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Summary

Game theory provides a mathematical tool for the analysis of distributed decision

making interactions between agents with conflicting interests. We apply game theory

for task allocation in wireless sensor networks (WSNs) where the decision makers in

the game are the sensor nodes willing to perform the task to maximize their profits.

They have to cope with limited resources (i.e., available energy levels) that imposes a

conflict of interest. Given the resource-constrained and distributed nature of WSNs,

one of the fundamental challenges is to achieve a fair energy balance amongst nodes

to maximize the overall network lifetime. Auction-based schemes, owing to their

perceived fairness and allocation efficiency, are among the well-known game theoretic

mechanisms for the distributed task allocation. In this work, the real-time distributed

task allocation problem is formulated as an incomplete information, incentive compat-

ible and economically-robust reverse auction game. This dynamic scheme accounts

for the characteristics of the WSNs environment such as unexpected communication

delay and node failure. In the proposed game theoretic model, the distributed best

response for bid updates globally converges to the unique Nash Equilibrium in a com-

pletely asynchronous manner. This scheme also accommodates for the node failure

during task assignment via a recovery phase.

Another problem addressed in this work is the winner determination problem.
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Given a distributed pool of bids from bidders (i.e., sensor nodes), a centralized Win-

ner Determination Protocol (WDP) would require costly message exchanges with high

energy consumption and overhead. Hence, we propose the Energy and Delay Efficient

Distributed Winner Determination Protocol (ED-WDP) for the reverse auction-based

scheme. Our simulation results show a fairer energy balance achieved through this

bid formulation in comparison to other well-known static schemes. Moreover, by uti-

lizing the ED-WDP among the numerous distributed resources, the message exchange

overhead, energy consumption and delay for winner determination are significantly

reduced compared to a centralized WDP.
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Chapter 1

Introduction

In the last few years, wireless sensor networks (WSNs) [1,2] have drawn the attention

of the research community, driven by a wealth of theoretical and practical challenges.

This progressive research in WSNs explored various new applications enabled by larger

scale networks of sensor nodes capable of sensing information from the environment,

process the sensed data and transmits it to the remote location. WSNs are mostly

used in low bandwidth and delay tolerant applications ranging from civil and military

to environmental and healthcare monitoring. WSNs are generally composed of a large

number of sensors with relatively low computation capacity and limited energy supply

[2].

One of the fundamental challenges in WSNs is attaining proper resource man-

agement via energy efficient design and operation. In-network processing emerges

as an orthogonal approach to significantly decrease network’s energy consumption

by eliminating redundancy and reducing communicated information volume [2]. The

in-network processing applications may require computationally intensive operations

to be performed in the network subject to certain constraints. For instance, in target

tracking applications [3], sensors collaboratively measure and estimate the location of

moving targets or classify targets. To conserve energy and reduce the communication
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load, operations such as Bayesian Estimation and data fusion must be executed in the

WSN. In the case of tracking or detecting multiple high-speed moving targets, these

operations must be finished in a timely manner with an eye toward limited energy

consumption. For video sensor networks, in-network processing such as image regis-

tration and distributed visual surveillance [4] may demand considerable computation

power that is beyond the capacity of each individual sensor. Thus, it is desirable to

develop a general solution to provide the minimum computation capacity required by

in-network processing. In WSNs with densely deployed nodes, a promising solution is

to have sensors collaboratively process information with distributed computation load

among sensors. To achieve application independent parallel processing, distributed

and real-time task scheduling and decision making are the problems that must be

solved.

Decision-makings and resource allocations require gathering and coordinating in-

formation spread across sensors’ information processes and software agents. Requir-

ing these interacting entities to share, all their local information is infeasible since

this could lead to information overload or the violation of privacy issues. Thus, for

the benefits of recent sensor technology developments to reach end users, without

overloading them, automated and distributed information and resource management

algorithms need to be developed that can provide decision-making entities with access

to significant time-critical information, while filtering out irrelevant data.

An ideal solution to the resource management problem through the task allocation

in WSNs is the development of a system architecture and distributed algorithms that:
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a) is generalizable and can be adapted to wide range of sensor network domains

b) provides for distributed, decentralized control

c) results in optimal (or sufficiently optimal) allocation of sensor resources.

This work developed the comprehensive resource management via the efficient

task allocation in WSNs that possesses the above attributes, and thus can successfully

account for the heterogeneity of the sensors, threat levels in the environment and

provide for distributed and decentralized control.

1.1 Problem Definition and Motivation

Applications for wireless sensor networks may be decomposed into tasks which are

deployed and scheduled on different sensor nodes in the network. In other words, the

application level tasks are decomposed into the low-level tasks which can be executed

at the sensor nodes. The low-level task sequences and dependencies are represented

by a directed acyclic graph (DAG). In a DAG graph, the vertices represent low-

level tasks and the edges represent the precedence relationship between tasks. Task

allocation algorithms assign these tasks to specific sensor nodes in the network for

execution. This model of real-time task allocation is illustrated in Figure 1.1.

In static task allocation, given the DAG and set of initial available resources, the

queue of tasks is assigned to sensor nodes before the task execution started. However,

given the uncertain, unpredictable and distributed nature of WSNs, existing static

(offline) task scheduling [5–12] may not be practical. Therefore, there is a need for a

real-time and adaptive task allocation scheme that accounts for the characteristics of
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Figure 1.1: Real-time task allocation in a WSN

the WSNs environment such as unexpected communication delay, packet loss and node

failure during task assignment. Considering the resource-constrained and distributed

nature of WSNs, one of the fundamental challenges in WSNs is to achieve a fair

energy balance amongst nodes to maximize the overall network lifetime through task

allocation and in-network processing. However, the proposed static task allocation

algorithms with energy balancing consideration [5–7] did not take into account the

real energy availability at each epoch of task allocation. Thus, the design of an

adaptive and real-time task assignment scheme which considers available resources

at each epoch of task allocation is of essential necessity. On the other hand, due to

distributed nature of WSNs, distributed task allocation and decision making schemes

with small computation and communication complexities are demanded [48–51].

Game theory provides a mathematical tool for the analysis of distributed decision
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making interactions between agents with conflicting interests [13–15]. We apply game

theory for task allocation in wireless sensor networks (WSNs) where the decision

makers in the game are the sensor nodes willing to perform the task to maximize

their profits. They have to cope with limited resources (i.e., available energy levels)

that imposes a conflict of interest.

Auction-based schemes [17–27], owing to their perceived fairness and allocation ef-

ficiency, are among the well-known market-based schemes [33,61] and game theoretic-

based mechanisms that can be used for distributed task allocation to achieve fair

energy balance amongst sensor nodes.

In this work, the real-time distributed task allocation problem is formulated as

an incomplete information reverse auction game. In the proposed game the second-

lowest-price sealed-bid is utilized as a dominant strategy for the players which are

the sensor nodes. The main goal is to find the suitable sensor node (player) to

perform the arrival task with the goal of maximizing the energy balance among the

resource-constrained sensor nodes and consequently the overall network lifetime while

considering application’s deadline.

In an auction design, a process is said to be incentive compatible if all of the play-

ers fare best when they truthfully reveal any private information during the auction.

Truthfulness, individual rationality and budget balance are the three critical proper-

ties required to design economic-robust reverse auctions that create the incentive for

the bidders and auctioneer to participate in the reverse auction game. In truthful

auctions, the dominate strategy for bidders is to bid truthfully, thereby, eliminating
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the fear of market manipulation and the overhead of strategizing over others. With

the true valuations, the auctioneer can allocate the task efficiently to sellers who value

it the least.

Given a game where the group of players interactively make their decisions, it

is natural to ask “What will the outcome of a game be like?” The answer is given

by Nash equilibrium, which is an equilibrium where everyone plays the best strat-

egy when taking decision-making of others into account. Then, the next questions

are “Does a Nash equilibrium always exist in a game?” and “Is it unique?”. In

our proposed reverse auction the distributed best response for bid updates converge

globally to the unique Nash Equilibrium in a completely asynchronous manner. We

show that the socially optimal allocation can always be achieved at an equilibrium

where no node can increase its profit by unilaterally changing its bids. The most

significant challenge in designing this auction game is how to make the auction eco-

nomically robust while enabling task allocation among sensor nodes. The proposed

reverse auction creates the incentive compatibility for the players and meets the con-

ditions to achieve the economic-robust auction. The winner determination in the

auction-based scheme such as [21–28] essentially requires costly message exchanges

with enormous overheads. To address such challenging issues, a novel Energy and

Delay Efficient Distributed Winner Determination Protocol (ED-WDP) for winner

determination in the auction-based task allocation is proposed and compared with

other winner determination schemes. The proposed protocol that has the interpre-

tation of contention-based MAC (Medium Access Control) protocol operates in two

phases. In the first phase, elimination via budget value, the number of players are
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eliminated via the budget value which is set by auctioneer and is the value that auc-

tioneer wills to pay for arriving task. The consequence of this phase is to eliminate

the players with low amount of available energy levels for the rest of competition.

In the second phase, waiting time reduction, the duration of ideal listening mode as

one of the important source of energy consumption for the players are significantly

limited.

1.2 Outline of the Thesis

In this dissertation, the adaptive, distributed and real-time task allocation strategy

in WSNs is proposed. The outline of the dissertation is as follows:

Chapter 2 presents the sufficient backgrounds on the basic of game theory and

auction theory as the main tools of our proposed solution for real-time task allocation

and distributed decision making problem. The related works are also presented in

Chapter 2.

The market-based architecture and game model for task allocation problem are

introduced in Chapter 3. In this chapter, the architecture components, the game

model of reverse auction and the required economic properties for this model are

discussed.

The task allocation phases and bid formulation are presented in Chapter 4. The

bidder’s payoff function, the Nash Equilibrium and distributed iterative best response

update algorithm are presented. This chapter also provides the proofs for the most of

theorems and lemmas in this dissertation. Finally, in this chapter, the fast recovery
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algorithm in case of sensor node’s failure based during the task assignment phase is

discussed.

In Chapter 5, the decision making protocols for winner determination in reverse

auction-based task allocation are introduced. Our proposed Energy and Delay Effi-

cient Distributed Winner Determination Protocol (ED-WDP) which operates in two

phases are presented and evaluated. Finally, this chapter explains how the auction-

eer achieves the best budget value based on the adaptive algorithm that runs in an

asynchronous manner.

Chapter 6 shows the simulation results and performance evaluations. The simu-

lation results show a fair energy balance achieved through the bid formulation. The

convergence of the proposed algorithms are also illustrated. Another set of simula-

tions are carried out to evaluate the energy balancing, total energy consumption and

total schedule length in our proposed distributed task allocation method and winner

determination protocols.

The conclusion of this work and future work are presented in Chapter 7.
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Chapter 2

Background

2.1 Basics of Game Theory

Game theory [13–16] is a branch of applied mathematics, and it is used to analyze

problems with conflicting objectives among interacting decision-makers. It has been

used primarily in economics and has also been applied to other areas, including pol-

itics, biology and networking. A broad overview of game theory and its application

to different problems in networking and communications can be found in [29–32] and

the references therein. More recently, researchers are using game theory to deal with

job and resource allocation in wireless networks and services: the decision makers

in this game are the wireless service providers and endusers. These decision mak-

ers have to deal with a limited network and radio resources that imposes a conflict

of interest between them. A game consists of players, the possible actions of the

players, and consequences of the actions. For notational purpose, a game is always

expressed by the (N,S, U) tuple, where N denotes the set of players, S denotes the

strategy space of the players and U denotes the set of utility functions. The players

are decision-makers, who choose how they act. Formally, a game can be defined by a

conflict among several (two or more) players, where the players strive to ensure the
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best possible consequence according to their preferences. The preferences of a player

are expressed through a utility function, which maps every consequence to a real

number, or with preference relations, which define the ranking of the consequences.

