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Summary 

 

Purpose: Schizophrenia is a common psychiatric disease of impaired perception or 

expression of reality. However the etiology of this disease is still not clear after it 

has been identified for over 100 years, and the current standard schizophrenia 

diagnostic procedures are based on subjective observations on symptoms. We 

aimed to discover the relationship between schizophrenia and the objective and 

quantitative criteria from neuroinformatics data and neuroimaging data, and 

construct schizophrenia classification models based on this unique combination of 

data. This novel approach of combining neuroinformatics and neuroimaging for 

schizophrenia modeling, to our best knowledge, had never been used before by 

others. 

 

Study Subjects and Methods: With the support from the National Healthcare 

Group Research Grant (NHG-SIG/05004) and Singapore Bioimaging Consortium 

Research Grant (SBIC RP C-009/2006), our collaborating hospitals, Institute of 

Mental Health, Singapore and National Neuroscience Institute, Singapore, 

recruited 156 study subjects (92 schizophrenia patients, 64 healthy controls). 

Various types of neuroinformatics data (including demographic data, clinical 

information, clinical scores, and neurocognitive test results) and neuroimaging data 

(Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI)) were 

collected. 
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A subset of study subjects consisting of 84 cases (59 patients and 25 controls) was 

used as training dataset for modeling. Significant features were selected from over 

300 data items. Bayesian Network learning technologies were applied to construct 

various Bayesian Network models for the classification of schizophrenia patients 

and normal controls using the selected features. The 10-fold cross-validation 

method was used for internal model validation. Limited external validation was 

also performed using the test dataset. 

 

Results: The following eight factors were chosen by the feature selection process: 

1) Family history of psychiatric diseases, 2) Raven's Progressive Matrices (RPM) 

test result (RPM raw score), 3) Wechsler Adult Intelligence Scale (WAIS) test 

result (Digit Span backward score), 4) Wisconsin Card Sorting Test (WCST) result 

(Perseverative Responses raw scores), 5-8) Mean Fractional Anisotropy (FA) 

values in four brain structures from neuroimaging results: cingulate gyrus, left 

subcallosal gyrus, left thalamus: lateral dorsal nucleus, and right thalamus: anterior 

nucleus.  

 

The classification accuracies of models built on clinical information (family 

history) plus various combinations of neurocognitive tests (but no neuroimaging 

features) ranged from 75% to 85.7%. On the other hand, the accuracy of the model 

on neuroimaging features alone was 77.4%, and the accuracy of model on clinical 

information and neuroimaging features (but no neurocognitive test) was 84.5%. 

Models built on clinical information and neuroimaging features plus various 

combinations of neurocognitive test further increased accuracy to 85.7%-89.3%.  
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The most comprehensive model consisted of all eight significant factors. The 

accuracy of this model, 89.3%, was the highest among all models. 

 

Contributions: By applying the first ever Talairach brain atlas based FA image 

quantification method developed at Biomedical Imaging Lab, Agency for Science, 

Technology and Research, Singapore, we placed a large amount of Region of 

Interests (144 ROIs for 48 brain structures) on brain images, and quantified their 

image features (mean and standard deviation of FA values) automatically, which 

was usually difficult for manual methods. This method made studies involving 

large amount of patients/controls more consistent and feasible than the manual 

processing. The quantified image features have been used in further model 

constructions and decision support. 

 

We found that schizophrenia was highly related to a person’s family history of 

psychiatric disease, deficit in eductive and reproductive functions, deficit in verbal 

working memory, undue perseverative responses (which is caused by frontal lobe 

deficit), reduced neural connectivity in the cingulate gyrus (which is associated 

with attention function), the subcallosal gyrus (which is associated with the left 

and right prefrontal interhemispheric communication), and the thalamus lateral 

dorsal nucleus and anterior nucleus (which are associated with somatosensory and 

visuo-spatial function and modulation of alertness). 

 

We demonstrated the first ever schizophrenia classification models based on 

objective and quantitative criteria including neurocognitive tests and neuroimaging. 

These models quantified the relationships between schizophrenia and the relative 
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factors, which helped us to achieve a better understanding and management of the 

disease. 

 

Based on our schizophrenia classification models, we made two Decision Support 

Flow Charts to choose suitable tests by using different strategies: the highest 

accuracy gain, and the highest cost effectiveness. These flow charts could help 

clinicians to choose the best further tests in order to achieve a higher diagnostic 

accuracy with or without cost consideration. 

 

We also developed decision support system software for schizophrenia diagnosis. 

This software could classify a person as either a schizophrenia patient or healthy 

(together with probability distribution), using the given clinical information, and 

the neurocognitive and neuroimaging test results. It could also provide suggestions 

on what further tests should be done in order to improve the diagnosis accuracy.  

 

The methodology (modeling using neuroinformatics and neuroimaging) we 

developed in this study has the potential to be applied to other diseases with 

informatics and imaging data. 

 

Conclusions: Schizophrenia classification models can be constructed using 

objective and quantitative criteria from neuroinformatics and neuroimaging data. 

The classification accuracy of the most comprehensive model consisting of all 

eight significant features is 89.3%. These models reveal the quantitative 

relationship between schizophrenia and various intermediate phenotypes (as 

assessed by neurocognitive tests) and brain abnormalities (as assessed by 
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neuroimaging). A decision support system based on these models can provide 

additional evidence to clinicians and augment the current schizophrenia diagnostic 

procedures, which may help to improve the diagnosis accuracy. 

 

The approach described in this thesis for the schizophrenia modeling and decision 

support can also be applied to other mental sickness such as schizoaffective 

disorder, bipolar disorder or unipolar depression, where neurocognitive tests and 

neuroimaging test are used. 

 

Despite our data uniqueness, our models and decision support system are still 

tentative and limited due to the relatively small sample size and types of data. Even 

for the most comprehensive model including all eight features, there is a noticeable 

false positive rate (normal control classified as patient) of 20%.  Further 

refinements need to be considered by recruiting more study subjects, using more 

extensive clinical and biological information (such as genetic data). 

 

 

 

Keywords: neuroimaging, neuroinformatics, neurocognitive test, schizophrenia, 

decision support, Bayesian Network, classification model, MRI, DTI 
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Chapter 1  

Introduction 

 

In this chapter, we will introduce some background knowledge of schizophrenia 

disease and the difficulties in its diagnosis. We will also propose our approach 

towards a better understanding of schizophrenia, and an alternative way to the 

current diagnostic procedures by using objective and quantitative criteria. 

 

1.1 Schizophrenia 

 

Schizophrenia is a common psychiatric disease of impaired perception or 

expression of reality, commonly demonstrated through disorganized speech and 

thinking, auditory hallucinations, delusions, or paranoid. It affects about one 

percent of the world population, regardless of societies and geographical areas. It 

usually starts in late adolescence and young adulthood, and can last for the whole 

life (Sadock BJ, 2003). Schizophrenia patients have severe suffering; 30% of them 

have attempted suicide (Radomsky, Haas, Mann, & Sweeney, 1999), and about 

10% of them die by suicide (Caldwell & Gottesman, 1990). 

 

Schizophrenia affects patients’ normal mental functions and behaviors.  Most 

likely, patients could not continue their work or study.  
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Schizophrenia becomes an enormous economic burden to the patients’ family and 

the society. It is ranked the ninth in the global burden of disease (C. Murray & 

Lozpe, 1996). For example, the total expenses including inpatient, outpatient, 

primary care, pharmaceutical, and long-term care, were estimated at US$62.7 

billion in year 2002 in the United State of America (Wu, et al., 2005); and the total 

societal cost of schizophrenia was estimated at ₤6.7 billion in 2004/05 in the 

United Kingdom of Great Britain and Northern Ireland (Mangalore & Knapp, 

2007). 

 

History 

 

The study of schizophrenia can be traced back to 19th century. An Austrian-French 

physician, Benedict Augustin Morel (1809-1873) used demence precoce for 

deteriorated patient with illness beginning in adolescence. Emil Kraepelin (1856-

1926), a German psychiatrist, translated it into dementia praecox, which 

distinguishes cognitive process (dementia) and early onset (praecox). Patients 

having dementia praecox were classified as having long-term deterioration in 

addition to hallucinations and delusions. 

 

Paul Eugen Bleuler (1857-1939), a Swiss psychiatrist, started to use schizophrenia 

to express the schisms among thoughts, emotions and behaviors of the patients. 

Since schizophrenia comes from two roots, schizo (meaning split) phrenia 

(meaning mind), it is often confused with split personality (dissociative identity 

disorder) by laymen (Sadock BJ, 2003). 
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Symptoms 

 

Patients with schizophrenia can show positive and/or negative symptoms. Positive 

symptoms include hallucinations (including auditory and visual), delusions (such 

as grandiose: e.g., feeling himself/herself as a great movie star, and delusion of 

being controlled, or passivity: feeling himself/herself being controlled by an 

external party), bizarre behavior (e.g., wearing odd or inappropriate makeup), and 

positive formal thought disorder (such as derailment: ideas slipping off the track 

onto another which is obliquely related or unrelated; tangentiality: replying to 

questions in an oblique, tangential or irrelevant manner).  

 

Negative symptoms include affective flattening (reduction in the range and 

intensity of emotional expression), alogia (difficulty or inability to speak), 

avolition-apathy (reduction, difficulty, or inability to initiate and persist in goal-

directed behavior: e.g. no longer interested in going out and meeting with friends), 

and inattentiveness (difficulty concentrating or focusing). Table 1.1 lists the 

symptoms of schizophrenia patients and divides them into positive and negative 

groups.  

 



 4

Table 1.1 Positive and negative symptoms of schizophrenia patients 

Positive Symptoms Negative Symptoms 

Hallucination Affective flattening 

        Auditory         Unchanging facial expression 

        Voice commenting         Decreased spontaneous movements 

        Voice conversing         Paucity of expressive gesture 

        Somatic-tactile         Poor eye contact 

        Olfactory         Affective nonresponsivity 

        Visual         Inappropriate affect 

Delusion         Lack of vocal inflections 

        Persecutory Alogia 

        Jealousy         Poverty of speech 

        Guilt, sin         Poverty of content of speech 

        Grandiose         Blocking 

        Religious         Increased response latency 

        Somatic Avolition-apathy 

        Delusion of reference         Grooming and hygiene 

        Delusion of being controlled         Impersistence at work or school 

        Delusion of mind reading         Physical anergia 

        Thought broadcasting Anhedonia-asociality 

        Thought insertion         Recreational interests, activity 

        Though withdrawal         Sexual interest, activity 

Bizarre behavior         Intimacy, closeness 

        Clothing, appearance         Relationship with friends, peers 

        Social, sexual behavior Attention 

        Aggressive/agitated behavior         Social inattentiveness 

        Repetitive/stereotyped behavior         Inattentiveness during testing 

Positive formal thought disorder  

        Derailment  

        Tangentiality  

        Incoherence  

        Illogicality  

        Circumstantiality  
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Positive Symptoms Negative Symptoms 

        Pressure of speech  

        Distractible speech  

        Clanging  

 

In this section, we briefly introduced a very common (affects 1% of population) 

and economically costly psychological disease, schizophrenia, its history, and its 

major symptoms, which can be divided into positive and negative groups. 

However, being such an important disease with long history (more than 100 years), 

its diagnosis problem is not yet solved satisfactorily, as we can see from the next 

section. 

 

1.2 Diagnosis of Schizophrenia 

 

Schizophrenia diagnosis is based on the patient’s self-reported experiences, and 

family members’, friends’, and clinicians’ observed behavior. There is no 

laboratory test for schizophrenia yet.  

 

In 1994, American Psychiatric Association published the Diagnostic and Statistical 

Manual of Mental Disorder, 4th Edition (DSM-IV), which recommended the 

following diagnostic criteria for schizophrenia: 

• Characteristic symptoms. Two or more of the following, each present for a 

significant portion of time during a 1-month period (or less if successfully 

treated) 
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o Delusions (e.g., delusion of grandeur: believing he/she is someone 

very famous or important, such as God) 

o Hallucinations (e.g., visual: seeing something nobody else can see; 

auditory: hearing things nobody else can hear) 

o Disorganized speech (e.g., frequent derailment, incoherence) 

o Grossly disorganized (e.g., shouting or cursing in public) or 

catatonic behavior (e.g., rapid alteration between extreme 

excitement and stupor) 

o Negative symptoms (e.g., affective flattening, alogia) 

• Social/occupational dysfunction 

• Duration. Continuous signs of the disturbance persist for at least six months. 

• Schizoaffective and mood disorder exclusion 

• Substance/general medical condition exclusion (disturbance not due to the 

direct physiologic effects of a substance or general medical condition) 

• Relationship to pervasive developmental disorder 

 

International Statistical Classification of Diseases and Related Health Problems, 

10th Revision (ICD-10) (World Health Organization 2006) presents another 

guideline for diagnosis of schizophrenia.  According to ICD-10, the most 

important psychopathological phenomena include: 1) thought echo, thought 

insertion or withdrawal, 2) thought broadcasting, 3) delusional perception and 

delusions of control, 3) influence or passivity, 4) hallucinatory voices commenting 

or discussing the patient in the third person, 5) thought disorders, and 6) negative 

symptoms. The duration of symptoms presenting clearly should be at least 1 month.  

 



 7

Schizophrenia should not be diagnosed in extensive depressive or manic symptoms 

unless it is clear that schizophrenic symptoms antedate the affective disturbance. It 

shall not be diagnosed in the presence of overt brain disease or during states of 

drug intoxication or withdrawal. 

 

Schizophrenia can have different subtypes. Subtypes of schizophrenia can be 

identified by the most predominant and significant symptoms for each patient at 

the evaluation time. For example, according to DSM-IV, there are five subtypes: 

• Catatonic type: when prominent catatonic symptoms are present. 

• Disorganized type: when disorganized speech and behavior and flat or 

inappropriate affect are present. 

• Paranoid type: when preoccupation with delusion or frequent hallucinations 

are prominent. 

• Undifferentiated type: a remaining category describing prominent active-

phase symptoms that are not catatonic, disorganized or paranoid types. 

• Residual type: continuing evidence of disturbance but not meeting active-

phase symptoms criteria. 

 

Subtypes of schizophrenia are not mutually exclusive. Sometimes, patients may 

develop more than one subtypes of schizophrenia. For example, a patient may be 

in both catatonic and paranoid subtypes, if neither subtype trumps another 

significantly. 

 

Patients’ predominant symptoms may change at different stage of the disease. 

Hence, patients’ subtype may also change over time. 
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1.3 Treatment and Prognosis of Schizophrenia 

 

In this section, we will introduce the current treatment options of schizophrenia, 

and their prognosis. 

 

Treatment 

 

Treatment of schizophrenia patients needs to be comprehensive since this disorder 

affects many aspects of the patients, including thinking, feeling and behavior.  

Treatment plans should be customized to suit the individual patient’s clinical status, 

and stages (acute stage - a period of intense psychotic symptoms; stabilization 

stage - a period of suffering from psychotic symptoms but less severe than in the 

acute stage; stable stage - severe symptoms are controlled by medication). And 

goals will need to evolve over time. Treatment should be continuous since 

schizophrenia usually affects the patient’s whole life time (Herz MI, 2002). 

 

Currently the following treatment methods are used (Sadock BJ, 2003): 

• Hospitalization 

• Biological therapy, including dopamine receptor antagonist, serotonin-

dopamine antagonist (Resperidone, Clozapine, Olanzapine, Sertindole, 

Quetiapine, Ziprasidone), other drugs (Lithium, Anticonvulsants, 

Benzodiazepines), and other biological therapies (Electroconvulsive 

therapy (ECT)) 
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• Psychosocial therapy (social skill training, family oriented therapy, case 

management, assertive community treatment (ACT), group therapy, 

cognitive behavioral therapy, individual psychotherapy) 

• Vocational therapy 

 

Prognosis 

 

(C. M. Harding, Brooks, Ashikaga, Strauss, & Breier, 1987) reported one-half to 

two-third of schizophrenia patients had achieved considerable improvement or 

recovery in a long term retrospective follow-up study of 118 patients. However, 

another study on 118 (coincidently) schizophrenia or schizoaffective (a mental 

disorder that has symptoms of schizophrenia and affective disorder - either major 

depression or bipolar disorder) patients by (Robinson, Woerner, McMeniman, 

Mendelowitz, & Bilder, 2004) reported a much lower recovery rate of 13.7% when 

stricter criteria of full recovery were used, i.e. sustained improvement in both 

symptoms and social and vocational functioning. 

 

(Lieberman, et al., 1996) and (Davidson & McGlashan, 1997) found that being 

female, being older at the first episode, having acute symptoms, having 

predominantly positive symptoms, and having good premorbid functioning are 

correlated to better prognosis. 

 

Although currently, there are many different treatment plans (hospitalization, 

biological, psychological and vocational), their outcomes are not effective enough. 
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Merely 13.7% patients have sustained improvement in symptoms and functions. 

That is because the direct cause of schizophrenia is still unknown. 

 

1.4 Motivations and Objectives 

 

The definite etiology of schizophrenia is still not clear though the disorder has 

been identified over 100 years. Studies suggest that genetics, early environment, 

neurobiology and psychological and social processes are important contributory 

factors.  

 

Many epidemiological studies have established a set of risk factors of 

schizophrenia. (R. Murray, Jones, Susser, Os, & Cannon, 2003) summarized 18 

factors and their odds ratios (odds ratio: ratio of a factor occurring in schizophrenia 

patients to non-schizophrenia people). All these factors are grouped into the 

following 4 categories: 

 

• Place/time of birth 

1. Winter 

2. Urban 

• Infection 

3. Influenza 

4. Respiratory 

5. Rubella 

6. Poliovirus 

7. Central Nervous System (CNS) 
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• Prenatal 

8. Famine 

9. Bereavement 

10. Flood 

11. Unwantedness 

12. Maternal Depression 

• Obstetric 

13. Rh (rhesus) factor incompatibility 

14. Hypoxia 

15. Central Nervous System (CNS) damage 

16. Low birth weight 

17. Pre-eclampsia 

18. Family history 

 

Among them, family history has the greatest odds ratio of close to 10, followed by 

Central Nervous System(CNS) damage, prenatal bereavement, and rubella 

infection with odds ratios ranging from 5 to 7. All the rest factors have odd ratios 

from 1 to 4. 

 

Modern neuroscientific studies including molecular genetics, molecular 

neuropathology, neurophysiology, various brain imaging, and 

psychopharmacology have suggested that we are now approaching the molecular 

basis of the disorder. Schizophrenia can be identified as a neurodevelopmental and 

progressive disease, which is associated with multiple biochemical abnormalities 
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involving dopaminergic, serotonin, glutamate, and γ-aminobutyric acidergic 

system (Miyamoto, et al., 2003). 

 

(Andreasen, 2000) lists the hypotheses about the etiology of schizophrenia made 

by researchers as the following: 

• “Hypothesis 1. The etiologies are multiple. 

• Hypothesis 2. The pathophysiology is an abnormality in the regulation and 

expression of neurodevelopment. 

• Hypothesis 3. The pathology is a disease of neuroconnectivity. 

• Hypothesis 4. The phenotype is defined by a mental metaprocess rather 

than by clinical symptoms.” 

 

1.4.1 Problems with Existing Diagnostic Procedures 

 

From the above introduction, we notice that the current standard procedures for 

diagnosing schizophrenia (DSM-IV and ICD-10) have the following problems: 

  

Symptom-based: DSM-IV and ICD-10 diagnostic criteria are based on 

heterogeneous symptoms. Most symptoms are from patient’s self reporting, family 

member’s, colleague’s and clinician’s observations, which are subjective (A 

sample page for interviewing question regarding to the delusion symptoms from 

the Structured Clinical Interview for DSM Disorders (SCID) can be found in the 

web link from (SCID-I, 2007)). One common criticism of the diagnosis of 

schizophrenia is the lacking of scientific validity or reliability (Bentall, 1992; 
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Boyle, 2002). (Tsuang, Stone, & Faraone, 2000) argued that psychotic symptoms 

were not a good basis for schizophrenia diagnosis.  

 

Not quantifiable: DSM-IV and ICD-10 diagnostic criteria do not have 

quantification components. For example the severity (degree) of delusion or 

hallucination is difficult to quantify. 

 

Low/moderate diagnosis agreement: Studies show that the reliability of 

schizophrenia diagnosis is typically relatively low. (McGorry, et al., 1995) 

reported that agreement between any two psychiatrists was 66% to 76% when 

diagnosing schizophrenia. This converts to misdiagnosis rate of 23%-34%, 

assuming one psychiatrist is always correct. This misdiagnosis may have harmful 

clinical effect on patients. 

 

A moderate agreement between two psychiatrists is observed by a more recent 

study (Cheniaux, Landeira-Fernandez, & Versiani, 2009). 100 patients are 

diagnosed by two psychiatrists using DSM-IV and ICD-10 procedures separately. 

According to DSM-IV, 39 patients received schizophrenia diagnosis; among them 

only 13 patients (or 33% of 39 patients) received consensus from both psychiatrists. 

The inter-rater agreement measured by Cohen’s kappa statistic (0.59) shows a 

moderate agreement. Similarly, among 68 schizophrenia patients diagnosed 

according to ICD-10, only 24 patients (or 35% of 68 patients) received consensus 

from both psychiatrists. Cohen’s kappa statistic (0.56) also shows a moderate 

agreement. 
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On the other hand, the congruence between DSM-IV and ICD-10, measured by 

Cohen’s kappa statistic (0.61), is just slightly better. The number of schizophrenia 

diagnosis by DSM-IV criteria (39 patients, or 39% of total cases) is much lower 

than that by ICD-10 criteria (68 patients, or 68% of total cases) (Cheniaux, et al., 

2009). Among 39 patients detected by DSM-IV, 38 are also detected by ICD-10. In 

contrast, there are 30 patients (or 44% of 68 patients) receiving ICD-10 diagnosis, 

but not DSM-IV. 

 

The lower rate of diagnosis of schizophrenia according to DSM-IV (or DSM-III-R) 

than ICD-10 has also been reported in two other studies by (Hiller, Dichtl, Hecht, 

Hundt, & von Zerssen, 1994) and (Wciorka, et al., 1998).  The reason for that may 

lie in the more strict criteria in DSM-IV than in ICD-10. Six months of symptom 

duration is required by DSM-IV, whereas only one month is required by ICD-10. 

 

Neuroimaging is not included: The pathology of schizophrenia is believed to be a 

disease of neuroconnectivity. Although the modern neuroimaging techniques have 

been developed to quantify the brain grey and white matter abnormalities, they are 

still not routinely applied in diagnosis of schizophrenia. 

 

As we can see that, since the current two standard procedures of schizophrenia 

diagnosis (DSM-IV and ICD-10) are generally based on objective criteria, such as 

symptoms from family members’ observations, the diagnostic reliability becomes 

questionable.  
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In fact, personal criteria are usually applied in the diagnosis of schizophrenia in 

addition to the standard DSM-IV/ICD-10 procedures. As (Edlund, 1986) and 

(Peralta & Cuesta, 2000) have pointed out, diagnosis made by psychiatrists were 

actually based on the their theoretical background, clinical experience, and 

preference for diagnostic criteria.  

 

For example, the initial diagnosis may be enforced or altered by medical records 

(including progress reports, physician orders, hospital admission and discharge 

summaries), following-up interviews, and/or by using some clinical scoring 

systems, such as the Positive And Negative Syndrome Scale (PANSS). This 

approach is also suggested by (Ramirez Basco, et al., 2000). 

 

1.4.2 Hypothesis 

 

Accuracy of a diagnosis is defined as the ratio of total number of correctly 

diagnosed cases (patient and non-patient) to the total number of cases. 

 

Nr
CorAcc =         (1.1) 

 

where Cor is total number of correctly diagnosed cases, Nr is the total number of 

cases. 

 

We hypothesized that the accuracy of schizophrenia diagnosis can be improved by 

using objective and quantitative criteria from a wider spectrum of modalities 

including neuroinformatics and neuroimaging.  
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As we can see that schizophrenia is a complicated disease and its economic burden 

to the patients and society is enormous, we attempt to explore the disease from 

both neuroimaging and neuroinformatics directions in order to achieve a better 

understanding of the quantitative relationships between schizophrenia and 

intermediate phenotypes (as assessed by neurocognitive tests) and brain 

abnormalities (as assessed by neuroimaging). We will also try to develop a 

decision supporting system in order to provide classification results (derived from 

a person's neuroinformatics and neuroimaging data) as additional evidence to the 

current standard schizophrenia diagnostic procedures. Even though currently there 

is no efficient treatment, more accurate diagnosis would be useful in identification 

of patients and healthy persons, and might be also helpful in future potential drug 

development that targets at specific brain structures defects revealed by our 

classification models.   

 

1.4.3 Assumptions 

 

There are a few assumptions underlying this research project. We discuss them 

briefly here. 

 

1) There are enough subjects, including schizophrenia patients and healthy controls. 

The study subjects’ demographic data should always be collected. Neurocognitive 

tests and neuroimaging should be done on the study subjects and the data should be 

available.  
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We estimate that our classification models will have about 5 to 20 (the typical 

range of clinical prediction models (Steyerberg, 2009)) factors. At the 

recommended minimum subject to factor ratio of 10 to 1 (Bartlett, et al., 2001), the 

number of subjects required will be at least 50 to 200. 

 

2) The ground truth (whether a subject is a schizophrenia patient or a healthy 

control) in the study dataset should be already diagnosed by domain experts 

(psychiatrists from Institute of Mental Health, Singapore) and is available to us. 

The ground truth diagnosis is achieved by not only DSM-IV criteria, but also on all 

medical records reviews (including progress reports, physician orders, hospital 

admission and discharge summaries), following-up interviews and some clinical 

scoring systems such as the Positive and negative Syndrome Scale (PANSS). 

 

1.4.4 Major Works 

 

Our major works consist of three parts:  

 

1) To apply an automatic Region of Interests (ROI) selection method based on 

a brain atlas for neuroimaging quantification and analysis in schizophrenia 

study. 

 

Patients will be scanned by using structural MRI and DTI imaging. When 

analyzing these medical images by Regions of Interests (ROI) methods, the 

placement of ROIs is usually done manually. For this study, we will apply a new 

method developed at Biomedical Imaging Lab, Agency of Science, Technology 
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and Research, Singapore using the Fast Talairach Transformation (FTT) method 

for electronic Talairach brain atlas registration to select ROIs and quantify the 

neuroimaging features automatically. 

 

2) To discover the relationships between schizophrenia and brain 

abnormalities and intermediate phenotypes using neuroimaging (Diffusion 

Tensor Imaging (DTI)) and neuroinformatics data.  

 

Schizophrenia is a complicated disease. Since schizophrenia was identified over 

100 years ago, many efforts have been put in order to understand its etiology. It is 

hypothesized that schizophrenia is related to pathological neuroconnectivity 

through neuronal circuits (Andreasen, 2000). After the pioneer work of using DTI 

to study schizophrenia by (Buchsbaum, et al., 1998), researchers have found that 

various brain structures are associated with schizophrenia pathology. DTI has 

shown promise as a method to examine the brain white matter abnormalities.  

 

 

Figure 1.1 Conceptual diagram of schizophrenia modeling and decision support system 
 

We will combine all factors from neuroinformatics data and neuroimaging data to 

build up schizophrenia models (Figure 1.1), which will help people to understand 
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this disease in a wider perspective. Multiple models of schizophrenia will be 

generated according to different combinations of data. 

 

(3) To develop a decision support system based on the image analysis results 

and the neuroinformatics data. 

 

Based on our schizophrenia models, we will develop a decision support system 

(Figure 1.1). It will choose the appropriate model automatically according to the 

availability of input information of new cases, and classify the cases as either 

patients or normal controls. It will assist clinicians by providing additional 

objective evidence in the schizophrenia diagnosis. Psychiatrists would be able to 

gain more confidence from using the objective diagnosis criteria in addition to the 

existing diagnosis process that rely on subjective criteria, provided that the 

decision support system and its underlying models have been validated in future 

large scale trials. 

