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Summary

Traffic source identification aims to overcome obfuscation techniques that hide traffic

sources to evade detection. Common obfuscation techniques include IP address spoofing,

encryption together with proxy, or even unifying packet sizes. On one hand, traffic source

identification provides the technical means to conduct web access surveillance so as to

combat crimes even if the traffic are obfuscated. Yet on the other hand, adversary may

exploit traffic souce identification to intrude user privacy by profiling user interests.

We lay out a framework of traffic source identification, in which we investigate the

general approaches and factors in designing a traffic source identification scheme with

respect to different traffic models and analyst’s capabilities.

Guided by the framework, we examine three traffic source identification applications,

namely, tracing back DDoS attackers, passively fingerprinting websites over proxied and

encrypted VPN or SSH channel, and actively fingerprinting websites over Tor.

In the analysis of identifying DDoS attackers, we find out that with the information

of network topology, it is unnecessary to construct packet marks with sophisticated struc-

tures. Based on this observation, we design a new probabilistic packet marking scheme

that can significantly improve the traceback accuracy upon previous schemes, by increas-

ing the randomness in the collection of packet marks and hence the amount of information

they transmit.

We develop a passive website fingerprinting scheme applicable to TLS and SSH tun-

nels. Previous website fingerprinting schemes have demonstrated good identification ac-

curacy using only side channel features related to packet sizes. Yet these schemes are

rendered ineffective under traffic morphing, which modifies the packet size distribution of

a source website to mimic some target website. However, we show that traffic morphing

has a severe limitation that it cannot handle packet ordering while simultaneously satis-

fying the low bandwidth overhead constraint. Hence we develop a website fingerprinting

scheme that makes use of the packet ordering information in addition to packet sizes.

Our scheme enhances the website fingerprinting accuracy as well as withstands the traffic

morphing technique.

Extending from the passive website fingerprinting model, we propose an active website

vi
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fingerprinting model that can be applied to essentially any low latency, encrypted and

proxied communication channel, including TLS or SSH tunnels and Tor. Our model is

able to recover web object sizes as website fingerprint features, by injecting delay between

object requests to isolate the download of data for each object. The scheme we develop

following the active model obtains high identification accuracy. It drastically reduces the

anonymity provided by Tor.

Through our study, we find that protecting user privacy involves tradeoff between com-

munication anonymity and overheads, such as bandwidth overhead, delay, and sometimes

even computation and storage. Currently, the most reliable countermeasures against traf-

fic source identification are packet padding and adding dummy traffic. The aggressiveness

of applying the countermeasures and the willingness to trade off the overheads impact

the effectiveness of the anonymity protection.
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Chapter 1

Introduction

This introductory chapter gives the motivation of our thesis research, outlines the scope of prob-

lems we tackle and presents the main contributions we make.

Privacy and anonymity are some central issues in network security. Both legitimate

and malicious traffic sources may apply obfuscation techniques in web browsing to by-

pass surveillance. Common traffic source obfuscation techniques include IP spoofing,

encryption and proxy. Yet even if some obfuscation techniques are applied, remote traffic

sources may still be identified using traffic analysis. As practical applications lead to

deployed obfuscation techniques, and the loopholes of obfuscation techniques in turn lead

to exploits by traffic source identification schemes, limitations following from the existing

source identification schemes and countermeasures motivate us to study the approach to

designing good source identification techniques and defences.

This introductory chapter is organized as follows. Firstly, motivations that lead us to

research on the traffic source identification problem are discussed in Section 1.1. Next the

models and assumptions used in our investigation are outlined in Section 1.2. We then

summarize the main contributions of our research in Section 1.3. Finally, we outline the

thesis organization in Section 1.4.

1.1 Motivation

We are motivated to research on the problem of identifying obfuscated web traffic sources,

as it has important applications and the current techniques and countermeasures have

some insufficiencies. We elaborate on the motivation by first giving example application

scenarios where web traffic source identification is the central technical issue. Next we

1



2 Introduction

briefly review deployed techniques that are in support of anonymous web surfing. We

point out not only the protections each technique provides, but also the loopholes they

leave open. Then we discuss existing traffic analysis techniques that exploit loopholes of

the obfuscation techniques to identify web traffic sources. We point out the insufficiencies

of existing traffic source identification schemes, which motivates us to research on the web

traffic source identification problem.

Application Scenarios

Web traffic source identification techniques can be utilized by legislative warden to ensure

cyber security as well as be exploited by adversary to compromise web access anonymity.

The World Wide Web carries an abundance of information which is convenient to ac-

cess. From reading local newspaper to checking stock quotes, surfing the web has become

a vital tool. Web surfing is undoubtedly a prevalent Internet application. However, web

browsing itself can be turned into a threat to user privacy. User identity or interests often

are sensitive information, yet user interests can be profiled by studying the websites they

surf. Such valuable information can be sold, or used to inject customized advertisements

to get commissions from any resulting clicks. When users receive loads of uninvited ad-

vertisements targeting their specifics, their privacy is at obvious risk. Sensitive personal

information, such as medical, financial, or family issues, are on the verge of being ex-

posed. Therefore, there is a strong demand for privacy from users as with whom they are

communicating or which websites they surf. Yet for business, there are strong financial

incentives to identify the websites users surf so as to harvest web surfers’ interests.

Under network attacks, web servers and clients alike want to identify the culprit (the

attack traffic source). Distributed Denial of Service (DDoS) attack is an effective means

to disable web services of business rivals. The attack is easy to launch with the support

of voluminous bot networks, but difficult to prevent. Besides, there is strong financial

interest to launching a DDoS attack. Business owners will be eager to hunt down the bots

if their websites are attacked. While servers can be victims of DDoS attack, clients can be

victims of Cross Site Scripting (XSS) attack. XSS attack has taken up a rising proportion

in network attacks in recent years. Malicious codes are automatically downloaded when

users visit some infected web severs in XSS attack. By identifying the websites that

victims visit, it narrows down the suspects who spread the malicious codes.

The ability to identify web traffic sources is desired by parents, governments, law en-

forcement agencies, and many others. Parents want to monitor web accesses to protect

youngsters from the influence of outrageous contents. Governments want to detect any

breach of censorship to online political contents. Law enforcement agencies need to con-

duct electronic surveillance so as to combat crime, terrorism, or other malicious activities

exploiting the Internet.
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Overall, both defences against and techniques to identify web traffic sources are needed

in practice, but in different contexts. They can positively benefit attack forensics and web

access surveillance over obfuscated communication channel. Yet they can also compromise

user privacy if misused.

Advantages and Drawbacks of Current Protection Tools

The currently deployed techniques which support data obfuscation in web surfing include

different constructions over encryption and proxy, such as VPN or Tor.

In a simple communication environment without encryption or proxy, user identity

can be revealed and associated with browsing a particular website by information in the

transmitted data, e.g. user ID, phone number, or IP addresses. Note that it is even

easier for ISPs to identity the websites that a user browse, since ISPs have the IP-to-user

mappings and can easily log the IP addresses of websites that the user visits. However,

proliferation of anonymous communication systems has posed significant challenges to the

task.

Encryption and proxy are two main deployed tools that protect the privacy in web

browsing. One possible construction is for users to access websites via a proxy, and encrypt

the link between user and proxy. Proxy hides the direct connection between user and web

server by rewriting the source and destination pairs. Encryption provides confidentiality

of data to prevent identifying websites from contents. The encrypted links are possible at

the link layer using WEP/WPA to a wireless base station, or at the network layer using

IPsec ESP mode to a VPN concentrator, or at the transport layer using an SSH tunnel

to an anonymizing proxy [10].

The single proxy construction does not protect the communication privacy from the

proxy. Another construction employs multi-layered encryption with multiple proxies.

Such construction is implemented in Tor, which is a Peer-to-Peer network that provides

anonymous communication service. Furthermore, Tor unifies the packet sizes. Fixed

packet size significantly increases the difficulty to distinguish websites by size related fea-

tures. Encrypted communication through multiple proxies make the endpoints indistin-

guishable from the relaying proxies. No one proxy knows both the source and destination.

Encryption based protocols have given users a false impression of confidentiality of

web surfing. An encrypted connection is not sufficient to remove traffic patterns that often

reveal the website a user visits. For example, size of the base HTML file of a webpage

already leaks much identifying information [16].

Although one or more intermediate proxies can hide the direct connection between a

user and the web server, they have not broken the correlation in the volume or timing of

the incoming and outgoing traffic. The propagation of a burst of traffic can iteratively

reveal the communication path through multiple proxies. Even if information from the
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size channel is blocked, the timing channel still exposes much information. Because of the

low latency requirement, anonymous communication systems that support web browsing

all refrain from intentionally changing the packet delays. Packets sent and received in an

interval are correlated at the sending and receiving ends.

Insufficiencies of Current Traffic Source Identification Techniques

Traffic source identification techniques exploit the loopholes of data obfuscation techniques

to identify traffic sources. Traffic source identification techniques include packet marking,

flow marking and fingerprinting. Each technique applies to certain traffic models.

The class of probabilistic packet marking (PPM) schemes [69, 74, 35, 93] applies

to tracing bots manipulated to launch DDoS attacks using spoofed IP addresses. In

PPM, routers embed partial path information into headers of probabilistically sampled

packets they transmit. A victim server having received a collection of packet marks,

reconstructs the DDoS attack paths from pieces of path information. The schemes have

shown good performance in identifying one or more attack paths. However, the structures

of packet marks as proposed in different schemes have only subtle differences. It remains

unclear how to fairly compare which structure is better, given their minor differences in

assumptions. Can we envision an optimal PPM scheme and improve the current designs

towards the optimal? These questions are not yet answered.

Fingerprinting applies to identifying the websites user accesses through low latency

encrypted tunnels. In website fingerprinting attack, adversary observes some traffic pat-

terns of websites when they are fetched via an encrypted tunnel. From the side channel

data of encrypted HTTP streams, the adversary builds a database of website fingerprints.

Victim’s web traffic is matched against the fingerprint database to infer the website iden-

tity. Previous works have demonstrated the feasibility of using size related features to

fingerprint websites in the single proxy case [40, 78, 10, 50]. However, most website

fingerprinting schemes rely on size related features alone, which makes them unable to

withstand the countermeasure of traffic morphing [90]. We are interested to find out if

there are additional relevant website fingerprint features, so as to defend against traffic

morphing and to enhance the website fingerprint identification accuracy.

Flow marking has been demonstrated to be capable of associating a pair of communi-

cating sources in traffic confirmation attacks against Tor [87, 94]. Flow marking techniques

require control at both ends of the communication. One for watermark embedment, and

the other for watermark verification. The question arises whether we can extend the

website fingerprinting model from VPN to Tor (the de facto standard of anonymous com-

munication system), so as to identify websites accessed over Tor by monitoring only the

client end of the communication. Existing website fingerprinting attacks are not suitable

for direct application to Tor. The reason lies in that the packet size related fingerprint
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features they rely on are not observable over Tor, because Tor transmits messages in fixed

length cells. Experiments on one such scheme [39] show that it performs very well on

identifying websites over SSH or TLS tunnels (up to 97% identification accuracy among

775 URLs), but it gives low accuracy when applied over Tor (3% accuracy among 775

URLs). There is not yet any reliable website fingerprinting models or techniques on Tor.

1.2 Purpose and Scope

Bearing in mind the unsolved problems discussed in the previous section, we further

investigate the traffic source identification problem in this thesis. The purpose of this

thesis is to study the models and mechanisms to identify obfuscated traffic sources in web

browsing traffic, such as in attack circumstances where IP addresses are spoofed or in

encrypted and proxied communications.

We develop a framework of traffic source identification that gives a taxonomy of its sub

models. The domain of traffic source identifications is classified by attributes of traffic

model or investigator capability. From the dependency among model components, we

analyze criteria that guides the scheme design. The principles are substantiated in our

scheme constructions in several problem scenarios.

Under the framework, we investigate three specific traffic models, (i) flooding DDoS

attack with IP spoofing, (ii) encrypted and proxied communication, e.g. through SSH

or SSL/TLS tunnel, and (iii) low latency mix network, or Tor. The traffic sources to

identify in DDoS attacks are the attack paths or bots swamping a victim server, while

the sources to identify in web browsing through SSH or SSL/TLS tunnels or Tor are

the sensitive websites user accesses. We are not dealing with anonymized traffic logs to

associate servers with their pseudonyms in this thesis.

We propose an analysis model for the class of probabilistic packet marking schemes

for IP traceback, and we propose an active website fingerprinting model that works on

any low latency, encrypted and proxied communication channel, including SSH, SSL/TLS

tunnels and Tor network.

The source identification techniques we focus on are packet marking, passive and

active traffic fingerprinting. Along the process of scheme development, we analyze the

effectiveness of certain countermeasures, and propose our own countermeasures.

In Distributed Denial of Service (DDoS) attacks, many compromised hosts flood the

victim with an overwhelming amount of traffic. The victim’s resources are exhausted and

services to users become unavailable. During a DDoS attack, attack nodes often perform

address spoofing to hide their identities and locations. IP traceback aims to overcome

address spoofing and uncover the attack paths or sources. Identifying the attack sources

enables legislature to ascertain the responsible persons. It can also be performed prior to
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remedy actions, such as packet filtering, to isolate the attacker traffic. While traceback

is motivated by DDoS attacks, it also benefits analysis of legitimate traffic. Potential

applications of traceback include traffic accounting and network bottleneck identification.

Traceback schemes assume network routers are cooperative in embedding the required

packet marks for inspection by victim servers. We do not explicitly handle “stepping

stones” along the attack paths, but rely on autonomous systems to exchange and compile

their results after analysis. We focus on designing a good quality packet marking scheme

for cooperative routers for IP traceback.

Web browsing traffic through VPN (Virtual Private Network) are encrypted by SSL

and proxied by the VPN server. VPN is a technology that allows users physically outside

the private network to bring themselves virtually inside it, thus gaining access to all the

resources that would be available if the users are physically inside the network. Users

who browse websites with VPN can bypass censorship at their physical network. Website

fingerprinting provides a means to track the website accessed, utilizing the side channel

information leaked from the encrypted and proxied HTTP streams. We improve upon

existing website fingerprinting scheme by re-examining the selection of fingerprint features.

Our VPN website fingerprinting scheme also work on other SSH or SSL/TLS encrypted

tunnels.

Extending from the passive website fingerprinting approaches over SSH or SSL/TLS

tunnels, we tackle website fingerprinting over Tor. As communication relationship is some-

times sensitive information, Tor aims to protect anonymity of the conversing parties. Tor

is designed based on mix network, where multiple Tor nodes act as proxies in transmitting

fixed length packets with layered encryption. However, website fingerprinting is a threat

to user privacy in web browsing, even over Tor. Tor conceals much size related features

in traffic, which makes passive traffic analysis difficult. We design an active website fin-

gerprinting model that retrieves certain feature values so as to fingerprint and identify

the website from an HTTP stream anonymously transmitted by Tor. The active website

fingerprinting model and scheme we design also apply to website fingerprinting over VPN,

SSH or SSL/TLS tunnels.

Same as existing website fingerprinting models, our models assume that HTTP streams

of simultaneous accesses to different websites, e.g. tagged browsing, are successfully sep-

arated for identification. We focus on developing systems that identify the website from

each monitored HTTP stream.

1.3 Main Contributions

We build a framework that encompasses different web traffic source identification scenar-

ios. The framework is useful for deriving source identification approaches suitable for the
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underlying traffic models.

We investigated source identification approaches in three traffic models under the

framework, (i) DDoS attack traffic, i.e. flooding packets with spoofed IPs, (ii) VPN

traffic, i.e. encrypted and proxied traffic, and (iii) Tor traffic, i.e. encrypted and proxied

traffic with fixed packet sizes.

DDoS Traceback

We model Probabilistic Packet Marking (PPM) schemes for IP traceback as an identifi-

cation problem of a large number of markers. Each potential marker is associated with a

distribution on tags, which are short binary strings. To mark a packet, a marker follows

its associated distribution in choosing the tag to write in the IP header. Since there are a

large number of (for example, over 4,000) markers, what the victim receives are samples

from a mixture of distributions. Essentially, traceback aims to identify individual dis-

tribution contributing to the mixture. The general model provides a platform for PPM

schemes comparison and helps to identify the appropriate system parameters. We show

that entropy is a good evaluation metric of packet marking quality such that it effectively

predicts the traceback accuracy. We find that embedding hop count in tags reduces the

entropy.

We propose Random Packet Marking (RPM), a simple but effective PPM scheme,

guided by the general PPM model. RPM does not require sophisticated structure or rela-

tionship among the tags, and employs a hop-by-hop reconstruction similar to AMS [74].

Simulations show improved scalability and traceback accuracy over prior works. In a large

network with over 100K nodes, 4,650 markers induce 63% of false positives in terms of

edges identification using the AMS marking scheme; while RPM lowers it to 2%. The

effectiveness of RPM demonstrates that with prior knowledge of neighboring nodes, a sim-

ple and properly designed marking scheme suffices in identifying large number of markers

with high accuracy.

VPN Fingerprinting

We examine web traffic transmitted over an encrypted and proxied channel to discern

the website accessed. Profiles of popular websites are gathered, which contain website

fingerprints developed from side channel features of the encrypted and proxied HTTP

streams, then we identify the website accessed in a test trace by comparing the trace

fingerprint against the library of website profiles to find a good match. Under a passive

traffic analysis model, we develop a scheme to fingerprint websites that utilizes two traffic

features, namely the packet sizes and ordering. Packet ordering was not thoroughly

exploited in website fingerprinting previously.
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Our scheme yields an improved identification accuracy over prior work (Liberatore and

Levine’s scheme [50] is used as our reference scheme) in both classification and detection

scenarios. The detection scenario is more difficult since it is unknown if a test stream

comes from the profiled websites. In the classification scenario, our scheme achieves an

accuracy of 97% on analyzing 30-second long OpenVPN test streams from 1,000 websites.

On identifying the 6-second long OpenSSH test streams of 2,000 websites, our accuracy

reaches 81% with 11% improvement from the reference scheme. In the detection scenario,

the equal error rate of our scheme is 7%, while that of the reference scheme is 20%; and

the minimum total error rate (i.e. sum of false positive rate and false negative rate) is at

14% for our scheme versus 36% for the reference scheme.

Traffic morphing [90] defends against website fingerprinting by changing the packet

size distribution to mimic the traffic from a target website, while minimizing the band-

width overhead. Our scheme withstands traffic morphing by using packet ordering to

differentiate websites that have similar packet size distributions. Our scheme distin-

guishes 99% of the morphed traffic from the mimicked target, while the reference scheme

distinguishes only 25%. We note that there is tradeoff between security and bandwidth

efficiency in morphing. If morphing considers some ordering information to strengthen

anonymity, then its bandwidth efficiency is severely degraded to be worse than a simple

mice-elephant packet padding.

We empirically analyze the fingerprint consistency, under different pipeline settings,

with static and dynamic websites, and over time. Evaluation shows that our website

fingerprints are robust to variations in HTTP pipelining configurations, and that they are

stable over time with only 6% needs reprofiling after a month.

Active Tor Fingerprinting

Tor is the de facto standard of low latency anonymous network. It protects anonymous

communication with layered encryption, onion routing and fixed length cells in data trans-

mission. We propose an active traffic analysis model to perform website fingerprinting

over Tor. In our active approach, the adversary, who acts as a man in the middle between

the user and the Tor entry node, holds any HTTP requests till the ongoing response is

fully transmitted. It undoes interleaved object transmissions to reveal individual web

object sizes. Object sizes and ordering are used as our website fingerprint features. While

previous work exists on traffic confirmation attacks, ours is the first to consider website

fingerprinting over Tor, which does not require controlling both ends of an anonymous

communication. Our scheme achieves an identification accuracy of over 67.5% of 200

websites. In contrast, random guess is expected to correctly identify a website with prob-

ability 0.5%. We show that our active model is feasible to fingerprint websites accessed

through Tor.
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To summarize, the main contributions of this thesis are:

• Proposed a general model of Probabilistic Packet marking (PPM) schemes for IP

traceback. Proposed using entropy in the collection of packet marks as an evalua-

tion metric to predict the traceback accuracy with an optimal path reconstruction

algorithm.

• Proposed a traceback scheme that increases the randomness of packet marks and

hence improves the traceback accuracy.

• Proposed a passive website fingerprinting scheme over VPN that introduced packet

ordering into fingerprint features, in addition to packet sizes.

• Defeated the traffic morphing technique, by exploiting its limitation on lack of packet

ordering consideration or its constraint on bandwidth efficiency.

• Proposed an active website fingerprinting model applicable to any low latency en-

crypted and proxied communication channel, and developed a scheme following the

model that significantly reduces the anonymity provided by Tor.

1.4 Thesis Organization

Body of this thesis is organized as follows:

1. Chapter 1 is this introductory chapter.

2. In Chapter 2, we present the background on HTTP stream patterns over VPN, and

Tor traffic characteristics. We also review the current developments of web traffic

source identifications. They serve for the comparative analysis in our research.

3. We lay out a framework for traffic source identification in Chapter 3. It classi-

fies the domain of traffic source identification by the attributes of traffic model or

investigator capability. The criteria for designing a source identification scheme

under several traffic models and analyst’s capabilities are laid out. The principles

are substantiated in our schemes proposed for the investigation of traffic sources in

several specific problem scenarios, namely, DDoS traceback, passive website finger-

printing over VPN and active website fingerprinting over Tor, which are presented

in subsequent chapters.

4. We provide a general model of probabilistic packet marking (PPM) schemes for IP

traceback in Chapter 4. We propose in the model an evaluation metric to fairly
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evaluate packet marking qualities. The model analyzes under flooding DDoS at-

tacks, the common structures in packet marks adopted by existing schemes, and

compares their assumptions and approaches to path reconstruction.

5. Inspired by the findings from the previous chapter, we design a PPM scheme named

Random Packet Marking in Chapter 5. The scheme improves the quality of packet

marks and hence increases the DDoS attacker identification accuracy over previous

schemes.

6. We develop a passive website fingerprinting scheme that utilizes packet ordering

information in conjunction to packet sizes in Chapter 6. The scheme applies over

VPN, SSH or SSL/TLS encrypted tunnels to identify the website accessed in an

HTTP stream. We can use side channel features of packet ordering and sizes to

fingerprint websites because encryption and proxy have not severely change them.

7. We analyze the effectiveness of our passive website fingerprinting scheme against

traffic morphing in Chapter 7. Traffic morphing is designed to defend against web-

site fingerprinting with a bandwidth efficiency constraint, which makes it unable to

handle website fingerprinting schemes that account for packet ordering. We suggest

a countermeasure to website fingerprinting that exploits randomization in packet

sizes and HTTP request ordering, with the aim to aggressively remove traffic fea-

tures in both sizes and timing channels.

8. Built on the passive website fingerprinting techniques over VPN, we propose an

active website fingerprinting model against Tor and demonstrate that it is feasible

to identify websites from Tor protected traffic in Chapter 8. The fixed packet size in

this traffic model significantly increases the difficulty in website fingerprinting. We

therefore use an active approach to obtain the sizes and ordering related features to

be website fingerprints.

9. We conclude the thesis and point out directions for future work in Chapter 9. We

summarize the findings from constructing and analyzing traffic source identification

schemes under different traffic models. We also point out practical constraints that

we have yet to address, and the direction to enriching the models and improving

the scheme designs.

Supporting materials are organized as appendices:

• We briefly present in Appendix A the primitives of similarity measurement which

are applicable to website fingerprint comparisons. Pseudocodes of the Wagner-

Fischer algorithm for the computation of Levenshitein’s edit distance are presented

for reference.
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• Pseudocodes of the extended edit distance we design are given in Appendix B.
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Chapter 2

Background

We present the background on VPN and Tor traffic characteristics, and we review the current

development of traffic source identification techniques, for further comparative analysis.

2.1 Overview

A traffic source is identified by a unique IP address to facilitate network communication.

Yet IP address can be spoofed when response is not expected, such as in attack scenarios.

In particular, bots launching a Distributed Denial of Service (DDoS) attack usually spoof

their IP addresses to evade detection. A substantial amount of IP traceback schemes have

been proposed to trace the attack paths so as to uncover the bots.

IP addresses can also be obfuscated for confidentiality of communication. Techniques

deployed in practice that may hide the communication endpoints include encryption with

proxy (SSH tunnel or SSL/TLS tunnel), and Tor.

We use side channel information of web traffic which is revealed despite the use of

encrypted tunnel to identify the website user accesses. Web traffic characteristics that are

observed over encrypted tunnels enable the selection of effective side channel features. The

feature values of each website are treated as its fingerprint for identification. Feasibility

of website fingerprinting has been demonstrated in a number of schemes.

A related problem to website fingerprinting is on recovering web server identities from

anonymized traffic log. However, the problem we address is different from it in two

aspects. (i) It identifies websites from a collection of access logs where flow statistics

are preserved, while we identify based on each web access. (ii) It analyzes traffic log

of anonymized but not encrypted data, in which most features of individual connections

13
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are observable, including start time and end time, amount of data transmitted. Similar

data are not available from encrypted and proxied communication. We are not studying

this problem in further details in this thesis, but existing techniques to anonymize or

deanonymize traffic logs are surveyed.

