability,

be higher (compared to one with small dataset size). This intuition is confirmed in our

study, as shown in Figure 3.5(c) which presents the results for dataset sizes of 1,000,000,

100,000, and 10,000. The relative performance of the various schemes remain largely

the same as in the earlier experiments, though VRtree is less affected by the size of the

datasets compared to VKDtree and Z-ordering.
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3.4.4 Effect of Node Capacity

In this study, we examine the effect of node capacity, which determines the maximum

number of points allowed per partition. Obviously, a larger node capacity means that

it is more likely that more non-answer points are returned (compared to a smaller node

capacity), thus yielding lower precisions. Figure 3.5(d) shows the results for node ca-

pacities of 30, 50 and 80. From the figure, we notice that the precision of all the schemes

improve as the node capacity reduces from 80 to 50 and then to 30.

3.4.5 Client Computation Cost
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Figure 3.6: Client Computation Cost

In this section, we evaluate the overhead of computation cost at the client side in

authenticating the query results. For both VKDtree and VRtree, the client computation

cost includes result entry verification cost (CRV ), boundary verification cost(CBV ) and

signature verification cost (CSV ). Figure 3.6 shows the authentication overhead of VKD-

tree and VR-tree conducted in our experiment, where the overhead is measured as

client computation cost − processing cost

processing cost

where the processing cost refers to the cost for verifying only answer tuples. It turns out

that there is no significant differences between the two schemes - while VRtree incurs

lower cost to verify the answers (lower false drops), it incurs additional cost to verify the



28

chaining of partitions; whereas VKDtree does not need to deal with partition chaining

but it returns more false drops and hence incur larger cost to verify the answers.

3.5 Summary

In this chapter, we introduce a mechanism for users to verify that their windows query

answers on a multi-dimensional dataset are correct. The mechanism follows a partition-

based strategy, and comprises two steps: (a) verify that all partitions relevant to the

query are returned, and (b) verify that all qualifying data points within each relevant

partition are returned. The signature chain technique from [29] is used to chain up points

and partitions so that any malicious omissions can be detected by the user. We study

two schemes: Verifiable KD-tree (VKDtree) that is based on space partitioning, and

Verifiable R-tree (VRtree) that is based on data partitioning. The schemes are evaluated

on window queries, and results show that the VRtree is highly precise, meaning that

few data points outside of a query answer are disclosed in the course of proving its

correctness.



Chapter 4

Authenticating KNN Query Results

In this chapter, we first introduce the problem definition of authenticating kNN Query

results in section 4.1. Section 4.2 describes the method of hiding non-answer points

to enforce minimality of Verification Objects. Section 4.3 presents an overview of the

query verification scheme. In section 4.4 and 4.5, we present how to handle kNN

queries under the native and metric space respectively. Section 4.6 shows results from a

performance study. Finally, section 4.7 concludes this chapter.

4.1 Problem Definition

The general setting of our KNN Query authentication problem is as follows. A data

owner of a multi-dimensional dataset DB outsourced the management of DB to a third-

party publisher. Besides DB, (s)he also created one or several associated signatures of

DB that are outsourced together with it. Users are also made aware of certain meta-

data, as well as the public key of the owner. During query processing, the publisher

returns the answers and the associated verification objects (VOs) for the users to verify

the correctness of the answers.

Consider the example in previous chapter: a dataset containing 20 data points, r1 to

29
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Figure 4.1: Sample Queries on a 2-dimensional Dataset (A Running Example).

r20, in a 2-dimensional space. Figure 4.1 shows a window query Qw for which {r13, r14}

is the correct result. A rogue publisher may return a wrong result {r13, r14, r100}, which

includes a spurious point r100, or {r13∗ , r14} in which some attribute values of r13 have

been tampered with. To detect such incorrect values, the user should be able to verify the

authenticity of the query result. A different threat is that the publisher may omit some

result points, for example by returning only {r13} for query Q. This threat relates to the

completeness of query result.

Similarly, the figure also shows a range query [pc, r] whose correct answers are

{r5, r8, r9}. Here, an adversary may choose to return {r5, r9} (i.e., an incomplete an-

swer). As another example, the figure also illustrates a 3NN query (i.e., k = 3) centered

at pc. The correct answers for this 3NN query are {r5, r8, r9}. Now, a compromised

publisher may return {r4, r8, r9} (i.e., an incorrect answer). Likewise, the RNN of r14 is

{r13, r15}, and an adversary may simply return {r13} (i.e., an incomplete answer).

As shown in the above examples, there is a need to design mechanisms for users to
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verify the authenticity and completeness of their query answers. In addition, we aim to

design mechanisms that return only the answer points in the plain (and no other data

points will be returned in the plain). We refer to this as the minimality property. The

minimality property is highly desirable as it facilitates confidentiality without violating

access control. So, referring to our example, our proposed mechanism will return exactly

the answers - {r13, r14} for the window query, {r5, r8, r9} for the range and 3NN queries,

and {r13, r15} for RNN(r14) - as well as additional verification objects which will not

contain any data points in the plain.

4.2 Enforcing Minimality: Hiding Non-answer Points

In the last chapter, we have examined how points can be signature-chained together. We

have shown how the authenticated structure can ensure authenticity and completeness.

