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2.2 Matrix valued function and Löwner’s operator . . . . . . . . . . . . 9

2.3 Semismoothness and the generalized Jacobian . . . . . . . . . . . . 10

2.4 Metric projection operators . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Projection onto the nonconvex set Sn
+(r) . . . . . . . . . . . 12

2.4.2 Projection onto the nonconvex set Sn(r) . . . . . . . . . . . 17

2.4.3 Generalized projection onto the nonconvex set ℜn1×n2
r . . . . 22

2.5 The smoothing functions . . . . . . . . . . . . . . . . . . . . . . . . 29

v



Contents vi

2.6 The Slater condition . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 P0(P )-matrix and quasi P0(P )-matrix . . . . . . . . . . . . . . . . . 33

3 A Framework of Proximal Subgradient Method 35

4 A Penalty Approach 46

4.1 A penalty approach for the rank constraint . . . . . . . . . . . . . . 46

4.2 The proximal subgradient method for the penalized problem . . . . 51

4.2.1 Implementation issues . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Some rationale for the penalty approach . . . . . . . . . . . 57

4.3 The Lagrangian dual reformulation . . . . . . . . . . . . . . . . . . 58

4.3.1 The Lagrangian dual problem for the nonsymmetric problem 58

4.3.2 The Lagrangian dual problem for the symmetric problem . . 62

5 A Smoothing Newton-BiCGStab Method 67

5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Least squares semidefinite programming . . . . . . . . . . . . . . . 75

5.2.1 Global and local convergence analysis . . . . . . . . . . . . . 83

5.3 Least squares matrix nuclear norm problems . . . . . . . . . . . . . 92

5.3.1 The Lagrangian dual problem and optimality conditions . . 93

5.3.2 Global convergence analysis . . . . . . . . . . . . . . . . . . 108

5.3.3 Local convergence analysis . . . . . . . . . . . . . . . . . . . 111

6 Numerical Results 114

6.1 Numerical results for the symmetric SLR-MOPs . . . . . . . . . . . 114

6.2 Numerical results for the nonsymmetric SLR-MOPs . . . . . . . . . 126



Contents vii

7 Conclusions 129

Bibliography 131



Summary

This thesis focuses on a class of structured low rank matrix optimization prob-

lems (SLR-MOPs) which aim at finding an approximate matrix of certain specific

structures and whose rank is no more than a prescribed number. This kind of

approximation is needed in many important applications arising from a wide range

of fields, such as finance/risk management, images compression, noise reduction,

and so on. The SLR-MOPs are in general non-convex and thus difficult to solve

due to the presence of the rank constraint.

In this thesis, we propose a penalty approach to deal with this difficulty. Some

rationale to motivate this penalty technique is also addressed. For example, one

interesting result says that an ε-optimal solution to the original SLR-MOP is guar-

anteed by solving the penalized problem as long as the penalty parameter c is

above some ε-dependent number. We further present a general proximal subgra-

dient method for the purpose of solving the penalized problem which is still non-

convex. When using the proposed proximal subgradient method, one eventually

viii



Summary ix

needs to solve a sequence of least squares nuclear norm problems. For this pur-

pose, we design a quadratically convergent smoothing Newton-BiCGStab method

to solve these least squares subproblems. Essentially, our approach transforms the

structured low rank matrix problem into a sequence of least squares nuclear norm

problems. One remarkable feature of our method is that it can continue to search

for a better low rank solution by iteratively solving a new least squares nuclear

norm problem when the initial nuclear norm convex relaxation fails to produce a

satisfactory solution.

Furthermore, we also investigate the Lagrangian dual of the structured low rank

matrix optimization problem and show some globalization checking results which

are seldom available for the non-convex optimization problems. As a byproduct,

we fully characterize the metric projection over three non-convex rank constrained

sets, respectively.

Numerical results on a variety of low rank matrix problems indicate that our pro-

posed method is able to handle both the rank and the linear constraints effectively,

in particular in the situations when the rank is not very small. The numerical re-

sults also imply the efficiency and robustness of the smoothing Newton-BiCGStab

method which is applied to solve the subproblems.



Chapter 1
Introduction

To approximate a given matrix by a low rank matrix has a long history in mathe-

matics. For example, Schmidt [108], Eckart and Young [31] considered the following

low rank approximation problem

min ∥X − C∥

s.t. rank(X) ≤ r .
(1.1)

Here we use ∥ · ∥ to denote the Frobenius norm in ℜn1×n2 (assuming n1 ≤ n2

without loss of generality). Let the given matrix C ∈ ℜn1×n2 have the following

singular value decomposition (SVD):

C = U [Σ(C) 0]V T ,

where U ∈ On1 and V ∈ On2 are orthogonal matrices, σ1(C) ≥ · · · ≥ σn1(C) ≥

0 are the singular values of C being arranged in the non-increasing order and

Σ(C) := diag(σ(C)) is the n1 by n1 diagonal matrix whose i-th diagonal entry

is σi(C), i = 1, . . . , n1. Independently, Schmidt [108] and Eckart and Young [31]

proved that

X∗ =
r∑

i=1

σi(C)UiV
T
i

1
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is an optimal solution to (1.1). A more general problem than (1.1) is the so-called

weighted low rank approximation problem:

min ∥H ◦ (X − C)∥

s.t. rank(X) ≤ r ,
(1.2)

where H ∈ ℜn1×n2 a given weight matrix whose entries are nonnegative and “◦”

denotes the Hadamard product. Unlike the case for problem (1.1), the weighted

problem (1.2) no longer admits an analytic solution. Actually, problem (1.2) is

known to be NP-hard in general [43]. Of course, one may use other functions to

measure the distance between X and C. Moreover, in practice we not only seek a

low rank matrix X, but also we want X to have certain desirable properties such

as:

• X is symmetric and positive semidefinite;

• Some components of X are required to satisfy some equalities and inequali-

ties;

• X is in a special class of matrices, e.g., correlation, Hankel, Toeplitz, tri-

diagonal matrices, and so on.

Such problems in the literature are called structured low rank matrix approxima-

tion problems [17].

In her PhD thesis, Fazel [33] considered the following matrix rank minimization

problem (RMP)

min rank(X)

s.t. X ∈ C ,
(1.3)

where C is a closed convex set in ℜn1×n2 . Since the RMP is difficult to solve, Fazel

suggested to use ∥X∥∗, the sum of all the singular values of X, to replace rank(X)
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in the objective function in (1.3). That is, she proposed to solve the following

convex optimization problem

min ∥X∥∗

s.t. X ∈ C
(1.4)

to get an approximate solution to the RMP problem (1.3). See also [34]. Though

simple, this strategy works very well in many occasions. One particular example is

the so-called matrix completion problem. Given a matrixM ∈ ℜn1×n2 with entries

in the index set Ω given, the matrix completion problem seeks to find a low rank

matrix X such that Xij ≈ Mij for all (i, j) ∈ Ω. In [13], [14], [45], [56], [102],

[103], etc., the authors made some landmark achievements: for certain stochastic

models, an n1 × n2 matrix of rank r can be recovered with high probability from

a random uniform sample of size slightly larger than O((n1 + n2)r) via solving the

following nuclear norm minimization problem:

min ∥X∥∗
s.t. Xij ≈Mij ∀ (i, j) ∈ Ω .

The breakthrough achieved in the above mentioned papers and others has not only

given a theoretical justification of relaxing the nonconvex RMP problem (1.3) to

its convex counterpart (1.4), but also has accelerated the development on adopting

the nuclear norm minimization approach to model many more application problems

that go beyond the matrix completion problem. However, since the nuclear norm

convex relaxation does not take the prescribed number r into consideration, the

solution obtained by solving the relaxed problem may not satisfy the required rank

constraint. Moreover, the nuclear norm convex relaxation may not work at all if

the low rank matrix has to possess certain structures. Next, we shall take a recently

intensively studied financial problem to illustrate this situation.

Let Sn and Sn
+ denote, respectively, the space of n×n symmetric matrices and the

cone of positive semidefinite matrices in Sn. Denote the Frobenius norm induced
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by the standard trace inner product ⟨·, ·⟩ in Sn by ∥ · ∥. Let C be a given matrix

in Sn and H ∈ Sn a given weight matrix whose entries are nonnegative. Now we

consider the following rank constrained nearest correlation matrix1 problem

min
1

2
∥H ◦ (X − C)∥2

s.t. Xii = 1, i = 1, . . . , n ,

Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(1.5)

where 1 ≤ r ≤ n is a given integer, Be, Bl, and Bu are three index subsets of

{(i, j) | 1 ≤ i < j ≤ n} satisfying Be ∩ Bl = ∅, Be ∩ Bu = ∅, −1 ≤ eij, lij, uij ≤ 1

for any (i, j) ∈ Be ∪ Bl ∪ Bu, and −1 ≤ lij < uij ≤ 1 for any (i, j) ∈ Bl ∩ Bu.

Denote the cardinalities of Be, Bl, and Bu by qe, ql, and qu, respectively. Let

p := n + qe and m := p + ql + qu. The weight matrix H is introduced by adding

larger weights to correlations that are better estimated or are of higher confidence

in their correctness. Zero weights are usually assigned to those correlations that

are missing or not estimated. See [87] for more discussions.

This kind of problems has many applications among a variety of fields, in partic-

ular, in the quantitative finance field. Wu [121], Zhang and Wu [123], and Brigo

and Mercurio [9] considered such a problem for pricing interest rate derivatives

under the LIBOR and swap market models. The factor models of basket options,

collateralized debt obligations (CDOs), portfolio risk models (VaR), and multi-

variate time series discussed by Lillo and Mantegna [69] rely on low rank nearest

correlation matrices. A correlation matrix of low rank is particularly useful in the

1A correlation matrix, a commonly used concept in statistics, is a real symmetric and positive

semidefinite matrix whose diagonal entries are all ones.
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Monte Carlo simulation for solving derivatives pricing problems as a model with

low factors can significantly reduce the cost of drawing random numbers. Beyond

quantitative finance, the rank constrained nearest correlation matrix problems also

occur in many engineering fields, see for examples, [11, 20, 53, 110].

Notice that for a correlation matrix X ∈ Sn
+,

||X||∗ = trace(X) = n .

This implies that any convex relaxation of using the nuclear norm directly is

doomed as one will simply add a constant term if one does so.

In this thesis, we shall propose a penalty method to solve problem (1.5) and its

more general form

min
1

2
∥H ◦ (X − C)∥2

s.t. AX ∈ b+Q ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(1.6)

where A : Sn → ℜm is a linear operator, Q := {0}p×ℜq
+ andm := p+q. Moreover,

since in many situations the matrix X is not necessarily required to be symmetric,

we also consider the nonsymmetric counterpart of problem (1.6).

Let ρ ≥ 0 be a given parameter. The penalty method proposed in this thesis

is also strongly motivated to solve the following structured low rank matrix, not

necessarily symmetric, approximation problem

min
1

2
∥H ◦ (X − C)∥2 + ρ∥X∥∗

s.t. AX ∈ b+Q ,

rank(X) ≤ r ,

X ∈ ℜn1×n2 ,

(1.7)

where m = p+ q, A : ℜn1×n2 → ℜm is a linear operator, Q̂ ∈ ℜq is a closed convex

cone with nonempty interior and Q := {0}p × Q̂. In this thesis, we shall address
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some theoretical and numerical issues involved in problems (1.7) and (1.6).

Our main idea is to deal with the non-convex rank constraint via a penalty tech-

nique. The rationale for using the penalty approach is explained in later chapters.

It is worth noting that an ε-optimal solution to the original problem is always

guaranteed by solving the penalized problem as long as the penalty parameter is

larger than some ε-dependent number. The penalized problem, however, is still

not convex and no existing methods can be directly applied to solve it. Thus, we

further propose a proximal subgradient method to solve the penalized problem.

When using the proposed proximal subgradient method, one eventually needs to

solve a sequence of least squares nuclear norm problems. Notice that the efficiency

of the whole approach heavily relies on the method used for solving the subprob-

lems. For this purpose, we design a smoothing Newton-BiCGStab method to solve

these least squares subproblems.

Essentially, our approach transforms the structured low rank matrix problem into a

sequence of least squares nuclear norm problems. In this sense, the popular nuclear

norm relaxation may be regarded as the first step of our approach if we choose the

starting point properly. Different from the nuclear norm relaxation approach, our

method can continue to search for a better low rank solution by iteratively solving

a new least squares nuclear norm problem when the former fails to generate a

satisfactory solution.

Finally, it should be emphasized that our proposed approach here is quite flexible.

It can be used to solve problems beyond the ones described in (1.6) and (1.7).

For examples, we can easily adopt our approach to solve the portfolio selection

problem with the cardinality constraint [67, 70] and the weighted version of the

(P 1
F,K) problem introduced by Werner and Schöttle in [120].
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1.1 Outline of the thesis

The thesis is organized as follows: in Chapter 2, we give some preliminaries to

facilitate later discussions. Chapter 3 presents a general framework of the proximal

subgradient approach. In Chapter 4, we introduce a penalty approach to tackle

the rank constraint and then apply the general proximal subgradient method to

the penalized problem. We also offer some theoretical justifications for using this

penalty technique. The Lagrangian dual reformulation and the global optimality

checking results are also presented in this chapter. In Chapter 5, we design a

quadratically convergent inexact smoothing Newton-BiCGStab method and then

apply it to solve the subproblems resulted in Chapter 4. We demonstrate the

effectiveness of our method by conducting some numerical experiments on both

nonsymmetric and symmetric cases on a variety of problems in Chapter 6. Finally,

we conclude the thesis and point out some future research directions in Chapter 7.



Chapter 2
Preliminaries

2.1 Notations

Let m and n be positive integers. We use Om to denote the set of all orthogonal

matrices in ℜm×m, i.e.,

Om = {Q ∈ ℜm×m | QTQ = I},

where I is the identity matrix with appropriate dimension. For any symmetric

matrix X, Y and Z in Sn, we write X ≽ 0 (≻ 0) to represent that X is positive

semidefinite (positive definite) and Z ≽ X ≽ Y to represent that X − Y ≽ 0 and

Z −X ≽ 0. Let α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n} be index sets, and M be an

m×n matrix. The cardinality of α is denoted by |α|. We write Mα for the matrix

containing the columns of M indexed by α and Mαβ for the |α| × |β| submatrix

of M formed by selecting the rows and columns from M indexed by α and β,

respectively. The Frobenius norm in ℜm×n is denoted by ∥ · ∥. For any v ∈ ℜm,

we use diag(v) to denote the m ×m diagonal matrix whose ith diagonal entry is

vi, i = 1, . . . ,m, ∥v∥ to denote the 2-norm of v, and ∥v∥0 to denote the cardinality

of the set {i | vi ̸= 0, i = 1, . . . ,m}. We also use |v| to denote the column vector

8



2.2 Matrix valued function and Löwner’s operator 9

in ℜm such that its ith component is defined by |v|i = |vi|, i = 1, . . . ,m and

v+ := max(0, v). For any set W , the convex hull of W is denoted by convW .

2.2 Matrix valued function and Löwner’s opera-

tor

Let X ∈ Sn admit the following spectral decomposition

X = PΛ(X)P T , (2.1)

where Λ(X) := diag(λ(X)), λ1(X) ≥ · · · ≥ λn(X) are the eigenvalues of X being

arranged in the non-increasing order and P ∈ On is a corresponding orthogonal

matrix of orthonormal eigenvectors of X. Let f : ℜ → ℜ be a scalar function. The

corresponding Löwner’s symmetric matrix function at X is defined by [71]

F (X) := Pdiag
(
f(λ1(X)), f(λ2(X)), . . . , f(λn(X))

)
P T =

n∑
i=1

f(λi(X))PiPi
T .

(2.2)

Let µ ∈ ℜn is a given vector. Assume that the scalar function f(·) is differentiable

at each µi with the derivatives f ′(µi), i = 1, . . . , n. Let f [1](µ) ∈ Sn be the first

divided difference matrix whose (i, j)-th entry is given by

[f [1](µ)]ij =


f(µi)− f(µj)

µi − µj

, if µi ̸= µj,

f ′(µi), if µi = µj,

i, j = 1, . . . , n. (2.3)

The following proposition concerning the differentiability of the symmetric matrix

function F defined in (2.2) can be largely derived from [60].

Proposition 2.1. Let X ∈ Sn have the spectral decomposition as in (2.1). Then,

the symmetric matrix function F (·) is (continuously) differentiable at X if and
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only for each i ∈ {1, . . . , n}, f(·) is (continuously) differentiable at λi(X). In this

case, the Fréchet derivative of F (·) at X is given by

F ′(X)H = P
[
f [1](λ(X)) ◦ (P THP )

]
P T ∀ H ∈ Sn . (2.4)

2.3 Semismoothness and the generalized Jaco-

bian

Let X and Y be two finite-dimensional real Hilbert spaces equipped with an inner

product ⟨·, ·⟩ and its induced norm ∥ · ∥, respectively. Let O be an open set in X

and Ξ : O ⊆ X → Y be a locally Lipschitz continuous function on the open set

O. The well known Rademacher’s theorem [107, Section 9.J] says that Ξ is almost

everywhere F(réchet)-differentiable in O. Let DΞ denote the set of F(réchet)-

differentiable points of Ξ in O. Then, the Bouligand subdifferential of Ξ at x,

denoted by ∂BΞ(x), is

∂BΞ(x) :=
{
lim
k→∞

Ξ′(xk) | xk → x , xk ∈ DΞ

}
,

where Ξ′(x) denotes the F -derivative of Ξ at x. Then Clarke’s generalized Jacobian

of Ξ at x [18] is the convex hull of ∂BΞ(x), i.e.,

∂Ξ(x) := conv ∂BΞ(x) .

The concept of semismoothness plays an important role in convergence analysis of

generalized Newton methods for nonsmooth equations. It was first introduced by

Mifflin [76] for functionals, and was extended by Qi and Sun [93], for cases when a

vector-valued function is not differentiable, but locally Lipschitz continuous.

Definition 1. Ξ : O ⊆ X → Y be a locally Lipschitz continuous function on the

open set O. We say that Ξ is semismooth at a point x ∈ O if
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(i) Ξ is directionally differentiable at x; and

(ii) for any ∆x ∈ X and V ∈ ∂Ξ(x+∆x) with ∆x→ 0,

Ξ(x+∆x)− Ξ(x)− V∆x = o(∥∆x∥).

Furthermore, Ξ is said to be strongly semismooth at x ∈ X if Ξ is semismooth at

x and for any ∆x ∈ X and V ∈ ∂Ξ(x+∆x) with ∆x→ 0,

Ξ(x+∆x)− Ξ(x)− V∆x = O(∥∆x∥2).

2.4 Metric projection operators

In this section, we shall introduce three metric projections over three nonconvex

sets which are defined by

Sn
+(r) := {Z ∈ Sn |Z ≽ 0, rank(Z) ≤ r} , (2.5)

Sn(r) := {Z ∈ Sn | rank(Z) ≤ r} , (2.6)

ℜn1×n2
r := {Z ∈ ℜn1×n2 | rank(Z) ≤ r} . (2.7)

In order to study the metric projections over the above sets, which will be used in

the Lagrangian dual formulation in Chapter 4, much more analysis is involved due

to the non-convex nature of these sets.

We first discuss two metric projections over the sets Sn
+(r) and Sn(r) in the sym-

metric case. Let X ∈ Sn be arbitrarily chosen. Suppose that X has the spectral

decomposition

X = PΛ(X)P T , (2.8)

where Λ(X) := diag(λ(X)), λ1(X) ≥ · · · ≥ λn(X) are the eigenvalues of X being

arranged in the non-increasing order and P ∈ On is a corresponding orthogonal

matrix of orthonormal eigenvectors of X. In order to characterize the following
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metric projections, we need the following Proposition. Suppose that X ∈ Sn has

the spectral decomposition as in (2.8) and let µ1 > µ2 > · · · > µs be the distinct

eigenvalues of X. Define the following subsets of {1, . . . , n}

τ̄k := { i |λi(X) = µk }, k = 1, . . . , s. (2.9)

Proposition 2.2. Let Λ(X) = diag(λ1(X), λ2(X), . . . , λn(X)) with λ1(X) ≥ λ2(X) ≥

. . . ≥ λn(X). Let τ̄k, k = 1, . . . , s be the corresponding subsets given by (2.9). Let

Q be an orthogonal matrix such that QTΛ(X)Q = Λ(X). Then, we have Qτ̄k τ̄l = 0τ̄k τ̄l , k, l = 1, · · · , s, k ̸= l,

Qτ̄k τ̄kQ
T
τ̄k τ̄k

= QT
τ̄k τ̄k

Qτ̄k τ̄k = I|τ̄k|, k = 1, · · · , s.
(2.10)

2.4.1 Projection onto the nonconvex set Sn
+(r)

Let X ∈ Sn have the spectral decomposition as in (2.8), i.e., X = PΛ(X)P T .

Define

α := {i | λi(X) > λr(X) }, β := {i | λi(X) = λr(X) }, and γ := {i | λi(X) < λr(X) }

and write P = [Pα Pβ Pγ].

Denote

Ψs
r(X) := min

1

2
∥Z −X∥2

s.t. Z ∈ Sn
+(r) .

(2.11)

Denote the set of optimal solutions to (2.11) by ΠSn
+(r)(X), which is called the

metric projection of X over Sn
+(r).

In order to characterize the solution set ΠSn
+(r)(X), we need the Ky Fan’s inequality

given in the following lemma (e.g., see [3, (IV.62)]).

Lemma 2.3. Any matrices X and Y in Sn satisfy the inequality

∥X − Y ∥ ≥ ∥λ(X)− λ(Y )∥ , (2.12)
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where the equality holds if and only if X and Y have a simultaneous ordered spectral

decomposition.

Define Z∗ ∈ Sn by

Z∗ =
r∑

i=1

(
λi(X)

)
+
PiP

T
i . (2.13)

Thus, from the Ky Fan’s inequality (2.12) and the fact that Z∗ ∈ Sn
+(r), we obtain

that Z∗ ∈ ΠSn
+(r)(X) and

Ψs
r(X) =

1

2

r∑
i=1

(
(λi(X))+ − λi(X)

)2
+

1

2

n∑
i=r+1

λ2i (X) =
1

2

n∑
i=t+1

λ2i (X) , (2.14)

where k denotes the number of positive eigenvalues of X, i.e., k :=
∣∣{i |λi(X) > 0}

∣∣
and t := min(r, k).

Lemma 2.4. Let X ∈ Sn have the spectral decomposition as in (2.8). Then the

solution set ΠSn
+(r)(X) to problem (2.11) can be characterized as follows

ΠSn
+(r)(X) =

{
[Pα PβQβ Pγ ]diag(v) [Pα PβQβ Pγ ]

T
∣∣∣ Qβ ∈ O|β|

}
, (2.15)

where v =
(
(λ1(X))+, . . . , (λr(X))+, 0, . . . , 0

)T ∈ ℜn.

Proof. By employing the Ky Fan’s inequality and noting (2.14), we have for any

Z ∈ ΠSn
+(r)(X), that

∥Z −X∥2 ≥ ∥λ(Z)− λ(X)∥2 ≥
r∑

i=1

(
(λi(X))+ − λi(X)

)2
+

n∑
i=r+1

λ2i (X) , (2.16)

which implies that there exists U ∈ On such that X and Z admit a simultaneous

ordered spectral decomposition as

X = UΛ(X)UT and Z = UΛ(Z)UT . (2.17)

As Λ(X) is arranged in the non-increasing order and from (2.16), we obtain that

λ(Z) := v =
(
(λ1(X))+, . . . , (λr(X))+, 0, . . . , 0

)T
. (2.18)
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Thus, by noting that X = PΛ(X)P T and then applying Proposition 2.2, we obtain

that

Z = UΛ(Z)UT = (PQ)diag(v)(PQ)T ,

where Q ∈ On takes the form as in (2.10). Notice that the two matrices
∑
i∈α

viUiU
T
i

and
∑
i∈γ

viUiU
T
i are independent of the choices of Q ∈ On satisfying (2.10). Thus,

we can easily derive the conclusion (2.15) and complete the proof.

Since Ψs
r(X) takes the same value as in (2.14) for any element in ΠSn

+(r)(X), for

notational convenience, with no ambiguity, we use 1
2
∥ΠSn

+(r)(X)−X∥2 to represent

Ψs
r(X). Define Ξs

r : Sn → ℜ by

Ξs
r(Z) = −1

2
∥ΠSn

+(r)(Z)− Z∥2 + 1

2
∥Z∥2 , Z ∈ Sn . (2.19)

Then we have

Ξs
r(X) =

1

2

t∑
i=1

λ2i (X) =
1

2

r∑
i=1

(
λi(X)

)2
+
=

1

2
∥ΠSn

+(r)(X)∥2 ,

where ∥ΠSn
+(r)(X)∥ is interpreted as ∥Z∥ for any Z ∈ ΠSn

+(r)(X), e.g., the matrix

Z∗ defined by (2.13). By noting that for any Z ∈ Sn, Ξs
r(Z) can be reformulated

as

Ξs
r(Z) = max

Y ∈Sn
+(r)

{1

2
∥Z∥2 − 1

2
∥Y − Z∥2

}
= max

Y ∈Sn
+(r)

{
⟨Y, Z⟩ − 1

2
∥Y ∥2

}
, (2.20)

we know that Ξs
r(·) is a convex function as it is the maximum of infinitely many

affine functions.

Proposition 2.5. Let X ∈ Sn have the spectral decomposition as in (2.8). Then

∂Ξs
r(X) = convΠSn

+(r)(X) . (2.21)
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Proof. For any z ∈ ℜn, define

ξr(z) = max
y∈Fr

{1

2
∥z∥2 − 1

2
∥y − z∥2

}
= max

y∈Fr

{
⟨y, z⟩ − 1

2
∥y∥2

}
, (2.22)

where Fr := {y ∈ ℜn | ∥y∥0 ≤ r, y ≥ 0}. Then ξr(·) is a convex function and its

sub-differential is well defined. Let x = λ(X). Thus

ξr(x) = max
y∈Fr

{1

2
∥x∥2 − 1

2
∥y − x∥2

}
=

1

2
∥λ(X)∥2 − min

y∈Fr

1

2
∥y − x∥2 . (2.23)

Denote the solution set of (2.23) by F∗
r . Thus, from the non-increasing order of

λ(X), one can easily show that

ξr(x) =
1

2

r∑
i=1

(xi)
2
+ and F∗

r = V , (2.24)

where

V :=
{
v ∈ ℜn | vi =

(
λi(X)

)
+
for i ∈ α ∪ β1, vi = 0 for i ∈ (β \ β1) ∪ γ ,

where β1 ⊆ β and |β1| = r − |α|
}
.

(2.25)

From convex analysis [105], we can easily derive that

∂ξr(x) = convV

and that ξr(·) is differentiable at x if and only if λr(X) > λr+1(X) > 0 or λr+1(X) ≤

0. In the latter case,

∂ξr(x) = {∇ξr(x)} = {v},

where v is defined in (2.18), i.e., v =
(
(λ1(X))+, . . . , (λr(X))+, 0, . . . , 0

)T ∈ ℜn.

Since the convex function ξr(·) is symmetric, i.e., ξr(z) = ξr(Sz) for any z ∈ ℜn

and any permutation matrix S, from [64, Theorem 1.4], we know that Ξs
r(·) is

differentiable at X ∈ Sn if and only if ξr(·) is differentiable at λ(X) and

∂Ξs
r(X) =

{
Pdiag(v)P T | v ∈ ∂ξr(λ(X)) , PΛ(X)P T = X , P ∈ On

}
.
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Thus Ξs
r(·) is differentiable at X if and only if λr(X) > λr+1(X) > 0 or λr+1(X) ≤

0. In the latter case,

∂Ξs
r(X) = { (Ξs

r)
′(X) } = {Pdiag(v)P T }.

Let the B-subdifferential of Ξs
r(·) at X be defined by

∂BΞ
s
r(X) =

{
lim

Xk→X
(Ξs

r)
′(Xk) , Ξs

r(·) is differentiable at Xk
}
.

Then we can easily check that

∂BΞ
s
r(X) = ΠSn

+(r)(X) , (2.26)

where we use the fact that the two matrices
∑
i∈α

λi(X)PiP
T
i and

∑
i∈γ

λi(X)PiP
T
i

are independent of the choices of P ∈ On satisfying (2.8). Thus, by Theorem 2.5.1

in [18], one has

∂Ξs
r(X) = conv ∂BΞ

s
r(X) = convΠSn

+(r)(X) .

The proof is completed.

Remark 2.6. Proposition 2.5 implies that when λr(X) > λr+1(X) > 0 or λr+1(X) ≤

0, Ξs
r(·) is continuously differentiable near X and (Ξs

r)
′(X) = ΠSn

+(r)(X) = {Z∗},

where Z∗ is defined in (2.13).

