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Summary

A desirable indoor positioning system should be characterized by good accuracy, short

training phase, cost-effectiveness (using off-the-shelfhardware), and robustness in the

face of previously unobserved conditions. This dissertation aims to achieve an indoor

positioning system that accomplishes all these requirements. First, the current sig-

nal strength based location fingerprints regarding two well-known RF technologies,

namely, Wi-Fi and Bluetooth are elaborately discussed. As itwill be explained, their

RF signal parameters have specific purposes that render them inappropriate for consid-

eration as location fingerprints. Subsequently, arobustlocation fingerprint, theSignal

Strength Difference (SSD)is derived analytically, and then verified experimentally as

well. A simple linear regression interpolation technique,and the application ofuser

feedbackto facilitate under-trained positioning systems have alsobeen investigated.

These techniques reduce the training time and effort. The results of two well-known

localization algorithms (K-Nearest Neighbor and Bayesian Inference) are presented

when the proposed ideas are implemented.
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Chapter 1

Introduction

1.1 Overview

Location awareness is expected to be an integral part of future ubiquitous or perva-

sive wireless computing environment [1]. Pervasive or ubiquitous computing basically

refers to the emerging trend towards numerous computing devices connected to an

increasingly ubiquitous network infrastructure [2]. To reap the benefits of pervasive

computing, location awareness becomes obligatory for manyreasons, e.g., to access

various location-based services that could be available. Therefore, indoor location de-

termination for mobile nodes (MNs1) poses a significant challenge for the successful

realization of such environment.

Location determination orlocalizationrefers to the procedure of obtaining loca-

tion information of an MN with the help of a set of reference nodes (e.g., access points

(APs2)) within a predefined space. In the literature, this localization process can also

be seen to be termed asradiolocation [3, 4], geolocation[5], location sensing[6, 7]

1This dissertation will use the term “MN” to indicate the people carrying devices, equipment, or
other tangibles that need to be located.

2This dissertation will primarily use the term “APs” to indicate the reference nodes/points utilized
for localization.
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1.2 Background

or position location[8], etc. A system deployed to estimate the location of an entity

(e.g., MN) is called apositioning systemor location system. An indoor positioning

system generally refers to a network infrastructure withina building that helps to pro-

vide location information to any requesting end user. This location information can be

reported in the form of a set of coordinates, or a combinationof a floor number and a

room number, or relative to some other reference objects’ positions within the build-

ing. Note that the termslocationandpositionwill be used interchangeably throughout

this thesis.

The application of indoor location information could rangefrom helping fire-

fighters to navigate through a building in an emergency situation to the more tradi-

tional assets/objects/personnel tracking. It also enables the users to become aware of

many location-based services, e.g., sending the print jobsto the nearest printer, guid-

ance services in a museum or exhibitions, targeted advertising, etc. In the field of

robotics, a robot can navigate by itself with the assistanceof an indoor positioning sys-

tem [9]. Various smart home applications (e.g., automatically turning on/off different

appliances to conserve energy depending on a user’s location) are built upon location

information as well. These are just a few examples from a widerange of applications

that relies on indoor location information.

This chapter first presents the background of indoor localization and identifies

some challenges associated with it. Next, the scope of the research, and the contribu-

tions are briefly discussed. Finally, the organization of this dissertation is outlined.

1.2 Background

As pointed out before, to reap the benefits of pervasive computing, the knowledge

of a device’s location with some degree of accuracy is obligatory regardless of its

position (i.e., indoor or outdoor). The Global PositioningSystem (GPS) [10,11] solves

2



1.2 Background

the localization problem in outdoor environments. However, it could not become the

overwhelming solution for the localization problem as a whole, namely, because,

• GPS performs poorly in indoor environments because of its weak signal recep-

tion inside the buildings.

• Moreover, for small, cheap and low-power devices (e.g., sensors), it is not prac-

tical or feasible for them to be all GPS-enabled.

As a result, an alternative means is required to detect the MN’s location in indoor

environments. One way is to set up an infrastructure based oninfrared [12], radio

frequency (RF) [13, 14], ultra sound [13, 14], or ultra wide band (UWB) [15] tech-

nologies inside a building just for localization purpose. The measurements obtained

from these sensors are converted into some metric such as distance or angle, which is

subsequently utilized by the localization algorithm to estimate the MN’s location. The

widespread availability of wireless network infrastructure within homes, offices, and

campuses opened the door for another alternative solution for indoor localization. It

allows the design of an easily deployable low-cost positioning system. The wireless

network interface card (NIC) which measures RF signal strength can be considered as

a kind of sensor device. Location information is provided asa value-added service for

such networks that are primarily set up for data communication.

Unlike outdoors, the indoor environment poses different challenges for location

determination due to the multi-path effect and building material dependent propaga-

tion effect. Multi-path is a radio frequency phenomenon which is the result of radio

signals traveling through multiple reflective paths from a transmitter to the receiver,

and thereby, causes fluctuations of the received signal’s amplitude, phase, and angle

of arrival [16]. As a result, the RF signal strength measurement for wireless NIC,

and the subsequent conversion of the metric (e.g., distance, angle, etc.) from it have

not yielded satisfactory outcomes for localization algorithms [17]. On the contrary,

3
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location fingerprintingtechnique that exploits relationship between any measurable

physical stimulus (e.g., RF signal strength) and a specific location is shown to perform

quite well [17]. This technique subsequently became very popular for positioning

systems that utilize in-building communications infrastructure (e.g., Wi-Fi, Bluetooth,

etc.) [18–24]. The deployment of such fingerprint based positioning system usually

consists of two phases –offline training phase andonline location estimation phase.

These two phases are described briefly in the following.

During the offline phase, the location fingerprints (e.g., signal strength samples)

at the selected locations of interest are collected, yielding the so-calledradio-map[17].

In order to differentiate among various locations, the entire area is usually covered by

a rectangular grid of points. During the online location determination phase, the signal

strength samples received at the APs from the MN, or vice versa, will be sent to a

central server. The server then uses some algorithm to estimate the MN’s position, and

reports it back to the MN (or the application requesting the location information). The

most common algorithm used to estimate the location computes the Euclidean distance

between the online measured sample and each fingerprint in the radio-map collected

offline. The coordinates associated with the fingerprint in the radio-map that yields the

smallest Euclidean distance is returned as the estimate of the MN’s position.

From the above discussion, it is apparent that a fingerprint based indoor position-

ing system faces certain challenges:

• Since location information is provided as a value-added service on top of an ex-

isting network infrastructure using off-the-shelf hardware (e.g., wireless NIC),

no custom sensor is manufactured as in the case of costly infrastructure-based lo-

calization discussed previously. Therefore, the positioning system cannot make

any assumptions on the device types carried by the consumers, and it should be

able to accommodate all the myriad types of devices (e.g., laptop, PDA, mobile

4
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phone, etc.) that come with different hardware solutions.

• Fingerprint based positioning system is basically characterized by the exhaus-

tive offline training phase, where the positioning system administrator strenu-

ously collects the signal strength samples over the whole localization area. If the

deployment area is quite large, this process would entail significant burden for

the administrators. It could even hamper the proper installation of a positioning

system if some areas are under-trained.

• Majority of the fingerprint based indoor positioning systems in the literature

utilize Wi-Fi as the underlying network infrastructure because of its widespread

availability. The promises of other underlying prevalent wireless technologies

(e.g., Bluetooth) have been overlooked mostly.

1.3 Contributions

This dissertation is primarily a study of the RF signal strength based location fin-

gerprints for wireless indoor positioning systems. Traditionally, the received signal

strength (RSS) has been the ultimate choice as a location fingerprint for such systems.

In this dissertation, we first review all the available RF signal strength parameters from

a positioning system’s perspective for two prevalent wireless technologies, i.e., Wi-Fi

and Bluetooth. Note that, apart from the popular Wi-Fi, the prospects of various Blue-

tooth signal strength based parameters to serve as locationfingerprints are investigated

too.

The devices carried by consumers of location services are expected to come with

different hardware solutions, even for the same wireless technology. As a result, a

positioning system that relies solely on absolute RSS measurements to define loca-

tion fingerprints would not perform well. Regardless of whether a device’s signal

5
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strengths as perceived by the APs are used to denote the device’s location fingerprint

(i.e., AP-based approach), or the reverse approach in whichthe APs’ signal strengths

as perceived by the device are used (i.e., MN-assisted approach), such fingerprints

may differ significantly with the device’s hardware even under the same wireless con-

ditions [25–29]. This can easily be observed in existing popular wireless technologies,

such as Wi-Fi or Bluetooth. The presence of power control in some wireless technolo-

gies further complicates the issue [25]. In this study, a robust location fingerprint, the

Signal Strength Difference (SSD)is derived analytically and its effectiveness is proven

experimentally as well. This particular location fingerprint’s performance is shown

to remain relatively unaffected with different devices’ hardware variations compared

to the traditional RSS. Next, the error bound of location estimation using the SSD

measurements is analyzed. A novel characterization of the properties of this bound is

presented that allows us to individually assess the impact of different parameters (e.g.,

number of APs, geometry of the APs, distance of the APs from the MN, etc.) on the

accuracy of location estimates.

In the literature, the exhaustive offline training phase of the fingerprint based lo-

calization techniques is generally shortened utilizing interpolation techniques. For ex-

ample, Li et al. [26] try to complete the radio-map database using interpolation of

readings taken at other training points. The study in this thesis tries to relieve/shorten

the exhaustive training phase in two ways. First, by exploiting the spatial similar-

ity [30] of signal strength distribution, a weighted linearregression approach in order

to obtain a better fit for the interpolated training points has been investigated. Second,

the viability of a positioning system utilizing user feedback has been envisioned. Here,

user feedbackis defined as the information about a user’s actual position indicated by

the user to the system, either explicitly or implicitly.

There are certain assumptions which limit the scope of this research. For exam-

ple, this study is limited to the investigation of stationary mobile devices. No mobility

6



1.4 Organization

tracking is considered. This study does not necessarily aimto find an optimal localiza-

tion algorithm but some modifications to the baseline algorithms (e.g., the Euclidean

distance technique) have been experimented with. Althoughthis study includes Blue-

tooth in addition to the popular Wi-Fi technology, the hybrid approaches that combine

multiple sensor technologies’ data intelligently is beyond the scope of this dissertation.

The following is the summarized list of our contributions:

• Study and review all the available RF signal strength based location fingerprints

for two well-known wireless technologies, i.e., Wi-Fi and Bluetooth.

• Proposed a robust RF signal strength based location fingerprint, namely, Sig-

nal Strength Difference (SSD), and verified its effectiveness over the traditional

RSS as a location fingerprint both analytically and experimentally over different

MNs’ hardware variations.

• Analyzed the error bound of location estimation using the SSD measurements.

• Proposed two methods in order to shorten/relieve the exhaustive training phase

typically seen in the fingerprint based positioning systems– i) weighted linear re-

gression based interpolation techniques exploiting the spatial similarity of signal

strength distribution, and ii) incorporating user feedback where a user indicates

his/her actual position to the system, either explicitly orimplicitly.

• Our ideas are implemented and tested with experimental testbeds based on both

Wi-Fi and Bluetooth wireless technologies.

1.4 Organization

In Chapter 2, a literature survey of the indoor wireless positioning system is provided.

Chapter 3 reviews the signal strength based location fingerprints of two well-known
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1.4 Organization

wireless technologies, namely, Wi-Fi and Bluetooth, and points out their pitfalls re-

garding localization. In Chapter 4, a new robust location fingerprint is derived analyti-

cally and its performance is tested experimentally. Chapter5 analyzes the Craḿer-Rao

Lower Bound (CRLB) of localization using the new robust locationfingerprint which

subsequently provides valuable insights in the positioning system design. In Chapter 6,

two methods to shorten the exhaustive offline training phasetypically seen in the fin-

gerprint based positioning systems have been proposed. Finally, the conclusions and

discussions of the future work are presented in Chapter 7.

8



Chapter 2

Literature Review

This chapter reviews the literature on wireless indoor positioning systems in order

to provide a better understanding of the current research issues in this exciting field.

First, in Section 2.1, a broad classification of the current indoor positioning systems is

provided with some related examples for each. The description of some localization

algorithms which are fundamental parts for accurate location estimation together with

the examples of positioning systems that utilize them, appears in Section 2.2.

2.1 Taxonomy of Indoor Positioning Systems

The current research efforts for indoor positioning systems can largely be divided into

two main categories:

• Those that make use of angle of arrival (AoA), time of arrival(ToA), and time

difference of arrival (TDoA) methodologies. This family oflocalization tech-

niques relies on specialized hardware (e.g., RF tags, ultrasound or infrared re-

ceivers, etc.) and extensive deployment of dedicated infrastructure solely for

localization purpose [12–14,31].

• Those that utilize the correlation between easily measurable signal characteris-
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2.1 Taxonomy of Indoor Positioning Systems

tics (e.g., RSS) and location. These location fingerprintingsolutions try to build

a positioning system on top of existing infrastructure (e.g., Wi-Fi or Bluetooth

networks) [17,18,20,32] in a cost-effective way.

Comprehensive surveys of the infrastructure-based positioning systems (i.e., the

first category above) can be found in [5,6]. Therefore, rather than delving into minute

details of each of the forerunners of these types of systems,a subset of them is reviewed

as examples in the following:

• Active Badge [12] is one of the pioneers for infrastructure-based indoor posi-

tioning systems. In this system, a small infrared (IR) badge is worn by each

personnel to be tracked which emits a globally unique identifier every ten sec-

onds. The network of sensors placed around the building detects it and reports to

the location server. By inspecting which badge is seen by which room’s sensor, it

is possible to determine the location of a particular badge’s owner. Since light is

blocked by walls, IR location system has a relatively high room-level accuracy.

• Active Bat [13] improves over the room-level accuracy provided by Active Badge

by using both RF and ultra-sound technologies. An array of ceiling-mounted

ultra-sound receivers is deployed where the receivers are connected to the cen-

tralized positioning server via a wired network. The centralized controller sends

out an RF request packet for the mobile “Bats”, and simultaneously, sends a re-

set signal to the ceiling-mounted receivers. The receiverscalculate the distance

measurement starting from the time they receive the reset signal to the time they

receive ultra-sound response pulse from the mobile “Bat”, and computes the

Bat’s position by using multilateration (the localization algorithms are discussed

in the next section). The system is shown to have2 cm average accuracy.

• PinPoint’s 3D-iD positioning system [33] is an indoor RF-based commercial

product. A tag’s location is determined by continuously broadcasting a signal
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2.1 Taxonomy of Indoor Positioning Systems

from an array of antennas at known cells’ positions. When a tagreceives a sig-

nal, it will immediately retransmit the message by shiftingit to another radio

frequency and encoding it with its own ID. The system controller measures mul-

tiple distances from the array of antennas using RF round-trip time and performs

multilateration to estimate the location. The system has a30 m range and offers

1 m to 3 m accuracy. It requires several transmitter cells per building and has

expensive hardware.

• Ubisense [15] offers commercial solutions for location identification and track-

ing using UWB technologies. UWB has good multi-path resolution characteris-

tics and obstacle penetration capability inside a room, compared to the other ex-

isting transmission media (e.g., IR or ultra-sound). Ubisense UWB positioning

system requires fixed sensor infrastructure (i.e., networked units placed around

the building) together with the tags carried by people or attached to the objects

to be tracked. It measures both AoA and TDoA information of the tag’s signals,

enabling it to generate accurate 3D tracking information even when only two

sensors can detect the tag. It is argued to offer accuracy in the range of15 cm in

3D.

The main drawback of infrastructure-based positioning systems is the cost of in-

frastructure installation and the custom sensor badges or tags, which becomes signif-

icant for a large building with a lot personnel/objects to belocated. Moreover, there

are some technology specific shortcomings, e.g., the infrared or ultra-sound sensing

signals cannot penetrate the walls and floors which are common inside most buildings.

The second category of the positioning systems which are overlaid on top of any

existing wireless infrastructure (e.g., Wi-Fi, Bluetooth,etc.) can save the cost of ded-

icated infrastructure. Moreover, it utilizes RF signals which penetrate most of the

indoor materials resulting in a larger range. The most common location fingerprint

11



2.1 Taxonomy of Indoor Positioning Systems

RSS can be measured by the off-the-shelf hardware (e.g., wireless NIC). Therefore,

Laptops, PDAs, and other handhelds with built-in RF support (e.g., Wi-Fi or Blue-

tooth) can be provided with location information without the need of any custom tag

or badge. A subset of the forerunners of such indoor positioning systems is discussed

as examples in the following:

• Place Lab [34] is a radio beacon-based approach to location,that can overcome

the lack of ubiquity and high-cost found in the infrastructure-based location sens-

ing approaches. The Place Lab approach is to allow commodityhardware clients

like laptops, PDAs and cell phones to locate themselves by listening for radio

beacons such as Wi-Fi APs, GSM cell phone towers, and fixed Bluetooth de-

vices that already exist in the environment. These beacons all have unique or

semi-unique IDs, e.g., a MAC address. Clients compute their own location by

hearing one or more IDs, looking up the associated beacons’ positions in a lo-

cally cached map, and estimating their own position referenced to the beacons’

positions. Place Lab has a critical dependence on the availability of beacon lo-

cations; if Place Lab knows nothing about a beacon, being in range does not

improve the location estimates. Thebeacon databaseplays an important role of

serving this beacon location information to client devices. Many of these beacon

databases come from institutions that own a large number of wireless network-

ing beacons. Other sources of Place Lab mapping data are the large databases

produced by the war-driving community [35]. Their list of beacon database can

be found in [36].

• Location fingerprinting which was discussed in Section 1.2 became popular with

RADAR [17] mainly because of the unavailability of appropriate radio signal

propagation models for indoor environments. It also openedthe door for many

different approaches to be applied for indoor localizationproblem. RADAR
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2.1 Taxonomy of Indoor Positioning Systems

ties the average RSSs observed from the APs to a particular location which is

termed as their location fingerprint. It found the user orientation and human

being’s movement inside the building to create random fluctuations of radio sig-

nals inside the building. Some other factors, e.g., temperature, air movement,

and interference from other devices operating in the same frequency, were also

seen to cause the RSS to vary at a particular location over time[37]. RADAR

uses simplistic pattern matching algorithm (e.g.,K-Nearest Neighbor) to find the

ultimate location estimate. Details ofK-Nearest Neighbor (KNN) for location

estimation are discussed in Section 2.2.5.

• Nibble [18] is one of the first systems to use a probabilistic approach for loca-

tion estimation. Instead of being a deterministic constantvalue of average RSS

vector, the location fingerprint becomes a conditional probability distribution of

the observation vector of RSS and the location information. These distributions

of the location fingerprints are either maintained via histogram [9, 18, 20, 29] or

parametric estimation (e.g., normal distribution) [26, 27, 30]. With this form of

location fingerprint, the Bayes’ rule can be used to estimate the location. Details

of Bayesian algorithms for location estimation are discussed in Section 2.2.6.

• Ekahau [22] is a commercial product which provides positioning support for Wi-

Fi only. In addition to their custom Wi-Fi tags, they also support a few off-the-

shelf NICs. To date, Ekahau’s positioning engine software claims to be the most

accurate location system based on probabilistic model of location fingerprinting

techniques; they claim a one-meter average accuracy with a short offline training

period [22].

• Skyhook [38] provides XPS, a hybrid positioning system, taking advantage of

the relative strengths of several location technologies, e.g., Wi-Fi Positioning

System (WPS), GPS, cellular tower triangulation. XPS is a software-only lo-
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cation platform that can quickly determine the location of any Wi-Fi enabled

MN with an accuracy of 10 to 20 m. The MN running an XPS client collects

raw location data from the Wi-Fi APs, cellular towers and GPSsatellites that

continuously broadcast signals. This information is then sent to the XPS server

which subsequently estimates the MN’s location and returnsthe location infor-

mation back to it. Skyhook’s Wi-Fi and cellular database is arguably the largest

and most extensive in the world. They claim to have scanned every single street

in major metro areas worldwide, collecting Wi-Fi APs and cellular tower IDs.

Skyhook’s strength lies in the fact that they target to provide location services

to a user in both indoor and outdoor scenarios using multipletechnologies (e.g.,

GPS, Wi-Fi, etc.).

2.2 Localization Algorithms

In this section, the localization algorithms which form thecore all the localization

schemes classified above are elaborately discussed. Thoughsome previous works

[7, 39, 40] roughly touches upon the various localization orpositioning techniques,

they do not relate them to the existing protocols. Hightowerand Borriello [6] provide

a taxonomy of existing positioning systems and try to compare them regarding various

performance metrics pertaining to any positioning system.Since location fingerprint-

ing literature was not matured at that point, only RADAR [17] of that genre could be

found in their survey. This section elaborately discusses the positioning methodolo-

gies, and also shows how the existing localization schemes (including various location

fingerprinting solutions) adopt them.
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2.2.1 Triangulation

Triangulation is one of the basic location estimation methods used in this field. From

GPS to even recent schemes [14, 17, 41–43] make use of simple geometric properties

to infer location estimates. Triangulation, in its simplest form, uses the distances (lat-

eration) or angles (angulation) from some reference pointsto correctly infer the node’s

current location. Basically, three approaches to calculatethe “spatial separation” be-

tween a reference point and the concerned node are popular inthe literature: i) Time

of Arrival (ToA) / Time Difference of Arrival (TDoA), ii) Angle of Arrival (AoA), and

iii) Propagation Models. They are all elaborately discussed in the following.

2.2.1.1 A. Time of Arrival (ToA) / Time Difference of Arrival (TDoA)

In localization literature, both ToA and TDoA are used synonymously, though there

is a subtle difference between them. ToA denotes the time elapsed for a signal to

travel from/to a reference point to/from the node. It requires the node’s clock to be

synchronized with that of the reference point in order to infer exact “time of flight” of

the signal. On the contrary, TDoA works by measuring differences in arrival times of

a signal from a node at different reference points.

ToA is used in GPS technology to deduce the distances from GPSsatellites. In

order to measure the “time of flight” of the signals from satellites, the receiver clock has

to be synchronized with satellite clocks. Practically, it is difficult to achieve, therefore,

the receiver clock attributes a bias to the distance estimate from each satellite. Since all

GPS satellite clocks are synchronized themselves, the receiver bias is the same for all

satellite clocks. Consequently, if(x, y, z) is the receiver’s coordinate and(xk, yk, zk)

denotes thekth satellite’s coordinate, the distance estimate from thekth satellite can be

written as,

dk − b =
√
(x− xk)2 + (y − yk)2 + (z − zk)2 (2.1)
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Figure 2.1: Location estimate in 2D for ideal case using lateration.

Here,b is the receiver bias component which is the same for each satellite. ToA esti-

mates are always greater (never smaller) than true ToA values because of multi-path

and other impairments. So the biasb is actually subtracted from the calculated distance

estimatedk in (2.1). There are four unknowns (i.e.x, y, z, andb) in (2.1), therefore a

receiver requires at least four satellites in view to infer its location (x, y, z).

Fig. 2.1 shows the most common way to infer a node’s location once the dis-

tance approximations are made. Considering thekth reference point as center, we get

a system of circle equations of the following form,

(x− xk)
2 + (y − yk)

2 = d2k, k = 1, 2, 3. (2.2)

Subtracting the circle equations from each other, we get twoquadratic equations with

only two unknowns (i.e.x, y) and solving them to get the final location estimate is

trivial.

M ×



x

y


 =



d21 − d22 + x2

2 − x2
1 + y22 − y21

d22 − d23 + x2
3 − x2

2 + y23 − y22


 ,
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where matrixM is denoted by,

M =



2(x2 − x1) 2(y2 − y1)

2(x3 − x2) 2(y3 − y2)


 .

Note that, (2.2) is similar to (2.1) in 2D apart from the receiver bias.