 

1.4.5 Major Contributions 

 

The major contributions of this work will be: 

 

1) The first ever schizophrenia classification models based on objective and 

quantitative criteria including neurocognitive tests and neuroimaging. These 

models quantify the relationship between schizophrenia and the relative factors 

from neurocognitive results and neuroimaging features, which help us to achieve a 

better understanding of the disease. 



 20

 

2) A decision support system based on our schizophrenia models that can provide 

the classification results as more objective evidences to clinicians in addition to the 

current standard diagnostic procedures. It can also help clinicians to choose the 

suitable further tests in order to improve the diagnosis accuracy. Our solution tries 

to tackle the objective criteria problems of existing diagnosis procedures. We use 

quantitative and objective criteria, including neurocognitive tests and 

neuroimaging analysis results. We think our classification results will augment the 

current diagnostic procedures. 

 

3) Atlas-assisted analysis of DTI data. The structural MRI images of 156 study 

subjects are registered to the Talairach brain atlas. FA images are generated from 

the DTI images and co-registered with the structural MRI images. The automatic 

atlas-based ROI selection method is applied to quantify the FA image features 

within 48 brain anatomical structures. 

 

1.5 Organization of the Thesis 

 

In the rest of this thesis, we will first do a literature survey on neuroimaging 

analysis technologies and findings in schizophrenia, existing schizophrenia models 

and decision support systems in Chapter 2. 

 

In Chapter 3, we will describe the neuroinformatics data acquisition, data items 

from different categories, including demographic data, clinical data, clinical 
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scoring systems, and neurocognitive tests, data pre-processing, data feature 

distribution and analysis, and schizophrenia modeling using these data. 

 

In Chapter 4, we will introduce our novel neuroimaging analysis method for FA 

image quantification and results, and construct a schizophrenia model based on the 

image features. We will also interpret the clinical significance of the image 

features.  

 

Since we have both neuroinformatics data and neuroimaging data, in Chapter 5, we 

will use both data to create more comprehensive models of schizophrenia, and 

compare their results. Effects of individual neurocognitive test and neuroimaging 

in improving diagnosis accuracy will be also discussed here. 

 

In Chapter 6, we will employ various models constructed in the previous chapters 

to make two decision support flow charts for helping clinicians to choose the best 

further tests in different strategies. We will also develop a decision support system 

that will classify input case as either schizophrenia patient or normal control and 

provide suggestions to clinicians on what further tests should be done in different 

situations. 

 

Finally we will conclude our work and discuss about model accuracies, validations, 

limitations of our work and the possible future work directions in Chapter 7. 
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Chapter 2  

Literature Review 

 

Since our work involves neuroimaging, schizophrenia modeling, and decision 

support, we review all these aspects in the following sections. 

 

2.1 Neuroimaging Analysis in Schizophrenia Study 

 

Various neuroimaging techniques and modalities have been used in schizophrenia 

study, from the very early pneumoencephalography, echoencephalography, to 

modern computer tomography (CT), magnetic resonance imaging (MRI), until the 

most recent diffusion tensor imaging (DTI). We will review all these methods and 

the related findings in the following sections. 

 

2.1.1 Early Neuroimaging Techniques 

 

In the early studies of schizophrenia to examine the anatomy of nervous system, 

neuropathology was the only tool. The in vivo method, pneumoencephalography 

(PEG) was introduced in 1919, and in 1970s non-invasive technologies, 

echoencephalography  and computer tomography (CT), were used to study the 

brain (Lawrie SM, 2004). 
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PEG is a technology used in brain imaging. It drains cerebrospinal fluid (CSF) in 

the brain to a very low level, then fills the space with air to make brain X-ray 

images clearer. This procedure is painful and dangerous to patients. An example of 

PEG applied in a study by (Jacobi & Winkler, 1927) showed a high prevalence of 

cortical and subcortical abnormality in schizophrenia.  

 

Echoencephalography is another early technology to scan the brain by using 

ultrasound. In a study at 1973, echoencephalography was used to examine 79 

chronic schizophrenia patients and 79 normal controls; (Holden, Forno, Itil, & Hsu, 

1973) found schizophrenia patients with ventricular widening were significantly 

less likely to respond to antipsychotic medication. 

 

The first CT schizophrenia study in schizophrenia was performed by (Johnstone, 

Crow, Frith, Husband, & Kreel, 1976), which demonstrated schizophrenia patients 

had an increased lateral ventricle area compared to the normal controls.  

 

2.1.2 Morphology Study Based on Structural MRI 

 

In 1984, the first study in schizophrenia using magnetic resonance imaging (MRI) 

was carried out by (Smith, et al., 1984).  The images produced by MRI are much 

clearer than those from CT. Since MRI doesn’t require ionizing radiation, repeated 

scanning can be performed with less risk to the patients. Therefore MRI 

superseded CT in a few years time. 
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Since then, structural MRI (sMRI) has been applied to schizophrenia study for 

over 20 years. Much more knowledge about schizophrenia has been discovered, 

and over 100 studies have been conducted to compare schizophrenia patients with 

controls (Lawrie SM, 2004). The whole brain and various related brain structures 

have been studied, including: ventricles, cerebrospinal fluid (CSF), prefrontal 

cortex, temporal lobes, amygdala, hippocampus, parahippocampus, thalamus, basal 

gangalia, nucleus accumbens, and insula. Table 2.1 summarizes some findings 

using structural MRI (sMRI). 

 

Table 2.1 Summary of structural magnetic resonance imaging findings in schizophrenia  
A combined result of (Wright, et al., 2000) and (Shenton, Dickey, Frumin, & McCarley, 2001). 
From (McIntosh & Lawrie, 2004) 

Regions No. of Cases Findings 

Whole brain volume 50+ Reduced by 2-3%; Grey matter reduced by 4%; White matter no 

difference. 

Frontal lobes 50+ Reduced by 3% 

Temporal lobes 100+ Reduced by 5-6% 

Hippocampus 10+ Reduced by 4% 

Parahippocapus 10+ Reduced by 10% 

Amygdala 10+ Reduced by 4% 

Basal gangalia 20+ Globus pallidus increased by 20% 

Thalamus 10+ Significant difference (no quantitative results) 

Lateral ventricles 20+ Increased by 20% 

Third ventricle 30+ Increased by 26% 

 

From those studies, we see some hints on the neuroanatomical profiles of 

schizophrenia. But the numbers and types of cases studied are not large enough to 

be more convincing.  
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The most replicable brain morphometric phenomenon from MR imaging are 

enlarged ventricles and reduced cerebral volume, but the changes are relatively 

subtle. Although white matter may also be affected by schizophrenia, the white 

mater abnormalities are not reported since ordinary MRI images are not good at 

detecting white matter connectivity. 

 

2.1.3 White Matter Study Based on Diffusion Tensor Imaging 

 

Fortunately with the introduction of Diffusion Tensor Imaging (DTI), this situation 

has been changed. By using DTI, researchers can study neural fibers, spinal cord 

white matter and brain white matter. DTI is based on the principle that water 

diffusion is highly anisotropic in the nervous tissue. Since water molecules diffuse 

preferentially along axons rather than across them, by the diffusion tensor 

anisotropy, we can get detailed information on neural fiber direction and other 

architectural features of brain tissue.  

 

The apparent diffusion tensor describes the molecule mobility along each direction 

and correlation between these directions (Le Bihan, et al., 2001).  
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where Dxx, Dyy and Dzz are the diffusion fluxes along x, y, z directions; Dxy, Dxz,Dyx, 

Dyz , Dzx and Dzy are correlations between diffusion fluxes in orthogonal directions. 
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The tensor is symmetric, i.e., Dxy=Dyx, Dxz=Dzx and Dyz=Dzy for uncharged moiety, 

water molecular. 

 

The diffusion coefficients along three principal directions are represented by the 

eigenvalues of the tensor, λ1, λ2, and λ3. 

  

Mean diffusivity (MD) is a measurement of the overall evaluation of the diffusion, 

which is defined as the arithmetic average of the eigenvalues of the tensor.  
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where λ1, λ2, λ3 are the eigenvalues of the diffusion tensor. 

 

Another scalar index is fractional anisotropy (FA) (Pierpaoli & Basser, 1996), 

which provides a quantitative rotationally invariant assessment of diffusion 

anisotropy, and highlights the brain white matter tracts effectively (Parker, 2004). 
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(Buchsbaum, et al., 1998) reported significantly reduced diffusion anisotropy in 

prefrontal cortex, internal capsule and temporal lobe in a study of five chronic 

schizophrenia patients and six normal controls. Since then many researches have 

been done to study the white matter abnormalities in schizophrenia using DTI. 

Table 2.2 shows a summary of these studies. 
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Table 2.2 Summary of schizophrenia studies using DTI 

Study Subjects  

(Patient/Control) 

Findings 

(Buchsbaum, et al., 

1998) 

5/6 Reduced FA in frontotemporal peri-putamen 

(Lim, et al., 1999) 10/10 Reduced FA in whole brain white matter 

(Foong, et al., 2000) 20/20 Reduced FA in splenium of CC 

(Agartz, Andersson, & 

Skare, 2001) 

20/24 Reduced FA in splenium of CC 

(Steel, et al., 2001) 10/10 No significant differences in prefrontal and occipital regions 

(Foong, et al., 2002) 14/19 No significant differences  

(Kubicki, et al., 2002) 15/18 Loss of asymmetry in uncinate fasciculus 

(Hoptman, et al., 2002) 14/0 No control group; Right inferior frontal white matter FA was 

correlated with higher motor impulsiveness 

(Wang, et al., 2003) 29/20 No significant difference in middle and superior cerebellar 

peduncles 

(Z. Sun, et al., 2003) 30/19 Reduced FA in anterior cingulum 

(Ardekani, Nierenberg, 

Hoptman, Javitt, & Lim, 

2003) 

14/14 Reduced FA in bilateral CC, AC, MTG, parahippocampal 

gyri (PHG), left STG 

(Burns, et al., 2003) 30/30 Reduced FA in left arcuate fasciculus 

(Wolkin, et al., 2003) 10/0 No control group; Inferior frontal FA was correlated with 

negative symptoms 

(Minami, et al., 2003) 12/11 Reduced FA in frontal, parietal, temporal, occipital regions 

(Kubicki, et al., 2003) 17/18 Reduced FA in cingulum 

(Begre, et al., 2003) 7/7 No significant differences in hippocampus 

(Wang, et al., 2004) 21/20 Reduced FA in anterior cingulum 

(Okugawa, et al., 2004) 25/21 Reduced FA in middle cerebellar peduncles 

(Kalus, et al., 2004) 15/15 Reduced FA in bilateral posterior hippocampus, left total 

hippocampus 

(Kumra, et al., 2004) 12/9 Reduced FA in bilateral frontal WM, and right occipital WM 

on AC-PC plane 

(Park, et al., 2004) 23/32 Significant differences in anisotropic asymmetry pattern in 
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Study Subjects  

(Patient/Control) 

Findings 

left and right hemisphere 

(Hubl, et al., 2004) 26/13 Reduced FA in left and right temporoparietal section of the 

arcuate fasciculus; uncinate fasciculus, corpus callosum, 

inferior longitudinal fasciculus 

(Price, Bagary, 

Cercignani, Altmann, & 

Ron, 2005) 

20/29 No significant differences in splenium and genu of CC 

(Szeszko, et al., 2005) 10/13 Reduced FA in left internal capsule, left middle frontal 

gyrus, posterior superior temporal gyrus 

(Kumra, et al., 2005) 26/34 Reduced FA in the left anterior cingulate region in close 

proximity to caudate nucleus 

(Okugawa, Nobuhara, 

Sugimoto, & Kinoshita, 

2005) 

25/21 Reduced FA in middle cerebellar peduncle 

(Jones, et al., 2006) 14/14 Young schizophrenia patients have reduced FA in left 

superior longitudinal fasciculus than controls; old patients, 

the difference is less 

(Buchsbaum, et al., 

2006) 

64/55 Reduced FA in frontal white matter, CC, and frontal 

longitudinal fasciculus 

(Shergill, et al., 2007) 33/40 Reduced FA in superior longitudinal fasciculi, and genu of 

CC 

(Schlosser, et al., 2007) 18/18 Reduced FA in right medial temporal lobe adjacent to the 

right parahippocampal gyrus 

(Cheung, et al., 2008) 25/25 Reduced FA in left fronto-occipital fasciculus, left inferior 

longitudinal fasciculus 

(Kyriakopoulos, Vyas, 

Barker, Chitnis, & 

Frangou, 2008) 

19/20 Reduced FA in the white matter of the parietal association 

cortex bilaterally and in the left middle cerebellar penduncle 

(Hoptman, et al., 2008) 23/37 Reduced FA in left superior and middle temporal gyri, left 

ILF, left cingulate gyri, and left inferior frontal gyrus and 

right perilentiform regions. Increased FA in left lingual and 
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Study Subjects  

(Patient/Control) 

Findings 

insular gyri, and right deep frontal white matter 

(Rametti, et al., 2009) 25/24 Reduced FA in left sub-gyral WM of  temporal lobe, 

involving posterior part of the fornix 

(Rotarska-Jagiela, et al., 

2009) 

24/24 Reduced FA in the prefrontal regions, external capsule, 

pyramidal tract, occipitofrontal fasciculus, superior and 

inferior longitudinal fasciculi, and corpus callosum. 

Increased FA in arcuate fasciculus  

(Moriya, et al., 2009) 19/19 No significant difference in FA 

(Sussmann, et al., 2009) 28/38 Reduced FA in the anterior limb of the internal capsule, 

anterior thalamic radiation, uncinate fasciculus 

Abbreviations: see Appendix B 

 

It can be seen that studies using DTI have produced various findings at many 

different brain structures, but haven’t drawn consistent conclusions yet. For 

example, (Foong, et al., 2000) and (Agartz, et al., 2001) reported the reduced FA in 

CC splenium, but (Price, et al., 2005) reported no significant changes in the same 

region. The limitations may have resulted from small sample size, inhomogeneous 

sample characteristics, insufficient image quality, and image processing techniques. 

 

In this section, we reviewed various imaging technologies in schizophrenia, 

especially the most recent DTI imaging which helps to determine the neural fiber 

abnormalities. We found that DTI is a promising technology; however current 

findings are not consistent. 
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2.2 Schizophrenia Models 

 

The schizophrenia etiology and development are very complicated. Only few 

research works have attempted to build up some schizophrenia models. 

 

(Andreasen, 1999) describes a general model defining the development of 

schizophrenia. This model has an hour glass shape, which illustrates a many to 

many relationship between etiologic factors and phenomenology: multiple etiology 

(such as DNA, gene expression, virus, toxins, nutrition,birth injury and 

psychological experiences) fan in at the input level and multiple  impairments in 

fundamental and second order cognitive processes including attention, memory 

language, executive functions, emotion and symptoms (such as hallucination, 

delusions, negative symptoms, disorganized speech and behavior) fan out at the 

output level. Between the input etiology and output phenomenology, there is a 

single lathomenologic process of anatomical and functional disruption in neuronal 

connectivity and communication that unifies the sickness. However this is a 

conceptual model only. It doesn’t describe any quantitative relationships between 

etiology factors and symptoms. Hence it is not meant to be applied clinically. 

 

(Hoffman & McGlashan, 2001) establishes neural network models to explore 

functional consequences of reduced corticocortical connectivity. The models 

simulate the auditory hallucinations of speech.  
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2.3 Decision Support System in Schizophrenia 

 

In this section, we will briefly introduce some major types of decision support 

systems in schizophrenia from current literature. Typically, they include decision 

support in treatment planning and diagnosis.  

 

2.3.1 Decision Support in Treatment Planning 

 

Many works have been done on the schizophrenia decision support system, 

especially on the treatment planning evaluation.  

 

For example, (Palmer, Brunner, Ruiz-Flores, Paez-Agraz, & Revicki, 2002) set up 

a decision tree model to evaluate different schizophrenia treatment plans by using 

3 different medications (Haloperidol, Olanzapine and Risperidone) for a 5 year 

period. They discovered that Olanzapine therapy resulted in more symptom 

improvement, fewer relapses and was more cost-effective. 

 

(Hansen, Lancon, & Toumi, 2006) pointed out that pharmacoeconomic evaluations 

were important in the decision making process. Five different decision tree models 

are developed to compare any two different strategies (A and B): relapse model 

(by comparing the incremental cost and the cost effectiveness of two strategies), 

compliance model (taking into consideration of patient's compliance with the 

treatment plans) , institution model (by including another factor reflecting the fact 

that some schizophrenia patients are not able to live with their families, and require 
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institutionalization), drop-out model (by adding one more factor for patients who 

drop out of treatment) and switch model (for patients who change treatment plans 

at halfway). Different models can be used at different conditions to evaluate the 

treatment plans based on their cost effectiveness and clinical outcome.  

 

2.3.2 Decision Support in Diagnosis 

 

Some other works focus on the diagnosis. (Razzouk, Mari, Shirakawa, Wainer, & 

Sigulem, 2006) developed a decision support system for diagnosis of 

schizophrenia spectrum disorders (a group psychiatric diagnoses similar to 

schizophrenia, such as schizoaffective disorder).  The decision support system 

consists of four stages: knowledge acquisition, knowledge organization, computer 

assisted model construction (based on the parsimonious cover approach (Mitchell, 

1997), which defines possible diagnosis as all diseases that can explain a patient's 

existing symptoms), and system performance evaluation. The decision criteria of 

this system are symptom based. It aims to differentiate schizophrenia from 

schizophreniform disease (a disease which is close related to schizophrenia, but the 

required length of symptoms presence is less than 6 months as in the case of 

schizophrenia, and some of the functional impairments of schizophrenia may not 

present). The system achieved an accuracy rate at 66-82% on 38 clinical cases.  

 

(Yana, et al., 1994; Yana, et al., 1997) also proposed a classifier for the diagnosis 

of psychiatric disease including schizophrenia. From the 136 simple yes/no 

questions set by domain experts in Tokyo Medical and Dental University Hospital, 

80 questions are selected to build a Pseudo Bayesian Network classifier and a 
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Neural Network classifier. Among the 80 selected questions, the first 32 are 

subjective symptoms, and the rest are items supposed to be important for 

prediction. Table 2.3 shows the first 20 questions. 100 cases are used for the 

classifier model construction. By using the 10-fold cross-validation method, the 

correct schizophrenia diagnosis rates are measured at 73.3% and 77.3% for the 

Pseudo Bayesian Network classifier and the Neural Network classifier, 

respectively.  

 

Table 2.3 Question items (partial) 

No. Question No. Question 

1 Headache 11 Became dull (decrease in brain power) 

2 Nausea 12 Incorrect behavior 

3 Cannot see clearly 13 Personality changes 

4 Shaking 14 Irritated 

5 Difficult in speech 15 Anxiety 

6 Numbness 16 Difficult in thinking 

7 Difficult to control arms / legs 17 Difficult in sleep 

8 Convulsion 18 Diminished appetite 

9 Lost consciousness 19 Lack of sexual desire 

10 Amnesia 20 Lack of motivation 

 

In this section, we introduced two decision support systems in pharmacoeconomic 

evaluation, and two in schizophrenia diagnosis. Among the two diagnosis systems, 

one tries to differentiate schizophrenia spectrum disorders, and the other diagnoses 

schizophrenia, mood disorder (disease where the patient's mood disturbance is the 

main feature) and neurosis (disorder involving distress but no delusions and 

hallucinations). However, the two diagnosis systems were still based on subjective 
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symptoms and questions, and no lab test results (such as neuroimaging) were used 

in the decision support. 

 

2.4 Machine Learning Technology 

 

Machine learning techniques need to be applied in order to extract knowledge from 

the neuroimaging and neuroinformatics data and set up the schizophrenia model 

and decision supporting systems. Decision Trees (Raiffa, 1968), Bayesian 

Networks (also known as Belief Networks) (Pearl, 1988) (Jensen, 2001), and 

Neural Networks (Bishop, 1996) are some common modeling representation forms. 

 

Based on the Iterative Dichotomiser 3 (ID3) algorithm, (Quinlan, 1993) developed 

the C4.5 algorithm to generate a decision tree from a set of training data using the 

concept of information entropy (Shannon, 1948). The training data is a set of 

classified samples. Each sample contains multiple features and a class to which 

that sample belongs. At each node of the tree, C4.5 algorithm chooses a feature 

with the causes the highest information gain, and splits the training samples into 

subsets. It will apply the same rule recursively on each subset until each node 

contains only one class. 

 

Learning a Bayesian Network involves the parameter learning and structure 

learning. (Neapolitan, 2004) introduced some basic concepts and methods in 

constructing the Bayesian Network, including learning with missing data items 

(incomplete datasets). Parameters (probability distribution) can be estimated by 

using the likelihood function. However, there is no efficient algorithm for structure 
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learning when the networks become complex since finding optimal structure is 

NP-hard when multiple parent nodes are allowed. Hence researchers developed 

many different heuristic techniques such as Greedy hill-climbing (Chickering, 

2002) and K2 search (Cooper & Herskovitz, 1992). 

 

There are many ways of training neural networks. Most of them are based on some 

form of gradient descent, which takes the derivative of the cost function with 

respect to the network parameters and then changes those parameters in a gradient-

related direction (Haykin, 1998). 

 

In this chapter, we briefly reviewed the current status of schizophrenia modeling 

and decision support systems. In the following two chapters, we will introduce our 

work on neuroinformatics data and neuroimaging data analysis and schizophrenia 

modeling by using those data separately. 
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Chapter 3  

Neuroinformatics-Based Analysis and Modeling  

 

This chapter will cover the neuroinformatics data acquisition (what sorts of data 

are collected, and their characteristics), pre-processing (missing value processing, 

exclusion of irrelevant data, data error correction), analysis (feature selection), and 

model construction. 

 

3.1 Study Subjects 

 

Schizophrenia patients and healthy controls are recruited from Institute of Mental 

Health / Woodbridge Hospital, Singapore, the national psychiatric hospital and 

main treatment center. This project is supported by the National Healthcare Group 

Research Grant (NHG-SIG/05004) and Singapore Biomedical Imaging 

Consortium (Agency for Science, Technology and Research) Research Grant 

(SBIC RP C-009/2006). 

 

We collect 156 study subjects, including 92 schizophrenia patients and 64 normal, 

healthy controls for this study. 

 

The selection criteria for the patients are: diagnosis of schizophrenia (based on 

clinical history, medical record review, interview with the significant others when 
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necessary as well as the Structured Clinical Interview for DSM IV), age between 

21-65 years old, and English speaking. The patients with the following criteria will 

be excluded: history of significant head injury, neurological diseases such as 

epilepsy, cerebrovascular accident, impaired thyroid function, steroid use, DSM-IV 

alcohol or substance use or dependence, and contraindications to MRI. 

 

The selection criteria for the normal controls are: having no history of any 

neurological or psychiatric disorders. Controls should match patients on age, 

gender, years of education and handedness. 

 

All patients and controls are screened for co-morbid medical and psychiatric 

conditions by clinical assessment and physical and neurological examination (K 

Sim, 2005). 

 

3.2 Demographic Data 

 

Demographic data are collected for patients and controls. A brief summary of the 

characteristics of study subjects can be found in Table 3.1. Pearson Chi-Square is 

used to test the independency of two categorical factors such as sex, handedness, 

and ethnicity, while Independent Sample T Test (2-tailed) is used to compare the 

mean score of two continuous factors, such as age, years of duration (yrsedu), 

weight and height. 
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The age range of patients is from 18 to 56 years old, whereas the age range of 

healthy controls is 21 to 58 years old. The mean ages of patients and controls are 

34 and 32 years old, respectively, their difference is not statistically significant.  

 

Table 3.1  Characteristics of study subjects (N=156) 

Characteristic Schizophrenia Patients 

(N=92) (59.0%) 

Healthy Controls 

(N=64) (41.0%) 

P Value 

Age, years 34.28 (SD 9.20) 32.33 (SD 10.20) 0.214 (NS)* 

Sex (F/M) 18/74  

(19.6%/80.4%) 

26/38  

(40.6%/59.4%) 

0.004 (SIG)^ 

Handedness 

(Left/Right/Ambidextrous) 

10/81/1 

(10.9%/88.0%/1.1%) 

7/57/0 

(10.9%/89.1%/0%) 

0.705 (NS)^ 

Ethnicity 

(Chinese/Malay/Indian/Others

) 

85/5/2/0 

(92.4%/5.4%/2.2%/0%) 

55/3/5/1 

(85.9%/4.7%/7.8%/1.6

%) 

0.228 (NS)^ 

Marital Status 

(Single/Married/Widowed/Div

orced) 

78/12/0/2 

(84.8%/13.0%/0%/2.2%) 

42/21/1/0 

(65.6%/32.8%1.6%/0%

) 

0.009 (SIG)^ 

Education level, years 11.40 (SD 2.49) 13.97 (SD 2.10) < 0.001 (SIG)* 

Father’s education level, years 7.21 (SD 3.63) 8.33 (SD 3.91) 0.068 (NS)* 

Mother’s education level, 

years 

6.43 (SD 3.80) 7.88 (SD 4.16) 0.027 (SIG)* 

Weight, kg 64.30 (SD 14.10) 64.84 (SD 11.12) 0.80 (NS)* 

Height, m 1.68 (SD 0.07) 1.67 (SD 0.08) 0.60 (NS)* 

Age of first onset, years 25.37 (SD 6.92) - - 

Duration of illness, years 8.69 (SD 8.41) - - 

Note: ^ Pearson Chi-Square; * Independent Sample T Test; Abbreviations: SD, Standard 
Deviation; F, Female; M, Male; SIG, Significant (P<0.05); NS, Not Significant 
 

The percentage of sex of patients is 19.6%/80.4% (female/male). The handedness 

distribution (Left/Right/Ambidextrous) of our patients and controls are similar: 

10.9%/88.0%/1.1% for patients, and 10.9%/89.1%/0% for controls. 
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Note that the mean education level of patients (11.40 years) is significantly less 

than that of healthy controls (13.97 years) by 2.57 years. This can be considered as 

the consequence of schizophrenia – the patients’ intelligence quotient (IQ) and 

capability of education are affected by the disease. 

 

For patients, the mean age of first onset is 25.37 years (SD 6.92), and the average 

duration of illness is 8.69 years (SD 8.41). The mean weight and height of patients 

and controls have no significant difference in our study. 

 

 

Figure 3.1 Demographic data distribution (N=156) (partial) 
(Blue: Patient; Red: Control. 1: pt_ctrl (patient/control), 2: handedness 
(right/left/ambidextrous), 3: sex (male/female), 4: ethnic (Chinese/Indian/Malay/Others), 5: 
age (years), 6: marital status (single/married/divorced/widowed), 7: years of education, 8: 
height (in m), 9: weight (in kg). Descriptions for the data items, see Appendix A) 
 

Figure 3.1 illustrates the distribution of major demographic data (age, sex, ethnics, 

handedness, years of education, weight, height, and marital status) for our samples 
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subjects (64 controls and 92 patients). Ethnic distribution looks severely skewed, 

but it is not far away from that of Singapore population in recent years 

(Chinese/Malay/Indian/Others: 74.2%/13.4%/9.2%/3.2%) (Singapore, 2009). 

 

In this section, we describe the demographic data of the subjects collected. We also 

compare some of them (such as age, sex, handedness, weight, and height) between 

the patient and control group. We find that these two groups are basically matched 

in terms of major demographic characteristics. However since our study is 

conducted in Singapore, our sample contains mainly Singaporean Chinese due to 

the limitations in population distribution of the country. 