Remark 2.7. Since, for a given symmetric positive definite matrix W ∈ Sn, the

following W -weighted problem

min
1

2
∥W 1/2(Z −X)W 1/2∥2

s.t. Z ∈ Sn
+(r)

(2.27)

admits the solution set asW− 1
2ΠSn

+(r)(W
1
2XW

1
2 )W− 1

2 , there is no difficulty to work

out the corresponding results presented in Lemma 2.4 and Proposition 2.5 for this

more general case.
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Remark 2.8. When r = n, the metric projection operator ΠSn
+(r)(·) reduces to the

projection operator ΠSn
+
(·) over the closed convex cone Sn

+. Given X ∈ Sn, ΠSn
+
(X)

is the unique optimal solution to the following problem

min
1

2
∥Z −X∥2

s.t. Z ∈ Sn
+ .

(2.28)

It has long been known that ΠSn
+
(X) can be computed analytically (e.g., [109])

ΠSn
+
(X) = Pdiag

(
(λ1(X))+, . . . , (λn(X))+

)
P T . (2.29)

For more properties about the metric projector ΠSn
+
(·), see [122, 75, 113] and ref-

erences therein.

2.4.2 Projection onto the nonconvex set Sn(r)

Let Y ∈ Sn be arbitrarily chosen. Suppose that Y has the spectral decomposition

Y = U Λ̂(Y )UT , (2.30)

where U ∈ On is a corresponding orthogonal matrix of orthonormal eigenvectors

of Y and Λ̂(Y ) := diag(λ̂(Y )) where λ̂(Y ) = (λ̂1(Y ), . . . , λ̂n(Y ))T is the column

vector containing all the eigenvalues of Y being arranged in the non-increasing

order in terms of their absolute values, i.e.,

|λ̂1(Y )| ≥ · · · ≥ |λ̂n(Y )| ,

and whenever the equality holds, the larger one comes first, i.e.,

if |λ̂i(Y )| = |λ̂j(Y )| and λ̂i(Y ) > λ̂j(Y ), then i < j .

Define

α̂ := {i | |λ̂i(Y )| > |λ̂r(Y )| }, β̂ := {i | |λ̂i(Y )| = |λ̂r(Y )| }, γ̂ := {i | |λ̂i(Y )| < |λ̂r(Y )| },
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and β̂+ := {i | λ̂i(Y ) = |λ̂r(Y )| }, β̂− := {i | λ̂i(Y ) = −|λ̂r(Y )| } .

Write U = [Uα̂ Uβ̂ Uγ̂]. Denote

Ψs
r(Y ) := min

1

2
∥Z − Y ∥2

s.t. Z ∈ Sn(r) .
(2.31)

Denote the set of optimal solutions to (2.31) by ΠSn(r)(Y ), which is called the

metric projection of Y over Sn(r). Define V ∈ On by

V = Udiag(v),

where for each i ∈ {1, . . . , n}, vi = λ̂i(Y )/|λ̂i(Y )| if λ̂i(Y ) ̸= 0 and vi = 1 otherwise.

Then, we have

Y = Udiag(|λ̂(Y )|)V T .

Define Z∗ ∈ Sn by

Z∗ :=
r∑

i=1

|λ̂(Y )|iUiV
T
i =

r∑
i=1

|λ̂i(Y )|Ui(viU
T
i ) =

r∑
i=1

λ̂i(Y )UiU
T
i . (2.32)

Thus, by using the fact that Z∗ ∈ Sn(r), we have

Z∗ ∈ ΠSn(r)(Y ) and Ψs
r(Y ) =

1

2

n∑
i=r+1

λ̂2i (Y ) . (2.33)

Then we can fully characterize all the solutions to problem (2.31) in the following

lemma.

Lemma 2.9. Let Y ∈ Sn have the spectral decomposition as in (2.30). Then the

solution set ΠSn(r)(Y ) to problem (2.31) can be characterized as follows

ΠSn(r)(Y ) =

{
[Uα̂ Uβ̂Qβ̂ Uγ̂ ]diag(v) [Uα̂ Uβ̂Qβ̂ Uγ̂ ]

T
∣∣∣

v ∈ V , Qβ̂ =

 Qβ̂+ 0

0 Qβ̂−

 , Qβ̂+ ∈ O|β̂+|, Qβ̂− ∈ O|β̂−|

}
,

(2.34)
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where

V :=
{
v ∈ ℜn | vi = λ̂i(Y ) for i ∈ α̂ ∪ β̂1, vi = 0 for i ∈ (β̂ \ β̂1) ∪ γ̂ ,

where β̂1 ⊆ β̂ and |β̂1| = r − |α̂|
}
.

(2.35)

Proof. By employing Ky Fan’s inequality (2.12), i.e.,

∥Z − Y ∥ ≥ ∥λ(Z)− λ(Y )∥, Z ∈ Sn ,

where the equality holds if and only if Y and Z admit a simultaneous ordered

spectral decomposition, together with (2.33), we have for any Z ∈ ΠSn(r)(Y ), that

n∑
i=r+1

λ̂2i (Y ) = ∥Z − Y ∥2 ≥ ∥λ(Z)− λ(Y )∥2 ≥
n∑

i=r+1

λ̂2i (Y ) , (2.36)

which implies that there exists P ∈ On such that Y and Z admit the spectral

decompositions as in (2.8) with the same orthogonal matrix P .

Y = PΛ(Y )P T and Z = PΛ(Z)P T . (2.37)

Note that there exists a permutation matrix S ∈ ℜn×n such that λ̂(Y ) = Sλ(Y ).

Under this permutation matrix, v = Sλ(Z) for some v ∈ V defined in (2.35) and

Λ̂(Y ) = SΛ(Y )ST and diag(v) = SΛ(Z)ST . (2.38)

Noting that Y = U Λ̂(Y )UT , one has

Y = PΛ(Y )P T = PST Λ̂(Y )SP T = U Λ̂(Y )UT .

Then, by applying Proposition 2.2, we obtain that

Z = PΛ(Z)P T = PSTdiag(v)SP T = (UQ)diag(v)(UQ)T ,

where Q ∈ On takes the form as in (2.10). Notice that the two matrices
∑
i∈α̂

viUiU
T
i

and
∑
i∈γ̂

viUiU
T
i are independent of the choices of Q ∈ On satisfying (2.10), thus

we can easily derive the conclusion (2.34) and complete the proof.
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Since Ψs
r(Y ) takes the same value as in (2.33) for any element in ΠSn(r)(Y ), for

notational convenience, with no ambiguity, we use 1
2
∥ΠSn(r)(Y )− Y ∥2 to represent

Ψs
r(Y ).

Define Ξs
r : Sn → ℜ by

Ξs
r(Z) = −1

2
∥ΠSn(r)(Z)− Z∥2 + 1

2
∥Z∥2 , Z ∈ Sn . (2.39)

Then we have

Ξs
r(Y ) =

1

2

r∑
i=1

λ̂2i (Y ) =
1

2
∥ΠSn(r)(Y )∥2 ,

where ∥ΠSn(r)(Y )∥ is interpreted as ∥Z∥ for any Z ∈ ΠSn(r)(Y ), e.g., the matrix

Z∗ defined by (2.32). By noting that for any Z ∈ Sn, Ξs
r(Z) can be reformulated

as

Ξr(Z) = max
X∈Sn(r)

{1

2
∥Z∥2 − 1

2
∥X − Z∥2

}
= max

X∈Sn(r)

{
⟨X,Z⟩ − 1

2
∥X∥2

}
, (2.40)

we know that Ξs
r(·) is a convex function as it is the maximum of infinitely many

affine functions.

Proposition 2.10. Let Y ∈ Sn have the spectral decomposition as in (2.30). Then

∂Ξs
r(Y ) = convΠSn(r)(Y ) . (2.41)

Proof. For any z ∈ ℜn, define

ξr(z) = max
x∈Fr

{1

2
∥z∥2 − 1

2
∥x− z∥2

}
= max

x∈Fr

{
⟨x, z⟩ − 1

2
∥x∥2

}
, (2.42)

where Fr := {x ∈ ℜn | ∥x∥0 ≤ r}. Then ξr(·) is a convex function and its sub-

differential is well defined. Let y = λ̂(Y ). Thus

ξr(y) = max
x∈Fr

{1

2
∥y∥2 − 1

2
∥x− y∥2

}
=

1

2
∥λ̂(Y )∥2 − min

x∈Fr

1

2
∥x− y∥2 . (2.43)
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Denote the solution set of (2.43) by F∗
r . Define α := {i | xi ̸= 0} and β := {i | xi =

0} for any given x ∈ Fr. It then follows that

n∑
i=1

(xi − yi)
2 =

∑
i∈α

(xi − yi)
2 +

∑
i∈β

(xi − yi)
2 ≥

∑
i∈β

y2i ≥
n∑

i=r+1

y2i , (2.44)

where the last inequality is from the facts that |β| ≥ n− r and the non-increasing

order of y in terms of the absolute value. Therefore, we know that

ξr(y) =
1

2

r∑
i=1

y2i and F∗
r = V , (2.45)

where V is defined in (2.35). From convex analysis [105], we can easily derive that

∂ξr(y) = convV

and that ξr(·) is differentiable at y if and only if |λ̂(Y )|r > |λ̂(Y )|r+1. In the latter

case,

∂ξr(y) = {∇ξr(y)} =
{
v ∈ ℜn | vi = λ̂i(Y ) for 1 ≤ i ≤ r and vi = 0 for r+1 ≤ i ≤ n

}
.

Since the convex function ξr(·) is symmetric, i.e., ξr(z) = ξr(Sz) for any z ∈ ℜn

and any permutation matrix S, for Z ∈ Sn we can rewrite Ξs
r(Z) as

Ξs
r(Z) = ξr(λ̂(Z)) = ξr(λ(Z)) ,

where λ̂(Z) = (λ̂1(z), . . . , λ̂n(Z))
T is the column vector containing all the eigen-

values of Z being arranged in the non-increasing order in terms of their absolute

values. By [64, Theorem 1.4], we know that Ξs
r(·) is differentiable at Y ∈ Sn if and

only if ξr(·) is differentiable at λ̂(Y ) and

∂Ξs
r(Y ) = {Udiag(v)UT | v ∈ ∂ξr(λ̂(Y )) , U ∈ On, Udiag(λ̂(Y ))UT = Y }.

Thus Ξs
r(·) is differentiable at Y if and only if |λ̂(Y )|r > |λ̂(Y )|r+1. In the latter

case,

∂Ξs
r(Y ) = {(Ξs

r)
′(Y )} =

{
Udiag(v)UT | vi = λ̂i(Y ) for 1 ≤ i ≤ r and vi = 0 for r+1 ≤ i ≤ n}.



2.4 Metric projection operators 22

Let the B-subdifferential of Ξs
r(·) at Y be defined by

∂BΞ
s
r(Y ) =

{
lim

Y k→Y
(Ξs

r)
′(Y k) , Ξs

r(·) is differentiable at Y k
}
.

Then we can easily check that

∂BΞ
s
r(Y ) = ΠSn(r)(Y ) , (2.46)

where we used the fact that the two matrices
∑
i∈α̂

λ̂i(Y )UiU
T
i and

∑
i∈γ̂

λ̂i(Y )UiU
T
i

are independent of the choices of U ∈ On satisfying (2.30). Thus, by Theorem

2.5.1 in [18], one has

∂Ξs
r(Y ) = conv ∂BΞ

s
r(Y ) = convΠSn(r)(Y ) .

The proof is completed.

Remark 2.11. Proposition 2.10 implies that when |λ̂r(Y )| > |λ̂r+1(Y )| , Ξs
r(·) is

continuously differentiable near Y and (Ξs
r)

′(Y ) = ΠSn(r)(Y ) = {Z∗}, where Z∗ is

defined in (2.32).

Remark 2.12. Since, for a given symmetric positive definite matrix W ∈ Sn, the

following W -weighted problem

min
1

2
∥W 1/2(Z − Y )W 1/2∥2

s.t. Z ∈ Sn(r)
(2.47)

admits the solution set as W− 1
2ΠSn(r)(W

1
2YW

1
2 )W− 1

2 , there is no difficulty to work

out the corresponding results presented in Lemma 2.9 and Proposition 2.10 for this

more general case.

2.4.3 Generalized projection onto the nonconvex set ℜn1×n2
r

Let Y ∈ ℜn1×n2(n1 ≤ n2) admit the singular value decomposition

Y = U [Σ(Y ) 0]V T = U [Σ(Y ) 0][V1 V2]
T , (2.48)
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where U ∈ On1 and V ∈ On2 are orthogonal matrices, and Σ(Y ) := diag(σ(Y )),

σ1(Y ) ≥ · · · ≥ σn1(Y ) ≥ 0 are the singular values of Y being arranged in the

non-increasing order. Decompose V ∈ On2 into the form V = [V1 V2], where

V1 ∈ ℜn2×n1 and V2 ∈ ℜn2×(n2−n1). The set of such matrix pairs (U, V ) in the

singular value decomposition (2.48) is denoted by On1,n2(Y ). Denote the nuclear

norm of Y by ∥Y ∥∗ =
n1∑
i=1

σi(Y ).

Define the index sets of positive and zero singular values of Y , by

τ := {i |σi(Y ) > 0} and τ0 := {i |σi(Y ) = 0} .

Let ν1 > ν2 > . . . > νt > 0 be the nonzero distinct singular values of Y . Let

{τk}tk=1 be a partition of τ , which is given by

τk := {i |σi(Y ) = νk}, k = 1, . . . , t .

Proposition 2.13. For any given Y ∈ ℜn1×n2, denote Σ := Σ(Y ). Let P ∈ On1

and W ∈ On2 satisfy

P [Σ 0] = [Σ 0]W . (2.49)

Then, there exist Q ∈ O|τ |, Q′ ∈ On1−|τ | and Q′′ ∈ On2−|τ | such that

P =

 Q 0

0 Q′

 and W =

 Q 0

0 Q′′

 .

Moreover, the orthogonal matrix Q is a block diagonal matrix which takes the form

as follows:

Qτkτl = 0τkτl , k, l = 1, · · · , t, k ̸= l,

QτkτkQ
T
τkτk

= QT
τkτk

Qτkτk = I|τk|, k = 1, · · · , t.
(2.50)

For the proof of this proposition, see [29].
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Now we discuss the generalized metric projection over the set ℜn1×n2
r in the non-

symmetric case. Denote

Ψρ,r(Y ) := min
1

2
∥Z − Y ∥2 + ρ∥Z∥∗

s.t. Z ∈ ℜn1×n2
r ,

(2.51)

where ρ ≥ 0 is a given parameter. Denote the set of optimal solutions to (2.51) by

Pρ,r(Y ), which is called the generalized metric projection of Y over ℜn1×n2
r .

In order to characterize the solution set Pρ,r(Y ), we need the von Neumann’s trace

inequality first proved by von Neumann [83]. For the condition when the equality

holds, see [66].

Lemma 2.14. Any matrices X and Y in ℜn1×n2 satisfy trXTY ≤ σ(X)Tσ(Y ),

where X and Y have the singular value decomposition as in (2.48). The equality

holds if and only if X and Y have a simultaneous ordered singular value decompo-

sition.

Define Z∗ ∈ ℜn1×n2 by

Z∗ :=
r∑

i=1

(
σi(Y )− ρ

)
+
UiV

T
i . (2.52)

By noting that von Neumann’s trace inequality implies

∥Z − Y ∥ ≥ ∥σ(Z)− σ(Y )∥, ∀Z ∈ ℜn1×n2 , (2.53)
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we obtain that for any Z ∈ ℜn1×n2
r ,

1

2
∥Z − Y ∥2 + ρ∥Z∥∗

≥ 1

2
∥σ(Z)− σ(Y )∥2 + ρ∥Z∥∗

=
1

2

r∑
i=1

(
σi(Z)− σi(Y )

)2
+

1

2

n1∑
i=r+1

σ2
i (Y ) + ρ

r∑
i=1

σi(Z)

=
1

2

r∑
i=1

(
σi(Z)− (σi(Y )− ρ)

)2
+

1

2

n1∑
i=1

σ2
i (Y )− 1

2

r∑
i=1

(
σi(Y )− ρ

)2
≥ 1

2

r∑
i=1

(
(σi(Y )− ρ)+ − (σi(Y )− ρ)

)2
+

1

2

n1∑
i=1

σ2
i (Y )− 1

2

r∑
i=1

(
σi(Y )− ρ

)2
= −1

2

r∑
i=1

(
σi(Y )− ρ

)2
+
+

1

2

n1∑
i=1

σ2
i (Y )

=
1

2
∥Z∗ − Y ∥2 + ρ∥Z∗∥∗ ,

(2.54)

which, together with the fact that Z∗ ∈ ℜn1×n2
r , implies that Z∗ ∈ Pρ,r(Y ) and

Ψρ,r(Y ) = −1

2

r∑
i=1

(
σi(Y )− ρ

)2
+
+

1

2

n1∑
i=1

σ2
i (Y ) . (2.55)

Lemma 2.15. Let Y ∈ ℜn1×n2 have the singular value decomposition as in (2.48).

Define the index sets by ᾱ := {i | σi(Y ) > σr(Y ) }, β̄ := {i | σi(Y ) = σr(Y ) }, and

γ̄ := {i | σi(Y ) < σr(Y ) }. Then the solution set Pρ,r(Y ) to problem (2.51) can be

characterized as follows

Pρ,r(Y ) =
{
[Uᾱ Uβ̄Qβ̄ Uγ̄ ][ diag(v) 0 ][V1ᾱ V1β̄Qβ̄ V1γ̄ V2 ]

T | Qβ̄ ∈ O|β̄|}, (2.56)

where v =
(
(σ1(Y )− ρ)+, · · · , (σr(Y )− ρ)+, 0, · · · , 0

)T ∈ ℜn1.

Proof. By (2.55), we have that for any Z ∈ Pρ,r(Y ),

1

2
∥Z − Y ∥2 + ρ∥Z∥∗ = −1

2

r∑
i=1

(
σi(Y )− ρ

)2
+
+

1

2

n1∑
i=1

σ2
i (Y ) ,

which implies that the inequalities in (2.54) are both equalities if Z is replaced

by Z. Therefore, from the first inequality in (2.54), we can see that there exist
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U ∈ On1 and V ∈ On2 such that Y and Z admit the singular value decompositions

as in (2.48) with the same orthogonal matrices U and V , i.e.,

Y = U [Σ(Y ) 0]V
T

and Z = U [Σ(Z) 0]V
T
. (2.57)

Moreover, by the second inequality in (2.54), together with the fact that σ(Y ) is

arranged in the non-increasing order, we obtain that

σ(Z) = v :=
(
(σ1(Y )− ρ)+, · · · , (σr(Y )− ρ)+, 0, · · · , 0

)T
. (2.58)

Then from Proposition 2.13 and Y = U [Σ(Y ) 0]V T , we know that

Z = U [Σ(Z) 0]V
T
= (UW1)[diag(v) 0](VW2)

T ,

with W1 ∈ On1 and W2 ∈ On2 taking the form

W1 =

 Q 0

0 Q′

 and W2 =

 Q 0

0 Q′′

 , (2.59)

where τ := {i |σi(Y ) > 0}, Q′ ∈ On1−|τ |, Q′′ ∈ On2−|τ | and Q ∈ O|τ | is a block

diagonal matrix taking the same form as in (2.50). Notice that the two matrices∑
i∈ᾱ

viUiV
T
i and

∑
i∈γ̄

viUiV
T
i are independent of the choices of W1 ∈ On1 and W2 ∈

On2 satisfying (2.59), then the conclusion (2.51) holds.

Since Ψρ,r(Y ) takes the same value as in (2.14) for any element in Pρ,r(Y ), for

notational convenience, with no ambiguity, we use 1
2
∥Pρ,r(Y ) − Y ∥2 + ρ∥Y ∥∗ to

represent Ψρ,r(Y ). Define Ξρ,r : ℜn1×n2 → ℜ by

Ξρ,r(Z) = −1

2
∥Pρ,r(Z)− Z∥2 − ρ∥Z∥∗ +

1

2
∥Z∥2 , Z ∈ ℜn1×n2 . (2.60)

Then we have

Ξρ,r(Y ) =
1

2

r∑
i=1

(
σi(Y )− ρ

)2
+
=

1

2
∥Pρ,r(Y )∥2 ,
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where ∥Pρ,r(Y )∥ is interpreted as ∥Z∥ for any Z ∈ Pρ,r(Y ), e.g., the matrix Z∗

defined by (2.52). By noting that for any Z ∈ ℜn1×n2 , Ξρ,r(Z) can be reformulated

as

Ξρ,r(Z) = max
X∈ℜn1×n2

r

{1

2
∥Z∥2 − 1

2
∥X − Z∥2 − ρ∥X∥∗

}
= max

X∈ℜn1×n2
r

{
⟨X,Z⟩ − 1

2
∥X∥2 − ρ∥X∥∗

}
, (2.61)

we know that Ξρ,r(·) is a convex function as it is the maximum of infinitely many

affine functions.

Proposition 2.16. Let Y ∈ ℜn1×n2 have the spectral decomposition as in (2.48).

Then

∂Ξρ,r(Y ) = convPρ,r(Y ) . (2.62)

Proof. For any z ∈ ℜn1 , define

ξρ,r(z) = max
x∈Fr

{1

2
∥z∥2 − 1

2
∥x− z∥2 − ρ∥x∥1

}
= max

x∈Fr

{
⟨x, z⟩ − 1

2
∥x∥2 − ρ∥x∥1

}
,

(2.63)

where Fr := {x ∈ ℜn1 | ∥x∥0 ≤ r}. Then ξρ,r(·) is a convex function and its

sub-differential is well defined. Let y = σ(Y ). Thus

ξρ,r(y) = max
x∈Fr

{1

2
∥y∥2−1

2
∥x−y∥2−ρ∥x∥1

}
=

1

2
∥σ(Y )∥2−min

x∈Fr

{1
2
∥x−y∥2+ρ∥x∥1

}
.

(2.64)

Denote the solution set of (2.64) by F∗
r . Thus, from the non-increasing order of

σ(Y ), one can easily show that

ξρ,r(y) =
1

2

r∑
i=1

(yi − ρ)2+ and F∗
r = V , (2.65)

where

V :=
{
v ∈ ℜn1 | vi =

(
σi(Y )− ρ

)
+
for i ∈ ᾱ ∪ β̄1, vi = 0 for i ∈ (β̄ \ β̄1) ∪ γ̄ ,

where β̄1 ⊆ β̄ and |β̄1| = r − |ᾱ|
}
.

(2.66)
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From convex analysis [105], we can easily derive that

∂ξρ,r(y) = convV

and that ξρ,r(·) is differentiable at y if and only if σr(Y ) > σr+1(Y ) > 0 or

σr+1(Y ) = 0. In the latter case,

∂ξρ,r(y) = {∇ξρ,r(y)} = {v},

where v is defined in (2.58), i.e., v =
(
(σ1(Y )− ρ)+, . . . , (σr(Y )− ρ)+, 0, . . . , 0

)T ∈

ℜn1 .

Since the convex function ξρ,r(·) is absolutely symmetric, i.e., ξρ,r(z) = ξρ,r(Sz)

for any z ∈ ℜn and any generalized permutation matrix S which has exactly one

nonzero entry in each row and column, that entry being ±1. From [63, Theorem

3.1 & Corollary 2.5], we know that Ξρ,r(·) is differentiable at Y ∈ ℜn1×n2 if and

only if ξρ,r(·) is differentiable at σ(Y ) and

∂Ξρ,r(Y ) =
{
U [diag(v) 0]V T | v ∈ ∂ξρ,r(σ(Y )) , (U, V ) ∈ On1,n2(Y )

}
.

Thus Ξρ,r(·) is differentiable at Y if and only if σr(Y ) > σr+1(Y ) > 0 or σr+1(Y ) =

0. In the latter case,

∂Ξρ,r(Y ) = {Ξ′
ρ,r(Y ) } = {U [diag(v) 0]V T }.

Let the B-subdifferential of Ξρ,r(·) at Y be defined by

∂BΞρ,r(Y ) =
{

lim
Y k→Y

Ξ′
ρ,r(Y

k) , Ξρ,r(·) is differentiable at Y k
}
.

Then we can easily check that

∂BΞρ,r(Y ) = Pρ,r(Y ) , (2.67)

where we used the fact that the two matrices
∑
i∈ᾱ

σi(Y )UiV
T
i and

∑
i∈γ̄

σi(Y )UiV
T
i

are independent of the choices of (U, V ) ∈ On1,n2(Y ) satisfying (2.48). Thus, by
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Theorem 2.5.1 in [18], one has

∂Ξρ,r(Y ) = conv ∂BΞρ,r(Y ) = convPρ,r(Y ) .

The proof is completed.

Remark 2.17. Proposition 2.16 implies that when σr(Y ) > σr+1(Y ) > 0 or

σr+1(Y ) = 0, Ξρ,r(·) is continuously differentiable near Y and Ξ′
ρ,r(Y ) = Pρ,r(Y ) =

{Z∗}, where Z∗ is defined in (2.52).

Remark 2.18. Since, for given matrices W1 ∈ ℜn1×n2 and W2 ∈ ℜn1×n2, the

following weighted problem

min
1

2
∥W1(Z − Y )W2∥2 + ρ∥W1ZW2∥∗

s.t. Z ∈ ℜn1×n2
r ,

(2.68)

admits the solution set as W1
−1Pρ,r(W1YW2)W2

−1, there is no difficulty to work

out the corresponding results presented in Lemma 2.15 and Proposition 2.16 for

this more general case.

Remark 2.19. When r = n1, Pρ,r(·) reduces to soft thresholding operator Pρ(·)

[12]; when ρ = 0, the generalized metric projection Pρ,r(·) reduces to the metric

projection Πℜn1×n2
r

(·).

The equations (2.21) , (2.41) and (2.62) are particularly useful in developing a

technique for global optimality checking in Chapter 4.

2.5 The smoothing functions

In this section, we shall introduce the smoothing functions for the real-valued

nonsmooth function t+ := max(0, t), which is not differentiable at t = 0.



2.6 The Slater condition 30

Let ϕH : ℜ× ℜ → ℜ be defined by the following Huber function for t+

ϕH(ε, t) =


t if t ≥ |ε|

2
,

1

2|ε|
(t+

|ε|
2
)2 if − |ε|

2
< t <

|ε|
2
, (ε, t) ∈ ℜ × ℜ .

0 if t ≤ −|ε|
2
,

(2.69)

and the Smale smoothing function ϕS : ℜ× ℜ → ℜ

ϕS(ε, t) = [ t+
√
ε2 + t2 ]/2 , (ε, t) ∈ ℜ × ℜ . (2.70)

Discussions on the properties of the smoothing functions can be found in [93, 124].

It has been known that both ϕH and ϕS are globally Lipschitz continuous, contin-

uously differentiable around (ε, t) whenever ε ̸= 0, and are strongly semismooth at

(0, t) (see [124] and references therein for details). Since ϕH and ϕS share similar

differential properties, in the following, unless we specify we will use ϕ to denote

the smoothing function either ϕH or ϕS.

2.6 The Slater condition

We consider the following problem

min f(x)

s.t. Ax = b ,

x ∈ K ,

(2.71)

where A : X → ℜm is a linear mapping, b ∈ ℜm and K is a closed convex cone

with nonempty interior. We always assume that b ∈ AX . The Slater condition for

problem (2.71) is as follows

A is onto and there exists x0 ∈ int(K) such that Ax0 = b . (2.72)
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Proposition 2.20. If the Slater condition (2.72) holds for problem (2.71), then

⟨b, y⟩ < 0 for any 0 ̸= y ∈ ℜm satisfying A∗y ∈ −K∗ . (2.73)

Conversely, if the condition (2.73) holds, then there exists x ∈ int(K) such that

Ax = b.

Proof. Suppose that the Slater condition (2.72) holds. Then there exists x̄ ∈ int(K)

such that Ax̄ = b. Let 0 ̸= ȳ ∈ ℜm such that A∗ȳ ∈ −K∗. Thus, A∗ȳ ̸= 0 from the

fact that A is onto. Furthermore, x̄ ∈ int(K) implies that there exists δ > 0 such

that x̄+ δA∗ȳ ∈ K . It then follows that

⟨x̄, A∗ȳ⟩ = ⟨x̄+ δA∗ȳ, A∗ȳ⟩ − δ⟨A∗ȳ, A∗ȳ⟩ ≤ −δ⟨A∗ȳ, A∗ȳ⟩ < 0 .

Therefore, ⟨b, ȳ⟩ = ⟨Ax̄ , ȳ ⟩ = ⟨ x̄, A∗ȳ ⟩ < 0, which proves the first part of this

proposition.

Next we prove the remaining part by contradiction. Define S := {x ∈ X |Ax = b }.

Suppose that there does not exist x ∈ int(K) such that Ax = b, i.e.,

{x ∈ X | x ∈ int(K) } ∩ S = ∅ .

Then, from Separation Theorem [105], there exists 0 ̸= p ∈ X such that

⟨p , y⟩ ≤ ⟨p , x⟩ , ∀ y ∈ int(K) and x ∈ S . (2.74)

As K is a closed convex cone, for any κ > 0

κ⟨p , y⟩ ≤ ⟨p , x⟩ , ∀ y ∈ int(K) and x ∈ S .