An utility function can be defined as a mathematical characterization that represents

the benefits and cost incurred by the players in the game. The most fundamental

assumption in game theory is rationality. Rational players are assumed to always

maximize their profit or payoff. If the game is not deterministic, the players maxi-

mize their expected payoff. The idea of maximizing the expected payoff was justified

by the seminal work of von Neumann and Morgenstern in 1944 [29]. Maximizing ones

payoff is often referred to as selfishness. This is true in the sense that all players try

to gain the highest possible utility. However, a high utility does not necessarily mean

that the players act selfishly. Any kind of behavior can be modeled with a suitable

utility function. A game describes the actions the players can take as well as the

consequences of the actions. The solution of a game is a description of outcomes that

may emerge in the game if the players act rationally and intelligently. Generally, a

solution is an outcome from which no player wants to deviate unilaterally.

2.1.1 Classification of Games

Before we proceed any further, let us discuss the classifications of games that are

relevant to this research.

� Cooperative Vs. Non-cooperative Games: Game theory can be divided

into non- cooperative and cooperative game theory. In cooperative games, the joint
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actions of groups are analyzed, i.e., what is the outcome if a group of players cooper-

ate. Cooperative game theory looks at reasonable or fair outcomes when players form

coalition and share resources. It answers questions such as which players will form a

coalition and how will resources be divided within these coalitions. In non-cooperative

games, the actions of individual players are considered where cooperation from each of

the players must be selfenforcing. Most game theoretic research has been conducted

using non-cooperative games, but there are also approaches using cooperative games.

� Complete Vs. Incomplete-information Games: Depending on whether

or not each player knows the other players payoff functions, a game can be formulated

either as a complete or incomplete information game. If every player is aware of the

strategies and utilities of all the other players, the game is said to have complete in-

formation. If not, the game has incomplete information. Given a situation, i.e., some

information, a game can be a complete or incompleteinformation game depending on

the goal we are seeking.

� Pure strategy Vs. Mixed strategy: If a player selects one of the strategies

from his strategy set with probability 1, then the player is playing a pure strategy. In

contrast, in mixed strategy profile, a player has several pure strategies in the strategy

space and the player decides to play each of the pure strategies with some probability,

i.e., the selection is randomized. Thus, in mixed strategy, the strategy space has some

probability distribution which corresponds to how frequently each of the strategies is

chosen.

� Static games Vs. Dynamic games: In a static game, the players make
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decisions only once, i.e., the players have only one move. The strategies are chosen

simultaneously by the players without knowledge of other players strategies. Even

though the decisions can be taken at different time instants, the game is simultaneous

because each player has no information about the decisions of others; thus, it is as if

the decisions are made simultaneously. In contrast to the static games, if the players

interact multiple times by playing the game iteratively, the game is called a dynamic,

or repeated game. Unlike static games, players may have some information about the

strategy profiles of other players and thus may contingent their play on past moves.

2.1.2 Analyzing Games and Nash Equilibrium

Once the game is formulated, it needs to be solved. Solving a game means predicting

the strategy of the players, considering the information the game offers and assuming

that the players are rational. There are several possible ways to solve a game: iterated

dominance, best response, backward induction and many more. A detailed study on

these techniques can be found in [14, 15]. In this research, we focus on the best

response strategy. The best response of a player i ∈ N is to choose a strategy si ∈ S

when the strategy vector s−i is chosen by all the opponents. The objective of player i

is to maximize the utility ui. More formally, the best response strategy can be defined

as follows.

Definition 1. The best response bri of player i to the opponents strategy profile s−i

is a strategy si such that:

bri = arg max
si∈S

ui(si, s−i) (2.1)
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From the above definition, one can find that if the strategies taken by the players

are mutual best responses to each other, then no player would like to deviate from the

given strategy profile. To identify such strategy profiles, John Nash introduced the

famous equilibrium concept known as Nash equilibrium [37]. The concept of Nash

equilibrium can be formally defined as follows.

Definition 2. The strategy profile s∗ constitutes a Nash equilibrium if and only if,

for each player i,

ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i), ∀si ∈ S (2.2)

The above definition means that in a Nash equilibrium state, none of the players

would unilaterally change the strategy to increase the utility. Thus Nash equilibrium

brings the game to a steady state, from which the players would not like to deviate

as that would not increase their benefits any more.

2.2 Basics of Auction Theory

An auction is the process of buying and selling goods by offering them up for bids

(i.e., an offered price), taking bids, and then selling the item to the highest bidder.

In economic theory, an auction is a method for determining the value of a commodity

that has an undetermined or variable price. In some cases, there is a minimum or

reserve price; if the bidding does not reach the minimum, there is no sale. Traditional

auctions involve single seller and many buyers. The buyers compete among themselves

to procure the goods of their choice by placing a bid, which they feel most appropriate.
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2.2.1 Types of Auctions

Kalagnanam and Parkes [44] have suggested a framework for classifying auctions

based on six major factors as outlined below.

1) Resources/ Tasks: Resources/ Tasks are the entities over which the negoti-

ation in an auction are conducted. The resources could be a single item or multiple

items, with single or multiple units of each item.

2) Market structure: There are three types of market structures in auctions. In

forward auctions, a single seller sells resources to multiple buyers. In reverse auctions,

a single buyer attempts to source resources from multiple suppliers, as is common in

procurement. Auctions with multiple buyers and sellers are called double auctions or

exchanges.

3) Preference structure: The preferences define an agent’s utility for different

outcomes in the auction. For example, when negotiating over multiple units, agents

might indicate a decreasing marginal utility for additional units. An agent’s prefer-

ence structure is important when negotiation occurs over attributes of an item, for

designing scoring rules used to signal information, etc.

4) Bid structure: The structure of the bids within the auction defines the

flexibility with which agents can express their resource requirements. For a simple

single unit, single item commodity, the bids required are simple statements of a

willingness to pay/accept. However, for a multi unit, identical items setting bids

need to specify price and quantity. This introduces the possibility for allowing volume

discounts. With multiple items, bids may specify all or nothing, with a price on a
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bundle of items.

5) Winner determination: Other phrases which are used synonymously with

winner determination are market clearing, bid evaluation, and bid allocation. In the

case of forward auctions, winner determination refers to choosing an optimal mix

of buyers who would be awarded the items. In the case of reverse auctions, winner

determination refers to choosing an optimal mix of sellers who would be awarded

the contracts for supplying the required items. In the case of an exchange, winner

determination refers to determining an optimal match between buyers and sellers.

The computational complexity of the winner determination problem is an important

issue to be considered in designing auctions.

6) Information feedback: An auction protocol may be a direct mechanism or

an indirect one. In a direct mechanism, such as a sealed bid auction, agents submit

bids without receiving feedback, such as price signals, from the auction. In an indirect

mechanism, such as an ascending-price auction, agents can adjust bids in response

to information feedback from the auction. Feedback about the state of the auction

is usually characterized by a price signal and a provisional allocation, and provides

sufficient information about the bids of winning agents to enable an agent to redefine

its bids.

There are several kinds of auction models as shown in 2.1. Depending on whether

the bidding strategies of each of the bidders are disclosed to the other bidders, open

and closed bid auctions are designed. In open auctions [40, 41], bids are open to

everybody so that a players strategy is known to other players and players usually
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take their turns one by one until the winner(s) evolve. Bids generated by players in

open bid auction can be either in increasing or decreasing order. Couple of famous

increasing bid open auction are English auction [42] and Yankee auction. Dutch

auction on the other hand is a famous decreasing open bid auction. Dutch-style

auction satisfies the property that privacy of losing bids is preserved after auction

closes [43]. An important perspective of increasing auction is that it is more in the

favor of bidders than the auctioneers. Moreover, increasing open bid auction helps

bidders in early round to recognize each other and thus act collusively. Increasing

auction also detract low potential bidders because they know a bidder with higher bid

will always exceed their bids. Closed bid (or sealed bid as they are more popularly

known as) auctions are opposite to open bid auctions and bids/strategies are not

known to everybody. Only the organizer of the auction will know about the bids

submitted by the bidders and will act accordingly. Bids are kept secret until the

opening phase, and then all bids are opened and compared to determine the highest

one. Thus, closed bid auctions do not promote collusion. Couple of the famous closed

bid auctions are first price sealed bid auction and second price sealed bid auction.

In a first price auction, the winners payment is equal to the winners bid while in a

second price auction, the winners payment is equal to the second highest bid. Open

bid auctions are best generalized as complete information games while closed auctions

are incomplete information games.
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Figure 2.1: Different types of auction

2.2.2 Auction Design

Good auction design is important for any type of successful auction and often varies

depending on the item on which the auction is held. The auctions held in Ebay are

typically used to sell an art object or a valuable item. Bidding starts at a certain

price defined by auctioneer and then the competing bidders increase their bids. If a

bid provided by a bidder is not exceeded by any other bidder then the auction on

that object stops and final bidder becomes the winner. There are three important

issues behind any auction design. They are (i) attracting bidders (enticing bidders

by increasing their probability of winning), (ii) preventing collusion thus preventing

bidders to control the auction and (iii) maximizing auctioneers revenue. It is not at

all intended that only bidders with higher purchasing power should get most of the

items. The goal is to increase competition among the WSPs and bring fresh new

ideas and services. As a result, it is necessary to make even the low potential bidders,
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who have a low demand of items, interested to take part in the auction.

2.3 Related Work

2.3.1 Task Allocation in Wireless Sensor Networks

The wireless sensor networks (WSNs) are envisioned to observe large environments

at close range for extended periods of time. WSNs are generally composed of a large

number of sensors with relatively low computation capacity and limited energy supply

[1]. One of the fundamental challenges in WSNs is attaining energy efficiency at all

levels of design and operation.

Applications for WSNs may be decomposed into the low-level tasks which are

deployed and scheduled on different sensor nodes in the network. Task allocation

algorithms assign these tasks to specific sensor nodes in the network for execution.

In static task allocation, given the DAG and the initial available resources, the queue

of tasks is assigned to sensor nodes before the task execution started. However, given

the uncertain, unpredictable and distributed nature of WSNs, existing static (offline)

task scheduling [5–12] may not be practical. Therefore, there is a need for a real-

time and adaptive task allocation scheme that accounts for the characteristics of the

WSNs environment such as unexpected communication delay, packet loss and node

failure during task assignment.

Considering the resource-constrained and distributed nature of WSNs, one of the

fundamental challenges is to achieve a fair energy balance amongst nodes to maximize
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the overall network lifetime through task allocation. However, the proposed static

task allocation algorithms with energy balancing consideration [5–7] did not take

into account the real energy availability at each epoch of task allocation. Thus, the

design of an adaptive and real-time energy balanced task assignment scheme which

considers available resources at each epoch of task allocation is of essential necessity.

Existing work on static task scheduling [5–12] achieves the energy balance objec-

tive by regulating the energy consumption via Dynamic Voltage Scaling (DVS) [62].