Tor is the most trusted and most widely used in servicing anonymous communication.

It is a realization of mix network, but it removes the operation that batches packets,

in order to have low latency in supporting interactive applications, e.g. web browsing

and VoIP. Yet Tor operates under a controversial security model, which assumes limited

capability of adversaries who can only make non-global observations and control a fraction

of Tor nodes. Even under Tor’s somewhat restricted threat model, various passive and

active attacks have been proposed to correlate traffic across Tor nodes. Most notably

are traffic confirmation attacks where a unique watermark is embedded into the timing

channel to confirm a suspected communication relationship.

This chapter is organized as follows. Web traffic characteristics observed over VPN

is discussed in Section 2.2. Tor architecture and its security model are described in

Section 2.3. These two sections provide backgrounds on traffic patterns for analysis,

then we present in the subsequent sections existing traffic source identification schemes

under different traffic models. Techniques to trace DDoS attack paths are categorized

in Section 2.4. Website fingerprinting and flow watermarking schemes are compared

in Section 2.5. Attacks that break the anonymity of Tor are classified in Section 2.6.

Techniques to anonymize or deanonymize traffic logs are surveyed in Section 2.7. Finally

Section 2.8 summarizes this chapter.

2.2 Web Traffic Behavior over VPN

Webpage contents are retrieved from the web server using HTTP and presented by the

client browser. SSL or its successor TLS provides a layer of protection to data secrecy

by encrypting the HTTP traffic before transmitting them over TCP/IP. VPN provides

an SSL tunnel such that the server address is encapsulated into the packet payload and

encrypted.

We find two important characteristics of web traffic over VPN by observing tunneled

and encrypted HTTP streams. By an HTTP stream, we mean the stream of packets sent

and received for a web access. The observations we make are: (i) webpage download by

HTTP is highly structured; and (ii) encryption and proxy do not severely alter the packet

sizes, nor the packet ordering. Although our discussions are based on VPN, the traffic

patterns generally apply to other low latency SSH or SSL/TLS encrypted tunnels. The

observations help us to infer the consistent website features for fingerprint. The protocol

properties related to our feature selection are discussed in this section.
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Figure 2.1: Communication between browser and server. ACKs to data packets are omitted

for clarity.

HTTP Stream

Here we argue that the layout of webpages changes only infrequently, and because of the

regular behavior of HTTP and browser, the object requests and responses of a webpage

have consistent order and sizes.

Websites with dynamic contents are usually generated based on design templates.

Their layout does not often change, because redesigning the template requires manual

work, which is time consuming and costly. Although the referenced embedded objects

can change, their sizes tend to vary within a range. Websites that do not rely on templates

only update infrequently.

HTTP has regular behavior in webpage loading, as illustrated in Figure 2.1. Client

browser downloads the base object of a webpage, which is usually an HTML file, and

parses it. The parsing can be done while the base object is still downloading. When it

encounters a reference to an embedded object, such as graphics or stylesheets, it issues an

HTTP request to fetch it. Since web servers are required to serve HTTP requests in a

first-come-first-serve manner [28], the order of the response data is correlated to the order

of the requests.
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HTTP chunked encoding is widely used. It modifies an HTTP message body to

transfer it in a series of chunks, so as to allow clients to display the data immediately after

receiving the first chunk. It is especially useful when the message is dynamically generated

with several components, the server need not wait to calculate the total Content-Length

before it starts transmitting the data. For example, a large graphics file is compressed

and transferred by pixel blocks. If chunked encoding is not supported, then all packets

of an object response have sizes equal to the path MTU, except for the last one which

sends the remaining data. Otherwise, an HTTP response can contain several packets of

sizes not equal to the path MTU, which are the last packets of data chunks. These packet

sizes are characteristic and their order is in sequence of the object data.

To speed up the presentation of a webpage, (i) multiple TCP connections are opened

to download several objects in parallel, (ii) on each connection, HTTP requests can

be pipelined, meaning a client is allowed to make multiple requests without waiting for

each response. Because of multiple TCP connections and HTTP pipelining, data packets

belonging to different embedded objects can interleave, thus object sizes cannot be deter-

mined by accumulating the amount of data received between adjacent HTTP requests.

Multiple TCP connections and HTTP pipelining are the main sources of variation in

the otherwise consistent order of object requests and responses. In addition, the order

of objects may be browser specific, and the dynamics in network condition causes some

random noise.

There are a few causes to the slight variation of an object size in transmission. An

HTTP response message contains zero to more optional headers, while the default is

associated with the object type and the browser. Certain types of objects are always

compressed during transmission for efficiency, e.g. multimedia contents. The default

compression algorithm is browser specific, though it can be negotiated between the server

and browser. Hence the length of the optional headers and the size of a compressed object

are consistent for each object and browser, with slight variation across browsers.

SSL 3.0 and TLS 1.0

SSL [31] or TLS [6, 41] protects data secrecy of HTTP messages by encryption and data

integrity by hashing. Long HTTP messages are fragmented to be sent in multiple SS-

L/TLS records. The record length approximately preserves the HTTP message fragment

length, but appended with a message authentication code and padded for encryption. De-

pending on the HMAC-cipher suite negotiated, the SSL/TLS record length is increased by

16 to 28 bytes from the message fragment. Part of a record and/or several short records

can be packed into one packet, bounded by the path MTU, but each record is required to

be flushed. The length of each SSL/TLS record can be observed from the record header.

When the packet payload is not available, the packet length can be taken as an estimate
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of the record length, though it may represent the total length of several SSL records and

is less accurate.

In SSL 3.0, the padding added prior to encryption is the minimum amount required to

make the message length a multiple of the cipher’s block size. In contrast, TLS 1.0 defines

random padding in which the padding can be any amount up to 255 bytes that results

in a multiple of the cipher’s block size. However, it is reported that random padding is

not implemented in browsers [88]. Our research reiterates that the random padding to

packets should be enforced to thwart traffic analysis based on message sizes.

OpenVPN

The data authenticity, confidentiality and integrity provided by OpenVPN [60] is based

on SSL/TLS. It encrypts both the data and control channels using the OpenSSL library.

By comparing the packets in plaintext and ciphertext, we find that the increase in packet

sizes is consistent at about 100 bytes.

The OpenVPN server also acts as a proxy for web clients, deploying the IPSec ESP

protocol for packet tunneling. All the TCP/UDP communications between a client and

the VPN server are multiplexed over a single port. This prevents revealing the number

of TCP connections opened or the number of objects in a webpage.

2.3 Tor’s Architecture and Threat Model

Tor [81] is the second generation Onion Router that was initially sponsored by the US

Naval Research Laboratory. The principle of Tor is mix network [14], but Tor sacrifices

some security for reducing the latency and bandwidth overhead.

Several email anonymization systems were built based on mixes, notably Babel [37],

Mixmaster [61, 54] and its successor Mixminion [23]. The latency of these systems is

tolerable for email, but not suitable for interactive applications. Some mix based systems

were developed to carry low latency traffic, notably ISDN mix [64] anonymizes phone

conversations, and Java Anonymous Proxy (JAP) [9] anonymizes web traffic. ISDN mix

was designed for circuit switched network where all participants transmit at a continuous

and equal data rate, whereas Tor supports the more dynamic packet switched Internet

in anonymizing TCP streams. Traffic flowing through JAP goes through several nodes

arranged in a fixed cascade, while Tor allows path selection and is more versatile than JAP

by supporting hidden services. There are a list of commercially deployed anonymizing

networks, including findnot.com and anonymizer.com. Yet Anonymizer is a single hop

proxy.

The mix based design makes Tor trusted and popular as a real anonymous communi-

cation system. Currently Tor has over 1600 nodes acting as routers and much more end
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users.

Mixes

The concept of using “Mixes” to provide anonymous communication was introduced by

Chaum in 1981 [14]. Each mix node acts as a relay that hides the correspondence between

its input and output messages. Mix system provides most promising balance between

anonymity and efficiency in terms of bandwidth, latency and computation overheads.

A mix has three essential functions, namely, providing bitwise unlinkability, batching

messages, and generating dummy traffic. Unlinkabililty breaks the association in bit

patterns of incoming and outgoing messages of a mix. To achieve unlinkability, messages

are divided into blocks and incrementally encrypted with the chain of mixes’ public keys.

Upon receiving a message, a mix decrypts the message, strips off the next relay’s address

contained in the plaintext block, then appends a random block to keep the message size

invariant. A mix buffers a number of messages to process in a batch. The messages are

reordered before being sent out. Batching makes tracing based on time or the ordering

of messages difficult. Dummy traffic covers the genuine messages amidst noise. Dummy

messages can be created by message senders or mixes alike.

Tor Architecture

An anonymous communication channel via Tor flows through a circuit, which is a path

composed of (by default) three randomly selected Tor routers that connects from the

client proxy to the desired destination. The first node is called the entry node or entry

guard, and the last node is called the exit node. Entry guard is chosen preferentially

among high uptime and high bandwidth Tor routers.

Tor routers are responsible for obscuring from observers the correspondence between

their incoming and outgoing data streams. Data of TCP streams are divided into cells

each of 512 bytes and wrapped in layered encryptions to maintain unlinkability. Each

hop on the circuit removes a layer of encryption till a cell is fully decrypted at the exit

node, where cells are reassembled into TCP packets and forwarded to the user’s intended

destination. This process is known as onion routing [34].

Tor does not perform any batching of messages or generating any dummy traffic,

because of concerns on latency and bandwidth efficiency. When TCP data are packaged

into cells, the data are padded if there are less than 512 bytes. This reduces the latency in

data buffering and facilitates interactive procotols, such as SSH that sends short keystroke

messages. Unlike email mixes, Tor does not intentionally introduce any delay. Its typical

latencies are in the range of 10-100 ms [55].

Every Tor circuit has a maximum lifetime, to prevent anonymity being compromised
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due to using the same circuit for a long time. The maximum lifetime of a circuit is

configurable and it is 10 mins by default. After maximum lifetime expires, idle circuits

are torn down and replacements are set up.

Threat Model

Security researches often assume a powerful adversary to guarantee systems that protect

against it are secure in real world conditions. A powerful adversary to anonymous commu-

nication would arguably be able to monitor all network links, to inject, delete or modify

messages along any links, and to compromise a subset of network nodes. Tor assumes a

weaker adversary.

Tor has a security model commonly used by low latency anonymous systems, e.g.

Freenet [18], MorphMix [66] and Tarzan [30]. It protects against a non-global adversary

who can observe and control only a portion of the network, and can inject, drop or alter

traffic only along certain links. Given any mix could be compromised, each Tor circuit

contains a chain of mixes so that if at least one mix in the chain is not malicious, some

anonymity is provided. Tor entry node knows the user IP, while the exit node knows the

destination, but no one single Tor node knows both ends of a communication.

Tor does not protect against a global passive adversary. For quality of service concerns,

Tor has not explicitly altered the delay of packets nor hidden the traffic volume by adding

dummy traffic. Hence, it cannot break the correlation of traffic by timing or volume. The

class of statistical disclosure attacks correlate the timing of inbound and outbound traffic

among all nodes the adversary monitors to determine long term communication patterns.

Tor is also vulnerable to traffic confirmation attacks, where an adversary monitors the

traffic at two suspected parties to validate if they are communicating with each other.

We propose an active website fingerprinting attack under Tor’s security model. Our

approach does not require a global adversary, nor controlling links at both ends of a

communication. It only assumes the Tor entry node (or a router between the user and

the Tor entry node) is compromised so as to observe and delay certain packets.

2.4 DDoS Packet Marking Schemes

Existing DDoS traceback schemes can be classified into two categories. (i) Routers are

queried on the traffic they have forwarded. The routers may not need to log packets.

(ii) The receiver locally reconstructs the attack paths from a collection of packets. Each

packet carries partial path information. The packets are either probabilistically marked

by routers or specially generated for traceback. The first category includes online query

and variations of hash based logging schemes [73, 49]. The second category includes
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variants of probabilistic packet marking (PPM) [69], ICMP traceback (iTrace) [8], and

algebraic encoding [24].

Probabilistic Packet Marking Schemes

In iTrace [8], routers sample packets with a small probability. A sampled packet is du-

plicated in an ICMP packet, plus information of the router’s upstream or downstream

neighbor forming an edge with itself. Based on the ICMP packets, the victim reconstructs

the attack paths by linking up the edges. Note that routers farther away generates fewer

iTrace packets to the victim. A variant of iTrace, called intention-driven iTrace [51],

introduces an intension indicator to inform remote routers to raise their probability in

generating iTrace packets.

Instead of adding network traffic, PPM (probabilistic packet marking) probabilistically

embeds partial path information into packets. Savage et al. [69] proposed the Fragment

Marking Scheme (FMS). Two adjacent routers, forming an edge, randomly insert their

information into the packet ID field. The path information thus spreads over multiple

packets for reassembly. However, for multiple attack paths, the computation overhead of

path reconstruction is high, due to explosive combinations of edge connections. Subse-

quent proposals: Advanced and Authenticated Marking Schemes (AMS) [74], Randomize-

and-Link (RnL) [35], and Fast Internet Traceback (FIT) [93] improve the scalability and

the accuracy of traceback. Dean et al. [24] adopted an algebraic approach for traceback,

by encoding path information as points on polynomials. The algebraic technique requires

few marked packets per path for reconstruction. However, the processing delay on the

marked packets can be large if a long sequence of routers performs marking. On the other

hand, if short sequences of routers perform marking, the reconstruction overhead will be

large due to combinatorial search. The scheme does not scale for multiple attackers.

2.5 Website Fingerprinting and FlowWatermarking Schemes

Packet marks are embedded into unencrypted packet headers for inspection. Whereas

when packet headers are encapsulated into the packet payload and encryption is applied,

we turn to the side channels of traffic flows to extract identifying information about traffic

sources.

Side channel information has profitted a wide range of traffic analysis applications. For

example, keystroke intervals are used for password guessing over SSH [75]; the sequence

of bit rates is used to identify the streaming video encoded with variable bit rate schemes

[68]; packet sizes and packet rates are used to reveal the presence of Skype traffic [12];

packet size, timing and direction are used to infer the application layer protocol [91].
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In chapters 6 and 8, we use side channel information to identify websites accessed

through low latency encrypted tunnels. Both website fingerprinting and flow watermark-

ing techniques work on similar traffic models.

Existing website fingerprinting schemes are passive in the sense that they merely

observe HTTP stream patterns. Most of them exploit packet size related features to

generate fingerprint of a website, which is compared with website fingerprint profiles for

identification. It is difficult to apply packet size based fingerprinting schemes on Tor, as

Tor transmits data in multiples of a cell. We propose an active website fingerprinting

model in Chapter 8 with evaluation on Tor.

Flow marking techniques do not require traffic themselves having rich identifying

information. Instead, they embed a transparent watermark on the timing channel of a flow

for traffic source verification. In contrast to existing website fingerprinting schemes, flow

watermarking are active and applicable on Tor. Flow watermarking techniques require

some control at both ends of a communication, while website fingerprinting only need

some control at the user end to infer the visited remote website.

We review in this section the existing website fingerprinting schemes and countermea-

sures, as well as the flow watermarking schemes.

Website Fingerprinting Schemes

Several works [40, 78, 10, 50, 39] looked at the issue of using traffic analysis to identify

websites accessed through certain encrypted tunnels, such as SSH tunnel or VPN. How-

ever, some of their assumptions have been invalidated with the changes in HTTP and

web browser behaviors. For example, browsers were assumed not to reuse a TCP con-

nection to download multiple embedded objects [40], and object requests were assumed

non-pipelined [78]. Hence their approaches to determine an object size by accumulat-

ing the data received either through a TCP connection [40] or between adjacent HTTP

requests [78] no longer work.

While Hintz [40] and Sun et al. [78] used features on objects sizes for website finger-

prints, Bissias et al. [10], Liberatore et al. [50] and Herrmann et al. [39] used features

on packets. Bissias et al. [10] used the features on distributions of packet sizes and inter-

arrival times. It identified a website by finding the cross correlation between the test

fingerprint and the fingerprint profiles. It obtained an accuracy of 23%, probably due to

packet inter-arrival times vary with network condition and server load. Liberatore et al.

[50] used the set composed of (direction, packet size) pairs as fingerprint, and applied Jac-

cards classifier and Naive Bayes classifier with kernel density estimation. Between which,

Jaccards classifier gave better performance. It measures similarity as |X∩Y |
|X∪Y | , where X and

Y are the sets representing a website profile and a test fingerprint, and |X| denotes the

size of set X. The scheme achieved an identification accuracy of 70% when examining
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2,000 websites. Herrmann et al. [39] operated on the packet size frequency vectors, using

Multinomial Naive Bayes (MNB) classifier. The transformation to relative frequencies

yielded improved performance over Liberatore et al. [50]’s scheme. However, relying on

relative frequencies made it difficult to incrementally add website profiles to the database,

because the modification affects the overall frequency distribution. The identification ac-

curacy is thus sensitive to the timeliness of website profiles. Fingerprinting schemes based

on packet size related features [10, 50, 39] are not effective against Tor, as Tor transmits

messages in fixed length cells. An attempt on Tor gave an accuracy of below 3% on

identifying 775 URLs [39]. These schemes only utilized side channel features related to

sizes but not ordering.

Coull et al. looked at a related problem which identifies websites from anonymized

flow logs [20]. The scheme identifies individual servers that supply embedded objects of

a webpage by applying kernel density estimation on the per flow size and the cumulative

size of flows. From the sequence in which servers are contacted, it identifies the visited

webpage. However, the technique does not transport easily to identifying proxied and en-

crypted communication, because servers are not consistently mapped to their pseudonyms

and connection statistics are not preserved with proxy and encryption.

Countermeasures to Website Fingerprinting

Several variants of packet padding are proposed to defend against website fingerprinting.

Padding every packet to the size of path Maximum Transmission Unit (MTU) can thwart

size related traffic analysis, but the amount of overhead it causes is nearly 150% of the

actual data [50]. “Mice-elephant” packet padding incurs relatively less overhead, at nearly

50% growth in the data transmitted. It pads packets to two sizes, either a small size for

control packets, or to the path MTU for data packets. The large bandwidth overhead

they cost leads to insufficient incentives for deployment.

Wright et al. [90] proposed traffic morphing as a bandwidth efficient alternative to

packet padding. It transforms the source packet size distribution to mimic that of a target

website, by splitting or padding the packets, while minimizing the bandwidth overhead.

The morphing technique targets at fingerprinting schemes that only use information on

packet size distribution. It considers limited or no packet ordering information.

The approximate total size of a webpage is not concealed even if packets are padded

or the size distributions are changed. Dummy traffic can be used to cover up this feature

if they are augmented indistinguishably from normal traffic. Clearly, packet padding and

dummy traffic trade off bandwidth efficiency for anonymity.



2.6 Attacks on Tor Anonymity 23

Flow Watermarking Schemes

Communications with encryption and anonymizing network are perceived by many as

both secure and anonymous. However, works by Wang et al. [87] and Yu et al. [94]

demonstrated that low latency anonymizing networks are susceptible to timing attacks,

and that watermarking techniques can be applied to UDP or TCP traffic alike, to track

anonymous communications. Yet watermarks on multiple flows may interfere with one

another if they are transmitted over common links.

Wang et al. presented a watermarking scheme to confirm the communicating parties

of Skype VoIP calls [87]. Skype [80] encrypts data streams from end to end using 256-bit

AES, and it uses VPN provided by findnot.com [29] as its anonymizing technology. The

underlying peer-to-peer network of Skype is KaZaa [43], which transmits UDP messages.

The watermarking scheme embeds a distinctive bit sequence into an encrypted VoIP flow

by adjusting the interval of packets. The affected packets only need to be delayed by

several milliseconds for an embedded watermark to be preserved across the anonymizing

network, if sufficient redundancy is applied. The watermarking scheme requires direct

control of a VoIP gateway located close to the caller.

Yu et al. proposed a flow watermarking technique based on Direct Sequence Spread

Spectrum (DSSS) and evaluated it on Tor [94]. The technique embeds a watermark of

pseudo-noise code by interfering with sender’s traffic. Using interference eliminates the

need to capture a flow for changing packet intervals, although the interferer needs to

share the physical link with the traffic source. The delay between performing a traffic

interference and when it is effected cannot be reliably predicted, due to the dynamic traffic

rates of other flows on the link.

2.6 Attacks on Tor Anonymity

The main goal of attacks to Tor is to reveal the anonymous communication relationship, or

to discover hidden services protected by Tor. Based on the features they exploit, attacks

to Tor can be classified into attacks on circuit setup, attacks using timing information,

and attacks based on traffic load.

Attack Targeting at Tor Circuit Setup

Bauer et al. proposed an attack that exploits Tor’s preferential path selection strategy

which favors nodes with high bandwidth capabilities [7]. As the resource claims by nodes

are not verified, even a low resource adversary can make false claims and compromise a

high percentage of circuit building requests of Tor. Srivatsa et al. proposed an attack

that uses triangulation based timing analysis to infer the sender if the transmission route



24 Background

is set up by shortest path [76]. The attack potentially affects Tor because Tor has low

latency, but Tor circuit is not set up using shortest path.

Timing Analysis

Many attacks [9, 87, 94, 95, 42, 44, 22, 52, 4] target at Tor’s low latency property. They

exploit timing related information to correlate flows or to confirm suspected sender and

receiver relationship.

Passive flow correlation attacks include works by Zhu et al. [95], Hopper et al. [42] and

the class of statistical disclosure attacks [9, 44, 22, 52]. The attack by Zhu et al. correlates

the output link to an input link of a mix given the mix batching strategy [95]. Long term

intersection attack [9] correlates times when senders and receivers are active. Disclosure

attack [44] and statistical disclosure attack [22, 52] monitor messages sent by a user and

messages received by a set of candidates in a series of intervals, so as to (statistically)

establish the likely communication preference. Hopper et al. provided a quantitative

analysis on the information leaked from network latency and network coordinate data [42].

It also mounted an attack for colluding websites to associate flows to the same initiator

based on the web servers’ local timing information.

Active traffic confirmation attacks [87, 94] perturb packet intervals to embed a unique

“watermark” at sender for detection at the receiver, so as to confirm a suspected commu-

nication relationship. Difference between the attack schemes lies in their techniques to

embed a watermark. A watermark can be embedded by a compromised Tor entry node

[87], or through interference with the sender traffic applying direct sequence spread spec-

trum technique [94]. The attack by Abbott et al. [4] tricks a client web browser (e.g. by

injecting JavaScript) into sending a distinctive signal which is logged with the help of the

malicious Tor exit node. When the entry node becomes some malicious node due to cir-

cuit replacement, the signal is linked to the user and hence compromising the anonymity

in web browsing. Yet interval based watermarking schemes, e.g. [94], are susceptible to

multi-flow attack [46]. The attack combines multiple watermarked flows to detect the

watermark presence, recover the secret parameters and remove the watermark.

Since the disclosure attacks and traffic confirmation attacks require simultaneous con-

trol over the entry and exit link of the Tor circuit, some proposal suggests diversifying

the geographic location of Tor nodes selected for a connection [26]. Yet this does not

prevent attacks that decouple the compromise of entry and exit nodes, e.g. [4]. Adaptive

padding [86] is proposed to defend against both passive and active Tor traffic analysis

which exploits timing. In adaptive padding, intermediate mixes inject dummy packets

into statistically unlikely gaps in the packet flow, to destroy the timing “fingerprints”.
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Attacks Exploiting Traffic Load

Some attacks [70, 32, 56] use traffic load to correlate incoming and outgoing flows of a

Tor node, so as to reveal the Tor path and to associate flows from the same initiator.

Passive analysis [70] shows a connection can be traced through correlating the incoming

and outgoing packet counts of a mix in an interval, and the propagation of traffic increase,

which indicates a connection start, is observable by the packet counter. Active attacks

[32, 56] are based on the observation that traffic volume of one flow affects the latency

of other flows of a mix. Attacker injects packets and monitors the traffic latency to infer

either the user traffic rate or the Tor path of a flow. A related attack [55] effects by

causing server load variations, and remotely observes the clock skew through timestamps,

so as to discover hidden services.

The attack we propose is substantially different from the existing Tor attacks. Firstly,

existing attacks on Tor such as watermarking, active probing and disclosure attacks all

focus on the subtle differences in packet timing or traffic load when they infer traffic route

or communicating parties. We are the first in taking an active approach in utilizing inline

object size features as “fingerprints” to identify websites accessed in Tor. Secondly, most

end-to-end identification over Tor require some control over both the first link and the

last link in the communication path. Whereas our model only requires controlling traffic

on the entry link, the probability in fulfilling the attack condition is increased. Thirdly,

Tor is believed to prevent adversaries from uncovering a communication relationship if

adversaries have no ready suspects of the communicating pair. Yet our study will show

that even for an adversary with poor apriori suspicion among a large set of candidate

websites, anonymous web browsing can be identified with high accuracy.

2.7 Traffic Log Anonymization and Deanonymization

Traffic log anonymization has the objective of sanitizing sensitive data (e.g. hiding IP

addresses) to protect user and server anonymity in releasing traffic log for research.

Many attacks target at, and improvements are proposed upon (partial) prefix-preserving

anonymization [92, 62].

