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Abstract  
 

 

Microalgae have been known to produce commercially valuable carotenoids beneficial to 

human health. One of the algal carotenoids that have received a lot of research attention 

is astaxanthin. Also known as “king of antioxidant”, astaxanthin is 100 times more than 

the antioxidant capacity of that of vitamin E, and 10 times more than that of beta-carotene. 

Chlorella Zofingiensis, a strain of green microalgae, has been shown in recent years to be 

able to accumulate astaxanthin when exposed to environmental stress. This study 

investigated the astaxanthin production capacity of Chlorella Zofingiensis under nitrate, 

light and temperature stress under a semi-continuous turbidostatic flat-bed 

photobioreactor.  

A total of 15 configurations consisting of different nitrate concentration and light 

intensities were tested in a batch system in phase 1 of the experiment. Growth rates and 

astaxanthin contents were monitored. Highest dry mass of 7.55 g/L was obtained at 0.5 

g/L of nitrate and at light intensity of 300 umol photon.m-2s-1. It was found that low 

nitrate level, coupled with high light intensity, was the key to high cellular accumulation 

in C. Zofingiensis. Peak volumetric astaxanthin production was at 7.06 mg/L. Using the 

optimum nitrate/light intensity pair, it was further tested in a flat-bed photobioreactor in 

semi-continuous mode. Cellular astaxanthin level was at 0.69 mg/g, almost 50% lower 

than the batch system, but the growth of C. Zofingiensis biomass was more. Volumetric 

astaxanthin production of semi-continuous system was comparable to batch system. 
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Daily astaxanthin production for continuous system was 21% higher than that of the 

batch system.  

Overall, the reported data suggests that C.  Zofingiensis is an attractive candidate for the 

mass production of astaxanthin in continuous reactor, being plausible for selectively 

favoring the production of astaxanthin through the adequate management of growth 

conditions. 
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Ca Chlorophyll a concentration  [mgL-1] 

Cb Chlorophyll b concentration  [mgL-1] 

Cx  biomass concentration   [g L-1] 

g  gravitational acceleration  [ms-2] 

μ specific growth rate   [h-1] 

μ max  maximum specific growth rate  [h-1] 

ROS Reactive Oxygen Species 

T  absolute temperature    [K] 

t  time      [h] 

λ wavelength     [nm] 

PFD  photon flux density in PAR range  [μmol photons m-2 s-1] 

PAR  photosynthetic active radiation, 400-700 nm 
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Chapter 1 Introduction 
 

 

Microalgae and cyanobacteria, also known as blue-green algae, are found widely in our 

bio-sphere. They contribute approximately 40-50% of the oxygen in the atmosphere and 

they are the original source of fossil fuel. (M. Borowitzka 1997)They are also at the 

bottom of the food chain, directly and indirectly linked to our food security.  

 

1.1  Photosynthesis 

Microalgae and cyanobacteria are oxygenic photoautotrophic microorganism. They are 

able to use sunlight to metabolize carbon dioxide (CO2) inside CH2O under the liberation 

of oxygen (O2). CH2O are the building blocks for algal growth. The universal equation of 

photosynthesis is presented below: 

Equation 1 - 1  CO2 + H2O + photon  CH2O + O2   

 

Essentially, microalgae convert light energy into chemical energy via the formation of 

chemical bonds. The basic unit of photosynthetic apparatus is the photosystem (PS). 

Photons are absorbed by carotenoids and chlorophyll pigments of the photosystem 

antenna complex. In Figure 1 - 1, the operation of PS is shown. The excitation energy is 

funneled through the pigment bed towards the reaction centre (P680), which is brought to 
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a higher energy level (P680*). Almost 95-99% of the excitations can be transferred to the 

reaction center. The transfer of energy is highly efficient because the excitations “fall” 

inside an “energy hold” with the reaction centre at the bottom. During the transport, the 

excitations lose some energy and this is the reason why reverse transport is not possible. 

Inside the reaction centre, the remaining excitation energy activates the reaction centre 

(P680  P680*) by promoting an electron from the highest-energy filled orbital to the 

lowest-energy unfilled orbital. The electron is quickly transferred to an acceptor 

generating an oxidant and reductant, respectively, and this process is called charged 

separation (Richmond, 2004). 

 

Figure 1 - 1 Schematic diagram of photosystem (Lawlor 2001) 
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1.2 Algal Pigmentations 

Algae pigments are chemical compounds which reflect only certain wavelengths of 

visible light. This makes them appear "colorful". Flowers, corals, and even animal skin 

contain pigments, which give them their colors. More important than their reflection of 

light is the ability of pigments to absorb certain wavelengths.  

 

All microalgae contain three major classes of photosynthetic pigments: chlorophylls, 

carotenoids (carotenes and xanthophylls) and phycobilins. The different division of 

microalgae is characterized by a specific pigment composition. A considerable diversity 

exists among the carotanoid and chlorophyll pigments. Chlorophylls and carotenes are 

generally fat-soluble molecules and can be extracted from thylakoid membranes with 

organic solvents such as acetone and methanol. The phycobilins and peridinin, in contrast, 

are water-soluble and can be extracted from algal tissues after the organic solvent 

extraction of chlorophyll in those tissues.  

 

In  

Figure 1 - 2, the characteristic absorption spectra of a Chlorohyta (green alga), 

Chrysophyta (diatoms) and a cyanophyta (cyanobacteria) are shown. The absorption 

peaks between 650–700 nm which is the red region, are caused by chlorophyll absorption. 

Carotenoids absorb most strongly in the 400-500 nm and transfer the excitation energy to 
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the chlorophylls, making photosynthesis efficient over a wider range of wavelengths, In 

addition to chlorophylls and carotenoids, cyanobacteria have pigments called 

phycobilisomes, which enables them to absorb 600-650 nm more strongly than other 

strains of microalgae.  

 

Figure 1 - 2 Characteristics absorption spectra of microalgae: a green alga - Dunaliella tiertiolecta; a diatom. 
(Kromkamp and Limbeek 1993) Skeletonema costatum and a cyanobacterium - Anacystis nidulans (Aubroit 
1991) 
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1.3  Functions of Carotenoids 

Carotenoids cannot transfer sunlight energy directly to the photosynthetic pathway, but 

must pass their absorbed energy to chlorophyll. For this reason, they are called accessory 

pigments. In addition to light harvesting, carotenoids have other functions in the cell. 

They protect the PS under unfavorable environmental conditions, such as high light 

intensity and high salinity. In the case of high light intensity, an overdose of excitation 

energy can lead to the production of toxic species (i.e. reactive oxygen species (ROS)) 

and damage of the PS. Carotenoids are able to scavenge these ROS. An overdose of 

excitation energy can be dissipated as heat by Carotenoids in the antenna complex, which 

in turn prevents the formation of ROS (Britton 1995, Miki 1991).  

 

Scientists have paid special attention to carotenoids found in higher plants and algae, as 

well as other photosynthetic organisms such as animals, fungi and plants. Carotenoids are 

responsible for the red, orange and yellow color of plant leaves, fruits, flowers, fish flesh 

and crustacean shells. These Carotenoids (e.g. astaxanthin) are accumulated and 

exploited by commercial algal farming. These compounds with antioxidant ability are 

highly valued in the market, and it has been proven that adequate intake of carotenoids is 

able to prevent degenerative diseases. More details can be found in chapter 2. Beta-

carotenoids, xanthophylls, astaxanthin, cantaxanthin, and lutein are the major carotenoids 

with commercial interest (Richmond, 1986). 
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Figure 1 - 3 The colorful world of carotenoids, from fruits to seafood. Daily intakes of carotenoids are known to 
reduce critical illnesses such as heart, liver and kidney diseases. 

 

The carotenoids of interest, astaxanthin, are known to be the most powerful antioxidant 

available nowadays. Astaxanthin sells for approximately US$2,500 kg−1 with an annual 

worldwide aquaculture market estimated at US$200 million (Cysewski 2004). Projections 

for 2015 of global astaxanthin market rise to US$257 million (BCC Research 2008).  
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Figure 1 - 4 Global carotenoids market value by product in 2007 and 2015 (BCC Research 2008) 

 

Most of the astaxanthin available in the market is synthetically-derived. However, 

consumer’s demand for natural products provides an excellent opportunity for the natural 

carotenoids, and Haematococcus pluvialis represents the richest biological source of this 

pigment (Lorenz and Cysewski, 2003). It is now cultivated at large scale by several 

companies, and being used as commercial feed for salmon and rainbow trout to enhance 

their commercial value (Torrissen 1986). The Chlorophyte alga Haematococcus pluvialis 

is believed to accumulate the highest levels of astaxanthin in nature. Commercially 

grown H. pluvialis can accumulate 0.30 g of astaxanthin per kg of dry biomass (Burick 

1991, Aflalo, et al. 2007). 
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Figure 1 - 5 H. Plauvialis cyst (Bar, et al. 1995) 

 

Figure 1 - 6 Commercial H. Plauvialis pond (Ausich 1997) 

 

1.4  Commercial Exploration of Algae 

In the early 1950’s, the increase in the world’s population and predictions of an 

insufficient protein supply led to a search for alternative and unconventional protein 

sources. Valuable biologically active substances from the algae stood out as a good 

candidate for this purpose.  
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Commercial large-scale culture of microalgae started in the 1960’s in Japan with the 

culture of Chlorella by Nihon Chlorella. It was followed by the establishment of an 

Arthrospira harvesting and culturing facility in Lake Texcoco, Mexico. The first 

aquaculture field also appeared in the 1970’s. By 1980, there were 46 large-scale 

factories in Asia producing more than 1000 kg of microalgae (mainly Chlorella) per 

month. The commercial production of Dunaliella salina, as a source of β-carotene, 

became the third major microalgal industry when production facilities were established 

by Western Biotechnology (Hutt Lagoon, Australia) and Betatene (Whyalla, Australia) 

(now Cognis Nutrition and Health) in 1986 (Lee 1997). These were soon followed by 

other commercial plants in Israel and the USA. The same as that of these algae, the large-

scale production of cyanobacteria (blue-green algae) began in India at about the same 

time (Ausich 1997). 

 

The Aquatic Species program conducted by United States National Renewable Energy 

Laboratory, Department of Energy (DOE) has the purpose of identifying potential algae 

species for the production of biodiesel at large scale. This program was initiated because 

the price of energy, specifically crude oil, was traded at historical high price and was 

threatening the livelihood of the average citizen. To strengthen energy security, DOE had 

looked into various energy production methods, and one of the most promising field was 

algal biotechnology. Over 200 laboratories over U.S. were involved in this project and 
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the speed of development was unprecedented.  However, the program eventually failed as 

oil price plunged to historical low in 1995. 

 

1.5 Valuable Products from Microalgae 

Algae are major natural source for a vast array of high value compounds. Its applications 

include health food, aquaculture, fuel, cosmetics, medicine, etc. Although microalgae are a 

unique source for high-value compounds, their commercial application are still limited 

(Borowitzka, 1999). Table 1 - 1 contains a summary of the products and applications of 

algae.  

 Product Application 

Biomass Biomass 
Methane 

Health food 
Functional food 
Feed addictive 
Aquaculture  
Soil conditioner 
Fuel 

Coloring substances and 
antioxidants 

Xantophylls (astaxanthin and 
canthaxanthin) 
Lutein 
B-carotene 
Vitamins C and E 

Food and feed 
additives 
Cosmetic  

Fatty Acids -FA Arachidonic acid –AA 
Eicosapentaenoic acid- EPA 
Docosahexaenoic acid- EHA 
y-linolenic acid –GCA 
Linoleic acid – LA 

Food additives 

Enzymes Superoxide dismutase- SOD 
Phosphoglycerate and Luciferin 

Health food 
Research 
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Restriction enzymes Medicine 

Polymers Polysaccharides 
Starch 
Poly-B-hydroxybutyrics acid - PHB 

Food additive 
Cosmetics 
Medicine  

Special products Peptides 
Toxins 
Isotopes 
Aminoacides (proline, arginine, aspartic 
acid) 
Sterols 

Research Medicine 

 Table 1 - 1 Valuable products from microalgae (Cysewski 2004, Singh, Kate and Banerjee 2005) 

 

  

Figure 1 - 7 Algal supplements, in the form of extracted pigments and dry powered form 
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1.6 Challenges Faced by the Algae Industries 

1.6.1 Limited strains available on large scale farm 

So far, the best choice with the lowest cost seems to be the open shallow pond. Open 

ponds are the oldest and simplest systems for mass cultivation of microalgae. In this 

system, the shallow pond is usually about 1 foot deep; algae are cultured under conditions 

similar to the natural environment. The pond is usually designed in a “raceway” or “track” 

configuration, in which a paddlewheel provides circulation and mixing of the algal cells 

and nutrients (Figure 2-2). The raceways are typically made from poured concrete, or 

they are simply dug into the earth and lined with a plastic liner to prevent the ground 

from soaking up the liquid. Baffles in the channel guide the flow around bends, so as to 

minimize space and loss. 