It follows that

⟨p , y⟩ ≤ lim
κ→+∞

⟨p , x⟩
κ

= 0 , ∀ y ∈ int(K) .

Thus, ⟨p , y⟩ ≤ 0 for all y ∈ K. That is, p ∈ −K∗. Similarly, we can show that

⟨p , x⟩ ≥ 0 , ∀ x ∈ S. (2.75)
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Let x̄ ∈ S, i.e., Ax̄ = b. Then S = x̄ + KerA, where KerA = {x ∈ X |Ax = 0 }

is the kernel of A. Note that KerA is a subspace, together with (2.75), one can

easily show that

⟨p , x0⟩ = 0, ∀x0 ∈ KerA and ⟨p , x̄⟩ ≥ 0 .

Therefore, 0 ̸= p ∈ ImA∗. That is, there exists 0 ̸= ȳ ∈ ℜm such that p = A∗ȳ ∈

−K∗. It then follows that

⟨p , x̄⟩ = ⟨A∗ȳ, x̄⟩ = ⟨ȳ, Ax̄⟩ = ⟨ȳ, b⟩ ≥ 0 ,

which is contradictory to the condition (2.73). Thus we complete the proof.

Remark 2.21. Consider the following problem

min f(x)

s.t. Apx = bp ,

Aqx ∈ bq +Q ,

x ∈ K ,

(2.76)

where bp ∈ ℜp, bq ∈ ℜq and Q, K are two closed convex cones with nonempty

interior. By adding a variable, we can rewrite it as

min f̂(xs)

s.t. Axs =

 Apx

Aqx− s

 =

 bp

bq

 = b ,

xs ∈ K̂,

(2.77)

where

f̂(xs) = f(x) , xs =

 x

s

 and K̂ =

 K

Q

 .

Again, we assume that b ∈ ImA. Then Proposition 2.20 can be directly applied to

problem (2.77).
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2.7 P0(P )-matrix and quasi P0(P )-matrix

A matrix M ∈ ℜn×n is a called a P0-matrix (P -matrix) if all of its principal

minors are nonnegative (positive). Here, we will introduce some generalizations

of P0-matrix and P -matrix in order to exploit the properties of the generalized

Jacobians.

Definition 2. A matrix M ∈ ℜn×n is called a quasi P0-matrix (P -matrix) if there

exists an orthogonal matrix U ∈ ℜn×n such that UMUT is a P0-matrix (P -matrix).

It is obvious that any P0-matrix (P -matrix) is a quasi P0-matrix (P -matrix). Any

quasi P -matrix is a quasi P0-matrix and any quasi P -matrix is nonsingular. If A

is a quasi P0-matrix, then for any ε > 0, B := A+ εI is a quasi P -matrix, where I

is the identity matrix. We will see later that the concepts of quasi P0-matrix and

quasi P -matrix are useful in the analysis of nonsingularity of generalized Jacobians.

Next we shall introduce the concept of a block quasi P0-function. Suppose that

the set K is the Cartesian product of m (with m ≥ 1) lower dimensional sets:

K :=
m∏
j=1

Kj,

with each Kj being a nonempty closed convex subset of ℜnj and
∑m

j=1 nj = n. Cor-

respondingly, we partition both the variable x and the function F in the following

way:

x =


x1

x2

...

xm

 and F (x) =


F 1(x)

F 2(x)
...

Fm(x)

 ,

where for every j, both xj and F j(x) belong to ℜnj . Let L(K) denote all the sets

in ℜn which have the same partitioned structure as K, i.e., D ∈ L(K) if and only
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if D can be expressed as

D =
m∏
j=1

Dj,

where Dj ∈ ℜnj for j = 1, . . . ,m.

Definition 3. F is called a block quasi P0-function on D ∈ L(K) if for every pair

x, y ∈ D with x ̸= y, there exist a block diagonal orthogonal matrix Q ∈ Om which

takes the following form

Q :=


Q1 0 . . . 0

0 Q2 . . . 0
...

...
. . .

...

0 0 . . . Qm

 ,

where for j = 1, . . . ,m, Qj ∈ Onj , such that

max
1≤i≤m
x̂i ̸=ŷi

⟨x̂i − ŷi, F̂ i
x − F̂ i

y⟩ ≥ 0 ,

where x̂ := Qx, ŷ := Qy, F̂x := QF (x) and F̂y := QF (y).

Definition 4. Let X be a finite dimensional space. We shall say that f : X → ℜn

is weakly univalent if it is continuous and there exists a sequence of univalent (i.e.,

one-to-one and continuous) functions fk from X to ℜn such that fk converges to

f uniformly on bounded subsets of X .

Note that univalent functions, affine functions, monotone, and more generally P0-

functions on ℜn are all weakly univalent.



Chapter 3
A Framework of Proximal Subgradient

Method

Let X be a a finite-dimensional real Hilbert space equipped with an inner product

⟨·, ·⟩ and its induced norm ∥ · ∥. Let h : X → ℜ be a smooth function (i.e.,

continuously differentiable), and g : X → ℜ ∪ {±∞} and p : X → ℜ ∪ {±∞} be

two convex functions. A type of nonconvex nonsmooth optimization problem we

will consider in this chapter takes the following form:

min
x∈X

f(x) := h(x) + g(x)− p(x) . (3.1)

In next chapter, one will clearly see how this kind of problems arises from the low

rank matrix optimization problems we are dealing with in this thesis.

Remark 3.1. Suppose that Ω ⊆ X is a closed convex set. The constraint x ∈ Ω

in problem (3.1) can be absorbed into the convex function g(·) via an indicator

function IΩ(x) : X → [−∞,+∞]

IΩ(x) :=

 0 , if x ∈ Ω ,

+∞ , otherwise .

35
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Now we introduce a proximal subgradient method for solving problem (3.1).

Algorithm 3.2. (A proximal subgradient method)

Step 0. Choose x0 ∈ X . Set k := 0.

Step 1. Choose Mk ≻ 0 and W k ∈ ∂Bp(x
k).

Step 2. Solve

min f̂k(d) := ⟨∇h(xk) , d⟩+ 1
2
⟨d,Mkd⟩+ g(xk + d)− g(xk)− ⟨W k, d⟩

s.t. xk + d ∈ X
(3.2)

to get dk.

Step 3. Armijo Line Search.

Choose αk
init > 0. Let lk be the smallest nonnegative integer l satisfying

f(xk + αk
initρ

ldk) ≤ f(xk) + σαk
initρ

l∆k , (3.3)

where 0 < ρ < 1, 0 < σ < 1, and

∆k := ⟨∇h(xk) , dk⟩+ g(xk + dk)− g(xk)− ⟨W k, dk⟩ . (3.4)

Set αk := αk
initρ

lk and xk+1 := xk + αkdk.

Step 4. If xk+1 = xk, stop; otherwise, set k := k + 1 and go to Step 1.

Remark 3.3. When p ≡ 0, the proximal subgradient method reduces to the prox-

imal gradient method which was studied in [40, 77], see also [116] and reference

therein. Recently, there are intensive studies in accelerated proximal gradient meth-

ods for large-scale convex-concave optimization by Nesterov [82], Nemirovski [81]

and others. How to extend these accelerated versions to problem (3.1), however, is

still unknown and we leave it to further study.
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Note that various line search rules for smooth optimization can be adapted to our

nonsmooth setting to choose αk. In Algorithm 3.2, we adapt the Armijo rule,

which is simple and effective. We will show the well-definedness of the Armijo rule

in the following two lemmas.

Lemma 3.4. Let {xk} and {dk} be two sequences generated by Algorithm 3.2.

Then for any α ∈ (0, 1] and k ≥ 0, we have

f(xk+αdk) ≤ f(xk)+α
(
⟨∇h(xk) , dk⟩+g(xk+dk)−g(xk)−⟨W k, dk⟩

)
+o(α) (3.5)

and

⟨∇h(xk) , dk⟩+ g(xk + dk)− g(xk)− ⟨W k, dk⟩ ≤ −⟨dk,Mkdk⟩ . (3.6)

Proof. For any α ∈ (0, 1], from the convexity of g and p, we obtain

f(xk + αdk)− f(xk)

= h(xk + αdk) + g(xk + αdk)− p(xk + αdk)−
(
h(xk) + g(xk)− p(xk)

)
≤ h(xk + αdk)− h(xk) + αg(xk + dk) + (1− α)g(xk)− g(xk)

−
(
p(xk) + α⟨W k, dk⟩ − p(xk)

)
= α

(
⟨∇h(xk) , dk⟩+ g(xk + dk)− g(xk)− ⟨W k, dk⟩

)
+ o(α) ,

which proves (3.5). Moreover, by using the convexity of g and the fact that dk ∈

arg min
(xk+d)∈X

f̂k(d), we know that for any α ∈ (0, 1)

⟨∇h(xk) , dk⟩+ 1
2
⟨dk,Mkdk⟩+ g(xk + dk)− g(xk)− ⟨W k, dk⟩

≤ ⟨∇h(xk) , αdk⟩+ 1
2
⟨αdk,Mk(αdk)⟩+ g(xk + αdk)− g(xk)− ⟨W k, αdk⟩

≤ α⟨∇h(xk) , dk⟩+ α2

2
⟨dk,Mkdk⟩+ αg(xk + dk) + (1− α)g(xk)− g(xk)− α⟨W k, dk⟩

= α⟨∇h(xk) , dk⟩+ α2

2
⟨dk,Mkdk⟩+ α(g(xk + dk)− g(xk))− α⟨W k, dk⟩ .

Rearranging the terms yields

⟨∇h(xk) , dk⟩+ g(xk + dk)− g(xk)− ⟨W k, dk⟩ ≤ −1 + α

2
⟨dk,Mkdk⟩ ,

then taking α ↑ 1 proves (3.6).



38

Lemma 3.5. Let {xk} and {dk} be two sequences generated by Algorithm 3.2.

Assume that for all k ≥ 0, 0 < ν∥d∥2 ≤ ⟨d,Mkd⟩ for any d ∈ X . If h satisfies

∥∇h(y)−∇h(z)∥ ≤ L∥y − z∥, ∀ y, z ∈ X , (3.7)

for some L ≥ 0, then, for each integer k ≥ 0, the descent condition

f(xk + αdk) ≤ f(xk) + σα∆k (3.8)

is satisfied for any σ ∈ (0, 1) whenever 0 ≤ α ≤ min{1, 2ν(1− σ)/L}.

Proof. Without any ambiguity, we drop the superscript k for simplicity. For any

α ∈ (0, 1], we obtain

f(x+ αd)− f(x)

= h(x+ αd)− h(x) + g(x+ αd)− g(x)−
(
p(x+ αd)− p(x)

)
= α⟨∇h(x), d⟩+ g(x+ αd)− g(x)−

(
p(x+ αd)− p(x)

)
+
∫ 1

0
⟨∇h(x+ tαd)−∇h(x), αd⟩dt

≤ α
(
⟨∇h(x), d⟩+ g(x+ d)− g(x)− ⟨W,d⟩

)
+ α

∫ 1

0
∥∇h(x+ tαd)−∇h(x)∥ · ∥d∥dt

≤ α
(
⟨∇h(x), d⟩+ g(x+ d)− g(x)− ⟨W,d⟩

)
+ L

2
α2∥d∥2 ,

where W ∈ ∂p(x). If α ≤ 2ν(1− σ)/L, then

L

2
α∥d∥2 ≤ (1− σ)⟨d,Md⟩ ≤ −(1− σ)

(
⟨∇h(x), d⟩+ g(x+ d)− g(x)− ⟨W,d⟩

)
.

Therefore, when 0 ≤ α ≤ min{1, 2ν(1 − σ)/L}, the inequality (3.8) holds for any

σ ∈ (0, 1).

Definition 5. A point x ∈ X is said to be a stationary point of problem (3.1) if

∂(h(x) + g(x)) ∩ (∂p(x)) = (∇h(x) + ∂g(x)) ∩ (∂p(x)) ̸= ∅ (3.9)

and a B-stationary point of problem (3.1) if

∂(h(x) + g(x)) ∩ (∂Bp(x)) = (∇h(x) + ∂g(x)) ∩ (∂Bp(x)) ̸= ∅ . (3.10)
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Assumption 3.6. For all k ≥ 0, ν∥d∥2 ≤ ⟨d,Mkd⟩ ≤ ν̄∥d∥2 for any d ∈ X , where

0 < ν ≤ ν̄ < +∞.

Theorem 3.7. Let {xk} and {dk} be two sequences generated by Algorithm 3.2

under Assumption 3.6. Then {f(xk)} is a monotonically decreasing sequence. If

xk+1 = xk for some integer k ≥ 0, then xk is a B-stationary point of problem (3.1).

Otherwise, suppose that inf αk
init > 0, the following results hold:

(a). For each integer k ≥ 0, ∆k satisfies

∆k ≤ −⟨dk,Mkdk⟩ ≤ −ν∥dk∥2 ,

f(xk+1)− f(xk) ≤ σαk∆k ≤ 0 .

(b). If {xkj} is a converging subsequence of {xk}, then lim
j→+∞

dkj = 0.

(c). Any accumulation point of {xk} is a B-stationary point of problem (3.1).

Proof. The monotone decreasing property of {f(xk)} follows easily from the line

search condition (3.3) in Algorithm 1.

We first consider the case that xk+1 = xk for some integer k ≥ 0. It is clear that

dk = 0 is the optimal solution to problem (3.2). Then one has

0 ∈ ∇h(xk) + ∂g(xk)−W k ,

which implies that xk is a B-stationary point of problem (3.1) from the definition

(3.10).

Next we assume that xk+1 ̸= xk for all k ≥ 0. Then an infinite sequence {xk}

is generated. Suppose that {xkj} is a converging subsequence of {xk}. Let x̄ :=

lim
j→+∞

xkj . Since h is continuous and g, p are continuous in the relative interiors

of dom(g) and dom(p), lim
j→+∞

f(xkj) = f(x̄). Note that {f(xk)} is a decreasing

sequence, this implies that lim
k→+∞

f(xk) = f(x̄). Hence

lim
k→+∞

αk∆k = 0 (3.11)
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follows directly from the fact that f(xk)− f(xk+1) → 0 as k → +∞.

Now we prove lim
j→+∞

dkj = 0. By contradiction, suppose that dkj 9 0 when j →

+∞. By passing to a subsequence if necessary, we can assume that, for some δ > 0,

∥dkj∥ ≥ δ for all j ≥ 0. Thus, ∆k ≤ −ν∥dk∥2 ≤ −νδ. By noting (3.11), one has

lim
j→+∞

αkj = 0. Recall that αkj = α
kj
initρ

lkj and inf αk
init > 0. Then there exists some

index k̄ > 0 such that αkj < α
kj
init and α

kj ≤ ρ for all kj > k̄. Furthermore, αk is

chosen by the Armijo rule , it implies that

f
(
xkj + (αkj/ρ)dkj

)
− f(xkj) > σ(αkj/ρ)∆kj ,∀ kj ≥ k̄ .

Thus,

σ∆kj = σ
(
⟨∇h(xkj), dkj⟩+ g(xkj + dkj)− g(xkj)− ⟨W kj , dkj⟩

)
<

h(xkj+(αkj /ρ)dkj )−h(xkj )+g(xkj+(αkj /ρ)dkj )−g(xkj )−
(
p(xkj+(αkj /ρ)dkj )−p(xkj )

)
αkj /ρ

≤ h(xkj+(αkj /ρ)dkj )−h(xkj )

αkj /ρ
+ g(xkj + dkj)− g(xkj)− ⟨W kj , dkj⟩

It follows that

h(xkj + (αkj/ρ)dkj)− h(xkj)

αkj/ρ
− ⟨∇h(xkj), dkj⟩ ≥ −(1− δ)∆kj ≥ (1− δ)ν∥dk∥2 ,

and
h
(
xkj + α̂kj dkj

∥dkj ∥

)
− h(xkj)

α̂kj
− ⟨∇h(xkj), dkj

∥dkj∥
⟩ ≥ (1− δ)νδ ,

where α̂kj := αkj ∥dkj ∥
ρ

. Then −αkj∆k ≥ ναkj∥dkj∥2 ≥ δναkj∥dkj∥ ≥ 0, thus

αkj∥dkj∥ → 0 as j → +∞, which implies that α̂kj → 0.

Note that there exists d̄, by further passing to a subsequence if necessary, such

that lim
j→+∞

dkj

∥dkj ∥
= d̄. It then follows that

0 = ⟨∇h(x̄), d̄⟩ − ⟨∇h(x̄), d̄⟩ ≥ (1− δ)νδ > 0 ,

and thus this contradiction shows that dkj → 0 as j → +∞.
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To complete the proof, we still need to show that x̄ is a B-stationary point of

problem (3.1). Noting that dkj = argmin
d∈X

f̂kj(d), there exists V kj ∈ ∂g(xkj + dkj)

such that

∇h(xkj) +Mkjdkj + V kj −W kj = 0 .

Since both {xkj} and {xkj + dkj} are bounded, from convex analysis [105, Chap

24, Theorem 24.7], we know that {V kj} and {W kj} are also bounded. By taking

subsequences respectively, if necessary, we assume that there exist V ∈ ∂g(x̄) and

W ∈ ∂Bp(x̄) such that limj→+∞ V kj = V and limj→+∞W kj = W , respectively.

Hence,

∇h(x̄) + V −W = 0 ,

which implies that x̄ is a B-stationary point of problem (3.1), i.e.,

(∇h(x̄) + ∂g(x̄)) ∩ ∂Bp(x̄) ̸= ∅ .

By considering some special choices of Mk in Algorithm 3.2, we have the following

lemma concerning the stepsize satisfying the Armijo descent condition (3.3).

Lemma 3.8. Let {xk} and {dk} be two sequences generated by Algorithm 3.2. If

for each integer k ≥ 0, one can choose Mk ≻ 0 such that

h(y) ≤ h(xk) + ⟨∇h(xk), y − xk⟩+ 1

2

⟨
y − xk, Mk(y − xk)

⟩
, ∀ y ∈ X , (3.12)

then the descent condition

f(xk + αdk) ≤ f(xk) + σα∆k (3.13)

is satisfied for any σ ∈ (0, 1) whenever 0 ≤ α ≤ min{1, 2(1− σ)}.
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Proof. Without any ambiguity, we drop the superscript k for simplicity. For any

α ∈ (0, 1], we obtain

f(x+ αd)− f(x)

= h(x+ αd)− h(x) + g(x+ αd)− g(x)−
(
p(x+ αd)− p(x)

)
≤ α⟨∇h(x), d⟩+ α2

2
⟨d,Md⟩+ g(x+ αd)− g(x)−

(
p(x+ αd)− p(x)

)
≤ α

(
⟨∇h(x), d⟩+ g(x+ d)− g(x)− ⟨W,d⟩

)
+ α2

2
⟨d,Md⟩ ,

where W ∈ ∂p(x). If α ≤ 2(1− σ), then

α

2
⟨d,Md⟩ ≤ (1− σ)⟨d,Md⟩ ≤ −(1− σ)

(
⟨∇h(x), d⟩+ g(x+ d)− g(x)− ⟨W,d⟩

)
.

Therefore, when 0 ≤ α ≤ min{1, 2(1 − σ)}, the inequality (3.13) holds for any

σ ∈ (0, 1).

One important implication of Lemma 3.8 is that if 0 < σ ≤ 1
2
, then for any k ≥ 0,

we can take αk ≡ 1, i.e., the unit stepsize is attainable. Using this observation, we

have the following proximal subgradient algorithm with no line search.
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Algorithm 3.9. (A proximal subgradient method with no line search)

Step 0. Choose x0 ∈ X . Set k := 0.

Step 1. Choose Mk ≻ 0 such that for any x ∈ X

h(x) ≤ ĥk(x) := h(xk)+ ⟨∇h(xk), x− xk⟩+ 1

2

⟨
x− xk, Mk(x− xk)

⟩
. (3.14)

Choose W k ∈ ∂Bp(x
k) and define p̂k(x) : X → ℜ by

p̂k(x) := p(xk) + ⟨W k, x− xk⟩ . (3.15)

Step 2. Solve

min
x∈X

f̂k(x) := ĥk(x) + g(x)− p̂k(x)

to get xk+1.

Step 3. If xk+1 = xk, stop; otherwise, set k := k + 1 and go to Step 1.

From Theorem 3.7 and Lemma 3.8, we can easily derive the following corollary.

Corollary 3.10. Let {xk} be the sequences generated by Algorithm 3.9. Then

{f(xk)} is a monotonically decreasing sequence. If xk+1 = xk for some integer

k ≥ 0, then xk is a B-stationary point of problem (3.1). Otherwise, the infinite

sequence {f(xk)} satisfies

1

2

⟨
xk+1 − xk, Mk(xk+1 − xk)

⟩
≤ f(xk)− f(xk+1) , k = 0, 1, . . .

Moreover, any accumulation point of {xk} is a B-stationary point of problem (3.1)

provided that Assumption 3.6 holds.

Remark 3.11. If ∇h satisfies the condition (3.7), i.e., ∇h is Lipschitz continuous

with the Lipschitz constant L, we can simply choose Mk ≻ 0 for all k ≥ 0 such

that ⟨d,Mkd⟩ ≤ L∥d∥2 for any d ∈ X .
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Remark 3.12. Let Ω ⊂ X be a closed (bounded) set, which is not necessarily

convex. For a given continuous function f : X → ℜ, the principle of a majorization

method for minimizing f(x) over Ω is to start with an initial point x0 ∈ Ω and for

each k ≥ 0, to minimize f̂k(x) over Ω to get xk+1, where f̂k(·) is a majorization

function of f at xk, i.e., f̂k(·) satisfies

f̂k(xk) = f(xk) and f̂k(x) ≥ f(x), ∀x ∈ Ω .

The monotone decreasing property of the generated sequence {f(xk)} comes from

the so-called sandwich inequality [25] for the majorization method, i.e.,

f(xk+1) ≤ f̂k(xk+1) ≤ f̂k(xk) = f(xk), k = 0, 1, . . . . (3.16)

The efficiency of the above majorization method hinges on two key issues: i) the

majorization functions should be simpler than the original function f so that the

resulting minimization problems are easier to solve, and ii) they should not deviate

too much from f in order to get fast convergence. These two often conflicting

issues need to be addressed on a case by case basis to achieve best possible overall

performance.

The idea of using a majorization function in optimization appeared as early as in

Ortega and Rheinboldt [84, Section 8.3] for the purpose of doing line searches to

decide a step length along a descent direction. This technique was quickly replaced

by more effective inexact line search models such as the back tracking. The very first

majorization method was introduced by de Leeuw[23, 24] and de Leeuw and Heiser

[28] to solve multidimensional scaling problems. Since then much progress has

been made on using majorization methods to solve various optimization problems

[26, 27, 49, 50, 57, 58], to name only a few.

In Algorithm 3.9, one may notice that ĥk(·) and p̂k(·) defined in (3.14) and (3.15)

are actually a special kind of the majorization functions of h(·) and p(·) at xk,

respectively. In this sense, the proximal subgradient method with no line search can
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be treated as a majorization method, thus, it can also handle the nonconvex con-

straints like the majorization method. However, the proximal subgradient method

is designed for the cases where Ω is convex and the majorization functions are not

easy to compute.



Chapter 4
A Penalty Approach

Let C ∈ ℜn1×n2 be a given matrix and H ∈ ℜn1×n2 a given weight matrix whose

entries are nonnegative. Let Q̂ ∈ ℜq be a closed convex cone with nonempty interior

and define Q := {0}p × Q̂. Denote Q∗ as the dual cone of Q under the natural

inner product of ℜp × ℜq . Let m := p + q and ρ ≥ 0 be a given number. Then

we consider the following structured low rank matrix, not necessarily symmetric,

approximation problem

min
1

2
∥H ◦ (X − C)∥2 + ρ∥X∥∗

s.t. AX ∈ b+Q ,

rank(X) ≤ r ,

X ∈ ℜn1×n2 ,

(4.1)

where “◦” denotes the Hadamard product, i.e., (A ◦ B)ij = AijBij for all i, j,

A : ℜn1×n2 → ℜm is a linear operator and r ∈ {1, . . . , n1} is a given integer.

4.1 A penalty approach for the rank constraint

In this subsection, we shall introduce a penalty technique to deal with the non-

convex rank constraint in (4.1). Given the fact that for anyX ∈ ℜn1×n2 , rank(X) ≤

46
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r if and only if σr+1(X) + . . . + σn1(X) = 0, we can equivalently rewrite (4.1) as

follows

θ̄ := min θ(X) = h(X) + ρ∥X∥∗
s.t. AX ∈ b+Q ,

σr+1(X) + . . .+ σn1(X) = 0 ,

X ∈ ℜn1×n2 ,

(4.2)

where h(X) :=
1

2
∥H ◦(X−C)∥2. Now we consider the following penalized problem

by taking a trade-off between the rank constraint and the weighted least squares

distance:

min θ(X) + c(σr+1(X) + . . .+ σn1(X))

s.t. AX ∈ b+Q ,

X ∈ ℜn1×n2 ,

(4.3)

where c > 0 is a given penalty parameter that decides the allocated weight to the

rank constraint in the objective function. By noting that for any X ∈ ℜn1×n2 ,

n1∑
i=r+1

σi(X) =

n1∑
i=1

σi(X)−
r∑

i=1

σi(X) = ∥X∥∗ −
r∑

i=1

σi(X) , (4.4)

we can equivalently write problem (4.3) as

min fc(X) := θ(X)− cp(X)

s.t. AX ∈ b+Q ,

X ∈ ℜn1×n2 ,

(4.5)

where for any X ∈ ℜn1×n2 ,

p(X) :=
r∑

i=1

σi(X)− ∥X∥∗ ≤ 0 , (4.6)

which is the difference of two convex functions. Note that the penalized problem

(4.5) is not equivalent to the original problem (4.1). Then the question is how

much we can say about the solutions to (4.1) by solving the penalized problem

(4.5). We will address this question in the following two propositions.
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Since the objective function fc(·) of problem (4.5) is coercive in ℜn1×n2 , we know

that the problem (4.5) exists at least one global solution, say X∗
c .

Proposition 4.1. If the rank of X∗
c is not larger than r, then X∗

c is a global optimal

solution to problem (4.1).

Proof. Assume that the rank of X∗
c is not larger than r. Then X∗

c is a feasible

solution to (4.1) and p(X∗
c ) = 0. Let Xr ∈ ℜn1×n2 be any feasible point to (4.1).

Thus, by noting that p(Xr) = 0, we have

θ(X∗
c ) = θ(X∗

c )− cp(X∗
c ) ≤ θ(Xr)− cp(Xr) = θ(Xr) .

This shows that the conclusion of this proposition holds.

Proposition 4.1 says in the ideal situation when the rank of X∗
c is not larger than r,

X∗
c actually solves the original problem (4.1). Though this ideal situation is always

observed in our numerical experiments for a properly chosen penalty parameter

c > 0, there is no theoretical guarantee that this is the case. However, when

the penalty parameter c is large enough, |p(X∗
c )| can be proven to be very small.

To see this, let X∗ be an optimal solution to the following least squares convex

optimization problem

min θ(X)

s.t. AX ∈ b+Q ,

X ∈ ℜn1×n2 .

(4.7)

Proposition 4.2. Let ε > 0 be a given positive number and Xr ∈ ℜn1×n2 a feasible

solution to problem (4.1). Assume that c > 0 is chosen such that
(
θ(Xr)− θ(X∗)

)
/c ≤

ε. Then we have

| p(X∗
c ) | ≤ ε and θ(X∗

c ) ≤ θ̄ − c|p(X∗
c )| ≤ θ̄. (4.8)
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Proof. By noting that Xr is feasible to the penalized problem (4.5) and p(Xr) = 0,

we have

θ(Xr) = θ(Xr)− cp(Xr) = fc(Xr) ≥ fc(X
∗
c ) = θ(X∗

c )− cp(X∗
c ) ≥ θ(X∗)− cp(X∗

c ) ,

which implies

| p(X∗
c ) | = −p(X∗

c ) ≤
(
θ(Xr)− θ(X∗)

)
/c ≤ ε .

Let X be a global optimal solution to problem (4.1). Then from

θ(X)− cp(X) = fc(X) ≥ fc(X
∗
c ) = θ(X∗

c )− cp(X∗
c )

and the fact that p(X) = 0, we obtain that θ(X∗
c ) ≤ θ(X)−c|p(X∗

c )| = θ̄−c|p(X∗
c )|.

The proof is completed.

Proposition 4.2 says that an ε-optimal solution to the original problem (4.1) in

the sense of (4.8) is guaranteed by solving the penalized problem (4.5) as long as

the penalty parameter c is above some ε-dependent number. This provides the

rationale to replace the rank constraint in problem (4.1) by the penalty function

−cp(·) in problem (4.5).

Remark 4.3. In Proposition 4.2, we need to choose a feasible point Xr to problem

(4.1). That is equivalently to say that we need to find a global solution to

min σr+1(X) + . . .+ σn1(X) = −p(X)

s.t. AX ∈ b+Q ,

X ∈ ℜn1×n2 .