 

3.3 Other Clinical Data 

 

In addition to the demographic data, other clinical data are also collected, which 

include clinical information (such as date of admission to ward (patient only), 

medical problems, surgical problems, drug use, alcohol use, family history of 

psychiatric disease), medication information of patients, clinical scores (such as 

Positive and Negative Syndrome Scale (PANSS) (S. Kay, Opler, & Fiszbein, 

1986.), and World Health Organization Quality of Life Bref-Scale (WHOQOL-

BREF) (WHOQOL, 1998). A detailed list of all clinical data features can be found 

in Table 3.2. 
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Table 3.2 List of clinical data features 

Feature Feature 

Diagnosis: patient or control Medication 

 Antipsychotics 1 (Type/ Dose) 

Demographic CPZ Equivalents 1 

Sex Typical/ Atypical/ Depot Antipsychotic 

Age Antipsychotics 2 (Type/ Dose) 

Weight CPZ Equivalents 2 

Height Typical/ Atypical/ Depot Antipsychotic 

Handedness Antipsychotics 3 (Type/ Dose) 

Ethnicity CPZ Equivalents 3 

Father's Ethnicity Typical/ Atypical/ Depot Antipsychotic 

Mother's Ethnicity Anticholinergics (Type/ Dose) 

Paternal Grandfather's Ethnicity Antidepressants (Type/ Dose) 

Paternal Grandmother's Ethnicity Mood Stabilizers (Type/ Dose) 

Maternal Grandfather's Ethnicity Benzodiazepines (Type/ Dose) 

Maternal Grandmother's Ethnicity Other Medications 1 (Type/ Dose) 

Marital Status Other Medications 2 (Type/ Dose) 

Educational Level  

Years of Education Clinical Scores 

Educational Level of Mother 

Scale for the Assessment of Passivity Phenomena 

(SAPP) 

Educational Level of Father 1a - Time Frame 

Occupation 1- Made Emotions 

Father's Occupation 2 - Made Movements 

Mother's Occupation 3 - Made Impulses / Decisions to Act 

Living Arrangements 4 - Somatic Passivity 

Living Arrangements (specify) Total Score 

Brought By Positive and Negative Syndrome Scale (PANSS) 

Brought By (specify) PANSS Positive (1-7) 

 PANSS Negative (1-7) 

Clinical PANSS General Psycopathology Scale (1-16) 
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Feature Feature 

Date of Admission to Ward Global Assessment of Functioning Scale (GAF) 

Diagnosis Axis 1 (DSM IV) Total 

Medical Problems (past or current) Symptoms 

Medical Problems (specify) Disability 

Surgical Problems (past or current) 

Scale to Assess Unawareness of Mental Disorders 

(SUMD) 

Surgical Problems (specify) 1 - Awareness of Mental Disorder 

Alcohol Use (past or current) 2 - Awareness of Consequences of Mental Disorder 

Drug Use (past or current) 3 - Awareness of Effects of Medication 

Duration of Psychiatric Illness (years) 4 - Awareness of Hallucinatory Experiences 

Age of First Onset of Illness 5 - Awareness of Delusions 

Duration of Untreated Psychosis (in years) 6 - Awareness of Thought Disorder 

Number of Hospitalizations 7 - Awareness of Flat or Blunt Affect 

Number of Hospitalizations in Last 12 Months 8 - Awareness of Anhedonia 

Regularity of Outpatient Attendance in Last 12 

Months 9 - Awareness of Asociality 

Family History of Mental Illness WHO Quality of Life (WHO QOL-BREF) 

Family History of Mental Illness (specify) WHO QOL-BREF 1-26 

 

The Scale for the Assessment of Passivity Phenomena (SAPP) identifies passivity 

phenomena of patients on the basis of their total scores equal or greater than 4 on 

four items (Spence, et al., 1997). 

 

The Positive and Negative Syndrome Scale (PANSS) is a medical scale to measure 

severity of positive and negative symptoms for schizophrenia patients. It was 

originally published in 1987 (S. R. Kay, Fiszbein, & Opler, 1987). It is widely 

used in the study of antipsychotic therapy. It consists of 30 items, which are 

grouped into 3 sub-categories: 7 were chosen to assess positive symptoms, 7 for 
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negative symptoms, and the remaining 16 for general psychopathology scale. The 

PANSS interview usually requires about 45 to 50 minutes to administer.  

 

The Global Assessment of Functioning (GAF) is a 100-point scale used by mental 

health clinicians and physicians to subjectively evaluate the social, psychological 

and occupational functioning of a patient. It reports the clinician's judgment of the 

patient's overall level of functioning and carrying out daily activities. The scale is 

described in the DSM-IV-TR (American Psychiatric Association: Diagnostic and 

Statistical Manual of Mental Disorders DSM-IV-TR Fourth Edition (Text Revision), 

2000).  

 

The Scale to Assess Unawareness of Mental Disorder (SUMD) (Amador, et al., 

1993)  is an assessment that measures the patient’s discrete and global aspects of 

insight awareness of the his/her illness, including the awareness of 9 aspects: 

mental disorder, consequences of mental disorder, effects of medication, 

hallucinatory experiences, delusions, thought disorder, flat or blunt affect, 

anhedonia (lack of pleasure), and asociality. 

 

The World Health Organization Quality of Life Bref-Scale (WHOQOL-BREF) is 

developed as an assessment instrument for the international cross-culturally 

comparable quality of life. It consists of 26 questions, which assess the 

participant's perceptions in the following four major aspects: physical health, 

psychological health, social relationships, and environment.(WHOQOL, 1998). 
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In this section, we introduced other clinical information collected, especially 

various clinical scoring systems. Next we will come to the neurocognitive tests 

performed for this study. 

 

3.4 Neurocognitive Tests 

 

Schizophrenia is a neurodevelopmental and progressive disease. We aim to build 

up schizophrenia models to reveal the relationship of the disease with the 

underlying neaurocognitive defects that can be assessed by various neurocognitive 

tests.  

 

Patients and controls are administered some neurocognitive tests by psychometrists 

trained in standardized assessment and scoring procedures.  

 

Table 3.3 lists the neurocognitive tests performed and the scores collected. They 

include Raven's Progressive Matrices (RPM) (Lezak, 1995), Wisconsin Card 

Sorting Test (WCST) (Heaton, Chelune, Talley, Kay, & Curtiss, 1993), 

Continuous Performance Task (or Continuous Performance Test) II (CPT II) 

(Conners, 2000),  and Wechsler Adult Intelligence Scale III (WAIS-III) (D 

Wechsler, 1997). 

 

The complete set of tests (4 of them) takes about 1.5–2 hours. These tests can be 

done in separate sessions. They assess the patients/controls’ various neurocognitive 

functions (expressed as intermediate phenotypes) including: intelligence, attention, 

executive functioning, working memory, and visuo-spatial skills.  
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Table 3.3 List of neurocognitive tests and features 

Test Feature Test Feature 

Raven's Progressive Matrices (RPM) Continuous Performance Task, II (CPT-II) 

RPM Raw (Raven's raw score) Number of Omissions t score 

 Number of Commissions t score 

Wechsler Adult Intelligence Scale, III (WAIS-III) Hit Reaction Time t score 

Block design raw score  

Digit span forward score Wisconsin Card Sorting Test (WCST) 

Digit span backward score Trials administered 

Digit span total score Total correct 

Spatial span forward raw score Total errors raw scores 

Spatial span backward raw score Perseverative Responses raw scores 

Spatial span total score Perseverative Errors raw scores 

 Nonperseverative Errors raw scores 

 Categories completed raw scores 

 Trials to complete 1st category raw scores 

 

 

Figure 3.2 A sample RPM matrix 
From (Wikipedia, 2011a) 

 

Specifically RPM measures abstract reasoning and intelligence. It was originally 

developed by Dr John C. Raven in 1936 (Raven, 1936).  In each test item, a 

candidate is required to identify the missing pattern of a series (see example in 
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Figure 3.2).  It tests two important components of intelligence: eductive ability and 

reproductive ability. 

 

The Wechsler Adult Intelligence Scale (WAIS) is used to test the intelligence of 

adult and adolescent (David Wechsler, 1939). The version we used in this study, 

WAIS-III, was published in 1997, while the latest version, WAIS-IV was 

published in 2008. The main difference between WAIS-III and WAIS-IV is that 

the later includes 5 more supplementary subtests, and the General Ability Index. 

As a successor and an enhanced version of WAIS-III, WAIS-IV still needs some 

time to be widely adopted and implemented by all hospitals. None the less, the 

subtests used in our study, as described in the next paragraph, remain unchanged in 

WAIS-III and WAIS-IV. 

 

Specifically, in the Block Design subtest of the WAIS-III, the patient/control is 

required to take blocks with all white sides, all red sides, and red and white sides 

and arrange them according to a pattern. This test assesses the visuospatial and 

motor skills, which are linked to the functioning of the parietal and frontal lobes. 

Digit Span subset of the WAIS-III, assesses verbal working memory (or short term 

memory). It is the longest list of digits that a person can repeat back in correct 

order after they are announced. Backward digit span is a more difficult subtest 

which requests a person to recall digits in reverse order. Spatial Span subtest of the 

WAIS-III, on the other hand, assesses spatial working memory.  

 

Continuous Performance Task (or Test) (CPT) measures a person's sustained and 

selective attention and impulsivity or vigilance. A person is required to click a 



 47

button when he sees the pre-set target (for instance, letter “A”) appearing on the 

computer screen. He must not click the button if he sees any other letters. In CPT 

scores, Omission Errors indicates the number of times the patient failed to respond. 

Commission Errors indicates the number of times the patient responded to false 

target. Reaction time measures the amount of time between the presentation of the 

target and the client's response. 

 

Wisconsin Card Sorting Test (WCST) measures the ability to form abstract 

concepts, shift and maintain set, and utilize feedback. Without being told on how 

to match cards, the participant is required to find the rule and match the stimulus 

cards presented in front of him (see example in Figure 3.3). The rule may change 

after some trials. It generates a number of psychometric scores, including numbers, 

percentages, and percentiles of: categories achieved, trials, errors, and 

perseverative errors. It has been considered as a measure of executive function 

because of its reported sensitivity to frontal lobe dysfunction. 

 

 

Figure 3.3 A sample WCST test 
From (Wikipedia, 2011b) 

 

The time needed to perform each neurocognitive tests varies from 15 minutes to 1 

hour depending on the test setting and participant’s reaction time. In Singapore, the 
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costs for the neurocognitive tests are charged at two different rates, depending on 

whether the participants are considered as private patients or government 

subsidized patients.  However, in this research project, as the neurocognitive tests 

are performed by the research assistants of Institute of Mental Health, clinical 

charges do not apply. In addition, some tests are not performed routinely even at 

the hospital clinics. We try to estimate the costs, by using information of similar 

tests from other hospitals, and the time required to complete them. Table 3.4 

summarizes the major function tested for each neurocognitive test, as well as the 

time required to complete them and the costs at both government subsidized rate 

and private rate.  

 

Table 3.4 Neurocognitive tests  

Cost Test Function Tested Time Needed 

Subsidized Rate Private Rate 

RPM Eductive, 

reproductive 

30 min – 1 hour $130* $400* 

WAIS-III Visual spatial, 

motor, memory 

15 min – 30 min $65 $240 

CPT-II Attention, 

impulsivity 

15 min – 30 min $65^ $200^ 

WCST Executive 15 min - 20 min $65^ $200^ 

Note: *Estimated Cost; ^Estimated by dividing the total cost of CPT-II and WCST ($130 for subsidized, $400 
for private) equally. 
 

In this section, we introduced the four neurocognitive tests performed on the study 

subjects. We briefly described the functionalities, scores collected, and time and 

costs involved for each of them. In the next section, we will describe our method 

used in data pre-processing. 
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3.5 Data Preprocessing 

 

We collect many data items for each study subject, and put them into a large table 

(156 rows by 211 columns), with each row representing a subject (patient or 

control), and each column representing a data item. Unfortunately, not all data 

items are available for each subject. Some columns are missing, for example, 

PANSS scores are only for patients; hence they are not collected for all healthy 

controls. Before we start to analyze the data, irrelevant items need to be filtered out, 

and errors need to be corrected. 

 

Data Feature Extraction 

 

We study the nature of each column of the dataset, and exclude data items that are 

not useful or suitable for the later analysis in schizophrenia modeling. Since the 

purpose of this study is to build schizophrenia models using objective criteria only. 

No matter whether subjective factors are relevant or not, they are excluded at the 

step of feature extraction. Specifically, the following items are removed: (Data 

item names and their descriptions can be found in Appendix A) 

• ‘study-id’ is removed, since it serves as a key of each subject, and we 

already have CDNo (Compact Disk No) for this purpose. 

• All columns of medication information are removed, since they are relevant 

to patients, but not controls, and our aim is to compare patients with 

controls. 

• ‘Date admin’ (date of admission to hospital) is removed since only patients 

have this value but not controls. 
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• ‘live-spec’ (living arrangement, specify) is removed, because it is the 

specific detailed text information on living arrangement, and it only has 

values when ‘livingar’ (living arrangement) is 8 (other). 

• ‘brought-sp’ (brought by, specify) is removed for the similar reasons as 

‘live-spec’ (only has values when ‘brought’ is 9 (other)). 

• Similarly, ‘med-spec’ (medical problems, specify) is removed. It only has 

value when ‘med-prob’ (medical problems) is 1 (yes). 

• Similarly, ‘sur-spec’ (surgical problems, specify) is removed. It only has 

value when ‘sur-prob’ (surgical problems) is 1 (yes). 

• Similarly, ‘fam-hxsp’ (family history of mental illness, specify) is removed. 

It only has value when ‘fam-hx’ (family history of mental illness) is not 1 

(Nil). 

• ‘dsmaxis1’ (Diagnosis Axis 1 (DSM IV)) is removed, since it specifies the 

schizophrenia sub-types, and we don’t deal with sub-types in this study. 

• ‘first-ep’ (first episode) is removed, since it is only relevant to patients, and 

for all controls, this column is blank. 

• ‘brought’ (brought by) is removed. Generally controls are brought by 

themselves. This is not rational for the patient’s disease, but rather than a 

consequence of the disease – patients lost the ability of taking care of 

themselves. 

• Hospitalization features are removed, since they are relevant to patients 

only; and for controls, all are blank. 

• ‘dur-psyc’ (duration of psychiatric illness (years)) is removed for the 

similar reason as above. 

• Similarly ‘age-onset’ is removed. 
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• Similarly ‘dup-yrs’ (duration of untreated psychosis (in years)), is removed. 

• Similarly ‘tcu-reg’ (visiting regularity), is removed. 

• All medication information is removed, since they are relevant to patients 

only; and for controls, all are blank. 

• All features in SAPP are removed, since they are relevant to patients only; 

and for controls, all are blank. 

• All features in PANSS are removed, since they are relevant to patients only; 

and for controls, all are blank. 

• All features in GAF are removed, since they are relevant to patients only; 

and for controls, all are blank. 

• All features in SUMD are removed, since they are relevant to patients only; 

and for controls, all are blank. 

• All features in WHO QOL (1-26) are removed, since they are for quality of 

life questionnaires for the last four weeks, and moreover they are subjective 

expressions of patients/controls’ feeling. 

• ‘comments’ is removed, since it is a short text field for recording notes. 

 

Missing Values Handling 

 

After the removal of unnecessary data items, there are still some blank cells. We 

try to fill up the missing values cases by case as described below: 

• ‘fam-hx’ (family history), for almost all controls (except for 2 of them) are 

blanks. After consulting the research assistant in charge of data entry, all 

blanks are filled with the default value 1 (Nil). For a patient (CDNo=1), the 

value is missing, and we set it to the default value 1 (Nil). 
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• There are two missing values in column ‘yr_momedu’ (years of education:  

mother) and ‘yr_fatedu’ (years of education: father) for two patients 

(CDNo=54, 62). We fill the blank with the most likely value – the mean 

value of yr_momedu (6.77, rounded to 7), yr_fatedu(7.2, rounded to 7) in 

the patient group. 

• ‘occ_dad’ (father’s occupation) is missing for three cases (CDNo=83, 84, 

143). They are set to 8 (unspecified). 

 

Data Correction 

 

Some data items are input wrongly by the data input officer. The fam_hx (family 

history) information is initially collected in the fam_hxsp (family history specify), 

and later coded into the fam_hx item. We find some inconsistency between these 

two items. For example, in the family history, “paternal aunt” should be coded as 

“2nd degree” (a relative who shares about 25% of genes with an individual in a 

family, e.g., uncle, aunt, cousin), instead of “1st degree” (a relative who shares 

about 50% of genes with an individual in a family, e.g., father, mother, siblings). 

Hence we correct errors in the fam_hx according to its original information 

fam_hxsp. We summarize our corrections in the Table 3.5: 
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Table 3.5 Data corrections 

CD No Originally Collected Data 

Fam_hxsp (famiy history specify) 

Encoded Data 

Fam_hx: change from → to 

2 Paternal uncle – schizophrenia 1st degree → 2nd degree 

12 Cousin, aunt 1st degree → 2nd degree 

26 Paternal aunt 1st degree → 2nd degree 

47 Maternal grandmother committed suicide 1st degree → 2nd degree 

55 Maternal uncle 1st degree → 2nd degree 

57 Maternal aunt 1st degree → 2nd degree 

75 Maternal aunt and uncle 1st degree → 2nd degree 

93 Nephew 1st degree → 2nd degree 

124 Uncle 1st degree → 2nd degree 

130 Paternal grandpa 1st degree → 2nd degree 

134 Paternal nephew/niece (OCD) Other → 2nd degree 

138 Paternal uncle Other → 2nd degree 

139 Paternal uncle – schizophrenia Other → 2nd degree 

Note: 1st degree: a relative who shares about 50% of genes with an individual in a family; 2nd degree: a 
relative who shares about 25% of genes with an individual in a family. Abbreviation: CD No, Compact Disk 
Number (used as case number). 
 

 

Neurocognitive Tests Data 

 

A total of 76 columns of information are collected for the 4 neurocognitive tests. 

We keep all raw scores, and remove derived ones such as percentage or percentile 

of the former scores. As a result of this exercise, 19 columns remain for further 

analysis (as listed in Table 3.3). 
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Table 3.6 Number of uncompleted and completed cases of neurocognitive test 

Test Total Case Uncompleted Completed 

RPM 156 63 93 

WAIS 156 61 95 

CPT 156 67 89 

WCST 156 63 93 

 

Besides that, not all subjects take all four tests for various reasons. Some are 

unable to complete them, while some are uncooperative. The number of completed 

cases (ranging from 89 to 95) for all neurocognitive tests is listed in Table 3.6. 

Among all completed cases, 84 cases remain in common for all 4 tests. The 

completed cases consist of 59 patients (70.2%) and 25 controls (29.8%). The 

distributions of the remaining cases are illustrated in Figure 3.4. We will use these 

84 completed cases in the model constructions later. 
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Figure 3.4 Distribution of neurocognitive test after removing missing values (N=84) 
(Blue: patient; Red: control. 1: RPM_raw, 2: BlockDesign_raw, 3: DigitSpan_fwd, 4: 
DigitSpan_bwd, 5: DigitSpan_total, 6: SpatialSpan_fwd, 7: SpatialSpan_bwd, 8: 
SpatialSpan_total, 9: Omissions_tscore, 10: Commissions_tscore, 11: HitRT_tscore, 12: 
Trials_administered, 13: Total_correct, 14: TotalErrors_raw, 15: PersResponses_raw, 16: 
PersErrors_raw, 17: NonpersErrors_raw, 18: Categories_raw, 19: Trials_raw. 20: pt_ctrl 
(patient/control). Descriptions of the items can be found in Appendix A) 
 

In this section, we described the data preprocessing exercise. Specifically, we 

removed irrelevant columns, filled up missing values, corrected wrongly input data, 

and came up with clean datasets ready for further analysis. 
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3.6 Modeling Using Demographic Data and Clinical Data 

 

The demographic data include patient’s age, sex, weight, height, etc (see previous 

introduction in section 3.2). The clinical data include drug use, alcohol use and 

family history of psychiatric diseases, etc (see introduction in section 3.3). They 

are basic information collected at subjects recruiting time. They are available in all 

cases.  

 

Table 3.7 Demographic and clinical data features 

handed (handedness) yrsedu_mum (years of education mum) 

sex yrsedu_dad (years of education dad) 

ethnic occupant (occupation) 

father (father's ethnicity) occ_dad  (father's occupation) 

pgfather (paternal grandfather's ethinicity) occ_mum  (mother's occupation) 

pgmother (paternal grandfather's ethinicity) med_prob (medical problems (past or current)) 

mother (mother's ethnicity) sur_prob (surgical problems (past or current)) 

mgfather (maternal grandfather's ethinicity) alcohol (alcohol use (past or current)) 

mgmother (maternal grandmother's ethnicity) drug_use (drug use (past or current)) 

age fam_hx (family history of mental illness) 

marital (marital status) height 

edulevel (educational level) weight 

yrsedu (years of education)  

 

 

We start building our first schizophrenia classification model based on the 

demographic data and clinical data. There are 25 data features (Table 3.7), and 84 

cases (see distribution in Figure 3.5). The characteristics of these cases are listed in 

Table 3.8. Pearson Chi-Square is used to test the independency of two categorical 

factorsand Independent Sample T Test (2-tailed) is used to compare the mean score 
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of two continuous factors. We can see that in the selected 84 cases, the patients and 

controls match on sex, handedness, ethnics, marital status, height and weight, 

except for age and education levels. The age is significantly different; and the 

education levels of the subject himself/herself and parents are significantly lower 

in patients than in controls. 

 

Table 3.8 Characteristics of selected cases (N=84) 

Characteristic Schizophrenia Patients 

(N=59) (70.2%) 

Healthy Controls 

(N=25) (29.8%) 

P Value 

Age 34.24 (SD 9.15) 28.56 (SD 6.89) 0.003 (SIG)* 

Sex (F/M) 9/50  

(15.3%/84.7%) 

6/19  

(24.0%/76.0%) 

0.339 (NS)^ 

Handedness 

(Left/Right/Ambidextrous) 

7/51/1 

(11.9%/86.4%/1.7%) 

2/23/0 

(8.0%/92.0%/0%) 

0.694 (NS)^ 

Ethnicity 

(Chinese/Malay/Indian/Others

) 

53/4/2/0 

(89.8%/6.8%/3.4%/0%) 

24/0/1/0 

(96.0%/0%/4.0%/0%) 

0.409 (NS)^ 

Marital Status 

(Single/Married/Widowed/Div

orced) 

49/9/0/1 

(83.1%/15.3%/0%/1.7%) 

19/6/0/0 

(76.0%/24.0%/0%/0%) 

0.526 (NS)^ 

Education level, years 11.22 (SD 2.67) 14.52 (SD 1.42) < 0.001 (SIG)* 

Father’s education level, years 7.22 (SD 3.57) 9.04 (SD 3.31) 0.032 (SIG)* 

Mother’s education level, 

years 

6.08 (SD 3.87) 8.72 (SD 3.79) 0.005 (SIG)* 

Weight, kg 63.22 (SD 12.18) 66.70 (SD 11.39) 0.226 (NS)* 

Height, m 1.69 (SD 0.07) 1.70 (SD 0.07) 0.494 (NS)* 

Note: ^ Pearson Chi-Square; * Independent Sample T Test; Abbreviations: SD, Standard 
Deviation; F, Female; M, Male; SIG, Significant (P<0.05); NS, Not Significant 
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Figure 3.5 Distribution of demographic and clinical features (N=84) 
(Blue: patient; Red: control. 1:handedness (right/left), 2: sex (male/female), 3: ethnic 
(Chinese/Indian/Malay), 4: father's ethnic (Chinese/Other), 5: paternal grandfather's ethnic 
(Chinese/Other), 6: paternal grantmother's ethnic (Chinese/Other), 7: mother's ethnic 
(Chinese/Other), 8: maternal grandfather's ethnic (Chinese/Other), 9: maternal 
grandmother's ethnic (Chinese/Other), 10: age (years), 11: marital status 
(single/married/divorced), 12: education level 
(Secondary/JC/Primary/University/Polytechnic/Vocational), 13: years of education, 14: years 
of education: mother, 15: years of education: father, 16: occupation (unemployed/manual 
labor/admin/homemaker/professional/other), 17: father's occupation 
(admin/unemployed/other/manual labor/professional/unspecified/passed away/home maker), 
18: mother's occupation (admin/homemaker/unemployed/other/professional/manual 
labor/passed away), 19: medical problem (no/yes), 20:surgical problem (yes/no), 21: alcohol 
use (abuse/no/dependence), 22: drug use (no/abuse), 23: family history of mental illness 
(Nil/2nd degree/1st degree), 24: height (in m), 25: weight (in kg), 26: pt_ctrl (patient/control). 
Descriptions of data items can be found in Appendix A) 
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During data pre-processing, we have already removed irrelevant features such as 

medication and hospitalization information. If a model is constructed on all 25 data 

features for 84 cases, the case to feature ratio is about 3.4 to 1, which is 

substantially less than 10 to 1 (rule of 10), as suggested by many studies, for 

example (Arrindell & Ende, 1985; Bartlett, et al., 2001; Everitt, 1975; Nunnally, 

1978). The model tends to be over-fitting or over-specific to the study samples and 

causes the lacking of generalizability due to too many parameters (Hair, Anderson, 

Tatham, & Black, 1995) or “the curse of dimensionality” (Hastie, Tibshirani, & 

Friedman, 2001). We will apply the feature selection technology to select only 

important features. 

 

3.6.1 Feature Selection 

 

Weka (Ver 3.4.13, University of Waikato, New Zealand) (Holmes, Donkin, & 

Witten, 1994; Witten & Frank, 2005) is an open source software package written 

in Java programming language. It contains implementations of many machine 

learning algorithms for data mining tasks. It also contains tools for data pre-

processing, classification, regression, clustering, association rules, and 

visualization. 

 

Correlation-based Feature Subset algorithm selects significant features by 

evaluating and comparing each feature’s predictive ability and degree of 

redundancy (M. A. Hall, 1998). We apply this algorithm implemented in the Weka 

software package for feature selection.  
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The features selected by this algorithm are: age, yrsedu (years of education), 

occupatn (occupation of patient), and fam_hx (family history of mental illness).  

 

Some other feature selection algorithms have also been used, such as, Info Gain  

(Mitchell, 1997; Y. Yang & Pedersen, 1997), and Support Vector Machine (Bishop, 

1996; Guyon, Weston, Barnhill, & Vapnik, 2002). The results are the same for our 

study. We will use the Correlation-based Feature Subset algorithm for the feature 

selection process throughout this work. 

 

Among the selected features, yrsedu and occupatn are socioeconomic status of the 

patient; they are considered as the consequence of the sickness instead of reasons. 

Hence they shall be excluded from the selected feature list. 

 

After removing another similar socioeconomic feature (edulevel: education level), 

the remaining selected features become: age and fam_hx. However, age difference 

is caused by the selection of subjects who have completed the neurocognitive tests; 

hence it shall not be included in model construction. Finally the only relevant 

feature to be used in model construction is the fam_hx (family history). 

 

3.6.2 Definitions and Terminologies  

 

Before we start to build up the classification models, we recall some definitions 

and terminologies here. 
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We want to identify “Patient”. In other words, our target is “Patient”. When we 

describe the status of a case, we mean its ground truth, or what it is actually. So 

when we say the status is true, we mean the subject is actually a patient; when we 

say the status is false, we mean the subject is actually a control. 

 

When describing the test result, we use the terms: positive and negative. When we 

say the test result is positive, we mean the test result classifies it as a patient. When 

we say the test result is negative, we mean the test result classifies it as a control. 