DVS, by decreasing the CPU speed reduces computational energy consumption; how-

ever this results in a longer schedule length. In a couple of works by Prassana [6, 7],

given each nodes initial available energy, each cluster of tasks are assigned to the

sensor nodes as a whole rather than adaptively allocating the individual task at each

epoch by considering resource availability at that epoch.

Pricing scheme [45,46] for the task scheduling problem is emerged as a promising

solution to achieve a fair energy balance amongst nodes; since this technique adapt

to changes in the environment. The load balancing and pricing has been recently

discussed in the literature for grid computing [46]. However, the application of

the pricing schemes for task allocation in WSNs with limited resources, is almost

unexplored.

In this work, the reverse auction game is proposed as the well-known pricing

solution for task allocation problem, one which places emphasis on a fair energy

balance among nodes in order to maximize network lifetime. The task allocation

is modeled as a market architecture. The consumer is modeled as an auctioneer
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and the sensor nodes represent the sellers in our scheme. When a task is to be

allocated, the auctioneer broadcasts information about the tasks to the sellers. Each

seller calculates its cost based on its available energy level and application delay

constrain on the proposed cost formulation. Then each seller bids to achieve the Nash

Equilibrium as a desired output of reverse auction game, through distributed adaptive

update algorithm. Sellers with higher bids are likely to have less remaining energies

in future, so the bid of the seller can be adjusted to influence the decision making for

the task allocation. In the case of an unexpected situation such as node failure during

the task assignment, this scheme would run the dynamic recovery phase. Whereas,

in [47] failure is considered only for the case that node failure happens before the task

assignment phase and generated an alternative schedule. This proposed scheme is a

scalable and adaptive solution for distributed task allocation in WSNs. This scheme

is scalable as it is independent of the number of available nodes and will adapt if

the number of nodes changes. As the allocation is performed in real-time, each node

would adaptively react to the changes in resource availability and utilize new available

resources at each time epoch, hence, it is the adaptive scheme.

2.3.2 Market-based Architecture for Resource Management

Market-based architecture [33–35] provides a valuable and principled paradigm for

designing systems that solve the dynamic and distributed resource allocation prob-

lem based on the pricing systems; since market-based schemes have the inherent

ability to deal with non-commensurate entities. Markets can be used for finding op-
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timal allocations in a cooperative environment and there is a one-to-one mapping

between a sensor management scenario and traditional market. Market-based al-

gorithms have been used for the distributed resource allocation in a wide ranging

of scenarios including bandwidth allocation [55], network information services [56],

distributed operating systems [57] and electric load distribution [58]. Market-based

mechanisms have also been applied to distributed scheduling with promising results

[59]. This approach uses the fundamentals of economic theory for designing and

implementing resource allocation problems. The basic idea behind these algorithms

is that price-based systems facilitate efficient resource allocation in computational

systems, just as they do in human societies. Resource-seeking entities are modeled

as independent agents, with autonomy to decide about how to use their respective

resources. These agents interact via a market that uses a pricing system to arrive

at a common scale of value across the various resources. The common-value scale

is then used by the individual agents for making trade-off decisions about acquiring

or selling goods. Market-oriented approaches usually involve auction mechanism for

scheduling [60], where agents send bids to an auctioneer for various commodities and

the auctioneer determines the resource allocations. Reverse auction [21] is type of

auction where the role of buyer and seller are reverse and the primary objective is

to drive purchase prices downward. Single buyer and multiple sellers have been used

in reverse auction, such as, the procurement system. Its goal is to find the suitable

resources (cheapest sellers) to accomplish the consumer’s arrival task.

In this work, we model the resource management scenario as a competitive market,

wherein the sensor manager holds a reverse auction to buy the various goods produced
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by the sensors and the communication channels.

2.3.3 Auction-based Resource and Task Allocation

Auction-based schemes [19], [20], owing to their perceived fairness and allocation

efficiency, are among the well-known game theoretic-based mechanisms that can be

used for task allocation. Recent auction-based methods that have been proposed

for the purpose of resource allocation problem in different applications can be seen

in [21–27]. Huang et al. in [25] proposed two auction schemes, SNR auction and

power auction to determine relay selection and relay power allocation in cooperative

communications. In another works from Huang et al. [26], the similar auction scheme

has been used for spectrum sharing. Fu et al. [24] used auction as a stochastic game

for repeated resource allocation. In [22], reverse auctions were used to formulate

the scheduling problem in multi-rate wireless systems. In their framework, the users

compete against each other to sell a set of slots to the base station. In [23], auction-

based resource allocation in a grid computing system was proposed. In this work, a

resource consumer invites a public bidding where the resource provider bids according

to his load. One of the important issues in any auction scheme design is to be

incentive compatible and can guarantee the trustworthiness of the bidders. However,

these issues were not addressed in the above mentioned works. Moreover, the winner

determination method provided by these auction methods are centralized and require

a high message exchange overhead between the base station or resource consumer

and all the users. This would also result in high latency for determining the winning
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bidder.
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Chapter 3

Market-Based Architecture and Game

Model for Task Allocation

3.1 Introduction

Market-based architecture provides a valuable and principled paradigm for designing

systems to solve the dynamic and distributed task allocation problem. We have

modeled the task allocation scenario as a competitive market where the main goal is to

find the suitable sensor nodes to perform the arrival task with the goal of maximizing

the whole network’s lifetime among the resource-constrained sensor nodes. Game

theory provides a mathematical tool for the analysis of distributed decision making

interactions between the agents with conflicting interests. On the other hand, auction-

based schemes, owing to their perceived fairness and allocation efficiency, are among

the well-known game theoretic-based mechanisms that can be used for task allocation.

In this chapter, the game model and required economic properties of proposed reverse

auction-based task allocation is discussed.
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Figure 3.1: Market based architecture for task allocation

3.2 Market Architectures Components

In this work, the adaptive task allocation scheme is modeled as a competitive mar-

ket. The market architecture shown in Figure 3.1, comprises of a mission manager,

consumer, seller and service chart. When a new application is instantiated in the

network, the input of that is fed into the Mission Manager. The components of this

architecture are:

Mission manager (MM): This component assesses mission-level decisions, such

as deciding the priority of the various goals for accomplishing mission objectives, and

allocating these goal responsibilities to consumer agents. At the mission manager,

the application level tasks are decomposed into the low-level tasks which can be
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executed at the sensor nodes. For example when the application is target tracking,

it is required to be decomposed to low level task such as sensing, processing, sending

and receiving that can be done by sensor nodes. The low-level tasks sequences and

dependencies are represented by a directed acyclic graph (DAG). In a DAG graph, the

vertices represent low-level tasks and the edges represent the precedence relationship

between tasks. Figure 3.2 shows DAG for single target tracking application. The high-

level tasks are decomposed to the low level tasks and come in the proper sequences

represented by DAG. Another functionality of MM is to list the tasks in the queue

based on their Earliest Start Time (EST) and Latest Start Time (LST) calculated

based on list scheduling. Should concurrent tasks exist in the list, a higher priority

is assigned to tasks with a larger number of successors in the task graph. The MM

then allocates the various task responsibilities to the auctioneer.

Consumer (auctioneer): The consumer acts as an auctioneer. With each task

arrival, the consumer communicates the task message as

< Task, TaskSize, TaskDeadline,Budget, α > to the sellers, where task deadline

is obtained during the listing phase in MM and budget is the value the auctioneer

is willing to pay for the current task. The parameter α will be explained in next

chapter. The auctioneer also assigns the task to the winning seller. Should there be

more than one consumer, the mission manager breaks the task graph and allocates

different sets of tasks to different consumers. Some of important auctioneer’s func-

tionalities are task dispatcher, budget allocator and reverse auction server. Briefly,

the auctioneer’s functionality are task dispatching, budget allocation and managing

the reverse auction.
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Figure 3.2: Task graph for a single target tracking application

Seller: The sellers are the sensor nodes which are modeled as the selfish and

rational agents. When a task message is received from the consumer, the nodes

calculate their cost for accomplishing the current task based on their current status

of energy availability, communication cost, task deadline and resource release time.

Eventually they set their bid based on their cost and auctioneer’s budget according

to the game defined on next chapter. In Distributed winner determination scheme,

the seller by its functionality acts the important role in determining the winner.

Service Chart: The service chart acts as a buffer and maintains a history of the
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previous winning seller’s bid information to assist the consumer to adjust the budget

with appropriate value. The service chart specifies detailed domain information such

as sensors’ field locations and characteristics and the available communication band-

width. So the bid formulator formulates bids from actual resources for the high-level

tasks, using the service chart database which specifies the detailed domain informa-

tion such as sensors’ field locations and characteristics.

Task message format: Two formats of task message have been considered

to communicate from consumer to sellers for the distributed and centralized winner

determination method. The task message format for centralize method is {Task,

Task Size, Task Deadline} where “Task” can be any low-level tasks such as sensing,

processing, sending, receiving and etc. The “Task Size” is the expected CPU cycle

required for accomplishing task and assumed to be known by consumer (auctioneer).

The “Task Deadline” is the Latest Start Time calculated offline on Listing phase (will

explain on 4.2) This format for the distributed method would change to the {Task,

Task Size, Task Deadline, Budget,α}. Where “Budget” is the value that consumer

willingness to pay for current task and “α” is the distribution parameter used in

winner determination method (will explain on section 5.4).

Market-based architecture uses discrete time slots to schedule tasks. The flow

chart of the market-based task allocation is explained as follows:

Market Initialization: When the new task arrives consumer sets the budget

for accomplishing that task. It then asks for the bid from bidders (sensor nodes).

Bid Update: At the beginning of each round, bidders can
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• Send new bids,

• Remove their current bids from the auction, or

• Modify the parameter of their existing bids.

Consumer asks for the bid for accomplishing task by this format {Task, Task Size,

Task Deadline, Budget,α}. Then sensor nodes update their bid upon receiving this

message.

Round Initialization: The auctioneer accepts new bids or updates to existing

bids during each round of scheduling from the auction. If no message regarding a

particular bid is received by the auctioneer, it means that non of the sensor nodes

are willingness to do the task by auctioneer’s budget; so that the auctioneer needs to

adjust its budget.

Resource Bid Formulation: Each sensor node calculates its bid based on its

available resources at each time epoch (details for bid formulation will be discussed

on next chapter).

Task Allocation: In reverse auction competition, the winner would be the sensor

node with the lowest bid. The task allocation runs in three phases: listing phase,

task assignment phase and recovery phase in case of node failure.

Round Termination: The auctioneer updates its belief about the current mar-

ket trends based on the winner’s bid. The budget value needs to adjusted for the

next round on “Market Initialization” part.

29



3.3 Reverse Auction Model

Reverse auction is a dynamic pricing method reflects the supply-demand relationship

and the resources’ value over time. It provides an effective and efficient solution for

tasks and resources allocation. In reverse auction, the role of buyer and seller are

reversed. A buyer places a request to purchase a particular item and multiple sellers

bid to sell the requested item, which is similar to the procurement system [39]. The

winner of a reverse auction is the seller who offers the lowest price. The reverse auction

protocol applied in this work is similar to second-price sealed-bid (Vickrey auction)

[18] but in a reverse manner. Vickrey auction is primarily forward auctions which

involves a single seller and multiple buyers. The buyers compete among themselves in

order to procure the goods of their choice. The bidder with the highest bid wins the

item (willing to buy) by the price of second highest bid. Where as, in the proposed

reverse auction, the seller with the lowest bid wins the competition for accomplishing

the task with the price of second lowest bid. Hence, it is so-called Second-Lowest-Price

Sealed-Bid or reverse Vickrey protocol.

