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Summary

A desirable indoor positioning system should be charazgdrby good accuracy, short
training phase, cost-effectiveness (using off-the-shatflware), and robustness in the
face of previously unobserved conditions. This dissene#iims to achieve an indoor
positioning system that accomplishes all these requirésnehirst, the current sig-
nal strength based location fingerprints regarding two -“kmetiwvn RF technologies,
namely, Wi-Fi and Bluetooth are elaborately discussed. Aslitoe explained, their
RF signal parameters have specific purposes that render tiagapropriate for consid-
eration as location fingerprints. Subsequentiglaustlocation fingerprint, th&ignal
Strength Difference (SSOy derived analytically, and then verified experimentally a
well. A simple linear regression interpolation technigaed the application ofiser
feedbackio facilitate under-trained positioning systems have &ksen investigated.
These techniques reduce the training time and effort. Téoaltseof two well-known
localization algorithms/(-Nearest Neighbor and Bayesian Inference) are presented

when the proposed ideas are implemented.
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Chapter 1

Introduction

1.1 Overview

Location awareness is expected to be an integral part ofefuthiquitous or perva-
sive wireless computing environment [1]. Pervasive or uibays computing basically
refers to the emerging trend towards numerous computingee\connected to an
increasingly ubiquitous network infrastructure [2]. T@pethe benefits of pervasive
computing, location awareness becomes obligatory for nneagons, e.g., to access
various location-based services that could be availalileré&fore, indoor location de-
termination for mobile nodes (MNsposes a significant challenge for the successful
realization of such environment.

Location determination docalizationrefers to the procedure of obtaining loca-
tion information of an MN with the help of a set of referencelas (e.g., access points
(AP<)) within a predefined space. In the literature, this logglan process can also

be seen to be termed esdiolocation[3, 4], geolocation[5], location sensing6, 7]

1This dissertation will use the term “MN” to indicate the pé®parrying devices, equipment, or
other tangibles that need to be located.

2This dissertation will primarily use the term “APs” to indie the reference nodes/points utilized
for localization.
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or position location[8], etc. A system deployed to estimate the location of aftyent
(e.g., MN) is called gositioning systenor location system An indoor positioning
system generally refers to a network infrastructure withlwuilding that helps to pro-
vide location information to any requesting end user. Tostion information can be
reported in the form of a set of coordinates, or a combinatiom floor number and a
room number, or relative to some other reference objectsitipas within the build-
ing. Note that the termiecationandpositionwill be used interchangeably throughout
this thesis.

The application of indoor location information could ranigem helping fire-
fighters to navigate through a building in an emergency sdonao the more tradi-
tional assets/objects/personnel tracking. It also esabie users to become aware of
many location-based services, e.g., sending the printtppbse nearest printer, guid-
ance services in a museum or exhibitions, targeted adweytistc. In the field of
robotics, a robot can navigate by itself with the assistaries indoor positioning sys-
tem [9]. Various smart home applications (e.g., autombyi¢arning on/off different
appliances to conserve energy depending on a user’s lagatie built upon location
information as well. These are just a few examples from a wagge of applications
that relies on indoor location information.

This chapter first presents the background of indoor logabn and identifies
some challenges associated with it. Next, the scope of #eareh, and the contribu-

tions are briefly discussed. Finally, the organization ¢f thssertation is outlined.

1.2 Background

As pointed out before, to reap the benefits of pervasive ctimgguthe knowledge
of a device’s location with some degree of accuracy is obdigaregardless of its

position (i.e., indoor or outdoor). The Global PositionBgstem (GPS) [10,11] solves
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the localization problem in outdoor environments. Howgeitezould not become the

overwhelming solution for the localization problem as a \lehaamely, because,

e GPS performs poorly in indoor environments because of i@skvgignal recep-

tion inside the buildings.

e Moreover, for small, cheap and low-power devices (e.g.s@&), it is not prac-

tical or feasible for them to be all GPS-enabled.

As a result, an alternative means is required to detect thés Midation in indoor
environments. One way is to set up an infrastructure basedfrared [12], radio
frequency (RF) [13, 14], ultra sound [13, 14], or ultra widendgUWB) [15] tech-
nologies inside a building just for localization purposeheTmeasurements obtained
from these sensors are converted into some metric suchtaseksor angle, which is
subsequently utilized by the localization algorithm tdreste the MN’s location. The
widespread availability of wireless network infrastruetwvithin homes, offices, and
campuses opened the door for another alternative solutiomdoor localization. It
allows the design of an easily deployable low-cost positigrsystem. The wireless
network interface card (NIC) which measures RF signal sttecgh be considered as
a kind of sensor device. Location information is provide@daslue-added service for
such networks that are primarily set up for data commurooati

Unlike outdoors, the indoor environment poses differeralleimges for location
determination due to the multi-path effect and building enial dependent propaga-
tion effect. Multi-path is a radio frequency phenomenonchhi the result of radio
signals traveling through multiple reflective paths fromransmitter to the receiver,
and thereby, causes fluctuations of the received signalfdiamtie, phase, and angle
of arrival [16]. As a result, the RF signal strength measurgnier wireless NIC,
and the subsequent conversion of the metric (e.g., distamgge, etc.) from it have

not yielded satisfactory outcomes for localization algoris [17]. On the contrary,
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location fingerprintingtechnique that exploits relationship between any meakrab
physical stimulus (e.g., RF signal strength) and a specifation is shown to perform
quite well [17]. This technique subsequently became vemutar for positioning
systems that utilize in-building communications infrasture (e.g., Wi-Fi, Bluetooth,
etc.) [18-24]. The deployment of such fingerprint basedtmwsng system usually
consists of two phasesaeffline training phase andnline location estimation phase.
These two phases are described briefly in the following.

During the offline phase, the location fingerprints (e.gynal strength samples)
at the selected locations of interest are collected, ynglthe so-calledadio-map[17].
In order to differentiate among various locations, thererdrea is usually covered by
a rectangular grid of points. During the online locationedetination phase, the signal
strength samples received at the APs from the MN, or viceayesdll be sent to a
central server. The server then uses some algorithm toastitme MN'’s position, and
reports it back to the MN (or the application requesting ttion information). The
most common algorithm used to estimate the location corsgh&Euclidean distance
between the online measured sample and each fingerpring iratho-map collected
offline. The coordinates associated with the fingerprinbheradio-map that yields the
smallest Euclidean distance is returned as the estimabtedfN’s position.

From the above discussion, it is apparent that a fingerpaset indoor position-

ing system faces certain challenges:

¢ Since location information is provided as a value-addediseon top of an ex-
isting network infrastructure using off-the-shelf harde/dée.g., wireless NIC),
no custom sensor is manufactured as in the case of costgstniicture-based lo-
calization discussed previously. Therefore, the posiigisystem cannot make
any assumptions on the device types carried by the consparetst should be

able to accommodate all the myriad types of devices (e ptoa PDA, mobile
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phone, etc.) that come with different hardware solutions.

e Fingerprint based positioning system is basically charastd by the exhaus-
tive offline training phase, where the positioning systemmiadstrator strenu-
ously collects the signal strength samples over the whakdiltation area. If the
deployment area is quite large, this process would engiifstant burden for
the administrators. It could even hamper the proper irstalt of a positioning

system if some areas are under-trained.

e Majority of the fingerprint based indoor positioning system the literature
utilize Wi-Fi as the underlying network infrastructure bese of its widespread
availability. The promises of other underlying prevalenteless technologies

(e.g., Bluetooth) have been overlooked mostly.

1.3 Contributions

This dissertation is primarily a study of the RF signal sttenigased location fin-
gerprints for wireless indoor positioning systems. Tradilly, the received signal
strength (RSS) has been the ultimate choice as a locationimgefor such systems.
In this dissertation, we first review all the available RF siggtrength parameters from
a positioning system’s perspective for two prevalent wessltechnologies, i.e., Wi-Fi
and Bluetooth. Note that, apart from the popular Wi-Fi, thespects of various Blue-
tooth signal strength based parameters to serve as lodamtg@nprints are investigated
too.

The devices carried by consumers of location services qrected to come with
different hardware solutions, even for the same wirelesbrielogy. As a result, a
positioning system that relies solely on absolute RSS measnts to define loca-

tion fingerprints would not perform well. Regardless of wiegth device’s signal
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strengths as perceived by the APs are used to denote theeddwication fingerprint
(i.e., AP-based approach), or the reverse approach in whelAPs’ signal strengths
as perceived by the device are used (i.e., MN-assisted agipy,osuch fingerprints
may differ significantly with the device’s hardware even enthe same wireless con-
ditions [25—29]. This can easily be observed in existingytapwireless technologies,
such as Wi-Fi or Bluetooth. The presence of power control meswireless technolo-
gies further complicates the issue [25]. In this study, aisbbocation fingerprint, the
Signal Strength Difference (SSB)derived analytically and its effectiveness is proven
experimentally as well. This particular location fingenps performance is shown
to remain relatively unaffected with different devicesrihaare variations compared
to the traditional RSS. Next, the error bound of locationnaation using the SSD
measurements is analyzed. A novel characterization ofribygepties of this bound is
presented that allows us to individually assess the imdatifferent parameters (e.g.,
number of APs, geometry of the APs, distance of the APs frarMN, etc.) on the
accuracy of location estimates.

In the literature, the exhaustive offline training phasehef fingerprint based lo-
calization techniques is generally shortened utilizirtgiipolation techniques. For ex-
ample, Liet al. [26] try to complete the radio-map database using intetjpolaof
readings taken at other training points. The study in thesightries to relieve/shorten
the exhaustive training phase in two ways. First, by explgithe spatial similar-
ity [30] of signal strength distribution, a weighted linegagression approach in order
to obtain a better fit for the interpolated training points baen investigated. Second,
the viability of a positioning system utilizing user feedkdas been envisioned. Here,
user feedbaclks defined as the information about a user’s actual positidicated by
the user to the system, either explicitly or implicitly.

There are certain assumptions which limit the scope of #sgarch. For exam-

ple, this study is limited to the investigation of stationarobile devices. No mobility
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tracking is considered. This study does not necessarilf@find an optimal localiza-
tion algorithm but some modifications to the baseline athars (e.g., the Euclidean
distance technique) have been experimented with. Althdlighstudy includes Blue-
tooth in addition to the popular Wi-Fi technology, the hybaipproaches that combine
multiple sensor technologies’ data intelligently is begdime scope of this dissertation.

The following is the summarized list of our contributions:

e Study and review all the available RF signal strength baseatilon fingerprints

for two well-known wireless technologies, i.e., Wi-Fi anduBtooth.

e Proposed a robust RF signal strength based location fingerpamely, Sig-
nal Strength Difference (SSD), and verified its effectienever the traditional
RSS as a location fingerprint both analytically and experialgnover different

MNs’ hardware variations.
e Analyzed the error bound of location estimation using th® $&asurements.

e Proposed two methods in order to shorten/relieve the exivausaining phase
typically seenin the fingerprint based positioning systemsveighted linear re-
gression based interpolation techniques exploiting théaisimilarity of signal
strength distribution, and ii) incorporating user feedbaere a user indicates

his/her actual position to the system, either explicitlyroplicitly.

e Ourideas are implemented and tested with experimentalgdstbased on both

Wi-Fi and Bluetooth wireless technologies.

1.4 Organization

In Chapter 2, a literature survey of the indoor wireless pasihg system is provided.

Chapter 3 reviews the signal strength based location fingespof two well-known
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wireless technologies, namely, Wi-Fi and Bluetooth, anaisoout their pitfalls re-
garding localization. In Chapter 4, a new robust locationdmpgint is derived analyti-
cally and its performance is tested experimentally. Chdptaralyzes the Craen-Rao
Lower Bound (CRLB) of localization using the new robust locatiimgerprint which
subsequently provides valuable insights in the positigsistem design. In Chapter 6,
two methods to shorten the exhaustive offline training plgsieally seen in the fin-
gerprint based positioning systems have been proposedllyithe conclusions and

discussions of the future work are presented in Chapter 7.



Chapter 2

Literature Review

This chapter reviews the literature on wireless indoor fpmsng systems in order
to provide a better understanding of the current reseastlessin this exciting field.
First, in Section 2.1, a broad classification of the curredbor positioning systems is
provided with some related examples for each. The desonii some localization
algorithms which are fundamental parts for accurate looatistimation together with

the examples of positioning systems that utilize them, apgpm Section 2.2.

2.1 Taxonomy of Indoor Positioning Systems

The current research efforts for indoor positioning systeam largely be divided into

two main categories:

e Those that make use of angle of arrival (AoA), time of arrig@A), and time
difference of arrival (TDoA) methodologies. This family lafcalization tech-
niques relies on specialized hardware (e.g., RF tags, altraksor infrared re-
ceivers, etc.) and extensive deployment of dedicatedstrfreture solely for

localization purpose [12-14, 31].

e Those that utilize the correlation between easily measeirsignal characteris-
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tics (e.g., RSS) and location. These location fingerpringimigtions try to build
a positioning system on top of existing infrastructure (eVgi-Fi or Bluetooth

networks) [17,18, 20, 32] in a cost-effective way.

Comprehensive surveys of the infrastructure-based positicsystems (i.e., the
first category above) can be found in [5, 6]. Therefore, natien delving into minute
details of each of the forerunners of these types of syst@sg)set of them is reviewed

as examples in the following:

e Active Badge [12] is one of the pioneers for infrastructuesdd indoor posi-
tioning systems. In this system, a small infrared (IR) badge/arn by each
personnel to be tracked which emits a globally unique idfientevery ten sec-
onds. The network of sensors placed around the buildingtégteand reports to
the location server. By inspecting which badge is seen bylwitiom’s sensor, it
is possible to determine the location of a particular basige/ner. Since light is

blocked by walls, IR location system has a relatively higbimelevel accuracy.

e Active Bat[13] improves over the room-level accuracy preddby Active Badge
by using both RF and ultra-sound technologies. An array dingemounted
ultra-sound receivers is deployed where the receivers@reected to the cen-
tralized positioning server via a wired network. The cditea controller sends
out an RF request packet for the mobile “Bats”, and simultaskypsends a re-
set signal to the ceiling-mounted receivers. The receivaiculate the distance
measurement starting from the time they receive the regeakio the time they
receive ultra-sound response pulse from the mobile “Battli emmputes the
Bat'’s position by using multilateration (the localizatidgarithms are discussed

in the next section). The system is shown to haieen average accuracy.

e PinPoint’s 3D-iD positioning system [33] is an indoor RF-&dscommercial

product. A tag’s location is determined by continuouslydatcasting a signal

10
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from an array of antennas at known cells’ positions. When adagives a sig-
nal, it will immediately retransmit the message by shiftingo another radio
frequency and encoding it with its own ID. The system coigraheasures mul-
tiple distances from the array of antennas using RF roupdtine and performs
multilateration to estimate the location. The system h3@ma range and offers
1 m to 3 m accuracy. It requires several transmitter cells per mglénd has

expensive hardware.

e Ubisense [15] offers commercial solutions for locationntiiécation and track-
ing using UWB technologies. UWB has good multi-path resotutibaracteris-
tics and obstacle penetration capability inside a room,paoed to the other ex-
isting transmission media (e.g., IR or ultra-sound). UhseeUWB positioning
system requires fixed sensor infrastructure (i.e., netashtknits placed around
the building) together with the tags carried by people adhtéd to the objects
to be tracked. It measures both AoA and TDoA information eftdg’s signals,
enabling it to generate accurate 3D tracking informatioanewhen only two
sensors can detect the tag. It is argued to offer accuratyeirainge ofl5 cm in

3D.

The main drawback of infrastructure-based positionindgesys is the cost of in-
frastructure installation and the custom sensor badgesgyst which becomes signif-
icant for a large building with a lot personnel/objects toldeated. Moreover, there
are some technology specific shortcomings, e.g., the edrar ultra-sound sensing
signals cannot penetrate the walls and floors which are canimsade most buildings.

The second category of the positioning systems which ardaigteon top of any
existing wireless infrastructure (e.g., Wi-Fi, Bluetoogig.) can save the cost of ded-
icated infrastructure. Moreover, it utilizes RF signals ethpenetrate most of the

indoor materials resulting in a larger range. The most comionoation fingerprint
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2.1 Taxonomy of Indoor Positioning Systems

RSS can be measured by the off-the-shelf hardware (e.g.lessr&lIC). Therefore,
Laptops, PDAs, and other handhelds with built-in RF suppex.( Wi-Fi or Blue-
tooth) can be provided with location information withouetheed of any custom tag
or badge. A subset of the forerunners of such indoor positgpgystems is discussed

as examples in the following:

e Place Lab [34] is a radio beacon-based approach to locdtiahgan overcome
the lack of ubiquity and high-cost found in the infrastruettnased location sens-
ing approaches. The Place Lab approach is to allow commbdrityware clients
like laptops, PDAs and cell phones to locate themselvesdbgriing for radio
beacons such as Wi-Fi APs, GSM cell phone towers, and fixedtditle de-
vices that already exist in the environment. These beadbhsae unique or
semi-unique IDs, e.g., a MAC address. Clients compute thveir location by
hearing one or more IDs, looking up the associated beacas#igns in a lo-
cally cached map, and estimating their own position refedrio the beacons’
positions. Place Lab has a critical dependence on the biuailaof beacon lo-
cations; if Place Lab knows nothing about a beacon, beingmye does not
improve the location estimates. Theacon databasglays an important role of
serving this beacon location information to client deviddany of these beacon
databases come from institutions that own a large numbeirefass network-
ing beacons. Other sources of Place Lab mapping data arareedatabases
produced by the war-driving community [35]. Their list ofdm®n database can

be found in [36].

e Location fingerprinting which was discussed in Section B&ame popular with
RADAR [17] mainly because of the unavailability of appropeiaadio signal
propagation models for indoor environments. It also opeghedioor for many

different approaches to be applied for indoor localizagowablem. RADAR
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2.1 Taxonomy of Indoor Positioning Systems

ties the average RSSs observed from the APs to a particulaiidaowhich is
termed as their location fingerprint. It found the user dagon and human
being’s movement inside the building to create random flttbas of radio sig-
nals inside the building. Some other factors, e.g., tentperaair movement,
and interference from other devices operating in the sasguéncy, were also
seen to cause the RSS to vary at a particular location over[8ifje RADAR
uses simplistic pattern matching algorithm (ekg-Nearest Neighbor) to find the
ultimate location estimate. Details &f-Nearest NeighborA(NN) for location

estimation are discussed in Section 2.2.5.

¢ Nibble [18] is one of the first systems to use a probabilispipraach for loca-
tion estimation. Instead of being a deterministic constahie of average RSS
vector, the location fingerprint becomes a conditional plolity distribution of
the observation vector of RSS and the location informatidresk distributions
of the location fingerprints are either maintained via hgséon [9, 18, 20, 29] or
parametric estimation (e.g., normal distribution) [26,20]. With this form of
location fingerprint, the Bayes’ rule can be used to estintetddcation. Details

of Bayesian algorithms for location estimation are discdssesection 2.2.6.

e Ekahau [22] is a commercial product which provides positigrsupport for Wi-
Fi only. In addition to their custom Wi-Fi tags, they also papg a few off-the-
shelf NICs. To date, Ekahau’s positioning engine softwaaems to be the most
accurate location system based on probabilistic modelaattion fingerprinting
techniques; they claim a one-meter average accuracy witbraaffline training

period [22].

e Skyhook [38] provides XPS, a hybrid positioning systemjrigkadvantage of
the relative strengths of several location technologies.,, &Vi-Fi Positioning

System (WPS), GPS, cellular tower triangulation. XPS is &soe-only lo-
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cation platform that can quickly determine the location oy &Vi-Fi enabled
MN with an accuracy of 10 to 20 m. The MN running an XPS clientems
raw location data from the Wi-Fi APs, cellular towers and Giagellites that
continuously broadcast signals. This information is themt $o the XPS server
which subsequently estimates the MN’s location and rettivadocation infor-
mation back to it. Skyhook’s Wi-Fi and cellular databaserguably the largest
and most extensive in the world. They claim to have scanned/esingle street
in major metro areas worldwide, collecting Wi-Fi APs andwal tower IDs.
Skyhook’s strength lies in the fact that they target to pileviocation services
to a user in both indoor and outdoor scenarios using multgdkenologies (e.qg.,

GPS, Wi-Fi, etc.).

2.2 Localization Algorithms

In this section, the localization algorithms which form tbere all the localization

schemes classified above are elaborately discussed. Trsmngé previous works
[7, 39, 40] roughly touches upon the various localizatiorpositioning techniques,
they do not relate them to the existing protocols. Hightoaredt Borriello [6] provide

a taxonomy of existing positioning systems and try to coraplaem regarding various
performance metrics pertaining to any positioning syst&mce location fingerprint-
ing literature was not matured at that point, only RADAR [17}lmat genre could be
found in their survey. This section elaborately discuskespositioning methodolo-
gies, and also shows how the existing localization schemekifling various location

fingerprinting solutions) adopt them.
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2.2.1 Triangulation

Triangulation is one of the basic location estimation mdghoased in this field. From
GPS to even recent schemes [14, 17, 41-43] make use of simpheejric properties
to infer location estimates. Triangulation, in its simplEsm, uses the distances (lat-
eration) or angles (angulation) from some reference pointsrrectly infer the node’s
current location. Basically, three approaches to calcula€'spatial separation” be-
tween a reference point and the concerned node are poputese Iiterature: i) Time
of Arrival (ToA) / Time Difference of Arrival (TDoA), ii) Ande of Arrival (AoA), and

iii) Propagation Models. They are all elaborately discdssethe following.

2.2.1.1 A.Time of Arrival (ToA) / Time Difference of Arrival (TDoA)

In localization literature, both ToA and TDoA are used swrpously, though there
is a subtle difference between them. ToA denotes the timgsethfor a signal to
travel from/to a reference point to/from the node. It regsithe node’s clock to be
synchronized with that of the reference point in order teiirgxact “time of flight” of
the signal. On the contrary, TDoA works by measuring diffieess in arrival times of
a signal from a node at different reference points.

ToA is used in GPS technology to deduce the distances from saRdlites. In
order to measure the “time of flight” of the signals from s, the receiver clock has
to be synchronized with satellite clocks. Practicallysitifficult to achieve, therefore,
the receiver clock attributes a bias to the distance estifnatn each satellite. Since all
GPS satellite clocks are synchronized themselves, thevezd®as is the same for all
satellite clocks. Consequently, (if, y, z) is the receiver’s coordinate ardy, yx, zx)
denotes thé™ satellite’s coordinate, the distance estimate fromifheatellite can be

written as,

dy — b= /(& —2)? + (y — 90)? + (2 — 21)? (2.1)
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(X1 ’ yl) % Approximate Distance Measures
&
%)

Figure 2.1: Location estimate in 2D for ideal case using ien.

Here,b is the receiver bias component which is the same for eacHi®atdoA esti-
mates are always greater (never smaller) than true ToA sdlaeause of multi-path
and other impairments. So the bias actually subtracted from the calculated distance
estimated,, in (2.1). There are four unknowns (i.e,y, z, andb) in (2.1), therefore a
receiver requires at least four satellites in view to intsidacation {, y, z).