 

Medium is added in front of the paddlewheel, and algal broth is harvested behind the 

paddlewheel, after it has circulated through the loop. Although an open pond culture 

system cost less to build and operate than enclosed photobioreactors, it has its intrinsic 

disadvantages. Since these ponds are open air systems, they often experience a lot of 

water loss due to evaporation. Thus, open ponds do not allow microalgae to use carbon 

dioxide efficiently, and biomass production is limited (Chisti, 2007). Biomass 

productivity is also limited by contamination with unwanted algal species as well as 

organisms that feed on algae. In addition, optimal culture conditions are difficult to 
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maintain in open ponds and recovering the biomass from such a dilute cell yield is 

expensive (Molina, Fernández and García, et al., 1999).Yet, only few strains are able to 

grow in adverse outdoor conditions and can out-grow other microorganisms.  

 

1.6.2 Prohibitive cost  

Microalgae are expensive to produce, although many efforts are under way addressed to 

achieve cost-efficient modes for mass cultivation of these organisms. Different systems 

have been designed for the growth and handling of microalgae on a large scale 

(Borowitzka 1999; Gudin and Chaumont 1980; Molina-Grima et al. 1999; Pulz 2001; 

Richmond 2004; Tredici 2004; Weissman et al. 1988). The more recently developed and 

technologically advanced closed systems, called photobioreactors, provide better options 

to grow virtually every microalgal strain, while protecting the culture from invasion of 

contaminating organisms and allowing exhaustive control of operation conditions. These 

photobioreactors are either flat or tubular and can adopt a variety of designs and 

operation modes. They offer higher productivity and better quality of the generated 

biomass (or product), although they are certainly more expensive to build and operate 

than the open systems. 

 

1.6.3 Lack of industrial scale experiments 

Most of the works done on algae are mostly lab scale or pilot scale testing. There is 

insufficient knowledge to adequately judge the economic viability. Scaling up of lab-
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scale reactors often bring unforeseen operational problems and thus, brings uncertainty to 

the project. Productivity data are often extrapolated from small experiments, and not 

always presented clearly and consistently. Therefore, algal species that looked very 

promising when tested in the laboratory are not robust under conditions encountered in 

the real world. The risk involved leads to lesser investment into the field and this is the 

main reason why the number of algae on mass production remains little even after 50 

years of algae exploration.   

 

1.6.4 More research required on new and improved algal strains 

Currently, only few strains are being used in microalgal biotechnology. The ideal strain 

should be amenable to fast growth outdoors at high cell densities, responding efficiently 

to strong light, and producing cells with a high content of desired products (Richmond, 

2004). Research program focused on the evaluation of alternative microalgal strains with 

regard to their carotenoid profile and biotechnological potential is needed (Del Campo et 

al. 2000). The screening approach to the selection of producer strains of a specific 

carotenoid or adequate combination of several of them should be further pursued. 

Screening criteria must include species dominance, harvesting ease, and growth 

requirements in terms of temperature, water quality, pH, CO2, tolerance to oxygen and 

light (Weissman et al. 1988). 
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1.7  Project Objectives and Scopes 

As such, C. Zofingiensis was chosen as it accumulates both astaxanthin and lutein (Del 

Campo, et al. 2004). Despite being first discovered in 1970’s, little research has been 

done on this strain. There are still a number of issues that have to be resolved through 

research and development before this strain can become an alternative source of 

astaxanthin on a commercial scale. As highlighted in previous sections, there is a dire 

need to introduce new strains with lower cost of production. The aim of this study was to 

investigate the performance and the feasibility of cultivating C. Zofingiensis under 

continuous culture with an air-lifting flat-bed photobioreactor.  

The scopes and objectives of the project are as follows: 

a) Determine the optimum nitrate/light intensity combination for maximization of 

astaxanthin accumulation  

Fifteen different configurations of varying nitrate concentrations and light intensities 

were used in phase 1 of the experiment. Optimum growth and astaxanthin 

accumulation would be used for phase 2.   

b) Study the change in pigment composition with time under both batch and 

continuous mode of operation 

Chlorophyll a and b, total carotenoids and astaxanthin were monitored during the 

course of growth using spectrophotometry.  
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c) Compare photobioreactor performance under different temperature  

This is phase 2 of the experiment. Three temperature settings were used and growth 

rate and pigment compositions were monitored 
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Chapter 2 Literature Review 
 

 

2.1 Introduction: 

Chlorella Zofingiensis was first discovered in the 1970’s. However, it has not been 

studied extensively until recently, when Del Campo (Del Campo, et al. 2004) discovered 

that it can accumulate significant quantities of valuable substances such as carotenoids, 

astaxanthin and lutein.  

 

2.2 Algae of interest: C. Zofingiensis 

C. Zofingiensis belongs to the green algae group, Chlorophyceae. This group of green 

algae is abundant especially in freshwater. They can occur as single cells or as colonies. 

There are approximately 350 genera and 2650 living species of chlorophyceans. They 

come in a wide variety of shapes and forms, including free-swimming unicellular species, 

colonies, non-flagellate unicells, filaments, and more (Becker 1994). The main storage 

compound for green algae is starch, though oils can be produced under certain conditions. 

Some of the Chlorophyceae that have been researched extensively in recent years include 

Botryococcus braunii (found to produce the highest percentage of algal lipid), 

Chlorococcum (found to accumulate carotenoid up to 40% of cell dry weight (González 

2007), Nannochloris sp. (has been employed in the aquaculture industries for their high 
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protein and nutrimental value since 1900), Chlorella Vulgaris (most studied and 

researched species of our time, contains the highest known source of chlorophyll content 

and known to reduce risk of cancer) (Apt and Behrens 1999). 

 

Figure 2 - 1 Microscopic image of C. Zofingiensis, showing size from 4-10 µm 

 

2.3 Algal Fundamentals 

Microalgae cells are a type of eukaryotic cell. They contain internal organelles such as 

chloroplasts, a nucleus, etc. The composition of the biomass is important in 

characterization of the microalgae species according to its function and product. Algal 

biomass contains three main components: carbohydrates, protein and lipids/natural oil. It 

also produces rare and useful substances such as antibiotics, carotenoids, steroids, etc. 

Not only do they have the capacity to produce high value compounds, they also have the 

ability to do it using only sunlight, carbon dioxide and seawater. For this reason 
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microalgae are called photoautotrophic microorganisms, i.e. they need light as their main 

supply of energy and they use CO2 as carbon source for growth.  

 

Photosynthesis, the most important process in algal metabolism, is a process that converts 

carbon dioxide into organic sugar, using the energy from the light. The overall equation 

of this process is stated below.  

Equation 2 - 1  6CO2 + 6H2O  C6H12O6 + 6O2   

 

Light is first absorbed by the antenna pigments of photosystem (PS) II and I. The 

absorbed energy is transferred to the reaction center chlorophylls, P680 in photosystem II, 

P700 in photosystem I. Absorption of 1 photon of light by Photosystem II removes 1 

electron from P680. With its resulting positive charge, P680 is sufficiently electronegative 

that it can remove 1 electron from a molecule of water. When these steps have occurred 4 

times, requiring 2 molecules of water, 1 molecule of oxygen and 4 protons (H+) are 

released The electrons are transferred (by way of plastoquinone — PQ in the figure) to 

the cytochrome b6/f complex where they provide the energy for chemiosmosis. 

Activation of P700 in photosystem I enables it to pick up electrons from the cytochrome 

b6/f complex (by way of plastocyanin — PC in the Figure 2-2) and raise them to a 

sufficiently high redox potential that, after passing through ferredoxin (Fd in the Figure 

2-2), they can reduce NADP+ to NADPH (Lawlor 2001). 
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Figure 2 - 2 Schematic diagram of photosystem (Lawlor 2001) 

 

2.4 Mechanism of Astaxanthin accumulation  

The exact mechanism for astaxanthin accumulation in C. Zofingiensis is still non-

conclusive. It is postulated that one of the mechanisms of astaxanthin accumulation is 

similar to commercial strain H. pluvialis. The process is summarized in Figure 2-3. Due 

to the involvement of ROS astaxanthin synthesis proceeds via cantaxanthin, the 

exceptional stress response is mediated by ROS through a mechanism which is not yet 

understood (S. Boussiba, 2000). He has suggested that astaxanthin is the by-product of a 

defense mechanism rather than the defending substance itself, although at this stage one 

cannot rule out other protective mechanisms. Further work is required for complete 

understanding of this transformation process. The biosynthetic pathways of astaxanthin 

will not be reviewed in details here as this dissertation focuses on the technical and 
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operational aspects of C. Zofingiensis cultivation for the purpose of astaxanthin 

production.  

 

Figure 2 - 3 Suggested mechanism for astaxanthin accumulation (Boussiba and Vonshak 1991) 

 

2.5 Factors Affecting Growth of Algae and Astaxanthin Accumulation  

The standard growing conditions of C. Zofingiensis is similar to cultivation of other 

species of Chlorophyceae. Under standard batch condition, this algae has been shown to 

exhibit high values of both growth rate (about 0.04 h-1) and standing cell population (over 

7 g dry weight l-1) under photoautotrophic conditions (Del Campo, et al. 2004).  
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The observation of astaxanthin accumulation has been investigated by Del Campo et Al 

(2004) and Ip and chen 2005 , and it has been reported that C. Zofingiensis accumulates a 

significant amount of valuable carotenoid, namely astaxanthin and lutein when grown 

photoautotrophically under stressed conditions. Secondary carotenoids, lutein and 

astaxanthin are produced as a defense mechanism against environmental injuries. C. 

Zofingiensis has only grown in batch system thus far, with standing cell population over 

12.5 g/L dry weight, 3.27 mg/g of astaxanthin using acetate in feed (Del Campo et al. 

2004). On another experiment, heterothrophic growth in the dark with glucose yields 23 

g/l dry weight, 7mg/g of astaxanthin, highest recorded thus far (Chen and Chen, 2004). 

However, results obtained are still far from Haematococcus pluvialis, which has the 

highest cellular astaxanthin yield among all microalgae, at 8.6 mg/g, or over 16 g/L dry 

weight (S. Boussiba 2000).  

 

 

There are many factors affecting the growth rate and astaxanthin accumulation in 

microalgae. Even though conditions for algae culture are carried out according to journal 

publications, it is important to determine the conditions for optimal growth as it has been 

reported that growth rate for the same species of algae culture can differ at different 

locations (Andersen 2005). The following section discusses the different factors, the 

inter-relation of these factors, and their effects on microalgae in general.  
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2.5.1 Temperature  

Temperature is one of the most important environmental factor affecting the growth and 

development of living organisms. Photosynthetic systems always generate heat because 

of the inefficiency of photosynthesis in converting light energy into chemical energy 

(Bhosale 2004). The theoretical conversion of red light into chemical energy is 31%, with 

69% is lost as heat. The amount of cooling depends on the incident light intensity and the 

cell concentration (i.e. how much light is absorbed), but regardless, cooling will be 

necessary especially for enclosed systems. In principle, temperature control is done using 

commercially available temperature controllers. Cooling is achieved with a heat 

exchange system. In the case of open system, heat is dissipated almost instantaneously to 

the surrounding (Andersen 2005).  

 

In general, it is possible to describe the maximum growth rate solely as a function of 

temperature by applying the Arrhenius equation, given constant illumination (Goldman 

and Carpenter 1974). 