(4.9)

To solve problem (4.9), one may use the majorization method to be introduced in

next subsection. This corresponds to the case that H = 0. However, this is not

needed in many situations when a feasible point to problem (4.1) is readily available.

For example, the truncated singular value decomposition (TSVD) of X∗ is such a

choice if there are no constraints.
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Remark 4.4. There are different choices to penalize the rank constraint. For

example, one may use σr+1(X) or

n1∑
i=r+1

σ2
i (X) instead. However, the performance

needs to be tested further.

Recall that in the symmetric counterpart of problem (4.1), we consider the following

problem

min
1

2
∥H ◦ (X − C)∥2

s.t. AX ∈ b+Q ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(4.10)

where C ∈ Sn is given and H ∈ Sn is a given weight matrix whose entries are

nonnegative.

Given the fact that for any X ∈ Sn
+, rank(X) ≤ r if and only if λr+1(X) + . . . +

λn(X) = 0, and that

n∑
i=r+1

λi(X) =
n∑

i=1

λi(X)−
r∑

i=1

λi(X) = ⟨I,X⟩ −
r∑

i=1

λi(X) ,

the penalized problem for (4.10) takes the following form

min fc(X) := θ(X)− cp(X)

s.t. AX ∈ b+Q ,

X ≽ 0 ,

(4.11)

where θ(X) :=
1

2
∥H ◦ (X − C)∥2 and for any X ∈ Sn,

p(X) :=
r∑

i=1

λi(X)− ⟨I,X⟩ , (4.12)

which is a convex function and simpler than (4.6). Note that problem (4.11) is sim-

ilar to the penalized problem (4.5) in the nonsymmetric setting, thus Proposition

4.1 and 4.2 still hold for the symmetric counterpart problem (4.11).
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4.2 The proximal subgradient method for the pe-

nalized problem

In this section, we shall study the penalized problem (4.5), which can be rewritten

as follows

min fc(X) = h(X) + g(X)− cp(X)

s.t. AX ∈ b+Q ,

X ∈ ℜn1×n2 ,

(4.13)

where h(X) = 1
2
∥H ◦ (X − C)∥2, g(X) := (ρ+ c)∥X∥∗ and p(X) :=

r∑
i=1

σi(X).

Let Ω denote the feasible set of problem (4.13), i.e.,

Ω := {X ∈ ℜn1×n2 | AX ∈ b+Q} .

For any X ∈ Ω, denote the normal cone of Ω at the point X by

NΩ(X) := {Z ∈ ℜn1×n2 | ⟨Z, Y −X⟩ ≤ 0 ∀Y ∈ Ω}.

A point X ∈ Ω is said to be a stationary point of problem (4.13) if

(∇h(X) + ∂g(X) +NΩ(X)) ∩ (c∂p(X)) ̸= ∅ ,

and a B-stationary point of problem (4.13) if

(∇h(X) + ∂g(X) +NΩ(X)) ∩ (c∂Bp(X)) ̸= ∅ .

A B-stationary point of problem (4.13) is always a stationary point of the problem

itself and the converse is not necessarily true.

From Remark 3.1, we know that the penalized problem (4.13) can directly be

solved by the proximal subgradient method introduced in Chapter 3 via the fol-

lowing problem

min
X∈ℜn1×n2

f̂c(X) := h(X) + ĝ(X)− cp(X) , (4.14)
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where ĝ(X) := g(X) + IΩ(X) is still a convex function as Ω is a closed convex set.

By noting that h is a twice differentiable quadratic function and for any Y ∈ ℜn1×n2

h(X) = h(Y ) + ⟨∇h(Y ), X − Y ⟩+ 1

2
∥H ◦ (X − Y )∥2 ,

when applying Algorithm 3.2 to problem (4.14), for each integer k ≥ 0, we only

need to choose a componentwise nonnegative matrix Ĥk ≥ 0 in ℜn1×n2 such that

⟨Y,MkY ⟩ = ∥Ĥk ◦ Y ∥2 for any Y ∈ ℜn1×n2 . Then the following corollary comes

directly from Theorem 3.7.

Assumption 4.5. For all k ≥ 0,

κ1 ≤ min
i=1,...,n1
j=1,...,n2

Ĥk
ij ≤ max

i=1,...,n1
j=1,...,n2

Ĥk
ij ≤ κ2 ,

where 0 < κ1 ≤ κ2 < +∞.

Corollary 4.6. Let {Xk}, {dk} be two sequences generated by Algorithm 3.2 under

Assumption 4.5. Then {f̂c(Xk)} is a monotonically decreasing sequence. If Xk+1 =

Xk for some integer k ≥ 0, then Xk is a B-stationary point of problem (4.13).

Otherwise, suppose that inf αk
init > 0, the following results hold:

(a). For each integer k ≥ 0, ∆k satisfies

∆k ≤ −∥Ĥk ◦ dk∥2 ≤ −ν∥dk∥2 ,

f̂c(X
k+1)− f̂c(X

k) ≤ σαk∆k ≤ 0 .

(b). If {Xkj} is a converging subsequence of {Xk}, then lim
j→+∞

dkj = 0.

(c). Any accumulation point of {Xk} is a B-stationary point of problem (4.13).

Furthermore, one may notice that at each iteration k, it is not difficult to find

ℜn1×n2 ∋ Ĥk ≥ 0 satisfying

∥H ◦ (X −Xk)∥2 ≤ ∥Ĥk ◦ (X −Xk)∥2, ∀X ∈ X ,
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thus, for any X ∈ ℜn1×n2 ,

h(X) ≤ ĥk(X) := h(Xk) + ⟨∇h(Xk), X −Xk⟩+ 1

2
∥Ĥk ◦ (X −Xk)∥2 .

This implies that one may also apply the proximal subgradient method without

line search, i.e, Algorithm 3.9, to problem (4.13).

Corollary 4.7. Let {Xk} be the sequence generated by Algorithm 3.9. Then

{f̂c(Xk)} is a monotonically decreasing sequence. If Xk+1 = Xk for some inte-

ger k ≥ 0, then Xk+1 is a B-stationary point of problem (4.13). Otherwise, the

infinite sequence {f̂c(Xk)} satisfies

1

2
∥Ĥk ◦ (Xk+1 −Xk)∥2 ≤ f̂c(X

k)− f̂c(X
k+1) , k = 0, 1, . . . (4.15)

Moreover, any accumulation point of the bounded sequence {Xk} is a B-stationary

point of problem (4.13) provided that Assumption 4.5 holds.

Similarly, in the symmetric case, for the penalized problem (4.11), we can also

define the stationary (B-stationary) point. Let Ω denote the feasible set of problem

(4.11), i.e., Ω = {X ∈ Sn | AX ∈ b+Q}. A point X ∈ Ω is said to be a stationary

point of problem (4.11) if

(∇θ(X) +NΩ(X)) ∩ (c∂p(X)) ̸= ∅ ,

and a B-stationary point of problem (4.11) if

(∇θ(X) +NΩ(X)) ∩ (c∂Bp(X)) ̸= ∅ .

Hence, one can easily show that both Corollary 4.7 and 4.6 still hold for the pe-

nalized problem (4.11).

4.2.1 Implementation issues

In this subsection, we discuss several implementation issues when applying the

proximal subgradient method to penalized problem (4.13) and (4.11). Due to
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the nice properties of the first term h(·) (smooth and quadratic) in the objective

function of problem (4.13) in the nonsymmetric setting, we simply apply Algorithm

3.9 to problem (4.13) and eventually need to solve a sequence of problems taking

the form of

min f̂k
c (X) =

1

2
∥Ĥk ◦ (X −Xk)∥2 + ⟨X,H ◦H ◦ (Xk − C)− cW k⟩+ g(X) + qkc

s.t. AX ∈ b+Q ,

X ∈ ℜn1×n2 ,

(4.16)

where qkc := h(Xk)−⟨∇h(Xk), Xk⟩− cpσ(X
k)+ c⟨W k, Xk⟩. Here we assume that

0 ≤ Hij ≤ 1 for i = 1, . . . , n1 and j = 1, . . . , n2 (see Remark 4.8 if it fails to hold).

It then follows that for all k ≥ 0, Ĥk can simply be chosen as E whose entries are

all ones. Then the objective function f̂k
c (·) in (4.16) can be equivalently written as

f̂k
c (X) = 1

2
∥X −Xk∥2 +

⟨
X,H ◦H ◦ (Xk − C)− cW k

⟩
+ g(X) + qkc

= 1
2
∥X − (Xk + Ck)∥2 + g(X) + fc(X

k)− 1
2
∥Ck∥2 ,

where Ck := cW k −H ◦H ◦ (Xk − C). By dropping the constant terms in f̂k
c (X)

and noting that g(X) = (ρ+ c)∥X∥∗, we can equivalently write problem (4.16) as

the following well-studied least squares nuclear norm problem

min
1

2
∥X − (Xk + Ck)∥2 + (ρ+ c)∥X∥∗

s.t. AX ∈ b+Q ,

X ∈ ℜn1×n2 ,

(4.17)

which can be efficiently solved by the well developed smoothing Newton-BiCGStab

method.

Remark 4.8. If not all the components of the given weight matrix H are in [0, 1],

one can do the preprocessing as follows. Define two vectors d1 ∈ ℜn1 and d2 ∈ ℜn2

by

(d1)i = max{δ, max{Hij | j = 1, . . . , n2}} , i = 1, . . . , n1 ,
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and

(d2)j = max{δ, max{Hij | i = 1, . . . , n1}} , j = 1, . . . , n2 ,

where δ > 0 is a small positive number. Let D1 = diag(d1) and D2 = diag(d2).

Then we consider the following problem instead of the original problem (4.1)

min
1

2
∥H ◦ (X − C)∥2 + ρ∥D

1
2
1XD

1
2
2 ∥∗

s.t. AX ∈ b+Q ,

rank(X) ≤ r ,

X ∈ ℜn1×n2 ,

(4.18)

which can be equivalently written as

min
1

2
∥H̃ ◦ (X̃ − C̃)∥2 + ρ∥X̃∥∗

s.t. ÃX̃ := AX ∈ b+Q ,

rank(X̃) ≤ r ,

X̃ ∈ ℜn1×n2 ,

(4.19)

where H̃ = D
−1/2
1 HD

−1/2
2 , X̃ = D

1/2
1 XD

1/2
2 and C̃ = D

1/2
1 CD

1/2
2 .

Note that problem (4.19) now takes the same form as problem (4.1). Moreover,

the components of the weight matrix H̃ are all in [0, 1].

Remark 4.9. Alternatively, one may also apply Algorithm 3.2 to problem (4.13),

which again leads to a sequence of least squares problems. We omit the details here.

Now we turn our attention to the penalized problem (4.11) in the symmetric setting.

Similarly, we eventually need to solve a sequence of problems in the following form

min f̂k
c (X) =

1

2
∥Ĥk ◦ (X −Xk)∥2 +

⟨
X, H ◦H ◦ (Xk − C)− cW k

⟩
+ gkc

s.t. AX ∈ b+Q ,

X ∈ Sn
+ ,

(4.20)
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where gkc := θ(Xk) − ⟨∇θ(Xk), Xk⟩ − cp(Xk) + c⟨W k, Xk⟩. For the sake of easy

computations, in our implementation, we always choose a positive vector d ∈ ℜn

such that Hij ≤ Ĥk
ij =

√
didj for all i, j ∈ {1, . . . , n}. Let D = diag(d). Then the

objective function f̂k
c (·) in (4.20) can be equivalently written as

f̂k
c (X) = 1

2
∥D1/2(X −Xk)D1/2∥2 +

⟨
X,H ◦H ◦ (Xk − C)− cW k

⟩
+ gkc

= 1
2
∥D1/2

(
X − (Xk + Ck)

)
D1/2∥2 + fc(X

k)− 1
2
∥D1/2CkD1/2∥2 ,

where Ck := D−1
(
cW k −H ◦H ◦ (Xk −C)

)
D−1. By dropping the constant terms

in f̂k
c (X), we can equivalently write problem (4.20) as the following well-studied

diagonally weighted least squares positive semidefinite problem

min
1

2
∥D1/2

(
X − (Xk + Ck)

)
D1/2∥2

s.t. AX ∈ b+Q ,

X ∈ Sn
+ ,

(4.21)

which can be solved efficiently by the recently developed smoothing Newton-

BiCGStab method [42].

For the choice of d ∈ ℜn, one can simply take

d1 = . . . = dn = max
{
δ, max{Hij | i, j = 1, . . . , n}

}
, (4.22)

where δ > 0 is a small positive number. However, a better way is to choose d ∈ ℜn

as follows

di = max
{
δ, max{Hij | j = 1, . . . , n }

}
, i = 1, . . . , n . (4.23)

Remark 4.10. The choice of d in (4.22) is simpler and will lead to an unweighted

least squares problem. The disadvantage of this choice is that the resulting problem

generally takes more iterations to converge than the one obtained from the choice

of (4.23) due to the fact that the error ∥H−ddT∥ is larger for the choice of (4.22).

If H takes the form of hhT for some column vector ℜn ∋ h > 0, we can just take

Ĥk ≡ H for all k ≥ 1. In this case, the majorization function of θ(·) is itself.
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4.2.2 Some rationale for the penalty approach

Now we consider the following simplest case of problem (4.1)

min
1

2
∥X − C∥2 + ρ∥X∥∗

s.t. rank(X) ≤ r ,

X ∈ ℜn1×n2 ,

(4.24)

i.e., there is no weight matrix H and no linear constraints for X. Suppose that the

given matrix C has the singular value decomposition as in (2.48), i.e.,

C = U [Σ(C) 0]V T , (4.25)

where U ∈ On1 , V ∈ On2 and Σ(C) = diag(σ(C)) = (σ1(C), . . . , σn1(C))
T with

σ1(C) ≥ · · · ≥ σn1(C) ≥ 0. Write

U = [U1, . . . , Un1 ] and V = [V1, . . . , Vn2 ] .

Recall that problem (4.24) is exactly the problem (2.51) we studied in Chapter 2

and one of its global optimal solution is given by

X∗ :=
r∑

i=1

(
σi(C)− ρ

)
+
UiV

T
i .

Now we claim that this global optimal solution to problem (4.24) can be obtained

in two iterations by our majorized penalty approach provided that the penalty

parameter c ≥ σr+1(C)− ρ.

To prove this claim, let the initial point X0 = 0. Then W 0 = 0. Noting that

Xk+1 = Pρ+c(C + cW k), we obtain that

X1 = Pρ+c(C + cW 0) =

n1∑
i=1

(
σi(C)− ρ− c

)
+
UiV

T
i ,

and thus W 1 ∈ ∂Bpσ(X
1) can be simply chosen as W 1 =

∑r
i=1 UiV

T
i . It then
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follows that

X2 = Pρ+c(C + cW 1)

=
r∑

i=1

(
σi(C)− ρ

)
+
UiV

T
i +

n1∑
i=r+1

(
σi(C)− ρ− c

)
+
UiV

T
i

=
r∑

i=1

(
σi(C)− ρ

)
+
UiV

T
i = X∗ ,

which implies that we can recover the original optimal solution to problem ?? by

solving its penalized problem.

This interesting result provides us the justification for using the penalty approach

to deal with the rank constraint.

4.3 The Lagrangian dual reformulation

In this section, we shall study the Lagrangian dual problems in both nonsymmetric

case and symmetric case in order to check the optimality of the solutions obtained

by applying the proximal subgradient method to the penalized problems.

4.3.1 The Lagrangian dual problem for the nonsymmetric

problem

We first study the Lagrangian dual of problem (4.1), which takes the form as

follows

max
y∈Q∗

V (y) := inf
X∈ℜn1×n2

r

L(X, y) , (4.26)

where L(X, y) is the Lagrangian function of (4.1)

L(X, y) :=
1

2
∥H ◦ (X − C)∥2 + ρ∥X∥∗ + ⟨b−AX, y⟩ , (X, y) ∈ ℜn1×n2 ×ℜm .
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Suppose that ȳ ∈ Q∗ is an optimal solution to (4.26). Then for any feasible solution

X̂ to (4.1), one has

1

2
∥H ◦ (X̂ − C)∥2 + ρ∥X̂∥∗

≥ 1

2
∥H ◦ (X̂ − C)∥2 + ρ∥X̂∥∗ + ⟨b−AX̂, ȳ⟩

≥ V (ȳ) ,

(4.27)

which implies that the optimal dual value V (ȳ) provides a valid lower bound for

checking the optimality of the primal solution. When H is the matrix with all

the entries equal to 1, we can further simplify the expression for V (y) and write it

explicitly as

V (y)

= inf
X∈ℜn1×n2

r

{
1

2
∥X − C∥2 + ρ∥X∥∗ + ⟨b−AX, y⟩

}
= inf

X∈ℜn1×n2
r

{
1

2
∥X − (C +A∗y)∥2 + ρ∥X∥∗ + ⟨b, y⟩ − 1

2
∥C +A∗y∥2 + 1

2
∥C∥2

}
= −1

2
∥Pρ,r(C +A∗y)∥2 + ⟨b, y⟩+ 1

2
∥C∥2 ,

where A∗ is the adjoint of A. Define Φ(y) := −V (y)+ 1
2
∥C∥2 for any y ∈ Q∗. Now

we can rewrite the dual problem as follows

min Φ(y) =
1

2
∥Pρ,r(C +A∗y)∥2 − ⟨b, y⟩

s.t. y ∈ Q∗ = ℜp × Q̂∗ .
(4.28)

In order to facilitate subsequent analysis, we first rewrite A and b as

A =

 Ap

Aq

 and b =

 bp

bq

 ,
where Ap : ℜn1×n2 → ℜp, Aq : ℜn1×n2 → ℜq, bp ∈ ℜp and bq ∈ ℜq.

Now we discuss the existence of the optimal solutions to (4.28). For this purpose,

we need the following Slater condition: Ap is onto, and

∃X0 ∈ ℜn1×n2 such that ApX0 = bp and AqX0 − bq ∈ int(Q̂) .
(4.29)
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Using Proposition 2.20 and Remark 2.21, we have the following corollary.

Corollary 4.11. Assume that the Slater condition (4.29) holds. Then ⟨b, ȳ⟩ < 0

for any 0 ̸= ȳ ∈ Q∗ satisfying A∗ȳ = 0 .

Proposition 4.12. Assume that the Slater condition (4.29) holds. Then, for any

constant ν ∈ ℜ, the level set Lν :=
{
y ∈ Q∗ | Φ(y) ≤ ν

}
is bounded.

Proof. We prove the conclusion of this proposition by contradiction. Suppose that

on the contrary that there exists a constant ν ∈ ℜ such that Lν is unbounded.

Then there exists a sequence {yk} ∈ Q∗ such that Φ(yk) ≤ ν for all k ≥ 1 and

lim sup
k→+∞

∥yk∥ = +∞. Without loss of generality, we may assume that yk ̸= 0 for

each k ≥ 1 and ||yk|| → ∞ as k → ∞. We assume, by taking a subsequence if

necessary, that there exists ȳ ̸= 0 such that

lim
k→+∞

yk

∥yk∥
= ȳ .

Next we consider the following two subcases:

1). A∗ȳ ̸= 0. Let Dk := C + A∗yk and its singular value decomposition (SVD)

be

Dk = Uk[Σk 0](V k)T ,

where Uk ∈ ℜn1×n1 and V k ∈ ℜn2×n2 are two orthogonal matrices, Σk :=

diag(σk
1 , . . . , σ

k
n1
), and σk

1 ≥ · · · ≥ σk
n1

≥ 0 are singular values of Dk. Let

Bk := Dk/∥yk∥. Then Bk = Uk[ Σk

∥yk∥ 0](V k)T → A∗ȳ. It follows that there

exists a positive number δ > 0 such that
σk
1

∥yk∥ ≥ 2δ > 0 and δ∥yk∥ > ρ for k

sufficiently large. Hence, we have

∥Pρ,r(C +A∗yk)∥ = ∥Pρ,r(D
k)∥ ≥ max(σk

1 − ρ, 0) ≥ 2δ∥yk∥ − ρ ≥ δ∥yk∥ ,

and thus,

lim inf
k→+∞

Φ(yk) = lim inf
k→+∞

(1
2
∥Pρ,r(C +A∗yk)∥2 − ⟨b, yk⟩

)
≥ lim inf

k→+∞
∥yk∥

(δ2
2
∥yk∥ − ∥b∥

)
= +∞ .
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2). A∗ȳ = 0. Then ⟨b, ȳ⟩ < 0 follows immediately from Corollary 4.11. There-

fore,

lim inf
k→+∞

Φ(yk) ≥ lim inf
k→+∞

∥yk∥
(
− ⟨b, yk/∥yk∥⟩

)
≥ −⟨b, ȳ⟩ lim inf

k→+∞
∥yk∥/2 = +∞ .

In summary, we have shown that Φ(yk) → +∞ as k → ∞, which is a contradiction

to our assumption that Φ(yk) ≤ ν for all k ≥ 1. This contradiction shows that the

conclusion of this proposition holds.

Proposition 4.12 says that if the Slater condition (4.29) holds, the dual problem

(4.28) always has optimal solutions. Let ȳ ∈ Q∗ be an optimal solution to (4.28).

Then we have

0 ∈ ∂Φ(ȳ) +NQ∗(ȳ) . (4.30)

Theorem 4.13. The optimal solution ȳ ∈ Q∗ to the dual problem (4.28) satisfies

∅ ̸=
(
b−AconvPρ,r(C +A∗ȳ)

)
∩NQ∗(ȳ) . (4.31)

Furthermore, if there exists a matrix X ∈ Pρ,r(C + A∗ȳ) such that b − AX ∈

NQ∗(ȳ), then X and ȳ globally solve the primal problem (4.1) with H = E and the

corresponding dual problem (4.28), respectively and there is no duality gap between

the primal and dual problems.

Proof. Recall that for y ∈ Q∗, Φ(y) =
1

2
∥Pρ,r(C+A∗y)∥2−⟨b, y⟩. From Proposition

2.16, we know that the sub-differential of Φ(·) at the optimal solution point ȳ can

be written as

∂Φ(ȳ) = AconvPρ,r(C +A∗ȳ)− b . (4.32)

Then (4.31) now follows directly from (4.30). If there exists a matrix X ∈ Pρ,r(C+

A∗y) such that b−AX ∈ NQ∗(ȳ), we have that

AX ∈ b+Q and
⟨
b−AX, ȳ

⟩
= 0 .
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Then X is feasible to the primal problem (4.1) and that

V (ȳ) =
1

2
∥X − C∥2 + ρ∥X∥∗ + ⟨b−AX, ȳ⟩ = 1

2
∥X − C∥2 + ρ∥X∥∗ ,

which, together with the fact that ȳ ∈ Q∗ is feasible to the dual problem (4.28),

completes the proof of the remaining part of the theorem.

Corollary 4.14. Let ȳ be an optimal solution of (4.28). If σr(C+A∗ȳ) > σr+1(C+

A∗ȳ) > 0 or σr+1(C +A∗ȳ) = 0, then X = Pρ,r(C +A∗ȳ) globally solves problem

(4.1).

Proof. It follows directly from Remark 2.17.

4.3.2 The Lagrangian dual problem for the symmetric prob-

lem

In this subsection, we shall study the Lagrangian dual of problem (4.10), i.e,

min
1

2
∥H ◦ (X − C)∥2

s.t. AX ∈ b+Q ,

X ∈ Sn
+ ,

rank(X) ≤ r .

(4.33)

The Lagrangian function of (4.33) is

L(X, y) =
1

2
∥H ◦ (X − C)∥2 + ⟨b−AX, y⟩ , (X, y) ∈ Sn ×ℜm.

Then the Lagrangian dual problem of (4.33) takes the form of

max
y∈Q∗

V (y) , (4.34)
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where Q∗ is the dual cone of Q and V (y) is defined by

V (y) := inf
X∈Sn

+

L(X, y) = inf
X∈Sn

+(r)

{
1

2
∥H ◦ (X − C)∥2 + ⟨b−AX, y⟩

}
. (4.35)

Suppose that ȳ ∈ Q∗ is an optimal solution to (4.34). Then for any feasible X̂ to

(4.33), one has

1

2
∥H ◦ (X̂ − C)∥2 ≥ 1

2
∥H ◦ (X̂ − C)∥2 + ⟨b−AX̂, ȳ⟩

≥ V (ȳ) ,

(4.36)

which implies that the dual solution ȳ provides a valid lower bound for checking

the optimality of the primal solution. When H is the matrix with all the entries

equal to 1, we can further simplify (4.35) and write V (y) explicitly as

V (y) = inf
X∈Sn

+(r)

{
1

2
∥X − C∥2 + ⟨b−AX, y⟩

}
= inf

X∈Sn
+(r)

{
1

2
∥X − (C +A∗y)∥2 − 1

2
∥C +A∗y∥2 + ⟨b, y⟩+ 1

2
∥C∥2

}
=

1

2
∥ΠSn

+(r)(C +A∗y)− (C +A∗y)∥2 − 1

2
∥C +A∗y∥2 + ⟨b, y⟩+ 1

2
∥C∥2

= −1

2
∥ΠSn

+(r)(C +A∗y)∥2 + ⟨b, y⟩+ 1

2
∥C∥2

where A∗ is the adjoint of A. For any y ∈ Q∗, let Φs(y) := −V (y) +
1

2
∥C∥2. Now

we can rewrite the dual problem as follows

min Φs(y) =
1

2
∥ΠSn

+(r)(C +A∗y)∥2 − ⟨b, y⟩

s.t. y ∈ Q∗ = ℜp ×ℜq
+ .

(4.37)

Remark 4.15. When H takes the form of H = hhT for some column vector h > 0

in ℜn, we can also derive a similar explicit expression for V (y) as follows

V (y) = −1

2
∥ΠSn

+(r)

(
D

1
2 (C +D−1A∗yD−1)D

1
2

)
∥2 + ⟨b, y⟩+ 1

2
∥D

1
2CD

1
2∥2 ,

where D
1
2 = diag(h). For the general weight matrix H, we cannot reformulate

(4.35) explicitly. However, we can still apply the majorized penalty method intro-

duced earlier in this paper to compute V (y).
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Next we discuss the existence of the optimal solution to (4.37). For this purpose,

we need the following Slater condition:
{Ai}pi=1 are linearly independent,

there exists X0 ≻ 0 such that AjX
0 = bj for j = 1, . . . , p ,

and AjX
0 > bj for j = p+ 1, . . . ,m .

(4.38)

Using Proposition 2.20 and Remark 2.21, we have the following corollary.

Corollary 4.16. Assume that the Slater condition (4.38) holds. Then ⟨b, ȳ⟩ < 0

for any 0 ̸= ȳ ∈ Q∗ satisfying A∗ȳ ≼ 0 .

Proposition 4.17. Assume that the Slater condition (4.38) holds. Then, for any

constant ν ∈ ℜ, the level set Lν :=
{
y ∈ Q∗ | Φs(y) ≤ ν

}
is bounded.

Proof. We prove the conclusion of this proposition by contradiction. Suppose that

on the contrary that there exists a constant ν ∈ ℜ such that Lν is unbounded.

Then there exists a sequence {yk} ∈ Q∗ such that Φs(yk) ≤ ν for all k ≥ 1 and

lim sup
k→+∞

∥yk∥ = +∞. Without loss of generality, we may assume that ∥yk∥ ̸= 0 for

each k ≥ 1 and ||yk|| → ∞ as k → ∞. For k ≥ 1, let Bk := (C +A∗yk)/∥yk∥. We

assume, by taking a subsequence if necessary, that there exists ȳ ̸= 0 such that

lim
k→+∞

yk

∥yk∥
= ȳ .

Next we consider the following two cases:

1). A∗ȳ � 0, i.e., A∗ȳ has at least one positive eigenvalue. It then follows that

there exists a positive number δ > 0 such that

lim inf
k→+∞

∥ΠSn
+(r)(B

k)∥2 = lim inf
k→+∞

∥ΠSn
+(r)(A∗ȳ)∥2 ≥ δ > 0 .

Hence, we have

lim inf
k→+∞

Φs(yk) = lim inf
k→+∞

(1
2
∥ΠSn

+(r)(C +A∗yk)∥2 − ⟨b, yk⟩
)

≥ lim inf
k→+∞

∥yk∥
(1
2
∥yk∥∥ΠSn

+(r)(B
k)∥2 − ∥b∥

)
= +∞ .
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2). A∗ȳ ≼ 0. Then ⟨b, ȳ⟩ < 0 follows immediately from Corollary 4.16. There-

fore,

lim inf
k→+∞

Φs(yk) ≥ lim inf
k→+∞

∥yk∥
(
−⟨b, yk/∥yk∥⟩

)
≥ −⟨b, ȳ⟩ lim inf

k→+∞
∥yk∥/2 = +∞ .

In summary, we have shown that Φs(yk) → +∞ as k → ∞, which is a contradiction

to our assumption that Φs(yk) ≤ ν for all k ≥ 1. This contradiction shows that

the conclusion of this proposition holds.

Proposition 4.17 says that if the Slater condition (4.38) holds, the dual problem

(4.37) always has optimal solutions. Let ȳ ∈ Q∗ be an optimal solution to (4.37).