In our reverse auction model figure 5.1, the consumer acts as an auctioneer and

desires to buy some resources for accomplishing its task and without any knowledge of

resources’ price set by seller. Then, each bidder knows the value of its own resources

and calculates the cost and bids according to its own preference to maximize its own

payoff function. Winner would be the bidder with the lowest bid. The Second-Lowest-

Price Sealed-Bid reverse auction algorithm is as follows:

• The auctioneer calculates its budget for the arriving task.

30



Figure 3.3: Reverse-auction based task allocation

• The auctioneer invites the public bidding.

• The seller calculates the cost based on our proposed cost formulation. (will

explained in section 4.3.2)

• The seller sets the bid value. (will explained in section 4.4)

• If the bid is lower than the auctioneer’s reserve valuation (budget), the seller

continues the competition.

• The winner would be the seller with the lowest bid value with the price of the

second lowest bid.

• If all the bids are higher than reserve price by auctioneer then it adjusts its

current budget so that at least one node is selected.

• Then the auctioneer allocates the task to the winner.

The proposed reverse auction is incentive compatible and all of the bidders fare best

when they truthfully reveal any private valuations. These game theoretic issues are
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discussed in detail on the following section.

3.4 Game Model of Reverse Auction

The reverse auction is an incomplete information game in the sense that the players

do not have any information of other players’ payoffs and their best strategies. The

proposed reverse auction scheme is similar to a Vickrey auction [17] (i.e. second-

price sealed-bid) but in a reverse manner. In a Vickrey auction the bidder with the

highest bid wins the item it is willing to buy and pays the price of second highest

bid. However, in the proposed reverse auction, the seller with the lowest bid wins the

competition to execute the task with the price of the second lowest bid. Thus, we

shall call this the Second-Lowest-Price Sealed-Bid protocol. The normal form of the

game is G =< N, {Ai}, {Ui} > where N is the set of players, Ai is the set of strategies

for player i, and Ui is the utility function for player i. For our defined game: Players

(N): These are sensor nodes (sellers) that compete to get the task at their desired

price.

Protocol: Second-Lowest-Price Sealed-Bid. This protocol maintains the incen-

tive for the player to bid truthfully (refer to Lemma 1 below for more details).

Strategy: In this game, the strategy is selecting the proper bid. This bid can be

a function of node’s private value and its prior estimates of others’ valuations.

Best strategy (Ai): The dominant strategy is to bid near one’s true valuation

which is the real cost for accomplishing the task.

Node’s Payoff (Ui): Each sensor node i chooses its bid bi to maximize its payoff
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or utility. In other words, the payoff function represents the expected profit for making

bid bi:

Ui(bi; b−i, Cij) = βi × (R(bi; b−i)− Cij). (3.1)

where

βi =


0, if bi loses

1, if bi wins

(3.2)

where b−i refers to others’ bids and R(bi; b−i) is the second lowest price that the player

can earn as a reward if it wins. Cij is the real cost for the node i for executing task

j based on its available resources (refer to section 4.3.2 for details).

Nash Equilibrium (NE): The desired outcome of this reverse auction is the

Nash equilibrium, which is the bidding profile b∗i such that no player (in the domain

N) wants to deviate unilaterally, i.e.,

Ui(b
∗
i ; b
∗
−i) ≥ Ui(bi; b

∗
−i),∀i ∈ N, ∀bi ≥ 0. (3.3)

Lemma 1. The Nash Equilibrium (best strategy) for each player in the reverse auction

game is to tell the near true valuation (real cost).

Proof: This is a simple logical proof. All the players are modeled as selfish and

rational agents and compete to maximize their payoff value. The players are aware

of the fact that, in this game, the bidders with lower bids have a higher probability

of winning. However, in the case of the winning with a bid lower than the task’s

real cost Cij, it may lead to negative payoff, because, based on the second-lowest-

price sealed-bid, there is a possibility that R(bi; b−i) ≤ Cij. If the bidder i bids
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near to its true valuation Cij for executing the task j and wins the game, its payoff

Ui(bi; b−i, Cij) ≥ 0, due to second-lowest-price sealed-bid protocol R(bi; b−i) ≥ Cij.

This creates an incentive for the bidder to tell the true valuation. If the bidder loses,

the payoff Ui(bi; b−i, Cij) = 0 . Hence, the best strategy for the bidder is to bid based

on its real cost value and preference.

Each bidder is unaware of other bidders’ preference. Hence, without knowledge

of the other players’ best strategies, it would not be possible to calculate the best

response that converges to the NE through the payoff function defined in equation 3.1.

Another alternative for the payoff function, whose best response can be calculated in

an asynchronous distributed fashion will be defined in section 4.3.2.

3.4.1 Required Economic Properties

There are three properties to ensure that auctions are economically-robust and bidder

participation is encouraged [19], [20]: (1) truthfulness (incentive compatibility), (2)

individual rationality and (3) ex-post budget balanced. To define them formally, we

first introduce the following notations: for seller m bid Bm , the true valuation is the

actual cost calculated by seller for executing task Cm, Rm is the reward that can be

earned if it wins, RV is auctioneer’s budget for each round of reverse auction and

bidder utility is as defined in equation 3.3.

Definition 3. A reverse auction is truthful and incentive compatible if no matter

how other players bid, no seller m can improve its own utility by bidding untruthfully

(Bm 6= Cm).
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Truthfulness is essential to resist market manipulation and ensure auction fairness

and efficiency. In untruthful auctions, selfish bidders can manipulate their bids to

game the system and obtain outcomes that favor themselves but hurt others. In

truthful auctions, the dominant strategy for bidders is to bid truthfully, thereby

eliminating the fear of market manipulation. With the true valuations, the auctioneer

can allocate the task efficiently to sellers whose cost is least.

Definition 4. A reverse auction is individual rational if no winning seller is paid

less than its bid:

Rm ≥ Bm, ∀ seller m (3.4)

This property guarantees non-negative utilities for bidders who bid truthfully,

providing them incentives to participate.

Definition 5. A reverse auction is ex-post budget balanced if the auctioneer’s profit

Ψ ≥ 0. The profit is defined as the difference between the auctioneer’s reserve valua-

tion (RV) and the expense paid to sellers by auctioneer:

Ψ = (RVn −Rm) ≥ 0,∀ seller m ∈M, task n (3.5)

This property ensures that the auctioneer has incentives to set up the auc-

tion. In the next chapter, we show that our proposed distributed reverse auction

is economically-robust according to the above definitions.
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Chapter 4

Reverse Auction-based Task Allocation

4.1 Introduction

This chapter, mainly presents our reverse auction-based scheme for real-time task

scheduling with the objective of energy balance and delay minimization. Once the

new application is initiated, the application level tasks are decomposed into the low-

level tasks which can be comprehensible for the sensor nodes in the listing phase (is

described in detail in section 4.2. Upon each task arrival, auctioneer starts a new

round of reverse auction game. Upon receiving a task message from the auctioneer,

each seller (sensor node) calculates its true valuation for accomplishing that task

as in 4.3.2. Then each seller bids to achieve the Nash Equilibrium as a desired

output of reverse auction game, through distributed adaptive update algorithm. In

the case of an unexpected situation such as node failure during the task assignment,

the last phase (recovery phase) will dynamically run the fast recovery algorithm. The

following assumptions on the wireless network are made:

• All the sensor node are one-hop away from resource requestor.

• Communications and computation can occur concurrently.

• Time synchronization is available within the cluster of sensor nodes.
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To aid the reader in navigating the subsequent sections of this work, a road map

showing the functionalities at the auctioneer and at the bidders (sensor nodes) is

provided in Table 1.

Table 4.1: Road map of auctioneer and bidders functionalities

Auctioneer functionality Budget adjustment: section 5.4.1, equation

(5.3)

Probability distribution: equation (5.2)

Auctioneer utility function: equation (5.6)

α adaptation: section 5.4.4 and Algorithm 2

Sensor Nodes (Bidders) functionality Cost formulation (section 4.3.2, equation

(4.6))

Probability distribution: equation (4.11)

Bidder payoff function and NE calculation:

equations (4.12), (4.13) and (4.15)

Adaptive algorithm to adjust β: section 4.4.3

and Algorithm 1

Waiting time reduction: section 5.4.2 and

equation (5.4)
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4.2 Listing Phase

The listing phase computes the task sequence provided by the DAG to obtain the

earliest start time (EST) and the latest start time (LST) of each task prior to starting

the task assignment phase and given these values, these tasks are queued into a list.

The idea of this listing phase is similar to is similar to work in [47], [52]. The Earliest

Start Time EST (vi) of task vi is first calculated for each vertex by traversing the DAG

downward from the entry-tasks to the exit-task. The Latest Start Time LST (vi) of

task vi is then calculated in the reverse direction. During the calculation, the entry-

tasks have EST = 0 and the exit-task has LST = EST . The formulas to calculate

EST and LST are as follows:

EST (vi) = maxvm∈pred(vi)EST (vm) + tm (4.1)

LST (vi) = minvm∈succ(vi) LST (vm)− tm (4.2)

where pred(vi) and succ(vi) are the set of immediate predecessors and successors of

vi, respectively, and tm is the execution time of the task on sensor nodes. Then, the

Critical Nodes (CN) are pushed into the stack S in the decreasing order of their LST .

Here, a CN vertex is a vertex with the same value of EST and LST . Consequently,

if top(S) has un-stacked immediate predecessors, the immediate predecessor with the

minimum LST is pushed into the stack; otherwise, top(S) is popped and enqueued

into a queue L. The Listing Phase ends when the stack is empty. After the listing

phase, the task graph is sequentialized into a queue and ready for the price-based

task assignment phase.

The tasks are queued for assignment to sensor nodes based on the EST . We

38



Figure 4.1: Example of DAG for assigning priority

utilize this EST value of each task for the time at which the reverse auction for

assigning that task initiates by auctioneer. The LST is used as the task deadline for

the assignment phase.

It should be noted that the EST and LST are for the purpose of evaluating the

critical path of a DAG, and EST and LST do not represent the actual execution

start time of tasks. Unlike work in [47], the EST and LST computed in this stage

may be altered in the task assignment phase and dynamically due to packet loss or

communication delay. Should there be tasks with concurrent EST , a higher priority is

assigned to the tasks with more successors (children) in the task graph. For example

in Figure 4.1 task 2 and task 3 can be done concurrently; we assign the higher priority

to task 2 with totally four children rather than task 2 with two children.
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4.3 Task Assignment Phase

After the listing phase, the assignment phase is performed in real-time. All the tasks

that were enqueued at previous phase are consequently dequeued and the reverse

auction based competition is initiated by consumer (auctioneer) to allocate the com-

ing task to the appropriate nodes. The design objective of this task scheduling is to

allocate the task in real-time and achieves a fair energy balancing among the sensor

nodes based on current availability of resources. The pricing scheme would contin-

uously adapt to changes of availability of resources. We also consider the fact that

consumer does not have any knowledge about the energy level of each node (seller).

To achieve the energy balancing objective, cost formulation has been proposed that

need to be individually calculated by each distributed nodes based on its energy level

and other parameters that discussed on this section.

4.3.1 Parameters for Cost Formulation

Our proposed cost formulation is parameterized by six variables; task size, energy

price, base price, communication cost, task deadline and processor release time, some

of which were used in [54].

• Task Size (S) refers to the expected CPU cycle required to compute or com-

municate the task.