Equation 2 - 2  ̂ /         

       

where A = constant, day-1; E=activation energy, cal mol-1; and T = temperature, Kelvin, 

˚K.  
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According to van’t IIoff rule, biological reactions should approximately double for each 

10˚C rise in temperature. Restrictions to its general use are quickly apparent. Firstly, for 

each algal species, the Arrhenius relationship is applicable only in a definitely range of 

temperature. Secondly, there is evidence of a strong interaction between light intensity 

and temperature; for example, Sorokin has found that for a given temperature the 

activation energy decreases with increasing light energy (Andersen 2005). All microalgae 

follow a similar pattern of growths, as shown in Figure 2 - 4. At a fixed temperature, 

growth rate increases as light intensity increases. It starts to decrease when the maximum 

growth rate is reached.  

 

Figure 2 - 4 Chlorella vulgaris: observed growth rate versus irradiance level for 25, 30, 35˚C (Dauta, et al. 1990) 

 

Changes in temperature also bring about changes in many biosynthetic pathways, 

including carotenoid biosynthesis. It is reported that temperature could control the 
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concentration of enzymes involved in carotenoid production, and changes in enzyme 

concentration ultimately control carotenoid levels in microorganisms (Hayman et al. 

1974). Changes in the characteristics of the cells were observed with an increase in the 

growth temperatures, leading to changes in absorption efficiency associated with a 

variation in cell size and pigment levels. At higher growth temperature (33°C), the 

cellular accumulation of lutein and astaxanthin in Muriellopsis sp. was raised by six-fold, 

but the volumetric level was higher at 28°C (Del Campo et al. 1999). At higher growth 

temperatures, cell division is impaired but not protein synthesis. Thus the relative cell 

volume was reduced with decreased growth temperature and increased with an increase 

in growth temperature. Another study postulated that during induction of the cyst stage in 

algae elevated temperature provides non-growth conditions (Chen and Chen 2006). 

Moreover, since active oxygen derivatives can be generated endogenously from 

photosynthesis, it seems plausible to assume that relatively high culture temperature may 

also lead to enhanced formation of active oxygen in algal cells. However, there was a 15- 

to 20-fold increase in the cellular accumulation of carotenoid compared to a three-fold 

increase in volumetric production (Tjahjono, et al. 1994). Mucor rouxii also showed a 

threefold increase in carotenoid content when the temperature of mycelial cultures was 

raised to 40°C under aerobic conditions as compared to the amount obtained at the 

optimum growth temperature of 28°C (Mosqueda-Cano and Gutierrez-Corona 1995). 

 

2.5.5 Nutrient  
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Algae require dissolved nutrients, similar to terrestrial flora. Nitrates and phosphates are 

two notable nutrients, as well as sodium and silicates. There are many culture medium 

formulae available but requirements for different microalgae vary. Moreover, the 

requirements also take into account the objective of the experiment, e.g. if high 

productivity of microalgae is the priority, high nitrate and phosphate would be essential 

for growth.  

 

In general, a basic assumption governing the use of this model is that the growth rate of 

an alga is dependent solely-on the concentration and of a particular limiting nutrient 

according to the Monod model is described as  

Equation 2 - 3  ̂       

 

Combining  and Equation 2 - 2 and Equation 2 - 3, we obtain the following equation 

Equation 2 - 4  /       

  

where p = specific growth rate, day-l ; G = maximum specific growth rate, day-l ; S = 

limiting nutrient concentration, mg liter-1; and K = half saturation coefficient,  mg liter-1. 
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To induce production of secondary carotenoids, manipulation of nitrate concentration has 

been a common technique to stimulate environmental stress on microalgae. It has been 

suggested that a high carbon to nitrogen ratio (C/N) may be efficient for inducing 

astaxanthin biosynthesis (Chen and Chen 2006, Chen and Johns 1991). Nitrogen 

limitation in the presence of excess organic carbon substrates such as acetate and glucose 

has proven effective in astaxanthin production in mixothrophic cultures (Ip and Chen, 

2005).  

 

2.5.2 pH 

Algae grow best at neutral pH (7-8.5) and buffer is added to the medium for pH 

adjustment (Andersen 2005). As culture age, pH increases due to accumulation of 

minerals and oxidation of nutrients. Therefore, nutrient medium is pre-adjusted to pH 6.5 

(Vonshak 1992) before feeding to the algae. Most of the research groups maintain culture 

under pH 7.5 for optimum growth (Esperanza, et al. 2007, Linden 2001, Weissman 1988).  

 

2.5.3 Illumination 

The specific growth rate for microalgae is dependent on the intensity of light. Growth of 

microalgae increases with increasing illumination. Upon reaching the peak growth rate, it 

declines with further increase in light intensity due to photo-inhibition. This pattern of 
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growth-light intensity relationship can be seen in almost all species of algae. (Chisti and 

Moo-Young 1989, Bar, et al. 1995, Fan, Vonshak and Boussiba 1994) 

 

Carotenoid production and accumulation are reported to be positively affected by white-

light irradiation in algae, fungi, and bacteria. However, the intensity and protocol of 

illumination varies with the microorganism. Irrespective of whether increases or 

decreases in illumination time and/or intensity lead to improvements in carotenoid yield, 

there are two aspects to the theory of photo-induction (Bar, et al. 1995, Bohne and Linden 

2002, Dan Pelah 2004, Li and Huang 2009).  

 

1. The first is that improvements of the volumetric production of carotenoid (mg/l) 

are generally associated directly with improved growth of the microorganism 

(Ausich 1997). Thus, the effect of light on growth of the microorganism plays an 

important role in establishing the authentic role of white-light illumination as a 

stimulant of carotenoid production.  

2. Increases in the cellular accumulation (mg/g) of carotenoid are associated with 

increased activity of enzymes involved in carotenoid biosynthesis. In this case, it 

is important to assess the levels of biosynthetic enzymes, which in turn will 

establish the role of white-light illumination as a stimulant (Bhosale 2004).  
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H. pluvialis showed a remarkable increase in the concentration of astaxanthin with an 

increase in light intensity from 50 to 400 μmol photon m−2s−1
 (Barbosa, Hadiyanto and 

Wijffels 2004). Shaish (1993) reported that induction of hyper-production by light could 

be replaced by reactive oxygen species (ROS) (Darley 1982), since exposure to white 

light ultimately leads to generation of active oxygen molecules, which possibly play an 

important role in the stimulation of carotenogenesis. The interrelation between ROS and 

carotenoid production under light stress is not clear. Boussiba (2000) has reviewed the 

complex regulatory mechanisms which function at both the gene and the protein level. 

 

2.5.4 Mixing and Turbulence 

For any algal reactors, efficient mixing should be provided in order to produce a uniform 

dispersion of microalgae within the culture medium, thus eliminating gradients of light, 

nutrient concentration (including CO2) and temperature.  

 

Gudin and Chaumount (1991) reported that the key problem of algae cultivation is cell 

damage due to shear stress (Gudin and Chaumont 1991). It has been reported that 

excessive mechanical shaking, causing turbulence induced by high revolution-per-minute 

(rpm) will cause permanent damage on cell structure which would affect the cell growth. 

Insufficient shaking will lead to algae settling and cell death. Few quantitative studies 

have been done regarding hydrodynamic stress in algae cultures cultivated in air-lifting 

photobioreactors (Carvalho, Meireles and Xavier 2006). The growth rates of some algae 
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have been reported to increase initially with increasing turbulence, probably due to the 

improved supply of light and CO2. But upon an optimum level of turbulence, the growth 

decreases sharply with further increase of the superficial- gas velocity and this is believed 

to be due to cell damage.  

 

Gas mixing systems, i.e., bubble column systems, cause less extensive damage to fragile 

microalgal species than mechanical pumping does. This is especially so for the case of 

air-lift units, in which mixing is achieved by fluid flow obtained from sparging air into a 

central draught tube (riser), where it decreases bulk liquid density hence causing the 

liquid to rise. The liquid then flows downward through the outer tube, thus creating a 

natural circulation. Although these systems appear to cause the least extensive degree of 

cell damage (Barbosa, et al. 2004), they are not completely devoid of shear stress: a cell-

damaging hydrodynamic effect has been reported (Miro´n, et al. 1999) in bubble columns 

and air-lift reactors, which was associated with so intense turbulence patterns that the 

length scale of the fluid microeddies approached cellular dimension. Barbosa (Barbosa, 

Hadiyanto and Wijffels 2004) reported bubble formation at the sparger as the main event 

leading to cell death. Finally, the effect of “mutual shading”, i.e., continuous cell 

movement from and to dark/light zones, has been claimed (Becker 1994) to be essential 

to guarantee high biomass productivity. 

 

2.5.6 Gas Transfer 
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Because nearly 50% of the whole microalgal biomass is made up of carbon (Becker 

1994), this element is a major component for cell growth. When grown photo-

litotrophycally, all microalgae use inorganic carbon sources to synthesize organic 

compounds (Richmond, 2004). Though microalgae can take in inorganic carbon in 

various forms, CO2 (aq), H2CO3, HCO3
- and CO3

2-, detailed studies on the influence of 

the carbon source upon microalgal productivity have indicated that, although HCO3 is 

easily absorbed by cells, it is a poor source of carbon when compared with CO2 (Goldman, 

Dennett and Riley 1981). In fact, it is possible to achieve a linear response in microalgal 

carbon biomass with mass input of carbon (which corresponds to an efficiency of 

virtually 100%) only if limited inputs of inorganic carbon and narrow pH ranges are 

permitted. Note that CO2 in the open air accounts for only 0.03% (v/v) (Becker 1994), so 

fluxes of carbon transfer to the culture are small, even in the presence of extended 

interface areas or enhanced mixing. Consequently, CO2-enriched air is the most 

commonly employed nutrient gas mixture.  

 

Optimum biomass productivity was obtained by using either high bubbling rate (with 

small sized bubbles) with low inlet pressure of CO2 or low bubbling rate with high inlet 

pressure of CO2 (irrespective of bubble size). Although more efficient (47% vs 14%, in 

terms of assimilation efficiency), the former option could bring about problems of cell 

flotation and consequent washout.  
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Increasing awareness of the importance of CO2 led to development of control systems, 

able to regulate the pH of the culture and thus, indirectly, control the amount of CO2 

supplied. The most common system employed for pH control is the on-off type, in which 

CO2 is injected into the culture when pH is above a desired setpoint. Productivity of algae 

increases an average of 7-10% for chlorella species when this system is employed (Ana, 

2006; González, 2007).       

 

Parameters Experimental Conditions for Optimization of Growth and Accumulation of 
Astaxanthin 

Temperature Fixed at 25°C° 

pH Nutrient medium pre-adjusted to pH6.5 and culture maintained at ph7.5 

Illumination 3 different light intensity used, at 100, 300 and 600 μmol photon m−2 s−1 

Shaking Continuous shaking at 130rpm 

Nutrient Various nitrate concentration at 1, 0.5, 0.25, 0.125, 0g/L 

Table 2 - 5 Experimental conditions for phase 1 

 

2.6 Chemical Structure of Astaxanthin 

Astaxanthin exists in three main enantiomeric forms, termed 3s-3's, 3r-3's, and 3r-3'r, 

depending on the spatial orientation of the hydroxyl (OH) groups in chiral carbon number 

3. Synthetic astaxanthin is produced as the free (un-esterified) xanthophyll and as a 1:2:1 

mixture of the three stereo-isomers: 3s,3's, 3r,3's, and 3r,3'r.  



Chapter 2                                                      Literature 
Review   

Optimization of Astaxanthin Production in C. Zofingiensis Page | 33 

 

Whether free or complexed, the atoms comprising an astaxanthin molecule can be 

oriented in different ways, producing different isomers. The most common geometric 

configuration in both synthetic and natural astaxanthin is the most thermodynamically 

stable all-E (all-trans) isomer.  