Anonymization Techniques

Tcpdpriv [53] is the most well known anonymization tool. It operates on tcpdump traces,

and provides different levels of restrictiveness in removing sensitive data, which includes

prefix-preserving anonymization. Many tools wrap around tcpdpriv with slight extension,

e.g. ip2anonip [65] and ipsumdump [47].

Xu et al. proposed a prefix-preserving IP address anonymization technique [92]. Pre-
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fix preserving requires if two unanonymized IP addresses share a k-bit prefix, so will their

anonymized counterparts. The technique by Xu et al. applies a stateless cryptography

algorithm, such that subnet structures are preserved and IP addresses are mapped consis-

tently across anonymization sessions. The technique is implemented in a software named

Crypto-PAn [83], and has been applied to anonymize Netflow data [71].

Pang et al. proposed a partial prefix-preserving anonymization system [62]. It guaran-

tees that two IPs in the same unanonymized subnet will also be in the same anonymized

subnet, but other prefix relationships among IPs are not preserved. It uses a pseudo-

random permutation to anonymize subnet and host portions of IPs separately.

Koukis et al. designed a general framework that allows customized anonymization pol-

icy, including supports of application layer anonymization, such as to randomize the URL

field of an HTTP request [48]. The framework is backed up by programming interfaces.

Deanonymization Attacks

King et al. presented a taxonomy of attacks to anonymized network log [45]. The tax-

onomy formalizes the attack pre-conditions into adversary knowledge set and adversarial

capabilities, such that using first order predicate, they can express constraints of attack

construction. The resulting high level attack classification is identical to that given by

Slagell et al [72], which contains five attack classes: fingerprinting, structure recognition,

known mapping attack, data injection and cryptographic attack.

Coull et al. proposed an attack feasible over NetFlow logs that deanonymizes servers

through behavioral profiling [21]. It first finds heavy hitters using normalized entropy.

If a few IP addresses occur much more frequently than others, the normalized entropy

of the addresses will be low. Then it develops behavioral profiles of the heavy-hitters,

such as what services they offer. Finally pseudonyms of servers can be deanonymized by

comparing the behavioral profiles and public information on server popularity. Coull et al.

[19] quantified the anonymity of a host by the entropy of probability distribution on the

object’s possible identities. The work also analyzed conditional anonymity which showed

that the anonymity upon deanonymization of other hosts were significantly reduced.

Ribeiro et al. presented an efficient host deanonymization attack targeting (partial)

prefix-preserving anonymized traces [67]. It found that network structural constraints

led to IP disclosures. Ambiguous host identities were further disclosed by the optimal

match (minimum cost) in relabeling host addresses in the binary tree that represented the

network structure annotated with external information, e.g. host behaviors. Effectiveness

of the attack was partly dependant on the completeness and accuracy on the external

information. The work quantified in the worst case the amount of hosts deanonymized. It

showed that generally partial prefix-preservation improved anonymity, but the sanitization

that randomized subnets only sacrificed trace utility.
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Brekne et al. proposed an attack that employs packet injection and frequency anal-

ysis to compromise individual addresses protected by prefix-preserving anonymization in

multilinear time [13]. They also suggested modifications to strengthen the anonymization

methods, such as to release the topology information gradually.

2.8 Summary

We laid the background knowledge on web traffic characteristics over low latency en-

crypted communication tunnels. We made two observations on VPN, SSH or TLS en-

crypted and proxied HTTP streams: (i) webpage download by HTTP is highly structured;

and (ii) encryption and proxy do not severely alter the packet sizes, nor the packet order-

ing. Tor protects anonymity by layered encryption and multiple proxies. It is a reduced

implementation of mix network, which sacrifices batching of packets for reduced delay

to support interactive applications, and which eliminates dummy traffic for bandwidth

efficiency. Tor operates under a security model where adversaries are assumed to be able

to observe only a fraction of the Tor network and have control only on a fraction of the

Tor nodes. Under Tor’s security model, anonymity may still be compromised by exploit-

ing Tor’s low latency property or by correlating the traffic load. As the size of Tor cells

is fixed, it poses a significant challenge to getting information about the underlying web

traffic by the size channel. There is not yet any research on identifying websites over Tor

by features of web object sizes.

We reviewed techniques to track traffic sources, including packet marking, website

fingerprinting and flow watermarking. Packet marks are embedded into unencrypted

packet headers for inspection. PPM (probabilistic packet marking) probabilistically em-

beds partial path information into packet headers. The path information thus spreads

over multiple packets for reassembly. Existing schemes designed packet marks with so-

phisticated structure, most of which reserve a few bits to indicate the hop count from

a marking router to the victim server. The differences between various DDoS packet

marking schemes are subtle. There is not yet any metric for fair comparison across them

because of their differences in model assumptions. As for website fingerprinting and flow

watermarking, they have some similarities as well as differences. Both website finger-

printing and flow watermarking apply on encrypted and proxied communication channel.

Existing website fingerprinting schemes are passive, while flow watermarking schemes are

active. Existing website fingerprinting schemes use only side channel features related to

sizes, and hence cannot withstand the countermeasure of traffic morphing. No website

fingerprinting schemes have used packet ordering information, neither do they apply to

Tor. Flow watermarking techniques are applicable to Tor, but they require monitoring

both ends of the communication. The traffic analysis model of flow watermarking assumes
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candidates of a communication are available. Hence it verifies a pairwise communication

relationship by embedding a watermark into the timing channel of the packet flow at one

end of the communication, and verifying the watermark at the other end.



Chapter 3

Framework of Traffic Source

Identification

We lay out our framework of traffic source identification, in which the domain of traffic source

identification models is classified by the attributes of traffic model or investigator capability, and

the criteria of scheme designs are discussed. The framework guides the construction of source

identification schemes with respect to given traffic models.

3.1 Problem Statement

Traffic source identification is the investigation of network traffic so as to identify the

communicating parties. When traffic obfuscation techniques are not used, traffic source

can be easily identified from the IP addresses or message contents. However, when data

obfuscation techniques (such as IP spoofing and data encryption) are used, it is no longer

trivial to identify traffic source, and traffic analysis techniques are needed.

Traffic analysis is the process of monitoring the nature and behavior of traffic, rather

than its content. We specify traffic contents as the application data being transmitted, and

traffic behavior as the side channel information, such as timing, size and data structures.

There are two main traffic analysis approaches: active and passive. Passive analysis

is an approach that merely observes the traffic in transmission to perform analysis. For

example, passive website fingerprinting profiles and identifies a website from an encrypted

and encapsulated HTTP stream, by using the observed side channel features from traffic

as the website fingerprint. In contrast, active analysis is an approach that modifies

the traffic behavior for analysis. For example, the acitve flow watermarking technique

29
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embeds an identification bit sequence into the timing channel of a traffic flow, and this

identification bit sequence serves as a watermark to reveal the traffic source.

Our objective in this thesis is to study the relationship between traffic models and

source identification approaches, and to design, evaluate and compare source identification

schemes. Our traffic analysis for identifying traffic sources is closely related to web surfing.

The traffic sources we are identifying can be web clients or web servers, depending on the

application scenarios. For DDoS attack against web server, we monitor the traffic received

by the server to identify the attackers; while for encrypted and tunneled web surfing, we

monitor the traffic to identify the website being surfed by the client.

In this chapter, we present a taxonomy of traffic identification techniques based on

the traffic conditions and the capabilities of investigator. In Section 3.2 and Section 3.3,

we describe the components of a source identification model and the phases of operations

in a source identification scheme, respectively. Built on the dependencies among model

components, we present a decision tree based classification of traffic source identification

models in Section 3.4. The classification shows the possible combinations of components

that lead to source identification models, and hence guides the development of source

identification schemes. We also describe in Section 3.4 three specific problem scenarios

and the corresponding source identification models that we investigate. In Section 3.5,

we examine the criteria for developing source identification schemes from models for the

three problem scenarios presented in Section 3.4.

3.2 Components of the Source Identification Model

We consider that a traffic source identification model have the following four compo-

nents: obfuscation techniques being applied to the source traffic, investigator’s capability,

features utilized for traffic source identification, and applications of the model. We sum-

marize the model components and their details in Table 3.1, and present each component

in detail in this section.

Obfuscation Techniques

Network traffic source can be obfuscated through forging IP addresses, encryption together

with proxy, or pseudonymization, as described below.

With IP spoofing, the source IP address in the packet header is a spoofed address

that is different from user’s real IP. Forging of IP address in a packet header jeopardizes

subsequent communication, hence it appears only in attacks for repelling responses and

hiding attacker’s identity. A forged IP can be a randomly generated bit sequence or an

existing IP address in a victim network which the attacker wants to direct the responses

to.
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Table 3.1: Components of Source Identification Models
Component Details

Obfuscation Technique (a) IP spoofing
(b) Encryption together with proxy
(c) Pseudonymization

Investigator’s Capability (a) Passive
(b) Active

(b.1) Traffic stimulation
(b.2) Mark embedding

Exploited Feature (a) Timing
(b) Size
(c) Structure

Identification Application (a) Attack forensics
(b) Profiling user interests
(c) Revealing network structure
· · · etc · · ·

Encryption together with proxy creates an illusion that the communication endpoints

cannot be identified, as proxy enables encapsulation of endpoint addresses and encryption

protects confidentiality of the encapsulated data from an observer. Encryption and proxy

are basis of many low-latency anonymous communication services, e.g. Anonymizer.com.

VPN, SSH tunnel and SSL/TLS tunnel are also based on encryption and proxy. VPN

multiplexes all connections between a source and destination pair into one.

Similar to IP spoofing, pseudonymization changes the source IP addresses in packet

headers. Yet pseudonymization maps a traffic source to a (private) IP or a pseudonym

usually consistently, and online communication with a pseudonymized traffic source can

be supported. Pseudonymization is commonly used in sanitizing network packet traces

or flow logs, before they are released for cross-organization research. It covers up the

IP addresses and other sensitive data, while preserving the communication statistics.

Prefix-preserving anonymization is currently the most recommended technique to per-

form pseudonymization. Pseudonyms are also used by servers to provide hidden services

through Tor. An important objective of psedonymization is to defend against mapping

of pseudonyms to individual hosts so as to protect privacy.

Tor provides by far the most reliable anonymous communication service. Tor net-

work is an implementation of Chaum’s design of “mixes” [14], but some operations in

“mixes” are not included in Tor for efficiency concerns. In “mixes”, besides performing

layered encryption and using proxies, packets are repackaged into fixed size packets, so

as to minimize the leakage of size related side channel information. In addition, pack-

ets are reordered to break the timing correlation, and dummy traffic are introduced to
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cover noises. However, packet reordering and dummy traffic are not implemented in Tor,

because packet reordering introduces considerable network delay, and dummy traffic de-

grades the effective network throughput. Hence, layered encryption, multiple proxies and

unified packet sizes are the anonymity protection mechanisms that Tor relies on.

Investigator’s Capability

Traffic analysis can be carried out in a passive or active manner, constrained by the

capability of traffic analysts. Passive analysis observes the traffic, where the operation

is transparent to end users. It requires the least capability from a traffic analyst. Active

analysis stimulates the traffic or embeds marks into packets or flows. It is able to obtain

more information, but active analysis is not applicable to offline traffic analysis.

In passive traffic analysis, network communication are eavesdropped. Passive analysis

requires gaining accesses to the desired network segments. Pervasive wireless commu-

nication medium and widely distributed bots make it easier to satisfy the requirement.

Observation alone is sufficient for many applications. Most obfuscation techniques leak

size or timing information, which renders them vulnerable to passive traffic analysis. For

instance, encryption normally leaves message sizes unchanged.

As an approach to performing active traffic analysis, traffic stimulation changes the

packet or flow behavior to reveal features of the source data. For example, to trace the

attack paths of a flooding DDoS attack, controlled flooding exploits the fact that the

packet rate of one flow affects the packet rates of other flows sharing a network link.

Voluminous traffic is iteratively launched in suspected network links, for the victim server

to determine if the network links are on attack paths. If a suspected network link is

indeed on an attack path, then some amount of the attack traffic will be dropped during

transmission, as a result of controlled flooding. A similar model has been developed to

identify a Tor communication path, thus to link the otherwise unrelated flows to the same

requester. Investigators manipulate the flow rates at certain Tor nodes. If the latency

of a victim flow is found correlated to the manipulated traffic rate, then they are likely

sharing (part of) a Tor circuit. These examples demonstrate that through stimulating

the traffic rate, investigators are able to obtain additional information on the correlation

between the manipulated flow and the monitored flow, which can then be exploited to

uncover the communication path and identify traffic sources.

As another approach of active traffic analysis, mark embedment inserts marks into

packets or flows for identification. For instance, in ICMP traceback, routers generate

additional ICMP packets which duplicate part of the randomly sampled source flow pack-

ets and carry identifying marks of routers, for the purpose of tracking the source paths

under DDoS attacks. Marks can be embedded into the side channel of flows when packets

cannot be directly modified. Instead of changing some bits in packet headers, water-
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marks are embedded by modifying some flow characteristics, e.g. packet intervals. With

sufficient redundancy, even slight perturbation on the timing of packets are observable

across a network connection [94]. For instance, watermark embedded at the VoIP caller

and extracted at the callee enables verification of the communication relationship by an

investigator.

Exploited Features

Features exploited to identify traffic sources can either be extracted from the traffic itself,

or injected by the investigator, and the choice of which is dependent on the underlying

traffic model and investigator’s capabilities.

Side channel features are related to traffic behavior instead of packet content. The

side channel features exploited to perform traffic analysis are generally size, timing and

structure related. These features can be properties of packets, file objects, or protocols.

Packet features are less stable than features of file objects, which in turn are less stable

than protocol features in general. The reasons lie in the different degrees of impact from

network noise and labor required to modify these features. However, more stable features

are harder to be extracted from obfuscated data. For example, to identify a webpage from

VPN traces, the packet size information is available, while inline object sizes are difficult

to extract because of interleaving object downloads, whereas structural information of

order of the contacted third-party servers is concealed by encryption.

Besides side channel features being extracted from the traffic itself, features can also

be injected by investigators. For example, in DDoS traceback, packet marks often contain

router IPs and hop count from the marking router to the victim server. Sometimes they

also include partial packet content and timestamp. There is much flexibility in designing

the injected marks to packets for source identification. In contrast, flow marks should

be designed to minimize interference, and hence has lower flexibility, and the marks are

injected into and transmitted in the side channel of the traffic.

The selection of feature is limited by the source data and investigator’s capability. En-

cryption together with proxy does not intentionally alter the size or timing information,

yet not all features are observable after obfuscation, e.g. web object sizes. In comparison,

dummy traffic, aggressive padding, and uniforming sizes intentionally reduce the distin-

guishability of size related features. Timing provides useful information in low latency

communications, including web browsing, VoIP. Note that timing information is usually

fuzzy, as it is affected by instant network conditions and the locality of data collection.

Most website fingerprinting attacks observe the quantity and length of data packets in-

curred by surfing the website, but discard the timing information.
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Applications of Traffic Source Identification

Traffic analysis to identify traffic sources or communication paths has a wide range of

applications, including attack forensics, building user profiles, and identifying network

structures. Some of the applications are for the surveillance of online security, while others

demonstrate that the privacy protection provided by existing obfuscation techniques are

less reliable than we once thought.

Identifying DDoS attack sources is an example of forensic application. Another foren-

sic example is to identify the accomplice websites in XSS (cross site scripting) attacks,

which spread malicious codes to facilitate harmful activities, such as stealing private in-

formation from clients. Yet another forensic application is to verify a communication

relationship in lawsuits. Besides the content in communication, the communication rela-

tionship itself is also sensitive information.

Profiles of user interests on web browsing can be built from either packet traces or

flow logs, by identifying the websites they visit, even if the source data are encrypted or

anonymized. Packet traces presents some packet features and possibly features of web

objects. Flow logs preserve features and statistics of flows and possibly object features,

too.

Identifying subnet structures and key servers of an organization provides useful in-

sights for the onset of an attack. Such information can be extracted from anonymized

flow logs using traffic analysis techniques. It is a threat to business secrets and service

availability.

3.3 Phases of Operations

A traffic source identification model in general contains two phases of operations, which

are data collection and data analysis.

Data collection refers to the processes of sampling network traffic and extracting from

them the features desired for analysis. For instance, website fingerprinting attacks build

a database of website fingerprints and capture the victim HTTP streams in the data

collection phase. Note that it is not necessary to build website fingerprint profiles before

the testing HTTP streams are captured. For active traffic analysis, data collection also

includes the process of traffic stimulation or mark injection. The medium that stores the

injected data can be packet headers or some side channels of packet flows.

Data analysis determines the traffic sources from extracted features by comparing

the features with known source profiles. A profile can be a distribution of packet marks

associated with a router, or a unique mark attached to a packet flow, or some side channel

features forming the traffic fingerprint of a website. Data analysis may need to perform

fuzzy matching and evaluate the similarity between the profiled and the extracted testing
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features, due to various noises. The sources of noise can be variations in the instant

network conditions, or difference in the localities where the profiling and testing traffic

are collected.

3.4 Classification of Source Identification Models

We have presented in Section 3.2 the components of source identification models, here

we use the decision tree representation in Figure 3.1 to illustrate the classification of

source identification models by these components. Our framework is general enough that

existing traffic source identification techniques are encompassed, and future techniques

can potentially be incorporated. It also assists in deriving new traffic source identification

models.

Figure 3.1 illustrates the classification of traffic source identification models. In the

top level, source identification models are classified by the source obfuscation techniques,

which can be (1) spoofing IP addresses, (2) applying encryption together with proxy,

e.g. VPN or Tor, or (3) mapping source IP addresses to pseudonyms, such as in traffic

log anonymization or protecting hidden servers. Under each type of source obfuscation,

analysts can develop passive or active source identification approaches depending on their

capability. The approaches include (1) eavesdropping the communication, (2) stimulating

the communication or (3) embedding marks into packets or flows. The source identifica-

tion models can be classified in finer grain by the traffic features they exploit.

Among the models shown in Figure 3.1, passive traffic analysis is adopted by (a)

traffic logging for DDoS traceback, (d) passive website fingerprinting, (e) statistical dis-

closure that identifies long term communication probability over Tor, and (i) traffic logs

deanonymization. Active approaches are taken by (b) controlled flooding and (c) packet

marking for IP traceback, (j) hidden service discovery over Tor, and (g) flow correlation

through stimulating the traffic rate or (h) embedding watermarks. In addition, we pro-

pose (f) an active website fingerprinting model that stimulates HTTP traffic to expose

additional features to identify websites.

Each path from root of the decision tree to a leaf node represents the combination

of components of a traffic source identification model. For example, in the model of (b)

controlled flooding, the obfuscation technique used by attackers is (1) IP spoofing, the

investigator is able to (1.2) modify the traffic rate of certain flows, and monitor the feature

on the (1.2.1) traffic rate correlation with the attack flows, so as to identify the attack

paths taken. For (h) flow watermarking, the model handles source obfuscation techniques

of (2) encryption and proxy, where the investigator (2.3) embeds some secret code as a

watermark in one end of the traffic flow for verification across the anonymous network,

and the side channel feature selected to carry watermarks is (2.3.1) packet interval. We
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Figure 3.1: Classification of traffic source identification techniques
(The dotted branch on models to identify pseudonymized traffic sources is not our focus in this thesis)
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develop our model of (f) active website fingerprinting through forming novel combinations

of the component values. While all existing website fingerprinting approaches are passive,

we use (2.2) an active stimulation approach to obtain (2.2.1) inline web object features

so as to identify a website.

In this thesis, we investigate in detail three traffic source identification models appli-

cable to different constraints and traffic models, namely, packet marking, passive website

fingerprinting, and active website fingerprinting. The combination of their model compo-

nents are highlighted in Figure 3.1. Below we give an overview on the traffic characteristics

of these applications and the corresponding source identification approaches we take. As

we are not looking into details of source identification models for pseudonymized traffic,

the corresponding branch in the decision tree is faded.

Packet marking Packet marking applies when the source IP is spoofed and the packet

header is not encapsulated or encrypted. PPM (probabilistic packet marking) prob-

abilistically embeds partial path information into packet headers. The path infor-

mation thus spreads over multiple packets for reassembly. We assume routers are

cooperative in embedding packet marks and the packet stream for source identifica-

tion contains sufficiently many packets. The scheme designed following this general

approach is presented in Chapter 5.

Passive Fingerprinting When the source packet headers are encapsulated into packet

payload and encryption is applied on the packet payload, packet marks embedded

into the source packet headers can no longer be inspected. We turn to the side

channels of traffic flows to extract identifying information about traffic sources.

Passive traffic analysis is applicable to fingerprint websites when the HTTP streams

reveal sufficient information about the sources.

Website fingerprinting aims to identify the website accessed through some encrypted

tunnels. Website “fingerprints” are profiled on side channel features observed from

the HTTP streams, where an HTTP stream is a stream of packets sent and received

because of accessing a website. Existing website fingerprinting schemes target size

related features, relying on the fact that encryption does not obfuscate the amount

of data transmitted. Our passive website fingerprinting scheme exploits packet

ordering information in addition to the usual size related information. It is described

in Chapter 6.

Active Fingerprinting Existing website fingerprinting models are passive such that the

investigator does not modify the traffic but only eavesdrops. However, when the

web browsing traffic is not only encrypted and sent through proxies, but also the

data transmission unit is fixed, the packet level characteristics are largely concealed.
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Hence passive fingerprinting may not be sufficient to identify a source website, given

the obfuscation techniques of encryption, proxy and uniform data transmission unit,

such as in Tor.

We propose an active website fingerprinting model for the above traffic model, in

which the investigator is capable of modifying the traffic behavior to expose object

level characteristics of the source. In contrast to packet marking or flow watermark-

ing which embeds selected marks into a packet flow, the features monitored in active

fingerprinting originate from the source.

In the active fingerprinting scheme we develop, the selected features to website

fingerprinting are web object sizes and order. Interleaved data transmission of

several objects makes it difficult to extract the selected features. We delay the

HTTP requests so as to reveal the inline object sizes and order of the source website.

Our active website fingerprinting scheme is presented in Chapter 8.

3.5 Source Identification Scheme Design Criteria

In the previous section, we described three specific problem scenarios and the correspond-

ing source identification models. In this section, we examine the criteria for developing

concrete source identification schemes from these models. There are a number of technical

designs being involved, which include packet mark design in DDoS traceback, fingerprint

feature selection, and fingerprint similarity comparison in website fingerprinting.

Packet Mark Design Criteria

Packet marking schemes have a constraint that there are only limited number of bits

available (typically 16 bits) in the packet header for marking. The number of routers or

sources we need to identify exceeds the number of unique values the limited number of

bits can represent. As we need to identify each individual router and collisions of packet

marks cannot be avoided, each router is associated with a distribution of packet marks.

The packet marks should be designed such that it is easy to identify the contribut-

ing markers accurately and efficiently from a combination of packet mark distributions.

Packet marks should be designed to minimize collisions, which translates to minimizing

the collisions in packet mark distributions from different markers. Further analysis and

evaluation on the design of packet marks are presented in Chapter 4.

Fingerprint Feature Selection Criteria

The essential criteria for selecting fingerprint features are fingerprint consistency and

distinguishability. Consistency provides the basis for comparison between a fingerprint
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and its profile, while distinguishability provides contrast between a fingerprint and the

profiles of others.

Consistency means the fingerprints of the same traffic source sampled at different

time, at different network locations, and at different traffic rate of other flows sharing

the communication path are sufficiently close. It ensures the testing fingerprints are com-

parable to their profiles. It is easy to understand that the intersection of feature values

from different fingerprints satisfy consistency. However, as the sample size increases and

multiple settings are considered, the number of exact matches in feature values reduces.

The extreme is null intersection, which means there is no feature value left in the finger-

print. We need more flexible methods that tolerate some inconsistency in the selected

feature values when developing a source fingerprint profile. The consistency of feature

values is dependant on the traffic characteristics. For instance, if packets are padded with

a randomized amount of bytes each time, then packet sizes are not consistent and hence

not suitable to be fingerprint features.

Distinguishability requires the fingerprints of a traffic source be distinguishable from

fingerprints of others. The less expected feature values among all fingerprints give more

identifying information. We note that sometimes feature values may be not very inconsis-

tent but if they provide additional distinguishability of fingerprints, the features should

be selected. For example, in website fingerprinting, the embedded object sizes expose lots

of information of the webpage, most of which enables the source identification. Although

they are less consistent compared to the request sizes due to possibly object updates, the

feature on object sizes should be selected.

It is desirable that only a small sample is needed to build a stable profile and the

time to build a profile be short. In applications like website identification, long sample

collection and profiling time reduces the identification accuracy because website contents

can be updated during the data processing.

Similarity Measurement Criteria

Certain prior knowledge of the traffic sources are required for identification, which are in

the form of their associated packet marks, flow marks, or fingerprints. During testing,

we extract feature values from the traffic and evaluate their similarity with profiles of

candidate sources. There are three main criteria of similarity measurement.