Fig. 2.1 shows the most common way to infer a node’s locatiocedhe dis-
tance approximations are made. Consideringifheeference point as center, we get

a system of circle equations of the following form,

(x—xp)’+ (y—w) =di, k=123 (2.2)

Subtracting the circle equations from each other, we getguariratic equations with
only two unknowns (i.e.x, y) and solving them to get the final location estimate is

trivial.

PR R R At e
y dy — di + x5 — 23 + Y5 — y3
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where matrix)/ is denoted by,

M — 2(5102 —z1) 2(y2 — yl)

2($3 —13) 2(y3 — ?J2)
Note that, (2.2) is similar to (2.1) in 2D apart from the reegibias.
In TDOA approach, differences of ToAs are used rather thaolake time mea-
surement. Since the measured difference of distancedddalbg the signal from two
reference points is constant for a node, the locus of it carabslated into a hyperbola

with the reference points at the foci.

dkl:dk—dl:UX(Tk—ﬂ), and

dy =V (x —21)2+ (y —ye)2 — V(& — 2)2 + (y — 0)2 (2.3)

whereuw is the signal’s speed and}, — 7;) denotes the time difference of the signal’s
arrival between reference poirtsand/. Equation (2.3) gives the locus of a node with
foci at reference points andi. The intersection of such hyperbolas with two or more
pairs of reference points provides the estimated locatidgheonode [44].

Cricket [14] is a different example of TDoA discussed aboveckat positioning
system works by measuring the time difference of arrivaeen RF and ultrasound
pulses at the receiver sent concurrently frotmeacon(i.e., reference point). The RF
pulse basically works as a synchronizing signal betweebé¢heorand the receiver in
Cricket. Sound pulses travél3.4 m/s in20°C air, whereas, light pulses have velocity
299,792,458 m/s [45]. When a Cricket receiver receives the first bit of an RIEgu
sent from abeacon it starts calculating the time until it receives the ultasd pulse
from the saméeacon Suppose, our node ismeters away from &eacon Then,

theoretically, the node would receive RF and ultrasoundgsufsom it after17 and
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14560280 nanoseconds, respectively. So, in this case, the thealrdigtance estima-
tion of Cricket would be343.4 x (14560280 — 17) x 10~? or 4.9999942 meters, which
is equal to the actual separation betweenabaconand the node.

“Time of flight” measurement is the most accurate compar¢ddgmther distance
estimation methods, although, there are challenges ira@pgathe main signal’s ar-

rival time from its reflections [13, 14].

2.2.1.2 Angle of Arrival (AoA)

Based on the properties of some receiving antennae (e.geplatenna array), the
originating signal’'s angle can be inferred. Solving lineguations of the formy —

yr = my X (z — x,) wherek > 2, gives the ultimate estimate of the node’s position
(z,y) in 2D [46]. Here,(x;, 3, ) denotes the coordinates of thE reference point, and
my, specifies the slope of the line joining the node anditAeeference point which is
deducible from the arrival angle of the emitted signal (Rg(a)). Note that, angles
from only two reference points:(= 2) are enough to solve the linear equations in
order to find a unique location estimate.

Fig. 2.2(b) helps to geometrically derive the location restie quantity for the
same scenario where it is actually converted into a latarairoblem. From the angle
of arrival information, the angle at point of Fig. 2.2(b) could be comprehended, i.e.,
LACB = ZAoA;— ZAoA,. We know from circle properties that, the angle subtended
by AB at its center is twice the angle subtended by it at point.e., ZAOB =
2/ACB. Now, applying cosine law ilMO A B, radiusr of the circumscribing circle
can be obtained as,

r?+r? — AB?

/AOB =
CoS O 53

The other two angle ABC & ZCAB can be comprehended with the additional
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known length

AoA,

C

(a) The coordinates of the reference points (b) Equivalent figure of 2.2(a): A & B denote
{i.e.,, X1,Y1) & (X2,Y3)} are known — so the positions of the reference points and C
are the emitted signals’ angles from them denotes the node’s position£AC B can be
(i.e.,ZAoA; & LA0A,). inferred fromZAoA; & ZAoAs.

Figure 2.2: Location estimate using angle information in(8i2 originating signals’
angles are represented w.r.t. magnetic north).

information of thebearings[47] of the reference points to each other. Since the co-
ordinates of the reference points are known, tHesgringsare not hard to calculate.
Then similar application of the circle property and cosee for AOAC andAOBC'
respectively, yield the distance measuremén@ndd, from the two reference points.
To unambiguously infer a node’s location, distance estsfitom three or more ref-

erence points are usually required as previously explained

2.2.1.3 Propagation Models

The emitted radio signal strength from the reference poatrehses with distance.
Based on various propagation models [16], we can deduce tedveel signal at a
given distance. For example, considering free-space gedjmn model, a radio signal
attenuates by /d* when it reaches a node at a distan¢eSo, if we know the trans-
mitted power of the original radio signal, we could find thea®ed signal strength

using the path-loss equation of the free-space propagataitel [16]. Conversely, if
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we can measure the received signal strength at a node wikinouwtledge about its
distance from the source, we may subsequently infer thardistby making use of
the same model. Finding the appropriate propagation medaethallenge, especially
in indoor environments, because, RF signal suffers fromirpath effect, refraction,
and reflection from objects with different properties whagtuse the attenuation of the
signal to correlate poorly with distance. To combat thisr@menon, some works try
to derive propagation models pertaining only to a specifittoor environment. For
example, SpotON's [41] indoor propagation model is engibeElsed on empirical data.
Nonetheless, RADAR [17] came up with Wall Attenuation Fa¢WAF) model based
on the number of obstacles (e.g., walls) separating thermdter and receiver. They
approximated the value of WAF parameter by conducting exparts measuring sig-
nal strength between transmitter and receiver when theylihaebf-sight and also,
while they were separated by walls. Unfortunately, RADAR'sga&gation model did
not perform as accurate as their empirical method.

Apart from these three basic techniques to deduce the destaetween a ref-
erence point and the node to be located, other approachesxtt. For example,
DV-Hop [42], Amorphous [43] and Self-Configurable [48] loealtion are proposed
mainly for ad-hoc networks to provide coarse-level grantylaand they use number

of hops to reach a node as an indication of its distance away fine reference points.

2.2.2 Proximity to a Reference Point

The family of coarse-grained localization schemes try timeste locations of the
nodes on a broader scale. Instead of trying to make neagqiez$timate of distance
from a reference point, these schemes may infer the node ¢olloeated with a ref-

erence point, if the node hears beacons from it. In genevatse-grained localization

schemes try to measure a node’s closeness to a referendeop&imown position.
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Reference Poinf

Reference Poinj

Reference Poing

Figure 2.3: The node’s estimated position resides insideslttaded region rather than
yielding a unique intersection point.

When more than one reference point reports the node to be invibaity, some
simple computationally inexpensive techniques (e.g. ©ah{#9], APIT [50]) are

utilized to infer the location:

e The Centroid scheme [49] definescannectivitymetric which indicates the
closeness of a node to a particular reference point. Durgagtain time interval,
all the reference points send a predefined number of beadtreonnectivity
metric is defined as the number of beacons received by thefnaaea partic-
ular reference point to the number of beacons sent by it duitime interval.
The final location estimate is the centroid of all the refeeepoints for which,

the connectivitymetric is above a certain threshold.

e Approximate point-in-triangulation or APIT [50] takes ti@entroid scheme a
step further and gives center of gravity of the overlappirgpa created by tri-
angles (triangle vertices are reference points) as the’siaftemate position.

Only those triangles where the node is supposed to be insedeamsidered.
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Though APIT tries to improve on the overall localizationagrrit suffers from
InToOutError (i.e. the node is inside a triangle but the ARt shows other-
wise) and OutTolnError (i.e. the node mistakenly assumbes toside a triangle)

which affects its performance.

In short, these techniques incur less complexity in botmttaes and the infras-
tructure accommodating them, at the expense of largeriiatan error. Sometimes,
a node may not be detectable by three or more reference poithts reporting stations
may be collinear. So the fine-grained distance approximatiethods (e.g., triangula-
tion) may not apply. In these cases, the systems using priyxiechniques can at least
provide some coarser approximations. For example, Cridddtrjeceiver basically
uses lateration to infer its position. It requires the reeeio hear announcements from
four beaconsor reference points (not three) to correctly deduce itstjpwsi Speed of
sound comprises the fourth unknown there, as it varies \emhperature, humidity,
etc. [51]. Once the receiver fails to receive announcenfents four beaconsCricket
reverts back to proximity measures and gives the centrottiefeceivingbeacons’

coordinates as its own position.

2.2.3 Gradient Descent Method

Sometimes geometric interpretation to calculate intéiseof circles as discussed in
2.2.1 does not provide a unigue solution (see Fig. 2.3) [B]s Thay result due to the
distance approximation errors incurred while using TOAORD AOA or propagation

models. A more robust algorithm like the gradient descept@gch, can eliminate this
shortcoming. From Eqg. (2.2), the performance measurenu@istibn considering the

k™ reference point can be obtained as,

(X)) = di— (w—z)? + (y — yn)?
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= dm—7) = V(k— 1)+ (e —y)?

wherec is the speed of light, and the node’s transmitted sequertceat is received
by thek™ reference point at time,. There can be many types of objective functions,

but, for simplicity, let us consider the following objeaifunction to be minimized [4],

F(X) = Y [(X)

K
k=1

whereK is the number of reference points aNd = (z,y, 7). Successive location
estimates are updated according to the following formula,
Xip1 = Xi —nvx F(Xi) (2.4)

wheren is a small constant, used to maintain stability in searchofarmal X by
ensuring that, the operating point does not move too fargtloa performance surface.
X; specifies the" estimate andy yx F(X;) denotes the gradient of the performance

surface at'" iteration which is defined as,

VxF(Xi) = vxF(X)

K

5 fe(Xi) X (2 — 24)

1 \/(xk — )% + (yr — ¥i)?
R X (g — )
1 V(e — )% + (g — vi)?

—2¢ > fulX5)

= | 2
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The recursion in (2.4) continues untih 7 x F(X;)|| < ¢, wheree is a predefined

maximum permissible error.

2.2.4 Smallest Vertex Polygon

Smallest Vertex Polygon (SVP) [21,52] is a simple algoritiormfer location estimate
for fingerprint based positioning systems. During a runtsigmal measurement, if a
number of locations w.r.t. a reference point’s offline tnagndatabase seem likely ac-
cording to thébracketingheuristic [52], then all such locations constitute the cdais
set regarding that particular reference point. Subseguamumber of distinct vertex
polygons are formed where each vertex is from a differemregice point’s candidate
set. Suppose, the search for candidate set resulis potential locations for each of
the K reference points. So, a total df distinct vertex polygons are realized. Among
them, SVP is the one having shortest perimeter and its adrdemotes the final loca-
tion estimate. The idea behind such an algorithm was to alé&ir contribution from

all the reference points.

2.2.5 Nearest Neighbor in Signal Space

Nearest Neighbor (NN) algorithm is first utilized in RADAR [[Li6 tackle the local-
ization problem, and subsequently being used by other wetisg on signal pattern
matching techniques ( [21], [52], [27], etc.). This algbnit returns the location entry
from the location fingerprint database which has the sntalbes mean square error in
signal space with the given runtime measurement at the uwrkiacation. KC-nearest
neighbor {C-NN) is a variant of the basic nearest neighbor algorithmre&location
entries are searched instead of returning only the besthmatee final location esti-
mate is obtained by averaging the coordinates okitecations found. The value &t

has usually been chosen empirically in the literature. RADBAEXperimental results
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show that/C-averaging has some benefit over the basic nearest neiglglooittam for
smallerkC’s, but for largelC, their accuracy degrades rapidly as points irrelevanteo th

true location are also included in the averaging.

2.2.6 Probabilistic Methods

The probabilistic approach models the location fingerpsiitth conditional probabili-
ties and utilizes the Bayesian inference concept to estiloaesgion [18, 20, 22, 26, 27,
53]. It does not follow the deterministic approach to repregghe location fingerprints
as a vector of mean RSSs like the nearest neighbor algoritbensied above. Conse-
guently, the location fingerprint becomes a conditionabpinlity distribution of the
form Pr(O|L) whereO denotes the observation vector of RSS at locatiofor each
location,! € L, we can estimate the likelihood functid?-(O|L;) from an offline
training set consisting of samples of location fingerprotiserved at that position. In
localization literature, there are generally two methamsépresenting the likelihood

function: i) the parametric approximation and ii) the hggam approach.

e Rooset al.[53] suggested a kernel method to approximate the probabdénsity
function of the RSS from an AP at a particular location. Howgtlee most
popular parametric estimation is the Gaussian model ase&aedn from many

existing works (e.qg., [26,27,30]):

1

PY’(Ok’Ll) = O_kl\/%

exp {(z — uw)?/207,},

wherey,; ando,; denote the mean and standard deviation of RSS fror‘thheP
at location/ € L. These parameters can be obtained from the offline radio-map
database. The rationale behind choosing such Gaussian appieximation is

usually vindicated through experimental findings [26, 21, 3
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e The histogram representation [9, 18, 20] is essentially edfset of bins where
each bin holds the frequency of occurrence of RSS samplegatisatvithin the
range of that particular bin. The bin’s range is calculatennf an adjustable
number of bins and the known values of minimum and maximum R&$&:s.
The larger the number of bins, the better the histogram cg@noapnate the

probability density function of RSS.

A slightly more sophisticated way to determife(O| L) is presented in [9] where
two different conditional probabilities are calculatedrfrtwo different histogram rep-
resentations and are multiplied together. The first comaliti probability represents
the frequency count of a particular access point’s coltestemples given a locatiain
In other words, this probability indicates how often theteys visualizes the partic-
ular access point at that location. The second conditior@gbility represents the
distribution of RSS from that access point given the samdilmta

According to Bayes rule, a posterior distribution of eachatamn/ € L can be

formed as the following,

PT(O‘L[)P(L[) o PT(O|LZ)P7’(L1)

Prili|0) = Pr(0) S Pr(O|L,)Pr(Ly,)

(2.5)

where| L] is the total number of discrete locations afd(L;) denotes the prior proba-
bility of being at location/,; which can be set as a uniform distribution, assuming every
location is equally likely. As the denominatdf':!  Pr(O|L,,)Pr(L,,) does not de-
pend upon the location variableit can be safely treated as a normalizing constant
whenever only relative probabilities or probability ratiare required. Upon observing

a particular fingerprint (e.g()*), the position(x, y) of the MN can subsequently be

calculated asy = Y"1 2, - Pr(L,|O*) andy = 21 4, - Pr(L,|0%).
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In general, upon observing a particular fingerprint (¢.j), Bayes decision rule

will select positionL,, over positionZ,, using (2.5) when:

Pr(L,,|0*) > Pr(L,|O")

= Pr(O*|Ln)P(Ly) > Pr(O*|L,)P(Ly). (2.6)

Upon the assumption of uniform distribution B%(L;)’s, (2.6) can further be simpli-
fied asPr(O*|L,,) > Pr(O*|L,) which comprises of the likelihood conditional prob-
abilities only. Maximum Likelihood Estimate (MLE) choostse locationZ; which

obtains the maximum value of the posterior probability:
L} = argmaxPr(L;|O").
L,

Since probabilistic models incorporate additional infatiron compared to the deter-
ministic representation of location distribution, they axpected to provide better
performance on location estimation. However, locatiortesys utilizing probabilistic
models usually require a large training set in order to magtnditional probabilities

appropriately.

2.2.7 Neural Networks

Neural Network methods were introduced in localizationbpeon with the view that
RSS fingerprints are too complex to be analyzed mathematiatl may require sub-
tle non-linear discriminant functions for classificatiddattiti et al.[24] utilized multi-
layer perceptron (MLP) neural network [54] in solving thelaor localization prob-
lem. They noticed slow convergence period of their neurtaek during the offline
training phase and also emphasized on the need for a laigengraet to train the

neural network properly. The problems of over-training gerfitting also accom-
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pany these types of classification algorithms [54]. Sinaertbural networks avoid
characterization of the statistics of the location fingegr they rarely provide any
insight information on the underlying mechanism of indoositioning system. The
performance of such algorithms is found to be almost simdahe simplistic pattern

matching techniques (e.gC-NN) in localization literature [24].

2.2.8 Support Vector Machines

The support vector machines (SVMs) algorithm has its rostatistical learning the-
ory introduced by Vapnik [55]. The strength of SVMs lies ia #bility to be trained
correctly through a relatively small training set and dregasufficient structure for data
classification without memorizing or over fitting the traigisamples [23].

Here, the SVMs algorithm is described briefly without divalginto mathemat-
ical details. Avid readers may consult [56] for an excellera@thematical description
of the technique. In order to apply SVMs into the localizatproblem, first, the vec-
tors of location fingerprints are mapped into a higher dinered space called feature
space by using &ernelfunction to perform the vector transformation [23]. Subse-
guently, the SVMs algorithm creates an optimal separatypgetplane or decision
surface in that feature space and uses the hyperplane trpecfassification. The
separating hyperplane is not unique in general, and is aptivhen it has the largest
possible distance from the closest training point or a makmmargin. A hyperplane is
any codimension-1 vector subspace of a vector space, oraguily, a hyperplan&
in a vector spac&’ is any subspace such tHat/1 is one-dimensional. However, the
application of SVMs did not improve the localization perfance compared to other
techniques (e.gXC-NN) [23]. Also, from the theoretical modeling perspectiviee
SVMs may be too complex to provide useful information intsidaing a positioning

system.
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2.3 Summary and Conclusions

Indoor localization techniques that are built on top of athg existing network infras-
tructure have gained popularity because of their ubiquity eost-effectiveness com-
pared to other infrastructure-based positioning systefhese systems generally use
location fingerprinting techniques that utilize the coaiteln between a location and
its signature (e.g., RSS), and apply mostly pattern matciecigniques. The unavail-
ability of appropriate radio propagation model inside théding made them unable to
apply the localization algorithms (e.g., lateration) coomty seen in the infrastructure-
based systems. Consequently, the reported accuracy of gegimting techniques
falls short of their counterparts. However, finer accuraayrily one of the many char-
acteristics of a positioning system that are expected to & tis generally agreed
that a desirable indoor positioning system should be cheniaed by good accuracy,
short training phase, cost-effectiveness (preferablggusif-the-shelf hardware), and
robustness, in the face of previously unobserved conditidhis work herein aims to
achieve a positioning system that accomplishes all thegeresments.

Since one of our goal is to desigrcast-effectivgositioning system, we opt for
fingerprinting techniques that utilize the existing netwnfrastructure, and use off-
the-shelf hardware (e.g., laptops, PDAs, phones, etcliedaby the users that have
built-in wireless technologies. Due to the widespreadlafedity of Wi-Fi and Blue-
tooth in such devices, we select these two as our underlgicignblogies to provide
positioning service. The majority of the fingerprintinghi@cues in the literature that
are based on Wi-Fi, make use of the basic RF-based signag#irparameter (i.e.,
RSS) as a location fingerprint; although other signal sttepgtameters (e.g., Signal-
to-noise ratio (SNR)) are also available. A comparativeystfduch RF-based signal
strength parameters of Wi-Fi is required from a positiorsygtem’s point of view.

Only a few works in the localization literature have divudgeto Bluetooth based posi-

29



2.3 Summary and Conclusions

tioning systems. There is clearly a need for a comprehessingy of Bluetooth signal
strength parameters from a positioning system’s perspeati well. The shortcoming
of the popular RSS location fingerprint has been apparentstiey literature [25—-29]
across different hardware solutions for the same wiretagsiology. This limits RSS’s
usage as location fingerprint if the positioning system ameccommodate heteroge-
neous hardware solutions (e.g., laptops, PDAs, phoneg, €fbis study addresses
this issue and subsequently, proposeewalocation fingerprint which is shown to be
robustacross different hardware solutions. This dissertatisn proposes two differ-
ent approaches in order shhortenthe exhaustive training phase typically seen in the
fingerprint based positioning systems.

The major performance metric usually seen in the locabrditerature is the po-
sitioning accuracy which is a form of error measuremeftcuracyof the location
information is reported as an error distance between thmatsd location and the
MN’s actual location. However, some works also report the@eatage of successful
location detection within a particular accuracy which isrted agprecision In short,
the term “accuracy” generally indicates the grain size efltdtation information pro-
vided, while the term “precision” specifies how often we axpexted to attain that
accuracy [6]. For example, if a location system can detegrpwsitions within 3 me-
ters for about 90 percent of the measurements, that patisystem qualifies to be
90% precise in providing 3-meter accuracy. The positiorspgtems which deploy
dedicated infrastructure just for positioning serviceg, able to provide centimeter-
level accuracy. For example, the accuracy and precisionabivé\ Bat positioning
system is quite impressive @tm for95% of locations [13]. Depending on the testbed
environment and how the offline training phase is condudtesl accuracies offered
by the systems which are overlaid on top of existing infiagtire are noticed to have
varied slightly. An average accuracy in the range b 3 m is generally reported in

most localization literature for such systems [20, 24, 3], 90 date, Ekahau’s po-
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sitioning engine software [22] claims to be the most aceulatation system based
on probabilistic model for location fingerprinting techaés; they claim a one-meter
average accuracy with a short training period. Howeverhgka claim of one-meter
average accuracy draw mixed reactions from the researcimooity who performed
tests with their software (e.qg., [21]).

Our research limits the scope of the localization algorghtmtwo well-known
techniques, namely, the nearest neighbor and Bayesiaremnder This is in accor-
dance with the view that our ideas are quite generic and cg@ndakictive irrespective
of the choice of algorithms. Moreover, the other complexoatgms, e.g., neural
networks and support vector machines, do not provide félenesults compared to
the simplistic pattern matching algorithms (e -NN) [23]. Both neural networks
and SVMs are non-parametric classifiers [57] that do notraesany knowledge of
the distributions of the location fingerprints. As a resthiy basically cannot pro-
vide insight on how to improve the positioning systems belitre complexity of their

generic learning machines.
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Chapter 3

Review of Location Fingerprints

In this chapter, we investigate the properties of the sigir@ngth based parameters
for two well-known RF technologies, namely, Wi-Fi and BludtaoThis analysis is
required to understand the underlying features of locatiependent signal strength
parameters’ patterns. As we will explain, the available Rfaai strength parameters
of Wi-Fi and Bluetooth have specific usage according to their eespective technolo-
gies, which may render them inappropriate for considenad® location fingerprints.
For Wi-Fi, there has been extensive study regarding itsssggrength parameters (e.g.,
RSS). However, such knowledge is generally aimed towardsmontations capabil-
ity [58,59] or receiver design [60]. An understanding of signal strength parameters
for location fingerprinting in order to improve the desigmpokitioning systems is still
lacking.

A comprehensive study of Bluetooth signal strength pararadétem a position-
ing system’s perspective is missing as well. Very few worksehactually contem-
plated a Bluetooth positioning system (e.g., [61, 62]). #wsng systems that are
solely based on Bluetooth however reported coarse accuragyynbecause of the
choice of an inappropriate signal strength parameter agitotfingerprint. To the

best of our knowledge, no work has delved into inspectingirnitrécacies related to
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Figure 3.1: Our first experimental testbed — the trainingatomns which we use as
training data are marked as shaded circles.

choosing an appropriate location fingerprint in detail fonéboth.