 

 

Figure 2 - 6 Astaxanthin enantiomer 3S, 3’S; 3R,3’S; 3R,3’R; Molecular formula - C40H52O4 - Molar mass - 
596,84 g/mol (Bar, et al. 1995) 

 

The enhanced activity of astaxanthin may stem from its molecular structure. Astaxanthin 

belongs to the xanthophyll group of carotenoids, or the oxygenated carotenoids. The 

hydroxyl and keto functional groups  present in the ending ionone ring of astaxanthin 

may be responsible for its uniquely powerful antioxidant activity and for its ability to 

span the membrane bi-layers as a direct result of its more polar configuration relative to 
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other carotenoids. Carotenoids with polar end groups like astaxanthin span the lipid 

membrane bi-layer with their end groups located near the hydrophobic-hydrophilic 

interface, where free-radical attack first occurs (Britton 1995). 

 

2.7 Astaxanthin as an Antioxidant 

Astaxanthin, unlike some carotenoids, does not convert to Vitamin A (retinol) in the 

human body. Too much Vitamin A is toxic for a human, but astaxanthin is not (Britton 

1995). While astaxanthin is a natural nutritional component, it can be found as a food 

supplement. The supplement is intended for human, animal, and aquaculture 

consumption (McCausland, et al. 1999). Astaxanthin has 100-500 times the antioxidant 

capacity of Vitamin E and 10 times the antioxidant capacity of beta-carotene. Many 

laboratory studies also indicate astaxanthin is a stronger antioxidant than lutein, lycopene 

and tocotrienols. Currently, the primary use for humans is as a food supplement. Free 

radicals (e.g. hydroxyl and peroxyl radicals) are a highly reactive form of oxygen (e.g. 

singlet oxygen), and they can damage DNA, proteins and lipid membranes. They are 

produced in the body during normal metabolic reactions and processes. Due to our daily 

exposure to contaminants, chemicals, tobacco smoke, physiological stress or ultraviolet 

(UV) radiation, free radicals production is enhanced as a result (Guerin, et al. 2003). 

Phagocytes can also generate an excess of free radicals to aid in their defensive 

degradation of the invader. Oxidative damage has been linked to aging, atherogenesis, 

ischemia-reperfusion injury, infant retinopathy, macular degeneration and carcinogenesis 

(Papas 1999).  
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With the discovery of antioxidant, human being is able to rid some of the free-radicals 

produced. Dietary antioxidants, such as carotenoids, might help to prevent and fight 

several human diseases. Carotenoids are potent biological antioxidants that can absorb 

the excited energy of singlet oxygen onto the carotenoid chain, leading to the degradation 

of the carotenoid molecule but this process prevents other molecules or tissues from 

being damaged (Mortensen 1997). They can also prevent the chain reaction production of 

free radicals initiated by the degradation of poly-unsaturated fatty acids, which can 

dramatically accelerate the degradation of lipid membranes. Astaxanthin is very good at 

protecting membranous phospholipids and other lipids against peroxidation (Palozza 

1992). Astaxanthin’s antioxidant activity has been demonstrated in several studies. The 

antioxidant properties of astaxanthin are believed to have a key role in several other 

properties such as protection against UV-light photooxidation, inflammation, cancer, 

ulcer’s Helicobacterpylorii infection, aging and age-related diseases, or the promotion of 

the immune response, liver function and heart, eye, joint and prostate health. 

 

2.8 Industrial Production of Astaxanthin 

There are 2 types of astaxanthin in the market nowadays: synthetic and natural 

astaxanthin, the chemical difference between natural and synthetic astaxanthin lies in the 

stereochemical orientation of the molecules in space, or enantiomers.  
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Synthetic astaxanthin is produced as the free (unesterified) xanthophyll and has a 1:2:1 

mixture of the three stereoisomers: 3S, 3’S, 3R, 3’S, and 3R, 3’R. Synthetic astaxanthin 

fetches about US$2000 a kilogram on the market, while the natural product is sold for 

over US$7000 a kilogram. The industrial producers of synthetic astaxanthin are 

Hoffmann-La Roche AG and BASF AG.  

 

Production of natural astaxanthin on a large scale is done on green alga H. pluvialis.  H. 

Pluvialis has been the subject of intensive research, since it accumulates astaxanthin 

under certain stress conditions. It has shown to accumulate the highest levels of 

astaxanthin in nature; commercially more than 40 g of astaxanthin per kilogram of dry 

biomass. In the large-scale, outdoor system, the production of astaxanthin-rich H. 

pluvialis is a two-step process (Figure 2 - 7). First, vegetative cells must be produced 

under near-optimal growth conditions with careful control of pH, temperature and 

nutrient levels.  
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Figure 2 - 7 Typical process flow for the commercial production of natural astaxanthin by H. pluvialis (Burick 
1991) 

 

After a sufficient volume of vegetative cells is produced, the culture is subjected to 

environmental and nutrient stress. Commercial systems induce astaxanthin production by 

deprivation of nitrate and phosphate, increasing temperature and light, or by the addition 

of sodium chloride to the culture medium. Within 2 to 3 days after the culture is stressed, 

haematocysts are formed and begin accumulating astaxanthin; within 3 to 5 days 

following the formation of H. pluvialis (containing ~1.5–3.0% astaxanthin), they are 

ready for harvest. (Molina, et al. 2003) The change in a H. pluvialis culture is striking 

when haematocysts accumulate astaxanthin. Because haematocysts are considerably 

denser than water, harvesting of the haematocysts is accomplished by settling and 
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subsequent centrifugation. The haematocysts are then dried and cracked to ensure 

maximum bioavailability of the astaxanthin.  

 

For feed-grade applications, ethoxyquin or other antioxidants are added to the paste 

before drying, to minimize oxidation of the carotenoids. Milling can then be used to crack 

cells, although the exact details of the techniques are proprietary to companies producing 

H. pluvialis algae. 

 

2.9 Shortcomings of the Current Mass Production System 

The success of the commercial mass production of astaxanthin by H. pluvialis is 

hampered by physiological and technical reasons, such as a slow growth rate and 

relatively low growth temperature, and by its susceptibility to contamination and the 

apparent requirement of a two-stage production process (Zhang and Lee, 1997; Lorenz 

and Cysewski, 2000; Guerin, et al., 2003). This raises the production costs in such a way 

that H. pluvialis astaxanthin cannot compete on price against the synthetic pigment 

(Guerin, et al. 2003).  

 

Recently, Esperanza et al. (2007) proposed the use of a simpler one-step strategy for the 

production of H. pluvialis astaxanthin, in which cultures are operated under continuous 

mode, in only one stage. To promote astaxanthin accumulation, nitrate concentration in 
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the fresh medium entering the reactor was reduced as to generate moderate nitrogen 

limitation conditions, which supported active cell growth with simultaneous 

accumulation of the carotenoid. Besides representing an efficient and simple production 

process, the fact that the growing and dividing cell population exhibited active 

astaxanthin accumulation demonstrated that such ability neither required encystment nor 

was a property unique to non-growing cells, as assumed by others (Boussiba and 

Vonshak 1991, S. Boussiba, 2000, M. Borowitzka 1999, Harker, et al. 1996).  

 

A preliminary assessment of the one-step system yielded a considerably high productivity, 

of 5.6 mg astaxanthin/L day (Del Campo, et al. 2000). Notwithstanding, productivity and 

efficiency of the one-step system versus the two-stage counterpart have recently been 

challenged by Aflalo (2007), on the ground that there is no real biotechnological 

advantage to vigorously growing cells for production of the secondary carotenoid 

astaxanthin. The identification and characterization of alternative microalgal species able 

to accumulate carotenoids of commercial interest, namely astaxanthin and/or lutein, is 

thus highly desirable (Del Campo, Moreno and Rodríguez, et al. 2000) 

 

The early performance analysis of the one-step system was limited to only H. pluvialis  

strain and the effect of varying nitrogen supply to the cell suspension, keeping otherwise 

constant both the dilution rate and the illumination conditions (Del Campo, et al. 2004). 

A slightly different culture system, with improved aeration (threefold higher flow rate) 



Chapter 2                                                      Literature 
Review   

Optimization of Astaxanthin Production in C. Zofingiensis Page | 40 

and subsequent superior culture’s agitation as well as better and more homogenous 

illumination, has now been arranged in a setup which allowed simultaneous operation of 

four photobioreactors. The response analysis could then be extended to the influence of 

several factors and to a better evaluation of the capacities and potentialities of the system. 

(Del Campo, Moreno and Rodríguez, et al. 2000) 

 

2.10 Method of Cultivation of C. Zofingiensis 

Batch system is usually employed at the initial stage to determine the growth rate. 

Depending on the product and the objective of study, batch or continuous system can be 

used. Under standard batch-culture conditions, Del Campo (2004) found that this 

microalgal strain exhibits high values of both growth rate (about 0.04 h−1) and standing 

cell population (7 g dry weight l−1). Lutein, in a free (unesterified) form, was the 

prevalent carotenoid during early stages of cultivation (4 mg g−1 dry weight, or 20 mg l−1 

culture), whereas esterified astaxanthin accumulated progressively to reach a maximum 

(1.5 mg g−1 dry weight, or 15 mg l−1 culture) in the late stationary phase. (Del Campo, et 

al. 2004) 

 

Under low light irradiance and subjected to salt and low nitrogen stress, C. Zofingiensis 

grown under batch system accumulated higher amounts of total secondary carotenoids 

than those growing under high light and low nitrogen stress. (Dan Pelah 2004) 

Furthermore, C. Zofingiensis growing under conditions of salt stress and low light 



Chapter 2                                                      Literature 
Review   

Optimization of Astaxanthin Production in C. Zofingiensis Page | 41 

accumulated higher amounts of canthaxanthin than astaxanthin. It is suggested that for 

canthaxanthin accumulation under salt stress, light is not a limiting factor, but for 

astaxanthin accumulation high light irradiance is mandatory. 

 

For industrial application of algal production, continuous culture is preferred. Continuous 

culture is basically a method of prolonging the growth phase of a microorganism in batch 

culture, which involves feeding with fresh nutrients and at the same time removing spent 

medium plus cells from the system. Growth and environmental factors are kept constant. 

It is a good system to grow heterotrophic microorganisms at high cell densities and to 

study the growth and physiological behavior of microorganisms. 

 

At present, most of the studies have been conducted on batch systems. Therefore, it is 

prudent to investigate the production of C. Zofingiensis under continuous systems. To 

facilitate this, different designs of photobioreactor are investigated for the purpose of 

scaling up in the future. Such studies would also facilitate future one-step production of 

astaxanthin using C. Zofingiensis.  

 

2.11 Photobioreactor Design 

The main parameter that affects reactor design is provision for light penetration, which 

implies a high surface-to-volume ratio; such penetration is crucial if one wants to 
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improve the photosynthetic efficiency, which is in turn an essential condition to reach 

high product and biomass productivities. (O. Pulz 2001) In order to achieve said high 

surface-to-volume ratio, several photobioreactor shapes have been developed that met 

with success. These shapes can be grouped in three basic types, tubular, flat plate and 

fermenter-type; the former two are specifically designed for efficient harvest of sunlight, 

whereas the latter requires artificial illumination. A summary of the developments thus 

far is presented in Table 2 - 8; 

Reactor 
Type 

Light 
harvesting 
efficiency 

Degree of 
control 

Land area 
required 

Scale-up Productivity (g/L.d); 
species 

Vertical 
Tubular 

Medium  Medium Medium Possible 0.5; P. cruentum 

Horizontal 
tubular 

Good Medium Poor Possible 0.25; S. platensis 

0.7; Nannochloropsis 
sp. 

Helical Medium Good Excellent Easy 0.4; S. platensis 

Flat-plate Excellent Medium Good Possible 0.85; Nannochloropsis 
sp. 

2.15; S. platensis 

Fermenter 
type 

Poor Excellent Excellent Difficult 0.03-0.05; several 

Table 2 - 8 Review of existing PBR (Ana 2006) 
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For the purpose of scaling up, flat plate reactors are the most popular choices (M. 

Borowitzka 1997), considering that the light source required is free and readily available. 

Those reactor types are designed to enhance the highest possible area-to-volume ratio 

while ensuring reasonable working volume, mixing pattern and carbon dioxide level. 

Both reactor configurations may work with a separate unit for gas transfer, and several 

layouts have been already tested with success (Pulz 1992, Richmond, et al. 1993). 