In TDoA approach, differences of ToAs are used rather than absolute time mea-

surement. Since the measured difference of distances traveled by the signal from two

reference points is constant for a node, the locus of it can betranslated into a hyperbola

with the reference points at the foci.

dkl = dk − dl = v × (Tk − Tl), and

dkl =
√

(x− xk)2 + (y − yk)2 −
√

(x− xl)2 + (y − yl)2. (2.3)

wherev is the signal’s speed and(Tk − Tl) denotes the time difference of the signal’s

arrival between reference pointsk andl. Equation (2.3) gives the locus of a node with

foci at reference pointsk andl. The intersection of such hyperbolas with two or more

pairs of reference points provides the estimated location of the node [44].

Cricket [14] is a different example of TDoA discussed above. Cricket positioning

system works by measuring the time difference of arrival between RF and ultrasound

pulses at the receiver sent concurrently from abeacon(i.e., reference point). The RF

pulse basically works as a synchronizing signal between thebeaconand the receiver in

Cricket. Sound pulses travel343.4 m/s in20oC air, whereas, light pulses have velocity

299, 792, 458 m/s [45]. When a Cricket receiver receives the first bit of an RF pulse

sent from abeacon, it starts calculating the time until it receives the ultrasound pulse

from the samebeacon. Suppose, our node is5 meters away from abeacon. Then,

theoretically, the node would receive RF and ultrasound pulses from it after17 and
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14560280 nanoseconds, respectively. So, in this case, the theoretical distance estima-

tion of Cricket would be,343.4× (14560280−17)×10−9 or 4.9999942 meters, which

is equal to the actual separation between thebeaconand the node.

“Time of flight” measurement is the most accurate compared tothe other distance

estimation methods, although, there are challenges in separating the main signal’s ar-

rival time from its reflections [13,14].

2.2.1.2 Angle of Arrival (AoA)

Based on the properties of some receiving antennae (e.g., phased antenna array), the

originating signal’s angle can be inferred. Solving linearequations of the form,y −

yk = mk × (x − xk) wherek ≥ 2, gives the ultimate estimate of the node’s position

(x, y) in 2D [46]. Here,(xk, yk) denotes the coordinates of thekth reference point, and

mk specifies the slope of the line joining the node and thekth reference point which is

deducible from the arrival angle of the emitted signal (Fig.2.2(a)). Note that, angles

from only two reference points (k = 2) are enough to solve the linear equations in

order to find a unique location estimate.

Fig. 2.2(b) helps to geometrically derive the location estimate quantity for the

same scenario where it is actually converted into a lateration problem. From the angle

of arrival information, the angle at pointC of Fig. 2.2(b) could be comprehended, i.e.,

∠ACB = ∠AoA2−∠AoA1. We know from circle properties that, the angle subtended

by AB at its center is twice the angle subtended by it at pointC, i.e., ∠AOB =

2∠ACB. Now, applying cosine law in△OAB, radiusr of the circumscribing circle

can be obtained as,

cos∠AOB =
r2 + r2 − AB2

2r2

The other two angles∠ABC & ∠CAB can be comprehended with the additional
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X 2 Y2,X 1 Y1,

AoA1
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(a) The coordinates of the reference points
{i.e., (X1, Y1) & (X2, Y2)} are known – so
are the emitted signals’ angles from them
(i.e.,∠AoA1 & ∠AoA2).
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known length
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r

r d2
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(b) Equivalent figure of 2.2(a): A & B denote
the positions of the reference points and C
denotes the node’s position –∠ACB can be
inferred from∠AoA1 & ∠AoA2.

Figure 2.2: Location estimate using angle information in 2D(the originating signals’
angles are represented w.r.t. magnetic north).

information of thebearings[47] of the reference points to each other. Since the co-

ordinates of the reference points are known, thesebearingsare not hard to calculate.

Then similar application of the circle property and cosine law for△OAC and△OBC

respectively, yield the distance measurementsd1 andd2 from the two reference points.

To unambiguously infer a node’s location, distance estimates from three or more ref-

erence points are usually required as previously explained.

2.2.1.3 Propagation Models

The emitted radio signal strength from the reference point decreases with distance.

Based on various propagation models [16], we can deduce the received signal at a

given distance. For example, considering free-space propagation model, a radio signal

attenuates by1/d2 when it reaches a node at a distance,d. So, if we know the trans-

mitted power of the original radio signal, we could find the received signal strength

using the path-loss equation of the free-space propagationmodel [16]. Conversely, if
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we can measure the received signal strength at a node withoutknowledge about its

distance from the source, we may subsequently infer the distance by making use of

the same model. Finding the appropriate propagation model is a challenge, especially

in indoor environments, because, RF signal suffers from multi-path effect, refraction,

and reflection from objects with different properties whichcause the attenuation of the

signal to correlate poorly with distance. To combat this phenomenon, some works try

to derive propagation models pertaining only to a specific indoor environment. For

example, SpotON’s [41] indoor propagation model is entirely based on empirical data.

Nonetheless, RADAR [17] came up with Wall Attenuation Factor(WAF) model based

on the number of obstacles (e.g., walls) separating the transmitter and receiver. They

approximated the value of WAF parameter by conducting experiments measuring sig-

nal strength between transmitter and receiver when they hadline-of-sight and also,

while they were separated by walls. Unfortunately, RADAR’s propagation model did

not perform as accurate as their empirical method.

Apart from these three basic techniques to deduce the distance between a ref-

erence point and the node to be located, other approaches also exist. For example,

DV-Hop [42], Amorphous [43] and Self-Configurable [48] localization are proposed

mainly for ad-hoc networks to provide coarse-level granularity, and they use number

of hops to reach a node as an indication of its distance away from the reference points.

2.2.2 Proximity to a Reference Point

The family of coarse-grained localization schemes try to estimate locations of the

nodes on a broader scale. Instead of trying to make near-perfect estimate of distance

from a reference point, these schemes may infer the node to becollocated with a ref-

erence point, if the node hears beacons from it. In general, coarse-grained localization

schemes try to measure a node’s closeness to a reference point of known position.
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Figure 2.3: The node’s estimated position resides inside the shaded region rather than
yielding a unique intersection point.

When more than one reference point reports the node to be in their vicinity, some

simple computationally inexpensive techniques (e.g. Centroid [49], APIT [50]) are

utilized to infer the location:

• The Centroid scheme [49] defines aconnectivitymetric which indicates the

closeness of a node to a particular reference point. During acertain time interval,

all the reference points send a predefined number of beacons.Theconnectivity

metric is defined as the number of beacons received by the nodefrom a partic-

ular reference point to the number of beacons sent by it during a time interval.

The final location estimate is the centroid of all the reference points for which,

theconnectivitymetric is above a certain threshold.

• Approximate point-in-triangulation or APIT [50] takes theCentroid scheme a

step further and gives center of gravity of the overlapping areas created by tri-

angles (triangle vertices are reference points) as the node’s ultimate position.

Only those triangles where the node is supposed to be inside are considered.
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Though APIT tries to improve on the overall localization error, it suffers from

InToOutError (i.e. the node is inside a triangle but the APITtest shows other-

wise) and OutToInError (i.e. the node mistakenly assumes tobe inside a triangle)

which affects its performance.

In short, these techniques incur less complexity in both thenodes and the infras-

tructure accommodating them, at the expense of larger localization error. Sometimes,

a node may not be detectable by three or more reference pointsor the reporting stations

may be collinear. So the fine-grained distance approximation methods (e.g., triangula-

tion) may not apply. In these cases, the systems using proximity techniques can at least

provide some coarser approximations. For example, Cricket [14] receiver basically

uses lateration to infer its position. It requires the receiver to hear announcements from

four beaconsor reference points (not three) to correctly deduce its position. Speed of

sound comprises the fourth unknown there, as it varies with temperature, humidity,

etc. [51]. Once the receiver fails to receive announcementsfrom fourbeacons, Cricket

reverts back to proximity measures and gives the centroid ofthe receivingbeacons’

coordinates as its own position.

2.2.3 Gradient Descent Method

Sometimes geometric interpretation to calculate intersection of circles as discussed in

2.2.1 does not provide a unique solution (see Fig. 2.3) [3]. This may result due to the

distance approximation errors incurred while using ToA/TDoA, AoA or propagation

models. A more robust algorithm like the gradient descent approach, can eliminate this

shortcoming. From Eq. (2.2), the performance measurement function considering the

kth reference point can be obtained as,

fk(X) = dk −
√
(x− xk)2 + (y − yk)2
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= c(τk − τ)−
√

(xk − x)2 + (yk − y)2

wherec is the speed of light, and the node’s transmitted sequence attime τ is received

by thekth reference point at timeτk. There can be many types of objective functions,

but, for simplicity, let us consider the following objective function to be minimized [4],

F (X) =
K∑

k=1

f 2
k (X)

whereK is the number of reference points andX = (x, y, τ)T . Successive location

estimates are updated according to the following formula,

Xi+1 = Xi − η▽X F (Xi) (2.4)

whereη is a small constant, used to maintain stability in search foroptimal X by

ensuring that, the operating point does not move too far along the performance surface.

Xi specifies theith estimate and▽XF (Xi) denotes the gradient of the performance

surface atith iteration which is defined as,

▽XF (Xi) ≡ ▽XF (X)|Xi
=




∂F

∂x
∂F

∂y

∂F

∂τ



|Xi

=




2
K∑

k=1

fk(Xi)× (xk − xi)√
(xk − xi)2 + (yk − yi)2

2
K∑

k=1

fk(Xi)× (yk − yi)√
(xk − xi)2 + (yk − yi)2

−2c
K∑

k=1

fk(Xi)
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The recursion in (2.4) continues until‖η ▽X F (Xi)‖ ≤ ǫ, whereǫ is a predefined

maximum permissible error.

2.2.4 Smallest Vertex Polygon

Smallest Vertex Polygon (SVP) [21,52] is a simple algorithmto infer location estimate

for fingerprint based positioning systems. During a runtimesignal measurement, if a

number of locations w.r.t. a reference point’s offline training database seem likely ac-

cording to thebracketingheuristic [52], then all such locations constitute the candidate

set regarding that particular reference point. Subsequently, a number of distinct vertex

polygons are formed where each vertex is from a different reference point’s candidate

set. Suppose, the search for candidate set results inM potential locations for each of

theK reference points. So, a total ofMK distinct vertex polygons are realized. Among

them, SVP is the one having shortest perimeter and its centroid denotes the final loca-

tion estimate. The idea behind such an algorithm was to allowa fair contribution from

all the reference points.

2.2.5 Nearest Neighbor in Signal Space

Nearest Neighbor (NN) algorithm is first utilized in RADAR [17] to tackle the local-

ization problem, and subsequently being used by other worksrelying on signal pattern

matching techniques ( [21], [52], [27], etc.). This algorithm returns the location entry

from the location fingerprint database which has the smallest root mean square error in

signal space with the given runtime measurement at the unknown location.K-nearest

neighbor (K-NN) is a variant of the basic nearest neighbor algorithm whereK location

entries are searched instead of returning only the best match. The final location esti-

mate is obtained by averaging the coordinates of theK locations found. The value ofK

has usually been chosen empirically in the literature. RADAR’s experimental results

24



2.2 Localization Algorithms

show that,K-averaging has some benefit over the basic nearest neighbor algorithm for

smallerK’s, but for largeK, their accuracy degrades rapidly as points irrelevant to the

true location are also included in the averaging.

2.2.6 Probabilistic Methods

The probabilistic approach models the location fingerprintwith conditional probabili-

ties and utilizes the Bayesian inference concept to estimatelocation [18,20,22,26,27,

53]. It does not follow the deterministic approach to represent the location fingerprints

as a vector of mean RSSs like the nearest neighbor algorithm discussed above. Conse-

quently, the location fingerprint becomes a conditional probability distribution of the

formPr(O|L) whereO denotes the observation vector of RSS at locationL. For each

location, l ∈ L, we can estimate the likelihood functionPr(O|Ll) from an offline

training set consisting of samples of location fingerprintsobserved at that position. In

localization literature, there are generally two methods for representing the likelihood

function: i) the parametric approximation and ii) the histogram approach.

• Rooset al.[53] suggested a kernel method to approximate the probability density

function of the RSS from an AP at a particular location. However, the most

popular parametric estimation is the Gaussian model as can be seen from many

existing works (e.g., [26,27,30]):

Pr(Ok|Ll) =
1

σkl

√
2π

exp {(x− ukl)
2/2σ2

kl},

whereµkl andσkl denote the mean and standard deviation of RSS from thekth AP

at locationl ∈ L. These parameters can be obtained from the offline radio-map

database. The rationale behind choosing such Gaussian model approximation is

usually vindicated through experimental findings [26,27,30].
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• The histogram representation [9, 18, 20] is essentially a fixed set of bins where

each bin holds the frequency of occurrence of RSS samples thatfalls within the

range of that particular bin. The bin’s range is calculated from an adjustable

number of bins and the known values of minimum and maximum RSS values.

The larger the number of bins, the better the histogram can approximate the

probability density function of RSS.

A slightly more sophisticated way to determinePr(O|L) is presented in [9] where

two different conditional probabilities are calculated from two different histogram rep-

resentations and are multiplied together. The first conditional probability represents

the frequency count of a particular access point’s collected samples given a locationL.

In other words, this probability indicates how often the system visualizes the partic-

ular access point at that location. The second conditional probability represents the

distribution of RSS from that access point given the same location.

According to Bayes rule, a posterior distribution of each location l ∈ L can be

formed as the following,

Pr(Ll|O) =
Pr(O|Ll)P (Ll)

Pr(O)
=

Pr(O|Ll)Pr(Ll)∑|L|
m=1

Pr(O|Lm)Pr(Lm)
, (2.5)

where|L| is the total number of discrete locations andPr(Ll) denotes the prior proba-

bility of being at locationLl which can be set as a uniform distribution, assuming every

location is equally likely. As the denominator
∑|L|

m=1
Pr(O|Lm)Pr(Lm) does not de-

pend upon the location variablel, it can be safely treated as a normalizing constant

whenever only relative probabilities or probability ratios are required. Upon observing

a particular fingerprint (e.g.,O∗), the position(x, y) of the MN can subsequently be

calculated as,x =
∑|L|

l=1
xl · Pr(Ll|O∗) andy =

∑|L|
l=1

yl · Pr(Ll|O∗).
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In general, upon observing a particular fingerprint (e.g.,O∗), Bayes decision rule

will select positionLm over positionLn using (2.5) when:

Pr(Lm|O∗) > Pr(Ln|O∗)

⇒ Pr(O∗|Lm)P (Lm) > Pr(O∗|Ln)P (Ln). (2.6)

Upon the assumption of uniform distribution ofPr(Ll)’s, (2.6) can further be simpli-

fied asPr(O∗|Lm) > Pr(O∗|Ln) which comprises of the likelihood conditional prob-

abilities only. Maximum Likelihood Estimate (MLE) choosesthe locationL∗
l which

obtains the maximum value of the posterior probability:

L∗
l = argmax

Ll

Pr(Ll|O∗).

Since probabilistic models incorporate additional information compared to the deter-

ministic representation of location distribution, they are expected to provide better

performance on location estimation. However, location systems utilizing probabilistic

models usually require a large training set in order to map the conditional probabilities

appropriately.

2.2.7 Neural Networks

Neural Network methods were introduced in localization problem with the view that

RSS fingerprints are too complex to be analyzed mathematically and may require sub-

tle non-linear discriminant functions for classification.Battiti et al. [24] utilized multi-

layer perceptron (MLP) neural network [54] in solving the indoor localization prob-

lem. They noticed slow convergence period of their neural network during the offline

training phase and also emphasized on the need for a large training set to train the

neural network properly. The problems of over-training or over-fitting also accom-
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pany these types of classification algorithms [54]. Since the neural networks avoid

characterization of the statistics of the location fingerprints, they rarely provide any

insight information on the underlying mechanism of indoor positioning system. The

performance of such algorithms is found to be almost similarto the simplistic pattern

matching techniques (e.g.,K-NN) in localization literature [24].

2.2.8 Support Vector Machines

The support vector machines (SVMs) algorithm has its root instatistical learning the-

ory introduced by Vapnik [55]. The strength of SVMs lies in its ability to be trained

correctly through a relatively small training set and creating sufficient structure for data

classification without memorizing or over fitting the training samples [23].

Here, the SVMs algorithm is described briefly without divulging into mathemat-

ical details. Avid readers may consult [56] for an excellentmathematical description

of the technique. In order to apply SVMs into the localization problem, first, the vec-

tors of location fingerprints are mapped into a higher dimensional space called feature

space by using akernel function to perform the vector transformation [23]. Subse-

quently, the SVMs algorithm creates an optimal separating hyperplane or decision

surface in that feature space and uses the hyperplane to perform classification. The

separating hyperplane is not unique in general, and is optimal when it has the largest

possible distance from the closest training point or a maximal margin. A hyperplane is

any codimension-1 vector subspace of a vector space, or equivalently, a hyperplaneV

in a vector spaceW is any subspace such thatW/V is one-dimensional. However, the

application of SVMs did not improve the localization performance compared to other

techniques (e.g.,K-NN) [23]. Also, from the theoretical modeling perspective, the

SVMs may be too complex to provide useful information into designing a positioning

system.
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2.3 Summary and Conclusions

Indoor localization techniques that are built on top of already existing network infras-

tructure have gained popularity because of their ubiquity and cost-effectiveness com-

pared to other infrastructure-based positioning systems.These systems generally use

location fingerprinting techniques that utilize the correlation between a location and

its signature (e.g., RSS), and apply mostly pattern matchingtechniques. The unavail-

ability of appropriate radio propagation model inside the building made them unable to

apply the localization algorithms (e.g., lateration) commonly seen in the infrastructure-

based systems. Consequently, the reported accuracy of the fingerprinting techniques

falls short of their counterparts. However, finer accuracy is only one of the many char-

acteristics of a positioning system that are expected to be met. It is generally agreed

that a desirable indoor positioning system should be characterized by good accuracy,

short training phase, cost-effectiveness (preferably using off-the-shelf hardware), and

robustness, in the face of previously unobserved conditions. This work herein aims to

achieve a positioning system that accomplishes all these requirements.

Since one of our goal is to design acost-effectivepositioning system, we opt for

fingerprinting techniques that utilize the existing network infrastructure, and use off-

the-shelf hardware (e.g., laptops, PDAs, phones, etc.) carried by the users that have

built-in wireless technologies. Due to the widespread availability of Wi-Fi and Blue-

tooth in such devices, we select these two as our underlying technologies to provide

positioning service. The majority of the fingerprinting techniques in the literature that

are based on Wi-Fi, make use of the basic RF-based signal strength parameter (i.e.,

RSS) as a location fingerprint; although other signal strength parameters (e.g., Signal-

to-noise ratio (SNR)) are also available. A comparative study of such RF-based signal

strength parameters of Wi-Fi is required from a positioningsystem’s point of view.

Only a few works in the localization literature have divulged into Bluetooth based posi-
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tioning systems. There is clearly a need for a comprehensivestudy of Bluetooth signal

strength parameters from a positioning system’s perspective as well. The shortcoming

of the popular RSS location fingerprint has been apparent in existing literature [25–29]

across different hardware solutions for the same wireless technology. This limits RSS’s

usage as location fingerprint if the positioning system aimsto accommodate heteroge-

neous hardware solutions (e.g., laptops, PDAs, phones, etc.). This study addresses

this issue and subsequently, proposes anewlocation fingerprint which is shown to be

robustacross different hardware solutions. This dissertation also proposes two differ-

ent approaches in order toshortenthe exhaustive training phase typically seen in the

fingerprint based positioning systems.

The major performance metric usually seen in the localization literature is the po-

sitioning accuracy which is a form of error measurement.Accuracyof the location

information is reported as an error distance between the estimated location and the

MN’s actual location. However, some works also report the percentage of successful

location detection within a particular accuracy which is termed asprecision. In short,

the term “accuracy” generally indicates the grain size of the location information pro-

vided, while the term “precision” specifies how often we are expected to attain that

accuracy [6]. For example, if a location system can determine positions within 3 me-

ters for about 90 percent of the measurements, that particular system qualifies to be

90% precise in providing 3-meter accuracy. The positioningsystems which deploy

dedicated infrastructure just for positioning services, are able to provide centimeter-

level accuracy. For example, the accuracy and precision of Active Bat positioning

system is quite impressive at9 cm for95% of locations [13]. Depending on the testbed

environment and how the offline training phase is conducted,the accuracies offered

by the systems which are overlaid on top of existing infrastructure are noticed to have

varied slightly. An average accuracy in the range of2 to 3 m is generally reported in

most localization literature for such systems [20, 24, 37, 53]. To date, Ekahau’s po-
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sitioning engine software [22] claims to be the most accurate location system based

on probabilistic model for location fingerprinting techniques; they claim a one-meter

average accuracy with a short training period. However, Ekahau’s claim of one-meter

average accuracy draw mixed reactions from the research community who performed

tests with their software (e.g., [21]).

Our research limits the scope of the localization algorithms to two well-known

techniques, namely, the nearest neighbor and Bayesian inference. This is in accor-

dance with the view that our ideas are quite generic and can beproductive irrespective

of the choice of algorithms. Moreover, the other complex algorithms, e.g., neural

networks and support vector machines, do not provide favorable results compared to

the simplistic pattern matching algorithms (e.g.,K-NN) [23]. Both neural networks

and SVMs are non-parametric classifiers [57] that do not assume any knowledge of

the distributions of the location fingerprints. As a result,they basically cannot pro-

vide insight on how to improve the positioning systems beyond the complexity of their

generic learning machines.
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Chapter 3

Review of Location Fingerprints

In this chapter, we investigate the properties of the signalstrength based parameters

for two well-known RF technologies, namely, Wi-Fi and Bluetooth. This analysis is

required to understand the underlying features of locationdependent signal strength

parameters’ patterns. As we will explain, the available RF signal strength parameters

of Wi-Fi and Bluetooth have specific usage according to their own respective technolo-

gies, which may render them inappropriate for consideration as location fingerprints.

For Wi-Fi, there has been extensive study regarding its signal strength parameters (e.g.,

RSS). However, such knowledge is generally aimed towards communications capabil-

ity [58,59] or receiver design [60]. An understanding of thesignal strength parameters

for location fingerprinting in order to improve the design ofpositioning systems is still

lacking.

A comprehensive study of Bluetooth signal strength parameters from a position-

ing system’s perspective is missing as well. Very few works have actually contem-

plated a Bluetooth positioning system (e.g., [61, 62]). Positioning systems that are

solely based on Bluetooth however reported coarse accuracy mainly because of the

choice of an inappropriate signal strength parameter as location fingerprint. To the

best of our knowledge, no work has delved into inspecting theintricacies related to
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Figure 3.1: Our first experimental testbed – the training locations which we use as
training data are marked as shaded circles.

choosing an appropriate location fingerprint in detail for Bluetooth.

Before illustrating the existing RF signal strength parameters’ pitfalls regarding

localization for both Wi-Fi and Bluetooth, we first describe our experimental setup.

We have three experimental testbeds where one is located inside a lecture theater, and

the other two are set up within two different research laboratories of our university

campus. The rationale behind choosing a few testbeds was to emulate different prac-

tical scenarios. Next, we elaborately describe all our measurement setups where the

experiments are conducted.

3.1 Measurement Setup

As mentioned previously, we have three different experimental testbeds:

• The first is a Wi-Fi and Bluetooth testbed located inside a lecture theater of our

university campus which is shown in Fig. 3.1. We shall refer to this testbed as
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���

Figure 3.2: Our second experimental testbed – all the training locations are marked as
shaded circles.

“Testbed 1” throughout the thesis. In this testbed, we have used four Aopen

MP945 Mini PCs to serve as our APs which are placed near the ceilings. The lo-

cations of these APs are marked as stars in Fig. 3.1. Each MP945 is incorporated

with Ranger’s BT-2100 Class 1 Bluetooth adapter which scans for Bluetooth

packets and is also installed with Aopen WN2302A mini-PCI WLAN adapter

in order to passively detect Wi-Fi devices. Each Mini PC or APis connected to

our university’s intranet for communicating with the server by means of a wired

LAN connection. All our mini PCs ran the latest (at the time of experiment)

openSUSE Linux distribution with the latest libpcap libraries [63] and BlueZ

protocol stack [64].

