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Summary 

Summary 

The use of appropriate mechanically viable scaffold and the provision of 

appropriate biophysical environment has always been one of the keys to successful 

regeneration of ligament tissues. With the aim to biomimic the native environment, an 

aligned hybrid silk fibroin (SF) scaffold and a rehabilitative mechanical conditioning 

regime were studied. It was hypothesized that the mechano-active hybrid SF scaffold 

(AL) consisting of knitted SF integrated with aligned SF electrospun fibers (AL-SFEF) 

could enhance tissue regeneration by first promoting cellular alignment, which in turn 

facilitated effective mechano-transduction when the cell-seeded AL scaffolds were 

mechanically conditioned rehabilitatively. The study was grouped into four stages: (i) 

design and development of the SF knit, (ii) development of the AL scaffold, (iii) in vitro 

characterization of the AL scaffold, and (iv) rehabilitative mechanical conditioning of 

the AL scaffolds. 

The first stage involved evaluation of the SF mechanical properties as an initial 

step to the design of the SF knit. Upon selecting the mechanical properties of the 

optimally degummed SF fibers, design of the SF knit revealed that 240 SF count was 

necessary. The designed silk knits were subsequently optimally degummed for overall 

structural/mechanical properties retention and effective sericin removal.  

The second stage then involved electrospinning SFEF meshes and physically 

incorporating them to the knitted SF. Highly aligned SFEF meshes were obtained by 

using a customized electrospinning setup. The meshes were subsequently integrated 

physically with the SF knit via sequential and localized application of methanol to 
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Summary 

produce inherent contractile forces of the SFEF meshes. Characterization of the 

completed hybrid SF scaffolds revealed that the AL scaffolds had SFEF meshes well-

integrated with the knitted structure and were mechanically superior. 

The third stage involved in vitro characterization of the AL scaffolds using rabbit 

mesenchymal stem cells (MSCs). It was shown that the AL scaffolds stimulated 

increased proliferation and collagen synthesis via providing favorable topographical 

conditions for cell and ECM alignment. Consequently, cells expressed up-regulation of 

ligament-related genes and deposition of the related ECM components, which were 

indicative of a differentiative phase. Mechanically superior AL constructs were obtained 

after 14 days of culture. These effects were intensified synergistically when the 

mechano-active AL scaffolds were dynamically cultured.  

The fourth stage involved the optimization of the mechanical stimulation approach 

to further enhance tenogenic differentiation. Dynamic conditioning was also performed 

over a longer duration to examine its prolonged effect on MSC differentiation and 

development in the AL hybrid SF scaffold. Leveled mechanical stimulation regimes 

were used to compare with the rehabilitative approach, which in contrast with level state 

stimulations, involved gradual application of dynamic cues with increasing intensities in 

terms of cyclic frequency. Through the up-regulation and deposition of ligament-related 

genes and ECM components, it was shown that the rehabilitative approach to dynamic 

conditioning AL scaffolds allowed timely introduction of appropriate stimulation 

intensities, which allowed early introduction of the synergistic mechanical cues to the 

MSC-seeded mechano-active AL scaffold to effect an accelerated tenogenic profile. 
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Chapter 1: Introduction

1.1. Background and Significance 

Ligaments are dense regular connective tissue consisting of mainly collagenous 

fibers of collagen types I and III primarily [1-3], which functions to connect one bone to 

another or at the internal organs to provide stability at joints or to maintain position of 

internal organs respectively [2]. The microscopic structure of ligaments is characterized 

by parallel collagenous fibrils, consisting of triple helix tropocollagen molecules, 

arranged in a multi-level hierarchy ranging from submicron fibrils to micron level fibers 

and to larger entities. Such an organization provides the tissues excellent axial tensile 

load bearing capacity [1, 4, 5].  

Of the various ligament tissues, the anterior cruciate ligament (ACL) is one of the 

most highly stressed structures of the body.  It plays a central role in maintaining 

physiological knee mechanics and joint stability by resisting the anterior tibial 

translation and rotational loads [6-8]. While the ACL functions optimally under normal 

physiological loading, it is one of the most frequently injured structures [9]. It has been 

estimated recently that 11 in 1000 people, out of the general population, suffer knee 

ligament injuries per year [10]. Out of the total occurrence of knee ligament injuries, the 

ACL is the most commonly injured, contributing to 80% of total knee ligament injuries, 

with 65% of the operated injured ACLs predominantly associated with sports and 

recreational activities [10]. The rupture or tear of ACL can cause significant knee joint 

instability, which can lead to injuries of other ligaments and development of 

degenerative joint diseases subsequently, such as knee instability, meniscus tears and 

eventual osteoarthritis [11, 12].  
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Despite the high occurrence rate, the ACL does not heal spontaneously when torn. 

This is largely due to the lack of vasculature at the tissue, causing inadequate supply of 

essential reparative factors or agents should the tissue be torn [13]. Consequently, the 

disruption of the ACL remains one of the more challenging medical issues. Surgical 

reconstruction has been the standard treatment modality in the field of sports medicine 

[14], which very often succumb to the phenomenon of ineffective tissue self 

regeneration and looks at providing “immediate” functional restoration. These methods 

however often fail with time. The use of autografts, allografts or synthetic grafts has 

been practiced for the restoration of knee joint function, with the persistence of several 

disadvantages and risks, such as ligament laxity, donor site morbidity, pathogen 

transfer, mechanical mismatch, poor tissue integration and foreign body inflammation 

[15-17]. These complications often necessitate repeat surgeries, which interrupts site 

recovery and burdens not only the patients financially but also the medical services of 

its resources. Consequently, there is an increased need to research for alternative 

treatment solutions [18, 19] and tissue engineering has evoked much interest as it offers 

the potential of regenerating functional tissues of autologous origin [1, 3, 11, 20-22].  

For the purpose of tissue engineering ligament tissues, the goal will be to generate 

neotissue from autologous cells grown on biocompatible and biodegradable scaffolds. 

Scaffolds of this purpose will have to provide structural template for neo-tissue 

development, exhibit comparable mechanical strength to that of the natural tissue and 

degrade at a rate that allows both optimal neo-tissue growth and progressive load 

transfer to neo-tissue without causing rupture of the construct. Paradoxical to the 

mechanical requirement, the scaffold should have sufficient void volume for cell 
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infiltration and extracellular matrix (ECM) deposition to promote gradual load transfer 

from scaffold to the neo-tissue [1, 23]. It is therefore clear that advancement in tissue 

engineering of ligament depends very much upon strategic application of materials 

engineering knowledge, involving the selection of appropriate biomaterial and scaffold 

architecture.  

A variety of scaffold materials have been explored for this application, with 

popular choices ranging from synthetic poly (L-Lactide) based biomaterials to natural 

polymer such as collagen. Nevertheless, these materials have exhibited poor mechanical 

strengths and short degradation periods, both of which are disadvantageous for scaffold 

materials in the development of tissue engineered ligaments [24]. On the other hand, 

silk fibroin (SF) of Bombyx mori origin has been shown to be a promising candidate for 

this application after removal of the hyper-allergenic sericin component from raw silk 

[1, 3, 21, 25-27] and has compatible degradation rate that involves a gradual loss of 

tensile strength over 1 year in vivo due to proteolytic actions [1, 28]. More importantly, 

SF has outstanding and customizable mechanical properties, with superior strength and 

elasticity, making it suitable for use in constructs with high porosity without 

compromising the overall mechanical robustness of the construct [1, 23, 26-28]. As a 

structural template, SF has been shown to bear equivalence to collagen in supporting 

cell attachment, inducing appropriate morphology and growth since it is a natural 

protein as well [5, 28, 29]. To further mimic the ECM structure, SF has been 

successfully electrospun to form sub-micron nonwoven meshes and is found to enhance 

cell adhesion and spreading of type I collagen due to its high surface to volume ratio 

[25, 30, 31].  
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From the architectural perspective, ligament tissue engineered scaffolds need to be 

mechanically sound and bear similar loading responses to the native tissue such that 

mechanical cues that resemble the native environment can be transduced to the 

developing neo-tissue. Typical scaffold architectures used for this application include 

the braided, woven and knitted structures. Studies performed using the braided and 

woven structures have shown incompetence of these architectures in supporting uniform 

tissue regeneration resulting from poor nutrient transmission, cell attachment, 

infiltration and matrix production, especially in the early tissue regeneration phases [32-

34]. The knitted scaffolds have however shown to possess good mechanical strength, 

encourage cell-cell signaling and promote uniform tissue formation due to sufficient 

scaffold porosity (>50%), thereby have been effectively used for tendon tissue 

engineering [35]. 

From a biomimetic perspective, ligament anatomy suggests fibrous structures 

apposite templates as an important consideration for ligament tissue engineering 

scaffold design. Although it may be unclear as to what exact dimensional order should 

structural cues be present for collagen-hierarchy reconstitution such that neo-ligament 

function can be optimized, recent studies have preliminarily demonstrated the positive 

effects of fiber alignment at the nanometer to sub-micron level on cell morphology and 

ECM production [23, 36, 37]. It was further discovered that alignment and elongation of 

cells along electrospun fibers sensitize them for effective mechano-transduction by 

tensioning cytoskeletal filaments [38]. The orientation of fibroblasts along a ligament 

has also been shown to improve its tensile strength [36]. Nonetheless, it is noted that 

there has been limited work in translating and utilizing this fundamental knowledge for 
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functional ligament tissue engineered constructs that are viable in both the mechanical 

and cellular aspects to allow early implantation without the need for long term ex vivo 

culture. Furthermore, assessments for the differentiative potential of bone marrow 

derived mesenchymal stems cells (MSCs) down the ligament fibroblast cell lineage as 

induced by aligned 3-dimensional (3D) scaffolds have also been limited and 

inconclusive. 

In this study, a full SF hybrid scaffold system composing of a knitted SF fibrous 

mesh integrated with SF electrospun fibers (SFEFs) of aligned arrangement and seeded 

with MSCs is investigated for functional ligament tissue engineering applications. The 

aligned hybrid SF scaffold will be fully characterized prior to evaluating its feasibility 

in vitro under static and dynamic culture conditions. The purpose of the dynamic culture 

condition is to further enhance the positive effects due to the aligned SFEFs by utilizing 

it to transduce mechanical cues effectively to the seeded cells. The dynamic conditions 

should thus be optimized to mimic the native loading environment, while being 

implemented incrementally to allow optimal tissue regeneration. As such, a 

rehabilitative mechanical conditioning approach to ligament regeneration is envisioned 

to synergistically complement the aligned hybrid SF scaffold. It is anticipated that the 

aligned hybrid SF scaffold will combine the excellent biomechanical properties of the 

knitted SF mesh with the inducing ability of mechano-active aligned SFEFs, as 

enhanced by the rehabilitative dynamic culture conditions, to promote effective 

tenogenic differentiation of the seeded MSCs to regenerate functional tissue engineered 

ligaments. 
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To summarize, the specific factors affecting successful ligament tissue 

engineering are listed, which are addressed by the respective aspects of this study as 

follows:  

Table 1-1: List of specific factors affecting successful tissue engineering of ligament with the aspects 
studied in this project to satisfy them. 

Factors Proposed to be satisfied by 

Cells Mesenchymal Stem Cells (MSCs) 

Mechanically viable material Silk fibroin (SF) 

Mechanically sound architecture Knitted structure 

Biomimetic cell attachment 
substrate 

Aligned silk fibroin electrospun fibers 
(AL-SFEF) 

Mechanical cues 
Rehabilitative approach to mechanical 
conditioning 

 

1.2. Objectives 

This research study is aimed at developing a novel hybrid SF scaffold that 

encompasses micron-scale knitted SF integrated with sub-micron aligned electrospun 

SF, to achieve mechanically robust construct that is capable of inducing cellular and 

ECM alignment. As such, the hybrid scaffold is mechano-active since mechanical cues 

from dynamic culture will effectively stimulate the oriented cells and matrix to further 

induce differentiation of MSCs towards the ligament fibroblast lineage. The novel 

rehabilitative mechanical conditioning regime will be designed to enhance the dynamic 
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culture process, which is aimed at accelerating the differentiation process to realize 

tissue engineered ligament at a shorter duration in vitro. The specific aims thus derived 

are: 

1. Design and development of the SF knit 

To design and customize SF knits to bear suitable mechanical properties for 

functional ligament tissue engineering applications and optimize the degumming 

protocol such that the mechanical properties of the SF knits can be retained. 

2. Development of the aligned hybrid SF scaffold 

To develop the AL-SFEF via a customized electrospinning setup which consists of 

a rotating grounded collector frame with two positively charged plates to limit the 

spinneret path.   A well integrated hybrid SF scaffold structure is then obtained via 

physical contractile forces generated from contraction of SFEF onto SF knit upon 

methanol treatment for SF crystallization. 

3. In vitro characterization of the aligned hybrid SF scaffold 

To characterize and assess the differentiative potential of the MSC-seeded aligned 

hybrid SF scaffolds cultured in both static and dynamic conditions and compare it with 

the random hybrid SF scaffolds cultured in similar conditions. 

Hypothesis 1: The aligned hybrid SF scaffold will be able to induce prominent 

tenogenic differentiation due to its positive topographical cues that cause cellular and 

ECM alignment.  



 

 

 

Page | 9 

Chapter 1: Introduction

Hypothesis 2: Enhanced tenogenic differentiation will be effected due to the 

synergistic effect of dynamic conditioning with the positive topographical cues of the 

aligned hybrid SF scaffold. 

4. Rehabilitative mechanical conditioning of the aligned hybrid SF scaffolds 

To optimize the parameters used for dynamic conditioning of the aligned hybrid 

SF scaffold such that it follows a rehabilitative approach for timely supplementation of 

mechanical cues at appropriate intensities. This approach will be compared with the 

“continuous low” and “continuous high” stimulation regime and be assessed for their 

effect on tenogenic differentiation. 

Hypothesis 3:  The rehabilitative approach to dynamic conditioning allows timely 

introduction of appropriate stimulation intensities, which allows early introduction of 

mechanical cues to the MSCs to effect an accelerated differentiative profile towards 

ligament fibroblasts. 

1.3. Scope of Dissertation 

This thesis composes of six chapters and is organized as follows: 

Chapter 1 gives an introduction of the research background, objectives and scope 

of dissertation. 

Chapter 2 is a literature review on the anatomy and function of the ligament, with 

insights given for the biochemical constituents and biomechanical properties of the 

tissue. Injury and current treatment modalities of the tissue will also be presented with 
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emphasis given on motivation towards the tissue engineering approach. The specific 

factors towards the success of ligament tissue engineering will also be reviewed in 

details.  

Chapter 3 will focus on the design and development of the SF knit. The design 

process of the knitted SF with the aim to achieve mechanically viable construct that will 

be able to provide functional support during ligament tissue regeneration will be 

presented. This is followed by an optimization study of the degumming process to attain 

optimal retention of SF mechanical and structural properties. 

Chapter 4 will present the development and characterization study of the aligned 

hybrid SF scaffold by assessing its mechano-active capabilities in inducing tenogenic 

differentiation in a static and dynamic environment. 

Chapter 5 will provide an analysis of the rehabilitative mechanical conditioning 

regime and compare it with the continuous execution of “low” and “high” intensity 

stimulation profiles. Insights of this novel approach will also be presented and discussed, 

followed by assessing its feasibility for application in the ligament tissue engineering 

application.    

Chapter 6 provides a conclusion of this study as well as recommendations for future 

works. 
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2.1. Introduction 

To gain an appreciation of the challenges involved in tissue engineering the 

ligament, it is essential to understand the anatomy and physiology of the tissue. 

Specifically, the ACL will be focused upon due to the substantial stresses it experiences 

and the high injury prevalence. Insights will be presented with respect to the 

biochemical constituents and the effective biomechanical properties of the tissue. The 

various modes of injury and the treatment modalities currently employed will be 

compared, with the tissue engineering approach being highlighted with the specific 

factors contributing to its success. These factors, as reviewed in this chapter, include the 

cell source, scaffold material, scaffold architecture and topography and dynamic culture 

conditions.   

2.2. Ligament Anatomy and Function 

Ligaments are short bundles of tough fibrous connective tissues, which serve as 

restraining elements in the musculoskeletal system by providing bone to bone 

attachment at joints, as shown in Figure 2-1 [39-43]. During motion, the contraction of a 

muscle results in transmission of the load from muscle, via its tendon, to a bone across a 

joint, which results in movement of the bone around the joints. This strains the 

ligaments between the bones. Therefore tendons operate to bring around movements of 

the joints while the ligaments prevent excessive motion of the joints and thereby 

provide stability [39-43]. Typically, ACL functions as the primary stabilizer of the knee 

motion (Figure 2-1). 
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Figure 2-1: (A) Anterior view and (B) Posterior view of the knee joint with portion of the patellar 
tendon removed. Anterior cruciate ligament (ACL) limits rotation and forward motion of the tibia, 
posterior cruciate ligament (PCL) limits backward motion of the tibia, medial collateral ligament 
(MCL) and lateral collateral ligament (LCL) limits side motions, articular cartilage lines bones and 
cushions joint. 

A 

 

 

 

 

 

B 
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Ligaments are collagenous tissues with tropocollagen molecules as their primary 

building units [44]. Tropocollagen molecules are organized hierarchically into long 

cross-striated fibrils that are arranged into bundles to form fibers, which are further 

grouped into bundles called fascicles. Bundles of fascicles are then grouped together to 

form the ligament (Figure 2-2) [24, 45-48]. A large number of fibroblasts are scattered 

amongst and aligned in the direction of collagen fibers [2]. Collagen fiber bundles are 

arranged in the direction of functional need and act in conjunction with elastic and 

reticular fibers along with ground substance, composed of glycosaminoglycans (GAG) 

and tissue fluid, to give ligaments their mechanical characteristics, which are 

characteristic features of fiber reinforced composites [49]. In unstressed ligaments, 

collagen fibers take on a sinusoidal pattern. This pattern is referred to as a "crimp" 

pattern and is believed to be created by the cross-linking or binding of collagen fibers 

with elastic and reticular fibers. A structure, as such, optimizes axial tensile load bearing 

by imparting great strengths with limited extensibility and is essential for ligaments to 

perform their function [1, 4, 50].  

 

Figure 2-2: Schematic diagram of the structural hierarchy of ligament. Adapted from [51]. 

 

Ligament 
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Specifically, the ACL of the knee is the major intra-articular ligament responsible 

for normal kinematics and stability of the knee joint [39-43]. It connects the femur to 

the tibia and is completely enveloped by synovium. Anatomical observations revealed 

that the tibial insertion point is broad and irregular at the front of the intercondylar area, 

while the femoral attachment is semicircular at the posteromedial part of the lateral 

femoral condylar area [39-43]. The human ACL is approximately 10-13 mm wide and is 

30-38 mm long [24, 39-41, 43, 45, 52, 53], with large number of fiber bundles arranged 

into the anteromedial, posterolateral and intermedial portions [39-43]. Consequently, 

low friction and low tension during normal range of motion is achieved with such 

arrangements, with the anteromedial bundle becomes taut only during flexion, while the 

posterolateral bundle tautens only during extension. At the insertion sites the ligament 

gradually transforms from the midsubstance, to the fibrocartilage, and to the calcified 

fibrocartilage that inserts into the bone. The epiligament, containing cells, nerves and 

blood vessels wraps around the periphery of the ligament tissue, with blood supplied 

mainly from the middle geniculate artery and fat pad [41, 48]. Physiologically, the 

fascicles of the ACL are arranged helically near the bone junction and in parallel 

alignment internally to allow load distribution, such that different zones of the ligaments 

are loaded with varying degrees at different time of loading [41, 45]. This prevents the 

tissue from getting point stresses and rupture during normal physiological loading. 
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2.3. Biochemical Constituents of Ligament 

Collagen, elastin, glycoproteins, protein polysaccharides, glycolipids, water and 

cells form the major constituents of the ligament [54]. Out of which water makes up 60-

80 % of the wet weight of ligaments as compared to that of 55% for tendons. The 

approximate compositions are given in Table 2-1. 

Table 2-1: ECM composition of ligaments [24, 41, 45, 55]. 

Major constituents 
Approximate 

amount, 
% dry weight 

Characteristics or 
functions 

Type I collagen 80 Fibril bundles 

Type III collagen 5-15 Thin fibrils 

Type IV collagen, laminin, 
nidogen 

<5 
In basal laminae under 

epithelium and endothelium
Types V, VI, and VII 

collagens 
<5 

Type VII forms anchoring 
fibrils; others unknown 

Elastin, fibrillin <5 Provides elasticity 

Fibronectin <5 
Associated with collagen 
fibers and cell surfaces 

Proteoglycans, hyaluronate 0.5 Provide resiliency 

 

2.4. Mechanical Properties 

As a result of the unique organization and arrangement of fibers and fascicles 

within the ligament, the mechanical behavior of the tissue follows a viscoelastic trend, 

that is, there is increasing stress with increasing strain rate applied to the tissue. 

Therefore, injury to the ligament depends upon the absolute load, as well as the rate of 

at which the load is given or impact sustained by the tissue. Before the mechanisms of 
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ligament injury can be appreciated, it will be critical to understand the mechanical 

properties of the tissue. Furthermore, to effectively devise a suitable graft for repair of 

the ligament, a good understanding of the mechanical properties of the native tissue will 

be beneficial. 

With the main function to transmit tensile loads across joints, largely in a uniaxial 

direction, the material properties of the ligament is highly anisotropic in nature, as 

contributed by the parallel collagen fibers. Their mechanical properties are usually 

described in the axial direction, and can be grouped as (1) structural properties (2) time-

and history-dependent viscoelastic properties. 

2.4.1. Structural Properties 

The structural properties of ligament are extrinsic measures of the tensile behavior 

of the overall structure. As a result, they depend on the structural attributes, that is, the 

size and shape of the ligament. In addition, it also depends on the variations of zonal 

properties from tissue to the bone insertion zones. Structural properties are obtained by 

loading the tissue to failure, with load and elongation readings charted to attain the 

resulting load-elongation curve and the derived stress- strain curve as shown in Figure 

2-3. Stress-strain curves are derived upon measurement of the tissue cross-sectional area 

using laser micrometry method, which is employed for accurate measurement of the 

tissues without deforming the cross-section of tissues [56]. The structural properties 

obtained from these curves are described in the Table 2-2. 
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Figure 2-3: A typical (A) load-elongation curve and (B) stress-strain curve for ligament. 

 

Table 2-2: Structural properties from the load-elongation curve and stress-strain curve of ligament 
[24, 41, 45, 55]. 
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Ultimate tensile load 
(UTL) 

Maximum load placed on tissue before failure 
occurs 

Ultimate elongation Maximum elongation taken at point of failure 

Elastic stiffness (ES) 
Slope of the load-elongation curve taken during the 
linear elastic phase 

Energy absorbed at 
failure 

Area under the load-elongation curve up to point of 
failure 
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Ultimate tensile strength 
(UTS) 

Maximum stress achieved by tissue before failure 
occurs 

Ultimate strain Strain achieved at failure 

Young’s modulus (E) 
Tangent modulus in the linear region of the stress-
strain curve 

Toughness Area under the stress-strain curve 

 

Tissue stiffness is noted to be constant at forces above 50% of the ultimate load, 

while a pronounced “toe region” is observed at forces below ~25% of ultimate load. At 

this region, stiffness increases as the ligament unit is lengthened that is associated with 

the straightening of the “crimp” pattern of the collagen fibers. 
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The peak stress to which a ligament is subjected varies according to its anatomical 

site and the species. Values obtained vary with the testing protocol and conditions, and 

are enumerated in Table 2-3 for some tendons and ligaments of human and rabbits [24, 

39, 42, 43, 57-78]. It should be noted that the human patellar tendon is often regarded as 

the gold standard for allogeneic ACL graft repair [74, 79].  

Table 2-3: Mechanical properties of human tendons and ligaments [24, 39, 42, 43, 57-78].  

Tissue UTL (N) 
UTS 

(MPa) 

Ultimate 
Strain 
(%) 

Stiffness 
(N/mm) 

E (MPa) 
Length 
(mm) 

Cross-
sectional 

area 
(mm2) 

Immature human 
ACL (22-35 
years old) 

1725-
2200 

38 ± 4 44.3 ± 9.0 182-292 ---- 26.9 ± 1.0 44.4 ± 4.0 

Mature human 
ACL (35-50 
years old) 

1160-
1503 

13-46 9-44 192-220 65-541 33 ---- 

Mature human 
ACL (60-97 
years old) 

495-734 13.3 ± 5.0 30 ± 10 124-180 ---- 27.5 ± 3.0 
57.5 ± 
16.0 

Human Patellar 
tendon 

2900 ± 
260 

24-69 14-27 
1154 ± 

193 
143-660 48.7 ± 4.0 50.5 ± 3.0 

Human Achilles 
tendon (Ankle) 

---- 14-61 24-59 ---- 65 ---- ---- 

Human Inferior 
glenohumeral 

ligament 
(Shoulder) 

---- 5-6 8-15 ---- 30-42 ---- ---- 

Human Anterior 
Longitudinal 

ligament (Spine) 
---- 8-37 10-57 ---- 286-724 ---- ---- 

Immature rabbit 
ACL (2.5kg) 

218 ± 33  ---- 109 ± 10 ---- 8.2 ± 0.8 ---- 

Mature rabbit 
ACL (4-5kg) 

369 ± 53 
(251 ± 47) 

516 ± 69 
(49 ± 20) 

---- 130 ± 19 ---- 11.7 ± 1.0 
3.3-3.7  

(5.3 ± 0.6) 
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The stress-in-life ranges of adult mammalian limb tendons vary from 10-70 MPa, 

with 13MPa being the most common stress value. Ultimate tensile strength of 50–100 

MPa and ultimate strain of 2-5% has been reported in tendon tissues [80]. Amongst the 

ligaments, the ACL is the strongest with the human ACL shown to possess values of 

Young’s Modulus of 345.0 ± 22.4 MPa, UTS of 36.4 ± 2.5 MPa and ultimate strain of 

15.0 ± 0.8 % [81]. In terms of breaking loads, the UTL of normal human ACL ranges 

between 1,730-2,200 N [41, 45] and allows 7% to 16% of creep before permanent 

deformation and ligament damage occurs [82]. Cyclic loads of approximately 300 N is 

experienced by ACLs about 1 to 2 million times per year, with regular exposure to 

tensile forces ranging from 67 N (for ascending stairs) to 630 N (for jogging) [83-85]. 

For young human, breaking loads for ACL range from 1725N to 2160N. With that, it 

should be noted that ultimate mechanical properties of ligaments usually increase during 

development and decrease with aging.  

2.4.2. Time- and History-Dependent Viscoelastic Properties 

Ligament, like many other biological materials, possesses time-dependent and 

history-dependent viscoelastic properties [81]. As such, the loading and unloading of a 

specimen yields different paths on the load-elongation curve for each testing cycle, 

forming a hysteresis loop that represents the energy lost as a result of a non-

conservative or dissipative process, as shown in Figure 2-4. This viscoelastic behavior 

is assumed to be due to complex interactions of the biochemical constituents of the 

tissues, of mainly collagen, water, surrounding protein, and ground substance (GAG). 
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Figure 2-4: Cyclic load-elongation behavior shows that during cyclic loading, the loading and 
unloading curves do not follow the same path and create hysteresis loops indicating the absorption 
of energy; the energy loss is approximately 7% of the loading energy; however as the cycle number 
increases, the hysteresis decreases. 

 

The viscoelastic behavior can be illustrated by two classic experimental tests: 

stress relaxation and creep tests. A stress relaxation test involves stretching the 

specimen to a constant length and allowing the measured stress to vary with time. A 

creep test involves subjecting a specimen to a constant force while the measured length 

gradually increases with time. Many researchers [86-89] have mathematically modeled 

the results of these tests better understand the time-dependent and nonlinear behaviors 

of ligament. 
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2.5. Ligament Injury 

Ligaments, such as the knee collateral and cruciate ligaments, are frequently 

injured [9]. In the United States, more than 100,000 patients per year undergo surgery to 

repair tendon or ligament injuries [59]. Injuries to the ACL and the medial collateral 

ligament (MCL) of the knee (Figure 2-1) account for approximately 90% of all knee 

ligament injuries in young and active individuals, which occurred primarily during 

sports activities [9]. It is not surprising for the ACL to rupture or tear due to shocks 

sustained through contact sports, as it takes approximately 75% of the anterior shock 

load at the knee. Injury of such nature can cause pain and discomfort, with joint 

instability and even degenerative joint diseases over time. With an estimated 200,000 

patients in America who required reconstructive surgery of the ligaments in 2002, 

billing over five billion dollars [90], there is a need to understand the mechanism 

involved in the tissue injury and repair, to devise effective treatment methodologies for 

the reconstruction of the tissue. 

2.5.1.  Mechanism of injury 

Both the tendons and ligaments are injured primarily by two mechanisms: 

1. Single impact macro-trauma 

Single impact macro-trauma rupture generally occurs when there is a sudden 

overload strain of more than 8% applied to the tissue. This typically occurs in tendons 

like the Achilles tendon when occasional athlete makes an explosive push-off 

maneuver. Although this occurs typically in middle-aged male engaging intermittent 
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activities, it has been seen in young, high performance athletes as well. This mode of 

injury is also possible in cases where there is a direct blow onto the tendon when it is in 

a state of contraction [91]. For ligaments, this mechanism is typical for rupture of the 

ACL due to impact during contact sports, when the tissue experiences sudden overload 

strain, often due to twisting of the knee joint [10].  

2. Repetitive exposure to low magnitude force 

This mechanism of failure is often associated with repetitive loading of the 

tendon/ligament at 3-8% strain, leading to damage that cannot be regenerated at as fast a 

rate as that of the damage. With repetitive overuse, microscopic failure of the collagen 

fibrils or bundles begins to occur, leading to an inflammatory process at the tissue [9]. 

Tendons of the lower limbs are typical damaged due to this reason, especially due to 

extensive physical activity, which results in overuse injuries of the tendon [92]. 

Conditions as such are known as tendonitis, which is frequent in both occupational and 

athletic settings. It has been estimated that as high as 30-50% of all sports injuries can 

be classified as overuse injuries. In most cases, patients respond well to conservative 

treatment involving weeks to months of rests and therapeutic exercises. However, 

surgical restoration is necessary for the other patients to resume function of the tissue. 

2.5.2. Healing of Ligament Injuries 

The injured ligament has poor ability to heal intrinsically. This is because of the 

lack of vascularity in the tissues [93, 94]. Factors that can moderate the rate of healing 

include age, systematic factors and local factors such as blood supply synovial 

environment for ligaments within synovial capsules, mechanical stresses and 
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inflammatory cellular response [95]. Despite these factors, the healing process generally 

encompasses three phases of varying duration and rates: the acute inflammatory or 

reactive response phase, the regenerative or repair phase, and the tissue remodeling or 

maturation phase [9, 24, 39, 43, 47, 96-98]. 

Upon injury, acute inflammatory response starts within the first 72 hours with 

hypercellular activity involving the migration of inflammatory cells and erythrocytes to 

the site. Inflammatory cells such as polymorphonuclear leukocytes, lymphocytes, 

monocytes and macrophages phagocytize necrotic tissue and cell debris of the injured 

tissue. There is then a cellular concentration shift nearing the end of this phase from 

inflammatory cells to fibroblasts, leading to the formation of healing matrix consisting 

of randomly arranged collagen, and amorphous ground substances.  

The healing matrix becomes gradually more organized over the next 6 weeks post 

injury during the repair and regeneration phase. This phase is characterized by active 

fibroblast proliferation and consequently further matrix deposition. Other cell types 

present include the macrophages and mast cells. To accelerate the regeneration of the 

healing matrix, a proliferating scar tissue or fibrous capsule is formed around the 

injured areas with development of vascularity in the wound. The scar tissue is thicker 

and is more cellular compared with the native tissue. There is also higher percentage of 

collagen III as compared to collagen I, which is typical of disorganized collagen fibrils. 

Leading to the next phase, the amount of fibrous capsule, vascularity and cellular 

density will decrease gradually. 
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The final phase is the tissue remodeling or maturation phase, which can last up to 

a year or longer from the initial injury. During this phase, the density of collagen 

increases as alignment of fibrils along the axis of the ligament improves, with the 

proportion of collagen I increasing over collagen III. Although there is gradual 

alignment of collagen fibrils over time, slight disorganization and abnormalities persist 

due to environment and mechanical factors, with the tissue never to regain its original 

properties.  

2.6. Current Treatment Modalities 

As a result of the less than optimal intrinsic regeneration capability of the ligament, 

surgical interventions using grafts are often necessary for full rupture of the tissue 

midsubstance or if the tissue is severed from the bone insertion points. Thus far, torn 

ligaments are usually sutured back while rupture ligaments are reconstructed or replaced 

by biological grafts or non-degradable synthetic prostheses [24].  

Particularly for the ACL, the first surgical repair dates back to the late 1890’s, 

when Robeson and Battle sutured torn ACL using silk and catgut sutures [99-101]. 

Subsequently, ligament reconstructions were performed using autogenous tissues such 

as fascia lata and tendons [99-101]. From then on, several reconstruction options for the 

ruptured ligaments are available and can be classified largely into three categories, 

which includes the permanent grafts, biological grafts, and degradable grafts [41, 45, 

47, 55, 59, 102-109]. 
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2.6.1. Permanent Grafts 

Development of synthetic grafts started in the late 1950’s when nylon ligament 

replacements were used only to find out later that it had carcinogenic side effects, 

consequence of its extreme foreign body reactions. During the 1970’s, a polyethylene 

replacement called Polyflex prosthesis was approved by the FDA but was eventually 

retracted from the market in 1977 due to fatigue failure. Since then, new graft devices 

and procedures were developed based on a FDA guidance document for intra-articular 

prosthetic knee ligament devices in 1987 [99-101]. Several FDA approved ligament 

synthetic grafts had developed since then, as listed in Table 2-4, which included the 

Gore-Tex® Cruciate Ligament Prosthesis (polytetrafluoroethylene) by W.L. Gore and 

Associates, the Stryker Dacron® Ligament Prosthesis by Meadox Medicals, Inc., the 

3M Kennedy Ligament Augmentation Device® (LAD, polypropylene) by 3M for 

Marshall-Macintosh procedure, the Surgicraft ABC carbon prosthetic ACL by 

Surgicraft Ltd, the Leeds-Keio artificial ligament (polyethylene terephthalate) and the 

ligament advanced reinforcement system (LARS) artificial ligament [24, 105, 108, 110-

112], many of which are no longer suitable for human ACL replacement.  
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Table 2-4: Synthetic ACL prosthesis with their advantages and disadvantages. 

Prosthesis Advantages Disadvantages 

Gore-Tex 
Tensile strength 3x native human 
ACL  

Progressive long term loosening 

Dacron 
Polyester coating can protect 
implant from abrasion 

Poor long-term stability 

Kennedy 
LAD 

Protects autogenous graft from 
excessive stresses 

Weak implant-graft interface 

Can cause intra-articular 
inflammation, resulting in 
synovitis and effusions 

Carbon 

Stress reduction and uniform 
distribution between graft and soft 
tissue attachment 

Polylactic acid coat protects graft 
during implantation 

Migration of carbon wear particles 

Poor long-term functional outcome 
resulting from implant stretching 
and rupture 

Leeds-
Keio 
Artificial 
Ligament 

Acts as a scaffold for soft tissue 
ingrowth 

Excellent maximum tensile strength 
which exceeds that of native ACL 

Stress-shielding effect leads to lack 
of tissue ingrowth and maturation 

Large number of long-term graft 
ruptures 

LARS 
Artificial 
Ligament 

Mimics natural ACL structure and 
orientation with porosity to 
encourage tissue ingrowth 

Reduces shearing forces on the 
implant 

Residual post-operative laxity 
persists 

No long-term follow-up study as 
yet 

 

These non-degradable grafts can be further classified into three categories: 

permanent replacements, augmentation devices and scaffolds [45]. 

The Gore-Tex® prosthesis is an example of permanent replacements. It is made of 

a single long strand of expanded polytetrafluorethylene that is wound into multiple 

loops and jointed to a three-strand braid. Designed with ultimate tensile strength of 
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greater than 4448 N to give immediate fixation with early load-bearing capabilities, this 

prosthesis gives patients early mobilization and activity [41, 45, 100, 101, 107, 113-

115]. Gore-Tex® graft ultimately failed from material fatigue owing to the lack of 

tissue ingrowth, consequence of both the graft design and material properties. Failure of 

the graft is apparent from observations of fraying at the bone tunnels and consequently 

chronic effusions [41, 116]. It is thus apparent that although permanent synthetic ACL 

replacements provide the function of the ligament it replaces, it does not encourage 

tissue ingrowth, resulting in long-term mechanical failure due to creep and fatigue. 

The Kennedy Ligament-Augmentation Device® (LAD) consists of a cylindrical 

prosthesis of diamond braided poly(propylene) yarns and was designed to provide 

protection to a weak portion of the quadriceps patellar tendon autograft or allografts 

during early postoperative period of the ACL reconstruction [45, 100, 101, 105]. The 

resulting construct has ultimate tensile strength of 1730 N and works by simply stacking 

over the autograft and has been used as primary repair of partially torn ACLs. LADs 

had high rate of complications in primary ACL reconstructions (up to 63%) and was 

reportedly causing delay in ligament maturation because of stress shielding [117]. 

An example of scaffold prosthesis is the Leeds-Keio ligament replacement, which 

consists of a porous woven tube of poly(ethylene) terephthalate to allow tissue ingrowth 

[45, 100, 101, 108]. The ultimate tensile strength of the Leeds-Keio ligament is 2600 N, 

giving it enough strength to protect the knee during early stage remodeling. This device 

allows for early post-operative mobilization [100, 101] but problems of stress shielding 

to the neoligament tissue persist. 
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The Dacron® ligament was designed as hybrid prosthesis to solve the problems of 

stiffness or stress-shielding that led to high failure rates in earlier devices [118]. 