Firstly, the dependency and relationship of feature values should be captured in the

comparison. In the website fingerprinting schemes we propose, we find the ordering

information of featured packets or of HTTP object sizes adds valuable information to

website identification. If we employ SVM, Jaccard’s coefficient or Bayes network for

fingerprint comparison, then the ordering information would be lost.

Secondly, the accumulation of errors from misjudgement should be minimized. In the
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analysis of a large amount of data, one may attempt an iterative process that isolates a

group of related data to make a judgement on them, then remove these data from the

total collection before repeating the process of data isolation and judgement. However,

due to the ambiguity in the grouping of data, e.g. collisions of packet marks associated

with different routers, the removal of data in some previous iterations affects the accuracy

of judgement in the later iterations. The iterative approach is applicable if the grouping

of data is certain. Otherwise, from the point of accuracy, it is desirable to always analyze

the data from the total collection.

Lastly, it is desirable that the similarity measurement method be both memory and

computation efficient. We would like to locate the attack sources the soonest we can,

in order to deploy remedy policies and to catch the suspects in time. The comparison

method should be efficient enough to scale well with the number of potential traffic sources.

Specially, it is desirable that the time and memory used to identify a traffic source be

linear to the number of profiles.

Scheme Evaluation Criteria

Effectiveness is the ultimate evaluation criterion of a traffic source identification scheme.

Currently, it is quantitatively measured using identification accuracy in a classification

problem; and it is evaluated using false positive rate (FPR) and false negative rate (FNR)

in a detection problem. However, these metrics of identification accuracy, FPR and FNR

are sensitive to the dataset used for evaluation. Better numerical results in one dataset

may not represent a superior performance in another. It leaves the relative quality of

different schemes indeterministic. Fair comparison on the quality of packet marks, flow

marks or source fingerprints may require better evaluation metrics.

3.6 Summary

We present a framework of traffic source identification models. The framework considers

each source identification model has components of obfuscation techniques, investigator’s

capabilities, features, and applications. The model components affect one another. User

applications specify the privacy requirement and the data obfuscation method. Whereas

data obfuscation method inspires the traffic monitoring approach as well as the selection of

features for analysis in a traffic source identification application. The framework captures

that generally a traffic source identification scheme contains data collection and analysis

these two phases of operations.

Traffic source identification models are classified in the framework by their compo-

nents. The models to apply in different problem scenarios are dependent on the obfusca-

tion techniques and investigator’s ability. We can opt for modifying the packet headers
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to embed marks, if the packet header is not encapsulated or encrypted. We can also

opt for performing passive or active traffic analysis on the side channel characteristics

of the exchanged packets between a pair of communication endpoints, where the usual

side channel features utilized are packet sizes and intervals. Passive analysis suffices if

substantial side channel features are observable, otherwise active analysis techniques are

required to expose additional information.

Under the framework, we highlight the source identification models that we investi-

gate, and examine the criteria in designing the source identification schemes, in problem

scenarios of DDoS traceback, passive website fingerprinting over VPN and active website

fingerprinting over Tor.
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Chapter 4

A General Probabilistic Packet

Marking Model

We consider a traffic model of DDoS flooding attacks with IP spoofing. We present a general packet

marking model of DDoS traceback schemes that captures and compares their common phases of

operations, namely, packet marking and path reconstruction. We propose using entropy as a fair

evaluation metric of packet marks quality across the schemes to predict the traceback accuracy.

4.1 Overview

In Distributed Denial of Service (DDoS) attacks, many compromised hosts flood the

victim with an overwhelming amount of traffic. The victim’s resources are exhausted

and services to users become unavailable. DDoS attacks paralyzed high-profile web sites,

including Yahoo, CNN, Amazon and Microsoft, for hours to days [33]. DDoS attacks were

launched against and brought down several root DNS servers, lasting for hours [2].

During a DDoS attack, attack nodes often perform address spoofing to avoid detec-

tion. An IP traceback mechanism aims to overcome address spoofing and uncover the

attack paths or sources. While traceback is motivated by DDoS attacks, it also benefits

analysis of legitimate traffic. Potential applications of traceback include traffic accounting

and network bottleneck identification. In Probabilistic Packet Marking (PPM), routers

probabilistically mark the packets they transmit, so that the victim can trace the attack

paths up to their sources, based on the packets it received [69]. A packet is marked by

writing to the reusable bits in the IP header. We call the strings written as tags.

In this chapter, we present a general model for PPM schemes by formulating it as an

43
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identification problem, in which each node (or edge) marks packets probabilistically ac-

cording to an associated distribution of tags. Based on a collection of received packets, the

victim attempts to recover the markers’ identities. Since there are multiple markers, this

collection is made up of samples from a mixture of the markers’ associated distributions.

Hence, traceback is essentially identification of each individual distribution contributing

to the mixture. By viewing each distribution as a point in a high dimensional space,

we can see that this model is closely related to the studies of collusion-resistant codes

and fingerprinting [17, 82]. Thus, one may choose a known collusion-resistant code to

assign codewords to different markers. The main difference between traceback and other

applications of collusion-resistant fingerprinting is the scale of the problem. The number

of markers can be more than a thousand, which is much larger than typical applications

of collusion-resistant fingerprinting.

4.2 Probabilistic Packet Marking (PPM) Model

4.2.1 Problem Formulation

During a DDoS attack, a victim V receives an overwhelming amount of packets transmit-

ted over multiple paths, each at a packet rate greater than Ratt. A router along an attack

path can embed information of its identity into the packet headers. We call such router a

marker. Alternatively, the router can embed information of its identity and the next hop

identity into the header. In this case, we treat the edge as the marker. Let U be the set

of all possible markers, and M be the set of markers along the attack paths. Our goal

is to identify M among U . Let m = |M|, and n = |U|. Each marker is allowed to mark

L bits in a packet header1. The PPM problem is interesting when 2L is smaller than n.

The problem thus becomes how to use multiple L-bit tags to identify elements of M.

We measure the performance of a marking scheme by the false negatives ratio α, which

is ratio of the number of markers not correctly identified over m, and the false positives

ratio β, which is the ratio of the number of markers wrongly declared as on attack paths

over m.

4.2.2 Components of PPM

The operations of a PPM traceback scheme can generally be divided into the following

components: marking of packets by the routers, choice of tags used and reconstruction

using information from marked packets by the victim. In the following, for each of these

components, we first present the general idea and then highlight the design of RPM.

1Typically, as indicated in [69, 74, 24, 35, 93], the 16-bit packet identification field in the IP header
is used. The packet identification field is used in less than 0.25% of the time to re-assemble fragmented
packets [77].
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Marking by Routers

In our model, each marker is associated with a distribution D on the L-bit tags. Such

associations are pre-assigned and fixed throughout the marking and identification process.

Consider a marker with identity i and its assigned distribution Di. When it receives a

packet, the marker chooses with probability ϵ, an L-bit tag s according to the distribution

Di and mark the packet with s.

The probability ϵ is a parameter that is the same for every marker. It is possible that

some packets arrive at the victim without being marked. We assume that the bits in

those unmarked packets are random and are uniformly distributed.

Since the marking process needs to be very efficient, sampling from the distribution

Di must be a simple operation. Thus, in RPM and other related work, only uniform

distribution on a finite set is considered. Essentially, the marker just randomly and

uniformly picks a tag s from a pre-assigned set. Let us write the probability density

function of the distributions assigned to the marker with identity i as Di. That is, Di(x)

is the probability that the tag x appears in a packet marked by i. Since we assume that

the distribution is uniform on a finite set of tags, Di(x) = 0 or c for some constants.

Thus, WLOG, we can also represent Di as a subset of L-bit tags. Let us write this set as

Xi where x ∈ Xi iff Di(x) > 0.

Choice of Marking

Consider a set of markers P . The collection of tags received by the victim follows a distri-

bution which is a mixture of the distribution associated to the markers in P . Deriving the

mixture distribution DP from P is not straightforward due to the effect of the probability

ϵ. Suppose that the only markers are P = {i1, i2}, where i1, i2 are along the same path

and i1 is nearer to the victim, then

DP (x) = ϵDi1(x) + (ϵ− ϵ2)Di2(x) + (1− 2ϵ+ ϵ2)2−L

for every tag x.

Consider two sets of markers, P and Q. Let DP and DQ be the distribution of the

tags received from P and Q respectively. If DP = DQ then the victim is unable to

distinguish whether the samples is from P or Q. If DP is close to, but different from DQ,

an unreasonable large number of packets may be required to distinguish them. Hence, as

an approximation, we take the mixture distribution of DP as:

DP (x) ≈ ϵ
∑
i∈P

Di(x), for all x
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Thus, if ∑
i∈P

Di(x) =
∑
j∈Q

Dj(x), for all x

then it is difficult to distinguish packets from P and Q. In such case, we say that a

collision has occurred.

In general, the associatedDi should be chosen so as to minimize collisions, for example,

using a collision-resistant code. However, due to the size of the problem, RPM employs

random codes as it is more practical. For each marker i, the Di is generated from a

random function (for example, SHA) with i as input. We will show in later section that

use of random codes provides sufficiently good results.

Note that given the network topology, certain sets of markers are more likely to appear

compare to others. Ideally, the Di can be chosen by considering the network topology

to avoid collisions. However, in practice, individual marker lacks the global topology

information. Hence, a reasonable approach, as used in RPM, is to assign the Di randomly.

Reconstruction Algorithm

Due to the large problem size, a PPM scheme needs to address both the choice of Di

and the identification algorithm at the same time. Enforcing certain relationship among

the tags in Di for each i can aid identification. For example, in RnL [35], all tags from

a marker contain the same “cord”. That is, a substring (the cord) of every tag from a

marker is the same. An example given by [35] invests 15 bits for the cord when L = 25.

Based on the cord, the received packets can be easily divided into smaller groups. Next,

packets in different groups are identified independently. Since the number of packets in

each group is smaller than the total number of packets, the task of identification become

easier.

RPM does not exploit special structure in the tags for reconstruction. Instead, it

assumes prior knowledge of neighborhood nodes and uses a hop-by-hop reconstruction.

Such assumption is also made in FMS, AMS, and FIT.

Marking Structures of Existing Schemes

Existing schemes often divide the L-bit tags into multiple components to include struc-

tures that contains path information or aid reconstruction. If the number of unique tags

generated by a marker is h, i.e. |Xi| = h, there is a ⌈log2 h⌉-bit component which labels

the tags. Let us call it the hash index. For example, if |Xi| = 2, then the hash index

starts from 00, 01, 10 to 11. In addition, there is a component that is determined from

the hash index and the marker’s identity. Let us call this the hash value. A few schemes,

for example, FMS [69], AMS[74], and FIT[93], allocate 8 bits for the hash value and 2-3
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Figure 4.1: Path Length Distribution

bits for the hash index, and employ different hash functions to compute the hash value.

RnL [35] also reserves some bits for the hash index and the hash value.

4.3 Analysis

4.3.1 Entropy of Packet Marks

One measure of the quality of a chosen Di is the entropy of the mixture of distributions re-

ceived by the victim. Intuitively, uniformly random packet marks deliver highest entropy.

Higher entropy carries more bits of information, which can reduce the false negatives

ratio α and the false positives ratio β. Entropy measure provides a means to evaluate

the performance of PPM schemes. A good marking scheme should strive to achieve high

entropy packet marks.

Some existing schemes trade off some entropy in the tags for easy path reconstruc-

tion; but they underperform in effectiveness. In particular, we will show that the use of

hop count to indicate distance from markers to the victim results in lower entropy than

uniformly random bits.

The design of FMS, AMS and FIT are very similar. They allocate 8 or 13 bits for

hash value, 2-3 bits to indicate the hash index, and 5-6 bits to keep the hop count from

the marker to the server. AMS slightly improves over FMS on the traceback accuracy

because it uses a better hash function. FIT in turn outperforms AMS by reducing hash

collisions. It introduces longer hash outputs, and encodes node information instead of

edge, since there are fewer nodes than edges. However, for FIT, L = 21 instead of 16. It
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Figure 4.2: Distribution of Distance Values from Packet Marks

updates 5 bits of the Time-To-Live (TTL) field, besides marking over the 16-bit packet

ID field. This changes the semantics of TTL. For instance, an intermediate router can

now prolong the lifetime of a packet by enlarging its TTL value.

FMS and AMS utilize 5 bits of distance information to aid in the hop-by-hop path

reconstruction. The entropy of such distance information is low, resulting in inefficient

use of the marking bits. The reasons are two-fold. First, as shown in Figure 4.1, the

path lengths between any router and a server are averaged at around 16 hops. This result

is obtained using the topology with 225,415 edges and derived from Internet mapping

project. While 5 bits can represent a distance of up to 31 hops, the upper half of the

distance (> 15 hops) values occur with low probability and are under-utilized. Second, the

schemes allow routers to reset the distance information. Distance information embedded

by remote routers are likely to be overwritten by routers closer to the victim. Again, as

shown in Figure 4.2, the distance field ends up more frequently with small values. In sum,

the distance field has lower entropy than uniformly random bits. The marking bits are

not efficiently utilized by incorporating the distance information.

Now we measure the performance of different PPM schemes with respect to their

tags’ entropy. For comparison, we include marking schemes of AMS and RnL. RnL or

randomize-and-link, uses large checksum cords to facilitate fast identification. RnL is

selected because its packet marks are designed to have high randomness. The drawback

of RnL is that its path reconstruction process is not scalable. The scheme RPM will be

presented in next chapter. The tags RPM generates have an entropy very close to that

of RnL, but RPM has a scalable path reconstruction.
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Figure 4.3: Packet mark value distributions

For a fair comparison, both RnL and AMS generate 16 16-bit packet marks for each

edge and have a marking probability of p = 1/16. RnL uses 10 bits for the checksum and

2 bits for a hash fragment; AMS uses 5 bits for the distance and 7 bits for the hash value.

The simulation uses the same topology as the previous experiment. Every edge in the

topology generates 1,000 packet marks according to the marking schemes.

Figure 4.3 shows how the accumulated ratio of packet mark varies with ratio of tags

received by the victim. Each point in the plot corresponds to a bin size of at least 1,000

distinct tags. In the ideal case, the packet marks distribution should be uniform and is

shown for comparison purpose. The plot clearly shows that the distribution generated

for AMS and RnL are skewed and much worse than the uniform distribution. For AMS,

up to 70% of all tags are carried by a small number of packets (< 1%). RnL performs

better, where about 80% of all tags are carried by 20% of the packets. Another interesting

observation is that a large number of packets (> 50%) carry small portion (< 2%) of all

distinct tags for both AMS and RnL.

Given that the packet marks generated locally by RnL is fairly uniformly and randomly

distributed, it may be surprising that the tags received by the victim is so clustered. This

clustering effect can be attributed to the fact that markings are performed independently

by each router. As a result, tags generated by routers close to the victim tend to be

received by the victim while the routers further away tend to have their tags overwritten.

One approach to increase the randomness of the tags received is to allow routers further

away to mark the packets more often. However, such approach will require additional

coordination and global message exchanges which are not considered in this work.
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Nevertheless, Figure 4.3 clearly shows that tags collected from RnL are much more

uniformly distributed than AMS. The average entropy computed for RnL tags is 12.62

bits (out of 16) and tags from AMS has an entropy of 11.99. The entropy and distribution

of tags from RPM are very close to RnL. Hence, it is expected that RnL should have much

higher traceback accuracy than AMS. RPM’s traceback accuracy is expected to match

RnL, but its path reconstruction process is more efficient.

To verify the utility of using entropy as a measure of marking performance, 1,000

attack paths, or equivalent to over 4,650 attack edges generate tags for identification, using

the parametrization above. The performance of RPM will be presented in next chapter.

All edges in the network are tested for malice which makes the result independent of the

reconstruction scheme. RnL has a false positives ratio β of 0.19, while the β for AMS is

5.56. The result clearly shows that schemes with higher entropy can achieve much better

performance (lower β).

4.3.2 Identification and Reconstruction Effort

From marked packets, the victim wants to reconstruct the attack paths. This can be done

by first identifying the markers, and then deriving the paths. Exhaustive enumeration of

all subsets of markers, and estimating their respective packet rate is infeasible. To aid

identification, structured information can be embedded into the tags. This information

facilitates association between packet marks and the marker, or links different packet

marks generated by the same marker. There are generally two assumptions made in

the reconstruction, no network topology information available or available of (partial)

topology information.

Without Topology Information

RnL is designed for a marker to transmit a message, which can be the marker’s identity.

In RnL, the reconstruction of the message, or identification can be carried out without

prior knowledge of the network. It associates fragments of a path information message

using checksum cord. A fragment has v (3 to 6) bits, but 8 to 11 bits out of 17 is allocated

to the checksum, so as to reduce the likelihood that different markers producing the same

cord in the whole network. Identification uses checksum as an associative address of

message fragments, as it is invariant for a message. The verification of valid fragment

combinations is expensive, particularly when many markers have the same checksum. By

using combinatorial search to reconstruct multiple attack paths, the scalability of RnL is

limited.

The algebraic approach [24] proposes an interesting way to reconstruct the attack

path. In this approach, only a small number of packets is needed for reconstruction. The
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scheme has flexible parameterizations, with the length of a packet mark ranges from 18

to 25. It uses s bits to instantiate a random variable, and use router IP addresses as

the coefficients to construct a polynomial. v bits are allocated to store the evaluated

polynomial. h bits are assigned to keep track of the number of participating routers,

which is translated into the degree of the polynomial. The values of v and h are tunable

depending on the total number of bits allocated to a tag. The entropy of each component

is high. However, the encoding and path reconstruction processes are expensive. Even

though BCH decoding can be employed to find a high degree polynomial among samples,

no known algorithm can efficiently identify multiple polynomials among samples. That

is, its path reconstruction does not scale with multiple attack paths.

With Topology Information

An example scheme that uses topology information is AMS. AMS assumes that the up-

stream router map is available. It subdivides the path information to track the hop count

from the marker to the victim. The distance information binds different fragments of

a message. It reduces the path reconstruction complexity by limiting the combinatorial

search of messages to each distance. However, as shown in Section 4.3.1, storing distance

information reduces entropy of tags.

In general, reconstruction without any topology information is expensive. Hence, re-

construction with topology information is more practical. For effectiveness, it is important

that the information associating tags to markers have high entropy. At the same time,

using more bits to limit the search space can increase the reconstruction efficiency. In the

next chapter, we will present our algorithm RPM that takes all these considerations into

account.

4.4 Discussions on Practical Limitations

Topology

Effectiveness of the identification of attack paths is conditioned on the correctness of

topology information. Network topology could be obtained through probing with trace

route utility, or from available results of network structure analysis, e.g. Internet map-

ping project. Note that trace route can also be exploited by penetration testers to gather

information about network infrastructure and IP ranges around a given host. So sup-

plying detailed information about internal pathways is restricted for privacy and security

reasons in many organizations. However, a topology map with only gateway information

could already be helpful to identify attack paths, and such information is relatively easy

to obtain. The network topology we obtain may have slight variations from the topology
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during attack. Timeliness of the release of network topology thus affects the correct iden-

tification of attack paths. However, our attack path reconstruction is not very sensitive

to the accuracy of topology. We need only the adjacency relationship among routers to

progress the path reconstruction hop by hop upstream.

Router cooperation

PPM requires router cooperation across autonomous systems (ASes). It may impact

the practicality of PPM, because individual AS makes independent policies. Incentives

for performing packet marking could be low for upstream routers. However, ASes that

contribute to protect servers in other ASes should receive help and cooperation in re-

ciprocal. And identifying the downstream routers of attack paths is urgently needed by

packet throttling type of defences. We note that PPM does not require contiguous routers

performing the task. Selective cooperative routers scattered over the network would still

make it effective. Suppose only gateways participate in the marking, not only the internal

structures of ASes have better privacy, but also the scale of the identification problem

is reduced. We are potential in more accurately identifying the ASes where attackers

originate, then the ASes can identify and handle the attack sources locally.

4.5 Summary

IP traceback has been an actively researched DDoS defence. For attack packets with

spoofed source addresses, IP traceback traces the paths they traverse up to the sources.

Traceback also benefits traffic accounting applications, such as tracking clients’ bandwidth

utilization, or locating the bottleneck links in the network.

In this chapter, we present a general model for PPM schemes. The general model

provides a platform for PPM schemes comparison and helps to identify the appropriate

system parameters. We also show that entropy is a good predictor of traceback accuracy

and the use of hop count information in tags reduces the entropy.



Chapter 5

Random Packet Marking for

Traceback

From the analysis we made on the general packet marking model in the previous chapter, we in-

stantiate a probabilistic packet marking scheme named Random Packet Marking for IP traceback.

Our scheme improves the packet marks quality through increasing their randomness, and hence

significantly improves the accuracy of identifying DDoS attack paths.

5.1 Overview

Guided by the general probabilistic packet marking model presented in Chapter 4, we

design a PPM scheme, called Random Packet Marking (RPM). The marking process is

very simple, and it is a direct implementation of the model. No sophisticated structure

or relationship is required for the tags. For example, many existing schemes divide the

allocated bits into groups and different groups have different functionalities, like hop-

count, hash value etc. In contrast, RPM treats all bits equally. For the reconstruction of

marker identities, RPM employs a hop-by-hop reconstruction similar to AMS [74]. Hence,

some prior knowledge of network topology is required. Simulation results show that RPM

significantly outperforms AMS in acquiring higher traceback accuracy. Compared to

schemes based on algebraic coding [24], RPM has much lower reconstruction cost and

achieves higher scalability for the same number of attackers and packet markers.

The effectiveness of RPM demonstrates that, with knowledge of the neighboring nodes,

it is undesirable to enforce structures in tags, since the structures impose constraint on

the choice of tags. Without the constraint introduced by structures, each packet can carry
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more information and the chance of collision (that is, false positive) can be reduced.

5.2 Random Packet Marking (RPM) Scheme

As mentioned in Section 4.3.2, RnL is designed for scenarios where knowledge of the

network topology is not available during identification. Without network topology, it is

computationally difficult to identify large number of markers, although sufficient infor-

mation is hidden in the tags. On the other hand, some PPM schemes facilitate easy

identification but sacrifice some randomness in the tags, reducing the amount of informa-

tion tags carry. For example, AMS exploits topology information and encodes hop count

to facilitate efficient reconstruction; but the entropy per tag is low.

In this section, we present RPM that naturally follows from our model. RPM achieves

both high entropy tags and efficient reconstruction. It does not divide a packet mark into

components. All available bits are allocated to tags associated with markers. The effec-

tiveness of RPM is influenced by the collision probability of the distributions Di. Yet

RPM is general enough to support any functions in assigning Di. RPM caters for high

entropy in the mixture of packet mark distributions. With a reasonable Di assignment

function and a proper setting of system parameters, RPM suffices in obtaining high trace-

back accuracy. Its path reconstruction is lightweight and scalable, aided by the topology

information. RPM improves over AMS in that its marking scheme is simple, fast, and

the marks have high entropy. At the same time, RPM simplifies RnL and extends it to

identify large number of markers with topology information.

5.2.1 Packet Marking

We choose to employ edges as the markers. RPM works on graph structured networks.

Edge encoding facilitates a hop-by-hop reconstruction of the attack graph.

In this scheme, the size of the set of tags Xi (recall that x ∈ Xi iff Di(x) > 0) is the

same for every marker i. Let

h = |Xi|.

The association of Xi to an edge i is obtained using a known hash function, for example,

taking the first L bits from the output of SHA. For an edge with IP addresses IP1 and

IP2, let us represent the identity of this edge as i = IP1∥IP2 where ∥ is concatenation.

The set Xi assigned to i is

{ H(r∥IP1∥IP2) | r = 1, 2, . . . , h }

where H is the hash function whose output is a L-bit sequence.
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For clarity, let us recall the marking process. For the marker i with the associated Xi,

when a packet is received, the followings are carried out:

• With probability ϵ, randomly and uniformly picks a x from Xi, and write x into the

packet header.

There are two important parameters for us to determine, ϵ and h, which will be

discussed in Section 5.3.1. An example in our experiment takes ϵ = 1
16 , L = 16 and

h = 24.

Note that the markers make decisions independently and they mark packets by over-

writing existing values. It evades the potential domino effect from malicious packet mark

manipulation. Even if there are compromised routers in the network, the attack paths re-

constructed are reliable up to the nearest attacking routers. It improves the survivability

of traceback, compared to marking schemes that rely on existing packet marks [5, 24].

5.2.2 Path Reconstruction

Path reconstruction finds the likely attack edges based on a collection of packet marks

and connects the edges to reconstruct the attack paths. Packet marks are generated on

attack and benign paths alike. Those from benign paths can be treated as noise in the

reconstruction. RPM works on graph structured networks. Edge encoding facilitates a

hop by hop reconstruction of the attack graph. It is assumed that the victim has an

upstream router map. This is a reasonable assumption that is also made in [74, 93].

We now describe two methods. Both methods follow the hop-by-hop approach. They

differ in the choice of an evaluation function that decides whether a given edge is a marker.

The first evaluation function employs a Bloom filter, which is fast to compute but some

information is discarded. Specifically, it only keeps track of the unique L-bit tags that

the victim receives, but not the number of packets for each tag. The second evaluation

function counts the number of occurrences per tag, and estimates the likelihood of an

edge contributing to the tags received by the victim.