• The second (“Testbed 2”) is solely a Bluetooth testbed located within a research

laboratory of our university campus which is shown in Fig. 3.2. Similar to

Testbed 1, we have used the Aopen MP945 mini PCs incorporated with Ranger’s

BT-2100 Class 1 adapter to serve as our APs. The locations of these APs are
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Figure 3.3: Our third experimental testbed – all the training locations are marked as
shaded circles.

marked as stars in Fig. 3.2.

• The third (“Testbed 3”) is a Wi-Fi testbed which is located inside another re-

search laboratory of our university campus (see Fig. 3.3). Apart from the Cisco

APs which provide wireless connectivity in that building, we have also used

Linksys WRT54G router and Ekahau T201 tags to serve as our APs.Unlike the

previous two testbeds where the signal strengths are actually measured at the AP

side, here, MN will be responsible for that operation.

The various Wi-Fi and Bluetooth devices which are used as APs and MNs in

our testbeds are listed in Table 3.1. Note that, our first two testbeds emulate theAP-

basedpositioning system where the signal strengths are actuallymeasured at the AP

side, whereas the third testbed follows anMN-assistedapproach where the MN itself

retrieves the signal strength information.
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Table 3.1: The list of Wi-Fi and Bluetooth devices used as MN and AP in our experi-
mental testbeds

Technology MN Devices AP Devices

Testbed 1

Wi-Fi
Intel PRO/Wireless 3945ABG

Aopen WN2302A
Samsung SWL-2455

Bluetooth
Ranger’s BT-2100 (Class 1)

Ranger’s BT-2100
HP iPAQ 6315 PDA (Class 2)

Testbed 2 Bluetooth

Ranger’s BT-2100

Ranger’s BT-2100
Billionton’s USBBT02-B (Class 2)
Acer n300 PDA (Class 2)
Motorola V3xx Phone (Class 2)

Testbed 3 Wi-Fi
Intel PRO/Wireless 2200BG

Linksys WRT54G

Atheros AR242x 802.11abg
Cisco Aironet 1200
Ekahau T201 Tag

3.1.1 Data Collection Procedure

In our three testbeds, there are 106, 337 and 466 training points or grids, respectively.

The training process involves placing the mobile device at each training point, and

collecting data. In the first two testbeds, we adopted the approach whereby our APs

are the ones that collect RSS information while in the third, the MN itself retrieves the

RSS. Our front-end of the signal strength collection programis a Java Graphical User

Interface (GUI) which allows to load the map and click on the location to be trained

conveniently.

For the case of Wi-Fi data collection in Testbed 1, the program is written using

the libpcap libraries [63] where the WLAN adapter at the mobile device sends probe

requests continuously for some period so that the APs can gather enough packets. For

the case of Bluetooth, we actually log onto the mini PCs using Secure Shell (SSH)

and make the APs issue Bluetooth inquiries which the mobile device responds to. The

Bluetooth signal strength information retrieval program iswritten utilizing the HCI

API of BlueZ protocol stack [64]. In either case, the packet information is transferred
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to our central server’s database from the APs (i.e., mini PCs). These signal strength

collection programs are invoked externally from the Java program when we click on

the locations to be trained on the map. Note that, our Bluetooth adapters provide the

absolute RSS values of the inquiry response packets, rather than the RSSI values as

stipulated by the Bluetooth Core specification [65]. In Testbed 1, we have chosen 44

testing points which are completely different from our training locations (not shown

in Fig. 3.1). The central server is also responsible for calculating the location estimate

during the testing phase. In Testbed 3, we have utilized tcpdump [66] to capture the

signal strength information at the MN. We first put the MN’s NIC into “monitor mode”

and then run tcpdump where it snoops all the 802.11 packets from the air. Later on,

we ran some scripting programs on the tcpdump’s actual output to retrieve the required

RSS information from our desired APs.

Based on our three experimental environments, Table 3.2 summarizes the mea-

surement scenarios used to collect the signal strength datawhich will be used in sub-

sequent analyses. We noticed that the number of data points collected at each location

for Wi-Fi using our own program in Testbed 1 is quite less compared to the tcpdump

program utilized in Testbed 3.

3.2 Wi-Fi Location Fingerprints

3.2.1 Received Signal Strength (RSS)

Strictly speaking, RSS is supposed to be the signal power observed at the receiver,

and is usually measured in dBm. Consequently, it is expected tovary among different

transmitter-receiver pair configurations which will be discussed elaborately in the next

chapter. Moreover, the 802.11 network interface cards (NICs) do not provide the RSS

readings directly. Instead, a typical NIC only provides theRSSI parameter, in the form
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Table 3.2: Experimental design and measurement factors

Factors Testbed 1 Testbed 2 Testbed 3
Testbed Type Lecture Theater Research Lab. Research Lab.
Testbed Area 540 m2 214 m2 382 m2

Measurement Time Afternoon/Eve. Afternoon/Eve. Afternoon/Eve.
Measurement Span 7 days 10 days 10 days

Measurement Device APs APs MN
Measurement period

5 minutes 4 minutes 1 minute
per location

Distance between Non-uniform Uniform Uniform
Locations 0.6 m or more 0.6 m 0.6 m

Number of Locations 106 337 466

Software Tool
Java GUI,

Java GUI, Java GUI,
Libpcap (Wi-Fi),

BlueZ (Bluetooth) Tcpdump (Wi-Fi)
BlueZ (Bluetooth)

of an 8-bit unsigned integer that incorporates quantization error as a result of the A-

to-D conversion of the measured signal strength into RSSI. Inorder to use the RSS

as a location fingerprint, which is done traditionally for Wi-Fi based localization, it

must be translated from the given RSSI. The 802.11 standard does not mandate how

RSSI should be calculated from the sampled RSS. As a result, different vendors tend

to have their own formulas or conversion tables for the mapping from RSS to RSSI,

and vice versa [59]. In addition, the RSSI is intended for internal use by the NIC,

e.g., to determine whether the channel is clear to send, or todecide whether it should

attempt to roam. As these operations neither require high precision nor accuracy of the

measured RF power, some NIC vendors may choose to provide RSSI readings with

limited range, granularity, and accuracy. For example, Cisco has 101 RSSI values

and its maximum RSSI is mapped to an RSS of -10 dBm, while Symbol has 32 RSSI

values and its maximum RSSI is only mapped to an RSS of -50 dBm. Thevariations

among different transmitter-receiver pairs, together with the non-standardized ways of

defining RSSI, have several implications on the localizationaccuracy. Logically, we
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would expect a NIC that can offer a larger set of RSSI values (and hence RSS values)

to be able to differentiate among more locations, which could potentially yield better

accuracy. We also should not impose a restriction on the devices that can be used

with the localization algorithm, especially if widespreadusage is desired. Finally, it is

also expected that the localization accuracy could deteriorate when the mobile device’s

NIC is made by a different vendor than the one used during the training phase. The

latter undesirable effect is often shielded in existing localization literature, since they

typically use the same transmitter-receiver pair during both training and testing phases.

3.2.2 Signal Quality (SQ)

The 802.11 standard describes SQ as “PN (Pseudo Noise) code correlation strength”

which gives a measure of channel condition based on the bit error rate (BER) observed

at the receiver. Similar to RSSI, SQ measurements are most likely to be inconsistent

among different vendors since they may be implemented according to the vendors’ own

guidelines (e.g., how many “wrong” bit positions may qualify for 50% SQ is likely to

be inconsistent among different vendors). Moreover, the SQparameter’s definition is

unclear in the 802.11 standard for non-DSSS modulation types (e.g., OFDM used in

802.11g) since only DSSS uses a PN code. All these factors contribute to the omission

of SQ as location fingerprint, and till date, no work has actually implemented their

positioning system based on it.

3.2.3 Signal-to-noise ratio (SNR)

SNR is generally defined as the ratio of the received signal strength to the power of

the ambient RF energy in Wi-Fi nomenclature. Since many Wi-Ficards do not report

SNR [59], its use as a location fingerprint is less common. It is also expected to be

a less stable location fingerprint compared to RSS, since it iscalculated from RSS

39



3.3 Bluetooth Location Fingerprints

in the first place, with additional uncertainty contributedby the ambient interference

which tends to be more random. Prior works have also vindicated this claim. For

example, RADAR [17] found more fluctuations in SNR measurements compared to

RSS at the same location for a particular NIC. Nibble [18], which uses SNR as a

location fingerprint, also reported poorer accuracy compared to its RSS counterparts.

3.3 Bluetooth Location Fingerprints

3.3.1 Received Signal Strength Indicator (RSSI)

In the Bluetooth standard, the RSSI is an 8-bit signed integer that denotes whether

the received power level is within or above/below the GoldenReceiver Power Range

(GRPR) [65]. A positive or negative RSSI (in dB) means that the received power level

is above or below GRPR, respectively, while a zero implies thatit is ideal (i.e., within

GRPR). Next, we proceed to investigate the RSSI’s relationshipwith distance, and con-

sequently, infer how it might affect positioning systems. LetP (d1) andP (d2) denote

the upper and lower GRPR thresholds of the intended receiver,and assume that these

power levels are detected at distancesd1 andd2, respectively, from the transmitter.

According to the free-space propagation model,

P (d1) ∝
1

d1
2

andP (d2) ∝
1

d2
2
, giving

P (d1)

P (d2)
=

d2
2

d1
2
, (3.1)

where the proportionality constant is the same. If we consider20 dB path loss between

these two distances, which is approximately the nominal GRPRrange, we get

10× log
P (d1)

P (d2)
= 20. (3.2)
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Combining (3.1) and (3.2), we finally obtain

d2
d1

= 10. (3.3)

The above calculation implies that the RSSI remains at0 when the transmitter-receiver

separation ranges betweend1 andd2, although they differ by a factor of10. Hence, we

may not be able to differentiate over a wide area if we rely on RSSI for localization.

To aggravate the problem, Bluetooth devices may request the transmitter to perform

power control, so as to keep its received power level within GRPR. Suppose the devices

choose to perform power control over a range of20 dB (the margin may be even larger

according to Bluetooth specification). If we add this quantity to the 20 dB GRPR

range, it means that we can no longer discriminate path losses of 40 dB. Following

the same analysis as before, it can be seen that, a device thatis only 10 cm away may

not be distinguishable from one that is10 m away. This wide range is unacceptable

for indoor localization. Hence, RSSI is argued to be a poor candidate for Bluetooth

positioning systems.

3.3.2 Link Quality (LQ)

LQ is derived from the average bit error rate (BER) seen at the receiver, and is con-

stantly updated as packets are received. For our experiments, we have chosen Ranger’s

BT-2100 Bluetooth USB adapters, which use BlueCore4-ROM chips from Cambridge

Silicon Radio (CSR). Since LQ is an 8-bit unsigned integer, it can only assume256 dif-

ferent values to represent various BER conditions. The CSR chips report LQ with finer

BER resolution when BER is small, but as the BER increases, the resolution becomes

coarser [67]. According to Bluetooth specification, a link isonly considered workable

if its BER is at most0.1%. Therefore, the CSR chipsets map LQ values below215

with a coarser BER resolution, as the link is already considered undesirable. This in
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turn has adverse effects on localization because the LQ parameter may not provide

desirable distinct signatures when the links are error-prone.

Another important consideration is that, the LQ conversionalgorithms among

different chipsets made by different vendors may differ; therefore, prior works [21,

52] that have relied on the mobile device’s perceived LQ as location fingerprints may

actually suffer from performance degradation if they were to use devices that contain

chipsets from different vendors other than the one used during the training phase.

3.3.3 Transmit Power Level (TPL)

TPL is an 8-bit signed integer which specifies the Bluetooth module’s transmit power

level (in dBm). The power control feature is introduced into Bluetooth devices in

order to facilitate energy conservation, and also to combatinterference. The step size

for power adjustments ranges between2 and8 dB. Upon the receipt of a power control

request message, the TPL is increased or decreased by one step.

According to Bluetooth specification, Class1 devices are advised to perform

power control even when the power is below−30 dBm. However, for the conve-

nience of analysis, we assume here that the minimum selectable power is−30 dBm.

In this scenario, Class1 devices can thus vary its power over a range of50 dB, since

the maximum attainable power for Class1 devices is+20 dBm. If we consider the

minimum step size for power control (i.e.,2 dB), then there can be at most50÷2 = 25

different TPL values for distinguishing unique locations,which are quite limited.

Our CSR adapters offer updated RSSI measurements once every second. There-

fore, if it takes four power control steps to eventually reach a stabilized TPL for a

specific location, the overhead can be as long as4 seconds (ignoring transmission and

processing delays), which contributes to the overall latency of such a positioning sys-

tem.
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3.3.4 Inquiry Result with RSSI/RSS

Every inquiry that is sent and replied by a device will be transmitted at a device-specific

default power setting. As a result, the RSSI fetched through an inquiry is free from the

side-effect of power control as explained earlier. Hence, the inquiry-fetched RSSI is

expected to provide finer measurements than the connection-based RSSI, although it

still suffers from the GRPR-related zero-RSSI problem. On the other hand, if the

inquiry results are provided as absolute RSS, as is the case inthe chipset we used,

GRPR-related problem is diminished.

3.4 Experimental Findings

Since most of the fingerprinting techniques are built on top of a Wi-Fi infrastruc-

ture, many works have experimented with the available signal strength parameters

(mainly RSS) as location fingerprints and noticed their pitfalls regarding localiza-

tion [18,25,26,28–30]. However, no prior work has actuallyinvestigated the prospects

of Bluetooth’s various signal strength parameters available as location fingerprints.

Few works [52, 61, 62] have used either RSSI or LQ as location fingerprint which is

ill-suited for localization purpose as evident from our analysis in the previous section.

Next, we present the results from our experiments for a complete understanding of the

Bluetooth’s signal strength parameters from a localizationperspective. All the experi-

ments pertaining to this section have been conducted insideour Bluetooth testbed (i.e.,

Testbed 2).

3.4.1 Signal parameters’ correlation with distance

For this experiment, we carefully chose five different grid positions where we took

readings from each of the3 APs, thus resulting in15 data points. We adopted this
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Figure 3.4: Relationship between various Bluetooth signal parameters & distance.

methodology, rather than choosing15 distinct distances from a single AP, because we

wanted to correlate distance with signals originating fromAPs that were placed at

different locations and surroundings.

In our experiments, we discovered that the Bluetooth wireless signal strengths

tend to vary quite significantly depending on the user’s orientation. Therefore, for

every chosen grid position, we took30 readings from every AP for each of the four

different orientations. We then calculated the average of these120 readings to obtain

the signal parameter’s value for that particular AP at the specific grid position. Since

we know the distances of all grid positions from any AP, the signal strength values are

simply mapped against the corresponding distances to generate Fig. 3.4. In order to

acquire the connection-based status parameter readings (i.e., RSSI, LQ, and TPL), we

maintained connections at the HCI level from the APs to our mobile host.

From Fig. 3.4, the following observations can be made:

• As anticipated in our earlier analysis, RSSI turns out to correlate poorly with
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distance, as shown in Fig. 3.4(a).

• Fig. 3.4(c) shows a horizontal straight line for TPL values.This is because our

Class2 adapter at the mobile host which uses Broadcom’s BCM2035 chip does

not support power control feature. As a result, the TPL at theAP remained at its

default value, which happens to be0 dBm for the Bluetooth adapter used.

• From Fig. 3.4(b), we see that LQ correlates with distance much better than RSSI

and TPL, although the LQ readings obtained at smaller distances show very little

variation. Note that these readings were taken at the AP side, rather than at the

mobile host side, as the LQ perceived at our mobile host was always255 at any

grid position, which is the highest possible LQ value. This is due to our Class1

APs’ large transmit power. The measurements at the AP side, on the other hand,

show variations because our mobile host uses a Class2 adapter.

• Our BT-2100 Class1 adapters provide absolute RX power level through in-

quiry, instead of the relative RSSI values as suggested by Bluetooth specifica-

tion. As the parameter “Inquiry Result with RSSI” also suffersfrom the GRPR-

related zero-RSSI problem (just like the “connection-basedRSSI”), we believe

that making RX power level available should augur well in terms of distance.

Fig. 3.4(d) certainly establishes this claim since the RX power level shows the

best correlation with distance, compared to the other threesignal parameters.

3.4.2 Effect of GRPR on RSSI

Fig. 3.5 illustrates the adverse effects of wider GRPR on the reported RSSI. From

the figure, it is seen that BT-2100’s RSSI readings (GRPR≈ 80 dB ) showed little

variation compared to our Broadcom’s adapter, which has a narrower GRPR. Because

of the combined effect of large GRPR and power control, BT-2100’s RSSI readings
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Figure 3.5: Connection-based RSSI for two Bluetooth adapters with different GRPR.

always remained at or above0. On the contrary, Broadcom’s adapter gave negative

RSSI values at greater distances, although we did not have many such grid positions

owing to our testbed’s size.

3.4.3 TPL Consideration

For this experiment, we recorded the stabilized TPL values as well as the stabilization

time periods for each AP’s signal at specific grid positions using BT-2100 at the mobile

host side. Fig. 3.6(a) indeed shows very few discrete transmit power levels, in harmony

with our analysis in Section 3.3.3. Moreover, the time periods required to reach these

stabilized TPL values are also quite significant, as revealed in Fig. 3.6(b). Both these

attributes make TPL a poor candidate for localization purpose.
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3.5 Summary and Conclusions

In Table 3.3 and 3.4, we summarize the suitability of the available signal parameters as

location fingerprints for Wi-Fi and Bluetooth, respectively. We emphasize on the point

that each signal parameter has particular usage according to its own respective tech-

nology. Consequently, their inherent characteristics may render them inappropriate

to be considered as location fingerprints which we have investigated thoroughly here.

Based on our analysis, RSS seems to be the most viable option as location fingerprint

compared to all the other signal parameters available for Wi-Fi. However, RSS has

been observed to vary at the same location depending on different devices’ hardware

even under the same wireless conditions [25–29], which ultimately has adverse effect

on fingerprinting solutions. From our analysis and experimental findings, it is apparent

that RSS has the most potential compared to the other currently available Bluetooth

location fingerprints. However, it may also not be robust when different devices are

considered (e.g., Class 1, 2, etc.). Next, we deduce our robust location fingerprint, the

Signal Strength Difference (SSD), and prove its superiority over RSS, both analytically

and experimentally.
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Table 3.3: A qualitative overview of the characteristics ofWi-Fi technology’s available
signal parameters and their pitfalls regarding localization

Main Purpose Issues Regarding Localization

RSS

• RSS is translated from RSSI
which is meant for internal
use by the Wi-Fi NIC.

• RSSI is utilized in Wi-Fi’s
CSMA-based MAC protocol
to give an idea about whether
the channel is clear to send,
or to decide when a device
should attempt to roam.

• Most popular RF location fin-
gerprint.

• Inconsistent among different
transmitter-receiver pair con-
figurations.

• Different vendors’ varying in-
terpretations also have ad-
verse effect on this finger-
print.

• The above two effects collec-
tively degrade its robustness
as a location fingerprint.

SQ

• Gives a measure of the chan-
nel condition based on the
BER observed at the receiver.

• Defined as the “PN code cor-
relation strength” in 802.11
family which uses DSSS
modulation schemes.

• Inconsistent among various
vendors.

• Undefined in 802.11 standard
for variants of 802.11 (e.g.,
802.11g).

• No localization research so far
tried to contemplate it as a lo-
cation fingerprint.

SNR

• Gives a relative measure of
the RSS compared to the am-
bient RF energy.

• Existing works [17, 18] re-
ported this fingerprint to be
more inconsistent than RSS.

• Positioning systems based on
it reported poor accuracy so
far.
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Table 3.4: A qualitative overview of the characteristics ofBluetooth technology’s avail-
able signal parameters and their pitfalls regarding localization

Main Purpose Issues Regarding Localization

RSSI

• Provides a relative measure
of an established connection’s
RSS.

• Helps in power-control.

• RSSI’s correlation with dis-
tance suffers because of both
GRPR and the power control
feature.

• Positioning systems based on
RSSI have so far affirmed
poor accuracy [62].

LQ

• Gives a measure of the per-
ceived BER of an established
link.

• Mainly used for adapting to
changes in the link’s state,
notably to support CQDDR
(Channel Quality Driven Data
Rate).

• When the links are error-
prone, LQ may not provide
desirable distinct signatures.

• Inconsistent among different
vendors.

• To date, positioning systems
based on LQ have reported
coarse accuracy [62].

TPL

• Denotes the transmitter’s out-
put power of an established
link in dBm.

• Varies depending on the Blue-
tooth class.

• Can assume only a few dis-
tinct values.

• Incurs latency to a location
system based on it.

RSS

• Since Bluetooth operates on
TDMA-based MAC protocol,
the reporting of RSS is not
mandatory, as indicated in the
Bluetooth Specification [65].

• Inquiry-based RSSI is free
from power control effects,
but it still suffers from GRPR-
related zero-RSSI problem.
However, if RSS can be ob-
tained instead of RSSI, it be-
comes free from that draw-
back as well.
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Chapter 4

Robust Location Fingerprint

In existing localization literature based on fingerprints,the signal strength samples are

either collected at the APs, or at the MN that needs to be located. The AP-based

approach has the advantage of detecting locations of a wide range of MNs without re-

quiring any modification of the latter, e.g., the MN need not download any additional

software solely for localization purpose. On the other hand, the MN-assisted approach

could better ensure the security and privacy of the MN. In both approaches, the sam-

ples’ signal strength values collected over a small time-window are generally averaged

to obtain the traditional RSS location fingerprint. This RSS location fingerprint has

certain implications:

• It is influenced by a particular transmitter-receiver pair’s hardware-specific pa-

rameters, such as antenna gains. Consequently, having a different transmitter-

receiver pair compared to the training phase would likely produce a different

RSS signature at the same location [26].

• Moreover, if the MN-assisted approach is used, the RSS fingerprint is likely to

be different across mobile devices made by different vendors, not just due to the

differences in their hardware, but also due to the vendors’ own interpretations of
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4.1 Signal Strength Difference (SSD) – a robust location fingerprint

RSS as discussed in Section 3.2.1.

In this chapter, we show that, rather than utilizing the absolute signal strength

(RSS) as location fingerprint, the differences of signal strengths perceived at the APs

or at the MN would actually provide a more stable location signature for any mobile

device irrespective of its hardware used. We contend that, in this way, the transmitter-

receiver pair’s hardware effect is mitigated. In Section 4.1, the robust location finger-

print, SSD, is first explained in detail. We then list in Section 4.2 some related works

that address the same issue of hardware variations of the MN.Experimental results

are presented in Section 4.3, while a summary of our findings of the robust location

fingerprint, SSD, appear in Section 4.4.

4.1 Signal Strength Difference (SSD) – a robust loca-

tion fingerprint

SupposeP (d) and P (d0) denote the received signal strengths at an arbitrary dis-

tanced and a reference distanced0 from the transmitter, respectively, for a particular

transmitter-receiver pair. Here, we assume that the mobiledevice is the transmitter,

while the AP is the receiver. From the log-normal shadowing model [16], we get,

[
P (d)

P (d0)

]

dB

= −10β log

(
d

d0

)
+XdB. (4.1)

The first term on the RHS of (4.1) defines the path loss component(β is the path

loss exponent), while the second term reflects the variationof the received power at a

certain distance (XdB ∼ N(0, σ2
dB)). Eq. (4.1) can be rewritten as,

P (d)|dBm = P (d0)|dBm− 10β log

(
d

d0

)
+XdB. (4.2)
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4.1 Signal Strength Difference (SSD) – a robust location fingerprint

Depending on the hardware used at both the AP and the mobile device, the perceived

power at a reference distance (i.e.,P (d0)) varies, as a result of hardware-specific pa-

rameters, such as antenna gains. Therefore, the average RSS at a distanced is also

hardware-dependent. This explains why RSS is not a robust location fingerprint, de-

spite the fact that it is commonly used in the existing literature.