Before illustrating the existing RF signal strength paramseteitfalls regarding
localization for both Wi-Fi and Bluetooth, we first describer @xperimental setup.
We have three experimental testbeds where one is locatel iasecture theater, and
the other two are set up within two different research latmoi@s of our university
campus. The rationale behind choosing a few testbeds wasutate different prac-
tical scenarios. Next, we elaborately describe all our messent setups where the

experiments are conducted.

3.1 Measurement Setup

As mentioned previously, we have three different experialdastbeds:

e The first is a Wi-Fi and Bluetooth testbed located inside aulectheater of our

university campus which is shown in Fig. 3.1. We shall reethis testbed as
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Figure 3.2: Our second experimental testbed — all the trgilications are marked as
shaded circles.

“Testbed 1" throughout the thesis. In this testbed, we haexfour Aopen
MP945 Mini PCs to serve as our APs which are placed near thag=ilThe lo-
cations of these APs are marked as stars in Fig. 3.1. Each MB®&#corporated
with Ranger’'s BT-2100 Class 1 Bluetooth adapter which scans foetBbth
packets and is also installed with Aopen WN2302A mini-PCI WLAMpter
in order to passively detect Wi-Fi devices. Each Mini PC orig\eonnected to
our university’s intranet for communicating with the serlag means of a wired
LAN connection. All our mini PCs ran the latest (at the time gperiment)
openSUSE Linux distribution with the latest libpcap libesr [63] and BlueZ

protocol stack [64].

e The second (“Testbed 2”) is solely a Bluetooth testbed |latai¢hin a research
laboratory of our university campus which is shown in Fig2.3.Similar to
Testbed 1, we have used the Aopen MP945 mini PCs incorporatietRanger’s

BT-2100 Class 1 adapter to serve as our APs. The locations sé thEs are
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Figure 3.3: Our third experimental testbed — all the tragnimcations are marked as
shaded circles.

marked as stars in Fig. 3.2.

e The third ("Testbed 3”) is a Wi-Fi testbed which is locatedide another re-
search laboratory of our university campus (see Fig. 3.®arAfrom the Cisco
APs which provide wireless connectivity in that buildinge Wmave also used
Linksys WRT54G router and Ekahau T201 tags to serve as our Biflie the
previous two testbeds where the signal strengths are §cimeasured at the AP

side, here, MN will be responsible for that operation.

The various Wi-Fi and Bluetooth devices which are used as AfsSMINS in
our testbeds are listed in Table 3.1. Note that, our first @stbieds emulate theP-
basedpositioning system where the signal strengths are actoadigsured at the AP
side, whereas the third testbed followsMN-assistecapproach where the MN itself

retrieves the signal strength information.

35



3.1 Measurement Setup

Table 3.1: The list of Wi-Fi and Bluetooth devices used as MN AR in our experi-
mental testbeds

Technology| MN Devices AP Devices

I Intel PRO/Wireless 3945ABG
Wi-F Aopen WN2302A
. Samsung SWL-2455 open WN230

Testbed 1
Ranger’'s BT-2100 (Class 1)

HP iPAQ 6315 PDA (Class 2)
Ranger’s BT-2100

Billionton’s USBBTO02-B (Class 2
Acer n300 PDA (Class 2)
Motorola V3xx Phone (Class 2)

Bluetooth Ranger’'s BT-2100

Testbed 2 Bluetooth Ranger’s BT-2100

Intel PRO/MWireless 2200BG | onveys WRTS4G

Testbed 3 Wi-Fi Cisco Aironet 1200
Atheros AR242x 802.11abg Ekahau T201 Tag

3.1.1 Data Collection Procedure

In our three testbeds, there are 106, 337 and 466 trainimgpor grids, respectively.
The training process involves placing the mobile deviceaathetraining point, and
collecting data. In the first two testbeds, we adopted thecsmh whereby our APs
are the ones that collect RSS information while in the thind,MN itself retrieves the
RSS. Our front-end of the signal strength collection progimeJava Graphical User
Interface (GUI) which allows to load the map and click on tbedtion to be trained
conveniently.

For the case of Wi-Fi data collection in Testbed 1, the pnogimwritten using
the libpcap libraries [63] where the WLAN adapter at the mebliévice sends probe
requests continuously for some period so that the APs cdregahough packets. For
the case of Bluetooth, we actually log onto the mini PCs usingu@eShell (SSH)
and make the APs issue Bluetooth inquiries which the mobiecdaesponds to. The
Bluetooth signal strength information retrieval progranwistten utilizing the HCI

API of BlueZ protocol stack [64]. In either case, the pack&imation is transferred
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3.2 Wi-Fi Location Fingerprints

to our central server’'s database from the APs (i.e., mini PChgse signal strength
collection programs are invoked externally from the Javaymm when we click on
the locations to be trained on the map. Note that, our Blubtadapters provide the
absolute RSS values of the inquiry response packets, rdtaerthe RSSI values as
stipulated by the Bluetooth Core specification [65]. In Tedthewe have chosen 44
testing points which are completely different from our tirag locations (not shown
in Fig. 3.1). The central server is also responsible forudating the location estimate
during the testing phase. In Testbed 3, we have utilizeduieyd[66] to capture the
signal strength information at the MN. We first put the MN’SINhto “monitor mode”
and then run tcpdump where it snoops all the 802.11 packents tine air. Later on,
we ran some scripting programs on the tcpdump’s actual otdpeatrieve the required
RSS information from our desired APs.

Based on our three experimental environments, Table 3.2 suizes the mea-
surement scenarios used to collect the signal strengthwdatd will be used in sub-
sequent analyses. We noticed that the number of data paifested at each location
for Wi-Fi using our own program in Testbed 1 is quite less cared to the tcpdump

program utilized in Testbed 3.

3.2 Wi-Fi Location Fingerprints

3.2.1 Received Signal Strength (RSS)

Strictly speaking, RSS is supposed to be the signal powemadsat the receiver,
and is usually measured in dBm. Consequently, it is expectedrjoamong different
transmitter-receiver pair configurations which will bealissed elaborately in the next
chapter. Moreover, the 802.11 network interface cards (NéiGshot provide the RSS

readings directly. Instead, a typical NIC only providesR&SI parameter, in the form
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3.2 Wi-Fi Location Fingerprints

Table 3.2: Experimental design and measurement factors

Factors Testbed 1 Testbed 2 Testbed 3
Testbed Type Lecture Theater| Research Lab. Research Lab.
Testbed Area 540 m? 214 m? 382 m?

Measurement Time| Afternoon/Eve. Afternoon/Eve. | Afternoon/Eve.

Measurement Span 7 days 10 days 10 days
Measurement Device APs APs MN
Measuremer?t period 5 minutes 4 minutes 1 minute

per location
Distance between Non-uniform Uniform Uniform
Locations 0.6 m or more 0.6 m 0.6 m
Number of Locations 106 337 466
Java GUI, Java GUI, Java GUI,

Software Tool Libpcap (Wi-Fi),

BlueZ (Bluetooth)| = Ue% (Bluetooth)} Tepdump (Wi-Fi)

of an 8-bit unsigned integer that incorporates quantinagisor as a result of the A-
to-D conversion of the measured signal strength into RSSbordier to use the RSS
as a location fingerprint, which is done traditionally for-Wibased localization, it
must be translated from the given RSSI. The 802.11 standasl miot mandate how
RSSI should be calculated from the sampled RSS. As a resuéreft vendors tend
to have their own formulas or conversion tables for the magpiom RSS to RSSI,
and vice versa [59]. In addition, the RSSI is intended forrimaé use by the NIC,
e.g., to determine whether the channel is clear to send, @edwe whether it should
attempt to roam. As these operations neither require higtigion nor accuracy of the
measured RF power, some NIC vendors may choose to provide R&3hgs with
limited range, granularity, and accuracy. For example, €isas 101 RSSI values
and its maximum RSSI is mapped to an RSS of -10 dBm, while SymIsoBAd&RSSI
values and its maximum RSSI is only mapped to an RSS of -50 dBmyvditetions
among different transmitter-receiver pairs, togethehwlte non-standardized ways of

defining RSSI, have several implications on the localizatioouracy. Logically, we
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3.2 Wi-Fi Location Fingerprints

would expect a NIC that can offer a larger set of RSSI valued feEmce RSS values)
to be able to differentiate among more locations, which @¢qdtentially yield better

accuracy. We also should not impose a restriction on thecdsvihat can be used
with the localization algorithm, especially if widespreashge is desired. Finally, it is
also expected that the localization accuracy could detggavhen the mobile device’s
NIC is made by a different vendor than the one used duringrtirimg phase. The
latter undesirable effect is often shielded in existingalaation literature, since they

typically use the same transmitter-receiver pair durinidp b@ining and testing phases.

3.2.2 Signal Quality (SQ)

The 802.11 standard describes SQ as “PN (Pseudo Noise) oo@dation strength”
which gives a measure of channel condition based on therbit@te (BER) observed
at the receiver. Similar to RSSI, SQ measurements are me$y lik be inconsistent
among different vendors since they may be implemented dowpto the vendors’ own
guidelines (e.g., how many “wrong” bit positions may quafibr 50% SQ is likely to

be inconsistent among different vendors). Moreover, thep8@meter’s definition is
unclear in the 802.11 standard for non-DSSS modulationstypg., OFDM used in
802.119) since only DSSS uses a PN code. All these factotsloate to the omission
of SQ as location fingerprint, and till date, no work has atyuaplemented their

positioning system based on it.

3.2.3 Signal-to-noise ratio (SNR)

SNR is generally defined as the ratio of the received sigmahgth to the power of
the ambient RF energy in Wi-Fi nomenclature. Since many Widfds do not report
SNR [59], its use as a location fingerprint is less commons HIso expected to be

a less stable location fingerprint compared to RSS, sincedélsulated from RSS
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in the first place, with additional uncertainty contributeglthe ambient interference
which tends to be more random. Prior works have also vindit#tis claim. For
example, RADAR [17] found more fluctuations in SNR measurasieompared to
RSS at the same location for a particular NIC. Nibble [18], whises SNR as a

location fingerprint, also reported poorer accuracy coeghéo its RSS counterparts.

3.3 Bluetooth Location Fingerprints

3.3.1 Received Signal Strength Indicator (RSSI)

In the Bluetooth standard, the RSSI is an 8-bit signed integgr denotes whether
the received power level is within or above/below the GolB&teiver Power Range
(GRPR) [65]. A positive or negative RSSI (in dB) means that theived power level
is above or below GRPR, respectively, while a zero impliesithatideal (i.e., within
GRPR). Next, we proceed to investigate the RSSI’s relationgitipdistance, and con-
sequently, infer how it might affect positioning systemet P(d;) and P(d,) denote
the upper and lower GRPR thresholds of the intended receimdrassume that these
power levels are detected at distandgesand ds, respectively, from the transmitter.

According to the free-space propagation model,

Pldy) _ do” (3.1)

1 1 -
P(dy) < — andP(dy) < —, giving Pldy) ~ 4.7

d; dy?’

where the proportionality constant is the same. If we car2d dB path loss between

these two distances, which is approximately the nominal GRiPBe, we get

10 x log igli = 20. (3.2)
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Combining (3.1) and (3.2), we finally obtain

d

d—j = 10. (3.3)
The above calculation implies that the RSSI remairtsvaien the transmitter-receiver
separation ranges betweénandd,, although they differ by a factor d0. Hence, we
may not be able to differentiate over a wide area if we rely oiSRSr localization.
To aggravate the problem, Bluetooth devices may requestdhsritter to perform
power control, so as to keep its received power level witHRPR. Suppose the devices
choose to perform power control over a rangeé®&iB (the margin may be even larger
according to Bluetooth specification). If we add this quantd the 20 dB GRPR
range, it means that we can no longer discriminate pathdoss¢) dB. Following
the same analysis as before, it can be seen that, a devide tmy 10 cm away may
not be distinguishable from one thatli8 m away. This wide range is unacceptable
for indoor localization. Hence, RSSI is argued to be a poodickate for Bluetooth

positioning systems.

3.3.2 Link Quality (LQ)

LQ is derived from the average bit error rate (BER) seen at tbeiver, and is con-
stantly updated as packets are received. For our expesimeathave chosen Ranger’s
BT-2100 Bluetooth USB adapters, which use BlueCore4-ROM chgra Cambridge
Silicon Radio (CSR). Since LQ is an 8-bit unsigned integer,ntaaly assumes6 dif-
ferent values to represent various BER conditions. The CSb&chport LQ with finer
BER resolution when BER is small, but as the BER increases, soduteon becomes
coarser [67]. According to Bluetooth specification, a linkiy considered workable
if its BER is at most0.1%. Therefore, the CSR chipsets map LQ values belad

with a coarser BER resolution, as the link is already consdiemndesirable. This in
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turn has adverse effects on localization because the LQngdea may not provide
desirable distinct signatures when the links are erron@ro

Another important consideration is that, the LQ conversagorithms among
different chipsets made by different vendors may diffeeréfore, prior works [21,
52] that have relied on the mobile device’s perceived LQ aation fingerprints may
actually suffer from performance degradation if they werede devices that contain

chipsets from different vendors other than the one usecdhgtine training phase.

3.3.3 Transmit Power Level (TPL)

TPL is an 8-bit signed integer which specifies the Bluetootllutes transmit power
level (in dBm). The power control feature is introduced intau@&both devices in
order to facilitate energy conservation, and also to conrtatference. The step size
for power adjustments ranges betw@eand8 dB. Upon the receipt of a power control
request message, the TPL is increased or decreased by pne ste

According to Bluetooth specification, Clagsdevices are advised to perform
power control even when the power is belevd0 dBm. However, for the conve-
nience of analysis, we assume here that the minimum selegtatver is—30 dBm.

In this scenario, Clask devices can thus vary its power over a rangé®tiB, since
the maximum attainable power for Clasglevices is+20 dBm. If we consider the
minimum step size for power control (i.2.dB), then there can be at magt—2 = 25
different TPL values for distinguishing unique locationgich are quite limited.

Our CSR adapters offer updated RSSI measurements once ewendsd here-
fore, if it takes four power control steps to eventually eacstabilized TPL for a
specific location, the overhead can be as long sesconds (ignoring transmission and
processing delays), which contributes to the overall laeaf such a positioning sys-

tem.
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3.3.4 Inquiry Result with RSSI/RSS

Every inquiry that is sent and replied by a device will be srartted at a device-specific
default power setting. As a result, the RSSI fetched throughgauiry is free from the
side-effect of power control as explained earlier. Henke,ihquiry-fetched RSSI is
expected to provide finer measurements than the conndadised RSSI, although it
still suffers from the GRPR-related zero-RSSI problem. On tteerohand, if the
inquiry results are provided as absolute RSS, as is the cathe ichipset we used,

GRPR-related problem is diminished.

3.4 Experimental Findings

Since most of the fingerprinting techniques are built on tb@ Wi-Fi infrastruc-
ture, many works have experimented with the available $igtrangth parameters
(mainly RSS) as location fingerprints and noticed their pgfaegarding localiza-
tion [18,25,26,28-30]. However, no prior work has actuallyestigated the prospects
of Bluetooth’s various signal strength parameters availad location fingerprints.
Few works [52, 61, 62] have used either RSSI or LQ as locatiayefjprint which is
ill-suited for localization purpose as evident from our lgee in the previous section.
Next, we present the results from our experiments for a cetapinderstanding of the
Bluetooth’s signal strength parameters from a localizgperspective. All the experi-
ments pertaining to this section have been conducted iosidBluetooth testbed (i.e.,

Testbed 2).

3.4.1 Signal parameters’ correlation with distance

For this experiment, we carefully chose five different grasitions where we took

readings from each of th& APs, thus resulting in5 data points. We adopted this
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Figure 3.4: Relationship between various Bluetooth signedipaters & distance.

methodology, rather than choosihg distinct distances from a single AP, because we
wanted to correlate distance with signals originating frAfs that were placed at
different locations and surroundings.

In our experiments, we discovered that the Bluetooth wiseldgnal strengths
tend to vary quite significantly depending on the user'sraaton. Therefore, for
every chosen grid position, we todk readings from every AP for each of the four
different orientations. We then calculated the averag@esel20 readings to obtain
the signal parameter’s value for that particular AP at trecBjg grid position. Since
we know the distances of all grid positions from any AP, tlgmal strength values are
simply mapped against the corresponding distances to genkErg. 3.4. In order to
acquire the connection-based status parameter readiag®R®$SlI, LQ, and TPL), we
maintained connections at the HCI level from the APs to ouritadiost.

From Fig. 3.4, the following observations can be made:

e As anticipated in our earlier analysis, RSSI turns out toedate poorly with
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distance, as shown in Fig. 3.4(a).

e Fig. 3.4(c) shows a horizontal straight line for TPL valu&his is because our
Class2 adapter at the mobile host which uses Broadcom’s B chip does
not support power control feature. As a result, the TPL aReemained at its

default value, which happens to belBm for the Bluetooth adapter used.

e From Fig. 3.4(b), we see that LQ correlates with distancemmbatter than RSSI
and TPL, although the LQ readings obtained at smaller distmahow very little
variation. Note that these readings were taken at the AR stleer than at the
mobile host side, as the LQ perceived at our mobile host weayal255 at any
grid position, which is the highest possible LQ value. Thisliie to our Class
APs’ large transmit power. The measurements at the AP sidiéyeoother hand,

show variations because our mobile host uses a Qladgapter.

e Our BT2100 Class1 adapters provide absolute RX power level through in-
quiry, instead of the relative RSSI values as suggested bytditle specifica-
tion. As the parameter “Inquiry Result with RSSI” also suffemsn the GRPR-
related zero-RSSI problem (just like the “connection-baR&8&!”), we believe
that making RX power level available should augur well in terof distance.
Fig. 3.4(d) certainly establishes this claim since the RX golevel shows the

best correlation with distance, compared to the other thigreal parameters.

3.4.2 Effect of GRPR on RSSI

Fig. 3.5 illustrates the adverse effects of wider GRPR on #éponted RSSI. From
the figure, it is seen that BT100’'s RSSI readings (GRPR: 80 dB ) showed little
variation compared to our Broadcom’s adapter, which hasr@war GRPR. Because

of the combined effect of large GRPR and power control,2B08’s RSSI readings
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Figure 3.5: Connection-based RSSI for two Bluetooth adaptihsdifferent GRPR.

always remained at or abowe On the contrary, Broadcom’s adapter gave negative
RSSI values at greater distances, although we did not havg sumh grid positions

owing to our testbed’s size.

3.4.3 TPL Consideration

For this experiment, we recorded the stabilized TPL valsesell as the stabilization
time periods for each AP’s signal at specific grid positiosisig BT2100 at the mobile
host side. Fig. 3.6(a) indeed shows very few discrete tréammwer levels, in harmony
with our analysis in Section 3.3.3. Moreover, the time pasicequired to reach these
stabilized TPL values are also quite significant, as redealé-ig. 3.6(b). Both these

attributes make TPL a poor candidate for localization psepo
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Figure 3.6: Stabilized TPLs & time periods to attain them.
3.5 Summary and Conclusions

In Table 3.3 and 3.4, we summarize the suitability of thelatée signal parameters as
location fingerprints for Wi-Fi and Bluetooth, respectivalye emphasize on the point
that each signal parameter has particular usage accormliitgy dwn respective tech-
nology. Consequently, their inherent characteristics nesnder them inappropriate
to be considered as location fingerprints which we have tigeged thoroughly here.
Based on our analysis, RSS seems to be the most viable optiona®h fingerprint
compared to all the other signal parameters available feFMWiHowever, RSS has
been observed to vary at the same location depending ometiffdevices’ hardware
even under the same wireless conditions [25-29], whicimaliely has adverse effect
on fingerprinting solutions. From our analysis and expeniadindings, it is apparent
that RSS has the most potential compared to the other cwyrravdilable Bluetooth
location fingerprints. However, it may also not be robust nvdéferent devices are
considered (e.g., Class 1, 2, etc.). Next, we deduce our trtdmation fingerprint, the
Signal Strength Difference (SSInd prove its superiority over RSS, both analytically

and experimentally.
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3.5 Summary and Conclusions

Table 3.3: A qualitative overview of the characteristics\6fFi technology’s available
signal parameters and their pitfalls regarding localorati

Main Purpose

Issues Regarding Localization

RSS

e RSS is translated from RS$I

which is meant for internal
use by the Wi-Fi NIC.

RSSI is utilized in Wi-Fi's
CSMA-based MAC protoco
to give an idea about whether
the channel is clear to send,
or to decide when a devic
should attempt to roam.

14

[¢2)

e Most popular RF location fint

gerprint.

—

Inconsistent among differen
transmitter-receiver pair con
figurations.

Different vendors’ varying in-
terpretations also have ad-
verse effect on this finger
print.

The above two effects colleg
tively degrade its robustness
as a location fingerprint.

SQ

Gives a measure of the chan-

nel condition based on the
BER observed at the receiver.

Defined as the “PN code cor-
relation strength” in 802.11
family which uses DSS$
modulation schemes.

Inconsistent among variouys
vendors.

Undefined in 802.11 standard
for variants of 802.11 (e.g|,
802.119).

No localization research so far
tried to contemplate it as a Ig
cation fingerprint.

SNR

Gives a relative measure of

the RSS compared to the am-

bient RF energy.

Existing works [17, 18] re-
ported this fingerprint to be
more inconsistent than RSS.

\1”J

Positioning systems based on
it reported poor accuracy So
far.
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3.5 Summary and Conclusions

Table 3.4: A qualitative overview of the characteristicBafetooth technology’s avail-
able signal parameters and their pitfalls regarding laedilon

Main Purpose

Issues Regarding Localization

Provides a relative measure

of an established connection’s
RSS.

e RSSI's correlation with dis;

tance suffers because of bag
GRPR and the power contrg

RSSI _ feature.

e Helps in power-control.

Positioning systems based ¢
RSSI have so far affirme
poor accuracy [62].

e Gives a measure of the per- When the links are erro
ceived BER of an established prone, LQ may not provide
link. desirable distinct signatures,

LQ e Mainly used for adapting to Inconsistent among differen
changes in the link's state, vendors.
notably to support CQDDR o
(Channel Quality Driven Data To date, positioning system
Rate). based on LQ have reported
coarse accuracy [62].

e Denotes the transmitter’s out- Varies depending on the Bluge
put power of an established tooth class.
link in dBm. _

Can assume only a few dis
TPL tinct values.

Incurs latency to a location

system based on it.

e Since Bluetooth operates agn Inquiry-based RSSI is fre
TDMA-based MAC protocaol, from power control effects
the reporting of RSS is nat but it still suffers from GRPR-

RSS mandatory, as indicated in the related zero-RSSI problem.

Bluetooth Specification [65].

However, if RSS can be ol

tained instead of RSSI, it be

comes free from that draw
back as well.