 

In this situation, we define true positive (TP), false positive (FP), true negative 

(TN), false negative (FN) as follows: 

 

• True Positive (TP) test result: the test result classifies this case as a patient, 

and ground truth is actually a patient;  

• False Positive (FP) test result: the test result classifies this case as a patient, 

and ground truth is actually a control;  

• True Negative (TN) test result: the test result classifies this case as a 

control, and ground truth is actually a control;  

• False Negative (FN) test result: the test result classifies this case as a 

control, and ground truth is actually a patient.  

 

The following Table 3.9 shows the format of the confusion matrix of the 

supervised learning that will be used throughout the rest of thesis. For example, the 

total number of ground truth patients correctly classified as patients will be filled 

in the True Position (TP) blank. 
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Table 3.9 Confusion matrix of supervised learning 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

True Positive (TP) False Negative (FN) Patient 

False Positive (FP) True Negative (TN) Control 

Ground Truth 

 

The True Positive Rate, False Positive Rate, True Negative Rate, and False 

Negative Rate are defined as follows: 

 

True Positive Rate: TP Rate = TP / (TP + FN)     (3.1) 

 

False Positive Rate: FP Rate = FP / (FP + TN)     (3.2) 

 

True Negative Rate: TN Rate = TN / (FP + TN)     (3.3) 

 

False Negative Rate: FN Rate = FN / (TP + FN)     (3.4) 

 

True Positive Rate is also known as Sensitivity. True Negative Rate is also known 

as Specificity. 

 

Type I Error (also known as α error, False Positive Rate) and Type II Error (also 

known as β error, or False Negative Rate) are used to describe possible errors 

made in a statistical decision process. 

 

Accuracy is defined as a measurement of how well a binary classification test 

correctly identifies or excludes a condition.  
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Accuracy = (TP + TN) / (TP + FP + TN + FN)     (3.5) 

 

Error Rate is the ratio of incorrectly classified cases to the total number of cases. 

 

Error Rate = (FP + FN) / (TP + FP + TN + FN)     (3.6) 

 

3.6.3 Bayesian Network Classifier Evaluation 

 

We choose the format of models from point of usefulness. Bayesian network 

model, alternating tree model and logistic regress model are considered. Different 

formats of models are generated and compared, but alternating tree model and 

logistic regression model produce lower classification accuracy than the Bayesian 

Model (see Section 7.2.5). Besides that, suitable presentation format is also a 

concern. Bayesian Network model is good for its simple graphical format (Acyclic 

Directed Graph (DAG)) to represent and understand the relationship between 

schizophrenia and the significant factors. 

 

Bayesian Network is a graphic model that shows a set of interrelated factors 

(random variables) and their joint probability distributions. It is expressed as a 

Directed Acyclic Graph (DAG). Each node in the graph represents a random 

variable. Each arc represents a direct qualitative dependence relationship. And the 

local distribution of a node represents the quantitative strength of the dependence 

relation. (Cooper & Herskovitz, 1992; Howard, 1990; Jensen, 2001) 

 

To classify a new case using the Bayesian Network Classifier, we first calculate 

the probability distribution of the case using equation (3-7). 
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where Pdist is the distribution probability of patient or control; v takes value of 

“Patient” or “Control”; F is a chance node (a node in the Bayesian network that 

represents a factor, for example a test result) other than target node (pt_ctrl); u is 

the possible value for a chance node (factor); n is the number of chance nodes 

except for the target node pt_ctrl. 

 

In case of Naïve Bayesian network (which consists of one target node and several 

child nodes, and no links between child nodes), since all factors are conditionally 

independent on pt_ctrl, equation (3-7) becomes: 
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Classification result is determined by equation (3-9): 

 

)(maxarg_ vPctrlpt dist
v

classify =       (3.9) 

where pt_ctrlclassify is the classification result of a case: either “Patient” or 

“Control”.  
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3.6.4 Baseline Model Construction 

 

We use cases that complete all tests to construct our models. The total number of 

such cases is 84, including 59 patients and 25 controls. Hence the prior probability 

of patient in our sample space is 70.2%. 

 

Weka software is used for model construction. We have tried different forms of 

model including Logistic Regression, Decision Tree and Bayesian Network (see a 

discussion in Chapter 7). It appears that Bayesian network models perform quite 

well in terms of classification accuracy. In addition, the Bayesian Network model 

has a simpler and clearer presentation format and is easier to interpret compared to 

the other two models. Hence, we decide to use Bayesian Network for all our model 

construction.  

 

Based on the selected feature (fam_hx), we construct a Bayesian Network 

classification model with the heuristic local K2 searching algorithm (Cooper & 

Herskovitz, 1992) by using the simple Bayes estimator (Bouckaert, 2004) to 

calculate the conditional probability table and comparing the posterior probabilistic 

ratio of any pair of possible Bayesian Network structure at the given dataset, which 

learns the structure effectively. Other searching algorithms, such as Greedy Search 

(Chickering, 2002), which searches for local maximum from initial structure, are 

also attempted. However, In our study, the same results are generated. K2 

algorithm is often used by researchers since it can be implemented easily and 

evaluated fast. We will use the K2 searching algorithm throughout all Bayesian 

Network Model construction process in this study. 
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Figure 3.6 Bayesian network model on clinical data 

 

A Bayesian Network model is generated, as illustrated in Figure 3.6. This is a very 

basic model, which has only two nodes. This over simplified model demonstrates 

the fact that there is a stronger association between schizophrenia and the family 

history than other features (such as sex, ethnic), as people have already pointed out 

in (R. Murray, et al., 2003).  

 

The probability distribution table generated for the model is displayed in Table 

3.10. 
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Table 3.10 Probability distribution of fam_hx 

fam_hx Pt_ctrl 

Nil 2nd degree 1st degree 

Patient 0.5702 0.2231 0.2066 

Control 0.9623 0.0189 0.0189 

Note: 1st degree: a relative who shares about 50% of genes with an individual in a family; 2nd degree: a 
relative who shares about 25% of genes with an individual in a family. 
 

Since the sample data collection is very costly ($1,497 per case at private rate, see 

Section 7.1), the validation of the model is done by using the 10-fold cross-

validation method, where all cases are randomly split into 10 subsets, and every 

subset is used as validation set to validate the model generated from the other 9 

subsets (as training set) (Kohavi, 1995). From the validation results (Table 3.11, 

Table 3.12), we can see that all cases are classified as patients, so that the Type I 

error is 100%. The accuracy is 70.2%, which is actually the same as the prior 

probability of patient. We will use this model as the baseline model, and gradually 

enhance it by adding other features. 

 

Table 3.11 Confusion matrix (clinical data: fam_hx) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

59 (TP) 0 (FN) Patient (59) 

25 (FP) 0 (TN) Control (25) 

Ground Truth 
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  Table 3.12 Summary of model (clinical data: fam_hx)           

Item Value 

Total Number of Instances               84  

Correctly Classified Instances           59  

Incorrectly Classified Instances 25 

Accuracy 70.2% 

Error Rate 29.8% 

True Positive Rate (Patient classified as patient) 100% 

Type I Error Rate (Control classified as patient) 100% 

True Negative Rate (Control classified as control) 0% 

Type II Error Rate (Patient classified as control) 0% 

 

As a comparison, we tried to use the feature yrsedu (years of education) to build 

another model. The results are listed in Table 3.13 and Table 3.14. This model 

does not classify all cases as patients (as the baseline model does); actually it can 

correctly classify 7 control cases (TN). It also incorrectly classifies 11 patients as 

controls (FN). However, the total correctly classified number of cases is 55 

(TP+TN). Though this model has a lower Type I error (72.0%) than the baseline 

model (100%), its accuracy is only 65.5%, which is worse than that of the baseline 

model (70.2%). 

 

From the comparison, we can see that, even though the baseline model has a Type 

I error of 100%, it can still be considered as the best choice for the aim of high 

accuracy, at the current restriction (with only one feature: fam_hx). In other words, 

the extremely high Type I error (100%) of the baseline model is not a coincidence, 

it is the result of the best fitting of model for the purpose of achieving the highest 

accuracy. 
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In fact, because of the availability of the feature it used (family history is 

considered as also available), this model serves as a starting point (the meaning of 

baseline). We can add additional features into the baseline models: (1) to increase 

the accuracy and (2) to decrease the Type I error. Since the baseline model’s Type 

I error is 100%, we have to point out that this model alone shall not be applied in 

practice. 

 

As we have discussed earlier, being a consequence of the schizophrenia disease, 

yrsedu shall not be included into our classification models as a predictor, and we 

will not consider it in our further model constructions.  

 

Table 3.13 Confusion matrix (yrsedu) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

48 (TP) 11 (FN) Patient (59) 

18 (FP) 7 (TN) Control (25) 

Ground Truth 
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  Table 3.14 Summary of model (yrsedu)           

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           55 

Incorrectly Classified Instances 29 

Accuracy 65.5% 

Error Rate 34.5% 

True Positive Rate (Patient classified as patient) 81.4% 

Type I Error Rate (Control classified as patient) 72.0% 

True Negative Rate (Control classified as control) 28.0% 

Type II Error Rate (Patient classified as control) 18.6% 

 

In this section, we first use the feature selection method to select the important 

features from demographic data and clinical data. Then we build a baseline 

Bayesian Network model with accuracy rate 70.2%. Next we will include 

neurocognitive test results in the model. 

 

3.7 Modeling Using Neurocognitive Tests Results 

 

Four neurocognitive tests on study subjects, namely RPM, WAIS, CPT and WCST 

have been done, which generates 19 data features (See Table 3.3). Among all 156 

cases, 84 participants have completed all 4 tests, including 59 patients (70.2%), 

and 25 controls (29.8%). We will use this subset for model construction. 

 

In the previous section, we select only one significant feature from demographic 

data and clinical data, the fam_hx (family history). Since any neurocognitive test 

can be done separately and independently, various models should be constructed to 
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reflect this situation. In this section, we will use fam_hx and various combinations 

of neurocognitive tests to build more comprehensive models. However, we will 

examine these tests individually before we combine them with clinical data. 

 

3.7.1 Neurocognitive Tests Only 

 

By using the method described in section 3.6, we select significant features from 

each of the 4 neurocognitive tests, and build 4 Bayesian Network models based on 

each of them separately by using the same approach described in Section 3.6.4. 

 

Specifically, feature RPM_raw is selected from the RPM test, since it is the only 

result in the test. Feature DigitSpan_bwd is selected from the WAIS test results 

(BlockDesign_raw, DigitSpan_fwd, DigitSpan_bwd, DigitSpan_total, 

SpatialSpan_fwd, SpatialSpan_bwd, and SpatialSpan_total); feature 

Omissions_tscore is selected from the CPT test results (Omissions_tscore, 

Commissions_tscore, HitRT_tscore); and features PersResponses_raw and 

PersError_raw are selected from the WCST test results (Trials_administered, 

Total_correct, TotalErrors_raw, PersResponses_raw, PersErrors_raw, 

NonpersErrors_raw, Categories_raw, Trials_raw). 

 

Four Bayesian Network classification models are constructed by using significant 

features from the neurocognitive tests separately, and their results are summarized 

in Table 3.15, Table 3.16, Table 3.17 and Table 3.18 for RPM, WAIS, CPT and 

WCST tests respectively. 
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The model on RPM test has an accuracy of 66.7%, which is even lower than the 

baseline model (70.2%). This shows that when this test is applied alone, the effect 

in reaching correct diagnosis is worse than the family history. However, the Type I 

error (56.0%) decreases compared to the baseline model (100%), which means it 

can correctly identify some control cases, whereas the baseline model never does. 

 

The model on WAIS test results (DigitSpan_bwd) alone has the same accuracy 

(70.2%) as the baseline model. In fact, it also classifies all controls as patients 

incorrectly as the baseline model does; hence it’s Type I error is also 100%. This 

test alone has the same effect in terms of classification accuracy as the family 

history. Again, this model shall not be applied in practice because of its high Type 

I error. 

 

Similarly, the model on CPT test results alone generates a classification accuracy 

of 70.2%, and a Type I error of 100%. 

 

In the case of WCST test, the model accuracy is 56.0%, which is the lowest of all 4 

models. However, it is able to correctly identify some controls (21 cases), which 

makes it’s Type I error 16.0%, also the lowest of all. This shows its ability of being 

a potential predictor in further model construction. 
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Table 3.15 Summary of model on RPM test results (RPM_raw) 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           56 

Incorrectly Classified Instances 28 

Accuracy 66.7% 

Error Rate 33.3% 

True Positive Rate (Patient classified as patient) 76.3% 

Type I Error Rate (Control classified as patient) 56.0% 

True Negative Rate (Control classified as control) 44.0% 

Type II Error Rate (Patient classified as control) 23.7% 

 

 

Table 3.16 Summary of model on WAIS test results (DigitSpan_bwd)  

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           59 

Incorrectly Classified Instances 25 

Accuracy 70.2% 

Error Rate 29.8% 

True Positive Rate (Patient classified as patient) 100.0% 

Type I Error Rate (Control classified as patient) 100.0% 

True Negative Rate (Control classified as control) 0.0% 

Type II Error Rate (Patient classified as control) 0.0% 
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Table 3.17 Summary of model on CPT test results (Omission_tscore) 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           59 

Incorrectly Classified Instances 25 

Accuracy 70.2% 

Error Rate 29.8% 

True Positive Rate (Patient classified as patient) 100.0% 

Type I Error Rate (Control classified as patient) 100.0% 

True Negative Rate (Control classified as control) 0.0% 

Type II Error Rate (Patient classified as control) 0.0% 

 

Table 3.18 Summary of model on WCST test results (PersResponse_Raw + PersError_raw)  

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           47 

Incorrectly Classified Instances 37 

Accuracy 56.0% 

Error Rate 44.0% 

True Positive Rate (Patient classified as patient) 44.1% 

Type I Error Rate (Control classified as patient) 16.0% 

True Negative Rate (Control classified as control) 84.0% 

Type II Error Rate (Patient classified as control) 55.9% 

 

In summary, four neurocognitive tests are investigated separately. Two tests show 

similar contribution to classification accuracy as the baseline model. The other two 

tests show lower classification accuracy, however they can correctly identify some 

normal controls. In the next few sections, we will add these tests into the baseline 

model, and construct new models based on the combined features. 
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3.7.2 Clinical Data + RPM 

 

We first combine all the clinical data and the RPM test results (RPM_raw). The 

following features remain after the feature selection:  

• fam_hx 

• RPM_raw 

 

Weka software is used for model construction. Based on the selected features, we 

construct a Bayesian Network classification model with the local K2 searching 

algorithm (Cooper & Herskovitz, 1992).  

 

The model is illustrated in Figure 3.7. A classification accuracy of 82.1% is 

achieved, which is substantially higher than the baseline model accuracy (70.2%). 

This is a promising result, as we start to see the power of combining factors from 

different categories. Other rates are listed in Table 3.20. Compared to the baseline 

model's Type I error (100%), this model is able to classify 20 cases of controls 

correctly (Table 3.19), and it's Type I error drops to 20%. Note that this Bayesian 

Network model degenerates to Naïve Bayesian Network. That is because the two 

features (fam_hx and RPM_raw) are conditionally independent given pt_ctrl, since 

only highly independent features remain after the feature selection step (which 

selects features that generates lowest redundancy.   
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Figure 3.7 Model on clinical data + RPM 

 

Table 3.19 Confusion matrix (clinical data + RPM) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

49 (TP) 10 (FN) Patient (59) 

5 (FP) 20 (TN) Control (25) 

Ground Truth 

 

 

Table 3.20 Summary of model on clinical data + RPM           

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           69 

Incorrectly Classified Instances 15 

Accuracy 82.1% 

Error Rate 17.9% 

True Positive Rate (Patient classified as patient) 83.1% 

Type I Error Rate (Control classified as patient) 20.0% 

True Negative Rate (Control classified as control) 80.0% 

Type II Error Rate (Patient classified as control) 16.9% 
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3.7.3 Clinical Data + WAIS 

 

Now we add the WAIS test results (BlockDesign_raw, DigitSpan_fwd, 

DigitSpan_bwd, DigitSpan_total, SpatialSpan_fwd, SpatialSpan_bwd, and 

SpatialSpan_total) to all clinical data. The following features remain after the 

feature selection:  

• fam_hx 

• DigitSpan_bwd 

 

A Bayesian Network model is built on these features (as illustrated in Figure 3.8). 

It contains 3 nodes. Since fam_hx and DigitSpan_bwd are conditionally 

independent given pt_ctrl, the model degenerates to a Naïve Bayesian network 

model. The accuracy of this model is 79.8%, which is substantially higher than the 

baseline model accuracy (70.2%). Other rates are listed in Table 3.22. This model 

further increases the number of correctly classified controls to 24 (Table 3.21), 

which leads to an even lower Type I error of 4%. As a trade-off, 16 patients are 

incorrectly classified as controls, which causes a 27.1% Type II error. This model 

seems to be good at identifying controls. 

 



 78

 

Figure 3.8 Model on clinical data + WAIS 

 
 
Table 3.21 Confusion matrix (clinical data + WAIS) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

43 (TP) 16 (FN) Patient (59) 

1 (FP) 24 (TN) Control (25) 

Ground Truth 

 

 

Table 3.22 Summary of model on clinical data + WAIS  

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           67 

Incorrectly Classified Instances 17 

Accuracy 79.8% 

Error Rate 20.2% 

True Positive Rate (Patient classified as patient) 72.9% 

Type I Error Rate (Control classified as patient) 4.0% 

True Negative Rate (Control classified as control) 96.0% 

Type II Error Rate (Patient classified as control) 27.1% 
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3.7.4 Clinical Data + CPT 

 

We next combine all clinical data and the CPT test results (Omissions_tscore, 

Commissions_tscore, HitRT_tscore). The following features remain after the 

feature selection:  

• fam_hx 

 

No CPT test result appears in the selected feature list. This means CPT test’s 

contribution to the classification is insufficient. However we can still examine the 

effect of CPT, by including fam_hx and CPT test results as factors to build a 

Bayesian Network classification model.  The following results are generated as in 

Table 3.23 and Table 3.24. We can see that it does not change the classification 

results of model on fam_hx alone. The accuracy is still 70.2%.  

 

In fact, by examining the conditional probabilities of all factors from CPT test 

(Table 3.25), we notice that the probability distribution of classification result 

(pt_ctrl) is always 1 when it takes value of either "patient" or "control", regardless 

of the value of Omissions_tscore, Commissions_tscore and HitRT_tscore. That 

means the CPT test results have no relation with the classification target node 

(pt_ctrl), and they don't affect the probability distribution at all. Hence, the CPT 

test shall be excluded from the model construction.  

 

From clinical point of view, the result of this model suggests that the attention and 

impulsivity functions assessed by the CPT test do not show significant difference 
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between patients and controls. These two functions do not increase the 

classification accuracy when combined with other factor (fam_hx). 

 

Table 3.23 Confusion matrix (clinical data + CPT) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

59 (TP) 0 (FN) Patient (59) 

25 (FP) 0 (TN) Control (25) 

Ground Truth 

 

 

Table 3.24 Summary of model on clinical data + CPT 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           59 

Incorrectly Classified Instances 25 

Accuracy 70.2% 

Error Rate 29.8% 

True Positive Rate (Patient classified as patient) 100.0% 

Type I Error Rate (Control classified as patient) 100.0% 

True Negative Rate (Control classified as control) 0.0% 

Type II Error Rate (Patient classified as control) 0.0% 

 

 

Table 3.25 Probability distribution tables of factors from CPT 

Pt_ctrl Omissions_tscore  Pt_ctrl Commissions_tscore  Pt_ctrl HitRT_tscore 

Patient 1  Patient 1  Patient 1 

Control 1  Control 1  Control 1 
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3.7.5 Clinical Data + WCST 

 

We combine clinical data with the WCST test results (Trials_administered, 

Total_correct, TotalErrors_raw, PersResponses_raw, PersErrors_raw, 

NonpersErrors_raw, Categories_raw, Trials_raw). The following features remain 

after the feature selection:  

• fam_hx 

• PersResponses_raw 

 

A model is built on these features (as illustrated in Figure 3.9). Its accuracy is 

75.0%. Other results are listed in Table 3.26 and Table 3.27. The low Type I error 

(4.0%) shows its good ability in identifying controls. In contrast, a big portion of 

patients (20) are wrongly classified as controls, which causes a high Type II error 

(33.9%). This model seems to be more biased to controls. 

 

 

Figure 3.9 Model on clinical data + WCST 
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Table 3.26 Confusion matrix (clinical data + WCST) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

39 (TP) 20 (FN) Patient (59) 

1 (FP) 24 (TN) Control (25) 

Ground Truth 

 

 

Table 3.27 Summary of model on clinical data + WCST 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           63 

Incorrectly Classified Instances 21 

Accuracy 75.0% 

Error Rate 25.0% 

True Positive Rate (Patient classified as patient) 66.1% 

Type I Error Rate (Control classified as patient) 4.0% 

True Negative Rate (Control classified as control) 96.0% 

Type II Error Rate (Patient classified as control) 33.9% 

 

3.7.6 Clinical Data + RPM + WAIS 

 

We combine all clinical data with two neurocognitive tests, namely, RPM test 

result (RPM_raw) and the WAIS test results (BlockDesign_raw, DigitSpan_fwd, 

DigitSpan_bwd, DigitSpan_total, SpatialSpan_fwd, SpatialSpan_bwd, and 

SpatialSpan_total). The following features remain after the feature selection:  

• fam_hx 

• RPM_raw 

• DigitSpan_bwd 
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A model is built on these features (as illustrated in Figure 3.10). Its accuracy is 

84.5%. This is substantially higher than the baseline model (70.2%). Other results 

are listed in Table 3.28 and Table 3.29. 

 

 

Figure 3.10 Model on clinical data + RPM + WAIS 

 
 
Table 3.28 Confusion matrix (clinical data + RPM + WAIS) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

52 (TP) 7 (FN) Patient (59) 

6 (FP) 19 (TN) Control (25) 

Ground Truth 
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Table 3.29 Summary of model on clinical data + RPM + WAIS 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           71 

Incorrectly Classified Instances 13 

Accuracy 84.5% 

Error Rate 15.5% 

True Positive Rate (Patient classified as patient) 88.1% 

Type I Error Rate (Control classified as patient) 24.0% 

True Negative Rate (Control classified as control) 76.0% 

Type II Error Rate (Patient classified as control) 11.9% 

 

3.7.7 Clinical Data + RPM + WCST 

 

We combine all clinical data with another two neurocognitive tests, namely, WAIS 

test and the WCST test. The following features remain after the feature selection:  

• fam_hx 

• RPM_raw 

• PersResponses_raw 

 

A model is built on these features (as illustrated in Figure 3.11). Its accuracy is 

83.3%. Again a substantial increment in accuracy is achieved compared to the 

baseline model. Other results are listed in Table 3.30 and Table 3.31. 
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Figure 3.11 Model on clinical data + RPM + WCST 

 
Table 3.30 Confusion matrix (clinical data + RPM + WCST) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

51 (TP) 8 (FN) Patient (59) 

6 (FP) 19 (TN) Control (25) 

Ground Truth 

 

Table 3.31 Summary of model on clinical data + RPM + WCST 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           70 

Incorrectly Classified Instances 14 

Accuracy 83.3% 

Error Rate 16.7% 

True Positive Rate (Patient classified as patient) 86.4% 

Type I Error Rate (Control classified as patient) 24.0% 

True Negative Rate (Control classified as control) 76.0% 

Type II Error Rate (Patient classified as control) 13.6% 
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3.7.8 Clinical Data + WAIS + WCST 

 

We combine all clinical data with another two neurocognitive tests, namely, WAIS 

test and WCST test. The following features remain after the feature selection:  

• fam_hx 

• DigitSpan_bwd 

• PersResponses_raw 

 

A model is built on these features (as illustrated in Figure 3.12). Its accuracy is 

84.5%. Compared to the baseline model, the accuracy improvement is also 

substantial. Other results are listed in Table 3.32 and Table 3.33. 

 

 

Figure 3.12 Model on clinical data + WAIS + WCST 

 
Table 3.32 Confusion matrix (clinical data + WAIS + WCST) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

48 (TP) 11 (FN) Patient (59) 

2 (FP) 23 (TN) Control (25) 

Ground Truth 
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Table 3.33 Summary of model on clinical data + WAIS + WCST 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           71 

Incorrectly Classified Instances 13 

Accuracy 84.5% 

Error Rate 15.5% 

True Positive Rate (Patient classified as patient) 81.4% 

Type I Error Rate (Control classified as patient) 8.0% 

True Negative Rate (Control classified as control) 92.0% 

Type II Error Rate (Patient classified as control) 18.6% 

 

3.7.9 Clinical Data + RPM + WAIS + WCST (All Tests) 

 

Finally we combine all clinical data with all three tests: RPM, WAIS and WCST. 

The following features remain after the feature selection:  

• fam_hx 

• RPM_raw 

• DigitSpan_bwd 

• PersResponses_raw 

 

A model is built on these features (as illustrated in Figure 3.13). Its accuracy is 

85.7%. Other results are listed in Table 3.34 and Table 3.35. This model has the 

highest accuracy among all models based on clinical information and various 

combinations of neurocognitive tests. It also achieves the highest sensitivity 

(91.5%), which seems to be very sensitive to patients. However, as a trade-off, 7 

controls are wrongly classified as patients, which causes a Type I error of 28.0%. 
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Figure 3.13 Model on clinical data + RPM + WAIS + WCST 

 
 
Table 3.34 Confusion matrix (clinical data + RPM + WAIS + WCST) 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

54 (TP) 5 (FN) Patient (59) 

7 (FP) 18 (TN) Control (25) 

Ground Truth 

 

 

Table 3.35 Summary of model on clinical data + RPM + WAIS + WCST 

Item Value 

Total Number of Instances               84 

Correctly Classified Instances           72 

Incorrectly Classified Instances 12 

Accuracy 85.7% 

Error Rate 14.3% 

True Positive Rate (Patient classified as patient) 91.5% 

Type I Error Rate (Control classified as patient) 28.0% 

True Negative Rate (Control classified as control) 72.0% 

Type II Error Rate (Patient classified as control) 8.5% 
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3.7.10 Summary of All Models 

 

Since neurocognitive tests may be done on patients separately, not all testes results 

are always available. So we tried to build models on clinical data plus different 

combinations of neurocognitive tests. 

 

We found that CPT test results do not contribute to the model performance. The 

patients and controls' test results have no differences. Hence this test is not 

necessary in differentiating patients with controls. 

 

We summarize the results for various models in Table 3.36. The baseline model on 

clinical data only (Model C) has an accuracy of 70.2%, which is the same as the 

prior probability of patient in our sample space. In fact, it classifies every case as 

patient, so the sensitivity and type I error are both 100%. Hence clinical 

information alone is not practically sufficient in schizophrenia diagnosis by using 

this model.  

 

All other models have accuracy higher than the baseline probability. Their 

accuracy gains range from 4.8% (Model C+WC) to 15.5% (Model 

C+R+WA+WC). 

 

We observe that when a model contains 2 or more neurocognitive tests, its 

accuracy is usually more than 10% higher than the baseline model (Figure 3.14). In 

general, models containing two neurocognitive tests achieve higher accuracy than 
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models containing one. Also, the model with 3 tests has higher accuracy than 

models with two, though the increase is not as big as the former. 