 

Flat plate reactors (FPR) are conceptually designed to make efficient use of sunlight; 

hence, narrow panels are usually built so as to attain high area-to-volume ratios. The 

greatest advantage of this system is its provision of an open gas transfer unit, which has 

proven efficient in overcoming the problem of oxygen buildup; and in the specific case of 

bubbled column FPR, the absence of a driving pump. However, such an open zone 

restricts effectiveness of contamination control, as compared with completely closed 

reactors, thereby limiting the strains suitable for this method of cultivation.  

 

A 500-L FPR was developed by Pulz and Scheinbenbogen (1998), in which the culture 

was circulated from an open gas exchange unit through several parallel panels placed 

horizontally. The culture flew at a high linear speed (1.2 m s-1), but hydrodynamic 

parameters usually lay in a safe operating range for the sake of cell integrity. Pusparaja et 

al. (1997) discussed a reactor encompassing an alveolar panel system oriented toward the 

sun, coupled with an open raceway for gas transfer. The use of such alveolar panels as 
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solar receptors increased volumetric productivity from 0.18 g L-1 d-1 in open ponds to 

0.31 g L-1 d-1. (Puspararaj, et al. 1997) Although the volumetric productivity attained 

inside the panels is higher, open raceways are the most often used cultivation systems for 

microalgae, so said combination may be of great practical significance. (Tredici and 

Materassi 1992, O. Pulz, 1992). 

 

2.12 The Need for Investigation 

Cultivation of C. Zofingiensis has always been using batch cultivation, which is not 

practical for scale-up. Continuous or semi-continuous culture and extraction have not 

been reported in the literature to date and thus there is scientific and commercial value in 

conducting a 1-step astaxanthin production system.  Thus, the present study was 

addressed to verify the performance of the one-step system, as well as to analyze its 

behavior and production capability of algal biomass and astaxanthin under optimized 

temperature, illumination and nitrate concentration.  
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Chapter 3 Materials and Methods 
 

 

3.1  Organism 

The green microalga, Chlorella Zofingiensis (ATCC30412) was purchased from 

American Type Culture Collection (ATCC, Rockville, USA).  

 

3.1.1  Initial Growth Conditions 

C. Zofingiensis was inoculated using ATCC recommended culture medium, 5 g/L 

Proteose medium, a non-specific medium, for 2 weeks before sub-culturing was carried 

out. As culture was being removed from long-term maintenance at slow growth rates in a 

culture collection, an increment of 5oC per transfer was necessary to coax the culture 

through a series of transfers. Stock cultures were kept as backup in case of unsuccessful 

transfer or contamination.  

 

After 3 successful transfers, the medium was changed to CZ-M1 medium, a specific 

culture medium as described by Ip and Fung (2005b). The composition is listed in Table 

3 - 1. CZ-M1 medium was adjusted to pH 6.5 and autoclaved before feeding in 

microalgae culture.  
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No Chemical Name Molecular formula Amount 

1 Sodium nitrate NaNO3 0.75 g 

2 Potassium phosphate monobasic KH2PO4 0.175 g 

3 Potassium phosphate dibasic K2HPO4 0.075 g 

4 Magnesium sulfate heptahydrate MgSO4.7H2O 0.075 g 

5 Calcium chloride dihydrate CaCl2.H2O 0.025 g 

6 Sodium chloride NaCl 0.025 g 

7 Iron(III) chloride hexahydrate FeCl3.6H2O 5.0 g 

8 Zinc sulfate heptahydrate ZnSO4.7H2O 0.287 mg 

9 Manganese(II) sulfate monohydrate MnSO4.H2O 0.169 mg 

10 Boric acid H3BO3 0.061 mg 

11 Copper(II) sulfate pentahydrate CuSO4.5H2O 0.0025 mg 

12 Ammonium molybdate tetrahydrate (NH4)6Mo7O24.H2O 0.00124 mg 

Table 3 - 1 Composition of CZ-M1 medium (Ip and Chen 2005b) 

 

C. Zofingiensis  was maintained in 3L Erlenmeyer flask and was harvested during the late 

exponential growth phase (6 g/L). Separation was done using centrifugation at 1000g for 
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3 mins at 22°C. It was then washed with sterile water and resuspended in CZ-M1 

medium with different nitrate concentration for subsequent test.  

 

3.1.2 Maintenance of microalgae 

Routine serial sub-culturing for the stock C. Zofingiensis was performed using aseptic 

microbiological technique and involved transferring an inoculum from a late 

exponential/stationary growth phase culture into fresh, autoclaved medium. The interval 

of transfer was approximately 10-14 days, as determined from C. Zofingiensis growth 

curve.  

 

3.2 Phase 1: Optimization of Algal Growth 

3.2.1 Experiment Design Overview 

For the purpose of optimization of C. Zofingiensis for the cultivation in PBR, Phase 1 

experiment involved varying both nitrate concentration and light intensity. Monitoring of 

growth rate and pigment profiles on samples was carried out. All tests were carried out in 

triplicates and repeated to ensure consistency.  All microalgae samples were cultured 

with 250ml Erlenmeyer flask containing 100 ml of medium with biosilicone or sponge 

placed at the small opening (D=18mm) of the flask. Evaporation is negligible in these 

systems.  
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3.2.2 Chemicals 

The components of the standard nutrient solution and the solvents were of analytical 

grade and were purchased from Sigma-Aldrich, Singapore. Standards of Chlorophyll a 

and b, astaxanthin and β-carotene were purchased from Sigma-Aldrich, St. Loius, Mo, 

USA. All other chemicals were of analytical grade and were acquired from Merck, 

Singapore.  

 

3.2.3 Operating Conditions  

The culture (5 days old) was introduced into Erlenmeyer bottle, each containing 100 ml 

of culture medium. Algal concentration was adjusted to 2 g/L, or 30% by volume. Five 

different nitrate concentrations were used; 1, 0.5, 0.25, 0.125, 0 g/L. The cultures were 

grown at 25°C and with orbital shaking at 130 rpm and illuminated with continuous cool 

white florescence light (2 x 50W) at 3 light intensities: 100, 300 and 600 µmol m-2 s-1. 

Samples of concentrated culture were placed in the dark 24 hours before the experiment 

to induce synchronization and to avoid pre-adaption to light. Samples were also diluted to 

avoid self-shading. pH was measured and maintained at 7.5. CO2 was manually bubbled 

when pH exceeded 7.5. Temperature measurement was done using thermometer placed 

inside the culture. Illumination can be measured by digital illumination meter (Nicetu LX 

802). 
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3.2.4  Cryopreservation and Recovery of microalgae 

Cryopreservation method was carried out according to Day and Brand (2006). A Nalgene 

1°C Freezing Container (canister) that contains isopropanol as specified by the 

manufacturer is placed into a 4°C refrigerator at least a day before it was used for 

cryopreservation. 1.5 ml of microalgae in liquid culture medium was placed into a 2-ml 

cryovial. Then 0.5 ml of the 20% MeOH solution was added to the vial and the contents 

was quickly and gently mixed. At all time algal cultures should be kept in minimum light. 

The pre-chilled freezing canister was removed from the refrigerator, the cryovial was 

placed into one of the vial holder locations in the canister, and the lid is placed back onto 

the canister. The canister was then placed into a -80°C freezer.  After at least 1.5 hours, in 

the -80°C freezer, the freezing canister was removed. The storage box was immediately 

removed from the rack in the liquid nitrogen dewer and the cryovial was transferred from 

the canister to the box. The box was then placed back into the rack, which was placed 

into the storage dewar for storage (Day and Brand 2006). 

 

For recovery of living microalgae from the dewar a 400-ml volume of water was pre-

warmed to approximately 37°C. The storage rack was removed from the liquid nitrogen 

dewar and the cryovial is removed from the rack and quickly inserted into the 37°C water 

bath. The cryovial is gently agitated during thawing and left in the water bath until all ice 

has just melted (generally under 2 minutes). The cryovial is immediately subjected to 
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centrifugation (as gentle as possible) to pellet the microalgae and the liquid was gently 

decanted. The vial was then filled with fresh culture medium and left undisturbed for 

several minutes. It was then again subjected to gently centrifugation, and the liquid was 

removed as before. Fresh culture medium was placed into the cryovial to suspend the 

microalgae and the culture was transferred to a larger volume of medium under normal 

culturing conditions. 

 

3.3 Phase 2: Photobioreactor operation 

3.3.1 Phase 2 Experiment Design Overview 

Phase 2 of experiment involved semi-continuous cultivation of C. Zofingiensis in a 

turbidostat, air-lift flat-plate PBR (Figure 3-1 and 3-2) at different temperature. Using the 

optimum operating configuration determined in Phase 1 of the experiment, it would be 

further tested in a PBR. Two liters of microalgae was placed into each PBR and mixing 

of microalgae was induced by aeration from tubular diffuser. Again, both growth rate and 

pigment profile were monitored. All tests were carried out in triplicates and repeated to 

ensure consistency.      
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Figure 3 - 1 Left: Isometric view of the 3L flat-plate photobioreactor and experimental set-up from front view of 
reactor (arrows indicating direction of flow). 
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Figure 3 - 2 Picture of flat-bed algal photobioreactor  

 

3.3.2 Operational Perimeters 

The cells that entered late exponential/stationary growth phase from the stock culture 

were harvested by centrifugation (22°C at 1,000g for 5 minutes). The pelleted cells were 

rinsed twice in fresh CZ-M1 medium before using in phase 2 reactors. Culture of C. 

Zofingiensis was grown in semi-continuous mode.  Concentration of microalgae was 

determined daily using spectrophotometer. Modified CZ-M1 medium with 0.125g/L 

nitrate concentration was used, as obtained from phase 1. Biomass concentration was 

diluted to about 50% of its concentration (at algal concentration 3.5g/L) at late 

exponential/stationary growth phase by manually removing part of the cultures and 

adding fresh medium. Reactors were operated at 3 different temperatures: 22, 25 and 

28°C.  pH was fixed at 7.5, and CO2 was aerated to adjust the pH. Due to the loss of 

liquid medium from evaporation, reactors were topped up to 2 liter mark daily. Light 

intensity was maintained at 300 µmol m-2 s-1.  

 

Quasi-steady state was reached when the biomass increased in a repeated cyclic pattern 

over the day for three consecutive growth cycles. At quasi-steady state, growth 

parameters and pigment profiles were recorded. Experiment for each configuration would 

stop if repetitive peak dry weight concentration of C. Zofingiensis were observed in 

consecutive growth curve. 
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3.5 Physical and Analytical methods 

3.5.1 Sample Preparation for Determination of Growth Parameters 

The biomass concentration is measured as dry weight as it is one of the most direct and 

cost effective means to estimate biomass production. Dry weight can be conducted 

through sampling, separation, drying and weighing. 

 

50 ml of C. Zofingiensis was taken from the batch reactor. 3 samples of 25ml were taken 

daily to reduce error or sampling. After sampling, cells were separated by centrifugation 

at 3600 g for 5 minutes at 4oC, were subsequently washed with deionized water to rid of 

the salts and other contaminations. The sample was re-suspended in 50ml of deionized 

water and sample of 25 ml is filtered through 0.45 um (Whatman filter paper glass type). 

Drying temperature was set to 60oC to avoid of over drying. 

  

The rate of increase in biomass concentration is expressed by the specific growth rate (µ), 

which is calculated according to the following formula: 

Equation 3 - 1  .          

where x is the biomass concentration. Thus µ represents the rate of in biomass growth per 

of biomass in units of d-1. During exponential growth, the rate of increase in cells per unit 
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time is proportional to the number of cells present in the culture at the beginning of any 

unit of time. In other words, population growth follows this equation. 

Equation 3 - 2             
  

where r (t-1) is exponential growth rate of the population, the solution of which is  

Equation 3 - 3            

where N0 is the population size at the beginning of a time interval, Nt, is the population 

size at the end of the time interval, and r is the proportional rate of change. Equation 3 - 4 

can be rearranged to give Equation 3 - 5.  

Equation 3 - 6  
 

∆
          

Where ∆  is the length of the time interval (t1-t0).  

 

3.5.2 Ion chromatography (IC) 

Nitrate concentration was determined using IC (Dionex ICS5000, Figure 3-3). Algae 

samples were filtered to prevent damage to the column and flow system. Filtrates were 

diluted 10 times by deionized water before putting into the autosampler.   
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Figure 3 - 3 Ion chromatography system with auto-sampler for measurement of nitrate concentration 

 

3.5.3 Light Scattering (Turbidity) 

Spectrophotometer (Figure 3-4) is employed to monitor the growth of algal culture. 