Although tissue ingrowth was significant, the graft did not provide knee stability 

because organized collagenous ingrowth was not observed. This is probably due to 

eventual stress shielding from the synthetic material and nondirectionality of the sheath 

covering.  

To date, no permanent ligament prostheses have met the requirements for long 

term ACL substitutes [24, 45]. They have shown problems ranging from long-term 

failure, indicative by synovitis, arthritis and mechanical deterioration, to lack of 

supportive tissue ingrowth and organization due to stress shielding [41, 45]. Therefore 

ideal ligament reconstruction should involve devices that are biodegradable to allow 

gradual transfer of mechanical load to the biological graft or neoligament tissue. 

2.6.2. Biological Grafts 

Current ACL reconstructions involving the use of autografts are typically 

collagenous tissues from the patient’s own patellar tendon, hamstring tendon and 

quadriceps tendons [47, 55, 79, 90, 104, 119-124]. The success of these biological grafts 

often depends on the revascularization and remodelling of these transplanted tissues, 

which will eventually be covered by the synovial membrane. The use of central 1/3 or 

lateral 1/3 section from patellar tendon is still considered the gold standard for ACL 

reconstruction and has been approved for use in patients since 1992 [55]. It is often 

harvested in a bone-patellar tendon-bone configuration with small piece of bone from 

both the patella end and the insertion area at the tibia. This construct is then anchored at 
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both the femur and tibia bone tunnels, which will heal in 6-8weeks. The tensile strength 

of the graft is approximately 2950 N to failure [61, 63] and is reportedly able to 

withstand upcoming stresses after proper rehabilitation. The key limitation of autografts 

is donor site morbidity. Several other considerations include the limited sites at which 

suitable autogenous tissues can be harvested, unpredictable graft resorption 

characteristics, increased recovery time due to damage to additional tissue harvest site 

and potential failure or injury of the harvest site. 

Other sources for biological grafts include allografts such as patellar tendon, 

hamstring tendon and Achilles tendon from cadevers [55, 64, 103, 104, 106, 125-129]. 

This graft source is especially useful for surgeries involving multiple grafts and in 

revision surgeries when autografts have previously been harvested. Although the 

patient’s problem of site morbidity is removed, the main limitation of allograft use lies 

in the risk of disease transmission such as HIV and Hepatitis, bacterial infection and 

immunogenic response elicited in the host, which can hinder tissue remodeling [47, 63, 

130]. These limitations are largely due to the inability of the graft to be sterilized as it 

will then be weakened [45, 128]. The current processing steps involved in preparing 

allografts for implantation include harvesting, cleaning, screening for HIV and Hepatitis, 

and finally frozen and stored in liquid nitrogen. Consequently, the tissue is cleared of 

disease with a probability of infection at 1:1,000,000.  

It is thus clear that both sources for biological grafts are limited by several 

uncontrollable factors. It is these limitations that drive the search for more robust 

reconstruction solutions, which very often utilize synthetic materials that can promote 

tissue ingrowth and biodegradable to allow neotissue regeneration [41, 45, 55, 59, 109]. 
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With the knowledge that ACL autografts are remodelled by 8 weeks and are complete 

by 20 weeks post-implantation [24], the goal will thus be to devise a solution that 

achieves this in shorter or comparable duration.  

2.6.3. Biodegradable Grafts 

The application of reconstructive surgery for ruptured ligament is undoubtedly 

necessary due to the lack of intrinsic reparative ability of the tissue. Although there is 

limited success in the reconstruction of ligament, particularly the ACL, using permanent 

prosthesis and biological grafts, many of the limitations can be overcome with the 

advancement in biodegradable grafts. In particular, tissue derived materials such as 

collagen and synthetic biodegradable materials have shown to be promising in ACL 

replacements. 

For collagen based grafts, collagen type I has been extracted from bovine and 

porcine tissues and processed into fibers to fabricate biodegradable scaffolds [45, 131-

137]. These scaffolds can be modified in its resorption rate via controlling the degree of 

cross-linkages formed. Furthermore, since the scaffolds are collagen-based, they tend to 

not elicit antigenic reactions to cells involved in tissue repair and are able to promote 

remodeling between the 10-20 weeks phase to strengths similar to autografts.  

Biodegradable polymers have gained popularity in this application due to its 

ability to be engineered to control its degradation rates and mechanical properties. 

Through chemical modifications, a variety of mechanical properties is possible with 

tensile strengths ranging between 0.6-500 MPa and modulus of 10-6500 MPa [24, 41, 

45], the biodegradation times can be controlled to last over days or months [24, 138, 
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139]. Different strategies to the use of biodegradable polymers have arisen for the case 

of ACL reconstruction, which can be classified into the acellular and the cellular 

approach.  

The acellular approach often involved resorbable LAD, whereby the synthetic 

material is needed for strengthening purpose of the autograft tissue. An example is the 

L-polylactic acid (L-PLA) resorbable LAD (3M, MN), which is made from L-PLA 

parallel fiber cords and surrounded by a braid of six yarns of the same material [100, 

101]. Resorption study of the material over two years showed no major complications, 

other than formation of seroma around the L-PLA osteosynthesis devices used for 

fixation at the bones, which was a result of the release of large amount of acidic 

products during the degradation process that could not be removed over the period of 

implantation. Another example is the Vicryl (Polyglactin 910) with PDS 

(Polyparadioxanone) cords and flat braids developed by ETHICON, NJ [100, 101, 140], 

which likewise had seroma and local infections observed due to a change in pH 

resulting from the degradation products. This resulted in the lack of native soft tissue 

coverage over the synthetic material and it did not support effective tissue remodeling 

as tissue only manage to fully remodel after 8 weeks postoperation. From these studies, 

it is apparent that concerns raised with regards to implantation of degradable polymeric 

materials should not only be limited to the mechanical aspect of the degradation 

kinetics, but also the degradation products and its rate of assimilation such that 

neotissue development will not be hindered or delayed. 

The cellular approach, on the other hand, needs to be concerned not only with 

degradation issues, but also cell related issues, which includes cell source and concerns 
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similar to that of autograft and allograft implants. Very often, this approach is referred 

to as the tissue engineering approach, which generally involves the use of a 

biodegradable scaffold to support initial seeded cell development and be stimulated 

either in vivo or in vitro using various cues ranging from mechanical and topographical 

to chemical cues for successful and functional tissue regeneration. Early attempts to 

improve the regeneration ability of implanted ligament prostheses involved the use of 

canine fibroblast cell-seeded knitted Dacron ligament prostheses by Brody et al. [141]. 

They showed that the seeded prostheses demonstrated a more uniform and abundant 

connective tissue encapsulation as compared to the unseeded counterparts. From then, 

investigators begun to look into using biodegradable materials instead of non-

degradable prostheses for graft application to support immediate stabilization of the 

ruptured ligament while acting as a scaffold for ingrowth and replacement by host cells 

eventually [34, 41, 45, 59, 109, 142-149]. Very often, studies relating to tissue 

engineering aims to provide a viable environment for early healing, improved 

remodeling and biomechanical function of the regenerated construct, which will be 

described further in the following sections.   

2.7. Tissue Engineered Ligament Grafts 

With advancement in medical sciences, coupled with the maturation of supporting 

technologies, regenerative approach towards treatment of tissue trauma, which is the 

basis for tissue engineering, is now regarded superior over the current reparative 

approach using permanent prostheses. Although the latter may offer faster healing, the 

generation of scar or weak fibrotic tissue is a definite minus point for ligament tissues. 
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Not limiting to that, the active regenerative approach is clearly more appropriate as 

compared to the passive reparative approach. While the regenerative approach attempts 

to bridge the discontinuous connective tissue to give a faster and complete heal, the 

reparative approach will not be capable of this feat if the trauma is greater than the 

critical size for passive self healing to occur.  

The strategy for treatment of ruptured ligament thus lies in the minimization of the 

above-mentioned problems in current treatment modalities and the development of a 

closer or similar substitute to that of the native ligament. This result in much research 

interest in functional tissue engineering of the ligament, which involves the use of 

reparative cells, seeded onto supporting template structure or scaffold, together with the 

use of appropriate biochemical and physical regulatory signals to generate normal and 

functional tissue development in vitro or in vivo [150]. The goal will therefore be to 

generate neotissue of autologous cells grown on biocompatible and degradable 

scaffolds, which is mechanically loaded, characteristic to that of the in vivo 

environment, to trigger development of functional ligament reconstruction implants. 

Amongst the various systems used for tissue engineering of the ligament, collagen 

is often the starting material for scaffold development [57, 147, 151, 152]. These 

include works by Dunn et al. who developed fibroblast-seeded collagen scaffolds for 

ACL reconstruction. Collagen fibers of 60 µm diameter were made by extrusion, rinsed, 

dried under tension, treated with cyanamide vapor or glutaraldehyde vapor and 

combined in an aligned fashion to form the scaffold. The autogenous fibroblasts sourced 

from rabbit ACL, synovium, patellar tendon and skin were seeded and evaluated in vitro 

and in vivo using the rabbit model. It was found that collagen fibers used in the scaffold 
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for ACL reconstruction had to be thin, strong and resorbable. ACL fibroblasts were also 

found to adhere better than other fibroblast types but proliferated slowest, while patellar 

tendon fibroblasts proliferated fastest. All fibroblast types secreted protein and collagen 

within the scaffold and was verified to be viable in vivo. Nevertheless, limitations 

persist with the use of collagen-based scaffolds, which includes allogenicity of the 

collagen, batch-to-batch variability and the lack of flexibility in fabrication and 

modification as compared to other biodegradable polymers [149]. In yet another study, 

Auger et al. developed collagen based scaffolds made from bovine Type I collagen and 

seeded them with fibroblasts isolated from ACL biopsies of patients undergoing total 

knee arthroplasty (ages 60-67 yrs) [45, 59]. Upon culturing vertically and horizontally, 

histological and immunofluorescence observations indicated that parallel orientation of 

the fibers of Type I collagen were formed in the applied tension. They had thus 

concluded that the histological organization of the structure can be modulated by the 

seeded fibroblasts and the tension applied in vitro. 

Through these studies and many others performed by various groups in the pursuit 

of functional tissue engineering of the ligament, several factors have been identified as 

essential [11, 50]. They include the general factors such as cell source, the various 

aspects of the scaffold, and the stimulatory biochemical/mechanical cues. Of the 

different aspects involved for scaffold design, the architecture and the material used 

remain significant. The synergistic effect of these factors is represented in Figure 2-5. 

Of these factors, this study will focus on the scaffold and biomechanical aspect to 

stimulate MSCs towards tenogenic differentiation, which will be discussed in the 

subsequent sections. 
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Figure 2-5: Diagram representing synergistic effect of various factors contributing to tissue 
engineering of ligament. 

2.7.1. Cells 

The use of appropriate cells is important for successful tissue engineering and 

regeneration of the ligament. As discussed previously, the presence of cell ingrowth is 

crucial for the remodeling and prolonged function of reconstructed ligament. The 

concept of tissue engineering puts forward the use of cell-seeded constructs instead of 

the acellular approach to accelerate and facilitate the cell infiltration process. With the 

presence of seeded cells, the potential for proliferation, cell-to-cell signaling, 

biomolecule production and the formation of ECM can be improved [34, 41, 59, 142-

149]. From these reports, it is apparent that the number of cells seeded can influence the 

nature of cell-mediated processes involved in tissue formation and the rate of the 

developmental and physiological processes occurring. In fact, a minimum threshold cell 

density exists for normal neotissue formation.  
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A variety of cell source exist, including autogenic, allogeneic and xenogeneic 

sources; and of different cell types, including differentiated cells, stem or progenitor cell 

and genetically modified cells that can make specific molecules [153]. Typically, the 

cells exploited for ligament regeneration include skin fibroblasts, ACL fibroblasts and 

mesenchymal stem cells or bone marrow stromal cells (BMSCs), of which the BMSCs 

showed highest DNA content and collagen production, making it most suitable for 

ligament tissue engineering applications [32].  

Mesenchymal stem cells (MSC), also known as marrow stromal cell or colony 

forming unit for fibroblast (CFU-F), were more recently named as multipotent 

mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT) 

[154]. They were first identified and isolated from adult bone marrow by Friedenstein et 

al. [155, 156] and have since then been considered a promising cell source for tissue 

engineering applications. MSCs are rare cells and exist in a very low concentration in 

human adult bone marrow, accounting for only 0.00001% to 0.001% of mononuclear 

cells in bone marrow. Being non-haemopoietic in nature, they can be separated from the 

haemopoietic fraction of the bone marrow via their ability to adhere to tissue culture 

plastic and be cultured. Being multipotent, MSCs have the potential to differentiate into 

various types of mesenchymal cell phenotypes, including osteoblasts, chondroblasts, 

myoblasts and fibroblasts [157].  

Very often, MSCs contain a heterogeneous population of cells, with varying 

colony sizes, proliferation rate, cellular morphology and multipotency both in vitro and 

in vivo even though they may be of single colony derived strain [158, 159]. This 

phenomenon exists even with more sophisticated isolation methods, including immuno-
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depletion techniques [160] or selection via STRO-1 and CD 271 antibodies [161, 162]. 

Specifically, varied cell morphologies ranging from spindle-shaped to broad stromal-

like cells were observed using these isolation and purification techniques [163-165]. 

There is thus inter-culture and inter-species differences in the potential of MSCs to self 

renew or form fibroblast colonies in low density cultures [163, 166-168]. 

MSCs are also inherently non-immunogenic, giving them the potential to be used 

in allogeneic transplantation strategies [169]. Being human leukocyte antigen (HLA) 

Class I positive and Class II negative, and that they do not express co-stimulatory 

molecules of CD40, CD40L, CD80, or CD86 [170], MSCs are widely regarded as non-

immunogenic and may even be effective at inducing tolerance. When tested via mixed 

lymphocyte culture (MLC) assay, MSCs did not trigger a proliferation response of 

allogeneic lymphocytes [171, 172]. Even with induction to express HLA Class II via 

interferon γ (INF-γ), MSCs could still escape recognition from alloreactive T-cells [170, 

173]. It was observed that the differentiated MSCs (adipocytes, chondrocytes and 

osteocytes) remained non-immunogenic as well [174].  

Other than being non-immunogenic, MSCs showed strong immunomodulatory 

effect both in vitro and in vivo as well. It was found that MSCs exhibited 

immunosuppressive effects and inhibited T-cell alloreactivity in vitro [157, 171, 175-

177]. The effect was relayed in vivo whereby MSCs have been reportedly shown to 

successfully cure the graft-versus-host disease after allogeneic hematopoietic stem cell 

transplantation [178, 179]. Although the governing mechanism is not understood fully, 

it is possible that the paracrine effect of MSCs played a significant role. This is so as it 

was shown that MSCs may inhibit T-cell recognition and expansion by inhibiting TNF-
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α and INF-γ production, which consequently increase IL-10 levels [169, 177, 180]. 

Inhibition of TNF-α and promotion of IL-10 was found to affect dendritic cell 

maturation state and their functional properties, which will result in skewing the 

immune response towards an anti-inflammatory or tolerant phenotype [180]. 

In summary, from the perspective of ligament tissue engineering, the MSCs from 

bone marrow sources are selected for use in this study due to the following: 

1. MSCs can be isolated easily using the plastic adhesion method or simple antibody 

selection techniques [161].  

2. MSCs and differentiated MSCs are reported to be non-immunogenic and suitable for 

allogenic applications [173], which is a promising strategy for future clinical 

applications.  

3. MSCs proliferate faster than other potential cell sources (fibroblasts from skin and 

ACL), thereby shortening ex vivo culture duration [32, 181].  

4. MSCs exhibited elevated transcript levels for ligament phenotypic markers, which 

translated to increased amount of ligament-related ECM components produced 

during in vitro culture [181].  

2.7.2. Scaffold 

The scaffold is an important component of a tissue engineered ligament as it 

translates two-dimensional (2D) cell culture towards forming a three-dimensional (3D) 

structure and thereby mimicking the ECM and facilitating the development of 
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functional neotissue. Specific to the ligament tissue, it should be designed to meet the 

immediate functional mechanical demands of the reconstructed knee and yet be able to 

degrade at a rate similar to tissue ingrowth. In other words, the ligament scaffold should 

lose its mechanical integrity gradually while allowing the remodeled tissue regenerate 

and gain strength by gradually loading it.  

An ideal scaffold typically possesses the following characteristics: 

1. Biocompatible and biodegradable material that is suited for distinctive applications 

2. Suitable porosity that allows cell infiltration and medium perfusion into the scaffold 

3. Sufficient surface area for cell attachment, growth and proliferation 

4. Architecture or geometry that facilitates tissue attachment and regeneration, while 

imparting the required mechanical properties at various stages of tissue 

regeneration.  

To achieve these goals, the material and the architecture of ligament tissue 

engineered scaffolds have been extensively studied, which will be presented in the 

following sections. 

2.7.2.1. Common Ligament Tissue Engineering Scaffold Materials 

Current research into the tissue engineering approach of ligament reconstruction 

has focused on seeding either collagen-based scaffolds or synthetic biodegradable 

polymers with a variety of cell types. The intention of achieving biodegradability in 

these scaffolds is motivated by the disadvantages of previous non-degradable materials, 
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which have released wear particles and other materials into the surrounding tissue 

structure causing inflammatory responses and rendering the need for revision surgeries. 

Collagen ligament implants have been used experimentally and was found to 

degrade by a sequential attack from lysosomal enzymes [133]. The rate of collagen 

scaffold degradation can be controlled via the extent of cross-linking involved. 

However, limitations such as allogenicity of the collagen, batch-to-batch variability and 

the lack of flexibility in fabrication and modification persist with the use of this 

material, as discussed previously. 

Synthetic biodegradable polymers have been popularly used for orthopedic 

applications. They include poly(α-hydroxy) acids, poly(ε-caprolactone), 

poly(orthoester), copoly(ether-ester), poly(carbonate), poly(iminocarbonate) and 

poly(dioxanone) [182, 183]. The advantages of these materials include controllable 

chemical uniformity and physical properties, with the degradation and mechanical 

properties modifiable through chemical manipulations [138, 139] to make them suitable 

for specified applications. In particular, the poly(α-hydroxyester) family is often used 

for ligament tissue engineering applications since they are FDA approved and 

commercially available in fibrous form. The family is made up of poly(glycolide) 

(PGA), poly(L-lactide) (PLLA) and their copolymers of poly(lactide-co-glycolide) 

(PLAGA), which can be synthesized in a variety of methods [184, 185]. Table 2-5 lists 

the physical and mechanical properties of some of these polymers [101, 182, 184, 186-

188]. 
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Table 2-5: Physical and mechanical properties of the poly(α-hydroxyester) family. 

Polymer PGA 
Copolymer 

PLLA 
PLAGA DL-PLAGA DL-PLAGA 

Composition 100 (10:90) (50:50) (85:15) 100 

Chemical 
Structure 

[C2H2O2]y 
[C3H4O2]10 
[C2H2O2]90 

[C3H4O2]50 
[C2H2O2]50 

[C3H4O2]85 
[C2H2O2]15 

[C3H4O2]x

Tensile 
Strength 
(MPa) 

339-394 
(fibers) 

570-910 
(fibers) 

41.4-55.2 41.4-55.2 
<870 

(fibers) 

Maximum 
Strain (%) 

15-35 (fibers) 18-25 3-10 3-10 25 (fibers)

Approximate 
Resorption 
Duration 
(months) 

Loss of mech. 
prop.: 1 month 

 
Full resorption: 

50-75 days 

Loss of 
mech. prop.: 

90 days 
1-2 5-6 >24 

 

The poly(α-hydroxyester) family degrades via hydrolysis of the ester bonds and 

bulk erosion, with a loss of mechanical strength over a period of 2-4 weeks for PGA to 

24 weeks for PLLA in pH 7 fluid at 37°C [186, 188, 189]. Lactic acid is released during 

the course of degradation for PLLA and its copolymers. Specifically for PLAGA 

polymers, the pH of the degradation solution (mainly lactic acid) can cause 

autocatalysis, whereby the lowered pH in the local environment can cause increase in 

degradation rate [182, 190]. Although cellular and tissue biocompatibility of 

polylactides have been shown in several toxicological studies and the American Gentox 

program [182], problems persist to limit their application as biodegradable polymers. 

These problems include issues due to the progress of resorption process in vivo, control 

of mechanical properties with degradation in vivo, effect of local pH decrease, burst 
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phenomenon and the possibility of mutagenicity due to the degradation products [100, 

101, 182, 184, 187, 191-194]. 

Apart from these materials, the use of natural materials such as silk has fast 

becoming a popular biomaterial of choice for ligament tissue engineering [3, 13, 21, 27, 

195-197]. This is largely due to the extraordinary mechanical properties and enhanced 

implant stability of silk. The following section will give further insights to the 

application of silk fibroin, the biocompatible component of silk, as used for tissue 

engineering ligament. 

2.7.2.2. Silk Fibroin as Ligament Tissue Engineering Scaffold 

 Material 

Silk fibroin (SF) of the Bombyx mori has long been recognized as a valuable 

material in the textile and biomedical industries. It is utilized in many biomedical 

applications including sutures, whereby its excellent mechanical strength and elasticity 

are utilized [28, 198, 199]. The superior mechanical properties of SF are attributed to 

their protein structural arrangements. It has been proposed that SF exists in two 

different phases, which are identified as Silk I and Silk II [200, 201]. Silk II has been 

identified to be anti-parallel β-sheets, whereby the polypeptide main chains are aligned 

and adjacent chains connected by hydrogen bonds. Silk I, on the other hand, has been 

suggested to compose of α-helix and random coil structures [202, 203]. When subjected 

to external stimulation such as heating and shearing, metastable Silk I will be converted 

to the more stable and mechanically viable Silk II [204-206].  
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Despite the excellent mechanical properties, SF is only sought recently for use as 

scaffold material in tissue engineering [28, 198, 199]. This is partly due to confusion in 

the past, whereby concerns were raised on Bombyx mori silk for invoking inflammatory 

responses in certain biomedical applications [207-215]. Coupled with the misconception 

that SF is non-degradable in vivo, having retained majority of its tensile strength beyond 

60 days, it was being sidelined by other biocompatible synthetics of shorter degradation 

period and was wrongly classified as a permanent implant material. 

Now however, there is a clearer understanding of Bombyx mori silk, making it 

possible for SF to be used as an implantable scaffold material for tissue engineering. It 

is realized that SF will not likely induce hypersensitivity if the wax-like sericin coating 

is removed [28, 199, 212, 216-218]. A degumming process is used to remove the sericin 

component from raw silk. Moreover, since silk is a protein, it will be susceptible to 

proteolytic degradation in vivo and be absorbed, though a longer period of time is 

required. With the enhanced environmental stability due to the extensive hydrogen 

bonding and significant crystallinity in the SF protein structure, there is potential for SF 

to be used for scaffolds in tissue engineering where mechanical robustness and long 

term degradation is required. This is why silk is typically used in musculoskeletal and 

orthopedic applications, such as ligament repairs [3, 21, 27, 197], where a very gradual 

transfer of load from the scaffold to the growing tissue is desired. Furthermore, SF has 

been shown to bear equivalence to collagen in supporting cell attachment, inducing 

appropriate morphology and growth since it is a natural protein as well [36, 37, 219]. In 

fact, the size ranges of SF fibers (8-14 µm) used in this study fell within the range of 

collagen fibers (1-20 µm) seen in natural ligament tissue [24]. To further mimic the 
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ECM structure, SF has been successfully electrospun to form nonwoven meshes of sub-

micron diameters and is found to enhance cell adhesion and spreading of Type I 

collagen due to its high surface to volume ratio [5, 38, 199].  

However, in the process of removing sericin from raw silk, typically using the 

thermo-chemical treatment approach, the structural state of SF is affected. 

Consequently, there will be changes in the SF microstructure, which will inevitably 

alter the mechanical and degradation properties of SF. Indeed, it has been reported that 

degumming affects the mechanical properties of silk and Pe’rez-Rigueiro et al. have 

reported the effects of degumming with distilled water on the tensile strength of forcibly 

reeled silkworm silk fibers [220, 221]. Jiang et al. have also investigated the tensile 

behavior and morphology of SF upon degumming using different solution types [222]. 

 The various degumming chemical solution types can be largely classified into 

two categories: alkaline and enzymatic. Both of these types of chemical degumming 

uses a combination of sericin removal approach, which includes dispersion, 

solubilization and hydrolysis of the various sericin polypeptides [223]. The primary 

mechanism utilized by alkaline degumming is hydrolysis. Since hydrolytic agents are 

used, it is important that moderation of the conditions be done when this method of 

degumming is performed. Although recent studies have looked into using proteolytic 

enzymes for degumming purpose, there exist several limitations to the method [224-

227]. These limitations include higher shear and bending rigidity of resultant SF, the 

presence of residual sericin at the overlap points and core of processed silk structures 

[228] and the higher cost of enzymes as compared to chemicals used for alkaline 

degumming.  
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Even though it has been shown by investigators that amongst the various 

degumming methods, alkaline degumming using Na2CO3 causes significant structural 

and mechanical changes [222, 229], it remains as a popular method due to the high 

effectiveness of sericin removal within a relatively short duration [28, 199]. Moreover, 

it is often necessary to degum silk of a processed form, such as knits or braids. These 

architectures are generating much interest in recent load-bearing tissue engineering 

development, especially in combination with the silk fibroin material, whereby the 

inherent superior mechanical properties of the fibroin fibers are fully exploited, to form 

the load bearing component of a functional scaffold [3, 21, 27, 28, 197, 199]. Although 

fabricating scaffold from raw silk instead of degummed silk can ease fabrication process 

and better protect SF by the sericin coating during the fabrication process, it poses new 

challenges. This is so as it will then be difficult to remove sericin from the core of these 

structures, where raw silk is not exposed to the degumming solution. In these cases, 

degumming using the Na2CO3 alkaline method proves to be effective and produces 

scaffolds with negligible hypersensitivity and inflammatory reactions [3, 27, 197]. To 

maximize the benefits of using SF as scaffold material in this study, the challenge thus 

lies in optimizing the degumming method and identifying a set of conditions, such that 

SF hydrolytic damage, together with the resultant mechanical and structural 

deterioration, is reduced. This is essential for the production of functional scaffolds in 

tissue engineering applications, especially that for ligament tissue regeneration whereby 

the mechanical aspect is crucial.  
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2.7.2.3. Scaffold Architecture 

There are several architectures, resulting from the different fabrication methods, 

which have been used for scaffolds in tissue engineering. Very often, scaffolds made 

from biodegradable polymers are fabricated using techniques such as particulate 

leaching, textile technologies or 3D printing techniques. In the traditional particulate 

leaching method, a particulate-matrix mix is created by casting a polymer solution over 

water-soluble particles such as sodium chloride salt, which is followed by solvent 

evaporation and salt leaching to yield a porous scaffold. However, this method is 

limited by the lack of interconnectivity between the pores and difficulty in controlling 

pore dispersion and porosity, leading to uncontrollable morphologies in pore walls 

[230].  

Textile technologies have also been used to fabricate woven or non-woven fabrics 

as scaffolds [231, 232]. Some of the textile technique that have been used for ligament 

tissue engineering scaffolds include axial fiber structures, woven structures, 2-D braids 

and knitted structures. Axial fiber replacements have been used in carbon-based total 

ligament replacements such as ABC (Surgicraft, UK) and collagen-based scaffolds 

developed by Dunn et al. [45, 57, 113]. Being just structures of collated fibers plied and 

fixed parallel to each other, the axial fiber architecture is susceptible to axial splitting 

due to flexural and torsional fatigue, and surface peeling as a result of yarn-on-yarn or 

yarn-on-bone abrasion [113]. Woven fibrous structures, on the other hand, are 2D 

interlaced yarn systems with an “over” and “under” weave pattern and have been used 

in the Stryker and Lygeron ligament replacements [45, 100, 101]. The disadvantage of 

this structure however is low extensibility, poor collagen infiltration and orientation, 
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and similar problems to axial fiber structures such as axial splitting and abrasive wear 

due to tight weaving [113]. 2-D braids are made using two braiding yarns in the through 

thickness direction of the braid and have been used in the Gore-Tex, Proflex and 

Kennedy LAD devices [45, 100, 101, 105, 113]. Although the structure can transfer 

high loads and provide for structural elongation, it fundamentally inhibits collagen 

infiltration due to the tightly braided construct [33, 34]. As such, there will be loss of 

structural integrity, and problems of surface peeling, axial splitting of fibers and 

stability issues.  

Knitted fibrous structures are made by interlocking a series of loops of one or 

more yarns to create a porous fabric for tissue ingrowth and have been used in LARS 

and Stryker ligaments [45, 100, 101, 113, 233]. The structure have also been made with 

PLGA and have been shown to have high porosity and more internal connective voids 

compared to braided structures, especially during tensioned states [35]. These spaces 

allow effective cell adhesion and medium perfusion, thereby stimulating uniform ECM 

formation, which is critical during the repair process and helps functional integration of 

the engineered tissue into the surrounding tissues. Furthermore, the knitted structure can 

be designed to suit individual applications and in this study, it will be designed to cater 

to the loading conditions involved in ACL regeneration using SF as the material of 

choice. Although it may not have as high a loading capacity as the braided structures, 

the use of a mechanically superior material such as SF can compensate for this 

limitation. Even though the knitted structure may not be capable of supporting 

orientation in the collagen tissue formed, it can be incorporated with aligned 
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electrospun SF fibers, as in this study, to provide topographical cues for cell guidance 

such that oriented collagen tissue can be achieved eventually.  

2.7.2.4. Scaffold Topography 

In this study, the main knitted structure requires a matrix for effective cell seeding 

and subsequent tissue development due to the large pores (1mm) inherent of the 

structure. In common practice, a gel system, such as fibrin or collagen gel, is used, but 

such system was found to be unstable in a dynamic environment, especially that of the 

knee joint [234]. Moreover, problems of nutrient transmission occur in such systems, 

whereby cells seeded in a 3D gel system are observed to proliferate only near the 

periphery surfaces [235, 236]. A more effective matrix based on electrospinning 

technology is used to produce electrospun ultra-fine fibers of sub-micron diameters, 

which have high surface area-volume ratio and mimics the ECM of native tissue. This 

matrix type has been shown to facilitate cell attachment, proliferation and ECM 

deposition [237].  

The addition of an electrospun matrix not only facilitates cell attachment, but also 

introduces a mean to provide cell guidance to the attached cells. From a biomimetic 

perspective, ligament anatomy suggests fibrous structures apposite templates as an 

important consideration for ligament scaffold design. Although it may be unclear as to 

what dimensional order should structural cues be present for collagen-hierarchy 

reconstitution such that neo-ligament function can be optimized, recent studies have 

preliminarily demonstrated the positive effects of fiber alignment at the nanometer to 

sub-micron level on cell morphology and ECM production [23, 36, 37]. The correlation 
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of cellular spreading and orientation with electrospun fiber topography is demonstrated 

by Lee et al. [37]. They have found that human ligament fibroblasts (HLFs) cultured on 

electrospun aligned polyurethane (PU) fibers (657±183nm) were spindle-shaped, 

oriented in the fiber direction and secreted significantly more collagen than on 

randomly oriented fibers. Under cyclic strain in the direction of alignment, 150% more 

collagen was produced. As mechanical interactions between cells and the underlying 

substrate can take several forms, including topographic interactions and surface tensile 

forces, aligned electrospun fibers can sensitize these cells for effective mechano-

transduction by tensioning cytoskeletal filaments [38]. The orientation of fibroblasts 

along a ligament has also been shown to improve its tensile strength [36].  

Nevertheless, there has been limited work in translating and utilizing this 

fundamental knowledge for functional ligament constructs that are viable in both the 

mechanical and cellular aspects to allow early implantation without the need for long 

term ex vivo culture. Furthermore, assessments for the differentiative potential of bone 

marrow derived MSCs down the ligament fibroblast cell lineage as induced by aligned 

3D scaffolds have also been limited and inconclusive. On top of that, the synergistic 

effects of mechanical conditioning on a 3D aligned scaffold has also not been studied 

and understood. It is thus the aim of this study to provide further insights into these 

issues. 

2.7.3. Biomechanical Cues 

The use of bioreactors in tissue engineering applications has been widely studied, 

often with the aim of providing a closer resemblance of the in vivo environment ex vivo. 
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Very often, it is designed with the ability to provide physiologically relevant 

biochemical and biomechanical cues to achieve the conversion of a cell type to another 

specific tissue phenotype or to trigger tissue maturation by “working” the tissue 

engineered construct in vitro. Specifically, the tissue engineering bioreactor should 

function to [238-240]: 

1. Increase mass transport to alleviate diffusion limitation of 3D scaffolds; that is, to 

provide adequate nutrient, oxygen and regulatory molecules to cells while removing 

waste such as metabolites and CO2. 

2. Stimulate the tissue engineered construct physiologically to provide mechanical 

cues to trigger the mechano-transduction process towards the differentiated cell 

lineage. 

Similar to the conventional bioreactors commonly used in the industries for food 

processing, fermentation, and production of pharmaceuticals and recombinant proteins, 

bioreactors for tissue engineering should also allow close monitoring and tight 

environmental controls. Environmental parameters such as temperature, pH, oxygen 

concentration, nutrient supply and waste removal are particularly essential to be 

controlled. Other than these, tissue engineering bioreactors should also provide an 

avenue to control the introduction and conclusion of biochemical and physical 

regulatory signals to guide cell proliferation, differentiation or tissue development. The 

bioreactor thus offers possibilities of providing controlled tissue development in vitro, 

which could be scaled up for commercial production of engineered tissues. 
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The essential function of a bioreactor for tissue engineering the ligament is to 

provide mechanical stimulus to modulate the cell physiology and increase overall 

biosynthetic activity in the 3D constructs for effective tissue regeneration in vitro [150]. 

Mechanical conditioning is necessary for ligament tissues in order to mimic the constant 

loading due to locomotion and regenerate the hierarchical structure present in these 

tissues. In particular, Altman et al. reported the use of directed multi-dimensional 

strains to mimic the physiological environment [241]. They had implemented both 

translational and rotational strains with the attempt to develop tissue engineered ACL 

with the unique helical fiber organization and structure of the native ACL. By so doing, 

the resultant tissue engineered ACL would have better mechanical attributes to make it 

suitable for its stabilizing functions. In the same light, cellular alignment and ECM 

orientation have been achieved in many studies involving mechanical loading of 

fibroblasts; while other studies have demonstrated enhanced cell proliferation, increased 

ECM synthesis, and promotion of MSC differentiation to ligament fibroblast 

phenotypes [242-247]. Mechanical stimulation is thus considered by many as crucial to 

the successful development of tissue engineered ligament [1, 13, 142, 241, 244]. 

There are several approaches to providing mechanical stimulation of the ligament; 

with most studies following the approach of providing physiological loading to 

condition cell-seeded constructs in vitro [248-252]. Many of these studies were based 

on works performed by Morrison and Fleming et al. [248, 249, 251, 252], whereby the 

strain behavior of the ACL was being tested during a variety of activities ranging from 

level walking, stair climbing and descending, walking up and down a ramp and 

bicycling. It was found that the ACL forces ranged from 169 N during level walking to 
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a high of 447 N during stair descending. This corresponded to a 3.1% to 6.9% ACL 

strains determined from load-extension graphs of young human ACLs. Other studies 

reported strain amplitudes of 2% to 10% for human cruciate ligaments and Achilles 

tendon [84, 253, 254]. Consequently, the general consensus of physiological ACL strain 

is set at 5% as deduced from studies related to mechanical conditioning of the ACL 

[241, 244, 245, 255-260].  

However, other than the strain value, a cyclic strain profile is characterized by 

several other variables, whereby considerable diversity has been reported [241, 244, 

245, 255-261]. This is further complicated by the different cell types, scaffold materials 

and designs, and bioreactor designs involved. Therefore, it may be feasible to 

understand and try to optimize a general profile that will be optimal for ligament 

regeneration. In this way, the selection of stimulation parameters, such as cyclic strain 

amplitude (maximum extension with respect to original length), cyclic frequency 

(number of cycles per second), duration of total stimulation period and periodic 

frequency (duration of stimulation period per day) will be based on a specific profile 

intended for the tissue construct during a particular developmental stage, rather than 

trying to moderate individual parameters separately. In other words, it may be more 

feasible and likely more effective to identify groups of stimulation parameters that 

contribute to “low” or “high” stimulation intensities respectively and timely implement 

these intensities in series, rather than implementing a particular optimized parameter 

continuously throughout the stimulation period. Not only is the latter a generalization of 

the stimulation effect to the contribution of a single parameter, it may also not be 

suitable throughout all the tissue’s developmental phases. Indeed, this is motivated by 
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the fact that physiological loading parameters are often used in many studies, which 

may be sub-optimal to the regenerating ligament tissue construct since they are not 

matured tissues to begin with. It is therefore critical to first indentify conditioning 

parameters that will provide “low” and “high” stimulation intensities and subsequently 

execute a series of timely implementations of these different intensities in the 

stimulation regime. 

As such, the cyclic frequency will be varied in this study, with 0.1 Hz identified 

for the “low” intensity profile and 0.5 Hz for the “high” intensity profile. Consequently, 

the number of cycles per day based on 12 hours daily activity for “low” intensity profile 

was 4320 and that for “high” intensity profile was 21600. These values were selected to 

substantially mark the upper and lower boundaries by positioning above and below the 

physiological range as reported in pedometer studies whereby human walking activity 

per day is 6700 to 11900 cycles per day [262]. Other parameters including the cyclic 

strain amplitude and periodic frequency would be kept constant at the physiological 

values, which were 5% and 12 hours/day respectively. Although not part of the scope of 

this study, the values of these respective parameters accounting for “low” or “high” 

intensity profiles should be obtained experimentally to describe the different stimulation 

intensities more comprehensively. 