~+

U
1

D
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Chapter 4

Robust Location Fingerprint

In existing localization literature based on fingerpritit® signal strength samples are
either collected at the APs, or at the MN that needs to be docafThe AP-based
approach has the advantage of detecting locations of a aitgerof MNs without re-
quiring any modification of the latter, e.g., the MN need notvdload any additional
software solely for localization purpose. On the other hamel MN-assisted approach
could better ensure the security and privacy of the MN. Imlagiproaches, the sam-
ples’ signal strength values collected over a small timeelew are generally averaged
to obtain the traditional RSS location fingerprint. This RS&itmn fingerprint has

certain implications:

e Itis influenced by a particular transmitter-receiver mahardware-specific pa-
rameters, such as antenna gains. Consequently, havingeeediftransmitter-
receiver pair compared to the training phase would likelydpice a different

RSS signature at the same location [26].

e Moreover, if the MN-assisted approach is used, the RSS finigeip likely to
be different across mobile devices made by different ves)dwt just due to the

differences in their hardware, but also due to the vendars' interpretations of
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4.1 Signal Strength Difference (SSD) — a robust location firggprint

RSS as discussed in Section 3.2.1.

In this chapter, we show that, rather than utilizing the &ldsosignal strength
(RSS) as location fingerprint, the differences of signalmgjties perceived at the APs
or at the MN would actually provide a more stable locatiomaigre for any mobile
device irrespective of its hardware used. We contend thahis way, the transmitter-
receiver pair’s hardware effect is mitigated. In Sectiah 4he robust location finger-
print, SSD, is first explained in detail. We then list in Sentd.2 some related works
that address the same issue of hardware variations of theBMperimental results
are presented in Section 4.3, while a summary of our findifigeeorobust location

fingerprint, SSD, appear in Section 4.4.

4.1 Signal Strength Difference (SSD) — a robust loca-
tion fingerprint

SupposeP(d) and P(dy) denote the received signal strengths at an arbitrary dis-
tanced and a reference distandg from the transmitter, respectively, for a particular
transmitter-receiver pair. Here, we assume that the malalgce is the transmitter,

while the AP is the receiver. From the log-normal shadowiruglet [16], we get,

[ P(d) } = —1083log (di) + XgB- 4.1)
dB

0

The first term on the RHS of (4.1) defines the path loss compofierg the path
loss exponent), while the second term reflects the variatidhe received power at a

certain distanceXgs ~ N(0,03)). EQ. (4.1) can be rewritten as,

P(d)|gem = P(do)|aem — 108 log (dio) + Xag- (4.2)
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4.1 Signal Strength Difference (SSD) — a robust location firggprint

Depending on the hardware used at both the AP and the molileegéhe perceived
power at a reference distance (i.8(d,)) varies, as a result of hardware-specific pa-
rameters, such as antenna gains. Therefore, the averagetRSfistancel is also
hardware-dependent. This explains why RSS is not a robuatitmcfingerprint, de-
spite the fact that it is commonly used in the existing litere.

Rather than using absolute RSS values as location fingerpttetslifference of
the RSS values observed by two APs can be used to define a mase samature for a
transmitting mobile device; we shall term this differens&agnal Strength Difference
or SSD To explain analytically, let”(d;) and P(d,) denote the RSSs of a mobile
device’s transmitted signal as perceived at two differeRs AJAR, and AR) which are
at distancesgl; andd, from the mobile device, respectively. We assume that, all th
APs are of the same type, i.e., their hardware have the saspenies. Consequently,

using (4.2), we can write the following for ARnd AR respectively:

P(d)lem — P(do)lgam — 108, log (j—;)ﬂXl}dB, .3)

and P(dy)|leem = P(do)|asm — 1002 log (%) + [Xogg- (4.4)

Combining (4.3) and (4.4), we obtain,

P(dl) o d1 d2
{P(dQ)} - = —10p; log <d—0) + 1055 log (d_o) + [ X1 — X g (4.5)

Eq. (4.5) denotes SSD’s expression which is free fiof,), thereby, specifies a
more robust location fingerprint than absolute RSS. If werasstine path loss expo-
nent to be the same for the particular indoor environmeat [{; = 5, = (3), (4.5) can

be further simplified as,

{P(dﬁ]dB — 108log (%) X = Xl (4.6)
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4.1 Signal Strength Difference (SSD) — a robust location firggprint

Based on the above analysis, we claim that SSD provides signifimprove-
ment over traditional RSS in denoting the location fingefpainen the signal strength
samples are collected at the APs. Next, we explain it in a rdetailed way. We also
inspect whether SSD is superior to RSS in the case of MN-agdistalization where

the signal strength samples are actually collected at the MN

4.1.1 SSD for AP-based localization approach

Consider the same example scenario as above but with the pissntihat the close-in
reference power, i.eR(d,) of (4.2), can be evaluated using the free space propagation

model as follows [16],

4.7)

Pun Gun Gap: 2
P(dO)’dBmzmlog( MNTMN AP|CMN>’

1672d2L
where Py is the MN's transmitted powet; vy is the MN’s antenna gairt; ap, is the
i AP’s antenna gain/, is the system loss factor, aggly is the transmitted carrier’s
wavelength (same unit ag).

Using (4.7), both (4.3) and (4.4) can be rewritten respeltias,

PunGun G 2
P(dy)sm — 101og( G A"lc“”“)—lomog (ﬁ)ﬂxl]ds, 4.8)

167T2d%L1 Clo

PunGunGap, i dsy
dP(d = 101 2 —1 | — XolgB. 4.9
andP(dz)|dem 0 og( 167242 L, > 053 log (do) + [XoJas-  (4.9)

Here, the APs’ antenna gains (i.€:xp, andGap,) and the miscellaneous lossds (
and L,) would be the same because of our previous assumption whactions that
the APs are of similar hardware properties. As a result, ¢oimd (4.8) and (4.9)
yields SSD’s expression of (4.5). Consequently, we clainh wiale RSS may vary
using different mobile devices as can be seen from (4.8).8),(8SD is free from that

drawback as evident in (4.5).
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4.2 Related Work

4.1.2 SSD for MN-assisted localization approach

We consider the same example scenario as above, excephéhsighal strength is
now measured at the MN rather than at the APs. Subsequeh8y,and (4.9) take the

following forms, respectively,

Pap,Gap, GMNCipl dy
P(dy)|leem = 10log ( 1672@2L, — 1005 log <d_0> + [X1]as, (4.10)

Pap,Gap,GunGap dy
dP(d = 101 2 | —10p,1 — Xolgg. (4.11
andP(dz)|dem Olog ( 167202 L 053, log <d0> + [XoJas- ( )

The APs’ antenna gains (i.eGap, andGap,) and the miscellaneous lossds, (and
L,) are the same as discussed in Section 4.1.1. (Bwiill be different if the APs
operate in different channels but this difference is usuadit very significant [68].
The samples gathered at the MN are mainly derived from thiegoreplies that come
from the APs [26]. Since these replies are generally semigusbme default power
setting, we can have the approximatio‘i’)s,,p1 ~ Pap,. Under these conditions, the
SSD’s expression in (4.5) can be obtained by combining §4aa (4.11), and thereby,

denotes a more robust location fingerprint compared to RSS.

4.2 Related Work

The effects of different devices’ hardware variations on Béation fingerprint have
gained little attention in the localization literature so.fAs discussed before, existing
works generally use the same mobile device during the trgiand testing phases,
thereby, invoking similar setups (i.e., transmitter-reee pair) in both cases. How-
ever, [25-29] have observed that the location fingerprings, (RSSs) produced by
using different mobile devices vary quite significantlyrframne another even under

the same wireless conditions. Haebaréral. [26] try to accommodate various de-
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4.2 Related Work

vices by having a benchmark training database taken with@mé device. For other
devices, they require a set of linear RSS conversion formulhieh translate the RSSs
of those devices into the benchmark device’s RSSs. Thesa laoaversion formulae
are obtained by laboriously experimenting with each suggglodevice to discover its
RSS relationship with that of the benchmark device. Kjeergf8tifollows a simi-
lar approach. Taet al.[25] utilize signal strength difference as a location finggart
like our approach. Their motivation was to find the locatiohsogue machines with
different hardware configurations and varying transngtpowers, and they have only
provided experimental results based on the idea. They dignogide any intuition or
analysis about why the differences in signal strengthsccawolrk successfully in their
scenarios. On the contrary, our work gives both the detaifeadysis and the experi-
mental results as to why the SSD could be regardedalsustlocation fingerprint.
There are two other techniques in the literature that cout@jate the effect of
MN’s hardware variations without any additional caliboatisteps like the aforemen-
tioned works [26, 28] — Hyperbolic Location Fingerprint (HL[29] and Ecoloca-
tion [69]. HLF [29] uses logarithm of signal strength ratiostween pairs of APSs.
However, they do not give any analytical basis as to why iigates the hardware
variation effects. Their log signal strength ratios areialty just the RSS differences
in the log scale. Taking log of (4.3) and (4.4), and combinihgan be seen that the
resulting expression is not totally free fraR{d,), unlike our SSD’s expression (4.5).
Ecolocation [69] uses ordered sequence of RSS measureradrgsthan the absolute
RSSs to constitute a unique location fingerprintPliZ;) and P(d;) denote the RSSs
at AP, and AR, which are at distance$ andd; from the MN, respectively, then a

constraintof the sequence is defined as,
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4.3 Experimental Results and Findings

First, the constraint set for each grid point is calculatsidgithe RHS of (4.12). Only
the locations ofreference nodegi.e., APs) are required in this phase — no signal
strength collection surveys are necessary. During localigtermination phase, the
ordered sequence of RSSs collected at the APs is translatethénordered sequence
of distances using (4.12), and subsequently matched aghesonstraint set of each
grid point calculated beforehand. The centroid of the gaoh{s where the maximum
number of constraints are matched is returned as the locasbmate. We believe
that, owing to MNs’ hardware variations and varying trarssian powers, botl¥(d;)
and P(d;) should be affected in a similar way. Therefore, the consti(@.12) is ex-
pected to remain intact over different MNs. Consequentlg|&sation could be robust

against MNs’ hardware variations as well.

4.3 Experimental Results and Findings

We first list the assumptions that we have made for our exmarisnin Section 4.3.1,

and then discuss our results in subsequent sections.

4.3.1 Assumptions

¢ In this dissertation, whenever we have used RSS as locatigerprint for cer-
tain experiments, we have assumed it to be normally digetat a particular
location. Though some works defy this phenomenon, otherd spport to
it [30]. We denote the RSS location fingerprint to be normatitisted which is
defined by only two parameters. One instance of RSS distoibvati a particular
location inside Testbed 1 is shown in Fig. 4.1. Similar to][2&ir experimental
results also suggest that it is a reasonable approximatsosignificant improve-
ment cannot be achieved even if we were to utilize histogrepnesentations

of RSS. However, we have used the histogram representatidtiLie and the
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4.3 Experimental Results and Findings
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Figure 4.1: Histogram of received signal strength (RSS) aréqular training point
regarding an AP and its Gaussian approximation.

histogram’s bin size is selected to be 0.02 as suggeste®hy [2

e We have chosen two well-known algorithms in the localizatiterature, namely,
IC-NN in signal space [17] and Bayesian Inference [26], in otdéest our ideas.
These two algorithms are discussed in Section 2.2.5 an@, 26apectively. Our
key intention is to show that our ideas are quite generic amdbe helpful ir-
respective of the choice of algorithms. For tieNN algorithm, we choose the
value of K empirically, similar to prior works [17]. Based on our expeental
findings, we seleckC = 4. While applying Bayes formula, the priori probabili-

ties are assumed to be uniformly distributed.

e Inorder to apply probabilistic models, one assumption iaatwidely been used
is the independence of RSS values of different APs [18, 20 assumption is

justifiable for a well-designed network where each AP runa non-overlapping
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Figure 4.2: RSS and SSD considering 2 different devices (apagnd a PDA) incor-
porated with both Bluetooth and Wi-Fi capability (Testbed 1)
channel. Kaemarungsi and Krishnamurthy have performedrarpnts in [30]
to evaluate the correlation factor among the APs’ RSS valuésa presence of
interference and they have strengthened this claim as Wells, we have also

adopted their vindication.

4.3.2 Justification of SSD as a robust fingerprint

For this experiment, we have chosen various mobile devideshavere listed in Ta-
ble 3.1 in order to see their effects on both RSS and SSD locétgerprint. In
Testbed 1, we have selected two different devices (a laptd@@DA) and measured
their signal strengths at the APs (i.e., mini PCs). Our lajgapstalled with an Intel

PRO/Wireless 3945 ABG Mini PCI WLAN adapter whereas the WLAN aasdd in
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Figure 4.3: RSS and SSD considering 4 different BluetoothagsviTestbed 2).

our PDA is Samsung SWL-2455 802.11b. As for Bluetooth, our H®QIPDA has an
integrated Class 2 Bluetooth chip, whereas a BT-2100 Class 1dglilet) SB adapter
has been plugged into the laptop during the experiments.

We have picked 20 random training points and stationed thieete at those lo-
cations, while ensuring that we have collected enough s=smgul the APs for both
devices. Fig. 4.2(a) and 4.2(c) are drawn with the RSS readiegn by a particular
AP, whereas Fig. 4.2(b) and 4.2(d) plot the difference betwtee RSS values seen at
two different APs.

We repeat similar experiments for our Testbed 2 where foiferdnt Bluetooth
devices are used. The Acer n300 PDA, Motorola V3xx phone é3BRI02-B adapter
are the three Bluetooth Class 2 devices while the Ranger’'s BU48X0Class 1 adapter.
All these devices are stationed at the various trainingtiooa in order to measure
their signal strengths at the APs. The RSS at a particular ARrenSSD between two
different APs for 20 such locations are depicted in Fig.d).ahd 4.3(b), respectively.

For Testbed 3, we conducted the signal strength survey lygplg two differ-
ent Wi-Fi NICs (Intel PRO/Wireless 2200BG and Atheros AR2422.82Qabg) into
our laptop. Since our Testbed 3 emulates the MN-assistadization scenario, we

actually collected the signal strength samples at the MNerathan at the APs like
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(@) RSS perceived at MN from a Wi-Fi AP. (b) SSD between 2 Wi-Fi APs perceived at MN.

Figure 4.4: RSS and SSD considering 2 different Wi-Fi dev(Gestbed 3).

our previous two testbeds. Fig. 4.4(a) shows the RSSs pertaivthe two different
NICs from an AP (i.e., Linksys WRT54G router) whereas Fig. ) 4iepicts the SSDs
between two different APs perceived at them.

From Fig. 4.2(a), 4.2(c), 4.3(a) and 4.4(a), it is apparkat,tthe absolute sig-
nal strength perceived at/from a certain AP varies quiteiaantly between the two
devices at each training location. This has repercussitimein use as fingerprints be-
cause they are quite different when different mobile des/eee used during training.
Most works perform their training and testing phase with shene device, thereby,
shielding the adverse effect of this phenomenon. On theragnthe SSD does not
suffer much from this effect, thereby, providing a more sthiingerprint as seen in
Fig. 4.2(b), 4.2(d), 4.3(b) and 4.4(b). This readily coraplwith our analysis in Sec-
tion 4.1. Note that the fluctuations of SSD could be as bad as€RS&ne locations.
However, SSD is observed to be more stable in our experinem@sall. Only the
findings at 20 randomly selected locations are presentedl kerrthermore, although
the SSDs between only one pair of APs are shown, choosing @npipAPs to cal-
culate the SSDs yields improvements over RSS in our expetimaffe also notice
from Fig. 4.2(b) and 4.3(b) that, the SSD readings obtailnedfuetooth tend to be
more robust compared to the Wi-Fi SSDs (Fig. 4.2(d) and $.Afthich will be further
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Figure 4.5: Comparison of error performance using RSS vs. $3Bcation finger-
print for Bluetooth when the testing phase is conducted viighsame training device
or a different device.

verified by our later results.

4.3.3 Comparison of SSD and RSS as Location Fingerprint

As pointed out in the previous section, the usage of the samefdvl both training
and testing phase may have biased the reported results ekigteng fingerprinting
techniques. To investigate further, we conducted experisn@ both our AP-based
Bluetooth (Testbed 2) and MN-assisted Wi-Fi (Testbed 3)txs to visualize the
effect of MN's hardware variations.

In Testbed 2, we have chosen Bluetooth solutions from foderdint manufac-

turers and types as discussed in the previous section foinigeof the 337 data points
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Figure 4.6: Comparison of error performance using RSS vs. $3Bcation finger-
print for Wi-Fi when the testing phase is conducted with thes training device or a

different device.

shown in Fig. 3.2. We separate Ranger's BT-2100 Class 1 adao&tia set as our

training samples, while the resg x 337) = 1011 samples from the other three Class

2 devices are used for testing. In Testbed 3, we have Wi-Fi Ni&@s two different

manufacturers and types as discussed in the previous seclioe Intel NIC's col-

lected data at66 grids shown in Fig. 3.3 are kept as training while the AtheMtS’s

collected data &44 locations are utilized for testing purpose.

To inspect the “same device” effect, we choose Ranger’'s BDZla8ss 1 adapter

in Testbed 2 to perform both the training and testing phaseorg the337 training

grids, 200 of them are selected randomly as training points while tBeli¥ are kept

for testing purpose. We then run our algorithms (i’&-NN and Bayesian which are

discussed in Section 2.2.5 and 2.2.6, respectively) tarobita localization errors. We
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Figure 4.7: Comparison of error performance when using RSSS&D as location
fingerprint for both Bluetooth and Wi-Fi (Testbed 1).

repeat this procedure fd1 times to obtain all the errors for different combinations
of training and testing samples, and finally come up with thealative probability
graph. In Testbed 3, Intel PRO/Wireless 2200BG Wi-Fi NIC heerbutilized for both
the training and testing phase. In this particular testbed of the 466 training grids
shown in Fig. 3.3 are selected randomly as training pointslevthe res66 are kept
for testing purpose. We follow similar approach as the orseideed for Testbed 2 in
order to obtain the cumulative probability graph of errors.

From Fig. 4.5(c), 4.5(d), 4.6(c), and 4.6(d), it is appatbat hardware variations
of the MN during the testing phase have adverse effect on tHe BRSed localiza-
tion performance for both Bluetooth and Wi-Fi. We furthericetthat, this issue is
prevalent regardless of whether the RSS is measured at thibARB-based localiza-
tion (our Bluetooth Testbed 2) or at the MN for MN-assistedal@ation (our Wi-Fi
Testbed 3), This is a severe shortcoming of the fingerpgriechniques since one can-
not assume the users to carry the same device with whichaiménty of the system has
been performed. On the contrary, SSD based localizaticionpes quite well under
hardware variations for both Wi-Fi and Bluetooth and is sigréo RSS based local-

ization in all cases (see Fig. 4.5(c), 4.5(d), 4.6(c), atdd}). The error performance
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Figure 4.8: Comparison of localization error performancemising various location
fingerprints in KNN localization algorithm for Bluetooth.

when using the same device for training and testing can hehied in Fig. 4.5(a)
and 4.5(b) for Bluetooth, and in Fig. 4.6(a) and 4.6(b) for M\i-The better perfor-
mance of RSS based algorithms compared to our SSD basedtlaigeis a pitfall
since in real practical scenarios, all the users would aralry the same device as the
training device.

We conduct another experiment in Testbed 1 which is equipptdboth Wi-Fi
and Bluetooth capabilities in order to compare Bluetooth and-N& performance re-
garding SSD. For this experiment, we have chosen the laptigia at the 62 training
points (shown in Fig. 3.1) and the PDAs data at the 44 tegtiigts. The Bluetooth
and Wi-Fi device details on the laptop and PDA can be founthénprevious section
and also in Table 3.1. As illustrated in Fig. 4.7(a) and 4,7flcan be seen that, the
positioning system built upon SSD again outperforms its R&8$terpart for both

Bluetooth and Wi-Fi. Furthermore, we also see that, the Batet8 SD based systems
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Figure 4.9: Comparison of localization error performancemising various location
fingerprints in Bayes localization algorithm for Bluetooth.

perform better than positioning systems utilizing Wi-FiC5&s anticipated in the pre-
vious section. The average errors of our Bluetooth SSD basedization algorithms
(2.58 m for K-NN and2.55 m for Bayesian) in Testbed 2 are also smaller than Wi-
Fi SSD based localization algorithm& {4 m for -NN and2.89 m for Bayesian) in
Testbed 3.

4.3.4 Comparison of SSD with Other Robust Location Fingerprints

The results presented in this particular section are obtkirom the experiments con-
ducted in our Bluetooth Testbed 2 and Wi-Fi Testbed 3. As dsed in the previous
section, for Testbed 2, we separate BT-2100 Class 1 adap&tassdt as our training
samples, while the rest3 x 337) = 1011 samples from the other three Class 2 devices

are used for testing. Similarly, for Testbed 3, the Intel 8I€ollected data at66 lo-
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Figure 4.10: Comparison of localization error performanéemusing various loca-
tion fingerprints in KNN localization algorithm for Wi-Fi.

cations are kept as training while the Atheros NIC'’s colldatata aR44 locations are
utilized for testing purpose.

In case of Bluetooth, it is evident from Fig. 4.8 and 4.9 th&D®ased techniques
are better than the other two schemes (HLF and Ecolocatesgribed in Section 4.2
that could also mitigate the MNs’ hardware variation efedihe numerical values of
these two figures can be found in Table 4.1. Similar conchssmould be drawn for
Wi-Fi SSD based techniques as well from Fig. 4.10 and 4.1&.nthmerical values of
these figures are listed in Table 4.2.

For both Wi-Fi and Bluetooth, we see that, Ecolocation pemeven worse than
the RSS based algorithms. This can be attributed to the folpveasons: i) Ecoloca-
tion is mainly targeted at localizing inexpensive sensatkia shown to perform better
than other localization algorithms found in wireless senmsetworks [69]. Its main

advantage lies in the fact that it requires no time-consgraignal strength collection
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Figure 4.11: Comparison of localization error performanéemusing various loca-
tion fingerprints in Bayes localization algorithm for Wi-Fi.

surveys in the location space, whereas all the other algositconsidered here make
use of the offline training phase data. ii)) RSS measurementstd@present distances
accurately in the real world. Therefore, uncertaintieddauise while using (4.12) as
discussed in [69]. Moreover, since we only have four APs theastbed, the number
of constraints (i.e.(;*)) at each grid point is also quite limited.

For fair comparison, we modify Ecolocation by making usehef offline training
phase data. The constraint set for each grid point of the fireddalgorithm consists
of the ordered sequence of RSS values collected during timnggphase instead of
the distance constraints as discussed in Section 4.2. Tesen sequence of RSSs
collected during the location determination phase is naeatly compared with each
grid point’s constraint set without the need for transhatioto distance constraints
using (4.12). As evident from Fig. 4.8, 4.9, 4.10 & 4.11, aath[€ 4.1 & 4.2, the per-

formance of Ecolocation is enhanced significantly, and tloelifred algorithm com-
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Table 4.1: Percentile values and averages of errors (inrjneleen various fingerprints
are considered for Bluetooth.

Algorithm (Fingerprint)| 25" Percentile] Median | 90" Percentile| Average
KNN (RSS) 2.25 3.63 6.91 3.87
KNN (HLF) 1.81 2.91 5.84 3.21
KNN (SSD) 1.35 2.25 4.92 2.58
Bayes (RSS) 2.39 3.60 7.65 4.09
Bayes (HLF) 2.01 3.06 5.22 3.16
Bayes (SSD) 1.51 2.34 4.41 2.55
Ecolocation 3.73 5.94 10.37 6.08
Modified Ecolocation 1.77 2.84 5.08 3.00

fortably outperforms the RSS based algorithms. Althougbetéormance is inferior to

our SSD based algorithms, it performs slightly better thenHLF-based algorithms.