Then we have

0 ∈ ∂Φs(ȳ) +NQ∗(ȳ) . (4.39)

Theorem 4.18. The optimal solution ȳ ∈ Q∗ to the dual problem (4.37) satisfies

∅ ̸=
(
b−AconvΠSn

+(r)(C +A∗ȳ)
)
∩NQ∗(ȳ) . (4.40)

Furthermore, if there exists a matrix X ∈ ΠSn
+(r)

(
C + A∗ȳ

)
such that b − AX ∈

NQ∗(ȳ), then X and ȳ globally solve the primal problem (4.33) with H = E and the

corresponding dual problem (4.37), respectively and there is no duality gap between

the primal and dual problems.

Proof. From Proposition 2.5, we know that the sub-differential of Φs(·) at the

optimal solution point ȳ can be written as

∂Φs(ȳ) = AconvΠSn
+(r)(C +A∗ȳ)− b . (4.41)

Then (4.40) now follows directly from (4.39). If there exists a matrixX ∈ ΠSn
+(r)(C+

A∗ȳ) such that b−AX ∈ NQ∗(ȳ), we know that

AX ∈ b+Q and
⟨
b−AX, ȳ

⟩
= 0 .
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Then X is feasible to the primal problem (4.33) and

V (ȳ) =
1

2
∥X − C∥2 + ⟨b−AX, ȳ⟩ = 1

2
∥X − C∥2 ,

which, together with the fact that ȳ ∈ Q∗ is feasible to the dual problem (4.37),

completes the proof of the remaining part of the theorem.

Corollary 4.19. Let ȳ be an optimal solution of (4.37). If λr(C+A∗ȳ) > λr+1(C+

A∗ȳ) > 0 or λr+1(C+A∗ȳ) ≤ 0, then X = ΠSn
+(r)(C+A∗ȳ) globally solves problem

(4.33).

Proof. It follows directly from Remark 2.6.

Remark 4.20. Theorem 4.18 also holds for the following W -weighted problem

min
1

2
∥W 1/2(X − C)W 1/2∥2

s.t. AX ∈ b+Q ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(4.42)

where W is a symmetric positive definite matrix.

Remark 4.21. Theorem 4.18 can be regarded as an extension of the globalization

checking results of Zhang and Wu [123, Theorem 4.5] which only holds for a special

kind of correlation matrix calibration problems. However, the technique introduced

in Theorem 4.18 allows us to deal with more general cases in several aspects:

(E1). The matrix C is no longer required to be a valid correlation matrix.

(E2). The problem may have more general constraints including the simple lower

and upper bound constraints.

(E3). The assumption |λr
(
C + diag(ȳ)

)
| > |λr+1

(
C + diag(ȳ)

)
| is much weaker to

include more general situations.



Chapter 5
A Smoothing Newton-BiCGStab Method

5.1 The algorithm

The purpose of this section is to introduce an inexact smoothing Newton method

for solving the general nonsmooth equation

F (y) = 0, y ∈ ℜm ,

where F : ℜm → ℜm is a locally Lipschitz continuous function. This inexact

smoothing Newton method is largely modified from the exact smoothing Newton

method constructed in [94] for solving complementarity and variational inequality

problems. The motivation to introduce an inexact version is completely from the

computational point of view because the costs of the exact smoothing Newton

method for solving problems such as the LSSDP problem (5.16) are prohibitive.

Let G : ℜ× ℜm → ℜm be a locally Lipschitz continuous function satisfying

G(ε, y′) → F (y) as (ε, y′) → (0, y) .

Furthermore, G is required to be continuously differentiable around any (ε, y) un-

less ε = 0. The existence of such a function G can be easily proven via convolution.

67
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Define E : ℜ× ℜm → ℜ×ℜm by

E(ε, y) :=

 ε

G(ε, y)

 , (ε, y) ∈ ℜ × ℜm .

Then solving the nonsmooth equation F (y) = 0 is equivalent to solving the follow-

ing smoothing-nonsmooth equation

E(ε, y) = 0 .

Our inexact smoothing Newton method is specifically designed for solving the latter

one.

Define the merit function φ : ℜ× ℜm → ℜ+ by

φ(ε, y) := ∥E(ε, y)∥2 , (ε, y) ∈ ℜ × ℜm .

Choose r ∈ (0, 1). Let

ζ(ε, y) := rmin{1, φ(ε, y)} , (ε, y) ∈ ℜ × ℜm .

Then the inexact smoothing Newton method can be described as follows.

Algorithm 5.1. (An inexact smoothing Newton method)

Step 0. Let ε̂ ∈ (0,∞) and η ∈ (0, 1) be such that

δ :=
√
2max{rε̂, η} < 1 .

Select constants ρ ∈ (0, 1), σ ∈ (0, 1/2), τ ∈ (0, 1), and τ̂ ∈ [1,∞). Let

ε0 := ε̂ and y0 ∈ ℜm be an arbitrary point. k := 0.

Step 1. If E(εk, yk) = 0, then stop. Otherwise, compute

ζk := rmin{1, φ(εk, yk)} and ηk := min{τ, τ̂∥E(εk, yk)∥} .



5.1 The algorithm 69

Step 2. Solve the following equation

E(εk, yk) + E ′(εk, yk)

 ∆εk

∆yk

 =

 ζkε̂

0

 (5.1)

approximately such that

∥Rk∥ ≤ min{ηk∥G(εk, yk) +G′
ε(ε

k, yk)∆εk∥, η∥E(εk, yk)∥} , (5.2)

where

∆εk := −εk + ζkε̂

and

Rk := G(εk, yk) +G′(εk, yk)

 ∆εk

∆yk

 .

Step 3. Let lk be the smallest nonnegative integer l satisfying

φ(εk + ρl∆εk, yk + ρl∆yk) ≤ [1− 2σ(1− δ)ρl]φ(εk, yk) . (5.3)

Define:

(εk+1, yk+1) := (εk + ρlk∆εk, yk + ρlk∆yk) .

Step 4. Replace k by k + 1 and go to Step 1.

Lemma 5.2. If for some (ε̃, ỹ) ∈ ℜ++ × ℜm, E ′(ε̃, ỹ) is nonsingular, then there

exist an open neighborhood O of (ε̃, ỹ) and a positive number ᾱ ∈ (0, 1] such that

for any (ε, y) ∈ O and α ∈ [0, ᾱ], ε ∈ ℜ++, E
′(ε, y) is nonsingular, and

φ(ε+ α∆ε, y + α∆y) ≤ [ 1− 2σ(1− δ)α]φ(ε, y) , (5.4)

where (∆ε,∆y) ∈ ℜ × ℜm satisfies

∆ε = −ε+ ζ(ε, y)ε̂

and ∥∥∥∥∥∥G(ε, y) +G′(ε, y)

 ∆ε

∆y

∥∥∥∥∥∥ ≤ η∥E(ε, y)∥ .
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Proof. Since ε̃ ∈ ℜ++ and E ′(ε̃, ỹ) is nonsingular, there exists an open neighbor-

hood O of (ε̃, ỹ) such that for any (ε, y) ∈ O, ε ∈ ℜ++ and E ′(ε, y) is nonsingular.

For any (ε, y) ∈ O, denote

R(ε, y) := G(ε, y) +G′(ε, y)

 ∆ε

∆y

 .

Then (∆ε,∆y) is the unique solution of the following equation

E(ε, y) + E ′(ε, y)

 ∆ε

∆y

 =

 ζ(ε, y)ε̂

R(ε, y)

 .

Thus, ⟨
∇φ(ε, y),

 ∆ε

∆y

⟩ =

⟨
2∇E(ε, y)E(ε, y),

 ∆ε

∆y

⟩

=

⟨
2E(ε, y),

 ζ(ε, y)ε̂

R(ε, y)

− E(ε, y)

⟩
= −2φ(ε, y) + 2εζ(ε, y)ε̂+ 2⟨R(ε, y), G(ε, y)⟩

≤ −2φ(ε, y) + 2ε(rε̂)min{1, φ(ε, y)}+ 2ηφ(ε, y)1/2∥G(ε, y)∥ ,

which, implies that if φ(ε, y) > 1 we have⟨
∇φ(ε, y),

 ∆ε

∆y

⟩
≤ −2φ(ε, y) + 2ε(rε̂) + 2ηφ(ε, y)1/2∥G(ε, y)∥

≤ −2φ(ε, y) + 2max{rε̂, η}
(
ε+ φ(ε, y)1/2

√
φ(ε, y)− ε2

)
≤ −2φ(ε, y) + 2

√
2max{rε̂, η}φ(ε, y)

= 2
(√

2max{rε̂, η} − 1
)
φ(ε, y) (5.5)
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and if φ(ε, y) < 1 we have⟨
∇φ(ε, y),

 ∆ε

∆y

⟩
≤ −2φ(ε, y) + 2ε(rε̂)φ(ε, y) + 2ηφ(ε, y)1/2∥G(ε, y)∥

≤ −2φ(ε, y) + 2max{rε̂, η}φ(ε, y)1/2
(
εφ(ε, y)1/2 +

√
φ(ε, y)− ε2

)
≤ −2φ(ε, y) + 2

√
2max{rε̂, η}φ(ε, y)

= 2
(√

2max{rε̂, η} − 1
)
φ(ε, y) . (5.6)

Therefore, by inequalities (5.5) and (5.6), we have⟨
∇φ(ε, y),

 ∆ε

∆y

⟩ ≤ −2 (1− δ)φ(ε, y) . (5.7)

By using the fact that ∇φ(·, ·) is uniformly continuous on O, we obtain from the

Taylor expansion that

φ(ε+ α∆ε, y + α∆y) = φ(ε, y) + α

⟨
∇φ(ε, y),

 ∆ε

∆y

⟩+ o(α) ∀ (ε, y) ∈ O ,

which, together with (5.7), implies that there exists a positive number ᾱ ∈ (0, 1]

such that for all α ∈ [0, ᾱ], (5.4) holds.

Let

N := {(ε, y) | ε ≥ ζ(ε, y)ε̂} . (5.8)

Proposition 5.3. For each fixed k ≥ 0, if εk ∈ ℜ++, (ε
k, yk) ∈ N , and E ′(εk, yk)

is nonsingular, then for any α ∈ [0, 1] such that

φ(εk + α∆εk, yk + α∆yk) ≤ [ 1− 2σ(1− δ)α]φ(εk, yk) (5.9)

it holds that (εk + α∆εk, yk + α∆yk) ∈ N .
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Proof. Note that (εk, yk) ∈ N , i.e., εk ≥ ζkε̂, so ∆εk = −εk + ζkε̂ ≤ 0. Thus, by

the definition of ζ, together with (5.9), we have

εk + α∆εk − ζ(εk + α∆εk, yk + α∆yk)ε̂

≥ εk +∆εk − ζ(εk + α∆εk, yk + α∆yk)ε̂

= ζkε̂− ζ(εk + α∆εk, yk + α∆yk)ε̂

≥ 0 . (5.10)

This completes our proof.

In order to discuss the global convergence of Algorithm 5.1 we need the following

assumption.

Assumption 5.4. For any (ε, y) ∈ ℜ++ ×ℜn, E ′(ε, y) is nonsingular.

Theorem 5.5. Suppose that Assumptions 5.4 is satisfied. Then Algorithm 5.1 is

well defined and generates an infinite sequence {(εk, yk)} ∈ N with the property

that any accumulation point (ε̄, ȳ) of {(εk, yk)} is a solution of E(ε, y) = 0.

Proof. It follows from Lemma 5.2, Proposition 5.3, and Assumption 5.4 that Al-

gorithm 5.1 is well defined and generates an infinite sequence {(εk, yk)} ∈ N .

From the design of Algorithm 5.1, φ(εk+1, yk+1) < φ(εk, yk) for all k ≥ 0. Hence,

the two sequences {φ(εk, yk)} and {ζ(εk, yk)} are monotonically decreasing. Since

both φ(εk, yk) and ζ(εk, yk) are nonnegative for k ≥ 0, there exist ψ̄ ≥ 0 and ζ̄ ≥ 0

such that φ(εk, yk) → φ̄ and ζ(εk, yk) → ζ̄ as k → ∞.

Let (ε̄, ȳ) be any accumulation point (if it exists) of {(εk, yk)}. By taking a sub-

sequence if necessary, we may assume that {(εk, yk)} converges to (ε̄, ȳ). Then

φ̄ = φ(ε̄, ȳ), ζ̄ = ζ(ε̄, ȳ), and (ε̄, ȳ) ∈ N .

Suppose that φ̄ > 0. Then, from ζ(ε̄, ȳ) = rmin{1, φ(ε̄, ȳ)} and (ε̄, ȳ) ∈ N , we see

that ε̄ ∈ ℜ++. Thus, from Assumption 5.4, E ′(ε̄, ȳ) exists and is invertible. Hence,

from Lemma 5.2, there exist an open neighborhood O of (ε̄, ȳ) and a positive
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number ᾱ ∈ (0, 1] such that for any (ε, y) ∈ O and all α ∈ [0, ᾱ], ε ∈ ℜ++, E
′(ε, y)

is invertible, and (5.4) holds. Therefore, there exists a nonnegative integer l such

that ρl ∈ (0, ᾱ] and ρlk ≥ ρl for all k sufficiently large. Thus

φ(εk+1, yk+1) ≤ [1− 2σ(1− δ)ρlk ]φ(εk, yk) ≤ [1− 2σ(1− δ)ρl]φ(εk, yk)

for all sufficiently large k. This contradicts the fact that the sequence {φ(εk, yk)}

converges to φ̄ > 0. This contradiction shows that φ(ε̄, ȳ) = φ̄ = 0. i.e., E(ε̄, ȳ) =

0. The proof is completed.

Theorem 5.6. Suppose that Assumptions 5.4 is satisfied and that (ε̄, ȳ) is an

accumulation point of the infinite sequence {(εk, yk)} generated by Algorithm 5.1.

Suppose that E is strongly semismooth at (ε̄, ȳ) and that all V ∈ ∂BE(ε̄, ȳ) are

nonsingular. Then the whole sequence {(εk, yk)} converges to (ε̄, ȳ) quadratically,

i.e., ∥∥(εk+1 − ε̄, yk+1 − ȳ)
∥∥ = O

(
∥(εk − ε̄, yk − ȳ)∥2

)
. (5.11)

Proof. First, from Theorem 5.5, (ε̄, ȳ) is a solution of E(ε, y) = 0. Then, since all

V ∈ ∂BE(ε̄, ȳ) are nonsingular, from [92], for all (εk, yk) sufficiently close to (ε̄, ȳ),

∥E ′(εk, yk)−1∥ = O(1)

and ∥∥∥∥∥∥
 εk

yk

+

 ∆εk

∆yk

−

 ε̄

ȳ

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 εk

yk

+ E ′(εk, yk)−1

 rφ(εk, yk)ε̂

Rk

− E(εk, yk)

−

 ε̄

ȳ

∥∥∥∥∥∥
=

∥∥∥∥∥∥−E ′(εk, yk)−1

E(εk, yk)− E ′(εk, yk)

 εk − ε̄

yk − ȳ

−

 rφ(εk, yk)ε̂

Rk

∥∥∥∥∥∥
= O

∥∥∥∥∥∥E(εk, yk)− E(ε̄, ȳ)− E ′(εk, yk)

 εk − ε̄

yk − ȳ

∥∥∥∥∥∥
+O(φ(εk, yk)) +O(∥Rk∥) .

(5.12)



5.1 The algorithm 74

Since E is locally Lipschitz continuous near (ε̄, ȳ), for all (εk, yk) close to (ε̄, ȳ) we

have

φ(εk, yk) = ∥E(εk, yk)− E(ε̄, ȳ)∥2 = O
(
∥(εk − ε̄, yk − ȳ)∥2

)
(5.13)

and

∥Rk∥ ≤ ηk∥G(εk, yk) +G′
ε(ε

k, yk)∆εk∥

≤ O(∥E(εk, yk)∥)
(
∥G(εk, yk)∥+O(|∆εk|)

)
≤ O(∥E(εk, yk)− E(ε̄, ȳ)∥2) . (5.14)

Therefore, by using the assumption that E is strongly semismooth at (ε̄, ȳ) and

the relations (5.12), (5.13), and (5.14), we have for all (εk, yk) sufficiently close to

(ε̄, ȳ) that

∥(εk, yk) + (∆εk,∆yk)− (ε̄, ȳ)∥ = O
(
∥(εk, yk)− (ε̄, ȳ)∥2

)
. (5.15)

Finally, since E is strongly semismooth at (ε̄, ȳ) and that all V ∈ ∂BE(ε̄, ȳ) are

nonsingular, we have for all (εk, yk) sufficiently close to (ε̄, ȳ) that

∥(εk, yk)− (ε̄, ȳ)∥ ≤ O(∥E(εk, yk)∥) ,

which, together with (5.15) and the Lipschitz continuity of E, implies that

φ(εk +∆εk, yk +∆yk) = O(φ2(εk, yk)) .

This shows that for all (εk, yk) sufficiently close to (ε̄, ȳ),

(εk+1, yk+1) = (εk, yk) + (∆εk,∆yk) .

Thus, by using (5.15) we know that (5.11) holds.
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5.2 Least squares semidefinite programming

In this section, we apply the general inexact smoothing Newton method developed

in the last section to the following least squares semidefinite programming (LSSDP)

min
1

2
∥X − C∥2

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . , p ,

⟨Ai, X⟩ ≥ bi, i = p+ 1, . . . ,m ,

X ∈ Sn
+ ,

(5.16)

where Sn and Sn
+ are, respectively, the space of n× n symmetric matrices and the

cone of positive semidefinite matrices in Sn, ∥ · ∥ is the Frobenius norm induced

by the standard trace inner product ⟨·, ·⟩ in Sn, C and Ai, i = 1, . . . ,m are given

matrices in Sn, and b ∈ ℜm. Mathematically, the LSSDP problem (5.16) can be

equivalently written as

min t

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . , p ,

⟨Ai, X⟩ ≥ bi, i = p+ 1, . . . ,m ,

t ≥ ∥X − C∥ ,

X ∈ Sn
+ .

(5.17)

Problem (5.17) is a linear optimization problem with linear equality/inequality, the

second order cone, and the positive semidefinite cone constraints. This suggests

that one may then use well developed and publicly available softwares, based on

interior point methods (IPMs), such as SeDuMi [112], SDPT3 [117], and a few

others to solve (5.17), and so the LSSDP problem (5.16), directly. This is indeed

feasible on a Pentium IV PC (the computing machine that we will use in our

numerical experiments) as long as n is small (say 80 at most) and m is not too

large (say 5, 000). The reason is that at each iteration these solvers require to
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formulate and solve a linear system with a dense Schur complement matrix (for

example, see [5]) of the size (m+ 1 + n̄)× (m+ 1 + n̄), where n̄ := 1
2
n(n+ 1).

Realizing the difficulties in using IPMs to solve the LSSDP problem, in two recent

papers, Malick [74] and Boyd and Xiao [7] proposed, respectively, to apply clas-

sical quasi-Newton methods (in particular, the BFGS method) and the projected

gradient method to the Lagrangian dual of problem (5.16) as the objective func-

tion in the corresponding Lagrangian dual (dual in short) problem is continuously

differentiable. Unlike the IPMs, these two dual based approaches are relatively

inexpensive at each iteration as the dual problem is of dimension m only. The

overall numerical performance of these two approaches vary from problem to prob-

lem. They may take dozens of iterations for some testing examples and several

hundreds or thousands for some others.

For subsequent discussions, in this section we introduce some basic properties of

matrix valued functions related to the LSSDP problem (5.16) and its dual.

Let F denote the feasible set of of problem (5.16). Assume that F ̸= ∅. Then

problem (5.16) has a unique optimal solution X. Let q = m−p and Q = {0}p×ℜq
+.

Denote A : Sn → ℜm by

A(X) :=


⟨A1, X⟩

...

⟨Am, X⟩

 , X ∈ Sn .

For any symmetric X ∈ Sn, we write X ≽ 0 and X ≻ 0 to represent that X is

positive semidefinite and positive definite, respectively. Then

F = {X ∈ Sn | A(X) ∈ b+Q, X ≽ 0}

and the dual problem of (5.16) takes the form

min θ(y) :=
1

2
∥ΠSn

+
(C +A∗y)∥2 − ⟨b, y⟩ − 1

2
∥C∥2

s.t. y ∈ Q∗ = ℜp ×ℜq
+ .

(5.18)
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The objective function θ(·) in (5.18) is a continuously differentiable convex function

with

∇θ(y) = AΠSn
+
(C +A∗y)− b, y ∈ ℜm ,

where the adjoint A∗ : ℜm → Sn takes the form

A∗(y) =
m∑
i=1

yiAi, y ∈ ℜm . (5.19)

One classical dual approach described by Rockafellar in [106, Page 4], when spe-

cialized to problem (5.16), is to first find an optimal solution ȳ, if it exists, to the

dual problem (5.18), and then to obtain the unique optimal solution X to problem

(5.16) via X = ΠSn
+
(C + A∗ȳ). See Malick [74] and Boyd and Xiao [7] for the

worked out details.

In order to apply a dual based optimization method to solve problem (5.16), we

need the following Slater condition to hold:
{Ai}pi=1 are linearly independent,

∃ X0 ∈ F such that ⟨Ai, X
0⟩ > bi, i = p+ 1, . . . ,m and X0 ≻ 0 .

(5.20)

The next proposition is a straightforward application of [106, Theorems 17 & 18].

Proposition 5.7. Under the Slater condition (5.20), the following hold:

(i) There exists at least one ȳ ∈ Q∗ that solves the dual problem (5.18). The

unique solution to problem (5.16) is given by

X = ΠSn
+
(C +A∗ȳ). (5.21)

(ii) For every real number τ , the constrained level set {y ∈ Q∗ | θ(y) ≤ τ} is

closed, bounded, and convex.

Proposition 5.7 says that one should be able to use any gradient based optimization

method to find an optimal solution to the convex problem (5.18), and thus solves
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problem (5.16), as long as the Slater condition (5.20) holds. Note that for any given

y ∈ ℜm, both θ(y) and ∇θ(y) can be computed explicitly as the metric projector

ΠSn
+
(·) has long been known by statisticians to admit an analytic formula [109].

Since θ(·) is a convex function, ȳ ∈ Q∗ solves problem (5.18) if and only if it

satisfies the following variational inequality

⟨y − ȳ,∇θ(ȳ)⟩ ≥ 0 ∀ y ∈ Q∗ . (5.22)

Define F : ℜm → ℜm by

F (y) := y − ΠQ∗(y −∇θ(y)), y ∈ ℜm . (5.23)

Then one can easily check that ȳ ∈ Q∗ solves (5.22) if and only if F (ȳ) = 0

[30]. Thus, solving the dual problem (5.18) is equivalent to solving the following

equation

F (y) = 0 , y ∈ ℜm . (5.24)

Since both ΠQ∗(·) and ΠSn
+
(·) are globally Lipschitz continuous, F is globally Lips-

chitz continuous. This means that though one cannot use classical Newton method

to solve (5.24), one can still use Clarke’s generalized Jacobian based Newton meth-

ods [61, 92, 95]. Unlike the case with equality constraints only, however, F (·) is

no longer the gradient mapping of any real valued function. This means that we

cannot use the techniques in [89] to globalize these Clarke’s generalized Jacobian

based Newton methods. In this paper, we shall introduce an inexact smoothing

Newton method to overcome this difficulty. For this purpose, we need smoothing

functions for F (·).

Next, we shall first discuss smoothing functions for the metric projector ΠSn
+
(·).

Let X ∈ Sn. Suppose that X has the spectral decomposition

X = PΛP T = Pdiag(λ1, . . . , λn)P
T , (5.25)
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where λ1 ≥ · · · ≥ λn are the eigenvalues of X and P is a corresponding orthogonal

matrix of orthonormal eigenvectors of X. Then, from [109],

ΠSn
+
(X) = Pdiag(max(0, λ1), . . . ,max(0, λn))P

T . (5.26)

Define

α := {i | λi > 0}, β := {i | λi = 0}, and γ := {i | λi < 0}.

Write P = [Pα Pβ Pγ] with Pα, Pβ, and Pγ containing the columns in P indexed

by α, β, and γ, respectively. Let ϕ : ℜ×ℜ → ℜ be defined by the following Huber

smoothing function

ϕ(ε, t) =


t if t ≥ |ε|

2
,

1

2|ε|
(t+

|ε|
2
)2 if − |ε|

2
< t < |ε|

2
, (ε, t) ∈ ℜ × ℜ .

0 if t ≤ − |ε|
2
,

(5.27)

For any ε ∈ ℜ, let

Φ(ε,X) := P


ϕ(ε, λ1)

. . .

ϕ(ε, λn)

P T . (5.28)

Note that when ε = 0, Φ(0, X) = ΠSn
+
(X). From Proposition 2.1, we know that

when ε ̸= 0 or β = ∅,

Φ′
X(ε,X)(H) = P [Ω(ε, λ) ◦ (P THP )]P T ∀H ∈ Sn , (5.29)

where “ ◦ ” denotes the Hadamard product, λ = (λ1, . . . , λn)
T , and the symmetric

matrix Ω(ε, λ) is given by

[
Ω(ε, λ)

]
ij
=


ϕ(ε, λi)− ϕ(ε, λj)

λi − λj
∈ [0, 1] if λi ̸= λj ,

ϕ′
λi
(ε, λi) ∈ [0, 1] if λi = λj ,

i, j = 1, . . . , n . (5.30)
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When ε ̸= 0 or β = ∅, the partial derivative of Φ(·, ·) with respect to ε can be

computed by

Φ′
ε(ε,X) = Pdiag(ϕ′

ε(ε, λ1), · · · , ϕ′
ε(ε, λn))P

T .

Thus, Φ(·, ·) is continuously differentiable around (ε,X) ∈ ℜ×Sn if ε ̸= 0 or β = ∅.

Furthermore, Φ(·, ·) is globally Lipschitz continuous and strongly semismooth at

any (0, X) ∈ ℜ × Sn [124]. In particular, for any ε ↓ 0 and Sn ∋ H → 0, it holds

that

Φ(ε,X +H)− Φ(0, X)− Φ′(ε,X +H)(ε,H) = O(∥(ε,H)∥2) . (5.31)

Recall that for a locally Lipschitz continuous function Γ from a finite dimensional

real Hilbert space X to ℜn, the B-subdifferential of Γ at x ∈ X in the sense of Qi

[92] is defined by

∂BΓ(x) := {V |V = lim
k→∞

Γ′(xk), xk → x, xk ∈ DΓ} ,

where DΓ is the set of points where Γ is Fréchet differentiable. The generalized

Jacobian ∂Γ(x) of Γ at x in the sense of Clarke [18] is just the convex hull of

∂BΓ(x).

Define Φ|β| : ℜ × S |β| → S |β| by replacing the dimension n in the definition of

Φ : ℜ × Sn → Sn with |β|. As the case for Φ(·, ·), the mapping Φ|β|(·, ·) is also

Lipschitz continuous. Then the B-subdifferentials ∂BΦ(0, X) of Φ at (0, X) and

∂BΦ|β|(0, Z) of Φ|β| at (0, Z) ∈ ℜ×S |β| in the sense of Qi [92] are both well defined.

The following result can be proven similarly as in [15, Proposition 5].

Proposition 5.8. Suppose that X ∈ Sn has the spectral decomposition as in (5.25).

Then V ∈ ∂BΦ(0, X) if and only if there exists V|β| ∈ ∂BΦ|β|(0, 0) such that for all
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(ε,H) ∈ ℜ × Sn,

V (ε,H) = P


P T
αHPα P T

αHPβ Uαγ ◦ (P T
αHPγ)

(P T
αHPβ)

T V|β|(ε, P
T
β HPβ) 0

(P T
αHPγ)

T ◦ UT
αγ 0 0

P T , (5.32)

where U ∈ Sn is defined by

Uij :=
max{λi, 0}+max{λj, 0}

|λi |+ |λj |
, i, j = 1 , . . . , n, (5.33)

where 0/0 is defined to be 1.

In order to define smoothing functions for F (·), we need to define smoothing func-

tions for ΠQ∗(·). This, however, can be done in many different ways. For simplicity,

we shall only use the function ϕ given by (5.27) to define a smoothing function for

ΠQ∗(·). Let ψ : ℜ× ℜm → ℜm be defined by

ψi(ε, z) =

 zi if i = 1, . . . , p,

ϕ(ε, zi) if i = p+ 1, . . . ,m,
(ε, z) ∈ ℜ × ℜm . (5.34)

The function ψ is obviously continuously differentiable around any (ε, z) ∈ ℜ×ℜm

as long as ε ̸= 0 and is strongly semismooth everywhere.

Now, we are ready to define a smoothing function for F (·) itself. Let

Υ(ε, y) := y − ψ (ε, y − (AΦ(ε, C +A∗y)− b)) , (ε, y) ∈ ℜ × ℜm . (5.35)

By the definitions of Υ, ψ, and Φ, we know that for any y ∈ ℜm, F (y) = Υ(0, y).

