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Abstract. It is well known that in a small neighbourhood of a parabolic fixed point
a real-analytic diffeomorphism of (R2, 0) embeds in a smooth autonomous flow. In
this paper we show that the complex-analytic situation is completely different and a
generic diffeomorphism cannot be embedded in an analytic flow in a neighbourhood of
its parabolic fixed point. We study two analytic invariants with respect to local analytic
changes of coordinates. One of the invariants was introduced earlier by one of the authors.
These invariants vanish for time-one maps of analytic flows. We show that one of the
invariants does not vanish on an open dense subset. A complete analytic classification of
the maps with a parabolic fixed point in C2 is not available at the present time.

1. Introduction
We consider a local diffeomorphism F near a fixed point on the plane. We assume that the
fixed point is at the origin, F(0)= 0, and both eigenvalues of F ′(0) are equal to 1 but F ′(0)
is not the identity, i.e. the origin is a parabolic fixed point of F . Our study of this map is
motivated by the fact that under a perturbation such maps exhibit a discrete analogue of the
Bogdanov–Takens bifurcation [3, 4]. Our invariants are relevant for studying the width of
a chaotic zone that appears near the bifurcation [12].

It is well known that in a small neighbourhood of a parabolic fixed point a smooth
diffeomorphism of (R2, 0) can be represented as a time-one map of a smooth autonomous
flow [6]. Therefore, in the real smooth case there is no difference between local dynamics
of a flow and a map. We will see that in the complex case the situation is different.

We say that F formally embeds in a flow if there is a formal vector field X such that
F = eX . If the series for X converges, the map F coincides with the time-one map of
the vector field X in a neighbourhood of the origin. We will see that the map F formally
embeds in a flow. The origin is a singular point of X , and the linear part of X at the origin
is nilpotent.
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In order to study the dynamics in a neighbourhood of a fixed point, it is convenient to
make coordinate changes in order to simplify a map or a vector field as much as possible. It
is well known [1, 2, 5] that the vector field X can be transformed into the Lienard equation:

ẋ = y,
ẏ = f0(x)+ y f1(x).

(1)

In the case of an analytic vector field this reduction can be achieved by an analytic change
of variables. The Lienard equation can be further simplified using formal substitutions to
eliminate infinitely many Taylor coefficients of the functions f0 and f1. This procedure
leads to a unique formal normal form, which in general [2] still contains infinitely many
terms. The coefficients of the unique formal normal form are formal invariants of X . Two
vector fields can be formally conjugate if and only if their formal normal forms coincide.
Therefore the vector field X has infinitely many formal invariants.

For a given map F the formal vector field X is unique and, consequently, the coefficients
of the unique normal form of X constitute a complete set of formal invariants for the map
F . In other words, two maps are formally conjugate if and only if the formal normal forms
of the corresponding vector fields coincide.

Suppose two analytic maps are formally conjugate, is it true that they are also
analytically conjugate? This question is known as the ‘rigidity property’. As is usual in
the case of infinitely many formal invariants, we do not know the answer to this question.
Nevertheless, in this paper we construct two analytic invariants, which are independent of
any finite subset of formal invariants. We conjecture that these invariants are independent
of the totality of formal invariants but we are not able to prove this claim at the time
of writing.

If the map F preserves area, one of our two analytic invariants coincides with a splitting
(Stokes) constant earlier defined in [10]. In [11] it was proved that this invariant does not
vanish in the case of the area-preserving Hénon map with a parabolic fixed point, which
can be written in the following form:

(x, y) 7→ (x + y − x2, y − x2).

This result together with analytical dependence of the invariants on parameters imply that
the invariants do not vanish on an open and dense subset of maps.

The map F is formally a time-one map of the formal vector field X , and therefore F
(more precisely, its Taylor series considered as a formal power series) commutes with a
one-parameter family of formal maps Fs = es X and F = Fn

1/n for every integer n.
If the series X converges, the map Fs is analytic in a neighbourhood of the origin. It

is not difficult to check that the origin is a parabolic fixed point of Fs . Then F1/n is an
analytic root of F with respect to composition of maps in a neighbourhood of the origin.
We will show that the existence of an analytic root of some order n > 1 implies that our
analytic invariants vanish. Therefore, if F is a time-one map of an analytic vector field,
then its analytic invariants vanish.

We conclude that generically the map F does not have any analytic root with respect to
composition of maps in a neighbourhood of the origin and it does not embed in an analytic
flow.
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In this paper, we prove that the analytic invariants are well defined for analytic
maps with a non-degenerate parabolic fixed point, providing rigorous justification for the
corresponding announcements of [12].

Our interest in this problem originates from the bifurcation theory, where many maps
are naturally real-analytic. We will indicate places where real-analyticity of F implies
additional properties.

We note that our invariants have some similarity to holomorphic Écalle–Voronin
invariants, which provided a complete classification in the one-dimensional case [7, 15].

The rest of the paper is organized in the following way. In §2 we state our main results
and explain some technical details, including a rigorous definition of the analytic invariants
and prove some of their properties. In §3 we construct all formal series involved in our
study. Section 4 contains necessary statements from the analytic theory of linear finite-
difference equations. The last two sections of the paper contain proofs of Theorems 2.1
and 2.2 respectively.

2. Main results
Let us describe our results in more detail. We consider a two-dimensional map
F : (C2, 0)→ (C2, 0) analytic in a complex neighbourhood of the origin. The origin is
a parabolic fixed point of the map F(0)= 0 and

det F ′(0)= 1, Tr F ′(0)= 2, F ′(0) 6= Id. (2)

Equivalently, we can say that F ′(0) has a double eigenvalue 1 but is not an identity matrix.
Then there is a linear change of coordinates, which transforms F ′(0) to the Jordan form,
and we will assume that

F ′(0)=
(

1 1
0 1

)
. (3)

In these coordinates F takes the form (x, y) 7→ (x1, y1), where

x1 = x + y + a(x, y), y1 = y + b(x, y), (4)

where the series

a(x, y)=
∑

k+ j≥2

ak j xk y j and b(x, y)=
∑

k+ j≥2

bk j xk y j

converge in a neighbourhood of the origin. We say that the parabolic fixed point is non-
degenerate if b20 6= 0. In this paper we will consider only the case of a non-degenerate
parabolic point. With a parabolic point we can associate a formal invariant

γ =
2a20 + b11

b20
.

If two maps of the form (4) are formally (or analytically) conjugate, then they have the
same value of this invariant. The invariant γ is the first of an infinite sequence of formal
invariants that can be associated with the map F . Without restricting the generality, we
may assume that

a20 = b20 = 1. (5)
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This normalizing condition can be achieved by a substitution (x, y) 7→ (c1x, c1 y + c2x2),
where c1 = b20 and c2 = a20b20 − b2

20. We will assume this normalizing condition, as it
leads to a substantial simplification of the notation in the following.

Although the origin is not hyperbolic, it is well known that the map F possesses
stable and unstable invariant manifolds. It is convenient to represent these manifolds in
a parametric form using solutions of the finite-difference equation

0(τ + 1)= F(0(τ )), (6)

which converge to 0 as Re τ →±∞. Respectively, ‘+’ corresponds to the stable manifold,
and ‘−’ to the unstable one. The variable τ can be considered as an analytic coordinate on
the stable or unstable invariant manifold. The restriction of F onto each of the invariant
manifolds is conjugate to the translation τ 7→ τ + 1.

First, we study formal solutions of equation (6) and an associated variational equation
in a class of formal series that involve powers of τ−1 and log τ . We always assume that log
stands for the main branch of the logarithm, which is positive on the positive real semiaxis.
A formal solution is obtained by substituting a series into the equation, re-expanding both
sides and collecting similar terms starting from the lowest order of τ−1. The series may
diverge but each of the relations involves only a finite number of coefficients.

The formal series we get in this paper can be interpreted in two different ways. They can
be considered as power series in τ−1 with coefficients polynomial in log τ , or as a product
of a suitable factor τ k and a double series in powers of two variables τ−1 and τ−1 log τ .

We denote by C[[τ−1
]] [[τ−1 log τ ]] the space of formal double series in powers of τ−1

and τ−1 log τ .

PROPOSITION 2.1. (Formal separatrix) Equation (6) has a formal solution 0̂ of the form

0̂(τ )=

(
τ−20̂1(τ )

τ−30̂2(τ )

)
where 0̂1, 0̂2 ∈ C[[τ−1

]] [[τ−1 log τ ]].

Moreover, for any non-zero solution 0̃ from this class there is a constant τ0 ∈ C such that
0̃(τ )= 0̂(τ + τ0). If additionally the map F is real-analytic, the coefficients of 0̂ can be
chosen to be real.

We call the series 0̂ a formal separatrix. Our results imply that it generically diverges.
If the series converges, then it defines an analytic solution of equation (6) and represents
an invariant manifold associated with the parabolic fixed point.

The formal separatrix can be written in the following coordinate form:

0̂(τ )=


6

τ 2 +
∑
k≥3

xk(log τ)
τ k

−
12

τ 3 +
∑
k≥4

yk(log τ)
τ k

 , (7)

where xk and yk are polynomials of degrees k − 2 and k − 3 respectively. The freedom in
the definition of the formal separatrix can be eliminated if we require that the polynomial
x3 does not contain a constant term. In this case it takes the form

x3(log τ)= 72
7 (γ − 2) log τ. (8)
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If F is real-analytic, then x3 is real on the positive real semiaxis. Moreover, analysing the
proof of Proposition 2.1, we can conclude that all other terms of the formal separatrix are
also real in this case.

If γ = 2, then x3 vanishes and formulae from the proof of Proposition 2.1 imply that
the formal separatrix is a power series in τ−1 only and does not contain any logarithmic
term at all, i.e. all xk and yk are constant. In particular, this condition is satisfied if F is
reversible or area-preserving. The area-preserving and reversible cases are covered by our
general theory.

We say that Û is a formal fundamental solution of the variational equation if Û is a 2× 2
matrix-valued formal series that satisfies the equation

Û(τ + 1)= F ′(0̂(τ ))Û(τ ), (9)

and two normalizing conditions:
(1) the constant term of the series ŵ0(τ ) := det Û(τ ) is equal to 1; and
(2) the second column of Û(τ ) coincides with 0̂′(τ ).
Note that the last condition is quite natural as differentiating equation (6) we conclude that
0̂′ satisfies the variational equation:

0̂′(τ + 1)= F ′(0̂(τ ))0̂′(τ ).