In a noiseless path reconstruction, the victim is assumed to be capable of differentiating

malicious packets from benign ones. For example, in TCP SYN floods, malicious packets

with spoofed addresses never completely establish a network connection; whereas benign

packets abide by the network protocol and their sources are responsive. The victim can

process only packet marks from non-responsive sources for path reconstruction. A Bloom

filter [11] is used to store packet marks received from the attackers. With sufficient packets

received, the victim performs a breadth-first search on the topology to reconstruct the

attack paths edge by edge. It starts by testing if the edges composed of an immediate

upstream router and itself belong to the attack graph. Recall that a router’s marking

behavior is fully determined by its IP address and the random identifier. The victim
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checks all neighboring edges, and computes for each edge the resulting packet marks.

Benign edges are ruled out if not all packet marks encoding the edge are in the Bloom

filter, else the edge is determined as residing on an attack path. The search continues at

the identified edges until the obtained attack graph cannot be further extended.

In a noisy reconstruction, the victim does not pre-process the packets to discard benign

packet marks. All packet marks are supplied to the path reconcentration procedure.

In the presence of noise, it is more appropriate for the victim to evaluate the likelihood

of an attack edge based on the occurrence frequencies of its packet marks rather than

simply based on their existence. A counting Bloom filter is used to store the occurrence

frequency of each packet mark. The frequency of packet marks generated by an edge

reflects the packet rate the edge experiences. If the likelihood exceeds some threshold,

the edge is identified as attacking. Note that the threshold is distance dependent. Edges

approaching the victim have gradually higher thresholds, because their packet marks

experience lower probability of being overwritten and appear more frequently.

Equation 5.1 shows the function used to evaluate the relative likelihood of an attack

edge,

f(e) =
1

h

h∑
i=1

#He,i (5.1)

where #He,i measures the number of packets having mark vi of marker e. This equation

computes, for a marker, the algebraic mean of the occurrence frequencies of its packet

marks. Because occurrence frequency of packet marks is proportional to the packet rate,

and packet rate is the differentiation criteria between benign users and attackers, the value

from Equation 5.1 gives the relative measure of confidence in determining attackers.

The pseudocodes below summarize the path reconstruction procedure.

RPM Reconstruction

Start at the victim’s immediate edges

Compute mean(edge mark frequencies)

(Equation 5.1)

if mean ≥ threshold then

Add this edge to the attack graph

Move on to upstream edges

end if

It is assumed attackers are sending at much higher rate than non-attackers. Larger

traffic rate thus provides higher confidence in identifying an attack edge. Assuming that

the victim is interested in paths with packet rate greater than Ratt, the packet mark
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threshold for edges at distance t from the victim can be computed as

1

h
ϵ(1− ϵ)(t−1) Ratt + Z

where Z is an estimated noise level. This can be estimated using the average of a few

randomly chosen sets of h tags.

RPM and AMS have similar reconstruction cost. Both schemes use topology informa-

tion to perform a breadth-first search.

5.3 Evaluation

5.3.1 System Parameters

There are two parameters in the model we presented, ϵ and h. Both of them affect the

identification accuracy. The number of tags h each marker should generate plays a very

important role in determining a scheme’s effectiveness.

Choice of ϵ

Assuming the marking probability ϵ is uniform across all markers, there are two factors

affecting the choice of the ϵ value. One is that the mixture of mark distributions must

retain portions of contribution from each upstream marker, as the mixture is the basis for

identifying markers. Markers d hops away from the victim has a probability of 1−(1−ϵ)d−1

of its packet marks being overwritten. This probability drops with decreasing ϵ; larger

portions of upstream markers’ contribution can be retained, especially for the farthest

markers. The other factor for choosing ϵ concerns with the marking workload. Smaller

ϵ means lighter workload for each marker. Therefore, small values are preferred for ϵ.

Generally, the values between 0.03 to 0.06 provide a good tradeoff. If ϵ is too small, the

victim is required to handle a large amount of traffic before it can gather a converged

mixture of packet mark distributions.

Choice of h

In this section, we analyze the effect of different h on the false positives, when Bloom filter

is used for reconstruction. Recall from Section 4.3.1 that high entropy tags facilitates

high traceback accuracy. However, it is not always true that the higher the packet mark

entropy, the better the traceback accuracy. Consider an extreme case where every marker

holds 2L distinct tags and uniformly randomly selects them to mark packets. Entropy of

the collection of tags is close to the maximum, L, but the ability to differentiate markers

is lost. Bloom filter has its fill factor increases quickly with markers, if each marker has
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Figure 5.1: Effect of marking component lengths

many distinct tags; so is the false positive probability. Hence the choice of h is crucial to

the scheme’s effectiveness.

Consider a non-attack node i. It will be wrongly classified as an attack node if all of

its associated tags are received by the victim. Let β̂ be the probability that the node is

wrongly classified. Since the reconstruction is carried out hop-by-hop, not all nodes in

the network will be evaluated. Hence, it is not easy to relate β̂ to the false positive of the

overall scheme. Nevertheless, the analysis of β̂ provides some insights on the choice of h.

We do not consider false negative since the bloom filter will not miss any attacker.

We assume that the tags assigned to the markers are random. Since there are m

attack nodes, and each node is assigned h tags, there are a total of mh tags chosen (there

are likely to have repetitions within the mh tags). We can approximate this assignment

as the random assignment of mh balls into 2L boxes1, where each box correspond to a

tag. WLOG, let us assume that the first h boxes are assigned to the non-attack node i.

Hence β̂ can be approximated as the probability that all the first h boxes are filled, which

can be approximated by

β̂ ≈
(
1− (1− 1

2L
)mh

)h

≈
(
1− e

−mh

2L

)h
(5.2)

where e is the based of natural logarithm.

We perform the following simulation to analyze the role of h. The same edges data

1The two processes are not equivalent since each marker has exactly h distinct tags.
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Table 5.1: Comparison in bit allocation of PPM Schemes
Scheme #Bits Path Info (x) Hash Index

(L) (ID Info, Dist) (log2 h)

FMS 16 (8, 5) 3
AMS 16 (8, 5) 3
FIT 16+5 (13, 1 + 5) 2
RPM 16 (16, 0) 0

set as in Section 4.3.1 is used. L is set to 16. Each edge generates 1,000 packets with

h randomly chosen tags. For each h, 1 to over 8,000 edges are randomly chosen as

malicious. The false positives ratio β is measured as the ratio of falsely accused edges to

attack edges. Figure 5.1 illustrates how traceback accuracy varies with number of attack

edges for different h. From Figure 5.1, when m = 4, 000, h = 8 or 16 has the lowest false

positive ratio. From Equation 5.2, β is minimized when h = 12. When m = 8, 000, β

attains minimum at h = 5. The optimal β, computed using Equations 5.2, achieved for

various number of attackers is also shown in Figure 5.1. The simulation result largely

agrees with the analytical model.

When h = 2, β is high even with relatively small number of attack edges. However,

β increases slowly as the number of attack edges increases. From Equation 5.2, h = 1 is

the optimal setting if there are about 20,000 attack edges, with β approaches 1.66. As

h increases to 24, false positive tends to be lower for number of attack edges less than

4,000. Beyond 24, β increases quickly for large values of h. For number of attack edges

from 4,000 to 8,000, h = 23 is an optimal configuration.

In general, the result shows that there is an optimal number of unique tags each marker

should generate given the number of attackers. However, as the number of attackers

cannot be predicted, h has to be set to a value that is appropriate for the maximum

attackers anticipated.

Based on the analysis and simulation, it is now useful to compare the configura-

tion of PPM schemes using our analysis on the choice of h. Table 5.1 summarizes the bit

allocations for packet marks of several PPM schemes. These schemes are Fragment Mark-

ing Scheme(FMS) [69], Advanced Marking Scheme (AMS) [74], Fast Internet Traceback

(FIT) [93] and our proposed scheme, Random Packet Marking (RPM). Randomize-and-

Link (RnL) [35] and the algebraic encoding approach [24] both exploit more than 16 bits

as L, and have flexible settings in lengths of hash index and path information (Section

4.3.2). Nevertheless, it is interesting to note that most of the schemes, including RnL and

the algebraic encoding, use 2 or 3 bits for hash index, thus h is 4 or 8. For a large number

of attack edges, h = 22 or 23 suffices. When h = 23, the schemes are optimized for 4,000

to 8,000 attack edges. For a smaller number of attack edges, h = 24 is a better choice.
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Figure 5.2: False positives of AMS and RPM (noiseless)

5.3.2 Performance

For evaluation, we compare RPM to AMS. AMS is selected as it is the most scalable

among existing schemes that use 16-bit packet marks. The network topology used is

drawn from the Internet Mapping Project [1] data captured on January 2006. The data

set contains the route information from a source to 111,342 (∼ 216.8) destinations. There

are 260,386 (∼ 218.0) unique edges or 209,582 (∼ 217.7) distinct nodes. The single source

is used as the victim. From 100 to 1,250 nodes are randomly chosen as the sources of

attack packets. They may reside anywhere in the network. The attack path packet rate is

set to 1,000 packets per second, and the benign path packet rate is set to 1
10 of an attack

path. Each attack is simulated for 10 seconds. By then, the relative amount of different

packet marks are stable, and the collection is enough to reconstruct the attack graph.

In the experiments, the parameters for RPM are ϵ = 1
16 and h = 16. The setting

for AMS is as stated in [69], and referenced in Table 5.1. Simulations show that both

AMS and RPM have negligible false negatives, hence their α lines are omitted from the

figures. Their performances are compared only in terms of β, the false positives ratio in

identifying edges.

Figure 5.2 shows how β varies with number of attack paths in the noiseless case where

only packets from attackers are considered. It can be clearly observed that AMS has

exponentially increasing β with the increasing number of attack paths. When there are

1,000 attack paths, or roughly 4,650 attack edges, RPM and AMS have β values of 0.02

and 0.63 respectively.
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Figure 5.3: False positives of AMS and RPM (noisy)

Figure 5.3 shows the case where packet marks from both user and attacker paths

are supplied to the path reconstruction procedure. 200 user paths and varying number

of attack paths are simulated. The result is similar, though both AMS and RPM have

higher false positives. With 1,000 attack paths, RPM and AMS have β values of 0.09 and

1.28 respectively.

The improvement can be explained by comparing the packet marks entropy shown in

Figure 4.3. It shows that the packet entropy of RPM is very close to that of RnL, and is

much higher than AMS.

Figure 5.4 shows the number of routers falsely identified at each distance. The number

of attack nodes at each distance is also shown in the figure as a reference. In the simulation,

there are 1,000 attack paths and 200 user paths. At distances of 9-14 hops away, where

there are many routers, AMS generates many false positives. This is because AMS cannot

resolve packet mark collisions of routers at the same distance. On the other hand, RPM

has small amount of false positives at all distances.

Finally, Figure 5.5 shows β for RPM under different scenarios. The ‘RPM noisy (200

users)’ case maintains 200 normal users, varying the number of attack paths from 100 to

1,250. In the figure, the x-axis represents the number of attack paths for this case. The

‘RPM noisy (200 attackers)’ case keeps a constant number of 200 attack paths, but varies

the number of users from 100 to 1,250. The x-axis denotes the number of users in this

case. It can be clearly seen that even in the presence of noise, RPM still outperforms

AMS (noiseless) by a significant amount.
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Figure 5.4: False positives of AMS and RPM by distance

5.3.3 Gossib Attack and RPM’s Survivability

Gossib (Groups of Strongly SImilar Birthdays) attack [85] was proposed by Waldvogel.

It can be used to obtain effects similar to a birthday attack on PPM traceback schemes.

Gossib increases the state space for the victim to search, by randomly inserting edge

fragments into the packet marks. Simultaneously, it inserts misleading edges into the

attack graph. In addition, it optimizes the number of packets needed to fake the edges or

edge fragments.

Gossib attack appears severe to PPM traceback, for a diligent attacker can forge as

many packet marks as the amount of traffic it transmits, in comparison to a PPM marker

who performs the marking routine at around 1/20 of the time.

However, routers can co-operate to proactively identify and filter forged packet marks,

using an approach inspired by route-based distributed packet filtering (DPF) [63]. Park

and Lee proposed DPF as a defense against address spoofing. A gateway router verifies

the incoming addresses with respect to the topology. When a source address is invalid

against an interface, the gateway filters the packet. A number of spoofed packets can

survive even with the gateway’s filtering check, which is when the spoofed addresses

indeed are expected from the particular interface, but are either behind or in front of the

attacker. DPF limits the number of allowed address spoofing. The paper claims with

20% of all gateway routers performing the check, the effect of address spoofing becomes

contained.

For RPM to defend against the Gossib attack, routers at strategic points are forced
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Figure 5.5: False positives of RPM

to validate if the packet marks are expected to their interfaces. When a mismatch occurs,

the packet marks can be safely eliminated, by restoring them to all 0’s. The strategic

points can be based on topology and distance between routers.

For example, a checking router can be placed at about 3 to 5 hops away from another

checker. So each checker keeps track of all the possible packet marks of its upstream

markers within 3 to 5 hops. Using the same bit-allocation of packet marks as in Section

5.3.2, each checker keeps about 16 packet marks for each nearby upstream router. The

coverage effect by 20% routers can be achieved with this simple proposal, and the result

of DPF can apply.

By placing checkers at strategic points, the bogus packet marks can be eliminated

early. More importantly, the number of allowed packet marks each checker needs to

keep track of can be minimized. Hence strengthening the differentiability of packet mark

validity. The exact placement of the checkers are topology dependent. In general, the

rule of thumb is to place them before the bottleneck links, where multiple branches in the

network graph merge.

As defending against the Gossib attack is not the focus of our paper, we do not

reproduce the evaluations similar to the DPF research. It is sufficient to note that it

is possible for RPM (and PPM traceback schemes in general) to survive diligent Gossib

attackers.
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5.4 Summary

We present a PPM scheme called RPM that has good traceback accuracy and efficient

path reconstruction. Simulations show improved scalability and traceback accuracy over

prior works. For example, a thousand attack paths induce 63% of false positives in terms of

edges identification by using AMS. RPM lowers the false positives to 2%. The effectiveness

of RPM demonstrated that imposing sophisticated structures on tags is not necessary.

If imposing the structure reduces the randomness in tags, it should be avoided. The

improvement of RPM over prior schemes is mainly the result of increasing the information

carried by packet marks.



Chapter 6

Website Fingerprinting over VPN

We consider a traffic model of encrypted and proxied web browsing traffic, such as through VPN,

SSH and SSL/TLS encrypted tunnels. We passively analyze the web traffic to extract side channel

information to identify “fingerprints” of websites. We develop a scheme that introduces packet

ordering information into website fingerprints in addition to the commonly used packet sizes.

6.1 Overview

Website fingerprinting aims to identify the website accessed in some low latency, encrypted

tunnels. Website “fingerprints” are profiled on side channel features observed from the

HTTP streams. By HTTP stream, we mean the stream of packets sent and received when

web pages are accessed. From the perspective of web clients, website fingerprinting raises

the privacy concern and indicates the need for further anonymization. On the other hand,

such techniques aid the legitimate warden to track web accesses over encrypted channel.

Existing website fingerprinting schemes naturally fingerprint websites using packet

size related features [40, 78, 50], since neither the IP address nor domain name of the

website is available due to encryption and proxies. Due to network delay variations and

the HTTP pipelining mechanism adopted by modern browsers, the ordering of packets

varies in different accesses to the same website, previous works [40, 78, 50] have chosen

to discard the information on packet ordering. For example, Liberatore and Levine’s

scheme [50] represents each website fingerprint as a set of packet sizes and uses a variant

of set-difference to measure the similarity of two fingerprints.

In this chapter, we propose a website fingerprinting scheme that exploits packet order-

ing information, as well as information on packet sizes. We argue that although packets
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can be significantly reordered by HTTP pipelining and networks effects, there is sufficient

residual information in packet ordering to facilitate fingerprinting, and thus improving

the website identification accuracy.

Our scheme is evaluated on a classification problem that identifies an HTTP stream

among a list of profiled websites, as well as a detection problem in which it is uncertain

whether the test website belongs to the profiled set.

We tested our scheme on datasets containing up to 2,000 websites, with traces collected

over two months. For the classification problem, we test our scheme with full length

OpenVPN test streams, i.e., 30-second long encrypted HTTP streams tunneled through

VPN proxy server, and the website identification accuracy is 97% among 1,000 websites.

We also test with partial SSH traces that capture only the first few seconds of encrypted

communication, the accuracy is 81% among 2,000 websites, still over 10% better than the

previous scheme. For the detection problem, our scheme presents an equal error rate at

7%, which is significantly better than the previous scheme at 20%. Hence, for both types

of evaluations, our scheme yields superior identification accuracy than previous schemes.

In addition, we analyze the consistency of our website fingerprints, with respect to

static and dynamic websites, and different HTTP pipelining configurations. We find that

only 6% of the websites need reprofiling after a month. The results verify that our feature

selection generates consistent fingerprints.

6.2 Traffic Analysis Model

We use passive traffic analysis to fingerprint websites. There are two important observa-

tions that enable us to adopt this model. The observations are: (i) webpage download

by HTTP is highly structured; and (ii) encryption and proxy do not severely alter the

packet sizes, nor the packet ordering. The advantage of passive traffic analysis is that the

presence of a warden is completely transparent.

The HTTP streams for analysis are captured over the protected tunnel between client

and the VPN or SSH server, as shown in Figure 6.1. As in previous works [40, 78, 50, 10],

we assume browser caching is disabled. Website fingerprints are extracted from the HTTP

streams. Several fingerprint instances form the profile of a website. A testing stream is

compared to each profile for identification.

Traffic Model

Our fingerprinting model supports most browser configurations and the following connec-

tion patterns are accommodated (i) multiple TCP connections can be opened to download

in parallel different embedded objects, (ii) each TCP connection can be reused to down-

load multiple objects, (iii) HTTP requests can be pipelined in each connection, and (iv)
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Figure 6.1: Illustration of traffic analysis setup

all sessions are multiplexed onto a single port.

The connection patterns speed up the webpage download, but they increase the diffi-

culty to fingerprint websites. HTTP pipelining means a client is allowed to make multiple

requests without waiting for each response. Because of multiple TCP connections and

HTTP pipelining, data packets of different embedded objects can interleave, thus object

sizes cannot be determined by accumulating the amount of data received between con-

secutive HTTP requests. Multiplexing communication sessions hides the number of TCP

connections opened and the number of objects in a webpage.

Problem Scenarios

We tackle two problem scenarios, classification and detection. In both scenarios, a set D

of, say 1000, websites are profiled.

• Classification Given a test stream which is known to be a visit to a website in D,

identify the website. This is the same problem addressed in previous work.

• Detection Given a test stream, determine whether it is a visit to a website in D,

and identify the website if it is. We examine the false positive rate (FPR) and

false negative rate (FNR) in identification. This problem has not been addressed in

previous work.

The classification scenario requires the fingerprints of a website be sufficiently similar.

While the detection scenario further requires fingerprints of different websites be suffi-

ciently dissimilar.

Noise Model

There are a few sources of noises that degrade the consistency of HTTP streams, even if the

website contents have not changed. Connection multiplexing and browser configuration
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in HTTP pipelining are the main sources affecting the ordering of objects. In addition,

the object request order may be browser specific, and the dynamics in network condition

causes some random noise.

6.3 Website Fingerprinting Scheme

The fingerprint profile of a website is built by accessing the website through the encrypted

tunnel and extracting the fingerprints from captured HTTP streams. Testing streams

are captured in a similar way, from which fingerprints are extracted and compared to

the fingerprint profiles for identification. We present the details on fingerprint feature

selection and extraction, and fingerprint similarity comparison in this section.

6.3.1 Fingerprint Feature Selection

A straightforward approach to represent the fingerprint of an HTTP stream is by using

the sequence of all packet sizes and directions, i.e. fingerprint F = ⟨(s1, d1), (s2, d2), ...⟩
where si is i-th packet size, and di is its direction. Clearly, the approach makes fingerprint

comparison inefficient, since each sequence easily contains over a thousand elements. Yet

more importantly, the identification accuracy will be affected, because the ordering of

some packets often changes due to various noises. Hence, we apply domain knowledge to

select features.

Firstly, packets with sizes smaller than a threshold are considered control packets and

discarded from fingerprints, as control packets do not represent the webpage content and

potentially vary across traces.

Secondly, we keep only the non-MTU (Maximum Transmission Unit) downloading

packets as features of HTTP responses. The reasons why we exclude the MTU download-

ing packets are explained below.

Ideally, we would like to monitor object sizes rather than packet sizes, as inline objects

are less variable and more characteristic to a website. However, data of different objects

can interleave in transmission due to multiple TCP connections, HTTP pipelining and

connection multiplexing. It is difficult to associate the data blocks to their respective

objects. Fortunately, HTTP transmission is not random. Majority of web servers transfer

data in chunks. In each data chunk, all packets are sized as path MTU, except the last

packet transferring the remaining data. Therefore, although we cannot estimate object

sizes, we can leverage the last packet size of a data chunk, as it is specific to an object

component. As for packet ordering, packets that change their orders tend to be the

intermediate packets of different objects. By filtering the intermediate packets, we reduce

the probability of fingerprint inconsistency.
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Thirdly, we design the fingerprint of an HTTP stream to be two sequences, represent-

ing the request and response features respectively. Although a request must precede its

corresponding response, the order of other requests to this response is not deterministic,

but sensitive to the pipelining configuration. Hence the request and response features are

not merged into a single sequence.

Therefore, to fingerprint a website over encrypted tunnels, the side channel features

we select are (i) sequence of HTTP request sizes and (ii) sequence of HTTP

response sizes (except MTU packets). Note that the number of objects and the number

of components in object responses are two implicit features represented by the lengths of

these two sequences.

The features we select closely adhere to the webpage content and layout. The request

sequence reveals the relative locations of the embedded objects in a webpage and their

URL lengths. The sequence is consistent since webpages tend to have stable layout, and

browsers issue the object requests in the order they parse the object references. The

response sequence indicates the download completion order of the object components and

their last packet sizes. The sequence is stable since web servers serve requests in the

order they are received, and the response chunks are ordered by the object components.

Hence our website fingerprints are very consistent across traces, if network dynamics are

disregarded and the browser configuration is fixed.

We identify the HTTP requests and responses by packet sizes. As client sends packets

to the server either as acknowledgements or to make requests, any packet in the uploading

direction (from client to server) with size greater than a threshold is considered a request.

For the downloading traffic, we can broadly classify the packets into three types, which

we call 0-size packets, MTU-size packets and non-MTU-size packets. The 0-size packets

carry no object data, but are control packets added by OpenVPN, HTTP or TCP for

communication management. TheMTU-size packets transmit the continuous object data,

with sizes close to the path MTU. The rest packets belong to the non-MTU-size category.

Since TLS requires the sender to flush each record [41], we use non-MTU-size packet as

the signal for completion of a message chunk, and hence as a signature for an HTTP

response.

Note that DNS queries and replies are encapsulated and encrypted into TCP packets.

They may contribute to the fingerprint sequences depending on their packet lengths after

encryption. In any case, the order and sizes of the DNS queries and replies are consis-

tent since they occur when new TCP connections are about to be established for object

retrieval from a third party server, and their order and lengths represent the domain

name length of the referenced server and the approximate location of the reference in the

webpage.
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Estimate of Number of Unique Fingerprints

Based on the possible number of feature values and ordering, we can estimate the num-

ber of unique fingerprints and hence the potential number of distinguishable websites.

From the dataset containing the fingerprints of the homepages of about 1,000 popular

websites, the average number of object requests and response components are 66.5 and

135.9 respectively. Since each non-MTU-size packet can take over 1,000 possible values

and repetitions are allowed, the number of unique fingerprints is estimated to be over

1, 000202.4 ≈ 22024. This number is an underestimation because it assumes website finger-

prints are of the same length. Yet not all websites can be uniquely identified. For pure

HTML webpages without embedded objects, approximately 1M unique fingerprints are

available, but the number of such webpages is larger. Fortunately, popular websites of

interest for identification usually have large number embedded objects, e.g. graphics and

advertisements. Websites that have relatively long fingerprint sequences naturally have

higher probability of being uniquely identifiable.

6.3.2 Fingerprint Similarity Measurement

Edit distance measures the number of edit operations to make two strings identical. Lev-

enshtein distance is a form of edit distance that allows insertion, deletion or substitution

of a single character. We use Levenshtein distance to measure the similarity between two

fingerprints. It is commonly computed using the Wagner-Fischer algorithm [84].

In our application, we set the cost of insertion, deletion and substitution all equal

to 1. If network dynamics are disregarded, each operation reflects a modification to an

embedded object, and we do not consider any operation changes the webpage more.

We normalize the edit distance by max(|x|, |y|), where |x| denotes the length of se-

quence x. We define similarity = 1−distance, to convert the distance measurement into

similarity. Given two fingerprints, two similarity values measured on the object request

sequences and on the non-MTU response sequences are combined as follows:

α · simHTTPget + (1− α) · simnonMTUpkts

where α is a tunable parameter, indicating the degree of reliability of the similarity values.

We set α = 0.6 in our experiments, as the sequence of object requests is more stable.