4.4 Summary and Conclusions

In this chapter, we introduced the usée'Sfgnal Strength Difference (SSD¥s a loca-
tion fingerprint, and analyzed in detail why it can serve dsisb location fingerprint
that is irrespective of the hardware used at the mobile de¥icom the analysis carried

out in Section 4.1, we can draw the following conclusions:

e SSD is a more robust location fingerprint compared to trawigti RSS regardless
of whether the samples are collected at the APs or at the M. Ads been
verified with our experimental results as illustrated thaioly in Section 4.3.2

and 4.3.3.

e Collecting samples at the APs should provide more stable #8Bings com-
pared to measuring them at the MN, because in the latter aageater number

of assumptions were involved in inferring the SSD’s expm@ssin addition, an

68



4.4 Summary and Conclusions

Table 4.2: Percentile values and averages of errors (inrjneleen various fingerprints
are considered for Wi-Fi.

Algorithm (Fingerprint)| 25" Percentile] Median | 90" Percentile| Average
KNN (RSS) 3.20 4.82 8.22 4.95
KNN (HLF) 1.73 2.81 5.84 3.08
KNN (SSD) 1.77 2.59 5.08 2.94
Bayes (RSS) 3.43 5.21 9.74 5.49
Bayes (HLF) 1.96 2.97 5.38 3.17
Bayes (SSD) 1.77 2.79 4.96 2.89
Ecolocation 4.30 6.99 11.00 6.88
Modified Ecolocation 1.94 2.83 5.34 3.06

AP-based approach tends to be free from vendor-specifitcgimings since the

APs of a particular indoor environment are usually of the s&ype.

The shortcomings of the popular RSS location fingerprint Witii's hardware varia-
tions have been addressed in a few works [25,26,29] as disdyseviously. Most fin-
gerprinting solutions use the same mobile device for batinitng and testing, thereby,
shielding the adverse effect of this phenomenon as reveat@d experimental results
of Section 4.3.3. We also compare our SSD with two other ridbaation fingerprints
in Section 4.3.4, and found the SSD based algorithms’ padiace to be superior in
case of both Wi-Fi and Bluetooth. No work in the literature basn successful thus
far in designing a reasonable Bluetooth based positioniatgsy. We have shown that
if inquiry based RSS is available and is used to generate SEDst as a location
fingerprint, a Bluetooth based positioning system with reabte accuracy can still be

achieved as we have demonstrated in our experimentalsesult
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Chapter 5

Analysis of SSD

As emphasized in the previous section, we believe that theakstrength difference
(SSD) is the ideal choice for location fingerprint if the gmsiing system adminis-
trator intends to accommodate heterogeneous devicesefbherthe error bound on
localization using SSD needs to be investigated. We fe¢lttieproperties of this
bound could provide valuable insights to improving the lzedion accuracy or to the
overall design of a positioning system based on SSD.

In this chapter, we analyze the CrarrRao Lower Bound (CRLB) [70] of loca-
tion estimation error given the SSD measurements. A novatadterization of the
properties of this bound is presented that allows us to iddally assess the impact of
different parameters (e.g., number of APs, geometry of tRe,Alistance of the APs
from the MN, etc.) on the accuracy of location estimates. éx@ample, utilizing the
effect of distances of the APs from the MN, we have devisedatoaefine weights
for a weightedC-NN scheme that is shown to perform better thankthN algorithm.
Moreover, the properties also provide valuable designg@kaggestions by revealing
error trends associated with the system deployment. Waralsstigate these deploy-
ment issues which may give fruitful insights into the desafjia positioning system.

The study of estimation bounds on localization using tifraroval [71], time-
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5.1 Review of SSD Location Fingerprint

difference-of-arrival [72], angle-of-arrival [72] tecigues, or the RSS location finger-
print [73—75] have been investigated in the literature kefd he findings subsequently
opened the door for further analysis and design of variofiseit localization algo-
rithms which improve the accuracy [69, 72, 74]. We expecilamtrend to follow for
the SSD location fingerprint as well.

The rest of the chapter is organized as follows. In Sectidn e provide a
brief review of our SSD location fingerprint, and discuss logalization algorithm in
Section 5.2. The CRLB analysis and the impacts of various ptiegeof this bound
are presented in detail in Section 5.3. Finally, we presefaction 5.4 the summary

and the conclusions drawn.

5.1 Review of SSD Location Fingerprint

The SSD fingerprint is shown to be robust across differentil@alevices compared
to the traditional RSS both analytically [27] and experinaéigt[25, 27]. Using the

shadowing model, the SSD’s expression can be obtained 4 (

{@] = —100log (%> + [ X, — XT]dB, (5.1)
r1dB dy

whereg is the path-loss exponenty, ~ N(0,07) andX, ~ N(0,c?) are the shadow-
ing variationsp, andp, denote the RSSs at the MN from th& and+" APs, which
are at distances, andd, from the MN, respectively. Note thai, has been substituted
for the notationP(dy) in this chapter to express the formulae in a simplistic way.

If a positioning system hak” APs, there can bé’;) possible SSDs among which
only (K — 1) values are independent. We obtain these SSD value[%e}iésg, k =
{1,2,..., K} — {r}, where the'" AP is considered as the reference AP. The RSS of

ther™ AP is subtracted from the othék — 1) APs’ RSS values to produce the desired
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5.2 Localization Algorithm

SSDs. An intuition about how we select the refererf@P is given at the end of next
section. However, for ease of our mathematical calculatinrihis thesis, we assume

the K™ AP to be the reference AP, i.e.= K.

5.2 Localization Algorithm

We discussed the traditional RSS based Bayesian infereneenscto locate a user
in Section 2.2.6. Our SSD-based localization algorithmust ja slight modifica-
tion on that scheme. We consider our indoor environment tonbdeled as a fi-
nite position spac€c, cs, ..., ¢} with a finite observation spacg, 0o, ..., 0}
We define an observation as a vector of signal strength rgadiver X' APs, i.e.,
oj = {p1,pa, ..., K }, Wherep, denotes the received signal strength fromiHeAP,

Our SSD-based localization scheme is quite similar to the-B&®d algorithm.
However, the observation vector is now/ — 1)-dimensional signal strength differ-
ence readings of the form; = {p, — p,,p>» — pr, ..., Pk — p,} Wherep, denotes the
referencer™ AP’s RSS. Subsequently, the conditional probability of theeyvation
becomespPr(oj|c;) = Hf;ll Pr(px — pr|ci). Unless mentioned otherwise, we adopt
theC-Nearest Neighbors as our algorithm in this chapter whex@a#erage ok loca-
tions having the larges®r(o;|c;)’s gives the location estimate. Note that, thisNN
algorithm is different from th&C-NN in signal space algorithm which was discussed
in Section 2.2.5 and applied in experiments of Chapter 4.

Now, let us discuss how we have modeled the conditional fmibtya Pr(p, —
prlci). We assume the RSS from an AP at a particular location to be ailyriois-
tributed. Though some works defy this phenomenon, othedssepport to it [27, 30].
Similar to other works [53], we also have not observed angiB@ant improvement
when we consider the histogram representation of RSS couhfmaits Gaussian coun-

terpart.
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5.3 CRLB for Localization using SSD

We post-process our training data to be fitted into the Ganssstribution,Z,,, |, ~
N (wix, o), wherepu;, andoy;, being the average and standard deviation of the signal
strength samples collected from th& AP at training locatiorr;. Consequently, we
obtain,

Zpk*pr‘ci ~ N(:u’lk’ — Mir, O—ZZk + 0—127‘) (52)

We select the referencé’ AP as the one which shows the least average deviation of

RSSs over the whole localization area, ire5 min {% Zle afk} ,Vke{l1,2,...,K}.
k

5.3 CRLB for Localization using SSD

It is well-known that the Cragr-Rao Lower Bound (CRLB) sets a lower limit for the
variance (or covariance matrix) of any unbiased estimates)anknown parameter
(or unknown parameters) [70]. & = (z7)" is the estimate of the MN’s location

0 = (zy)", then its covariance matrix is,

o~

Covy(d) = Eo{(6—6)(@—6)T}

2 SO
Oz Ozy

- (5.3)

053 05
where Ey{.} is the expectation operator conditioned @n The diagonal elements
of (5.3) represent the mean squared errors and the off-dégdements are the co-
variances between different parameters.
The lower bound is given in terms of the Fisher Informationti4gFIM) [70]. If

fo(P) denotes the probability density function (p.d.f.) of olvsg¢ions P conditioned
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5.3 CRLB for Localization using SSD

ond, then the score function [70] is defined as the gradient dbgdikelihood, i.e.,

The FIM, J(#) is the variance of this score function,

J<e)—EH—alngg<P>r}

If fo(P) belongs to some exponential family, then, with some regylaonditions

imposed [70], we have,

J(0) = —E{ag—f)}. (5.5)

The CRLB is just the inverse of FIM and from its property,
Covy(6) > {J(0)} (5.6)

Utilizing SSD’s expression (5.1), the joint p.d.f. of th& — 1) independent SSD
measurements can be written as,
d 2
10 p, [101og 24105 log (d—f;)]

|
= Pr - 5.7
s nl0p, P 2%5° NS

fo(P) = 1__[
b1

whereg? = o + o2, p,. andp, are measured in mW scale, i.g,(dBm) = 10log py,

andd[’ﬂ} = %p—”d[&}. Let the FIM be denoted as,
Pr g8 n LU pg Pr

J(0) = . (5.8)
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5.3 CRLB for Localization using SSD

Using (5.7) into (5.4) and (5.5), the entries of (5.8) areaoi®d as,

K—1 ¢ 42
cos ¢ Cos ¢,
k=1 L k T
Joy(0) = Jyu(0)
B Kzl [cos ¢y, _ cos o | [sin ¢y, _ sing,
-7 ds d, ds 4, |
k=1 L :
K1 . . 2
sin ¢y sin ¢,
k=1 L Uk T

Here,¢,. € [0,27) is the angle the MN makes with respect to teAP as illustrated

in Fig. 5.1, antp = (&11?1*51’0)2. vaar(@)K denotes the variance of our location estimate,

then from the CRLB property (5.6), we have,

—~ )\K
var(f), > : (5.9)
K PNk
2
wheredg = S50 (w2 4+ v2), nx = S ud S vd - {ZkK:_ll Ukvk} , U =

[cogee — <2 anduy, = [F3% — *Ler]. The RHS of (5.9) specifies the CRLB of the

MN’s location estimate using SSD for a system havitid\Ps, i.e.,

Cro — K (5.10)
P 1NK

The detailed calculation is presented in Appendix A.1. F(6r0), it is evident that
the CRLB depends on i) the number of ARS, ii) the geometry of the ARy, iii)
propagation model parametetsand 3, and iv) the distance of the AP from the MN,
d,. Next, we elaborately discuss the properties of these peteasion location esti-
mation error bound. Using the findings, we provide insights positioning system
deployment issues, and also propose a modifiellN scheme that shows improve-

ment over theC-NN algorithm.
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5.3 CRLB for Localization using SSD

Kh Ap
Q7

Figure 5.1: Definition of angléy.

5.3.1 Impact of the Number of APs

Theorem 5.1. The introduction of an additional AP with parametés; . 1, ¢x 1) re-

sults in the reduction of the CRLB exceptwhgn | = ¢, = ¢, Vk € {1,2,..., K}—
{r}.

Proof. When an additionalK + 1)™ AP is added to the system &f APs, the CRLB

can be represented as,

A
Cryg = —2HL (5.11)
P NK+1

K-1
Whel‘e/\K+1 = )\K—F(u%@rl _’_U%(-H) and’l]K+1 = 77K+(U%(+1 Zk:l ui—2-uK+1 “VK4+1°

S gt ude S v?). Our goal is to prov€x —Cry; > 0. Subtracting (5.11)

from (5.10), we obtain,

K—1
Ck —Cxy1 = {U?ﬂ-l (AK Z up — 77K> +ufey -

=1
K—1
<)\K Z vy — 77K> — 2UK 41 VK41
=1
K—1
AK Z Ukvk} /(P i i) (5.12)
=1
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5.3 CRLB for Localization using SSD

The denominator of (5.12) is non-negative sipce 0 (see Eq. (A.2)) andx, nx 11 >

0 because of the following inequality,

K K K 2
Zuinﬁ - {Z ukvk} >0 (5.13)

The induction proof of the above inequality is shown in ApgignmA.2. To prove the
non-negativity of the numerator of (5.12), we use the follgpnequality into (5.12)

(see Appendix A.3 for proof),

k=1

K—1 K—1 K-1
<>\K Z ui — 77K> </\K Z v — 77K> > Ak Z U Vg (5.14)
k=1 =1

Subsequently, we obtain,

K-1
Ck — Cr41 {UK+1 (AK Ui - 77K> + u%(-i-l'

(5
(S (v )]

/ PNk - 77K+1)
k=

K-1
= UK+1 K E u — UK+1°

N

-1

v ) — 2 Uk41 " VK41°

£
Il

1

Q

1

2

J )‘szk UK)} /(P MK - Nrc41)

0. (5.15)

v

The cas&;; — Cx1 = 0 arises only when both the equality conditions of Eq. (A.6)

and (5.15) hold. These two equalities are satisfied onlyHerstenariopy .1 = ¢, =
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Figure 5.2: Localization accuracy improves with incregsimamber of APs.

or, Yk € {1,2,..., K} — {r}, i.e., when all the APs are collinear (see Appendix A.4
for detailed calculation). Therefore, except for this attan, the introduction of an

additional AP indeed lowers the CRLB of the location estimate. ]

Fig. 5.2 shows the experimental results (conducted in @ibéel of Fig. 5.3) of
localization accuracy as we vary the number of APs. It showsatonic increase
in localization accuracy as the number of APs increasess &kperimental result is
completely in sync with the findings of our CRLB analysis. We dased/C-NN
algorithm discussed in Section 5.2 as our location classkiewever, from the pattern
recognition theory [57], it is well-known that the dimensiof the feature vector (i.e.,
number of APs in our case) cannot be arbitrarily increasethieve better accuracy.
As a matter of fact, we have not seen any improvement in [patdin accuracy when

the number of APs is greater than ten.
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5.3.2 Impact of the Geometry of APs

When¢, = ¢,Vk € {1,2,..., K}, we see that the FIM (5.8) is singular. In other
words, if all the APs lie on a straight line w.r.t. the MN, thére location estimation
error bound (5.10) is the largest.

Optimal geometry occurs when the MN is situated at the ceofter K-sided
regular polygon where the vertices of the polygon indic&ie positions of the\
APs. In this setting, we havel, = d,Vk = {1,2,..., K}, and> 1, sin (h¢y) =
S cos (hey) = 0, for any integer > 1. Let us assume, = 0°, then the FIM (5.8)

takes the following form,

p 3K

2

J(@):ﬁ . K (5.16)
2

Using the terms of (5.16), we obtain the lower bound ot@)a,{ as%, which suggests
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5.3 CRLB for Localization using SSD

that it decreases with increasirg. In other words, the lower bound for a square
configuration of the APsK = 4) would be smaller than that of an equilateral triangle
configuration { = 3). Moreover, the lower bound may also decrease for the same
number of APs’ setup where they are closer to the MN (i.elecreases) compared to
the scenario when they are farther.

In Table 5.1, we list the average localization errors whendbuilateral triangle
configuration of the three APs is considered for four diffétesting sets (the circular
regions in Fig. 5.3). The testing set near the centroid okti@lateral triangle (Set 1
in Fig. 5.3) performs the best, which complies with the asialyere. Therefore, the
system administrator may place the APs in such a way that sesab them creates
regular polygon with “popular area” being the centroid oflitere, we have investi-
gated the optimal APs’ geometry from the CRLB perspectivequ§8D as location
fingerprint. Experimental finding on optimal placement ofsMiBr localization with
traditional RSS fingerprint can be found in [76, 77] which se@imilar trend.

Table 5.2 shows the average localization errors for themggtand worst-case
(collinear) configurations of the APs for a particular tegtset (Set 1 of Fig. 5.3),
which also supports our analysis. However, the collineanfigaration of the APs
is found to be better for signal coverage [77]. Since botla gammunication and
providing location service would be the responsibilitiéadVi-Fi infrastructure, the
system administrator needs to take these conflicting reoquents into account during

deployment.

5.3.3 Impact of the Propagation Model Parameters

From (5.10) and (A.2), itis evident that, if the shadowingaace of SSDg increases,
then CRLB also increases. A lower value of path-loss expofiemtreases the CRLB

as well. As a result, the location estimation error boun@i@pwould be larger in both
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5.3 CRLB for Localization using SSD

Table 5.1: Average localization errors when differentitessets are used for optimal
configuration of the three APs (the equilateral triangleign B.3)

Testing Points’ Set | Set1| Set 2| Set 3| Set4
Average Error (in meter) 2.95| 3.31| 3.33 | 3.71

Table 5.2: Average localization errors when the optimajtar polygon) and worst-
case (straight line) configurations of the three APs are used

Configuration | Average Error (in meter
Regular Polygon 2.95
Straight Line 4.02

cases. On the contrary, when the RSS shows less fluctuatieng (i), the location
fingerprints tend to be more consistent and are likely to pecedetter localization ac-
curacy. Also, the shadowing model of RF propagation perfdyetter indoors (larger
) compared to outdoor environments. Similar effects ofélpegameters are observed

on accuracy for RSS based localization as well [19, 69].

5.3.4 Impact of the Distance of an AP from the MN

In this section, we first analyze the impact of APs’ distarme$ocalization accuracy
from the CRLB perspective. Subsequently, we utilize the figdihthis analysis to
defineweightsfor the weighted least squares (WLS) approach which is shovum-
prove localization accuracy both analytically and expentally. Finally, we take all
these findings into account in order to modify dCiNN algorithm in Section 5.2 that
reduces the localization error further.

Under optimal geometric configuration of the APs, it has tsssmn in Section 5.3.2
that, the setup with APs closer to the MN yields a reductioim&éCRLB compared to
the setting where the APs are farther. Now, let us invesitieg effect of the distance

of the MN from an AP in a more generic scenario.
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5.3 CRLB for Localization using SSD

Theorem 5.2. The decrease in any of the distandg’s of the APs from the MN results
in reduction of the CRLB. Specifically, df, = ady, 0 < o < 1, the new CRLB

satisfies,
Cxr <Cx (5.17)

Proof. Suppose the referene® AP is the farthest from the MN, and for the ease of

our calculation, we assumg — oo. From (5.10), we have];; = where)\K =

A1t E andng = nx_1+vk Z? 12 u% +uf Zf 12 Ui%; +2-ug Uk {Zkzl UV §
Because of our assumption, the identitigsand v, take the following formsyu, =

_Cosjk andv, = —Sigfk. Similarly, the new CRLB can be written &S, = pAK’ where

1 2 K-2 9 K-2 9
)‘K’:)‘K—l"i_mandm«:nK—l—H)K’Zk LU uRe D el VR A2 g v

{312y wgvi} and the identitiesy o = <25 anduy = S22k,

dg

Our goal is to prov€ — Cx» > 0. Using the CRLB expressions, we have,

Al — Agr
Ci — Crer = “KIE — ARMIE (5.18)
PNk - Nk

The denominator of (5.18),- nx - nx» > 0. Now, we have to prove that the numerator

of (5.18) is non-negative. The numerator can be simplified as

AKNK — AKMK

= (vin — vk <>\K 12% N — 1)
(UK/ - (AK 12% NK— 1>

K-2
— 2)\K—1<UK’UK’ — uKUK) {Z ukvk} . (519)
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Using the following inequality,

K-2 K-2
J (ufer — uj) (Vi — V%) ()\K—l Z Ui — UK—l) ()‘K—l Z up — ﬁK—l)
k=1

k=1

K—2
> Ag—1(Ug Vg — UgVE) {Z Uk;Uk} (5.20)
=1

in (5.19) (the proof is shown in Appendix A.5), we obtain,

K-2
Cxk —Cxgr > (U%(/ _U%{) <AK—1ZU%_7]K—1)
k=1

2

— | (uf — uk) (AK—l i Vi — 771“)
\ =1
/(P K - Nkcr)

> 0.

The cas& — Cx: = 0 arises whenv = 1 (i.e., dx = dk) as the numerator (5.19)

becomes zero. ]

5.3.4.1 Weighted Least Squares (WLS) Approach

The CRLB given by (5.10) provides a benchmark for comparingpgrormance of
location-estimation, but does not explicitly describegisémator that achieves it [70].
In this section, using the impact of a closer AP in definivgjghts we emerge with a
WLS estimator that is shown to perform better than LS estimadith analytically and
experimentally.

Let the coordinates of thek + 1) APs, 0, = [zeui]”, k = 1,2,..., (K + 1)
be known, and the MN’s position & = [z y]". The distances,’s between the MN

and theK APs (excluding the referenc& AP) are calculated by means of linear RF
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5.3 CRLB for Localization using SSD

propagation modeling using (5.1) a{sgﬁ} e alogdy + b, wherea = —105 and we

assumeé = 105 log d, + [ X, — X,]45. Therefore, we hav&” equations of the form,
1O —=06 [P =101+ 1| 0k |I” =200 = df, k=1,2,..., K.

Taking the difference of each of the abokeequations, this system transforms into a

set of (%) linear equations,
2006 = 0)" 0 = (Il 0 1" = 1| 60 |I°) — (di — di).

The above set of linear equations is of the faym= X0, wherey is a column vector
of length (%) whose components are frofii 6, ||* — || 6; ||*) — (d7 — d?), andX is a
(5) x 2 matrix whose rows are from the sgx(6, — 6,)"}, k=1,2..., K —1, 1 > k.
The observations can be representedjas, X' + A/, where\ is a zero-mean noise
column vector of Iengtt(g). The general weighted quadratic risk function is of the
form,

R(@)wis = [(y — X0)" W (y — X6)] (5.21)

wherewis a (%) x (%) symmetric weight matrix. The WLS estimate of the node’s
location is given by [78],

0= (XTwax) " aTwy, (5.22)
and the covariance matrix [78],

-1

Tyis = (XTWX) T XTWAWX (XTWX) (5.23)

When the observation errors are uncorrelated, the weighibxxaV, is diagonal. The
resulting estimator is theest linear unbiased estimat@BLUE) if the weight matrix

is equal to the inverse of the covariance matrix of the olzgem errors [79], i.e )V =
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Figure 5.4: From a distant position, A brought closer to the testing set which is
indicated by the circular region. The other APs’ positiorseollinear.

A~!, whereA is the covariance matrix of the observation errors. Usirg ithentity
in (5.23), the best linear unbiased estimator's covarianag&ix can be represented
as,Yelug = (XTA*X)_I. Using matrix algebra, it can be shown that for any other
choice of the weight matrixV [79], ¥gLue < Ywis.

Let us consider the scenario of Fig. 5.4 where, Adfirst stationed far from the
testing set. Suppos#’ is defined as the inverse of the covariance matrix of the ebser

vation errors:

ie? 0 0
WA= 0 o (5.24)
1
Y 0 o
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Consequently, the matrix” A~ X can be evaluated as the following,

r K-1 2 K-1 7
Z (zp — 21) Z (xr — x) (Y — )
= 0%+ of — 0% + of
XTA X = vt S RSk , (5.25)
Z —x) (Y — Y1) Z Yk — )
P o+ o? Pt o+ o?
SI<K E<I<K J

Now, suppose APis brought closer to the testing set (i.e., MN) as shown in 5i4.