We define an auxiliary matrix

Jd =

(
1 0
d 1

)
. (10)

PROPOSITION 2.2. (Formal fundamental solution) Equation (9) has a formal fundamen-
tal solution Û of the form

Û(τ )=

(
τ 4Û11(τ ) τ−3Û12(τ )

τ 3Û11(τ ) τ−4Û12(τ )

)
where Ûkl ∈ C[[τ−1

]] [[τ−1 log τ ]], (11)

which satisfies both normalizing conditions. If Ũ is another normalized formal solution of
equation (9), then there is a constant d ∈ C such that

Ũ(τ )= Û(τ )Jd .

Moreover, if the map F is real-analytic and the coefficients of 0̂ are chosen to be real, then
the coefficients of Û can be chosen to be real.

Now we consider analytical solutions of equation (6). Let us fix a positive number
δ0 ∈ (0, π/2) such that tan δ0 < 1/2. This value will be the same in all our statements and
we omit the dependence on that parameter to shorten the notation. For r > 0 consider the
sector (see Figure 1):

D+(r)= {τ ∈ C | |arg(x − r)|< π − δ0}.

THEOREM 2.1. (Analytic stable manifold) Let F be a local analytic diffeomorphism with
a non-degenerate parabolic fixed point at the origin and 0̂ be its formal separatrix. Then
there are a constant r0 > 0 and a unique analytic function 0s

: D+(r0)→ C2, which
satisfies (6) and is asymptotic to 0̂(τ ) as τ →∞, τ ∈ D+(r0). Moreover, if F is real-
analytic and the coefficients of 0̂ are chosen to be real, then 0s is also real-analytic.
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FIGURE 1. Domains D+(r) and D−(r).

We use the following notation:

0s(τ )' 0̂(τ ) as τ →∞, τ ∈ D+(r0),

means that the function 0s is asymptotic to the series 0̂, i.e. the difference between the
function and a partial sum of the series is of the same order as the first omitted term.

If a point belongs to 0s(D+(r0)), its forward iterates converge to the origin. Therefore
0s represents the local stable manifold of the parabolic fixed point. We think that any point
that is attracted by the origin eventually belongs to this local stable manifold. The proof of
this fact is not known at the time of writing.

In order to study the unstable manifold we note that the unstable manifold is a stable
manifold of the inverse map. We consider a symmetric domain D−(r)=−D+(r) (see
Figure 1). The logarithm has two analytic continuations from D+(r) onto D−(r) obtained
by clockwise and anticlockwise analytic continuations. The difference between these two
branches of log equals 2π i. Then the formal series 0̂ can be interpreted in two different
ways 0̂+ and 0̂− depending on the choice of the branch of log. Proposition 2.1 implies
that there is τ0 ∈ C such that 0̂+(τ )= 0̂−(τ − τ0). We can find this constant explicitly.
Indeed, taking into account that 0̂ can be fixed by the condition (8), we obtain

x3,+(τ )− x3,−(τ )=
144π i

7
(γ − 2),

independently of the normalization of 0̂. Taking into account the first two orders of the
first line of (7) and re-expanding 0̂−(τ − τ0), we conclude that

τ0 =
12π i

7
(γ − 2).

Applying Theorem 2.1 to F−1, we obtain the following two statements.

COROLLARY 2.1. (Analytic unstable manifold) There is a constant r ′0 > 0 such that:
(1) there is a unique solution 0 = 0u

− of equation (6), which is analytic in D−(r ′0) and

0u
−(τ )' 0̂−(τ ) as τ →∞ in D−(r ′0); and

(2) there is a unique solution 0 = 0u
+ of equation (6), which is analytic in D−(r ′0) and

0u
+(τ )' 0̂+(τ ) as τ →∞ in D−(r ′0).
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Uniqueness of the analytic solutions implies that 0u
+(τ )= 0

u
−(τ − τ0). Therefore,

these two solutions represent two different parameterizations of the unique local unstable
manifold. If γ 6= 2, none of the series 0̂± is real on the negative real semiaxis even in
the case of a real-analytic F . Nevertheless, Theorem 2.1 applied to F−1 also implies
the existence of a real-analytic parameterization of the unstable manifold in the real-
analytic case.

The solutions 0u
− and 0s have a common asymptotic expansion in the lower component

of D+(r0) ∩ D−(r0), which implies that their difference decreases faster than any power
of τ−1. We prove a more delicate estimate on this difference. Let r1 =max{r0, r ′0} and
consider two domains:

D±1 (r1)= D+(r1) ∩ D−(r1) ∩ {±Im τ > 0}.

THEOREM 2.2. (Exponential asymptotic for the separatrix splitting) There are two vec-
tors 2−, 2+ ∈ C2 such that

0u
−(τ )− 0

s(τ ) ' e−2π iτ Û(τ )2− as τ →∞, τ ∈ D−1 (r1),

0u
+(τ )− 0

s(τ ) ' e2π iτ Û(τ )2+ as τ →∞, τ ∈ D+1 (r1).
(12)

Moreover, if additionally F is real-analytic and all coefficients of the series 0̂ and Û are
real, then 2+ = 2̄−.

Note that this theorem implies an exponentially small upper bound for the splitting
of invariant manifolds of the map F . Namely, let us write the parameterizations in the
coordinate form:

0s(τ )= (x s(τ ), ys(τ )) and 0u
−(τ )= (x

u
−(τ ), yu

−(τ )). (13)

Then (12) and (11) imply that there is a constant K > 0 such that

|xu
−(τ )− x s(τ )| < K |τ |4e2π Im τ ,

|yu
−(τ )− ys(τ )| < K |τ |3e2π Im τ ,

(14)

for all τ ∈ D−1 (r1). A similar upper bound is valid in D+1 (r1). Write 2± =

(2±1 , 2
±

2 ). If 2±1 6= 0, the theorem also implies a lower bound for the splitting distance
‖0u
±(τ )− 0

s(τ )‖.
The constants 2± are not uniquely defined due to the freedom in the choice of the

formal series 0̂ and Û, which also causes the non-uniqueness of analytic parameterizations
for the invariant manifolds. This freedom can be eliminated by setting conditions on terms
of orders τ−3 and τ−4. Unfortunately, these additional conditions cannot be restated in
terms of formal invariants of the map F . Therefore, the freedom in the definition of 2±

cannot be eliminated in a coordinate-independent way.
Indeed, suppose we found a rule that eliminates the freedom in the definition of the

constant term of x3, and depends only on the coefficients of the Taylor series for F up
to order n. Recall that 2± = (2±1 , 2

±

2 ). Values of 2±1 do not depend on the freedom in
the definition of the formal series Û(τ ). Therefore, this rule eliminates the freedom in the
definition of 2±1 .
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For any map F and any natural number n we construct a map Fn , which is analytically
conjugate to F and has the same n-jet. Moreover, the application of the rule to F and Fn

leads to different values of the constants 2±1 .
Later we will prove that there is a formal vector field X such that F = eX . It follows

that F commutes with the formal series es X for every s ∈ C. Let Hn = es[X ]n , where [X ]n
denotes the partial sum of the series X up to an order n. Then the Taylor series of the map

F̃n = Hn ◦ F ◦ H−1
n

coincides with the Taylor series of F up to the order n. Let 0̂ and 0̂n be formal separatrices
of the maps F and F̃n respectively. The rule implies that the coefficients of order τ−3 of
those two formal series coincide.

On the other hand, the equation

0̂n(τ + 1)= F̃n ◦ 0̂n(τ )

has an obvious solution Hn ◦ 0̂(τ ). Comparing the terms of order τ−3 in the first
component, we conclude by uniqueness that

0̂n(τ )= Hn ◦ 0̂(τ − s).

There is a formal fundamental solution Ûn(τ )= H ′n(0̂(τ − s))Ũ(τ − s). Then using the
definition of 2± we obtain

2̃− = e2π is2− and 2̃+ = e−2π is2+.

Therefore 2̃+ 6=2+ if s /∈ Z.
We have constructed two analytically conjugated maps F and F̃n , with different values

of 2±1 .
The following theorem shows that we can construct two analytic invariants of the map

F from four constants 2±j , j = 1, 2.

THEOREM 2.3. (On analytic invariants) The two complex constants

81 =2
−

1 2
+

1 and 82 = det
(
2−1 2+1
2−2 2+2

)
(15)

are independent of the freedom in the choice of the formal series 0̂ and Û, which are
involved in the definition of 2±j , j = 1, 2. Moreover, 81 and 82 are invariant under
analytic conjugacy.

In the case of a real-analytic F , the 0̂ and Û can be chosen to be real-analytic. Then
2− = 2̄+ and the analytic invariants are real:

81 =2
−

1 2
+

1 = |2
−

1 |
2 and 82 = det

(
2−1 2+1
2−2 2+2

)
= 2 Im(2−1 2̄

−

2 ).

Proof of Theorem 2.3. First we check that the analytic invariants are independent of the

freedom in the choice of the formal expansions. Let 0̂ and ˆ̃0 be two formal separatrices,

and Û and ˆ̃U be two formal basic solutions. Then there are τ0, d ∈ C such that

ˆ̃
0(τ )= 0̂(τ − τ0),

ˆ̃U(τ )= Û(τ − τ0)Jd ,
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where Jd is defined by (10). Then

0̃s(τ )= 0s(τ − τ0) and 0̃u
±(τ )= 0

u
±(τ − τ0).

Therefore

0̃u
±(τ )− 0̃

s(τ )= 0u
±(τ − τ0)− 0

s(τ − τ0)' e∓2π i(τ−τ0)Û(τ − τ0)2
±.

On the other hand

0̃u
±(τ )− 0̃

s(τ )' e∓2π iτ ˆ̃U(τ )2̃± = e∓2π iτ Û(τ − τ0)Jd2̃
±.

Comparing these two asymptotic expansions, we conclude that

e±2π iτ02± = Jd2̃
±.