Results can be obtained very quickly and non-destructively. Optical density of the algal 

suspension was measured at an absorbance of 680 nm and 530 nm, using culture medium 

CZ-M1 as blank. Correlation between the dry weights of microalgae was taken to 

measure the growth rate of the algal sample.  
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Figure 3 - 4 Spectrophotometer for measurement of algal pigments 

3.5.4 Sample Preparation for Determination of Astaxanthin Content 

Quantification of astaxanthin and astaxanthin esters from C. Zofingiensis cells was 

carried out according to the procedure by Boussiba and Vonshak (1999). Samples 

collected are first centrifuged and frozen at -20oC before putting into a DW3 freeze-drier 

(Heto Dry Winner, Denmark). The freeze drying took place under vacuum conditions 

below the "triple point" (6.2 mbar = 4.6 torr). The freeze-dried cells were powdered, 

grounded by motar and pestle, resuspended in a solution containing 5% (v/v) KOH and 

30% (v/v) methanol, and heated in a water bath (70°C) for 5 min. After centrifugating the 

supernatant, which contained the chlorophylls, was discarded. The pellet was extracted 

twice with acetone at 70°C for 5 min. Standard curves for astaxanthin standards in 

acetone were made and astaxanthin concentrations were plotted as a function of 

absorbance and calibration equations were determined by linear regression. The 

absorbance of the combined extracts was determined at 550 nm. To allow the 

quantification of astaxanthin and astaxanthin esters separately from other carotenoids, the 
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measured concentration were subsequently multiplied by 3.2, a factor determined by 

measuring the absorbance of a purchased astaxanthin standard (Sigma, St. Louis) at two 

different wavelengths (A492/A550) (Equation 3-5). The amount of astaxanthin was then 

calculated by applying an absorption coefficient for astaxanthin in acetone according to 

Boussiba et al. (1992). The entire process is carried out in darkness.  

Equation 3 - 7  .        
  

where CTA is the concentration of total astaxanthin (astaxanthin ester and astaxanthin) in 

mg/L; and CA550 is the concentration of astaxanthin measured at A550 (mg/L).  

 

3.5.5 Sample Preparation for Determination of Chlorophyll And Total 

Carotenoids Content  

Pigment extractions were carried out under dim light. 10 mg of freeze-dried algae was 

grinded and extracted by 30 ml of acetone. This process was repeated until cells turned 

colourless. Each analysis was carried out in triplicates. 

 

For Chlorophyll a, b and total carotenoids (primary and secondary), the absorbance of the 

extracts was determined in a spectrophotometer (UV-1601, Shimadzu) at the wavelengths 

of 663.2, 646.8 and 470.0 nm, respectively. Chlorophyll and total carotenoid contents 
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were calculated by using the equation of Lichtenthaler (1987). Typical absorption spectra 

of chlorophyll a and b is shown in Figure 3-5.  

Equations for the determinations of the concentrations of chlorophyll a (Ca), chlorophyll 

b (Cb), of total chlorophylls (Ca+b) and of total carotenoids (primary and secondary) (Cx+c) 

in 100% acetone as follows: 

Equation 3 - 8  . . . .      

Equation 3 - 9  . . . .       

Equation 3 - 10  . . . .       

Equation 3 - 11  . . /    
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Figure 3 - 5 Typical absorption spectrum of chlorophyll a, b and total carotenoids. 
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Chapter 4 Results and Discussion 
 

 
 

4.1 Experimental Results 

4.1.1 Monitoring of Initial C. Zofingiensis Growth  

After 3 successful transfers using bistro medium, dry weight concentration was recorded 

daily and the result of the initial growth curve as shown in Figure 4-1.  

 

Figure 4 - 1 Initial Growth Curve of C. Zofingiensis. 
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The lag phase was found from 1-6th day; exponential phase from 6-9th day; stationary 

phase from 9-25th day; and death phase from 25th day onwards. The maximum growth 

rate was recorded at 1.077 per day with a maximum dry weight concentration of 5.9g/L 

recorded on Day 9, the last day of the exponential phase.  

 

Due to concentration of microalgae samples, 10 times dilution was carried out. Figure 4 - 

2 was plotted as indirect method of determining dry weight concentration of microalgae 

culture. A linear relationship was deduced and a R2 value of 0.94 was found, indicating 

the line was a good fit, closely matching data points found. This graph would be used in 

monitoring the growth of culture.  
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Figure 4 - 2 Absorbance of C. Zofingiensis was measured at 670 nm using a spectrophotometer and plotted 

against dry weight concentration at 10x dilution.  

 

4.1.2 Phase 1: Batch Growth of C. Zofingiensis  

4.1.2.1 Varying Nitrate Concentration and Light Intensity 

When the profiles of growth curves for C. Zofingiensis became stable and reproducible, 

maximum dry weights for all configurations were determined. Samples testing were 

carried out in triplicates to reduce error. To recall, 15 different combinations of nitrate 

concentration and light intensity were employed in Phase 1.  
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As seen from Figure 4 - 3, it could be observed that nitrate concentration affected the 

growth of C. Zofingiensis severely. Two configurations clearly stood out from the rest, i.e. 

0.5 g/L at 300 µmol m-2 s-1 and 1g/L at 300 µmol m-2 s-1 with peak dry weight 

concentration at 7.55 g/L. At nitrate concentration 1 and 0.5 g/L, it was observed that 

exponential growth phase was longer and lag phase was shorter compared to lower nitrate 

concentration. Lag phase was found to be longest (6 days) at low light intensity and low 

nitrate concentration. At no nitrate level, culture entered death phase after 5 days of 

growth as shown by decline in dry weight concentration regardless of light intensity.  

 

Figure 4 - 3 Growth curves at varying nitrate concentration at 25°C. Batch cultures of C. Zofingiensis were 

carried out at nitrate concentration 1, 0.5, 0.25, 0.125 and 0 g/L with light intensity at 100, 300, 600 µmol m-2 s-1. 

A total of 15 configurations were tested.  
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Specific growth rate generally increased with increasing nitrate concentration. At nitrate 

concentration 1 g/L, a drop in specific growth rates across all light regimes were seen. 

The highest specific growth rates of C. Zofingiensis were found at 0.5g/L nitrate 

concentration, light intensity 300 µmol m-2 s-1, at 0.45 day-1. At 600 µmol m-2 s-1, specific 

growth rate were 23% lower than at 300 µmol m-2 s-1 and 37% lower for 100 µmol m-2 s-1.   

 

Figure 4 - 4 specific growth rate was plotted against nitrate concentration at light intensity 100, 300, 600 µmolm-

2 s-1.  The initial culture concentration was 2g/L.  
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4.1.2.2 Physical Changes of C. Zofingiensis 

Noticeable colour change was observed for C. Zofingiensis. With increasing light 

intensity, the colour of microalgae changed from green (Figure 4 - 6) to mixture of green 

and red (Figure 4 - 7) to red (Figure 4 - 8). At high light intensity, it could be seen that 

some of the algae biomass was black in colour.  

 

At cellular level, it could be noticed that cells with red pigmentations were higher at 600 

µmol m-2 s-1 than a light intensity of 300 µmol m-2 s-1. At a light intensity of 100 µmol m-2 

s-1, significantly lower number of cells with red pigmentations was seen.  

 

Figure 4 - 5 C. Zofingiensis at day 0. 
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Figure 4 - 6 C. Zofingiensis at day 7 under 100 µmol m-2 s-1 and at 0.25 g/L of nitrate concentration, showing 
darkening of green colour. 

 

 

Figure 4 - 7 C. Zofingiensis at day 7 under 300 µmol m-2 s-1 and at 0.25 g/L nitrate concentration, showing 
mixture of green and red colour. 
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Figure 4 - 8 C. Zofingiensis at day 7 under 600 µmol m-2 s-1 and at 0.25g/L of nitrate concentration , showing 
mixture of red and black colour 

 

4.1.2.3 Pigment Profiles in C. Zofingiensis 

Results on chlorophyll a and b, total carotenoids and astaxanthin content in C. 

Zofingiensis under different configurations would be presented in this section.  

Regardless of light intensity, cellular astaxanthin concentration decreased with increasing 

nitrate concentration (Figure 4 - 9a). At a nitrate concentration 1 g/L and low light 

intensity, astaxanthin content was the lowest, at 0.23 mg per gram of dry weight of C. 

Zofingiensis. Astaxanthin content increased with increasing light intensity (Figure 4 - 9). 

Astaxanthin content at high illumination was 20% higher than at mid- illumination, and 

26% higher than at low-illumination.  
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Figure 4 - 9a Astaxanthin concentration at day 10 was plotted against nitrate concentration at different light 
intensity. ; Figure 4 – 9b volumetric astaxanthin content plotted against nitrate concentration with changing 
light intensity 
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Multiplying astaxanthin content to dry weight concentration yielded volumetric 

astaxanthin concentration (Figure 4 – 9b). A different trend was observed. Volumetric 

astaxanthin production increased with increasing nitrate level, and was recorded highest 

at a nitrate concentration 0.25 g/L at mid light intensity. Similar yield was obtained at a 

nitrate concentration 0.5 g/L. At 1g/L, astaxanthin content was markedly lower than mid 

and high illumination. Production at mid illumination was the highest among the three 

illuminations used. At a nitrate concentration 0.25 and a light intensity of 300 µmol m-2 s-

1, a volumetric concentration of 7.06 mg/L was achieved.   

 

Chlorophyll a and b 

Chlorophyll a and b content increased with increasing nitrate concentration and decreased 

with increasing light intensity (Figure 4 - 10a). The highest chlorophyll content was 

observed at nitrate concentration 1 g/L with light intensity 100 µmol m-2 s-1 at 1.18 mg/g 

of microalgae. Comparing high light intensity to low light intensity, the decrease in 

chlorophyll level was about 35-40%.  

 

Volumetric chlorophyll a and b concentration (Figure 4 – 10b) displayed similar results 

to the mass concentration with a clearer trend. Volumetric chlorophyll a and b level 

increased with increasing nitrate level, and was recorded highest at nitrate concentration 

1 g/L at mid light intensity at 8.6 mg/L.  
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Total Carotenoids 

Total carotenoids were seen to decrease slightly with increasing nitrate concentration and 

with increasing light intensity (Figure 4.11a). The highest total carotenoids concentration 

was 2.62 mg/g, observed at no nitrate level with light intensity 100 µmol m-2 s-1. The 

lowest total carotenoids concentration was seen at high nitrate concentration and high 

light intensity.  

 

Volumetric production of total carotenoids increased from nitrate concentration 0-0.5 g/L 

and decreased as nitrate concentration increased to 1 g/L (Figure 4 – 11b). Production at 

mid light intensity was the highest among all nitrate concentration and the highest 

concentration was 16.16 mg/L, seen at nitrate level 0.5 g/L and 300 µmol m-2 s-1. The 

total carotenoids also included concentration of astaxanthin (a secondary carotenoid).  
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Figure 4 -10a Chlorophyll a and b concentration plotted against nitrate concentration with changing light 
intensity; Figure 4 – 10b Volumetric chlorophyll a and b concentration plotted against nitrate concentration 
with changing light intensity. 
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Figure 4 – 11a Total carotenoids concentration plotted against nitrate concentration with changing light 
intensity; Figure 4 – 11b Volumetric total carotenoids concentration plotted against nitrate concentration with 
changing light intensity. 
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4.1.2 Phase 2: Semi-Continuous Reactor Operation 

4.1.2.1 Growth Rate with Changing Temperature 

During the first growth cycle (Figure 4 - 12), all reactors exhibited the similar duration of 

lag phase (3 days) and exponential phase (4 - 5 days), with a maximum yield at 

approximately 8 g/L. It was followed by 4 days of stationary phase before diluting the 

culture to 3.5 g/L .  

 

Reactors operated at 25 and 28˚C displayed shorter lag phase during the second cycle 

than samples operated at 22˚C. Exponential phase lasted for 4 days for all 3 temperatures. 