• Energy Price (EP ) is generated by each node per unit task based on its level
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of remaining energy and is defined as:

EPi =
a

1− e−Ei/b
(4.3)

where Ei is the remaining energy of node i, a is a scaling parameters and

b is a preferred coefficient which can appropriately represent the markup of

energy price as the energy is consumed. This price is inversely proportional

to the energy level, thus allowing nodes with higher energy (lower price) to be

selected.

• Base Price (BP ) is defined as computational cost for doing task j by node i

which can be calculated as:

BPij = Sj × EPi (4.4)

• Communication Cost (CommCost) is the cost of migrating the output of

one task on one node to another task on an alternate node. It is a function of the

distance between the nodes and the size of the data packet. The communication

cost ci,j [53] for transferring data from job vi (scheduled on pm) to job vj

(scheduled on pn), is defined as:

ci,j = S +Rµi,j (4.5)

where

S is the communication startup cost for a node (in secs),

µi,j is the amount of data transmitted from job vi to job vj (in bytes),

R is the communication cost per transferred byte (in sec/byte).
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Our pricing scheme accounts for the communication cost when assigning tasks.

It means that if (CommCostjk +BPk) < BPj then the output data of the last

task at node j is migrated to node k which is assigned the current task.

• Task Deadline (DL) which is the latest start time (LST) defined in the listing

phase. When two tasks are required to be scheduled concurrently, priority is

given to the task with a closer deadline.

• Sensor node Processor Release Time (RT ) is the time at which the al-

ready scheduled tasks at the node would finish.

4.3.2 Energy Balance Cost Formulation

In this part, the true valuation of the task execution by each of the players is formu-

lated. One contribution of this work is a task allocation scheme that places emphasis

on a fair energy balance amongst nodes constrained by the schedule length of the ap-

plication. Hence, the cost formulation considers the energy availability as well as the

timing factors such as task deadline and sensor node’s processor release time. Should

a situation arise such that a computationally expensive task arrives while only sensor

nodes with low energy are available, our scheme may wait for another node with a

relatively higher amount of energy to complete its task then assign this new task to

that node in order to achieve a longer network lifetime.

In order to explain the timing factors used in the proposed cost formulation, an

example is made:

Consider two sensor node (bidder) R1 and R2 where EPR1 � EPR2 and they are
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Figure 4.2: Illustration of time consideration for task scheduling

supposed to execute task 1 and task 2 (the example is shown in Figure 4.2). At t1,

task 1 is allocated to R1 due to its lower cost value (higher energy available). At t2,

task 2 is available to be assigned. In this situation, our cost formulation may favor

a fair energy balance over a longer makespan by assigning Task 2 to node R1 at the

completion of Task 1 at t3. The cost for assigning task j to node i at time t is:

Cij(t) = (CommCost+BPij)

[
1 + exp

[
−λ(t,DLj)

γ(t, RTi)

]]∗
(4.6)

where t is the arrival time of the new task and λ(t,DLj) and γ(t, RTi)
1 are defined

as follows:

λ(t,DLj) =


k(DLj − t), for t < DLj (4.7)

ε, for t ≥ DLj (4.8)

and

γ(t, RTi) =


(RTi − t), for t < RTi (4.9)

0, for t ≥ RTi (4.10)

where t is current time, DLj and RTi are task deadline and resource release time

respectively.
1If the sensor node’s processor is free when the new task arrives, the exp(.) term evaluates to −∞

which results in 1 for the entire term in the square bracket(*).
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A fair energy balance amongst nodes can be achieved with this bid formulation.

Regarding to γ(t, RTi) value, When the current time t is close to the release time of

a processor RTi with high energy availability, a low value would be set, increasing

the selection possibility by the auctioneer. It can also be shown in equation 4.10

that if at current time the resource (sensor node) is free so the time consideration

part from equation 4.6 would be omitted and the bid is only the function of energy

considerations.

Regarding to λ(t,DLj) the deadline of this task DLj to be assigned is also con-

sidered (the task deadline is the latest start time (LST) of the task). The tasks with

urgent deadlines would be allocated to a node that is available at a closer released

time (or a node that readily available) at the expense of an unfair energy balance.

Lemma 2. Let the time consideration part of cost formulation on Equation 4.6 to be

ζ =
[
1 + exp

[
−λ(t,DLj)

γ(t,RTi)

]]
. Then ∀ DL, RT, t > 0 , ∃ 1 ≤ ζ < 2.

Proof: For upper bound if t ≥ RTi from equation 4.10 then γ(t, RTi) = 0 and

λ(t,DLj) > 0 , so ζ =
[
1 + exp

[
−λ(t,DLj)

0

]]
= 1. For lower bound if t ≥ DLj from

equation 4.8, λ(t,DLj) = ε and γ(t, RTi) ≥ 0 so ζ =
[
1 + exp

[
− ε
γ(t,RTi)

]]
' 2.

Figure 4.3 shows an example of cost value from one specific node for accomplishing

one task over time where DL > RT (DL = 80 and RT = 50). As can be seen, the cost

value before the resource release time is decreased over time, so that the probability

of being selected on the competition increases. Figure 4.4 shows the cost variation

over the time where DL < RT (DL = 50 and RT = 80). As can be seen, the cost

value before the task’s deadline increases because the resource at that time is busy
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Figure 4.3: Cost value over Time when DL > RT (DL = 80 and RT = 50)

Figure 4.4: Cost value over Time when RT > DL (DL = 50 and RT = 80)

(RT = 80) and we have an urgent deadline so the cost value would be high to reduce

the probability of being selected on the competition.
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4.4 Bidding to Achieve NE in a Distributed Fash-

ion

In this game, the players are modeled as selfish and rational agents. Hence, after

they calculate their cost for executing the task, they may want to bid the price that

can maximize their payoff. For the incomplete information reverse auction game, the

players do not reveal their computational strategies. Here, each proposal and bid

response provide some information about future predictions and decisions. They act

as signals that help the bidders and auctioneer to update their beliefs about what the

other has computed.

4.4.1 Attributes of Auctioneer and Bidders

The real-life parameters affecting the game are modeled by the following attributes:

Bidder’s Cost (Cij) : This is the true value for executing the task j by node i.

This value has energy and time considerations and has been defined in section 4.3.2.

Reserve Valuation (RV ): This is the maximum possible budget the auctioneer

is willing to pay to get the task done. The rationality behind this definition is to

eliminate the number of competitors whose cost is higher than the budget. The

auctioneer’s global objective is to achieve the energy balance and delay reduction in

task scheduling and assignment. Hence for each reverse auction interval, it adjusts

the budget to the value that maximizes the auctioneer’s expected surplus.

Market Price (MP ): This value is calculated based on the statistics maintained
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by the bidder and auctioneer maintain a history keeping track of recent reverse auction

games. This history will help to determine the “market value” of the resources the

sensor network application is seeking. Hence, it depends on the kind of tasks that

was distributed by the auctioneer before and executed by sensor nodes.

Bid Value: This is basically the price offered by the bidder which can maximize

the bidder’s utility function. The standard price corresponding to the highest utility

gives the offered bid price.

Probability Distribution f(bid;RV,Cij): This is the probability distribution

of the bidder’s belief about the auctioneer’s preference of the winning bid. It has the

form of a truncated, decreasing geometric distribution. The effect is that the lower

offered price has a much higher probability of winning. In other words the perceived

probability decreases monotonically with the bid value.

f(bid;RV,Cij) =


(1−β)×β(bid−Cij)

1−β(RV +1) , Cij ≤ bid < RV

0, otherwise

(4.11)

where β is a distribution parameter. Considering a bidder i with the cost for accom-

plishing task j, Cij = 40 and RV = 100, the probability distribution with different β

values 0 < β < 1 is shown in Figure 4.5.

4.4.2 Bidder’s Payoff Function

In order to achieve the best bid value in the incomplete information game, each

player has to calculate its payoff without knowledge of the other players’ preference

and bid values. Hence, the payoff function is designed so that it can be calculated in
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Figure 4.5: Probability distribution for different β.

a distributed fashion based on the local information at each player and their belief

about the auctioneer’s preference. The concave and non-smooth payoff function is

defined as follows:

Ui = (bid− Cij)× f(bid;RV,Cij). (4.12)

Hence, the bidder’s best response (Nash Equilibrium) is as follows:

Bi(bid, RV ) = {bid∗|bid∗ = arg maxUi(b̃id;RV )}. (4.13)

Theorem 1. There exists upper and lower bounds such that a unique NE exists if the

bid is selected from the following range: Cij < bid < RV ; otherwise, no NE exists.

Proof: From equation 4.11 and 4.12, the bidder’s payoff can be written as follows:

Ui =


(1−β)×β(bid−Cij)

1−β(RV +1) , Cij ≤ bid < RV

0, otherwise

(4.14)
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Figure 4.6: Best response for the defined bidder’s payoff function.

From this equation, the unique NE is not be a continuous function of the bid due to

the discontinuity of the player’s payoff function. In particular, the unique NE could

be all zero for any bid outside of the upper and lower bounds. Consider a bidder i

with the cost for accomplishing task j, Cij = 40 and RV = 100. The payoff and the

best response for different β are demonstrated in Figure 4.6.

Theorem 2. Considering the payoff function defined in equation (4.12) where 0 <

β < 1 , the NE is a value near to the bid’s lower bound (cost value).

Proof: We need to show that bid∗ = Cij + ζ where ζ is a small positive value. The

payoff function defined in equation (4.12) for Cij < bid < RV is

Ui = (bid− Cij)×
(1− β)× β(bid−Cij)

1− β(RV+1)
(4.15)

which for the interval Cij < bid < RV is continuous and differentiable, so the non-

negative root of the derivative of the payoff function is bid∗ = −1
lnβ

+ Cij. Since we

assume 0 < β < 1, then ln β is negative and ζ = −1
lnβ

is a small positive value.
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Lemma 3. The proposed distributed reverse auction achieves truthfulness (incentive

compatibility) and individual rationality.

Proof: The proof for truthfulness is provided in the proof for theorem 2. Since

the proposed reverse auction is a second-lowest-price sealed-bid, for the winner with

the truthful bid the reward is higher than the value that it bids (Rm ≥ Bm), so it

is individual rational. This will guarantee non-negative utilities for bidders who bid

truthfully.

4.4.3 Asynchronous Best Response Updates of Bids

In this section, we want to address how each bidder can adaptively modify the dis-

tribution parameter β to achieve the best response value that can maximize the

bidder’s payoff in a distributed fashion. To achieve this, we allow the players to iter-

atively update their bids based on the best response functions results from the β in

an asynchronous fashion. A distributed asynchronous update algorithm (Algorithm 1)

for adjusting β is proposed. The rationale behind this algorithm is simply as follows:

The distribution parameter β is initialized to some random value β0. There are

two conditions for modifying this value. First, if the bidder loses the competition, it

means that the proposed bid was too high so that it can not be selected as a best

(lowest) bid value. In this situation, the node’s belief about auctioneer preference has

to be modified by adjusting the β value for next reverse auction round. Secondly, on

the opposite side, if the bidder wins the competition for several times continuously,

it means that there is still a probability of winning even if a higher bid is offered.
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Again, in this situation, the node’s belief about the auctioneer’s preference needs

to be modified by adapting the β value. The probability distribution of the node’s

belief about the auctioneer’s preference and the player’s payoff value with different

β have been shown in Figure 4.5 and 4.6. The asynchronous algorithm for updating

distribution parameter is shown in algorithm 1. Given a distributed pool of bids from

bidders (sensor nodes), a centralized Winner Determination Protocol (WDP) would

require costly message exchanges with high overheads. We now propose a distributed

WDP in the next chapter.
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4.5 Recovery Phase

In WSNs, sensors are prone to failures. In case of sensor failures, the current applica-

tion executing instance may stop due to task dependencies defined in the task graph,

i.e. the data carried by failure sensor node may be demanded as the input for an-

other task execution. In such cases, the lost data of failed node needs to be promptly

recovered for the subsequent application executing instances. Instead of rescheduling

from scratch, which can be time consuming, low-complexity recovery algorithms are

preferred.