Taking into account the triangular form of the matrix Jd , we see that 2+1 2
−

1 = 2̃
+

1 2̃
−

1 .

Moreover, det Jd = 1 implies that det(2−, 2+)= det(2̃−, 2̃+). Therefore, the invariants
are independent of the choice of the formal series.

Now let us prove that 81 and 82 are invariant under analytic conjugacy. Let H be a
local analytic diffeomorphism in a neighbourhood of the origin. Consider the map

F̃ = H ◦ F ◦ H−1,

and assume that F̃ is also of the form (4) with the series a, b replaced by ã, b̃. Then
necessarily there is c ∈ C such that

H ′(0)=
(

1 c
0 1

)
.

A formal separatrix and a formal fundamental solution for F̃ can be defined by

ˆ̃
0 = H ◦ 0̂, ˆ̃U= (H ′ ◦ 0̂)Û.

Then

0̃u
±(τ )− 0̃

s(τ )= H(0s(τ ))− H(0u
±(τ ))' H ′(0̂(τ ))e∓2π iτ Û(τ )2̃±.

On the other hand

0̃u
±(τ )− 0̃

s(τ )' e∓2π iτ ˆ̃U(τ )2̃± = e∓2π iτ H ′(0̂(τ ))Û(τ )2̃±.

Therefore this choice of ˆ̃0 and ˆ̃U leads to

2̃± =2±.

By the first part of the theorem, any other choice leads to the same values of the invariants
8k , k = 1, 2. 2

THEOREM 2.4. (Analytic dependence on a parameter) If Fν is an analytic family of maps
that for every fixed ν satisfy the assumptions of the previous theorems, then there is a choice
of formal solutions 0̂ and Û such that 2=2ν are analytic functions of ν.
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This theorem implies that8 j are analytic in ν because they do not depend on the choice
of the formal series.

The coefficients of formal expansions are polynomial in Taylor coefficients of the
map Fν and consequently are analytic in ν provided the free coefficients of asymptotic
expansions are chosen analytic in ν. In order to show the analyticity of 2ν , it remains
to trace the proofs of their existence for a fixed ν and check the uniformity of the
estimates involved.

It was proved in [11] that in the case of the Hénon map the first component of 2 does
not vanish.

COROLLARY 2.2. One has 2+1 2
−

1 6= 0 for a generic F.

COROLLARY 2.3. A generic F cannot be embedded in an analytical flow.

In order to derive the last statement, we check that, if X is an analytic vector field
with a non-degenerate parabolic fixed point and Fs is its time-s map, then Fs satisfies
the assumptions of Theorem 2.2 for any fixed s 6= 0 and the corresponding constants
2±s vanish.

It is sufficient to consider two values: s = 1/2 and s = 1. Obviously, F1 = F1/2 ◦ F1/2.
We check that, if 0u,s(τ ; s) is an additive parameterization of the stable and unstable
manifolds for Fs , then

0u,s(τ + 2; 1
2 )= F2

1/2(0
u,s(τ ; 1

2 ))= F1(0
u,s(τ ; 1

2 )).

We conclude that
0u,s(τ ; 1)= 0u,s(2τ ; 1

2 )

satisfies equation (6). The exponential asymptotic (12) for F1/2 implies that

0u
±(τ ; 1)− 0

u,s(τ ; 1)= 0u
±(2τ ;

1
2 )− 0

u,s(2τ ; 1
2 )� e±4π iτ Û1/2(2τ)2

±

1/2.

On the other hand, Theorem 2.2 can be applied directly to F1 and implies that

0u
±(τ ; 1)− 0

u,s(τ ; 1)� e±2π iτ Û1(τ )2
±

1 .

Comparing these two asymptotic expansions and taking into account that Û grows no faster
than O(τ 4), we conclude that 2±1 = 0.

3. Formal expansions
3.1. Formal embedding into a flow. In this subsection we show that the map F can be
formally considered as a time-one map of a vector field X . The vector field X is constructed
in the form of a power series. Although all the coefficients of the series are uniquely
defined, there is no reason to expect convergence of the series for a generic F . Actually,
the divergence of the series for an open dense set follows from the fact that the analytic
invariant for a time-one map of a flow vanishes and we prove that for a generic F the
invariant is different from zero.

PROPOSITION 3.1. Let F be analytic in a neighbourhood of the origin,

F(0)= 0 and F ′(0)=
(

1 1
0 1

)
.

Then there is a unique formal vector field X such that F(u, v)= eX (u, v).
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Proof. It is convenient to introduce a calibrating function on the space of formal power
series in u and v. Namely, we let δ(umvn)= 2m + 3n. We say that umvn is a δ-
homogeneous monomial of the order δ(umvn).

Let us expand a(u, v) and b(u, v) into Taylor series. We slightly overload our notation
by keeping the same letter for an analytic function and its Taylor series.

We represent the formal vector field X as a sum of δ-homogeneous polynomial vector
fields

X =
∑
k≥1

Xk, Xk = pk+3(u, v)∂u + qk+4(u, v)∂v,

where pk and qk are δ-homogeneous polynomials of δ-order k. We note that when we apply
Xk to a δ-homogeneous polynomial of δ-order n we obtain a δ-homogeneous polynomial
of δ-order n + k.

Now let πk denote a projection of a formal power series onto the subspace of δ-
homogeneous polynomials of δ-order k.

The equation F(u, v)= eX (u, v) can be written in the coordinate form:

u + v + a(u, v)= eX u,

v + b(u, v)= eXv.

Here
a(u, v)=

∑
k+l≥2

aklu
kvl and b(u, v)=

∑
k+l≥2

bklu
kvl .

Let us consider its projections onto δ-homogeneous polynomials. Taking into account the
definition of the exponent, eX

= id+
∑

n≥1(1/n!)X
n , and the equalities

Xu =
∑
k≥4

pk(u, v) and Xv =
∑
k≥5

qk(u, v),

and considering the leading orders, we obtain

X1 = v∂u + b20u2∂v.

The other polynomials pk and qk are recursively defined by the formulae:

pk = πk(a(u, v)− (e
X
− 1− X)u),

qk+1 = πk+1(b(u, v)− (e
X
− 1− X)v), k ≥ 2.

It is easy to see that the right-hand sides of these equalities are finite sums, which depend
on pm with 2≤ m ≤ k − 1 and qn with 3≤ n ≤ k − 2 as well as on the Taylor coefficients
of the functions a and b. Therefore, these polynomials are uniquely defined. 2

3.2. Formal series for the invariant manifolds. In this section we provide the proof of
Proposition 2.1. Namely, we construct the formal series in powers of τ−1 and τ−1 log τ ,
which represent the ‘formal’ invariant manifold associated with the parabolic fixed point
of F . If the series were convergent, its sum would be an analytic function, and its image
would be an invariant manifold of F . In general, we do not expect the series to converge.
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The proposition can be proved by substituting the formal series

0̂(τ )=


∑
k≥2

xk(log τ)
τ k∑

k≥3

yk(log τ)
τ k

 ,
into equation (6), re-expanding both sides of the equation, and finally collecting the terms
of the same order in τ . This leads to a recurrent system on the coefficients xk and yk . In
this way we get

x2 = 6, y3 =−12, x3 = x31 log τ + x30, y4 =−3x41 log τ + y40,

where
x31 =

72
7 (γ − 2), y40 =

18
7 (4γ − 15)− 3x30.

We also used the normalizing condition (5) to simplify the expressions for the coefficients.
The constant x30 remains free. All other coefficients at all orders are determined uniquely
after x30 is fixed. This provides the desired formal separatrix.

An alternative proof can be based on the interpolating vector field described in the
previous subsection. We sketch the corresponding arguments.

Let X be the interpolating vector field, which exists by Proposition 3.1. Any formal
solution of the equation

0̇0 = X ◦ 00,

simultaneously satisfies equation (6) and vice versa.
There is a formal close-to-identity change of coordinates, which conjugates X to the

Lienard equation (1). It is not difficult to check that

f0(x)= x2
+ O(x3) and f1(x)= (γ − 2)x + O(x2).

Now we look for a formal solution of the Lienard equation in the form

x(τ )=
∑
n≥2

1
τ n

n−2∑
k=0

pn,k logk τ.

We substitute the series into the differential equation and collect the terms of order τ−4

and τ−5. As a result we see that

p2,0 = 6, p3,1 =
72
7 (γ − 2),

and there is no condition on p3,0. We continue by induction to check that collecting the
terms of order tn+2 logk t we obtain an equation of the form

n(n + 1)pn,k = 2p2,0 pn,k + ϕn,k,

where ϕn,k is a polynomial function that depends on pm, j with m < n and pn, j with
k < j ≤ n − 2. Therefore we obtain an infinite triangular system, which has a unique
solution for every fixed p3,0.

We obtain the formal solution 0̂ by applying the inverse change of coordinates to the
formal vector-valued series (x(τ ), ẋ(τ )) obtained from the formal solution of the Lienard
equation. This completes the proof.
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We note that the formal solution has the following important property. If we denote by
[0̂]n(t) the sum of the first n terms of the formal series 0̂, then the x and y components of
the residue term

Rn(τ )= [0̂]n(τ + 1)− F([0̂]n(τ ))

can be bounded from above by O(logn+1 τ n+3) and O(logn+1 τ n+4), respectively.

3.3. Formal fundamental solutions. In this section we study a homogeneous linear
equation of the form

Û(τ + 1)= Â(τ )Û(τ ).

The proof is a combinatorial study of the equations obtained by a formal substitution of
the series and by collecting terms of the same order in τ−1.

LEMMA 3.1. Suppose that

Â(τ )=
(

1 1
0 1

)
+

(
Â11(τ ) Â12(τ )

Â21(τ ) Â22(τ )

)
, (16)

where Â11(τ ), Â12(τ ), Â21(τ ) and Â22(τ ) are formal series from the class
τ−2C[[τ−1

]] [[τ−1 log τ ]] with a fixed leading term A21,−2 = 12. Then the equation

8̂(τ + 1)= Â(τ )8̂(τ ) (17)

admits two formal solutions 8̂+ = (φ̂+, ψ̂+) and 8̂− = (φ̂−, ψ̂−), where
φ̂+(τ ) =

∑
k≤4

φ+k (log τ)τ k,

ψ̂+(τ ) =
∑
k≤3

ψ+k (log τ)τ k
(18)

and 
φ̂−(τ ) =

∑
k≤−3

φ−k (log τ)τ k,

ψ̂−(τ ) =
∑

k≤−4

ψ−k (log τ)τ k .
(19)

Moreover, φ+k and ψ+k−1 are polynomials of degree not greater than 4− k when −3<
k ≤ 4 and of degree not greater than 5− k when k ≤−3, both φ−k and ψ−k−1 being of
degree −3− k.