We summarize several useful properties of Υ in the next proposition.

Proposition 5.9. Let Υ : ℜ×ℜm be defined by (5.35). Let y ∈ ℜm. Then it holds

that

(i) Υ is globally Lipschitz continuous on ℜ× ℜm.
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(ii) Υ is continuously differentiable around (ε, y) when ε ̸= 0. For any fixed

ε ∈ ℜ, Υ(ε, ·) is a P0-function, i.e., for any (y, h) ∈ ℜm ×ℜm with y ̸= h,

max
yi ̸=hi

(yi − hi)(Υi(ε, y)−Υi(ε, h)) ≥ 0 , (5.36)

and thus for any fixed ε ̸= 0, Υ′
y(ε, y) is a P0-matrix.

(iii) Υ is strongly semismooth at (0, y). In particular, for any ε ↓ 0 and ℜm ∋

h→ 0 we have

Υ(ε, y + h)−Υ(0, y)−Υ′(ε, y + h)

 ε

h

 = O(||(ε, h)∥2) .

(iv) For any h ∈ ℜm,

∂BΥ(0, y)(0, h) ⊆ h− ∂Bψ(0, y −∇θ(y))(0, h−A∂BΦ(0, C +A∗y)(0,A∗h)) .

Proof. (i) Since both ψ and Φ are globally Lipschitz continuous, Υ is also globally

Lipschitz continuous.

(ii) From the definitions of ψ and Φ we know that Υ is continuously differentiable

around (ε, y) ∈ ℜ × ℜm when ε ̸= 0.

Since, by part (i), Υ is continuous on ℜ × ℜm, we only need to show that for any

0 ̸= ε ∈ ℜ, Υ(ε, ·) is a P0-function.

Fix ε ̸= 0. Define gε : ℜm → ℜm by

gε(y) = AΦ(ε, C +A∗y)− b, y ∈ ℜm .

Then gε is continuously differentiable on ℜm. From (5.29) and (5.30), we have

⟨h, (gε)′(y)h⟩ = ⟨h,AΦ′
X(ε,X)(A∗h)⟩ = ⟨A∗h,Φ′

X(ε,X)(A∗h)⟩ ≥ 0 ∀h ∈ ℜm ,

which implies that gε is a P0-function on ℜm. Let (y, h) ∈ ℜm × ℜm with y ̸= h.

Then there exists i ∈ {1, . . . ,m} with yi ̸= hi such that

(yi − hi)((gε)i(y)− (gε)i(h)) ≥ 0 .
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Furthermore, by noting that for any z ∈ ℜm,

ϕ′
zi
(ε, zi) ∈ [0, 1], i = 1, . . . ,m ,

we obtain that

(yi − hi)(Υi(ε, y)−Υi(ε, h)) ≥ 0 .

This shows that (5.36) holds. Thus, Υ′
y(ε, y) is P0-matrix for any fixed ε ̸= 0.

(iii) Since it can be checked directly that the composite of strongly semismooth

functions is still strongly semismooth [37], Υ is strongly semismooth at (0, y).

(iv) Since both ψ and Φ are directionally differentiable, for any (ε, y′) ∈ ℜ × ℜm

such that Υ is Fréchet differentiable at (ε, y′),

Υ′(ε, y′)(0, h) = h− ψ′ ((ε, z′); (0, h−AΦ′((ε, C +A∗y′); (0,A∗h))
))
,

which, together with the semismoothness of ψ and Φ, implies

Υ′(ε, y′)(0, h) ∈ h− ∂Bψ(ε, z
′)
(
0, h−A∂BΦ(ε, C +A∗y′)(0,A∗h)

)
,

where z′ := y′ − (AΦ(ε, C +A∗y′)− b) . By taking (ε, y′) → (0, y) in the above

inclusion, we complete the proof.

5.2.1 Global and local convergence analysis

In this section, we apply the general inexact smoothing Newton method developed

in the last section to the least squares semidefinite programming (5.16).

Let F : ℜm → ℜm be defined by (5.23). Let κ ∈ (0,∞) be a constant. Define

G : ℜ× ℜm → ℜm by

G(ε, y) := Υ(ε, y) + κ|ε|y , (ε, y) ∈ ℜ × ℜm , (5.37)

where Υ : ℜ×ℜm → ℜm is defined by (5.35). The reason for defining G by (5.37) is

that for any (ε, y) ∈ ℜ×ℜm with ε ̸= 0, G′
y(ε, y) is a P -matrix (i.e., all its principal
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minors are positive), thus nonsingular while by part (ii) of Proposition 5.9 Υ′
y(ε, y)

is only a P0-matrix (i.e., all its principal minors are nonnegative), which may be

singular.

Let E : ℜ× ℜm → ℜ×ℜm be defined by

E(ε, y) :=

 ε

G(ε, y)

 =

 ε

Υ(ε, y) + κ|ε|y

 , (ε, y) ∈ ℜ × ℜm . (5.38)

Let N be defined by (5.8). Next, we discuss convergent properties of Algorithm

5.1 when it is applied to solve E(ε, y) = 0.

Theorem 5.10. Algorithm 5.1 is well defined and generates an infinite sequence

{(εk, yk)} ∈ N with the properties that any accumulation point (ε̄, ȳ) of {(εk, yk)}

is a solution of E(ε, y) = 0 and limk→∞ φ(εk, yk) = 0. Additionally, if the Slater

condition (5.20) holds, then {(εk, yk)} is bounded.

Proof. From part (ii) of Proposition 5.9 and the definitions of G and E we know

that for any (ε, y) ∈ ℜ++×ℜm, G′
y(ε, y), and so E ′(ε, y), is a P -matrix. Then from

Theorem 5.5 we know that Algorithm 5.1 is well defined and generates an infinite

sequence {(εk, yk)} ∈ N with the property that any accumulation point (ε̄, ȳ) of

{(εk, yk)} is a solution of E(ε, y) = 0.

Since φ(εk, yk) is a decreasing sequence, limk→∞ φ(εk, yk) exists. Let

φ̄ := lim
k→∞

φ(εk, yk) ≥ 0 .

If φ̄ > 0, then there exists an ε′ > 0 such that εk ≥ ε′ for all k ≥ 0. For any υ ≥ 0,

let

Lυ := {y ∈ ℜm | ∥Υ(ν, y) + κνy∥ ≤ υ, ν ∈ [ε′, ε̂]} .

Then it is not difficult to prove that for any υ ≥ 0, Lυ is bounded. In fact,

suppose that for some υ ≥ 0, Lυ is unbounded. Then there exist two sequences

{zl} and {νl} such that liml→∞ ||zl|| = ∞ and for all l ≥ 1, ε′ ≤ νl ≤ ε̂ and
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∥Υ(νl, zl) + κνlzl∥ ≤ υ. By taking subsequences if necessary, we may assume that

liml→∞ νl = ν̄ ∈ [ε′, ε̂] and

i ∈ I∞ ∪ I−∞ ∪ Iυ ∀ i ∈ {1, . . . ,m} ,

where

I∞ := {i | lim
l→∞

zli = ∞, i = 1, . . . ,m} ,

I−∞ := {i | lim
l→∞

zli = −∞, i = 1, . . . ,m}, and

Iυ := {i | {zli} is uniformly bounded, i = 1, . . . ,m} .
Then, we have

Υi(ν
l, zl) → −∞ ∀ i ∈ I∞, (5.39)

and

Υi(ν
l, zl) → ∞ ∀ i ∈ I−∞ . (5.40)

For each l ≥ 1, define hl ∈ ℜm as follows

hli =

 0 if i ∈ I∞ ∪ I−∞ ,

zli if i ∈ Iυ ,
i = 1, . . . ,m .

Since, by part (ii) of Proposition 5.9, for any l ≥ 1, Υ(νl, ·) is a P0-function, by

further taking subsequences if necessary, we know that there exists i ∈ I∞ ∪ I−∞

(note that hlj = zlj for all j ∈ Iυ and l ≥ 1) such that

(zli − hli)(Υi(ν
l, zl)−Υi(ν

l, hl)) ≥ 0 ∀ l ≥ 1 ,

which is impossible in view of (5.39), (5.40), and the fact that {Υ(νl, hl)} is

bounded (note that Υ is globally Lipschitz continuous). This shows that for any

υ ≥ 0, Lυ is bounded, i.e.,

{y ∈ ℜm | ∥G(ε, y)∥ ≤ υ, ε ∈ [ε′, ε̂]}

is bounded. This implies that {(εk, yk)} is bounded. Thus, {(εk, yk)} has at least

one accumulation point, which is a solution of E(ε, y) = 0, contradicting φ̄ > 0.

Therefore, φ̄ = 0.
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Suppose that the Slater condition (5.20) holds. Then from Proposition 5.7 we

know that the solution set of the dual problem is nonempty and compact. Thus,

E(ε, y) = 0 also has a nonempty and compact solution set. Since part (ii) of

Proposition 5.9 implies that E is a P0-function, the boundedness of {(εk, yk)}

follows directly from [97, Theorem 2.5].

Assume that the Slater condition (5.20) holds. Let (ε̄, ȳ) be an accumulation point

of the infinite sequence {(εk, yk)} generated by Algorithm 5.1. Then, by Theorem

5.10, we know that ε̄ = 0 and F (ȳ) = 0, i.e., ȳ ∈ Q∗ = ℜp × ℜq
+ is an optimal

solution to the dual problem (5.18). Let X := ΠSn
+
(C +A∗ȳ). By Proposition 5.7

we know that X ∈ Sn
+ is the unique optimal solution to problem (5.16).

For quadratic convergence of Algorithm 5.1, we need the concept of constraint non-

degeneracy initiated by Robinson [104] and extensively developed by Bonnans and

Shapiro [4]. This concept is a generalization of the well-known linear independence

constraint qualification (or LICQ) used in nonlinear programming. For a given

closed K ∈ X , a finite dimensional real Hilbert space, as in convex analysis [105]

we use TK(x) to denote the tangent cone of K at x ∈ K. The largest linear space

contained in TK(x) is denoted by lin
(
TK(x)

)
. Let I be the identity mapping from

Sn to Sn. Then the constraint nondegeneracy is said to hold at X for the problem

(5.16) if  A

I

Sn +

 lin
(
TQ(A(X)− b)

)
lin

(
TSn

+
(X)

)
 =

 ℜm

Sn

 , (5.41)

where Q = {0}p ×ℜq
+. Note that the constraint nondegenerate condition (5.41) is

called the primal nondegeneracy in [1].

Let Ind(X) denote the index set of active constraints at X:

Ind(X) := {i | ⟨Ai, X⟩ = bi, i = p+ 1, . . . ,m} ,

and s be the number of elements in Ind(X). Without loss of generality, we assume
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that

Ind(X) = {p+ 1, . . . , p+ s} .

Define Â : Sn → ℜp+s by

Â(X) :=


⟨A1, X⟩

...

⟨Ap+s, X⟩

 , X ∈ Sn , (5.42)

and the adjoint of Â is denoted by Â∗.

Lemma 5.11. Let X := C + A∗ȳ have the spectral decomposition as in (5.25).

Then the constraint nondegenerate condition (5.41) holds at X if and only if for

any h ∈ ℜp+s,

P T
α Â∗h = 0 ⇐⇒ h = 0 . (5.43)

Proof. Since the linearity space lin
(
TQ(A(X) − b)

)
in (5.41) can be computed

directly as follows

lin
(
TQ(A(X)− b)

)
= {h ∈ ℜm |hi = 0, i = 1, . . . , p, i ∈ Ind(X)} , (5.44)

we can see that (5.41) is reduced to Â

I

Sn +

 {0}p+s

lin
(
TSn

+
(X)

)
 =

 ℜp+s

Sn

 ,

which is equivalent to

Â
(
linTSn

+
(X)

)
= ℜp+s . (5.45)

Note that

X = ΠSn
+
(X) = Pdiag(max(0, λ1), . . . ,max(0, λn))P

T ,

the tangent cone TSn
+
(X), which was first characterized by Arnold [2], takes the

form

TSn
+
(X) = {B ∈ Sn

∣∣ [Pβ Pγ ]
TB [Pβ Pγ ] ≽ 0} .
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Consequently,

lin
(
TSn

+
(X)

)
=

{
B ∈ Sn

∣∣ P T
β BPβ = 0, P T

β BPγ = 0, P T
γ BPγ = 0

}
. (5.46)

Thus, from (5.45), the constraint nondegeneracy condition (5.41) holds if and only

if (5.43) holds.

Lemma 5.12. Let Φ : ℜ × Sn → Sn be defined by (5.28). Assume that the

constraint nondegeneracy (5.41) holds at X. Then for any V ∈ ∂BΦ(0, X) we have⟨
h, ÂV (0, Â∗h)

⟩
> 0 ∀ 0 ̸= h ∈ ℜp+s . (5.47)

Proof. Let V ∈ ∂BΦ(0, X). Suppose that there exists 0 ̸= h ∈ ℜp+s such that

(5.47) fails to hold, i.e., ⟨
h, ÂV (0, Â∗h)

⟩
≤ 0 .

Denote H := Â∗h. Then, by Proposition 5.8, there exists V|β| ∈ ∂BΦ|β|(0, 0) such

that

V (0, H) = P


P T
αHPα P T

αHPβ Uαγ ◦ (P T
αHPγ)

(P T
αHPβ)

T V|β|(0, P
T
β HPβ) 0

(P T
αHPγ)

T ◦ UT
αγ 0 0

P T ,

where U ∈ Sn is defined by (5.33). Since ⟨P T
β HPβ, V|β|(0, P

T
β HPβ)⟩ ≥ 0 and

⟨h, ÂV (0, Â∗h)
⟩
≤ 0, we obtain from ⟨h, ÂV (0, Â∗h)⟩ = ⟨H,V (0, H)⟩ that

P T
αHPα = 0, P T

αHPβ = 0, and P T
αHPγ = 0 ,

i.e.,

P T
αH = P T

α Â∗h = 0 .

On the other hand, since the constraint nondegeneracy (5.41) holds at X, from

(5.43) we know that h = 0. This contradiction shows that for any V ∈ ∂BΦ(0, X),

(5.47) holds.
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Proposition 5.13. Let Υ : ℜ × ℜm → ℜm be defined by (5.35). Assume that the

constraint nondegeneracy (5.41) holds at X. Then for any W ∈ ∂BΥ(0, ȳ) we have

max
i
hi(W (0, h))i > 0 ∀ 0 ̸= h ∈ ℜm . (5.48)

Proof. Let W ∈ ∂BΥ(0, ȳ). Suppose that there exists 0 ̸= h ∈ ℜm such that (5.48)

does not hold, i.e.,

max
i
hi(W (0, h))i ≤ 0 . (5.49)

Then from part (iv) of Proposition 5.9 we know that there exist D ∈ ∂Bψ(0, z̄)

and V ∈ ∂BΦ(0, X) such that

W (0, h) = h−D(0, h−AV (0,A∗h)) = h−D(0, h) +D(0,AV (0,A∗h)) , (5.50)

where z̄ := ȳ − ∇θ(ȳ) = ȳ − (AΦ(0, X) − b). By simple calculations, we can see

that there exists a nonnegative vector d ∈ ℜm satisfying

di =


1 if 1 ≤ i ≤ p ,

∈ [0, 1] if p+ 1 ≤ i ≤ p+ s ,

0 if p+ s+ 1 ≤ i ≤ m

such that for any y ∈ ℜm,

(D(0, y))i = diyi, i = 1, . . . ,m .

Thus, we obtain from (5.50) and (5.49) that
hi(AV (0,A∗h))i ≤ 0 if 1 ≤ i ≤ p ,

hi(AV (0,A∗h))i ≤ 0 or hi = 0 if p+ 1 ≤ i ≤ p+ s ,

hi = 0 if p+ s+ 1 ≤ i ≤ m,

which, implies

⟨h,AV (0,A∗h)⟩ = ⟨ĥ, ÂV (0, Â∗ĥ)⟩ ≤ 0 ,

where 0 ̸= ĥ ∈ ℜp+s is defined by ĥi = hi, i = 1, . . . , p + s. This, however,

contradicts (5.47) in Lemma 5.12. This contradiction shows that (5.48) holds.
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Theorem 5.14. Let (ε̄, ȳ) be an accumulation point of the infinite sequence {(εk, yk)}

generated by Algorithm 5.1. Assume that the constraint nondegeneracy (5.41) holds

at X. Then the whole sequence {(εk, yk)} converges to (ε̄, ȳ) quadratically, i.e.,∥∥(εk+1 − ε̄, yk+1 − ȳ)
∥∥ = O

(
∥(εk − ε̄, yk − ȳ)∥2

)
. (5.51)

Proof. In order to apply Theorem 5.6 to obtain the quadratic convergence of

{(εk, yk)}, we only need to check that E is strongly semismooth at (ε̄, ȳ) and

that all V ∈ ∂BE(ε̄, ȳ) are nonsingular.

The strong semismoothness of E at (ε̄, ȳ) follows directly from part (iii) of Propo-

sition 5.9 and the fact that the modulus function | · | is strongly semismooth ev-

erywhere on ℜ. The nonsingularity of all matrices in ∂BE(ε̄, ȳ) can be proved as

follows.

Let V ∈ ∂BE(ε̄, ȳ) be arbitrarily chosen. From Proposition 5.13 and the definition

of E, we know that for any 0 ̸= d ∈ ℜm+1,

max
i
di(V d)i > 0 ,

which, by [19, Theorem 3.3.4], implies that V is a P -matrix, and so nonsingular.

Then the proof is completed.

Theorem 5.14 says that Algorithm 5.1 can achieve quadratic convergence under the

assumption that the constraint nondegenerate condition (5.41) holds at X. Next,

we shall discuss about this assumption by considering the following special least

squares semidefinite programming

min
1

2
∥X − C∥2

s.t. Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(5.52)
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where Be, Bl, and Bu are three index subsets of {(i, j) | 1 ≤ i ≤ j ≤ n} satisfying

Be ∩ Bl = ∅, Be ∩ Bu = ∅, and lij < uij for any (i, j) ∈ Bl ∩ Bu. Denote the

cardinalities of Be, Bl, and Bu by p, ql, and qu, respectively. Let m := p+ ql + qu.

For any (i, j) ∈ {1, . . . , n} × {1, . . . , n}, define E ij ∈ ℜn×n by

(E ij)st :=

 1 if (s, t) = (i, j) ,

0 otherwise ,
s, t = 1, . . . , n .

Thus, problem (5.52) can be written as a special case of (5.16) with

A(X) :=


{⟨Aij, X⟩}(i,j)∈Be

{⟨Aij, X⟩}(i,j)∈Bl

−{⟨Aij, X⟩}(i,j)∈Bu

 , X ∈ Sn (5.53)

and

b :=


{eij}(i,j)∈Be

{lij}(i,j)∈Bl

−{uij}(i,j)∈Bu

 ,

where Aij := 1
2
(E ij + E ji). Then, its dual problem takes the same form as (5.18)

with q := ql + qu. The index set Ind(X) of active constraints at X now becomes

Ind(X) = B̂l ∪ B̂u ,

where

B̂l := { (i, j) ∈ Bl | ⟨Aij, X ⟩ = lij} and B̂u := { (i, j) ∈ Bu | ⟨Aij, X ⟩ = uij} .

Let s be the cardinality of Ind(X). Then the mapping Â : Sn → ℜp+s defined by

(5.42) takes the form

Â(X) :=


{⟨Aij, X⟩}(i,j)∈Be

{⟨Aij, X⟩}(i,j)∈B̂l

−{⟨Aij, X⟩}(i,j)∈B̂u

 .
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Recall that the constraint nondegenerate condition (5.41) holds at X if and only

if for any h ∈ ℜp+s, (5.43) holds. A particular case for (5.43) to hold is when

Be = {(i, i) | i = 1, . . . , n}, Bl ∪ Bu = ∅, and b > 0 [89, 91]. Furthermore, if

Be has a band structure, (5.43) also holds as long as the corresponding band of

the given matrix C is positive definite [91]. In general, the equivalent constraint

nondegenerate condition (5.43) may fail to hold for problem (5.52). In [88], Qi

establishes an interesting connection between the constraint nondegeneracy and

the positive semidefinite matrix completions on chordal graphs.

5.3 Least squares matrix nuclear norm problems

In this section, we shall introduce the least squares matrix nuclear norm program-

ming (LSNNP) and then still apply the general inexact smoothing Newton method

to solve it.

Let Ae : ℜn1×n2 → ℜme , Al : ℜn1×n2 → ℜml and Aq : ℜn1×n2 → ℜmq be the linear

operators defined by

Ae(X) = [⟨Ae
1, X⟩; · · · ; ⟨Ae

me
, X⟩],

Al(X) = [⟨Al
1, X⟩; · · · ; ⟨Al

ml
, X⟩],

Aq(X) = [⟨Aq
1, X⟩; · · · ; ⟨Aq

mq−1, X⟩, 0].

Denote a second order cone by

Kmq := { y ∈ ℜmq | ∥yt∥2 ≤ ymq },

where y = [y1; y2; · · · ; ymq−1; ymq ] = [yt; ymq ].

Let ρ ≥ 0 and λ > 0 be two given numbers and C ∈ ℜn1×n2 be a given matrix.

The least squares matrix nuclear norm problem (LSNNP) then takes the following
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form

min
λ

2
∥X − C∥2 + ρ∥X∥∗

s.t. Ae(X)− be = 0, be ∈ ℜme ,

Al(X)− bl ≥ 0, bl ∈ ℜml ,

Aq(X)− bq ∈ Kmq , bq ∈ ℜmq ,

X ∈ ℜn1×n2 .

(5.54)

Denote b := [be; bl; bq] and Q := {0}me×ℜml
+ ×Kmq . Letm := me+ml+mq. Define

A : ℜn1×n2 → ℜm by A = [Ae; Al; Aq]. Then problem (5.54) can be rewritten in

the following compact form

min fλ,ρ(X) :=
λ

2
∥X − C∥2 + ρ∥X∥∗

s.t. A(X) ∈ b+Q ,

X ∈ ℜn1×n2 .

(5.55)

5.3.1 The Lagrangian dual problem and optimality condi-

tions

The Lagrangian function L(X, y) : ℜn1×n2 ×ℜm → ℜ for problem (5.55) is defined

by

L(X, y) := fλ,ρ(X)−⟨A(X)−b, y⟩ = λ

2
∥X−C∥2+ρ∥X∥∗+⟨b−A(X), y⟩ . (5.56)
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The dual objective function g(y) can be derived from the Lagrangian function

(5.56) by

g(y) = inf
X∈ℜn1×n2

L(X, y)

= inf
X∈ℜn1×n2

{λ
2
∥X − C∥2 + ρ∥X∥∗ + ⟨b−A(X), y⟩

}
= inf

X∈ℜn1×n2

{λ
2

(
∥X∥2 − 2⟨C +

1

λ
A∗y,X⟩+ ∥C +

1

λ
A∗y∥2

)
+ ρ∥X∥∗

−λ
2
∥C +

1

λ
A∗y∥2 + λ

2
∥C∥2 + ⟨b, y⟩

}
= inf

X∈ℜn1×n2

{λ
2
∥X − (C +

1

λ
A∗y)∥2 + ρ∥X∥∗ −

λ

2
∥C +

1

λ
A∗y∥2 + λ

2
∥C∥2 + ⟨b, y⟩

}
.

where A∗ = [(Ae)∗ (Al)∗ (Aq)∗] is the adjoint operator of A.

In order to get the infimum of
λ

2
∥X − C − 1

λ
A∗y∥2 + ρ∥X∥∗ in g(y), we need

to introduce the singular value thresholding operator Pτ (·) for any τ > 0. Let

Y ∈ ℜn1×n2 have the singular value decomposition (SVD) as in (2.48)

Y = U [Σ(Y ) 0][V1 V2]
T , Σ(Y ) = diag(σ(Y )),

where σ(Y ) :=
(
σ1(Y ), . . . , σn1(Y )

)T
are singular values of Y . For any τ ≥ 0,

Pτ (Y ) is defined by:

Pτ (Y ) := U [Στ (Y ) 0][V1 V2]
T = UΣτ (Y )V T

1 ,

where Στ (Y ) = diag
(
(σ1(Y )−τ)+, . . . , (σn1(Y )−τ)+

)T
. The singular value thresh-

olding operator is a proximity operator associated with nuclear norm. Details of

proximity operator can be found in [52].

The following proposition1 allows us to obtain the result of infX{λ
2
∥X − (C +

1
λ
A∗y)∥2 + ρ∥X∥∗}. Its proof can be found in [12, 73].

1Donald Goldfard first reported the formula (5.57) at the ”Foundations of Computational

Mathematics Conference’08” held at the City University of Hong Kong, June 2008
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Proposition 5.15. For each τ ≥ 0 and Y ∈ ℜn1×n2, the singular value thresholding

operator obeys

Pτ (Y ) = argmin
X

{1
2
∥X − Y ∥2F + τ∥X∥∗}. (5.57)

Proposition 5.15 implies that

g(y) =
λ

2
∥P ρ

λ
(C +

1

λ
A∗y)− (C +

1

λ
A∗y)∥2 + ρ∥P ρ

λ
(C +

1

λ
A∗y)∥∗ +

−λ
2
∥C +

1

λ
A∗y∥2 + λ

2
∥C∥2 + ⟨b, y⟩

= −λ
2
∥P ρ

λ
(C +

1

λ
A∗y)∥2 + λ

2
∥C∥2 + ⟨b, y⟩.

Let

θ(y) := −g(y) + λ

2
∥C∥2 = λ

2
∥P ρ

λ
(C +

1

λ
A∗y)∥2 − ⟨b, y⟩.

Then we obtain the dual problem for problem (5.55) is

min θ(y)

s.t y ∈ Q∗ .
(5.58)

The objective function θ(·) in the dual problem (5.58) is a continuously differen-

tiable convex function [52]. However it is not twice continuously differentiable. Its

gradient is given by

∇θ(y) = AP ρ
λ
(C +

1

λ
A∗y)− b , (5.59)

The dual problem (5.58) of problem (5.55) is a convex constrained vector-valued

problem, in contrast to the matrix-valued problem (5.55). When it is easier to

apply optimization algorithms to solve for the dual problem (5.58) than for the

primal problem (5.55), one can use Rockafellar’s dual approach [106] to find an

optimal solution ȳ for (5.58) first. An optimal solution X for (5.55) can then be

obtained by

X = arg inf
X
L(X, ȳ) = P ρ

λ
(C +

1

λ
A∗ȳ) .
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Before introducing optimality conditions, we assume that the Slater condition holds

for the primal problem (5.55): {Ai}me
i=1 are linearly independent,

∃X0 such that Al(X0) > bl and Aq(X0)− bq ∈ ri(Kmq) .
(5.60)

where ri(Kmq) denotes the relative interior of Kmq . When the Slater condition

is satisfied, the following proposition, which is a straightforward application of

Rockafellar’s results in [106, Theorems 17 & 18], holds.

Proposition 5.16. Under the Slater condition (5.60), the following results hold:

(i) There exists at least one ȳ ∈ Q∗ that solves the dual problem (5.58). The

unique solution to the primal problem (P) is given by

X = P ρ
λ
(C +

1

λ
A∗ȳ). (5.61)

(ii) For every real number τ , the constrained level set {y ∈ Q∗| θ(y) ≤ τ} is

closed, bounded and convex.

The convexity in the second part of Proposition 5.16 allows us to apply any gradient

based optimization method to obtain an optimal solution for the dual problem

(5.58). When a solution is found for (5.58), one can always use (5.61) to obtain a

unique optimal solution to the primal problem .

Define F : ℜm → ℜm by

F (y) := y − ΠQ∗
(
y −∇θ(y)

)
, y ∈ ℜm . (5.62)

Then, one can easily check that solving the dual problem (5.58) is equivalent to

solving the following equation:

F (y) = 0 , y ∈ ℜm . (5.63)
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It is known that F is globally Lipschitz continuous but not everywhere continuously

differentiable. Similarly, we can apply the smoothing Newton-BiCGStab method

to solve (5.62).

Recall that

F (y) = y − ΠQ∗
(
y − (AP ρ

λ
(C +

1

λ
A∗y)− b)

)
.

Now we introduce the smoothing functions for the ΠQ∗(·) and P ρ
λ
(·), respectively.

F contains a composition of two nonsmooth functions. In the outer layer, ΠQ∗(·) is

a metric projection operator from ℜm to Q∗. Recall that Q∗ = ℜme ×ℜml
+ ×Kmq ,

then ΠQ∗(·) is given by

ΠQ∗(z) = [ ze; Πℜml
+
(zl); ΠKmq (zq) ] , (5.64)

where z = [ze; zl; zq] and ΠKmq (z) denotes the projection of z onto the second-

order cone Kmq . The properties of second order cone have been well studied. The

following well known proposition gives an analytical solution to ΠKn(·), the metric

projection onto a second order cone Kn of dimension n. See [39, 85] and references

therein for more discussions on ΠKn(·).

Proposition 5.17. For any z ∈ ℜn, let z = [zt; zn] where z
t ∈ ℜn−1 and zn ∈ ℜ.