The proposed method enables recovery from node failure during the online task

assignment phase. The previous works, such as [8, 47] only considered node failure

prior to task assignment by not selecting the node that had failed. In the recovery

phase, firstly, the tasks that had been assigned to the failed node are recovered from

its successors deployed on other nodes. In other words, it is determined if there

are any tasks that run on the failed node that they need to be assigned again to

another nodes. If these tasks have no successors or no undeployed successors, then

redeployment is unnecessary. Redeployment is also unrequired if the output of this

task exists on another node. This situation occurs when the data as the task output

had been previously communicated to another node as the task’s successor. Figure 4.5

shows an example of node failure where redeployment of tasks done by failed node is

unnecessary. Task 1, 2 and 3 have been done by failed node and all the tasks with

filled color have been already deployed. In case “1” redeployment is unnecessary since

the tasks done by failed node (task 1, 2, 3) don’t have any undeployed successors.
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In case “2” redeployment is also unnecessary since output of task exists on another

nodes.

(a) Case 1 (b) Case 2

Figure 4.7: Unnecessary cases for redeployment of failure node’s tasks

However, if there exists no back-up copy of the output of these tasks then re-

assignment of these tasks onto another sensor nodes is required. If the deadline

where this output is valid has been exceeded, redeployment of this task would not

be performed. Task assignment resumes as normal with the rest of the tasks after

the recovery phase. The result of implementing a recovery phase which checks for

previously communicated data from tasks on a failed node to avoid unnecessary task

deployment is the savings in energy and time.

Although the recovery method proposed results in a slight increase in schedule

length, simulation results shows the significant improvement in schedule length in
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comparison to rescheduling considered for static scheduling in addition to energy

consumption and balance improvements.
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Chapter 5

Winner Determination Protocols for

Reverse Auction-Based Task Allocation

5.1 Introduction

So far, we have described how to bid to satisfy the energy balance objective for

the auction-based distributed task allocation. However, given a distributed pool of

bids from bidders in our auction game, a centralized Winner Determination Protocol

(WDP) would require costly message exchanges with high overheads. This fact also

needs to be considered that for sensor nodes the energy consumption for transmitting

and receiving are significantly higher than other tasks such as sensing and processing

[38]. Hence, a novel Energy and Delay Efficient Distributed Winner Determination

Protocol (ED-WDP) for the reverse auction-based task allocation scheme is proposed.

This protocol has a contention-based MAC (Medium Access Control) protocol inter-

pretation, where all the bidders compete during the contention window and only the

winner of the game (the bidder with the lowest bid) will transmit its packet to the

auctioneer. The main objectives of this protocol are to reduce the overhead, delay

and energy consumption in message exchanges while determining the winning bidder.
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In this chapter, the centralized and distributed WDP are introduced and com-

pared with the proposed Delay Efficient Distributed Winner Determination Protocol

(ED-WDP).

5.2 Centralized Winner Determination Protocol

(C-WDP)

When a new task arrives, the auctioneer initiates the reverse auction round. It broad-

casts a message containing 〈TASK, TaskSize, TaskDeadline〉 to all the sensor nodes

(bidders). Each bidder calculates its bid, and sends that bid to the auctioneer. The

auctioneer then selects the bidder with minimum bid among all the bidders. Then the

task would be allocated to that winner bidder. The main disadvantages of this proto-

col are the overhead and the cost (energy consumption) for sending all the bids to the

auctioneer specially in the network with a large number of distributed nodes. More-

over, in this method, the probability that collisions occur during message exchange

is also high. Lastly, the auctioneer needs to wait for all the bidders to send their

bid and then makes the decision. Given these disadvantages, for any auction-based

scheme, it is more efficient to utilized the distributed decision making and message

exchange.
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Figure 5.1: Centralized winner determination protocol

5.3 Distributed Winner Determination Protocol

(D-WDP)

To reduce the communication overhead and energy consumption for the message ex-

changing on C-WDP, the distributed WDP is introduced. Each seller upon receiving

auctioneer’s message, calculates its cost and bid then instead of communicating its

bid for accomplishing the current task immediately, each node sets a waiting time Tw

proportional to its bid B (linearly maps the bid to the waiting time) and goes to a

LISTEN mode. Mathematically, for current task j, the node i calculate its waiting

time Tw(i, j) by

Tw(i, j) = `×Bij (5.1)

Where ` is a linear coefficient. When the waiting time is completed, the bidder would

then send the message to auctioneer. It means that the bidder with the lowest bid
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Figure 5.2: General distributed winner determination protocol.

(the winner) will send its bid first and be selected. Upon reception of a message from

a winning bidder node, the remaining nodes (which are in a LISTEN mode) would

leave the competition and avoid communicating their bids. Hence, the winning bidder

is the only one who send the message to auctioneer. This scheme will considerably

reduce the amount of overhead and energy consumption for sending non-winning

messages to the auctioneer; however, it may result in the latency in responding to

the auctioneer, caused by the waiting time.

In General Distributed scheme, two more issues are not considered. The first

one is that the number of active competitors in the LISTEN mode with low energy

ought to be reduced, as some of these nodes with low energy level may not win the

competition. The second issue is how to reduce the waiting time for the response

of the winner, which will also decrease the time that the other nodes spend in the

LISTEN mode.
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5.4 Energy and Delay Efficient Distributed Win-

ner Determination Protocol

In order to determine the winner among distributed bidders in the reverse auction-

based task allocation and also achieve the auctioneer’s objectives which are energy

conservation and delay reduction in message exchange, the novel Energy and Delay

Efficient Distributed Winner Determination Protocol (ED-WDP) is proposed. Upon

each task arrival, a new reverse auction round is initiated. The sensor nodes (bidders)

compete over the predefined Contention Window (CW) time. This protocol has a

contention-based MAC (Medium Access Control) protocol interpretation, where all

the bidders compete during the contention window and only the winner of the game

(the bidder with lowest bid) will transmit its packet to auctioneer. The main objective

of this protocol is to reduce the overhead, delay and energy consumption in message

exchanges for determining the winning bidder. This protocol is partitioned into two

phases.

5.4.1 Phase 1 - Elimination via Budget Value

One of the largest sources of energy consumption in wireless sensor nodes is the use of

idle listening. Hence, reducing the number of sensor nodes in this mode is essential.

In our proposed ED-WDP, the budget value is the Reserve Valuation (RV ) set by

the auctioneer and communicated to the bidders. This budget is the auctioneer’s

willingness to pay for the current task in the reverse auction. Upon receiving the task
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message which contains the RV value, each seller calculates its bid and compares

it with RV set by the auctioneer. Bidders whose bids are higher than the budget

will leave the reverse auction competition at the beginning and go in to the SLEEP

mode. As a result, sellers that have lower amounts of energy and thus, higher bids

will not be selected for the rest of the competition, as the auctioneer would prefer to

pay a lower price for the current task. The budget (RV ) is adapted to ensure that

at least one node is selected via this phase. The issue which then arises is how to set

the budget. If the auctioneer sets a high value as the budget for the arriving task,

a large number of bidders may be selected to continue the game. This issue causes

the higher total energy consumption for the node staying in the idle listening mode.

On the other hand, by setting the low budget value which is below the market trend,

no bidders may be chosen. If a multi-round reverse auction is used, the budget value

will be adjusted in the following rounds.

The truncated increasing geometric distribution is used as the market trend distri-

bution in auctioneer’s belief. Such a probability distribution has been used in [36] for

picking a transmission slot in the contention window-based MAC protocol (so-called

SIFT) to reduce the response latency. This probability distribution allows the price

near to the auctioneer’s RV an exponentially higher probability of winning. The

probability distribution of market price is as follows:

g(bid;α,RV ) =
(1− α)αRV

1− αRV
× α−bid (5.2)

where the random variable bid ∈ [1, RV ] and α is the distribution parameter where

(0 < α < 1). Figure 5.3 shows the probability distribution for market price given the
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Figure 5.3: Probability distribution of market price for different α.

different values of α and the budget set to be 1000 and all the bids are [1,1000].

The auctioneer adjusts the budget based on a feedback received from the cost of

the winner from previous iterations and the probability of previous winner’s cost as

follows:

RVt+1 = MPt × (1 + ĝt) (5.3)

where ĝt called the safeguard factor is the probability distribution value of the market

price in the tth iteration and the MPt is the average of bids of the previous winners

in κ prior rounds i.e. Average(bidt, bidt−1, ..., bidt−κ+1). The initial budget is set to a

large random value so that a large number of nodes will be selected; the budget value

then adaptively changes based on the feedback on the cost of winners.

One of the economic properties that ensures that the auction is economic-robust

and encourage auctioneer’s participation is ex-post budget balancing. According to
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definition 5 a reverse auction is ex-post budget balanced if the auctioneer’s payoff

Ψ ≥ 0. The payoff is defined as the difference between the reserve valuation (RV )

and the expense paid to sellers Rm (second lowest bid value).

Lemma 4. The proposed distributed reverse auction achieves ex-post budget balance

i.e. Ψ =
∑n

1

∑m
1 (RVn −Rm) ≥ 0,∀ seller m, task n .

Proof: RV is the budget value that is set by the auctioneer and as can be seen

from equation (5.3), due to the safeguard factor, it is always higher than the current

market trend. In other worlds, the current market trend is the average of the rewards

achieved by the bidder from the auctioneer. Hence, we can guarantee that RVn ≥ Rm.

This property ensures that the auctioneer has incentives to set up the reverse

auction. The rationality behind the budget utilization in our reverse auction is to

achieve the auctioneer’s objective on overall energy conservation and energy balancing

during winner determination. As the result the sensor node with the lower amount

of energy quits the game initially before the winner determination protocol runs.

The initial budget is set at a large random value as that a large number of nodes

will be selected; the budget value then adaptively changes given feedback on the

winning node’s bid. So far, the constant distribution parameter α has been assumed.

However, the auctioneer needs to change its belief about the current market trend

by adjusting different α values in probability distribution (Figure 5.3) after some

iterations. In section 5.4.3, it will be shown that the different α values returns different

budget adjustments and the distribution parameter converges to the near optimal
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value via an adaptive algorithm.

5.4.2 Phase 2 - Waiting Time Reduction

This phase is run in the sensor nodes (bidders) and its main objective is the delay

reduction during the winner determination. After the elimination phase, each of the

surviving sensor nodes for the competition individually sets the waiting time based

on its own bid value.

When the waiting time is completed, the winning node is the first and only node

to send its message and the remaining nodes (who are in LISTEN mode) receive

the winner’s message and understand that they have lost in that round of the game.