Proof. We prove the lemma for 8̂+, the proof for 8̂− being completely similar. We
therefore remove the exponent ‘+’ from now on since there is no confusion. The proof
is done by induction on n. We first write

8̂(τ )=
∑
k≤4

8k(τ, log τ), (20)

where
8k(τ, log τ)= (τ kφk(log τ), τ k−1ψk−1(log τ)).
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In the class of formal series 8̂(τ + 1)= exp(∂/∂τ)8̂(τ ), which is equivalent to

8̂(τ + 1) =
∑
i≥0

(8̂)(i)(τ )

i !
. (21)

Moving the first term of the sum to the left-hand side and substituting (20) we obtain

8̂(τ + 1)− 8̂(τ )=
∑
i≥1

1
i !

∑
k≤4

d i

dτ i (8k(τ, log τ)). (22)

It is convenient to re-order the terms of the sum to group together terms of the same order
in τ :

8̂(τ + 1)− 8̂(τ )=
∑
n≤3

4∑
l=n+1

1
(l − n)!

dl−n

dτ l−n (8l(τ, log τ)). (23)

Equation (17) can be written in the form

8(τ + 1)−8(τ ) = (Â(τ )− Id)8(τ ). (24)

Substituting (16) and (23) into the equation, we see that∑
n≤3

4∑
l=n+1

1
(l − n)!

dl−n

dτ l−n (φl(log τ)τ l)

= Â11(τ )
∑
k≤4

φk(log τ)τ k
+ (1+ Â12(τ ))

∑
k≤3

ψk(log τ)τ k, (25)

∑
n≤2

3∑
l=n+1

1
(l − n)!

dl−n

dτ l−n (ψl(log τ)τ l)

= Â21(τ )
∑
k≤4

φk(log τ)τ k
+ Â22(τ )

∑
k≤3

ψk(log τ)τ k . (26)

We solve equations (25) and (26) in the class of formal series in τ with coefficients that are
polynomials in log τ . Putting u = log τ allows us to write, for any smooth function f ,

τ
d f (log τ)

dτ
= f ′(u).

We have to show that (25) and (26) can be satisfied at every order in τ n for n ≤ 3.
Identifying terms of degree n − 1 in τ in (25) and terms of degree n − 2 in τ in (26),
we get

4∑
`=n

1

τ n−1(`− n + 1)!

d`−n+1

dτ `−n+1 (φ`(log τ)τ `)

=

(
Â11(τ )

∑
`≤4

φ`(log τ)τ ` + (1+ Â12(τ ))
∑
`≤3

ψ`(log τ)τ `
)∥∥∥∥

n−1
, (27)

3∑
`=n−1

1

τ n−2(`− n + 2)!

d`−n+2

dτ `−n+2 (ψ`(log τ)τ `)

=

(
Â21(τ )

∑
`≤4

φ`(log τ)τ ` + Â22(τ )
∑
`≤3

ψ`(log τ)τ `
)∥∥∥∥

n−2
. (28)
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We show that, for all integers n ≤ 4, there are polynomial functions φn, ψn−1 such that
(27) and (28) are satisfied. We show this property by induction on n. Substituting n = 4
into (27) and (28) leads to ψ3 = 4φ4. A solution of this equation is given by

φ4 = 1, ψ3 = 4.

Then the general solution can be obtained from this one by multiplication by a constant.
We continue by induction. Assume that there exists an integer n ≤ 4 such that, for all
n + 1≤ k ≤ 4, both φk and ψk−1 are polynomial in u = log τ . We show now that φn and
ψn−1 are also polynomial in u. The upper bound on their degree is to be checked later.
Observe that

Rn,3 := −ψn−1 +

(
Â12(τ )

∑
k≤3

ψkτ
k
)∥∥∥∥

n−1
=

−2∑
`=n−4

A12,`ψn−1−` (29)

and

Rn,2 :=

(
Â11(τ )

∑
k≤4

φkτ
k
)∥∥∥∥

n−1
=

−2∑
`=n−5

A11,`φn−1−`. (30)

Furthermore, since A21,−2 = 12, we have

Sn−1,2 := −12ψn +

(
Â21(τ )

∑
k≤3

φkτ
k
)∥∥∥∥

n−2
=

−2∑
`=n−6

A21,`φn−2−`. (31)

Moreover, we have

Sn−1,3 :=

(
Â21(τ )

∑
k≤3

ψkτ
k
)∥∥∥∥

n−2
=

−2∑
`=n−5

A22,`ψn−2−`. (32)

Also,

4∑
`=n

1

τ n−1(`− n + 1)!

d`−n+1

dτ `−n+1 (φ`(log τ)τ `) = nφn + φ
′
n −Rn,1,

3∑
`=n−1

1

τ n+1(`− n + 2)!

d`−n+2

dτ `−n+2 (ψ`(log τ)τ `) = (n − 1)ψn−1 + ψ
′

n−1 − Sn−1,1,

where

Rn,1 = −
1

τ n−1

4∑
l=n+1

dl−n+1(φlτ
l)

dτ l−n+1 , (33)

Sn−1,1 = −
1

τ n−2

3∑
l=n

dl−n+2(ψlτ
l)

dτ l−n+2 . (34)

Then equations (27) and (28) take the form(
φn

ψn−1

)′
(u)=

(
−n 1
12 −n + 1

) (
φn

ψn−1

)
(u)+

(
Rn

Sn−1

)
(u), (35)
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where

Rn = Rn,1 +Rn,2 +Rn,3,

Sn−1 = Sn−1,1 + Sn−1,2 + Sn−1,3

are polynomial functions in u. Equation (35) is a linear non-homogeneous equation in
8n = (φn, ψn−1) with constant coefficients and a polynomial right-hand side. It can be
rewritten in vector form as

8̇n = Mn8n +Rn, (36)

where

Rn =

(
Rn

Sn−1

)
, Mn =

(
−n 1
12 −n + 1

)
.

Matrix Mn has eigenvalues {−3− n, 4− n} and can be diagonalized by a linear
substitution defined by the matrix

H=
(
−1 1
3 4

)
.

The latter matrix does not depend on n. We write 8n = H8̃n and after substitution into
(36) we get

˙̃
8n = Dn8̃n + H−1Rn, (37)

where

Dn =

(
−3− n 0

0 4− n

)
.

After that the equation can be easily integrated. The general solution of (37) has the form

φ̃n(u)= R̄n(u)+ K1,ne−(3+n)u, (38)

ψ̃n−1(u)= S̄n−1(u)+ K2,ne(4−n)u, (39)

where both K1,n and K2,n are constant, and R̄n(u) and S̄n−1(u) are polynomial functions.
Therefore, the choice K1,n = K2,n = 0 leads to a polynomial solution of (35). If n 6∈
{−3, 4}, this solution is unique. The coefficients of 8 can be restored using(

φn

ψn−1

)
= H

(
φ̃n

ψ̃n−1

)
.

In the case where n 6= − 3, the degree of these polynomials is not higher than
max{d0(Rn), d0(Sn−1)}. In the case where n =−3, the degree of these polynomials is
not higher than max{d0(Rn), d0(Sn−1)} + 1. This shows that the φk and ψk−1, k ≤ 4, are
polynomial in u and are defined uniquely up to a free constant, which appears at the orders
n = 4 and n =−3.

We now show by induction on n that their degree is not higher than 4− n in the case
n >−3 and not higher than 5− n when n ≤−3. Assume first that there exists an integer
n ≥−3 such that, for all integer n < k ≤ 4,

max{d0(φk), d0(ψk−1)} ≤ 4− k. (40)
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With (33), (30), (29), (34), (31) and (32), this implies that

d0(Rn,1)≤ 3− n, d0(Rn,2)≤ 3− n, d0(Rn,3)≤ 2− n,

d0(Sn−1,1)≤ 3− n, d0(Sn−1,2)≤ 4− n, d0(Sn−1,3)≤ 3− n,

and therefore that
max{d0(Rn), d0(Sn−1)} ≤ 4− n.

Since the polynomial solution in (38) is of degree not higher than max{d0(φk), d0(ψk−1)},
(40) is valid for all k such that −3< k ≤ 4. If n =−3, the polynomial solutions of (38)
are of degree not higher than 5− n. Assume now that there exists an integer n ≤−3 such
that, for all integer n < k,

max{d0(φk), d0(ψk−1)} ≤ 5− k, (41)

and let us show that (41) is still valid for k = n. With (33), (30), (29), (34), (31) and (32),
it follows that

d0(Rn,1)≤ 4− n, d0(Rn,2)≤ 4− n, d0(Rn,3)≤ 3− n,

d0(Sn−1,1)≤ 4− n, d0(Sn−1,2)≤ 5− n, d0(Sn−1,3)≤ 5− n,

and therefore the polynomial solutions of (38) are of degree not higher than 5− n and (41)
is still valid for all integer n ≤−3. 2

In the case of a generic matrix Â the upper bounds on the order of the polynomials φk

and ψk−1 are sharp and cannot be further improved. However, if Â(τ )= F ′(0̂(τ )) it can
be checked that the leading order in (37) cancels at n =−3, and the order of (φ+k , ψ

+

k−1)

does not exceed 4− k not only for 4≥ k >−3 but for all k ≤ 4.

4. Inverse linear operators
In this paper most of the analyticity results are proved by reducing the corresponding
problem to a contraction mapping in a suitably chosen Banach space. Typically the
reduction procedure requires the study of a linear operator and its inverse. In this section
we provide corresponding details on the theory of linear finite-difference operators. We
note that the properties of an operator depend both on its form and on its domain.