Authenticity is realized through the signature computation scheme. Completeness is

realized by returning a chain of points that contains a superset of the answer points and

verifying that they are correct - this is because dropping any point along the chain can

be easily detected as it would not lead to correct signatures for the point’s neighbors.

Before we look at the proposed query verification schemes, let us examine how we can

enforce minimality so that all non-answer points that are needed in query verification

are not returned in the plain. We note that we cannot simply return the digests of

non-answer points because we do not have a guarantee that the digests correspond

to non-answer points. Referring to our running example in Figure 4.1, for the range

query [pc, r], suppose the adversary returns only r5 and r9 in the plain together with the

digests for r3, r4, r6, r7, r8 and r10. Clearly, we can determine that the chain is correct.

However, we cannot be sure that any of these non-answer points are truly non-answer

points. In fact, in this example, the adversary has dropped r8. Thus, we need a scheme
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that allows us to hide non-answer points while guaranteeing that they are indeed outside

of the query region.

Our solution is to associate with each non-answer point p a reference point q deter-

mined by the publisher which is typically not a data point (unless it so happen that the

data point is also in the answer set). With q, the publisher returns (p̃, q)-pairs to the user

instead of p, where p̃ is a partial computation of the digest of p. The user can then de-

termine the digest of p from p̃ and q. Moreover, with q, the user can determine that p is

outside of the query region. We will discuss this process in the rest of this section.

4.2.1 Collaborative Digest Computation

In our authentication scheme, the signature of a point is dependent on the one-way hash

function g (i.e., Equation 3.2) used to compute the digest of a point. We note that g

is an iterative hash function that can facilitate the user and publisher to collaboratively

determine the digest of a point p. The basic idea is that given a reference point q known

to both the user and the publisher, the publisher can partially compute the digest of

p wrt q and then the user completes the computation wrt q. To illustrate, let a point

p = {x1, x2, ..., xd} and another point q = {y1, y2, ..., yd}, such that xi < yi ∀i. Then,

instead of returning the digest of p directly, the server can compute hyi−xi−1(xi) and

hxi−Li−1(xi). The user will then derive g(p) using Equation 3.2 after applying h on

(hyi−xi−1(xi)) an additional of (Ui − yi) times to get (hUi−xi−1(xi)) ∀i. Now, similar

computation can be derived for different relations between xi and yi. Thus, we can

determine the digest of p collaboratively without revealing p.

4.2.2 Hiding Non-Answer Points

The combination of signature chain and collaborative computation turns out to provide

a very powerful mechanism to hide non-answer points while guaranteeing that they are



33

indeed not in the query regions.

We illustrate this important concept using three examples. In Figure 4.2(a), we have

a window query. Here, along a signature chain of 5 points (p1 to p5), only p2 and p4

are answer points. Let each point pi be represented as (xi1, xi2). Now, let X(l1, l2) and

Y (u1, u2) be the two bounding points of the window query. Let L(L1, L2) and U(U1, U2)

be the lower and upper bounding points of the entire data space. Note that the user needs

the digest of p1 and p3 in order to verify that p2 is authentic. On one hand, we do not

want to return p1 in the plain since that may violate confidentiality. On the other hand, we

cannot simply return the digest of p1. Our collaborative scheme described above hides

p1 by using X as a reference point. Instead of returning p1 in the plain, the publisher

computes hl1−x11−1(x11), hx11−L1−1(x11) and (hU2−x12−1(x12)|hx12−L2−1(x12)). The user

will then derive g(p) using Equation 3.2 after applying h on hl1−x11−1(x11) an additional

of (U1 − l1) times to get hU1−x11−1(x11). Now, X is an appropriate reference point as

we actually use its x-dimension value to assure us that p1 is outside/to-the-left of the

query window (i.e,. x11 < l1). Similarly, we can hide p3 and p5 using Y as the reference

point. From the example, we can also see that reference points for window queries are

essentially the bounding points of the query.

In Figure 4.2(b), we see how non-answer points can be hidden from a range query

(centered at q with radius r). Here, we can use the bounding hyper-cube of the range

query to hide points p1 and p5 (as described above using the hyper-cube as a window).

However, for point p4, the publisher introduces and returns a reference point X(x1, x2) in

addition to hU1−x41−1(x41), hx41−x1−1(x41) and hx2−x42−1(x42), hx42−L2−1(x42). The user

will then derive g(p) using Equation 3.2 after applying h on hx41−x1−1(x41) an additional

of (x1−L1) times to get hx41−L1−1(x41), and applying h on hx2−x42−1(x42) an additional

of (U2 − x2) times to get hU2−x42−1(x42). More importantly, with X , we know that p4

is outside of the range query region: from the computation of the digest, we know that
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x41 > x1 and x2 > x42 (but we do not know the actual values), otherwise the digest will

not be defined; therefore, as long as r ≤ dist(X, q), we know that p4 is outside of the

query range. In a similar way, reference point Y can be used to hide p1 (though we have

chosen to use the hyper-cube bounding point).

Finally, in Figure 4.2(c), the data space is split into 6 equal regions. A constrained

range query centered at q and radius r is one that is restricted to one region (e.g., the

region bounded by the two lines BL and BR). As we shall see later, such a query is

useful when we process RNN queries. For a constrained range query, certain points can

be hidden in a similar way as we handle window queries (e.g., p1, p5 and p8) and range

queries (e.g., p2). For points like p3 and p7 it becomes more challenging. However, the

same concept of reference points can be used. In our example, for p3, we can pick a

reference point X on the line BL. We note that the user needs to verify that the reference

point is on the line BL. (Alternatively, the reference point can be outside of the line BL.