This scheme will reduce the amount of overhead and energy consumption for sending

the non-winning messages to the auctioneer. However, it may result in latency in

responding to the auctioneer, due to the waiting time. The main purpose of this

phase is to reduce the delay or waiting time before the first bidder (which will be the

winner of the reverse auction) replies with its bid. In order to reduce the response

time of the bidders, a non-uniform function is used to map the bid value to the waiting

time. By reducing the waiting time, not only is the delay decreased but the energy

consumption of all the active bidders is decreased by reducing the time these bidders

remain in the LISTEN mode. As mentioned before, the similar idea has been used

in [36] for picking a transmission slot in the contention window-based MAC protocol

(so-called SIFT) to reduce the response latency.

An example shown in Figure 5.4 demonstrates the differences of the waiting time
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Figure 5.4: Example of the uniform and non-uniform bids and waiting times mapping.

cause by mapping the high bid value (comparable to budget value) to the uniform and

non-uniform distribution. In the first case, the contention time window is mapped

uniformly such that given a budget of 1000 per unit task and a contention time

window of 10 msec (or, if the seller’s cost is 800 per unit task, the waiting time is 8

msec). However, utilizing non-uniform distribution for mapping the same cost of 800

per unit task, the sellers response is reduced to 2 msec. It significantly reduces the

latency before the bidder reveals its bid.

The bidder receives RV and α value from the auctioneer task message and calcu-
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lates its bid. If the bidder’s bid exceeds the budget, that bidder will leave the competi-

tion and go to SLEEP mode. Given the distribution probability g(bid;α,RV ) defined

in equation (5.2), the bidder i maps its bid value to the waiting time non-uniformly

as follows:

Twi(α) =
bidi × g(bidi;α,RV )

RV
× CW (5.4)

where CW is the fixed contention window that the bidders compete over. The cal-

culated waiting time would increase the resolution for the time intervals where the

most of current bids (market price) are. At the end of the contention window, all the

nodes revert to ACTIVE mode in order to be ready to bid for the new arriving task.

Figure 5.5 shows the different waiting time Tw over the costs for different α value

from equation 5.2 given a CW of 100 msec and a budget of 1000 per unit resource.

The waiting time is significantly reduced in comparison to a uniform mapping of the

bid to the waiting time.

In conclusion, the reason for utilizing the increasing geometric probability dis-

tribution as the auctioneer’s belief of the market price is to achieve the followings’

goals:

• To adjust the budget value: Auctioneer needs to have an idea of the current

market trend to adjust its budget value from equation 5.3. If the current market

trend is near to the budget value, it will be increased for the next iteration in

order to increase the probability that the acceptable budget value is maintained

where at least one bidder will be selected.

• To map the bidder’s bid to the waiting time: In order to reduce the time the
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Figure 5.5: Bids vs waiting times for different α

sellers (sensor nodes) are in LISTEN mode, where no nodes transmit their bids,

and also to increase the resolution for the time intervals that most of current

bids are.

5.4.3 Comparison of Different Distribution Parameter

The auctioneer needs to correct its belief about the current market trend by adapting

the distribution parameter α. The auctioneer faces the dilemma of setting the best α

value, since it influences the budget (RV ) and waiting time. A higher α value results

in a longer waiting time (the time before the winner responds) but a lower negotiation

time for adjusting the budget value. The negotiation time is the contention window

multiplies by the negotiation round. The negotiation round is required when all of

the bidders are eliminated on phase 1 with the calculated budget, so the budget needs

to be adjusted again. A lower α value has the opposite effect. Hence, the total delay
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upon receiving a winning bid in our decision making mechanism is:

Ttotal(α) = Tw(α) + CW ∗ (Nround(α)− 1) (5.5)

where Nround is the number of rounds of negotiation which is a function of α, CW

is the contention window and Tw is the waiting time (winner’s response latency)

mentioned above (equation 5.4). At this stage, our objective is to adapt the α value

iteratively to achieve the α which results in lower total delay Ttotal. Before that, we

need to compute the optimal value for α that the adaptive algorithm is supposed

to converge to it. Simulations are performed for different α values (from 0.2 to 0.9)

with CW = 100 msec for 40 iterations at each α. Figures 5.6(a) and 5.6(b) show the

waiting time Tw and negotiation time at different α values. Figure 5.6(c) shows the

total delay Ttotal at different α values. The optimal α value which minimizes the total

delay is thus obtained between α=0.6 and α=0.7.

5.4.4 Distributed Iterative Best Response Update

The α value is adapted by the auctioneer to converge to the optimal value, i.e. the

minimum value shown in Figure 5.6(c). This α value is communicated to the sellers

via the task message on each task arrival. By utilizing an adaptive algorithm, α can

be adjusted in an asynchronous manner according to the history of its previous values.

It would approach the optimal α which will returns the best budget value and waiting

time in the current market environment. This alpha value is communicated to the

sellers with the task message {Task, Task Size, Task Deadline, Budget, α} with each

task arrival.
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(a) Waiting Time (b) Negotiation Time

(c) Total Delay

Figure 5.6: Waiting Time, Negotiation Time and Total Delay for α=[0.2 0.9].

Definition 6. A consistent distribution parameter history of an auctioneer, denoted

as ‘CDPH’, is the history in which all the ρ auction rounds shares the same α as the

distribution parameter.

Definition 7. In order to achieve the auctioneer’s objectives which are the delay

reduction and energy conservation during message exchange the auctioneer’s expected

utility function for each task (i) arrival from the task domain T is set as follows:

Uex(αi) = −
ρ∑
j=1

(T jw(αi) + CW × (N j
round(αi)− 1)) ∀i ∈ T (5.6)
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where Tw and Nround are the function of α value and ρ is number of iteration required

for observing αi performance in CDPH.

Definition 8. The best response for iteration i (task arrival i) is to achieve α that

can maximize this utility function as:

χ(αi) = {αi|αi = arg max
0<α̃i<1

(Uex(α̃i))} (5.7)

The general idea is that once a new utility history with consistent α after ρ rounds

is formed, the probability distribution used by the auctioneer is increased or decreased

according to the auctioneer’s 1st and 2nd most recent utility histories with consistent

α. By utilizing an adaptive algorithm, α can be adjusted in an asynchronous manner

according to the history of its previous values. It would approach the optimal α

which will returns the best budget value and waiting time in the current market

environment.

The next alpha value may be increased or decreased based on the two most recent

consistent α histories. To obtain the ith α history, the α value is evaluated based on

the expected utility function of auctioneer on Definition 7.

If there is an improvement in the expected utility U compared to the utility in

the previous CDPH period, U ′, the positive adjustment parameter µ = 1 is set for

the next iteration. In other words, α is further adapted is the same direction. If the

utility function returns a worse result, the previous adjustment was improper and

the adjustment parameter is set to µ = −1 and α is further adapted in the opposite

direction.

Algorithm 2 shows the adaptive strategy used. At this stage, α0, step, µ and U ′

69



are initialized. The α is adjusted when a new CDPH is formed. For adjusting the α,

the auctioneer computes the expected utility of recently formed CDPH and records

this new value in U . Then it modifies the α according to the value of µ and the

relationship between U and U ′ (line 10-14). If the previous adjustment of α, which

is illustrated by µ leads to a decrease of utility, the adjustment parameter will be

change to the opposite value which means that the previous and next adjustments of

the α value are different(line 15-19). In this reverse auction the value of α is changed

after each CDPH formed and will slowly converge due to decreasing step. The step

is decreased (line 7) under some conditions: first if the number of α values which are

near to the mean value of α are high; second if the α moves toward the mean value.

The adaptation process is finished when step is smaller than ε and the auctioneer

used this α for the rest of subsequence rounds.
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Chapter 6

Simulations

6.1 Simulation Setup and Parameters

In this chapter, we describe the simulation study performed to evaluate the perfor-

mance of our distributed reverse auction-based task allocation schemes and algorithms

as follows:

• The convergence of the proposed distributed iterative best response algorithm

for the bid updates.

• The performance of our task allocation scheme in terms of energy balancing

and energy utilization.

• The effect of our proposed task allocation scheme in terms of the schedule

length and energy consumption over a different number of available nodes.

• The performance of our proposed fast recovery scheme for the node failure

during the real-time task assignment.

• The performance evaluation of the Energy and Delay Efficient Distributed Win-

ner Determination Protocol (ED-WDP).

• The convergence of algorithm 2 (section 5.4.4).
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The algorithms were implemented using Matlab simulator running Windows XP.

The task graphs used in the experiment were randomly generated using Task Graphs

For Free (TGFF) [63]. We applied our real-time task allocation scheme and proposed

algorithms to a WSN with heterogeneous nodes and compared their performance to

the baseline case when the offline task scheduling scheme is used.

The simulation parameters are shown in Table 6.1.

6.2 Analysis of Simulation Results

6.2.1 Bid Convergence under Asynchronous Update Algo-

rithm

The best bid values, which would result in the Nash Equilibrium (NE) defined in

equations (4.12), (4.13) and (4.15) are evaluated. Furthermore, the convergence of

bid values to the near optimal value given by theorem 2 is shown. The convergence

occurs via the algorithm 1 which iteratively modifies β in an asynchronous manner.

We first observe the bidding behavior of one bidder. The cost for accomplishing tasks

1 and 2 are 30 and 20 respectively, and the auctioneer’s budget for task 1 and task 2

are 100 and 60 respectively. Figure 6.1 shows the bidding behavior for tasks 1 and 2

and their convergence to the near optimal value. The convergence of the distribution

parameter β through the proposed algorithm is illustrated in Figure 6.2.
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Figure 6.1: Convergence of bid under asynchronous updates.

Figure 6.2: Convergence of distribution parameter β under asynchronous updates

algorithm.
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6.2.2 Performance Evaluation of Energy Balance and Energy

Utilization

Another set of simulations was carried out to evaluate the energy balancing and en-

ergy utilization performance of the proposed distributed task allocation method. In

this simulation, a task graph of 35 tasks, where each task has a maximum num-

ber of 3 predecessors is assign to 15 nodes. One sample of task graph is shown in

Fig. 6.3. The real WSNs’ application is not as complex as our assumptions for task

graph. Hence, obviously for real application such as target tracking as shown the

task graph in Fig. 3.2 would be much simpler. The nodes have the following initial

energy levels [3.4, 2.4, 2.0, 3.3, 2.0, 2.3, 2.7, 3.2, 3.1, 2.0, 1.9, 2.9, 2.7, 3.0, 3.0] Joule. The

energy consumption for transmitting is based on the MICAz mote datasheet [64]:

ESending = 0.017 mJ, EReceiving(Listenmode) = 0.031 mJ. Comparisons of energy balanc-

ing performance are made between the proposed reverse auction-based scheme with

ED-WDP and a static task allocation scheme. The static task allocation scheme used

in our simulation is the Critical Node Path Tree (CNPT) algorithm [8] modified to

schedule the tasks offline with an energy balance objective, referred to as EB-CNPT.

In the EB-CNPT algorithm, given the initial available energy levels at each node and

the number of tasks for an application, the clusters of tasks are formed. Before the

task execution phase, each cluster of tasks are assigned to the sensor node as a whole,

instead of allocating each individual task at each epoch by considering the resource

and energy level availability of each sensor node at that epoch. In original CNPT

algorithm, the only objective is to minimize the total schedule length considering the
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application deadline; however, in EB-CNPT, in addition to the schedule length, the

initial energy level of nodes before the task assignment phase is also considered.

Figure 6.3: The sample of random generated task graph.