The onset of the “low” and “high” intensity profiles would follow a rehabilitative 

approach as inspired from the rehabilitation treatment rendered to patients who have 

undergone ACL reconstruction surgeries [54, 263]. A carefully tailored postsurgical 

rehabilitation protocol is often developed with the patient’s individual unique situation 

and type of surgery that has ensued so that full restoration of limb function can be 
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achieved [264]. The balanced amount of exercise is essential for functional restoration, 

while introducing exercises that are less or more than optimal may be ineffective or 

even detrimental to subsequent recovery of the tissue function [265]. The exercise 

dosage in terms of the amount of repetitions done in a given duration is a particularly 

important condition to moderate as an inappropriate exercise dosage performed to the 

extent of muscle fatigue may not only cause knee joint stability [266], but also put the 

newly constructed graft at risk of failure [267].  

Although the concept of rehabilitation has been well studied and implemented as a 

standard post-surgical treatment for ACL reconstruction, it was generally not studied 

and realized in tissue engineering applications of ACL as many studies focused on the 

execution of level stimulation profile throughout the conditioning period [241, 244, 245, 

255-261]. In relation to this, a rehabilitative stimulation regime, which included static 

culture and “low” intensity biomechanical stimulation would be implemented in the first 

7 days post-seeding to allow initial cell attachment, proliferation and stimulated 

differentiation onset in a relatively mild mechanical environment. Subsequently, the 

“high” intensity biomechanical stimulation would be in place to further accelerate the 

tissue differentiation and maturation stages. The onset of the “high” intensity profile 

was proposed to be after 7 days post-seeding as consensus from several studies 

demonstrated that positive changes to tissue constructs were often effected if 

mechanical conditioning is started after this duration of cell acclimatization [245, 268-

271]. It was only then that MSCs could respond positively to the dynamic culture 

environment. With appropriate temporal tissue conditioning at the respective phase of 

growth, it was likely that seeded MSCs could be induced to proliferate and differentiate 
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with collagen laid down in an organized manner to attain functional ligament in a 

shorter duration.  

2.8. Summary 

In the investigation of ligament tissue engineering, it is essential to first 

understand the tissue’s anatomical and physiological functions. The unique macroscopic 

mechanical properties of the tissue are contributed by the hierarchical organization of 

the microscopic components. Despite the superior mechanical adaptation of the tissue to 

its working environment, the ligament is prone to injury either due to single impact 

trauma or repetitive exposure to low magnitude forces. Subsequent healing of the tissue 

is often suboptimal as inherently repaired torn ligament will never be as strong as the 

original tissue. Furthermore, it is necessary for ruptured ligament to be surgically 

reconstructed. However, current surgical treatment modalities, which include permanent 

grafts and biological grafts, often bear many limitations including long-term implant 

failure, donor site morbidity, graft rejection and infection. This motivated the use of 

biodegradable grafts, which contributed to the interest in tissue engineering solutions. 

Of the factors affecting tissue engineering success in ligament applications, the cell 

source, scaffold and biomechanical cues are focused in this study. MSCs derived from 

bone marrow are chosen for the cell source used in this investigation, which will be 

seeded onto knitted SF scaffolds with aligned electrospun SF. This hybrid SF scaffold 

will thus support tissue regeneration both mechanically by the strong SF material and 

biologically by providing suitable cell attachment topography from the aligned 

electrospun SF. This cell seeded construct will then be dynamically cultured in a 
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rehabilitative manner multi-dimensionally to gradually load the construct 

physiologically. It is envisioned that these topographical and mechanical cues will work 

synergistically to promote tenogenic differentiation for successful functional tissue 

engineering of the ligament. 



CChhaapptteerr  33    
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3.1. Introduction  

The knitted architecture has been shown to be advantageous over other textile 

based architectures, such as the braided and woven structures, and has been widely used 

in prosthetic ACL such as the LARS and Stryker ligaments [45, 100, 101, 113, 233]. 

Being highly porous and more extensible, this architecture was selected for the main 

load-bearing structure and was customized using SF to support physiological loading of 

the ACL. The ACL was chosen as the tissue of interest to be focused in this study, 

amongst the ligament tissues, due to the high mechanical loading that it has to 

undertake. Hence making it one of the more challenging ligament tissue types to design 

for mechanically and regenerate successfully. 

A series of steps was necessary to ensure that the final degummed SF knit would 

be functional as a tissue engineered ACL in vivo in a rabbit model. These steps include:  

1. Tensile tests of single SFs extracted from degummed silk yarns to preliminarily 

determine the mechanical properties of the SF material to facilitate design of 

functional SF knit in the next step. 

2. Custom design of the load bearing knitted SF that would be capable of supporting 

functional loading in the rabbit model in vivo. Design would be performed 

theoretically based on the fully extended knit, with SF material properties 

determined from previous step and safety factors to cater for in vivo degradation of 

the SF material.  
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3. Maximize the mechanical properties of the knitted SF structure after degumming. 

This final step was necessary as harsher degumming conditions would be required 

for a knitted structure as compared to the silk yarns that the custom design was 

based on. This final stage of the design steps would therefore aim to preserve SF 

mechanical integrity after degumming from the knitted structure, by reducing 

mechanical depreciation resulting from the harsher degumming conditions, such that 

the mechanical properties of the final degummed SF knit could be as close to 

theoretical design values as possible.  

3.2. Mechanical Properties of SF from Degummed Silk 

 Yarns 

3.2.1. Materials and Methods 

3.2.1.1. Sample Preparation and Degumming 

Raw silk fibers of 80 fibroin counts were reeled onto a water-filled 50 ml Falcon 

tube (BD Biosciences, CA, USA) and immersed into degumming solution of aqueous 

Na2CO3 and SDS, 0.25% w/v each (Sigma-Aldrich, St. Louis, USA) at 98-100°C. Pure 

aqueous Na2CO3 solution, without SDS, was used as the negative control degumming 

condition. Unlike the degumming procedure used for silk knits, reeled silk yarns were 

not mechanically agitated since the degumming solution could reach the silk fibers 

readily. A variety of degumming duration ranging from 5-90 min was used to assess the 

shortest duration at which the raw silk was degummed. 90 min was used to degum silk 

fibers of the control group as preliminary works showed that degumming using plain 
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aqueous Na2CO3 solution could not achieve effective sericin removal in durations 

shorter than 90 min. Degummed silk fibers from the different groups were all rinsed in 

warmed distilled water after removal from the respective degumming solution and left 

to air dry for at least 24 h before further tests were conducted. 

3.2.1.2. Observation of SF Morphology and Cross-Section 

The degummed silk fibers were gold-sputtered and observed at 15 kV in a 

scanning electron microscope (SEM, JEOL Ltd, JSM-5600 LV, Japan) to characterize 

their surface morphology and cross-sectional areas. SFs of the silk fiber yarn were 

carefully spread for observation of sericin presence at two different positions, followed 

by a 90° rotation about the longitudinal axis for observation on the cross-section. Cross-

sectional areas were then obtained pictorially using imaging software (ImageJ 1.38x, 

Wayne Rasband, NIH, USA). Data was collected over 20 samples. 

3.2.1.3. Nanotensile Tests 

To gain accurate representation of the mechanical strength of SF, single fibroins 

(n=10 each group) were carefully extracted from degummed silk yarns and 

mechanically tested to failure using a nanotensile tester (MTS Systems Corporation, 

Nano Bionix UTM® Testing System, MN, USA)  under standard environmental 

conditions (20°C, 60% relative humidity) as shown in Figure 3-1. The reason for testing 

single fibroins instead of the 80 fibroin yarns was because testing of fibroin yarns would 

result in slippages of individual fibroins, leading to inaccurate tensile results. The single 

SF fibers were first mounted onto a rectangular paper frame using a masking tape to 
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give a gauge length of 20 mm. After mounting the frame with the SF fiber within the grips 

of the nanotensile tester, the side columns of the paper frame were cut and the samples 

stretched to failure at strain rate of 1 %s-1. Load (mN) and extension (mm) were recorded 

and stress-strain behaviors of SF were derived, as detailed in Appendix A, using cross-

sectional areas measured via SEM prior the tensile tests. Care was taken to avoid 

stretching the fibers plastically prior to testing. 

   

Figure 3-1: (A) Nanotensile testing of single SF fiber using nanotensile tester, with (B) single SF 
fiber mounted on rectangular paper frame that was cut on the sides before tensile testing the fiber. 
(C) Care was taken to mount the fiber such that it was in line with the clamps of the nanotensile 
tester.   

3.2.1.4. Statistical Analysis 

All data were expressed as means ± standard deviation (SD). The single factor 

analysis of variance (ANOVA) technique was used to assess the statistical significance 

of results between groups. For pairwise comparisons, two-tailed, unpaired Student’s t-

tests were used. GraphPad Prism ver. 5 (GraphPad Software, Inc., CA, USA) was used 

to implement the statistical analysis. A p<0.05 was considered statistically significant. 

A B
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3.2.2. Results and Discussion 

3.2.2.1. Degummed Silk Morphology  

Upon degumming for different durations, the degummed silk fibers were observed 

using the SEM to assess the effectiveness of sericin removal. It was noted that sericin 

remnants persisted in samples that were degummed for less than 30 min (Figure 3-2A), 

while smooth SF fibers were observed in samples degummed for 30 min or more 

(Figure 3-2B). Since effective degumming of silk yarns could be attained by 

degumming for 30 min, it would not be necessary to degum for longer durations. This 

observation would be used to complement the data for mechanical properties of silk, to 

ascertain the group with the optimal degumming duration that would be selected for its 

mechanical properties in the design of SF knits.  

   

Figure 3-2: (A) Silk fibers degummed for 15 min with remnant sericin present as shown by the 
arrows and (B) silk fibers degummed for 30 min with smooth SF and no observable sericin. 
Magnification: (A) 1000× and (B) 800×. 
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3.2.2.2. Cross-Sectional Area 

Before mechanical test was carried out for single SF filaments, the average cross-

sectional area of single SF filament would have to be determined and the value was 

used to represent the cross-sectional area of all the tested samples. Since silk is a natural 

fiber, standard deviation for the cross-sectional area of SF was not expected to be very 

small. The cross-sectional areas were measured for SF using SEM images of SF cross-

sections (Figure 3-3). From the measurements made (data from 20 samples), the SF 

cross-sectional area was typically 102 ± 25 µm2. This corresponded to a diameter of 

11.4 ± 1.3 µm, when the cross-section was assumed to have a circular profile. This 

result also matched, within acceptable range, to that performed by Pe´rez-Rigueiro et al., 

whereby a value of 9.3 ± 0.3µm was determined [272]. This thus highlighted the 

existence of batch to batch variance in fibroin diameters due to their natural origin. 

 

Figure 3-3: Representative SEM micrograph of SF cross-section used for determining cross-
sectional area. Magnification: 2300×. [26] 
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SEM was used for imaging the cross-section of cleanly degummed SF fibers for 

pictorial measurement of the fiber cross-sectional area, which would be used in the 

determination of mechanical properties of various SF specimen,. The cross-sectional 

area measured was used for deriving the stress-strain curve of the differently degummed 

samples based on the assumption that samples of various groups had comparable SF 

cross-sectional area before and after degumming and regardless of the degumming 

protocol. This was shown by Pe’rez-Rigueiro et al. whose investigations demonstrated 

that the diameter of silkworm silk was reproducible after degumming [220]; thereby 

revealing that degumming had very little effect on changing the cross-sectional area of 

SF. Although the cross-sectional area of a mildly degummed sample would be greater 

due to sericin presence, the contribution of any remnant sericin coating to the 

mechanical properties of SF would be negligible as the load bearing capacity of sericin 

was deemed negligible compared to fibroin [273]. Therefore, the tensile parameters 

measured were considered that of SF and any variations in these measured parameters 

would imply modification to the mechanical integrity of SF, regardless of amount of 

sericin present. 

3.2.2.3. SF Mechanical Properties 

The stress-strain behaviors of degummed SF by different degumming durations 

were plotted as shown in Figure 3-4. “SDS5 (fibers)” indicates the experimental silk 

fiber group degummed with aqueous Na2CO3 and SDS degumming solution for 5 min 

and so on, while “Sod Carb 90 (fibers)” indicates the control silk fiber group degummed 

with aqueous Na2CO3 degumming solution for 90 min. The corresponding mechanical 

properties obtained for the groups were tabulated as shown in Table 3-1. 
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It was observed that the mechanical properties of SF generally depreciated with 

increased degumming duration. This was also observed by Pe´rez-Rigueiro et al. [220, 

221] and could be attributed by the hydrolytic actions due to water and the chemicals 

used, which acted as plasticizers [221]. Furthermore, it was noted that SF in the fiber 

form exhibited two yield points as indicated by the arrows in Figure 3-4. Such a 

complex stress-strain curve was not observed in the knitted SF form, when compared 

retrospectively, and could be attributed to the reeling process during sample 

preparation, as previously described for silkworm silk obtained via reeling degummed 

cocoons [221, 274]. 

 

Figure 3-4: Stress-strain curves of degummed single SF filament subjected to different degumming 
durations (mean of ten contiguous samples for each group). 
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Table 3-1: Tensile properties of differently degummed SF fibers (data from ten degummed samples 
for each group). 

Degummed 
Samples 

Young’s 
Modulus 

(GPa) 

Yield Strength  
(MPa) 

Yield Strain 
(mm/mm) 

Breaking 
Strength 
(MPa) 

Breaking 
Strain 

(mm/mm) 

SDS5 (Fibers) 9.4 ± 1.1 231 ± 30 0.026 ± 0.003 434 ± 45 0.19 ± 0.07 

SDS15 (Fibers) 10.5 ± 1.4 235 ± 44 0.024 ± 0.004 456 ± 70 0.20 ± 0.04 

SDS30 (Fibers) 9.6 ± 1.2 205 ± 26 0.023 ± 0.004 430 ± 75 0.20 ± 0.04 

SDS45 (Fibers) 9.1 ± 0.8 174 ± 19 0.021 ± 0.003 361 ± 66 0.13 ± 0.05 

SDS60 (Fibers) 8.9 ± 1.8 204 ± 33 0.022 ± 0.003 366 ± 59 0.17 ± 0.07 

SDS75 (Fibers) 8.8 ± 1.6 197 ± 60 0.026 ± 0.012 359 ± 49 0.14 ± 0.04 

SDS90 (Fibers) 7.7 ± 1.2 208 ± 86 0.028 ± 0.007 274 ± 49 0.12 ± 0.03 

Na2CO390 (Fibers) 8.1 ± 1.7 146 ± 43 0.020 ± 0.003 309 ± 51 0.13 ± 0.07 

 

When compared with the mechanical properties of SF as obtained by Pe´rez-

Rigueiro et al. (Breaking strength: 650 ± 40 MPa, Young’s modulus: 16 ± 1 GPa) [272], 

the breaking strengths and Young’s modulus measured in this study were all relatively 

lower. However, it was comparable to the ultimate tensile strength or breaking strength 

commonly quoted for Bombyx mori silk of 500 MPa [272]. The reason for the slight 

discrepancy could be attributed to the difference in the source of silk used for different 

project groups. Moreover, the conditions at which the experiments were conducted were 

usually not specific, rendering slight differences in the results obtained. 

From the mechanical properties obtained for SF degummed in different durations, 

the properties for “SDS30 (fibers)” was chosen for use in the design of the SF knit. This 

decision was made based on the observation that sericin was clearly removed from the 

silk fibers by 30 min of degumming (determined by SEM) and prolonged degumming 

would only weaken the SF material further (determined by tensile tests performed). 
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3.3. Design of Knitted SF Architecture 

3.3.1. Design Purpose and Specifications 

The purpose set for this stage was to design the knitted SF in terms of its 

dimensions, pore size and choose the optimal number of yarns for physiological loading 

as a rabbit ACL total replacement in vivo. The principle of the design was to 

macroscopically and physically match the construct to the native tissue in terms its 

mechanical attributes. It was important to consider contribution from in vivo proteolytic 

degradation in the design such that the construct could remain mechanically viable 

throughout the tissue regeneration phase in vivo. 

It was estimated that the maximum rabbit ACL force experienced was at 40 N, 

which was about 138.6 % of rabbit body weight (2.5 – 3.0 kg) [12]. Although 

proteolytic degradation of SF was minimal for in vitro cultures, drastic decrease in 

tensile strength had been reported to range from 55% at 6 weeks to 73% at 30 days after 

subcutaneous implantation of silk scaffolds [28, 275]. A 50% decrease in SF scaffold 

failure load was also observed after 24 weeks in an in vivo study conducted by our 

group for rabbit ACL replacement [3]. Since the rate of degradation would very much 

depend on the implantation site, mechanical environment and scaffold structure, it 

would be more accurate to expect a 50% decrease in SF knitted scaffold loading 

capacity after 24 weeks in vivo when applied for ACL replacement. Although 

ultimately, the tensile properties of the regenerated construct should come from the 

regenerated tissue instead of from the scaffold, the scaffold should last a minimum of 6 

months in vivo to allow time for tissue growth and maturation [9, 24, 39, 43, 47, 96-98]. 
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Of the whole hybrid SF scaffold, the SF knit would contribute the bulk of the 

mechanical loading involved. Therefore the knitted SF structure in this study should be 

able withstand the maximum ACL load even if there was a 50% decrease in loading 

capacity due to proteolytic degradation of the knit. This was done by customizing the 

SF knit to support more than twice the maximum ACL force in rabbits; that was to 

support more than 80 N of loading within its elastic limits. 

The tensile stiffness of knitted SF, on the other hand, should be less than half of 

the native ACL tissue, which was measured to be 47.07 ± 14.84 N/mm [3]. Having 

lower scaffold stiffness as such could prevent stress shielding and allowed mechanical 

forces that were subjected to the scaffolds to be effectively conducted to the attached 

cells. This strategy fell in line with the principles of functional tissue engineering [150] 

and would be especially important when the cell-seeded scaffolds were to be 

mechanically conditioned either in vitro or in vivo to further enhance the proliferative 

and differentiative potential of MSCs on the hybrid SF scaffolds. Stiffness of the knitted 

SF was therefore designed to be less than 25 N/mm.  

3.3.2. Design Development 

The dimensional attributes of the SF knits were first determined. With due 

considerations given to the native tissue dimension, surgical implantation feasibility and 

ease of handling, the length of the SF knit was set at 40 mm while the width at 20 mm. 

This would give a cylindrical ACL analogue of length 40 mm with circular cross-

section of 5 mm outer diameter when the knit was rolled up along its width as shown in 
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Figure 3-5. Due to the limitation of the knitting machine, the minimum pore size 

attainable for the knitted structure was 1 mm. 

 

Figure 3-5: Dimensions of knitted SF in the flat rectangular profile and the cylindrical profile when 
rolled up along its width. 

 

With these parameters set, the optimum number of SF filaments that would be 

required to withstand the rabbit ACL physiological loads in vivo could then be 

determined theoretically. Although the mechanical strength of the knitted structure 

would increase by increasing the number of SF filaments used, the porosity and voids 

available for cell and tissue ingrowth would also decrease. This was notwithstanding the 

fact that overall structure stiffness would increase with increasing filament count, 

leading to stress shielding of the regenerating tissue.  

Optimization of the number of SF filaments would thus be necessary to determine 

the minimal filament number necessary for the application. Calculations for the required 

number of SF filaments to achieve this were based on the loading of SF knit in a taut 

state, whereby the individual struts of the loading direction were oriented to the 

direction of loading (Figure 3-6). It should also be noted that there was pore narrowing 

with force applied. In this state, the individual SF filaments would be tensioned and 

contributed to loading capacity of the knitted structure in a linear elastic manner. With 
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reference to load-extension curve for knitted structures, the start of this tensioned state 

would also mark the start of the linear elastic region (Figure A-1C, Appendix A) and the 

toe region before that would indicate that the knitted struts were not all in tension and 

loaded yet. It was thus assumed that failure of the knitted structure would require fully 

loading the individual SF filaments of the tensioned struts to failure. To further simplify 

the calculations, it was assumed that the SF filaments were loaded uniformly, rendering 

them to extend and fail in unison upon stretching the knitted structure to failure. 

 

Figure 3-6: Knitted structure in a (A) relaxed state, and in a (B) tensioned state with applied force. 
The green arrows indicate the change in direction of orientation of the loaded struts with applied 
force, which makes these struts orientate in the direction of force applied. Red arrow: Direction of 
applied force.  

A B
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Theoretical Calculation for the Optimal SF Filament Count 

The design specifications in terms of the yield point load and stiffness are listed in 

Table 3-2. The material mechanical and physical properties of SF as determined via 

single filament tensile test of silk degummed for 30 min and SEM measurements are as 

tabulated in Table 3-3 and the designed knitted SF parameters are tabulated in Table 3-

4. 

Table 3-2: Design specifications for knitted SF. 

Yield Point Load and Stiffness Requirement 

Yield Point Load > 80 N 

Stiffness < 25 N/mm 

 

Table 3-3: Tensile properties of SF fibers degummed for 30 min. 

Tensile Properties of Degummed SF 

Young’s Modulus (GPa) 9.6 ± 1.2 

Yield Strength  (MPa) 205 ± 26 

Yield Strain (mm/mm) 0.023 ± 0.004 

Breaking Strength (MPa) 430 ± 75 

Breaking Strain (mm/mm) 0.20 ± 0.04 

Cross-sectional Area (µm2) 102 ± 25  

 

Table 3-4: Designed knitted SF parameters. 

Knitted SF Parameters 

Dimension (mm) 40 × 20 

Average pore size (mm) 1 

Needle/stroke setting 12 needles 27 strokes 
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From the mean values of the tensile properties of SF filaments, the yield point 

load and elastic stiffness of the single SF filaments could be derived (Table 3-5) using 

the measured filament cross-sectional area and gauge length when the filaments were 

tested. 

Table 3-5: Calculated yield point load and stiffness of SF filament.  

Yield Point Load and Stiffness of SF Filament 

Yield Point Load 20.9 mN 

Stiffness 49.0 mN/mm 

 

With a safety factor of 1.5 derived empirically from preliminary single yarn knit 

tensile measurement to cater for stress concentration factors at the knots of the knitted 

structure and degumming damages, and assuming that the tensioned struts were oriented 

parallel to the directional force, 

 

Therefore, given that 2 struts were associated with each needle,  
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Since each yarn of raw silk fiber that was provided had a SF count of 80, 3 yarns 

of silk would be used to generate SF knit that would be strong enough for rabbit ACL 

physiological loading. Using 240 SF filaments for fabrication of the SF knits, the 

theoretical stiffness of the structure could be determined as follows, which was lower 

than 25 N/mm and thus met the design requirement. 

Stiffness = 240 × 49 × 10-3 = 11.8 N/mm 

3.3.3. Summary of Design Outcome 

In the design of the knitted SF to cater for mechanical viability of the rabbit ACL, 

it was important to consider degradation issues in vivo, such that the structure could last 

as long as it was intended for in the body.  It was determined that 3 yarns of silk, 

totalling to 240 SF filaments, would be sufficient to cater to the maximum load 

observed in rabbit ACL during normal function. Although the design approach used 

involved both empirical methods of preliminarily tensile testing single yarn SF knits to 

determine the safety factor, and theoretical calculations, it would be necessary to 

experimentally test the designed knits to ascertain its loading capacity. 
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3.4. Optimization of Knitted SF Degumming 

3.4.1. Introduction 

Upon determining the number of yarns to be used for the SF knit in this study, it 

would be necessary to investigate the effects of degumming on SF knit mechanical 

depreciation. Since harsher degumming conditions would be necessary to degum knitted 

structure made of 3 yarns of SF, the purpose of this part of the study was to optimize the 

degumming procedure to preserve knitted SF mechanical integrity. Moreover, current 

literature had shown limited work in investigating the effects of the different factors or 

degumming conditions in alkaline degumming that would directly contribute to the 

degradation of SF mechanical properties and morphology. The optimization and control 

of these factors or conditions to yield sericin-free and mechanically viable processed SF 

scaffolds had also been lacking.  

Therefore, the specific aim of this part of the study was to identify the factors or 

conditions in alkaline degumming that contribute to mechanical deterioration and 

protein structural modification. They were specifically identified as (1) duration, (2) 

presence of mechanical agitation, (3) thermal conditions, (4), use of refreshed solution 

and (5) post degumming structural modification of SF. Through a series of phases, 

investigating only a specific factor (presence of mechanical agitation, thermal 

conditions, use of refreshed solution and post degumming structural modification of SF) 

in each phase with varying durations, the effects of these factors on the SF tensile 

properties, SF morphology, effectiveness of sericin removal and SF protein structure 

were evaluated. Based on these material characterizations of single SF filaments, we 
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then attempted to provide a set of optimized parameters for degumming knitted silk 

structure. Using this set of optimized degumming parameters, the mechanical properties 

of the overall SF knit would then be determined and compared with the required yield 

point load and stiffness of SF knit to verify the theoretical calculations of the SF 

filament count. The percentage of sericin removed from knitted raw silk structures using 

such an optimized degumming protocol would also be quantified.  

The optimization phases thus investigated the impact of different degumming 

factors on knitted SF from a material aspect by measuring single SF filaments extracted 

from the differently degummed knitted structures. The optimization process and the 

optimized degumming parameters obtained were transferrable for degumming of similar 

processed structures since the material aspect was investigated. Upon finding the 

optimal degumming parameters via these optimization phases, the overall knitted 

structure degummed using this set of parameters would then be characterized and be 

used to verify that the designed SF knit would be mechanically sufficient to serve its 

purpose. 

3.4.2. Materials and Methods 

3.4.2.1. Sample Preparation and Degumming 

Raw Bombyx mori silk fibers (Nang Lai silk) were provided by the Silk 

Innovation Center at Mahasarakham University, Thailand. With the aid of the Silver 

Reed SK270 (Suzhou, China) Knitting Machine, as shown in Figure 3-7, 3 yarns of 80 

fibroin raw silk (total of 240 fibroins) was fabricated into knitted silk meshes of 



 

 

 

Page | 77 

Chapter 3: SF Knit

dimensions about 40 mm by 20 mm, with a setting of 12 needles and 27 strokes. The 

pore diameter was 1 mm on average, which was the minimum pore size available on the 

machine. At this stage of knitting, sericin was not removed from the silk material but 

was deliberately left unremoved as sericin acted as a ‘gumming’ agent that surrounded 

fibroin fibers, binding these fibers together. By doing so, the protein would provide a 

protective coating over the fibroin filament, necessary in the knitting process, while it 

prevented fraying of the fiber, allowing ease in knitting. Silk fibers, when treated, might 

fray and get caught in the complex mechanism of the knitting machine (Figure 3-7B). 

This strategy of sericin retention is typically used in silk processing of the textile 

industry [276]. 

However, these silk knits tended to curl up and thus custom-made U-shaped 

stainless steel wire frames of 1 mm diameter (Global Orthopaedics, Hampshire, 

England) were used to open up the knits (Figure 3-7A).  

  

Figure 3-7: (A) Hand-operated knitting machine used for the fabrication of knitted silk scaffolds 
from silk yarns with (B) the complex knitting mechanism that would catch frayed degummed silk 
fibers causing damage to the knit.  

Due to the antigenic nature of sericin, it is necessary to remove it cleanly from the 

knitted silk structure before the material can be made suitable for use in tissue 

engineering applications. The process of removing sericin from silk is also known as 
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silk degumming and often involves mechanical weakening of the fibroin structure [220-

222]. Alkaline degumming was the mode of degumming chosen for use in this study. It 

involved the use of alkaline degumming solution, which consisted of aqueous sodium 

carbonate (Na2CO3) and sodium dodecyl sulphate (SDS), 0.25 %w/v each (Sigma-

Aldrich St. Louis, USA). The addition of chemical surfactant such as SDS would reduce 

surface tension at the water–silk interface due to its hydrophilic and hydrophobic 

components, thereby improving the sticking and adsorbing properties of the cleaning 

solution onto raw silk. SDS is also a known anionic surfactant, which has been often 

used in protein separations by binding protein and disrupting the non-covalent bonds, 

making proteins lose their native conformation. Hence, SDS was added to reduce 

degumming duration by improving the efficiency of sericin removal.  

The SF knits were degummed under either presence or absence of mechanical 

agitation, different duration, different thermal conditions, with or without use of 

refreshed solution, and with or without post-degumming SF structural modification. The 

control group, on the other hand, was degummed with pure aqueous Na2CO3 solution 

(SDS-free) for 90 min at 100°C with mechanical agitation. 

Using SDS containing degumming solution, the various factors identified to affect 

the effectiveness of degumming and the physical outcome of degummed SF were each 

investigated in a series of phases (Table 3-6). It should be noted that Table 3-6 was 

compiled retrospectively, with the optimal parameter obtained after each phase applied 

to the subsequent phases. 
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Table 3-6: Classification of sample groups and the degumming conditions subjected to each group. 
The different factors were optimized under different phases (Phase I: Mechanical agitation, Phase 
II: Degumming thermal conditions, Phase III: Use of refreshed solution and Phase IV: Use of post-
degumming SF structural modification). Degumming durations were varied within each phase. 
Numbers following “SDS” or “Na2CO3” of sample group names indicate degumming duration 
pattern, while items in bracket indicate degumming temperature and whether mechanical agitation 
is present (MA) or absent (Static). 

Factors 
Opti-
mized 

Samples 

Parameters 
Total 

Duration 
(min) 

Temp. 
(°C) 

Refreshed 
Soln 

(Y/N) 

Mechanical 
Agitation 

(Y/N) 

SF Struc. 
Mod. 
(Y/N) 

Control Na2CO390 (100°C, MA) 90 100 N Y N 

Phase I 

M
ec

h
an

ic
al

 A
gi

ta
ti

on
 

D
u

ra
ti

on
 SDS15 (100°C, MA) 15 100 N Y N 

SDS30 (100°C, MA) 30 100 N Y N 

SDS60 (100°C, MA) 60 100 N Y N 

SDS90 (100°C, MA) 90 100 N Y N 

D
u

ra
ti

on
 SDS15 (100°C, Static) 15 100 N N N 

SDS30 (100°C, Static) 30 100 N N N 

SDS60 (100°C, Static) 60 100 N N N 

SDS90 (100°C, Static) 90 100 N N N 

Phase II 

D
eg

u
m

m
in

g 
T

h
er

m
al

 C
on

d
it

io
n

s 

D
u

ra
ti

on
 

SDS30 (100°C, MA) 30 100 N Y N 

SDS60 (100°C, MA) 60 100 N Y N 

SDS90 (100°C, MA) 90 100 N Y N 

D
u

ra
ti

on
 SDS30 (75°C. MA) 30 75 N Y N 

SDS45 (75°C, MA) 45 75 N Y N 

SDS60 (75°C, MA) 60 75 N Y N 

SDS90 (75°C, MA) 90 75 N Y N 

D
u

ra
ti

on
 

SDS45 (60°C, MA) 45 60 N Y N 

SDS90 (60°C, MA) 90 60 N Y N 

Phase III 

U
se

 o
f 

R
ef

re
sh

ed
 

S
ol

u
ti

on
s 

D
u

ra
ti

on
 

SDS15 (100°C, MA) 15 100 N Y N 

SDS30 (100°C, MA) 30 100 N Y N 

SDS60 (100°C, MA) 60 100 N Y N 

D
u

ra
ti

on
 

SDS7.5+7.5 (100°C, MA) 15 100 Y Y N 

SDS15+15 (100°C, MA) 30 100 Y Y N 

SDS30+30 (100°C, MA) 60 100 Y Y N 

Phase IV 

S
F

 S
tr

u
c.

 
M

od
. 

D
u

ra
ti

on
 

SDS30 (100°C, MA) 30 100 N Y N 

SDS30 (100°C, MA) 30 100 N Y Y 
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Phase I was aimed at identifying the need for mechanical agitation in the process 

of degumming knitted SF. Mechanical agitation of raw silk knits involved the 

attachment of the knits to a customized mechanical vibrator and immersed in a beaker 

of degumming solution, which was in turn placed on a heating magnetic stirrer (Figure 

3-8A). The mechanical vibrator would thus generate vibrational agitation (amplitude: 5 

mm, frequency: 12 Hz) in the vertical plane, whereas the heating magnetic stirrer 

(rotational speed: 800 rpm) would generate agitation currents normal to the knit surface 

and provide heat for the degumming process.  

   

Figure 3-8: (A) Mechanical vibrator and magnetic stirrer setup to provide agitation during 
degumming. (B) Schematic diagram of knit attachments with annular agitation currents provided 
by magnetic stirring action.  

During this process, the raw silk knits were spread open via a metal frame (Figure 

3-8B), so that the exposed area can be maximized to allow effective sericin removal by 

the degumming solution. These metal frames were attached to a supporting framework 

and arranged efficiently to allow multiple knitted silk structures to be degummed 

simultaneously. The knits were positioned vertically so that the larger surfaces would be 

normal to the stirring current provided by a magnetic stirrer. Doing this would thus 

allow relative motion between the degumming solution current and the knitted structure 

itself, which would lead to more effective sericin removal especially at the ‘knots’ of 
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the knitted scaffold. Moreover, the secured knits would also not be swirled in the 

current, which could possibly entangle or damage the structure. The purpose of the 

vibrational agitation was to loosen the knitted structures such that the degumming 

agents could reach the ‘knots’ and yarn core of the knits.  

Sample groups without mechanical agitation were simply immersed in 

degumming solution for similar durations. Within this phase, the degumming duration 

was varied (15-90 min) while factors of thermal conditions and use of refreshed solution 

were kept constant (100°C, without use of refreshed solution). Upon establishing the 

necessity of having mechanical agitation, it would be applied in subsequent phases.  

Phase II would then involve optimizing the degumming thermal conditions using 

3 different thermal conditions (60°C, 75°C and 100°C), while keeping other factors 

constant. Likewise, duration was varied from 30-90 min while other factors were kept 

constant. Mechanical agitation was applied as determined from Phase I and no 

refreshment of solution was applied for all samples within this phase.  

Upon obtaining the optimal thermal condition, it would be applied to Phase III to 

determine the need to refresh degumming solution. This was performed by changing 

similar volume of fresh degumming solution, with same SDS and Na2CO3 

concentrations, midway through the degumming durations with total durations of 15, 30 

and 60 min. All other factors were kept constant as determined from previous phases 

(100°C with mechanical agitation). 

Degummed SF knits from the optimized protocol would then be treated for post-

degumming methanol treatment to induce structural modification and crystallization of 
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SF in Phase IV and evaluate to see if this structural modification and crystallization 

would aid in further improving the mechanical properties of the degummed SF. This 

was done by immersing dried degummed SF samples in methanol (Thermo Fisher 

Scientific Inc., MA, USA) for 10 min and dried in room temperature and relative 

humidity (25°C, 60% respectively). 

All sample groups were rinsed in warmed distilled water after removal from 

degumming solution and left to air dry for at least 24 h before further tests were 

conducted.  

3.4.2.2. Observation of SF morphology 

The sample groups were gold-sputtered and observed at 15 kV in a SEM (JEOL 

Ltd, JSM-5600 LV, Japan) to characterize their surface morphology and cross-sectional 

areas. SFs at the core of the knits were carefully exposed for observation of sericin 

presence at two different positions. Data was collected over 20 samples. 

3.4.2.3. Single Fibroin Mechanical Test 

Single SF filaments were carefully extracted from the knitted structure at various 

locations, and tensile tested to failure using the nanotensile tester as described in section 

3.2.1.3. Data was collected over 10 samples for each degumming method.  Stress-strain 

behaviors of SFs subjected to various alkaline degumming conditions were thus 

obtained from force-displacement data as described in Appendix A using the cross-

sectional area measured.  
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3.4.2.4. Knitted SF Mechanical Test 

The overall knitted structure obtained by degumming using the “SDS30 (100°C, 

MA)” set of parameters was tested mechanically using a universal testing machine 

(Instron 3345 Tester, Instron, Norwood, MA, USA) with 1000 N load cell at standard 

environmental conditions (20°C, 60% relative humidity) (Figure 3-9A). “SDS30 

(100°C, MA)” was selected as an optimized set of degumming protocol for knitted silk 

structures after having performed sample assessments through the first 3 phases via 

SEM and mechanical tensile tests of single SF filaments extracted from degummed 

knits. 

Each cylindrical samples (5 mm outer diameter, 20 mm gauge length) were rolled 

from their laminar form along the widths prior testing (Figure 3-9B). Cylindrical forms 

were tested as this form would be analogous to the ligament tissue and would also be 

the functional form in vivo. The samples were kept moist with phosphate buffer saline 

(PBS) solution and loaded to failure by increasing the tensile load continuously at a 

crosshead speed of 10 mm/min without any pretension or preconditioning. Masking 

tapes were used to secure the specimens and aid to prevent slippages at the grips during 

testing. Samples were generally noted to fail from the central portions of the gauge 

length, indicative uniform loading profile through the gauge length and non-slipping at 

the grips (Figure 3-9C).  
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Figure 3-9: (A) Tensile testing of SF knits, scaffolds or cultured constructs using universal testing 
machine, with (B) cylindrical form of the specimens placed centrally at the grips for testing. (C) 
Failure was generally noted to initiate from the central portion of the tested specimens.   