In this case, to verify that the point is a valid point that is outside of the line BL, the

user can compute the angle between the line formed by q and X , and the horizontal

line passing through q, and compare this against that of the angle formed by BL and the

horizontal line passing through q.) Now, we can use the collaborative approach for the

user to compute the digest of p3. Using the same logic, a reference point Y can be used

to facilitate the collaborative computation of the digest of p7 without returning p7 in the

plain.

Thus, as we can see, non-answer points can be hidden!

4.3 Query Answer Verification

In this section, we present an overview of the query verification scheme. First, we give

the basic solution to verify kNN queries. Then, we generalize the scheme for authenti-
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Figure 4.2: Authentication Overhead on different Dataset Size

cating window, range and RNN queries.

4.3.1 The Basic Solution

Our proposed solution, in its most basic form, ensures authenticity, completeness, and

minimality, and works as follows. WLOG, let us consider a kNN query [pc, k] (see

Figure 4.1). Once the publisher computes the k answers, it returns only the k answers in

plaintext. In addition, it also returns the following verification objects:

• It returns the k signatures of the answer points. These are used to verify that the

data have not been tampered with.

• The k points returned may not fall into a consecutive sequence along the signature

chain. For example, in Figure 4.1, there is a gap between r5 and r8 (i.e., there are

points between r5 and r8 which are not answer points). Thus, the publisher will

also need to return the partial computation of the digests of a number of points

that form a chain. Referring to our example again, we need to return the partial

digests of points r3, r4, r6, r7 and r10. We will defer the discussion on how these

points are determined to the later sections. It suffices at this moment to note that

we must return r3 to be certain that there is no point within the hyper-sphere that
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is chained between r3 and r4. The user will then derive the digests of these points

to verify the authenticity of the answer points. For example, by computing the

digests of r4 and r6, we can verify if r5 is authentic. Similarly, with the digest of

r7, we can verify if r8 is authentic. Similarly, the digest of r10 is needed to verify

the authenticity of r9.

• Now, for the user to verify that the answers are indeed the k answer points, he/she

need to show that all other points in the chain are outside of the hyper-sphere cen-

tered at Pc with radius r. We note that the r = dist(Pc, kth answer point). Using

our example, the user need to verify that r3, r4, r6, r7 and r10 are outside of the

hyper-sphere. To do this, the publisher also returns a set of reference points. Let

the number of non-answer points returned be M . Then, the number of reference

points needed is (at most) M , one for each of the non-answer points. These ref-

erence points are points in the space but not from the dataset. Moreover, they are

points on or outside of the hyper-sphere surface so that the distance between these

points and Pc is larger than or equal to r, but shorter than the distance between

their corresponding non-answer points and Pc. Note that the publisher can easily

determine these points since it knows all the points in the dataset. Using our run-

ning example again, r3 has a reference point X , r4 has a reference point Z, and r6

and r7 have the same reference point W . For each (non-answer point, reference

point) pair, the partial digest of the non-answer point is computed by the pub-

lisher (as described earlier), and the user can complete the computation and derive

the actual digest of the non-answer point. As long as the digest is valid, the user

will know that the non-answer point is outside of the hyper-sphere (since it knows

that the distance between Pc and the reference point is larger than the radius of the

hyper-sphere). We will discuss how the reference points are selected in subsequent

sections (since not any arbitrary reference point works). In addition, we note that
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we can optimize the number of reference points returned since it is possible that a

number of non-answer points can use the same reference point. Referring to our

example, one reference point W can be used for both points r6 and r7.

Taking our running example again, the query answer for this 3NN query Q is {r5, r8, r9}.

Besides the plaintext for these+ 3 answers, the publisher also returns the following veri-

fication objects:

• Signatures of the 3 answer points, which are sig(r5), sig(r8) and sig(r9).

• For the two boundary points r3 and r10 of the answer’s signature chain returned,

the publisher returns two pairs (r̃3, B1) and (r̃10, B2), where r̃3 and r̃10 are the

partial computation of the digests of r3 and r10 respectively. Points B1 and B2

are the leftmost and rightmost point of the hyper-sphere query respectively, where

B1.x = Pc.x− dist(Pc, r9) and B2.x = Pc.x+ dist(Pc, r9).

• For points r4, r6, and r7 that fall into the gap of the answer points along the con-

secutive signature chain sequence, the publisher returns pairs (r̃4, Z), (r̃6,W ), and

(r̃7,W ) respectively, where r̃i is the partial digest of point ri, Z and W are the

corresponding reference points selected for each ri.

Clearly, the proposed method is minimal since only the k answer points are returned

in the plain!

4.3.2 Generalizing to Other Query Types

The above scheme can be easily generalized to handle window and range queries. We

also describe how it can authenticate the more complicated reverse NN queries.
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Window Query

For window query [pl, pu], all objects outside of the window can use either one of these

two bounding points as a reference point (recall the discussion in Section 4.2). For

example, consider the window query (hyper-cube centered at Pc) in Figure 4.1. Now, r3,

r6, r7, and r10 are not part of the answer points that need to be returned. For r3, we can

see that the x1 value of pl would suggest r3 is outside of the window. Similarly, the x2

value of pu would suggest that r6, r7 and r10 are outside the window. Thus, for window

queries, as we have described in chapter 3. the query’s bounding points themselves

provide the reference points. Which means there is no need for the publisher to provide

any reference points.