Rather than using absolute RSS values as location fingerprints, the difference of

the RSS values observed by two APs can be used to define a more robust signature for a

transmitting mobile device; we shall term this difference asSignal Strength Difference,

or SSD. To explain analytically, letP (d1) andP (d2) denote the RSSs of a mobile

device’s transmitted signal as perceived at two different APs (AP1 and AP2) which are

at distancesd1 andd2 from the mobile device, respectively. We assume that, all the

APs are of the same type, i.e., their hardware have the same properties. Consequently,

using (4.2), we can write the following for AP1 and AP2 respectively:

P (d1)|dBm = P (d0)|dBm− 10β1 log

(
d1
d0

)
+ [X1]dB, (4.3)

and P (d2)|dBm = P (d0)|dBm− 10β2 log

(
d2
d0

)
+ [X2]dB. (4.4)

Combining (4.3) and (4.4), we obtain,

[
P (d1)

P (d2)

]

dB

= −10β1 log

(
d1
d0

)
+ 10β2 log

(
d2
d0

)
+ [X1 −X2]dB. (4.5)

Eq. (4.5) denotes SSD’s expression which is free fromP (d0), thereby, specifies a

more robust location fingerprint than absolute RSS. If we assume the path loss expo-

nent to be the same for the particular indoor environment (i.e.,β1 = β2 = β), (4.5) can

be further simplified as,

[
P (d1)

P (d2)

]

dB

= −10β log

(
d1
d2

)
+ [X1 −X2]dB. (4.6)
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4.1 Signal Strength Difference (SSD) – a robust location fingerprint

Based on the above analysis, we claim that SSD provides significant improve-

ment over traditional RSS in denoting the location fingerprint when the signal strength

samples are collected at the APs. Next, we explain it in a moredetailed way. We also

inspect whether SSD is superior to RSS in the case of MN-assisted localization where

the signal strength samples are actually collected at the MN.

4.1.1 SSD for AP-based localization approach

Consider the same example scenario as above but with the assumption that the close-in

reference power, i.e.,P (d0) of (4.2), can be evaluated using the free space propagation

model as follows [16],

P (d0)|dBm = 10 log

(
PMNGMNGAPiζ

2
MN

16π2d20L

)
, (4.7)

wherePMN is the MN’s transmitted power,GMN is the MN’s antenna gain,GAPi is the

ith AP’s antenna gain,L is the system loss factor, andζMN is the transmitted carrier’s

wavelength (same unit asd0).

Using (4.7), both (4.3) and (4.4) can be rewritten respectively as,

P (d1)|dBm = 10 log

(
PMNGMNGAP1

ζ2MN

16π2d20L1

)
− 10β1 log

(
d1
d0

)
+ [X1]dB, (4.8)

andP (d2)|dBm = 10 log

(
PMNGMNGAP2

ζ2MN

16π2d20L2

)
− 10β2 log

(
d2
d0

)
+ [X2]dB. (4.9)

Here, the APs’ antenna gains (i.e.,GAP1
andGAP2

) and the miscellaneous losses (L1

andL2) would be the same because of our previous assumption which mentions that

the APs are of similar hardware properties. As a result, combining (4.8) and (4.9)

yields SSD’s expression of (4.5). Consequently, we claim that while RSS may vary

using different mobile devices as can be seen from (4.8) or (4.9), SSD is free from that

drawback as evident in (4.5).

53



4.2 Related Work

4.1.2 SSD for MN-assisted localization approach

We consider the same example scenario as above, except that the signal strength is

now measured at the MN rather than at the APs. Subsequently, (4.8) and (4.9) take the

following forms, respectively,

P (d1)|dBm = 10 log

(
PAP1

GAP1
GMNζ

2
AP1

16π2d20L1

)
− 10β1 log

(
d1
d0

)
+ [X1]dB, (4.10)

andP (d2)|dBm = 10 log

(
PAP2

GAP2
GMNζ

2
AP2

16π2d20L2

)
− 10β2 log

(
d2
d0

)
+ [X2]dB. (4.11)

The APs’ antenna gains (i.e.,GAP1
andGAP2

) and the miscellaneous losses (L1 and

L2) are the same as discussed in Section 4.1.1. Theζ ’s will be different if the APs

operate in different channels but this difference is usually not very significant [68].

The samples gathered at the MN are mainly derived from the probe replies that come

from the APs [26]. Since these replies are generally sent using some default power

setting, we can have the approximation,PAP1
≈ PAP2

. Under these conditions, the

SSD’s expression in (4.5) can be obtained by combining (4.10) and (4.11), and thereby,

denotes a more robust location fingerprint compared to RSS.

4.2 Related Work

The effects of different devices’ hardware variations on RF location fingerprint have

gained little attention in the localization literature so far. As discussed before, existing

works generally use the same mobile device during the training and testing phases,

thereby, invoking similar setups (i.e., transmitter-receiver pair) in both cases. How-

ever, [25–29] have observed that the location fingerprints (i.e., RSSs) produced by

using different mobile devices vary quite significantly from one another even under

the same wireless conditions. Haebarlenet al. [26] try to accommodate various de-
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vices by having a benchmark training database taken with only one device. For other

devices, they require a set of linear RSS conversion formulae, which translate the RSSs

of those devices into the benchmark device’s RSSs. These linear conversion formulae

are obtained by laboriously experimenting with each supported device to discover its

RSS relationship with that of the benchmark device. Kjærgaard[28] follows a simi-

lar approach. Taoet al. [25] utilize signal strength difference as a location fingerprint

like our approach. Their motivation was to find the locationsof rogue machines with

different hardware configurations and varying transmitting powers, and they have only

provided experimental results based on the idea. They did not provide any intuition or

analysis about why the differences in signal strengths could work successfully in their

scenarios. On the contrary, our work gives both the detailedanalysis and the experi-

mental results as to why the SSD could be regarded as arobustlocation fingerprint.

There are two other techniques in the literature that could mitigate the effect of

MN’s hardware variations without any additional calibration steps like the aforemen-

tioned works [26, 28] – Hyperbolic Location Fingerprint (HLF) [29] and Ecoloca-

tion [69]. HLF [29] uses logarithm of signal strength ratiosbetween pairs of APs.

However, they do not give any analytical basis as to why it mitigates the hardware

variation effects. Their log signal strength ratios are actually just the RSS differences

in the log scale. Taking log of (4.3) and (4.4), and combining, it can be seen that the

resulting expression is not totally free fromP (d0), unlike our SSD’s expression (4.5).

Ecolocation [69] uses ordered sequence of RSS measurements rather than the absolute

RSSs to constitute a unique location fingerprint. IfP (di) andP (dj) denote the RSSs

at APi and APj, which are at distancesdi anddj from the MN, respectively, then a

constraintof the sequence is defined as,

P (di) > P (dj)⇒ di < dj. (4.12)
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First, the constraint set for each grid point is calculated using the RHS of (4.12). Only

the locations ofreference nodes(i.e., APs) are required in this phase – no signal

strength collection surveys are necessary. During location determination phase, the

ordered sequence of RSSs collected at the APs is translated into the ordered sequence

of distances using (4.12), and subsequently matched against the constraint set of each

grid point calculated beforehand. The centroid of the grid points where the maximum

number of constraints are matched is returned as the location estimate. We believe

that, owing to MNs’ hardware variations and varying transmission powers, bothP (di)

andP (dj) should be affected in a similar way. Therefore, the constraint (4.12) is ex-

pected to remain intact over different MNs. Consequently, Ecolocation could be robust

against MNs’ hardware variations as well.

4.3 Experimental Results and Findings

We first list the assumptions that we have made for our experiments in Section 4.3.1,

and then discuss our results in subsequent sections.

4.3.1 Assumptions

• In this dissertation, whenever we have used RSS as location fingerprint for cer-

tain experiments, we have assumed it to be normally distributed at a particular

location. Though some works defy this phenomenon, others lend support to

it [30]. We denote the RSS location fingerprint to be normal distributed which is

defined by only two parameters. One instance of RSS distribution at a particular

location inside Testbed 1 is shown in Fig. 4.1. Similar to [26], our experimental

results also suggest that it is a reasonable approximation,as significant improve-

ment cannot be achieved even if we were to utilize histogram representations

of RSS. However, we have used the histogram representation for HLF and the
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Figure 4.1: Histogram of received signal strength (RSS) at a particular training point
regarding an AP and its Gaussian approximation.

histogram’s bin size is selected to be 0.02 as suggested by [29].

• We have chosen two well-known algorithms in the localization literature, namely,

K-NN in signal space [17] and Bayesian Inference [26], in orderto test our ideas.

These two algorithms are discussed in Section 2.2.5 and 2.2.6, respectively. Our

key intention is to show that our ideas are quite generic and can be helpful ir-

respective of the choice of algorithms. For theK-NN algorithm, we choose the

value ofK empirically, similar to prior works [17]. Based on our experimental

findings, we selectK = 4. While applying Bayes formula, the priori probabili-

ties are assumed to be uniformly distributed.

• In order to apply probabilistic models, one assumption thathas widely been used

is the independence of RSS values of different APs [18,20]. This assumption is

justifiable for a well-designed network where each AP runs ona non-overlapping
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(d) SSD between 2 Wi-Fi APs.

Figure 4.2: RSS and SSD considering 2 different devices (a laptop and a PDA) incor-
porated with both Bluetooth and Wi-Fi capability (Testbed 1).

channel. Kaemarungsi and Krishnamurthy have performed experiments in [30]

to evaluate the correlation factor among the APs’ RSS values in the presence of

interference and they have strengthened this claim as well.Thus, we have also

adopted their vindication.

4.3.2 Justification of SSD as a robust fingerprint

For this experiment, we have chosen various mobile devices which were listed in Ta-

ble 3.1 in order to see their effects on both RSS and SSD location fingerprint. In

Testbed 1, we have selected two different devices (a laptop and a PDA) and measured

their signal strengths at the APs (i.e., mini PCs). Our laptopis installed with an Intel

PRO/Wireless 3945 ABG Mini PCI WLAN adapter whereas the WLAN cardused in

58



4.3 Experimental Results and Findings

-90

-80

-70

-60

-50

-40

-30

-20

 2  4  6  8  10  12  14  16  18  20

A
bs

ol
ut

e 
S

ig
na

l S
tr

en
gt

h 
(in

 d
B

m
)

20 Arbitrary Training Positions (Testbed 2)

Bluetooth RSS

Ranger’s BT-2100
Billionton’s USBBT02-B

Motorola V3xx Hand Phone
Acer n300 PDA

(a) RSS perceived at a Bluetooth AP.

-40

-30

-20

-10

 0

 10

 20

 30

 2  4  6  8  10  12  14  16  18  20

S
ig

na
l S

tr
en

gt
h 

D
iff

er
en

ce
 (

in
 d

B
)

20 Arbitrary Training Positions (Testbed 2)

Bluetooth SSD

Ranger’s BT-2100
Billionton’s USBBT02-B

Motorola V3xx Hand Phone
Acer n300 PDA

(b) SSD between 2 Bluetooth APs.

Figure 4.3: RSS and SSD considering 4 different Bluetooth devices (Testbed 2).

our PDA is Samsung SWL-2455 802.11b. As for Bluetooth, our HP iPAQ PDA has an

integrated Class 2 Bluetooth chip, whereas a BT-2100 Class 1 Bluetooth USB adapter

has been plugged into the laptop during the experiments.

We have picked 20 random training points and stationed the devices at those lo-

cations, while ensuring that we have collected enough samples at the APs for both

devices. Fig. 4.2(a) and 4.2(c) are drawn with the RSS readings seen by a particular

AP, whereas Fig. 4.2(b) and 4.2(d) plot the difference between the RSS values seen at

two different APs.

We repeat similar experiments for our Testbed 2 where four different Bluetooth

devices are used. The Acer n300 PDA, Motorola V3xx phone and USBBT02-B adapter

are the three Bluetooth Class 2 devices while the Ranger’s BT-2100 is a Class 1 adapter.

All these devices are stationed at the various training locations in order to measure

their signal strengths at the APs. The RSS at a particular AP and the SSD between two

different APs for 20 such locations are depicted in Fig. 4.3(a) and 4.3(b), respectively.

For Testbed 3, we conducted the signal strength survey by plugging two differ-

ent Wi-Fi NICs (Intel PRO/Wireless 2200BG and Atheros AR242x 802.11abg) into

our laptop. Since our Testbed 3 emulates the MN-assisted localization scenario, we

actually collected the signal strength samples at the MN rather than at the APs like
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(b) SSD between 2 Wi-Fi APs perceived at MN.

Figure 4.4: RSS and SSD considering 2 different Wi-Fi devices(Testbed 3).

our previous two testbeds. Fig. 4.4(a) shows the RSSs perceived at the two different

NICs from an AP (i.e., Linksys WRT54G router) whereas Fig. 4.4(b) depicts the SSDs

between two different APs perceived at them.

From Fig. 4.2(a), 4.2(c), 4.3(a) and 4.4(a), it is apparent that, the absolute sig-

nal strength perceived at/from a certain AP varies quite significantly between the two

devices at each training location. This has repercussion intheir use as fingerprints be-

cause they are quite different when different mobile devices are used during training.

Most works perform their training and testing phase with thesame device, thereby,

shielding the adverse effect of this phenomenon. On the contrary, the SSD does not

suffer much from this effect, thereby, providing a more robust fingerprint as seen in

Fig. 4.2(b), 4.2(d), 4.3(b) and 4.4(b). This readily complies with our analysis in Sec-

tion 4.1. Note that the fluctuations of SSD could be as bad as RSSat some locations.

However, SSD is observed to be more stable in our experimentsoverall. Only the

findings at 20 randomly selected locations are presented here. Furthermore, although

the SSDs between only one pair of APs are shown, choosing any pair of APs to cal-

culate the SSDs yields improvements over RSS in our experiments. We also notice

from Fig. 4.2(b) and 4.3(b) that, the SSD readings obtained for Bluetooth tend to be

more robust compared to the Wi-Fi SSDs (Fig. 4.2(d) and 4.4(b)), which will be further
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(a) KNN algorithm’s performance.
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(b) Bayesian algorithm’s performance.
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(c) KNN algorithm’s performance.
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(d) Bayesian algorithm’s performance.

Figure 4.5: Comparison of error performance using RSS vs. SSD as location finger-
print for Bluetooth when the testing phase is conducted with the same training device
or a different device.

verified by our later results.

4.3.3 Comparison of SSD and RSS as Location Fingerprint

As pointed out in the previous section, the usage of the same MN for both training

and testing phase may have biased the reported results of theexisting fingerprinting

techniques. To investigate further, we conducted experiments in both our AP-based

Bluetooth (Testbed 2) and MN-assisted Wi-Fi (Testbed 3) testbeds to visualize the

effect of MN’s hardware variations.

In Testbed 2, we have chosen Bluetooth solutions from four different manufac-

turers and types as discussed in the previous section for training of the 337 data points
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(b) Bayesian algorithm’s performance.
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(c) KNN algorithm’s performance.
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(d) Bayesian algorithm’s performance.

Figure 4.6: Comparison of error performance using RSS vs. SSD as location finger-
print for Wi-Fi when the testing phase is conducted with the same training device or a
different device.

shown in Fig. 3.2. We separate Ranger’s BT-2100 Class 1 adapter’s data set as our

training samples, while the rest,(3× 337) = 1011 samples from the other three Class

2 devices are used for testing. In Testbed 3, we have Wi-Fi NICsfrom two different

manufacturers and types as discussed in the previous section. The Intel NIC’s col-

lected data at466 grids shown in Fig. 3.3 are kept as training while the AtherosNIC’s

collected data at244 locations are utilized for testing purpose.

To inspect the “same device” effect, we choose Ranger’s BT-2100 Class 1 adapter

in Testbed 2 to perform both the training and testing phase. Among the337 training

grids,200 of them are selected randomly as training points while the rest 137 are kept

for testing purpose. We then run our algorithms (i.e.,K-NN and Bayesian which are

discussed in Section 2.2.5 and 2.2.6, respectively) to obtain the localization errors. We
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(a) KNN algorithm’s performance w.r.t. RSS and
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Figure 4.7: Comparison of error performance when using RSS vs.SSD as location
fingerprint for both Bluetooth and Wi-Fi (Testbed 1).

repeat this procedure for101 times to obtain all the errors for different combinations

of training and testing samples, and finally come up with the cumulative probability

graph. In Testbed 3, Intel PRO/Wireless 2200BG Wi-Fi NIC has been utilized for both

the training and testing phase. In this particular testbed,200 of the466 training grids

shown in Fig. 3.3 are selected randomly as training points, while the rest266 are kept

for testing purpose. We follow similar approach as the one described for Testbed 2 in

order to obtain the cumulative probability graph of errors.

From Fig. 4.5(c), 4.5(d), 4.6(c), and 4.6(d), it is apparentthat hardware variations

of the MN during the testing phase have adverse effect on the RSS based localiza-

tion performance for both Bluetooth and Wi-Fi. We further notice that, this issue is

prevalent regardless of whether the RSS is measured at the APsfor AP-based localiza-

tion (our Bluetooth Testbed 2) or at the MN for MN-assisted localization (our Wi-Fi

Testbed 3), This is a severe shortcoming of the fingerprinting techniques since one can-

not assume the users to carry the same device with which the training of the system has

been performed. On the contrary, SSD based localization performs quite well under

hardware variations for both Wi-Fi and Bluetooth and is superior to RSS based local-

ization in all cases (see Fig. 4.5(c), 4.5(d), 4.6(c), and 4.6(d)). The error performance
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Figure 4.8: Comparison of localization error performance when using various location
fingerprints in KNN localization algorithm for Bluetooth.

when using the same device for training and testing can be visualized in Fig. 4.5(a)

and 4.5(b) for Bluetooth, and in Fig. 4.6(a) and 4.6(b) for Wi-Fi. The better perfor-

mance of RSS based algorithms compared to our SSD based algorithms is a pitfall

since in real practical scenarios, all the users would hardly carry the same device as the

training device.

We conduct another experiment in Testbed 1 which is equippedwith both Wi-Fi

and Bluetooth capabilities in order to compare Bluetooth and Wi-Fi’s performance re-

garding SSD. For this experiment, we have chosen the laptop’s data at the 62 training

points (shown in Fig. 3.1) and the PDA’s data at the 44 testingpoints. The Bluetooth

and Wi-Fi device details on the laptop and PDA can be found in the previous section

and also in Table 3.1. As illustrated in Fig. 4.7(a) and 4.7(b), it can be seen that, the

positioning system built upon SSD again outperforms its RSS counterpart for both

Bluetooth and Wi-Fi. Furthermore, we also see that, the Bluetooth SSD based systems
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Figure 4.9: Comparison of localization error performance when using various location
fingerprints in Bayes localization algorithm for Bluetooth.

perform better than positioning systems utilizing Wi-Fi SSD, as anticipated in the pre-

vious section. The average errors of our Bluetooth SSD based localization algorithms

(2.58 m for K-NN and2.55 m for Bayesian) in Testbed 2 are also smaller than Wi-

Fi SSD based localization algorithms (2.94 m for K-NN and2.89 m for Bayesian) in

Testbed 3.

4.3.4 Comparison of SSD with Other Robust Location Fingerprints

The results presented in this particular section are obtained from the experiments con-

ducted in our Bluetooth Testbed 2 and Wi-Fi Testbed 3. As discussed in the previous

section, for Testbed 2, we separate BT-2100 Class 1 adapter’s data set as our training

samples, while the rest,(3×337) = 1011 samples from the other three Class 2 devices

are used for testing. Similarly, for Testbed 3, the Intel NIC’s collected data at466 lo-
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Figure 4.10: Comparison of localization error performance when using various loca-
tion fingerprints in KNN localization algorithm for Wi-Fi.

cations are kept as training while the Atheros NIC’s collected data at244 locations are

utilized for testing purpose.

In case of Bluetooth, it is evident from Fig. 4.8 and 4.9 that, SSD based techniques

are better than the other two schemes (HLF and Ecolocation) described in Section 4.2

that could also mitigate the MNs’ hardware variation effects. The numerical values of

these two figures can be found in Table 4.1. Similar conclusions could be drawn for

Wi-Fi SSD based techniques as well from Fig. 4.10 and 4.11. The numerical values of

these figures are listed in Table 4.2.

For both Wi-Fi and Bluetooth, we see that, Ecolocation performs even worse than

the RSS based algorithms. This can be attributed to the following reasons: i) Ecoloca-

tion is mainly targeted at localizing inexpensive sensors and is shown to perform better

than other localization algorithms found in wireless sensor networks [69]. Its main

advantage lies in the fact that it requires no time-consuming signal strength collection
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Figure 4.11: Comparison of localization error performance when using various loca-
tion fingerprints in Bayes localization algorithm for Wi-Fi.

surveys in the location space, whereas all the other algorithms considered here make

use of the offline training phase data. ii) RSS measurements donot represent distances

accurately in the real world. Therefore, uncertainties could arise while using (4.12) as

discussed in [69]. Moreover, since we only have four APs in each testbed, the number

of constraints (i.e.,
(
4

2

)
) at each grid point is also quite limited.

For fair comparison, we modify Ecolocation by making use of the offline training

phase data. The constraint set for each grid point of the modified algorithm consists

of the ordered sequence of RSS values collected during the training phase instead of

the distance constraints as discussed in Section 4.2. The ordered sequence of RSSs

collected during the location determination phase is now directly compared with each

grid point’s constraint set without the need for translation into distance constraints

using (4.12). As evident from Fig. 4.8, 4.9, 4.10 & 4.11, and Table 4.1 & 4.2, the per-

formance of Ecolocation is enhanced significantly, and the modified algorithm com-
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4.4 Summary and Conclusions

Table 4.1: Percentile values and averages of errors (in meter) when various fingerprints
are considered for Bluetooth.

Algorithm (Fingerprint) 25th Percentile Median 90th Percentile Average
KNN (RSS) 2.25 3.63 6.91 3.87
KNN (HLF) 1.81 2.91 5.84 3.21
KNN (SSD) 1.35 2.25 4.92 2.58
Bayes (RSS) 2.39 3.60 7.65 4.09
Bayes (HLF) 2.01 3.06 5.22 3.16
Bayes (SSD) 1.51 2.34 4.41 2.55
Ecolocation 3.73 5.94 10.37 6.08

Modified Ecolocation 1.77 2.84 5.08 3.00

fortably outperforms the RSS based algorithms. Although itsperformance is inferior to

our SSD based algorithms, it performs slightly better than the HLF-based algorithms.

4.4 Summary and Conclusions

In this chapter, we introduced the use of“Signal Strength Difference (SSD)”as a loca-

tion fingerprint, and analyzed in detail why it can serve as robust location fingerprint

that is irrespective of the hardware used at the mobile device. From the analysis carried

out in Section 4.1, we can draw the following conclusions:

• SSD is a more robust location fingerprint compared to traditional RSS regardless

of whether the samples are collected at the APs or at the MN. This has been

verified with our experimental results as illustrated thoroughly in Section 4.3.2

and 4.3.3.

• Collecting samples at the APs should provide more stable SSD readings com-

pared to measuring them at the MN, because in the latter case,a greater number

of assumptions were involved in inferring the SSD’s expression. In addition, an
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4.4 Summary and Conclusions

Table 4.2: Percentile values and averages of errors (in meter) when various fingerprints
are considered for Wi-Fi.