Tensile load and elongation were recorded as represented by the load-

displacement curves, where the failure load, linear stiffness and extension at failure load 

were determined from. The ultimate tensile load (UTL) or failure load is defined as the 

highest load in load-extension graph, while the elastic stiffness of the constructs were 

obtained from the gradient of the line that fitted to the best linear region of the load-

extension graph and is expressed in N/mm. The stiffness in the elastic region was found 

by the method as detailed in Appendix A. 

The extent of the toe region relative to extension was also determined to indicate 

the degree at which the different specimens could be stretched prior to linear extension, 

method of identification is as described in Appendix A as well. 
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3.4.2.5. Silk Protein Identification and Fractionation using SDS-

 PAGE 

SDS-PAGE was performed for the SF knits degummed for different durations 

ranging from 5 min to 90 min at 100°C with mechanical agitation (i.e. “SDS5 (100°C, 

MA)”, “SDS15 (100°C, MA)”, “SDS30 (100°C, MA)”, “SDS45 (100°C, MA)”, 

“SDS60 (100°C, MA)”, “SDS75 (100°C, MA)”, “SDS90 (100°C, MA)”). This was 

done to determine the changes in the protein structure involved due to extended 

degumming. Particularly, it was used to determine and ascertain the removal of sericin 

in the optimal degumming condition and subsequently deduce the efficiency of sericin 

removal in the optimized degumming protocol. Sample solutions were obtained from 

raw silk, sericin and the differently degummed SF knits (n=5 each). Pure sericin was 

used as negative control in these analyses to indicate the molecular weights of sericin 

bands and compare it to the degummed silk specimens.  

A general protocol for the SDS-PAGE analysis is described below. 

a. Dissolution. Sericin was extracted from 0.5 g of finely cut raw silk pieces using 8M 

urea containing 2% 2-mercaptoethanol (Sigma-Aldrich, St. Louis, USA) at 80°C for 

5 min [277]. Fiber residues were then removed and the extract was centrifuged to 

obtain the sericin solution as supernatant. Sericin was precipitated by adding three 

times volume of ethanol, and the extracted sericin precipitate was redissolved in 10 

ml saturated LiSCN (250% w/v, Sigma-Aldrich, St. Louis, USA) with 2% 2-

mercaptoethanol. It was assumed that the sericin extracted through this process 

reflected the total amount of sericin present in the raw silk sample. 
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Degummed silk solutions of specimens that had undergone various degumming 

conditions and treatments, on the other hand, were obtained from dissolution of the 

corresponding finely cut degummed SF sample, which was derived from 0.5 g of 

knitted raw silk, in 10 ml saturated LiSCN with 2% 2-mercaptoethanol. The amount 

of raw silk at which the sericin or the degummed silk specimens were obtained from 

was the same at 0.5 g to allow subsequent comparison of the protein bands. Upon 

centrifugation of the dissolved silk at 3000 rpm for 10 min, degummed silk solutions 

were obtained as supernatant.  

b. Running the gel. Sample solutions for SDS–PAGE were prepared by adding an 

equal volume of sample buffer (0.5 M Tris–HCl buffer of pH 6.8, containing 

glycerol, 10 %w/v SDS and 0.5 %w/v bromophenol blue, Bio-rad, CA, USA) to 

individual protein solutions, vortexed and centrifuged briefly. The sample solutions 

were then loaded to a 12% gel (Bio-rad, CA, USA) and electrophoresis was 

performed in the Tris/glycine/SDS solution (Bio-rad, CA, USA) at a voltage of 100 

V.  

c. Gel staining. Upon completion of the electrosphresis, polypeptides were then 

stained with Coomassie Brilliant Blue R (Pierce, Thermo Scientific, MA, USA), 

which made up 0.2 % in 45:45:10 of methanol: water: acetic acid mix. The gel was 

covered with staining solution, sealed in plastic box and left overnight on shaker at 

room temperature. It was then destained with 25:65:10 of methanol: water: acetic 

acid mix, with agitation. The bands were compared to 10–250 kDa protein ladder 

(New England BioLabs, #P7703S, MA, USA). After which, the polyacrylamide gel 
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was photographed in a gel documentation system (Gel Doc 2000, BioRad, CA, 

USA). 

d. Gel analysis. The smear intensities of the individual specimens were normalized to 

the standard molecular marker band intensities (set as the 80 kDa marker of the 

protein ladder) before the relative intensities could be compared between different 

gels for different specimens.  

On the other hand, fractionations of sericin (SER) and “SDS30 (100°C, MA)” 

proteins using ethanol and SDS-PAGE were performed to ascertain the removal of 

sericin in the “SDS30 (100°C, MA)” sample. To perform the fractionation of silk 

proteins from the “SER” and “SDS30 (100°C, MA)” solutions, pure ethanol was added 

stepwise (final concentrations of 77.8%, 81.1%, 83.6%, 84.1%, 85.9%, 87.3%, and 

89.0% v/v), with the generated precipitate at each step redissolved in 2ml saturated 

LiSCN for analysis using SDS-PAGE. At different volumes of ethanol added, sericin 

and SF proteins would be precipitated independently and identified using SDS-PAGE. 

As the proteins extracted were from a constant amount of raw silk (0.5 g), comparison 

of the polypeptide bands between “SER” and “SDS30 (100°C, MA)” fractions could be 

made to give indication of the amount of protein components within each sample. 

Smear intensities were normalized to standard molecular marker band intensities before 

the relative intensities could be compared. Through the comparison of any remnant 

sericin smears from “SDS30 (100°C, MA)” and sericin smears from “SER”, evaluation 

on the amount of sericin removed from “SDS30 (100°C, MA)” could be performed. For 

statistical significance in the evaluation, extractions, ethanol fractionations and gel 

separation of “SER” and “SDS30 (100°C, MA)” were independently repeated (n=5). 
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3.4.2.6. Conformational Structure Analysis of Degummed SF using 

 FTIR-ATR 

FTIR-ATR was performed to determine the secondary structure and 

conformational changes of degummed SF, and the effects of post-degumming methanol 

treatment on SF protein structure. FTIR-ATR spectra were obtained in the spectral 

region of 1000-2000cm-1 (Thermo Nicolet, Avatar 360 FTIR spectrometer, USA). The 

specimens to be tested were first dried thoroughly in vacuum set at 37°C for 24 h to 

remove any remnant water. Upon complete drying, the crystal and tip of the FTIR 

spectrometer were cleaned with distilled water and dried prior to placing the specimens 

in between for scanning. Upon obtaining the absorbance waveform for each specimen, 

absorption peaks for the amide I, amide II and amide III (corresponding to C = O, N – H 

and C – N stretching) of Silk I random coil and Silk II β-sheet conformation were 

determined respectively. Specific to the secondary protein structure of SF, strong 

absorption bands at 1655 cm-1 (amide I), 1540 cm-1 (amide II) and 1230 cm-1 (amide 

III) were attributed to the random coil conformation, whereas absorption bands of 1628 

cm-1 (amide I), 1533 cm-1 (amide II) and 1260 cm-1 (amide III) were assigned to the β-

sheet conformation [219, 278, 279]. To quantitatively analyze the degree of 

crystallization of the specimens, the crystalline index was calculated using the intensity 

ratio of the absorbance wavenumbers of 1260cm-1 to 1230cm-1 (amide III peaks) [278].  
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The peak intensities of absorbance were determined from the area bounded by the 

respective peaks with the baseline absorbance. 

3.4.2.7. Statistical Analysis 

All data were expressed as means ± SD. Single factor ANOVA technique was 

used to assess the statistical significance of results between groups. For pair-wise 

comparisons, two-tailed, unpaired Student’s t tests were used. GraphPad Prism ver. 5 

(GraphPad Software, Inc., CA, USA) was used to implement the statistical analysis. A 

p<0.05 was considered statistically significant. 

3.4.3. Results 

3.4.3.1. Degummed SF Morphology 

From the SEM images obtained (Figure 3-10), sericin was observed to be 

effectively removed from “SDS30 (100°C, MA)” sample, as indicated by the smooth SF 

fibers (Figure 3-10A). Sericin remnants were observed to be present for samples with 

the same degumming duration of 30 min but without mechanical agitation, “SDS30 

(100°C, Static)” (Figure 3-10B). Remnant sericin could be observed in samples 

degummed shorter than 30 min, with or without mechanical agitation (Figure 3-10B). 

Although sericin was removed for samples degummed longer than 30 min, with or 

without mechanical agitation, fibrillations were observed in the fibroin filaments, 

indicative of fibroin degradation due to excessive degumming (Figure 3-10C). The same 

was observed for the control group, which was degummed using pure Na2CO3 in the 

absence of SDS for extended durations (90 min) with mechanical agitation (Figure 3-
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10C). Shorter durations (15, 30, 60 min) of degumming using pure Na2CO3 (without 

SDS) with mechanical agitation at 100°C were performed preliminarily, which 

produced samples with presence of sericin remnants (Figure 3-10B). In addition to the 

remnant sericin, fibrillations were also observed in the samples degummed for 60 min 

(Figure 3-10D). Consequently, effective sericin removal using purely Na2CO3 could 

only be achieved after 90 min, by which extended fibrillations would have occurred. 

  

  

Figure 3-10: (A) SEM of “SDS30 (100°C, MA)” showing smooth SF filaments. (B) Representative 
image showing remnant sericin typical in “SDS30 (100°C, Static)”, “SDS15 (100°C, MA)”, “SDS15 
(100°C, Static)”, “SDS30 (75°C, MA)”, “SDS90 (60°C, MA)” and “SDS7.5+7.5 (100°C, MA)”. (C) 
Representative image showing SF fibrillations typical in “SDS60 (100°C, MA)”, “SDS60 (100°C, 
Static)”, “SDS15+15 (100°C, MA)”and “Na2CO390 (100°C, MA)”. (D) Representative image 
showing remnant sericin with signs of SF fibrillations typical in SF knits degummed in Na2CO3 for 
60 min at 100°C. Remnant sericin indicated by solid arrows and fibrillations indicated by dashed 
arrows. Magnification: (A-C) 300×, (D) 200×. Data collected over 20 samples. [26] 
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Sericin remnants were observed in sample groups degummed with mechanical 

agitation at temperatures below 100°C (75°C and 60°C), regardless of the duration of 

degumming (Figure 3-10B). Prolonged degumming at 60°C for 90 min with mechanical 

agitation did not lead to fibrillations nor yield effective sericin removal as sericin was 

observed to be present (Figure 3-10B). 

Fibrillation of SF also occurred in sample groups “SDS15+15 (100°C, MA)” 

degummed in mechanical agitation for 30 min and having one change of fresh 

degumming solution midway through the 30 min duration (Figure 3-10C). Sericin 

remnants were observed in both “SDS15 (100°C, MA)” and “SDS7.5+7.5 (100°C, 

MA)” (Figure 3-10B), indicating that sericin removal could not be done within 15 min, 

with or without refreshment of solution. 

3.4.3.2. Degummed SF Mechanical Properties 

The effect of mechanical deterioration due to prolonged degumming of knitted 

scaffolds was observed for the first 3 phases whereby the different factors were 

investigated (Figure 3-11 A-E). Qualitatively, the elastic modulus, the elastic limit 

(yield point), the breaking strength (ultimate tensile strength, UTS), and breaking strain 

were shown to decline. Table 3-7 summarizes the tensile properties of various samples 

subjected to different degumming conditions, which indicates a general decline in 

mechanical integrity with prolonged degumming durations, regardless of other 

contributing factors, such as degumming temperature or presence of mechanical 

agitation. Interestingly, there was a significant decrease (p<0.05) in yield stress, UTS 

and breaking strain with SF degummed more than 30 min as compared to the “SDS30 
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(100°C, MA)” group, but no significant difference (p>0.05) was found between the 

“SDS15 (100°C, MA)” and “SDS30 (100°C, MA)” groups. 

   

   

  

Figure 3-11: Stress-strain curves of single fibroins extracted from degummed knitted silk 
(representative samples) (A & B) subjected to different degumming durations with and without 
mechanical agitation, (C & D) subjected to different degumming thermal conditions, (E) with and 
without degumming solution refreshed, and (F) with and without methanol treatment. Samples 
degummed using only aqueous Na2CO3 for 90 min was assigned as the control group (A & B). [26] 
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E F
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Table 3-7: Tensile parameters of differently degummed SF (data from 10 degummed samples for 
each group) with the data from the group with optimal degumming highlighted in bold.  

 

Samples 
Young’s 
Modulus 

(GPa) 

Yield 
Strength 
(MPa) 

Yield Strain 
(mm/mm) 

Breaking 
Strength 

(MPa) 

Breaking 
Strain 

(mm/mm) 

Na2CO390 (100°C, MA) 8.1 ± 1.7 146 ± 43 0.020 ± 0.003 309 ± 51 0.13 ± 0.07 

SDS15 (100°C, MA) 9.5 ± 2.4 186 ± 52 0.022 ± 0.005 482 ± 70 0.19 ± 0.06 

SDS30 (100°C, MA) 10.1 ± 3.1 172 ± 38 0.020 ± 0.006 466 ± 67 0.16 ± 0.04 

SDS60 (100°C, MA) 8.9 ± 1.8 129 ± 64 0.017 ± 0.007 366 ± 101 0.12 ± 0.06 

SDS90 (100°C, MA) 8.5 ± 2.1 136 ± 25 0.019 ± 0.005 318 ± 79 0.11 ± 0.06 

SDS15 (100°C, Static) 10.4 ± 2.2 197 ± 48 0.024 ± 0.008 502 ± 89 0.18 ± 0.07 

SDS30 (100°C, Static) 10.5 ± 2.6 184 ± 32 0.021 ± 0.005 489 ± 73 0.20 ± 0.04 

SDS60 (100°C, Static) 9.1 ± 1.9 141 ± 54 0.018 ± 0.004 380 ± 98 0.13 ± 0.05 

SDS90 (100°C, Static) 8.8 ± 2.0 132 ± 45 0.018 ± 0.003 320 ± 59 0.12 ± 0.03 

SDS45 (60°C, MA) 14.6 ± 1.8 174 ± 17 0.014 ± 0.002 533 ± 104 0.15 ± 0.06 

SDS90 (60°C, MA) 9.8 ± 2.7 218 ± 54 0.026 ± 0.009 521 ± 103 0.19 ± 0.08 

SDS30 (75°C, MA) 9.0 ± 2.8 159 ± 53 0.021 ± 0.010 471 ± 90 0.29 ± 0.13 

SDS45 (75°C, MA) 10.5 ± 1.8 156 ± 33 0.017 ± 0.005 436 ± 40 0.15 ± 0.06 

SDS60 (75°C, MA) 8.9 ± 2.0 169 ± 24 0.022 ± 0.004 414 ± 64 0.18 ± 0.08 

SDS90 (75°C, MA) 9.1 ± 1.7 175 ± 30 0.021 ± 0.004 394 ± 65 0.11 ± 0.04 

SDS7.5+7.5 (100°C, MA) 9.8  ± 1.9 177 ± 39 0.023 ± 0.005 495 ± 67 0.19 ± 0.06 

SDS15+15 (100°C, MA) 8.3 ± 1.4 140 ± 37 0.019 ± 0.004 378 ± 55 0.17 ± 0.07 

SDS30+30 (100°C, MA) 7.0 ± 1.7 166 ± 56 0.026 ± 0.006 367 ± 44 0.11 ± 0.02 

SDS30 (100oC, MA) 
(Methanol Treated) 

10.3 ± 3.4 151 ± 34 0.018 ± 0.005 449 ± 60 0.16 ± 0.07 
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With the presence of mechanical agitation, degummed SF exhibited significant 

decrease (p<0.05) in yield stress as compared to the sample groups without mechanical 

agitation (Figure 3-11A-B and Table 3-7). This was consistently observed across 

sample groups with different degumming durations (15-90 min). 

The mechanical properties of SF changed with variation in the degumming 

thermal conditions used (Figure 3-11C-D and Table 3-7). Between the groups 

degummed at 100°C and 75°C, significant differences (p<0.05) in the UTS and yield 

stress existed only after 90 min of degumming. On the other hand, significant 

differences (p<0.05) in the UTS and yield stress existed in all groups degummed at 

60°C when compared with the groups of similar durations degummed at 100°C and 

75°C. These results indicated that degumming at 75°C yielded similar reduction in 

mechanical properties of SF as that of 100°C, but with prolonged degumming of 90 

min, the decline in UTS and yield stress of the groups degummed at 100°C was 

significantly more (p<0.05) than that of the 75°C group. Conversely, SFs degummed at 

60°C were significantly stronger (p<0.05) in terms of UTS and yield stress even after 

prolonged degumming of 90 min.  

The stress-strain curve of samples degummed with the same degumming solution 

throughout the process (“SDS15 (100°C, MA)”, “SDS30 (100°C, MA)” and “SDS60 

(100°C, MA)”) and that of samples with degumming solutions refreshed at the midpoint 

of the process (“SDS7.5+7.5 (100°C, MA)”, “SDS15+15 (100°C, MA)” and 

“SDS30+30 (100°C, MA)”) is illustrated (Figure 3-11E and Table 3-7). A significant 

drop (p<0.05) in the tensile properties, specifically the UTS, yield stress and yield 

strain, was observed in the groups that had refreshed degumming solutions (“SDS15+15 
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(100°C, MA)” and “SDS30+30 (100°C, MA)”) as compared to their counterparts of 

similar total degumming durations (“SDS30 (100°C, MA)” and “SDS60 (100°C, 

MA)”). No statistical significant differences (p>0.05) in tensile properties were found 

between “SDS7.5+7.5 (100°C, MA)” and “SDS15 (100°C, MA)”. 

From stress-strain curves and tensile properties of “SDS30 (100°C, MA)” treated 

with methanol and that without methanol treatment (Figure 3-11F and Table 3-7), no 

significant differences (p>0.05) existed in the tensile properties of the two groups. This 

indicated that methanol treatment had statistically negligible effects in improving the 

tensile properties of degummed “SDS30 (100°C, MA)” SF. 

3.4.3.3. Degummed SF Knit Mechanical Properties 

From the SEM and mechanical tests performed through the first 3 phases of the 

optimization process, it was shown that the optimal degumming condition for processed 

silk forms such as the knitted structure was that of “SDS30 (100°C, MA)”. Using this 

optimal degumming condition, the optimal degummed SF knit was obtained for 

mechanical testing. The load-extension graph for the optimally degummed silk structure 

(Figure 3-12) and the mechanical properties of this structure (Table 3-8) were 

determined. It was experimentally verified that the designed SF knit could meet the 

design requisite of being able to support 80 N of yield point load and having a stiffness 

of less than 25 N/mm by having yield point load of 82.35 ± 4.55 N and stiffness of 

16.24 ± 0.81 N/mm. 
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Figure 3-12: Load-displacement curve of SF knit degummed using the conditions of “SDS30 
(100°C, MA)” (representative sample). 

 

Table 3-8: Mechanical properties of degummed SF knit using the “SDS30 (100°C, MA)” 
degumming condition (n=5). 

Yield point load 
(N) 

Displacement at 
yield point 

(mm) 

Stiffness 
(N/mm) 

Maximum load 
(N) 

Displacement at 
maximum load 

(mm) 

82.35 ± 4.55 7.93 ± 1.82  16.24 ± 0.81 93.24 ± 5.62 9.24 ± 3.12 

  

3.4.3.4. Silk Protein Identification and Fractionation 

From the SDS-PAGE performed for samples degummed for different durations, it 

was shown that raw silk (lane 1) exhibited smears and bands at ~150 kDa and 30 kDa 

respectively, indicating mixture of sericin, heavy-chain (HC) fibroin and light-chain  

(LC) fibroin components (Figure 3-13). Sericin (lane 2) had a smear at ~150 kDa. Silk 

knits were degummed for various durations of 5, 15, 30, 45, 60, 75 and 90 min (lanes 3-

9 respectively), leading to increased LC fibroin (30 kDa) degradation with degumming 

duration. Relative to volume intensity of the 30 kDa band in raw silk, the volume 
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intensities of corresponding bands in samples degummed for 5-90 min were 82%, 52%, 

49%, 43%, 37%, 32% and 29% respectively. Consequently, there was an increase in 

peptide fragments at 20 kDa with degumming duration, whereby the volume intensities 

with respect to that of raw silk was 107%, 194%, 284%, 235%, 241%, 289% and 387% 

respectively.  

 

Figure 3-13: SDS-PAGE of raw silk (lane 1), sericin (lane 2), “SDS5 (100°C, MA)” (lane 3) “SDS15 
(100°C, MA)” (lane 4) “SDS30 (100°C, MA)” (lane 5) “SDS45 (100°C, MA)” (lane 6) “SDS60 
(100°C, MA)” (lane 7) “SDS75 (100°C, MA)” (lane 8) “SDS90 (100°C, MA)” (lane 9). Molecular 
marker (10-250 kDa) (lane M).  

 

Upon determining the optimal parameters to be used for degumming knitted silk 

with retention in the SF mechanical properties (i.e. “SDS30 (100°C, MA)”), the efficacy 

of sericin removal of this protocol was determined via a comparison of fractionated 

sericin and “SDS30 (100°C, MA)” proteins using SDS-PAGE analysis. Fractionation of 

“SER” by ethanol precipitation in saturated LiSCN (Figure 3-14) showed intense 

smears in lanes 1-2 with reduction in intensity in subsequent lanes indicating that 

sericin was predominately fractionated when final ethanol concentration of 77.8% - 

81.1% was added. Lanes 1-2 of “SDS30 (100°C, MA)”, corresponding to remnant 
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sericin, were relatively clear (Figure 3-15), as compared to the corresponding lanes in 

“SER”. 

 

Figure 3-14: SDS-PAGE of fractionated “SER” by ethanol precipitation in saturated LiSCN. 
Concentrations of ethanol added were 77.8%, 81.1%, 83.6%, 84.1%, 85.9%, 87.3%, and 89.0% 
corresponding to lanes 1-7 respectively. Molecular marker (10-250 kDa) (lane M). [26] 

 

Figure 3-15: SDS-PAGE of fractionated “SDS30 (100°C, MA)” by ethanol precipitation in 
saturated LiSCN. Concentrations of ethanol added were 77.8%, 81.1%, 83.6%, 84.1%, 85.9%, 
87.3%, and 89.0% corresponding to lanes 1-7 respectively, which were similar that added to 
fractionate “SER”. Molecular marker (10-250 kDa) (lane M). [26] 
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By comparing the normalized smear intensities of the respective lanes 1-2 of 

“SER” and “SDS30 (100°C, MA)” samples, it was determined that 91.2 ± 3.4% of total 

sericin was removed from the “SDS30 (100°C, MA)” samples (n=5). There was a 

gradual increase in smear intensity at around 150 kDa for lanes 4-6 of “SDS30 (100°C, 

MA)” (predominantly HC fibroin and its fragments) and 30 kDa bands for lanes 5-7 

(LC fibroin). It should be noted that these smears and bands were not apparent in the 

“SER” fractions. 

3.4.3.5. Degummed SF Conformational Structure Analysis 

From the FTIR-ATR spectra obtained (Figure 3-16), it was observed that “SDS30 

(100°C)” upon degumming exhibited peaks at 1655cm-1, which corresponds to the 

amide I region of the random coil structure. Upon methanol treatment, there was a 

conformational transformation by reduction in random coils to greater proportion in β-

sheets, as observed from the FTIR-ATR spectra. This is indicated by the absence of 

peaks corresponding to random coil structures, especially at the amide I regions. 

 

Figure 3-16: FTIR-ATR spectra of “SDS30 (100°C)” (a) with and (b) without methanol treatment. 
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To quantitatively analyze the degree of β-conformational transition, the amount of 

β-sheet structure was determined as the crystalline index for degummed SF with and 

without methanol treatment. Crystalline index for methanol treated “SDS30 (100°C)” 

was calculated to be 0.86 while that without methanol treatment was 0.79. Methanol 

treatment of “SDS30 (100°C)” thus led to an 8% increase in crystalline index, 

indicating that there was increased β-sheet conformation in SF upon methanol 

treatment. 

3.4.4. Discussion 

Alkaline degumming was chosen amongst other methods, based on its high 

throughput and suitability in degumming processed scaffolds for tissue engineering 

purposes. It was with the aim of achieving effective sericin removal while retaining the 

mechanical and structural properties of SF that an optimization study was performed to 

assess the effects of various factors and conditions involved in alkaline degumming. 

Particularly, the optimization was performed on processed silk forms, which proved to 

be harder to degum due to the difficulty in removing sericin from the core of the 

processed fibers. The various factors and conditions identified in this study include the 

duration, presence of mechanical agitation, thermal conditions and the use of refreshed 

solution. These four factors were studied in a series of three phases, each of which 

looked at effects of a specific factor. The effect of duration was investigated within each 

these three phases. Within each phase, the morphology of SF, sericin presence and 

tensile properties were determined via observations using SEM and single SF tensile 

tests.  
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3.4.4.1. Rationale for Mechanically Testing Both Single SF Filaments 

 and Knitted SF 

It should be highlighted that mechanical properties of a processed silk form, such 

as the knit in this case, are based on two aspects: architectural properties and material 

properties. Hence, the motivation for tensile testing single SF fiber extracted from a 

knitted structure and not the whole knitted structure lies in the fact that the mechanical 

properties of knits or any processed silk forms depend very much on their architectural 

properties. As such, mechanical properties of these silk forms will depend largely on the 

effective cross-sectional area experienced during loading. Not only is it very 

challenging to determine the effective cross-sectional area of a processed silk form 

accurately, the mechanical properties obtained are also limited to illustrate that for 

knitted structures and not other processed silk forms. On the other hand, single 

filaments extracted from the degummed knits could be tested to give a more accurate 

depiction of the mechanical integrity of SF. Testing single filaments also prevented 

effects of relative fiber slippage/movement from contributing to the tensile test profile. 

Given these concerns, it was of interest to first perform the material mechanical 

characterization prior to the architectural mechanical characterization of the knitted 

form. A material mechanical characterization as such could then aid in understanding 

the issues of degumming general processed structures, while providing an accurate 

assessment of the effects of different degumming factors on the mechanical properties 

of SF, and not be limited to just the knitted structure. 
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3.4.4.2. Effects of Prolonged Degumming 

From the SEM images and mechanical studies conducted on SF degummed using 

the different conditions, it was observed across the three phases that although sericin 

was effectively removed by degumming at 100°C in durations more than, and inclusive 

of, 30 min, it was not mechanically and structurally optimal to degum over extended 

durations. This was so as prolonged degumming at 100°C (beyond and includes 60 min) 

led to fibrillations, regardless of the type of alkaline degumming solution used (aqueous 

Na2CO3 with or without SDS). Fibrillations, as such, were likely to be caused by 

weakening of at least one type of the non-covalent interactions (hydrogen bonds and 

Van der Waal’s forces). Consequently, this weakening of the intrinsic molecular order 

of SF translates to reduction in UTS and yield points of the SF fiber. In this case, 

extended degumming at high temperatures was the cause of this weakening. This 

phenomenon was further illustrated by the SDS-PAGE analysis conducted for various 

degumming durations, which indicated that the 30 kDa fibroin LC was degraded with 

increased exposure to boiling degumming solution. The volume intensity of the 30 kDa 

band decreased with time, suggesting cleavage of the 30 kDa chain with prolonged 

degumming at boiling temperature. 30 kDa band volume intensity of the various 

degumming durations as a percentage to that of raw silk showed a decreasing trend from 

82% for “SDS5 (100°C, MA)” to 29% for “SDS90 (100°C, MA)”. Furthermore, there 

was a 30 kDa to 150 kDa smear for samples degummed longer than 5 min, which was 

likely due to degradation of the HC fibroin, which became more prominent after 5 min 

of boiling. This is supported by observations of Yamada et al. who indicated that 

prolonged heating beyond 5 min at 100°C degraded fibroin heavy chains [229].  
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In conjunction with that, it was observed from FTIR-ATR scans performed for 

degummed knitted silk, spectral peaks at 1655cm-1, corresponding to the amide I region 

of the random coil structure (Silk I), were exhibited even though SF consists of 

mechanically viable Silk II predominantly. This indicated that during the degumming 

process, certain degree of SF degradation has taken place via penetration of the 

degumming agents into microvoids and amorphous non-crystalline region of SF’s 

intermolecular structure [280, 281]. This is consistent with Jiang et al.’s results, 

whereby it was found that the process of degumming affects the intrinsic molecular 

order, which is the amount and perfection of crystallinity in SF [222]. With this 

disruption in the SF secondary structure, leading to an increase in the amorphous 

random coil regions, the tensile behavior and other physical properties of SF will be 

altered. Other than the deterioration of mechanical properties, one other specific 

physical property that could be affected is the degradation kinetics of SF. It will thus be 

interesting to look at the differing degrees of Silk II to Silk I shift that is contributed by 

different degumming conditions in the future.  

Nevertheless, with the aim to prevent SF fibrillation and preserve their secondary 

structure, it was important to shorten the duration at which SF was exposed to boiling 

temperatures without compromising the efficacy of sericin removal. 

One way to achieve this was the use of SDS in the degumming solution. As 

compared to the control group, which used a common degumming protocol involving 

just pure Na2CO3, sericin removal could be made within a shorter duration with the 

addition of SDS (all other factors kept constant) and hence attained mechanically more 

desirable SF scaffolds. “SDS30 (100°C, MA)” was sufficient for sericin removal from a 
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processed structure, such as the knitted form, without causing fibrillations in the SF 

fibers. As such there was no significant deterioration (p>0.05) in SF mechanical 

properties as compared to “SDS15 (100°C, MA)”, whereby SF properties were retained. 

Without SDS, effective sericin removal from a knitted structure could only be achieved 

after 90 min of degumming (control group), by which the degummed SF already had 

significant mechanical deterioration, indicated by both the morphology and the tensile 

properties. 

3.4.4.3. Effects of Mechanical Agitation during Degumming 

The “SDS30 (100°C, MA)” protocol involved the use of mechanical agitation. 

After investigating the necessity for having mechanical agitation in Phase I, it was 

shown that knitted silk could not be effectively degummed in a static environment 

within 30 min. The purpose of including mechanical agitation during degumming was 

thus to promote efficient transfer of degumming solution into the core of processed silk 

such that sericin in the core of silk bundles could be effectively removed. In this case, 

knitted structure was subjected to mechanical agitation in the multidimensional form, 

comprising of vertical vibration and lateral solution flow motion. However, with 

mechanical agitation, SF was shown to have reduced mechanical properties when 

compared with that degummed in a static environment for the same duration. This could 

be attributed to the increased penetration and exposure of SF to hydrolytic degraders 

such as SDS and water, which acted as plasticisers [221] and attacked the amorphous 

regions to disrupt the inter- and intra-molecular hydrogen bonding. As a result, there 

was increased probability for relative protein chain segment displacements, leading to 

stress relaxation and subsequent drop in tensile properties. Although the effects of 
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mechanical agitation and inclusion of SDS into degumming solution were as such, they 

were necessary for removal of sericin within a short duration. Otherwise, prolonged 

degumming would be required, leading to a general decline in mechanical integrity. In 

other words, one can do without mechanical agitation and increase degumming duration 

to achieve SF clear of sericin, but this will lead to an even greater depreciation in tensile 

properties than that contributed by mechanical agitation done at shorter duration. This 

was apparent based on two observations. One was from the SEM image for “SDS30 

(100°C, Static)”, which showed that sericin removal was sub-optimal as compared to 

that for “SDS30 (100°C, MA)”. The other was from the tensile properties of “SDS60 

(100°C, Static)”, which exemplified a significant decline (p<0.05) when compared to 

the “SDS30 (100°C, MA)” group. 

3.4.4.4. Effects of Thermal Conditions during Degumming 

Phase II was set for investigation as degumming at lower temperatures was 

thought to aid in preserving SF structure. It was believed that with lower temperatures, 

hydrolytic degradation of the fibroin would be limited. However, though this might be 

the case, as shown by the absence of fibrillations in the SEM images, the efficacy of 

sericin removal was undermined as remnant sericin was observed in samples that were 

degummed at lower temperatures (60°C and 75°C), even in those which were 

degummed over longer durations (>60 min). It should also be noted that there was 

mechanical deterioration after prolonged duration (>30 min) even when degumming 

was conducted at lower thermal conditions. Therefore, a feasible strategy would be to 

conduct alkaline degumming at high temperatures but within short duration to both 
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effectively remove sericin and preserve the structural morphology of the SF protein, 

which would affect its physical and mechanical properties.  

3.4.4.5. Effects of Refreshing Degumming Solution 

In the attempt to further shorten the degumming duration, a change of fresh 

degumming solution in the process of degumming was envisaged and investigated in 

Phase III. This was thought to shorten degumming duration as it was observed that in 

the course of degumming, sericin was often removed at an accelerated rate initially, 

which gradually reduced over time. This was indicated by a rapid change in degumming 

solution color, contributed by the leeched sericin, at the initial degumming stage. Hence 

the step to refresh degumming solution at the midpoint of the degumming process was 

initially thought of to create greater diffusion gradient for remnant sericin to leech out 

into the solution system after the sericin bulk was removed. Nevertheless, as indicated 

by the SEM images, sericin could not be removed when degumming was performed for 

15 min (with and without refreshment of solution). On the other hand, fibrillation of the 

SF occurred in the “SDS15+15 (100°C, MA)” samples, while no fibrillation was 

observed in the “SDS30 (100°C, MA)” samples. It was thus hypothesized that with the 

degumming solution refreshed midway through degumming, there was increased 

hydrolytic degradation at the non covalent bonds of fibroin. This was due to the 

introduction of fresh SDS that not only bound remnant sericin, but also bound the main 

fibroin protein chain and denatured fibroin, leading to the fibrillation observed. 

Moreover, the presence of sericin in degumming solution could act to protect fibroin 

from hydrolytic attack by binding to the existing SDS. Hence a change in the sericin-

rich degumming solution would lead to fibroin fibrillation caused by the fresh solution.  
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Upon determining the optimal parameters via a systematic optimization process 

involving the first three phases, “SDS30 (100°C, MA)” was selected as optimal and 

assessed for its construct mechanical properties, sericin removal efficiency using a 

fractionation method with SDS-PAGE analysis and examine the effect of SF protein 

conformational modification on SF mechanical properties. 

3.4.4.6. Effects of Post-Degumming SF Protein Structural 

 Modification 

In the attempt to improve the physical properties, especially the tensile properties, 

of SF after degumming, methanol was used to induce crystallization of SF molecules 

and to transform random coils to β-sheets. This was based on the hypothesis that 

through the degumming process, certain degree of SF degradation had taken place via 

penetration of the degumming agents into microvoids and amorphous non-crystalline 

region of SF’s intermolecular structure [280, 281]. With this disruption in the SF 

secondary structure, leading to an increase in the amorphous random coil regions, the 

tensile behavior and physical properties of SF would be altered. This was consistent 

with Jiang et al.’s results, whereby it was found that the process of degumming affected 

the intrinsic molecular order, that was, the amount and perfection of crystallinity in SF 

[222]. Crystallization of SF molecules was thus performed via immersion of degummed 

SF in methanol. The mechanism was proposed as that methanol, due to its polar 

properties, could attract water from SF molecules and induced swelling and weakening 

of the hydrogen bonds [196, 282, 283]. With the main chain SF acquiring mobility, the 

energetically favorable aggregation of hydrophobic amino acids, such as Ala and Gly, 
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was promoted. As the Gly-Ala sequence existed as unit dimension of the SF crystal 

structure, methanol could thus induce stable β-sheet crystallization of SF. As such, 

methanol treatment was performed post-degumming to induce structural modification of 

SF and increased SF crystallinity, which would have a direct relationship to the tensile 

properties of SF [220, 221].  

To verify this conformational transition and determine the crystalline index of 

degummed SF, prior and post methanol treatment, a FTIR-ATR analysis was 

performed. This method was chosen due to its relative ease of use in determining the 

secondary structure of peptides and proteins. Protein conformation was determined from 

specific spectral regions, which arose from coupled and uncoupled stretching and 

bending modes of amide bonds. These specific spectral regions were most sensitive to 

changes due to secondary structure folding and had been identified as the amide I 

(1700-1600 cm-1) and amide III (1350-1200 cm-1) spectral bands, which corresponded 

to predominantly C=O and in-phase combination of N-H in-plane bending and C-N 

stretching vibrations respectively [284]. Although the intensity of amide II (1600-1450 

cm-1) region due to C-N stretching was relatively strong, it was not as sensitive to 

changes in protein secondary structure as compared to the other two spectral regions. 

This was especially so as amide II bands overlapped with bands due to amino acid side 

chain vibrations [285]. Between amide I and amide III bands, the signal of amide III 

seemed to be more reliable in estimating protein secondary structure as it was not 

affected by water interference, whereas amide I band overlapped that for water, which 

exhibited strong absorption in the range of 1640-1650cm-1. As such, the crystalline 

index at amide III was determined as a quantitative assessment of the degree of β-
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conformational transition of SF upon methanol treatment. This was shown to be 

increased for degummed “SDS30 (100°C)” SF sample after methanol treatment was 

performed, indicating that there was an increase in β-sheet formation due to the 

treatment. 

However, from the tensile tests performed, no significant improvement of 

mechanical properties was observed for methanol treated “SDS30 (100°C)” SF sample. 

The reason for the increased crystallinity not translating to improved tensile properties 

could be attributed to structural imperfection in SF as a result of the degumming 

process. In other words, the process of degumming would likely induce a certain degree 

of structural imperfections and defects via several agents such as heat and hydrolytic 

degraders, the effect of which superseded the increased crystallinity in SF. 

Nevertheless, the increase in β-sheet formation after methanol treatment could possibly 

prolong its degradation period in vivo and therefore affect the implant life of SF 

scaffolds using the “SDS30 (100°C)” degumming conditions. Further investigations 

will be required to verify this hypothesis. 