Let r > r0 > 0, 0< δ < π/4. The norms of all operators involved in this section depend
on those parameters. We fix δ arbitrarily and keep it constant throughout our proofs; in
contrast the parameter r0 will be later chosen to ensure certain upper bounds.

In what follows we will consider functions analytic in one of the following subsets of C:

D+(r) = {τ ∈ C | |arg(τ − r)|< π − δ},

D−(r) = −D+(r)= {τ ∈ C | −τ ∈D+(r)},
D1(r) = D−(r) ∩D+(r) ∩ {τ | Im τ <−r}.

We note that if r > r0 then D+(r)⊂D+(r0).
Let D ⊂ C and p > 0. We say that f :D→ C2 belongs to Xp(D), if f= ( fx , fy) is

analytic inside D, continuous in its closure and has a finite norm:

‖f‖p = sup
τ∈D

(|τ p fx | + |τ
p+1 fy |).
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We also write

f(τ )= (τ−p f1(τ ), τ
−p−1 f2(τ )) then ‖f‖p = sup

τ∈D
(| f1(τ )| + | f2(τ )|).

Let A be a matrix-valued function,

A(τ )=
(

1 1
0 1

)
+

(
A11(τ ) A12(τ )

A21(τ ) A22(τ )

)
. (42)

We study the finite-difference operator, which acts by the formula

L(8) (τ )=8(τ + 1)− A(τ )8(τ ). (43)

We will consider this operator on various different classes of functions. In the following
we assume that A(τ ) satisfies the following assumptions.
[A1] Ak l ∈ X2(D+(r0)) for k, l ∈ {1, 2}.
[A2] There are formal series of the form

Âk l(τ )=
∑

m≤−2

Ak l,m(log τ)τm, (44)

where Ak l,m(z) are polynomials of order −(m + 2) for all m ≤−2, such that

Ak l(τ )' Âk l(τ ) as τ →∞, τ ∈D+(r0), (45)

where ' means that the function Ak l is asymptotic to the series Âk l . We do not
assume convergence of the series Âk l(τ ).

[A3] A2 1,−2 = 12.

THEOREM 4.1. Let p > 4 and r0 > 0. Suppose that A satisfies assumptions [A1]–[A3].
Then the linear operator L : Xp(D+(r0))→ Xp(D+(r0)) has a trivial kernel. Moreover,
there is r ′0 ≥ r0 such that for every r ≥ r ′0 there exists a unique continuous linear operator
L−1
: Xp+1(D+(r))→ Xp(D+(r)) such that LL−1

= Id. The norm of L−1 is bounded by
a constant C1 independent of r .

We will also consider the operator L restricted to functions analytic inD1(r). Unlike the
set D+(r), the set D1(r) is not invariant under the translation T−1

: τ → τ − 1. Therefore,
if 8 is analytic in D1(r), then L(8) is defined on a smaller domain

D′1(r)=D1(r) ∩ T−1(D1(r))

due to the presence of the term 8(τ + 1) in the definition of L.
We say that a matrix-valued solution of the equation LU= 0 is a fundamental solution

if U is analytic in D+(r0) and continuous in its closure, its Wronskian ω(τ) := det U(τ )
does not vanish in D+(r0) and ω(τ)→ 1 as τ →∞ inside the domain.

THEOREM 4.2. Suppose that A satisfies the assumptions of Theorem 4.1 and r > r ′0. Then
the linear operator L : Xp(D1(r))→ Xp(D′1(r)) has a kernel consisting of the functions
of the form

U(τ )c(τ ),

where U(τ ) is the fundamental matrix solution of the homogeneous equation L(U)= 0 and
c(τ + 1)= c(τ ) and c(τ )→ 0 as τ →∞ in D1(r). The operator L has a bounded right
inverse L−1

: Xp+3(D′1(r))→ Xp(D1(r)). The norm of L−1 is bounded by a constant C2

independent of r .
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On this class of functions, the kernel of L is not trivial and the right inverse operator
L−1 is not unique.

We also stress a subtle point in the previous two theorems related to the domains of the
right inverse operator L−1: its domain does not totally cover the range of L.

The next sections contain a proof of Theorems 4.1 and 4.2. First we prove that
Theorem 4.1 is valid for a specially chosen operator L0. Then we use perturbation theory
as every operator L can be considered as a small perturbation of the operator L0. The
role of the perturbation parameter is played by the parameter r ′0, which is involved in the
definition of the domains. A large part of the proof is dedicated to a construction of a
fundamental solution U of the equation L(U)= 0.

4.1. Fundamental solutions for L0. We consider the finite-difference operator defined
by

L0(8) (τ )=8(τ + 1)− A0(τ )8(τ), (46)

where

A0 =

(
1+ 12/τ 2 1

12/τ 2 1

)
. (47)

The equation
L0(8)= 0 (48)

admits two special solutions,

8+0 =

(
φ+0
ψ+0

)
, 8−0 =

(
φ−0
ψ−0

)
,

which we describe here. The first solution is polynomial,
φ+0 (τ ) = τ

4
+

1
5
τ 2,

ψ+0 (τ ) = 4τ 3
+ 6τ 2

+
22
5
τ −

6
5
,

(49)

and can be easily verified by substituting it directly into the equation rewritten in coordinate
form: {

φ0(τ + 1) = φ0(τ )+ ψ0(τ + 1),

ψ0(τ + 1) = (12/τ 2)φ0(τ )+ ψ0(τ ).
(50)

The second solution is found by variation of constants. We note that det(A0)= 1. Then
we can require the second solution to satisfy the normalization condition

w0(τ ) := det

∣∣∣∣φ+0 φ−0
ψ+0 ψ−0

∣∣∣∣ (τ )= 1. (51)

We find the second solution (φ−0 , ψ
−

0 ) eliminating ψ+0 and ψ−0 using the first line of (50),
which can be rewritten in the form

ψ+0 (τ ) = φ
+

0 (τ )− φ
+

0 (τ − 1),

ψ−0 (τ ) = φ
−

0 (τ )− φ
−

0 (τ − 1),
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and then substituting φ−0 (τ )= k(τ )φ+0 (τ ) into the normalizing condition (51). We get

φ+0 (τ ) [k(τ )φ
+

0 (τ )− k(τ − 1)φ+0 (τ − 1)]

− [φ+0 (τ )− φ
+

0 (τ − 1)]k(τ )φ+0 (τ )= 1,

and therefore

κ(τ)− κ(τ − 1) =
1

φ+0 (τ )φ
+

0 (τ − 1)
. (52)

This equation has an analytic solution in C \ R− defined by

κ(τ)=−

∞∑
n=1

1

φ+0 (τ + n)φ+0 (τ + n − 1)
.

The series obviously converges for all τ from the domain. We restore the solution of
equation (50) by φ

−

0 (τ ) = −

∞∑
n=1

φ+0 (τ )

φ+0 (τ + n)φ+0 (τ + n − 1)
,

ψ−0 (τ ) = φ
−

0 (τ )− φ
−

0 (τ − 1).

(53)

We note that

φ−0 (τ )=−
1
7τ
−3
+ O(τ−4) and ψ−0 (τ )=

3
7τ
−4
+ O(τ−5) (54)

in any D+(r) with r ≥ 1. This estimate can be easily derived by bounding the infinite sum
by the corresponding integrals [9, 13].

For later convenience, we write

U0 = (−
1

848
+

0 ,−848−0 ) (55)

to denote the fundamental system of solutions for the equation L0U0 = 0. The constant
factor was chosen to ensure that the second column of U0 starts with 12τ−3, similar to the
formal series 0̂′(τ ).

4.2. Inverting L0. We now come to the construction of the inverse of the operator L0.
Note that the procedure used in this section does not use the specific form of the matrix
A0, and we will use the same method to invert other operators on Xp(D+(r)) and, after a
proper modification, on Xp(D1(r)) as well.

Let us consider the equation

L0(ξ)= f,

where f ∈ Xp(D+(r0)) with p > 4. Taking into account the definition of L0, we rewrite
this equation in the form

ξ(τ + 1)= A0(τ )ξ(τ )+ f(τ ). (56)

Let U0 be the fundamental solution constructed in §4.1. We look for a solution of (56) in
the form ξ(τ )= U0(τ )η(τ ). After a substitution into (56) this leads to

U0(τ + 1)η(τ + 1) = A0(τ )U0(τ )η(τ )+ f(τ )

= U0(τ + 1)η(τ )+ f(τ ).
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The matrix U0 is invertible, therefore

η(τ + 1)− η(τ )= U−1
0 (τ + 1)f(τ ). (57)

This is an elementary finite-difference equation, which admits the solution

η(τ )=−

∞∑
k=0

U−1
0 (τ + 1+ k)f(τ + k).

The series converges uniformly in D+(r0) and, consequently, defines an analytic function.
Therefore

ξ(τ )=−U0(τ )

∞∑
k=0

U−1
0 (τ + 1+ k)f(τ + k) (58)

is analytic in D+(r0).
Let us prove that the norm of L−1

0 : Xp(D+(r))→ Xp−1(D+(r)) is bounded by a
constant independent of r > r0. Write

U0(τ ) =

(
U0,11(τ )τ

4 U0,12(τ )τ
−3

U0,21(τ )τ
3 U0,22(τ )τ

−4

)
,

and let
U0,max := max

1≤i, j≤2
sup

τ∈D+(r0)

{|U0,i j (τ )|}<∞.

We have det U0(τ )≡ 1, therefore

U−1
0 (τ )=

(
U0,22(τ )τ

−4
−U0,12(τ )τ

−3

−U0,21(τ )τ
3 U0,11(τ )τ

4

)
,

and we have an upper bound for the inverse matrix as well as for the U0. Then

U0(τ )U
−1
0 (τ + 1+ k)f(τ + k) =

(
V11(τ, τ + k) V12(τ, τ + k)
V21(τ, τ + k) V22(τ, τ + k)

) (
f1(τ + k)
f2(τ + k)

)
,

where

V11(τ, τ + k) = (τ + k)−p
[U0,11(τ )U0,22(τ + k)τ 4(τ + k)−4

−U0,12(τ )U0,21(τ + k)τ−3(τ + k)3],

V12(τ, τ + k) = (τ + k)−p−1
[U0,12(τ )U0,11(τ + k)τ−3(τ + k)4

−U0,11(τ )U0,12(τ + k)τ 4(τ + k)−3
],

V21(τ, τ + k) = (τ + k)−p
[U0,21(τ )U0,22(τ + k)τ 3(τ + k)−4

−U0,22(τ )U0,21(τ + k)τ−4(τ + k)3],

V22(τ, τ + k) = (τ + k)−p−1
[U0,22(τ )U0,11(τ + k)τ−4(τ + k)4

−U0,21(τ )U0,12(τ + k)τ 3(τ + k)−3
].