Let us denote this new distance#isand the corresponding observation error variance
and covariance matrix asf and A’, respectively.)V is expected to vary due to the
observation in localization literature [17] that, the m&a@snent errors associated with
the closerd] calculation are generally less error-prone than that otitstantd, case,
i.e.,0}® < o,2 For ease of calculation, let us assume that the new (clpssijion

of AP; and its old (farther) position are symmetric to each otheéhwespect to the

straight line formed by the other APs. So, the new matffx\’ ' X' takes the form,

( = (x) —x s (x1 —
(XTAlle) _ Pk ™ L) l _|_ 1— l
1 kz:; op + o} zz; o>+ of
k<I<K
K-1 K
XTA/_I)C' _ (mk - l‘l)(ZJk - yl) + (CL’ - ZL‘[)(@A - yl)
( )1 ; o2+ o? 122 o>+ o?
T A—1 k<I<K
T w @-m)m - | v )i — )
YTA LYY K — X k—z+ 1Y
( )21 kz:; op + o} Z o’ + o7
k<I<K
K1 (o — ) K
(XTN X)), = Lo w)
22 pt 0% + o} ZZ o}’ + o?
\ k<I<K
(5.26)

Using (5.25) and (5.26) and the identity® < o2, it can be easily seen that,

the matrix (X7A’~'x — XTA-1X) is positive semidefinite. Therefore, we obtain,

—1 1

XTA 'Y > XTA-1X which in turn yields(XYTA 7 X)) < (XTAIX) 7 e,
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Vg ue < WgLue. In other words, considering an AP closer to the MN rathentha
distant one produces a smaller covariance matrix, therebylting in abetterestima-

tor. Fig. 5.5 shows our experimental results which strestiinis fact. We see that,
the localization accuracy improves for both LS and WLS apginea when a near AP
is considered in place of a distant one. Moreover, WLS’s perémce is better than

the normal LS approach. We conclude this section with someauries:

Remark 1. The least squares’ (both LS and WLS) results in Fig. 5.5 aresgvtinan
the IC-NN. We attribute this inferior performance to the simple #in®F propagation

model we have used in LS approaches to infer the distafices

Remark 2. The measurement errors iV (5.24) are calculated as deviations of the
real and predicted distances between the MN and the APs. hgdm, we have as-
sumed the real distances between the MN and the APs to be knowaim ig/hisually
not true in practice. Our modifiell-NN algorithm (described in the next section) does

not suffer from this issue.

5.3.4.2 Maodification to theX-NN Algorithm

It has been seen in Theorem 5.2 that the CRLB is reduced whennggeo a closer
AP compared to a distant one. We also applied this propegyell-known estimator
algorithm (WLS) in the previous section, and show that itsusacy improves, both
analytically and experimentally.

Utilizing the above two observations, we modified &i+NN algorithm presented
in Section 5.2 into a weighteld-NN scheme where the conditional probability is now
changed taPr(o;c;) = T[] { [ﬁ - Pr(p; —pr\ci)] / (Zle ﬁ)} Here, L is the
number of training locations and (v > 0) is the weight exponent. The weight is
chosen in such a way that the closer APs are given more impuatdVe have chosen

~ empirically as 2. Note thaty = 0 transforms our weightef-NN into the normal
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Figure 5.5: Average localization errors of four differetgaithms for two different
placements of AP(near vs. far as shown in Fig. 5.4). The testing set is indataty
the circular region in Fig. 5.4.

IC-NN algorithm. The rest of the algorithm is exactly similarthe one described in
Section 5.2.

Fig. 5.5 shows that the weightéd-NN (wiX-NN) algorithm’s performance is
better than theC-NN (see the first two pairs of bars from the left). Moreovée t
localization accuracy of the &~NN is further improved when one of the APs (AP

can be placed closer to the testing set.

5.4 Summary and Conclusions

In this chapter, we studied the CRLB of localization using SSbaation fingerprint.
We investigated the effects of various parameters (e.@ntify and geometry of the
APs, the distances of the APs from the MN, etc.) of this boumdbealization error.

Subsequently, we utilize one of the findings of our analysisch reveals that a closer
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AP to the MN is moramportantfor localization purpose compared to a distant one,
in order to define weights for aXi+NN algorithm. Moreover, we also provide design
phase suggestions for various geometric configurationjaadtities of the APs by
revealing error trends associated with them. In short, oatysis and experimental
results provide valuable insights into the localizationfpenance and deployment is-
sues of a positioning system based on SSD. We expect SSD he Ipedferred choice
of location fingerprint over RSS if a positioning system aimpitovide services to de-
vices with heterogeneous hardware solutions. Our anaysigindings in this chapter
should open the door for further analysis and designing wbua efficient localization

algorithms where SSD is chosen as the location fingerprint.
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Chapter 6

Shorter Training Phase

As discussed previously, majority of indoor localizati@thniques that rely on in-
building communications infrastructure (e.g., Wi-Fi, Bioeth, etc.) utilize location
fingerprinting techniques [9,17,18,20,25-27,30], wheraeslocation-dependent sig-
nal parameters are collected at a number of locations asidacéngerprints in an
offline training phase. During the online location estiroatphase, the signal param-
eter obtained igomparedwith those training data to estimate the user location. The
procedure of creating the training database of signal petens entails a laborious
offline phase because the location system administratalsneetake readings at ev-
ery selected location of interest. Moreover, if for any usBeeable reason, the setup
changes (e.g., due to renovation, rearrangement of fueniaic.), the whole training
phase needs to be repeated again in the changed environiemteed for an ex-
haustive training phase can certainly limit the mass deptayt of a fingerprint based
positioning system. Moreover, the accuracy offered by tesysvhich is under-trained
may not satisfy the requirement of various location depahdpplications.

In this chapter, we propose two ideas that try to relievetsimothe exhaustive
training phase typically seen in the fingerprinting techieis, In Section 6.1, a sim-

ple linear regression interpolation technique is appleethtilitate under-trained posi-
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tioning systems. We investigate the possibility of buitga positioning system from
scratch or fine-tuning an under-trained positioning systiemmugh user participation

in Section 6.2.

6.1 Interpolation Technique

As mentioned earlier, one of the key objectives of fingetpbased positioning sys-
tems is to shorten their training phase. In this section, kesvghat samples collected
at the APs considering only a few training locations couldsb#icient for achieving

reasonable localization accuracy with the help of properpolation techniques.

6.1.1 Fictitious Training Points

A few prior works in the literature [26,80] have attemptedimrten the training phase
of a positioning system. They contend that, rather tharopeihg an exhaustive sur-
vey to create a location fingerprint database that requubstantial cost and labor,
one could simply collect a limited number of readings. Halelveet al. [26] achieve
this goal by dividing the whole area into rooms/cells, tlhgrémiting the location
estimates to room-level granularity. On the contraryetial. [80] try to complete
the database using interpolation of readings taken at ataeing points. Our work
has adopted the latter approach. We hold the view that arpoitgion-based train-
ing approach may stand out when the environment or setupgelsanNormally, in
such scenarios, the location services may have to be susgentile waiting for the
creation of an appropriate location fingerprint databaaé rtiodels the change. This
procedure is both time and labor intensive, and the sernagentime might be long.
On the contrary, the positioning system administrator nfayose to continue location
service provisioning by performing a rough survey (i.ekjrig a few samples) in the

changed environment or setup, and fill up the voids in thaitmgidatabase with the
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help of interpolation-based techniques. The database heaylie augmented incre-
mentally by taking more samples until the positioning sysechieves a reasonable
accuracy. Liet al. [80] have only used some intuitive guidelines to generagseh
fictitious training points. In this thesis, we have used weighted limegression in
order to obtain a better fit for thogetitioustraining points, by exploiting the spatial
similarity [30] of signal strength distribution.

Using the path-loss model without the shadowing variatiof@ d.), we can write,

P(d)|gem = —105log(d) + P(dp)|daem + 105 log(dy), (6.1)

whereP(d)|¢sm denotes the average RSS perceived at a distafroen the transmitter
and the other symbols have usual meanings as discussediornsed. Based on (6.1),
we fit a linear regression model of the type- ax + b, to predict the RSS perceived at
an AP, wherg) = P(d)|ggm, @ = —108, = = log(d), andb = P(dy)|gsm+104log(d).
We denotdfictitious training pointsas those training points in the database that
are generated using interpolation from the actual traisagple sets. In order to
deduce a fictitious training point each AP’s RSS is formulated according to (6.1),
exploiting the signal strength values collected at the AR the training phase. For
example, if there ar&” APs, K different regression equations will be formed in order
to deduce a single fictitious training point’s fingerprinthelfunknown parameters,
i.e.,a andb for each AP, are approximated usingighted least mean squameethod
applied on the training data. Our target is to minimjzew;;(y; — ¥;)* wherey; and
y; represent the actual and predicted signal strengths, aisgg, at a particular AP
for the i real training point. The weightsy;;’s, are assigned utilizing the spatial
similarity of signal strength distribution reported in &ization literature [30] which
basically states that the RSSs observed at neighboringdasaend to exhibit similar

properties. In our experiments, we have chosen the weidig toversely proportional
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to the distance between a certain fictitious pgimind the actual training point(i.e.,
#). Consequently, for each fictitious point, the closer reaihing points contribute
more heavily in formulating the APs’ regression equati@esnplying with the spatial
similarity property mentioned earlier. Once we have appnated the signal patterns
of the APs regarding a certain fictitious point (i.e., evéduhe values ofi's andb’s of
their linear regression formulae), we would just plug in dietance of that particular
fictitious point from the corresponding APs in order to obtés fingerprint. Note
that, each fictitious point has a different set of regressmetficients for thei’ APs’
signal patterns. This is due to the fact that the weighiss, that are associated with
the actual training samples in the minimization formula\abare different for each
fictitious pointj. The detailed calculation of a fictitious training pointaderprint is

presented in Appendix B.

6.1.2 Experimental Results

In the previous section, it was argued that the applicatfqgraper interpolation tech-
niques could enhance an under-trained positioning systaoturacy immensely. In
that regard, our simple linear regression based methodnpesfvery well as mani-
fested in Fig. 6.1(a) and 6.1(b). This experiment is congllighside our Testbed 1
which offers both Wi-Fi and Bluetooth functionality. As caa been, when fictitious
training points are utilized, the use of merely 20 real frajnpoints are sufficient to
achieve the same level of accuracy as a positioning systémasimany as 62 training
points. For producing Fig. 6.1(a) and 6.1(b), a fixed numlbéicttious points & 60)

scattered over the testbed uniformly, are introduced dégss of the number of real
training points. The real training points are selected oamg from the(62+44) = 106

data points, and then the 44 testing samples are chosenmgntfom the rest. For

each combination (i.e., 4, 10, 20, etc.) of real traininghpxiwe repeat this proce-

93



6.2 User Feedback based Positioning System

9 T T T 9 T T T T T T
With Fictitious Points -~ § With Fictitious Points -
8l Without Fictitious Points ----- B gL % Without Fictitious Points ---&-- B
7t 1t % g
A [ :
g el & g el o
£ g £ .
£ 5t X - £ s5¢ g
5 ] 5 . . L]
g “ = B R —
w 4r o w 4r
) e R T L " <3
g 3r T T S — g g 3r
2 2
2 F 2 F
1r 1r
0 . . . . . . 0 . . . . . .
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Number of Real Training Points Number of Real Training Points

(a) Bayesian algorithm’s performance with an@) Bayesian algorithm’s performance with and
without fictitious points (Bluetooth). without fictitious points (Wi-Fi).

Figure 6.1: Bayesian algorithms’ performance correspandtinvarying number of
real training locations for Wi-Fi and Bluetooth.

dure for 101 times to obtain the averages witt¥% confidence interval as shown in
Fig. 6.1(a) and 6.1(b). The inferior performance of Wi-Fiqmared to Bluetooth can
be attributed to the fact that the number of samples coliezteach location for Wi-Fi
using our own program was quite insignificant for TestbedHer&fore, we might not

have been able to capture the Wi-Fi signal characteristicsrately.

6.2 User Feedback based Positioning System

In this section, we propose an idea where the end-users taallgcontribute to the
construction of a positioning system incrementally, aslaslthe fine-tuning of an
under-trained system. We definser feedbachks the information about a user’s actual
position as indicated by the user to the system, either@iglor implicitly.

We claim that the contribution of users’ feedback to any fimsing system is two-
fold. Firstly, user feedbacks greatly help in fine-tuninguader-trained positioning
system with proper filtering of the malicious feedbacks. dbekty, if users aravell-
behavedour experimental results show that the participation afegers can actually

assist in the construction of a positioning system increaigrfrom scratch. UCSD’s
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ActiveCampus project also tries to solve the indoor loc#lraproblem with the help
of user feedbacks [81]. They utilize the corrections madedsrs on their estimated
positions similar to us. However, their interpretationtod uiser’s correction is simply
a location and its received signal strength (RSS) signatairegpmilar to a traditional
training sample, which is completely different from how wéeirpret user feedback.

We contend that the combination of user feedback togethtr mierpolation
methods could eliminate the need for an exhaustive traipinage, as the need for sig-
nal strength survey by administrators has been the key dbdtar the mass deploy-
ment of fingerprint based indoor positioning system. Outesyiscan be particularly
beneficial for large area deployment where it is quite denmaoin the system admin-
istrator’s part to visit all the possible areas and tirdiepgrform the training phase.
A user’s feedback may not always truly reflect his/her adtuadtion either due to the
user’s carelessness while giving feedback or deliberhisténtions. Therefore, we
define a Region of Confidence (RoC) with each estimated positipnoiade a mea-
sure of likelihood of a user’s position, which is not just fus¢o the user when they
give feedback; but also helps to assiadibility to each individual feedback in order
to aid its incorporation into our system.

The important issue of adapting the positioning system &essly when its sur-
roundings change (without performing the entire trainitngg®e all over again), has
been overlooked in most fingerprint-based localizatioeaesh. In our work, we em-
phasize that, a positioning system that exploits user fagdbwould guarantee rea-
sonable performance over a longer period even if its sudiogs change. This is
crucial as the environments in a real system could congtahtinge, and it will be
very difficult and demanding if system administrators neednbnitor such changes
and having to perform the signal strength survey all oveirageery time it changes.
Apart from the above novelties, we have also denoted thekgirength signature of

a user feedback in an efficient way and proved it analyticditythe following, we
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summarize our objectives:

e We try to relieve the exhaustive training phase of a trad#ldingerprint-based

positioning system through user participation in both exphnd implicit way.

e We show that user feedback can greatly help in fine-tuning ratemtrained
positioning system which is already in operation. Morepueder certain as-
sumptions on user behavior and with the help of our intetpaianethod, we
show that a positioning system solely based on user feedinaté be built from

scratch.

e We also show that, with the help of user feedback, changesiawndings could
be detected, allowing the system to adapt to the new envieahin a seamless

manner.

We hold the view that, there are many factors that could ratgia user to input
feedbacks to the system. There can also be some indirectavaipain user feedbacks

too. We list a few in the following:

e In an indoor scenario, a user may know where he/she is atrrdagt he/she
may wish to obtain the route to another place within the samlklibg from
there. By inputting a more accurate starting point than whasystem suggests,

he/she can obtain a more refined route from the system.

¢ In a commercial system, a user who volunteers to provideb@edin an area
he/she is familiar with, may earn credits for using the posihg service in an

unfamiliar area later on.

¢ In a “location-based” social networking environment, gyifeedback may fa-

cilitate the system to reveal nearby friends and placegefest more accurately.

96



6.2 User Feedback based Positioning System

e User trails as in [82] could be utilized to provide impliogddback. In [82], the
user trail is recorded as an ordered sequence of landmarks &ecess points
(APs), card readers, etc.) where he/she has visited. Toulatena user feed-
back from trails, we could collect the signal strength sasmf a user device
between the user’s visit to two successive landmarks. Simeetart and end
positions of the user are known (i.e., the two landmarksitpss), the inter-
mediate locations could be interpolated by applying sonseragtions on the
user movement (e.g., constant speed). Subsequently, ititeggolated loca-
tions could be correlated with the signal strength sampdeated and treated

as user feedback.

e Various landmarks (e.g., APs, tags, card readers, etdalled at several fixed
positions in the building could act as continuous sourcaspficit feedback as

well.

6.2.1 User Feedback Model

As previously mentioned, user feedback is the informatiooud a user’s actual po-
sition as indicated by the user to the system either exiyliort implicitly. In this

section, we discuss how the user feedback is visualized &qguositioning system’s
point of view. Whenever a user inputs feedback to the system,interpreted as,

F=(L,S,w), where

L = [zy]" = the position indicated by a user,

S =[98 ... EK]T = the RSS signature of the feedback captured
at the K APs,

w = the degree at which a system believes the feedback, i.e.,

the credibility or weightof each individual feedback.
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Next, we elaborately discuss all three components of a esdbfack in Section 6.2.1.1,

6.2.1.2 and 6.2.1.3, respectively.

6.2.1.1 Location Indicated by User.

While giving a feedback, the user indicates his/her actusitipn. This location infor-
mation is interpreted by the system as Cartesian coordifiatesx y]T) in an indoor
environment. In practice, there might be some uncertamielved when a user tries
to indicate his/her actual position at the time of providiegdback to the position-
ing system. These uncertainties might arise owing to thelessness on the user’s
part while pinpointing his/her location on the map, or he/shay deliberately pro-
vide inaccurate location information. We will discuss twiffetent user models in
Section 6.2.2.3 which try to broadly emulate these two tygfasser behaviors while

providing feedback.

6.2.1.2 Signature of a User Feedbacl§

We first discuss our choice of a user feedback’s signature ttzen prove that it is
an efficient one. During the offline training phase of a fingetgbased positioning
system, we know that the system administrator positionséiffherself at a particular
location of interest for the RSSs to be measured at the APs.RB&s perceived at
the APs actually denotes the signature of that particulzation. We also utilized the
RSSs measured at the APs during a user feedback to denotgniééuse in a similar
way taking into account some additional details. For examipl order to denote the
signature of a user feedback, we sample the signal strepgtiosived at APs over a
5-second window, and instead of using a single sample frath A®, themeanof all
the samples over the 5-second window has been used. Fudterthe time when a
user clicks his actual position in the map is treated as theianeof that window. Our

approach is taken in view with the following facts:
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14 + -

Number of samples

12345 12345 12345
Time instances of 3 different 5 sec. time-windows

Figure 6.2: Number of samples collected per second ovee thugec windows. It can
be seen that, some slots are empty.

e Whenever a user clicks to input feedback, it is reasonablegsorae that he/she
has been at that particular location for a while. Hence, wee tehosen the
clicking instant of the user as the median of the 5-secondlevin rather than

the beginning of the window.

e The probability that an AP fails to collect any sample frore tinobile node
(MN) during a user feedback is greatly reduced as well. Fig.shows some
cases when our AP failed to receive any sample from the MNimvitkertain
slots of a user feedback’s time-window. If the probabilitatan AP receives a
sample from an MN ig, then the probability that an AP receives at least one
sample within the 5-second window can be expressetl as;1 — ¢)*", where
m is the number of packets sent by the MN within a 1-second sidtesach 1-
second slot is assumed to be independent. For examples i6.5 andm = 2,

the probability of getting a sample at the AP during a usedibeek increases
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Figure 6.3: Histogram of signal strength samples receivethaP when the mobile
device used in training is stationed at a particular locatio

from 0.75 t0 0.999 when a 5-second window is considered compared to 1 second.

e Capturing more samples should provide more information ebelsignal strength
distribution at a particular location, which generally laasil (see Fig. 6.3). The

use of just a single sample would be unlikely to work well.

e Themeanof all the collected samples’ signal strengths inside thetivindow
is an efficient unbiased estimate of a user feedback’s signabmpared to any
other linear combination of the samples’ RSSs. This can beeeawith the

help of Theorem 6.1.

Theorem 6.1. Suppose,. denotes the signal strength distribution of the samples col
lected at thek™" AP during a user feedback. #,; specifies thé" sample’s RSS of the
n samples observed inside the time-window at that AP, thenrtearlcombination of
observationsy ", a;;Sk; is an unbiased estimate &f(Sy) given) " | ay; = 1. Itis

also the most efficient one whep = 1,Vi € {1,2,...,n}.
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Proof. The linear combinatiof} ;" , ax;Sk; is an unbiased estimate 6fS;,) because,
EQ 7 ariSki) = > iy ai E(Ski) = E(Sk) > iy ari = E(S). Since the estimate is
unbiased, then the particular combination that is mostieffias the one which mini-
mizes the variance, i.e., @, ax;Ski) = D5, ari® Var(Sg;) = var(Sg) > i, ar’.
Consequently, the problem can be reformulated as, minifiZe, ax;*> subject to
>, ar = 1. Now, using basic optimization theory, it directly followlisat the par-
ticular linear combinatior’ln >, Ski, or the samplemean S, is the most efficient

unbiased estimator df(.Sy). O

Corollary 6.2. If S, is an efficient unbiased estimate of the signal strength &shp
signature collected at the" AP inside a time-window, then for a positioning system
with K APs,S =[5, S, ... SK]T is indeed an efficient unbiased estimate of a user

feedback’s signature.

Proof. Corollary 6.2 can be realized by extending Theorem 6.1 fothalX APs,
together with the assumption that the APs are independezdalf other [30]. n

6.2.1.3 Credibility or Weight of a User Feedbackuw

Without the credibility factorw, a user feedback is typically a traditional training sam-
ple of location and RSS signature pail, S) from a positioning system’s perspective.
The traditional training samples are generally collectg@ Ipositioning system’s ad-
ministrative people. Therefore, all the samples are tcbaith equal importance. On
the other hand, the sources of user feedbacks can be diffenéities (e.g., system
administrators, normal users, intruders etc.). Consetyghere should be certain
credibility factor associated with each feedback given, a measure for the system to
believe that the user is actually at his/her claimed pasitio many ways, this approach

is similar to alocation verificationtechnique which ensures that the claimed source

location is associated with a high level of trust. Existiogdtion verification tech-
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niques [83—86] either accept/reject a source’s locatiamtl They generally require
specialized hardware (incorporated with non-RF technelgo verify a source’s lo-
cation claim more precisely [83, 84] or the accuracy levehimi which the location
claim is verified, is set to be quite large [85, 86]. Howevarr positioning system
has certain implications which makes the use of these lmcagrification techniques

infeasible:

e Our positioning system is built upon RF technology (Bluetpptieferably using
off-the-shelf hardware in order to provide location seevin a cost-effective
way. Consequently, the more precise solution to verify atlonaclaim with the

help of specialized hardware is not applicable.

e The accept/reject policy of the existing location verifioattechniques would
restrict the user feedback to have only one of the two extremhees, i.e.w €
{0,1}. If a strict margin is set for incorporating the user feedhdben many
useful feedback might be filtered out. On the contrary, ifgddolerance level is
set, many malicious user feedback might be incorporatediwtmiay ultimately

cause the actual accuracy offered by the system to deteriora

Therefore, instead of an accept/reject policy of the existocation verification tech-
niques, we come up with a strategy which assiggiative weights to the user feed-
backs utilizing their credibility. Later on, it will be shawthat, this approach actually
helps in fine-tuning an existing positioning system to aahiketter accuracy. Next,
we elaborately describe how the user feedbacks are asgigla¢ide weights based on
their credibility while being incorporated into the system order to realize this, we
first describe the “Region of Confidence (RoC)” concept, whictssghently helps to

derive our weight assignment policy for each individuadfieack.
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Region of Confidence: We define a system parameter, RoC, which gives a measure
of the system’s overall accuracy and precidiowe express RoC as a two-parameter
entity, i.e., (e, p), where the parameters andp, denote the accuracy grain size and
the expected precision of the system, respectively. Inliat#on literature, the term
“accuracy” generally indicates the grain size of the poasiinformation provided (in
some works, the accuracy grain size is referred as “lodaizarror distance” as well),
while the term “precision” specifies how often we could attdiat accuracy [6]. For
example, if a positioning system can determine positiorthiwi3 meters for about
90 percent of the measurements, that particular systenifiggdab be 90% precise in
providing 3-meter accuracy. Intuitively, a higher presiswould compel the system
to provide a coarser accuracy, and similarly, in order tadeaehfiner accuracy, the
system may turn out to be not so precise. We define RoC in a wagdhaiders both
requirements, in order to facilitate our feedback-basegitipning system. In general,
RoC provides a measure of likelihood of a user’s estimateiiiposnd also influences
the weights that would be associated with the feedbackshwiecdescribe later.