3.4.4.7. Sericin Removal Efficiency 

From the SEM images obtained, sericin was observed to be removed from 

“SDS30 (100°C, MA)” samples. Particularly, smooth SF fibers were observed. Ethanol 

fractionation of the “SDS30 (100°C, MA)” and “SER” samples further illustrated that 

sericin was effectively removed, with approximately 90% of total sericin present in the 

raw silk sample removed. Fractionation of silk proteins was introduced by Takasu et al. 

for the purpose of isolation of various sericin components [277]. They had added similar 
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concentrations of ethanol as those used in this study to obtain the respective peptides. 

However, in this study, we adopted the method for the purpose of assessing sericin 

presence in our degummed SF samples.  

The rationale for adopting the ethanol fractionation method to determine sericin 

removal efficacy lies in the observation that sericin and heavy-chain fibroin have very 

close molecular weights, making it challenging to ascertain sericin removal from the 

degummed samples using SDS-PAGE analysis. When raw silk was analyzed using 

SDS-PAGE, smears and bands were exhibited at ~250 kDa and 25 kDa respectively, of 

which the smears indicated mixture of sericin and heavy-chain (HC) fibroin, while the 

band indicated light-chain (LC) fibroin components. It was noted that the smears larger 

than 150 kDa were attributed by both sericin (20 kDa – 350 kDa) and HC fibroin (~325 

kDa). Typically when degummed SF was analyzed using SDS-PAGE, the volume 

intensity of the 150 kDa to 350 kDa smear reduces with increase in degumming 

duration. This could be attributed to either a gradual reduction in sericin content, or 

degradation of HC fibroin with extended degumming. Consequently, further 

purification methods would be necessary to ascertain removal of sericin for the “SDS30 

(100°C, MA)” group, which had been observed to have sericin effectively removed via 

SEM while having its mechanical properties preserved. In this study, the ethanol 

fractionation method was used to serve this purpose. Silk protein fractionation was 

performed and by comparing ethanol fractionation concentrations used to isolate sericin, 

HC fibroin could be distinguished from sericin. This method thus allowed analysis on 

the presence and deduced the amount of sericin remaining in the “SDS30 (100°C, MA)” 

sample group. 
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Having quantified the amount of sericin removed from raw silk using an 

optimized set of parameters tailored to retain the SF mechanical properties, the next 

question would then be whether this efficiency of sericin removal was sufficient for 

tissue engineering purposes. From animal and clinical studies performed using 

raw/virgin silk, it was clear that sericin proteins, when associated with native SF fibers, 

would induce immune response as previously presented [207-215]. In support of this, 

Panilaitis et al. were able to show that there was strong macrophage response to 

lipopolysaccharide (LPS), as induced by sericin coated SF fibers [286]. This was not 

observed in sericin-coated tissue culture plates or with soluble sericin, even at high 

concentrations of sericin, illustrating the need for a physical association with SF for 

sericin induced immunological response to occur. The underlying mechanisms, as 

proposed, was that macrophages could adhere better onto sericin-coated fibers or that 

there was a conformational conversion of sericin when it was bound to SF, which in 

turn induced macrophageal responses. It was interesting to note that other studies have 

shown that extracted sericin, when not in association with SF, supported and increased 

cell attachment and proliferation instead [287, 288]. Specifically, sericin-S (MW 5-100 

kDa) had been shown to be superior in its mitogenic effect as compared to other sericin 

types and was used as cell culture supplement to accelerate cell proliferation. 

When sericin was removed via a degumming process, the remaining SF had been 

shown to be suitable for use in a variety of biomedical and tissue engineering 

applications [3, 13, 21, 27, 28, 195-197, 199]. Upon the removal of sericin, 

macrophages were no longer activated by the SF fibers as phagocytosis of these large 

fibers was not possible. Even if phagocytosis was to occur, it was expected to occur at 
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lower degrees, limited to only the surfaces. In fact, it was observed that SF fibers did 

not induce significant up-regulation in transcript levels from a wide range of pro-

inflammatory cytokines when cultured with macrophages [286]. Santin et al. had also 

compared the inflammatory potential of degummed SF to that of polystyrene and poly 

(2-hydroxyethyl methacrylate), showing that there was less adhesion of immuno-

competent cells to SF [289]. 

However, it was not clear in current literature whether there was any correlation in 

the amount of SF associated sericin with the degree of macrophageal response induced. 

Although it might seem to be ideal to have sericin-free SF scaffolds to prevent any 

occurrence of hypersensitivity problems, it might not be practically necessary. In fact, 

most of the current silk scaffold related studies utilized alkaline degumming protocols 

with little quantitative substantiation on the degree of sericin removed [3, 13, 27, 195-

197]. Although qualitatively, SEM images showed smooth fibers of SF similar to that 

observed in this study for “SDS30 (100°C, MA)”, it was quantitatively unclear if there 

were any sericin remnants in their scaffolds. Even though this might be the case, many 

of these in vivo works reported little or no extensive hypersensitive issues. Amongst the 

in vivo studies conducted by our group (published and unpublished), similarly 

degummed silk scaffolds did not caused irrevocable hypersensitivity issues [3, 197]. 

Although some level of foreign body response would arise upon implantation of SF 

scaffolds as with other non-autologous materials, long term T-cell mediated 

hypersensitivity immune response due to sericin was not observed in these studies. SF 

derived after treating using the “SDS30 (100°C, MA)” was thus considered effectively 

degummed when compared with these studies. However, the lack of studies done on 
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correlation between the amounts of sericin remaining in degummed silk and the level of 

corresponding hypersensitivity evoked persist as a valid concern for possible future 

study. 

3.5. Concluding Remarks 

The focus of this chapter lies in the design and development of the SF knitted 

structure. The SF mechanical properties were first determined, which shed light into the 

mechanical attributes of the material. This was essential in the design of the SF knit and 

to determine the appropriate number of SF filaments to be used for a robust scaffold 

structure used for ACL replacement in a rabbit model. Upon determining the suitable SF 

filament count, it was essential to investigate the degumming factors that might 

influence the mechanical performance of the degummed SF knit. Of the factors 

investigated, degumming duration played a key role in influencing the mechanical and 

morphological outcome of degummed SF. Having considered and balanced the 

effectiveness of sericin removal with the retention of mechanical and structural 

properties, degumming of knitted silk was found to be optimal when performed using 

the “SDS30 (100°C)” protocol in the presence of mechanical agitation. Although the 

design process discussed herein revolved around the rabbit model due to the use of 

rabbit MSCs for seeding, the process could be translated readily for clinical applications 

by upscaling the number of yarns of SF and increasing the scaffold dimensions to cater 

to increased loading. SF knits designed for clinical applications using this method and 

seeded with human MSCs would thus have potential for functional tissue engineered 

ligament applications. 
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4.1. Introduction 

The mechano-active hybrid SF scaffold consisted of the main knitted SF that was 

designed to undertake the bulk physiological load during the early tissue development 

stages, and the AL-SFEF meshes that were integrated to facilitate cell seeding and 

hypothesized to provide topographical cues to stimulate positive tenogenic 

differentiation. With mechanical stimulation, the AL-SFEF meshes were hypothesized 

to provide more effective stimulation of the seeded cells, thereby synergistically work 

with the dynamic culture conditions to promote enhanced and accelerated tenogenic 

differentiation. 

In this chapter, the AL scaffold would be fully characterized prior to evaluating its 

feasibility in vitro for application in ligament tissue engineering. To further exploit the 

advantageous topography of the AL scaffold, other than static culture of the MSC-

seeded scaffold, the seeded scaffold was also used for dynamic culture to explore the 

synergistic effect of cues from both mechanical stimulation and topography. In these in 

vitro evaluations, the MSCs cultured in tissue culture polystyrene (TCP) was used as 

control to contrast the effects of 3D culture, rendered by the AL scaffold, on MSCs 

proliferation and differentiation. RD scaffold was also used to compare with the AL 

scaffold to exemplify the positive effects offered by the aligned topography of the AL 

scaffold in both static and dynamic culture conditions.  
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4.2. Materials and Methods 

4.2.1. Fabrication of Hybrid SF Scaffolds 

Raw Bombyx mori silk fibers (3 yarns) were used to fabricate the knitted structure 

as described in section 3.4.2.1. For the group of scaffolds to be used for dynamic 

culture, 60 × 20 mm silk knits were fabricated, while the dimension of 40 × 20 mm 

remained for the group used for static culture. The extra 20 mm length was to cater for 

attachment in the standalone bioreactor chamber. All the raw silk knits were then 

degummed using the optimized degumming protocol as described in section 3.4.  

In order to close up the pores of the knitted structure to facilitate cell seeding, 

SFEF meshes with ultra-fine fibers were used to coat both sides of the SF knits to form 

the hybrid SF scaffold, as shown in Figure 4-1. These SFEF meshes would not only aid 

to provide more effective cell seeding but also provided topographical cues for 

subsequent ligament tissue development.  

 

Figure 4-1: Schematic showing the process of integrating SFEF meshes to the knitted SF to 
produce the hybrid SF scaffold. 
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To fabricate SFEF meshes, electrospinnable SF solution was first obtained from a 

series of steps involving an initial dissolution of dried SF in saturated 

lithiumthiocyanate (LiSCN, 250 %w/v, Sigma-Aldrich, St. Louis, USA) to a final SF 

concentration of 20 %w/v. Upon full dissolution, any undissolved SF or particle 

impurities were removed by centrifugation at 3000rpm for 10 min. The supernatant 

obtained was dialyzed for 3 days against distilled water using Snakeskin™ pleated 

dialysis tubing (10,000 MWCO, Thermo Fisher Scientific Inc., MA, USA). The 

dialyzed aqueous SF solution was then lyophilized to obtain regenerated SF sponge. 

The SF sponge was then dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Fluka, 

Sigma-Aldrich, St. Louis, USA) at 9.5%w/v to obtain the electrospinnable SF solution. 

This SF solution would then be ready for use to electrospin two types of SFEF meshes: 

aligned fibers (AL-SFEFs) and randomly-arranged fibers (RD-SFEFs).  

A closer look at the process of electrospinning reveals that it is a manufacturing 

method, which involves the formation of ultra-fine fibers of sub-micron diameters via 

an electrostatic technique. In brief, the phenomenon was attributed to the application of 

a strong electric field between a polymer solution (SF solution in this case) and a 

metallic surface on which the fiber was collected. This is illustrated in the schematic for 

the electrospin setup to obtain RD-SFEFs in Figure 4-2. 
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Figure 4-2: (A) Schematic of electrospin setup for RD-SFEFs and (B) actual electrospin setup to 
produce RD-SFEFs. V: vertical distance between the spinneret and the collector. 

 

Typically, the metallic capillary tip which dispensed the SF solution was charged 

positively while the metallic collection screen was charged negatively or grounded. 

Upon adjustment to a critical potential difference between the two ends, the pendant 

droplet or Taylor cone of polymer solution formed at the tip would gain enough charges 

to overcome its surface tension, producing a jet. This electrically charged jet would be 

stretched and narrowed in diameter under electrohydrodynamic forces [290].  Further 

narrowing could be attributed to certain operating conditions, when the moving jet 

would experience a series of electrically induced bending instabilities, leading to 

extensive stretching of the jet. The diameter of the jet was further reduced by the rapid 

evaporation of solvent. Upon collection of these jets, a nonwoven mesh of RD-SFEFs, 

with diameters ranging from nanometers to micrometers, could be formed using this 

conventional electrospin setup. Certain parameters or variables could affect the 

morphology and size of the fibers. For example, the charge density and the SF solution 

concentration could alter the fiber diameter to a certain extent. On the other hand, the 
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thickness of the deposited mesh depended on the duration of the electrospin process 

[291]. Other important variables included polymer feed rate, pendant drop-collector 

distance, solution viscosity and polymer molecular weight [292]. 

Modifications to the conventional electrospin setup were made to produce AL-

SFEFs. Essentially, a customized rotational electrospin setup involving a combination 

of positive electric field plates and a rotating collector device was made (Figure 4-3 and 

4-4). Using such a setup, the path of the polymer jet was restricted by the positive 

electric field plates, such that highly aligned SFEFs could be obtained on the grounded 

rotating frame (800 rpm) comprising of 2 parallel steel rods. The spinneret needle was 

placed at an angle from the axis of the rotating frame with horizontal (H) and vertical 

(V) distances optimized (Figure 4-3A) to achieve smooth collection of aligned SF fibers 

and prevent stray SF droplets from damaging the collected fibers. The spinneret needle 

tip was also constantly cleaned with an insulator while electrospinning, as accumulation of 

dried polymer pendant at the tip would disrupt steady flow and force a circumventing 

trajectory.  
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Figure 4-3: (A) Schematic of electrospin setup for AL-SFEFs with the front and side profiles, (B) 
using a customized rotating frame attachment to the existing conventional electrospin setup. (C) 
Actual electrospin setup to produce AL-SFEFs. 
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Figure 4-4: Detailed technical drawing of the rotating frame attachment. Dimensions in mm. 
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The parameters at which the two types of SFEF meshes were collected were 

collated in the following Table 4-1. 

Table 4-1: Electrospinning operating parameters. 

Operating parameter RD-SFEFs AL-SFEFs 

Flow rate (ml/hr) 1.3-1.5 1.3-1.5 

Voltage (kV) 9-11 9-11 

Spinneret tip diameter 16.5 G 16.5 G 

Positive plate distance apart (mm) NA 70 

Collector frame rotating speed (rpm) NA 800 

Vertical distance, V (mm) 150 100 

Horizontal distance, H (mm) NA 45 

Temperature (°C) 25 25 

Collection duration per layer (min) 5 5 

Number of layers per complete mesh 2 6 

Mass of complete mesh (mg) 10-12 10-12 

 

To minimize large angular deviations caused by electrical repulsion and isotropic 

deposition, AL-SFEFs were collected at regular short intervals (5 min) onto a glass slide 

and amassed to the desired amount as standardized by final mass (~12 mg). Similarly, 

the RD-SFEFs collected from the grounded metallic collector were amassed to a 

comparable mass of ~12 mg. The two groups of SFEF meshes were collected on 44 x 22 

mm glass slides. 
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Subsequently, the meshes were integrated with the degummed SF knits to produce 

the complete hybrid SF scaffolds. To produce aligned hybrid scaffolds (AL), two pieces 

of AL-SFEF meshes were obtained by gently peeling them off from their respective 

glass slides and laid flatly on both sides of a degummed SF knit, taking note that the 

SFEFs’ alignment direction was in line with the longitudinal axis of the knit (Fig. 4-

5A). Methanol treatment was performed next to allow crystallization and 

insolubilization of SFEF meshes by transforming amorphous Silk I into regular β-sheet 

secondary structures of Silk II [28, 30, 199]. As SFEFs have been reported to form a 

denser structure by methanol treatment [30], it was exploited to allow the contracting 

SFEF meshes bind the knitted SF. A two step process was used to securely bind SFEF 

meshes onto the knitted SF. The first step involved applying methanol selectively to the 

borders where the two layers of SFEF meshes overlapped (Figure 4-5A) to generate 

localized wetting and contraction, which formed a tight seal between contacting SFEFs 

at the edges (Figure 4-5B). Such boundary contraction further tensioned the meshes 

over the knit, forming a well integrated structure. The hybrid scaffolds were dried 

before proceeding to the second step, whereby the whole hybrid scaffolds were 

immersed in methanol for 30 minutes under vacuum to promote further integration of 

the meshes into the SF knit. The completely treated hybrid aligned scaffold is as shown 

in Figure 4-5C. Hybrid scaffolds with RD-SFEFs (RD) were produced similarly as in 

the described steps for AL scaffolds but with the use of RD-SFEF meshes instead.  
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Figure 4-5: The process of SFEF integration with SF knit, (A) by first sandwiching knitted SF 
between 2 layers of SFEF noting direction of alignment for AL-SFEF and applying methanol to the 
SFEF borders. (B) Contracting SFEF at the borders will allow tensioned wrapping of SFEF with 
knit. (C) Hybrid SF scaffold is completed after overall methanol treatment under vacuum. 

Prior to cell seeding, the hybrid scaffolds were sterilized by means of 

formaldehyde (37%) (Mallinckrodt Baker, Inc., NJ, USA) gassing for 24 h. All other 

sterile equipment was sterilized by steam autoclaving. 

4.2.2. Scaffold Characterization 

The general morphology of the hybrid scaffolds was observed and determined via 

phase contrast microscopy (IX71 Inverted Research Microscope, Olympus, Japan). 

Scanning electron microscopy (SEM) was conducted to observe the surface morphology 

of the knitted SF post-degumming and the hybrid scaffolds. Samples were gold-

sputtered prior to observation in a SEM (JEOL Ltd, JSM-5600 LV, Japan). Plain knitted 

SF were observed after the degumming process for presence of sericin remnants to 

ascertain sericin removal, while the hybrid scaffolds were observed for the integration 

of the SFEFs with the knit and to determine the diameter and directional distribution of 

the SFEFs (RD-SFEF and AL-SFEF) using image analysis software (ImageJ 1.38x, 

Wayne Rasband, NIH, USA). Electrospun fiber diameters (300 sampling points) and the 
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angular deviation (AD, 500 sampling points) were determined independently for both 

the RD-SFEFs and the AL-SFEFs. For AD analysis, fiber orientations were referenced 

from a defined vertical direction (0°) and ranged from -90° to 90° referencing from the 

vertical datum. The AD value was then calculated from the angular measurements of 

fiber orientation using circular statistics as described by Fisher [293]. MATLAB (ver. 

6.5 Mathworks Inc., Natick, MA, USA) was used to implement the circular statistics 

algorithms [294]. 

FTIR-ATR was performed to determine the secondary structure of SF at different 

processing stages and verify any conformational changes in the SFEFs as compared to 

the original degummed SF. Three samples: degummed SF, methanol treated SFEF mesh 

and hybrid SF scaffold were tested to obtain FTIR-ATR spectra in the spectral region of 

1000-2000 cm-1 using materials and methods detailed in section 3.4.2.6. 

Mechanical tests were conducted on the different scaffold types (RD and AL) with 

the knitted SF acting as control (n=5 for each group) using materials and methods 

described in section 3.4.2.4. From the tensile load and elongation recorded, the failure 

load or ultimate tensile load, stiffness, extension at failure load and extent of toe region 

were determined. 

4.2.3. Isolation and Culture of MSCs 

MSCs were generated from bone marrow aspirates of New Zealand White (NZW) 

rabbits based on a protocol approved by the Institutional Animal Care and Use 

Committee, National University of Singapore, using the techniques as reported [237]. 

Briefly, bone marrow was aspirated from the iliac crest of anesthetized (12 weeks old, 
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2.5–3.0 kg) NZW rabbits and collected into polypropylene tubes containing preservative-

free heparin (1000 units/mL). The bone marrow was then diluted in an equal volume of 

culture medium containing Dulbecco’s Modified Eagle Medium (DMEM) with low glucose 

(Gibco, Invitrogen, Carlsbad, CA, USA), L-glutamine, 110 mg/L Na-Pyruvate, Pyridoxine 

HCl (GIBCO, Invitrogen Corporation, CA, USA), 15% fetal bovine serum (FBS) (HyClone 

Logan, Utah, USA) and penicillin–streptomycin (100 U/mL) (GIBCO, Invitrogen 

Corporation, CA, USA), and plated into culture flasks. Mononuclear MSCs were selected 

by means of their short-term adherence to tissue culture polystyrene, on incubation at 37°C 

with 5% humidified CO2. After 72 h, non-adherent cells were discarded by medium change 

and adherent cells cultured, changing the medium every 3 days. When culture flasks 

became 70-80% confluent after about 7 days, the adherent cells were detached using 0.05% 

trypsin (GIBCO, Invitrogen Corporation, CA, USA) and serially sub-cultured. A 

homogenous MSC population was obtained after 2 weeks of culture and MSCs (P3) 

were harvested for further use in seeding onto the respective hybrid SF scaffolds and 

TCP negative control. 

4.2.4. Standalone Bioreactor for Dynamic Culture 

The purpose of the standalone bioreactor was to provide mechanical stimulation to 

the seeded hybrid scaffold constructs, while maintaining optimal environmental 

conditions to sustain cell viability and promote tissue development. To achieve this, the 

tissue chamber and medium contacting components of the bioreactor system was made 

of biocompatible and sterilizable materials. It was also able to provide metabolite 

transport through active medium flow and maintain environmental conditions by 

constantly monitoring and moderating these conditions through a feedback system. 
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Multidimensional strain could also be provided through a computer system, which 

allowed modifications in the mechanical stimulation parameters to be made. This setup 

could thus provide means for extensive study of the physical and chemical outcomes of 

providing different mechanical cues and allow optimization to accomplish the 

conditions suitable for ligament regeneration. 

The advanced bioreactor system consisted of several essential components, which 

could be categorized into two groups: the environmental control system and the 

multidimensional strain control system. The environmental control system consisted of 

specific components such as the peristaltic pump, the gas diffusion chamber, the 

medium conditioning water bath and the medium reservoirs, while the multidimensional 

strain control system consisted of the bioreactor vessels stand, the chamber vessels and 

the motors to provide tensional and torsional strains (Figure 4-6). 
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Figure 4-6: (A) Standalone bioreactor system setup. (B) Bioreactor vessels stand. (C) Mechanism 
and components of scaffold clamps within the bioreactor chambers. (D) Clamping mechanism 
affixed onto the bioreactor chamber frame. 

4.2.4.1. Environmental Control System 

One of the limitations of the current bioreactor system is that they require the 

setup to be situated in incubators [295, 296]. This takes up much space and provisions 

have to be made to electrically connect the monitoring setup from outside of the 

incubator to the bioreactor inside. pH and oxygen levels measured are also not real-time 

measurements taken of the medium but are monitored indirectly through the incubators 

instead. As such, end users are not able to monitor minute changes in medium 
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conditions. Moreover, current setups do not facilitate easy transportability and cannot 

be observed by the end users readily since it is situated within the incubator. As such, 

our research group had designed and constructed this standalone bioreactor system with 

the aim of providing the required environmental conditions independently, which was 

capable of providing feedback action and monitoring of the critical environmental 

parameters. 

Figure 4-7 shows an overall schematic of the bioreactor setup. Medium from the 

reservoir would flow to the heat transfer tubes in the water bath, through which the 

medium inside could be heated up effectively due to increased surface area. 

Temperature of the water bath was monitored and feedback heating was provided to 

maintain the optimal medium temperature (37 °C). A peristaltic pump was placed after 

the water bath to generate flow within the tubes without contacting the medium. 

Medium then entered vessel chamber from below and filled it up before leaving through 

the top. The medium next entered the gas diffusion chamber to receive oxygen (O2) and 

carbon dioxide (CO2) before being returned to the reservoir.  
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Figure 4-7: Schematic diagram of the bioreactor system. 

 

The gas diffusion chamber served the function of conditioning medium with the 

optimal O2 and CO2 concentration, which would affect the pH value of the circulating 

culture medium. The optimal dissolved oxygen concentration (DO) and pH determined 

was 30% saturation and 7.4 respectively [297]. Through the sensor and feedback control 

of the environment control system, these values were maintained through the dynamic 

culture of the seeded hybrid scaffolds. Structurally, the chamber was fabricated with 

polycarbonate and had the capacity to hold three coils of silicone diffusion tubes, one 

for each culture chamber vessel, which allowed gaseous exchange of the medium within 
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the tubes with the gases outside. A rubber layer was utilized to line the seams of the gas 

chamber between compartments to prevent leakage of CO2 and O2 from the seams. 

Three solenoid valves were fixed at the top of the gas diffusion chamber (Figure 4-6A). 

Two of them infuse CO2 and O2 into the chamber, while the third releases gases from 

within the chamber when there is excess CO2 or O2 inside the chamber. Therefore, the 

input of gas was controlled by solenoid valves, which opened or closes depending on 

the pH and DO values measured by the probes in the reservoir and that registered by the 

control software, as will be described. To minimize risk of contamination, a completely 

closed system was designed using joint connectors to connect tubings between the 

different components of the medium circuit. Medium was circulated independently in 

each medium circuit for each chamber. The transport tubes (MasterFlex 06485 model, 

IL, USA) used outside the gas chamber and the coiled diffusion tubes used inside 

(diffusible and platinum cured, MasterFlex Silicon 96410, IL, USA) were 

biocompatible, non toxic, fungus resistant and could be steam sterilized. Tube lengths 

were kept minimal to reduce heat loss to the surrounding.   

To achieve a stable environment, sensors and actuators were used to achieve 

feedback control loops. Actuating durations were optimized to obtain the desired range 

of temperature, pH, and DO levels. A safety control mechanism was added via 

programming to stop system when readings exceed the limits set. Parameter inputs, data 

acquisition and motion control were managed mainly through Labview software 

(National Instruments, TX, USA). Details of the mechanism for temperature, pH and 

oxygen feedback control are described in Appendix C. 
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4.2.4.2. Multidimensional Strain Control System  

The bioreactor vessel stand was the main frame structure that supported the 

chamber vessels, the motors and allowed conversion of rotational motion to linear 

motion for effecting linear strains through the central screw gear. Three chamber vessels 

could be affixed vertically to the stainless steel bioreactor vessel stand. To stimulate 

these three chambers, three motors were housed on the vessel stand to provide for 

torsion on the scaffolds and one central motor was used to provide for tensile strain on 

all scaffolds via the central screw gear.  

Torsional strains (set to 90° from the rest state) were provided together with 

tensile strains to provide the multidimensional straining environment that mimic the 

physiological environment of the ACL. It was demonstrated that such straining 

environment could specifically direct the differentiation of MSCs towards the ligament 

lineage [244]. It was relevant to apply both translational and rotational strains to 

developing ACL tissues as the ACL has a unique helical fiber organization and structure 

to allow it to perform its stabilizing functions. Together with the way the ACL is 

attached to the bones and the need for the knee joint to rotate about 140° (extension and 

flexion), the physiological angle of twist resulted in the ACL is about 90° [241]. This 

was thus provided to the loaded SF hybrid scaffolds by the torsion motors of the 

bioreactor setup. Although the rotational strains alone can act to translate individual 

fibers organized in a helical geometry, it was necessary to provide translational strains 

to both control the fiber pitch angle of this helicity and also to mimic the anterior draw 

loads that are stabilized by the ACL. 
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To successfully actuate mechanical strains onto the hybrid silk scaffolds, it would 

be necessary to secure the scaffolds firmly in the chamber vessels first. The chamber 

vessels were designed to provide firm and easy fixation of scaffolds to the clamp 

anchors, which were in turn attached onto the chamber vessel frame. These components 

were designed such that there was reduction in handling and exposure time to the 

surrounding to minimize contamination. Moreover, since the vessel frame could be 

detached from the main vessel stand, loading of scaffolds could be performed within the 

biosafety cabinet to reduce contamination risks. High density polyethylene clamps and 

the stainless steel clamp screws were used to secure the scaffold in a rolled-up 

cylindrical form (Figure 4-6C). Since the ends of the hybrid scaffolds were used for 

anchorage purposes, the groups of scaffolds used for dynamic cultures were 60 mm long 

instead of 40 mm long in the static group. The middle 40 mm of these scaffolds were 

seeded, which eventually formed the gauge length between the clamps after loading in 

the bioreactor. Upon securely fixing the scaffold ends onto the plastic clamps, they were 

then inserted into the stainless steel anchors, where two stainless steel grub screws were 

inserted to secure the plastic clamps to the chamber vessel frame (Figure 4-6D). The 

chamber vessel frame was then assembled with a glass chamber and stainless steel end 

before loading it onto the main bioreactor vessel stand. Mechanical stimulations of 

scaffolds were achieved via movements of the centre rods of the chamber vessels, which 

were attached to the motors at the bioreactor vessel stand. The scaffolds were stretched 

from slack to a point when they were not observably slack, which indicated the start 

position of the stimulation process. 
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A variety of mechanical stimulation parameters could then be applied to the 

loaded scaffolds, depending on the stimulation profile embarked for the experimental 

group. These parameters (including stroke, frequency, stroke delay, stimulus duration, 

stimulus interval, start delay and total stimulus) could be modified and changed to 

generate different stimulation strains, cyclic frequency, periodic frequency and duration 

(Figure 4-8). 

 

Figure 4-8: Interface for mechanical stimulus settings used in the bioreactor computer system to 
control mechanical cues provided to the scaffolds 
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4.2.5. MSC-seeded Scaffolds Cultured in Static and Dynamic 

 Conditions 

The MSCs (P3) were resuspended in complete culture medium containing DMEM 

with high glucose (Gibco, Invitrogen, Carlsbad, CA, USA) supplemented with 10% 

FBS (HyClone Logan, Utah, USA), L-glutamine (580 mg/L) and penicillin–

streptomycin (100 U/mL). 1.5 x 106 cells were then seeded by simply pipetting onto one 

side of each sterile hybrid scaffold. The same amount of cells were placed into T175 

TCP flasks and cultured concurrently as negative control group. The two experimental 

groups of hybrid scaffolds (RD and AL) were cultured in a laminar manner (Figure 4-

9A) for 3 days before being rolled up with the cell-seeded surface in the inner core and 

secured at the ends with SF fibers (Figure 4-9B).  

 

Figure 4-9: (A) MSCs-seeded hybrid SF scaffold cultured flat in a custom-made chamber for 3 
days, (B) prior to rolling up into a cylindrical ligament analogue. [298] 

 

For the group undergoing static culture, rolled-up scaffolds (RD and AL) then 

continued to be cultured separately in customized 6-well polycarbonate dishes for 

another 11 days (total experimental period of 14 days), with medium being changed 

twice a week.  
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For the group undergoing dynamic culture, rolled-up scaffolds (RD and AL) were 

loaded into steam-autoclaved standalone bioreactor chamber vessels. The chamber 

vessels were then affixed onto the bioreactor main bioreactor vessel stand (Figure 4-10), 

where dynamic culture conditions would be provided over the next 11 days period. 

Dedicated medium circulation for each chamber was provided by the environmental 

control system, which regulated the medium temperature, pH and DO level, to ensure 

that favorable culture conditions were provided to the cultured constructs. The dynamic 

culture conditions followed that of the “low” intensity type as identified in section 2.7.3, 

whereby the cyclic frequency was set at 0.1 Hz amounting to 4320 cycles per day based 

on a 12-hour daily activity rate. The various stimulation parameters used for the 

dynamic culture of hybrid scaffolds used in this part of the study are as listed in Table 

4-2.  

           

Figure 4-10: (A) Rolled-up SF hybrid scaffolds loaded into the bioreactor chamber vessel, (B) 
which was in turn affixed onto the bioreactor vessel stand to be environmentally conditioned and  
mechanically stimulated.  

 

A B
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Table 4-2: Stimulation parameters used for dynamic culture of MSCs-seeded SF hybrid scaffolds 
to assess mechano-active effects of AL scaffolds. 

Stimulation conditions Parameters 

Strain (%) 5 

Cyclic frequency (Hz) 0.1 

Periodic frequency (hours/day) 12 

Cycles per day 4320 

 

“Low” intensity type stimulation conditions were used, in this case, to provide a 

benchmark stimulation level for comparison with the static culture. Its purpose was to 

preliminarily assess the effect of mechanical conditioning on cells without over 

straining the cells to cause an adverse effect. It was important to ensure that cells were 

ready and mature enough for mechanical conditioning could be applied. Since the 

purpose of this chapter was to show that the AL type scaffolds were mechano-active and 

respond positively to mechanical stimulation, a low intensity would suffice. A more 

optimal stimulation approach would be evaluated and performed in the next chapter. 

4.2.6. Cell Seeding Efficiency, Viability and Proliferation 

Cell seeding efficiency was determined at 36 h after initial seeding, whereby the 

culture medium was collected from the wells or TCP (n=3) into separate centrifuge 

tubes. After centrifugation at 1500 rpm for 10 minutes, the cell pellets were re-

suspended in 500 µL of medium respectively and cell counted using a hemocytometer 

as described in Appendix B1. The cell seeding efficiency was expressed as a percentage 

of the number of cells attached to the scaffold to the total number of cells seeded. 
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Each group of cultured scaffolds (static and dynamic culture conditions) and TCP 

was assayed for viability and cell proliferation (n=5) using Alamar Blue™ assay at days 

3, 7 and 14 following the methods described in Appendix B2. 

4.2.7. Cell Morphology 

Cell morphology was assessed for the hybrid scaffold groups to specifically 

observe the cellular orientation, distribution and its interaction with the scaffold 

architecture. As such, assessment was made on statically cultured groups and not the 

dynamically cultured ones. To achieve this, at each time point (days 3, 7 and 14) , both 

groups of the static cultured samples (RD and AL) were fixed and had their F-actin 

filaments and nuclei fluorescence stained with Texas Red®-X phalloidin and DAPI 

respectively, as described in Appendix B3. The stained samples (n=3) were then washed 

and inspected via confocal microscopy as described. 

To further observe the cell morphology and cellular interaction with the scaffolds, 

statically cultured samples at days 7 and 14 (n=3) were carefully unrolled and the 

seeded surface examined by SEM (JEOL Ltd, JSM-5600 LV, Japan). 

4.2.8. Collagen Quantification 

The collagen production and deposition of the MSCs in the statically and 

dynamically cultured hybrid scaffolds and TCP (n=3) were quantified using SirCol™ 

collagen assay at days 3, 7 and 14 following the method detailed in Appendix B4. 
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4.2.9. Histological Assessment 

MSC-seeded RD and AL scaffolds of both the static and dynamic culture groups 

(n=3) were harvested for H&E staining after 7 and 14 days of culture according to 

methods described in Appendix B5a. The samples were fixed, paraffin blocked and 

sectioned longitudinally. As it was of interest to examine the core of the hybrid 

scaffolds for cell morphology and continued viability over the 14 days experimentation, 

longitudinal sections were taken from the core region and stained for histological 

evaluation. The slides were dehydrated before being mounted on glass cover slips.  

4.2.10. Real-Time qRT-PCR Analysis 

To assess tenogenic differentiation of the seeded MSCs, gene expressions for 

ligament-related ECM proteins such as collagen type I, collagen type III, tenascin-C and 

tenomodulin were analyzed and evaluated. After 7 and 14 days of culture, total RNA 

was extracted from the statically and dynamically cultured hybrid scaffolds (RD and 

AL) and TCP controls (n=3) as described in Appendix B6 for real-time qRT-PCR 

analysis. 

4.2.11.  Western Blot Analysis 

After 7 and 14 days of culture, statically and dynamically cultured hybrid scaffold 

groups were processed for total protein extraction and Western blot performed for 

collagen I, collagen III and tenascin-C as detailed in Appendix B7. Band signals were 

detected and relative band intensities (with respect to the statically cultured RD 

scaffolds at day 7) were obtained and compared among the groups (n=3).  
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4.2.12. Biomechanical Test on Cultured Hybrid Scaffolds 

The four groups of hybrid SF scaffolds (RD and AL; cultured statically and 

dynamically) were tensile tested to failure following the protocol described in section 

3.4.2.4. at different time points (day 7 and 14). Unseeded hybrid scaffolds (blank RD 

and blank AL) were tested as control group. The load (N) and extension (mm) data was 

collected over 5 samples for each group and time point, and the failure load, elastic 

region stiffness, extension at maximum load and extent of toe region were determined 

after plotting the load displacement curves. 

4.2.13. Statistical Analysis 

Single factor ANOVA technique and post-hoc Tukey tests were used to assess the 

statistical significance of multiple comparisons. For pair-wise comparisons, two-tailed, 

unpaired Student’s t tests were used. GraphPad Prism ver. 5 (GraphPad Software, Inc., 

CA, USA) was used to implement the statistical analysis. All data were expressed as 

means ± standard deviation (SD) and p<0.05 was considered statistically significant. 
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4.3. Results 

4.3.1. Hybrid SF Scaffold Morphology 

Gross observation of degummed knitted 3 yarns silk scaffold using the optimized 

“SDS30 (100°C, MA)” degumming protocol was made (Figure 4-11). It was shown that 

the degummed SF knit had a fairer appearance after the yellowish sericin coating had 

been removed from the knitted silk by degumming. When observed using the SEM, 

knitted SF obtained using this degumming protocol had smooth SF fibers and were clear 

of sericin after the degumming process as shown in the previous chapter. 

 

Figure 4-11: Change in appearance of knitted silk upon degumming using the “SDS30 (100°C, 
MA)” optimized degumming process, indicative of sericin removal.  

 

Gross observations of the hybrid SF scaffolds (RD and AL) showed that the 

degummed knitted SFs had macro-pore sizes of about 1 mm diameter (Figure 4-12A), 

which were covered uniformly by the SFEF meshes on both sides of the knit to facilitate 

cell seeding (Figure 4-12B). 

Sericin coated Sericin removed 

Optimized 
degumming process 
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Figure 4-12: Gross observation of (A) knitted SF and (B) hybrid SF scaffold. Scaffold morphology 
of hybrid SF scaffolds: (C, E) RD and (D, F) AL. Phase contrast images (C, D) illustrate that the 
SFEF meshes were well integrated into the knitted SF, closing the large pores of the knitted 
structures. SEM images (E, F) illustrate the different SFEF morphology and arrangement. (G) The 
SFEFs were well integrated with the knitted structure as observed in SEM image. Magnification: 
(C, D) 64×, (E, F) 2000× and (G) 200×. Arrows indicate the direction of SFEF alignment, while “S” 
indicates knitted SF and “E” indicates electrospun SF. [298] 
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Both groups of the hybrid SF scaffold were revealed to be highly porous with 

interconnected pores uniformly distributed throughout the scaffold (Figure 4-12C, D). 