Then z has the following spectral decomposition

z = λ1(z)c1(z) + λ2(z)c2(z), (5.65)

where for i = 1, 2,

λi(z) = zn + (−1)i∥zt∥2 ,

ci(z) =


1

2
((−1)i

zt

∥zt∥2
, 1)T if zt ̸= 0 ,

1

2
((−1)iw, 1)T if zt = 0 ,

where w ∈ ℜn−1 satisfies ∥w∥2 = 1. Then ΠKn(z) is given by

ΠKn(z) = (λ1(z))+c1(z) + (λ2(z))+c2(z) . (5.66)
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Now we are ready to introduce a smoothing function ψsoc : ℜ × ℜmq → ℜmq for

ΠKmq (·). For any zq ∈ ℜmq which has the spectral decomposition as in (5.65), we

define ψsoc : ℜ× ℜmq → ℜmq by

ψsoc(ε, zq) = ϕ(ε, λ1(z
q))c1(z

q) + ϕ(ε, λ2(z
q))c2(z

q) , (5.67)

where ϕ(·, ·) is the Huber or Smale smoothing function defined as in (2.69) or

(2.70). It has been shown in [124, Theorem 5.1] that ψsoc(·, ·) is globally Lipschitz

continuous and strongly semismooth on ℜ+ × ℜmq if the smoothing function ϕ is

globally Lipschitz continuous and strongly semismooth on ℜ+ ×ℜ.

Next we consider the smoothing for Πℜn
+
(·). Define ψnno : ℜ× ℜml → ℜml by

ψnno
i (ε, zl) = ϕ(ε, zli) for i = 1, . . . ,ml , (ε, zl) ∈ ℜ × ℜml . (5.68)

In order to define smoothing function for F (·), we need to define smoothing function

for ΠQ∗(·). Let ψ : ℜ× ℜm → ℜm be defined by

ψ(ε, z) =


ze

ψnno(ε, zl)

ψsoc(ε, zq)

 . (5.69)

It is obvious that ψ is a globally Lipschitz continuous, and strongly semismooth

function on ℜ×ℜm. Furthermore, it can be easily checked that for any fixed ε ̸= 0,

any t, s ∈ ℜ and t ̸= s,

ϕ′
t(ε, t) ∈ [0, 1] and

ϕ(ε, t)− ϕ(ε, s)

t− s
∈ [0, 1], (5.70)

thus, together with the result of Korányi [60, Page 74], we know that for any

z ∈ ℜm,

ψ′
z(ε, z) = (ψ′

z(ε, z))
T ,

0 ≼ ψ′
z(ε, z) ≼ I.

(5.71)

Next we will construct a smoothing function for the inner layer on the nonsym-

metric matrix operator P ρ
λ
(·).
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Let Y ∈ ℜn1×n2 (n1 ≤ n2). Suppose that Y has the following singular value

decomposition as in (2.48), i.e.,

Y = U [Σ(Y ) 0]V T = U [Σ(Y ) 0][V1 V2]
T . (5.72)

Let the orthogonal matrix Q ∈ On1+n2 be defined by

Q :=
1√
2

 U U 0

V1 −V1
√
2V2

 . (5.73)

In order to properly define the smoothing function for nonsymmetric matrix-valued

functions, we will transform a nonsymmetric matrix into a symmetric matrix and

make use of the known properties of the symmetric matrix-valued functions. Define

Ξ : ℜn1×n2 → Sn1+n2 by

Ξ(Y ) :=

 0 Y

Y T 0

 , Y ∈ ℜn1×n2 .

Then, from [44, Section 8.6], Ξ(Y ) has the following spectral decomposition:

Ξ(Y ) = Q


Σ 0 0

0 −Σ 0

0 0 0

QT , (5.74)

i.e., the eigenvalues of Ξ(Y ) are ±σi(Y ), i = 1, . . . , n1, and 0 of multiplicity n2−n1.

For some τ > 0, we define a real-valued function gτ : ℜ → ℜ by

gτ (t) := (t− τ)+ − (−t− τ)+ =


t− τ if t > τ

0 if − τ ≤ t ≤ τ

t+ τ if t < −τ

, t ∈ R . (5.75)

For any W = Qdiag(λ1, . . . , λn1+n2)Q
T ∈ Sn1+n2 , define

Gτ (W ) := Qdiag
(
gτ (λ1), . . . , gτ (λn1+n2)

)
QT

= ΠSn
+
(W − τI)− ΠSn

+
(−W − τI) . (5.76)
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By direct calculation, we have

Gτ (Ξ(Y )) =

 0 Pτ (Y )

Pτ (Y )T 0

 . (5.77)

The smoothing functions for gτ (·) in (5.75) and Gτ (·) in (5.76) can be defined,

respectively, by

ϕgτ (ε, t) := ϕ(ε, t− τ)− ϕ(ε,−t− τ), (5.78)

where ϕ(·, ·) is the Huber or Smale smoothing function defined as in (2.69) or

(2.70), and

ΦGτ (ε,Ξ(Y )) := Q


Σϕgτ

0 0

0 −Σϕgτ
0

0 0 0

QT , (5.79)

where Σϕgτ
:= diag

(
ϕgτ (ε, σ1), . . . , ϕgτ (ε, σn1)

)
.

From (5.77), One can easily derive that ΦGτ has the following form

ΦGτ (ε,Ξ(Y )) =

 0 ΦPτ (ε, Y )

(ΦPτ (ε, Y ))T 0

 , (5.80)

where ΦPτ : ℜ× ℜn1×n2 → ℜn1×n2 is defined by

ΦPτ (ε, Y ) := U [Σϕgτ
0]V T , (5.81)

which is the smoothing function for the soft thresholding operator Pτ (·). Note that

when ε = 0, ΦGτ (0,Ξ(Y )) = Gτ (Ξ(Y )) and ΦPτ (0, Y ) = Pτ (Y ).

We have known that the smoothing function (5.69) for the outer layer of F

in (5.64) is strongly semismooth at (0, y). Next we will show the strong semis-

moothness of ΦPτ , which is a smoothing function for the inner layer projection of

F .
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Applying Proposition 2.1, we obtain that when ε ̸= 0 or σi ̸= τ , i = 1, . . . , n1, for

any H ∈ ℜn1×n2 ,

(ΦGτ )
′
Ξ(Y )(ε,Ξ(Y )) Ξ(H) = Q

[
Ω
(
ε, λ(Ξ(Y ))

)
◦
(
QTΞ(H)Q

)]
QT , (5.82)

where Ω(ε, λ(Ξ(Y ))) is the first divided difference matrix of ΦGτ at λ(Ξ(Y )) and

λ(Ξ(Y )) = (σ1, . . . , σn1 ,−σ1, . . . ,−σn1 , 0, . . . , 0)
T ∈ ℜn1+n2 .

One can easily check that Ω
(
ε, λ(Ξ(Y ))

)
∈ Sn1+n2 takes the following form

Ω
(
ε, λ(Ξ(Y ))

)
=


Ω11 Ω12 Ω13

ΩT
12 Ω22 Ω23

ΩT
13 ΩT

23 Ω33

 ,
where

[Ω11]ij = [Ω(ε, λ)]ij =


ϕgτ (ε, σi)− ϕgτ (ε, σj)

σi − σj
if σi ̸= σj

(ϕgτ )
′
σi
(ε, σi) if σi = σj

, for i, j = 1, . . . , n1,

[Ω12]ij = [Ω(ε, λ)]i(j+n1) =


ϕgτ (ε, σi) + ϕgτ (ε, σj)

σi + σj
if σi ̸= 0 or σj ̸= 0

(ϕgτ )
′
σi
(ε, σi) if σi = σj = 0

for i, j = 1, . . . , n1,

[Ω13]ij = [Ω(ε, λ)]i(j+2n1) =


ϕgτ (ε, σi)

σi
if σi ̸= 0

(ϕgτ )
′
σi
(ε, σi) if σi = 0

, for i = 1, . . . , n1, j = 1, . . . , n2−n1,

[Ω33]ij = [Ω(ε, λ)](i+2n1)(j+2n1) = (ϕgτ )
′
t(ε, 0), for i, j = 1, . . . , n2 − n1,

and

Ω22 = Ω11, Ω23 = Ω13.

Note that Ω11 = ΩT
11,Ω12 = ΩT

12 and [Ω(ε, λ)]ij ∈ [0, 1] for all i, j = 1, . . . , n1 + n2.
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By direct calculation, we can easily show that

(ΦGτ )
′
Ξ(Y )(ε,Ξ(Y )) Ξ(H)

= Q
(
Ω(ε, λ(Ξ(Y ))) ◦ 1

2


UT V T

1

UT −V T
1

0
√
2V T

2


 0 H

HT 0

 U U 0

V1 −V1
√
2V2

)
QT

=
1

2
Q


(AT + A) ◦ Ω11 (AT − A) ◦ Ω12

√
2B ◦ Ω13

(A− AT ) ◦ Ω21 −(AT + A) ◦ Ω22

√
2B ◦ Ω23

√
2BT ◦ Ω31

√
2BT ◦ Ω32 0

QT

=

 0 P12

P T
12 0

 ,

where A = UTHV1, B = UTHV2 and

P12 =
1

2
U
(
(A+ AT ) ◦ Ω11 + (A− AT ) ◦ Ω12

)
V T
1 + U(B ◦ Ω13)V

T
2 .

When ε ̸= 0 or σi ̸= τ , i = 1, . . . , n1, the partial derivative of ΦGτ (·, ·) with respect

to ε can be computed by

(ΦGτ )
′
ε(ε, Y ) = Q


D(ε,Σ) 0 0

0 −D(ε,Σ) 0

0 0 0

QT , (5.83)

where

D(ε,Σ) = diag
(
(ϕgτ )

′
ε(ε, σ1), . . . , (ϕgτ )

′
ε(ε, σn1)

)
. (5.84)

Note that

(ΦGτ )
′(ε,Ξ(Y ))(ν,Ξ(H)) =

 0 (ΦPτ )
′(ε, Y )(ν,H)(

(ΦPτ )
′(ε, Y )(ν,H)

)T
0

 ,
then ΦPτ (·, ·) is continuously differentiable around (ε, Y ) ∈ ℜn1×n2 if ε ̸= 0 or

σi ̸= τ , i = 1, . . . , n1, and its derivative is given by

(ΦPτ )
′(ε, Y )(ν,H)

= U
(
Ω11 ◦

A+ AT

2
+ Ω12 ◦

A− AT

2
+ νD(ε,Σ)

)
V T
1 + U(Ω13 ◦B)V T

2 .
(5.85)
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Furthermore, ΦPτ (·, ·) is globally Lipschitz continuous and strongly semismooth at

any (0, Y ) ∈ ℜ×ℜn1×n2 [124]. In particular, for any ε→ 0 and ℜn1×n2 ∋ ∆Y → 0

and, it holds that

ΦPτ (ε, Y +∆Y )−ΦPτ (0, Y )−(ΦPτ )
′(ε, Y +∆Y )(ε,∆Y ) = O(∥(ε,∆Y )∥2). (5.86)

Now we are ready to introduce a smoothing function Υ : ℜ × ℜm → ℜm for F

defined in (5.62) with (5.69) and (5.81),

Υ(ε, y) := y − ψ
(
ε, y −

(
AΦP ρ

λ

(ε, C +
1

λ
A∗y)− b

))
. (5.87)

By the definitions of Υ, ψ and ΦPτ , we know that for any y ∈ ℜm, F (y) = Υ(0, y).

In order to study the properties of Υ, we need the following notations. Let

m1 := me +ml. Define

K := ℜ× · · · × ℜ︸ ︷︷ ︸
m1

×ℜmq ,

and

D := ℜ× · · · × ℜ︸ ︷︷ ︸
m1

×Kmq ,

where Kmq denotes the second order cone with dimension mq as usual. Then

D ∈ L(K).

Proposition 5.18. Let Υ: ℜ × ℜm be defined by (5.87). Let y ∈ ℜm. Then it

holds that

(i) Υ is globally Lipschitz continuous on ℜ× ℜm.

(ii) Υ is continuously differentiable around (ε, y) where ε ̸= 0. For any fixed

ε ∈ ℜ, Υ(ε, ·) is a block quasi P0-function on D ∈ L(K), i.e., for any y, h in

ℜm with y ̸= h, there exists an orthogonal matrix Q ∈ Om taking the form of

Q =

 I 0

0 Qq

 , (5.88)
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where Qq ∈ Omq such that

max
1≤i≤m1+1

ŷi ̸=ĥi

⟨ŷi − ĥi, Υ̂i
y − Υ̂i

h⟩ ≥ 0 , (5.89)

where

ŷi :=

 yi, i = 1, . . . ,m1,

Qqyi, i = m1 + 1,
, ĥi :=

 hi, i = 1, . . . ,m1,

Qqhi, i = m1 + 1,
,

Υ̂i
y :=

 Υi(ε, y), i = 1, . . . ,m1,

QqΥi(ε, y), i = m1 + 1,
, Υ̂i

h :=

 Υi(ε, h), i = 1, . . . ,m1,

QqΥi(ε, h), i = m1 + 1.

Furthermore, for any fixed ε ̸= 0, Υ′
y(ε, y) is a quasi P0-matrix.

In particular, if mq = 0, then for any fixed ε ∈ ℜ, Υ(ε, ·) is a P0-function,

i.e., for any y, h in ℜm with y ̸= h,

max
i=1,...,m
yi ̸=hi

(yi − hi)
(
Υi(ε, y)−Υi(ε, h)

)
≥ 0 , (5.90)

and thus for any fixed ε ̸= 0, Υ′
y(ε, y) is a P0-matrix.

(iii) Υ is strongly semismooth at (0, y). In particular, for any ε ↓ 0 and ℜm ∋

h→ 0 we have

Υ(ε, y + h)−Υ(0, y)−Υ′(ε, y + h)

 ε

h

 = O(∥(ε, h)∥2) .

(iv) For any h ∈ ℜm,

∂BΥ(0, y)(0, h) ⊆ h−∂Bψ(0, y−∇θ(y))
(
0, h−1

λ
A∂BΦP ρ

λ

(0, C+
1

λ
A∗y)(0,A∗h)

)
.

(5.91)

Proof. (i) Since both ψ and ΦP ρ
λ

are globally Lipschitz continuous, Υ is also

globally Lipschitz continuous.
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(ii) From the definitions of ψ and ΦP ρ
λ

, we know that Υ is continuously differen-

tiable for any (ε, y) ∈ ℜ × ℜm when ε ̸= 0.

We first show that for any 0 ̸= ε ∈ ℜ, Υ(ε, ·) is a block quasi P0-function on

D ∈ L(K). Fix ε ̸= 0 and define gε : ℜm → ℜm by

gε(y) = AΦP ρ
λ

(ε, C +
1

λ
A∗y)− b, y ∈ ℜm.

Then gε is continuously differentiable and monotone on ℜm [54].

Applying the classical mean value theorem to ψ(ε, ·), together with the struc-

ture of ψ and (5.71), one has that there exists 0 ≼ S ≼ Im taking the form

S =

 Dm1 0

0 Sq

 , (5.92)

where Dm1 ∈ Sm1 is a diagonal matrix and Sq ∈ Smq , such that for any y,

h ∈ ℜn with y ̸= h,

Υ(ε, y)−Υ(ε, h) =
(
y − ψ(ε, y − gε(y))

)
−
(
h− ψ(ε, h− gε(h))

)
= (y − h)− S

(
(y − gε(y))− (h− gε(h))

)
= (I − S)(y − h) + S

(
gε(y)− gε(h)

)
.

From the structure of S in (5.92), we know that there exists an orthogonal

matrix Q ∈ Om taking the form

Q =

 I 0

0 Qq

 ,
where Qq ∈ Omq such that QSQT = D and 0 ≼ D ≼ I is a diagonal matrix.

Then it follows that

Υ̂y − Υ̂h := QΥ(ε, y)−QΥ(ε, h)

= (I −D)(Qy −Qh) +D
(
Qgε(y)−Qgε(h)

)
= (I −D)(ŷ − ĥ) +D(ĝyε − ĝhε ) ,
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where ĝyε := Qgε(y) and ĝ
h
ε := Qgε(h). Note that

⟨ŷ − ĥ, ĝyε − ĝhε ⟩ = ⟨Qy −Qh, Qgε(y)−Qgε(h)⟩

= ⟨y − h, gε(y)− gε(h)⟩ ≥ 0 ,

where the inequality comes from the monotocity of gε. Thus, there exists

i ∈ {1, . . . ,m1 + 1} such that ŷi ̸= ĥi and

⟨ŷi − ĥi, Υ̂i
y − Υ̂i

h⟩ ≥ 0 ,

which implies that (5.89) holds for any εk ̸= 0.

Since Υ is continuous on ℜ×ℜm, in order to show that Υ(0, ·) is also a block

quasi P0-function on D ∈ L(K), we choose an arbitrary positive sequence

{εk} such that limk→+∞ εk = 0. Since (5.89) holds for all εk > 0, we can

easily get the conclusion by taking k → +∞ on both sides of (5.89) and

noting that the index set {i | ŷi ̸= ĥi, i = 1, . . . ,m1} is independent of k.

Thus, Υ(ε, ·) is a block quasi P0-function on D ∈ L(K) for any ε ∈ ℜ.

Next we will show that for any fixed ε ̸= 0, Υ′
y(ε, y) is a quasi P0-matrix. Fix

ε ̸= 0. Let z := y − gε(y), V := ψ′
z(ε, z) and A := (gε)

′(y) for any y ∈ ℜm.

By using above arguments, we know that there exists Q̂ ∈ Om which takes

the same form as in (5.88), i.e.,

Q̂ =

 Im1 0

0 Q̂q

 ,
where Q̂q ∈ Omq , such that Q̂V Q̂T = D̂ and 0 ≼ D̂ ≼ I is a diagonal matrix.

Then, one has

Q̂Υ′
y(ε, y)Q̂

T = Q̂
(
I − V (I − A)

)
Q̂T = I − D̂ + D̂(Q̂AQ̂T ) .

Note that A is a P0-matrix, so is Q̂AQ̂T . Thus, Q̂Υ′
y(ε, y)Q̂

T is also P0-

matrix, which implies that Υ′
y(ε, y) is a quasi P0-matrix for any fixed ε ̸= 0.
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In particular, if there is no second order cone constraint, i.e., mq = 0, note

that for any z ∈ ℜm,

ψ′
zi
(ε, zi) ∈ [0, 1], i = 1, . . . ,m.

Let y, h ∈ ℜm with y ̸= h. Then there exists i ∈ {1, . . . ,m} with yi ̸= hi

such that

(yi − hi)((gε)i(y)− (gε)i(h)) ≥ 0.

Then we obtain that

(yi − hi)(Υi(ε, y)−Υi(ε, h)) ≥ 0.

Thus Υ is a P0-function and (5.90) holds for any y, h ∈ ℜm such that y ̸= h.

(iii) From the fact that the composite of strongly semismooth functions is still

strongly semismooth [37] and that both ψ defined in (5.69) and ΦP ρ
λ

defined

in (5.81) are strongly semismooth at any (0, y), we conclude that Υ is strongly

semismooth at (0, y).

(iv) Both ψ and ΦP ρ
λ

are directionally differentiable. For any (ε, y′) ∈ ℜ × ℜm

such that Υ is Fréchet differentiable at (ε, y′), we know that

Υ′(ε, y′)(0, h) = h− ψ′((ε, z′); (0, h− 1

λ
AΦ′

P ρ
λ

((ε, C +
1

λ
A∗y′); (0,A∗y)))

)
,

which, together with semismoothness of ψ and ΦP ρ
λ

, implies

Υ′((ε, y′); (0, h)) ∈ h− ∂Bψ((ε, z
′)
(
0, h− 1

λ
A∂BΦP ρ

λ

(ε, C +
1

λ
A∗y′)(0,A∗y)

)
,

where z′ = y′ −
(
AΦP ρ

λ

(ε, C + 1
λ
A∗y′)− b

)
. By taking (ε, y′) → (0, y) in the

above inclusion, we complete the proof.
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5.3.2 Global convergence analysis

Let F : ℜm → ℜm be defined by (5.62). Let κ ∈ (0,∞) be a constant. Define

G : ℜ× ℜm → ℜm by

G(ε, y) := Υ(ε, y) + κ|ε|y , (ε, y) ∈ ℜ × ℜm , (5.93)

where Υ : ℜ × ℜm → ℜm is defined by (5.87). The reason for defining G by

(5.93) is that for any (ε, y) ∈ ℜ × ℜm with ε ̸= 0, G′
y(ε, y) is a quasi P -matrix,

thus nonsingular while by part (ii) of Proposition 5.18, Υ′
y(ε, y) is only a quasi

P0-matrix, which may be singular.

Let E : ℜ× ℜm → ℜ×ℜm be defined by

E(ε, y) :=

 ε

G(ε, y)

 =

 ε

Υ(ε, y) + κ|ε|y

 , (ε, y) ∈ ℜ × ℜm . (5.94)

Let N be defined by (5.8). Next, we discuss convergent properties of Algorithm

5.1 when it is applied to solve E(ε, y) = 0.

Lemma 5.19. The mapping E defined in (5.94) is weakly univalent.

Proof. For every positive integer k ≥ 1, consider the mapping

Ek(ε, y) := E(ε, y) +

 0

y/k

 =

 ε

Gk(ε, y)

 , (ε, y) ∈ ℜ × ℜm ,

where Gk(ε, y) := G(ε, y) + y/k = Υ(ε, y) + (κε + 1/k)y. It is obvious that Ek is

continuous for every k and the sequence {Ek} converges to E uniformly on bounded

subsets. So, to proof the Lemma, we only need to show that for each k, Ek is one-

to-one. Let (ε, y) and (ε̂, h) be two vectors in ℜ×ℜm such that Ek(ε, y) = Ek(ε̂, h).

Thus, ε = ε̂ and Gk(ε, y) = Gk(ε, h). Suppose that y ̸= h. Since, by part (ii) of

Proposition 5.18, Υ(ε, ·) is a block quasi P0-function on D ∈ L(K) for any ε ∈ ℜ, we
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obtain that for any k ≥ 1, there exists i ∈ {1, . . . ,m1 + 1} and a block orthogonal

matrix Qk ∈ Om taking the form as in (5.88) such that ŷi ̸= ĥi and

0 = ⟨ŷi − ĥi, (Ĝk
y)

i − (Ĝk
h)

i⟩ ≥ (κε+ 1/k)∥ŷi − ĥi∥2 > 0, ∀ k ≥ 1 ,

where ŷ := Qky, ĥ := Qkh, Ĝk
y := QkGk(ε, y) and Ĝk

h := QkGk(ε, h). Thus we

complete the proof.

Theorem 5.20. Algorithm 5.1 is well defined and generates an infinite sequence

{(εk, yk)} ∈ N with the properties that any accumulation point (ε̄, ȳ) of {(εk, yk)}

is a solution of E(ε, y) = 0 and limk→∞ φ(εk, yk) = 0. Additionally, if the Slater

condition (5.60) holds, then {(εk, yk)} is bounded.

Proof. From part (ii) of Proposition 5.18 and the definitions of G and E we know

that for any (ε, y) ∈ ℜ++ × ℜm, G′
y(ε, y), and so E ′(ε, y), is a quasi P -matrix.

Then from Theorem 5.5, we know that Algorithm 5.1 is well defined and generates

an infinite sequence {(εk, yk)} ∈ N with the property that any accumulation point

(ε̄, ȳ) of {(εk, yk)} is a solution of E(ε, y) = 0.

Since φ(εk, yk) is a decreasing sequence, limk→∞ φ(εk, yk) exists. Let

φ̄ := lim
k→∞

φ(εk, yk) ≥ 0 .

If φ̄ > 0, then there exists an ε′ > 0 such that εk ≥ ε′ for all k ≥ 0. For any υ ≥ 0,

let

Lυ := {y ∈ ℜm | ∥Υ(ν, y) + κνy∥ ≤ υ, ν ∈ [ε′, ε̂]} .

Then it is not difficult to prove that for any υ ≥ 0, Lυ is bounded. In fact,

suppose that for some υ ≥ 0, Lυ is unbounded. Then there exist two sequences

{zl} and {νl} such that liml→∞ ||zl|| = ∞ and for all l ≥ 1, ε′ ≤ νl ≤ ε̂ and

∥Υ(νl, zl) + κνlzl∥ ≤ υ. By taking subsequences if necessary, we may assume that

liml→∞ νl = ν̄ ∈ [ε′, ε̂] and define an index set by

I∞ := {i | lim
l→∞

∥(zl)i∥ = ∞, i = 1, . . . ,m1 + 1} .
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For each l ≥ 1, define hl ∈ ℜm as follows

(hl)i =

 0 if i ∈ I∞,

(zl)i if i ∈ {1, . . . ,m1 + 1} \ I∞.
(5.95)

Since, by part (ii) of Proposition 5.18, for any l ≥ 1, Υ(νl, ·) is a block quasi

P0-function on D ∈ L(K), i.e., there exists i ∈ {1, . . . ,m1 + 1} and an orthogonal

matrix Ql ∈ Om which takes the form as in (5.88) such that (ẑl)i ̸= (ĥl)i and

⟨
(ẑl)i − (ĥl)i, (Ĝl

zl
)i − (Ĝl

hl
)i
⟩
≥ κνl∥(ẑl)i − (ĥl)i∥2, ∀ l ≥ 1 ,

where ẑl := Qlzl, ĥl := Qlhl, Ĝl
zl
:= QlGl(νl, zl) and Ĝl

hl
:= QlGl(νl, hl), which fails

to hold for all l sufficiently large since {Υ(νl, zl) + κνlzl} and {Υ(νl, hl) + κνlhl}

are bounded. Thus, for any υ ≥ 0, Lυ is bounded, i.e.,

{y ∈ ℜm | ∥G(ε, y)∥ ≤ υ, ε ∈ [ε′, ε̂]}

is bounded. This implies that {(εk, yk)} is bounded. Thus, {(εk, yk)} has at least

one accumulation point, which is a solution of E(ε, y) = 0, contradicting φ̄ > 0.

Therefore, φ̄ = 0.

Suppose that the Slater condition (5.60) holds. Then from Proposition 5.16 we

know that the solution set of the dual problem is nonempty and compact. Thus,

E(ε, y) = 0 also has a nonempty and compact solution set.

Since E is weakly univalent from Lemma 5.19, the boundedness of {(εk, yk)} follows

directly from [97, Theorem 2.5].

Assume that the Slater condition (5.60) holds. Let (ε̄, ȳ) be an accumulation point

of the infinite sequence {(εk, yk)} generated by Algorithm 5.1. Then, by Theorem

5.20, we know that ε̄ = 0 and F (ȳ) = 0, i.e., ȳ ∈ Q∗ is an optimal solution to the

dual problem (5.58). Let X := P ρ
λ
(C+ 1

λ
A∗y). By Proposition 5.16, we know that

X ∈ ℜn1×n2 is the unique optimal solution to problem (5.55).



5.3 Least squares matrix nuclear norm problems 111

5.3.3 Local convergence analysis

Define h : ℜn1×n2 → ℜ by h(X) = ∥X∥∗. Let Kn1×n2 be the epigraph of h, i.e.,

Kn1×n2 := epih = { (X, t) ∈ ℜn1×n2 ×ℜ | h(X) ≤ t },

which is a close convex cone. Let Â = (A 0). Then problem (5.54) can be

reformulated as

min
λ

2
∥X − C∥2 + ρt

s.t. Â(X, t) ∈ b+Q ,

(X, t) ∈ Kn1×n2 .

(5.96)

It is easy to see that if X is an optimal solution to problem (5.55) if and only if

(X, t̄) is an optimal solution to (5.96) and t̄ = ∥X∥∗.

For quadratic convergence analysis, we need the concept of constraint nondegen-

eracy. Let I be an identity mapping from ℜn1×n2 × ℜ to ℜn1×n2 × ℜ. Then the

constraint nondegeneracy is said to hold at (X, t̄) if Â

I

(
ℜn1×n2 ×ℜ

)
+

 lin
(
TQ

(
Â(X, t̄)− b

))
lin

(
TKn1×n2 (X, t̄)

)
 =

 ℜm

ℜn1×n2 ×ℜ

 (5.97)

Now we try to characterize TKn1×n2 (X, t̄) which involves the epigraph of h. Let

X ∈ ℜn1×n2 have the singular value decomposition

X = U [Σ(X) 0][V1 V2]
T ,

where Σ(X) = diag(σ1(X), . . . , σn1(X)). Suppose that X is of rank r. Write

U = [U1 U2] where U1 ∈ ℜn1×r consists of the first r columns in U and U2 ∈

ℜn1×(n1−r) denotes the remaining part in U . Similarly, V1 can be partitioned into

V1 = [V11 V12]. For any H ∈ ℜn1×n2 , define g(H) := h′(X;H). Noting that

h(X) =
∑n1

i=1 σi(X), by the result of Watson [118] about the directional derivative
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of the singular values, we obtain that

g(H) =


∥H∥∗, if σ(X) = 0,

⟨UV T
1 , H⟩, if σmin(X) > 0,

⟨U1V
T
11, H⟩+ ∥UT

2 H[V12 V2]∥∗, if σmin(X) = 0 and σmax(X) > 0.

(5.98)

By using [18, Proposition 2.3.6 & Theorem 2.4.7], we have that

Tepih
(
X, h(X)

)
= epih′(X; ·) .