Yield obtained during the second cycle showed a 15% increment compared to the first 

cycle.  Productivity at third cycle confirmed the maximum yield for all settings. Lag 

phase was not observed at the third and fourth cycle, and cycle duration was shortened 

from 8 days to 6 days. Lag phase was absent from the third cycle onwards.  

 

Reproducible growth curves were seen from third growth cycle onwards. The optimum 

temperature for growth of C. Zofingiensis strain was 28˚C. Productivity at 28˚C was the 

highest, at dry weight concentration 9.24 g/L, followed by 25 and 22˚C.  
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Figure 4 - 12  Growth curve of photobioreactor operated at turbidostatic mode for 30 days; subculture 
conducted on day 8, 16, 22 and 30.  

 

4.1.2.2 Pigment Profile with Changing Temperature 
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carotenoids (excluding astaxanthin) decreased with increasing temperature and cell 

growth cycle, suggesting that some of the carotenoids could be converted to astaxanthin.  

 

Astaxanthin (secondary carotenoids) concentration was seen to increase with increasing 

temperature and cell growth cycle. Astaxanthin level increased from 0.60 mg/g on day 8 

to 0.69 mg/L on day 22, which has a 15% increment. Levels at day 22 and day 30 were 

approximately the same, suggesting that cellular astaxanthin concentration probably 

reached its maximum. Result from day 30, showed that astaxanthin concentration at 28˚C 

was higher compared to at 22 and 25˚C. Increment in temperature led to an increment of 

12-15% in cellular astaxanthin concentration.  

 

Generally, temperature changes from 22 to 28˚C did not show a sharp change in 

volumetric level of pigments (Figure 4 - 14). Though volumetric production at higher 

temperature did produce slightly better yield compared to lower temperature (12% 

difference). Yield improvement from increased growth cycles and cell aging displayed 27% 

improvement in cellular volumetric astaxanthin level.   
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Figure 4 - 13 pigment concentration (mg/g) of C. Zofingiensis represented in percentage at day 8, 16, 22 and 30 
for temperature 22, 25 and 28˚C. 

 

Figure 4 - 14 volumetric pigment concentration (mg/L) of C. Zofingiensis represented in percentage at day 8, 16, 
22 and 30 for temperature 22, 25 and 28˚C. 
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4.2 Discussion 

4.2.1 Nitrate Concentration Effect  

Nitrate had shown to affect the growth of C. Zofingiensis and its pigment composition. 

Poor algal growth was observed in the nitrate-starved medium (Figure 4 - 3), whereas an 

addition of nitrate up to 0.5 g /L did show a significant growth improvement. The effect 

of nitrate concentration on the pigment content of C. Zofingiensis is shown in Figure 4 - 

9a, Figure 4-10a and Figure 4-11a, where it could be seen that the cellular levels of total 

carotenoids decreased in response to increasing nitrate concentration in the medium. 

Using a different light source and intensity, Del Campo (2004) reported a maximum yield 

of 9.7 g/L. The maximum yield obtained for nitrate concentration 0.5 g/L at light 

intensity of 300 μmol photon m−2 s−1, at 7.55 g/L, were lower to results from other 

research groups. (Bar, et al. 1995; Ip and Chen 2004; Del Campo, et al. 2004; Rise, et al. 

1994) This might be caused by differences in lighting and method of cultivation. Nitrate 

concentration clearly indicates that nitrate is essential for stimulating cell growth. Under 

nitrogen-starved/limited conditions, it has been shown that the specific activity of nitrate 

reductase, an enzyme responsible for assimilation of nitrate in culture medium, is very 

low. It will greatly affect the normal cellular metabolism of the algae, resulting in 

extremely slow growth and low biomass (Darley 1982). 

 

Similar to our findings, optimal growth of H. pluvialis was severely affected when grown 

in the absence of nitrate (Darley 1982). This further supports that nitrate was an 

important nitrogen source for the algal growth. As shown in Figure 4 - 4, it was noticed 
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that the growth of C. Zofingiensis was saturated at 0.50 g/L ofnitrate and excess nitrate 

supply (1 g/L) resulted in a significantly higher amount of chlorophylls and primary 

carotenoids inside the algal cells (Figure 4-10a, Figure 4-11a). Our experimental results 

showed that low nitrate concentration was favourable for astaxanthin accumulation. It 

was previously investigated that secondary carotenoids such as astaxanthin could be 

synthesized in the algal cells only when the chlorophylls and primary carotenoids were 

not sufficient for protecting the algae against environmental stresses such as high light 

intensity and nitrogen starvation (Rise, et al. 1994). Therefore, the high contents of 

chlorophylls and primary carotenoids at 1 g /L of nitrate might be a factor suppressing the 

biosynthesis of the secondary carotenoids and astaxanthin in C. Zofingiensis.  

 

The increased astaxanthin pigment content was examined in nitrate-free medium in other 

green algae species such as H. pluvialis and Chlorococcum sp. (Rise, et al. 1994; Bar, et 

al. 1995; Orosa, et al. 2000). It was postulated that nitrate-free growth medium was 

faourable for astaxanthin formation. On the contrary, Boussiba (2000) reported that 

nitrate was essential for astaxanthin accumulation in H. pluvialis and was required for 

continuous synthesis of protein responsible for supporting the pigment formation.  

 

4.2.2 Light Effect 

It has been known that plants and algae develop secondary carotenoids to protect against 

potential damaging effects of oxidative stress by ROS, created as a by-product of 

photosynthesis (Bar, et al. 1995). Extreme environmental stresses both resulted in 
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overproduction of ROS, which may lead to the activation of stress-related genes involved 

in signaling, protection, and ROS scavenging. As such, light regulation of carotenoid 

biosynthesis is commonly observed in plants and algae. (Bohne and Linden 2002; 

Steinbrenner and Linden 2001; von Lintig, et al. 1997) The treated cells accumulated a 

much higher level of and astaxanthin (Figure 4 - 9a), which may protect C. Zofingiensis 

against high-light, as elucidated in higher plants and other green algae (von Lintig, et al. 

1997; Zhang and Lee 1997).  

 

Level of light irradiance did not show much effect on the level of chlorophyll a and b. 

Both cellular and volumetric chlorophyll a and b remained approximately the same 

constantly for different configurations. However, it had shown profound influence on the 

carotenoid profile, especially cellular astaxanthin concentration. The astaxanthin level 

was about 2-fold higher in cells of cultures at high irradiance (600 μmol photon m−2 s−1) 

than in those at low irradiance (100 μmol photon m−2 s−1). This could also be seen from 

the changes in physical appearance of C. Zofingiensis from green (Figure 4 - 5) to red 

(Figure 4 - 8). If the total cellular carotenoids concentration remained about the same 

percentage, the explanation to this would be some of the primary carotenoids were 

converted to astaxanthin (secondary carotenoid) as a strategy for survival. As explained 

earlier, secondary carotenoids had the effect of scavenging ROS from the cell to prevent 

damages to the cell. The above findings on the changes in pigment composition were 

consistent with other research done on H. pluvialis, Chlorella sorokiniana and 

Chlorococcum (Bar, et al. 1995; Aflalo, et al. 2007; Boussiba and Vonshak 1991; Del 
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Campo, et al. 2000; Yuan, et al. 2002).  In general, increasing the light intensity enhances 

the accumulation of astaxanthin and suppressed the primary production of  carotenoids 

and chlorophyll.  

 

Light irradiance also had profound effect on cell production. It had been observed that 

specific growth rate at 300 μmol photon m−2 s−1 was higher than those recorded at 100 

and 600 μmol photon m−2 s−1. At high intensity, growth rate of C. Zofingiensis was lower 

than mid-light intensity. This might be due to photo-inhibition of algal growth, caused by 

excessive radiance on plants and microalgae. At high light intensities, chlorophyll can be 

damaged by the enhanced activity of electrons beyond that which it can process. This 

resulted in photo-inhibition by decreasing the photosynthetic capacity. It resulted in 

changes in pigment composition, with less chlorophyll and primary carotenoids generated.  

A prolonged exposure of plants or organisms to excessive radiation may result in the 

photodestruction of the photosynthetic pigments, since the discoloration (bleaching) of 

these pigments depends on oxygen and light; this phenomenon is normally called 

photooxidation, and it may cause the death of the cell or the organism (Powles, 1984; 

Hendrey et al., 1987). We postulate that astaxanthin produced in algae could function as 

photoprotective filters, reducing irradiation of the cell components, serve as antioxidants 

preventing accumulation of oxygen radicals, and/or act as a hydrophobic layer, reducing 

water losses upon dehydration or salinization (Bar et al. 1995; Boussiba 2000). In general, 

astaxanthin accumulates in certain algal strains in response to a variety of stress 
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conditions. The most thoroughly studied microalga in this respect is H. pluvialis 

(Boussiba 2000). 

 

Combining the effects of irradiance on growth and pigment composition yields a more 

practical result. It is important to enhance growth of algae without experiencing photo-

inhibition. From the experimental results, a maximum volumetric astaxanthin content of 

7 mg/L was obtained from nitrate concentration 0.25 g/L at 300 μmol m−2 s−1. The nitrate 

concentration was different from that reported by Del Campo (2004) and Ip and Chen 

(2005).  Del Campo found the optimum nitrate concentration at 0.5g/L and irradiance of 

700 μmol photon m−2 s−1, with a volumetric yield of 8.24mg/L. Ip and Chen found 

similar volumetric yield, but the irradiance used was 500 μmol photon m−2 s−1. Though 

the nitrate/lighting configurations used were different, the results showed similarity in 

yield and thus it could be said that an optimum configuration has to be determined even 

for the same algae culture.  

 

4.2.3 Temperature Effect 

Temperature plays a major role in photo-inhibition and light damage. Our results indicate 

that elevated temperatures from 22 to 28˚C promoted growth in C. Zofingiensis, and it 

was favourable enhanced the production of astaxanthin. In the present study, the specific 

growth rate increased with a rise in temperature from 22 to 28°C. Temperature above 

28˚C was not tested in the current experiment, but results from other research group on 
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other species indicated that operating temperature beyond 30°C would lead to decrease in 

productivity. (Dauta, et al., 1974; Tjahjono, et al. 1994) This is consistent with the 

specific growth rate of H. pluvialis increased with a rise in temperature from 20 to 28°C; 

a further increase in temperature caused a decline in specific growth rate (Fan, et al., 

1994).   

 

The increased growth observed between 22 and 28˚C can be explained by increased 

activity of enzymes of the reductive pentose cycle. It is reported that the rate of 

photosynthesis decreased at 30˚C, and ceased completely at 34-36˚C. Algal cell 

respiration did not stop, suggesting that the cells were not dead until temperature was 

above 45˚C, where proteins start to breakdown. (Goldman and Carpenter, 1974) The data 

indicate that the algae themselves perceive and respond to elevated temperature 

accordingly.  

 

By raising the cultivation temperature of H.  pluvialis from 20 to 35˚C, Tjahjono (1994) 

obtained large amounts of astaxanthin. The amount of astaxanthin accumulation in H.  

pluvialis is usually around 30-35 mg/g of microalgae, operated at 25-28˚C. By altering 

the nutrient level, light intensity and slowly increasing operating temperature, Tjahjono 

(1994) reported an astaxanthin concentration of 42.6 mg/g. (Tjahjono, et al. 1994) 

Temperature had a stimulating effect on carotenoid accumulation in the cells, with the 

levels of astaxanthin being markedly enhanced; the astaxanthin level was reported 

highest from the current experiment. The extent to which C. Zofingiensis may acclimate 
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or adapt to elevated temperatures was not addressed in this study, but it has been proven 

that green algae have remarkable adaptable ability to high temperature. Our results 

showed that algae could be engineered and acclimated to different adverse environmental 

conditions to produce higher yield of algal products.  

 

However, studies have indicated that growth of these algae is markedly reduced above 

30˚C, suggesting a genetically fixed temperature limitation. (Harker, et al. 1996)  As the 

algae exposed to the highest temperatures still respired, the possibility exists that they 

may recover, but recovery from thermal stress was also not addressed in this study. 