Pore sizes of the two groups of hybrid scaffolds ranged from 1 – 60 µm for the equiaxed 

pores of RD scaffolds, and 1 – 20 µm (minor axis) and 10 – 100 µm (major axis) for the 

elliptical pores of AL scaffolds. The SFEF meshes were also observed to be well 

integrated with knitted SFs after the two step binding process, which involved utilizing 

the contractile forces from methanol treated SFEF (Figure 4-12G). The dimensional 

difference of the SFEFs and the knitted SF fibers, both of which composed the hybrid 

SF scaffold, was also exhibited in this figure. Specifically, the SFEFs had diameters of 

1211 ± 441 nm (RD-SFEFs) and 796 ± 111 nm (AL-SFEFs), while the degummed SF 

fibers had diameters of 11.7 ± 1.69 µm. The smaller AL-SFEF fiber diameter was due to 

the rotation of the grounded rotating frame, which collected and exerted a pulling force 

on the electrospun jet, and consequently reduced the dimensions of the AL-SFEF fibers. 

4.3.2. SFEF Orientation  

 SFEFs of the AL hybrid scaffolds was observed to exhibit single directional 

alignment, while there was no observable alignment in the RD types (Figure 4-12C, D, 

E, F). Histograms plotted for the angular distributions of SFEFs (Figure 4-13) indicate 

significant alignment of the AL group (AD=4.8o) as compared to RD group 

(AD=51.8o).    
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Figure 4-13: Histograms representing angular distributions of SFEFs: (A) randomly-arranged (AD 
= 51.8o, n=500) and (B) aligned (AD = 4.8o, n=500). [298] 

 

4.3.3. Conformational Analysis of SF, SFEF and Hybrid SF Scaffold 

Conformational analysis of SF at various stages of the scaffold fabrication process 

was performed using FTIR-ATR. From the FTIR-ATR spectra obtained (Figure 4-14), 

it was observed that SF upon degumming exhibited peaks at 1655cm-1, which 

corresponded to the amide I region of the random coil structure (Figure 4-14(a)). Peaks 
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of the amide I region for random coil was not apparent in the methanol treated SFEF 

mesh (Figure 4-14(b)). Upon overall methanol treatment to the hybrid scaffold, there 

was an overall conformational transformation by reduction in random coils to greater 

proportion in β-sheets, as observed from the FTIR-ATR spectra (Fig. 4-14(c)). This was 

indicated by the absence of peaks corresponding to random coil structures, especially at 

the amide I regions. The spectra indicated that the dissolution and electrospinning 

process did not significantly alter the SF protein conformation as it was preserved as β-

sheets, which is the native conformational state of SF fibers. 

 

Figure 4-14: FTIR-ATR spectra of (a) degummed SF, (b) methanol treated SFEF mesh and (c) 
hybrid SF scaffold. [298] 
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4.3.4. Tensile Properties of AL and RD Hybrid Scaffolds 

Rolled-up blank RD and AL hybrid scaffolds were tested for their tensile 

properties against rolled-up knitted SF (Table 4-3). All samples were tested to failure 

and the rupture sites were noted to consistently initiate at the mid zone of the gauge 

length. The load-deformation curves recorded comprised the toe region, linear region, 

microfailure region, and failure region, which were similar to the curve of native ACLs 

(Figure 4-15). The microfailures were generally attributed to the failure of knitted SF 

microfibers in tandem with extension of the construct.  

Table 4-3: Mechanical properties of blank scaffold samples (n=5, data: mean ± SD). *p<0.05 when 
compared to knitted SF.  

Samples Maximum load (N) Stiffness (N/mm) 
Extension at 

maximum load (mm)

Knitted SF 93.24 ± 5.62 16.24 ± 0.81 9.24 ± 3.12 

Blank RD 106.05 ± 6.23 19.21 ± 0.93 * 8.73 ± 2.67 

Blank AL 129.21 ± 7.43 * 22.12 ± 1.22 * 9.25 ± 2.45 

 

 

Figure 4-15: Representative load–displacement curves for different scaffold types. [298] 
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The tensile properties of blank AL were significantly better (p<0.05) than both the 

knitted SFs and blank RD in terms of the failure load (129.21 ± 7.43 N) and stiffness 

(22.12 ± 1.22 N/mm). No significant difference was noted for the extension at 

maximum load across the three groups (p>0.05). The extents of toe regions were 2.44 ± 

0.94 mm, 3.30 ± 1.04 mm and 2.70 ± 1.11 mm for knit, blank AL and blank RD 

respectively, with no significant differences identified among the three groups (p>0.05).  

4.3.5. Cell Adhesion, Viability and Proliferation 

Cell attachment rate for all three groups (RD, AL, TCP) after 36 h from seeding 

was around 93% of the total amount of seeded MSCs per scaffold. Alamar Blue™ assay 

revealed that, as compared to the RD and TCP groups, cell viability for both culture 

conditions (static and dynamic) was significantly higher in the AL hybrid scaffolds after 

7 days of culture (Figure 4-16). For the groups cultured in the static conditions, AL 

hybrid scaffolds had 24% (day 7) and 25% (day 14) more cells when compared to RD 

hybrid scaffolds (p<0.01), while for groups cultured in the dynamic conditions, AL 

hybrid scaffolds had 23% (day 7) and 27% (day 14) more cells when compared to RD 

hybrid scaffolds (p<0.01). Within each type of hybrid scaffold, significant difference 

was only seen on day 14 between AL hybrid scaffolds cultured in static and dynamic 

conditions (p<0.05), while no significant difference was observed in the RD hybrid 

scaffolds of the two culture conditions during this 14 day period (p>0.05).   

The proliferation trends for different scaffold groups were also observed in Figure 

4-16. There was also consistent proliferation in both the AL groups (static and dynamic) 

and also the dynamically cultured RD group through the 14 days culture period 
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(p<0.05). However, there were no significant proliferations in the statically cultured RD 

and TCP groups (p>0.05) within the same 14 days culture period.  

 

Figure 4-16: Alamar Blue™ assay illustrating consistent and significantly more viable cells in the 
AL groups (both static and dynamic) compared to other respective groups from day 7 onwards 
(#p<0.01, Student’s t-test, n=5) and AL (dynamic) having more viable cells than AL (static) on day 
14 (*p<0.05, Student’s t-test, n=5). Significant proliferation (^p<0.05, ANOVA and post-hoc Tukey 
tests, n=5) was observed in AL (dynamic), AL (static) and RD (dynamic) through the 14-day 
culture. 

4.3.6. Cell Morphology 

After 3 days of static culture, the MSCs seeded onto AL hybrid scaffolds had 

already developed spindle-shaped morphologies and were oriented in the direction of 

SFEF alignment (Figure 4-17B). This was apparent when compared to the MSCs’ 

equiaxed cell morphology with minimal ellipticity when cultured on RD (Figure 4-

17A). From the confocal micrographs taken on days 7 and 14, cells cultured on 

statically cultured AL hybrid scaffolds continued to align along the length of the 

scaffolds (Figure 4-17D, F) after the hybrid scaffolds were rolled up to form ligament 
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analogues on day 3, while no apparent directionality was observed in cells cultured on 

RD hybrid scaffolds (Figure 4-17C, E). Increase in cell density was observed in both 

groups over the 14 days static culture period (Figure 4-17C, D, E, F), with near 

confluence observed at the cell-seeded layers by day 14.  

Figure 4-17: Confocal micrograph illustrating actin fibers (red) and nuclei (blue) of fluorescent 
stained MSCs seeded on (A,C,E) RD and (B,D,F) AL scaffolds and statically cultured for (A,B) 3 
days, (C,D) 7 days and (E,F) 14 days. Magnification: (A,B) 400× and (C,E,E,F) 100×. [298] 
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SEM images taken for seeded surfaces, after carefully unrolling the hybrid 

scaffold constructs, revealed that MSCs were attached and elongated along the direction 

of localized SFEF orientation under static culture (Figure 4-18A, B). As compared to 

the AL hybrid scaffolds, MSCs attached to RD type formed projections along the SFEFs 

they were attached to, thereby unable to generate elongated morphologies as the 

surrounding SFEFs themselves were randomly arranged. As a result of cell alignment at 

an early stage of culture (3 days post seeding), MSCs on AL hybrid scaffolds began to 

form ECM network across cell colonies, while no obvious ECM network was formed in 

RD hybrid scaffolds (Figure 4-18C, D). More extensive ECM networks were seen at 

day 14, with more uniform and continuous ECM network observed for AL hybrid 

scaffolds as compared to the RD type (Figure 4-18E, F). In addition, MSCs on AL 

group began to form 3D tissue-like oriented bundles along the direction of SFEF 

alignment by day 14 of static culture, which was not apparent in the RD group (Figure 

4-18G, H). Such 3D structures indicated that cross-layer ECM networks were being 

forged and cellular extensions were made to bridge with the adjacent AL-SFEF layer of 

the rolled-up AL hybrid scaffold.  
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Figure 4-18: SEM images of MSCs-seeded (A,C,E,G) RD and (B,D,F,H) AL hybrid scaffolds after 
culturing statically for (A,B,C,D) 7 days  and (E,F,G,H) 14 days. ECM deposition was initiated at 
day 7 for the AL scaffolds with uniform cellular elongation and aligned ECM deposition observed 
by day 14. Magnification: (A,B,E,F) 1000× and (C,D,G,H) 2000×. Arrows indicate the direction of 
SFEF alignment and the consequent cellular alignment, elongation and ECM deposition direction.  
[298]  
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4.3.7. Collagen Synthesis 

Insoluble collagen assay was performed to determine the amount of deposited 

collagen on the hybrid scaffolds and TCP as an indication of the extent of ECM 

formation. This quantification assay revealed that there was significant increase 

(p<0.05) in collagen production and deposition in both the hybrid scaffold types over 

the culture duration (Figure 4-19) for both culture conditions. MSCs cultured on TCP, 

however, did not have significant increase in collagen deposited (p>0.05) until 14 days 

after seeding. It was also demonstrated that 3D hybrid scaffolds stimulated significantly 

more collagen deposition as compared to 2D TCP culture, regardless of the dynamic 

environment (p<0.05).  

 

Figure 4-19: SirCol™ assay for amount of collagen deposited per scaffold/culture sample. 
Significant increase in collagen deposition was observed in the AL groups as compared to the RD 
groups at day 14 for the respective dynamic condition (*p < 0.01, Student’s t-test, n=3). 
Significantly more collagen was deposited in the AL (dynamic) group as compared to AL (static) 
group at day 14 (#p < 0.01, Student’s t-test, n=3). 
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Among the AL, RD and TCP groups cultured statically, significant difference was 

found between AL group and both RD and TCP groups at day 14 with AL hybrid 

scaffolds having 33.5% more collagen deposited than RD hybrid scaffolds and 66.3% 

more than TCP (p<0.01). With dynamic conditioning, significant differences in collagen 

deposition was found only in AL scaffold type after 14 days of culture, whereby 

dynamically cultured AL hybrid scaffolds had 24.9% more collagen deposited than the 

statically cultured counterpart (p<0.01). No significant difference was found for the RD 

hybrid scaffolds cultured using the two different conditions through the 14 days 

(p>0.05). Between the two scaffold types that were cultured dynamically, AL hybrid 

scaffolds demonstrated significantly more collagen deposition (41.3%) by day 14 as 

compared to the RD type (p<0.01).  

4.3.8. Histological Analysis 

HE staining was performed on longitudinal sections of the inner core of RD and 

AL hybrid scaffolds after 7 and 14 days of culture to assess cell proliferation and ECM 

production in the two groups qualitatively (Figure 4-20). Consistent with previous 

observations, aligned spindle-shaped cells with elongated processes were also observed 

in the both statically and dynamically cultured AL hybrid scaffold core sections (Figure 

4-20B, D, F, H), while spherical or equiaxed cells were observed in the RD hybrid 

scaffold core sections (Figure 4-20A, C, E, G).  

Histological images also revealed observable increase in cell density and 

distribution at the core of statically cultured AL hybrid scaffolds (Figure 4-20B, D); 

while interestingly, no observable increase in cellular distribution was found at the core 
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of statically cultured RD hybrid scaffolds (Figure 4-20A, C). This indicated that the 

cells remained viable and proliferative in the core of AL constructs during static culture 

but for the RD type, it was limited to just an increase in cell colony sizes, with minimal 

interconnected colonies formed. However, with dynamic culture, more uniform cell 

distribution was observed for RD hybrid scaffolds (Figure 4-20E, G), especially at day 

14. This could be attributed to the improved medium uptake into the scaffold cores with 

dynamic culture. Despite the difference in proliferation rates between the two types of 

hybrid scaffolds during static culture, both were shown to be able to support cellular 

viability due to the interconnected porous structures of the hybrid scaffolds. 

The effect of dynamic conditioning on cellular morphology was apparent in both 

the RD and AL hybrid scaffolds. Compared with the statically cultured counterparts, the 

dynamically cultured RD groups exhibited improved cellular elongation along the 

direction of mechanical strain. Nevertheless, the effect was more prominent in the AL 

groups. Increased cellular density and ECM deposition was also observed qualitatively 

in the dynamically stimulated AL group as compared to both the statically cultured AL 

group and the dynamically cultured RD group, demonstrating the effect of the mechano-

active AL hybrid scaffold. 
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Figure 4-20: Histological evaluation of statically cultured (A, C) RD and (B, D) AL scaffolds, and 
dynamically cultured (E, G) RD and (F, H) AL scaffolds. HE staining of the fibrous core sections of 
the cylindrical analogues was done after having cultured for (A, B, E, F) 7 days and (C, D, G, H) 14 
days. Magnification: 200×. White single-head arrows indicate the direction of SFEF alignment and 
the consequent cellular alignment, elongation and ECM deposition direction, while yellow double-
head arrows indicate the direction of mechanical strain in the dynamically cultured groups. [298] 
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4.3.9. Gene Expression of Ligament-related ECM Proteins 

 using Real-Time qRT-PCR 

The expression of ligament-related genes in TCP, RD (static and dynamic) and 

AL (static and dynamic) were evaluated via real-time qRT-PCR. From results obtained 

for statically cultured groups, it was revealed that expression levels for collagen I was 

significantly up-regulated in the AL group compared to the RD and TCP groups from 

day 7 onwards (Figure 4-21A; p<0.05), while collagen III and tenascin-C expressions 

were significantly up-regulated in the AL group compared to the other two groups on 

day 14 only (Figure 4-21B, C; p<0.05). However, there was no significant difference in 

tenomodulin expression between the groups through the 14 day culture period (Figure 

4-21D; p>0.05). All target genes were significantly up-regulated in the statically 

cultured AL group from day 7 to day 14 (collagen I: 92.7% higher, collagen III: 146.8% 

higher, tenascin-C: 19.6% higher and tenomodulin: 32.8% higher; p<0.05), which was 

not the case for the other two groups. These results indicated that the AL hybrid 

scaffold could stimulate up-regulation of ligament-related gene expression at a faster 

rate than the other two groups and enhanced differentiation of MSCs to ligament 

fibroblasts.    
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Figure 4-21: Type I collagen gene expression was significantly higher in the statically cultured AL 
scaffolds than the other 2 groups from day 7 onwards, while type III collagen and tenascin-C gene 
expression were significantly higher in statically cultured AL scaffolds than the other 2 groups only 
after 14 days (indicated by #). Levels were quantified using real time RT-PCR and were 
normalized to the housekeeping gene, GAPDH (n=3). Other statistically significant differences are 
indicated by * (p < 0.05). [298] 

 

From results obtained for dynamically cultured hybrid scaffolds (Figure 4-22), 

gene expression for all targeted ligament-related genes were significantly up-regulated 

in both RD and AL groups by day 14, as compared to their respective statically cultured 

counterparts (p<0.05). Nevertheless, significantly higher expression for collagen I, 

tenascin-C and tenomodulin were observed in dynamically cultured AL group as early 

as day 7, compared to the static equivalent, which was not the case for the RD groups. 

With dynamic stimulation, all targeted genes were up-regulated in the AL groups as 
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compared to the RD groups by day 14, indicating that dynamic conditioning did 

synergistically complement the favorable topographical cues presented by the AL 

hybrid scaffolds in accelerating tenogenic differentiation. 

 

Figure 4-22: Collagen I, tenascin-C and tenomodulin were up-regulated in the dynamically 
cultured AL group by day 7 as compared to the RD groups and AL (static) at the same time 
point(indicated by “b”). Gene expressions of all targeted genes were significantly up-regulated in 
the dynamically cultured scaffold groups (RD and AL) by day 14 (indicated by “a” and “c”). Gene 
expressions for all targeted genes were significantly higher in the dynamically cultured AL group 
than the RD group by day 14 (indicated by “a”). Levels were quantified using real time RT-PCR 
and were normalized to the housekeeping gene, GAPDH (n=3). Other statistically significant 
differences are indicated by * (p < 0.05). 
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4.3.10. Western Blot Analysis 

Protein expressions for collagen I, collagen III and tenascin-C were detected for 

RD and AL groups after 7 and 14 days of static culture (Figure 4-23). Analysis was 

performed on densitometric data of the optical intensity of each lane expressed in the 

Western blot membranes, which was normalized to RD group cultured for 7 days.  

   

 

Figure 4-23: Western blot analysis of ligament-related ECM proteins produced by MSCs cultured 
on the RD and AL scaffolds and statically cultured for 7 and 14 days. The results were normalized 
to data obtained from RD scaffolds statically cultured for 7 days and evaluated on a relative basis 
for comparison between different samples (n=3). Significantly more type I collagen was produced 
in AL scaffolds from day 7 onwards, while significance was observed for type III collagen and 
tenascin-C after 14 days of static culture (#p < 0.05). *p<0.05 between 2 time points within each 
group. [298] 
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The results demonstrated that the matrix of the statically cultured ligament 

analogues composed of mainly type I and III collagen and tenascin-C, with collagen I 

being predominant as its expression was consistently higher in both RD and AL when 

compared to collagen III and tenascin-C. Significantly more collagen I was expressed in 

AL than RD from day 7 onwards (day 7: 169.7% more, day 14: 99.4% more), while 

significance was found for collagen III and tenascin-C on day 14 (collagen III: 121.8% 

more and tenascin-C: 123.6% more; p<0.05). For the RD group, significant increase 

from day 7 to day 14 was found for collagen I only (246.9% more; p<0.05) but for the 

AL group, it was found for all three proteins tested (collagen I: 156.5% more, collagen 

III: 134.8% more, tenascin-C: 73.2% more; p<0.05). Similar trends were observed in 

the RT-PCR results for statically cultured RD and AL scaffolds as shown previously. 

This trend was altered with mechanical stimulation, as significant increase from 

day 7 to day 14 was found for all three proteins tested, for both RD  (collagen I: 80.7% 

more, collagen III: 33.1% more, tenascin-C: 50.5% more; p<0.05) and AL (collagen I: 

81.5% more, collagen III: 64.1% more, tenascin-C: 70.3% more; p<0.05) groups 

(Figure 4-24). Between RD and AL groups that were dynamically cultured, AL hybrid 

scaffolds could similarly stimulate increased type I collagen production since day 7 

compared to RD types (day 7: 37.7% more, day 14: 38.3% more; p<0.05). Similar to 

static culture, significantly more type III collagen and tenascin-C was found for AL 

group relative to RD group on day 14 only (collagen III: 40.7% more and tenascin-C: 

43.4% more; p<0.05). With mechanical conditioning, both RD and AL hybrid scaffolds 

composed of significantly more collagen I from day 7 onwards (For RD, day 7: 90.9% 

more, day 14: 26.7% more, and for AL, day 7: 60.0% more, day 14: 28.7% more; 
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p<0.05), and significantly more collagen I and tenascin-C on day 14 only (For RD, 

collagen III: 45.0% more and tenascin-C: 73.4% more, and for AL, collagen III: 24.7% 

more and tenascin-C: 19.7% more; p<0.05) . These results were indicative of the 

differentiative stimulatory effects of mechanical stimulation on the hybrid scaffolds, 

especially the aligned hybrid SF scaffolds. 

 

 

Figure 4-24: Western blot analysis of ligament-related ECM proteins produced by MSCs cultured 
on the RD and AL scaffolds and cultured (statically and dynamically) for 7 and 14 days. The 
results were normalized to data obtained from RD scaffolds statically cultured for 7 days and 
evaluated on a relative basis for comparison between different samples (n=3). a: significant 
difference (p<0.05) between the two hybrid scaffold types (RD and AL) at each time point; b: 
significant difference (p < 0.05) between the two stimulation conditions (static and dynamic) at each 
time point. *p<0.05 between 2 time points within each group. 
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4.3.11. Tensile Properties of Cultured Hybrid Scaffolds 

Statically and dynamically cultured rolled-up hybrid scaffolds (RD and AL at day 

7 and 14) were tested for their tensile properties as tabulated in Table 4-4. The samples 

were tested to failure and rupture was noted to initiate from the centre region of the 

entire gauge length, though exact rupture site was inconsistent across samples. Load-

displacement curves plotted revealed the toe region, linear region, microfailure region 

and failure region, similar to that of native ACLs (Figure 4-25B). Similar to the blank 

scaffolds, microfailures were observed in the cultured hybrid scaffolds, which were 

generally attributed to SF knitted microfiber failure in tandem as the construct was 

extended.  

Table 4-4: Mechanical properties of statically and dynamically cultured scaffold samples (n=5, 
data: mean ± SD). *p<0.05 when compared to RD scaffolds at each time point of the same culture 
condition (for static and dynamic cultures respectively). #p<0.05 when dynamically cultured 
scaffolds were compared to the statically cultured equivalent at the same time point. 

Samples Maximum load (N) Stiffness (N/mm) 
Extension at 

maximum load (mm)

S
ta

ti
c 

RD (Day 7) 115.31 ± 4.75 18.85 ± 0.79 9.81 ± 3.54 

AL (Day 7) 138.53 ± 9.19 * 23.29 ± 1.38 * 9.39 ± 2.89 

RD (Day 14) 125.63 ± 5.34 21.45 ± 0.82 11.24 ± 3.24 

AL (Day 14) 158.14 ± 8.49 * 26.22 ± 0.92 * 12.45 ± 3.64 

D
yn

am
ic

 

RD (Day 7) 122.35 ± 3.67 17.48 ± 0.93 10.35 ± 2.94 

AL (Day 7) 144.44 ± 5.03 * 24.33 ± 1.40 * 11.46 ± 3.51 

RD (Day 14) 138.67 ± 9.22  23.07 ± 2.54  11.33 ± 3.11 

AL (Day 14) 172.08 ± 6.28 *# 26.93 ± 2.40 * 10.99 ± 2.67 
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Figure 4-25: Representative load–displacement curves for (A) blank/MSC-seeded scaffolds (day 14, 
static cultured) and for (B) statically/dynamically cultured scaffolds (day 14). 

 

When compared against rolled-up blank RD and AL hybrid scaffolds (Table 4-4), 

both statically cultured RD and AL groups had significant increase in maximum load 

(RD: 18.5% increase and AL: 22.6% increase) and stiffness (RD: 11.7% increase and 

AL: 18.5% increase) from the respective blank hybrid scaffolds only after 14 days of 

culture (p<0.05). Through the 14 days static culture period, AL group had significantly 
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higher maximum load and stiffness than its RD counterpart of the same culture duration 

(day 7 and day 14; p<0.05), with the AL group being 25.9% stronger and 22.2% stiffer 

than the RD group after 14 days of culture. Both the statically cultured RD and AL 

groups had significantly larger extents of toe region after the 14 days culture as 

compared to the respective blank hybrid scaffolds, with cultured RD scaffolds having 

6.48 ± 1.45 mm and cultured AL scaffolds having 5.05 ± 1.23 mm by day 14 (p<0.05). 

This indicated that after culture for 14 days, both RD and AL hybrid scaffolds could be 

stretched over significantly larger displacements prior to linear extension than their cell-

free counterparts. However, no significant difference was found in the toe region 

extents between RD and AL after 14 days of culture (p>0.05).  

With mechanical stimulation, both RD and AL groups at day 14 had increased 

maximum load and stiffness from day 7 of the culture period (For RD, maximum load: 

13.3% increase, stiffness: 32.0% increase; p<0.05 and for AL, maximum load: 19.1% 

increase, stiffness: 10.7% increase; p<0.05). This was not the case for RD when it was 

subjected to static culture, as there was no significant increase in maximum load and 

stiffness from day 7 to day 14 in this culture condition (p>0.05). Similar to static 

cultures, dynamically cultured AL hybrid scaffolds were also significantly stronger and 

stiffer than the RD group at both day 7 and 14 (p<0.05), with dynamically cultured AL 

group being 24.1% stronger and 16.7% stiffer than similarly cultured RD group. When 

compared to the statically cultured groups, dynamically cultured AL group was 

significantly stronger than the statically cultured AL group at day 14 (8.9% stronger, 

p<0.05), indicating the dynamic condition did have effect on strengthening the AL 

hybrid scaffolds. Nevertheless, no significant increase was found for stiffness when the 
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two culture conditions were compared based on the AL hybrid scaffold (p>0.05). This 

could be attributed to the freshly deposited collagen being not as stiff and required 

longer culture period for maturation and remodeling. Similarly, there was no significant 

difference in the extent of toe regions measured between the groups cultured 

dynamically and when cross comparisons were made with the statically cultured 

counterparts (p>0.05). Longer culture period might be necessary before significant 

changes in the extent of toe region could be observed.  

No significant differences were noted for the extension at maximum load across 

all the groups and at different time points tested in this part of the experiment (p>0.05).  

4.4. Discussion 

In this part of the study, the focus was on the development and characterization of 

a mechanically functional full silk scaffold with customizable aligned topographical 

cues, which would be further stimulated mechanically to accelerate the tenogenic 

differentiation process with the aim of achieving the regeneration of ligament. 

Enhanced cell proliferation, cell viability and ECM production were observed in the AL 

hybrid scaffolds when compared with both the RD type and the 2D culture on TCP. 

MSCs were observed to attach in an aligned fashion in the direction of SFEF alignment 

from as early as 3 days post-seeding and continued to expand in cell density over the 14 

days static culture period. This was further enhanced by mechanically stimulating the 

scaffolds, whereby more prominent increase in cell viability and proliferation was 

observed in the mechanically stimulated AL scaffolds. On top of that, there was no loss 

of directionality in cellular elongation as aligned spindle-shaped cells were observed 
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consistently after 7 and 14 days of culture in both static and dynamic conditions, 

whereby the hybrid scaffolds were rolled up into the cylindrical ligament analogues. 

The AL constructs stimulated upregulation of gene expression for ligament-related 

ECM proteins, which consequently induced increased deposition of collagen and 

aligned ligament-related ECM components. The increased aligned ECM deposition 

subsequently improved the overall mechanical properties of AL constructs. These 

effects were amplified in the mechanically stimulated AL constructs, whereby results 

showed that there was further upregulation of ligament-related ECM proteins, especially 

tenomodulin, which is responsible for ligament fibril maturation [299]. This was 

translated to improved strength observed for dynamically cultured AL scaffolds 

compared with the statically cultured counterpart after 14 days of culture. These results 

indicated that the hybrid SF scaffolds with aligned SFEFs were suitable for functional 

tissue engineering of the ligament and that the presence of dynamic conditioning would 

help accelerate the process of attaining viable and functional regenerated ligament for 

tissue replacement applications. 

4.4.1. Knitted Mesh of the AL Hybrid SF Scaffold 

The mechanical advantage of the hybrid SF scaffold was largely attributed to the 

knitted SF mesh. The SF fibers used to fabricate the knitted silk mesh of hybrid SF 

scaffolds were generally of the Silk II conformational state, which was the stronger and 

more stable β-sheet form. However, even though the degumming process had been 

controlled and optimized to reduce conformational transition of SF as discussed in 

Chapter 3, a small level of conformational shift from Silk II to Silk I occurred in the 

degummed SF knits as shown from the FTIR-ATR analysis performed. The 
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conformational change could be reversed upon immersion of methanol as observed in 

the FTIR-ATR performed for methanol treated hybrid SF scaffold (Figure 4-14). From 

the FTIR-ATR results obtained, it was also verified that the structural conformation of 

SFEFs was preserved as Silk II after methanol treatment. 

4.4.2. AL-SFEF of the AL Hybrid SF Scaffold 

The AL hybrid scaffold not only had the micron-scale SF knit, which catered to 

the mechanical aspect of the construct, but also composed of the sub-micron AL-SFEF 

mesh, which acted as a seeding substrate that provided topographical cues to stimulate 

cellular alignment and consequently aligned ECM deposition. The aligned surface 

topology is the typical native environment of ACL fibroblasts. In fact, preferential 

alignment forms the basis of anisotropicity, which is fundamental to musculoskeletal 

tissues [300]. This is apparent when normal ligaments are compared with repaired 

ligaments [9], whereby collagen fibrils laid down by the fibroblasts remained relatively 

disorganized and surrounded by amorphous ground substance in repaired ligaments. As 

a result of that, the properties of repaired ligaments are inferior to the normal ligaments. 

In actual fact, the lack of collagen alignment can shift the dynamics of continuous 

ligament remodeling towards degradation and reduction in the load-bearing capacity of 

newly formed tissue [1]. In view of this, the hybrid SF scaffold with AL-SFEFs for early 

cellular alignment and consequently alignment of the ECM and collagen fibrils may be 

relevant. 

Using electrospinning, aligned fibers had been produced to act as topographical 

cues or guidance for cells. Xu et al. [301] compared the cell-cell adhesion and 
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proliferation of human coronary artery smooth muscle cells (SMC) on TCP, polymer 

film and aligned polymer fiber. They observed that SMCs migrated along the axis of the 

aligned fibers and expressed spindle-like contractile phenotype. On the other hand, 

Baker et al. [302] employed poly(ε-caprolactone) fibrous scaffolds for the tissue 

engineering of the meniscus. They seeded MSCs on aligned and random fibers, with 

results demonstrating that the aligned fibrous scaffolds could serve as a micro-pattern 

for directed tissue growth and produced constructs with improved mechanical properties 

compared to random scaffolds. Yim et al. [303] had also presented a comprehensive 

review of cellular interaction with nanoscale topography. Their findings also indicated 

that cells responded to topography of synthetic substrates of the nanometer and sub-

micron range in terms of adhesion, proliferation, migration and gene expression. Other 

than these studies that utilized synthetic polymers, contact guidance had also been 

effected using naturally derived bioscaffolds. Almarza et al. [304] had demonstrated the 

use of elongated small intestinal submucosa (SIS) to create aligned SIS fibers and 

applied it as bioscaffold for ligament tissue engineering. Positive responses were seen in 

the cultured bone marrow derived cells seeded in such bioscaffolds as well. 

Nevertheless, issues pertaining the lack of the source, difficulty in controlling the 

quality or degree of fiber alignment and infection due to cross or intra-species 

transplantation persisted. 
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4.4.3. Mechano-Active AL Hybrid SF Scaffold Improved Cell 

 Viability and Proliferation 

The novelty of this study thus involved the development of a consistent and 

reproducible aligned hybrid SF scaffold that not only supported accelerated formation 

of aligned collagen fibers, but was also mechanically functional, making it suitable for 

ligament tissue engineering applications. The advantages of the AL hybrid SF scaffold 

were exemplified in the cellular viability and proliferation results, whereby cells seeded 

on AL were significantly more viable after 7 days of culture and had consistent 

proliferation throughout the 14 days culture, which was not apparent in the other 3D RD 

system or the 2D TCP system. As compared to 2D culture systems, the 3D culture 

systems could provide environmental cues closer to the native tissue to stimulate cell-

surface receptors and adhesion sites that regulate cell cycle and gene expression for key 

ligament ECM components [1, 50, 305, 306]. The AL hybrid SF scaffold further 

enhanced these responses by bearing surface chemistry and topographical similarities 

with the native ECM. These effects were further improved when mechanical stimulation 

was provided, whereby increased differentiative activities were observed from the 

increased production of ligament-related genes and proteins in dynamically cultured AL 

hybrid scaffolds. This indicated that an essential benefit of culturing seeded AL 

scaffolds is the ability for AL-SFEFs to effectively transfer axial strain to the attached 

aligned MSCs. This was supported by works conducted by Lee et al. [37], whereby 

enhanced ECM production as a result of effective mechano-transduction due to aligned 

electrospun PU fibers were observed for HLFs.  
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The aligned architecture also facilitated medium intake into the core of the 

scaffold construct through active capillary action rendered by the aligned SFEFs. 

Consequently, higher cell densities with uniform cellular distribution were observed in 

the inner core of the AL group than the RD group. Nevertheless, with mechanical 

conditioning, medium intake was facilitated by the active strain actions rendered to the 

loaded constructs, which acted as a pumping action to bring about effective mass 

transfer within the constructs. This was why improved cell density and morphology was 

observed in the core of both AL and RD scaffolds when mechanical stimulation was 

present. 

4.4.4. Mechano-Active AL Hybrid SF Scaffold Improved Cell/ECM 

 Alignment and Collagen Fiber Formation 

With the ability to stimulate elevated proliferation, high cell density of aligned 

spindle-shaped cells could be formed in AL scaffold types within the 14 days culture, 

contributing to the formation of extensive networks of aligned ECM as observed. 

Further to that, the formation of early stage collagen fiber bundles was apparent in the 

3D culture of AL as bridging structures were discovered in the SEM images of carefully 

unrolled AL scaffolds. These bridging structures were possibly adhesion points with 

adjacent aligned ECM layers in the attempt to form 3D collagen fibers. This observation 

was complemented with the gene expression results, which indicated significant 

upregulation of ligament-related genes in the AL group after 14 days of culture. 

Although tenomodulin was not significantly up-regulated in the statically cultured AL 

group, there was significant upregulation at day 14 from day 7, indicating imminent 
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increase in expression of tenomodulin, which is associated with increase in collagen 

fibril diameter during ligament development [299]. This was brought forward with 

mechanical stimulation as significantly more tenomodulin was expressed in the 

dynamically cultured AL group compared to the dynamically cultured RD group from 

as early as day 7. Coupled with the increase in ligament-related ECM protein detected 

in the dynamically cultured AL group, it was clear that mechanically stimulated AL 

stimulated accelerated ligament tissue formation and maturation, with close structural 

similarity to the native tissue.  

However, while the production of ligament-related proteins (collagen I, collagen 

III and tenascin-C) was clearly improved in the seeded AL constructs in both static and 

dynamic cultures, studies relating to the distribution pattern of these proteins within the 

scaffold would be necessary. It would also be interesting to investigate collagen fiber 

formation and distribution in the transverse cross-section of the constructs to identify 

the distribution pattern of mechanically contributing collagen fibers and ascertain 

collagen bundles formation.  

4.4.5. Improved Mechanical Properties of MSC-Seeded Mechano-

 Active AL Hybrid SF Scaffold 

The formation of aligned ECM structure was translated to the superior mechanical 

properties of the AL constructs. AL was observed to be significantly stronger and stiffer 

after being cultured with MSCs for 7 and 14 days as compared to the RD scaffold type 

under both static and dynamic conditions. Upon static culture for 14 days, the AL and 

RD hybrid scaffolds exhibited significantly extended toe regions of non-linear increase 
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in load-displacement than the respective blank hybrid scaffolds. It could thus be 

deduced that the ECM deposited in both the AL and RD contributed to the tensile 

loading, with the discontinuous and non-mature ECM structures being loaded prior to 

the hybrid scaffold. Interestingly, such loading pattern is also very similar to the native 

ACL, whereby wave or “crimp” patterns of the fibrils exist in the matrix to provide 

loading of fibrils in tandem via recruitment to “buffer” for slight elongations without 

incurring overall fibrous damage [53, 307] and to provide shock-absorbance for sudden 

lengthwise loading [308]. Tensile tests performed on native ACL also revealed similar 

nonlinear load-displacement curves, as a consequence of gradual increase of tissue 

stiffness [12]. Although the implementation of mechanical stimulation did not 

significantly increase the extent of the toe region measured from the statically cultured 

counterparts, equivalently higher values were observed compared to the blank scaffolds. 

It might be necessary for longer duration of mechanical conditioning be applied on the 

hybrid scaffolds before significant changes in this aspect could be seen.  

Although the regenerated tissue contributed to the increase in tensile properties of 

the cultured hybrid scaffolds, majority of the loading capacity came from the hybrid SF 

scaffold itself. The hybrid SF scaffold had been designed to accommodate proteolytic 

degradation in vivo with the knit being customized to support more than twice the 

maximum ACL force in rabbits. This was notwithstanding the fact that the loading 

capacity was increased due to the SFEFs incorporated and the ECM that would be 

deposited as shown by the tensile tests performed. The tensile stiffness of knitted SF, on 

the other hand, was designed to be less than half of the native ACL tissue [3]. Stiffness 

was increased after SFEFs were incorporated to the SF knits, which was especially so 
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for the AL hybrid scaffold type as its stiffness was about 50% of the native tissue. 

Having lower scaffold stiffness as such can prevent stress shielding and allow 

mechanical forces that are subjected to the scaffolds to be effectively conducted to the 

attached cells. This strategy would be especially important when the cell-seeded 

scaffolds were to be mechanically conditioned either in vitro or in vivo to further 

enhance the differentiative potential of MSCs on the hybrid SF scaffolds. In this case, in 

vitro mechanical conditioning had been shown to be effective and had synergistically 

complemented the positive stiffness and mechano-transduction property of AL type 

hybrid scaffold to promote functional regeneration of the ligament tissue. 
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4.5. Concluding Remarks 

In this study, a method of fabricating an aligned hybrid SF scaffold for ligament 

tissue engineering was presented. The hybrid SF scaffold consisted of knitted SF mesh 

with highly aligned AL-SFEFs produced via a custom-made rotating wire frame 

collector. With integration of the AL-SFEFs, the hybrid SF scaffold was shown to 

support MSC proliferation and provided favorable topographical and surface chemistry 

for cellular and ECM alignment. MSCs were consequently stimulated to produce 

elevated amounts of ligament-related proteins, indicative of ligament fibroblast 

differentiation. These effects were intensified when mechanical stimulation of the 

defined “low” intensity level was provided. With mechanical stimulation of the AL 

hybrid scaffolds, significantly stronger and stiffer constructs that displayed similar 

biomechanical characteristics as the native ACL were produced. The AL hybrid SF 

scaffold was thus shown to be mechano-active as it intensified the positive effects of 

mechanical stimulation and synergistically combined these effects with those provided 

by the aligned topography of the scaffold.  