Range Query

A range query [Pc, r] can be easily handled in the same way as a kNN query - it needs to

verify that the answer points are in the hyper-sphere centered at Pc with radius r, and that

all points outside of the hyper-sphere are indeed outside (as is done in the verification

for kNN query).

Reverse NN Queries

In [17], a two phase algorithm is proposed to retrieve the RNN of a query point q in a

2-dimensional data space. In the first phase, the data space around the query point q is

divided into six equal regions S1 to S6. For each region Si (1 ≤ i ≤ 6), a constrained

NN query is processed to retrieve the nearest neighbors of q in that region. Let the point

for Si be pi. It turns out that these six points constitute the candidate result set. In other

words, either pi ∈ RNN(q) or (ii) there is no RNN of q in Si. Thus, in the second

phase, a NN query is applied to find the NN of each candidate pi. We denote the NN of

pi as p′i. If dist(pi, q) < dist(pi, p
′
i), then pi belongs to the actual result; otherwise, it is
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Figure 4.3: Illustration of the two-phase RNN algorithm in [17].

a false hit and discarded.

As an example, consider Figure 4.3 which divides the 2-dimensional space around a

query point q into six equal regions S1 to S6. In Figure 4.3, the NN of q in S1 is point

p2. However, the NN of p2 is p1. Consequently, there is no RNN of q in S1 and we do

not need to search further in this region. The same is true for S2 (no data points), S3, S4

(p4, p5 are NNs of each other) and S6 (the NN of p3 is p1). There is only one answer for

RNN(q) which is p6 in region S5.

Now, since both phases of the above scheme consists of a series of NN queries, we

can adapt our kNN authentication scheme here. The authentication scheme comprises

two cases: (a) The point pi in region Si is indeed the RNN of q; and (b) The point pi in

region Si is not the RNN of q. Case (b) is much more challenging because we need to

hide pi as well as its NN in order to show that its NN is not q. We present our solution

to these two cases below.
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Case (a): pi in region Si is the RNN of q

When the publisher returns pi in region Si as the answer (in the plain), the user need to

do the following to verify that it is indeed an answer (we also describe the verification

objects that the publisher need to return):

• Verify that pi is the NN of q. To do this, the publisher returns the results of the

constrained range query with q as the center and r = dist(pi, q) as the radius. A

constrained range query refers to the query being bounded by the splitting plane

of the region (as discussed in Section 4.2). We note that the results consist of pi,

the partial digests of points that are along the signature chain, and the associated

reference points. As shown in Section 4.2, we can then verify if pi is indeed the

only point, and if so, it is the NN of q. Otherwise, we know that the publisher has

cheated.

• Verify that q is the NN of pi. To do this, the publisher returns the results of a range
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query centered at pi with radius r (together with the associated signature chain,

and reference points). Clearly, as long as there is no answer point for this query (q

is a query point), we know that q is the NN of pi. We can thus conclude that pi is

a RNN of q.

Figure 4.4 illustrates an example. Here, region S5 has two points p6 and p7. Since p6 is

the answer, it will be returned in the plain. The first constrained range query centered at

q with radius r = dist(q, p6) would allow us to know that p6 is indeed the NN of q. The

second range query centered at p6 with radius r would confirm that no points are within

this query region, and hence p6 is the correct answer. From the figure, it is clear that p7

is further away to p6 than q.

Case (b): pi in region Si is not the RNN of q

In this case, since pi is not an RNN of q, we cannot return pi in the plain. However, we

need to (1) verify that pi is an NN of q, and (2) verify that there exists another point t

such that dist(pi, t) < dist(pi, q). Note that these have to be done without revealing pi

and t.

Our approach works as follows:

• We note that to verify that a point (without revealing it in the plain) is in a query

region, we need two reference points. For example, consider Figure 4.2(a), to

verify that p2 is in the window query, we basically need to say that p2 is on the

right of and above X as well as on the left of and below Y . Clearly, with only

one of X or Y , we would not be able to guarantee that p2 is in the window query.

Thus, the publisher returns two reference points X and Y such that: (a) rl =

dist(q,X) < ru = dist(q, Y ), (b) pi is the only answer of a constrained range

query centered at q with radius ru, (c) there are no answer points of a constrained

range query centered at q with radius rl. Now, since the user knows X and Y ,
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he/she can easily verify that no points are in the constrained range query [q, rl]

and only pi is in [q, ru].

• Verify that dist(pi, t) < rl. To do this, the publisher need to also return a reference

point v such that a range query centered at v with radius, R, contains pi and t. We

note that R ≥ dist(pi, t)/2. As long as dist(pi, t) < 2R < rl, we are done. Thus,

the publisher need to choose 4 additional reference points - 2 to verify that pi is in

the range query, and 2 to verify that t is in the range query. With the four reference

points, the publisher is able to determine R.