 

4.2.4 Relationship between Algal Pigments 

From the current study, it could be seen clearly that astaxanthin level increased with 

decreasing chlorophyll and other carotenoids level. Though the exact pathway for 

astaxanthin remains inconclusive, it is believed that astaxanthin, a secondary carotenoid, 

uses β-carotene (a primary carotenoid) as a pre-cursor for astaxanthin production 

(Misawa, et al. 1995 ). (Refer to Figure 4 – 15 for schematics of the carotenoid pathway) 

It is therefore consistent with our observation. During times of environmental stress, 

normal cell activities will cease and go into “shock”, affecting the composition of algal 

pigments. It was previously studied that nitrate stress would not directly cause a decrease 

in chlorophyll a and b (Sanchez, et al. 1982), but it decreases the cell’s metabolic 
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activities. Coupled with high light intensity, C. Zofingiensis showed resistance by 

producing astaxanthin, a type of secondary carotenoids for its survival.  

 

Figure 4 - 15 Postulated astaxanthin biosynthetic pathway deduced from in vivo complementation studies 
(Misawa, et al. 1995 ) 

 

4.2.5 High Light and High Temperature: Practical Implication 

The combination of high temperature and full sunlight is an ordinary occurrence that 

characterizes summer conditions in most parts of the world. Photo-inhibition of 

photosynthesis in situ may happen in full sunlight, even in the absence of any other 

stressing factor, despite the occurrence of a high temperature (Dauta, et al. 1990). When 
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the temperature rises above the optimum level, photosynthesis begins to decrease. At first 

the decline is gradual and reversible, but after a critical temperature is reached it becomes 

slow and irreversible (Darley 1982).  

 

According to these authors, reversible inactivation of photosynthesis reflects damage to 

the chloroplasts that persists for some time after the plant is returned to favorable 

temperature conditions. Ögren (1988) verified the occurrence of photo-inhibition under 

full sunlight in the leaves of Salix sp. Laing et al. (1995), for Phaseolus vulgaris. (Laing 

and Greer 1995, Ögren 1988) These authors noticed an inhibition of 25% in the 

vegetative growth rate of P. vulgaris plants acclimated to 25°C at 1,300 µmol m-2 s-1. 

They also found out there was a decrease in the rate of photosynthesis in the field, under 

high light and high temperature conditions.  

 

4.2.6 Optimization of Reactor  

It was observed that the performance of batch reactor system was more superior than 

reactor operated at turbidostatic semi-continuous mode. Overall, we noticed a significant 

decrease in the cellular astaxanthin concentration, from 1.56 mg/g to 0.69 mg/g of C. 

Zofingiensis, or a 2.2 times decrease. However, volumetric astaxanthin content in 

continuous reactor remained highly similar (6.73 mg/L in batch system; 6.23 mg/L in 

continuous system), due to higher yield achieved in continuous system. It can further 

hypothesize that the actual production of astaxanthin, given adjustment in light 

manipulation, mixing rate, reactor design and light/dark cycles, would result in higher 
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productivity than batch systems. The possible reasons for the low astaxanthin content 

would be discussed in the next section. Though these factors are not studied in the current 

experiment, future work on using C. Zofingiensis in PBR should address these issues.   

 

 

4.2.7 Liquid Mixing Rate 

In an air-lifting flat-bed reactor system, the determining factor in liquid mixing is its gas 

flow rate. Increasing the gas flow has its pros and cons for reactor operation. It results in 

an increase in gas bubble and irregularity in size of gas bubble. This lead to light 

dispersion and light transmission through the bubbles, allowing a further penetration of 

light along the reactor optical path (Miro´n, et al. 1999, Molina, et al., 1999, Fernández, 

et al., 2001). The exact effect is more pronounced in high density culture systems, where 

steep light gradient dictates across the reactor.  

 

At a certain light regime, the effect of mixing results in a general improvement in 

productivity. The growth rates of some microalgae have been reported to increase 

initially with increasing turbulence, probably due to the improved supply of light or CO2. 

As soon as the optimum level of turbulence has been reached, however, growth decreases 

sharply with further increase of the superficial-gas velocity (Barbosa, et al. 2004, Chisti 

and Moo-Young, 1989, Moo-Young and Chisti 1988). These observations are consistent 
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with our results. They found that a further increase will not lead to an additional increase 

in the mean liquid velocity, instead the additional energy input leads to increased 

fluctuation velocities (> 0.06 ms-1) and to an increased turbulent dissipation (Moo-Young 

and Chisti 1988). Therefore other options to improve fluid dynamics have to be 

considered.  

 

4.2.8 Hydrodynamic Stress and Cell Death 

Cell damage can take place during bubble formation, bubble rising or bubble break-up. 

Very few quantitative studies have been done regarding hydrodynamic stress in 

microalgae cultures grown in gas-sparged photobioreactors (Carvalho, et al. 2006). It has 

been assumed until recently that the main cause for cell damage was the bubble bursting 

at the liquid surface. However, it is observed that bubble formation is responsible for cell 

damage and that cell death increases with increasing gas entrance velocity beyond a 

certain critical value, which is strain dependent. Barbossa (2000) concluded that the gas 

velocity at the sparger is an important parameter for reactor design and operation. 
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Chapter 5 Conclusions and 
Recommendations 

 

 

5.1 Conclusions 

In the present study, the use of nitrate, light intensity and temperature has been shown to 

effectively manipulate and enhance astaxanthin production by C. Zofingiensis. It was 

reported that C. Zofingiensis accumulate astaxanthin as main carotenoids (Orosa, et al., 

2000). Astaxanthin is a typical secondary carotenoid which accumulates in lipid bodies 

located outside the chloroplast (Bar et al. 1995; Orosa et al., 2000). The role of secondary 

carotenoids and the pathway of biosynthesis in algal cells is not fully understood. C. 

Zofingiensis under nitrogen starvation and high light irradiance induced a drop in 

chlorophyll and other carotenoids (excluding astaxanthin) and the concomitant 

accumulation of secondary carotenoids (astaxanthin).  

 

In the present study, different conbinations of nitrate concentration and light intensity 

were employed in the experiment. In terms of C. Zofingiensis yield, the batch system 

achieved a dry mass of 7.55 g/L, produced at 0.5 g/L of nitrate and at light intensity 300 

mol photon.m-2s-1. It is lower than the yield reported by (Dan Pelah 2004, Del Campo, et 

al. 2004), which was reported at 12.5 g/L. Production at 0.5 g/L and 1 g/L gave similar 

result, except that chlorophyll a and b level were found to be 34% higher than nitrate 
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concentration 0.5g/L. The production of excess chlorophyll caused by high nitrate 

concentration could be seen more pronouncedly especially at low and no light level. 

Growth of C. Zofingiensis was severely affected by the lack of nitrate in the medium. 

Growth at 0.125 g/L displayed extremely low productivity (0.09 day-1), and culture 

entered death phase after 4 days of culture for no nitrate level. Astaxanthin level was seen 

to decrease with increasing nitrate concentration. The optimum nitrate concentration for 

astaxanthin production was found at no nitrate level. However, volumetric astaxanthin 

yield revealed a different story. Production at nitrate concentration 0.5 and 0.25 g/L 

produced the highest amount of astaxanthin.  

 

The production of astaxanthin might be further enhanced by improving the cellular 

astaxanthin content of the alga through applying high light intensity to the culture. It has 

been investigated that the production of reactive oxygen species, a harmful by-product 

generated at high light intensity, would increase the production of secondary carotenoids 

such as astaxanthin. Secondary carotenoids are known to protect the photosystem of 

microalgae by scavenging the ROS radicals.  

 

From the experiment, a positive relationship was found between astaxanthin 

concentration and light intensity, which was consistent with journal publication. Though 

high light intensity induced high astaxanthin level in C. Zofingiensis, the volumetric 

astaxanthin content was low due to slow growth rate. Photo-inhibition was seen at 600 
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umol m-2 s-1, and the effect was more evident at low nitrate concentration.  The maximum 

volumetric astaxanthin obtained was found to be 7.06 mg/L, which was similar to the 

highest value in the culture for the level of the total astaxanthin under nitrogen and light 

stress reported by Bar, et al. (1995). Yet, the astaxanthin concentration in this experiment 

is still 17% lower than similar batch systems using acetate reported by Del Campo (2004). 

Though the nitrate/lighting configurations used were different, the results showed 

similarity in yield and thus it could be said that an optimum configuration had to be 

determined even for the same algae culture. Performance of such configuration was also 

40% lower than the highest volumetric astaxanthin concentration obtained when C. 

Zofigiensis grown heterothrophically with glucose in the dark (Chen and Chen 2006). 

However, heterotrophic algae cultivation presents high production cost and other 

challenges, which has been discussed in chapter 2.  

 

Therefore, when correlated with the volumetric level of carotenoids in the culture, the 

changes observed follow analogous trends, provided that the particular stress condition 

considered does not hamper growth severely, thus overcoming its positive effect on the 

cellular accumulation of carotenoids. Should this happen, as is in the case for nitrate 

limitation, a reduction in volumetric of carotenoids in the culture may occur. 

Alternatively, a stimulatory effect of a given factor on growth may add to the positive 

effect on astaxanthin accumulation or compensate/overcome an inhibitory effect, as is in 

the case for irradiance.  
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When evaluating or optimizing the yield of a particular metabolite by microalgal cultures, 

the nitrate concentration and light intensity have to be jointly and carefully considered. 

The highest volumetric productivity of astaxanthin in C. Zofingiensis cultures is recorded 

at nitrate concentration 0.25 g/L, when growth was optimal, despite the fact that the 

cellular astaxanthin level was not maximal, being significantly higher at 0.125 g/L or no 

nitrate. A similar situation is observed for the effect of irradiance on β-carotene 

accumulation. Moreover, the enhancing effect on growth of high irradiance more than 

compensated for the negative incidence of the latter on the astaxanthin level in cells. 

Maximal levels of astaxanthin in C. Zofingiensis strain (about 3–6 mg g−1 dry weight), 

were admittedly lower than those reported for β-carotene in Muriellopsis (Del Campo, et 

al. 2000) and for astaxanthin in H. pluvialis. Nevertheless, the fast growth exhibited by 

this strain of C. Zofingiensis and the high cell population achievable in culture can 

compensate for the above quoted drawback. As a matter of fact, the potential yield for 

astaxanthin achieved in batch cultures of C. Zofingiensis exceeded 15 mg /L. These 

values compare favorably with those found in the literature (Del Campo, et al. 2004, 

Zhang and Lee 1997) 

 

Overall, the results in this study shown that C.  Zofingiensis is an attractive candidate for 

the mass production of astaxanthin in continuous reactor, being plausible for selectively 

favoring the production astaxanthin through the adequate management of growth 

conditions. This microalgal strain also represents a unique model system for advancing 
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the knowledge of differential regulation during the synthesis astaxanthin in response to a 

different nitrate and light intensity.  

 

5.2 Recommendations and Direction for Future Research 

Future research could perhaps explore the following options for C. Zofingiensis: 

1. Use of C. Zofingiensis for production of other valuable carotenoid pigments 

C. Zofingiensis is also known to produce other types of secondary carotenoids under 

stress, which are also valuable commercially. Carotenoids such as lutein and 

canthaxanthin.  

2. Employment of chemicals to induce environmental stress 

Chemicals such as acetate, malonate, or other organic acids and salts could be added to 

enhance production of astaxanthin in H. Plauvialis. (Boussiba et al., 2000) Similar 

treatments could be done on C. Zofingiensis to enhance the production of astaxanthin. 

Thus far, only simple treatments such as salt stress, nitrate or light intensity have been 

conducted. There are still many methods to enhance the production of secondary 

carotenoids in C. Zofingiensis. 

3. Manipulating light regimes, circulation rates, mass transfer and shear stress 
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As discussed in chapter 4, these factors are known to have profound effects on both 

cellular production and pigment composition. Moreover, these operational parameters 

cannot be controlled independently, as they are closely interrelated. Presently, the 

bottleneck for the development of microalgal biotechnology is the lack of cost effective 

large-scale cultivation systems. High volumetric productivities are required in order to 

reduce the size of cultivation systems and, consequently, reduce production and 

downstream processing costs. This entails high biomass concentrations and a high 

efficiency of light utilisation. Optimizations of these factors are essential especially for 

scaling up or for commercial production of astaxanthin. 
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