These coefficients admit the following upper bounds for all τ ∈D+(r0), and all k ≥ 0:

|V11(τ, τ + k)| ≤ U 2
0,max(|τ |

4
|τ + k|−p−4

+ |τ |−3
|τ + k|−p+3),

|V12(τ, τ + k)| ≤ U 2
0,max(|τ |

−3
|τ + k|−p+3

+ |τ |4|τ + k|−p−4),

|V21(τ, τ + k)| ≤ U 2
0,max(|τ |

3
|τ + k|−p−4

+ |τ |−4
|τ + k|−p+3),

|V22(τ, τ + k)| ≤ U 2
0,max(|τ |

−4
|τ + k|−p+3

− |τ |3|τ + k|−p−4).
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Since, for each p > 0, there exists K p,r0 > 0 such that, for all τ ∈D+(r0),

∞∑
k=0

1

|τ + k|p+1 ≤
K p,r0

|τ |p
, (59)

it follows from the comparison theorem that the series for ξ converges absolutely and
uniformly in every domain D+(r) with r > r0, and

‖L−1
0 (f)‖p−1 ≤U 2

0,max2(K p+4,r0 + K p−3,r0)‖f‖p−1. (60)

Theorem 4.1 is proved for the operator L0 and r ′0 ≥ r0 for any fixed r0 > 0.

4.3. Analytic fundamental solutions. Let Û be a formal fundamental solution of the
equation LÛ= 0 defined using solutions provided by Lemma 3.1. It is not difficult to
check that the coefficients can be chosen in such a way that the formal series det U(τ )
starts with the constant term equal to 1.

LEMMA 4.1. Let a matrix-valued function A satisfy the assumptions of Theorem 4.1 and
Û(τ ) be a formal fundamental solution. Then there is r ′0 > r0 such that the equation

LU= 0 has a unique fundamental solution inD+(r ′0), which is asymptotic to Û as τ →∞
inside the domain.

Proof. Let B(τ )= A(τ )− A0(τ ), where A0 is defined by (47). Then

B(τ )=

(
τ−2 B11(τ ) τ−2 B12(τ )

τ−3 log τ B21(τ ) τ−2 B22(τ )

)
, (61)

where B11, B12, B21, B22 are bounded in D+(r0) due to assumption [A2]. Take a negative
integer N <−4 and consider a partial sum ÛN of the formal solution Û,

UN (τ )=

(
φ+N (τ ) φ−N (τ )

ψ+N (τ ) ψ−N (τ )

)
,

which includes all terms up to order N . More precisely,
φ+N (τ ) =

4∑
k=N

φ+k (log τ)τ k,

ψ+N (τ ) =

3∑
k=N−1

ψ+k (log τ)τ k

(62)

and 
φ−N (τ ) =

−3∑
k=N

φ−k (log τ)τ k,

ψ−N (τ ) =

−4∑
k=N−1

ψ−k (log τ)τ k .

(63)

The matrix-valued function UN is an approximate solution of the equation LU= 0 in the
sense that

HN := L(UN )
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belongs to Xp+1(D+(r0)) for every p ∈ (−N ,−N + 1), i.e. each of the two columns of
the matrix belongs to the space.

We look for the fundamental solution in the form

U(τ ) = UN (τ )+ V(τ ), (64)

where V should belong to Xp(D+(r0)). We substitute this formula and A(τ )= A0(τ )+

B(τ ) into the equation
U(τ + 1)= A(τ )U(τ ),

and rewrite the result in the following form:

V(τ + 1)− A0(τ )V(τ )= B(τ )V(τ )+HN (τ ).

The operator L0(V(τ ))= V(τ + 1)− A0(τ )V(τ ) is invertible in Xp(D+(r0)). Therefore
in this space the last equation is equivalent to

V(τ )= L−1
0 (B(τ )V(τ ))+ L−1

0 (HN (τ )). (65)

In order to prove the existence and uniqueness of a solution, it suffices to check that there
is a constant r ′0 > r0 such that the map

W(τ ) 7→ L−1
0 (B(τ )W(τ ))+ L−1

0 (HN (τ ))

is a contraction of Xp(D+(r ′0)). This latter will be guaranteed if, for all g ∈ Xp(D+(r ′0)),
‖L−1

0 (Bg)‖p <
1
2‖g‖p. (66)

The norm of the operator

L0 : Xp+1(D+(r ′0))→ Xp(D+(r ′0))
is bounded by a constant, which is independent of r ′0 > r0 (but depends on r0). We write

g(τ )= (τ−pg1(τ ), τ
−p−1g2(τ )), (67)

where both g1 and g2 are bounded and ‖g‖p = supτ∈D+(r ′0)(|g1(τ )| + |g2(τ )|). The map
g(τ ) 7→ B(τ )g(τ ) is linear. Taking into account (61) we get

‖B(τ )g(τ )‖p+1 ≤ sup
τ∈D+(r ′0)

(|τ |−1
|B11(τ )g1(τ )| + |τ |

−2
|B12(τ )g2(τ )|,

|τ |−1
|log τ | |B21(τ )g1(τ )| + |τ |

−1
|B22(τ )g2(τ )|).

The function |τ−1/2 log τ | is bounded in D+(r0) and there is a constant Kr0 such that

‖Bg‖p+1 ≤
Kr0√

r ′0

‖g‖p. (68)

Therefore

‖L−1
0 (Bg)‖p <

‖L−1
0 ‖Kr0√

r ′0

‖g‖p,

and the condition (66) is satisfied for every r ′0 > 4
√
‖L−1

0 ‖Kr0 . Then the contraction

mapping theorem implies that there is a unique solution of (65) in Xp(D+(r ′0)).
This proves that, for every N <−4, the difference U(τ )− UN (τ ) belongs to

Xp(D+(r ′0)) for p ∈ (−N ,−N + 1), which is equivalent to U(τ )' UN (τ ) as τ →∞
in D+(r ′0). 2
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4.4. Kernel of L. In this short section we prove the statements about the kernel of the
operator L from Theorems 4.1 and 4.2.

Let ϕ ∈ Xp(D+(r)) satisfy the homogeneous equation Lϕ = 0. Let U be the
fundamental solution of the equation defined in the previous section. Note that for every
τ ∈D+(r)we have det U(τ ) 6= 0. Consider the auxiliary function c(τ )= U−1(τ )ϕ(τ ). We
immediately get

c(τ + 1) = U−1(τ + 1)ϕ(τ + 1)= (A(τ )U(τ ))−1A(τ )ϕ(τ )

= U(τ )−1ϕ(τ )= c(τ ). (69)

We conclude that c(τ )= c(τ + k) for every k ∈ N. At the same time τ + k ∈D+(r) and
U(τ )= O(τ 4). Then ϕ ∈ Xp(D+(r)) with p > 4 implies that

c(τ )= lim
k→∞

c(τ + k)= lim
k→∞

U−1(τ + k)ϕ(τ + k)= 0.

Therefore, c(τ )≡ 0, and the kernel of L : Xp(D+(r))→ Xp(D+(r)) is trivial.
This finishes the proof of the first part of Theorem 4.1.
On the other hand, if ϕ ∈ Xp(D1(r)) the chain of equalities (69) is still valid. Moreover,

U(τ )= O(τ 4) and p > 4 imply that limτ→∞ c(τ )= 0, where the limit is taken for
τ ∈D1(r). In this case the kernel of L consists of functions of the form U(τ )c(τ ), i.e.
every solution of the homogeneous equation is a linear combination of two basic solutions
with periodic coefficients.

This finishes the proof of the first part of Theorem 4.2.
Note that in this case we cannot repeat the argument to show that c is zero because for

every τ ∈D1(r) only a finite number of points τ + k also belong to D1(r). So we cannot
take the limit k→∞.

4.5. Inverting L. In this section we show that L−1 is bounded by a constant independent
of r > r ′0.

Proof of Theorem 4.1. (Second part) Similarly to §4.2 we check that

ξ = L−1f(τ )=−U(τ )
∞∑

k=0

U−1(τ + 1+ k)f(τ + k) (70)

satisfies the equation Lξ = f provided the series converges.
Let p > 4 and r > r ′0. For any f ∈ Xp, we write f= ( f1(τ )τ

−p, f2(τ )τ
−p−1), then

‖f‖p = sup
D+(r)

(| f1(τ )| + | f2(τ )|) <∞.

Similarly, we introduce the functions Ukl by

U(τ )=
(

U11(τ )τ
4 U12(τ )τ

−3

U21(τ )τ
3 U22(τ )τ

−4

)
. (71)

There is a constant Umax > 1 such that

max
1≤i, j≤2

sup
τ∈D+(r0)

{|Ui j (τ )|} =Umax,
1

Umax
≤ |det U(τ )| ≤Umax.
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Then we get an upper bound for the elements of the inverse matrix:

U−1(τ )=
1

det U(τ )

(
U22(τ )τ

−4
−U12(τ )τ

−3

−U21(τ )τ
3 U11(τ )τ

4

)
=

(
τ−4V11(τ ) τ−3V12(τ )

τ 3V21(τ ) τ 4V22(τ )

)
. (72)

We obtain
max

1≤i, j≤2
sup

τ∈D+(r0)

{|Vi j (τ )|} ≤U 2
max.