 

 Table 3.36 Summary of models on clinical data + neurocognitive tests  

Model→ C C+R C+WA C+WC C+R+W

A 

C+R+W

C 

C+WA+

WC 

C+R+W

A+WC 

Nr              84 84 84 84 84 84 84 84 

Cor           59 69 67 63 71 70 71 72 

Incor 0 15 17 21 13 14 13 12 

Acc 70.2% 82.1% 79.8% 75.0% 84.5% 83.3% 84.5% 85.7% 

Err 29.8% 17.9% 20.2% 25.0% 15.5% 16.7% 15.5% 14.3% 

Sen 100.0% 83.1% 72.9% 66.1% 88.1% 86.4% 81.4% 91.5% 

Type I  100.0% 20.0% 4.0% 4.0% 24.0% 24.0% 8.0% 28.0% 

Spe 0.0% 80.0% 96.0% 96.0% 76.0% 76.0% 92.0% 72.0% 

Type II  0.0% 16.9% 27.1% 33.9% 11.9% 13.6% 18.6% 8.5% 

Abbreviations: Nr, Total Number of Instances; Cor, Correctly Classified Instances; Incor, Incorrectly 
Classified Instances; Acc, Accuracy; Err, Error Rate; Sen, Sensitivity; TPR, True Positive Rate (Patient 
classified as patient); Type I, Type I Error Rate (Control classified as patient); Spe, Specificity, TNR, True 
Negative Rate (Control classified as control); Type II, Type II Error Rate (Patient classified as control); C, 
Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test 
 

Most models have Type II error below 30% except for Model C+WC (Figure 3.15), 

which has the highest Type II error of 33.9%. This model tends to classify patients 

as healthy controls.  

 

One model has extremely high Type I error. Model C’s Type I error is 100%. It 

always classifies controls as patients in our cross-validation test. This simple 

model takes into consideration of only patient’s family history, and its prediction is 

not practically reliable.  
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Figure 3.14 Accuracy chart for models on clinical data + neurocognitive tests 
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Figure 3.15 Type I and II error chart for models on clinical data + neurocognitive tests 
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3.8 Conclusions 

 

We have recruited 156 subjects (92 patients, and 64 healthy controls). Their 

neuroinformatics data are collected: including demographic information, clinical 

information such as family history, medication information, clinical scores and 

neurocognitive tests results. In total there are 211 data features. 

 

Data preprocessing is done to eliminate features that are not appropriate in 

constructing schizophrenia classification models. Forty-five features remain as 

candidate predictors for the classification model. Then the missing values in the 

datasets are filled up by reasonable estimations from domain knowledge (such as 

most likely values). Errors in data input (fam_hx) are corrected according to the 

original data (fam_hxsp). 

 

Feature selection is done on demographic and clinical information. Only fam_hx 

(family history of psychiatric disease) is selected to be the significant feature. After 

feature selection, a basic classification model in the form of Bayesian Network is 

generated on the significant feature. Then various combinations of neurocognitive 

tests results together with clinical data features are used to build a set of 

classification models. PCT test is found not contributing to model accuracy gain at 

all.  

 

All classification models built on clinical data plus neurocognitive tests have better 

accuracy than the baseline model. Their accuracy gain ranges from 4.8% to 15.5%. 

The best performing model has an accuracy of 85.7%. It consists of features from 
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clinical data, and all three neurocognitive tests (RPM test, WAIS test, and WCST 

test). Specifically, the features are: 

• fam_hx 

• RPM_raw 

• DigitSpan_bwd 

• PersResponses_raw  

 

We notice that, family history always remains in all the models. This means it is an 

important factor in distinguishing patients and controls. This finding aligns well 

with literature (R. Murray, et al., 2003). 

 

The summary of the three significant neurocognitive tests comparison results 

between patients and controls is displayed in Table 3.37 and Figure 3.16. 

Independent Sample T Test (2-tailed) is used to compare the mean score between 

patients and controls. 

 

Table 3.37 Neurocognitive tests results comparison 

Neurocognitive Mean Mean Difference P Value 

Test Patient (N=59) Control (N=25) (Patient – Control) (2-tailed) 

RPM_raw 45.85 (SD 9.28) 54.48 (SD 3.50) -8.633 <0.001 (SIG)^ 

DigitSpan_bwd 7.05 (SD 2.66) 8.64 (SD 2.25) -1.589 0.007 (SIG)^ 

PersResponse_raw 29.20 (22.97) 13.16 (SD 9.23) 16.04 0.001 (SIG)^ 

Note: ^Independent Samples T-Test. Abbreviations: SD, Standard Deviation; SIG, significant (P<0.05); NS, 
Not significant. 
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Figure 3.16 Box plot of selected neurocognitive tests results grouped by patient / control 
Upper left: RPM_raw; Upper right: DigitSpan_bwd; Lower-left: PersRepsonses_raw. Note 
that scales for each box plot are different. 
 

We find that RPM (RPM_raw) and WAIS (DigitSpan_bwd) are significant factors 

in our schizophrenia model; they are related to a person’s intellectual abilities.  

 

RPM_raw is the number of missing patterns correctly identified by a person in a 

test. DigitSpan_bwd is the longest of number of digits that a person can repeat 

correctly in the reverse order after they are announced. In our study subjects, 

patients' mean RPM_raw score (45.85, SD: 9.28) is significantly lower by 8.63 

than that of controls (54.48, SD 3.50). Likewise, patients' mean DigitSpan_bwd 

(7.05, SD 2.66) is also significantly lower by 1.59 than controls (8.64, SD: 2.25). 

That means patients have significantly lower intellectual abilities in terms of non-

verbal logic (as assessed by RPM) and memory capacity (as measured by Digit 
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Span sub-test of WAIS) than normal controls. Some other studies (David, 

Malmberg, Brandt, Allebeck, & Lewis, 1997), (Zammit, et al., 2004) also 

demonstrated low intellectual ability as a risk factor for schizophrenia. 

 

WCST (PersResponses_raw) is a significant factor in schizophrenia classification 

too. Reduced executive capability (tested by WCST), is believed to relate to frontal 

lobe dysfunction of schizophrenia patients. Our study results show that 

schizophrenia patients (29.20, SD: 22.97) have significantly higher perseverative 

response (by 16.04) than normal controls (13.16, SD: 9.23), which suggests 

patients show lower adaptability in learning new rules.  Many studies have also 

shown the similar trends (Abbruzzese, Bellodi, Ferri, & Scarone, 1995; Mahurin, 

Velligan, & Miller, 1998; Pae, et al., 2004).  

 

CPT test doesn’t affect the model, which suggests that the differences in capability 

of attention and impulsivity between patients and controls are not significantly 

enough when compared with other factors (Table 3.38).  Independent Sample T 

Test (2-tailed) is used to compare the mean scores between patients and controls. 

Actually even if we include CPT test into our models, the accuracy does not 

increase, as discussed in section 3.7.4 before.  



 96

 

Table 3.38 CPT test results comparison 

CPT Test Results Mean Mean Difference P Value 

 Patient (N=59) Control (N=25) (Patient – Control) (2-tailed) 

Omissions_tscore 

63.07 

(SD 37.58) 

52.62 

(SD 17.75) 10.45 0.088 (NS)^ 

Commissions_tscore 

52.44 

(SD 11.23) 

51.29 

(SD 10.54) 1.16 0.654 (NS)^ 

HitRT_tscore 

52.15 

(SD 13.06) 

45.38 

(SD 10.54) 6.77 0.024 (SIG)^ 

Note: ^Independent Samples T-Test. Abbreviations: SD, Standard Deviation; SIG, significant (P<0.05); NS, 
Not significant. 
 

We notice all our Bayesian Network models degenerate to Naïve Bayesian 

Network. This is because after feature selection (which selects features with lowest 

redundancy on highest prediction ability), all factors remaining for model 

construction contribute significantly and independently to the target pt_ctrl. They 

are conditionally independent to each other given the target node (pt_ctrl). 

 

In summary, we have developed a data analysis and model construction approach 

and successfully applied it in building a set of schizophrenia classification models 

based on various neuroinformatics data. We will use this approach in modeling 

neuroimaging data in the next chapter.  
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Chapter 4  

Neuroimaging-Based Analysis and Modeling 

 

In this chapter, we will first describe the neuroimaging acquisition procedure and 

parameters. Then we will introduce our brain atlas based automatic ROI placement 

method for the MRI and DTI image analysis. Statistics of Fractional Anisotropy 

(FA) values within all selected brain structures are calculated for further analysis.  

 

We will follow the procedure as we have used in Chapter 3, to select significant 

image features. These features will be used in the schizophrenia classification 

model construction. 

 

4.1 MRI and DTI imaging 

 

As we can see from the literature review in section 2.2 that schizophrenia is 

associated with not only the brain morphometric changes but also the white matter 

abnormalities, and MRI and DTI imaging are useful tools to quantify the 

neuroconnectivities.  

 

All 156 study subjects (92 patients and 64 controls) have taken the MRI and DTI 

scans.  
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MRI Scan: Single session MRI scans are performed on a clinical 3-Tesla MRI 

scanning system (Intera 3T, Philips Medical Systems, Netherlands) with whole 

brain, high resolution, using 3D MP-RAGE (Magnetisation-Prepared Rapid 

Acquisition with a Gradient Echo) protocol. The volumetric scans parameters are 

TR/TE/TI (repetition time, echo time and, and inversion time) 8.4/3.8/3000; flip 

angle 8; matrix 256x204; Field of View (FOV) 240 mm2, with axial orientation, 

covering the whole brain for structural-anatomic detail.  

 

DTI Scan: In the same session, the diffusion tensor imaging (DTI) in 15 directions 

are also performed using single-shot, spin-echo EPI (echo planar imaging) 

sequence, b value (a diffusion weighted sequences factor, which summarizes the 

influence of the gradient) of 0 and 800 s/mm2, at TR/TE (repetition time and echo 

time) 10,000/80, matrix 128x128, slice thickness 3 mm with no gap and field of 

view 240 mm2 (K Sim, 2005). 

 

A sample structure MRI image set is shown in Figure 4.1. Only the images in axial 

orientation are available. The coronal and sagittal images are reconstructed by the 

image processing software.  
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Figure 4.1 Structural MRI images 
Upper right corner shows the original image scanned in axial orientation; lower right, coronal 
image; lower left, sagittal image; upper left, triplanar display 
 

Figure 4.2 shows a set of Diffusion Weighted Images (DWI) in one of the 15 

directions. DWI images of 15 directions will be used to construct the diffusion 

tensors. 
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Figure 4.2 DWI images 
Upper right corner shows the original image scanned in axial orientation; lower right, coronal 
image; lower left, sagittal image; upper left, triplanar display 
  

4.2 Image Analysis Methods 

 

Generally there are two different approaches in analysis of DTI images, the voxel 

based morphometry (VBM) (Ashburner & Friston, 2000) (Honea, Crow, 

Passingham, & Mackay, 2005) and region of interested (ROI) method (Giuliani, 

Calhoun, Pearlson, Francis, & Buchanan, 2005). VBM compares local 

concentration of brain images of two groups of patients voxel by voxel, while ROI 

method studies images within a specific ROI, usually selected manually. 

 

In our previous study of computer aided diagnosis for acute stroke, image 

morphormetry based segmentation method was developed (G. L. Yang, et al., 2005)  
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to quantify brain CT images. However, it lacks the ability of automatically 

identifying multiple ROIs for FA quantification. Hence we propose a novel image 

analysis algorithm – brain atlas-based automatic ROI selection in DTI study, as 

illustrated in Figure 4.3. 

 

 

 

Figure 4.3 Image analysis algorithm 

 

We describe our algorithm step by step as following: 

 

DTI image 

Registration with atlas

MRI morphological 
image 

Generate FA, 
MD, color map... 

Co-register

Automatic ROI selection 

Statistical analysis 
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Step 1. Registering Brain Atlas to the structural MRI images 

 

Structural MRI images contain the brain morphological information. The images 

are used to identify the anatomical structures, including anterior commissural (AC), 

posterior commissural (PC), and brain extends, which are useful for registration 

with the brain atlas. The structural images are in high resolution. In our current 

study, the pixel size is 0.9x0.9 mm, and the slice distance is also 0.9 mm, which 

makes cubic voxels. 

 

Talairach-Tournoux brain atlas (W. L. Nowinski, 2005; W. L. Nowinski, et al., 

1997; Talairach & Tournoux, 1988) is overlaid on top of the MRI structural images, 

as demonstrated in Figure 4.4. Brain atlas is registered by setting the original 

Talairach landmarks: anterior commissural (AC), posterior commissural (PC), and 

brain extends in all three directions, i.e. Right extend (R), Left extend (L), Anterior 

extend (A), Posterior extend (P), Superior extend (S) and Inferior extend (I), as 

well as the extended Talairach landmarks: Superior Midway (SM) and Inferior 

Midway (IM) (W. L. Nowinski & Prakash, 2005). The registration can be done 

automatically by using the Fast Talairach transformation algorithm (W. L. 

Nowinski, Qian, Bhanu Prakash, Hu, & Aziz, 2006), or by setting the landmarks 

manually.  

 

Currently, the setting of Talairach landmarks is done by manual operation. The 

Fast Talairach Transformation (W. L. Nowinski, Qian, et al., 2006) can be used to 

accelerate the registration process and achieve more consistent registration results. 
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However, in our study, the time for registering brain atlas is not critical; we choose 

to place the landmarks manually in order to get a higher precision.   

 

Step 2. Generating FA images 

 

Diffusion Tensor Images (DTI) contains the diffusion tensor information, which 

can be used to calculate the Mean Diffusivity (MD), Fractional Anisotropy (FA), 

etc according to the method described in (Pierpaoli & Basser, 1996). Currently 

DTI Studio (Version 2.10,  Johns Hopkins University, USA) (Jiang, van Zijl, Kim, 

Pearlson, & Mori, 2006) is used to generate the FA images. Figure 4.5 shows FA 

images displayed in axial, coronal, sagittal directions and the 3D view. 

 

Step 3. Co-registering DTI/FA images and structural images 

 

Structural images and the DTI images are scanned in the same session without 

changing the patient’s position. Their geometric relation can be retrieved from the 

scanning parameters. This information is used to co-register the DTI images and 

the structural MRI images, because only rigid transformation is needed for the 

same subject's MRI and DTI images. 

 

As structural images are already registered with the brain atlas in step 1, DTI 

images and FA images are also registered to the brain atlas. Figure 4.6 shows the 

registered brain atlas overlaid on the FA images.  
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Step 4. ROI selection and Statistical Analysis 

 

Since the brain atlas delineated anatomical and functional regions of the brain, 

single or multiple region of interests (ROI) can be selected by just simply 

specifying their anatomical structure names. Figure 4.7 demonstrates FA images 

with some selected ROIs overlaid. 

 

Statistics can then be calculated in each ROI. Currently we are interested in the 

volume (number of voxels), mean value, standard deviation of the FA images in 

the selected ROIs.  

 

 

Figure 4.8 FA image with significant brain structures overlaid 
Green: IFG; Brown: CG; Pink: ThLP. (Abbreviations: see Appendix B) 

 

This image analysis algorithm has also been applied on a subset of the study 

subjects that consists of 36 patients (11 with passivity and 25 without passivity) 

and 32 age, gender and handedness matched controls. This sub-study identifies 

brain structure difference between schizophrenia with and without passivity. The 

results (K. Sim, et al., 2009) show that passivity is associated with the increased 

FA in right inferior frontal gyrus (IFG), cingulate gyrus (CG), left globus pallidus 
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(GP) and the decreased FA in left latero-posterior thalamic nuclei (ThLP) (Figure 

4.8). 

 

In this section, we introduced our image analysis algorithm. We will use this 

algorithm to quantify the FA images in the next section. 

 

4.3 Quantification of FA Images 

 

From literature review in Section 2.1.3, we notice that the Fractional Anisotropy 

changes of schizophrenia patients have been found almost all over the brain, from 

frontal, parietal, temporal, occipital regions, till deep brain structures such as 

corpus callosum, thalamic regions, and brain connections such as superior 

longitudinal fasciculus, inferior longitudinal fasciculus. We also notice that those 

finding are not consistent which might be due to the insufficient number of cases 

(mostly less than 50 to 60), and image processing methods – by using manual ROI 

(region of interest) placement, which may cause inconsistency in the regions 

identification studied. After discussion with a group of domain experts including 

neuroradiologist, neurologist, neuroscientist and psychiatrists, we select a wide 

spectrum of brain structure as potential relevant factors to schizophrenia in order 

not to miss potential findings. Our selected brain structures cover almost all brain 

regions found in the previous studies. Specifically, they include: 

• Frontal (inferior frontal gyrus, medial frontal gyrus, middle frontal 

gyrus, and superior frontal gyrus) 
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• Parietal (angular gyrus and inferior parietal lobule, inferior parietal 

lobule, supramarginal gyrus and inferior parietal lobule, and superior 

parietal lobule) 

• Corpus callosum  

• Subcallosal gyrus 

• Cingulate gyrus 

• Cingulum 

• Tracts (inferior longitudinual fasciculus, superior longitudinual 

fasciculus, fronto-occipital fasciculus, and uncinate fasciculus) 

• Thalamus (all thalamic nucleus) 

• Subthalamic nucleus 

• Inter-thalamic adhesion 

• Lateral geniculate body 

• Medial geniculate body 

 

According to above list, 48 brain structures from the brain atlas are chosen for our 

study. Each brain structure can be further subdivided into the portions in the left 

and right brain hemispheres. So each structure will generate 3 results: as a whole, 

as well as the left and right parts. Hence the total number of ROIs becomes 144 (48 

x 3). The complete list of brain structures can be found in Table 4.1. Their full 

names can be found in Appendix B. 
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Table 4.1 Complete list of ROIs for the study 

No Structure No Structure No Structure 

1 IFG 17 Th 33 MOG 

2 MeFG 18 ThCM 34 OG 

3 MiFG 19 ThDM 35 SOG 

4 SFG 20 ThLD 36 Cu 

5 AGIPL 21 ThLP 37 LG 

6 IPL 22 ThNA 38 ITG 

7 SmGIPL 23 ThO 39 MTG 

8 SPL 24 ThP 40 STG 

9 CC 25 ThVA 41 U 

10 ScG 26 ThVL 42 CN 

11 CG 27 ThVPL 43 GPL 

12 Ci 28 ThVPM 44 GPM 

13 ILF 29 IA 45 Pu 

14 SLF 30 LGB 46 STN 

15 FOF 31 MGB 47 FG 

16 UF 32 IOG 48 AB 

Abbreviations: see Appendix B. 
 

FA images are registered to the brain atlas by using the method described in the 

previous section. With brain atlas, 48 ROIs are placed, and their statistics are 

calculated. Table 4.2 shows a part of the statistical results calculated in the selected 

brain structures. In each ROI, the number of voxels is proportional to its volume, 

since the size of each voxel is 0.9mm x 0.9mm x 3mm. The mean and stdev values 

are the mean and stdev FA values of all voxels within the specific ROI in all slices. 

These results will be used in the learning of schizophrenia model. 
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Table 4.2 Statistical results for the selected ROIs (partial) 

IFG MeFG MiFG 

CDNo Voxel mean stdev  voxel  mean  stdev voxel mean stdev 

1 5804 0.2642 0.1773 5816 0.2507 0.1393 8918 0.2675 0.1597 

2 7923 0.2192 0.1448 7837 0.2304 0.1320 12131 0.2153 0.1183 

3 8330 0.2297 0.1566 8245 0.2743 0.1475 11960 0.2437 0.1693 

4 9077 0.2429 0.1758 8420 0.2557 0.1337 13213 0.2458 0.1790 

5 6854 0.2110 0.1511 6387 0.2224 0.1268 9781 0.2262 0.1417 

6 9007 0.2220 0.1529 7813 0.2415 0.1529 12351 0.2146 0.1630 

7 7574 0.2571 0.1604 7084 0.2351 0.1438 9956 0.2290 0.1469 

8 8835 0.2220 0.1628 8586 0.2314 0.1370 12372 0.2125 0.1460 

9 7981 0.2224 0.1713 7374 0.2232 0.1149 10791 0.2222 0.1614 

10 7750 0.2407 0.1754 7621 0.2433 0.1428 9989 0.2312 0.1576 

Abbreviations: CDNo: Compact Disk No (used as case number); IFG: Inferior frontal gyrus; MeFG: Medial 
frontal gyrus; MiFG: Middle frontal gyrus. Note: for each brain structure, voxel presents total number of 
voxels in all slices; mean is the mean FA values of all voxels in all slices; stdev is the standard deviation. 
 

4.4 Model Construction 

 

Our study involves 48 brain structures and 144 features (the mean of FA value in 

all the 144 ROIs). In order to build up a robust model, a subset of highly relevant 

candidate features must be chosen from the 144 features. 

 

Feature Selection 

 

We apply the method described in chapter 3 for feature selection. The following 

ROIs remain after feature selection: 

• CG (cingulate gyrus) 

• ScG_left (left subcallosal gyrus) 
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• ThLD_left (left thalamus: lateral dorsal nucleus) 

• ThNA_right (right thalamus: anterior nucleus) 

 

Table 4.3 Mean FA values of selected ROIs 

Brain Mean Mean Difference P Value 

Structure Patient (N=59) Control (N=25) (Patient – Control) (2-tailed) 

CG 0.2547 (SD 0.0214) 0.2662 (SD 0.0133) -0.0115 0.004 (SIG)^ 

ScG_left 0.2319 (SD 0.1032) 0.2840 (SD 0.0757) -0.0521 0.013 (SIG)^ 

ThLD_left 0.2829 (SD 0.0750) 0.3497 (SD 0.0857) -0.0668 0.002 (SIG)^ 

ThNA_right 0.3310 (SD 0.0522) 0.3595 (SD 0.0408) -0.0285 0.009 (SIG)^ 

Note: ^Independent Samples T-Test. Abbreviations: SD, Standard Deviation; SIG, significant (P<0.05); NS, 
Not significant. 
 

 

Figure 4.9 Box plot of FA values in selected image ROIs 
FA values are groupped by patients and controls. Upper-left: CG; Upper-right: ScG_left; 
Lower-left: ThLD_left; Lower-right: ThNA_right. Note that scales for each box plot are 
different. 
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We compare the mean FA values using Independent Sample T Test (2-tailed) 

between patients and controls in the 4 selected ROIs, CG, ScG_left, ThLD_left and 

ThNA_right and display the results in Table 4.3, and show their box plots in 

Figure 4.9. We find that there is consistent decrease in FA across the four regions 

in patients compared to controls. That means in these brain structures, the brain 

connectivity is weaker in patients than in controls. Figure 4.10 illustrates the 

locations of the selected brain structures. Though ThLD_left and ThNA_right are 

tiny brain structures, they are still clearly visible and identifiable in the DTI images 

with the help of brain atlas. In our sample data, their mean volumes are 99.9 mm3 

(SD 35.5 mm3) and 241.8 mm3 (SD 47.1 mm3), respectively. 

 

From the anatomy point of view, the cingulate gyrus (CG) is important for 

focussed attentional tasks (Carter, et al., 2000; Sharp, Scott, Mehta, & Wise, 2006; 

Whittle, Allen, Lubman, & Yucel, 2006). Patient’s mean FA value in cingulate 

gyrus, 0.2547 (SD 0.0214), is 0.0115 lower than that of controls, 0.2662 (SD 

0.0133) (P=0.004). The reduced FA value in this region suggests that 

schizophrenic patients may have an anatomical basis for poorer attention capability 

than healthy controls. Besides some similar findings from (Kumra, et al., 2005) 

and (Hoptman, et al., 2008),  recent functional magnetic resonance imaging (fMRI) 

study also shows schizophrenia patients having a reduction in blood oxygenated 

level dependent (BOLD) in cingulate gyrus compared to the healthy participants 

during attention processes (Filbey, Russell, Morris, Murray, & McDonald, 2008). 

A study also reported that schizophrenia patients and subjects of higher genetic 

risk for schizophrenia (with family history of schizophrenia) are found to have 
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reduced FA in cingulate gyrus, which suggests the cingulate gyrus as a good 

predictor even before the onset of psychotic sickness (Hoptman, et al., 2008).  

 

The thalamus in the human brain is an important “way station” for many pathways 

and connections (Cipolotti, et al., 2008). The lateral dorsal nucleus (LD) in the 

thalamus is reported to have contributions to the links between hippocampus and 

thalamus (Aggleton & Brown, 1999). It connects to the parahippocampal and 

posterior cingulate cortex (Yeterian & Pandya, 1988) as well as medial temporal 

regions (including the hippocampus, presubiculum and entorhinal cortex) 

(Aggleton, Desimone, & Mishkin, 1986) (Saunders, Mishkin, & Aggleton, 2005), 

LD is involved in higher order somatosensory and visuo-spatial functions (Broman, 

1994). Patient’s mean FA value in LD thalamus, 0.2829 (SD 0.0750), is 

significantly lower than that of controls 0.3497 (SD 0.0857) (P=0.002). The 

reduced FA value suggests that deficits in visuo-perceptual tasks (Green, et al., 

2009) or reported psychopathology such as passivity phenomenon may be related 

to disruptions in white matter integrity involving the LD thalamus.   

 

On the other hand, the anterior nuclei (NA) thalamus has reciprocal connections 

with limbic regions subserving functions such as memory and emotional memory 

(A. Harding, Halliday, Caine, & Kril, 2000). It is reported that NA receives a key 

input from the hippocampus via the mamillothalamic tract (Saunders, et al., 2005). 

We find that patients’ mean FA value in this region, 0.3310 (SD 0.0522), is 0.0285 

lower than that of controls, 0.3595 (SD 0.0408) (P=0.009). The reduced FA value 

in this region points towards possible neural basis underlying memory deficits 

found not uncommonly in schizophrenia (Barch, Csernansky, Conturo, & Snyder, 
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2002; J. Hall, Harris, McKirdy, Johnstone, & Lawrie, 2007; Herbener, 2008; 

Lysaker, Bell, Greig, & Bryson, 2000). 

 

Similarly, the subcallosal gyrus is part of corpus callosum and located immediately 

anterior to the anterior commissure of the brain. It is responsible for left and right 

prefrontal interhemispheric communication (Belin, Faure, & Mayer, 2008; Milner, 

1982; Milner & Lines, 1982).Thus, the observation that patients’ mean FA value in 

this region, 0.2319 (SD 0.1032), is 0. 0521 lower than that of controls 0.2840 (SD 

0.0757) (P=0.013), is probably related to poorer connectivity between cerebral 

hemispheres. Disruption of white matter integrity involving this region may affect 

the information processing between the cerebral cortices and underlie information 

processing deficits implicated in the origin of symptoms such as delusions and 

hallucinations (Doty, 1989; Wright, et al., 1995). 

 

 

Figure 4.10 Selected brain structures 
(a) CG (Cingulate Gyrus) (b) ThLD_left (Thalamus: Lateral dorsal nucleus, in left 
hemisphere) and ThNA_right (Thalamus: Anterior nucleus, in right) (c) ScG_left (Subcallosal 
gyrus, in left hemisphere). Note the images are displayed in the neuroradiology convention, 
i.e., the left side on the image shows the right side of the brain. 
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Model Construction 

 

In order to combine with other neurocognitive tests, we use cases that complete all 

tests to construct our models. The total number of cases is 84, including 59 patients 

and 25 controls. Hence the prevalence probability of patient is 70.2% in our study 

sample space. 

 

 

Figure 4.11 Bayesian network model on image features 

 

Based on the 4 selected features, we construct a Bayesian Network classification 

model. This model (as illustrated in Figure 4.11) degenerates to a Naïve Bayesian 

network, since selected features are conditionally independent to each other on 

pt_ctrl target node. 

 

Validation of the model is done by using the 10-fold cross-validation method. 

From the validation results (Table 4.4, Table 4.5, Table 4.6), we can see that 46 

cases are correctly identified as patient, and 19 cases are correctly identified as 

control. The total number of correctly identified instances is 65. The accuracy is 
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77.4%, which is higher than the prior probability of patient. That shows image 

features are good predictors even without clinical data.  