Figure 4.5 illustrates an example. Here, the restricted region has one point p4 which

is the NN of q. However, p4’s NN is p6. We first find reference points and rl and ru that

allow us to verify the boundaries of p4. Similary, we can find reference points to allow

us to find the boundaries that encloses p6 and p4. As shown, in this figure, 2R < rl < r

and hence we can determine that p4 is not an RNN(q) without revealing p4 and p6.



43

4.4 kNN Authentication in Native Space

In this section, we present our solution for authenticating kNN queries in the native

space. With the VR-tree, the verification process involves two steps: a) we need to

verify that none of the valid partitions have been missed; b) for partitions that should be

checked, none of the valid points have been missed.

Verifying that the query answer covers all the candidate partitions is straightforward

for a known hyper-sphere. It comprises the following two phases:

• In the first phase, we need to identify the list of candidate partitions. A partition is

a candidate if the range of the ordering dimension of its MBR overlaps the range

of the ordering dimension of the tightest hyper-cube that bounds the hyper-sphere.

In our example, only partitions R1, R2 and R3 are candidate partitions.

• In the second phase, some of these candidate partitions can be further pruned. The

ones to be pruned are those whose minimum distance to Pc is larger than the hyper-

sphere radius r (since no points inside these partitions will ever be nearer than the

kth NN answer point. This can be easily verified since the bounding points of each

partition are known. In our example, R1 and R3 are further pruned.

For each remaining candidate partition P , there are 3 possible relationships between

P and the hyper-sphere (denoted H(Pc, r)) centered at Pc with radius r.

1. H(Pc, r) contains P . In this case, we return all the points in P , i.e., the pub-

lisher returns p0 to pn+1 and n, together with the respective signatures sig(P0) to

sig(Pn+1) and sig(P ). The user would compute the digests for both the points and

the partition to verify the result.

2. P contains H(Pc, r). Let Pi = (xi1, xi2, ..., xid), and Pc = (o1, o2, ..., od). Let

H ′(Pc, r) be the most tightly bounded hyper-cube of H(Pc, r), thus H ′(Pc, r) is
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also centered at point Pc, and the length of each edge l = 2r. Let H ′(Pc, r)’s

bounding points be (hl1, hl2, ..., hld) and (hu1, hu2, ..., hud). Thus, hui = oi + r and

hli = oi − r for all i ∈ [1, d]. The data points in P can be separated into

(a) pα, pα+1, ..., pβ−1, pβ , such that xi1 ∈ [hl1, hu1] for α ≤ i ≤ β.

These points can be further categorized into answer points (A) and false

positives (F). For each answer point pi ∈ A, dist(Pc, Pi) ≤ r, and for

each false positive pi ∈ F , dist(Pc, Pi) > r. Furthermore, there are two

types of false positive points. In the first type, denoted Fa, for each pi ∈

Fa, ∃z, xiz /∈ [hlz, huz]. In the second type, denoted Fb, for each pi ∈ Fb,

∀z, xiz ∈ [hlz, huz]. Note that Fa corresponds to points outside the hyper-

cube, while Fb are points inside the hyper-cube but outside the hyper-sphere.

Let us use the data space in Figure 4.1 as an example of a partition containing

the hyper-sphere. Here, we have A = {r5, r8, r9}, Fa = {r6, r7} and Fb =

{r4}.

(b) p1, ...pα−1, pβ+1, ...pk, which are clearly not answer points. Referring to Fig-

ure 4.1, these points are r1 to r3 and r10 to r20.

For data points from different categories, the publisher returns different sets of

verification objects.

(a) For each point pi ∈ A, the publisher returns pi and sig(pi).

(b) The publisher also returns p0, pn+1, sig(p0) and sig(pn+1), and sig(P ).

(c) For each point pi ∈ Fa ∪ Fb ∪ {pα−1, pβ+1}, the publisher finds a reference

point S = (S1, S2, ..., Sd) on the surface of the hyper-sphere1, such that, if

xiz < oz, Sz ∈ (xiz, oz), else if xiz > oz, Sz ∈ (oz, xiz).
1We do not require the point to be on the surface. All that is needed is to find a point that is outside

of the hypersphere that is closer to the query point than the point to be hidden. However, for ease of
presentation, we shall refer to the reference point as a point on the surface.
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We note that the same S point could be used as a reference point for multiple

pis as long as the above conditions hold. For simplicity, we pick the point

closest to the sphere’s surface on the line joining Pc and pi. Among these

points, we then eliminate “redundant” reference points.

After an S point is chosen for each pi ∈ Fb, we could simply verify that

dist(Pc, pi) > dist(Pc, S) ≥ r.

The publisher then returns several pieces of information together with the

detailed information of point S:

i. if xiz < Sz, hSz−xiz−1(xiz) and hxiz−Lz−1(xiz) are returned.

ii. if xiz > Sz, hUz−xiz−1(xiz) and hxiz−Sz−1(xiz) are returned.

With the above information, the user can compute g(pi) without knowing the ac-

tual value of pi.

• if xiz < Sz, the user applies h on hSz−xiz−1(xiz) an additional (Uz − Sz)

times to get hUz−xiz−1(xiz).

• if xiz > Sz, the user applies h on hxiz−Sz−1(xiz) an additional (Sz − Lz)

times to get hxiz−Lz−1(xiz).

• The user computes g(pi) using Equation 3.2.