It follows that, for each τ ∈D+(r), we have

U−1(τ + 1)f(τ )=

(
τ−4−pV11(τ + 1) f1(τ )+ τ

−4−pV12(τ + 1) f2(τ )

τ 3−pV21(τ + 1) f1(τ )+ τ
3−pV22(τ + 1) f2(τ )

)
. (73)

Combining together these upper bounds, (59) and (70), we obtain

‖ξ‖p−1 ≤ 4K pU 3
max‖f‖p. (74)

This implies that if p > 4 and r > r ′0 then the operator L−1
: Xp(D+(r))→ Xp−1(D+(r))

defined by (70) is bounded by a constant that does not depend on r .
Theorem 4.1 is proved. 2

4.6. Elementary finite-difference equation. If convergent, each of the sums

η(τ)=−

∞∑
j=0

g(τ + j) and η(τ)=

∞∑
j=1

g(τ − j)

solves the equation
η(τ + 1)− η(τ)= g(τ ).

Unfortunately, neither of them is well defined if g is defined in D1(r) only. In order to
overcome this difficulty, we use an analytical version of the partition of unity proposed
by Lazutkin in [13]. We represent g as a sum of two functions: one has an analytic
continuation to the left of the domain and the other one to the right. The method is based
on a partition of unity on the boundary of the domain in combination with Cauchy integrals
used to construct analytic functions.

LEMMA 4.2. Let r ≥ 2, δ > 0, tan δ ≤ 1
2 , α ≥ 0 and q ≥ 4. If g : D1(r)→ C is analytic,

continuous in the closure of its domain and there is Mg > 0 such that

|g(τ )| ≤
Mg

|τ qeiατ |
for all τ ∈ D1(r), (75)

then the equation
η(τ + 1)− η(τ)= g(τ ) (76)

has an analytic solution in D1(r), continuous in the closure of the domain and

|η(τ)| ≤
2π

r(sin δ)q−3

Mg

|τ q−3eiατ |
. (77)
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Proof. The proof is a straightforward generalization of corresponding proofs from
[9, 13]. As the explicit upper bound for the solution of the elementary finite-difference
equation (76) is important for the validity of our main theorems, we provide all the
main details.

Consider the following two domains

D−2 (r) = {τ ∈ C | arg(τ − r − 1) <−δ, Im τ <−r},

D+2 (r) = {τ ∈ C | arg(τ + r) >−π + δ, Im τ <−r}.

We note that D1(r)= D−2 (r) ∩ D+2 (r). Using the Cauchy integral and a partition of unity
on the boundary ∂D1(r), we can prove the following lemma.

LEMMA 4.3. Let r > 2, δ > 0, tan δ < 1
2 . Let g̃ be analytic in D1(r) and continuous in

the closure of the domain. If there is a constant M̃g̃ such that

|g̃(τ )| ≤ M̃g̃|τ |
−2

on its domain, then there are two functions P+(g̃) and P−(g̃) analytic in D±2 (r)
respectively, continuous in the closure of their domains and

|P±(g̃) (τ )| ≤
2
r

M̃g̃,

such that

P+(g̃) (τ )+ P−(g̃) (τ )= g̃(τ ),

for all τ ∈ D1(r).

We skip the proof of this lemma as it is almost identical to [9, Proposition 9.4].
Now we consider the weight function µ(τ)= τ q−2eiατ . The function g̃ = µg obviously

satisfies Lemma 4.3, and M̃g̃ = Mg . A solution to the equation (76) is given by the formula

η(τ)=

∞∑
j=1

P−(µg) (τ − j)

µ(τ − j)
−

∞∑
j=0

P+(µg) (τ + j)

µ(τ + j)
.

Indeed, it is not difficult to see that the series converge if τ ∈ D1(r) and p > 3. Moreover,

η(τ + 1)− η(τ)=
P−(µg) (τ )

µ(τ)
+

P+(µg) (τ )

µ(τ)
=

P−(µg) (τ )+ P+(µg) (τ )

µ(τ)
= g(τ ).

This solution admits the following upper bound:

|η(τ)| ≤
2Mg

r

+∞∑
j=−∞

1

|τ + j |q−2|eiατ |
≤

2πMg

r

1

|Im τ |q−3|eiατ |
,

where the sum was bounded by an integral under the assumption q ≥ 4. In D1(r) we have
|Im τ | ≥ |τ | sin δ, which implies the desired estimate for the solution. 2
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4.7. End of the proof of Theorem 4.2. When f is defined in the domain D′1(r), the series
(70) is not well defined and cannot be used to solve the equation

Lξ = f.

Instead, we reduce this equation to the elementary finite-difference equation studied in the
previous section. Let U(τ ) be a fundamental solution of the homogeneous equation defined
by Lemma 4.1. Then det U(τ ) 6= 0 for τ ∈D′1(r) and the matrix U(τ ) is invertible. Taking
into account the definition of L, we observe that ξ(τ )= U(τ )η(τ ) solves the equation
provided that

η(τ − 1)− η(τ )= U−1(τ + 1)f(τ ). (78)

We apply Lemma 4.2 with α = 0 to solve this system. We use q = p + 4 for the first
equation of the system and q = p − 3 for the second one. The inverse matrix has the form
(72) and f ∈ Xp(D′+(r)), so we can check that we can take

Mg =U 2
max‖f‖p.

Lemma 4.2 implies that there is a solution of the system (78)

η(τ )= (τ−p−1η1(τ ), τ
−p+6η2(τ ))

such that

|η1(τ )| ≤
2πU 2

max

r(sin δ)p+1 ‖f‖p,

|η2(τ )| ≤
2πU 2

max

r(sin δ)p−6 ‖f‖p.

Then we use (71) to conclude that

‖ξ‖p−3 = ‖Uη‖p−3 ≤
8πU 3

max

r(sin δ)p−6 ‖f‖p,

which provides the desired uniform estimate for the solution of the equation. The map
L−1
: f 7→ ξ is a right inverse to L. Theorem 4.2 is proved.

5. Proof of Theorem 2.1
Take n ∈ N, n > 4. Let 0̂n be a partial sum of the formal separatrix 0̂, which includes
terms up to order O(τ−n) in its first component and up to O(τ−n−1) in the second one.
The function 0̂n(τ ) converges to zero as τ goes to infinity, and consequently there is r1 > 0
such that

Rn(τ ) := 0̂n(τ + 1)− F(0̂n(τ ))

is well defined and belongs to the space Xn+1+ε(D+(r1)) for every ε ∈ (0, 1). Note that
generically Rn does not belong to Xn+2(D+(r1)) due to the presence of logarithmic terms.

Let us look for the stable separatrix in the form

0s(τ )= 0̂n(τ )+ ξ(τ ). (79)
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Substituting this into equation (6) we obtain

ξ(τ + 1)= F(0̂n(τ )+ ξ(τ ))− F(0̂n(τ ))− Rn(τ ).

It is convenient to rewrite this equation in the form

Lξ = Q(ξ)− Rn,

where we use the notation

Q(ξ)= F(0̂n(τ )+ ξ(τ ))− F(0̂n(τ ))− F ′(0̂n(τ ))ξ ,

(Lξ) (τ )= ξ(τ + 1)− F ′(0̂n(τ ))ξ(τ ).

Theorem 4.1 implies that there is r2 > r1 such that for every r > r2 the operator L has a
uniformly bounded right inverse. In Xn(D+(r)), this equation is equivalent to the ‘integral’
equation

ξ = L−1Q(ξ)− L−1 Rn, (80)

where the inverse operator L−1 is defined by Theorem 4.1, and its norm is bounded by a
constant C1. Let

ρ = 2 ‖Rn‖n+1C1. (81)

We note that if r > r2 then Xn(D+(r2))⊂ Xn(D+(r)) and the norm of the embedding map
equals 1. Consequently,

‖L−1 Rn‖n ≤ ρ/2.

We show that there is r3 > r2 such that the right-hand side of equation (80) is a contraction
in a ball Bρ ⊂ Xn(D+(r3)), which implies the existence of a unique fixed point inside this
ball. We have to check two statements: Bρ is invariant, and the restriction of the nonlinear
operator on this ball is a contraction.

Invariant ball. Taking into account (4) and rewriting the definition of Q(ξ) in coordinates,
we obtain

Q(ξ)=

(
a(0̂n(τ )+ ξ(τ ))− a(0̂n(τ ))−∇a · ξ(τ )
b(0̂n(τ )+ ξ(τ ))− b(0̂n(τ ))−∇b · ξ(τ )

)
,

where ∇a and ∇b denote gradients of the functions a and b respectively. Consider the
auxiliary functions

ϕ1(t) = a(0̂n(τ )+ tξ(τ ))− a(0̂n(τ ))− t∇a · ξ(τ ),

ϕ2(t) = b(0̂n(τ )+ tξ(τ ))− b(0̂n(τ ))− t∇b · ξ(τ ).

Obviously Q(ξ)= (ϕ1(1), ϕ2(1))T. Moreover, ϕ1(0)= ϕ′1(0)= ϕ2(0)= ϕ′2(0)= 0.
Integrating by parts we show that

ϕ1(1)=
∫ 1

0
(1− t)ϕ′′1 (t) dt and ϕ2(1)=

∫ 1

0
(1− t)ϕ′′2 (t) dt.

Then there are constants t1, t2 ∈ [0, 1] such that

ϕ1(1)= (1− t1)ϕ
′′

1 (t1) and ϕ2(1)= (1− t2)ϕ
′′

2 (t2).
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Consequently,

‖Q(ξ)‖n+1 ≤ sup
τ∈D+(r3)

(|τ n+1ϕ′′1 (t1)| + |τ
n+2ϕ′′2 (t2)|).

The second derivatives ϕ′′1 (t1) and ϕ′′2 (t2) can be easily written in terms of second partial
derivatives of the functions a and b and the components of the vector ξ . The partial
derivatives are bounded by the C2-norm ‖F‖C2 and we get

‖Q(ξ)‖n+1 ≤ 8‖F‖C2‖ξ‖2n sup
τ∈D+(r3)

|τ |n−2
=

8‖F‖C2‖ξ‖2n

rn−2
3 sinn−2 δ

.

We conclude that, if ξ ∈ Bρ and

rn−2
3 >

16‖F‖C2 C1ρ
2

sinn−2 δ
, (82)

then
‖L−1Q(ξ)− L−1 Rn‖n < ρ,

which implies that Bρ is invariant under the action of the map ξ 7→ L−1Q(ξ)− L−1 Rn .