In order to create the “Precision vs. Accuracy” graph of big(a), which we term
as “RoC profile graph”, first we assume that our positioningesysis already in an
initial state with some training samples. Now, we inspecpirformance whewell-
behavedusers’ (whose claimed locations do not deviate from theiualdocations
by a large margin) feedbacks are incorporated into the systeorder to obtain the
“RoC profile graph”. It can be seen that, the shape of our “Ro@ilprgraph” has a
similar trend as those “Precision vs. Accuracy” curves tbimexisting localization
literature [32, 87]; it shows that the precisign,increases with larger accuracy grain
size or localization error distance, Intuitively, the “RoC profile” may not be fully

reflective of the system’s actual state with only a limitedntner of user feedbacks. As

Note that, our definition and purpose of RoC is quite difféfemm an earlier work. In [21], RoC
was formed utilizing simple geometry in order to figiltasing i.e., to eliminate physically different
locations which have similar signatures in signal space.
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we gather more and more user feedbacks, we can approxinedtediC profile” more
accurately (using the feedbacks as both training and teséimples). In the following
section, we depict how the “RoC profile” has been utilized towéethe trend of the

credibility to be assigned to a user feedback.

Feedback Weight Assignment Policy: Since user feedbacks may contain dubious
information, we should not treat all feedbacks with equadantance. Whenever a user
claims to be at a particular location via feedback, thatrimiation is associated with
a certain degree of credibility. In order to calculate thsdibility factor, consider a
positioning system wherne user feedbacks have been utilized as test samples to obtain
the “RoC profile”. Subsequently, for any poifit p) of Fig. 6.4(a), it is obvious from
the definition of RoC thapy xn user feedbacks’ estimated positions do not deviate from
its actual one by more than In other words, if we think of a circle with the accuracy
grain size or localization error distaneg as radius, thep x n user feedbacks can be
thought to be inside it. Now, suppose if we increase the sdiy a small amounf\e
(i.e., p also increases in Fig. 6.4(a)), thém new user feedbacks fall inside the new
area. So, the proportion of user feedbacks falling insideatiedr (e + Ae)? — we?| is
%. Consequently, we denote the probability of occurrence ofeat teedback inside
this unit area as,

on An

- [1(e + Ae)? — me?] ~ Ornele (6.2)

Subsequently, we define thaightor credibility of thei™ user feedback utilizing (6.2)

as follows:

R

W; =

(6.3)

max{Ki, K2, ..., Kn}
Note thatw; is just the normalized form of; so thatv; € [0, 1). Now, let us investigate
the rationale behind choosing such a weight assignmemrierit Consider two user

feedbacks;j andj with RoC (e;, p;) and(e;, p,), respectively. Their positions in the

104



6.2 User Feedback based Positioning System

“RoC Profile Graph” are shown in Fig. 6.4(a) whefe< e;. Following similar steps

which were involved in obtaining (6.2), we have,

Ani Anj
ki~ ——— and kj N~ —2—.
2mne;Ae 2mne;Ae

The parameterss andAn’s have certain effects in the above expressions:

e ¢; < e; implies the accuracy of thé" feedback’s estimated position by the
system is higher than that of th#& user feedback. Therefore, from the system’s

perspective, it is natural to believe tiieuser feedback more than th€ one.

e Consider the number of user feedbacks;; and An; which fall into the two
new areas that have been formed by extending the radmsde; by the same
amount,Ae, respectively. IfAn; > An;, then a greater number of user feed-
backs which are used to create the “RoC Profile Graph”, fatts time ;™" feed-
back’s new area than that of th# feedback’s area. Consequently, it is natural
for the system to believe th& user to be moravell-behavedince the system’s
“RoC Profile Graph” had been created utilizing thell-behavedusers’ feed-
backs as mentioned in the previous section. Thereforegpitlisfitting to assign

more weight to theé" user feedback than th& one.

From Fig. 6.4(a), using the numerical values of the pararsgie = 44, Ae =
0.5m, ¢, = 3m < e; = ™m, andAn; = 5 > An; = 1, we find,x; > k;. In
other words, theé™ user feedback is more believable than jHeuser feedback from
our positioning system’s perspective. Next, we describautitmate simplified weight
assignment policy for each individual feedback taking extoount the aforementioned

facts.
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Figure 6.4: lllustration of how we approximate the feedbaaight assigning model
from the RoC profile graph, as well as its variation when défgmumber of feedbacks
are incorporated.
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By utilizing the RoC profile together with (6.3), we obtain thertd for weights
to be associated with user feedbacks as shown in Fig. 6.4{e).observe that, the
weight's maximum occurs when the accuracy grain size ordbalization errord) of
the user feedback’s estimated position is close to our syst@verage localization er-
ror (~ 3m), and decreases as the estimation error becomes largee iSis desirable
to have a weighting scheme that is simple and yet capableal¥iag with time as
more user feedbacks become available, we define a feedhbeigktvassigning model
as follows. A maximum weight of 1 shall be assigned when tleall@ation error ¢)
of a user feedback’s position is within one standard demmafts) from the average
error (eay), as shown in Fig. 6.4(c). This is in accordance with the \ileat our sys-
tem is fairly accurate and therefore, we expect the systestiated positions’ errors
to be around this average quantity. Assigning maximum wegbund one standard
deviation of this average helps to build, and subsequéirb:tune the system grace-
fully. From e, + €5 t0 emax (Maximum error), the weight follows a similar trend as in
Fig. 6.4(b). The horizontal dotted line (i.e:,= ~) of Fig. 6.4(c) indicates the filter of
our weighting scheme. We associate a constant weig{which is 3 dB lower than
wmax), t0 the user feedbacks when the estimation error is lessdhg in the view
that our system’s predictions of these positions are ajremite good. The weight
assignment policy for thé" user feedback of our model as shown in Fig. 6.4(c) can be

summarized as,

;
Y €; < €min

€av—€s—€mjin

wi =191 Cav— €s < €; < eay t+ €5

1+ (Lizcav—es ) €av t €s < €; < emax

eavtes—emax

0 €; = €max
\
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Figure 6.5: Interface for user feedback input — the expemtaigestbed is a lecture
theater in campus (Testbed 1).

wheree; = \/(z; — Tes)? + (i — Yes)?, [z: ] is thei™ user’s claimed location, and
[Zestes] IS the system’s estimate of that user’s position.

Fig. 6.4(d) shows the evolvement of our feedback-weightagsy model as user
feedbacks are increasingly incorporated. Our initialeysonly consists ofandmark
feedbacks (e.g., the feedbacks from thAPs). Two other stages of our system are
shown in Fig. 6.4(d) wherg0 and60 well-behaveduser feedbacks are subsequently
incorporated. The definition of various user feedbacks ,(eagdmark, well-behaved
etc.) can be found in Section 6.2.2.4. For each stage of gtermyl4 testing samples
which are completely different from the incorporated usssdbacks are utilized to
obtain the error model. As can be seen, this model helps toowepthe accuracy
of our system, since both the average error and its stanamidtmn decreases with

increasing number of user feedbacks.
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6.2.2 System Description
6.2.2.1 User Interface and Experimental Testbed

We start by providing a brief description of our user integaised to input feedbacks
into our system. Fig. 6.5 shows the interface for a user tatifgedbacks that are to
be incorporated into our positioning system. We can obskore the interface that,
a user is always provided with the system’s estimation ofhbkisposition (i.e., the
shaded circle on the map) together with the RoC. Subsequémlyser can choose
to inform the system about his/her actual location by ciigkon the corresponding
position within the map, and pressing the “Give feedbacktdu The experimental
results in this chapter are based on Bluetooth data samplested from both Testbed

1 and 2.

6.2.2.2 Usage of User Feedback in Positioning Algorithms

Depending on the positioning algorithm used, there ar@uarnvays how a user feed-
back can be utilized. In the following, we briefly describe tivo approaches we have

undertaken in order to make use of the user feedback in oitigpusg algorithm.

e As discussed in Section 6.1.1, we utilize interpolatiorhtegue to create the
RSS signature of &ctitious training point where no training sample has been
taken. Unlike a typical fingerprint-based positioning systhat requires an ex-
haustive sample collection phase, interpolation helpsloeae the same goal
with much fewer training samples. In addition, it is advaetaus in our case
since the user feedback locations may not be uniform oveetitee localiza-
tion area. An interpolation technique can help to fill up tlés in the training
database where no user feedback has been obtained. In oeduce a ficti-
tious training point, each AP’s RSS is formulated according to weighted linear

regression formula exploiting the signal strength valuskected at the APs for
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user feedbacks. If there aré APs, K different regression equations will be
formed in order to deduce a single fictitious training parithgerprint. How-
ever, the difference from our interpolation technique axpd in Appendix B
is — whereas the weight in (B.2) corresponds only to the dpsitialarity fac-
tor; here, the user feedback’s credibility factor is alsketainto consideration
regarding the weight calculation in (C.1). In Appendix C, wepde the de-
tails about how the interpolation technique predicts the BiSHictitioustrain-
ing point where real training samples are not collected ¢éaiokbd through user

feedbacks.

¢ We have used two well-known localization algorithms (iveejghtediC-Nearest
Neighbors [C-NN) and Bayesian) [17,20] where the user feedbacks’ wemiets

utilized to denote the weights of the algorithms.

6.2.2.3 User Models

In this section, we describe our two user models which trynbolate the two broad
categories of the user behavior while giving feedbacks.sétaser feedback behav-
ior” models are utilized in the experiments to emulatertted user feedbacks from our

collected data.

e User Model 1: The user may be unfamiliar with the surroundings, and subse-
guently fails to pinpoint his/her actual position on the mdye model this phe-
nomenon asfz y|” = [z, + N(0,02) y.+ N(0,0%)]", wherez, andy, de-
note the actual location coordinates when no uncertaimty@ved andV (0, 2)
is a normal distribution with zero mean and varianée We assume that this is
the most common model of a user’s feedback and it is also tapdlmodel-
ing many different user feedbacks (by varyingg For example, we know that

a well-behaveduser is the one whose claimed location does not deviate from
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his/her actual location by a large margin. For experimegpiigposes, we model
awell-behavediser as one where the uncertainty parameter of the feedback p
tion (i.e.,o?) does not exceed the system’s ultimate achievable avecageszy.
Since our positioning system can offém average accuracy, we assume that the
feedback position of avell-behavediser regarding our system conforms to the

equality,c = v/3m.

e User Model 2:There may be some feedbacks where the user feels totallyaunsu
about his actual position corresponding to the map. We mibéephenomenon
as,[zy]" = [U(0,2mad U(0, ymax)]’ , Wherezmay, and ymax depict the maxi-

mum possible location coordinates of the testbed &g denotes a uniform

distribution over the range. The feedbacks given by those tmhto sabotage

the positioning system intentionally, also fall into thetegory.

6.2.2.4 Classification of User Feedback

Based on our user models of the previous section and the wasglgnment policy for
each individual feedback discussed in Section 6.2.1.3 |assify user feedbacks into

four categories:

e Super-user feedbacKhese are the feedbacks provided by system administrators
and alike, and they are expected to be included into thersysith 100% belief
(i.e.,w =1).

e Regular-user feedbackVe consider the feedbacks from ordinary users who use
the positioning system’s services to be the mainstay in tetfining of our
system. These are the most common type of feedbacks whidnalkgamated
with some uncertainties. OuWwser Model 1discussed in the previous section

tries to emulate this particular type of feedback.
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e Landmark feedbackThe APs can be regarded as sources of feedbacks as well,
since they also transmit radio signals, and their locatemesknown and fixed.
We have four such APs in each of our experimental testbedsoaasn Fig. 6.5
and Fig. 6.6, respectively. Note that, the RSS signatureowedtthis type of
feedback comprises df — 1 components instead df, because one of th&
APs is actually considered as an MN here. We fill this void Wit maximum
RSS rating corresponding to our Bluetooth adapter. Apart ftioat, various
other devices (e.g., beacons, card-readers, tags etdglledsat several fixed
positions in the building could act as continuous sourcdamimark feedback
too. Landmark feedback is a form of super-user feedback tfjas the sources
are static fixed points) since it is always believed with= 1. Therefore, the
inclusion of such static fixed points as a source of feedbatikinerease the
number of super-user feedbacks, and subsequently, wil pasitive impact on

localization accuracy.

e Spurious-user feedbacKhe feedbacks given by those users who are oblivious
about their surroundings, and also those who aim to sabttagmsitioning sys-
tem, are harmful. Instead of fine-tuning the system to aehimitter accuracy,
these spurious-user feedbacks could make the positiomoglarger if incorpo-
rated. Our weight-assignment policy of Section 6.2.1.3imssthat these types

of feedbacks are filtered out.

6.2.3 Results and Findings

The results of Section 6.2.3.1 are based on the experiméatalof our lecture the-
ater testbed (Fig. 6.5) while the results presented in @e£#.2.3.3 and 6.2.3.4 are

obtained from our research laboratory testbed’s data 6.
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Figure 6.6: Emulating surroundings change in Testbed 2.

6.2.3.1 Interpolation aids our user feedback based positiong system

In order to demonstrate the usefulness of our interpoldiased approach described
in Section 6.2.2.2, we have carried out an experiment thigt @mnsiders super-user
feedbacks, where all feedbacks are assigned the maximught{ee.,w = 1). As can
be seen from Fig. 6.7(a) and 6.7(b), the system that usepaiédion easily outsmarts
the one that does not.

Since different users are expected to carry devices wittrbgéneous hardware,
selecting RSS as a location fingerprint could easily hampeeafeedback based po-
sitioning system. RSS is known to vary quite significantly aiasticular location for
different device hardware even under the same wirelessittamgl[25-27, 29]. As a
result, we have chosen a robust location fingerprint, narBegyal Strength Difference
(SSD) since it is argued to be able to accommodate devices widrdggtneous hard-

ware solutions unlike the RSS [27]. We also verified our syseobustness when
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Figure 6.7: Demonstration of how interpolation helps toliaye our positioning sys-
tem’s accuracy — only super-user feedbacks are considered h

the users input their feedbacks using different types ofcgev(e.g., Bluetooth Class
1 or 2 devices), which could easily occur in a real deploynseeinario. Fig. 6.7(a)
and 6.7(b) show similar performance for both cases, regssdbf whether the user
feedbacks are given using only one type of device or not. S&bken used as a loca-
tion fingerprint in the subsequent experiments as well. Ekengh a user feedback’s
signature is d’-dimension RSS vector, while applying it into a localizatadgorithm,

a(K — 1)-dimension SSD vector is always calculated from it.

6.2.3.2 Evolvement of user feedback based positioning syste

In this experiment, we investigate the prospect of creaipgsitioning system utiliz-
ing only regular-users’ feedbacks from scratch. We try toregte the linear regression
coefficients for the equation in (B.1) (given in Appendix C) walniare necessary for
generating the interpolated training points from user lieetts. Here, we emulate dif-
ferent types of users by changing the valuesadf “User Model I which we have

defined in Section 6.2.2.3. We contend that if the two linegression coefficients
(i.e., a andb) computed from regular-user feedbacks can somehow magchaf-

ficients computed from super-user feedbacks, then ourpiol&iion-based approach
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Figure 6.8: Simulation results of how different user bebewiaffect the regression
coefficienta values and correspondingly, influence the system’s acbievaverage
accuracy.

should perform equally well even though these feedbacke bagertainties. We see
from Fig. 6.8(a) that using feedbacks from users exhibitoweer uncertainty (e.g.,
o = 3) can almost achieve the sameas the case when no uncertainty is involved
(o = 0). Furthermore, it can be noted from Fig. 6.8(a) that indreathe uncertainty
in user feedbacks have the effect of swaying the estimatealues away from the
o = (0 case. Similar observations have been made with the othérorest, b.

In our interpolation-based approach, we first calculatedlgeession coefficients
(i.e.,a andb) for all the APs at an interpolated point making use of the tsedbacks
as training samples. Subsequently, the RSS signatures APthat every interpolated
point are calculated, and all of them are then treated asaldraining samples to-
gether with the user feedbacks in our localization algaritiiable 6.1 lists the average
localization errors when a significant number §00) of user feedbacks with different
values of uncertainty parameter, are being considered. We see that the average ac-
curacy $.37m) achieved fow = 3m case is very close to the accuracy when there is
no uncertainty §.1m). This is expected since the calculatedalue forc = 3m case

after 500 feedbacks is very close to th&alue obtained for = 0 (see Fig. 6.8(a)).
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6.2 User Feedback based Positioning System

Table 6.1: Relationship between the uncertainty parametand average localization
error for our experiment conducted.

Number of | Uncertainty Parametes, | Average Localization Errof
User Feedbacks of “User Model 1” (in meter)
=20 3.1
o =3m 3.37
500 o =6m 3.98
o=9m 4.71
o=12m 6.18

The higher uncertainty cases (eq.= 6m,oc = 9m, etc.) report coarser accuracy as
can be seen from Table 6.1, which is also justified accordrtgeir curves shown in
Fig. 6.8(a). Therefore, we can approximate the regressefficients of our interpo-
lated points more accurately for user feedbacks with loweettainty which in turn
yields better localization accuracy. In a nutshell, we arthat if we decide to build
our system with user feedbacks from scratch, our interjpidiased approach may
still enable us to achieve reasonable accuracy, providedtie user behavior does not
stray too drastically. Note that the results for this paltic experiment are obtained
through simulation, unlike the others in this paper whead experimental data are

used.

6.2.3.3 Fine-tuning of an existing positioning system uiiting user feedbacks

In this section, we wish to show that we could fine-tune a psitg system in order
to achieve finer accuracy by exploiting our feedback-weggisigning model, irrespec-
tive of any assumption on user behavior. For this experipveaichoose two different
combinations of user feedbacks where one consists ofwellybehavedegular-user
feedbacks while the other comprises70f4 spurious-user an80% super-user feed-
backs. In both cases, we assume that the positioning systatready running with

some feedbacks (4 landmark feedbacks + 6 super-user fdejlsacthat we can ap-

116



6.2 User Feedback based Positioning System
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Figure 6.9: Performance comparison of our feedback-weagkigning model with
other options in the fine-tuning of an under-trained positig system.

proximate the initial “RoC Profile”. Consequently, we can canpewith the feedback
weight-assigning model of Section 6.2.1.3 from this ihistate of our system. We
consider 137 testing points to evaluate the localizatioorerwhich are completely
different from the user feedback points. As more user fegkbhaecome available, the
weight-assigning model continuously updates itself innailsr manner as previously
shown in Fig. 6.4(d), which helps to fine-tune the system.

The two horizontal lines of Fig. 6.9(a) and 6.9(b)4at6m represent the initial
system’s performance with only 10 training points. Our fesck-weight assigning
model shows that the system’s performance improves wheme feadbacks are in-
corporated. Without our feedback-weight assigning mattiel system'’s performance
deteriorates when spurious-user feedbacks dominate dsecaeen from Fig. 6.9(b).
For 100% spurious-user feedbacks scenario (the resultsnaitéed for brevity), our
system’s performance remains relatively unchanged framrthial system’s perfor-
mance. This means that our feedback-weight assigning ncodéd shield the system
from the adverse effect of this type of feedbacks. For thé-bathiaved user case, the
feedback positions may turn out to be very close to the agasitions which will

eventually make them a bit similar to super-user feedba®ke inclusion of super-
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6.2 User Feedback based Positioning System

user feedbacks into the system always helps regardless athaihwe are using our
model or not. Therefore, the “without feedback-weight @ssig model” might have

been seen to perform almost similar to (or even slightlydvetttan) our model in

Fig. 6.9(a). Our model’s effectiveness over the “withowdback-weight assigning
model” can be realized when different types of feedbacksmxed (e.g., one instance
can be seen in Fig. 6.9(b)).

We also compare the accept/reject policy of location vetiion techniques dis-
cussed in Section 6.2.1.3 to incorporate a user feedbatkvartying accuracy level
margins. If the accuracy level margin is set too largesm), a number of spurious-user
feedbacks may get through to the system, thereby causmpgetform worse. Setting a
strict margin (e.g.lm) may overcome this issue as can be seen from Fig. 6.9(b)- How
ever, if the accuracy level margin is set too strict, manyhef well-behaved regular-
user feedbacks are rejected. Consequently, the systeni@&mpance does not im-
prove much over the initial system when this type of feedbdmkinates as revealed
in Fig. 6.9(a). On the contrary, our feedback-weight asegmodel is quite auto-
mated (no need for manual setting of accuracy level margid)iggshown to perform
reasonably well in the presence of different types of feekiba

The 100% super-user feedback curves in both Fig. 6.9(a) &@{#)6show the
performance when the feedbacks are given by super-userqian| w = 1). This
performance is comparable to the traditional fingerpredednl system where all the
samples are collected exhaustively by administrators.s phovides a performance
benchmark for the user feedback based positioning system.

Note that we have only provided Bayesian algorithm’s resutite KNN algo-

rithm’s results show similar trends, and are not include@ he
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Figure 6.10: Adaptation of our system when it perceives thatsurroundings have
changed.