Consider Figure 4.1 again as our example where P contains H(Pc, r). We could

see that the point r7 is outside the hyper-cube, which means that r7 is not an answer.

Instead of just returning the value of r7, the publisher picks a reference point W

near the circle, where W.x > r7.x and W.y < r7.y. Then (part of the information)

the server returns: for query answers {r8, r9}, it returns r8, r9, sig(r8), and sig(r9);

for r7, it returns (1) hW.x−r7.x−1(r7.x) and hr7.x−L.x−1(r7.x);(2) hU.y−r7.y−1(r7.y)
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and hr7.y−W.y−1(r7.y). Here, L and U denote the two bounding points of the par-

tition. With these, the user can determine hU.x−r7.x−1(r7.x) and hr7.y−L.y−1(r7.y),

and compute the digest of r7. (S)he can then further verify that r8 is an answer

point.

3. P overlaps H(Pc, r). This case can be handled by splitting P into two parts: one

overlaps H ′(Pc, r) (the hyper-cube of H(Pc, r)), and the other does not overlap

H ′(Pc, r) (which means it does not overlap H(Pc, r)). For the first part, we handle

it in the same manner as case (2) above. For the second part, it can be dropped

(except to verify that its points are outside H ′(Pc, r)). As such, we shall not go

into the details of this case.

In the above discussion, we have assumed only one layer of partitioning. We can

easily extend the scheme to work with the VR-tree. All that is needed is to verify that

no internal nodes are tampered with and dropped unnecessarily. This can be done as

described above since the internal nodes are also signature chained.

4.5 kNN Authentication in Metric Space: iDistance Based

Scheme

In Section 4.4, we have looked at how to authenticate kNN queries in the native data

space. In this section, we shall look at the problem when points are stored in the metric

space. Many data structures have been designed for processing kNN queries in metric

space. We shall discuss the method that is based on the iDistance [41] scheme here.

iDistance is an efficient technique for kNN search that can be adapted to different data

distributions. In iDistance, the data space is partitioned according to a set of reference

points. By indexing the distance of each data point to the reference point of its partition,
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high-dimensional points are transformed into points in a single dimensional space and

indexed by a classical B+-tree. In particular, points in a partition are mapped into a range

of values in the single dimensional space such that no two partitions have overlapping

ranges. Thus, all points in partition Pi is located to the left side of points in partition

Pi+1 in the B+-tree.2

Within the same partition, data points are ordered by their distance from the data

point to its reference point. Referring to Figure 4.6, we have 3 partitions formed by 3

reference points R1, R2 and R3 respectively. A range query with center at q and radius

r will need to access data points in the shaded region shown in the figure.

In iDistance data structure, data partitioning is independent of the spatial location of

the data points but only related to the selection of reference points. Moreover, the shape

of partitions in iDistance structure is a hyper-sphere that is centered at its reference point

Oj with radius rPj
= max(dist(ri, Oj)). Let a hyper-sphere query be centered at Q with

radius rq. Partition Pj does not overlap with the query and can be pruned from further

consideration if the following holds:

dist(Q,Oj) ≥ rPj
+ rq (4.1)

2We note that the original iDistance scheme did not discuss how partitions are ordered. Here, we adopt
a simple strategy that orders the partition based on the values of the first dimension of the reference point.
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On the other hand, if dist(Q,Oj) < rPj
+rq, we have to return the detailed information to

show that all the query results contained in this partition are returned correctly. Now, as

reported in [41], the set of points that need to be examined are bounded by the following

inequality

dist(Q,Oj)− rq ≤ dist(Oj, ri) ≤ dis(Q,Qj) + rq (4.2)

In the authentication model, we build up the signature chain directly on top of the B+-

tree. Let Oj = (Oj1, Oj2, . . . , Ojd) be the reference point for partition Pj . The signature

of each data point ri is

sig(ri) = s(g(ri−1)|g(ri)|g(ri+1)) (4.3)

where g(ri) = h(h(ri)|h(dist(ri, Oj)). Moreover, for each partition Pj ,

sig(Pj) = s(h(Oj)|h(max(dist(ri, Oj)))|h(k)) (4.4)

where h(Oj) = h(h(Oj1)|h(Oj2)| . . . |h(Ojd)) and k is the number of data points con-

tained in partition Pj .

Similar to the R-tree based scheme, authentication of kNN queries for the iDistance

based scheme contains the following two steps:(a) Verify that no overlapped partitions

is missing; (b) Verify that no result points inside the overlapped partition is tampered or

dropped.

To verify that all overlapped partitions are returned, the publisher need to return the

following information to the client:

• For each partition Pj , return Oj , rPj
, k and sig(Pj). With these information, the

client can verify that the partition information has not been tampered with. More-

over, the client can safely prune away partitions that satisfy Equation 4.1 from

further verification.
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Here, we assume that the client knows the number of partitions; otherwise, additional

information has to be provided (e.g., the signature for the total number of partitions, and

the number of partitions). We note that this phase can be optimized by chaining the

partitions to minimize the amount of information to be sent to the client. This is similar

to the process of verifying partitions in the R-tree based scheme.

Now, for each partition Pj that overlaps the query hyper-sphere, we need to verify

that no points has been tampered or dropped. The publisher returns the following infor-

mation to facilitate verification:

• The continuous sequence of signature chain within Pj that satisfy Equation 4.2.