Contraction. Let ξ , η ∈ Bρ and check that

‖L−1Q(ξ)− L−1Q(η)‖n < 1
8 ‖ξ − η‖n . (83)

Indeed, consider the straight line that connects points ξ(τ ) and η(τ ):

θ(t)= (1− t)ξ(τ )+ tη(τ ).

Obviously, θ(0)= ξ(τ ) and θ(1)= η(τ ). Similarly to the previous part of the proof, we
define two auxiliary functions:

ψ1(t) = a(0̂n(τ )+ θ(t))− a(0̂n(τ ))−∇a(0̂n(τ )) · θ(t),

ψ2(t) = b(0̂n(τ )+ θ(t))− b(0̂n(τ ))−∇b(0̂n(τ )) · θ(t).

Obviously Q(ξ)= (ψ1(0), ψ2(0))T and Q(η)= (ψ1(1), ψ2(1))T. The mean value
theorem implies that there are constants t1, t2 ∈ [0, 1] such that

ψ1(1)− ψ1(0)= ψ ′1(t1) and ψ2(1)− ψ2(0)= ψ ′2(t2).

Then differentiating the definitions of ψ j we get

ψ1(1)− ψ1(0) = [∇a(0̂n(τ )+ θ(t1))−∇a(0̂n(τ ))] · (η(τ )− ξ(τ )),

ψ2(1)− ψ2(0) = [∇b(0̂n(τ )+ θ(t2))−∇b(0̂n(τ ))] · (η(τ )− ξ(τ )).

We note that θ(t) ∈ Bρ for all t ∈ [0, 1] and get upper bounds for the differences of the
gradients in terms of ‖F‖C2 and the length of the vector θ(t), which directly imply the
following upper bounds:

|ψ1(1)− ψ1(0)| ≤ ‖F‖C2ρ|τ |
−2n
‖ξ − η‖n,

|ψ2(1)− ψ2(0)| ≤ ‖F‖C2ρ|τ |
−2n
‖ξ − η‖n .
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Consequently, we have

‖Q(ξ)− Q(η)‖n+1 = sup
τ∈D+(r3)

(|τ n+1(ψ1(1)− ψ1(0))| + |τ n+2(ψ1(1)− ψ1(0))|)

≤ sup
τ∈D+(r3)

(2‖F‖C2ρ|τ |
2−n
‖ξ − η‖n)

≤
2ρ‖F‖C2

rn−2
3 sinn−2 δ

‖ξ − η‖n ≤
‖ξ − η‖n

8C1
,

where the last inequality is a corollary of (82). We apply the operator L−1 and immediately
get (83) as ‖L−1

‖ ≤ C1.

The contraction mapping theorem implies that equation (80) has a unique solution in
the ball Bρ provided r3 satisfies (82) and ρ is defined by (81).

To finish the proof, we have to check that the separatrix solution 0s(τ ) obtained in the
proof with different n is actually independent of the choice of n. Increasing r3, if necessary,
we can check that for any n ≥ 5 the function 0s(τ ) is sufficiently close to 0̂5(τ ) to ensure
uniqueness due to the uniqueness of the fixed point proved for n = 5.

Therefore we have proved the existence of a single analytic solution of equation (6)
such that 0s(τ )' 0̂(τ ) as τ →∞ in D+(r3). Theorem 2.1 is proved.

6. Proof of Theorem 2.2
In this section we prove the exponential asymptotic for the difference between the stable
and unstable separatrices. Let

ξ∗(τ )= 0
u
−(τ )− 0

s(τ ).

It is obvious that ξ ∈ Xn(D1(r)) for every n ∈ N. Taking into account that 0u
−(τ ) and

0s(τ ) both satisfy (6), we obtain

ξ∗(τ + 1)= F(0s(τ )+ ξ∗(τ ))− F(0s(τ )).

It is convenient to rewrite this equation in the form

Lξ∗ = Q(ξ∗),

where
Q(ξ)= F(0s(τ )+ ξ(τ ))− F(0s(τ ))− F ′(0n(τ ))ξ(τ )

and
(Lξ) (τ )= ξ(τ + 1)− F ′(0s(τ ))ξ(τ ).

Choosing n > 4 we use L−1 to denote the operator defined by Theorem 4.2. The function

ξ0 := ξ∗ − L−1 Q(ξ∗)

satisfies the homogeneous equation Lξ0 = 0. Let U be the fundamental solution of the
homogeneous equation LU= 0. By Theorem 4.2 there is a periodic vector-valued function
c0(τ ) such that

ξ0 = Uc0.
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We conclude that
ξ∗ = L−1 Q(ξ∗)+ Uc0.

This equation is very similar to (80). We can literally repeat the arguments of the previous
sections, taking into account that the domain of L−1 is slightly different from the one
used before.

It is convenient to choose ρ = 2‖ξ∗‖. Then we conclude that ξ 7→ L−1 Q(ξ)+ Uc0 is
a contraction of the ball Bρ ⊂ Xn(D1(r)) centred at the origin provided r is sufficiently
large, r > r4, where

rn−4
4 >

16‖F‖C2 C1ρ
2

sinn−4 δ
.

It follows that the sequence ξm defined by

ξm+1 = L−1 Q(ξm)+ Uc0, m ≥ 0, (84)

converges to the unique fixed point in Bρ . By uniqueness ξ∗ = limm→∞ ξm .
Now we prove by induction that the sequence ξm admits an exponentially small upper

bound. Let
ξm(τ )= (τ

4e2π iτ ξ1,m(τ ), τ
3e2π iτ ξ2,m(τ )).

We will prove that there is a constant C∗ > 0 such that

Cm :=max{|ξ1,m(τ )|, |ξ2,m(τ )|}< C∗,

for all m ≥ 0. To this purpose we construct another right inverse operator L−1.
If L−1

1 is another right inverse of L we can rewrite (84) in the form

ξm+1 = L−1
1 Q(ξm)+ Ucm + Uc0, (85)

where
Ucm = L−1 Q(ξm)− L−1

1 Q(ξm) (86)

is a solution of the homogeneous equation. We will construct L−1
1 using a procedure similar

to the one of §4.7. Unlike the case of L−1 we let α = 4π − ε with a fixed small ε > 0. Let
us check that Q(ξm) is in the domain of L−1

1 and get an upper bound.
Let us get an upper bound for Q(ξ). Taking into account that the map F has the form

(4), we get

Q(ξ)=

(
a(0s

+ ξ)− a(0s)−∇a(0s) · ξ

b(0s
+ ξ)− b(0s)−∇b(0s) · ξ

)
.

Both components of Q(ξm) are bounded from above by

2‖F‖C2C2
m |τ |

8
|e−4π iτ

|.

Then taking into account (72) we conclude that the components of

gm(τ )= U−1(τ + 1)Q(ξm(τ ))

are bounded from above by

4U 2
max‖F‖C2C2

m |τ |
4
|e−4π iτ

| and 4U 2
max‖F‖C2C2

m |τ |
12
|e−4π iτ

|,

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 Jun 2009 IP address: 137.205.202.8

1846 V. Gelfreich and V. Naudot

respectively. We use Lemma 4.2 with α = 4π − ε and q = 7 or q = 8 to get solutions of
the equations:

η1,m(τ + 1)− η1(τ )= g1,m(τ ) and η2,m(τ + 1)− η2(τ )= g2,m(τ ).

Let
Mgm = 4U 2

max‖F‖C2C2
m sup
D1(r)
|τ 20e−iετ

|,

then

|η1,m(τ )| ≤
2πMgm

r(sin δ)4
|τ−4e−iατ

| and |η2,m(τ )| ≤
2πMgm

r(sin δ)5
|τ−3e−iατ

|.

Finally we take into account equation (71) and obtain that the components of the operator
L−1

1 (gm)= U(τ )ηm(τ ) are both bounded by

4πUmax Mgm

r(sin δ)5
|e−iατ

|.

Let

βr =
16πU 3

max‖F‖C2 supD1(r) |τ
20e−iετ

|

r(sin δ)5
.

In this way we have established that the components of L−1
1 Q(ξm) are bounded by

βr C2
m |e
−(4π−ε)iτ

|.

Now we estimate cm . Let 1−1
α,q denote the operator defined by Lemma 4.2. Then (86)

implies that
cm =1

−1
0,ngm −1

−1
α,qgm .

We have already derived the upper bound for the second term. In order to estimate the first
one let

M̃gm = 4U 2
max‖F‖C2C2

m sup
D1(r)
|τ n+12e−4π iτ

|,

then

|η̃1,m(τ )| ≤
2πMgm

r(sin δ)n−3 |τ
−n+3
| and |η̃2,m(τ )| ≤

2πMgm

r(sin δ)n−3 |τ
−n+3
|.

Let

αr =
8πU 2

max‖F‖C2 supD1(r) |τ
n+12e−4π iτ

|

rn−2(sin δ)n−3

+
8πU 2

max‖F‖C2 supD1(r) |τ
20e−iετ

|

r4(sin δ)5
e−(4π−ε)r .

On the line Im τ = r the components of the function cm admit the following bound:

|cm(τ )| ≤ αr C2
m, Im τ = r

and limr→+∞ αr = 0. The function cm is periodic with period 1 and converges to 0 as
Im τ →−∞, consequently

|cm(τ )| ≤ αr C2
me2π(r−Im τ), Im τ ≤ r.
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Using these estimates and (85) we conclude that

Cm+1 ≤ C1 + (2Umaxαr e2πr
+ βr e−(2π−ε)r )C2

m .

This implies that Cm are uniformly bounded by C∗ = 2C1 provided that

C1(2Umaxαr e2πr
+ βr e−(2π−ε)r ) < 1

4 .

Taking into account the definitions of αr and βr , it is easy to see that there is r5 > 0 such
that this condition is fulfilled for all r > r5.

This implies an exponential upper bound on ξ∗. In order to finish the proof of the
theorem, let

Uc∗ = ξ∗ − L−1
1 Q(ξ∗).

This function satisfies the homogeneous equation LU= 0 and Theorem 4.2 implies that c∗
is a decreasing periodic function. Denoting its first Fourier coefficient by 2− and taking
into account that U� Û we obtain the first asymptotic expansion of the theorem.

The proof of the second asymptotic expansion follows the same arguments applied to
functions in D+1 (r).
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