The remaining energy (Figure 6.4) for all the nodes appears more balanced when

the proposed reverse auction scheme was used. The explanation is that the bid formu-

lation at each iteration of task allocation takes into account and continuously adapts

to the available resources. Figure 6.4 illustrates that given unbalanced initial en-

ergy level of each of 15 nodes, how our proposed reverse auction-based task allocation
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performs in comparison to static case with energy balance consideration (EB-CNPT).

In order to show the deviation from the mean of the remaining energy of all the 15

sensor nodes, the variance of data is used. The variance formulation for the available

remaining energy is calculated as

V ar =
1

n

n∑
i=1

(Ei − E)2 (6.1)

where n is number of sensor nodes, E is the remaining energy level of sensor

nodes and E is the mean which is calculated as E = 1
n

∑n
i=1Ei. The higher variance

value means the unbalanced available energy level among the sensor nodes. Figure

6.5 shows the performance of our scheme in terms of energy balancing and compared

with the static energy balanced scheme ( EB-CNPT).

6.2.2.1 Discussion on protocol cost:

Although the extra message exchange is required for online and real-time task allo-

cation, the online task allocation is able to account the real availability of resources

for task allocation. The performance in terms of energy balancing is already shown.

However, we attempt to design the protocol (ED-WDP) that minimizes the number

of message exchange required. As the result of two-fold phases of ED-WDP, only

the winning node replies to auctioneer to avoid the extra message exchange typically

requires for auction bidding mechanism.
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Figure 6.4: Comparison of the Level of energy balancing after allocating 35 tasks to

15 nodes.

6.2.3 Performance Evaluation of Energy Consumption and

Schedule Length

The comparisons are made on the schedule length and energy consumption of our

dynamic task allocation schemes with the three WDPs and the static task allocation

EB-CNPT over an increasing number of available nodes. In the static task allocation,

the schedule length for each node is the time taken for all the assigned tasks to be done.

However, in the real-time task assignment, the schedule length is further increased

by the time required for message exchange. The total schedule length considered in
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Figure 6.5: The performance of scheme in terms of energy balancing.

the simulation results is the maximum scheduling length among all the nodes. The

schedule length and energy consumption achieved in static task scheduling is meant to

be considered as the best scheduling scheme compared to the dynamic and real-time

task allocation. However, in the static task allocation, the unexpected situations such

as the packet loss, communication delay and node failure have not been considered.

Figure 6.6 shows the total energy consumption for adaptive task allocation with

three Winner Determination Protocols WDPs and static scheduling (EB-CNPT )

when the number of available nodes are increased. The three protocols are: (1)

centralized WDP (C-WDP) where all the bidders communicate their bids to the

auctioneer; (2) distributed protocol called D-WDP where only one winning bidder

sends its bid and waiting time is linearly proportional to bid the value; and (3) one

is the proposed ED-WDP scheme.

As can be seen from Figure 6.6, the energy consumption of nodes increases by
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increasing the available nodes due to increasing the communication cost for migrating

data among the nodes. The energy consumption of our scheme is lower than the static

task allocation method due to the communication cost is considered on the bid value.

Among the message exchange methods applied, the C-WDP results in the highest

communication overhead and energy consumption. The ED-WDP scheme has the

lowest energy consumption as only one node would communicate its bid and the time

the rest of the nodes spend in the LISTEN mode is also reduced. Energy consumption

is also reduced by allowing nodes with relatively low energies (nodes with bids that

do not meet the budget) to be sent to the SLEEP mode directly.

Figure 6.7 shows the schedule length would decrease by increasing the number

of available node as the tasks may be allocated over a larger number of nodes. The

schedule length for real-time auction based task allocation is meant to be higher

than static task scheduling due to the time taken to exchange messages; however

since the efficient message exchange is used in our real-time allocation, it results

in the comparable schedule length. Figure 6.7 also shows that among the different

protocols, the ED-WDP (our proposed scheme) results in the lowest schedule length

and the distributed scheme results in the highest schedule length due to higher Tw.

6.2.4 Performance Evaluation of Fast Recovery Scheme for

Node Failures

In another set of experiments, the effect of node failure during the online task assign-

ment phase is simulated. For the static case, rescheduling of the whole task graph has
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Figure 6.6: The total energy consumption when the number of nodes increases.

Figure 6.7: Schedule length when the number of nodes increases.

been performed. This is compared with the adaptive recovery phase in our proposed

scheme. Node failure is simulated to occur at different times from the start time of

task assignment. Figure 6.8 shows the performance of our dynamic scheme compared

to the static case in terms of schedule length. Results exhibit a significantly lower

schedule length and therefore, lower energy consumption in comparison to static case

81



Figure 6.8: Scheduling length vs failure time

as shown in Figure 6.9. When node failure occurs during the early stages of task

assignment, the schedule length is almost constant as not many tasks have been com-

pleted. When node failure occurs during the middle phases of the task assignment,

the schedule length increases due to the number of uncommunicated dependencies

resulting in the rescheduling and redeployment of many tasks. However, node fail-

ure occurs during the later times, many of the tasks have been completed and their

dependencies have been communicated and therefore do not need to be redeployed.
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Figure 6.9: Energy consumption vs failure time

6.2.5 Performance Evaluation of Energy and Delay Ef-

ficient Distributed Winner Determination Protocol

(ED-WDP)

To evaluate the ED-WDP in terms of total waiting time Ttotal and energy consump-

tion, the simulation is carried out to show the result of adaptive algorithm 2 for

adjusting the α value and its convergence after some iterations of task allocation.

The best α value would lead to the best budget adjustment set by auctioneer and

proper waiting time set by bidders. As explained before, the auctioneer faces the

dilemma for setting the distribution parameter α. A higher α value results in a

longer waiting time (the time before the winner responds) but a lower negotiation

time for adjusting the budget value. The negotiation time is the contention window
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multiplies by the negotiation round. The negotiation round is required when all of the

bidders are eliminated on phase 1 with the calculated budget, so the budget needs

to be adjusted again. A lower α value has the opposite effect. The tradeoffs and

comparisons of budget value, waiting time, number of negotiations and number of

active nodes selected, given the low α value (0.2) and high α value (0.9) are made

for a number of 40 tasks (iterations) and 10 nodes (sellers) with a contention window

(CW) of 100 msec. Figure 6.2.5 shows the budget value set by auctioneer with the

low α value and the high α value during different iterations. The high α results in

a smooth estimated budget value during different iterations. Figure 6.2.5 illustrates

the waiting time before the winner sends out its bid value achieved by low and high

α values during iterations of tasks allocation. The number of negotiation rounds re-

quired for budget setting achieved by low and high α values during some iterations

are shown in Figure 6.2.5. Figure 6.2.5 illustrates the number of selected nodes from

‘elimination phase’ and budget settings that is achieved by low and high α value.

As shown in Figure 5.4.3, different α values result in different total waiting times.

From Figure 5.6(c) the optimal value is determined to be between 0.6 and 0.7. The

result of the adaptive algorithm for adjusting the α value, illustrates the convergence

of α value to the near optimal value after some iterations. The initial α value is set

to be 0.95 and after 22 iterations of task allocation this value converges to the near

optimal value. The convergence result is shown in Figure 6.14.

Moreover, the total delay achieved by utilizing the adaptive α algorithm is com-

pared with the total delay when the optimal α value, the fixed α values (low and high
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(a) (b)

Figure 6.10: (a) The budget value set by auctioneer with low α value during different

iterations. (b) The budget value set by auctioneer with high α value during different

iterations.

(a) (b)

Figure 6.11: (a) The waiting time before the winner sends out its bid value achieved

by low α value. (b) The waiting time before the winner sends out its bid value

achieved by high α value.
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(a) (b)

Figure 6.12: (a) The number of negotiation rounds for budget setting achieved by low

α value. (b) The number of negotiation rounds for budget setting achieved by high

α value.

(a) (b)

Figure 6.13: (a) The number of selected nodes from ‘elimination phase’ achieved by

low α value. (b) The number of selected nodes from ‘elimination phase’ achieved by

high α value.
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Figure 6.14: The convergence of α after several iterations

values) and a random α value (at each iteration α is randomly changed) are shown in

Figure 6.15. The total delay for the case of adaptive α is near to that achieved with

the optimal α value.
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Figure 6.15: Comparison of total delay Ttotal.
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Table 6.1: Simulation Parameters

Simulation Parameter Value Description

T 35 Number of tasks(iteration) in task graph

N 15 Number of sensor nodes

NumPred 3 Number of predecessor in task graph

κ 5 Number of prior rounds of winner’s bid value

for calculating market price

ρ 3 Number of iterations for consistent distribu-

tion parameter history CDPH

k 3 Number of iterations on which the bidder

continuously win with consistent β

T0 1100 Initial utility value

θ 0.15 Step

η 3 Number of observations of continuous win-

ning with consistent β

α0 0.95 Initial α value

β0 0.9 Initial β value

ε 0.01 Threshold for step

a 0.5 Scaling parameter in bid formulation

b 1000 Preferred coefficient in bid formulation
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Chapter 7

Conclusion and Future Work

In this dissertation, we have designed and evaluated the performance of the auction

and game theory to deal with real-time task allocation in resource constrain wire-

less sensor networks. The proposed reverse auction scheme has been modeled as

an incentive compatible and incomplete information game between auctioneer and

bidders (sensor nodes). We have shown that each bidder by its non-smooth and

concave payoff function can locally calculate its best bid response using an adap-

tive algorithm. The existence and uniqueness of the Nash Equilibrium has also been

proved. We have shown that the proposed auction model meets the economically ro-

bust conditions such as truthfulness (incentive compatibility), individual rationality

and ex-post budget balance. The main objective of this scheme which is maximizing

network’s lifetime (energy balancing), considering the application deadline has been

achieved through the adaptive bidding and cost formulation. The cost formulation

used continuously adapts to changes of the availabilities of resources. This scheme

also accommodates for the node failure during task assignment via a recovery phase.

An energy and delay efficient decision making method has been obtained through

the two-phased Energy and Delay Efficient Winner Determination Protocol ED-WDP.

The proposed protocol that has the interpretation of contention-based MAC (Medium
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Access Control) protocol operates in two phases. In the first phase, elimination via

budget value, the number of players are eliminated via the budget value which is set

by auctioneer and is the value that auctioneer wills to pay for arriving task. The

consequence of this phase is to eliminate the players with low amount of available

energy levels for the rest of competition. In the second phase, waiting time reduction,

the duration of ideal listening mode as one of the important source of energy con-

sumption for the players are significantly limited. Simulation results have shown the

promising performance of the proposed schemes as well as the convergence of adap-

tive algorithms. These results have shown a fair energy balance achieved through

the adaptive bidding and cost formulation, in comparison to the well-known static

schemes. Moreover, compared to centralized WDP, by utilizing the ED-WDP among

the numerous distributed resources, the message exchange overhead, energy consump-

tion and delays for winner determination have been significantly reduced. In another

set of experiments the effect of node failure during the real-time task assignment

phase has been simulated and compared with the static recovery methods.

As part of our future work, we intend to investigate the problem of multiple

concurrent tasks allocation through the combinatorial auction scheme. This problem

potentially requires the combination or bundling of the proper resources from the set

of distributed sensor nodes in the networks. Selecting the optimal set of resources is

possibly very complex. Another problem that may arise is the winner determination

problem for parallel scheduling of simultaneous tasks to multiple sensor nodes.

To apply the proposed dynamic reverse auction scheme for relay selection in
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cooperative communication is also challenging and interesting to explore.
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