Since the signatures are ordered by the distance to the reference point, those points

matching the inequality would form a continuous signature chain and should be

returned to the user as verification objects. Since not all points with the same

distance are answer points, this chain of points contain both answer points A and

false positives F . For each point pi ∈ A, the publisher returns pi and sig(pi). For

each point pj ∈ F , the publisher returns a reference point S = (S1, S2, . . . , Sd) on

the hyper-sphere (in the native space) as well as the corresponding (partial) digest.

As in the R-tree based scheme, different false positive points could share a same

reference point S as long as the following condition holds: if riz < Qz, Sz ∈

(riz, Oz); else Sz ∈ (Oz, riz), 1 ≤ z ≤ d.

• The publisher also returns the (partial) digests of the two points bounding the con-

tinuous sequence of signature chain above. Essentially, these two points allow the

client to verify that no other points within the partition has been dropped. Each of

these points is also associated with a reference point.

We note that the verification process is done in the native space. Once the client

receives all the verification objects, it operates in the native space in the same manner
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as that described in the R-tree based scheme. In other words, with the k answer points,

it can determine the hyper-sphere query and hyper-cube query. For each of the non-

answer points, the client uses its associated reference point to verify that it lies outside

the hyper-sphere.

4.6 Performance Study

We have implemented the proposed solution for verifying kNN queries and conducted

a series of experiments to study their performance. For our VR-tree, we implemented

the R*-tree data structure [8]. In [12], we also presented a metric-based scheme us-

ing the B+-tree based iDistance structure [41]. The codes for both mechanisms are

implemented in C++. The performance metrics used in our study is the authentication

overhead introduced and the I/O access cost. The authentication overhead is computed

as the number of overhead points/k, where the number of overhead points refer to the

number of non-answer points returned.

Unless stated otherwise, we use the following default parameter settings. The number

of dimensions is 4. The data distribution is Gaussian, the number of data points is 100K,

the domain of each dimension is [0, 1M]. The node capacity is 30 (i.e., each node holds

up to 30 data points). Queries are generated by randomly picking a point from the

database, and the value of k for the kNN query is 10. For each experiment, we vary one

of the above parameters, run 200 queries, and take the average score.

4.6.1 Effect of Number of Dimensions

We first vary the number of dimensions from 2 to 32. Figure 4.7 summarizes the result.

As expected, a higher dimensionality introduces more overhead for both mechanisms

adopted, as more non-answer points are required to verify the completeness of the query.
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Figure 4.7: Authentication Overhead on Different Data Dimension

Moreover, as the number of dimensions increases, the data space “expands” correspond-

ingly; with a fixed dataset size, the data points for higher dimensional dataset are spread

more sparsely. Thus, given kNN queries with the same k value, the radius of the corre-

sponding hyper-sphere in a higher dimensional dataset is much larger than its radius in a

lower dimensional dataset.

Another observation is that for small number of dimensions, the R*-tree based mech-

anism yields lower authentication overhead. However, the iDistance based mechanism

is superior when the number of dimensions is higher. This is reasonable as R*-tree has

its own structural restriction when the dimensionality is high.

4.6.2 Effect of Different Dataset Size

In our second experiment, we study the effect of different dataset size for a fixed data

space. Figure 4.8 shows the authentication overhead of the two schemes under different

dataset size.

From the result, we observe that as the dataset size increases, the authentication

overhead for iDistance based method increases as well. However, for the R*-tree based
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Figure 4.8: Authentication Overhead on different Dataset Size

mechanism, the overhead decreases initially. Our investigation suggests the following

reasons - the increasing dataset size reduces the size of the kNN query, which actually

reduces the radius of its corresponding hyper-sphere. The R*-tree based method is more

sensitive to this kind of reduction because of the overlaps in the MBR of its internal

nodes in the structure. However, as the dataset size increases further, given the fixed data

space, the space becomes too dense, resulting in larger overhead.

4.6.3 Effect of Different Data Distributions

In this experiment, we study the effect of different data distributions. As shown in figure

4.9, the results are measured under three different distribution: Exponential, Uniform and

Gaussian. We note that both methods incur lesser overheads with the exponential dataset.

This is because the data generated under the exponential distribution are clustered toward

one corner (the origin) of the data space, whereas they are more spread out under the

other two distributions. Moreover, the relative performance of the two methods remains

the same for different data distributions. This result is also consistent with the findings

in [11] for multi-dimensional window queries.
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Figure 4.9: Authentication Overhead on different Data Distribution

4.6.4 I/O Access Cost

Figure 4.10 shows the I/O access cost for the two mechanisms at the server. We see that

the R*-tree based method outperforms the iDistance based method when the number of

dimensions is small, while it incurs more I/O cost when the number of dimensions is

large. This is consistent with previous works since the R*-tree method degenerates in

performance as the number of dimensions increases.
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4.7 Summary

In this chapter, we have introduced a solution for users to verify their answers when

they query a multi-dimensional dataset. In particular, our scheme supports a wide range

of query types, namely window, range, kNN and RNN queries. Our solution extends

the signature chain scheme for multi-dimensional dataset. In this way, we can achieve

authenticity and completeness. Moreover, our scheme introduces a positional reference

point P for each non-answer point examined. This enables the scheme to achieve the

minimality property. We have implemented the scheme for kNN queries. Our experi-

mental study showed that the proposed method is effective and incurs low overhead.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In data outsourcing model, data owners engage third-party data servers (called publish-

ers) to manage their data and process queries on their behalf. As these publishers may

be untrusted or susceptible to attacks, it could produce incorrect query results to users.