The probability of a test stream coming from a particular website is determined as the

maximum similarity between the fingerprint of this stream and the various fingerprints

in the website profile.

Edit distance is chosen as our similarity measure because (i) fingerprint instances

vary as a result of network dynamics and webpage updates, whose effects are shown as

insertion, deletion or substitution in the sequences, (ii) it considers the order information,
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which differs from Jaccard’s coefficient that treats the feature values as a set, and (iii)

the length information of fingerprint sequences are encapsulated for evaluation.

Example

Given two fingerprints FA = (Areq, Ares) and FB = (Breq, Bres), where Areq = ⟨436, 516,
500, 532⟩, Ares = ⟨548, 628, 1348, 1188, 596, 372, 980⟩, Breq = ⟨436, 516, 500, 253, 500⟩
and Bres = ⟨548, 628, 1348, 1188, 436, 412, 1268⟩.

To make the request sequences Areq of FA and Breq of FB identical, we need two edit

operations: delete the last 500 from the Breq, and change 253 in Breq to 532. Thus the

edit distance between the request sequences Areq and Breq is 2. We then normalize it

by dividing it by the longer length of the two sequences, the edit distance is 2/5 after

normalization. So the similarity between Areq and Breq is 1 − 2/5 = 3/5. Similarly, we

can compute the similarity between the two response sequences Ares and Bres, which

evaluates to 4/7. Hence when α = 0.6, the overall similarity between FA and FB is

0.6× 3/5 + (1− 0.6)× 4/7 = 0.59.

6.4 Evaluation

In this section, we present the performance and analysis of our fingerprinting scheme. The

experiment settings and data collections are described in Section 6.4.1. We evaluate the

performance of our scheme in both classification and detection scenarios and present the

identification accuracies in Section 6.4.2. The consistency of our fingerprints with respect

to HTTP pipelining configurations, number of profiling samples and website updates is

analyzed in Section 6.4.3.

6.4.1 Experiment Setup and Data Collection

We prepared three datasets on OpenVPN for evaluation, namely, static50, dynamic150,

and OpenVPN1000. The dataset static50 contains the trace data of 50 websites that are

rarely updated (less than once in a few months); the dataset dynamic150 contains the

traces of 150 websites that are frequently update (daily); and the dataset OpenVPN1000

contains the traces of 1000 popular websites.

To demonstrate that our scheme also works on SSH, we use the publicly available

dataset OpenSSH2000 [50], which contains the traces of 2000 most visited websites ac-

cessed through OpenSSH, captured once every 6 hours for 2 months. This trace captures

only packet headers in the first 6 seconds of a webpage download.

We prepare the datasets of OpenVPN by visiting the websites1 and capturing the

1Currently we identify a website by fingerprinting its homepage. If the internal pages of a website are
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packet traces daily for 3 months. The traces are captured using TCPDump [79] between

the client and the VPN server. We used Firefox for the capture, HTTP pipelining is

enabled and its default value is 4 (at most 4 HTTP requests can be served concurrently).

Cache is cleared after each access. Flash player is installed, since many websites use flash

in their homepages. Each web access is monitored for 30 seconds, to allow the operations

of object request and response to fully complete.

The topology, size and content of high level cache is not within our control for evalu-

ation. In our experiments, the profiled websites are accessed regularly, so we expect most

objects are consistently cached close to the VPN or SSH server.

We use Liberatore and Levine’s scheme [50] for performance comparison, and refer to

it as the reference scheme. Our scheme that performs preprocessing is referred to as the

improved scheme, otherwise it is called the basic scheme or simply our scheme. For each

website, 15 traces are used to generate the fingerprint profiles, and 10 other traces are

used for testing. The fingerprint sequence of object requests are composed of packet sizes

that are larger than 300 bytes in the uploading direction. The fingerprint sequence of non-

MTU responses consists of packet sizes between 300 to 1,450 bytes in the downloading

direction. These settings are used in our experiments, unless otherwise specified.

6.4.2 Fingerprint Identification Accuracy

In the following, we show the fingerprint identification accuracies for classification and

detection scenarios. As described in Section 6.2, a test stream is known to be from the

profile websites in the classification scenario, but it is unknown whether a test stream is

from the profile websites in the detection scenario.

Accuracy of Classification Scenario

The fingerprint identification accuracies on the OpenVPN datasets static50, dynamic150

and OpenVPN1000 are shown in Table 6.1. Note that for all three datasets, the accuracy

of our scheme is close to 100%. In comparison, the reference scheme yields an identification

accuracy of 90% when it is run on OpenVPN1000.

Dataset Static50 Dynamic150 OpenVPN1000

Accuracy 99% 97% 97%

Table 6.1: Fingerprint identification accuracy for various datasets

To demonstrate that our scheme works well for identifying websites accessed over other

tunnel, we tested it on the dataset OpenSSH2000, with parameters fully complying with

also profiled, we can use the fingerprints of individual pages as well as their linkage information to identify
more accurately and confidently the website being surfed.
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Figure 6.2: False positive and false negative rates with respect to similarity thresholds

the settings in [50]. The accuracy of our scheme reaches 81%, outperforming the reference

scheme by 11%. The improvement is due to the fact that our scheme is able to identify

websites that have similar sets of packet sizes but different packet orders.

Accuracy of Detection Scenario

It is unknown in this scenario whether a test stream is from the profiled websites. Thus

a test stream not from the profiled websites may be identified wrongly as from one of

the website in the profile (false positive); and a test from the profiled websites may be

identified wrongly as not from the profiled websites (false negative). We evaluate the

fingerprint identification accuracy in terms of false positive rate (FPR) and false negative

rate (FNR) for the detection scenario.
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Profile Accuracy

Multiple pipeline degree 99.7%

Single pipeline degree (pipeline degree = 4) 99.3%

Table 6.2: Fingerprint identification accuracy with respect to different pipeline configu-
rations

From the dataset OpenVPN1000, we randomly pick 200 websites to profile. Traces

from both these 200 websites and the remaining 800 are used to test the fingerprint

identification. The accuracy of our method is shown in Figure 6.2a, and performance of

the reference scheme is shown in Figure 6.2b.

Comparing Figure 6.2a with Figure 6.2b, the FPR and FNR curves for our scheme

are more separated from each other than that for the reference scheme. The equal error

rate (EER) for our scheme occurs when the similarity threshold is 0.21, at which both

FPR and FNR are 7%. While for the reference scheme, at the similarity threshold of 0.36,

EER occurs to be 20%, almost three times of ours. If we minimize the total error rate,

i.e. sum of FPR and FNR, the optimal similarity threshold for our method will be 0.22,

with only 6% FPR and 8% FNR. While for the reference scheme, the optimal similarity

threshold will be 0.37, at which its FPR and FNR are 9% and 27% respectively. The

results show that our scheme is much stronger for differentiating websites.

6.4.3 Consistency of Fingerprints

Website fingerprints can be influenced by several factors even if the webpage contents have

not changed. These factors include browser pipeline configuration (Section 6.4.3) and

network dynamics (Section 6.4.3) that cause packet loss, reordering and retransmission.

Note that the randomness in the amount of control packets does not affect our fingerprint

at all. Through experiments and analysis in this section, we show that these factors do

not seriously affect the consistency of our fingerprints.

Effect of HTTP Pipelining

To illustrate the effect of HTTP pipelining on the fingerprint sequences, we vary the

pipeline degree from 1 (non-pipelined) to 8 (the maximum supported by Firefox as to

date). We capture OpenVPN traces of 100 websites. For each website, fingerprints derived

from 15 traces with varying pipeline degrees are kept as profiles, and 15 test streams per

website of varying pipeline degrees are compared with their own website profiles.

Figure 6.3 shows that the fingerprint similarities of a website is high. 70% of the

websites have similarity in the object request sequences higher than 0.5, and 50% of the

non-MTU-size response packet sequences have similarity larger than 0.5. It is also shown
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(b) Sequence of non-MTU responses

Figure 6.3: Effect of pipelining on the fingerprint sequences

the similarities of a website’s fingerprints have similar values at different pipeline degrees.

Test streams of a pipeline degree of 4 is most similar to their profiles, because 4 is the

median of pipeline degrees in each profile. Because the object request and response order

is tightly associated with the webpage layout and object sizes, HTTP pipelining does not

dramatically change the fingerprint sequences.

To demonstrate that websites can be profiled using a single pipeline degree, we per-

formed an experiment in which the profiled fingerprints are of a single pipeline degree of

4, in comparison to the case where the profiles are composed of fingerprints of various

pipeline degrees, while the test streams are always of various pipeline settings. 100 web-

sites are profiled, each with 15 traces, and 15 other traces are used as test streams. The

identification accuracies are shown in Table 6.2. With either profile, the identification
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Figure 6.4: Effect of the number of learning samples

accuracy exceeds 99%. The results show that our fingerprints are not sensitive to changes

in the pipeline settings. We can identify websites with high accuracy even when they are

profiled in a single pipeline degree but tested with various pipeline degrees.

Number of Profiling Samples per Website

The number of samples needed to profile a website is related to the stability of the network

and the website properties such as variations in the dynamic contents. Yet these factors

are connection and website specific and may evolve over time. In order to isolate the effect

of network dynamics from webpage updates, we perform the experiment on the websites

that update infrequently, i.e., using the dataset static50. The number of profiling traces

varies from 1 to 10, and 5 test streams per website are used to test the similarity to their

own website profile. Figure 6.4 shows the average and standard deviation of similarity of

all websites versus the number of profiling samples. The figure shows that under normal

network condition, we only need a couple of traces to profile a static website. Increasing

the number of samples further does not increase the similarity on average. Although

network dynamics affects the object download completion order, the experiment shows

that our fingerprints are not seriously affected by it. The reason is that we only monitor

the last packets in message chunks instead of all data packets, so the probability of the

monitored packets being affected is reduced.

Effect of Website Update

To evaluate how well the profiles represent websites over time, we measure the fingerprint

identification accuracy weeks after constructing the profiles. The evaluation helps to

decide the update frequency of website profiles. We perform an experiment on the datasets
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OpenVPN1000 and dynamic150 to study the impact of (frequent) content updates on the

fingerprint identification. For each website, we randomly pick 5 traces captured within

week 0 to generate the website profile, then the traces of 4 randomly chosen days in each

of week 1, 2, 3, 4 and 8, are tested against the website profiles.

The results are shown in Figure 6.5. For dataset OpenVPN1000, the identification

accuracy gradually decreases over time, which remains high at 93% a month later and

becomes 88% after two months. For majority of the websites, their profiles need not be

regenerated, only about 6% of the most frequently updated websites need to change their

fingerprint profiles in the first month, and another 6% in the second month. For the

dataset dynamic150, the decrease in identification accuracy is more obvious over the two-

month period, because their website contents are frequently updated, and the changes

accumulate over time. Nevertheless, the fingerprint identification accuracy is 96% one

month later, and 81% two months later.

6.4.4 Computation Efficiency

The time taken to identify a website varies with the fingeprint length. It is on aver-

age about 5 seconds (measured on a PC with 2.53GHz CPU and 2GB of RAM) when

identifying the fingerprint among 1,000 website profiles each containing 15 fingerprints.

The evaluation can be sped up with parallel computation on multi-core microprocessor.

The storage required is very small, and the website profiles containing 15,000 fingerprints

(written in ascii format) only take 12.4 MB. The computation cost of our scheme is low,

and the storage overhead is small, so our approach is scalable.
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6.5 Discussions

We discuss several issues concerning the practicality of website fingerprinting.

Associating packets to HTTP streams.

Real life Internet traffic are more complex than what we analyze in the model. One can

use Skype, IM concurrently with web browsing, and can open multiple websites at the

same time. Previous works [91, 12] have shown that application layer protocols can be

fairly reliably identified in encrypted traffic. Previous work has also experimented with

using time gap to separate traffic of webpages from tabbed browsing. It is based on the

assumption that the victim requests webpages sequentially due to think times, and hence

there are no overlapping transmissions. Yet the result shows it may be difficult to accu-

rately associate network packets to different webpages. We plan to derive new methods

in future work to extract individual web sessions from network traces.

Browser caching.

Some privacy guidelines state that browser caching should be disabled. Most internet

banking sites always remind users to clear off their browser cache after each Internet

banking session. If browser cache is enabled, one can determine if a user has accessed

some sensitive website using the attack in [27]. The victim is issued requests on some

objects of the sensitive website. From the response time, we can determine if the objects

are cached and hence whether the user has visited the website.

Browser cache is often enabled in reality for efficiency. However, the experiment by

Herrmann et al. [39] on their packet size frequency based website fingerprinting shows that

the performance of their scheme is only moderately affected if browser cache is enabled.

Though the underlying reason is not thoroughly analyzed, it suggests that caching may

not be affecting website fingerprinting as much as one might think, even when the cache

size is very large (2GB) such that practically cached contents are nearly never deleted.

Information from internal pages and user interaction.

Internal pages of a website and user interaction provide additional sources of information

to website identification. If internal pages of a website are profiled, we can use fingerprints

of individual pages as well as their linkage information to identify more accurately and

confidently the website being surfed [16].

From encrypted Internet traffic, HMM can be used to classify application layer proto-

cols, e.g. IM, web browsing, P2P sharing. Our work focuses on the web browsing traffic,

to identify the website being accessed. Assuming it is known which web application is be-
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ing used, one can model the series of interactive requests and the finite number of possible

responses as state transitions, to infer the choices a user indicates [15]. User interactions

are very dynamic in general, but careful modeling and examination will help to not only

identify the website, but potentially reveal more targeted sensitive information, e.g. op-

erations performed in Internet banking. We believe these mechanisms complement one

another. We also note that the encrypted packets associated with internal pages or user

interactions are more difficult to isolate compared to identifying traffic for the homepage.

6.6 Summary

In this chapter, we developed a robust website fingerprinting scheme over low latency

encrypted tunnels. We make use of the seemingly noisy packet ordering information,

rather than just the distribution of packet sizes as in previous work. The ordering of

a selection of packets is consistent due to the behaviorial characteristics of protocols

and browsers, and such information is preserved and exposed regardless of proxy and

encryption.

We tested our scheme extensively on datasets containing up to 2,000 websites, with

traces collected over two months. Our scheme identifies websites with high accuracy on

both SSH and SSL tunnels, even for websites with dynamic contents. We moved the

evaluation model beyond closed world identification (classification problem), such that a

testing stream may be outside the set of profiled websites (detection problem). For both

classification and detection problems, our scheme yields superior identification accuracy

than the previous scheme.

We also analyzed the consistency of our website fingerprints, with respect to static

and dynamic websites, and different HTTP pipelining configurations. The results verify

that our feature selection generates consistent fingerprints.
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Chapter 7

Resistance of Website

Fingerprinting to Traffic

Morphing

We investigate the robustness of our scheme proposed in the last chapter against traffic morph-

ing, which is a bandwidth efficient countermeasure against website fingerprinting that changes the

packet size distribution of the source web traffic to imitate another website.

7.1 Overview

We proposed in last chapter a website fingerprinting scheme that takes advantage of

packet ordering information. The scheme not only improves the fingerprint identification

accuracy upon previous results, but also withstands traffic morphing that minimizes the

bandwidth overhead while transforming the packet size distribution to defend against

website fingerprinting. We show in this chapter that our website fingerprinting scheme can

differentiate between morphed traffic and its mimicked target, and that source websites

can be identified with high accuracy even with morphing.

Simple defenses to website fingerprinting have been proposed in previous works, in-

cluding variations of packet padding, e.g. maximum padding and mice-elephant packet

padding. Maximum padding pads every packet to the size of path MTU. It can thwart

size related traffic analysis, but the amount of overhead it causes is nearly 150% of the

actual data [50]. Mice-elephant is less aggressive. It pads packets to two sizes, either to a

small size for control packets, or to the path MTU for data packets. Thus the information
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revealed is limited to the approximate total size of object requests and the total size of

webpage contents, including embedded objects. Yet the bandwidth overhead it causes

is 50% of the data size. The large bandwidth overhead they cost leads to insufficient

incentives for deployment.

As reviewed in Section 2.5, “traffic morphing” [90] is designed as a scheme to evade

detection by warden, and at the same time, incurs small bandwidth overhead. Traffic

morphing alters the packet size distribution of an HTTP stream, to make it appear as

if it is from another website. A morphing matrix is pre-computed that transforms the

packet size distributions and minimizes the total increase in packet sizes. The morphing

technique targets at website fingerprinting schemes that utilize size related features but

not the ordering information. Unigram traffic morphing changes the distribution of single

packet size; bigram traffic morphing changes the distribution of sizes of two consecutive

packets. Limited or no ordering information is considered in bigram or unigram morphing.

The website fingerprinting scheme we propose is able to withstand traffic morphing

that is constrained on bandwidth overhead minimization. Although traffic morphing is ef-

fective in misleading or confusing the website identification by fingerprinting schemes that

exploit only size related features, our scheme is robust to the traffic morphing technique,

as we are able to differentiate among websites that have similar packet size distributions

but dissimilar packet ordering.

The limitation of traffic morphing lies in that it cannot simultaneously satisfy low

bandwidth overhead and preserve packet ordering. The reason is that in practice, for

a given website, there are very limited choices for the size of the n-th packet once the

sizes of the previous n − 1 packets are fixed. We point out that if the traffic morphing

scheme is extended to n-gram (n ≥ 2) morphing (morphing the distribution of sizes of n

consecutive packets), its bandwidth efficiency will become worse than some simple packet

padding scheme.

Experiment results verify that our scheme is resilient to the traffic morphing tech-

nique [90]. When traffic is morphed according to unigram (i.e. single packet size) dis-

tribution, our scheme distinguishes the morphed traffic from the mimicked target with a

success rate of 99%; while the previous scheme distinguishes only 25%. When traffic is

morphed according to bigram (i.e. two adjacent packet sizes) distribution, our scheme

distinguishes 98.7%, versus 22.5% for the previous scheme. When bigram morphed traffic

are mixed with traces of 2,000 other websites, our scheme correctly identifies 78% of the

morphed traffic, while the previous scheme identifies 52%.

Our analysis suggests that both sizes and ordering features should be removed in

countermeasures to website fingerprinting. We suggest some countermeasure exploiting

randomization in packets or HTTP requests and responses. The countermeasure provides

some communication privacy and is low in bandwidth overhead, though it may trade off
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the response time.

7.2 Website Fingerprinting under Traffic Morphing

Our scheme is able to differentiate website fingerprints even under traffic morphing [90].

For the ease of discussion, let us call the source website WS , and its morphed traffic S′.

Website WS mimics a target website WT . The traffic of WT is T . From S′, we want to

identify WS .

We differentiate WS and WT fingerprints by packet ordering. Assume that we know

website WS morphs its traffic, while website WT does not, a large edit distance between

T and test stream S′ indicates that S′ is not from WT , because the fingerprints of WT

should be fairly consistent without morphing. Hence, test stream S′ is from website WS .

If there are k websites imitating the same target WT , source WS is likely uniquely

identifiable. The reason roots at the morphing constraint to minimize bandwidth over-

head. A morph algorithm maps each source packet to some minimally different sizes in

the target distribution. Because of the correlation in packet sizes before and after morph-

ing, and the consistency in the ordering of unmorphed packets, morphed traffic also have

reasonably consistent order. It leaves us a loophole to differentiate among the k websites.

In evaluations, we examine the identifiability of k morphed websites amid other web-

sites not related by morphing. We preprocess to narrow down the candidate websites by

packet size distributions, e.g. using L1 distance measurement.1 On one hand, the pre-

processing safeguards that the morphing websites are not filtered prematurely. Morphed

streams tend to have larger variations in packet ordering, because a source packet can map

to a few target sizes and the choice is probabilistic for each morphing instance. On the

other hand, preprocessing eliminates noise websites that the test stream may incidentally

share similar size sequence with, but are dissimilar in size distributions.

Since we evaluate the similarity of fingerprints based on the whole sequence of feature

values, our scheme can recover the identity of the morphed traffic, as long as morphing

does not handle the distribution of n-gram for n close to the sequence length.

7.3 Tradeoffs in Morphing N-Gram Distribution

We now consider the tradeoffs if traffic morphing preserves some packet ordering as in

morphing bigram (two adjacent packet sizes) or higher-gram distributions.

While unigram morphing changes the distribution of single packet size, bigram mor-

phing changes the distribution of two consecutive packet sizes, to make the traffic appear

1L1 distance between two website fingerprints is computed as the sum of absolute differences in their
packet size distributions.
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as if from some target website. The problem of finding the morph matrix is formulated as

an optimization problem, in which the goal is to minimize the bandwidth overhead, and

the constraints are the source and target packet size distributions. The morphing ma-

trix is pre-computed and it transforms the source to target packet size distribution with

minimum overhead. It is easy to understand that when n-gram distribution is satisfied,

m-gram distribution for any m > n is not necessarily satisfied.

Traffic morphing has an important objective of bandwidth efficiency. However, if

traffic morphing is extended to n-gram (n ≥ 2) to consider some packet ordering informa-

tion, its bandwidth usage becomes increasingly inefficient. The reason is that higher-gram

morphing has to concurrently satisfy all the lower-gram distributions, so there are very

limited choices for the size of the n-th packet once the previous n − 1 packet sizes are

fixed. Source packet sizes have to map to the target distribution even though the size

differences are large. For some value of n, the bandwidth efficiency of traffic morphing

drops below packet padding schemes.

N -gram morphing has a considerable computation cost which grows exponentially

with the number of grams considered. The computation is performed to find the morph-

ing matrix that minimizes the bandwidth overhead. In the worst case, n-gram morphing

needs to optimize x2(n−1) + x2(n−2) + ...x2 + 1 matrixes per source-target pair of web-

sites, with each matrix containing x2 elements. Here x represents the number of distinct

lengths of packet payload. Its maximum is 1461 for Ethernet packets. If we consider

unigram morphing trades off computation for bandwidth, then when n increases, all the

computation, storage and bandwidth costs of n-gram morphing increase.

7.4 Evaluation

In this section, we empirically show that our scheme can differentiate fingerprints of

websites morphed by packet sizes with limited ordering information, and we verify that

there is significant bandwidth overhead for n-gram (n ≥ 2) morphing.

7.4.1 Fingerprint Differentiation under Traffic Morphing

We perform three sets of experiments to evaluate the fingerprint differentiation ability

of our scheme under traffic morphing. We use Liberatore and Levine’s scheme [50] for

performance comparison, and refer to it as the reference scheme. Our scheme that per-

forms preprocessing is referred to as the improved scheme, otherwise it is called the basic

scheme or simply our scheme.
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Figure 7.1: Distribution of distance between morphed traffic and the mimicked target

Differentiating Morphed Traffic

We take 2,000 websites as the mimicked targets, and generate the morphed traffic such

that the packet size distributions are within L1 distance of 0.3 between a morphed traffic

and its target. The same L1 distance threshold is used in the traffic morphing scheme [90].

For each target website, we generate 4 variants of the morphed distributions, and draw 5

instances from each variant. The distance in our scheme is measured using edit distance;

while that in the reference scheme [50] is 1 − S, where S is Jaccard’s coefficient. The

distribution of the distances between the morphed traffic and the target traffic in unigram

morphing and bigram morphing are shown in Figure 7.1a and Figure 7.1b, respectively.

For unigram morphing as shown in Figure 7.1a, compared to the reference scheme, our

scheme shifts rightwards the range of distances from 95% in the interval [0.1, 0.4] to 95%
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Figure 7.2: Identification accuracy of k websites that morph to the same target

in [0.4, 0.8]. The larger distance indicates that our scheme differentiates more clearly the

morphed traffic and the target. The vertical bar at 0.3 indicates the distance threshold,

and a test returning a value below the threshold means that the distance evaluation cannot

separate the morphed instance and the mimicked target. For the reference scheme, 75%

of the tests fail; while for our method, there is only 1.0% error cases, i.e., our scheme

differentiates 99% of the morphing traffic. As shown in Figure 7.1b, the experiment on

bigram morphing yields similar results. For the reference scheme, 78% of the tests fail;

while for our method, there is only 1.3% error cases. The experiment result shows that

although traffic morphing is effective against the reference scheme, our scheme is highly

resistant to it.

Identifying Multiple Websites Morphed to the Same Target

We extend the evaluation to multiple websites morphing to the same target, and compare

the distinguishability using our scheme, the reference scheme and random guess. We take

20 disjoint sets of k websites, where the first (k − 1) websites bigram morph towards the

k-th website. Each morphing website generates 6 instances, 3 as learning samples and

the rest 3 as test cases. We vary k from 2 to 6, and measure the identification accuracy

of morphed traces in each set. The average identification accuracy of all sets at each k is

presented in Figure 7.2.

When our scheme differentiates between k = 2 websites, i.e. the source and target of

morphing, it yields a high identification accuracy of 85%. As k increases, more websites

share the same morphing target, the accuracy gradually decreases. When k = 6 candi-

dates, which means five source websites morph to one target, our scheme has an accuracy

of 50%. In contrast, accuracy of the reference scheme is 29% when k = 6, while random
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Figure 7.3: Identification accuracy of k morphed websites among 2,000 other websites

guess gives a probability of 17%. The reference scheme performs not much better than

random guess. It shows that the reference scheme cannot reliably distinguish websites

that share similar packet size distribution. Our scheme is much stronger at differentiating

among multiple morphing websites and their mimicked target.