 

Table 4.4 Confusion matrix of model on image features 

Test Outcome   

Patient (Positive) Control (Negative) ← Classified As   

46 (TP) 13 (FN) Patient (59) 

6 (FP) 19 (TN) Control (25) 

Ground Truth 

 

 

Table 4.5 Detailed accuracy by class (image features) 

TP Rate 

(Sensitivity) 

FP Rate 

(Type I Error) 

TN Rate 

(Specificity) 

FN Rate 

(Type II Error) 

Class 

0.78 0.24 0.76 0.22 Patient 

0.76  0.22 0.78 0.24 Control 

 

 

  Table 4.6 Summary of model (image features) 

Item Value 

Total Number of Instances               84      

Correctly Classified Instances           65                

Incorrectly Classified Instances 19 

Accuracy 77.4% 

Error Rate 22.6% 

True Positive Rate (Patient classified as patient) 78% 

Type I Error Rate (Control classified as patient) 24% 

True Negative Rate (Control classified as control) 76% 

Type II Error Rate (Patient classified as control) 22% 
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For the identification of patient, the True Positive rate is 78%, and the True 

Negative rate is 76%. This shows imaging features have balanced abilities in 

identifying patients and controls. We will enhance this model by adding other 

features in the next chapter. 

 

4.5 Conclusion 

 

In order to determine the brain structure abnormalities, patients and controls are 

scanned to obtain their brain images in structural MRI and DTI formats. We 

developed an image analysis algorithm to automatically place 144 ROIs on the 

brain images. The ROIs are used to quantify the FA values. 

 

Our image analysis algorithm has the following advantages over the conventional 

manual ROI placement: 

• It introduces a systematic way for ROI selection. All ROIs are placed 

automatically after the brain atlas is registered to the patient’s brain images. 

Human errors in placing ROIs are avoided. It also increases the consistency 

of image data quantification among multiple researchers and multiple 

centers. 

• The results are more consistent among different studies, since the ROI 

placement is done by a computer program that implements our method. 

• With the help of brain atlas, tiny structures such as subthalamic nucleus, 

which are usually difficult to identify from the image, can also be 

quantified.   
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• Diffusion Tensor Imaging (DTI) images can be warped to the Talairach 

space, image values can be compared among studies, and averaging of 

values in the Talairach space can be also performed. 

• Large amount of ROIs and studies can be performed automatically, which 

is usually difficult for manual methods. This makes studies involving large 

amount of patients/controls more feasible. 

 

We first apply this technique to examine the brain structure differences between 

schizophrenia patients with and without passivity (K. Sim, et al., 2009), and then 

use it in our study to extract 144 image features for all patients and controls.  

 

Four significant features are chosen from the 144 features using a feature selection 

algorithm, namely, CG, ScG_left, ThLD_left and ThNA_right. Reduced FA values 

are found in the above 4 brain structures in schizophrenia patients compared to 

healthy controls. From the anatomy point of view, cingulate gyrus is important for 

attentional tasks, LD thalamus for higher order somatosensory and visuo-spatial 

functions and anterior nuclei for connections with limbic regions (memory, 

emotional memory etc) and subcallosal gyrus is part of corpus callosum (which 

plays a role in the left and right prefrontal interhemispheric communication).  

 

We build a Bayesian Network classification model on these image features alone. 

A higher accuracy (77.4%) is achieved compared to the baseline model accuracy 

(70.2%) as described in Chapter 3. Based on this result, the image features appear 

to be promising factors in schizophrenia classification. 
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In summary, an image analysis algorithm is developed to extract features (FA 

values in brain structures) from the brain images. The image features are used as 

objective and quantifiable criteria in building the schizophrenia classification 

model. 

 

In the next chapter, we will use the image features together with the 

neuroinformatics data to construct more comprehensive models. 
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Chapter 5  

Neuroinformatics and Neuroimaging Data Based 

Modeling 

 

In chapters 3 and 4, we created some schizophrenia models based on 

neuroinformatics and neuroimaging data separately. In this chapter, we will 

combine them, and build more comprehensive models. 

 

5.1 Model Construction 

 

We have already identified the 8 significant features (Table 5.1). They break down 

into: 1 feature from the clinical data, 3 features from different neurocognitive tests, 

and 4 from neuroimaging. 

 

Various models have already been created based on different combinations of 

neuroinformatics features. Now, we add the neuroimaging features, and build more 

comprehensive models by using the same approach as discussed in chapters 3 and 

chapter 4. The complete list of models and their characteristics (including total 

number of correctly classified cases, total number of wrongly classified cases, 

model accuracy, sensitivity, specificity and Type I and Type II errors) are 

summarized in Table 5.2.  
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Table 5.1 Significant neuroinformatics and neuroimaging features 

Category Feature 

Clinical Data 1) fam_hx 

RPM 2) RPM_raw 

WAIS 3) DigitSpan_bwd 

Neuroinfomatics 

Neurocognitive Tests  

 

 WCST 4) PersResponses_raw 

Neuroimaging 5) CG 

6) ScG_left 

7) ThLD_left 

8) ThNA_right 

 

The top half of the Table 5.2 contains 8 models, all of them are built on clinical 

information (fam_hx: family history of psychiatric disease) and neurocognitive 

tests results. Their accuracies range from 70.2% to 85.7%. The first model is the 

baseline model which contains only one factor (fam_hx), and it has the lowest 

accuracy among all models (70.2%). It also has the highest Type I error (100%), 

which means it is completely biased to patient - all cases are classified as patient. It 

is used as a starting point, and we gradually enhance it by adding more and more 

neurocognitive tests. 
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Table 5.2 Summary of models on neuroinformatics and neuroimaging 

Model

→ 

 C C+R C+WA C+WC C+R+

WA 

C+R+

WC 

C+WA

+WC 

C+R+

WA+

WC 

Nr              84 84 84 84 84 84 84 84 

Cor            59 69 67 63 71 70 71 72 

Incor  0 15 17 21 13 14 13 12 

Acc  70.2% 82.1% 79.8% 75.0% 84.5% 83.3% 84.5% 85.7% 

Err  29.8% 17.9% 20.2% 25.0% 15.5% 16.7% 15.5% 14.3% 

Sen  100.0% 83.1% 72.9% 66.1% 88.1% 86.4% 81.4% 91.5% 

Type I   100.0% 20.0% 4.0% 4.0% 24.0% 24.0% 8.0% 28.0% 

Spe  0.0% 80.0% 96.0% 96.0% 76.0% 76.0% 92.0% 72.0% 

Type II   0.0% 16.9% 27.1% 33.9% 11.9% 13.6% 18.6% 8.5% 

Model

→ 

I I+C I+C+R I+C+

WA 

I+C+

WC 

I+C+R

+WA 

I+C+R

+WC 

I+C+

WA+

WC 

I+C+R

+WA+

WC 

Nr             84   84 84 84 84 84 84 84 84 

Cor           65   71 74 74 72 73 72 74 75 

Incor 19 13 10 10 12 11 12 10 9 

Acc 77.4% 84.5% 88.1% 88.1% 85.7% 86.9% 85.7% 88.1% 89.3% 

Err 22.6% 15.5% 11.9% 11.9% 14.3% 13.1% 14.3% 11.9% 10.7% 

Sen 78% 84.7% 98.3% 89.8% 88.1% 91.5% 93.2% 91.5% 93.2% 

Type I  24% 16.0% 36.0% 16.0% 20.0% 24.0% 32.0% 20.0% 20.0% 

Spe 76% 84.0% 64.0% 84.0% 80.0% 76.0% 68.0% 80.0% 80.0% 

Type II  22% 15.3% 1.7% 10.2% 11.9% 8.5% 6.8% 8.5% 6.8% 

Abbreviations: Nr, Total Number of Instances; Cor, Correctly Classified Instances; Incor, Incorrectly 
Classified Instances; Acc, Accuracy; Err, Error Rate; Sen, Sensitivity; TPR, True Positive Rate (Patient 
classified as patient); Type I, Type I Error Rate (Control classified as patient); Spe, Specificity, TNR, True 
Negative Rate (Control classified as control); Type II, Type II Error Rate (Patient classified as control); C, 
Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test; I, Imaging  
 

The bottom half of the table contains 9 models. The first one (model I) is built on 

imaging features only (as discussed in Chapter 4). The rest of the 8 models are 

built on clinical features and various combinations of neurocognitive tests results 
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plus the neuroimaging features. There is a one to one relationship between the top 

half of the table and the bottom half, except for model I, namely, a column in the 

bottom half is the result of a column in the top half plus the imaging features. 

 

We can see that, starting from model I+C, till model I+C+R+WA+WC, all models 

with imaging features plus some other features can achieve accuracy of more than 

about 85%. This is a big improvement compared to the baseline model (70.2%). 

All sensitivities are improved too. The lowest sensitivity (84.7%) is observed at 

model I+C, which is still reasonably good; the rest are close to or higher than 90%. 

This makes these models good in predicting schizophrenia. On the other hand, 

specificities range from 64% to 84%, which shows a generally lower ability in 

detecting controls than patients. 

 

Among all models, the most comprehensive one is the model with all the 8 

significant features, fam_hx, RPM_raw, DigitSpan_bwd, PersResponses_raw, CG, 

ScG_left, ThLD_left, and ThNA_right, which has the highest accuracy of 89.3%. 

This model is illustrated in Figure 5.1. As we can see, it has the form of Naive 

Bayesian Network with one target node (pt_ctrl) and 8 child nodes, each 

representing a selected feature. All features are independent to each other. 

 



 126

 

Figure 5.1 The Most comprehensive model on all information 

 

5.2 Results and Conclusions 

 

We have constructed 17 models on different combinations of input features. Since 

clinical information is considered to be always available (our assumption), we use 

it as the baseline model for comparing model accuracies. 

 

Figure 5.2 shows the accuracies of all models. Most models can achieve accuracy 

from about 80% to 90%, which is about 10%-20% gain compared to the baseline 

model (model with family history only). We also notice that in general, the 

accuracy has an increasing trend by adding more and more tests. 

 

The model on image features alone is a special case. Its accuracy is 77.4%. It is 

used to demonstrate the usefulness of neuroimaging in schizophrenia classification. 
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When combined with clinical information, the accuracy increased to 84.5%, a gain 

of 14.3% compared to the baseline model. 

 

The other models have accuracy of less than 80%. They are models on clinical data 

plus a single neurocognitive test (WAIS or WCST). This shows that single 

neurocognitive test plus clinical information (without imaging) are not sufficient to 

get good diagnosis accuracy. 

 

  

Figure 5.2 Accuracy chart of all models 
Accuracy of the baseline model is 70.2%. The most comprehensive model with all features has the 
highest accuracy of 89.3%. Most other models have accuracy of about 80-90%. Abbreviations: I, 
Imaging; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test  
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Type I Error (Figure 5.3) of baseline model (clinical data only) is 100%, meaning 

all cases are classified as patient. That restricts its usefulness in practice. Other 

models have Type I error below 30%, except for model I+C+R, and model 

I+C+R+WC, whose type I error reaches 36% and 32% respectively. Almost all 

Type II errors are below 30%, with an exception of model C+WC, whose Type II 

error reaches 33.9%. 
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Figure 5.3 Type I and II error chart of all models 
Abbreviations: I, Imaging; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test 

 

Effect of Neuroimaging 

 

We examine the effect of neuroimaging, by comparing model accuracy with and 

without neuroimaging features (Figure 5.4). We notice a substantial increment in 
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accuracy (from 6.0% to 14.3%) is obtained when adding neuroimaging feature into 

any models with none or single neurocognitive test only. However, if a model 

already contains multiple neurocognitive tests, the accuracy gain is only marginal 

(2.4% to 3.6%).  
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Figure 5.4 Accuracy (effect of neuroimaging) 
Abbreviations: I, Imaging; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test 

 

Effect of RPM Test 

 

We also examine the effect of RPM test by comparing the accuracy of models with 

and without RPM (Figure 5.5). Adding RPM test to existing models that contain 

none or only one neurocognitive test (mode C, C+WA, C+WC), the accuracy gain 

is substantial (4.7% to 11.9%). This is similar to what we have observed in 

neuroimaging effect. 
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On the other hand, if existing model already contains two other neurocognitive 

tests (WA+WC), the accuracy gain is merely 1.2%.  

 

For models that already contain neuroimaging features, adding RPM doesn’t 

increase their accuracy substantially. For instance, adding RPM to model I+C+WA 

doesn’t increase the accuracy at all. For model I+C+WA, adding RPM test even 

decreases its accuracy marginally by 1.2%. Since the validation is done on 84 

cases, 1.2% decreasing means just 1 case difference (1/84 = 1.2%). This 

fluctuation may be caused by the small number of validation cases. In this situation, 

RPM test's additional contribution to the classification accuracy is already small; 

when the number of cases is small, the irregularity of the sample data may affect a 

small number (e.g., 1 or 2 cases) of classification results, and cause the decreased 

accuracy. In other words, the model generated from the training cases represents a 

classification rule for the objective of optimal probability of Bayesian Network 

structure given the current training dataset. However the test subset of the sample 

data may not always follow the distribution pattern that the optimal model required, 

hence the model accuracy can be reduced by a small amount sometimes. 
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Accuracy (Effect of RPM)
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Figure 5.5 Accuracy (effect of RPM test) 
Abbreviations: I, Imaging; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test 

 

Effect of WAIS Test 

 

Similar accuracy change effect can be observed in the case of WAIS test (Figure 

5.6). Adding WAIS test into models with none or one neurocognitive test (WCST) 

does boost the accuracy substantially by 9.6% and 9.5% respectively. For the rest 

of the models, it doesn’t contribute much to models accuracy: accuracy gains are 

2.4%-3.6%. 

 

In the worst situation (for model I+C+R), the accuracy even drops 1.2%. Since the 

validation is done on 84 cases, 1.2% decreasing means just 1 case difference. This 

fluctuation may be caused by the small number of validation cases as discussed 

earlier. 
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Accuracy (Effect of WAIS)
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Figure 5.6 Accuracy (effect of WAIS test) 
Abbreviations: I, Imaging; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test 

 

Effect of WCST 

 

The contribution of WCST is the smallest among all 3 other tests (RPM, WAIS, 

neuroimaging) (Figure 5.7). It only increases the accuracy by 4.8% and 4.7% for 

model C and model C+WA, respectively.  

 

For the rest of the models, WCST doesn’t contribute much, or even decreases the 

model accuracy. Again, this fluctuation may be caused by the small number of 

validation cases as discussed earlier. 
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Accuracy (Effect of WCST)
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Figure 5.7 Accuracy (effect of WCST test) 
Abbreviations: I, Imaging; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, WCST Test 

 

In summary, combined schizophrenia models are constructed based on 

neuroinformatics and neuroimaging data. Models with two or more neurocognitive 

tests or the neuroimaging data can achieve classification accuracy at about 80%-

90%, an increase of 10%-20% compared to the baseline model (with clinical 

information only). 

 

In the next chapter, we will use the models that we have already built to develop a 

decision support system for schizophrenia diagnosis. 
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Chapter 6  

Decision Support System for Schizophrenia 

 

The models we have built in previous chapters are based on clinical information 

(fam_hx), neurocognitive tests (RPM, WAIS, WCST), and neuroimaging.  

 

All the features selected for model construction are objective. They are also 

quantifiable (their values are integer numbers or real numbers), except for fam_hx 

(which takes three possible nominal values: Nil, 1st degree and 2nd degree). Hence 

they are more reliable than the subjective criteria used in DSM-IV and ICD-10.  

 

In this chapter, we will develop a schizophrenia diagnosis decision support system 

based on the features we selected and various models we constructed. 

 

6.1 Decision Support System 

 

In order to augment the exiting standard diagnosis and provide a diagnosis result 

based on objective criteria that they are lacking of, we decide to construct a 

decision support system by combining and using all schizophrenia models in one 

integrated system. 

  



 135

In previous chapters, we have built some 17 models (see Table 5.2). Different 

model can be applied at different situation depending on availability of the test 

results. For example, when patient clinical information is only available, model C 

can be applied. After the person does the WAIS test, model C+WA can be applied 

to generate the classification results.  

 

All models data are stored in Bayesian Interchange Format (BIF) (Cozman, 1998) 

files. A BIF file is a text file using XML schema, which stores all the nodes 

information, including their names, possible nominal values, and ranges of 

numeric values. It also stores the relationship (arcs) between nodes, and the 

conditional probability tables for all nodes.  

 

We develop computer software to provide the decision support in schizophrenia 

diagnosis based on all models. The decision support system consists of 4 

components: a model repository, a data input GUI, a decision support engine, and a 

report display GUI. A block diagram of the system is shown in Figure 6.1. 
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Figure 6.1 Decision support system block diagram 

 

The Model Repository: This component stores all Bayesian Network models, and 

their properties, as well as some other information like the cost for the tests. We 

have collected the cost information for various neurocognitive tests in previous 

chapter; we compile them together with the cost information for the neuroimaging 

(Table 6.1). The cost information will be used by the decision support engine to 

calculate the cost effectiveness of models. The model repository provides 

accessing functions to models and their properties. 
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Table 6.1 Cost of tests 

Cost Test Time Needed 

Subsidized Rate Private Rate 

RPM 30 min – 1 hour $130* $400* 

WAIS-III 15 min – 30 min $65 $240 

CPT-II 15 min – 30 min $65^ $200^ 

WCST 15 min - 20 min $65^ $200^ 

Neuroimaging 

(MRI+DTI) 

30 min – 1 hour $220 $457 

Note: * Estimated; ^Estimated by dividing total cost of CPT and WCST by 2. 

 

The Data Input Component: It is a simple Graphical User Interface (GUI) that 

allows the user to input patient’s clinical information, various neurocognitive tests 

results, and neuroimaging results.  

 

The Decision Support Engine: This component receives the user input data, and 

automatically chooses an appropriate Bayesian network model from the Model 

Repository, depending on the availability of different types of data. (For example, 

if the RPM test and WAIS test results are available, the model C+R+WA will be 

chosen.) Then the model is queried to generate the probability distribution of the 

input case by using Equation (6-1) (because all our models are in the form of 

Naïve Bayesian Network). The classification result is calculated using Equation (6-

2).  In addition, the decision support engine also searches in the model repository 

for other models that may generate higher accuracy.  

 

∏
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where Pdist is the distribution probability of patient or control; v takes value of 

“Patient” or “Control”; F is a chance node (factor) in the Naïve Bayesian network 

(other than the target); u is the possible value of a chance node; n is the number of 

other chance nodes. 

 

)(maxarg_ vPctrlpt dist
v

classify =       (6.2) 

where pt_ctrlclassify is the classification result of a case: either “Patient” or 

“Control”; Pdist is the distribution probability of patient or control; v takes value of 

“Patient” or “Control”. 

 

 

Figure 6.2 Component diagram of decision support system 

 

Figure 6.2 illustrates the component diagram for the decision support engine. The 

target node is the classification result, pt_ctrl, which is related to two types of data, 

neuroinformatics data and neuroimaging data. More specifically, chance node 
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pt_ctrl is related to chance node fam_hx, RPM_raw, DigitSpan_bwd and 

PersResponse_raw (in the neuroinformatics domain), and CG, ScG_left, 

ThLD_left, ThNA_right (in the neuroimaging domain). There are four decision 

nodes (RPM Test, WAIS Test, WCST Test and Neuroimaging Test). Each 

generates it respective test results (chance nodes). The value node represents the 

classification accuracy of the specific Bayesian Network model used in the 

classification for a given combination of input data. For example, when only RPM 

test is done, model C+R will be used for classification, and hence the value node, 

classification accuracy takes the value of accuracy of model C+R. 

 

We describe the algorithm for searching suggested models (with further tests) that 

have higher accuracy than any given model as follows: 

 



 140

Model searching algorithm (pseudo code) 

 // ---------------------------------------------- 

 // Find suggested models to improve the accuracy 

 // Input parameter: M0: the given model 

 // Output: a list of suggested models 

 // ---------------------------------------------- 

 create an empty list for the suggested models 

 FOR each model M in the model repository 

  check the tests contained in existing model M0 

  check the tests contained in existing model M 

  compare the model M with existing model M0  

  IF M contains one more test than M0 THEN 

   compare their classification accuracies 

   IF accuracy of M is greater than that of M0 THEN 

    add M into the suggested model list 

   END IF 

  END IF 

 END FOR 

 RETURN the suggested model list 

 

The Report Display Component: This is a simple Graphical User Interface (GUI) 

to display the report generated by the decision support engine. It also provides a 

save function allowing the user to save the report in a text file, and a print function 

allowing the user to print a hard copy report. 
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6.2 Results 

6.2.1 Decision Support Flow Charts 

 

Based on all schizophrenia classification models, their accuracies, their tests 

included, and relationships between them, we make a decision support flow chart 

(Figure 6.3) that can help clinicians to decide what test to choose in order to 

increase the diagnosis accuracy in various situations.  

 

In the flow chart, a circle represents a model; the size of the circle represents its 

accuracy: the larger the size, the higher the accuracy. An arrow represents a test 

with different colors representing different tests: brown for RPM, green for WAIS, 

blue for WCST and pink for Imaging.  

 

Models are arranged in 5 different layers. The “Baseline” layer contains model C, 

which does not include any test. The “1 Test” layer contains models with any 

single test, namely models C+R, C+WA, C+WC and C+I. The “2 Tests” layer 

contains models with any combinations of two tests, for example C+R+WA. The 

“3 Tests” layer contains models with any combinations of 3 tests such as model 

C+R+WA+WC. Finally the “4 Tests” layer contains the most comprehensive 

model I+C+R+WA+WC (which has all 4 tests: 3 neurocognitive tests and the 

neuroimaging test). 
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In each layer, models are sorted by accuracy from left to right. For example, at "1 

Tests" layer, models C+WC (75%), C+WA (79.8%), C+R (82.1%) and I+C 

(84.5%) are arranged from the lowest accuracy to the highest accuracy. 

 

 

Figure 6.3 Decision support flow chart (strategy: highest accuracy gain) 
Circles represent models, with size representing accuracy. Models are arranged in layers 
according to the number of tests (baseline: 0 test, other layers: 1 to 4 tests) they contain, and 
they are sorted by accuracy in each layer. Arrows of different colors represent different tests. 
This flow chart helps clinicians to choose the best test in different situations by following the 
thick arrows. 
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Starting from any model, if a test is done, it will flow to a new model along the 

arrow representing that test. For example, at model C+R, if test WCST is done, it 

will flow to model C+R+WC, by following the blue arrow (representing WCST 

test).  

 

An arrow of thick line represents the locally best choice test (meaning it leads to a 

model with highest accuracy gain). For example, if a person has already done the 

RPM test, then the clinician can choose the next test from WAIS, WCST and 

Imaging. In the flow chart, we can see that starting from model C+R (accuracy 

82.1%), there are three outgoing arrows pointing out to other models. The best 

choice is the arrow with thick line, in this case, the pink colored arrow, which 

represents Imaging Test. That means, the Imaging Test should be chosen as the 

next test. After the Imaging Test, the classification accuracy will become 88.1% 

(model I+C+R). 

 

If a model has two (or more) thick arrows pointing out, it means doing these two 

tests will have the same accuracy gain. For example, from model I+C, a brown 

arrow (representing RPM test) and green arrow (WAIS test) are both in thick line. 

That means, doing these two tests will lead to two models (model I+C+R, and 

model I+C+WA) with same accuracy (88.1%).  

 

An arrow with dashed line represents a test which is not recommended (meaning it 

does not increase the accuracy at all). For example, from model I+C+R (accuracy 

88.1%), doing test WCST (blue arrow) or WAIS (green arrow) leads to new 

models with lower accuracy, hence they are not suggested. 
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In addition, this flow chart can also be used by clinicians to choose combinations 

of multiple tests directly since it give the clinicians a global view of all possible 

tests. For example, if clinicians want to do two tests, they can immediately find the 

best combinations (model I+C+R, and model I+C+WA) from the "2 Tests" layer. 

Another example is that if the clinicians  want to find out what combinations of 

tests can give more than 88% of accuracy, they can directly locate model I+C+R, 

I+C+WA, I+C+WA+WC, and I+C+R+WA+WC from the chart by looking at 

areas with large circles. 

 

Although from the baseline model C (accuracy 70.2%) to the most comprehensive 

model I+C+R+WA+WC (accuracy 89.3%), the accuracy increment is at 

substantial level of 19.1%, this increment is not always noticeable for each test 

added. For example, from model C+R+WC (accuracy 83.3%), to model 

I+C+R+WC (accuracy 85.7%), the accuracy increment is only 2.4% by adding the 

imaging test. In such a case with small steps of accuracy increment, clinicians 

should consider the effectiveness of the test recommended in the flow chart. 

 

We also make another Decision Support Flow Chart (Figure 6.4) based on a 

different strategy. We choose the best further test by selecting the test that has the 

highest cost effectiveness. Cost effectiveness (CE) is a measurement of a test. It is 

defined as accuracy gain from a model to new model (in terms of percentage) 

divided by the cost of the additional test that the new mode has. Throughout the 

study, the private rate (non-subsidized) costs are used for the calculation. 
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where CEt,m is the Cost Effectiveness of test t from model m; Accm is the accuracy 

of model m, Accm+t is the accuracy of another model m+t (a model with additional 

test t), and Costt is the cost of test t. 

 

The unit of Cost Effectiveness is percent/$. For example a Cost Effectiveness of 

0.02%/$ means, for every dollar ($) spent on the test, an accuracy gain of 0.02% 

can be achieved. 

 

A more meaningful measurement is Relative Cost, which is defined as the 

reciprocal of Cost Effectiveness: 
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where RCt,m is the Relative Cost of test t from model m; CEt,m is the Cost 

Effectiveness of test t from model m; Accm is the accuracy of model m, Accm+t is 

the accuracy of another model m+t (a model with additional test t), and Costt is the 

cost of test t. 

 

The unit of Relative Cost is $/percent. It can be interpreted as: for each percent of 

accuracy gain, how much money is spent. In the decision support flow chart, the 

Relative Cost is also displayed along the thick arrows (the most cost effective 

choice). 
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Figure 6.4 Decision support flow chart (strategy: highest cost effectiveness) 
Circles represent models, with size representing accuracy. Models are arranged in layers 
according to the number of tests (baseline: 0 test, other layers: 1 to 4 tests) they contain, and 
they are sorted by accuracy in each layer. Arrows of different colors represent different tests. 
The number along a thick arrow is the relative cost, cost per percent of accuracy gain. This 
flow chart helps clinicians to choose the most cost effective test in different situations by 
following the thick arrows. 
 

The cost effectiveness based flow chart helps clinicians to select a suitable test at 

situations when the cost is a concern. For example, from model C+WC, the most 

cost effective test is WAIS, which flows to model C+WA+WC. A 9.5% of 

accuracy gain (from 75% to 84.5%) is achieved, and the relative cost is $25/pct. 
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Compared to the best choice (Imaging test) from previous flow chart (on strategy 

of highest accuracy gain), a different decision (WAIS test) is suggested. 

 

However, even the flow chart can recommend a most cost effective test among all 

possible further tests for each step theoretically; the clinicians shall also consider 

the absolute accuracy increment before a test is performed. For example model 

C+WA+WC (accuracy 84.5%), the flow chart recommends the imaging test which 

leads to model I+C+WA+WC (accuracy 88.1%), but the accuracy increment is 

3.6% only. Clinicians shall make decision on if such an increment is practical 

useful according to their needs. 

 

In summary, the decision support flow charts provide useful tools for clinicians in 

selecting suitable tests on patients after classification models are validated in large 

scale trials. 

 

6.2.2 Decision Support System Software 

 
We develop the Decision Support System software in pure Java programming 

language. Java Swing is used to build the GUI part. We use the Weka library (Ver 

3.4.13, University of Waikato, New Zealand) to perform functions such as 

Bayesian Network model loading, and instance classification. 
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Figure 6.5 Decision support system user input GUI 

  

We have tested run the software on Window XP platform. Figure 6.5 is a screen 

capture of the data input GUI. Users can select family history from a dropdown list. 