In this thesis, we examined the issues of Multi-Dimensional Query results Authenti-

cation in Data Publishing. We first introduced a mechanism for users to verify that their

query answers on a multi-dimensional dataset are correct, in the sense of being com-

plete (i.e., no qualifying data points are omitted) and authentic (i.e., all the result values

originated from the owner). Our approach is to add authentication information into a

spatial data structure, by constructing certified chains on the points within each partition,

as well as on all the partitions in the data space. Given a query, we generated proof

that every data point within those intervals of the certified chains that overlap the query

window either is returned as a result value, or fails to meet some query condition. We

studied two instantiations of the approach: Verifiable KD-tree (VKDtree) that is based

on space partitioning, and Verifiable R-tree (VRtree) that is based on data partitioning.

55
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The schemes are evaluated on window queries, and results show that VRtree is highly

precise, meaning that few data points outside of a query result are disclosed in the course

of proving its correctness.

As an extension, we examined the authentication of kNN query results in Multi-

dimensional database, we introduce an authentication scheme for outsourced multi-dimensional

databases. With the proposed scheme, users can verify that their query answers from a

publisher are complete (i.e., no qualifying tuples are omitted) and authentic (i.e., all the

result values are legitimate). In addition, our scheme guaranteed minimality (i.e. no

non-answer points are returned in the plain). This scheme supports window, range, kNN

and RNN queries on multi-dimensional databases. We have implemented the proposed

scheme, and our experimental results on kNN queries show that our approach is a prac-

tical scheme with low overhead.

5.2 Future Work

5.2.1 Trust-Preserving Set Operations

Trust-Preserving Set Operation Problem is proposed by Ruggero et.al.in paper [24]. In

this problem, the party performing the computation does not need to be trusted, but the

result is a set which is trusted to the same extent as the original input. The techniques

have a range of potential applications such as addressing the problem of securely reusing

content-based search results in peer-to-peer (P2P) networks.

Given an example model with two trusted source nodes, s1, s2, each store an index

in the form of S1, S2; an untrusted directory d; and a client c, standard set operation

(such as union, difference, and intersection) are performed with problem raised on how

to construct a scheme that allows c to verify that d didn’t falsify the result of the query.

Current solution of this problem is accomplished by requiring trusted nodes to sign
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appropriates, defined digest of generated sets, and each such digest consists of an RSA

accumulator and a Bloom filter. Two kinds of attacks might be performed: insertion

attack and deletion attack. Current solution based on counting bloom filters compares the

bloom filter, which is obtained as the element-by-element minimum of Bl(S1), Bl(S2),

with the bloom filter Bl(I ′) of the returned intersection to detect the insertion attacks.

And the scheme also requires the directory to justify each gap (an index j is called a gap

if Bl(I)j is strictly less than Blj) to make sure there is no deletion attack.

However, this solution with a simple compressed counting bloom filter would suffer

from several limitations: The attacks such as insert an outside element into the inter-

section, although it can be solved at the cost of Bloom filters with a prohibitively large

number of counters. Moreover, this simple scheme also suffers from the heavy load of

the Bloom filter.

How to derive a simple and efficient scheme with lower overhead for the this set-

operation scheme is an interesting and meaningful problem for us to investigate.

5.2.2 Authenticating Aggregation Queries in Outsourced Database

Systems

Current wok on query authentication has focused on studying the general selection and

projection queries. Another important aspect of query authentication in outsourced

database system that has not been considered yet is handling aggregation queries.

When processing an aggregation query, although intermediate data might be involved

during the computation, only result answers need to be returned. However, in a Third-

party Publisher System, it would be infeasible for the user to authenticate the returned

answer from publisher without the knowledge of the detailed data. In this case, we

address the scenario where a user has the rights to know (at least some of) the detailed

data underlying the aggregation it is given.
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The most straight forward solution is, along with the aggregation result returned,

the publisher sends all the answer-related detailed data to user. The user could first

verify the returned data with authentication techniques such as Merkle Hash Tree [15]

or Signature Chain [29] Methods, and then compute the result and verify authenticity

its own. However, with this method, a ”sum” query might require the publisher returns

all the values to the user, in this case this trivial solution is very inefficient. There are

several drawbacks:

• Communication Cost: the communication between the publisher and the user

might be expensive.

• Network Traffic: network traffic might be caused during data transmission espe-

cially when such large amount of data transferred.

• Access Control: Sometimes, the user might not be encouraged to know the detailed

data of an aggregation query.

• Computation Workload: The user’s workload might be too heavy when complicate

calculations required.

As stated previously, communication just the result of a query is in many cases very

efficient, but it does not give the guarantee of correctness.(example of random sampling)

Thus it is a tradeoff between the query processing efficiency and result accuracy. In term

of result authentication, we cannot do better than send all the detailed data related to

the aggregation query to the user, which might be very inefficient in practice. We may

set our goal of this problem is to reduce the communication cost between the user and

publisher as well as achieve high accuracy of aggregation result.
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