Algorithm (Fingerprint) 25th Percentile Median 90th Percentile Average
KNN (RSS) 3.20 4.82 8.22 4.95
KNN (HLF) 1.73 2.81 5.84 3.08
KNN (SSD) 1.77 2.59 5.08 2.94
Bayes (RSS) 3.43 5.21 9.74 5.49
Bayes (HLF) 1.96 2.97 5.38 3.17
Bayes (SSD) 1.77 2.79 4.96 2.89
Ecolocation 4.30 6.99 11.00 6.88

Modified Ecolocation 1.94 2.83 5.34 3.06

AP-based approach tends to be free from vendor-specific shortcomings since the

APs of a particular indoor environment are usually of the same type.

The shortcomings of the popular RSS location fingerprint withMN’s hardware varia-

tions have been addressed in a few works [25,26,29] as discussed previously. Most fin-

gerprinting solutions use the same mobile device for both training and testing, thereby,

shielding the adverse effect of this phenomenon as revealedin our experimental results

of Section 4.3.3. We also compare our SSD with two other robust location fingerprints

in Section 4.3.4, and found the SSD based algorithms’ performance to be superior in

case of both Wi-Fi and Bluetooth. No work in the literature hasbeen successful thus

far in designing a reasonable Bluetooth based positioning system. We have shown that

if inquiry based RSS is available and is used to generate SSD for use as a location

fingerprint, a Bluetooth based positioning system with reasonable accuracy can still be

achieved as we have demonstrated in our experimental results.
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Chapter 5

Analysis of SSD

As emphasized in the previous section, we believe that the signal strength difference

(SSD) is the ideal choice for location fingerprint if the positioning system adminis-

trator intends to accommodate heterogeneous devices. Therefore, the error bound on

localization using SSD needs to be investigated. We feel that the properties of this

bound could provide valuable insights to improving the localization accuracy or to the

overall design of a positioning system based on SSD.

In this chapter, we analyze the Cramér-Rao Lower Bound (CRLB) [70] of loca-

tion estimation error given the SSD measurements. A novel characterization of the

properties of this bound is presented that allows us to individually assess the impact of

different parameters (e.g., number of APs, geometry of the APs, distance of the APs

from the MN, etc.) on the accuracy of location estimates. Forexample, utilizing the

effect of distances of the APs from the MN, we have devised a way to define weights

for a weightedK-NN scheme that is shown to perform better than theK-NN algorithm.

Moreover, the properties also provide valuable design phase suggestions by revealing

error trends associated with the system deployment. We alsoinvestigate these deploy-

ment issues which may give fruitful insights into the designof a positioning system.

The study of estimation bounds on localization using time-of-arrival [71], time-
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5.1 Review of SSD Location Fingerprint

difference-of-arrival [72], angle-of-arrival [72] techniques, or the RSS location finger-

print [73–75] have been investigated in the literature before. The findings subsequently

opened the door for further analysis and design of various efficient localization algo-

rithms which improve the accuracy [69, 72, 74]. We expect similar trend to follow for

the SSD location fingerprint as well.

The rest of the chapter is organized as follows. In Section 5.1, we provide a

brief review of our SSD location fingerprint, and discuss ourlocalization algorithm in

Section 5.2. The CRLB analysis and the impacts of various properties of this bound

are presented in detail in Section 5.3. Finally, we present in Section 5.4 the summary

and the conclusions drawn.

5.1 Review of SSD Location Fingerprint

The SSD fingerprint is shown to be robust across different mobile devices compared

to the traditional RSS both analytically [27] and experimentally [25, 27]. Using the

shadowing model, the SSD’s expression can be obtained as in (4.6),

[
pk
pr

]

dB

= −10β log

(
dk
dr

)
+ [Xk −Xr]dB, (5.1)

whereβ is the path-loss exponent,Xk ∼ N(0, σ2
k) andXr ∼ N(0, σ2

r) are the shadow-

ing variations,pk andpr denote the RSSs at the MN from thekth andrth APs, which

are at distancesdk anddr from the MN, respectively. Note that,pk has been substituted

for the notationP (dk) in this chapter to express the formulae in a simplistic way.

If a positioning system hasK APs, there can be
(
K
2

)
possible SSDs among which

only (K − 1) values are independent. We obtain these SSD values as,[pk
pr
]
dB
, k =

{1, 2, . . . , K} − {r}, where therth AP is considered as the reference AP. The RSS of

therth AP is subtracted from the other(K−1) APs’ RSS values to produce the desired
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5.2 Localization Algorithm

SSDs. An intuition about how we select the referencerth AP is given at the end of next

section. However, for ease of our mathematical calculations in this thesis, we assume

theK th AP to be the reference AP, i.e.,r = K.

5.2 Localization Algorithm

We discussed the traditional RSS based Bayesian inference scheme to locate a user

in Section 2.2.6. Our SSD-based localization algorithm is just a slight modifica-

tion on that scheme. We consider our indoor environment to bemodeled as a fi-

nite position space{c1, c2, . . . , cL} with a finite observation space{o1, o2, . . . , oM}.

We define an observation as a vector of signal strength readings overK APs, i.e.,

oj = {p1, p2, . . . , pK}, wherepk denotes the received signal strength from thekth AP.

Our SSD-based localization scheme is quite similar to the RSS-based algorithm.

However, the observation vector is now a(K − 1)-dimensional signal strength differ-

ence readings of the form,oj = {p1 − pr, p2 − pr, . . . , pK − pr} wherepr denotes the

referencerth AP’s RSS. Subsequently, the conditional probability of the observation

becomes,Pr(oj|ci) =
∏K−1

k=1
Pr(pk − pr|ci). Unless mentioned otherwise, we adopt

theK-Nearest Neighbors as our algorithm in this chapter where the average ofK loca-

tions having the largestPr(oj|ci)’s gives the location estimate. Note that, thisK-NN

algorithm is different from theK-NN in signal space algorithm which was discussed

in Section 2.2.5 and applied in experiments of Chapter 4.

Now, let us discuss how we have modeled the conditional probability Pr(pk −

pr|ci). We assume the RSS from an AP at a particular location to be normally dis-

tributed. Though some works defy this phenomenon, others lend support to it [27,30].

Similar to other works [53], we also have not observed any significant improvement

when we consider the histogram representation of RSS compared to its Gaussian coun-

terpart.
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5.3 CRLB for Localization using SSD

We post-process our training data to be fitted into the Gaussian distribution,Zpk|ci ∼

N(µik, σ
2
ik), whereµik andσik being the average and standard deviation of the signal

strength samples collected from thekth AP at training locationci. Consequently, we

obtain,

Zpk−pr|ci ∼ N(µik − µir, σ
2
ik + σ2

ir). (5.2)

We select the referencerth AP as the one which shows the least average deviation of

RSSs over the whole localization area, i.e.,r = min
k

{
1

L

∑L
i=1

σ2
ik

}
, ∀k ∈ {1, 2, . . . , K}.

5.3 CRLB for Localization using SSD

It is well-known that the Craḿer-Rao Lower Bound (CRLB) sets a lower limit for the

variance (or covariance matrix) of any unbiased estimates of an unknown parameter

(or unknown parameters) [70]. If̂θ = (x̂ ŷ)T is the estimate of the MN’s location

θ = (x y)T , then its covariance matrix is,

Covθ(θ̂) = Eθ{(θ̂ − θ)(θ̂ − θ)T}

=



σ2
x̂ σx̂ŷ

σŷx̂ σ2
ŷ


 (5.3)

whereEθ{.} is the expectation operator conditioned onθ. The diagonal elements

of (5.3) represent the mean squared errors and the off-diagonal elements are the co-

variances between different parameters.

The lower bound is given in terms of the Fisher Information Matrix (FIM) [70]. If

fθ(P ) denotes the probability density function (p.d.f.) of observationsP conditioned
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5.3 CRLB for Localization using SSD

on θ, then the score function [70] is defined as the gradient of itslog-likelihood, i.e.,

U(θ) = ∇ ln fθ(P ) =
∂

∂θ
ln fθ(P ). (5.4)

The FIM,J(θ) is the variance of this score function,

J(θ) = E

{[
∂ ln fθ(P )

∂θ

]2}

If fθ(P ) belongs to some exponential family, then, with some regularity conditions

imposed [70], we have,

J(θ) = −E
{
∂U(θ)

∂θ

}
. (5.5)

The CRLB is just the inverse of FIM and from its property,

Covθ(θ̂) ≥ {J(θ)}−1 (5.6)

Utilizing SSD’s expression (5.1), the joint p.d.f. of the(K − 1) independent SSD

measurements can be written as,

fθ(P ) =
K−1∏

k=1

1√
2πσ̃

10

ln 10

pr
pk
× exp




−

[
10 log pk

pr
+ 10β log (dk

dr
)
]2

2σ̃2




, (5.7)

whereσ̃2 = σ2
k + σ2

r , pk andpr are measured in mW scale, i.e.,pk(dBm) = 10 log pk

andd
[
pk
pr

]
dB

= 10

ln 10

pr
pk
d
[
pk
pr

]
. Let the FIM be denoted as,

J(θ) =



Jxx(θ) Jxy(θ)

Jyx(θ) Jyy(θ)


 . (5.8)
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5.3 CRLB for Localization using SSD

Using (5.7) into (5.4) and (5.5), the entries of (5.8) are obtained as,

Jxx(θ) = ρ
K−1∑

k=1

[
cosφk

dk
− cosφr

dr

]2
.

Jxy(θ) = Jyx(θ)

= ρ

K−1∑

k=1

[
cosφk

dk
− cosφr

dr

] [
sinφk

dk
− sinφr

dr

]
.

Jyy(θ) = ρ

K−1∑

k=1

[
sinφk

dk
− sinφr

dr

]2
.

Here,φk ∈ [0, 2π) is the angle the MN makes with respect to thekth AP as illustrated

in Fig. 5.1, andρ = ( 10β
σ̃ ln 10

)
2
. If var(θ̂)K denotes the variance of our location estimate,

then from the CRLB property (5.6), we have,

var(θ̂)K ≥
λK

ρ · ηK
, (5.9)

whereλK =
∑K−1

k=1
(u2

k + v2k), ηK =
∑K−1

k=1
u2
k

∑K−1

k=1
v2k −

{∑K−1

k=1
ukvk

}2

, uk =

[ cosφk

dk
− cosφr

dr
] andvk = [ sinφk

dk
− sinφr

dr
]. The RHS of (5.9) specifies the CRLB of the

MN’s location estimate using SSD for a system havingK APs, i.e.,

CK =
λK

ρ · ηK
(5.10)

The detailed calculation is presented in Appendix A.1. From(5.10), it is evident that

the CRLB depends on i) the number of APs,K, ii) the geometry of the AP,φk, iii)

propagation model parameters,σ̃ andβ, and iv) the distance of the AP from the MN,

dk. Next, we elaborately discuss the properties of these parameters on location esti-

mation error bound. Using the findings, we provide insights into positioning system

deployment issues, and also propose a modifiedK-NN scheme that shows improve-

ment over theK-NN algorithm.
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xkx −xk( , )ky
kth AP

kyy −

(x, )y

dk

φk

MN

Figure 5.1: Definition of angleφk.

5.3.1 Impact of the Number of APs

Theorem 5.1.The introduction of an additional AP with parameters(dK+1, φK+1) re-

sults in the reduction of the CRLB except whenφK+1 = φr = φk, ∀k ∈ {1, 2, . . . , K}−

{r}.

Proof. When an additional(K + 1)th AP is added to the system ofK APs, the CRLB

can be represented as,

CK+1 =
λK+1

ρ · ηK+1

, (5.11)

whereλK+1 = λK+(u2
K+1+v2K+1) andηK+1 = ηK+(v2K+1

∑K−1

k=1
u2
k−2·uK+1 ·vK+1 ·

∑K−1

k=1
ukvk+u2

K+1

∑K−1

k=1
v2k). Our goal is to proveCK−CK+1 ≥ 0. Subtracting (5.11)

from (5.10), we obtain,

CK − CK+1 =

{
v2K+1

(
λK

K−1∑

k=1

u2
k − ηK

)
+ u2

K+1·
(
λK

K−1∑

k=1

v2k − ηK

)
− 2uK+1 · vK+1·

λK

K−1∑

k=1

ukvk

}
/(ρ · ηK · ηK+1). (5.12)
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The denominator of (5.12) is non-negative sinceρ > 0 (see Eq. (A.2)) andηK , ηK+1 ≥

0 because of the following inequality,

K∑

k=1

u2
k

K∑

k=1

v2k −
{

K∑

k=1

ukvk

}2

≥ 0 (5.13)

The induction proof of the above inequality is shown in Appendix A.2. To prove the

non-negativity of the numerator of (5.12), we use the following inequality into (5.12)

(see Appendix A.3 for proof),

√√√√
(
λK

K−1∑

k=1

u2
k − ηK

)(
λK

K−1∑

k=1

v2k − ηK

)
≥ λK

K−1∑

k=1

ukvk. (5.14)

Subsequently, we obtain,

CK − CK+1 ≥
{
v2K+1

(
λK

K−1∑

k=1

u2
k − ηK

)
+ u2

K+1·
(
λK

K−1∑

k=1

v2k − ηK

)
− 2 · uK+1 · vK+1·

√√√√
(
λK

K−1∑

k=1

u2
k − ηK

)(
λK

K−1∑

k=1

v2k − ηK

)


/ (ρ · ηK · ηK+1)

=



vK+1

√√√√
(
λK

K−1∑

k=1

u2
k − ηK

)
− uK+1·

√√√√
(
λK

K−1∑

k=1

v2k − ηK

)


2

/(ρ · ηK · ηK+1)

≥ 0. (5.15)

The caseCK − CK+1 = 0 arises only when both the equality conditions of Eq. (A.6)

and (5.15) hold. These two equalities are satisfied only for the scenario,φK+1 = φr =
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Figure 5.2: Localization accuracy improves with increasing number of APs.

φk, ∀k ∈ {1, 2, . . . , K} − {r}, i.e., when all the APs are collinear (see Appendix A.4

for detailed calculation). Therefore, except for this situation, the introduction of an

additional AP indeed lowers the CRLB of the location estimate.

Fig. 5.2 shows the experimental results (conducted in our testbed of Fig. 5.3) of

localization accuracy as we vary the number of APs. It shows monotonic increase

in localization accuracy as the number of APs increases. This experimental result is

completely in sync with the findings of our CRLB analysis. We have usedK-NN

algorithm discussed in Section 5.2 as our location classifier. However, from the pattern

recognition theory [57], it is well-known that the dimension of the feature vector (i.e.,

number of APs in our case) cannot be arbitrarily increased toachieve better accuracy.

As a matter of fact, we have not seen any improvement in localization accuracy when

the number of APs is greater than ten.
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5.3 CRLB for Localization using SSD

Figure 5.3: Two different configurations of three APs: i) Regular Polygon and ii)
Straight Line. The four testing sets are indicated by the circular regions.

5.3.2 Impact of the Geometry of APs

Whenφk = φ, ∀k ∈ {1, 2, . . . , K}, we see that the FIM (5.8) is singular. In other

words, if all the APs lie on a straight line w.r.t. the MN, thenthe location estimation

error bound (5.10) is the largest.

Optimal geometry occurs when the MN is situated at the centerof a K-sided

regular polygon where the vertices of the polygon indicate the positions of theK

APs. In this setting, we have,dk = d, ∀k = {1, 2, . . . , K}, and
∑K

k=1
sin (hφk) =

∑K
k=1

cos (hφk) = 0, for any integer,h ≥ 1. Let us assumeφr = 0◦, then the FIM (5.8)

takes the following form,

J(θ) =
ρ

d2




3K
2

0

0 K
2


 . (5.16)

Using the terms of (5.16), we obtain the lower bound of var(θ̂)K as 8d2

3ρK
, which suggests
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that it decreases with increasingK. In other words, the lower bound for a square

configuration of the APs (K = 4) would be smaller than that of an equilateral triangle

configuration (K = 3). Moreover, the lower bound may also decrease for the same

number of APs’ setup where they are closer to the MN (i.e.,d decreases) compared to

the scenario when they are farther.

In Table 5.1, we list the average localization errors when the equilateral triangle

configuration of the three APs is considered for four different testing sets (the circular

regions in Fig. 5.3). The testing set near the centroid of theequilateral triangle (Set 1

in Fig. 5.3) performs the best, which complies with the analysis here. Therefore, the

system administrator may place the APs in such a way that a subset of them creates

regular polygon with “popular area” being the centroid of it. Here, we have investi-

gated the optimal APs’ geometry from the CRLB perspective using SSD as location

fingerprint. Experimental finding on optimal placement of APs for localization with

traditional RSS fingerprint can be found in [76,77] which shows similar trend.

Table 5.2 shows the average localization errors for the optimal and worst-case

(collinear) configurations of the APs for a particular testing set (Set 1 of Fig. 5.3),

which also supports our analysis. However, the collinear configuration of the APs

is found to be better for signal coverage [77]. Since both data communication and

providing location service would be the responsibilities of a Wi-Fi infrastructure, the

system administrator needs to take these conflicting requirements into account during

deployment.

5.3.3 Impact of the Propagation Model Parameters

From (5.10) and (A.2), it is evident that, if the shadowing variance of SSD,̃σ increases,

then CRLB also increases. A lower value of path-loss exponentβ increases the CRLB

as well. As a result, the location estimation error bound (5.10) would be larger in both
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Table 5.1: Average localization errors when different testing sets are used for optimal
configuration of the three APs (the equilateral triangle in Fig. 5.3)

Testing Points’ Set Set 1 Set 2 Set 3 Set 4
Average Error (in meter) 2.95 3.31 3.33 3.71

Table 5.2: Average localization errors when the optimal (regular polygon) and worst-
case (straight line) configurations of the three APs are used

Configuration Average Error (in meter)
Regular Polygon 2.95

Straight Line 4.02

cases. On the contrary, when the RSS shows less fluctuations (i.e., σ̃ ↓), the location

fingerprints tend to be more consistent and are likely to produce better localization ac-

curacy. Also, the shadowing model of RF propagation performsbetter indoors (larger

β) compared to outdoor environments. Similar effects of these parameters are observed

on accuracy for RSS based localization as well [19,69].

5.3.4 Impact of the Distance of an AP from the MN

In this section, we first analyze the impact of APs’ distanceson localization accuracy

from the CRLB perspective. Subsequently, we utilize the finding of this analysis to

defineweightsfor the weighted least squares (WLS) approach which is shown to im-

prove localization accuracy both analytically and experimentally. Finally, we take all

these findings into account in order to modify ourK-NN algorithm in Section 5.2 that

reduces the localization error further.

Under optimal geometric configuration of the APs, it has beenseen in Section 5.3.2

that, the setup with APs closer to the MN yields a reduction inthe CRLB compared to

the setting where the APs are farther. Now, let us investigate the effect of the distance

of the MN from an AP in a more generic scenario.
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5.3 CRLB for Localization using SSD

Theorem 5.2.The decrease in any of the distancesdk’s of the APs from the MN results

in reduction of the CRLB. Specifically, ifd′k = αdk, 0 < α ≤ 1, the new CRLB

satisfies,

CK′ ≤ CK (5.17)

Proof. Suppose the referencerth AP is the farthest from the MN, and for the ease of

our calculation, we assumedr → ∞. From (5.10), we have,CK = λK

ρ·ηK
, whereλK =

λK−1+
1

d2
K

andηK = ηK−1+v2K
∑K−2

k=1
u2
k+u2

K

∑K−2

k=1
v2k+2 ·uK ·vK · {

∑K−2

k=1
ukvk}.

Because of our assumption, the identitiesuk andvk take the following forms,uk =

cosφk

dk
andvk = sinφk

dk
. Similarly, the new CRLB can be written as,CK′ =

λK′

ρ·ηK′

, where

λK′ = λK−1 +
1

α2d2
K

andηK′ = ηK−1 + v2K′

∑K−2

k=1
u2
k + u2

K′

∑K−2

k=1
v2k + 2 · uK′ · vK′ ·

{∑K−2

k=1
ukvk} and the identities,uK′ = cosφK

α·dK
andvK′ = sinφK

α·dK
.

Our goal is to proveCK − CK′ ≥ 0. Using the CRLB expressions, we have,

CK − CK′ =
λKηK′ − λK′ηK

ρ · ηK · ηK′

. (5.18)

The denominator of (5.18),ρ · ηK · ηK′ ≥ 0. Now, we have to prove that the numerator

of (5.18) is non-negative. The numerator can be simplified as,

λKηK′ − λK′ηK

= (v2K′ − v2K)

(
λK−1

K−2∑

k=1

u2
k − ηK−1

)

+ (u2
K′ − u2

K)

(
λK−1

K−2∑

k=1

v2k − ηK−1

)

− 2λK−1(uK′vK′ − uKvK)

{
K−2∑

k=1

ukvk

}
. (5.19)
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Using the following inequality,

√√√√(u2
K′ − u2

K)(v
2
K′ − v2K)

(
λK−1

K−2∑

k=1

v2k − ηK−1

)(
λK−1

K−2∑

k=1

u2
k − ηK−1

)

≥ λK−1(uK′vK′ − uKvK)

{
K−2∑

k=1

ukvk

}
(5.20)

in (5.19) (the proof is shown in Appendix A.5), we obtain,

CK − CK′ ≥





√√√√(v2K′ − v2K)

(
λK−1

K−2∑

k=1

u2
k − ηK−1

)

−

√√√√(u2
K′ − u2

K)

(
λK−1

K−2∑

k=1

v2k − ηK−1

)


2

/ (ρ · ηK · ηK′)

≥ 0.

The caseCK − CK′ = 0 arises whenα = 1 (i.e., dK′ = dK) as the numerator (5.19)

becomes zero.

5.3.4.1 Weighted Least Squares (WLS) Approach

The CRLB given by (5.10) provides a benchmark for comparing theperformance of

location-estimation, but does not explicitly describe theestimator that achieves it [70].

In this section, using the impact of a closer AP in definingweights, we emerge with a

WLS estimator that is shown to perform better than LS estimator both analytically and

experimentally.

Let the coordinates of the(K + 1) APs, θk = [xk yk]
T , k = 1, 2, . . . , (K + 1)

be known, and the MN’s position isθ = [x y]T . The distancesdk’s between the MN

and theK APs (excluding the referencerth AP) are calculated by means of linear RF

83



5.3 CRLB for Localization using SSD

propagation modeling using (5.1) as,
[
pk
pr

]
dB

= a log dk + b, wherea = −10β and we

assumeb = 10β log dr + [Xk −Xr]dB. Therefore, we haveK equations of the form,

‖ θ − θk ‖2 = ‖ θ ‖2 + ‖ θk ‖2 − 2θTk θ = d2k, k = 1, 2, . . . , K.

Taking the difference of each of the aboveK equations, this system transforms into a

set of
(
K
2

)
linear equations,

2(θk − θl)
T θ = (‖ θk ‖2 − ‖ θl ‖2)− (d2k − d2l ).

The above set of linear equations is of the formy = X θ, wherey is a column vector

of length
(
K
2

)
whose components are from(‖ θk ‖2 − ‖ θl ‖2)− (d2k − d2l ), andX is a

(
K
2

)
×2 matrix whose rows are from the set{2(θk − θl)

T}, k = 1, 2 . . . , K−1, l > k.

The observations can be represented as,y = X θ +N , whereN is a zero-mean noise

column vector of length
(
K
2

)
. The general weighted quadratic risk function is of the

form,

R(θ)WLS =
[
(y −X θ)TWT (y −X θ)

]
(5.21)

whereW is a
(
K
2

)
×
(
K
2

)
symmetric weight matrix. The WLS estimate of the node’s

location is given by [78],

θ̂ = (X TWX )−1X TWy, (5.22)

and the covariance matrix [78],

ΨWLS = (X TWX )−1X TWΛWX (X TWX )−1
. (5.23)

When the observation errors are uncorrelated, the weight matrix, W, is diagonal. The

resulting estimator is thebest linear unbiased estimator(BLUE) if the weight matrix

is equal to the inverse of the covariance matrix of the observation errors [79], i.e.,W =
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Figure 5.4: From a distant position, AP1 is brought closer to the testing set which is
indicated by the circular region. The other APs’ positions are collinear.