Identifying Morphed Traffic Mixed with Other Websites

Previous experiments examine the distinguishability within morphing sources and their

target. Next we evaluate the identifiability of 20 sets of k morphing websites when they are

mixed with 2,000 other websites. Morphing websites are profiled based on their morphed

traces. We set the L1 distance threshold to be 0.4 in screening websites by packet size

distributions. The threshold is slightly larger than in morph algorithm computation

to accommodate some incompliance between the computed and generated packet size

distributions. The incompliance is caused by packet splitting which generates new packets

that are not accounted for in the computation of morph algorithm. Yet the threshold

cannot be too large, so as to avoid keeping as candidates of websites not in the morphing

relationship. Large threshold in L1 distance will add noise to the identification.

The identification accuracies are shown in Figure 7.3. Comparing Figure 7.3 and Fig-

ure 7.2, our improved scheme performs equally well when it identifies k morphing websites

among a large set of unrelated websites and when it differentiates within the morphing

websites. When k varies from 2 to 6, our improved scheme has an identification accuracy

ranges from 78% to 50%, while the reference scheme has a corresponding range of 52% to

26%. Even when k = 6, meaning each target website has 5 imitators, our identification

accuracy of the imitators is still 50%. The performance of our basic scheme in Figure 7.3

degrades compared to in Figure 7.2, because some morphed traces incidentally map to
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websites unrelated by morphing. However, its performance is still better than the refer-

ence scheme. Our basic scheme identifies the morphing websites with an accuracy of 61%

at k = 3, the reference scheme correctly identifies 39%.

We run our improved scheme on 2,000 non-morphing websites. It gives the same

identification accuracy of 81% as the basic scheme in this case. It is compatible to web-

site fingerprinting at the absence of morphing, since non-morphing websites have HTTP

streams that are consistent in both packet size distributions and ordering.

7.4.2 Bandwidth Overhead of N-Gram (N ≥ 2) Morphing

We perform an experiment to verify that there are few choices of packet sizes for the n-th

packet once the previous n − 1 packet sizes are fixed. We retrieve 6-second traffic from

2,000 most popular websites, and analyze the distribution of the sizes of n consecutive

packets for each website, then average the results. The experiment results are presented

in Figure 7.4.
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Figure 7.4: Distribution of the number of possible packet sizes for n-gram morphing

In Figure 7.4, for trigram, 4-gram and 5-gram morphing, once the sizes of the previous

2, 3 and 4 packets are fixed, there is only one possible packet size for the third, fourth

and fifth packet with probability 31.2%, 48.5% and 61.0%, respectively. Similarly, there

are no more than three possible packet sizes for the n-th packet with probability 54.2%,

69.4% and 77.2% for trigram, 4-gram and 5-gram morphing, respectively. The experiment

results show that with high chance, there are very limited parameters that can be adjusted

to reduce the bandwidth overhead. Thus when morphing considers packet ordering for

n ≥ 3, it becomes very poor in bandwidth efficiency.

We further present the numerical evaluation on the bandwidth overhead of bigram
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morphing (n = 2), in comparison to mice-elephant packet padding. Though Wright et al.

have evaluated n-gram morphing (n = 2, 3) on other applications, the bandwidth overhead

on defending against website fingerprinting they presented was only for unigram morphing

(n = 1), in comparison to padding packets to the path MTU [90]. Mice-elephant packet

padding is a simple and effective padding scheme against website fingerprinting, and it

causes less bandwidth overhead compared to maximum packet padding.

We use traces of 100 websites from the SSH2000 dataset. The i-th website is morphed

to the (i + 1)-th website. Packet sizes can be increased through padding and decreased

through fragmentatioin. Each HTTP stream is morphed 5 times. The average overhead

is presented in Figure 7.5.

Figure 7.5a shows the percentage of added packets due to traffic morphing. The added

packets are caused by packet splitting, which are not captured in but in fact change

the source packet size distribution. The pre-computed morphing matrix does not apply

to optimize the transformation of the dynamically added packets. The target sizes of

these packets are sampled from the target size distribution to ensure they too follow the

distribution after morphing. Transmission of extra packets incurs overhead in bandwidth

and delay. From our data, more than 7 times of packets are added due to morphing

for some website. Creation of extra packets is most severe when the source packets are

mostly large while the target packets are mostly small. The source packets are fragmented

several times iteratively.

Figure 7.5b shows the average added bytes per packet by morphing and mice-elephant.

We count only the bytes padded due to morphing a small packet to a large one, but not the

header bytes added due to packet splitting. A packet may be split one or multiple times.

Only the initial split is guided by the morphing matrix, subsequent morphing operations

depend on the sampling of target sizes. The randomness can affect the amount of added

header bytes observed. Yet we note that if added packet headers are accounted, the

average added bytes per packet will increase. Using mice-elephant, 80% websites have

150 to 300 bytes of overhead per packet; but using traffic morphing, about 90% websites

need to send 300 to 500 extra bytes for each packet, which is much higher than mice-

elephant. When source distribution contains a large percentage of small packets, while

target distribution contains many large packets, then the padded bytes per packet is

expected to be high.

Figure 7.5c shows the overall bandwidth overhead, comparing bigram morphing and

mice elephant packet padding. Similar to the measurement of added bytes per packet,

we do not count the bytes of added packet headers. From the figure, we can see that

20% websites have bandwidth overhead more than 100% of the actual data, using bigram

morphing. The overall bandwidth overhead can be 4 times of the original source traffic.

While using mice-elephant packet padding, 75% websites have the bandwidth overhead
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less than 50% of the total source packet sizes, and only 5% websites have bandwidth

overhead more than the total source packet sizes.

We have discounted the packets needed to make the amount of data similar between

the source and target websites, in the overhead measurement of morphing. If a target

website has more data than the source website and the morphing scheme takes that

into account, then the overhead of traffic morphing in terms of additional packets, extra

bandwidth and padded bytes per packet may increase from the data we present here.

In short, our experiment shows that n-gram morphing is less bandwidth efficient than a

simple mice-elephant packet padding even when n = 2.

7.5 Countermeasures

Existing proposals of countermeasures to website fingerprinting cover up traffic features

by modifying the packet sizes. The operations range from padding packets, repackaging

packets to a single size and adding dummy traffic. Yet most countermeasures (e.g. packet

padding and dummy traffic) are not deployed in practise due to the large bandwidth

overhead they incur.

We suggest an alternative countermeasure that uses randomness to weaken the abil-

ity of website fingerprinting. The countermeasure randomizes on both packet sizes and

request ordering, as information from size and timing channels can be exploited by web-

site fingerprinting schemes. To muddle the ordering of object downloads, we have the

browser to randomize the object request order. To conceal the request and object sizes,

we have the server and the browser to package data into randomly sized packets. The

countermeasure incurs low much bandwidth overhead.

Randomizing the Ordering of Object Requests

The website fingerprints we extract are consistent because of the predictable behaviors of

HTTP and browser. As part of a countermeasure, we propose randomizing the ordering of

object requests by browser. This functionality can be easily incorporated by implementing

it as a browser plug-in. With the plug-in, browser buffers x HTTP requests of embedded

objects, and sends them in a random order, where x can be a random number dynamically

generated at each web access. The cost of it lies in buffering the object requests which

may delay the presentation of a webpage slightly.

Randomizing the Packet Sizes

To make the sizes and ordering of packets untraceable, browser and web server each

generates a sequence of random numbers for a web access, and buffers data to send in
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packets of the random sizes. The operations include splitting the packet data and merging

data from multiple packets.

Web server generates a random number when there is data to transmit. If the data

have fewer bytes than the random number, server waits for more data. This incurs some

buffering delay. If no more data are to be sent, or the waiting time expires, the server

simply releases the packet. If the amount of data is more than the randomly generated

target size, server splits the packet, and processes the remainder of the packet in the same

way. Random delay can be added to conceal which packet sizes have been touched up in

the HTTP stream. Although data buffering causes delay, the countermeasure significantly

increases the difficulty of website fingerprinting.

We remark that neither packet padding nor the countermeasure we propose is perfect.

They only hide most of the consistent features available for fingerprint. An HTTP stream

still leaks information on the approximate total size of a website. In addition, packet

padding cannot change the number of object requests. Hence dummy traffic is needed to

cover up these features. The dummy traffic should be augmented without distinguishable

patterns in sizes or timing, in order to prevent filtering or statistical traffic analysis. It

presents a tradeoff between communication anonymity and communication efficiency in

time and bandwidth.

7.6 Summary

Our website fingerprinting scheme is designed to withstand traffic morphing. Essentially,

our scheme is effective even under traffic morphing because traffic morphing cannot han-

dle packet ordering and satisfy low bandwidth overhead simultaneously, whereas we are

able to identify and exploit the seemingly noisy packet ordering information for website

fingerprinting. If morphing considers packet ordering information, its computation cost,

storage cost and bandwidth overhead all increase. Its bandwidth efficiency is worse than

mice-elephant packet padding, even in bigram morphing. Our scheme is able to iden-

tify websites from morphed traffic with significantly higher accuracy than the previous

scheme.

Most existing countermeasures to website fingerprinting are not deployed in practice

for bandwidth efficiency concerns. We propose some countermeasure with almost zero

bandwidth overhead. To defend against website fingerprinting, we randomize the packet

sizes and the order in which embedded objects of a webpage are fetched. Effectiveness

of the countermeasures depends on the aggressiveness in applying them, though at a

correspondingly heavy cost of performance and hence user satisfaction. While padding

trades off network bandwidth to conceal the packet sizes; our proposed countermeasure

trades off the delay.



Chapter 8

Active Website Fingerprinting

over Tor

We consider the traffic model of web browsing over Tor, where the HTTP stream is encrypted,

tunneled and the data are transmitted in fixed sized units. Building on the passive website finger-

printing systems over SSH and SSL tunnels, we propose an active website fingerprinting model

over Tor. By spacing out the object requests, the active approach obtains the sizes and order of

web objects as website fingerprints.

8.1 Overview

Tor [25] is a popular circuit-based low-latency anonymous communication network. It

provides anonymity protection to users over TCP applications, e.g. web browsing. The

web browsing traffic flows through a Tor circuit in fixed length cells, encrypted and

decrypted by Tor routers in an onion-like fashion. A Tor circuit typically consists of three

routers, which are called entry node, middle node and exit node respectively. The Tor

routers chosen to form a circuit can be user specified or randomly selected. Tor sets up

three connections along a circuit, such that it can switch connections to transmit data if

the current connection is not stable.

Some research works have investigated attacks that degrade the anonymity provided

by Tor, notably traffic confirmation attacks [87, 94] and statistical disclosure attacks [9, 44,

22, 52]. Traffic confirmation attack embeds some flow watermark into sender’s outbound

traffic and verify the watermark at the suspected receiver to confirm a communicating pair.

Statistical disclosure attack correlates sender’s outbound traffic and receiver’s inbound

93
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traffic in terms of timing or volume to statistically disclose the likely communication

relationship. Note that these attacks require an adversary to be able to monitor the

traffic at both ends of a communication.

We consider a website fingerprinting attack against Tor whose objective is to link a

user with the website the user accesses through Tor. The attack allows an adversary

to profile user interests and their web browsing habits. Existing website fingerprint-

ing schemes [40, 78, 10, 50] target at certain encrypted communication tunnels, such as

SSH tunnel or VPN. Yet they are not applicable to Tor. Fingerprinting schemes based on

packet size related features [10, 50] do not work on Tor, as Tor transmits messages in fixed

length cells. Existing schemes that use web object sizes as fingerprint features [40, 78]

hold simplified assumptions about traffic patterns and hence cannot extract the desired

features realistically. The size of a web object was determined by accumulating the data

received through a TCP connection, assuming TCP connections were not reused to down-

load multiple embedded objects [40]. Alternatively, it was determined by accumulating

the data received between adjacent HTTP requests, assuming object requests were not

pipelined [78]. However, HTTP supports pipelining and TCP connections are reused.

A key difficulty that prevents passive fingerprinting models from identifying features of

web objects lies in the ambiguity in distributing data packets back into their respective

objects. Message chunks cannot be differentiated by packet sizes in Tor.

We propose an active website fingerprinting model that extracts web object sizes and

order as the fingerprint features. The scheme achieves a promising accuracy when it is

used against Tor. In our active approach, the adversary holds each HTTP object request

for a couple of seconds before releasing it into the network, to ensure that web objects

are downloaded one at a time in each TCP connection. The adversary measures for each

outgoing request the number of corresponding incoming Tor packets, which is counted as

a web object size. The adversary extracts the fingerprint of a website from its web object

sizes and order when the website is fetched via Tor. A testing fingerprint is matched

against the fingerprint database to determine the website a user surfs.

While anonymous email systems are designed to resist attacks in which all communi-

cation links are being monitored, Tor aims to protect the anonymity of its users only from

non-global adversaries. Tor assumes an adversary has the ability to observe and control

part of the network, but not its totality. Even though it is controversial whether Tor’s

restriction on attacker’s capability is realistic, our attack demonstrates that an adversary

can extract vital information about the anonymously accessed websites for identification,

without stepping outside the threat model considered by Tor.
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Figure 8.1: Traffic intervention and analysis setup

8.2 Active Website Fingerprinting Model

Our active website fingerprinting model is designed for Tor, yet it applies to website fin-

gerprinting over other proxy plus encryption technologies, including SSH or TLS tunnels

and VPN. Tor traffic is comparatively the most difficult to fingerprint, as it leaks the

least amount of size related information. Whereas other technologies do not intensionally

cover up the size related features.

8.2.1 Traffic Analysis Setup

We propose an active website fingerprinting model. The setup for traffic analysis over

Tor is illustrated in Figure 8.1. The victim host is connected to the adversary, which in

turn connects to the Tor entry node, and the exit Tor node connects to the web server

to fetch the user desired webpage. The adversary is a man-in-the-middle between the

victim and the Tor entry node, and hence able to tamper with victim’s traffic. When

victim’s packets arrive at the adversary, they are held for a couple of seconds before being

forwarded to the entry Tor router. In real life, such adversaries can possibly be company

network administrators monitoring web accesses of its employees, or ISPs gathering web

access statistics or profiling user interests.

Comparing Figure 8.1 and Figure 6.1, we can see the traffic analysis setups for website

fingerprinting over different channels are similar. The difference is that the adversary not

only eavesdrops but also intervenes with the transmission of an HTTP stream over Tor.

Note that a Tor circuit is set up with three routers by default, which eliminates any single

point from knowing both the source and destination of a session. It is arguably stronger

in providing anonymity in web browsing. Yet in our website fingerprinting models, it
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does not matter how many proxies are lying behind the adversary. The same effect is

achieved that the HTTP stream is encapsulated and encrypted. The difference between

an anonymous channel through Tor and through an SSH or SSL tunnel is that Tor sends

messages in fixed length cells. This difference urges us to use an active fingerprinting

approach, as any size related features are hard to be extracted with a passive model over

Tor.

Our active model exploits the side channel information about web objects as features

of website fingerprints, while supporting the common traffic patterns in HTTP streams.

The traffic patterns our model accommodates include multiple TCP connections within

a session and HTTP pipelining. As several objects can be concurrently downloaded in

different connections, we keep track of connections individually. HTTP pipelining allows

multiple objects to be downloaded in a pipelined fashion within a connection, so data of

different objects can interleave. We extract per web object features by intervening with

the transmission of HTTP requests, which undoes pipelining to the effect.

Like other web fingerprinting schemes, our attack involves the adversary to build a

fingerprint database which is applied to match the victim’s traffic. To build the fingerprint

database, the adversary surfs to a large set of frequently accessed websites, and apply the

active fingerprinting technique to extract the fingerprints of each website. Fingerprint

from the victim’s HTTP stream is extracted similarly, which is then matched with the

fingerprint database for website identification.

Our website fingerprinting model is within Tor’s security model. Tor’s security model

allows a non-global observer and allows control over part of the Tor network. We monitor

the encrypted and proxied traffic only at the client end of a web browsing session. The

requirement on adversary’s capability is even easier to satisfy than traffic confirmation

attacks.

8.2.2 Features for Fingerprint

We select the features for website fingerprinting by examining the process that a web

browser fetches a webpage. Typical communication between a client browser and a web

server for downloading a webpage is illustrated in Figure 2.1. Given a website URL, web

browser fetches the webpage by first issuing an HTTP GET request. In response, the web

browser receives an HTML object which may contain references to other web objects,

such as graphics files or style sheets. The web browser then parses the HTML file, and

issues an HTTP GET request for each of the embedded web objects. The GET requests

are usually sent in parallel on multiple TCP connections, so as to speed up the process

and prevent a single GET failure from delaying the rest of the webpage download. Thus,

downloading a webpage actually results in sending a (fixed or variable) number of GET

requests in some order. We observed that for the same web browser (eg. Firefox), the
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order in which the GET requests are sent remains fairly stable.

We use web object sizes and their ordering as features of a website fingerprint. Object

based features are more persistent and more characteristic of a website than packet based

features. The selected features represent properties of web objects and reflect the layout of

a webpage. The consistent ordering of embedded objects in webpage retrievals roots from

that the layout of a webpage is infrequently changed, and that a web browser uses the same

strategy to schedule requests of the embedded objects. Passive techniques are insufficient

to extract object sizes and their associated ordering from Tor, thus we propose using an

active approach that delays the subsequent HTTP GET requests in order to determine

the size of the currently being downloaded object. We describe details of our fingerprint

extraction method in Section 8.3.1.

We could track the size sequence of all embedded objects, but it incurs substantial

delay in the webpage presentation. Hence we choose to monitor only the first n objects

in a website download. Our experiments show that with only 10 objects monitored per

website, the fingerprint identification already achieves high accuracy. We note that the

identification accuracy will increase as the number of objects being monitored increases,

yet at the same time, so will the incurred delay be increased.

In addition to web object sizes and ordering, we keep track of the total size in ob-

ject requests and that in object responses, as they are helpful to differentiate websites

especially when the websites’ partial object size sequences are similar.

In short, the fingerprint FA of website A is FA = (qA, tA), where qA = ⟨s1, s2, s3, ...sn⟩
is a sequence representing the first n object sizes, and tA = (xA, yA) where xA and yA are

the total request and response sizes respectively.

8.2.3 Similarity Comparison

To match the fingerprint extracted from a testing packet stream against the website

fingerprints in the database, we need some similarity measurement mechanism. The

measurement should take into consideration the ordering of feature values and be efficient.

We extend edit distance and apply it to the similarity comparison of website fingerprints

over Tor.

We adapt edit distance to measure the distance between two integer sequences, where

each sequence represents order and sizes of the downloaded objects of a webpage. Edit

distance is often used to measure the dissimilarity of two strings. The common edit

operations it allows include insertion, deletion and substitution of a single character.

We propose supplementing split, merge, and split and merge to the list of allowed edit

operations on integer sequences. Given integer sequences SA = ⟨c⟩ and SB = ⟨a, b⟩, SA

can be transformed into SB using a single split operation, if a and b sum to c. Merge

is the reverse operation to split. It combines two neighboring integer values into one.
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Given SB = ⟨a, b⟩ and SC = ⟨c, d⟩, a split and merge operation can change SB to SC if

a + b = c + d. It accounts for the effect that part of b is split and grouped with a, or

part of a is split and clustered with b. The same modification can be effected with two

substitutions, but the associated costs are different.

The reason we extend edit distance with the above operations is to handle differences in

website fingerprints due to variations in network delay and HTTP pipelining configuration.

If pipelining is enabled, an Ethernet packet may contain more than one short object

requests. Tor proxy located at the client host sends out the Ethernet packet part by

part in sizes of Tor’s transmission unit. Two object requests could be released within the

same Tor packet, if the last part of the first request and the whole of the second request

are contained in one Tor packet. Thus data of the two responses may interleave and

cluster in time, despite we artificially space out object requests by Tor packets. Pipelining

configuration and browser processing delay determine if multiple requests are packed into

one Ethernet packet and hence affect the observable sequence of object sizes. They can

vary across traces even if the website has not updated. Merge and split correspond to

clustering two object sizes or not in fingerprint comparisons. Network delays also affect

the clustering of object data, as our identification of object boundaries is based on timing

heuristics. Prolonged delay of some intermediate response packets can lead to a false

identification of object boundary and hence the remaining data of the current object be

accumulated with data of the next object. Split and merge caters for regrouping partial

object data in similarity measurement.

8.3 Website Fingerprinting Scheme

In this section, we describe how we implement the active website fingerprinting model

proposed.

8.3.1 Determining Object Sizes and Order

We take an active approach to determine web object sizes and ordering with some heuris-

tics. To handle multiple connections set up through a Tor circuit, we monitor each

connection individually. We maintain state variables of each connection and swap them

in and out as required by parsing the Tor packet stream. In addition to multiple connec-

tions and HTTP pipelining, Tor obfuscates website features against passive observation

using techniques of encapsulation, encryption and unifying packet sizes. HTTP pipelin-

ing allows several object requests to be concurrently served, so data of different objects

can interleave within a connection. Web server address is encapsulated into the packet

payload. Encryption protects the data confidentiality. Uniform data transmission unit

destroys most size related features about packets. It is important to distinguish data
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Figure 8.2: Distribution of per-trace unique packet sizes of 2,000 popular websites [50]

packets from control packets, and to associate data packets to their respective objects for

object size identification.

Identifying Object Responses with Heuristics on Sizes

A Tor packet cannot be distinguished individually whether it belongs to data packets or

control packets, but we can classify a packet depending on whether it forms a response

alone or with several other packets. To distinguish response data packets from control

packets, we use a heuristic that for efficient transmission, control packets tend to be

smaller than 1KB, or equivalent to 2 Tor packets (512 bytes each) or less, hence responses

containing more than 2 Tor packets are likely transmitting object data. Although websites

often have objects that are smaller than 1KB, we do not use sizes of these objects as

website features, because small objects mix with control packets in sizes, and it is the

larger objects revealing more distinctive information about websites after all.

We remark that we cannot reliably distinguish each request size. Most object requests

are 400 to 600 bytes or 900 to 1000 bytes long (request size statistics of 2,000 websites are

shown in Figure 8.2). It is possible that a request spans over more than one Tor packet,

thus an outgoing packet yielding no responses could be a control packet as well as part

of an incomplete request. Fortunately, our goal is to obtain individual object sizes in a

sequence, which is sufficient for fingerprinting websites with good accuracy, the request

sizes only provide additional information if available.

Determining Object Boundaries by Request Holding and Heuristics on Timing

To cluster response packets that belong to one object and hence determining the object

size, we artificially space out the object requests. We release victim’s outgoing Tor packets
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one at a time, and hold any subsequent outgoing Tor packets until all the response data

to the currently released Tor packet have been received. Thus a response size can be

determined by accumulating the amount of data received in correspondence to a request.

Because of encryption and uniform packet sizes, we cannot distinguish by clear markers

where an object’s data end. Instead, we use a heuristic based on timing to determine

object boundaries. We assume object data comes in a stream such that the packet intervals

are reasonably small. If we wait for an interval, and there is no incoming packets, we

consider the object download is completed. The threshold of packet interval must be

greater than the round trip time of the connection for the first data packet, otherwise

an object boundary will be falsely determined before the first data packet comes back.

Yet once the first packet comes back, the incoming packet intervals are caused only by

processing delays of web server and Tor routers, and affected by the network connection

conditions. So the interval threshold for subsequent packets can be smaller. In our

experiments, we set the packet interval threshold to be T1 = 5 seconds before the first

response packet arrives, and T2 = 2 seconds for subsequent packets. Compared to using

T1 alone, having two timers T1 and T2 speeds up the downloading of a webpage, for

otherwise there would be some unnecessary waiting time after the last data packet of an

object is received.

8.3.2 Fingerprint Similarity Comparison

Edit distance measures the number of edit operations to make two strings identical. The

common edit operations considered are insertion, deletion and substitution of a single

character.

We extend edit distance to match object size sequences of website fingerprints. Since

the observed object sizes may split or merge due to HTTP pipelining or delay variations,

we extend edit distance to allow split and merge operations. Pseudocodes to compute our

extended edit distance is shown in Appendix B.

The extended edit distance can be computed using Dijkstra’s shortest path algorithm.

We search for the minimal distance from n(0, 0) to n(|qA|, |qB|), where n(i, j) is a node

corresponding to the i-th element of qA and the j-th element of qB, and |q| is the length

of sequence q. The nodes are connected by edit operations with associated costs.

The costs of edit operations are tunable. We consider insert, delete and substitute

should have a higher cost than a split or merge. This is because in website fingerprints,

split or merge of an object size is transient and due to HTTP pipelining or delay variations,

but insert, delete or substitute reflects the change of embedded objects of websites.

We normalize edit distance by an upper bound of the distance between sequences qA
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and qB, as shown in Formula 8.1.

Ed(qA, qB) =
DijkstraDistance(qA, qB)

max(|qA|, |qB|) · c
(8.1)

where |q| denotes the length of sequence q, and c is a cost factor which we set as the

deletion cost.

Difference in the total sizes tA and tB of websites A and B are measured by summing

their absolute differences in request and response sizes, and normalized by their total size,

as shown in Formula 8.2.