It follows that

TKn1×n2 (X, h(X)) =
{
(H, s) ∈ ℜn1×n2 ×ℜ | ⟨U1V

T
11, H⟩+ ∥UT

2 H[V12 V2]∥∗ ≤ s
}
.

Thus, its linearity space is as follows

lin
(
TKn1×n2 (X, h(X))

)
=

{
(H, s) ∈ ℜn1×n2×ℜ | ⟨U1V

T
11, H⟩ = s, UT

2 H[V12 V2] = 0
}
.

(5.99)

Under the constraint nondegeneracy condition (5.97), it is possible to prove that

all V ∈ ∂BE(0, ȳ) are nonsingular, which implies that the sequence generated

by Algorithm 5.1 will converge quadratically to (0, ȳ) according to Theorem 5.6.

Actually, when there is no second order cone constraint, i.e., mq = 0, this has

already been proven in [54]. Note that in this case, the constraint nondegeneracy

condition (5.97) can be further simplified as follows. Let Ind(X) denote the index

set of active constraints at X

Ind(X) := { i | ⟨Al
i, X⟩ = bli, i = me + 1, . . . ,m} ,

and s = |Ind(X)|. Without loss of generality, we assume that

Ind(X) = {me + 1, . . . ,me + s} .

Define Ã : ℜn1×n2 → ℜme+s by

Ã(X) :=
[
⟨Ae

1, X⟩, . . . , ⟨Ae
me
, X⟩, ⟨Al

me+1, X⟩, . . . , ⟨Al
me+s, X⟩

]T
, X ∈ ℜn1×n2 .

(5.100)
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Let A = (Ã 0). Then (5.97) can be reduced to A

I

(
ℜn1×n2 ×ℜ

)
+

 {0}me+s

lin
(
TKn1×n2 (X, t̄)

)
 =

 ℜme+s

ℜn1×n2 ×ℜ

 (5.101)

which is equivalent to

A
(
lin

(
TKn1×n2 (X, t̄)

))
= ℜme+s . (5.102)

When mq ̸= 0, the proof for the nonsingularity of all V ∈ ∂BE(0, ȳ) under the

constraint nondegeneracy 5.97 can be done similarly, but its analysis is much more

involved. To save some space, we omit the details in this thesis.



Chapter 6
Numerical Results

In this chapter, we conduct some numerical experiments on the SLR-MOPs and

report our numerical results for the symmetric SLR-MOPs and the nonsymmetric

SLR-MOPs, respectively, in the following two sections.

6.1 Numerical results for the symmetric SLR-

MOPs

For the symmetric SLR-MOPs, we consider problem (1.5) introduced in Chapter

1, i.e.,

min
1

2
∥H ◦ (X − C)∥2

s.t. Xii = 1, i = 1, . . . , n ,

Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

rank(X) ≤ r .

(6.1)
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We have shown that problem (6.1) has many applications among a variety of fields.

Here we shall first discuss some existing methods for solving this problem. For this

purpose, we start from a simple version of problem (6.1). The so-called rank

constrained nearest correlation matrix problem (rank-NCM)

min
1

2
∥H ◦ (X − C)∥2

s.t. Xii = 1, i = 1, . . . , n ,

X ∈ Sn
+ ,

rank(X) ≤ r

(6.2)

has been investigated by many researchers. In [111], Simon gave a comprehen-

sive literature review and summarized thirteen methods for solving the rank-NCM

problem (6.2) and its many different variations. Here we will only briefly discuss

several methods which are most relevant to our approach to be introduced in this

thesis.

We start with mentioning the method of “principal component analysis” (PCA).

This method truncates the spectral decomposition of the symmetric matrix C to

a positive semidefinite matrix by taking the first r largest eigenvalues of C. Its

modified version (mPCA), perhaps firstly introduced by Flurry [38], is to take ac-

count of the unit diagonal constraints via a normalization procedure. The mPCA

method is very popular in the financial industry due to its simplicity and has been

widely implemented by many financial institutions for obtaining a correlation ma-

trix with the required rank. The major drawback of the mPCA approach is that

it only produces a non-optimal feasible solution to problem (6.2). Nevertheless, it

can be used as a good initial feasible point for other methods of solving the rank-

NCM problem. In terms of finding an optimal solution, Zhang and Wu [123] and

Wu [121] took an important step by using a Lagrange dual method to solve the

rank-NCM problem (6.2) with equal weights, i.e., H = E, where E is a symmetric

matrix whose entries are all ones. Under the assumptions that the given matrix C
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is a valid correlation matrix and the rth and (r+1)th eigenvalues (arranged in the

non-increasing order in terms of their absolute values) of C+diag(ȳ) have different

absolute values, where ȳ is an optimal solution to the Lagrange dual problem of

(6.2) and diag(ȳ) is a diagonal matrix whose diagonal is ȳ, Zhang and Wu [123]

provided a way to get a global solution of problem (6.2). This global optimality

checking is very rare in non-convex optimization. The Lagrange dual method is

effective when the required rank r is large. The next major progress is achieved

by Pietersz and Groenen [87] who proposed an innovative row by row alternating

majorization method. This method can be applied to problem (6.2) with an arbi-

trary symmetric nonnegative weight matrix H and is particularly efficient when r

is small as its computational cost at each iteration is of the order O(r2n2). In [47],

Grubisic and Pietersz introduced a geometric programming approach for solving

problem (6.2). This approach is applicable to any weight matrix H too, but its

numerical performance is not so efficient as the majorization method of Pietersz

and Groenen as far as we know. Another well studied method for solving problem

(6.2) is the trigonometric parametrization method of Rebonato [98, 99, 100, 101],

Brigo [8], Brigo and Mercurio [10] and Rapisarda et al. [96]. In this method, they

first decompose X = RRT with R ∈ ℜn×r and then parameterize each row vector

of R by trigonometric functions through spherical coordinates. The resulting prob-

lem is unconstrained, but highly nonlinear and non-convex. It is not clear to us if

the problem can be efficiently solved in practice. The trigonometric parametriza-

tion method has been considered earlier for the cases without the rank constraint

[72, 101]. A class of alternating direction methods, which are easy to implement,

are also well studied by many researchers for solving the rank-NCM problem. For

example, Morini and Webber [79] suggested an iterative algorithm called eigen-

value zeroing by iteration (EZI). This algorithm generally does not converge to a

stationary point of the rank-NCM problem and cannot be extended to the case



6.1 Numerical results for the symmetric SLR-MOPs 117

with a general weight matrix H. Very recently, Li and Qi [68] proposed a sequen-

tial semismooth Newton method for solving problem (6.2) with H = E. They

formulate the problem as a bi-affine semidefinite programming and then use an

augmented Lagrange method to solve a sequence of least squares problems. This

approach can be effective when the required rank r is relatively large.

So far we have seen that unless r ≤ O(
√
n) in which case the majorization method

of Pietersz and Groenen [87] is an excellent choice, there still lacks an efficient

method. Note that problem (6.1) is a generalization of problem (6.2) and for

problem (6.1) to have a feasible solution, the required rank r cannot be arbitrarily

chosen as in problem (6.2) when m is large. From numerical algorithmic point of

view, however, there is no much progress in extending approaches from problem

(6.2) to deal with the more challenging problem (6.1). Only recently, Simon and

Abell [111] extended the majorization method of Pietersz and Groenen [87] by

incorporating some equality constraints of the kind Xij = 0. But unlike the case

for the simpler problem (6.2), this extension can easily fail even the number of such

constraints is not large. The main reason is that the desired monotone decreasing

property of the objective function is no longer valid whenever the off-diagonal

bounds exist. Under this situation, our proposed approach seems to be the only

choice so far.

Next, we address several practical issues in the implementation of the proximal

subgradient method to the penalized problem of (6.1).

1. The choice of the initial point X0 ∈ Ω. Compute d as in (4.23). Let D =

diag(d). We then apply the majorization method alternatively (first fix Z
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and then X) to approximately solve

min
1

2
∥H ◦ (X − C)∥2 + 1

2
∥H ◦ (Z − C)∥2 + ρ

2
∥D1/2(X − Z)D1/2∥2

s.t. AX ∈ b+Q ,

X ∈ Sn
+ ,

rank(Z) ≤ r

(6.3)

to obtain a feasible solution, say (X̃, Z̃), where ρ > 0 is initially set as 100

and is increased by 10 times at each step. The maximum number of steps is

set as 10. Then we set X0 := X̃ ∈ Ω.

2. The choice of the penalty parameter c. Let X∗ be an optimal solution to the

following problem

min
1

2
∥H ◦ (X − C)∥2

s.t. AX ∈ b+Q ,

X ∈ Sn
+ .

(6.4)

We choose the initial penalty parameter c to be

c := min
{
1, 0.25

(
θ(X0)− θ(X∗)

)
/max{1, p(X0)− p(X∗)}

}
.

Thereafter, c is updated as follows: when |p(Xk)|/max{1, r} > 0.1, c is

increased by 4 times; otherwise, c is increased by 1.4 times. The penalty

parameter c will be kept unchanged if |p(Xk)| ≤ 10−8.

3. The choice of the algorithm for solving the subproblems (4.21). The success

of our approach heavily relies on our ability in solving a sequence of the

subproblems of the form (4.21). For this purpose, we use the well tested

smoothing Newton-BiCGStab method developed in [42].

4. The stopping criterion. We terminate our algorithm if

|p(Xk)| ≤ 10−8 and
|
√
fc(Xk)−

√
fc(Xk−1)|

max
(
100,

√
fc(Xk−1)

) ≤ 10−5 .
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We did our numerical experiments in MATLAB 7.8.0 (R2009a) running on a PC

Intel (R) Core (TM) 2 of 3.16 GHz CPU each and 2.96 GB of RAM. The testing

examples to be reported are given below.

Example 6.1. Let n = 500 and the weight matrix H = E. For i, j = 1, . . . , n,

Cij = 0.5 + 0.5e−0.05|i−j|. The index sets are Be = Bl = Bu = ∅. This matrix C is

a valid correlation matrix and has been used by a number of authors [8, 68].

Example 6.2. Let n = 500 and the weight matrix H = E. The matrix C is

extracted from the correlation matrix which is based on a 10, 000 gene micro-array

data set obtained from 256 drugs treated rat livers; see Natsoulis et al. [80] for

details. The index sets are Be = Bl = Bu = ∅.

Example 6.3. Let n = 500. The matrix C is the same as in Example 6.1, i.e.,

C = 0.5 + 0.5e−0.05|i−j| for i, j = 1, . . . , n. The index sets are Be = Bl = Bu = ∅.

The weight matrix H is generated in the same way as in [91] such that all its entries

are uniformly distributed in [0.1, 10] except for 2× 100 entries in [0.01, 100].

Example 6.4. Let n = 500. The matrix C is the same as in Example 6.2. The

index sets are Be = Bl = Bu = ∅ . The weight matrix H is generated in the same

way as in Example 6.3.

Example 6.5. The matrix C is an estimated 943×943 correlation matrix based on

100, 000 ratings for 1682 movies by 943 users. Due to missing data, the generated

matrix G is not positive semi-definite [41]. This rating data set can be downloaded

from http://www.grouplens.org/node/73. The index sets are Be = Bl = Bu =

∅. The weight matrix H is provided by T. Fushiki at Institute of Statistical Math-

ematics, Japan.

Example 6.6. The matrix C is obtained from the gene data sets with dimension

n = 1, 000 as in Example 6.2. The weight matrix H is the same as in Example
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Figure 6.1: Example 6.1

6.3. The index sets Be, Bl, and Bu ⊂ {(i, j) | 1 ≤ i < j ≤ n} consist of the indices

of min(n̂r, n − i) randomly generated elements at the ith row of X, i = 1, . . . , n

with n̂r = 5 for Be and n̂r = 10 for Bl and Bu. We take eij = 0 for (i, j) ∈ Be,

lij = −0.1 for (i, j) ∈ Bl and uij = 0.1 for (i, j) ∈ Bu.

Our numerical results are reported in Tables 6.1-6.5, where “time” and “residue”

stand for the total computing time used (in seconds) and the residue
√
2θ(Xk) at

the final iterate Xk of each algorithm, respectively. For the simplest rank-NCM

problem (6.2) of equal weights (i.e., H = E), there are many algorithms to choose

from. For the purpose of comparison, we only selected three most efficient ones

from the literure: the dual approach of Zhang and Wu [123] and Wu [121] (C is

required to be a valid correlation matrix), the majorization approach of Pietersz

and Groenen [87], and the augmented Lagrangian approach of Li and Qi [68]. For

the majorization approach and the augmented Lagrangian approach, we used the
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Example 6.1 Major SemiNewton Dual-BFGS PenCorr

rank time residue relgap time residue relgap time residue relgap time residue relgap

2 1.9 1.564e2 3.4e-3 63.0 1.564e2 3.5e-3 432.0 1.660e2 6.5e-2 25.7 1.564e2 3.4e-3

5 2.2 7.883e1 6.5e-5 23.5 7.883e1 2.8e-5 24.6 7.883e1 1.1e-15 7.5 7.883e1 7.0e-5

10 2.7 3.869e1 6.9e-5 19.0 3.868e1 8.0e-6 8.0 3.868e1 1.7e-14 4.4 3.869e1 6.7e-5

15 4.2 2.325e1 8.3e-5 18.5 2.324e1 7.3e-6 6.0 2.324e1 3.4e-14 3.9 2.325e1 7.9e-5

20 7.5 1.571e1 8.8e-5 15.3 1.571e1 7.6e-6 5.6 1.571e1 2.9e-14 4.1 1.571e1 6.9e-5

25 12.8 1.145e1 1.1e-4 14.4 1.145e1 8.6e-6 5.0 1.145e1 1.8e-13 3.2 1.145e1 1.0e-4

30 19.4 8.797e0 1.3e-4 14.0 8.796e0 9.5e-6 4.3 8.795e0 4.4e-13 3.0 8.796e0 9.4e-5

35 34.4 7.020e0 1.7e-4 14.0 7.019e0 1.0e-5 4.8 7.019e0 2.0e-13 4.7 7.019e0 2.8e-5

40 43.4 5.766e0 2.2e-4 1.3 5.774e0 1.7e-3 4.3 5.764e0 5.6e-13 3.0 5.765e0 3.9e-5

45 63.6 4.843e0 3.0e-4 1.3 4.849e0 1.6e-3 4.5 4.841e0 7.4e-13 3.0 4.841e0 4.2e-5

50 80.1 4.141e0 4.0e-4 1.4 4.146e0 1.6e-3 4.3 4.139e0 1.8e-12 1.8 4.139e0 6.8e-5

60 145.0 3.156e0 6.7e-4 1.4 3.158e0 1.4e-3 4.5 3.153e0 8.4e-13 1.6 3.154e0 8.4e-5

70 243.0 2.507e0 1.1e-3 1.4 2.507e0 1.3e-3 4.3 2.504e0 3.4e-12 1.6 2.504e0 1.0e-4

80 333.0 2.053e0 1.6e-3 1.5 2.052e0 1.2e-3 4.1 2.050e0 4.2e-12 1.6 2.050e0 1.2e-4

90 452.0 1.722e0 2.4e-3 1.6 1.720e0 1.2e-3 4.2 1.718e0 1.1e-11 1.7 1.718e0 1.4e-4

100 620.0 1.471e0 3.3e-3 1.5 1.468e0 1.1e-3 4.3 1.467e0 3.3e-12 1.6 1.467e0 1.5e-4

125 1180.0 1.055e0 6.8e-3 1.7 1.049e0 9.9e-4 4.2 1.048e0 1.0e-11 1.7 1.048e0 1.8e-4

Table 6.1: Numerical results for Example 6.1 with C ∈ S500
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Example 6.2 Major SemiNewton Dual-BFGS PenCorr

rank time residue relgap time residue relgap time residue relgap time residue relgap

2 0.6 2.858e2 6.5e-4 54.4 2.860e2 1.5e-3 304.5 2.862e2 2.1e-3 37.2 2.859e2 8.2e-4

5 6.0 1.350e2 2.0e-3 38.2 1.358e2 8.1e-3 78.8 1.367e2 1.5e-2 99.2 1.351e2 2.4e-3

10 9.3 6.716e1 4.4e-4 32.7 6.735e1 3.2e-3 58.3 6.802e1 1.3e-2 32.1 6.719e1 9.7e-4

15 8.8 4.097e1 3.4e-4 26.8 4.100e1 1.0e-3 44.6 4.096e1 1.0e-4 18.4 4.099e1 7.5e-4

20 13.0 2.842e1 7.3e-4 18.8 2.844e1 1.4e-3 40.4 2.842e1 8.9e-4 16.6 2.843e1 1.1e-3

25 34.9 2.149e1 1.2e-3 18.0 2.152e1 2.6e-3 26.6 2.149e1 1.2e-3 16.4 2.151e1 2.2e-3

30 33.7 1.693e1 4.3e-4 17.3 1.695e1 1.7e-3 23.0 1.694e1 7.8e-4 14.5 1.694e1 1.2e-3

35 71.8 1.379e1 1.3e-3 18.1 1.381e1 2.6e-3 19.7 1.378e1 7.1e-4 11.9 1.379e1 1.6e-3

40 50.0 1.151e1 1.5e-3 12.5 1.152e1 2.1e-3 34.7 1.145e1 3.2e-4 7.7 1.151e1 1.6e-3

45 43.3 9.733e0 9.6e-4 10.6 9.736e0 1.3e-3 23.1 9.733e0 9.2e-4 6.3 9.733e0 1.0e-3

50 44.5 8.318e0 4.1e-4 10.7 8.319e0 4.8e-4 19.7 8.315e0 5.1e-6 5.7 8.318e0 4.5e-4

60 66.5 6.214e0 8.1e-4 10.9 6.214e0 7.4e-4 6.1 6.209e0 1.4e-13 6.9 6.213e0 5.9e-4

70 91.2 4.733e0 1.1e-3 11.0 4.731e0 8.2e-4 23.1 4.728e0 1.9e-4 4.6 4.731e0 7.2e-4

80 93.0 3.663e0 8.7e-4 2.2 3.800e0 3.8e-2 5.2 3.660e0 4.0e-13 2.9 3.662e0 4.5e-4

90 125.0 2.865e0 1.2e-3 2.0 2.962e0 3.5e-2 5.0 2.862e0 5.1e-13 3.0 2.864e0 7.0e-4

100 150.0 2.255e0 1.4e-3 1.7 2.323e0 3.2e-2 15.1 2.254e0 7.8e-4 2.9 2.254e0 8.3e-4

125 288.6 1.269e0 2.4e-3 1.4 1.304e0 3.0e-2 17.1 1.266e0 1.6e-4 2.7 1.268e0 1.4e-3

Table 6.2: Numerical results for Example 6.2 with C ∈ S500
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Example 6.3 Example 6.4

Majorw PenCorr Majorw PenCorr

rank time residue time residue time residue time residue

2 8.8 1.805e2 81.2 1.804e2 2.9 3.274e2 141.6 3.277e2

5 27.0 8.984e1 70.0 8.986e1 34.4 1.523e2 245.0 1.522e2

10 38.7 4.382e1 48.7 4.383e1 48.5 7.423e1 98.7 7.428e1

15 55.5 2.616e1 43.7 2.618e1 70.5 4.442e1 79.9 4.446e1

20 84.4 1.751e1 39.1 1.753e1 101.4 2.985e1 67.0 2.987e1

25 117.0 1.265e1 38.2 1.266e1 289.6 2.197e1 69.8 2.204e1

30 171.8 9.657e0 36.5 9.657e0 335.6 1.694e1 65.8 1.699e1

35 250.6 7.639e0 39.8 7.632e0 436.7 1.345e1 71.0 1.343e1

40 324.7 6.213e0 38.8 6.203e0 470.7 1.098e1 50.5 1.098e1

45 408.4 5.169e0 38.4 5.148e0 498.7 9.104e0 47.7 9.094e0

50 502.2 4.391e0 37.5 4.355e0 639.5 7.625e0 48.0 7.623e0

60 654.1 3.290e0 35.6 3.219e0 837.6 5.552e0 44.0 5.523e0

70 972.5 2.579e0 38.2 2.481e0 987.5 4.135e0 44.9 4.084e0

80 1274.9 2.090e0 42.6 1.959e0 1212.0 3.127e0 38.0 3.082e0

90 1526.9 1.740e0 44.0 1.588e0 1417.0 2.393e0 35.6 2.345e0

100 1713.7 1.478e0 40.9 1.310e0 1612.0 1.865e0 32.7 1.814e0

125 2438.1 1.052e0 44.6 8.591e-1 1873.0 1.030e0 27.7 9.748e-1

Table 6.3: Numerical results for Examples 6.3 and 6.4 with C ∈ S500
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Figure 6.2: Example 6.2

Example 6.5 Majorw PenCorr

rank time residue time residue

5 233.4 5.242e2 1534.9 5.273e2

10 706.5 3.485e2 1634.6 3.509e2

20 926.7 2.389e2 1430.2 2.398e2

50 2020.1 1.706e2 829.9 1.709e2

100 3174.3 1.609e2 537.5 1.611e2

150 3890.6 1.608e2 687.1 1.610e2

250 7622.5 1.608e2 694.2 1.610e2

Table 6.4: Numerical results for Example 6.5 with C ∈ S943
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Example 6.6 PenCorr

rank time residue

20 11640.0 1.872e2

50 1570.0 1.011e2

100 899.0 8.068e1

250 318.3 7.574e1

500 326.3 7.574e1

Table 6.5: Numerical results for Example 6.6 with C ∈ S1000

codes developed by the authors of [87] and [68]. They are referred to as Major1

and SemiNewton, respectively, in Examples 6.1 and 6.2. For the dual approach of

[123, 121], we used the BFGS implementation of Lewis and Overton [65] to solve the

Lagrangian dual problem. This is denoted by Dual-BFGS. The Dual-BFGS solves

the Lagrangian dual problem to get an approximate optimal dual solution yk. This

approximate optimal dual solution may not always be able to generate an optimal

solution to the primal problem as the rth and (r+1)th eigenvalues (arranged in the

non-increasing order in terms of their absolute values) of C + diag(yk) may be of

the same absolute values, but it does provide a valid lower bound for the optimal

value of the primal problem. The final iterate of the Dual-BFGS is obtained by

applying the modified PCA procedure to C +diag(yk). Our own code is indicated

by PenCorr. In Tables 6.1-6.2, “relgap” denotes the relative gap which is computed

as

relgap :=
residue− lower bound

max{1, lower bound}
,

where the lower bound is obtained by the Dual-BFGS. This “relgap” indicates the

worst possible relative error from the global optimal value.

1Majorw is the corresponding code for solving the weighted cases.
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From Tables 6.1-6.2, we can see that even for the simplest rank-NCM problem

(6.2) of equal weights (i.e., H = E), PenCorr is quite competitive in terms of

computing time and solution quality except for small rank cases that Major is a

clear winner. Examples 6.3, 6.4, and 6.5 belong to the rank-NCM problem (6.2)

of general weights. For these three examples, we can see clearly from Tables 6.3-

6.4 that Majorw performs better than PenCorr when the ranks are not large and

loses its competitiveness quickly to PenCorr as the rank increases. When there are

constraints on the off-diagonal parts as in Example 6.6, PenCorr seems to be the

only viable approach.

6.2 Numerical results for the nonsymmetric SLR-

MOPs

To conduct the numerical experiments on the nonsymmetric SLR-MOPs, we con-

sider the following problem

min
1

2
∥H ◦ (X − C)∥2

s.t. Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

rank(X) ≤ r .

(6.5)

Notice that problem (6.5) is a special problem of (4.1) with ρ = 0 [The case that

ρ > 0 is not reported here because its performance is similar to the case that ρ = 0].

In our implementation, the initial pointX0, the initial penalty parameter c, and the

termination criterion are chosen in the same way as in the symmetric SLR-MOPs.

We did our numerical experiments in MATLAB 7.8.0 (R2009a) running on a PC.

The testing examples to be reported are given below.
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Example 6.7. Let n1 = 300 and n2 = 500. The matrix C is a randomly generated

n1 × n2 matrix with entries in [−1, 1] and the weight matrix H is generated in the

same way as in [91] such that all its entries are uniformly distributed in [0.1, 10]

except for 2×100 entries in [0.01, 100]. The index sets Be, Bl, and Bu ⊂ {(i, j) | 1 ≤

i < j ≤ n1} consist of the indices of min(nr, n1 − i) randomly generated elements

at the ith row of X, i = 1, . . . , n1 with nr = 1 for Be and nr = 2 for Bl and Bu. We

take eij = 0 for (i, j) ∈ Be, lij = −0.1 for (i, j) ∈ Bl and uij = 0.1 for (i, j) ∈ Bu.

Example 6.8. Let n1 = 300 and n2 = 500. The matrix C ∈ ℜn1×n2 and three

index sets are generated in the same way as in Example 6.7. The weight matrix

H is extracted from the matrix provided by T. Fushiki at Institute of Statistical

Mathematics, Japan. We still take eij = 0 for (i, j) ∈ Be, lij = −0.1 for (i, j) ∈ Bl

and uij = 0.1 for (i, j) ∈ Bu.

Example 6.9. Let n1 = 500 and n2 = 1, 000. The matrices C and H are generated

in the same way as in Example 6.7. The index sets Be, Bl, and Bu are generated

in the same way as in Example 6.7 with nr = 2 for Be and nr = 5 for Bl and Bu.

Again, we take eij = 0 for (i, j) ∈ Be, lij = −0.1 for (i, j) ∈ Bl and uij = 0.1 for

(i, j) ∈ Bu.

Our numerical results are reported in Tables 6.6 and 6.7, where “time” and “residue”

stand for the total computing time used (in seconds) and the residue
√
2θ(Xk) at

the final iterate Xk, respectively. Tables 6.6 and 6.7 show that our approach also

performs well for the nonsymmetric SLR-MOPs.
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PenCorr Example 6.7 Example 6.8

rank time residue time residue

5 3370.3 1.249e3 2886.2 7.986e3

10 1241.5 1.195e3 2699.5 7.106e3

15 1130.0 1.144e3 1729.5 6.469e3

30 852.0 1.004e3 2084.8 5.015e3

50 579.3 8.390e2 2190.9 3.683e3

100 943.7 5.183e2 1615.9 1.846e3

Table 6.6: Numerical results for Examples 6.7 and 6.8 with C ∈ ℜ300×500

PenCorr Example 6.9

rank time residue

15 12451.3 2.213e3

25 7248.9 2.109e3

50 3561.0 1.867e3

100 2305.7 1.450e3

Table 6.7: Numerical results for Example 6.9 with C ∈ ℜ500×1000



Chapter 7
Conclusions

In this thesis, we studied the structured low rank matrix optimization problems

(SLR-MOPs) which concern the construction of the nearest approximation to a

given matrix by another matrix with a specific linear structure and a rank no

more than a specified number. This approximation is needed in many important

applications arising from a wide range of fields. The SLR-MOPs are known to be

non-convex and NP-hard. Thus we proposed a penalty approach for solving the

structured low rank matrix problems of the general form (4.1), i.e., absorbing the

non-convex rank constraint into the objective function via a penalty technique by

using the fact that for any X ∈ ℜn1×n2 , rank(X) ≤ r if and only if σr+1(X)+ . . .+

σn1(X) = 0. We further proved that an ε-optimal solution to the original problem

is guaranteed by solving the penalized problem as long as the penalty parameter

c is above some ε-dependent number which provides some rationale for using this

penalty technique. In order to solve the related penalized problem, we presented

a framework of proximal subgradient method and further proposed a smoothing

Newton-BiCGStab method to solve the resulting sequence of least squares nuclear

norm problems which are recently well studied. Interestingly, we also extended the

globalization checking results of Zhang and Wu [123, Theorem 4.5] to deal with

129
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more realistic problems. These results are very rare for non-convex optimization

problems. Numerical results indicate that our approach is able to handle both the

rank and the linear constraints effectively, in particular in the situations when the

rank is not very small.

Our approach has paved a new way to deal with the structured low rank matrix

optimization problems by solving a sequence of least squares nuclear norm prob-

lems. We believe that it represents a good progress for the non-convex low rank

matrix approximation problems.

There are still many unanswered questions whose solutions will introduce further

development on rank constrained matrix optimization problems. Here we list some

of them:

Q1. Is it possible to accelerate our proximal subgradient method as for the case

in the accelerated proximal gradient method for convex problems?

Q2. How to further improve the efficiency of the smoothing Newton-BiCGStab

method when there are a large number of constraints in the primal problem?

Q3. How to deal with other matrix norms such as the spectral norm and the

maximum norm?

Q4. Numerically, though in order to make problem (6.1) feasible, one cannot ask

the rank to be very small when there are a large number of bound constraints,

it is still interesting to know if one can design a more efficient method to solve

problem (6.1) with a small rank and a small number of bound constraints.
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