Λ−1, whereΛ is the covariance matrix of the observation errors. Using this identity

in (5.23), the best linear unbiased estimator’s covariancematrix can be represented

as,ΨBLUE = (X TΛ−1X )−1. Using matrix algebra, it can be shown that for any other

choice of the weight matrixW [79], ΨBLUE ≤ ΨWLS.

Let us consider the scenario of Fig. 5.4 where AP1 is first stationed far from the

testing set. SupposeW is defined as the inverse of the covariance matrix of the obser-

vation errors:

W = Λ−1 =




1

σ2

1
+σ2

2

. . . 0 . . . 0

...
. . .

...
...

0 . . . 1

σ2

1
+σ2

K

. . . 0

...
...

. . .
...

0 . . . 0 . . . 1

σ2

K−1
+σ2

K




(5.24)
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Consequently, the matrixX TΛ−1X can be evaluated as the following,

X TΛ−1X =




K−1∑

k=1
k<l≤K

(xk − xl)
2

σ2
k + σ2

l

K−1∑

k=1
k<l≤K

(xk − xl)(yk − yl)

σ2
k + σ2

l

K−1∑

k=1
k<l≤K

(xk − xl)(yk − yl)

σ2
k + σ2

l

K−1∑

k=1
k<l≤K

(yk − yl)
2

σ2
k + σ2

l




(5.25)

Now, suppose AP1 is brought closer to the testing set (i.e., MN) as shown in Fig. 5.4.

Let us denote this new distance asd′1 and the corresponding observation error variance

and covariance matrix asσ′
1

2 andΛ′, respectively.W is expected to vary due to the

observation in localization literature [17] that, the measurement errors associated with

the closerd′1 calculation are generally less error-prone than that of thedistantd1 case,

i.e., σ′
1

2 ≤ σ1
2. For ease of calculation, let us assume that the new (closer)position

of AP1 and its old (farther) position are symmetric to each other with respect to the

straight line formed by the other APs. So, the new matrixX TΛ′−1X takes the form,

X TΛ′−1X =





(
X TΛ′−1X

)
11

=
K−1∑

k=2
k<l≤K

(xk − xl)
2

σ2
k + σ2

l

+
K∑

l=2

(x1 − xl)
2

σ′
1

2 + σ2
l

(
X TΛ′−1X

)
12

=
K−1∑

k=2
k<l≤K

(xk − xl)(yk − yl)

σ2
k + σ2

l

+
K∑

l=2

(x′
1 − xl)(y

′
1 − yl)

σ′
1

2 + σ2
l

(
X TΛ′−1X

)
21

=
K−1∑

k=2
k<l≤K

(xk − xl)(yk − yl)

σ2
k + σ2

l

+
K∑

l=2

(x′
1 − xl)(y

′
1 − yl)

σ′
1

2 + σ2
l

(
X TΛ′−1X

)
22

=
K−1∑

k=2
k<l≤K

(yk − yl)
2

σ2
k + σ2

l

+
K∑

l=2

(y1 − yl)
2

σ′
1

2 + σ2
l

(5.26)

Using (5.25) and (5.26) and the identityσ′
1

2 ≤ σ2
1, it can be easily seen that,

the matrix(X TΛ′−1X − X TΛ−1X ) is positive semidefinite. Therefore, we obtain,

X TΛ′−1X ≥ X TΛ−1X which in turn yields(X TΛ′−1X )−1 ≤ (X TΛ−1X )−1, i.e.,
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Ψ′
BLUE ≤ ΨBLUE. In other words, considering an AP closer to the MN rather than a

distant one produces a smaller covariance matrix, thereby,resulting in abetterestima-

tor. Fig. 5.5 shows our experimental results which strengthen this fact. We see that,

the localization accuracy improves for both LS and WLS approaches when a near AP

is considered in place of a distant one. Moreover, WLS’s performance is better than

the normal LS approach. We conclude this section with some remarks:

Remark 1. The least squares’ (both LS and WLS) results in Fig. 5.5 are worse than

theK-NN. We attribute this inferior performance to the simple linear RF propagation

model we have used in LS approaches to infer the distancesdk’s.

Remark 2. The measurement errors inW (5.24) are calculated as deviations of the

real and predicted distances between the MN and the APs. In doing so, we have as-

sumed the real distances between the MN and the APs to be known which is usually

not true in practice. Our modifiedK-NN algorithm (described in the next section) does

not suffer from this issue.

5.3.4.2 Modification to theK-NN Algorithm

It has been seen in Theorem 5.2 that the CRLB is reduced when we consider a closer

AP compared to a distant one. We also applied this property toa well-known estimator

algorithm (WLS) in the previous section, and show that its accuracy improves, both

analytically and experimentally.

Utilizing the above two observations, we modified ourK-NN algorithm presented

in Section 5.2 into a weightedK-NN scheme where the conditional probability is now

changed toPr(oj|ci) =
∏K−1

k=1

{[
1

dγ
ki

· Pr(pk − pr|ci)
]
/
(∑L

i=1

1

dγ
ki

)}
. Here,L is the

number of training locations andγ (γ ≥ 0) is the weight exponent. The weight is

chosen in such a way that the closer APs are given more importance. We have chosen

γ empirically as 2. Note that,γ = 0 transforms our weightedK-NN into the normal
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Figure 5.5: Average localization errors of four different algorithms for two different
placements of AP1 (near vs. far as shown in Fig. 5.4). The testing set is indicated by
the circular region in Fig. 5.4.

K-NN algorithm. The rest of the algorithm is exactly similar to the one described in

Section 5.2.

Fig. 5.5 shows that the weightedK-NN (wK-NN) algorithm’s performance is

better than theK-NN (see the first two pairs of bars from the left). Moreover, the

localization accuracy of the wK-NN is further improved when one of the APs (AP1)

can be placed closer to the testing set.

5.4 Summary and Conclusions

In this chapter, we studied the CRLB of localization using SSD as location fingerprint.

We investigated the effects of various parameters (e.g., quantity and geometry of the

APs, the distances of the APs from the MN, etc.) of this bound on localization error.

Subsequently, we utilize one of the findings of our analysis,which reveals that a closer
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AP to the MN is moreimportant for localization purpose compared to a distant one,

in order to define weights for a wK-NN algorithm. Moreover, we also provide design

phase suggestions for various geometric configurations andquantities of the APs by

revealing error trends associated with them. In short, our analysis and experimental

results provide valuable insights into the localization performance and deployment is-

sues of a positioning system based on SSD. We expect SSD to be the preferred choice

of location fingerprint over RSS if a positioning system aims to provide services to de-

vices with heterogeneous hardware solutions. Our analysisand findings in this chapter

should open the door for further analysis and designing of various efficient localization

algorithms where SSD is chosen as the location fingerprint.
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Chapter 6

Shorter Training Phase

As discussed previously, majority of indoor localization techniques that rely on in-

building communications infrastructure (e.g., Wi-Fi, Bluetooth, etc.) utilize location

fingerprinting techniques [9,17,18,20,25–27,30], where some location-dependent sig-

nal parameters are collected at a number of locations as location fingerprints in an

offline training phase. During the online location estimation phase, the signal param-

eter obtained iscomparedwith those training data to estimate the user location. The

procedure of creating the training database of signal parameters entails a laborious

offline phase because the location system administrator needs to take readings at ev-

ery selected location of interest. Moreover, if for any unforeseeable reason, the setup

changes (e.g., due to renovation, rearrangement of furniture, etc.), the whole training

phase needs to be repeated again in the changed environment.The need for an ex-

haustive training phase can certainly limit the mass deployment of a fingerprint based

positioning system. Moreover, the accuracy offered by a system which is under-trained

may not satisfy the requirement of various location dependent applications.

In this chapter, we propose two ideas that try to relieve/shorten the exhaustive

training phase typically seen in the fingerprinting techniques. In Section 6.1, a sim-

ple linear regression interpolation technique is applied to facilitate under-trained posi-
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tioning systems. We investigate the possibility of building a positioning system from

scratch or fine-tuning an under-trained positioning systemthrough user participation

in Section 6.2.

6.1 Interpolation Technique

As mentioned earlier, one of the key objectives of fingerprint-based positioning sys-

tems is to shorten their training phase. In this section, we show that samples collected

at the APs considering only a few training locations could besufficient for achieving

reasonable localization accuracy with the help of proper interpolation techniques.

6.1.1 Fictitious Training Points

A few prior works in the literature [26,80] have attempted toshorten the training phase

of a positioning system. They contend that, rather than performing an exhaustive sur-

vey to create a location fingerprint database that requires substantial cost and labor,

one could simply collect a limited number of readings. Haebarlen et al. [26] achieve

this goal by dividing the whole area into rooms/cells, thereby limiting the location

estimates to room-level granularity. On the contrary, Liet al. [80] try to complete

the database using interpolation of readings taken at othertraining points. Our work

has adopted the latter approach. We hold the view that an interpolation-based train-

ing approach may stand out when the environment or setup changes. Normally, in

such scenarios, the location services may have to be suspended, while waiting for the

creation of an appropriate location fingerprint database that models the change. This

procedure is both time and labor intensive, and the service downtime might be long.

On the contrary, the positioning system administrator may choose to continue location

service provisioning by performing a rough survey (i.e., taking a few samples) in the

changed environment or setup, and fill up the voids in the training database with the
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help of interpolation-based techniques. The database may then be augmented incre-

mentally by taking more samples until the positioning system achieves a reasonable

accuracy. Liet al. [80] have only used some intuitive guidelines to generate these

fictitious training points. In this thesis, we have used weighted linear regression in

order to obtain a better fit for thosefictitious training points, by exploiting the spatial

similarity [30] of signal strength distribution.

Using the path-loss model without the shadowing variation of (4.1), we can write,

P (d)|dBm = −10β log(d) + P (d0)|dBm + 10β log(d0), (6.1)

whereP (d)|dBm denotes the average RSS perceived at a distanced from the transmitter

and the other symbols have usual meanings as discussed in Section 4.1. Based on (6.1),

we fit a linear regression model of the typey = ax+ b, to predict the RSS perceived at

an AP, wherey = P (d)|dBm, a = −10β, x = log(d), andb = P (d0)|dBm+10β log(d0).

We denotefictitious training pointsas those training points in the database that

are generated using interpolation from the actual trainingsample sets. In order to

deduce a fictitious training pointj, each AP’s RSS is formulated according to (6.1),

exploiting the signal strength values collected at the APs during the training phase. For

example, if there areK APs,K different regression equations will be formed in order

to deduce a single fictitious training point’s fingerprint. The unknown parameters,

i.e.,a andb for each AP, are approximated usingweighted least mean squaremethod

applied on the training data. Our target is to minimize
∑

i wji(yi − ŷi)
2 whereyi and

ŷi represent the actual and predicted signal strengths, respectively, at a particular AP

for the ith real training point. The weights,wji’s, are assigned utilizing the spatial

similarity of signal strength distribution reported in localization literature [30] which

basically states that the RSSs observed at neighboring locations tend to exhibit similar

properties. In our experiments, we have chosen the weight tobe inversely proportional
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to the distance between a certain fictitious pointj and the actual training pointi (i.e.,

1

dji
). Consequently, for each fictitious point, the closer real training points contribute

more heavily in formulating the APs’ regression equations,complying with the spatial

similarity property mentioned earlier. Once we have approximated the signal patterns

of the APs regarding a certain fictitious point (i.e., evaluate the values ofa’s andb’s of

their linear regression formulae), we would just plug in thedistance of that particular

fictitious point from the corresponding APs in order to obtain its fingerprint. Note

that, each fictitious point has a different set of regressioncoefficients for theK APs’

signal patterns. This is due to the fact that the weights,wji’s, that are associated with

the actual training samples in the minimization formula above are different for each

fictitious pointj. The detailed calculation of a fictitious training point’s fingerprint is

presented in Appendix B.

6.1.2 Experimental Results

In the previous section, it was argued that the application of proper interpolation tech-

niques could enhance an under-trained positioning system’s accuracy immensely. In

that regard, our simple linear regression based method performs very well as mani-

fested in Fig. 6.1(a) and 6.1(b). This experiment is conducted inside our Testbed 1

which offers both Wi-Fi and Bluetooth functionality. As can be seen, when fictitious

training points are utilized, the use of merely 20 real training points are sufficient to

achieve the same level of accuracy as a positioning system with as many as 62 training

points. For producing Fig. 6.1(a) and 6.1(b), a fixed number of fictitious points (≈ 60)

scattered over the testbed uniformly, are introduced regardless of the number of real

training points. The real training points are selected randomly from the(62+44) = 106

data points, and then the 44 testing samples are chosen randomly from the rest. For

each combination (i.e., 4, 10, 20, etc.) of real training points, we repeat this proce-
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Figure 6.1: Bayesian algorithms’ performance corresponding to varying number of
real training locations for Wi-Fi and Bluetooth.

dure for 101 times to obtain the averages with95% confidence interval as shown in

Fig. 6.1(a) and 6.1(b). The inferior performance of Wi-Fi compared to Bluetooth can

be attributed to the fact that the number of samples collected at each location for Wi-Fi

using our own program was quite insignificant for Testbed 1. Therefore, we might not

have been able to capture the Wi-Fi signal characteristics accurately.

6.2 User Feedback based Positioning System

In this section, we propose an idea where the end-users can actually contribute to the

construction of a positioning system incrementally, as well as the fine-tuning of an

under-trained system. We defineuser feedbackas the information about a user’s actual

position as indicated by the user to the system, either explicitly or implicitly.

We claim that the contribution of users’ feedback to any positioning system is two-

fold. Firstly, user feedbacks greatly help in fine-tuning anunder-trained positioning

system with proper filtering of the malicious feedbacks. Secondly, if users arewell-

behaved, our experimental results show that the participation of end-users can actually

assist in the construction of a positioning system incrementally from scratch. UCSD’s
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ActiveCampus project also tries to solve the indoor localization problem with the help

of user feedbacks [81]. They utilize the corrections made byusers on their estimated

positions similar to us. However, their interpretation of the user’s correction is simply

a location and its received signal strength (RSS) signature pair, similar to a traditional

training sample, which is completely different from how we interpret user feedback.

We contend that the combination of user feedback together with interpolation

methods could eliminate the need for an exhaustive trainingphase, as the need for sig-

nal strength survey by administrators has been the key obstacle for the mass deploy-

ment of fingerprint based indoor positioning system. Our system can be particularly

beneficial for large area deployment where it is quite demanding on the system admin-

istrator’s part to visit all the possible areas and tirelessly perform the training phase.

A user’s feedback may not always truly reflect his/her actuallocation either due to the

user’s carelessness while giving feedback or deliberate ill intentions. Therefore, we

define a Region of Confidence (RoC) with each estimated position toprovide a mea-

sure of likelihood of a user’s position, which is not just useful to the user when they

give feedback; but also helps to assigncredibility to each individual feedback in order

to aid its incorporation into our system.

The important issue of adapting the positioning system seamlessly when its sur-

roundings change (without performing the entire training phase all over again), has

been overlooked in most fingerprint-based localization research. In our work, we em-

phasize that, a positioning system that exploits user feedbacks would guarantee rea-

sonable performance over a longer period even if its surroundings change. This is

crucial as the environments in a real system could constantly change, and it will be

very difficult and demanding if system administrators need to monitor such changes

and having to perform the signal strength survey all over again every time it changes.

Apart from the above novelties, we have also denoted the signal strength signature of

a user feedback in an efficient way and proved it analytically. In the following, we
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6.2 User Feedback based Positioning System

summarize our objectives:

• We try to relieve the exhaustive training phase of a traditional fingerprint-based

positioning system through user participation in both explicit and implicit way.

• We show that user feedback can greatly help in fine-tuning an under-trained

positioning system which is already in operation. Moreover, under certain as-

sumptions on user behavior and with the help of our interpolation method, we

show that a positioning system solely based on user feedbackcould be built from

scratch.

• We also show that, with the help of user feedback, changes in surroundings could

be detected, allowing the system to adapt to the new environment in a seamless

manner.

We hold the view that, there are many factors that could motivate a user to input

feedbacks to the system. There can also be some indirect waysto obtain user feedbacks

too. We list a few in the following:

• In an indoor scenario, a user may know where he/she is at present, but he/she

may wish to obtain the route to another place within the same building from

there. By inputting a more accurate starting point than what the system suggests,

he/she can obtain a more refined route from the system.

• In a commercial system, a user who volunteers to provide feedback in an area

he/she is familiar with, may earn credits for using the positioning service in an

unfamiliar area later on.

• In a “location-based” social networking environment, giving feedback may fa-

cilitate the system to reveal nearby friends and places of interest more accurately.
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• User trails as in [82] could be utilized to provide implicit feedback. In [82], the

user trail is recorded as an ordered sequence of landmarks (e.g., access points

(APs), card readers, etc.) where he/she has visited. To formulate a user feed-

back from trails, we could collect the signal strength samples of a user device

between the user’s visit to two successive landmarks. Sincethe start and end

positions of the user are known (i.e., the two landmarks’ positions), the inter-

mediate locations could be interpolated by applying some assumptions on the

user movement (e.g., constant speed). Subsequently, theseinterpolated loca-

tions could be correlated with the signal strength samples collected and treated

as user feedback.

• Various landmarks (e.g., APs, tags, card readers, etc.) installed at several fixed

positions in the building could act as continuous sources ofimplicit feedback as

well.

6.2.1 User Feedback Model

As previously mentioned, user feedback is the information about a user’s actual po-

sition as indicated by the user to the system either explicitly or implicitly. In this

section, we discuss how the user feedback is visualized froma positioning system’s

point of view. Whenever a user inputs feedback to the system, it is interpreted as,

F = (L,S, w), where

L = [x y]T = the position indicated by a user,

S = [S̄1 S̄2 . . . S̄K ]
T
= the RSS signature of the feedback captured

at theK APs,

w = the degree at which a system believes the feedback, i.e.,

thecredibility or weightof each individual feedback.
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6.2 User Feedback based Positioning System

Next, we elaborately discuss all three components of a user feedback in Section 6.2.1.1,

6.2.1.2 and 6.2.1.3, respectively.

6.2.1.1 Location Indicated by User,L

While giving a feedback, the user indicates his/her actual position. This location infor-

mation is interpreted by the system as Cartesian coordinates(i.e., [x y]T ) in an indoor

environment. In practice, there might be some uncertainties involved when a user tries

to indicate his/her actual position at the time of providingfeedback to the position-

ing system. These uncertainties might arise owing to the carelessness on the user’s

part while pinpointing his/her location on the map, or he/she may deliberately pro-

vide inaccurate location information. We will discuss two different user models in

Section 6.2.2.3 which try to broadly emulate these two typesof user behaviors while

providing feedback.

6.2.1.2 Signature of a User Feedback,S

We first discuss our choice of a user feedback’s signature, and then prove that it is

an efficient one. During the offline training phase of a fingerprint-based positioning

system, we know that the system administrator positions himself/herself at a particular

location of interest for the RSSs to be measured at the APs. TheRSSs perceived at

the APs actually denotes the signature of that particular location. We also utilized the

RSSs measured at the APs during a user feedback to denote its signature in a similar

way taking into account some additional details. For example, in order to denote the

signature of a user feedback, we sample the signal strengthsperceived at APs over a

5-second window, and instead of using a single sample from each AP, themeanof all

the samples over the 5-second window has been used. Furthermore, the time when a

user clicks his actual position in the map is treated as the median of that window. Our

approach is taken in view with the following facts:
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• Whenever a user clicks to input feedback, it is reasonable to assume that he/she

has been at that particular location for a while. Hence, we have chosen the

clicking instant of the user as the median of the 5-second window, rather than

the beginning of the window.

• The probability that an AP fails to collect any sample from the mobile node

(MN) during a user feedback is greatly reduced as well. Fig. 6.2 shows some

cases when our AP failed to receive any sample from the MN within certain

slots of a user feedback’s time-window. If the probability that an AP receives a

sample from an MN isq, then the probability that an AP receives at least one

sample within the 5-second window can be expressed as,1 − (1− q)5m, where

m is the number of packets sent by the MN within a 1-second slot and each 1-

second slot is assumed to be independent. For example, ifq = 0.5 andm = 2,

the probability of getting a sample at the AP during a user feedback increases
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device used in training is stationed at a particular location.

from0.75 to0.999 when a 5-second window is considered compared to 1 second.

• Capturing more samples should provide more information about the signal strength

distribution at a particular location, which generally hasa tail (see Fig. 6.3). The

use of just a single sample would be unlikely to work well.

• Themeanof all the collected samples’ signal strengths inside the time-window

is an efficient unbiased estimate of a user feedback’s signature compared to any

other linear combination of the samples’ RSSs. This can be realized with the

help of Theorem 6.1.

Theorem 6.1. SupposeSk denotes the signal strength distribution of the samples col-

lected at thekth AP during a user feedback. IfSki specifies theith sample’s RSS of the

n samples observed inside the time-window at that AP, then the linear combination of

observations
∑n

i=1
akiSki is an unbiased estimate ofE(Sk) given

∑n
i=1

aki = 1. It is

also the most efficient one whenaki = 1

n
, ∀i ∈ {1, 2, . . . , n}.

100



6.2 User Feedback based Positioning System

Proof. The linear combination
∑n

i=1
akiSki is an unbiased estimate ofE(Sk) because,

E(
∑n

i=1
akiSki) =

∑n
i=1

akiE(Ski) = E(Sk)
∑n

i=1
aki = E(Sk). Since the estimate is

unbiased, then the particular combination that is most efficient is the one which mini-

mizes the variance, i.e., var(
∑n

i=1
akiSki) =

∑n
i=1

aki
2 var(Ski) = var(Sk)

∑n
i=1

aki
2.

Consequently, the problem can be reformulated as, minimize
∑n

i=1
aki

2 subject to
∑n

i=1
aki = 1. Now, using basic optimization theory, it directly followsthat the par-

ticular linear combination1
n

∑n
i=1

Ski, or the samplemean, S̄k, is the most efficient

unbiased estimator ofE(Sk).

Corollary 6.2. If S̄k is an efficient unbiased estimate of the signal strength samples’

signature collected at thekth AP inside a time-window, then for a positioning system

with K APs,S = [S̄1 S̄2 . . . S̄K ]
T

is indeed an efficient unbiased estimate of a user

feedback’s signature.

Proof. Corollary 6.2 can be realized by extending Theorem 6.1 for allthe K APs,

together with the assumption that the APs are independent ofeach other [30].

6.2.1.3 Credibility or Weight of a User Feedback,w

Without the credibility factor,w, a user feedback is typically a traditional training sam-

ple of location and RSS signature pair(L,S) from a positioning system’s perspective.

The traditional training samples are generally collected by a positioning system’s ad-

ministrative people. Therefore, all the samples are treated with equal importance. On

the other hand, the sources of user feedbacks can be different entities (e.g., system

administrators, normal users, intruders etc.). Consequently, there should be certain

credibility factor associated with each feedback given, i.e., a measure for the system to

believe that the user is actually at his/her claimed position. In many ways, this approach

is similar to alocation verificationtechnique which ensures that the claimed source

location is associated with a high level of trust. Existing location verification tech-
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niques [83–86] either accept/reject a source’s location claim. They generally require

specialized hardware (incorporated with non-RF technologies) to verify a source’s lo-

cation claim more precisely [83, 84] or the accuracy level within which the location

claim is verified, is set to be quite large [85, 86]. However, our positioning system

has certain implications which makes the use of these location verification techniques

infeasible:

• Our positioning system is built upon RF technology (Bluetooth) preferably using

off-the-shelf hardware in order to provide location service in a cost-effective

way. Consequently, the more precise solution to verify a location claim with the

help of specialized hardware is not applicable.

• The accept/reject policy of the existing location verification techniques would

restrict the user feedback to have only one of the two extremevalues, i.e.,w ∈

{0, 1}. If a strict margin is set for incorporating the user feedback, then many

useful feedback might be filtered out. On the contrary, if a large tolerance level is

set, many malicious user feedback might be incorporated which may ultimately

cause the actual accuracy offered by the system to deteriorate.