L1(tA, tB) =
|xA − xB|+ |yA − yB|
xA + xB + yA + yB

(8.2)

where xI and yI are the total request and response sizes of website I respectively, and

|xA − xB| is the absolute difference between xA and xB.

The similarity measure between website fingerprints FA and FB combines the infor-

mation on object sequences and total sizes. It is computed as Formula 8.3.

Sim(FA, FB) = 1− Ed(qA, qB) · w1 + L1(tA, tB) · w2

w1 + w2
(8.3)

where w1 and w2 are adjustable parameters, representing the weights of similarity in object

size sequences and total sizes respectively. We set w1 = max(|qA|, |qB|) and w2 = 2, so

that the weights correspond to the number of feature values considered. (1 - normalized

distance) converts the measurement from distance to similarity. Identity of a test stream

is given by the most similar fingerprint of the profiled websites.

Example

Suppose we are given two sequences qA and qB, where qA = ⟨123, 780, 465, 324, 230, 235⟩
and qB = ⟨123, 789, 345, 120⟩. We evaluate the edit distance between qA and qB with

consideration of our extended set of edit operations.

To make qA identical to qB, the edit operations we allow include insertion, deletion

and substitution of a single element, and in addition, merging two adjacent elements,

splitting an element into two, and redistributing two adjacent elements by merging them

and then followed by a split. Figure 8.3 illustrates these edit operations. Node n(i, j)

corresponds to the i-th element of qA and the j-th element of qB, the edges correspond

to the edit operations with associated costs. qA = ⟨123, ...⟩ can be changed to qB =

⟨123, 789, ...⟩ by inserting 789 from node n(1, 1). Similarly, qA = ⟨123, 780, ...⟩ can be

modified to qB = ⟨123, ...⟩ by deleting 780 from node n(1, 1), or qA = ⟨123, 780, ...⟩ can

be updated to qB = ⟨123, 789, ...⟩ by substituting 780 to 789 at node n(1, 1). In addition,
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Figure 8.3: Example illustrating edit operations between integer sequences

qA = ⟨..., 465, ...⟩ can be changed to qB = ⟨..., 345, 120⟩ by splitting 465 to 345 and 120 at

n(2, 2), or qA = ⟨..., 465, 324, ...⟩ can be modified to qB = ⟨..., 789, ...⟩ by merging 465 and

324 to 789 at n(2, 1). Finally, redistribution can be used in updating qA = ⟨..., 230, 235⟩
to qB = ⟨..., 345, 120⟩ from node n(4, 2). Note that insertion, deletion and substitution

traverses the graph by one grid rightwards, downwards and diagonally respectively. In

comparison, split traverses the graph two grids rightwards and one grid downwards, merge

traverses the graph one grid rightwards and two grids downwards, and redistribution

traverses the graph diagonally by two grids. We are amused at its resemblance to walking

a chessman on a chessboard.

To measure the edit distance between qA and qB, we search for a path that traverses

from node n(0, 0) to n(6, 4) with minimum cost. If all the edit operations have a unit cost,

then the edit distance between qA and qB is 3. The path traversed is n(0, 0)-n(1, 1)-n(2, 1)-

n(4, 2)-n(6, 4), and the edit operations performed are deleting 780 at n(1, 1), merging 465

and 324 to be 789 at n(2, 1), and finally redistributing 230 and 235 into 345 and 120 at

n(4, 2), as illustrated in Figure 8.3.
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8.4 Evaluation

We evaluate the effectiveness of our active website fingerprinting scheme by measuring

the fingerprint identification accuracy. Our scheme should be considered effective if any

non-negligible fraction of websites are correctly identified, as Tor is designed to protect

anonymity of the communicating parties.

8.4.1 Data Collection

We collected traces over Tor of surfing to 200 unique websites daily in a few weeks.

For each website, only its homepage is fetched. The 200 websites are chosen with the

requirement that each of them generates sufficient traffic for fingerprinting to be feasible.

With this requirement, our chosen websites all have images and none of them are purely

text-based.

Using the traffic analysis setup illustrated in Figure 8.1, victim’s outgoing packet

arrives at the adversary machine. The adversary takes note of the packet contents and

then drops the packet. After a few seconds, the adversary recreates the packet with the

same content, and forwards it to the entry Tor router. This creates the effect that the

adversary holds victim’s packet for a couple of seconds.

We set the time limit on waiting for the initial data packet to be 5 seconds, and the

subsequent data interval to be less than 2 seconds. Beyond the time limit, we consider the

data transmission with respect to the current request has completed. The first 11 object

requests are spaced out so that the first 10 object sizes are revealed. The rest requests

are sent out without holding, to reduce the delay on website presentation.

Both the victim and the adversary were running on linux systems (Fedora Core 8).

The Tor version used when the traces were collected is 0.1.2.17. The victim used Mozilla

Firefox 2.0 to retrieve each URL via a SOCKS proxy (Privoxy). Privoxy then connects

to the local Tor client on the victim’s machine. The local Tor client chooses (by default)

3 Tor routers to form a circuit linking to the desired website. Communication between

the victim and the website is tunneled through the circuit.

We configured Firefox not to attempt various extraneous connections, such as due

to live bookmarks or automatic update checks. Browser cache is cleared before surfing

to any website. Although disabling these features makes the resulting traffic somewhat

less realistic, we believe it is a reasonable tradeoff to let us focus on the problem under

investigation.

8.4.2 Identification Accuracy

In order to facilitate analysis and comparison, we classify the websites by their update

frequencies, as either static, which updates once in several months, or dynamic, which
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updates at least daily. There are 50 static websites and 150 dynamic websites.

We examine the performance of our scheme and the effect of website updates. In

particular, we evaluate the website identification accuracies when the test streams and

the profiling streams are captured on alternate days, and two weeks apart. 4 training and

4 testing traces per website were captured on alternate days in the “next day test”. In the

“half-month test”, 4 traces per website sampled in the first week were used to build the

website fingerprint database, and 4 traces sampled two weeks later were used as testing

traces for identification.

In evaluations, our search of minimal edit distance allows a feature value to be split,

merged, or split and merged at most once, as the delay we impose to isolate the transmis-

sion of objects is sufficiently large that an object has low probability in being split into

more than two parts. We tune the parameter values based on our dataset, and set the

cost of a single split or merge to be 5, the cost of an insertion, deletion or substitution to

be 6, and the cost of split and merge to be 7.

Dataset Next Day Test Half-Month Test

Static 73.5% 73.5%

Dynamic 70.5% 62.1%

Web200 67.5% 61.6%

Table 8.1: Website fingerprint identification accuracies.

The evaluation results are presented in Table 8.1. The identification accuracy of 200

websites is close to 70% in the next day test, and it is above 60% in the half-month

test. As static websites update infrequently, their identification accuracy is not very

sensitive to the age of website fingerprint profiles, and it remains at 73.5% for both

tests. For dynamic websites, the identification accuracy drops over time as their contents

change from the profiles. Yet even when the profiles were built half a month ago, their

identification accuracy is still 62.1%. In comparison, if we randomly guess the website

identity among dynamic websites, the probability of success is only 0.7%. Our scheme

significantly reduces the anonymity provided by Tor.

8.5 Countermeasures

Applying aggressive padding to objects to conceal their sizes could be a countermeasure

to active website fingerprinting, but it is not bandwidth friendly. Instead, we propose

countermeasures that change the order of object requests and hide the sizes of individual

objects. They incur little bandwidth overhead, and the buffering delay they cause tends

to be insignificant.
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(i) Randomizing the object order. Similar to the countermeasure against our passive

website fingerprinting, browser buffers several object requests and sends them in different

orders each time.

(ii)Mixing data of different objects. Browser packages data of different HTTP requests

into a packet, such that a number of object requests become concurrent. Correspondingly,

server interleaves data of different objects within packets. Thus object boundaries that

previously align with packet boundaries are eliminated. The number of objects and which

objects to request (serve) in each packet are decided with randomness by browser (server)

in each web access, where the randomness helps to prevent fingerprinting. Random delay

can be inserted between packets to further confuse the timing based identification of

object boundaries.

8.6 Summary

We show that anonymous web accesses over Tor can be substantially hampered with

active website fingerprinting, under Tor’s somewhat restricted threat model, and without

having to add external packet marks or flow marks.

In our proposed active website fingerprinting model, the adversary spreads HTTP

GET requests issued by the victim client, so that only one GET request is served at a

time. The adversary only releases the next GET request after all response packets are

received for the current request. This helps to measure the corresponding web object size

for each object request. A webpage download thus results in a sequence of web object

sizes, where both the ordering and sizes of web objects are exploited when we match the

website fingerprints.

Our study is the first in presenting such promising website fingerprinting accuracies

over Tor. Tor is trusted by many in providing a low latency, anonymous communication

channel, but this does not hold under our proposed attack.
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Chapter 9

Conclusion and Future Work

We conclude this thesis by summarizing our findings from monitoring the models and analyzing

the schemes of traffic source identification. We also underline the practical constraints that traffic

source identification schemes have not handled thus far, and point out directions to enhancing the

framework and improving the scheme designs.

Contributions

In this thesis, we investigated approaches to traffic source identification with respect to

different traffic models and analyst’s capabilities. We provided a framework of traffic

source identification, in which we laid out interactions between model components and

criteria for scheme designs. The principles are substantiated in our investigation under

several specific problem scenarios, namely, probabilistic packet marking for DDoS trace-

back, passive website fingerprinting over VPN and active website fingerprinting over Tor.

Our findings through the investigations are summarized below.

Traffic Source Identification Framework. We developed a framework of traffic source

identification models. The framework captures the important components of traf-

fic source identification design: obfuscation techniques applied on the source data

and analyst’s capability. Existing source identification schemes are classified in the

framework by their component values. We deduced from the framework that it is

possible to perform traffic analysis over Tor to identify the website accessed. We

considered in the framework criteria to developing a traffic source identification

scheme under several models. We considered minimizing collisions in packet marks

for the PPM model of DDoS traceback, and that features in website fingerprinting

107



108 Conclusion and Future Work

are desired to present consistency for a website and maximum separation among

websites. Overall, our framework is useful in classifying traffic source identification

schemes, deriving novel source identification models, and guiding the construction

of source identification schemes.

General Probabilistic Packet Marking (PPM) Model. Packet marking applies when

the investigator is able to modify the packet header, which requires the packet head-

ers are not encapsulated. We found an effective probabilistic packet marking scheme

does not require sophisticated structure, if some network topology information is

know. This is on the contrary to what previous works deliver. We also found that

to fairly compare variants of packet marking schemes despite of their differences

in assumptions, we can utilize the metric on the entropy of packet marks. Higher

entropy indicates better utilization of the marking field and more information is

transmitted, which then predicts a higher source identification accuracy assuming

an optimal path reconstruction algorithm.

PPM Scheme: Random Packet Marking (RPM). Inspired by the findings from the

general PPM model, we developed a packet marking scheme named Random Packet

Marking (RPM). It is designed with high randomness in the packet marks generated,

and hence it obtains significant performance improvement over prior work.

Passive Website Fingerprinting Scheme Exploiting Packet Ordering. Passive traf-

fic fingerprinting applies when the traffic itself carries sufficient identifying informa-

tion, such as the packet size distribution of a website. We found that besides packet

sizes, packet ordering is fairly consistent for a webpage download. Such information

is exposed regardless of encryption and proxy. Thus we developed a passive webstie

fingerprinting scheme applicable to VPN, SSH or TLS encrypted tunnels, which

utilizes the packet ordering information to enhance the identification accuracy of

website fingerprints.

Analysis of Scheme Robustness against Traffic Morphing. Besides to enhance the

website identification accuracy, an important motivation of incorporating the packet

ordering information into website fingerprints is that the ordering information en-

ables the website fingerprinting scheme to withstand traffic morphing [90]. Traffic

morphing defends against website fingerprinting by transforming the packet size

distribution of the source website to mimic a target website, while minimizing the

bandwidth overhead. It targets at website fingerprinting schemes that exploit size

related features only. We empirically verified that our scheme is robust against

traffic morphing, as our scheme can differentiate websites having similar packet

size distributions by packet ordering. We analyzed the traffic morphing scheme
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and showed that it cannot handle packet ordering while satisfying low bandwidth

overhead. If some ordering information is considered, its bandwidth efficiency will

be worse than some simple countermeasure of packet padding. Our analysis im-

plies that an effective countermeasure to website fingerprinting should aggressively

remove traffic features in both size and timing channels. We thus suggest randomiz-

ing both packet sizes and the ordering of HTTP requests to defend against website

fingerprinting.

Active Website Fingerprinting Model and Scheme over Tor. Extending from the

passive techniques, we proposed an active website fingerprinting model and scheme

over Tor. The active approach helps to recover web object sizes when HTTP re-

quests are pipelined. It works even when packet sizes are fixed. The fact that Tor

transmits data in fixed length cells fails all website fingerprinting schemes that rely

on packet sizes. We therefore use object sizes and ordering as website fingerprint

features. In order to obtain web object sizes, we space out the download of web

objects by holding HTTP GET requests, so that each object size can be deter-

mined by accumulating the amount of data received in correspondence to a request.

Our active model and scheme demonstrated for the first time that it is possible to

identify websites accessed through Tor from the size channel.

To perform active traffic source identification over Tor, investigators must have the

capability of delaying Tor traffic, and the latency caused may be noticeable. Whereas the

passive traffic analysis model on VPN requires only eavesdropping and is transparent to

users. There is sufficient side channel information gathered from passive observations of

VPN traffic to yield high website identification accuracy. Having said that, the model we

designed for Tor is guaranteed to further improve the VPN fingerprinting accuracy, since

more accurate and reliable features on objects are obtained.

Practical Considerations

We dealt with some of the methodological issues found in previous work that raise ques-

tions about the real-world performance of the techniques. In particular, our passive

website fingerprinting model moves beyond the closed-world examination to a more re-

alistic setting where a website must be detected from among a set of websites that the

adversary may not even know about. We also evaluated the identification accuracy of

website fingerprints with examinations of pipeline configurations, website variability, and

the amount of training data.

However, there are still a couple of idealized assumptions in the models and analysis.

In particular, probabilistic packet marking schemes for DDoS traceback all assume routers
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are cooperative. Because routers are administered under different autonomous systems

whose management policies are largely independent, it is not easy to ensure routers along

the attack paths are cooperative.

So far website fingerprinting proposals have not addressed the problem of concurrent

web browsing sessions. All of them assumed that HTTP streams of different browsing

sessions are separated correctly. In practise, it is not trivial to parse packets to their

respective HTTP streams from encapsulated and encrypted traffic. Multiplexing connec-

tions over a single port complicates the matter and makes it more difficult.

Handling caching is another practical problem. The accuracy of website fingerprinting

would be substantially deteriorated if caching is enabled. Browser caching affects the

download of a webpage in that cached web objects are retrieved from the local cache

and are removed from the traffic trace. Differences in the browser caches make the

HTTP streams vary in different accesses to the same website. All proposals up to date

have their performances heavily undermined by browser caches, which underlines the

difficulty of the problem. The dynamics of cache contents makes the evaluation results

probabilistic. Generally, evaluation with certain cache configurations presents limited

analysis that tends to be biased. Further systematic and comprehensive modeling and

measurement of cache as attributed to network buffer constraints or user behaviors is

required. Fingerprinting models that take care of browser caching are yet to be proposed.

Partly because of the gap between the research settings and the practical traffic con-

ditions, the threat to user privacy caused by the traffic source identification techniques

is not arousing enough awareness it deserves. Even simple countermeasures are not de-

ployed, for the currently proposed countermeasures all require paying the price of large

bandwidth overhead or processing overhead.

However, when the technical assumptions are satisfied, traffic source identification

presents a real threat to user privacy. Our proposals and experiments have made it clear

that web clients’ privacy can be compromised to a certain extend and the operations

are easy to perform. In the performance centric design of Internet services, the idealis-

tic defense proposals have insufficient deployment incentives. Therefore, not until more

lightweight countermeasures are proposed, web users should remain alert of the capability

of traffic source identification by legislative warden or an adversary.

Future Work

In future work for traceback schemes, we would find inspiration from flow marking tech-

niques and reference schemes related to the identification of stepping stones to design a

traceback model that does not require collaboration of routers across autonomous sys-

tems. Although it is commonly believed that routers are secured and trustworthy, from
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an analysis point of view, it would be interesting to investigate if some routers are ma-

licious. We would analyze the trust management issues on packet marks and develop

countermeasures to effectively isolate forged packet marks.

In future work for website fingerprinting, we would explore different methods to model

the structural information of websites and evaluate their effectiveness in improving the fin-

gerprint identification accuracy. We would compare the countermeasures, such as packet

padding, dummy traffic, randomizing the packet sizes, and randomizing the order of ob-

ject requests, so as to provide an in depth analysis of their robustness and tradeoffs.

We would extend website fingerprinting to the scenario where concurrent sessions of web

browsing are supported. We would design different heuristics and compare their accu-

racy in parsing concurrent browsing sessions from encapsulated and encrypted traffic. We

would also extend the evaluation of website fingerprinting to the scenario where caching

of web contents is enabled. We would construct a systematic model of web caching, and

analyze the impact of caching on the effectiveness of website fingerprinting.
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Appendix A

Primitives for Similarity

Comparison

Here we list the similarity comparison primitives mentioned in the body of this thesis,

with explanations on applying them to measure the distance between website fingerprints.

Please note that there are other similarity comparison primitives possible, e.g. support

vector machine.

A.1 L1 Distance

L1 distance is also known as absolute value distance, rectilinear distance or city block

(Manhattan) distance. Instead of the usual Euclidean distance, L1 distance between two

vectors in an n-dimensional real vector space with fixed Cartesian coordinate system, is

measured as the sum of the lengths of projections of the line segment between the points

onto the coordinate axes.

L1(p, q) =
n∑

k=1

|pk − qk| ,

where p(p1, p2, ..., pn) and q(q1, q2, ..., qn) are vectors, and |d| denotes the absolute value

of d.

L1 distance can be applied onto modeling the distance between points in a city road

grid, or modeling the distance between squares on the chessboard for rooks in chess.

In the application of website fingerprinting, we can use L1 distance to measure the

dissimilarity between packet size distributions of two website fingerprints. The packet

size distributions are represented by vectors p(p1, p2, ..., pn) and q(q1, q2, ..., qn), where pi

or qi represents the probability of a packet having size i. The L1 distance between the

packet size distributions is then computed as the sum of absolute differences between their
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corresponding probabilities in all possible packet sizes.

A.2 Jaccard’s Coefficient

Jaccard’s coefficient measures the similarity of two sets, by evaluating the ratio of common

elements to their union of elements. Jaccard’s coefficient Jac(X,Y ) is computed as

Jac(X,Y ) =
|X ∩ Y |
|X ∪ Y |

,

where X and Y are the sets to compare, and |A| denotes the size of set A. Note that an

input set can be a multiset that contains several elements of the same value, then the set

union and intersection correspond to multisets.

In the application of website fingerprinting, Jaccard’s coefficient can be used to com-

pare two packet size distributions, or to measure the similarity between the distinct packet

sizes of two HTTP streams. For the comparison in packet size distributions, the input

sets are multisets of packet sizes. For the comparison in distinct packet sizes, the elements

in each input set is unique.

A.3 Naive Bayes Classifier

Naive Bayes classifier assumes independence between all attributes, and estimates the

probability of a set of values A = {a1, ..., an} belonging to a particular class Ci as:

p(Ci|A) ∝ p(Ci)

n∏
j=1

(p(aj |Ci))

In the application of website fingerprinting, we can employ naive Bayes classifier to

classify an HTTP stream by its packet size distribution. A contains all the distinct packet

sizes appearing in the stream, and p(aj |Ci) is the probability that a packet of website Ci

has size aj .

A.4 Edit Distance

Edit distance measures the minimal number of edit operations, such as insert, delete or

substitute, to make two strings identical. There are well known computation algorithms

for edit distance [84]. Essentially, they perform search considering the allowed edit oper-

ations.

In the application of website fingerprinting, we adopt and customize edit distance to

measure the similarity between two sequences of packet sizes or web object sizes. The
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advantage of using edit distance over Jaccard’s coefficient or naive Bayes classifier is that

edit distance can consider the ordering information, in addition to the sizes information

of packet streams.

Edit distance has been applied in a wide range of applications, such as spell checker in

Google [59] and Microsoft Word [89], identifying plagiarism, comparing DNA sequences

[38, 58], conducting fuzzy search in EXCEL [57, 3] and evaluating dialect distances [36].

We are the first in applying it to match features of network traffic. Edit distance is

appropriate for the application because of the correspondence between edit operations

and network feature values, since packets may be lost, reordered or retransmitted, and

web objects may be added, removed or replaced.

The pseudocodes of Levenshtein Distance is shown below for reference.

Levenshte inDistance ( sequence1 , sequence2 ) {

f o r i = 1 to l en sequence1

f o r j = 1 to l en sequence2

d [ i , j ] = minimum (

d [ i −1, j ] + c o s t d e l e t e ,

d [ i , j −1] + c o s t i n s e r t ,

d [ i −1, j −1] + c o s t s u b s t i t u t e )

end f o r

end f o r

re turn d [ l en sequence1 , l en s equence2 ]

}
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Pseudocode of Edit Distance

Extended with Split and Merge

Recall that Levenshtein distance measures edit distance with operations of insert, delete

and substitute a character. We extend Levenshtein distance to allow two more operations,

namely, split and merge, for traffic fingerprint comparisons.

We apply Dijkstra’s shortest path algorithm to search for the edit distance between

two sequences. It starts traversing from their first elements till it reaches end of the

sequences. It updates the reduced distance whenever it finds a shorter path to some

intermediate elements. Effectively, each distance d[i,j] is evaluated as

d [ i , j ] = minimum (

d [ i −1, j ] + c o s t d e l e t e ,

d [ i , j −1] + c o s t i n s e r t ,

d [ i −1, j −1] + co s t s ub s t i t u t e ,

d [ i −1, j −2] + c o s t s p l i t ,

d [ i −2, j −1] + cost merge ,

d [ i −2, j −2] + co s t me r g e sp l i t ,

d [ i −1, j −3] + c o s t d oub l e s p l i t ,

d [ i −3, j −1] + cost double merge ,

d [ i −3, j −2] + co s t sp l i t doub l e me rg e ,

d [ i −2, j −3] + co s t me rg e doub l e sp l i t ,

d [ i −3, j −3] + co s t d oub l e me r g e s p l i t ) ,

where i and j are indices of elements in the comparing sequences. It takes into considera-

tion the costs of possible delete, insert, substitute, as well as split and merge operations.

In the demonstrating pseudocodes, we cater for a search space where a group of packets

can be split up to three chunks, or merged vice versa. We assume the cost of substitution

is higher than merge and then split, since packets are more likely re-grouped due to delay
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ExtendedEditDistance ( sequence1 , sequence2 ) {

d [ 1 , 1 ] = minimum (
d [ 0 , 1 ] + c o s t d e l e t e ,
d [ 1 , 0 ] + c o s t i n s e r t ,
d [ 0 , 0 ] + c o s t s u b s t i t i t u e )

Pr ior i tyQueue Q
Q. i n s e r t (d [ i =1, j =1])
while (Q. head != [ i=len sequence1 , j=l en sequence2 ] )

d [ i +1, j ] = minimum (d [ i +1, j ] , d [ i , j ] + c o s t d e l e t e )
d [ i , j +1] = minimum (d [ i , j +1] , d [ i , j ] + c o s t i n s e r t )
d [ i +1, j +1] = minimum (d [ i +1, j +1] , d [ i , j ] + c o s t s u b s t i t u t e )
d [ i +2, j +1] = minimum (d [ i +2, j +1] , d [ i , j ] + cost merge )
d [ i +1, j +2] = minimum (d [ i +1, j +2] , d [ i , j ] + c o s t s p l i t )
d [ i +2, j +2] = minimum (d [ i +2, j +2] , d [ i , j ] + c o s t s p l i t me r g e )
d [ i +3, j +1] = minimum (d [ i +3, j +1] , d [ i , j ] + cos t doub le merge )
d [ i +1, j +3] = minimum (d [ i +1, j +3] , d [ i , j ] + c o s t d o u b l e s p l i t )
d [ i +3, j +2] = minimum (d [ i +3, j +2] , d [ i , j ] + c o s t s p l i t d oub l e me r g e )
d [ i +2, j +3] = minimum (d [ i +2, j +3] , d [ i , j ] + c o s t me r g e doub l e s p l i t )
d [ i +3, j +3] = minimum (d [ i +3, j +3] , d [ i , j ] + c o s t d oub l e s p l i t me r g e )
remove Q. head
Q. i n s e r t d [ i +1, j ] , d [ i , j +1] , d [ i +1, j +1] ,

d [ i +2, j +1] , d [ i +1, j +2] , d [ i +2, j +2] ,
d [ i +3, j +1] , d [ i +1, j +3] , d [ i +3, j +2] , d [ i +2, j +3] , d [ i +3, j +3]

end while

return d [ l en sequence1 , l en s equence2 ]
}

variations than being substituted. So the search in the pseudocode always prefers merge

and split than substitution.