Further to this, works were performed as described in Chapter 5, whereby the 

mechanical stimulation approach was optimized to further enhance tenogenic 

differentiation and be carried out over a longer duration to examine the prolong effect of 

dynamic conditioning on MSC differentiation and development in the AL hybrid SF 

scaffold.
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Chapter 5: Rehabilitative Mechanical Conditioning 

5.1. Introduction 

In the previous chapter, it has been shown that mechanical stimulation of the 

mechano-active AL hybrid SF scaffold enhanced ligament regeneration via effective 

mechano-transduction. Although the positive effects of dynamic culture using the AL 

hybrid scaffold has been shown, the stimulation parameters used may be less than 

optimal as the number of cycles provided per day (4320 cycles) was much lower than 

the lower boundary of the physiological range (6700 cycles) obtained from pedometer 

studies [262]. Although this might be the case, precipitous stimulation at the 

physiological level during the early stage of culture might be harmful as the seeded 

MSCs would not have developed sufficient and stable adhesions with the scaffold to 

respond positively. In view of these concerns, it was envisioned that the mechanical 

stimulation approach could be optimized to cater to timely supplementation of 

mechanical cues of the appropriate intensities in a rehabilitative manner. With 

successful implementation of this rehabilitative approach, it was hypothesized that early 

introduction of mechanical cues could be performed for the MSC-seeded mechano-

active hybrid SF scaffold to effect an accelerated tenogenic differentiative profile.  

In this study, the “low” and “high” intensity stimulation profile was identified to 

compose of 0.1 Hz and 0.5 Hz cyclic frequency respectively to effect 4320 and 21600 

cycles per day respectively based on a 12 h stimulation period. These values were 

identified to mark the upper and lower boundaries by positioning substantially above 

and below the physiological range as reported in pedometer studies whereby human 

walking activity per day is 6700 to 11900 cycles per day [262]. Other stimulation 
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parameters were kept constant at the physiological values in these two stimulation 

profile. These two stimulation profile would be executed continuously for dynamic 

culture of AL hybrid SF scaffolds in the “continuous low” and “continuous high” 

regimes, and be contrasted with the “rehab” regime. The “rehab” regime would be 

composed of both the “low” and “high” stimulation profile, with the “low” stimulation 

profile executed 3 days post-seeding after initial static culture and the “high” 

stimulation profile executed 7 days post-seeding. Upon assessing the effect of these 

stimulation regimes on tenogenic differentiation of MSC-seeded AL hybrid constructs 

over a 28 day period, the optimal regime would be completely characterized and 

compared with the statically cultured MSC-seeded AL hybrid constructs. 

5.2. Materials and Methods 

5.2.1. Fabrication of AL Hybrid SF Scaffolds 

Raw Bombyx mori silk fibers (3 yarns) were used to fabricate the knitted structure 

as described in section 3.4.2.1. For the experimental groups of scaffolds to be used for 

mechanical stimulation regime optimization, 60 × 20 mm silk knits were fabricated, 

while the dimension of 40 × 20 mm remained for the control group used for static 

culture. The excess 20 mm length for the experimental groups was to cater for 

attachment to the standalone bioreactor chamber. All the raw silk knits were then 

degummed using the optimized degumming protocol as described in section 3.4. To 

fabricate AL-SFEF components, electrospinnable SF solutions were first made using the 

method described in section 4.2.1. Subsequently the AL-SFEF meshes were fabricated, 

collected and integrated with the degummed SF knits to form AL hybrid SF scaffolds 
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respectively as described in the same section. It should be noted that corresponding to 

the longer SF knits used in the experimental groups, SFEF meshes that were used to 

integrate with the group of knits were also made longer. 

Prior to cell seeding, the hybrid scaffolds were sterilized by means of 

formaldehyde (37%) (Mallinckrodt Baker, Inc., NJ, USA) gassing for 24 h. All other 

sterile equipment was sterilized by steam autoclaving. 

5.2.2. Isolation and Culture of MSCs 

MSCs were generated from bone marrow aspirates of NZW rabbits, isolated and 

cultured as described in section 4.2.3. A homogenous MSCs’ population was obtained 

after 2 weeks of culture and MSCs (P3) were harvested for seeding onto the AL hybrid 

scaffolds. 

5.2.3. MSC-seeded AL Scaffolds Cultured in Different Dynamic 

 Conditioning Regimes and Static Conditions 

The MSCs (P3) were resuspended in complete culture medium containing DMEM 

with high glucose (Gibco, Invitrogen, Carlsbad, CA, USA) supplemented with 10% 

FBS (HyClone Logan, Utah, USA), L-glutamine (580 mg/L) and penicillin–

streptomycin (100 U/mL). 1.5 x 106 cells were then seeded by simply pipetting onto one 

side of each sterile AL hybrid scaffold. The same amount of cells was used for both the 

experimental groups (“continuous low”, “continuous high” and “rehab”) of the 

optimization study and the statically cultured control group. The AL hybrid scaffolds 
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were then statically cultured in a laminar manner for 3 days before being rolled up with 

the cell-seeded surface in the inner core and secured at the ends with SF fibers.  

For the control group undergoing static culture, rolled-up AL hybrid scaffolds 

then continued to be cultured separately in customized 6-well polycarbonate dishes for 

another 25 days (total experimental period of 28 days), with medium being changed 

twice a week.  

For the group undergoing dynamic culture for mechanical stimulation regime 

optimization, rolled-up scaffolds (RD and AL) were loaded into steam-autoclaved 

standalone bioreactor chamber vessels. The chamber vessels were then affixed onto the 

bioreactor main bioreactor vessel stand, as previously described, where dynamic culture 

conditions would be provided over the next 25 days period. Three dynamic culture 

regime was implemented, which included the “continuous low”, “continuous high” and 

“rehab”, whereby the “continuous low” and “continuous high” regimes were done by 

continuous supplementation of the “low” and “high” intensity stimulation profile 

through the 25 days stimulation period respectively, while the “rehab” regime was 

performed by executing the “low” stimulation profile for the first 4 days of dynamic 

culture and subsequently the “high” stimulation profile for the next 21 days of dynamic 

culture. The “low” and “high” stimulation profiles were described in detail in Table 5-1 

and the temporal executions of the profiles in each of the regime were illustrated in 

Figure 5-1. 
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Table 5-1: Stimulation parameters of the “low” and “high” intensity stimulation profile used for 
optimization of the dynamic conditioning regime. 

Stimulation conditions 
Parameters 

“Low” “High” 

Strain (%) 5 5 

Cyclic frequency (Hz) 0.1 0.5 

Periodic frequency 
(hours/day) 

12 
12 

Cycles per day 4320 21600 

 

 

Figure 5-1: Timeline for illustrating the temporal execution of the “low” and “high” intensity 
stimulation profile for the different dynamic conditioning regimes. 

 

Upon determining the optimal stimulation regime, it would be fully characterized 

and compared with the static culture of the MSC-seeded AL hybrid SF scaffold 

(control) over another 28 days of culture duration.  

5.2.4. Cell Viability and Proliferation 

Each group of the dynamically cultured AL scaffolds (“continuous low”, 

“continuous high” and “rehab”) were assayed for viability and cell proliferation using 
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Alamar Blue™ assay (n=5) at days 3, 7, 14, 21 and 28 following the methods described 

in Appendix B2. Upon determining the optimal stimulation regime based on all the 

assessments that would be performed, it would be used to compare with the static 

culture control (n=5) at days 3, 7, 14, 21 and 28 as well. 

5.2.5. Collagen Quantification 

The collagen production and deposition of the MSCs in the various dynamically 

cultured hybrid scaffolds were quantified using SirCol™ collagen assay (n=3) at days 7, 

14, 21 and 28 following the method detailed in Appendix B4. Similar to the Alamar 

Blue™ assay, the optimal regime would be used for comparison with the static culture 

control at similar time points. 

5.2.6. Histological Assessment 

With the amount of collagen deposited in each dynamic condition group 

quantified, it would be of interest to determine their distribution and morphology within 

the AL scaffold structure. MSC-seeded AL hybrid scaffolds of the three stimulation 

regime groups (n=3) were harvested for Masson's trichrome staining after 14, 21 and 28 

days of culture according to methods described in Appendix B5b. The samples were 

fixed, paraffin blocked and sectioned longitudinally and transversely as detailed in 

Appendix B5 prior to performing the staining protocol. Analysis, in terms of diameter 

measurement, of any collagen fibers formed was made using imaging software (ImageJ 

1.38x, Wayne Rasband, NIH, USA) over 20 data points and compared between the 

experimental groups. 
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As it was of interest to examine the core of the rolled-up AL scaffolds for cell 

morphology, ECM protein/collagen production, and ECM protein/collagen distribution 

over the 28 days experimentation, longitudinal or transverse sections were taken from 

the core region of the cultured ligament analogues for histological evaluation. The 

respective stained slides were dehydrated before being mounted on glass cover slips for 

observation.  

Constructs obtained from culturing in the optimal stimulation regime were further 

assessed for specific ECM proteins distribution within the cultured construct and 

compared with that of the statically cultured construct at day 28. Transverse construct 

sections were obtained via cryosection using methods described in Appendix B5. The 

sections were then immunohistochemically stained for collagen type I, collagen type III 

and tenascin-C as described in Appendix B5c. 

5.2.7. Real-Time qRT-PCR Analysis 

To assess the differential effect of various stimulation regime on tenogenic 

differentiation of the seeded MSCs, gene expressions for ligament-related ECM proteins 

such as collagen type I, collagen type III, tenascin-C and tenomodulin were analyzed 

and evaluated. After 14, 21 and 28 days of culture, total RNA was extracted from the 

cultured AL hybrid scaffolds of the different dynamic conditioning regimes (n=3) as 

described in Appendix B6 for real-time qRT-PCR analysis. Results from the optimal 

stimulation regime would then be used to compare with that of the statically cultured 

control group over the similar 28 days duration. 
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5.2.8.  Western Blot Analysis 

After 14, 21 and 28 days of culture, AL hybrid scaffold groups of the optimal 

stimulation regime and static control were processed for total protein extraction and 

Western blot performed for collagen I, collagen III and tenascin-C as detailed in 

Appendix B7. Band signals were detected and relative band intensities (compared to 

statically cultured AL scaffolds at day 14) were obtained and compared between the two 

groups.  

5.2.9. Biomechanical Test  

The AL hybrid SF scaffolds that underwent the three different stimulation regime 

were tensile tested to failure following the protocol described in section 3.4.2.4. at the 

different time points (day 7, 14, 21 and 28). AL scaffolds cultured using the optimal 

stimulation regime would then be compared with statically cultured AL hybrid 

scaffolds, which served as the control group at similar time points. The load (N) and 

extension (mm) data was collected over 5 samples for each group and time point, and 

the failure load, elastic region stiffness, extension at maximum load and extent of toe 

region were determined after plotting the load displacement curves. 

5.2.10. Statistical Analysis 

Single factor ANOVA technique and post-hoc Tukey tests were used to assess the 

statistical significance of multiple comparisons. For pair-wise comparisons, two-tailed, 

unpaired Student’s t tests were used. GraphPad Prism ver. 5 (GraphPad Software, Inc., 
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CA, USA) was used to implement the statistical analysis. All data were expressed as 

means ± standard deviation (SD) and p<0.05 was considered statistically significant. 

5.3. Results 

The results obtained for the optimization of mechanical stimulation regime would 

be presented first under section 5.3.1. Upon determining the optimal stimulation regime, 

it would be evaluated fully with the static cultured control group, with the results being 

presented under section 5.3.2. 

5.3.1. Results from Optimization of Mechanical Stimulation Regime 

5.3.1.1. Cell Viability and Proliferation 

Alamar Blue™ assay revealed that, as compared to the “continuous high” group, 

cell viability for AL scaffolds from the other two stimulation regimes (“continuous low” 

and “rehab”) were significantly higher after 7 days of culture (Figure 5-2; p<0.01). 

“Rehab” group had significantly more viable cells on day 14 only when compared with 

the other two regimes (p<0.01). Scaffolds from the “rehab” group had 42% (day 7), 

76% (day 14), 64% (day 21) and 62% (day 28) more cells when compared to the 

“continuous high” group (p<0.01) and 12% (day 14) more cells when compared to the 

“continuous low” group (p<0.01).  

The proliferation trends for different stimulation regimes were also observed in 

Figure 5-2. There was consistent proliferation for constructs from the “continuous low” 

group up till day 21 (p<0.05), but for constructs from the “rehab” group, proliferation 
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was only found up till day 14 (p<0.05). Thereafter, there was no significant proliferation 

observed for the “rehab” group as percentage reduction of Alamar Blue reached a 

plateau. There was no significant proliferations in the “continuous high” group (p>0.05) 

within the same 28 days culture period.  

 

Figure 5-2: Alamar Blue™ assay illustrating consistent and significantly more viable cells in the 
“continuous low” and “rehab” groups compared to the “continuous high” group from day 7 
onwards (*p<0.01, Student’s t-test, n=5) with “rehab” having significantly more viable cells 
compared to both groups on day 14 only (#p<0.01, Student’s t-test, n=5). Significant proliferation 
(^p<0.05, ANOVA and post-hoc Tukey tests, n=5) was observed in the “rehab” group up to day 14 
and “continuous low” group up to day 21. 

5.3.1.2. Collagen Synthesis 

Insoluble collagen assay was performed to determine the amount of deposited 

collagen on the AL hybrid scaffolds that were mechanically stimulated by the various 

conditioning regime to qualitatively indicate the extent of ECM formation. This 

quantification assay revealed that there was significant increase (p<0.05) in collagen 
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production and deposition in both the “continuous low” and “rehab” groups over the 

culture duration (Figure 5-3) for both culture conditions. AL scaffolds subjected to 

“continuous high” stimulation regime, however, did not exhibit significant increase in 

collagen deposition through the experimental period (p>0.05).  

 

Figure 5-3: SirCol™ assay for amount of collagen deposited per scaffold sample. Significant 
increase in collagen deposition was observed in the “continuous low” and “rehab” groups as 
compared to the “continuous high” group from day 14 onwards (*p < 0.01, Student’s t-test, n=3). 
Significantly more collagen was deposited in the “rehab” group as compared to the “continuous 
low” group from day 21 onwards (#p < 0.01, Student’s t-test, n=3). Significant increase in collagen 
deposition was observed for “continuous low” and “rehab” respectively from day 14 onwards over 
the experimental period (^p<0.05 ANOVA and post-hoc Tukey tests, n=3). 

Among the three stimulation regimes, significant difference was found in 

constructs stimulated by “continuous low” and “rehab” as compared to “continuous 

high” from day 14 onwards, with “continuous low” group having 85% and “rehab” 

group having 220% more collagen deposited at day 28 than “continuous high” group 

(p<0.01). Significantly more collagen was deposited in the “rehab” group from day 21 

onwards when compared with the “continuous low” group (day 28: 73% more; p<0.01). 



 

 

 

Page | 187 

Chapter 5: Rehabilitative Mechanical Conditioning 

5.3.1.3. Histological Analysis 

Masson's trichrome staining was performed on longitudinal and transverse 

sections of the central core portion of the AL hybrid scaffolds cultured in the three 

stimulation regimes after 14, 21 and 28 days of culture to assess ECM (specifically 

collagen) production, morphology and distribution within the scaffold qualitatively 

(Figure 5-4 and 5-5).  

Consistent with previous observations, aligned ECM deposition was observed in 

the longitudinal sections of the AL hybrid scaffolds (Figure 5-4), regardless of the 

dynamic regime used. However, the density at which aligned ECM deposition and the 

consequent collagenous structure formation varied with the dynamic conditioning 

regime used. For the case of “continuous high” regime, very low cell and ECM density 

was observed throughout the AL scaffold construct from day 14 onwards. Although cell 

and ECM density increased over the experimental duration, with cell colonies of 

elongated morphologies forming by day 28, it was not sufficient for observable 

collagenous structure to be formed. On the contrary, aligned ECM depositions and 

collagenous structure formations (stained blue) were observed in the “continuous low” 

and “rehab” group, with the “rehab” group having thicker and denser collagenous 

structures formed by day 21. Extensive collagen deposition and fiber formation was 

demonstrated in the “rehab” group by day 28, with the formation of ligament-like 

microstructural “crimp” patterns in the collagen fibers. Aligned cells were also observed 

to be interspersed between the collagen fibers formed. Nevertheless, the collagen fibers 

were not as compact and dense as the native tissue, as voids were observed between the 

fragmented collagen fibers. 
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Figure 5-4: Longitudinal sections of Masson’s trichrome stained AL hybrid scaffolds that 
underwent the different dynamic conditioning regime and observed at various timepoints. 
Magnification: (A-I) 40× and (J-R) 200×. 
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From the transverse sections (Figure 5-5), it was observed that the distribution of 

cells and the eventual collagenous structures were limited to the space in between 

adjacent layers of rolled-up hybrid scaffold stimulated by the “continuous low” and 

“rehab” regime since day 21 (Figure 5-5 E, F, H, I). As for the “continuous high” group, 

there was significantly less cells observed from the early day 14 stage, hence cellular 

and ECM structures were not observed readily throughout the scaffolds of this group 

through the experimental period. From these observations, it was thus deduced that 

infiltration of the cells through the AL-SFEF into the knitted SF component had been 

limited. Nevertheless, this phenomenon had in turn aided in concentrating the cells that 

were present and attached in the scaffold to a limited space, which eventually made it 

favorable for the formation of collagenous bands to occur. 

As with the longitudinal sections, cell and ECM density had been very low in the 

“continuous high” group through the 28 days culture period. Sections from the 

“continuous low” and “rehab” group, on the other hand, showed collagen fiber band 

formation from day 21, with 87.6% significantly thicker collagen fibers formed in the 

“rehab” group as compared to the “continuous low” group at day 28 (“continuous low”: 

11.3 ± 2.0 µm and “rehab”: 21.2 ± 4.7 µm; p<0.01).  This indicated that the “rehab” 

stimulation regime provided dynamic cues that were more effective in triggering the 

formation of collagen fibers and continuously straining these fibers efficiently to 

achieve collagen fiber thickening and consequently tissue maturation. 
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Figure 5-5: Longitudinal sections of Masson’s trichrome stained AL hybrid scaffolds that 
underwent the different dynamic conditioning regime and observed at various timepoints. Arrows 
indicate the collagen bands formed within rolled-up scaffold. Magnification: (A-I) 40× and (J-R) 
200×. 
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5.3.1.4. Gene Expression of Ligament-related ECM Proteins 

 using Real-Time qRT-PCR 

The expression of ligament-related genes in AL hybrid scaffolds conditioned via 

the different regimes were evaluated via real-time qRT-PCR. Results showed that gene 

expression across the targeted genes were up-regulated at all the time points tested in 

both the “continuous low” and “rehab” groups relative to the “continuous high” group 

(Figure 5-6). Specifically, there was no significant increase for the “continuous high” 

group in gene expression of the targeted genes throughout the experimental duration, 

except for expression in collagen I during the period from day 21 to day 28 (Figure 5-

6A). When comparing between the “continuous low” and “rehab” groups, significantly 

higher expression in collagen I was found from day 14 onwards, collagen III from day 

21 onwards, tenascin-C from day 21 onwards and tenomodulin from day 28 onwards. 

By day 28, all targeted genes were significantly expressed in the “rehab” group 

compared to the “continuous low” group (collagen I: 9.2% higher, collagen III 65.2% 

higher, tenascin-C: 70.5% higher, tenomodulin: 47.6% higher, p<0.05).  

Interestingly, it was observed that the gene expression for collagen I of the 

“rehab” group decreased during the period between day 21 to day 28 but increased for 

the “continuous low” group within the same period (Figure 5-6A). A different set of 

observation was made for collagen III, whereby collagen III expression continued to 

increase from day 21 to day 28 in the “rehab” group but decreased for the “continuous 

low” group during the same period (Figure 5-6B).  
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For tenascin-C and tenomodulin, gene expressions plateaued for the “continuous 

low” group but continued to increase for the “rehab” group through the experimental 

period. It was thus indicative that the “rehab” regime had the capacity to stimulate 

consistently increasing gene expression especially for collagen III, tenascin-C and 

tenomodulin; of which, tenascin-C and tenomodulin are important ECM components 

necessary for ligament elasticity and collagen fiber maturation respectively. 

 

Figure 5-6: Gene expression for ligament-related ECM components were up-regulated in the 
“continuous low” and “rehab” groups as compared to the “continuous high” group (*p<0.05). 
Gene expression of “rehab” group was significantly higher than the “continuous low” group in all 
the targeted genes by day 28 (#p<0.05). Significant increase over the culture duration was observed 
for targeted genes of all groups except for collagen I in the “rehab” group at day 28 (^p<0.05 for 
increase and vp<0.05 for decrease). Levels were quantified using real time RT-PCR and were 
normalized to the housekeeping gene, GAPDH (n=3).  
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5.3.1.5. Tensile Properties of Dynamically Cultured AL Hybrid 

 Scaffold using Different Stimulation Regimes 

Dynamically cultured rolled-up hybrid scaffolds stimulated using the three 

different regimes were tested for their tensile properties at days 7, 14, 21 and 28, as 

tabulated in Table 5-2. The samples were tested to failure and ruptures were generally 

noted to initiate from the centre region of the entire gauge length, though exact rupture 

site was inconsistent across samples. Load-displacement curves plotted revealed the toe 

region, linear region, microfailure region and failure region, similar to that of native 

ACLs (Figure 5-7).  

Table 5-2: Mechanical properties of dynamically cultured scaffold samples by different stimulation 
regimes (n=5, data: mean ± SD). ^p<0.05 when compared to the previous time point for each group 
respectively. #p<0.05 when the “rehab” group was compared to both the “continuous low” and 
“continuous high” groups at each time point. 

 

Samples Maximum load (N) Stiffness (N/mm) 
Extension at maximum 

load (mm) 

C
on

ti
nu

ou
s 

L
ow

 

Day 7 144.33 ± 5.03 24.33 ± 1.40 11.46 ± 3.51 

Day 14 172.08 ± 6.28^ 26.93 ± 2.40 10.99 ± 2.67 

Day 21 197.12 ± 14.54^ 32.13 ± 3.20 11.26 ± 2.79 

Day 28 207.10 ± 12.07  38.23 ± 3.65^ 13.15 ± 3.22 

C
on

ti
nu

ou
s 

H
ig

h Day 7 127.33 ± 5.69 19.28 ± 2.20 9.25 ± 2.32 

Day 14 142.67 ± 3.21 24.55 ± 0.86^ 9.89 ± 2.16 

Day 21 134.00 ± 5.57 25.66 ± 2.13 10.12 ± 3.12 

Day 28 162.00 ± 12.53 29.34 ± 3.11 10.26 ± 3.03 

R
eh

ab
 

Day 7 143.59 ± 5.07 25.18 ± 1.45 11.51 ± 2.58 

Day 14 192.83 ± 14.38^ 35.15 ± 0.94^# 11.69 ± 3.52 

Day 21 227.26 ± 10.55^# 37.65 ± 2.32# 12.91 ± 3.09 

Day 28 238.08 ± 19.29# 44.44 ± 2.84^# 13.93 ± 2.16 
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Figure 5-7: Representative load–displacement curves for AL hybrid scaffolds cultured in the 
different stimulation regimes at day 28. 

 

Significant increase in the maximum load measured was observed in both the 

“continuous low” and “rehab” groups from days 14 (p<0.05) but this trend did not 

persist through the whole duration of the study as the increase from day 21 to day 28 

was found to be insignificant for both groups (p>0.05; Table 5-2). The “continuous 

high” group did not exhibit any significant increase in the maximum load through the 

duration of this study (p>0.05). In terms of construct stiffness, significant increase was 

found after 28 days for the “continuous low” group and at 14 days for the “continuous 

high” group (p<0.05), which did not persist thereafter as the increase observed was not 

significantly different (p>0.05). For the “rehab” group, significant increase was found 

during the period from day 7 to day 14 and from day 21 to day 28 (p<0.05). No 

significant increase was found for the extension at maximum load through the 

experimental period for all three groups. 



 

 

 

Page | 195 

Chapter 5: Rehabilitative Mechanical Conditioning 

When the “rehab” group was compared with the other two stimulation regimes, 

significantly higher maximum load was found from day 21 onwards, with the “rehab” 

group being 15.0% stronger than the “continuous low” and 47.0% stronger than 

“continuous high” at day 28 (p<0.05; Table 5-2). The stiffness measured was also 

significantly more in the “rehab” group as compared to the other two regimes from as 

early as day 14 onwards, with the “rehab” group being 16.2% stiffer than the 

“continuous low” and 51.5% stiffer than “continuous high” at day 28 (p<0.05). 

Likewise, no significant difference were found when the extension at maximum load of 

the “rehab” group was compared with the other two groups at the various time points 

(p>0.05). 

AL scaffolds cultured with “rehab” regime exhibited larger extents of toe region 

after 28 days of culture as compared to the “continuous high” regime (“rehab”: 7.20 ± 

2.13 mm, “continuous high”: 3.60 ± 1.47 mm; p<0.05), while no significant differences 

were observed when compared to the “continuous low” group (“continuous low”: 5.23 

± 1.32 mm; p>0.05). 
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5.3.2. Results from Characterization of the “Rehab” Mechanical 

 Stimulation Regime 

From the optimization study conducted using the three stimulation regimes, it was 

concluded that the “rehab” mechanical stimulation regime was more suitable for 

dynamic culture of the AL SF hybrid construct for tissue engineering of the ligament. 

Hence a full characterization of AL scaffolds cultured using this regime was done and 

compared with the static culture through 28 days period. 

5.3.2.1. Cell Viability and Proliferation 

Alamar Blue™ assay revealed that, as compared to the statically cultured AL 

scaffolds, cell viability was significantly higher when the MSC-seeded AL hybrid 

scaffolds were cultured in the “rehab” stimulation regime after 14 days of culture 

(Figure 5-8; p<0.01). Scaffolds from the “rehab” group had 20% (day 14), 14% (day 21) 

and 10% (day 28) more cells when compared to the statically cultured control group 

(p<0.01).  

The proliferation trends were also observed to be significantly different between 

the two groups as shown in Figure 5-8. There was consistent proliferation for constructs 

that were statically cultured up till day 21 (p<0.05), but for constructs from the “rehab” 

group, proliferation was only found up till day 14 only (p<0.05). Thereafter, there was 

no significant proliferation observed for the “rehab” group as percentage reduction of 

Alamar Blue reached a plateau.  
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Figure 5-8: Alamar Blue™ assay illustrating consistent and significantly more viable cells in the 
“rehab” group compared to the statically cultured group from day 14 onwards (*p<0.01, Student’s 
t-test, n=5)). Significant proliferation (^p<0.05, ANOVA and post-hoc Tukey tests, n=5) was 
observed in the “rehab” group up to day 14 and up to day 21 for statically cultured AL scaffolds. 

5.3.2.2. Collagen Synthesis 

Insoluble collagen assay was performed to determine the amount of deposited 

collagen on the AL hybrid scaffolds that were mechanically stimulated using the 

“rehab” conditioning regime to quantitatively indicate the extent of ECM formation. 

Statically cultured AL hybrid scaffolds were used as control. This quantification assay 

revealed that there was significant increase (p<0.05) in collagen production and 

deposition in the “rehab” group over the culture duration (Figure 5-9). However, for the 

statically cultured group, significant increase in collagen deposition was found from day 

7 to day 14 only (p<0.05), with the production level reaching a plateau thereafter.  
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Figure 5-9: SirCol™ assay for amount of collagen deposited per scaffold sample. Significant 
increase in collagen deposition was observed in the “rehab” group as compared to the statically 
cultured group from day 14 onwards (*p < 0.01, Student’s t-test, n=3). Significant increase in 
collagen deposition was observed consistently for the “rehab” group from day 14 onwards over the 
experimental period, while significant increase was only observed from day 7 to day 14 for the 
statically cultured group (^p<0.05 ANOVA and post-hoc Tukey tests, n=3). 

 

When compared to the statically cultured constructs, significant difference was 

found in constructs stimulated by the “rehab” regime from day 14 onwards (day 14: 

67% more, day 21: 143% more, day 28: 217% more; p<0.01). 

5.3.2.3. Histological Analysis 

Immunohistochemical staining was performed on the transverse sections of the 

central core portion of the AL hybrid scaffolds cultured in the “rehab” stimulation 

regime and static conditions after 28 days to assess for ligament-related ECM 

production, morphology and distribution within the scaffold qualitatively (Figure 5-10).  
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The immunohistochemical staining for type I collagen was strongly positive in the 

regenerated tissue of the “rehab” group. Type III collagen and tenascin-C on the other 

hand showed up less strongly in the “rehab” group. When referenced to the normal 

ligament, similar high composition of collagen I was observed compared to collagen III 

and tenascin-C, whereby 90% of the native ligament consists of collagen I, 9% collagen 

III and other proteoglycans [48]. The regenerated tissue using the “rehab” stimulation 

regime was thus consistent in composition with the ECM of native ligaments. 

 

Figure 5-10: Transverse sections of immunochemical stained (collagen I, collagen III and tenascin-
C) AL hybrid scaffolds that underwent the “rehab” conditioning regime and static culture as 
observed at day 28. Magnification: 200×.  

It was also noted that thicker and denser collagen fibers were observed for the 

“rehab” group as compared to the static group after 28 days of culture. Nevertheless, the 

distribution of these collagenous structures were limited to the space in between 

adjacent layers of rolled-up hybrid scaffold and were sandwiched in between layers of 

AL-SFEF meshes as observed in both the groups.  
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5.3.2.4. Gene Expression of Ligament-related ECM Proteins 

 using Real-Time qRT-PCR 

The expression of ligament-related genes in AL hybrid scaffolds conditioned via 

the “rehab” conditioning regime was evaluated via real-time qRT-PCR. Results showed 

that gene expression across the targeted genes were up-regulated at all the time points 

tested in the “rehab” group relative to the statically cultured group (Figure 5-11). 

Specifically at day 28, collagen I was 117% higher, collagen III was 112% higher, 

tenascin-C was 338% higher, and tenomodulin 279% higher in the “rehab” group than 

the statically cultured group at the same time point. 

For the statically cultured group, significant increase in gene expression was 

found in the period of day 14 till day 21for collagen I, tenascin-C and tenomodulin, of 

which tenascin-C and tenomodulin were down-regulated from day 21 to day 28, though 

with no significance (p>0.05). Collagen III was up-regulated by day 28 in the statically 

cultured group (p<0.05).  

For the “rehab” group, up-regulation of all targeted genes was observed from day 

14 onwards, with a significant down-regulation in collagen I after 21 days of dynamic 

culture. These results indicated that the “rehab” stimulation regime could stimulate 

sustained and consistent up-regulation of specific ligament genes as compared to the 

static culture conditions. This was especially so for tenascin-C and tenomodulin, which 

were consistently up-regulated in the “rehab” group to trigger collagen fiber build-up 

and thickening, leading to overall tissue maturation, as observed from the histological 

images. 



 

 

 

Page | 201 

Chapter 5: Rehabilitative Mechanical Conditioning 

 

Figure 5-11: Gene expression for ligament-related ECM components were up-regulated in the 
“rehab” group as compared to the statically cultured group (*p<0.05). Significant increase over the 
culture duration was observed for targeted genes of the “rehab” group, except for collagen I at day 
28 (^p<0.05 for increase and vp<0.05 for decrease). Levels were quantified using real time RT-PCR 
and were normalized to the housekeeping gene, GAPDH (n=3).  

5.3.2.5. Western Blot Analysis 

Protein expressions for collagen I, collagen III and tenascin-C were detected for 

the “rehab” group and the static control after 14, 21 and 28 days of culture (Figure 5-

12). Analysis was performed on densitometric data of the optical intensity of each lane 

expressed in the Western blot membranes, which was normalized to statically cultured 

AL scaffolds at day 14. 
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Figure 5-12: Western blot analysis of ligament-related ECM proteins produced by MSCs cultured 
on the AL scaffolds and dynamically (“rehab” regime) and statically cultured for 14, 21 and 28 
days. The results were normalized to data obtained from AL scaffolds statically cultured for 14 
days and evaluated on a relative basis for comparison between different samples (n=3). 
Significantly more type I collagen was produced in the “rehab” group than static group from day 
14 onwards, while significance was observed for type III collagen and tenascin-C after 21 (*p < 
0.05). Significant increases were found as compared to the previous time point in each group 
(^p<0.05). 

 

The results demonstrated that the matrix of the cultured ligament analogues using 

the “rehab” regime composed mainly of type I and III collagen and tenascin-C, with 

collagen I being predominant as its expression was consistently higher in both 

dynamically and statically cultured AL scaffolds when compared to collagen III and 

tenascin-C. Significantly more collagen I was expressed in the “rehab” group than the 

static control from day 14 onwards (day 14: 93.4% more, day 21: 106.7% more, day 28: 
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49.7% more), while significance was found for collagen III and tenascin-C from day 21 

onwards (on day 28: collagen III: 50.7% more and tenascin-C: 52.6% more; p<0.05).  

For the static control, significant increase for collagen I was found through the 28 

day study (day 14 to day 21: 124.1% more, day 21 to day 28: 64.1; p<0.05), while 

significant increases for collagen III and tenascin-C were only found from day 14 to 21 

(collagen III: 82.2% more, tenascin-C: 40.2% more; p<0.05). No significant increase 

was found for these proteins thereafter (p>0.05). However for the “rehab” group, 

significant increase was found for all three targeted proteins through the experimental 

period (p<0.05). Similar trends were observed in the RT-PCR results for the “rehab” 

group as shown previously, except for collagen I which was shown to decrease in gene 

expression in the period of day 21 to day 28. The reason for the consistent increasing 

deposition of collagen I, as determined via Western blot analysis, was likely due to time 

lag between gene expression and the actual protein synthesis. 

5.3.2.6. Tensile Properties of Dynamically Cultured AL Hybrid 

 Scaffold using the “Rehab” Conditioning Regime 

Dynamically cultured rolled-up hybrid scaffolds stimulated using the “rehab” 

regime and the statically cultured equivalents were tested for their tensile properties at 

days 7, 14, 21 and 28, as tabulated in Table 5-3. The samples were tested to failure and 

ruptures were generally noted to initiate from the centre region of the entire gauge 

length, though exact rupture site was inconsistent across samples. Load-displacement 

curves plotted revealed the toe region, linear region, microfailure region and failure 

region, similar to that of native ACLs (Figure 5-13).  
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Table 5-3: Mechanical properties of dynamically cultured scaffold samples using “rehab” 
stimulation regime (n=5, data: mean ± SD). ^p<0.05 when compared to the previous time point for 
each group respectively. #p<0.05 when the “rehab” group was compared to statically cultured 
group at each time point. 

 
 

 

Figure 5-13: Representative load–displacement curves for AL hybrid scaffolds cultured in the 
“rehab” stimulation regime and static conditions at day 28. 

 

Samples Maximum load (N) Stiffness (N/mm) 
Extension at maximum 

load (mm) 

S
ta

ti
c 

Day 7 138.50 ± 9.19 23.29 ± 1.38 9.39 ± 2.89 

Day 14 158.00 ± 8.49 26.22 ± 0.92 12.45 ± 3.64 

Day 21 182.50 ± 9.19^ 29.34 ± 2.32 11.84 ± 2.72 

Day 28 200.50 ± 10.61 34.23 ± 3.22 12.98 ± 2.93 

R
eh

ab
 

Day 7 143.59 ± 5.07 25.18 ± 1.45 11.51 ± 2.58 

Day 14 192.83 ± 14.38^# 35.15 ± 0.94^# 11.69 ± 3.52 

Day 21 227.26 ± 10.55^# 37.65 ± 2.32# 12.91 ± 3.09 

Day 28 238.08 ± 19.29# 44.44 ± 2.84^# 13.93 ± 2.16 
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When the “rehab” group was compared with the static control, significantly higher 

maximum load was found from day 14 onwards (day 14: 22.0%, day 21: 24.5%, day 28: 

18.7%; p<0.05). The stiffness measured was also significantly more in the “rehab” 

group as compared to the statically cultured group from as early as day 14 onwards (day 

14: 34.0%, day 21: 28.3%, day 28: 29.8%; p<0.05). No significant difference were 

found when the extension at maximum load of the “rehab” group was compared with 

the statically cultured group at the various time points (p>0.05). 

AL scaffolds cultured with “rehab” regime exhibited larger extents of toe region 

after 28 days of culture as compared to the statically cultured group (“rehab”: 7.20 ± 

2.13 mm, static: 4.40 ± 1.11 mm; p<0.05). 