Therefore, instead of an accept/reject policy of the existing location verification tech-

niques, we come up with a strategy which assignsrelative weights to the user feed-

backs utilizing their credibility. Later on, it will be shown that, this approach actually

helps in fine-tuning an existing positioning system to achieve better accuracy. Next,

we elaborately describe how the user feedbacks are assignedrelative weights based on

their credibility while being incorporated into the system. In order to realize this, we

first describe the “Region of Confidence (RoC)” concept, which subsequently helps to

derive our weight assignment policy for each individual feedback.
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Region of Confidence: We define a system parameter, RoC, which gives a measure

of the system’s overall accuracy and precision1. We express RoC as a two-parameter

entity, i.e.,(e, p), where the parameterse, andp, denote the accuracy grain size and

the expected precision of the system, respectively. In localization literature, the term

“accuracy” generally indicates the grain size of the position information provided (in

some works, the accuracy grain size is referred as “localization error distance” as well),

while the term “precision” specifies how often we could attain that accuracy [6]. For

example, if a positioning system can determine positions within 3 meters for about

90 percent of the measurements, that particular system qualifies to be 90% precise in

providing 3-meter accuracy. Intuitively, a higher precision would compel the system

to provide a coarser accuracy, and similarly, in order to achieve finer accuracy, the

system may turn out to be not so precise. We define RoC in a way that considers both

requirements, in order to facilitate our feedback-based positioning system. In general,

RoC provides a measure of likelihood of a user’s estimated position and also influences

the weights that would be associated with the feedbacks which we describe later.

In order to create the “Precision vs. Accuracy” graph of Fig.6.4(a), which we term

as “RoC profile graph”, first we assume that our positioning system is already in an

initial state with some training samples. Now, we inspect its performance whenwell-

behavedusers’ (whose claimed locations do not deviate from their actual locations

by a large margin) feedbacks are incorporated into the system in order to obtain the

“RoC profile graph”. It can be seen that, the shape of our “RoC profile graph” has a

similar trend as those “Precision vs. Accuracy” curves found in existing localization

literature [32, 87]; it shows that the precision,p, increases with larger accuracy grain

size or localization error distance,e. Intuitively, the “RoC profile” may not be fully

reflective of the system’s actual state with only a limited number of user feedbacks. As

1Note that, our definition and purpose of RoC is quite different from an earlier work. In [21], RoC
was formed utilizing simple geometry in order to fightaliasing, i.e., to eliminate physically different
locations which have similar signatures in signal space.
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we gather more and more user feedbacks, we can approximate the “RoC profile” more

accurately (using the feedbacks as both training and testing samples). In the following

section, we depict how the “RoC profile” has been utilized to derive the trend of the

credibility to be assigned to a user feedback.

Feedback Weight Assignment Policy: Since user feedbacks may contain dubious

information, we should not treat all feedbacks with equal importance. Whenever a user

claims to be at a particular location via feedback, that information is associated with

a certain degree of credibility. In order to calculate this credibility factor, consider a

positioning system wheren user feedbacks have been utilized as test samples to obtain

the “RoC profile”. Subsequently, for any point(e, p) of Fig. 6.4(a), it is obvious from

the definition of RoC that,p×n user feedbacks’ estimated positions do not deviate from

its actual one by more thane. In other words, if we think of a circle with the accuracy

grain size or localization error distance,e, as radius, thenp× n user feedbacks can be

thought to be inside it. Now, suppose if we increase the radiuse by a small amount∆e

(i.e., p also increases in Fig. 6.4(a)), then∆n new user feedbacks fall inside the new

area. So, the proportion of user feedbacks falling inside the area[π(e+∆e)2− πe2] is

∆n
n

. Consequently, we denote the probability of occurrence of a user feedback inside

this unit area as,

κ =
∆n
n

[π(e+∆e)2 − πe2]
≈ ∆n

2πne∆e
. (6.2)

Subsequently, we define theweightor credibility of theith user feedback utilizing (6.2)

as follows:

ωi =
κi

max{κ1, κ2, . . . , κn}
. (6.3)

Note that,ωi is just the normalized form ofκi so thatωi ∈ [0, 1). Now, let us investigate

the rationale behind choosing such a weight assignment criteria. Consider two user

feedbacks,i andj with RoC (ei, pi) and(ej, pj), respectively. Their positions in the
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“RoC Profile Graph” are shown in Fig. 6.4(a) whereei < ej. Following similar steps

which were involved in obtaining (6.2), we have,

κi ≈
∆ni

2πnei∆e
and κj ≈

∆nj

2πnej∆e
.

The parameterse’s and∆n’s have certain effects in the above expressions:

• ei < ej implies the accuracy of theith feedback’s estimated position by the

system is higher than that of thej th user feedback. Therefore, from the system’s

perspective, it is natural to believe theith user feedback more than thej th one.

• Consider the number of user feedbacks,∆ni and∆nj which fall into the two

new areas that have been formed by extending the radiusei andej by the same

amount,∆e, respectively. If∆ni > ∆nj, then a greater number of user feed-

backs which are used to create the “RoC Profile Graph”, falls into theith feed-

back’s new area than that of thej th feedback’s area. Consequently, it is natural

for the system to believe theith user to be morewell-behavedsince the system’s

“RoC Profile Graph” had been created utilizing thewell-behavedusers’ feed-

backs as mentioned in the previous section. Therefore, it isonly fitting to assign

more weight to theith user feedback than thej th one.

From Fig. 6.4(a), using the numerical values of the parameters, n = 44, ∆e =

0.5m, ei = 3m < ej = 7m, and∆ni = 5 > ∆nj = 1, we find, κi > κj. In

other words, theith user feedback is more believable than thej th user feedback from

our positioning system’s perspective. Next, we describe our ultimate simplified weight

assignment policy for each individual feedback taking intoaccount the aforementioned

facts.
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By utilizing the RoC profile together with (6.3), we obtain the trend for weights

to be associated with user feedbacks as shown in Fig. 6.4(b).We observe that, the

weight’s maximum occurs when the accuracy grain size or the localization error (e) of

the user feedback’s estimated position is close to our system’s average localization er-

ror (≈ 3m), and decreases as the estimation error becomes larger. Since it is desirable

to have a weighting scheme that is simple and yet capable of evolving with time as

more user feedbacks become available, we define a feedback-weight assigning model

as follows. A maximum weight of 1 shall be assigned when the localization error (e)

of a user feedback’s position is within one standard deviation (es) from the average

error (eav), as shown in Fig. 6.4(c). This is in accordance with the viewthat our sys-

tem is fairly accurate and therefore, we expect the system’sestimated positions’ errors

to be around this average quantity. Assigning maximum weight around one standard

deviation of this average helps to build, and subsequently,fine-tune the system grace-

fully. From eav + es to emax (maximum error), the weight follows a similar trend as in

Fig. 6.4(b). The horizontal dotted line (i.e.,w = γ) of Fig. 6.4(c) indicates the filter of

our weighting scheme. We associate a constant weight,γ (which is 3 dB lower than

wmax), to the user feedbacks when the estimation error is less than emin, in the view

that our system’s predictions of these positions are already quite good. The weight

assignment policy for theith user feedback of our model as shown in Fig. 6.4(c) can be

summarized as,

wi =





γ ei ≤ emin

1 + (1− γ)( ei−eav+es
eav−es−emin

) emin < ei < eav− es

1 eav− es ≤ ei ≤ eav + es

1 + ( ei−eav−es
eav+es−emax

) eav + es < ei < emax

0 ei ≥ emax
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Figure 6.5: Interface for user feedback input – the experimental testbed is a lecture
theater in campus (Testbed 1).

whereei =
√
(xi − xest)2 + (yi − yest)2, [xi yi]

T is theith user’s claimed location, and

[xest yest]
T is the system’s estimate of that user’s position.

Fig. 6.4(d) shows the evolvement of our feedback-weight assigning model as user

feedbacks are increasingly incorporated. Our initial system only consists oflandmark

feedbacks (e.g., the feedbacks from the4 APs). Two other stages of our system are

shown in Fig. 6.4(d) where30 and60 well-behaveduser feedbacks are subsequently

incorporated. The definition of various user feedbacks (e.g., landmark, well-behaved

etc.) can be found in Section 6.2.2.4. For each stage of the system,44 testing samples

which are completely different from the incorporated user feedbacks are utilized to

obtain the error model. As can be seen, this model helps to improve the accuracy

of our system, since both the average error and its standard deviation decreases with

increasing number of user feedbacks.
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6.2.2 System Description

6.2.2.1 User Interface and Experimental Testbed

We start by providing a brief description of our user interface used to input feedbacks

into our system. Fig. 6.5 shows the interface for a user to input feedbacks that are to

be incorporated into our positioning system. We can observefrom the interface that,

a user is always provided with the system’s estimation of his/her position (i.e., the

shaded circle on the map) together with the RoC. Subsequently,the user can choose

to inform the system about his/her actual location by clicking on the corresponding

position within the map, and pressing the “Give feedback” button. The experimental

results in this chapter are based on Bluetooth data samples collected from both Testbed

1 and 2.

6.2.2.2 Usage of User Feedback in Positioning Algorithms

Depending on the positioning algorithm used, there are various ways how a user feed-

back can be utilized. In the following, we briefly describe the two approaches we have

undertaken in order to make use of the user feedback in our positioning algorithm.

• As discussed in Section 6.1.1, we utilize interpolation technique to create the

RSS signature of afictitious training point where no training sample has been

taken. Unlike a typical fingerprint-based positioning system that requires an ex-

haustive sample collection phase, interpolation helps to achieve the same goal

with much fewer training samples. In addition, it is advantageous in our case

since the user feedback locations may not be uniform over theentire localiza-

tion area. An interpolation technique can help to fill up the voids in the training

database where no user feedback has been obtained. In order to deduce a ficti-

tious training pointj, each AP’s RSS is formulated according to weighted linear

regression formula exploiting the signal strength values collected at the APs for
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user feedbacks. If there areK APs,K different regression equations will be

formed in order to deduce a single fictitious training point’s fingerprint. How-

ever, the difference from our interpolation technique explained in Appendix B

is – whereas the weight in (B.2) corresponds only to the spatial similarity fac-

tor; here, the user feedback’s credibility factor is also taken into consideration

regarding the weight calculation in (C.1). In Appendix C, we provide the de-

tails about how the interpolation technique predicts the RSSof a fictitious train-

ing point where real training samples are not collected or obtained through user

feedbacks.

• We have used two well-known localization algorithms (i.e.,weightedK-Nearest

Neighbors (K-NN) and Bayesian) [17,20] where the user feedbacks’ weightsare

utilized to denote the weights of the algorithms.

6.2.2.3 User Models

In this section, we describe our two user models which try to emulate the two broad

categories of the user behavior while giving feedbacks. These “user feedback behav-

ior” models are utilized in the experiments to emulate thereal user feedbacks from our

collected data.

• User Model 1:The user may be unfamiliar with the surroundings, and subse-

quently fails to pinpoint his/her actual position on the map. We model this phe-

nomenon as,[x y]T = [xa +N(0, σ2) ya +N(0, σ2)]
T , wherexa andya de-

note the actual location coordinates when no uncertainty isinvolved andN(0, σ2)

is a normal distribution with zero mean and varianceσ2. We assume that this is

the most common model of a user’s feedback and it is also capable of model-

ing many different user feedbacks (by varyingσ). For example, we know that

a well-behaveduser is the one whose claimed location does not deviate from
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his/her actual location by a large margin. For experimentalpurposes, we model

awell-behaveduser as one where the uncertainty parameter of the feedback posi-

tion (i.e.,σ2) does not exceed the system’s ultimate achievable average accuracy.

Since our positioning system can offer3m average accuracy, we assume that the

feedback position of awell-behaveduser regarding our system conforms to the

equality,σ =
√
3m.

• User Model 2:There may be some feedbacks where the user feels totally unsure

about his actual position corresponding to the map. We modelthis phenomenon

as, [x y]T = [U(0, xmax) U(0, ymax)]
T , wherexmax andymax depict the maxi-

mum possible location coordinates of the testbed andU(·) denotes a uniform

distribution over the range. The feedbacks given by those who try to sabotage

the positioning system intentionally, also fall into this category.

6.2.2.4 Classification of User Feedback

Based on our user models of the previous section and the weightassignment policy for

each individual feedback discussed in Section 6.2.1.3, we classify user feedbacks into

four categories:

• Super-user feedback:These are the feedbacks provided by system administrators

and alike, and they are expected to be included into the system with 100% belief

(i.e.,w = 1).

• Regular-user feedback:We consider the feedbacks from ordinary users who use

the positioning system’s services to be the mainstay in the fine-tuning of our

system. These are the most common type of feedbacks which areamalgamated

with some uncertainties. OurUser Model 1discussed in the previous section

tries to emulate this particular type of feedback.
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• Landmark feedback:The APs can be regarded as sources of feedbacks as well,

since they also transmit radio signals, and their locationsare known and fixed.

We have four such APs in each of our experimental testbeds as shown in Fig. 6.5

and Fig. 6.6, respectively. Note that, the RSS signature vector of this type of

feedback comprises ofK − 1 components instead ofK, because one of theK

APs is actually considered as an MN here. We fill this void withthe maximum

RSS rating corresponding to our Bluetooth adapter. Apart fromthat, various

other devices (e.g., beacons, card-readers, tags etc.) installed at several fixed

positions in the building could act as continuous sources oflandmark feedback

too. Landmark feedback is a form of super-user feedback (just that the sources

are static fixed points) since it is always believed withw = 1. Therefore, the

inclusion of such static fixed points as a source of feedback will increase the

number of super-user feedbacks, and subsequently, will have positive impact on

localization accuracy.

• Spurious-user feedback:The feedbacks given by those users who are oblivious

about their surroundings, and also those who aim to sabotagethe positioning sys-

tem, are harmful. Instead of fine-tuning the system to achieve better accuracy,

these spurious-user feedbacks could make the positioning error larger if incorpo-

rated. Our weight-assignment policy of Section 6.2.1.3 ensures that these types

of feedbacks are filtered out.

6.2.3 Results and Findings

The results of Section 6.2.3.1 are based on the experimentaldata of our lecture the-

ater testbed (Fig. 6.5) while the results presented in Sections 6.2.3.3 and 6.2.3.4 are

obtained from our research laboratory testbed’s data (Fig.6.6).
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Figure 6.6: Emulating surroundings change in Testbed 2.

6.2.3.1 Interpolation aids our user feedback based positioning system

In order to demonstrate the usefulness of our interpolationbased approach described

in Section 6.2.2.2, we have carried out an experiment that only considers super-user

feedbacks, where all feedbacks are assigned the maximum weight (i.e.,w = 1). As can

be seen from Fig. 6.7(a) and 6.7(b), the system that uses interpolation easily outsmarts

the one that does not.

Since different users are expected to carry devices with heterogeneous hardware,

selecting RSS as a location fingerprint could easily hamper a user feedback based po-

sitioning system. RSS is known to vary quite significantly at aparticular location for

different device hardware even under the same wireless conditions [25–27, 29]. As a

result, we have chosen a robust location fingerprint, namely, Signal Strength Difference

(SSD), since it is argued to be able to accommodate devices with heterogeneous hard-

ware solutions unlike the RSS [27]. We also verified our system’s robustness when
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Figure 6.7: Demonstration of how interpolation helps to improve our positioning sys-
tem’s accuracy – only super-user feedbacks are considered here.

the users input their feedbacks using different types of devices (e.g., Bluetooth Class

1 or 2 devices), which could easily occur in a real deploymentscenario. Fig. 6.7(a)

and 6.7(b) show similar performance for both cases, regardless of whether the user

feedbacks are given using only one type of device or not. SSD has been used as a loca-

tion fingerprint in the subsequent experiments as well. Eventhough a user feedback’s

signature is aK-dimension RSS vector, while applying it into a localizationalgorithm,

a (K − 1)-dimension SSD vector is always calculated from it.

6.2.3.2 Evolvement of user feedback based positioning system

In this experiment, we investigate the prospect of creatinga positioning system utiliz-

ing only regular-users’ feedbacks from scratch. We try to estimate the linear regression

coefficients for the equation in (B.1) (given in Appendix C) which are necessary for

generating the interpolated training points from user feedbacks. Here, we emulate dif-

ferent types of users by changing the value ofσ of “User Model 1” which we have

defined in Section 6.2.2.3. We contend that if the two linear regression coefficients

(i.e., a and b) computed from regular-user feedbacks can somehow match the coef-

ficients computed from super-user feedbacks, then our interpolation-based approach
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Figure 6.8: Simulation results of how different user behaviors affect the regression
coefficienta values and correspondingly, influence the system’s achievable average
accuracy.

should perform equally well even though these feedbacks have uncertainties. We see

from Fig. 6.8(a) that using feedbacks from users exhibitinglower uncertainty (e.g.,

σ = 3) can almost achieve the samea as the case when no uncertainty is involved

(σ = 0). Furthermore, it can be noted from Fig. 6.8(a) that increasing the uncertainty

in user feedbacks have the effect of swaying the estimateda values away from the

σ = 0 case. Similar observations have been made with the other coefficient, b.

In our interpolation-based approach, we first calculate theregression coefficients

(i.e.,a andb) for all the APs at an interpolated point making use of the user feedbacks

as training samples. Subsequently, the RSS signatures of theAPs at every interpolated

point are calculated, and all of them are then treated as normal training samples to-

gether with the user feedbacks in our localization algorithm. Table 6.1 lists the average

localization errors when a significant number (= 500) of user feedbacks with different

values of uncertainty parameter,σ, are being considered. We see that the average ac-

curacy (3.37m) achieved forσ = 3m case is very close to the accuracy when there is

no uncertainty (3.1m). This is expected since the calculateda value forσ = 3m case

after 500 feedbacks is very close to thea value obtained forσ = 0 (see Fig. 6.8(a)).
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Table 6.1: Relationship between the uncertainty parameter,σ, and average localization
error for our experiment conducted.

Number of Uncertainty Parameter,σ Average Localization Error
User Feedbacks of “User Model 1” (in meter)

σ = 0 3.1

σ = 3m 3.37

500 σ = 6m 3.98

σ = 9m 4.71

σ = 12m 6.18

The higher uncertainty cases (e.g.,σ = 6m, σ = 9m, etc.) report coarser accuracy as

can be seen from Table 6.1, which is also justified according to their curves shown in

Fig. 6.8(a). Therefore, we can approximate the regression coefficients of our interpo-

lated points more accurately for user feedbacks with lower uncertainty which in turn

yields better localization accuracy. In a nutshell, we argue that if we decide to build

our system with user feedbacks from scratch, our interpolation-based approach may

still enable us to achieve reasonable accuracy, provided that the user behavior does not

stray too drastically. Note that the results for this particular experiment are obtained

through simulation, unlike the others in this paper where real experimental data are

used.

6.2.3.3 Fine-tuning of an existing positioning system utilizing user feedbacks

In this section, we wish to show that we could fine-tune a positioning system in order

to achieve finer accuracy by exploiting our feedback-weightassigning model, irrespec-

tive of any assumption on user behavior. For this experiment, we choose two different

combinations of user feedbacks where one consists of onlywell-behavedregular-user

feedbacks while the other comprises of70% spurious-user and30% super-user feed-

backs. In both cases, we assume that the positioning system is already running with

some feedbacks (4 landmark feedbacks + 6 super-user feedbacks) so that we can ap-
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Figure 6.9: Performance comparison of our feedback-weightassigning model with
other options in the fine-tuning of an under-trained positioning system.

proximate the initial “RoC Profile”. Consequently, we can comeup with the feedback

weight-assigning model of Section 6.2.1.3 from this initial state of our system. We

consider 137 testing points to evaluate the localization errors which are completely

different from the user feedback points. As more user feedbacks become available, the

weight-assigning model continuously updates itself in a similar manner as previously

shown in Fig. 6.4(d), which helps to fine-tune the system.

The two horizontal lines of Fig. 6.9(a) and 6.9(b) at4.16m represent the initial

system’s performance with only 10 training points. Our feedback-weight assigning

model shows that the system’s performance improves when more feedbacks are in-

corporated. Without our feedback-weight assigning model,the system’s performance

deteriorates when spurious-user feedbacks dominate as canbe seen from Fig. 6.9(b).

For 100% spurious-user feedbacks scenario (the results areomitted for brevity), our

system’s performance remains relatively unchanged from the initial system’s perfor-

mance. This means that our feedback-weight assigning modelcould shield the system

from the adverse effect of this type of feedbacks. For the well-behaved user case, the

feedback positions may turn out to be very close to the actualpositions which will

eventually make them a bit similar to super-user feedbacks.The inclusion of super-
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user feedbacks into the system always helps regardless of whether we are using our

model or not. Therefore, the “without feedback-weight assigning model” might have

been seen to perform almost similar to (or even slightly better than) our model in

Fig. 6.9(a). Our model’s effectiveness over the “without feedback-weight assigning

model” can be realized when different types of feedbacks aremixed (e.g., one instance

can be seen in Fig. 6.9(b)).

We also compare the accept/reject policy of location verification techniques dis-

cussed in Section 6.2.1.3 to incorporate a user feedback with varying accuracy level

margins. If the accuracy level margin is set too large (≈ 6m), a number of spurious-user

feedbacks may get through to the system, thereby causing it to perform worse. Setting a

strict margin (e.g.,1m) may overcome this issue as can be seen from Fig. 6.9(b). How-

ever, if the accuracy level margin is set too strict, many of the well-behaved regular-

user feedbacks are rejected. Consequently, the system’s performance does not im-

prove much over the initial system when this type of feedbackdominates as revealed

in Fig. 6.9(a). On the contrary, our feedback-weight assigning model is quite auto-

mated (no need for manual setting of accuracy level margin) and is shown to perform

reasonably well in the presence of different types of feedbacks.

The 100% super-user feedback curves in both Fig. 6.9(a) and 6.9(b) show the

performance when the feedbacks are given by super-users only (i.e., w = 1). This

performance is comparable to the traditional fingerprint-based system where all the

samples are collected exhaustively by administrators. This provides a performance

benchmark for the user feedback based positioning system.

Note that we have only provided Bayesian algorithm’s results; the KNN algo-

rithm’s results show similar trends, and are not included here.
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Figure 6.10: Adaptation of our system when it perceives thatthe surroundings have
changed.

6.2.3.4 Effect of change of surroundings on our user feedbackbased positioning

system

One of the major drawbacks of existing fingerprint-based positioning systems is that

it is not adaptable to environmental changes, i.e., the training phase has to be repeated

all over again for the changed surroundings. Our system doesnot suffer from such

shortcomings since user feedbacks are continuously employed to fine-tune it. Further-

more, our system’s whole process of adapting to the changed environment is auto-

mated, and does not require any outside intervention. In order to help perceive that

there is a change in the surrounding, we exploit landmark feedbacks. Since the land-

mark feedbacks from the APs are continuous, the system can approximate the APs’

positions all the time. We infer that there is a change in surrounding when the esti-

mated positions of all the APs deviate quite significantly from their actual positions.

Algorithm 6.1 (in Page 39) describes the adaptation processof our positioning system.