6.2.3.4 Effect of change of surroundings on our user feedbadased positioning

system

One of the major drawbacks of existing fingerprint-basedtjposng systems is that
it is not adaptable to environmental changes, i.e., thaitrgiphase has to be repeated
all over again for the changed surroundings. Our system doesuffer from such
shortcomings since user feedbacks are continuously eregblayfine-tune it. Further-
more, our system’s whole process of adapting to the changeédoeament is auto-
mated, and does not require any outside intervention. lerdxhelp perceive that
there is a change in the surrounding, we exploit landmar#iifaeks. Since the land-
mark feedbacks from the APs are continuous, the system qanoxamate the APs’
positions all the time. We infer that there is a change in@urding when the esti-
mated positions of all the APs deviate quite significantbynirtheir actual positions.
Algorithm 6.1 (in Page 39) describes the adaptation progfssr positioning system.
From algorithm 6.1, we see that, when the system percesesiitoundings to have
changed, it enters into the adaptation mode. In this moti&hepreviously incorpo-
rated user feedbacks are associated with an exponentddtetfactor together with

their assigned weights. As a result, new user feedbacks\ae giore importance.
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6.3 Summary and Conclusions

In order to emulate a change in the surrounding in our exparis) we swapped
the positions of two of our APs as shown in Fig. 3.2. This sea purpose of creat-
ing a changed environment since the two APSs’ signal stresigtimtures change quite
significantly. Our initial system consists of 50 super-ueedbacks from theld set-
ting and we utilize 137 testing points from thewsetting to evaluate the localization
errors. The two curves of Fig. 6.10(a) and 6.10(b) depicperéormances of two sys-
tems where one system is incorporated with our surroundihgage algorithm and
the other one is not. As can be seen from the figures, the sygkech could realize
the change in surroundings, performs significantly bettethe newsetting as more
user feedbacks are incorporated into the system. For tpesrement, we choose two
different combinations of user feedbacks where in one segenhe super-user feed-
backs dominate (Fig. 6.10(a)), while in the other, the reguker feedbacks dominate
(Fig. 6.10(b)). In both scenarios, our system could adapm$essly with the sur-
roundings change. Note that, the super-user dominatintasicedemonstrates lower
localization error for the same number of user feedbackganed to the regular-user
dominating scenario which is justifiable. The presence ofisps-user feedbacks also
does not affect the adaptation process (the results aréeahfdr brevity). This is due
to our feedback-weight assigning model which is found toumesssful in dealing with
them in the previous section. We have also observed in owrerpnts that around
20 ~ 30 user feedbacks are required for the system to return to rtealanode (i.e.,
to leave its adaptation mode). This state transformatiaurescwhen the landmark

feedbacks start to give better estimations of the APs’ [mrstagain.

6.3 Summary and Conclusions

In this chapter, we proposed two approaches to relievekimaohe exhaustive train-

ing phase typically seen in the fingerprint based positigsiystems. Firstly, a simple
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Algorithm 6.1 Adaptation of our user feedback based positioning system

System State: A positioning engine withsamples or user feedbacks. Lety, pex)
denote the system’s expected RoC. Itis a tunable parameteefadministrator within
which he/she expects th€ landmarks’ (e.g., APs’) estimated positions to be verified.
If all the K" landmarks’ estimated positions deviate fr@eg, pex), the system infers
surroundings change, and enters the adaptation mode. Stersyeturns to normal
mode again when all th& landmarks’ estimated positions are within the system’s
expected RoGeey, pex). The landmarks’ positions are estimated continuously ey th
system from the landmark feedbacks.

1: for everynewbatch of N feedbacks collectedo
2: if all K APs’ estimated positions deviate frafy, pex) then

h < « {outdate factoroe small constant — adaptation mgde
else

h < 0 {no outdate factor — normal mople
end if

for i = 1tondo
w; + exp (—h) x w; {outdating older samples’ weights/if£ 0}

end for

100 n<<n+ N

11:  calculate the interpolated RSS signatures as discussecdcpienijx C

12:  run localization algorithm (e.g., Bayesian or KNN) with orlye feedbacks
havingw; > v as test samples among thewfeedbackgw; and~ are defined
in6.2.1.3

13: update  feedback-weight assigning model’s parameters ., (i.e
Emin; €av; €s @N0emay) Of Section 6.2.1.3.

14: end for

15: goto 1

weighted linear regression technique is applied to geedietitious training points
when the system contains very few training samples. Adgim appropriate inter-
polation technique can go a long way in solving the drawbacitered by an under-
trained positioning system, as vindicated by our analysisrasults. Secondly, we pro-
pose a novel idea where users can take part in fine-tuningder-trained positioning
system. Our feedback-weight assigning model which assgjasve weights to user
feedbacks, fine-tunes an under-trained positioning sydteeneby, helps it to achieve
finer accuracy. We also show that, if userswaedl-behavedwe can actually construct

a positioning system incrementally from scratch explgitour interpolation-based

121



6.3 Summary and Conclusions

techniques with the user feedbacks. We contend that theustiba training phase
seen in the traditional location fingerprinting techniquaght be relieved through it.
Through the use of landmark feedbacks, we could succegsitdr changes in the en-
vironment, and switch our system’s mode to be more adapt@bkewhole procedure
is quite dynamic, and requires no intervention from the fgmsing system administra-
tor’s part. In summary, we conclude that our user feedbaskdbaositioning system is
fairly accurate, cost-effective, robust and requires neeoy little training phase. We
have implemented our system in two testbeds — one is plasaikian amphitheater
(Testbed 1) while the other is within a research laboratdgsiped 2). Our system

performed quite well in both scenarios as can be seen fromethsts.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we addressed some interesting ississg from fingerprint-based
positioning systems, and obtained favorable results. \Weiged an elaborate discus-
sion on the indoor location fingerprints that are commondusith two well-known
RF technologies, namely, Wi-Fi and Bluetooth, and pointedtmit pitfalls when they
are used for localization purpose. Our analysis in Chaptex&als that, although the
RSS turns out to be the most viable option as a location fingetigamong all the signal
parameters that are available from both Wi-Fi and Bluetdogtill suffers from many
pitfalls arising from device hardware variations. Hence, adefine a robust location
fingerprint, the SSD, which provides a maobustsignature than the traditional RSS.
We analyzed in detail why it can serve as a robust locatiorefiprint that is irrespec-
tive of the hardware used at the mobile device. Our analgsisyell as experimental
results in Chapter 4, have both verified this claim. We congp&®8D with two other
robust location fingerprints, and found the SSD based dlgos’ performance to be

superior. In Chapter 5, we analyze the C&a¥Rao Lower Bound of localization using
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7.1 Conclusions

SSD as location fingerprint. A novel characterization ofgitheperties of this bound is
presented that allows us to individually assess the imdatifferent parameters (e.g.,
number of APs, geometry of the APs, distance of the APs frarMN, etc.) on the
accuracy of location estimates. This analysis should geimportant guidelines for
the system designer if SSD is the chosen location fingerprint

In Chapter 6, firstly, we have elaborated on our idea of usinghted linear
regression techniques to improve localization models whersystem contains very
few training samples. Adopting appropriate interpolatiechnique can go a long way
in solving the drawbacks suffered by an under-trained jositg system, as vindi-
cated by our analysis and results. As we have seen, withewithof interpolation,
our testbed of moderate size already requires around 6Qregaing points in or-
der to attain reasonable accuracy. A larger deployment \woedd benefit greatly
from our technique, in terms of reducing labor and cost negpéents. Nevertheless,
prior works [80] have indicated that, when sufficient saragiave already been col-
lected over the whole localization area, the gain arisiognfthe use of interpolation
techniques is not significant. Our results have shown a airnriénd, as revealed in
Fig. 6.1(a) and 6.1(b). Secondly, we propose an interpoldtased fingerprinting
technique utilizing user feedback which does not requirexdraustive training phase
typically seen in the indoor localization solutions. Wewggdhat the contribution of
users’ feedback to any positioning system is two-fold. Oa band, users’ feedback
greatly help in fine-tuning an under-trained positioningteyn with proper filtering.
On the other hand, if users aneell-behavedour experimental results show that the
participation of end-users can actually assist in the coogon of a positioning sys-
tem incrementally from scratch. We also show that user feekHbased positioning
system adapts quite well when surroundings change.

Although no work in the literature has been successful tlamsrf designing a

reasonable Bluetooth-based positioning system, we hawenshmoour analysis that
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7.2 Future Work

previous works have used signal parameters that are inapgi@for localization pur-
pose. However, if inquiry-based RSS is available and is usgdrnerate SSD for use as
a location fingerprint, a Bluetooth-based positioning systédth reasonable accuracy
can still be built as we have demonstrated in our experinheesalts.

In summary, we have derived analytically a robust locatingdrprint definition,
and verified it experimentally as well. We devised ways thgfoweighted linear re-
gression techniques and utilizing user feedback to fatditinder-trained positioning

systems.

7.2 Future Work

In this dissertation, we have shown our new robust locatimmyeiiprint, SSD to perform
well as a location fingerprint over MNs’ hardware variatiofsom our research, we

realized that there are generally two main characterisfiagoodlocation fingerprint:

e It should provide atablesignature (e.g., signal strength) at a particular location

even if the MN’s hardware changes.

e From one location to another, this signature should alsadimci.

We only concentrated to explore a location fingerprint whtiobducestablesignature
(i.e., SSD) at a particular location even if the MN’s hardevahanges. However, an
interesting research topic would be to incorporate bothélgeirements and come up
with a location fingerprint that meets them well.

The design guidelines provided by this dissertation in Géraptwhen SSD is
chosen as the location fingerprint, may create a conflict éodésign of WLAN or
Bluetooth infrastructure for optimal signal coverage. Agibke research topic based
on the placement of access points to provide both commumisaaind location ser-

vice should be explored in the future. A comparison of the @maRao Lower Bounds
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7.2 Future Work

between SSD and RSS is also required in order to investigéteingerprints’ perfor-
mances in more detail.

While our use of weighted linear regression model for gemggdictitious points
in Chapter 6 has achieved reasonable results, it may be whitehte pursue whether
the use of more complex propagation models could furtheraongthe performance
of under-trained positioning systems.

The use of Bluetooth technology for localization certairdguires more investi-
gation. Although previous works have largely provided digaging results [62], or
required the aid of additional wireless technologies (&\j-Fi) [21, 52], our experi-
ence with Bluetooth shows that it is a promising technologyel$ that should not be
overlooked.

We had three experimental testbeds that can be categoszesstheds of only
moderate size. Additional experiments could be conductetéstbeds with different
setup and larger size to explore its viability across défeeisettings. Our user feedback
based positioning system is currently based on Bluetootblegs technology, but it
can easily be extended to accept feedbacks from deviceg agier technologies as
well (e.g., Wi-Fi). A hybrid system where the user feedbaokt devices with multiple

wireless technologies is incorporated certainly poses@nasting research problem.
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Appendix A

Some Proofs for Chapter 5

A.1 Detailed Calculation of CRLB for Localization us-

ing SSD as Location Fingerprint

The joint p.d.f. (5.7) of thé K — 1) independent SSD measurements can be simplified

|

as,

K-1

7o(P) =TT om0 2 exp

Pl 2moIn 10 Dk

wherep =

and d, =
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A.1 pelallied LalCulalon Of CKLDB 10l LOCallZallon using oovu a3.0Catorn
Fingerprint

Consequently, the log-likelihood of (A.1) takes the form,

Info(P) =

1

1 10 p,

whereCy, = —N—p—, k=1,2,...,(K—-1)
27r(71n10pk

= Constant w.r.to.

To derive the entries of (5.8), we calculate the score fongti

ue) = {%lnfe(P),glnfe(P)}

d;, d? d;, d;
9 pEl 2
9 10 fy(5) = =2 { In % )
a ? 2 k=1 dkr
O [w=w) =9, o[-y G-y
oy | @ &2 & & |



A.1 pelallied LalCulalon Of CKLDB 10l LOCallZallon using oovu a3.0Catorn
Fingerprint

We see that, all the elements of derivatives of the scoretimclepend on a term,

<ln %) , Which has an expected value of zero. Therefore, the emtfi®s8) becomes,

kr

K-1
T - T — T,
k=1 k
B pK_l {cosaﬁk Cosgb,n}2
1 dk: dr
Joy(0) = Jyu(0)
_ Ki'(w—m)_(m—x» -y (—u)
P &2 & &2 &2
k=1 L
B KZ_I [ cos ¢y, _cosg, ]| [singy  sing,
-7 i L dk dr dk) dT .
K-1 2
(r —xr) (x—um)
Jyy(e) - PZ 2 A2
k=1 " k r
B = [singy  sing, ?
-7 ds d,
k=1

Here,¢,. € [0,27) is the angle the MN makes w.r.t. th& AP as illustrated in Fig. 5.1.

Subsequently, the CRLB can be expressed as,

1 ; Jyy(0) = Juy(0)
VORI ) | -

where | J(60)] = Ju.(6) - Jyy<9) — Jay(0) - Jyﬂﬁ(e)-

Suppose the variance of the location estimate of SSD-basatidation with A’
APs is denoted as v@)K. From the CRLB property (5.6), we know that, Q@y@) >
{J(6)}, i.e., the matrix Co(,6) — {J(0)} " is positive semidefinite [70]. Since
the diagonal elements of positive semidefinite matricedamger or equal to zero, we

obtain the following inequalities for any unbiased estionaising the identities of (5.3)
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A.2 Induction Proof of Inequality (5.13)

and (A.2),

Sz (6) + Jyy (0)

var(),, = o2 + 02 >
= Y |7 (0)]
A
= 2K (A.3)
PNk
2
where we define)c = 45 (u? +03), e = 3015 w2 15 02— {015 wan |

U = [% - %] andvk = [% _ Sig:ﬁr]-

A.2 Induction Proof of Inequality (5.13)

Suppose the inequality statement to be proven is denoteéd ky.
Basis: It can be easily seen tha{1) holds. Let us show thaf(2) holds too. For
K = 2, the LHS of the inequality (5.13) can be simplified as,

(uf + u3) (v 4 v3) — (u1vy + U2U2)2 = (uguy — U2U1)2

Vv

0.

Therefore,S(2) holds as well.

Inductive StepSupposeS(K) holds, i.e.,

K K K 2
Z u} Z v — (Z ukvk> > 0. (A.4)
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A.2 Induction Proof of Inequality (5.13)

Now, it must be shown thef( KX + 1) holds, i.e.,
K+1  K+1 K+1 2
>3t (Yua) 20
k=1 k=1

The LHS of the above inequality can be rewritten as,

k=1 k=1 k=1
K K K 2
_ 2 2 2 2
= (E U, +UK+1)(§ Uy + Vey1) — E U Uk
k=1 k=1 k=1
K
9 2
- UrVr |UK+1VK+1 — (UK+1UK+1)
k=1
K K 2 K
_ 2 2
= g u 5 v E UkVk | + Ukiq g v,
k=1 k=1 k=1
K K
2 2 _ 9
+ Vg uy — ULV | UK4+1VK 41
k=1 k=1

Using the induction hypothesis (A.4) and the identity

K K K
uiﬂrl Z vi + ?J%(_H Z uz —2 (Z ukvk> Ug+1Vg+1 > 0, (A.5)

k=1 k=1 k=1
we can show that (K + 1) holds indeed. The inequality (A.5) follows from:

(ug41v% — UK+1Uk)2 >0

2 2 2 2
= Uy U, T VU — 2Ug 1 V1 Uk = 0

K K
2 2, .2 2
= “K+1E vk+vK+1E Uy,
k=1 k=1
K
-2 E UV | U1V 1 2> 0.

k=1
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A.3 Proof of Inequality (5.14)

A.3 Proof of Inequality (5.14)

Simplifying the LHS of the inequality (5.14), we obtain,

k=1 k=1
K-1 K-1 K-1
_ 2 2 2 2 2 2
= A Uy, Vi — MK AK E (uj + i) + ng
k=1 k=1 k=1

> g Z upvy,  sincen > 0. (A.6)
k=1

A4 Proofof ¢y = ¢ = ¢, Vk € {1,2,..., K} — {r}

WhenCK — CK—H =0

Here, we give the proof of the claim that, the equality caodg of both (A.6) and (5.15)
result in the followingp i1 = ¢ = ¢x, Vk € {1,2,..., K} — {r}.
The equality condition of (A.6) requiregz = 0, i.e.,nx = 0. Consequently,

from the definition ofx, we can write,

K-1 K-l K-1 2
Zuini = {Z ukvk} . (A.7)

Using the identities ofi, andw,, it can be deduced that, only when = ¢,,Vk €
{1,2,..., K} — {r}, the LHS and RHS of (A.7) become equal.

140



A.5 Proof of Inequality (5.20)

Now, puttingnx = 0 into the equality condition of (5.15), we obtain,
K-1 K-1
U%(_H Z up = UE(_H Z v (A.8)

k=1 k=1

Plugging the values afk.1, vk+1, ux @anduvy into (A.8), we get,

[sin ¢r+1  sin (ﬁr] 2 Kz:l {cos ¢ cos @] ?
dK—‘rl dr 1 dk dr
COS P41 COS Oy 25 I'sin Or  sin ¢, 2
= — - . (A.9)
dri1 d, —~ | di d,

Putting ¢, = ¢,,Vk € {1,2,..., K} — {r} (derived from the equality condition
of (A.6) above) into (A.9), we have,

. : 2
cos” o, lsm ¢r41  sin gb,n}
¢ dK+1 dr
2
— sin? 6, {COS Ok COS ﬂ . (A.10)
dK+1 dr

Simplifying (A.10), it can be easily seen thatx,; = ¢.. Combining this result
with ¢, = ¢,,Vk € {1,2,..., K} — {r}, we finally obtain,gx .1 = ¢, = ¢, Vk €
{1,2,....,K} —{r}.

A.5 Proof of Inequality (5.20)

Simplifying the LHS of the above inequality we get,

=

-2

K-2 K-2
(ugvgr — quK)J N ug U — Nr—1 - A1 { (up + Uz%)} +n%_,

=
Il

1
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A.5 Proof of Inequality (5.20)

K—2 2
(UK'UK' UKUK) K—1 |MKrk-1 Ug VU, NK—1° A1 TN
k=1
K—2
> >\K71<UK'UK’ — ’LLKUK) {Z ukvk} , Since,?ﬁ{fl > 0.
k=1
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Appendix B

Calculation of RSS at Fictitious

Training Points

Suppose, there ane training points for which the real measurements of RSSs have
been taken at th& APs. Our goal is to emulate the RSSs/OfAPs for J possible
interpolated training points utilizing those real measugats.

First, we consider calculating the regression coefficiartech were introduced
in Section 6.1.1 in order to formulate the average RSS ofth&P for a particular fic-
titious point;. From Section 6.1.1, we know that, the linear regression R8&gtion

formula takes the following form,
Ui = QgZri+ by, (B.1)

where, §;; = the predicted RSS of the™ AP when the MN is at™ training point,
ar = —105, Thi = log(dk,) andbk = P(do)’dBm + 105 lOg(do)
Now, we consider calculating the regression coefficiengs,d, andb, of (B.1)

in order to formulate the RSS of thé&" AP for a particular fictitious training point
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B. Calculation of RSS at Fictitious Training Points

Utilizing the spatial similarity of RSS samples which suggekat the closer training
points should contribute more in formulating the interpethRSS, the weighted least

mean square minimization function for our linear regressimdel can be written as,
R*(ajk, bjr) = iji ki — (ajer; + b)), (B.2)
=1

wherey;,; = real measurement of RSS at th€ AP when the MN is at™ training
point, w;; = normalized weight considering spatial similarity of RS% dji

= distance of fictitious poinf from the:'" training point,z;; = log (dy;) = log distance

of k™ AP from the:" training point,a;x, b;. = regression coefficients of the linear
RSS prediction formula of the" AP for j, k € {1,2,...,K},andj € {1,2,...,J}.

Note that, depending on the fictitious pojntfor which the RSS will be predicted, the
associated weight (i.ew;;) changes for the RSS perceived at an AP corresponding to
different real training points. Hence, an additional suipsés used in (B.2) to denote

the regression coefficients for an AP w.r.t. different fiotis points compared to (B.1).

Denote,
Ytk 1 2z W1 0O 0 ... 0
Yok 1 Lok 0 w2 0 ... 0 b ik
Vi = , A= ;o W= ! andB;; = ’
. . . . . . - . . a/]k
Ynk 1 z. 0 0 0 ... wj,

Using these matrix notations, now we differentiate (B.2)twi;;, and set it to zero,

0
B [(yk — XB) "W, (V) — XuBjr)| =0
ik
0
= 95 (V"W — Biw" X" W; Ve — V' Wi X By, + B XWX By =0
ik
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B. Calculation of RSS at Fictitious Training Points

0
B,
= BjkTXkTWij = ykTWij

=

(V" WiV + B X W, X8y — 20" W, X0Bji,] = 0

= X'WTX.Bj, = X W,

If the matrix (X7 W;" &) is non-singular, the regression coefficients are given by th
formula,

-1

Bjr = (X™W,"x,) 2 W, Y. (B.3)

For a particular fictitious poinj, the regression coefficients;;, of the k" AP’s
signals can be obtained through (B.3). Consequently, the RS8edf" AP for a

fictitious point; can be emulated as,
RS%]C = Qjk 10g djk -+ bjk- (B4)
Plugging in the values aof , b, andd,;, (the distance of the fictitious poirjitfrom ™

AP) into (B.4), we finally obtain the RSS fingerprint fpiconsidering only AR:. To

deduce the RSS vector comprising of all tieAPs for a particular fictitious point,
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Appendix C

Utilization of User Feedback

Here, we show how user feedback’s credibility (i.e., weights taken into account
to generate the fictitious training point's RSS. Supposeetlzen user feedbacks
for which the real measurements of RSSs have been taken &t #ies. Similar to
Appendix B, our goal is to emulate the RSSs/ofAPs for J possible interpolated
training points utilizing those real measurements of usedbacks.

Utilizing both the spatial similarity and user feedbackdibdity factors, the
weighted least mean square minimization function for cugdr regression model can

be written as,
RQ(aﬂw bjx) = Z Ciilyri — (ajprr; + bjk)]Q- (C.1
=1

All the symbols of (C.1) have the usual meaning as in AppendixpBrt from the

composite weight;;;, which is defined as;;; = L Lol N u;; = normalized weight

. L
Zi:1 Ujq XV

considering spatial similarity of RSS = Ydii . = normalized weight for"

ey 1/dgi’
feedback considering its credibility Z”lfﬁ d;; = distance of interpolated point

from the:'" training point.
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C. Utilization of User Feedback

Denote,
Y1k 1z i 0 0 ... O
Yok 1 Lok 0 C; 0 ... 0 bk
yk = s Xk = s Cj g ]2 andBJk = J
. . . . . . * . . a;]k
Ynk 1 x. 0 0 0 ... ¢

Carrying out similar calculations as in Appendix B, the regi@s coefficients are
given by the formula,

B = (XTC,T ) T 4.7C, (C.2)

For a particular interpolated point the regression coefficients;;, of the k™
AP’s signals can be obtained through (C.2). ConsequenthR8®@ of thek™ AP for

an interpolated point can be emulated as,
RSSkz = Qjk log djk + bjk. (C3)

Plugging the values aof;;, b;; andd,;, (the distance of the interpolated pojnfrom
k™ AP) into (C.3), we finally obtain the RSS fingerprint fpconsidering only AP:.
To deduce the RSS vector comprising of all thieAPs for a particular interpolated
point j, we have to follow the same procedure forfale {1,2,..., K'}. Finally, in
order to obtain the RSS vector of thié APs for all theJ interpolated points over
the localization area, we have to repeat the whole calomatf this section for all

j € {1,2,...,J}. Note that, when all user feedbacks are believed equalljhave,

1
1Lj,'><g Uji

T = u;;. In other words, only spatial similarity weight factor

mn 1 — ..
D i Ugi X o i=1 Uji

would be taken into consideration in calculating the RSSatignes of the interpolated

Cji =

points which yields the exact same scenario as in Appendix B.
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