Only selected data are required to be input for neurocognitive tests, and 

neuroimaging test. If a test is not done, the relevant fields can be left blank. The 

Reset button is used to clear the user’s input. 
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Figure 6.6 Report with classification results and suggested further tests  

 

After inputting necessary information from the Data Input GUI, the user clicks the 

Query button. The Decision Support Engine uses the user input data to select a 

suitable schizophrenia classification model to use. Then the selected Bayesian 
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Network model is used to classify the user’s case. A report based on the 

classification results will be generated and shown to the user. An example of a 

report is shown as in Figure 6.6. Along with the classification result (in this case, a 

normal control) and the probability distribution, the decision support system shows 

three suggested further tests (RPM, WCST and Imaging) that will increase the 

classification accuracy. Finally it shows the best choices according to different 

strategies (highest accuracy gain and highest cost effectiveness).  

 

In summary, we made two Decision Support Flow Charts that helps clinicians to 

choose suitable tests in order to improve the diagnostic accuracy with or without 

the cost consideration. We also developed a decision support system. It provides 

support in schizophrenia diagnosis by using objective criteria, such as family 

history and various quantifiable neurocognitive tests results, and neuroimaging 

features.  In order to achieve higher diagnosing accuracy, it also gives suggestions 

on what tests should be done, and shows their accuracy gains and cost 

effectiveness. 

 

6.3 Performance of Decision Support System 

 

We estimate the overall performance of the decision support system. We use 

average accuracy to represent the accuracy of the decision support system, based 

on the assumption that all models have the same opportunity to be applied. That is 

because all neurocognitive tests and neuroimaging tests are independent and we 

assume there is no preference in selecting any tests. Hence, we define the overall 

accuracy (Accoverall) as the mean accuracy of all models used in the system. 
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N

Acc
Acc m

m

overall

∑
=        (6.5) 

 

where Accm is a model’s accuracy; N is the number of models. 

 

Since our decision support system uses 16 models (Acc16) (The 16 models come 

from clinical data plus all combinations of 4 independent tests, i.e., 3 

neurocognitive tests and 1 neuroimaging test,  24=16). The overall accuracy 

Accoverall is calculated as: 

 

Accoverall = Acc16 = 83.8% 

 

Model C takes into account of clinical information only (family history). As we 

have pointed out previously, this model classifies all cases as patients, and so its 

type I error is 100%. Hence it shall not be applied in practice. If we exclude this 

model from decision support system (a more realistic situation because diagnosis 

should not solely depends on family history), the mean accuracy of all the other 

models becomes 84.8%.  

 

Accoverall = Acc15 = 84.8% 

 

In summary, a schizophrenia decision support system is developed by using all 

models we constructed. The models are based on subjective criteria, such as family 

history of psychiatric disease, neurocognitive tests results, and neuroimaging 
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results. The performance of the decision support system can be measured by the 

overall classification accuracy.  

 

6.4 Performance of Cost Based Decision Support System 

 

Based on the private rated cost of all test (Table 6.1), the cost of all models can be 

calculated by their component individual tests. The Accuracy Gain (AccGain) is 

defined as the increased accuracy of a model compared with the baseline model 

(Model C). Relative Cost (RC) for each model is calculated as the cost of the 

model divided by the AccGain. The results are shown in the Table 6.2: 

 

Table 6.2 Accuracy and Cost of models 
 

Model

→ 

 C C+R C+WA C+WC C+R+

WA 

C+R+

WC 

C+WA

+WC 

C+R+

WA+

WC 

Acc  70.2% 82.1% 79.8% 75.0% 84.5% 83.3% 84.5% 85.7% 

AccGain   11.9% 9.6% 4.8% 14.3% 13.1% 14.3% 15.5% 

Cost   $400 $240 $200 $640 $600 $440 $840 

RC    $33.61 $25.00 $41.67 $44.76 $45.80 $30.77 $54.19 

Model

→ 

I I+C I+C+R I+C+

WA 

I+C+

WC 

I+C+R

+WA 

I+C+R

+WC 

I+C+

WA+

WC 

I+C+R

+WA+

WC 

Acc 77.4% 84.5% 88.1% 88.1% 85.7% 86.9% 85.7% 88.1% 89.3% 

AccGain 7.2% 14.3% 17.9% 17.9% 15.5% 16.7% 15.5% 17.9% 19.1% 

Cost $457 $457 $857 $697 $657 $1,097 $1,057 $897 $1,297 

RC  $63.47 $31.96 $47.88 $38.94 $42.39 $65.69 $68.19 $50.11 $67.91 

Abbreviations: Acc, Accuracy; AccGain, Accuracy Gain; RC, Relative Cost; C, Clinical Data; R, RPM Test; 
WA, WAIS Test; WC, WCST Test; I, Imaging  
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We define the overall relative cost (RCoverall) as the mean relative cost of all models 

used in the system. 

 
N

RC
RC m

m

overall

∑
=        (6.6) 

 

where RCm is a model’s relative cost; N is the number of models 

 

Since Model C’s relative cost is undefined, the overall relative cost of the decision 

support system will be consist of the rest 15 models (without Model I). 

 

RCoverall  = RC15  = $47.02/% 

 

Which means, by using the decision support system, people can expect an average 

1 percent of accuracy increase compared to the baseline model C for every $47.02 

spent on testing. 

 

The relative cost of all models and the decision support system overall is shown in 

Figure 6.7. Each dot represents a model. The red line is the overall relative cost of 

the decision support system, which is $47.02/%. From cost effectiveness point of 

view, the lower the relative cost, the better the model. We can see that although the 

most comprehensive model I+C+R+WA+WC has the highest accuracy, it almost 

has the highest relative cost $67.91/%. 
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Figure 6.7 Relative Costs of Models and Overall Relative Cost of Decision Support System 
Abbreviations: RC, Relative Cost; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, 
WCST Test; I, Imaging  
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Chapter 7  

Conclusions and Discussion 

 

Schizophrenia is a very common psychiatric disease which affects about 1% of the 

world's population. It does not only damage to the patient's health, but also is a big 

economical burden to the patient's family and the whole society. However the 

existing diagnosis of schizophrenia heavily depends on subjective criteria, such as 

family member's observation of patient's symptoms (for example, bizarre 

behaviors). There is no lab test for this disease.  

 

We aim to reveal the relationship between schizophrenia and the objective and 

quantifiable criteria from neuroinformatics and neuroimaging. 156 study subjects, 

including 92 schizophrenia patients and 64 healthy normal controls are recruited 

by our collaborating hospitals. All patients are scanned using MRI and DTI 

imaging. Some of them (84) has completed all 4 neurocognitive tests: RPM, WAIS, 

CPT and WCST. 

 

7.1 Conclusions 

7.1.1 Neuroinformatics Based Modeling 

 

Significant factors are chosen from over 50 clinical items by the feature selection 

method (Correlation-based Feature Subset). The only highly relevant (statistically 
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and clinically) factor selected is the fam_hx (family history). Based on that factor, 

a baseline Bayesian Network classification model is generated.  

 

Unlike RPM, WAIS and WCST tests, CPT test is found not contributing to the 

classification accuracy. Bayesian Network models are generated when RPM, 

WAIS and WCST tests results are included. All Bayesian Networks degenerate to 

Naive Bayesian Networks as the factors selected are conditionally independent of 

each other on the target node (pt_ctrl). Their classification accuracies range from 

about 75% to 85.7%.  

 

7.1.2 Neuroimaging Based Modeling 

 

We use the DTI imaging to study the brain white matter abnormalities of 

schizophrenia.  FA images (which measure the neural connectivity level) are 

generated based on the DTI image.  

 

We apply a method developed at Biomedical Imaging Lab, Agency for Science 

Technology, and Research to automatically place ROIs on brain images by 

registering the Talairach-Tournoux brain atlas to the structural MRI images and 

DTI images. 48 brain structures are identified. Each brain structure is divided into 

the left hemisphere, right hemisphere, and as a whole. So the FA values in 144 

ROIs (48 x 3) are quantified by their mean values, standard deviations, and 

volumes.  
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Four factors are chosen after the feature selection: CG (cingulate gyrus), ScG_left 

(left subcallosal gyrus), ThLD_left (left thalamus: lateral dorsal nucleus) and 

ThNA_right (right thalamus: anterior nucleus). The Bayesian Network 

classification model with the 4 imaging features can achieve an accuracy of 77.4%. 

 

7.1.3 Combined Model 

 

Combined models are also constructed by using neuroimaging features and 

different neurocognitive tests results together. The accuracies of all models are 

higher than 85%. Not surprisingly, the most comprehensive model consisting of 

clinical information, all 3 neurocognitive tests results and the neuroimaging 

features achieves the highest accuracy (89.3%). Compared to the baseline model 

(where no neurocognitive test and no neuroimaging are included), the accuracy 

increases by 19.1%. 

 

This proves our hypothesis that the accuracy diagnosis of schizophrenia can be 

improved by using objective and quantitative criteria from a wider spectrum of 

modalities including neuroinformatics and neuroimaging. 

 

The schizophrenia models generated in this work combine both neuroimaging 

features and neuroinformatics features, which has never been attempted before to 

our best knowledge. The most comprehensive combined model reveals and 

quantifies the relationship between schizophrenia and the following factors: 

• fam_hx 

• RPM_raw 
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• DigitSpan_bwd 

• PersResponses_raw 

• CG 

• ScG_left 

• ThLD_left 

• ThNA_right 

 

Family history of psychiatric disease (fam_hx) is one of the important factors in 

schizophrenia as reported by various studies that we mentioned earlier in this thesis; 

The deficit in eductive and reproductive functions (as assessed by RPM_raw), 

deficit in verbal working memory (as assessed by DigitSpan_bwd), undue 

perseverative responses which is caused by frontal lobe deficit (as assessed by 

PersResponses_raw), and reduced neural connectivity in cingulate gyrus (CG) (for 

attention function), subcallosal gyrus (ScG) (for left prefrontal and right prefrontal 

interhemispheric communication), and thalamus lateral dorsal nucleus (ThLD) and 

anterior nucleus (ThNA) (somatosensory and visuo-spatial functions and 

modulation of alertness) are the other significant factors associated with 

schizophrenia. 

 

Although CPT test has been done, it is found to have little relation with 

schizophrenia. This suggests that the difference in capability of attention and 

impulsivity is not significant between schizophrenia patients and normal controls 

when compared to other factors.   
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7.1.4 Significant Features 

 

From the baseline model, a feature is added to build a new model, which will 

increase the classification accuracy. We use baseline model and the new model to 

classify all 84 cases in order to have a closer look at the data pattern of the 

correctly and incorrectly classified cases. 

 

A partial classification results are shown in Table 7.1. In this table, each case is 

classified by the baseline model C and the model C+R. Column pt_ctrl is the case's 

ground truth. Column "C Predict" is the classification results of model C. Column 

"C Correct?" tells if model C classification results are correct, and so as "C+R 

Predict" and "C+R Correct?". The last column "From C to C+R" shows the 

comparison between the two models classification results. If their classification 

results are the same, the value is "Same". If model C fails to classify the case, but 

model C+R successfully classifies it, the value is "Improved". In contrast, if model 

C+R fails to classify the case, but model C successfully classifies it, the is "Worse". 

 

The comparison results are visualized in Figure 7.1. The top figure shows the 

distribution of cases in the 2D plot of fam_hx and RPM_raw feature space. Black 

circles represent correctly classified cases, and red circles represent cases that are  

classified wrongly. We notice that all failed cases fall within the zone of fam_hx = 

Nil and RPM_raw range about 45 to 60. The bottom figure shows the comparison 

of the classification results of the two models. We see that there is no improvement 

of the new model C+R when RPM_raw is below 50. However, the new model 

C+R makes many improvements when RPM_raw greater than 50.  
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RPM_raw is the number of missing patterns correctly identified by a person in the 

RPM test. It seems the score of 50 is a low limit for model C+R to work well, 

which means when RPM_raw is greater than 50, it is more useful in contributing to 

the classification of schizophrenia; below that, it is not very sensitive to the 

classification.  

 

Table 7.1 Model classification results comparison (partial) 

CDNo pt_ctrl 

C 

Predict 

C 

Correct? 

C+R 

Predict 

C+R 

Correct? 

From C to 

C+R 

1 Patient Patient Yes Patient Yes Same 

2 Patient Patient Yes Patient Yes Same 

5 Patient Patient Yes Patient Yes Same 

6 Patient Patient Yes Control No Worse 

7 Patient Patient Yes Patient Yes Same 

14 Control Patient No Patient No Same 

20 Patient Patient Yes Patient Yes Same 

21 Patient Patient Yes Patient Yes Same 

23 Control Patient No Control Yes Improved 

26 Patient Patient Yes Patient Yes Same 

32 Control Patient No Control Yes Improved 

33 Control Patient No Control Yes Improved 

34 Control Patient No Control Yes Improved 

38 Patient Patient Yes Control No Worse 

39 Control Patient No Control Yes Improved 

40 Control Patient No Control Yes Improved 

42 Patient Patient Yes Patient Yes Same 

Abbreviations: C, Clinical Data; R, RPM Test; pt_ctrl, patient or control 
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Figure 7.1 Case distribution for model C+R 
Top diagram shows if the classification result is correct. Black circle, Yes; Red circle, No; 
Bottom diagram shows the comparison of the classification results of the old model C and the 
new model C+R. Cyan circle, same result; Red downwards triangle, Worse (old model is 
correct, new model is wrong); Black upward triangle, Improved (old model is wrong, new 
model is correct); Abbreviations: C, Clinical Data; R, RPM Test;  
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Similarly, the distribution of classification results and the comparison with 

baseline model C of the model C+WA is visualized in Figure 7.2. The top diagram 

shows the classification results in the fam_hx and DigitSpan_bwd space. The 

bottom diagrams shows if the results are improved by adding WAIS test into the 

baseline model. As we can see that most wrongly classified cases are in the zone of 

fam_hx = Nil and DigitSpan_bwd score 7, 8, 9. When DigitSpan_bwd is lower 

than 7, model C+WA performs the same as model C, whereas for score higher than 

9, model C+WA outperforms model C in 8 out of 10 cases. 

 

DigitSpan_bwd is the longest of number of digits that a person can repeat correctly 

in the reverse order.  It assesses the memory capacity of a person. This score 

contributes to the model classification capability when it is blower than 7, and 

higher than 9. When it is in the mid-range of 7 to 9, its contribution is mixed. A 

total of 30 cases (16 improved and 14 worse) fall in this range. A further 

investigation of the 30 cases reveals that DigitSpan_bwd is close to but not 

significantly different (p=0.058) between the improved cases (mean 7.44, SD 

0.629) and worse cases (mean 8.0, SD 0.877).  However, by using the two-tailed 

independent t test, SpatialSpan_bwd is found to be significantly different (p=0.005) 

between them: for the improved cases, the mean score is 8.94 (SD 1.436), and for 

the worse cases, it is 7.14 (SD 1.703). This suggests SpatialSpan_bwd score 

(which assesses spatial working memory) can be a good candidate to suplement the 

DigitSpan_bwd score when it fails to work in the mid-range of 7 to 9. It is 

reasonable since both tests are for the memory capacity aspects.  
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Figure 7.2 Case distribution for model C+WA 
Top diagram shows if the classification result is correct. Black circle, Yes; Red circle, No; 
Bottom diagram shows the comparison of the classification results of the old model C and the 
new model C+WA. Cyan circle, same result; Red downwards triangle, Worse (old model is 
correct, new model is wrong); Black upward triangle, Improved (old model is wrong, new 
model is correct); Abbreviations: C, Clinical Data; WA, WAIS Test; 
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The results of model C+WC is shown in Figure 7.3. The top part is the distribution 

of correctly and wrongly classified cases in fam_hx and PersResponses_raw space. 

The bottom diagrams shows whether the results are improved by adding WCST 

test into the baseline model. Please note that for the clear visualization purpose 

only, the PersResponses_raw score is rounded to the nearest 5. Otherwise the 

indicators (circles and triangles) will be packed together along the horizontal line 

since PersResponses_raw takes different integer values close to each other, which 

prevents them from being stacked along the vertical direction.  

 

We observed that almost all wrongly classified cases (20 cases) fall in the zone of 

fam_hx = Nil and PersResponses_raw below about 30, in contrast, there are 24 

correctly identified cases in the same zone.  

 

PersResponses_raw is reported to be associated with the dysfunction of frontal 

lobe. When it is higher than 30, the model can classify cases very well. When it is 

lower than 30, the model’s performance is mixed. Further investigation (using 

independent t test) of the these subset of case (PersResponses_raw less than 30) 

doesn’t find any feature from WCST test that is able to significantly improve the 

classification accuray of this subset. 
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Figure 7.3 Case distribution for model C+WC 
Top diagram shows if the classification result is correct. Black circle, Yes; Red circle, No; 
Bottom diagram shows the comparison of the classification results of the old model C and the 
new model C+WC. Cyan circle, same result; Red downwards triangle, Worse (old model is 
correct, new model is wrong); Black upward triangle, Improved (old model is wrong, new 
model is correct); Abbreviations: C, Clinical Data; WC, WCST Test; Note: 
PersResponses_raw score is rounded to the nearest 5. 
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Results of model I+C are illustrated in Figure 7.4 and Figure 7.5. Since there are 4 

significant image features, CG, ScG_left, ThLD_left and ThNA_right, the case 

distributions are plotted in 2 separated 2D plots: one for CG and ScG_left space 

(Figure part A), the one for ThLD_left and ThNA_right (Figure part B). In each 

part of the figure, the top diagram shows the distribution of correctly and wrongly 

classified cases, whereas the bottom diagram depicts if the results are improved by 

adding imaging test into the baseline model. 

 

It is observed that wrongly classified cases are located within the zone of CG range 

about 0.25 to 0.275 and ScG_left range about 0.25 to 0.35, as well as ThLD_left 

range about 0.3 to 0.4 and ThNA_right range about 0.37 to 0.43. Outside of the 

zone, the model I+C can classify most cases correctly. 

 

Except for CG (where 0.25 to 0.275 is at about its middle range), the other 3 

ranges are close to the high end of values. When we place the same ranges in 

distribution of patients and controls (Figure 7.6), not surprisingly, we can see that 

these ranges cover the area with mostly mixed patients and controls. 

 

As we know, these 4 image features are FA values that are associated with the 

strength of neural connectivity. Lower values usually imply defects in the brain 

connections. We can see this from Figure 7.6 that lower left portions (low FA 

values) of both diagrams contain mostly patients. 

 



 167

Compared to baseline model, this model I+C outperforms by 24 improved cases, 

but underperforms by 8 worse cases (which are actually patients, but wrongly 

classified as controls, where as model C classifies them correctly as patients). A 

further investigation shows that this group of 8 patients has a mean ThLD_left 

value of 0.3625 (SD 0.0587) and a mean ThNA_right value of 0.3866 (SD 0.0252). 

They are even higher than overall mean value of all controls, ThLD_left 0.3497 

(SD 0.0857) and ThNA_right 0.3595 (SD 0.0408), although not statistically 

significantly. Not other difference between the rest patients is found, except for the 

weight. The mean weight of the 8 patients is 74.65kg (SD 16.94) is significantly 

higher than the rest patients (mean 61.25kg, SD 10.37). However no other 

literature reports a directly relationship between body weight and neural 

connectivity functions in thalamus. 

 

This observation reveals that some schizophrenia patients (8 out of 51, or 15.7% in 

our study) do not suffer from decreased FA values in the thalamic regions. It also 

shows that model I+C may not work in patients with high ThLD_left and 

ThNA_right values. 

 

In conclusion, in terms of increasing classification accuracy, RPM_raw performs 

better when it is greater than 50, when compared to less than 50. DigitSpan_bwd 

performs well when it is lower than 7 or greater than 9; and SpatialSpan_bwd score 

can suplement when DigitSpan_bwd is between 7 to 9. PersResponses_raw is more 

helpful in increasing the classification accuracy when it is higher than 30. Imaging 

features contributes more to classification accuracy, when outside the CG range of 
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about 0.25 to 0.275, ScG_left range of about 0.25 to 0.35, ThLD_left range of 

about 0.3 to 0.4 and ThNA_right range about 0.37 to 0.43.  
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Figure 7.4 Case distribution for model I+C (part A) 
Top diagram shows if the classification result is correct. Black circle, Yes; Red circle, No; 
Pink Rectangle, Range of most wrongly classified cases; Bottom diagram shows the 
comparison of the classification results of the old model C and the new model I+C. Cyan 
circle, same result; Red downwards triangle, Worse (old model is correct, new model is 
wrong); Black upward triangle, Improved (old model is wrong, new model is correct); 
Abbreviations: C, Clinical Data; I, Imaging Test; 
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Figure 7.5 Case distribution for model I+C (part B) 
Top diagram shows if the classification result is correct. Black circle, Yes; Red circle, No; 
Pink Rectangle, Range of most wrongly classified cases; Bottom diagram shows the 
comparison of the classification results of the old model C and the new model I+C. Cyan 
circle, same result; Red downwards triangle, Worse (old model is correct, new model is 
wrong); Black upward triangle, Improved (old model is wrong, new model is correct); 
Abbreviations: C, Clinical Data; I, Imaging Test; 
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Figure 7.6 Distribution of patients and controls 
Top: distribution cases in CG and ScG_left space; Bottom: distribution of cases in ThLD_left 
and ThNA_right space; Blue circle, Patient; Green circle, Control; Pink Rectangle, Range of 
most mixed patients and controls; 
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7.1.5 Decision Support System 

 

Based on all schizophrenia classification models, we make two decision support 

flow charts to choose suitable tests by using different strategies. One strategy is the 

highest accuracy gain. At each step, clinicians can follow the flow chart to choose 

the best further test that leads to a new model with the highest possible accuracy, 

regardless of the cost. Another strategy is the highest cost effectiveness. At each 

step, clinicians can follow the flow chart to choose a further test with the least cost 

for every percentage of accuracy gain. However, at some steps, adding a test can 

only achieve a small accuracy increment. For example, from model I+C+WC to 

model I+C+WA+WC, the accuracy increases from 85.7% to 88.1% by 2.4% only. 

Clinicians may need to make decision on whether such an increment is practically 

useful to their needs.  

 

The decision support system software based on all models is developed to support 

the decision making in schizophrenia diagnosis. The system will automatically 

choose an appropriate model depending on the available case data and classify a 

case as either patient or normal. Suggestions on what tests should be performed in 

order to get more accurate classification results will also be given. 

 

Unlike some existing schizophrenia decision support systems, (Razzouk, et al., 

2006) and (Yana, et al., 1997), that use patient clinical information only, our 

decision support system makes use of both neuroinformatics features and 

neuroimaging features. Since the criteria used in our decision support system are 
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objective and quantifiable, the classification result will be more reproducible and 

reliable. 

 

7.1.6 Summary 

 

In summary, schizophrenia classification models can be constructed using 

objective and quantifiable criteria from neuroinformatics and neuroimaging data. 

The most comprehensive model can achieve an accuracy of 89.3%. A decision 

support system based on these models can provide additional objective evidence to 

clinicians and augment the current diagnostic procedures.  

 

Despite the unique combination of neuroinformatics and neuroimaging data, our 

models and decision support system are still tentative and limited due to the 

relatively small sample size and types of data. For example, Type I Error, or False 

Positive Rate, is still at a noticeable 20% level even for the most comprehensive 

model including all 8 features. Further refinements need to consider by using more 

extensive clinical information, other types of neuroimaging data and biological 

information such as genetic data. 

 

7.2 Discussion 

7.2.1 Uniqueness 

 
The number of samples collected in this study is restricted by the budget because 

the data collection is very costly. For example, MRI and DTI scan costs $457 per 
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person. For a complete set of all tests (four neurocognitive tests plus 

neuroimaging), the total cost is $1,497 per person if  he/she is charged according to 

the private rate as discussed at section 3.4. This has not included the administrative 

cost yet. The actual total cost of data acquisition for this study is about $150,000. 

 

Despite that, a total of 156 study subjects are recruited. Among them, all subjects 

are scanned to acquire the MRI and DTI images, and only 89 to 95 subjects 

undergo various neurocognitive tests (see Table 3.6). Finally 84 subjects who have 

completed all neurocognitive tests and neuroimaging scans are used in our study of 

schizophrenia. 

 

To our best knowledge, this is the first project that tries to build schizophrenia 

models based on unique combination of neuroimaging and neuroinformatics data. 

Although DTI has been widely used to examine the brain white matter 

abnormalities for schizophrenia, and many qualitative results have shown brain 

white matter changes in schizophrenia, the quantitative relationship between the 

FA values in brain anatomical structures and schizophrenia has not been revealed 

yet.  

 

Furthermore, no other study has been reported to solve the non-quantifiable 

diagnosis criteria problem in the current standard diagnosis procedures. DSM-IV 

was published in 1994, and the next version DSM-V is still in the preparation stage, 

with its publication date being postponed to May 2013 as announced by American 

Psychiatric Association ("News Release," 2009). Along the way, our work shows 

interesting results and promising directions in the attempt of improving diagnosis 
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accuracy by using objective and quantitative neuroimaging and neuroinformatics 

features. 

 

7.2.2 Model Accuracies 

 

By adding a new test result to an existing model, a new model is generated. 

Usually the new model will have a higher accuracy. For example, model C+WC 

has an accuracy of 75%. After adding in WAIS test, the new model C+WA+WC 

has an accuracy of 84.5%; an accuracy gain of 9.5% is achieved. 

 

However, the following exceptions are observed: 

 

Model I+C+WA has an accuracy of 88.1%. After adding in another test result 

(WCST), it becomes model I+C+WA+WC, and the accuracy remains unchanged 

(88.1%). No accuracy gain is achieved. After adding RPM test, the model 

I+C+R+WA even has a lower accuracy (86.9%): a negative accuracy gain is 

incurred (-1.2%). New models accuracies do not increase as expected after new 

tests are added. However, the differences between the models with additional tests 

(I+C+WA+WC, I+C+R+WA) and the existing model (I+C+WA) are small: 0% 

and -1.2%, which convert to 0 or 1 case difference for the 84 training datasets. This 

fluctuation may be caused by the small number of validation cases. In this 

situations, RPM test's additional contribution to the classification accuracy is 

already small; when the number of cases is small, the irregularity of the sample 

data may affect a small number (e.g., 1 or 2 cases) of classification results, and 

cause the decreased accuracy. 
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In another case, model I+C+R has an accuracy of 88.1%. After adding in WAIS 

test, the new model I+C+R+WA has an accuracy of 86.9%, a negative accuracy 

gain is incurred (-1.2%). After adding WCST test, the new model I+C+R+WC has 

an accuracy of 85.7%, with a negative accuracy gain of -2.4%. These convert to 1 

or 2 cases difference in all the 84 training cases. The fluctuation may also be 

caused by the reasons as discussed above. 

 

7.2.3 Validation 

 

Each model is tested by using the 10-fold cross-validation when it is constructed. 

The accuracy of the model may be more optimized than the actual condition. 

External validation is required to test these models. In future, preferably the testing 

can be done in the hospital environment. 

 

However, before large scale external validation can be done, we can do some 

quasi-external validation. We call the validation as quasi-external, because the 

cases we want to evaluate are not used in model construction, but they have been 

collected for this study already. 

 

Remember that in this study, we have recruited 156 cases. Clinical information for 

all cases is collected; neuroimaging (sMRI and DTI) for all cases are also acquired. 

But not all of them have completed all four neurocognitive tests. Specifically, 93 

study subjects have completed RPM test, 95 for WAIS test, 89 for CPT test and 93 

for WCST test (Table 3.6). 84 subjects have completed all four tests, and they are 
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used to build schizophrenia models. The remaining 72 cases are not used in model 

construction. We can use part of these cases that have completed at least one 

neurocognitive test for validation purpose. 