From algorithm 6.1, we see that, when the system perceives its surroundings to have

changed, it enters into the adaptation mode. In this mode, all the previously incorpo-

rated user feedbacks are associated with an exponential outdate-factor together with

their assigned weights. As a result, new user feedbacks are given more importance.
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In order to emulate a change in the surrounding in our experiments, we swapped

the positions of two of our APs as shown in Fig. 3.2. This serves our purpose of creat-

ing a changed environment since the two APs’ signal strengthsignatures change quite

significantly. Our initial system consists of 50 super-userfeedbacks from theold set-

ting and we utilize 137 testing points from thenewsetting to evaluate the localization

errors. The two curves of Fig. 6.10(a) and 6.10(b) depict theperformances of two sys-

tems where one system is incorporated with our surroundingschange algorithm and

the other one is not. As can be seen from the figures, the systemwhich could realize

the change in surroundings, performs significantly better in thenewsetting as more

user feedbacks are incorporated into the system. For this experiment, we choose two

different combinations of user feedbacks where in one scenario, the super-user feed-

backs dominate (Fig. 6.10(a)), while in the other, the regular-user feedbacks dominate

(Fig. 6.10(b)). In both scenarios, our system could adapt seamlessly with the sur-

roundings change. Note that, the super-user dominating scenario demonstrates lower

localization error for the same number of user feedbacks compared to the regular-user

dominating scenario which is justifiable. The presence of spurious-user feedbacks also

does not affect the adaptation process (the results are omitted for brevity). This is due

to our feedback-weight assigning model which is found to be successful in dealing with

them in the previous section. We have also observed in our experiments that around

20 ∼ 30 user feedbacks are required for the system to return to its normal mode (i.e.,

to leave its adaptation mode). This state transformation occurs when the landmark

feedbacks start to give better estimations of the APs’ positions again.

6.3 Summary and Conclusions

In this chapter, we proposed two approaches to relieve/shorten the exhaustive train-

ing phase typically seen in the fingerprint based positioning systems. Firstly, a simple
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Algorithm 6.1 Adaptation of our user feedback based positioning system
System State: A positioning engine withn samples or user feedbacks. Let(eex, pex)
denote the system’s expected RoC. It is a tunable parameter forthe administrator within
which he/she expects theK landmarks’ (e.g., APs’) estimated positions to be verified.
If all the K landmarks’ estimated positions deviate from(eex, pex), the system infers
surroundings change, and enters the adaptation mode. The system returns to normal
mode again when all theK landmarks’ estimated positions are within the system’s
expected RoC(eex, pex). The landmarks’ positions are estimated continuously by the
system from the landmark feedbacks.

1: for everynewbatch ofN feedbacks collecteddo
2: if all K APs’ estimated positions deviate from(eex, pex) then
3: h← α {outdate factor:α small constant – adaptation mode}
4: else
5: h← 0 {no outdate factor – normal mode}
6: end if
7: for i = 1 to n do
8: wi ← exp (−h)× wi {outdating older samples’ weights ifh 6= 0}
9: end for

10: n← n+N
11: calculate the interpolated RSS signatures as discussed in Appendix C
12: run localization algorithm (e.g., Bayesian or KNN) with onlythe feedbacks

havingwi ≥ γ as test samples among thenewfeedbacks{wi andγ are defined
in 6.2.1.3}

13: update feedback-weight assigning model’s parameters (i.e.,
emin, eav, es andemax) of Section 6.2.1.3.

14: end for
15: goto1

weighted linear regression technique is applied to generate fictitious training points

when the system contains very few training samples. Adopting an appropriate inter-

polation technique can go a long way in solving the drawbackssuffered by an under-

trained positioning system, as vindicated by our analysis and results. Secondly, we pro-

pose a novel idea where users can take part in fine-tuning an under-trained positioning

system. Our feedback-weight assigning model which assignsrelativeweights to user

feedbacks, fine-tunes an under-trained positioning system, thereby, helps it to achieve

finer accuracy. We also show that, if users arewell-behaved, we can actually construct

a positioning system incrementally from scratch exploiting our interpolation-based
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techniques with the user feedbacks. We contend that the exhaustive training phase

seen in the traditional location fingerprinting techniquesmight be relieved through it.

Through the use of landmark feedbacks, we could successfully infer changes in the en-

vironment, and switch our system’s mode to be more adaptable. The whole procedure

is quite dynamic, and requires no intervention from the positioning system administra-

tor’s part. In summary, we conclude that our user feedback based positioning system is

fairly accurate, cost-effective, robust and requires no orvery little training phase. We

have implemented our system in two testbeds – one is placed inside an amphitheater

(Testbed 1) while the other is within a research laboratory (Testbed 2). Our system

performed quite well in both scenarios as can be seen from theresults.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we addressed some interesting issuesarising from fingerprint-based

positioning systems, and obtained favorable results. We provided an elaborate discus-

sion on the indoor location fingerprints that are commonly used with two well-known

RF technologies, namely, Wi-Fi and Bluetooth, and pointed outtheir pitfalls when they

are used for localization purpose. Our analysis in Chapter 3 reveals that, although the

RSS turns out to be the most viable option as a location fingerprint among all the signal

parameters that are available from both Wi-Fi and Bluetooth,it still suffers from many

pitfalls arising from device hardware variations. Hence, we define a robust location

fingerprint, the SSD, which provides a morerobustsignature than the traditional RSS.

We analyzed in detail why it can serve as a robust location fingerprint that is irrespec-

tive of the hardware used at the mobile device. Our analysis,as well as experimental

results in Chapter 4, have both verified this claim. We compared SSD with two other

robust location fingerprints, and found the SSD based algorithms’ performance to be

superior. In Chapter 5, we analyze the Cramér-Rao Lower Bound of localization using
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SSD as location fingerprint. A novel characterization of theproperties of this bound is

presented that allows us to individually assess the impact of different parameters (e.g.,

number of APs, geometry of the APs, distance of the APs from the MN, etc.) on the

accuracy of location estimates. This analysis should provide important guidelines for

the system designer if SSD is the chosen location fingerprint.

In Chapter 6, firstly, we have elaborated on our idea of using weighted linear

regression techniques to improve localization models whenthe system contains very

few training samples. Adopting appropriate interpolationtechnique can go a long way

in solving the drawbacks suffered by an under-trained positioning system, as vindi-

cated by our analysis and results. As we have seen, without the aid of interpolation,

our testbed of moderate size already requires around 60 realtraining points in or-

der to attain reasonable accuracy. A larger deployment areawould benefit greatly

from our technique, in terms of reducing labor and cost requirements. Nevertheless,

prior works [80] have indicated that, when sufficient samples have already been col-

lected over the whole localization area, the gain arising from the use of interpolation

techniques is not significant. Our results have shown a similar trend, as revealed in

Fig. 6.1(a) and 6.1(b). Secondly, we propose an interpolation-based fingerprinting

technique utilizing user feedback which does not require anexhaustive training phase

typically seen in the indoor localization solutions. We argue that the contribution of

users’ feedback to any positioning system is two-fold. On one hand, users’ feedback

greatly help in fine-tuning an under-trained positioning system with proper filtering.

On the other hand, if users arewell-behaved, our experimental results show that the

participation of end-users can actually assist in the construction of a positioning sys-

tem incrementally from scratch. We also show that user feedback-based positioning

system adapts quite well when surroundings change.

Although no work in the literature has been successful thus far in designing a

reasonable Bluetooth-based positioning system, we have shown in our analysis that
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7.2 Future Work

previous works have used signal parameters that are inappropriate for localization pur-

pose. However, if inquiry-based RSS is available and is used to generate SSD for use as

a location fingerprint, a Bluetooth-based positioning system with reasonable accuracy

can still be built as we have demonstrated in our experimental results.

In summary, we have derived analytically a robust location fingerprint definition,

and verified it experimentally as well. We devised ways through weighted linear re-

gression techniques and utilizing user feedback to facilitate under-trained positioning

systems.

7.2 Future Work

In this dissertation, we have shown our new robust location fingerprint, SSD to perform

well as a location fingerprint over MNs’ hardware variations. From our research, we

realized that there are generally two main characteristicsof agoodlocation fingerprint:

• It should provide astablesignature (e.g., signal strength) at a particular location

even if the MN’s hardware changes.

• From one location to another, this signature should also be distinct.

We only concentrated to explore a location fingerprint whichproducesstablesignature

(i.e., SSD) at a particular location even if the MN’s hardware changes. However, an

interesting research topic would be to incorporate both therequirements and come up

with a location fingerprint that meets them well.

The design guidelines provided by this dissertation in Chapter 5 when SSD is

chosen as the location fingerprint, may create a conflict to the design of WLAN or

Bluetooth infrastructure for optimal signal coverage. A possible research topic based

on the placement of access points to provide both communications and location ser-

vice should be explored in the future. A comparison of the Cramér-Rao Lower Bounds
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7.2 Future Work

between SSD and RSS is also required in order to investigate both fingerprints’ perfor-

mances in more detail.

While our use of weighted linear regression model for generating fictitious points

in Chapter 6 has achieved reasonable results, it may be worthwhile to pursue whether

the use of more complex propagation models could further improve the performance

of under-trained positioning systems.

The use of Bluetooth technology for localization certainly requires more investi-

gation. Although previous works have largely provided discouraging results [62], or

required the aid of additional wireless technologies (e.g., Wi-Fi) [21, 52], our experi-

ence with Bluetooth shows that it is a promising technology aswell that should not be

overlooked.

We had three experimental testbeds that can be categorized as testbeds of only

moderate size. Additional experiments could be conducted on testbeds with different

setup and larger size to explore its viability across different settings. Our user feedback

based positioning system is currently based on Bluetooth wireless technology, but it

can easily be extended to accept feedbacks from devices using other technologies as

well (e.g., Wi-Fi). A hybrid system where the user feedback from devices with multiple

wireless technologies is incorporated certainly poses an interesting research problem.
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Appendix A

Some Proofs for Chapter 5

A.1 Detailed Calculation of CRLB for Localization us-

ing SSD as Location Fingerprint

The joint p.d.f. (5.7) of the(K − 1) independent SSD measurements can be simplified

as,

fθ(P ) =
K−1∏

k=1

1√
2πσ̃

10

ln 10

pr
pk

exp



−

ρ

8

(
ln

d2k

d̃
2

kr

)2


, (A.1)

whereρ =

(
10β

σ̃ ln 10

)2

and d̃kr = dr

(
pr
pk

) 1

β

.

135



A.1 Detailed Calculation of CRLB for Localization using SSD asLocation
Fingerprint

Consequently, the log-likelihood of (A.1) takes the form,

ln fθ(P ) =
K−1∑

k=1


Ckr −

ρ

8
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whereCkr =
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, k = 1, 2, . . . , (K − 1)

= Constant w.r.t.θ.

To derive the entries of (5.8), we calculate the score function,
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Taking the derivative ofU(θ) w.r.t. θ, we obtain,
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We see that, all the elements of derivatives of the score function depend on a term,
(
ln

d2
k

d̃2
kr

)
, which has an expected value of zero. Therefore, the entriesof (5.8) becomes,
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Here,φk ∈ [0, 2π) is the angle the MN makes w.r.t. thekth AP as illustrated in Fig. 5.1.

Subsequently, the CRLB can be expressed as,

{J(θ)}−1 =
1

|J(θ)|




Jyy(θ) −Jxy(θ)

−Jyx(θ) Jxx(θ)


 , (A.2)

where |J(θ)| = Jxx(θ) · Jyy(θ)− Jxy(θ) · Jyx(θ).

Suppose the variance of the location estimate of SSD-based localization withK

APs is denoted as var(θ̂)K . From the CRLB property (5.6), we know that, Cov(θ̂, θ) ≥

{J(θ)}−1, i.e., the matrix Cov(θ̂, θ) − {J(θ)}−1 is positive semidefinite [70]. Since

the diagonal elements of positive semidefinite matrices arelarger or equal to zero, we

obtain the following inequalities for any unbiased estimator using the identities of (5.3)
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A.2 Induction Proof of Inequality (5.13)

and (A.2),

σ2
x̂ ≥

Jyy(θ)

|J(θ)| and σ2
ŷ ≥

Jxx(θ)

|J(θ)| .

Consequently, we have,

var(θ̂)K = σ2
x̂ + σ2

ŷ ≥
Jxx(θ) + Jyy(θ)

|J(θ)|

=
λK

ρ · ηK
, (A.3)

where we define,λK =
∑K−1

k=1
(u2

k+v2k), ηK =
∑K−1

k=1
u2
k

∑K−1

k=1
v2k−

{∑K−1

k=1
ukvk

}2

,

uk = [ cosφk

dk
− cosφr

dr
] andvk = [ sinφk

dk
− sinφr

dr
].

A.2 Induction Proof of Inequality (5.13)

Suppose the inequality statement to be proven is denoted byS(K).

Basis: It can be easily seen thatS(1) holds. Let us show thatS(2) holds too. For

K = 2, the LHS of the inequality (5.13) can be simplified as,

(u2
1 + u2

2)(v
2
1 + v22)− (u1v1 + u2v2)

2 = (u2v1 − v2u1)
2

≥ 0.

Therefore,S(2) holds as well.

Inductive Step:SupposeS(K) holds, i.e.,

K∑

k=1

u2
k

K∑

k=1

v2k −
(

K∑

k=1

ukvk

)2

≥ 0. (A.4)
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A.2 Induction Proof of Inequality (5.13)

Now, it must be shown thatS(K + 1) holds, i.e.,

K+1∑

k=1

u2
k

K+1∑

k=1

v2k −
(

K+1∑

k=1

ukvk

)2

≥ 0.

The LHS of the above inequality can be rewritten as,

K+1∑

k=1

u2
k

K+1∑

k=1

v2k −
(

K+1∑

k=1

ukvk

)2

= (
K∑

k=1

u2
k + u2

K+1)(
K∑

k=1

v2k + v2K+1)−
(

K∑

k=1

ukvk

)2

− 2

(
K∑

k=1

ukvk

)
uK+1vK+1 − (uK+1vK+1)

2

=
K∑

k=1

u2
k

K∑

k=1

v2k −
(

K∑

k=1

ukvk

)2

+ u2
K+1

K∑

k=1

v2k

+ v2K+1

K∑

k=1

u2
k − 2

(
K∑

k=1

ukvk

)
uK+1vK+1.

Using the induction hypothesis (A.4) and the identity

u2
K+1

K∑

k=1

v2k + v2K+1

K∑

k=1

u2
k − 2

(
K∑

k=1

ukvk

)
uK+1vK+1 ≥ 0, (A.5)

we can show thatS(K + 1) holds indeed. The inequality (A.5) follows from:

(uK+1vk − vK+1uk)
2 ≥ 0

⇒ u2
K+1v

2
k + v2K+1u

2
k − 2uK+1vK+1ukvk ≥ 0

⇒ u2
K+1

K∑

k=1

v2k + v2K+1

K∑

k=1

u2
k

− 2

(
K∑

k=1

ukvk

)
uK+1vK+1 ≥ 0.
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A.3 Proof of Inequality (5.14)

A.3 Proof of Inequality (5.14)

Simplifying the LHS of the inequality (5.14), we obtain,

√√√√
(
λK

K−1∑

k=1

u2
k − ηK

)(
λK

K−1∑

k=1

v2k − ηK

)

=

√√√√λ2
K

K−1∑

k=1

u2
k

K−1∑

k=1

v2k − ηK · λK

K−1∑

k=1

(u2
k + v2k) + η2K

=

√√√√λ2
K · ηK + λ2

K

{
K−1∑

k=1

ukvk

}2

− ηK · λ2
K + η2K

=

√√√√λ2
K

{
K−1∑

k=1

ukvk

}2

+ η2K

≥ λK

K−1∑

k=1

ukvk, sinceη2K ≥ 0. (A.6)

A.4 Proof of φK+1 = φr = φk, ∀k ∈ {1, 2, . . . , K} − {r}

whenCK − CK+1 = 0

Here, we give the proof of the claim that, the equality conditions of both (A.6) and (5.15)

result in the following,φK+1 = φr = φk, ∀k ∈ {1, 2, . . . , K} − {r}.

The equality condition of (A.6) requires,η2K = 0, i.e., ηK = 0. Consequently,

from the definition ofηK , we can write,

K−1∑

k=1

u2
k

K−1∑

k=1

v2k =

{
K−1∑

k=1

ukvk

}2

. (A.7)

Using the identities ofuk andvk, it can be deduced that, only whenφk = φr, ∀k ∈

{1, 2, . . . , K} − {r}, the LHS and RHS of (A.7) become equal.
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A.5 Proof of Inequality (5.20)

Now, puttingηK = 0 into the equality condition of (5.15), we obtain,

v2K+1

K−1∑

k=1

u2
k = u2

K+1

K−1∑

k=1

v2k. (A.8)

Plugging the values ofuK+1, vK+1, uk andvk into (A.8), we get,

[
sinφK+1

dK+1

− sinφr

dr

]2 K−1∑

k=1

[
cosφk

dk
− cosφr

dr

]2

=

[
cosφK+1

dK+1

− cosφr

dr

]2 K−1∑

k=1

[
sinφk

dk
− sinφr

dr

]2
. (A.9)

Putting φk = φr, ∀k ∈ {1, 2, . . . , K} − {r} (derived from the equality condition

of (A.6) above) into (A.9), we have,

cos2 φr

[
sinφK+1

dK+1

− sinφr

dr

]2

= sin2 φr

[
cosφK+1

dK+1

− cosφr

dr

]2
. (A.10)

Simplifying (A.10), it can be easily seen that,φK+1 = φr. Combining this result

with φk = φr, ∀k ∈ {1, 2, . . . , K} − {r}, we finally obtain,φK+1 = φr = φk, ∀k ∈

{1, 2, . . . , K} − {r}.

A.5 Proof of Inequality (5.20)

Simplifying the LHS of the above inequality we get,

(uK′vK′ − uKvK)

√√√√λ2
K−1

K−2∑

k=1

u2
k

K−2∑

k=1

v2k − ηK−1 · λK−1

{
K−2∑

k=1

(u2
k + v2k)

}
+ η2K−1
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A.5 Proof of Inequality (5.20)

= (uK′vK′ − uKvK)

√√√√√λ2
K−1


ηK−1 +

{
K−2∑

k=1

ukvk

}2

− ηK−1 · λ2

K−1 + η2K−1

≥ λK−1(uK′vK′ − uKvK)

{
K−2∑

k=1

ukvk

}
, since,η2K−1 ≥ 0.
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Appendix B

Calculation of RSS at Fictitious

Training Points

Suppose, there aren training points for which the real measurements of RSSs have

been taken at theK APs. Our goal is to emulate the RSSs ofK APs forJ possible

interpolated training points utilizing those real measurements.

First, we consider calculating the regression coefficientswhich were introduced

in Section 6.1.1 in order to formulate the average RSS of thekth AP for a particular fic-

titious pointj. From Section 6.1.1, we know that, the linear regression RSS prediction

formula takes the following form,

ŷki = akxki + bk, (B.1)

where, ŷki = the predicted RSS of thekth AP when the MN is atith training point,

ak = −10β, xki = log(dki) andbk = P (d0)|dBm + 10β log(d0).

Now, we consider calculating the regression coefficients, i.e.,ak andbk of (B.1)

in order to formulate the RSS of thekth AP for a particular fictitious training pointj.
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B. Calculation of RSS at Fictitious Training Points

Utilizing the spatial similarity of RSS samples which suggests that the closer training

points should contribute more in formulating the interpolated RSS, the weighted least

mean square minimization function for our linear regression model can be written as,

R2(ajk, bjk) =
n∑

i=1

wji[yki − (ajkxki + bjk)]
2, (B.2)

whereyki = real measurement of RSS at thekth AP when the MN is atith training

point,wji = normalized weight considering spatial similarity of RSS =1/dji∑n
i=1

1/dji
, dji

= distance of fictitious pointj from theith training point,xki = log (dki) = log distance

of kth AP from theith training point,ajk, bjk = regression coefficients of the linear

RSS prediction formula of thekth AP for j, k ∈ {1, 2, . . . , K}, andj ∈ {1, 2, . . . , J}.

Note that, depending on the fictitious pointj, for which the RSS will be predicted, the

associated weight (i.e.,wji) changes for the RSS perceived at an AP corresponding to

different real training points. Hence, an additional subscript is used in (B.2) to denote

the regression coefficients for an AP w.r.t. different fictitious points compared to (B.1).

Denote,

Yk =




y1k

y2k
...

ynk




, Xk =




1 x1k

1 x2k

...
...

1 xnk




, Wj =




wj1 0 0 . . . 0

0 wj2 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . wjn




andBjk =



bjk

ajk


 .

Using these matrix notations, now we differentiate (B.2) w.r.t. Bjk and set it to zero,

∂

∂Bjk

[
(Yk −XkBjk)TWj(Yk −XkBjk)

]
= 0

⇒ ∂

∂Bjk
[
Yk

TWjYk − BjkTXk
TWjYk − Yk

TWjXkBjk + BjkTX TWjXkBjk
]
= 0
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B. Calculation of RSS at Fictitious Training Points

⇒ ∂

∂Bjk
[
Yk

TWjYk + BjkTXk
TWjXkBjk − 2Yk

TWjXkBjk
]
= 0

⇒ BjkTXk
TWjXk = Yk

TWjXk

⇒ X TWj
TXkBjk = Xk

TWj
TYk.

If the matrix
(
X TWj

TXk

)
is non-singular, the regression coefficients are given by the

formula,

Bjk =
(
X TWj

TXk

)−1Xk
TWj

TYk. (B.3)

For a particular fictitious pointj, the regression coefficientsBjk of thekth AP’s

signals can be obtained through (B.3). Consequently, the RSS ofthe kth AP for a

fictitious pointj can be emulated as,

RSSjk = ajk log djk + bjk. (B.4)

Plugging in the values ofajk, bjk anddjk (the distance of the fictitious pointj from kth

AP) into (B.4), we finally obtain the RSS fingerprint forj considering only APk. To

deduce the RSS vector comprising of all theK APs for a particular fictitious pointj,
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Appendix C

Utilization of User Feedback

Here, we show how user feedback’s credibility (i.e., weightw) is taken into account

to generate the fictitious training point’s RSS. Suppose there aren user feedbacks

for which the real measurements of RSSs have been taken at theK APs. Similar to

Appendix B, our goal is to emulate the RSSs ofK APs for J possible interpolated

training points utilizing those real measurements of user feedbacks.

Utilizing both the spatial similarity and user feedback credibility factors, the

weighted least mean square minimization function for our linear regression model can

be written as,

R2(ajk, bjk) =
n∑

i=1

cji[yki − (ajkxki + bjk)]
2. (C.1)

All the symbols of (C.1) have the usual meaning as in Appendix Bapart from the

composite weight,cji, which is defined as,cji =
uji×vi∑n
i=1

uji×vi
, uji = normalized weight

considering spatial similarity of RSS= 1/dji∑n
i=1

1/dji
, vi = normalized weight forith

feedback considering its credibility= wi∑n
i=1

wi
, dji = distance of interpolated pointj

from theith training point.
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C. Utilization of User Feedback

Denote,

Yk =




y1k

y2k
...

ynk




, Xk =




1 x1k

1 x2k

...
...

1 xnk




, Cj =




cj1 0 0 . . . 0

0 cj2 0 . . . 0

...
...

...
. ..

...

0 0 0 . . . cjn




andBjk =



bjk

ajk


 .

Carrying out similar calculations as in Appendix B, the regression coefficients are

given by the formula,

Bjk =
(
X TCjTXk

)−1Xk
TCjTYk. (C.2)

For a particular interpolated pointj, the regression coefficientsBjk of the kth

AP’s signals can be obtained through (C.2). Consequently, theRSS of thekth AP for

an interpolated pointj can be emulated as,

RSSjk = ajk log djk + bjk. (C.3)

Plugging the values ofajk, bjk anddjk (the distance of the interpolated pointj from

kth AP) into (C.3), we finally obtain the RSS fingerprint forj considering only APk.

To deduce the RSS vector comprising of all theK APs for a particular interpolated

point j, we have to follow the same procedure for allk ∈ {1, 2, . . . , K}. Finally, in

order to obtain the RSS vector of theK APs for all theJ interpolated points over

the localization area, we have to repeat the whole calculation of this section for all

j ∈ {1, 2, . . . , J}. Note that, when all user feedbacks are believed equally, wehave,

cji =
uji×

1

n∑n
i=1

uji×
1

n

=
uji∑n
i=1

uji
= uji. In other words, only spatial similarity weight factor

would be taken into consideration in calculating the RSS signatures of the interpolated

points which yields the exact same scenario as in Appendix B.
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