5.4. Discussion 

In this chapter, the “rehab” mechanical stimulation regime was compared with the 

other stimulation regimes that were executed continuously from day 3 post-seeding. The 

“high” and “low” stimulation profile were first identified based on the average 

physiological activity of the ligament in terms of the number of cycles per day obtained 

from pedometer results [262]. The onset of these stimulation profiles were then varied 

in the three stimulation regimes characterized. It was demonstrated that the “rehab” 

regime stimulated marked increase in cell viability as compared to the “continuous 

high” regime and supported initial MSC proliferation, which plateaued after 14 days of 

culture. The proliferation phase was then transited to the differentiation phase, whereby 

significantly higher collagen deposition was observed in the “rehab” group as compared 

“continuous low” and “continuous high” groups from day 21 onwards. This result was 
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supported qualitatively via histological evaluation, which illustrated higher levels of 

ligament-related ECM deposition, with formation of thicker collagen fibers by day 28 as 

compared to groups stimulated by the other two stimulation regimes and statically 

cultured constructs. Real-time qRT-PCR results also showed significantly higher 

expression for ligament-related genes, especially tenascin-C and tenomodulin, in the 

“rehab” group. Increased ligament-related ECM components were found for the “rehab” 

group and quantitatively ascertained to produce constructs of closer biochemical 

compositions to the native tissue. Such elevated production and deposition of 

fundamental ECM components was translated to superior functional aspects, whereby 

mechanically stronger and stiffer constructs were obtained as compared to the other 

stimulation regimes and static culture conditions tested. Therefore, with an appropriate 

temporal tissue conditioning at the respective phase of growth, as provided by the 

“rehab” regime, it was likely that seeded aligned MSCs could be induced to further 

synthesize collagen and ECM in a controlled in vitro environment for the regenerated 

construct to develop and become more mechanically robust before subjecting it to 

physiological environment. 

5.4.1. Determination of the Onset of Specific Mechanical 

 Stimulation Profiles in the Rehabilitative Approach 

In the course of determining the appropriate onset for the implementation of 

mechanical stimulation, it was essential to understand the cellular response towards 

mechanical cues given at different stages of cell growth. Particularly, Chen et al. [245] 

found that MSCs’ metabolic activity typically increased after 9 days of static culture 
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and that mechanically loading cell seeded matrices in the early stages of cell growth (1-

3 days post-seeding) was detrimental. Excessively early mechanical stimulation was 

found to inhibit cell proliferation and differentiation instead of enhancing it, possibly 

due to the lack of initial cellular anchorage with the scaffold as ECM deposition were 

not established yet. It is thus a prerequisite to have sufficient cell-to-cell contact and 

cell-to-ECM interactions, through the formation of integrins, to gain the benefits of 

mechanical conditioning. As such, a 3 day static culture period was given to all the 

dynamically conditioned groups.  

Thereafter, MSCs enter a proliferative phase during the period from day 3 to day 

9. At the end of this phase, MSCs would up-regulate the expression of ECM-specific 

genes, such as collagen type I and fibronectin, to indicate the onset and progression of 

the differentiative phase [268-271]. It was often agreed that the onset for dynamic 

conditioning should only start from the initiation of this phase, which would be marked 

by increase in metabolic activity and up-regulation of ECM-specific genes, in order for 

cell survival and positive response to mechanical stimuli [268-271]. 

Nevertheless, in this study, we attempted to provide low intensity mechanical 

stimulation in the early proliferative phase with the aim to precondition the cells such 

that better cell-to-cell and cell-to-ECM linkages could be fostered, leading to improved 

response to the full dose of stimulation that would be effected later. This was motivated 

by the success of rehabilitation as a form of post-surgical treatment provided to patients 

with their ACLs replaced. Minimal loading of the newly replaced ACL was done to 

stimulate bone integration and prepare the replaced ACL for more intense activities in 

time to come. As shown by results obtained, proliferation was not adversely affected 
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with the implementation of the “low” intensity stimulation profile at day 4, instead, 

proliferation was shown to be comparable to that of statically cultured constructs.  

With the onset of early low intensity stimulation, the high intensity stimulation 

profile could begin at day 7, which aid in stimulating marked increase in proliferation 

rate to day 14, which subsequently plateaued indicating the initiation of the 

differentiative phase. This was positively indicated by the up-regulation of ligament-

related ECM genes and increased deposition of ECM components.  

5.4.2. Suitability of the “Rehab” Regime for Prolonged Mechanical 

 Stimulation 

It was necessary to continuously provide this form of stimulation over an extended 

duration to assess its effectiveness. This was so as the cells would enter a phase of ECM 

maturation after the proliferative and differentiative phases. During this phase, cell 

proliferation would be restricted [268-271, 309-312] and it would then be necessary to 

continually provide specific differentiation signals, such as mechanical stimulations or 

growth factors, in order that the remaining cells would continue to proliferate and be 

metabolically active to continue ECM deposition [268]. Prolonged mechanical 

stimulation study as such would be important in determining if the “rehab” regime 

would be sufficient or excessive in the tissue maturation phase.  

Indeed it was found from gene expression results that although type I collagen was 

more up-regulated than type III collagen throughout 28 days and showed an increasing 

trend in its expression through the first 21 days of culture, it was down-regulated on the 
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28th day, while collagen III gene expression was still increasing. It was favorable for 

collagen I to be expressed more than collagen III as this would better mimic the 

biochemical composition of healthy ligament, and indicate progressive tissue 

regeneration. Nevertheless, the down-regulation of collagen I and continuous up-

regulation of collagen III on day 28 could indicate imminent scar tissue formation. The 

scar tissue is typically thicker and more cellular compared with the native tissue. It is 

usually formed at the injured sites for rapid closure of wound, and for the case of 

ligaments, to provide as an accelerated healing matrix with vasculature [9, 98]. The 

matrix is composed of disorganized collagen fibrils, constituted of higher percentages of 

collagen III than collagen I. Although the biochemical composition of the regenerated 

construct obtained using the “rehab” regime was not scar tissue like, the decrease in 

collagen I gene expression would be a concern of scar tissue development. This 

phenomenon could be attributed to the likelihood that the “high” intensity stimulation 

profile was not suitable for extended duration and a more complex rehabilitative regime 

might be necessary. It might be necessary to employ the “low” intensity profile once 

again after 28 days of stimulation (21 days of “high” intensity profile) to allow for 

tissue recuperation from excessive strain levels. The change towards a “low” intensity 

profile after 28 days was supported by the gene expression results for the “continuous 

low” group, which showed a drop, though not significant, in collagen III expression at 

day 28. This could then indicate that there was less tendency for scar tissue formation 

using this regime. Although it might seem that the “rehab” regime led to the possible 

formation of scar tissue and that the “continuous low” regime did not, it was still more 

advantageous to employ the “rehab” regime for accelerated regeneration of ligament. 
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Modification of the “rehab” regime to include recurring “low” and “high” intensity 

stimulating profiles would be interesting as future works. 

Another reason for the decrease in collagen I expression could be the limited 

space available for tissue formation within the AL hybrid SF scaffold. This was so as 

cell proliferation and eventual collagen deposition was limited by the SFEF meshes to 

the space in between the adjacent layers of the rolled-up construct, which provided a 

negative feedback on the production of ECM components as a result. Therefore, a cell 

permeating electrospun SF mesh would be required. One way to achieve such a mesh is 

to use micropatterned electrical discharge or laser etching techniques, commonly used 

in the fabrication of microarrays, to form pits and holes in the SFEF mesh to allow 

improved cell infiltration into the knitted structure. This method would be discussed 

further in the recommendations section of the next chapter.  

5.4.3. “Rehab” Stimulation Regime for Regenerated Ligament 

Tissue Maturation 

In this study, the success of ligament tissue maturation was largely measured 

based on the expression of ligament-related genes. Specifically, tenascin-C, which is an 

ECM glycoprotein expressed abundantly during embryogenesis and regeneration of 

musculoskeletal tissues [313, 314], is associated with providing elasticity for 

mesenchymal tissues subjected to heavy tensile loading, while acting as an adaptor and 

modulator of cell-matrix interactions like cell adhesion and migration. The “rehab” 

stimulation regime was thus capable of stimulating its up-regulation to consequently 

support improvement in mechanical stiffness of the tissue. Tenomodulin, on the other 
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hand, is associated with ligament maturation via reducing individual collagen fibril 

diameter, as reported by Docheva et al. [299]. In their study, it was found that there was 

increase in maximal diameters of collagen fibrils, with large variations in fibril 

diameters compared to the original tissue, in tenomodulin-deficient mice. Its deficiency 

was therefore associated with formation of immature and mechanically weaker ligament 

tissues. Since the “rehab” regime could stimulate up-regulation of tenomodulin, it 

would be likely that the collagen fibrils that would be regenerated were of smaller 

calibers as well. With the smaller collagen fibrils, the overall tissue mechanical property 

would be improved and mimic more closely to the native tissue morphology.  

Nevertheless, it should be noted that the calibers of collagen fibers (micron level), 

as opposed to the fibrils (nano level), should be increased such that the regenerated 

structure would be more mechanically viable. This was achieved by using the “rehab” 

regime in this study, as analysis of the histological images revealed that thicker collagen 

fibers were formed in the “rehab” group compared to the other stimulation groups. This 

observation, in association with the increased tenomodulin expression, would show that 

the resulting construct should be more matured and effectively stronger, with thick 

collagen fibers consisting of fine collagen fibrils. This had been positively shown by the 

significantly stronger and stiffer regenerated construct obtained via “rehab” stimulation 

regime as compared to the statically cultured equivalent. As the characterization of the 

ultrastructural state of regenerated collagen fibers had been limited in this study, future 

works should examine this aspect for more complete characterization of the deposited 

collagen structures.  
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Moreover, the use of rabbits’ MSCs, like that of many other researchers who had 

used animal cells for bioreactor studies [257-259], was useful for preliminary 

assessment of the rehabilitative approach to dynamic conditioning of cell seeded 

constructs. However, future works should also focus on the use of human MSCs for the 

study of the optimal stimulation regime since human mechanical stimulation parameters 

were considered and used in this study. Although it had been shown that the 

rehabilitative approach, with parameters closely mimicking the human physiological 

values, improved tissue regeneration for rabbit cell based constructs, it was limited to 

only justifying that the approach was better than the other regimes tested. The actual 

parameters used might not be optimal and certainly not definitive in the absolute sense 

for human cells and clinical applications. 
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5.5. Concluding Remarks 

The rehabilitative approach to providing dynamic conditions for regeneration of 

ligament tissue had been shown to be promising over the stimulation regimes that 

focused on supplementing leveled stimulation parameters. Proliferation was found for 

the earlier stages of the stimulation period, which transcended towards the 

differentiative phase in an accelerated manner after 14 days. Differentiation was marked 

by the increased collagen deposition, up-regulation of ligament-related genes and 

deposition of the corresponding ECM components. The “rehab” stimulation regime also 

triggered thicker collagen fibers formation and eventual superior mechanical strength 

and stiffness relative to the leveled stimulation regimes and static cultures. However, 

issues pertaining to limited cell and ECM infiltration, tendency of scar formation and 

the use of human MSCs instead of rabbit MSCs would need to be looked into in order 

for the AL hybrid SF scaffold and the “rehab” stimulation regime to be applicable for 

clinical applications.  
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6.1. Conclusion  

A novel method of producing micron/submicron scale full SF aligned hybrid 

scaffold was developed in the PhD project. In the initial material assessments, it was 

shown that the SF material could be customized and fabricated to a knitted structure that 

had similar biomechanical characteristics as the native ligament and was suitable for 

functional tissue engineering of the tissue. The degumming process was also shown to 

be optimizable for SF mechanical properties retention via controlling parameters such 

as presence of mechanical agitation, duration, temperature and change of degumming 

solution, while ensuring that sericin was removed effectively.  SF knits were optimally 

degummed in aqueous Na2CO3 with SDS (0.25% w/v each) at 100°C for 30 min in the 

presence of mechanical agitation. Highly aligned electrospun SF fibers could be 

obtained subsequently via the customized electrospinning setup, which consisted of a 

rotating grounded collector frame with two positively charged plates to limit the 

spinneret path. A well integrated hybrid SF scaffold structure could eventually be 

obtained via physical contractile forces generated from contraction of SFEF onto SF 

knit upon methanol treatment for SF crystallization. 

Upon characterization of the MSC-seeded hybrid scaffolds, it was demonstrated 

that the aligned hybrid SF scaffold was capable of inducing prominent tenogenic 

differentiation due to its positive topographical cues that cause cellular and ECM 

alignment (hypothesis 1). With the addition of dynamic conditioning cues, enhanced 

tenogenic differentiation was effected due to its synergistic effect with the positive 

topographical cues of the aligned hybrid SF scaffold (hypothesis 2). 
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A novel rehabilitative approach to dynamically condition the cell seeded 

constructs was also conceived in this project. It was shown that the rehabilitative 

approach to dynamic conditioning allowed timely introduction of appropriate 

stimulation intensities, which allowed early introduction of mechanical cues to the 

MSCs to effect an accelerated differentiative profile towards ligament fibroblasts 

(hypothesis 3). 

Through this study, it was thus demonstrated that the mechano-active AL hybrid 

SF scaffold was suitable providing mechanical functionality and topographical 

stimulation for tenogenic differentiation. When conditioned dynamically using a 

rehabilitative approach, the MSC-seeded construct would be able to develop into 

ligament-like structures more readily. This system thus showed promise and implication 

for future clinical ligament regenerative applications. 
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6.2. Recommendations for Future Work 

6.2.1. Cell Migration Aided by SFEF Alignment 

The positive topographical effects of AL-SFEF had been shown in this study via a 

series of characterizations done for the AL hybrid SF scaffold in both static and 

dynamic conditions. Other than providing cell guidance towards alignment and aligned 

ECM production, and stimulating positive topographical cues, the aligned SFEF 

component of the hybrid SF scaffold could aid in cell migration in the direction of fiber 

alignment. This phenomenon was shown in works performed by Schnell et al. [315] as 

they showed that the aligned electrospun poly-e-caprolactone and collagen/poly-ε-

caprolactone blend that they produced could provide guidance for glial cell migration in 

the direction of the fiber alignment. Similarly, it would be likely that the AL-SFEF 

could provide an avenue for improved cell migration into the core of the scaffold. This 

would be especially useful when implantation of the hybrid scaffolds was to be involved 

as MSCs from the bone marrow cavity could preferentially migrate into the scaffold and 

specifically in the direction of SFEF alignment to further supplement the seeded MSCs. 

It would be interesting to characterize the rate of cell migration in both the in vitro and 

in vivo environment in the future. 

6.2.2. Improvement of Cell Infiltration into the Hybrid SF Scaffold  

From the histological assessments conducted for this study, it was noted that cell 

infiltration into the knitted structure had been limited. This could be due to the lack of 
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cell permeability in the SFEF meshes or that the static seeding technique, involving 

pipetting of cell suspension onto the scaffold surfaces, needed to be improved.  

It was reported in several studies that low seeding efficiencies and non-uniform 

cell distributions with the scaffold were often associated with static seeding [316-319]. 

Consequently, many had turned to dynamic cell seeding techniques. This was usually 

done through the use of a bioreactor, and had been shown to improve seeding density, 

efficiency and uniformity compared to static approaches. As dynamic seeding systems 

could be readily integrated into bioreactor setups, this should be performed for future 

studies involving the use of the standalone bioreactor setup. 

Cell permeability of the SFEF meshes could be improved via creating 

micropatterns of pits and holes in the electrospun mesh after fully integrating to form 

the hybrid scaffold. Such micropatterns could be achieved via the use of electrical 

discharge or laser etching techniques. Specifically, thermal energy generated by 

micropatterned electrical discharge arcs had been utilized to elevate temperature in 

localized regions to melt polymer electrospun fibers in the close vicinity. From the 

works conducted by Zeng et al. [320], microstructures as small as 20 µm could be 

created. Having controlled micro defects of these dimensions, the cell permeability of 

the SFEF meshes should be improved to allow infiltration of cells and ECM production 

in the knitted core of the hybrid scaffold. As such, future works should look at 

optimizing the density of these defects using such controllable methods to achieve 

regenerated constructs with uniform distribution of ECM and collagenous structures. 
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6.2.3. Sequential Release of Specific Growth Factors through Designed 

 Incorporation into Electrospun Fibrous Meshes of Different 

 Materials 

The incorporated electrospun mesh of the hybrid scaffold could also be made as a 

composite structure in itself via the use different materials for electrospinning. The 

composed structure, as such, could be designed to have different degradation 

characteristics depending on the material used. With the different materials degrading at 

dissimilar rates during the course of tissue regeneration, it would then be possible to 

incorporate different growth factors into these different electrospun fibers, to achieve 

sequential release of the various growth factors at specific cellular growth phases.  

For example, growth factor loaded PLGA and SF electrospun composite mesh 

could be designed and fabricated to allow initial release of bFGF to sustain proliferation 

of MSCs by preventing MSC differentiation during the cell expansion stage, and 

subsequent release of TGF-β to induce differentiation of MSCs, leading to increased 

expression of ECM proteins. Since PLGA degrades at a faster rate than that of SF, 

bFGF could be incorporated into PLGA electrospun fibers, while TGF-β incorporated 

into SF electrospun fibers. With culture, the PLGA would degrade earlier to release the 

loaded bFGF, while SF would be degraded later to release the loaded TGF-β (Figure 6-

1). 
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Figure 6-1: Schematic of gradual degradation of electrospun polymer fibers to sequentially release 
different growth factors 

 

This form of sequential release of various growth factors had been shown to 

positively and more effectively stimulate the intended cellular activity at various stages 

of tissue regeneration than constant supplementation of all the growth factors 

throughout the culture period [321].  

As such, release mechanism of the different growth factors from the targeted 

polymers would need to be understood in terms of the interplay between diffusion 

release and bulk release of the growth factors. Moreover, it would be essential to 

determine the respective degradation kinetics of growth factors loaded electrospun 

fibers and the dosage of growth factors that should be added for optimal cell 

proliferation and differentiation. 

With this technology in place, it would then be possible in the future that 

controlled release of specific growth factors could be realized in situ at the implantation 

site via the implanted scaffold construct. 
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Appendix A. Method for determining elastic region  

1. The data for the load and extension up to the first peak (load) were extracted. 

2. The gradients between successive data points were calculated, such as that for g1 

and g2 at two successive points shown in Figure A-1A. 

3. The difference in gradients is calculated as a percentage of the first gradient using 

the formula  

Percent gradient change = ( g2 - g1 )/ g1  × 100 % 

4. The graph of x2 (extension data point between the two gradients compared) versus 

the percent gradient change of the two gradients was plotted as shown in Figure A-

1B. 

5. From the graph of x2 versus the percent gradient change, the region of best linearity 

was determined as the region with near zero gradient change. From the 

representative graph, this region is bounded by x = 4.0 mm and x = 7.5 mm.  

6. If more than one region of linearity were found, the regions were compared using 

 the correlation method to single out the more linear region. 

7. The region selected was tested with the correlation formula to ensure a square of 

correlation factor of more than 0.99 (1.0 being a perfectly fitting straight line) could 

be obtained. 
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8. At the best linear region, a straight line was fitted using linear regression (least 

square method) and the gradient of the line would represent the stiffness of the 

elastic region (Figure A-1C). 

 

Figure A-1: (A) Method for calculation of gradient between two successive points (A). (B) Graph of 
percent gradient change versus the extension point to determine region of least gradient change. 
(C) The gradient of the best fitted straight line (blue) at the elastic liner region of the load-extension 
curve (red) yields the elastic stiffness of the tested construct. 

Extent of toe 
region 
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To eliminate multi-factor contributions such as failure load and stiffness, toe 

region was determined based on the extent of displacement made with incremental 

stiffness changes before linear extension (Figure A-1C) instead of the absolute stiffness 

values involved. In other words, only the extent of the toe region, in terms of the 

extension, was evaluated and not the rate of stiffness change. 
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Appendix B1. Live/dead Hemocytometry 

Cell attachment test was done to assess the cell density of the cell seeding 

suspension prior to cell seeding on scaffolds and also for assessing the cell adhesion 

post-seeding. The general method of cell counting is described as follows.  

1. The hemocytometer and glass coverslip were first cleaned with 70% ethanol. The 

clean glass coverslip was then placed over the hemocytometer grooves and semi-

silvered counting area. 

2. Cells could be harvested by trypsinization of cell monolayers or of non-adherent 

cells in suspension. 40 µl of cell suspension was then mixed with 10 µl of Trypan 

Blue stain solution (Invitrogen Corporation, CA, USA) for dead cell exclusion. With 

the use of a micropipette, the cell suspension mixture was then transferred to the 

edge of the hemocytometer and allowed to spread evenly by capillary action.  

3. Using the 10 × objective of a phase-contrast microscope, the number of cells in the 

1 mm2 area at the 4 corners of the hemocytometer grid (Figure A-2) were 

individually counted and averaged to obtain number of cells (n). Viable (unstained) 

and dead (stained blue) cells were distinguished during the counting.  

4. Since the depth of the chamber is 0.1 mm and the area counted was 1 mm2, the 

volume for cell suspension entrapped was 0.1 mm × 1.0 mm2 = 0.1 mm3 or 10-4 ml. 

Cell concentration was thus determined as follows: 

Cell concentration in cell suspension (cells/ml) 
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= Average cell number (n) × 104 × 5/4 (dilution factor resulting from addition of 

Trypan Blue staining solution) 

 Cell viability could be calculated using the following equation: 

% cell viability  

= [total viable cells (unstained) / total cells (stained + unstained)] × 100% 

 

Figure A-2: Diagram for Hemocytometer (Counting Chamber). 
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Appendix B2. Alamar Blue™ 

Alamar Blue™, a soluble light sensitive dye, non-toxic and stable in culture 

medium, was used to assess the proliferation activity of the seeded cells on the scaffold 

as it monitored the reducing environment of the proliferating cell. It is composed of a 

blue dye, resazurin, which is reduced by the metabolic products of viable cells to form a 

fluorescent red dye called resorufin. The amount of resazurin (red) can be measured at 

600nm absorbance wavelength while resorufin (blue) at 570nm wavelength. The 

percentage reduction of resazurin to resorufin, calculated with compensation for the 

culture medium background absorbance, reflects cell viability. 

Alamar Blue mixture (10 %v/v) was first made with full culture medium. Upon 

aspirating the old medium from the scaffold culture chambers, 2 ml of the mixture was 

added to the scaffold, which was then incubated for 3 h at 37 °C. Negative control, 

which consisted of blank scaffold soaked in 2 ml Alamar Blue mix, was also incubated 

simultaneously. Care was taken to protect the Alamar Blue mix from light by wrapping 

with aluminium foil as the mixture is photosensitive. After the incubation, 200 µl of the 

Alamar Blue mix from each sample was transferred to a 96-well assay plate and 

measured for absorbance measured at 570/600 nm in a microplate reader (Sunnyvale, 

CA, USA). Percentage reduction of Alamar Blue, which indicated cellular proliferation, 

was then calculated as: 

2 1 1 2
' '

1 2 2 1

( )( ) ( )( )
% 100

( )( ) ( )( )
ox ox

red red
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reduced

A A

     
     


 

 , whereby 

(εredλ1) = 155677 (Molar extinction coefficient of reduced Alamar Blue™ at 570nm) 
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(εredλ2) = 14652 (Molar extinction coefficient of reduced Alamar Blue™ at 600nm) 

(εoxλ1) = 80586 (Molar extinction coefficient of oxidized Alamar Blue™ at 570nm) 

(εoxλ2) = 117216 (Molar extinction coefficient of oxidized Alamar Blue™ at 600nm) 

(Aλ1) = Absorbance of test wells at 570nm 

(Aλ2) = Absorbance of test wells at 600nm 

(A’λ1) = Absorbance of negative control wells which contain medium plus Alamar 

Blue™ but to which no cells have been added at 570nm 

(A’λ2) = Absorbance of negative control wells which contain medium plus Alamar 

Blue™ but to which no cells have been added at 600nm 
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Appendix B3. Texas Red-X Phalloidin/DAPI Fluorescence 

Staining 

Phalloidin is a toxin isolated from the deadly Amanita phalloides mushroom. It is 

a bicyclic peptide that binds specifically to F-actin [322], making it a convenient tool to 

investigate the distribution of F-actin when labeled with fluorescent dyes such as the 

Texas Red®-X dye. Very often, DAPI is used for nuclear counterstain as it stands out 

vividly from other fluorescent probes used for other intracellular structures. DAPI stains 

nuclei specifically, with little or no cytoplasmic labeling.  

Therefore, Texas Red-X Phalloidin/DAPI co-staining was utilized as a tool in this 

study to observe the cellular orientation, distribution and its interaction with the scaffold 

architecture. To achieve this, at each time point, cultured specimens were fixed in 4% 

paraformaldehyde for at least 15 min and permeabilized with 0.1% Triton-X100 in 1× 

PBS for 1 min. The F-actin filaments were stained with Texas Red®-X phalloidin 

(Molecular Probes, Invitrogen Corporation, CA, USA) diluted 1:100 in PBS for 15 min 

and nuclei stained with DAPI (Molecular Probes, Invitrogen Corporation, CA, USA) 

with working concentration of 300 nM in PBS for 5 min. Samples were thoroughly 

washed three times with PBS before inspection with laser scanning confocal 

microscopy (Zeiss LSM 510 Meta, Germany). 
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Appendix B4. Sircol™ Collagen Assay 

The Sircol™ collagen assay (Biocolor Ltd., Newtownnabby, Ireland), a 

picrosirius-red based colorimetric dye-binding method specific for solubilized 

collagens, was used to measure the amount of collagen synthesized by the cell-scaffold 

construct or cell cultures. The assay does not require the isolation of collagens from 

other soluble tissue proteins and hence can be used to directly measure without any 

prior extraction or purification. Specifically, picrosirius-red, the Sircol dye reagent, 

selectively binds to the [Gly-X-Y]n tripeptide sequences in triple-helical collagens type 

I to V, and subsequently crosslinks and precipitates them. From this precipitate, the dye 

is released under strong alkaline conditions and its absorbance measured at 540nm. 

After comparison with collagen standards the amount of collagen in the sample is 

estimated. To ascertain that collagen detected was attributed to the cell-scaffold 

construct, collagen that was deposited in the constructs was extracted and tested, instead 

of the soluble form of collagen in medium. 

 The test was performed at the various time points for the different scaffold 

groups and cultured cells. Cultured scaffold specimens were finely cut and digested 

with 500 µl of pepsin solution (0.25 mg/ml). For cell culture controls, the cultured cells 

were first removed from the seeded 2-D tissue culture flask surface via mechanical cell 

scraping and suspended in PBS. After centrifugation of the cell suspension, 500 µl of 

pepsin solution (0.25 mg/ml) was added to the cell pellet likewise. Suspensions with the 

pepsin solution of the different specimens were then shaken at room temperature for 2 

h. 1 ml of dye reagent was added to 200 µl of digested solution and mixed for another 
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30 min in room temperature. The pellet of dyed collagen was then precipitated by 

centrifugation at >10000 g for 10 min and then dissolved in 1 ml of releasing reagent. 

The absorbance of redissolved dye was measured in 96-well plates at absorbance 

wavelength of 540 nm in a Microplate Reader (TECAN Microplate Reader, Magellan 

Instrument Control and Data Analysis Software), from which the collagen amount in the 

200 µl sample was derived by extrapolation from standard curve. This was then used to 

calculate the total amount of collagen in the sample based on the total volume of the 

sample after the pepsin digestion stage. 
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Appendix B5. Histological Assessments 

Sections of seeded scaffolds of 8 µm thickness were made in both the longitudinal 

(along the lengthwise axis) and transverse sections (the circular profile) of the rolled-up 

scaffold. The cultured constructs were first fixed in 10 % neutral buffered formalin 

before being paraffin blocked for H&E and Masson's trichrome staining or frozen at -24 

°C and cryosectioned for immunohistochemical staining. As it was of interest to 

examine the core of the hybrid scaffolds for cell morphology and continued viability 

over the study period, longitudinal or transverse sections were taken from the core and 

central region for histological evaluation. Sections were collected on a polylysine-

coated glass slide before being stained using the various methods. Upon being mounted, 

the specimens were observed using a phase contrast microscopy (IX71 Inverted 

Research Microscope, Olympus Optical, Hamburg, Germany) and using an image 

analysis software (MicroImage v4.5.1, Olympus). 

a. H&E Staining 

Upon using xylene and ethanol mix to deparaffinize the sections, hydration was 

carried out using a reverse graded ethanol series (90% - 70% - 50%). After which, 

hematoxylin stain (Sigma-Aldrich St. Louis, USA) was applied for 5 min, followed by a 

rinse with tap water and soak in differentiation solution (Sigma-Aldrich St. Louis, USA) 

for 30 s. Care was taken during rinsing and soaking to prevent specimens from 

detaching from the slides. The sections were then soaked in eosin for 30 s before being 

dehydrated, cleared and mounted in Permount™ (Thermo Fisher Scientific Inc., MA, 

USA) with glass cover slips. 



 

 

 

Page | 254 

Appendix 

b. Masson's Trichrome Staining 

Upon using xylene and ethanol mix to deparaffinize the sections, hydration was 

carried out using a reverse graded ethanol series (90% - 70% - 50%). After which, the 

sections were stained in Weigert’s iron hematoxylin working solution (Sigma-Aldrich 

St. Louis, USA) for 10 min and rinsed with distilled water for 10 min thereafter. The 

sections were then stained in Biebrich scarlet-acid fuchsin solution (Sigma-Aldrich St. 

Louis, USA) for 15 min and rinsed with distilled water thereafter. Stain differentiation 

was carried out in phosphomolybdic-phosphotungstic acid solution for 15 min and 

without rinse, transferred to aniline blue solution and stain for 10 min. The sections 

were then rinsed briefly in distilled water and differentiated in 1 % acetic acid solution 

for 5 min. After rinsing in distilled water, sections were dehydrated, cleared and 

mounted in Permount™ (Thermo Fisher Scientific Inc., MA, USA) with glass cover 

slips. 

c. Immunohistochemical Staining 

Although the total amount of collagen deposited within the seeded constructs 

could be determined via Sircol™ collagen assays, the distribution of deposition for the 

specific proteins relative to the ECM structure was important for understanding their 

developmental states. Immunostaining was performed to detect the deposition of 

collagen type I and type III, and also tenascin-C, an ECM molecule abundantly present 

in tendons and ligaments relative to other tissue types. At the time of assessment, 

construct sections were cryosectioned as described and labeled with primary 

monoclonal antibodies (anti-collagen type I, type III and tenascin-C; Abcam Inc, MA, 
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USA) at a 1:500 dilution and left overnight at 4 °C. Subsequently, rinsing was 

performed before biotinylated goat anti-mouse antibodies (Lab Vision Corporation, CA) 

were administered at a 1:100 dilution for 1 h. After rinsing, the samples were then 

incubated with Streptavidin- Horseradish peroxidase (HRP) solution (IHC Select DAB 

Kit, Chemicon, Millipore Corporation, MA, USA), which bound to the biotin-labeled 

secondary antibody present on the tissue. Unbound enzyme was removed by washing. 

The chromogenic development reagent, 3, 3' diaminobenzidine (DAB substrate), was 

then added to react with the HRP attached to the HRP-streptavidin-biotin-antibody 

complex. The HRP activity on the chromogenic substrate resulted in the deposition of 

brown to black insoluble precipitate at those antigenic sites containing the specific 

epitopes recognized by the primary antibodies. After rinsing in distilled water, sections 

were dehydrated, cleared and mounted in Permount™ (Thermo Fisher Scientific Inc., 

MA, USA) with glass cover slips. Images were obtained by phase contrast microscopy 

(IX71 Inverted Research Microscope, Olympus, Germany). 
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Appendix B6. Real-time qRT-PCR 

To assess tenogenic differentiation of the seeded MSCs, gene expression for 

ligament-related ECM proteins such as collagen type I, collagen type III, tenascin-C and 

tenomodulin was analyzed and evaluated for the different cultured constructs. At the 

different time points, total RNA was extracted from the cultured hybrid scaffolds or 2D 

cultures using the RNeasy Mini Kit® (Qiagen, Valencia, CA, USA) according to the 

vendor’s protocol. RNA concentration was determined by using nanodrop (NanoDrop 

Technologies, Wilmington, DE, USA) and 200 ng RNA was used to synthesize cDNA 

with Iscript cDNA synthesis kit (Biorad Laboratories, Hercules, CA, USA). qRT-PCR 

was performed using QuantiTect SYBR-Green PCR kit (Qiagen, Valencia, CA, USA) 

to quantify the transcription level of ligament-related genes including collagen I, 

collagen III, tenascin-C and tenomodulin, using glyceraldehydes 3-phosphate 

dehydrogenase (GAPDH) as reference genes. The primer sequences used, as 

summarized in Table A-1, were obtained from published literature [22, 323, 324] and 

were synthesized by Aitbiotech Pte Ltd (Singapore). cDNA (1 µl) from each sample 

was mixed with 10.0 ml of QuantiTect SYBR Green PCR master mix, 0.25 ml of each 

primer, and 8.50 ml of RNase-free water. Quantitative real-time PCR reactions were 

carried out and monitored using a Stratagene Mx3000P system (Agilent Technologies, 

Inc., CA, USA). Reaction was done at 95°C for 15 min, followed by amplification for 

40 cycles, which included a denaturation step at 95°C for 15 s and an extension step at 

60°C for 1 min. The amplification was performed in duplicates and transcription level 

of the target genes were normalized to GAPDH prior to analysis using the 2ΔCt formula 

with reference to undifferentiated MSCs (P3). 
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Table A-1: Real-time RT-PCR primer sequences. 

Primer Forward primer sequences Reverse primer sequences 

Collagen I 
(α2)a 5'-GCATGTCTGGTTAGGAGAAACC-3' 5'-ATGTATGCAATGCTGTTCTTGC-3' 

Collagen III 
(α1)a 5'-AAGCCCCAGCAGAAAATTG-3' 5'-TGGTGGAACAGCAAAAATCA-3' 

Tenascin-Cb 5'-TCTCTGCACATAGTGAAAAACAATACC-3' 5'-TCAAGGCAGTGGTGTCTGTGA-3' 

Tenomodulinc 5'-CCCACAAGTGAAGGTGGAGAA-3' 5'-AACAGTAACCTCTCTCATCCAGCAT-3' 

GAPDHa 5'-GACATCAAGAAGGTGGTGAAGC-3' 5'-CTTCACAAAGTGGTCATTGAGG-3' 

 

a Col I, Coll III and GAPDH sequences obtained from [22] 

b Tenascin-C sequences obtained from [323] 

c Tenomodulin sequences obtained from [324] 
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Appendix B7. Western Blot  

The relative amounts of specific proteins of interest were obtained from Western 

blot analysis of the cultured scaffolds. At the various time points, cultured hybrid 

scaffold groups were digested with pepsin (200 mg/mL in 0.5 N acetic acid; Sigma-

Aldrich, St. Louis, USA) for 72 h at 4°C for total protein extraction. Upon pepsin 

inactivation using 10 N NaOH, the protein extract was concentrated using a Microcon 

30 centrifugal filter (30,000Mw cutoff, Millipore Co., Bedford, MA, USA). The 

concentrated protein extracts of each sample was then individually mixed with laemmli 

buffer and 50 mM Dithiothreitol (DTT) solution, put to 3-8% SDS-PAGE, and blotted 

onto nitrocellulose membranes. Subsequently, Western blot was carried out using the 

Western blot kit following vendor’s protocol (Zymed Laboratories, Invitrogen, CA, 

USA). Firstly, the membranes were blocked with blocking buffer for 1 h and incubated 

at 4°C overnight with diluted (1:500) primary monoclonal antibodies. The specific 

primary antibodies used were mouse anti-type I collagen, anti-type III collagen, and 

anti-tenascin-C monoclonal antibody (Abcam Inc, MA, USA). The membranes were 

then washed with washing buffer five times before incubating with secondary 

antibodies diluted to 1:200 in blocking buffer for 30 min. After washing with washing 

buffer again, the membranes were incubated with enhanced chemiluminescence (ECL) 

working solution for 5 min. Band signals were detected and relative band intensities 

were obtained and compared among the specimen groups. 
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Appendix C. Bioreactor Environmental Feedback Control 

Mechanism 

The mechanism to maintain chamber temperature at 37°C was as follows. 

Temperature probe measured the temperature in the bioreactor chamber. The 

temperature of the medium was directly proportional to the resistance value measured. 

This information was fed to the Data Acquisition Card (DAC) which communicated the 

information to the software in the computer. When the temperature registered was lower 

than the preset value (37°C), the software instructs to send a small voltage of 24 V to 

energize a relay in the control panel. This closed the circuit for the heaters and the water 

temperature rose consequently. This could be described in the following schematic 

(Figure A-3) with the optimized parameter listed in Table A-2.  

 

Figure A-3: Schematic of Temperature Control. 



 

 

 

Page | 260 

Appendix 
Table A-2: Optimized control parameters for temperature control of (A) chambers and (B) water 
bath. 

 

 

For pH control, the pH probe measured the pH value from the medium reservoir 

and sent it to the DAC which communicated the information to the software in the 

computer. If the pH reading was higher than the preset value (pH 7.4), the software 

would instruct to open the CO2 solenoid valve. If the reading pH value was lower than 

preset value, the software would instruct to open the release valve. This could be 

illustrated in the following schematic (Figure A-4) with optimized parameters listed in 

Table A-3. 

(A) 

(B) 
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Figure A-4: Schematic of pH Control. 

 

Table A-3: Optimized control parameters for pH control of (A) release valve and (B) CO2 valve. 

 

 

For oxygen control, the system instructed to open O2 valve when the measured 

DO value was lower than preset value (30%). When the measured value was higher than 

(A) 

(B) 
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preset value, the system would open the release valve. This process is illustrated in the 

schematic shown in Figure A-5. The duration at which solenoid valves were opened 

would depend on the extent of correction to be made, which was optimized as shown in 

Table A-4. 

 

Figure A-5: Schematic of O2 Control. 

Table A-4: Optimized control parameters for O2 control of (A) O2 valve and (B) release valve. 

 

 

(A) 

(B) 