 

We validate model C using all 72 cases. As we mentioned before, this model 

classifies all cases as patient, hence the accuracy is the same as the prevalent 

patient rate, and there is no accuracy gain.  

 

There are also 72 study subjects that completed the neuroimaging scan; they are 

used to validate model I+C. Among them, 46 are correctly classified, and so the 

accuracy is 63.9%.  

 

For the rest of the models, there are only 6 to 12 cases for validation. Their 

accuracies range from 55.6% to 100%. The results are summarized in Table 7.2 

and Figure 7.7 (Accuracy) and Figure 7.8 (Type I and Type II Error). Since the 

numbers of cases used in validation are small, the validation results are not very 

reliable. Large scale external validation is required before the decision support 

system can be applied in clinical practice. 
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Table 7.2 Summary of validation results 

Model→ C C+R C+WA C+WC C+R+W

A 

C+R+W

C 

C+WA+

WC 

C+R+W

A+WC 

Nr 72 9 12 9 9 6 9 6 

Cor  33 9 11 5 9 6 8 6 

Incor 39 0 1 4 0 0 1 0 

Accuracy 45.8% 100.0% 91.7% 55.6% 100.0% 100.0% 88.9% 100.0% 

Err 54.2% 0.0% 8.3% 44.4% 0.0% 0.0% 11.1% 0.0% 

Sen 100.0% 100.0% 88.9% 33.3% 100.0% 100.0% 83.3% 100.0% 

Type I  100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Spe 0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Type II  0.0% 0.0% 11.1% 66.7% 0.0% 0.0% 16.7% 0.0% 

Pt Nr 33 6 9 6 6 3 6 3 

Ctrl Nr 39 3 3 3 3 3 3 3 

Model→ I+C I+C+R I+C+W

A 

I+C+W

C 

I+C+R+

WA 

I+C+R+

WC 

I+C+W

A+WC 

I+C+R+

WA+W

C 

Nr 72 9 12 9 9 6 9 6 

Cor  46 8 10 5 8 5 7 5 

Incor 26 1 2 4 1 1 2 1 

Accuracy 63.9% 88.9% 83.3% 55.6% 88.9% 83.3% 77.8% 83.3% 

Err 36.1% 11.1% 16.7% 44.4% 11.1% 16.7% 22.2% 16.7% 

Sen 69.7% 100.0% 88.9% 50.0% 100.0% 100.0% 83.3% 66.7% 

Type I  41.0% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 0.0% 

Spe 59.0% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 100.0% 

Type II  30.3% 0.0% 11.1% 50.0% 0.0% 0.0% 16.7% 33.3% 

Pt Nr 33 6 9 6 6 3 6 3 

Ctrl Nr 39 3 3 3 3 3 3 3 

Abbreviations: Nr, Total Number of Instances; Cor, Correctly Classified Instances; Incor, Incorrectly 
Classified Instances; Acc, Accuracy; Err, Error Rate; Sen, Sensitivity; TPR, True Positive Rate (Patient 
classified as patient); Type I, Type I Error Rate (Control classified as patient); Spe, Specificity; TNR, True 
Negative Rate (Control classified as control); Type II, Type II Error Rate (Patient classified as control); Pt Nr, 
Patient Number; Ctrl Nr, Control Number; I, Imaging; C, Clinical Data; R, RPM Test; WA, WAIS Test; WC, 
WCST Test 
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Validation Results: Accuracy
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Figure 7.7 Validation results: accuracy 
(blue: validation accuracy, pink: model accuracy) 

 

Validation Results: Type I Error and Type II Error
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Figure 7.8 Validation results: Type I and Type II error 
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However, we can estimate the overall accuracy by combining all models as 

described previously in chapter 6. 

 

 Accoverall = Acc16 = 81.7% 

 

We notice that the accuracy is 81.7%, which is close to the result of overall 

accuracy of all models, Acc16 (83.8%) as described in chapter 6.  

 

Model C takes into account of clinical information only (family history). As we 

have pointed out previously, this model classifies all cases as patients, and its type 

I error is 100%. Hence it shall not be applied in practice. If we exclude this model 

from decision support system (a more realistic situation because diagnosis should 

not solely depend on family history), the mean accuracy of all the other models 

becomes 84.1%, which is also close to the result of Acc15 (84.8%) as described in 

chapter 6. 

 

 Accoverall = Acc15 = 84.1% 

 

In summary, we validate the decision support system using limited external cases. 

The overall classification accuracies of the decision support system are 81.7% and 

84.1%, for 16 models and 15 models respectively, which are close to the results in 

chapter 6. 
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7.2.4 Comparison with Other Decision Support Systems for Diagnosis 

 

We compare our decision support system with the other two schizophrenia 

diagnosis decision support systems that we have reviewed in chapter 2. The results 

are summarized in Table 7.3. 

 

We find that: 1) in terms of targeted diseases, our solution tries to diagnose 

schizophrenia from normal control; Razzouk’s solution is used for differentiating 

schizophrenia from a similar disorder, schizophreniform; and Yana’s solution is 

for the diagnosis of schizophrenia, mood disorders and neurosis. 2) Razzouk’s and 

Yana’s solutions rely on symptoms as diagnosis criteria which are subjective and 

not quantifiable, but our solution uses objective and quantifiable neurocognitive 

and neuroimaging tests results; 3) Numbers of cases used for building/testing of 

our solution and Yana’s solution are close to each other (84 and 100), and that of 

Razzouk’s solution is only 38; 4) Though the accuracy range of the three solutions 

overlap, our solution is at the high end. The accuracy of our most comprehensive 

model (including 8 features) is especially the highest (89.3%) among all solutions. 

 

Overall, our decision support system is the only one based on objective criteria and 

achieves the highest diagnosis accuracy. 
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Table 7.3 Comparison of decision support systems for schizophrenia diagnosis 
 

 Targeted Diseases Criteria Used Number of Cases Diagnosis Accuracy 

Our 

solution 

Schizophrenia Family history, 

neurocognitive tests 

and neuroimaging 

84 75%-89.3% 

Average: 83.8% 

Razzouk’s 

solution 

Differentiate 

schizophrenia from 

schizophreniform 

disease 

Symptoms 38 66%-82% 

Yana’s 

solution 

Schizophrenia, mood 

disorder, neurosis 

80 Yes/no questions 

including 32 

symptoms 

100 73.3% and 77.3% 

for schizophrenia by 

two different models 

 

7.2.5 Alternative Forms of Models 

 

We also attempt to construct schizophrenia models using other algorithms, such as 

Alternating Decision Tree (Freund & Mason, 1999) and Logistic Regression 

(Cessie & Houwelingen, 1992). The results for the most comprehensive model 

(model I+C+R+WA+WC) using the 2 alternative algorithms are listed and 

compared with Bayesian Network model in Table 7.4. We find that their 

accuracies are similar (83.3%) and almost as good as that of the Bayesian Network 

model (89.3%).  
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Table 7.4 Models using different algorithms 

Model→ Alternating Decision Tree 

(I+C+R+WA+WC) 

Logistic Regression 

(I+C+R+WA+WC) 

Bayesian Network 

(I+C+R+WA+WC) 

Nr 84 84 84 

Cor 70 70 75 

Incor 14 14 9 

Accuracy 83.3% 83.3% 89.3% 

Err 16.7% 16.7% 10.7% 

Sen 86.4% 86.4% 93.2% 

Type I  24.0% 24.0% 20.0% 

Spe 76.0% 76.0% 80.0% 

Type II  13.6% 13.6% 6.8% 

Abbreviations: Nr, Total Number of Instances; Cor, Correctly Classified Instances; Incor, Incorrectly 
Classified Instances; Acc, Accuracy; Err, Error Rate; Sen, TPR, True Positive Rate (Patient classified as 
patient); Type I, Type I Error Rate (Control classified as patient); Spe, TNR, True Negative Rate (Control 
classified as control); Type II, Type II Error Rate (Patient classified as control); I, Imaging; C, Clinical Data; R, 
RPM Test; WA, WAIS Test; WC, WCST Test 
 

The most comprehensive model based on all 8 significant features in the form of 

Alternating Decision Tree is illustrated in Figure 7.9. This decision tree has 4 

levels, and contains 10 decision nodes (represented by ovals) and 21 prediction 

nodes (represented by rectangles). A case follows all paths for which all decision 

nodes are true. The numeric values inside all prediction nodes it traversed are 

added up together. When it reaches the bottom of the decision tree, if the total of 

the numeric values along the traversal path is negative, this case is classified as a 

patient, otherwise, a control. 
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Figure 7.9 Alternating decision tree model on all significant features 

 

7.2.6 Decision Support 

 

The purpose of our decision support system is not meant to replace existing 

diagnosis procedures. At the current stage, it can only be used in providing 

additional support to the clinicians. The models underlying the decision support 

system need to be further verified.  

 

The cost of each neurocognitive test and the neuroimaging may vary from time to 

time, and from hospital to hospital. The suggestion on the value of tests by the 

decision support system depends on the particular actual cost of each hospital. 
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They can be adjusted as the system parameters. In addition, both model structure 

and model parameters can be enhanced when we have new training datasets.  

 

Currently in our decision support system uses 16 different models. The complexity 

of the model repository is at O(2n), where n is the number of tests. The searching 

for suitable model for classification and suggested further tests is linear, which 

means it accesses the model repository O(2n) times. With current computer storage 

capacity and computing speed, when n is small, the computing performance of the 

decision support system is still acceptable. However, at the model construction 

stage, all models are constructed manually. When n is large, constructing of 

models becomes difficult. Some automated methods for dynamic Bayesian 

Network model construction need to be applied (Poh, Fehling, & Horvitz, 1994; 

Xiang & Poh, 2005; S. S. Xu & Poh, 2002). 

 

7.2.7 Limitations of the Image Processing Algorithm 

 

There are some limitations in our ROI selection method. Firstly the resolution of 

current atlas is not high enough, e.g., typical slice distance is 2 to 5 mm in axial 

orientation. This restricts the precision of the atlas based ROI placement. This 

limitation can be overcome by a high resolution atlas which is currently under 

development. 

 

Secondly, the Fast Talairach-Transformation (FTT) method divides the whole 

brain into 24 small cuboids. Within each cuboid, linear transformation is used to 
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warp the atlas. More accurate registration method such as non-linear warping (M. 

Xu & Nowinski, 2001) should be used in order to get higher registration accuracy.  

 

Furthermore, multiple atlases such as Schaltenbrand and Wahren electronic brain 

atlas (W. L. Nowinski, et al., 1997; W. L. Nowinski, Liu, & Thirunavuukarasuu, 

2006; Schaltenbrand & Wahren, 1977) co-registered with the Talairach atlas and 

the 3-dimensional detailed brain atlas for structures, vasculatures and tracts (W.L. 

Nowinski, et al., 2009) can be used for automatically identifying more deep brain 

structures and brain connections at higher resolution. 

 

7.2.8 Limitations of Study Samples 

 

Among 156 recruited study subjects, only 84 are selected as training datasets. 72 

are not used because they do not fulfill the requirements for completion of all 

neurocognitive tests. If we can have more study subjects, we will be able to 

achieve better results, in terms of higher precision of model parameters.  

 

Furthermore, our sample data are collected in Singapore. The ethnics are mainly 

Chinese. This may restrict the generality of our findings in wider geographical and 

ethnical distribution, though our approach is general and applicable in different 

distributions. 
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7.2.9 Future Work Direction 

 

Model Maintenance: Our models are constructed from training datasets 

consisting of 84 cases. Eight features are selected in total.  The ratio of case to 

feature is about 10 to 1. In future, new datasets need to be collected in order to 

enhance the Bayesian model structures as well as parameters. And the decision 

support flow charts can be re-organized automatically according to the new 

parameters of each model. 

 

Other Imaging Features: We also found the first episode schizophrenia patients 

had reduced brain white volume in right temporal-occipital region compared to 

normal controls (Chan, et al., 2010) in another sub-project of this study. In addition 

to the FA values, the volumetric changes of brain structures shall also be included 

in the schizophrenia modeling. 

 

Genomic Data: Genetic studies have attempted to identify the genes that are 

related to certain disease. According to a review report (Lakhan, 2006), genes 

related to schizophrenia have been found in several chromosomal regions. Since 

more than 500 genes that have been reported to be associated with schizophrenia, 

effective feature selection methods such as (Fan, Poh, & Zhou, 2009) and factor 

grouping technology (Li & Leong, 2005) should be explored to improve the 

performance of Bayesian Network Models. For example, (J. Sun, Kuo, Riley, 

Kendler, & Zhao, 2008) uses a combined odds ratio method to ranks the genes and 

generates a list of highly related genes, including Disrupted-in-Schizophrenia 1 
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(DISC1), Dystrobrevin-Binding Protein 1 (DTNBP1), Catechol-O-methyl 

Transferase (COMT), etc. 

 

As such, genomic data shall also be combined with existing source of data in the 

constructing of more complete models in order to achieve better understanding of 

the pathophysiology and biological markers related to schizophrenia.  

 

Subtypes and Other Mental Diseases: We have built binary models for 

classifications of schizophrenia patients and healthy controls. The approach 

described in this thesis may also be applied to the model construction and decision 

support in classification of subtypes of schizophrenia, as well as other mental 

diseases (such as schizoaffective disorder, schizophreniform disorder, bipolar 

disorder, and unipolar depression) where neurocognitive tests and neuroimaging 

test are used. Furthermore, classifying of different mental diseases can be 

combined together to form multi-category classification models and decision 

support systems. 
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Appendix A  

Collected Data Items and Descriptions 

 

Data Item Description 

age Age 

age_onset Age of First Onset of Illness 

alcohol Alcohol Use (past or current) 

antichol Anticholinergics (Type/ Dose) 

antidepr Antidepressants (Type/ Dose) 

atypical_antipsy1 Atypical Antipsychotics 1 

atypical_antipsy2 Atypical Antipsychotics 2 

benzo Benzodiazepines (Type/ Dose) 

BlockDesign_raw Block design raw score 

BlockDesign_scaled Block design scaled score 

broug_sp Brought By (specify) 

brought Brought By 

Categories_percentiles Categories completed percentiles 

Categories_raw Categories completed raw scores 

CDNo CD no: Compact Disc Number 

Comments Comments on the data entry 

Commissions_percentile Number of Commissions percentile 

Commissions_tscore Number of Commissions t score 

ConceptualLevel Conceptual Level responses 

dadmisn Date of Admission to Ward 

depot_antipsy Depot Antipsychotics 

Detect_percentile Detectability percentile 

Detect_tscore Detectability t score 

DigitSpan_bwd Digit span backward score 

DigitSpan_fwd Digit span forward score 
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Data Item Description 

DigitSpan_total Digit span total score 

DigitSpan_total_scaled Digit span total scaled score 

dob Date of Birth 

drug_use Drug Use (past or current) 

dsmaxis1 Diagnosis Axis 1 (DSM IV) 

dup_yrs Duration of Untreated Psychosis (in years) 

dur_psyc Duration of Psychiatric Illness (years) 

edulevel Educational Level 

ethnic Ethnicity 

Failure_percentiles Failure to maintain set percentiles 

Failure_raw Failure to maintain set raw scores 

fam_hx Family History of Mental Illness 

fam_hxsp Family History of Mental Illness (specify) 

father Father's Ethnicity 

first_ep First Episode? 

gaf_disa Global Assessment of Functioning Scale - Disability 

gaf_symp Global Assessment of Functioning Scale - Symptoms 

gaf_tot Global Assessment of Functioning Scale Total 

handed Handedness 

height Height 

HitRT_percentile Hit RT percentile 

HitRT_StdError_percentile Hit RT std error percentile 

HitRT_StdError_tscore Hit RT std error t score 

HitRT_tscore Hit RT t score 

Learning_percentiles Learning to learn percentiles 

Learning_raw Learning to learn raw scores 

liv_spec Living Arrangements (specify) 

livingar Living Arrangements 

marital Marital Status 

mdstabil Mood Stabilizers (Type/ Dose) 

med_prob Medical Problems (past or current) 

med_spec Medical Problems (specify) 
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Data Item Description 

mgfather Maternal Grandfather's Ethinicity 

mgmother Maternal Grandmother's Ethnicity 

mother Mother's Ethnicity 

mri_date Date of MRI appt 

mri_done MRI Done? 

neurocog Neurocog Done? 

no_hosps Number of Hospitalizations 

nohosp12 Number of Hospitalizations in Last 12 Months 

NonpersErrors_percentiles Nonperseverative Errors percentiles 

NonpersErrors_raw Nonperseverative Errors raw scores 

NonpersErrors_standard Nonperseverative Errors standard scores 

NonpersErrors_tscores Nonperseverative Errors t scores 

occ_dad Father's Occupation 

occ_mum Mother's Occupation 

occupatn Occupation 

Omissions_percentile Number of Omissions percentile 

Omissions_tscore Number of Omissions t score 

others1 Other Medications 1 (Type/ Dose) 

others2 Other Medications 2 (Type/ Dose) 

pangps1 PANSS GPS 1 

pangps10 PANSS GPS 10 

pangps11 PANSS GPS 11 

pangps12 PANSS GPS 12 

pangps13 PANSS GPS 13 

pangps14 PANSS GPS 14 

pangps15 PANSS GPS 15 

pangps16 PANSS GPS 16 

pangps2 PANSS GPS 2 

pangps3 PANSS GPS 3 

pangps4 PANSS GPS 4 

pangps5 PANSS GPS 5 

pangps6 PANSS GPS 6 



 213

Data Item Description 

pangps7 PANSS GPS 7 

pangps8 PANSS GPS 8 

pangps9 PANSS GPS 9 

panssn1 PANSS Negative 1 

panssn2 PANSS Negative 2 

panssn3 PANSS Negative 3 

panssn4 PANSS Negative 4 

panssn5 PANSS Negative 5 

panssn6 PANSS Negative 6 

panssn7 PANSS Negative 7 

panssp1 PANSS Positive 1 

panssp2 PANSS Positive 2 

panssp3 PANSS Positive 3 

panssp4 PANSS Positive 4 

panssp5 PANSS Positive 5 

panssp6 PANSS Positive 6 

panssp7 PANSS Positive 7 

Passivity Case of Passivity? 

PercentConceptualLevel_percentiles % Conceptual Level responses percentiles 

PercentConceptualLevel_raw % Conceptual Level responses raw scores 

PercentConceptualLevel_standard % Conceptual Level responses standard scores 

PercentConceptualLevel_tscores % Conceptual Level responses t scores 

PercentErrors_percentiles % errors percentiles 

PercentErrors_raw % errors raw scores 

PercentErrors_standard % errors standard scores 

PercentErrors_tscores % errors t scores 

PercentNonpersErrors_percentiles % Nonperseverative Errors percentiles 

PercentNonpersErrors_raw % Nonperseverative Errors raw scores 

PercentNonpersErrors_standard % Nonperseverative Errors standard scores 

PercentNonpersErrors_tscores % Nonperseverative Errors t scores 

PercentPersErrors_percentiles % Perseverative Errors percentiles 

PercentPersErrors_raw % Perseverative Errors raw scores 
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Data Item Description 

PercentPersErrors_standard % Perseverative Errors standard scores 

PercentPersErrors_tscores % Perseverative Errors t scores 

PercentPersResponses_percentiles % Perseverative Responses percentiles 

PercentPersResponses_raw % Perseverative Responses raw scores 

PercentPersResponses_standard % Perseverative Responses standard scores 

PercentPersResponses_tscores % Perseverative Responses t scores 

PersErrors_percentiles Perseverative Errors percentiles 

PersErrors_raw Perseverative Errors raw scores 

PersErrors_standard Perseverative Errors standard scores 

PersErrors_tscores Perseverative Errors t scores 

Persev_percentile Perseverations percentile 

Persev_tscore Perseverations t score 

PersResponses_percentiles Perseverative Responses 

PersResponses_raw Perseverative Responses raw scores 

PersResponses_standard Perseverative Reponses standard scores 

PersResponses_tscores Perseverative Reponses t scores 

pgfather Paternal Grandfather's Ethnicity 

pgmother Paternal Grandmother's Ethnicity 

pt_ctrl Patient or Control 

Response_percentile Response Style percentile 

Response_tscore Response Style t score 

RPM_percentile Raven's percentile 

RPM_raw Raven's raw score 

sapp_tot Scale for the Assessment of Passivity Phenomena Total Score 

sapp1 

Scale for the Assessment of Passivity Phenomena 1- Made 

Emotions 

sapp1a Scale for the Assessment of Passivity Phenomena 1a - Time Frame 

sapp2 

Scale for the Assessment of Passivity Phenomena 2 - Made 

Movements 

sapp3 

Scale for the Assessment of Passivity Phenomena 3 - Made 

Impulses/ Decisions to Act 

sapp4 Scale for the Assessment of Passivity Phenomena 4 - Somatic 
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Data Item Description 

Passivity 

sex Sex 

SpatialSpan_bwd Spatial span backward raw score 

SpatialSpan_bwd_scaled Spatial span backward scaled score 

SpatialSpan_fwd Spatial span forward raw score 

SpatialSpan_fwd_scaled Spatial span forward scaled score 

SpatialSpan_total Spatial span total score 

study_no Study Number (corresponds to Excel document) 

sumd1 SUMD 1 - Awareness of Mental Disorder 

sumd2 SUMD 2 - Awareness of Consequences of Mental Disorder 

sumd3 SUMD 3 - Awareness of Effects of Medication 

sumd4 SUMD 4 - Awareness of Hallucinatory Experiences 

sumd5 SUMD 5 - Awareness of Delusions 

sumd6 SUMD 6 - Awareness of Thought Disorder 

sumd7 SUMD 7 - Awareness of Flat or Blunt Affect 

sumd8 SUMD 8 - Awareness of Anhedonia 

sumd9 SUMD 9 - Awareness of Asociality 

sur_prob Surgical Problems (past or current) 

sur_spec Surgical Problems (specify) 

tcu_reg Regularity of Outpatient Attendance in Last 12 Months 

Total_correct Total correct 

TotalErrors_percentiles Total errors percentiles 

TotalErrors_raw Total errors raw scores 

TotalErrors_standard Total errors standard scores 

TotalErrors_tscores Total errors t scores 

Trials_administered Trials administered 

Trials_percentiles Trails to complete 1st category percentile 

Trials_raw Trials to complete 1st category raw scores 

typical_antipsy1 Typical Antipsychotics 1 

typical_antipsy2 Typical Antipsychotics 2 

Variability_percentile Variability percentile 

Variability_tscore Variability t score 
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Data Item Description 

weight Weight 

whoqol1 WHO QOL-BREF 1 (World Health Organization Quality of Life) 

whoqol10 WHO QOL-BREF 10 

whoqol11 WHO QOL-BREF 11 

whoqol12 WHO QOL-BREF 12 

whoqol13 WHO QOL-BREF 13 

whoqol14 WHO QOL-BREF 14 

whoqol15 WHO QOL-BREF 15 

whoqol16 WHO QOL-BREF 16 

whoqol17 WHO QOL-BREF 17 

whoqol18 WHO QOL-BREF 18 

whoqol19 WHO QOL-BREF 19 

whoqol2 WHO QOL-BREF 2 

whoqol20 WHO QOL-BREF 20 

whoqol21 WHO QOL-BREF 21 

whoqol22 WHO QOL-BREF 22 

whoqol23 WHO QOL-BREF 23 

whoqol24 WHO QOL-BREF 24 

whoqol25 WHO QOL-BREF 25 

whoqol26 WHO QOL-BREF 26 

whoqol3 WHO QOL-BREF 3 

whoqol4 WHO QOL-BREF 4 

whoqol5 WHO QOL-BREF 5 

whoqol6 WHO QOL-BREF 6 

whoqol7 WHO QOL-BREF 7 

whoqol8 WHO QOL-BREF 8 

whoqol9 WHO QOL-BREF 9 

yrsedu Years of Education 

yrsedu_dad Years of Edu Dad 

yrsedu_mum Years of Edu Mum 
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Appendix B  

Brain Anatomical Structures and Full Names 

 

Brain Structure Full Name 

AB Amygdaloid body 

AC Anterior commissure 

AGIPL Angular gyrus and inferior parietal lobule 

BA Brodmann's area 

C Cortical areas 

CA Cerebral aqueduct 

CC Corpus callosum 

CG Cingulate gyrus 

Ci Cingulum 

Cl Claustrum 

CN Caudate nucleus 

CSTF Corticospinal tract: Face 

CSTIL Corticospinal tract: Inferior limb 

CSTMC Corticospinal tract: Motor cortex 

CSTSL Corticospinal tract: Superior limb 

Cu Cuneus 

FG Fusiform gyrus 

Fo Fornix 

FOF Fronto-occipital fasciculus 

GPL Globus pallidus lateral segment 

GPM Globus pallidus medial segment 

HG Hippocampal gyrus 

Hi Hippocampus 

HyD Hypothalamus: Dorsal nucleus 

HyL Hypothalamus: Lateral nucleus 
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Brain Structure Full Name 

HyLPO Hypothalamus: Lateral preoptic nucleus 

HyMPO Hypothalamus: Medial preoptic nucleus 

HyP Hypothalamus: Posterior nucleus 

HyPaV Hypothalamus: Paraventricular nucleus 

HyPV Hypothalamus: Periventricular nucleus 

HySO Hypothalamus: Supra-optic nucleus 

HyVM Hypothalamus: Ventromedial nucleus 

IA Interthalamic adhesion 

IFG Inferior frontal gyrus 

ILF Inferior longitudinual fasciculus 

Ins Insula 

IOG Inferior occipital gyrus 

IPL Inferior parietal lobule 

ITG Inferior temporal gyrus 

LG Lingual gyrus 

LGB Lateral geniculate body 

MB Mamillary body 

MeFG Medial frontal gyrus 

MiFG Middle frontal gyrus 

MF Major forceps 

MGB Medial geniculate body 

MiFG Middle frontal gyrus 

MOG Middle occipital gyrus 

MT Motor tract 

MTG Middle temporal gyrus 

NA Nucleus accumbens 

OC Optic chiasm 

OF Olfactory fasciculus 

OG Occipital gyri 

OlT Olfactory tract 

ON Optic nerve 

OpT Optic tract 
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Brain Structure Full Name 

ORad Optic radiations 

OrG Orbital gyri 

PB Pineal body 

PC Posterior commissure 

Pcu Precuneus 

PHG Parahippocampal gyri 

PL Paracentral lobule 

PoCG Postcentral gyrus 

PrCG Precentral gyrus 

PrCOG Precentral opercular gyrus 

Pu Putamen 

RNB Red nucleus: Bottom 

RNT Red nucleus: Top 

ScG Subcallosal gyrus 

SFG Superior frontal gyrus 

SG Straight gyrus 

SLF Superior longitudinual fasciculus 

SmG Supramarginal gyrus 

SmGIPL Supramarginal gyrus and Inferior parietal lobule 

SN Substantia nigra 

SOG Superior occipital gyrus 

SPL Superior parietal lobule 

SpR Suprapineal recess 

STG Superior temporal gyrus 

STN Subthalamic nucleus 

T Tapetum 

ThCM Thalamus: Centromedian nucleus 

ThDM Thalamus: Dorsomedial nucleus 

ThLD Thalamus: Lateral dorsal nucleus 

ThLP Thalamus: Lateral posterior nucleus 

ThNA Thalamus: Anterior nucleus 

ThO Thalamus: Other structures 
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Brain Structure Full Name 

ThP Thalamus: Pulvinar nucleus 

ThVA Thalamus: Ventral anterior nucleus 

ThVL Thalamus: Ventral lateral nucleus 

ThVPL Thalamus: Ventral posterolateral nucleus 

ThVPM Thalamus: Ventral posteromedial nucleus 

TTG Transverse temporal gyri 

U Uncus 

UF Uncinate fasciculus 

Ven Ventricle(s) 
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