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Summary

This thesis focuses on a class of structured low rank matrix optimization prob-
lems (SLR-MOPs) which aim at finding an approximate matrix of certain specific
structures and whose rank is no more than a prescribed number. This kind of
approximation is needed in many important applications arising from a wide range
of fields, such as finance/risk management, images compression, noise reduction,
and so on. The SLR-MOPs are in general non-convex and thus difficult to solve

due to the presence of the rank constraint.

In this thesis, we propose a penalty approach to deal with this difficulty. Some
rationale to motivate this penalty technique is also addressed. For example, one
interesting result says that an e-optimal solution to the original SLR-MOP is guar-
anteed by solving the penalized problem as long as the penalty parameter c is
above some e-dependent number. We further present a general proximal subgra-
dient method for the purpose of solving the penalized problem which is still non-

convex. When using the proposed proximal subgradient method, one eventually
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Summary
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needs to solve a sequence of least squares nuclear norm problems. For this pur-
pose, we design a quadratically convergent smoothing Newton-BiCGStab method
to solve these least squares subproblems. Essentially, our approach transforms the
structured low rank matrix problem into a sequence of least squares nuclear norm
problems. One remarkable feature of our method is that it can continue to search
for a better low rank solution by iteratively solving a new least squares nuclear
norm problem when the initial nuclear norm convex relaxation fails to produce a

satisfactory solution.

Furthermore, we also investigate the Lagrangian dual of the structured low rank
matrix optimization problem and show some globalization checking results which
are seldom available for the non-convex optimization problems. As a byproduct,
we fully characterize the metric projection over three non-convex rank constrained

sets, respectively.

Numerical results on a variety of low rank matrix problems indicate that our pro-
posed method is able to handle both the rank and the linear constraints effectively,
in particular in the situations when the rank is not very small. The numerical re-
sults also imply the efficiency and robustness of the smoothing Newton-BiCGStab
method which is applied to solve the subproblems.



Chapter 1

Introduction

To approximate a given matrix by a low rank matrix has a long history in mathe-
matics. For example, Schmidt [108], Eckart and Young [31] considered the following

low rank approximation problem

min || X — C||
s.t. rank(X) <r.

(1.1)

Here we use || - || to denote the Frobenius norm in R™*"? (assuming n; < ngy
without loss of generality). Let the given matrix C' € R™*"2 have the following

singular value decomposition (SVD):
C=ulsC)ovT,

where U € O™ and V € O™ are orthogonal matrices, o1(C) > -+ > 0,,(C) >
0 are the singular values of C being arranged in the non-increasing order and
¥(C) = diag(o(C)) is the ny by n; diagonal matrix whose i-th diagonal entry
is 0;(C), i = 1,...,n;. Independently, Schmidt [108] and Eckart and Young [31]
proved that )
X =) a(CUV"
i=1



is an optimal solution to (1.1). A more general problem than (1.1) is the so-called

weighted low rank approximation problem:

min ||H o (X —O)||

(1.2)
s.t. rank(X) <r,

where H € R"*™ a given weight matrix whose entries are nonnegative and “o”
denotes the Hadamard product. Unlike the case for problem (1.1), the weighted
problem (1.2) no longer admits an analytic solution. Actually, problem (1.2) is
known to be NP-hard in general [43]. Of course, one may use other functions to
measure the distance between X and C. Moreover, in practice we not only seek a
low rank matrix X, but also we want X to have certain desirable properties such

as:

e X is symmetric and positive semidefinite;

e Some components of X are required to satisfy some equalities and inequali-

ties;

e X is in a special class of matrices, e.g., correlation, Hankel, Toeplitz, tri-

diagonal matrices, and so on.

Such problems in the literature are called structured low rank matrix approxima-

tion problems [17].

In her PhD thesis, Fazel [33] considered the following matrix rank minimization

problem (RMP)

min rank(X)
(1.3)
st. Xecl,

where C is a closed convex set in "**"2. Since the RMP is difficult to solve, Fazel

suggested to use || X[, the sum of all the singular values of X, to replace rank(X)



in the objective function in (1.3). That is, she proposed to solve the following

convex optimization problem

min [|X]). -
st. XecC

to get an approximate solution to the RMP problem (1.3). See also [34]. Though
simple, this strategy works very well in many occasions. One particular example is
the so-called matrix completion problem. Given a matrix M € R™*"2 with entries
in the index set {2 given, the matrix completion problem seeks to find a low rank
matrix X such that X;; ~ M;; for all (i,7) € . In [13], [14], [45], [56], [102],
[103], etc., the authors made some landmark achievements: for certain stochastic
models, an n; X ny matrix of rank r can be recovered with high probability from
a random uniform sample of size slightly larger than O((n; + ny)r) via solving the

following nuclear norm minimization problem:

min [|X]).

The breakthrough achieved in the above mentioned papers and others has not only
given a theoretical justification of relaxing the nonconvex RMP problem (1.3) to
its convex counterpart (1.4), but also has accelerated the development on adopting
the nuclear norm minimization approach to model many more application problems
that go beyond the matrix completion problem. However, since the nuclear norm
convex relaxation does not take the prescribed number r into consideration, the
solution obtained by solving the relaxed problem may not satisfy the required rank
constraint. Moreover, the nuclear norm convex relaxation may not work at all if
the low rank matrix has to possess certain structures. Next, we shall take a recently

intensively studied financial problem to illustrate this situation.

Let 8™ and S denote, respectively, the space of n X n symmetric matrices and the

cone of positive semidefinite matrices in §”. Denote the Frobenius norm induced



by the standard trace inner product (-,-) in 8™ by || - ||. Let C' be a given matrix
in 8" and H € 8" a given weight matrix whose entries are nonnegative. Now we

consider the following rank constrained nearest correlation matrix! problem

min %HH o (X = CO)2
st. Xu=1,i=1,....n,
Xij = eij, (i,7) € B,
Xi; > 1, (i,§) € By, (1.5)
Xij <wyy, (4,7) € By,
X eS8t
rank(X) <r,

where 1 < r < n is a given integer, B., B;, and B, are three index subsets of
{(3,5)|1 <i < j < n}satistying B.NB =0, B.NB, =0, =1 < e, lij, u; <1
for any (7,j) € Be UB, U B, and —1 < l;; < w; < 1 for any (i,j) € B; N B,.
Denote the cardinalities of B., B;, and B, by q., ¢, and q,, respectively. Let
p:=n-+q and m = p+ q + q,- The weight matrix H is introduced by adding
larger weights to correlations that are better estimated or are of higher confidence

in their correctness. Zero weights are usually assigned to those correlations that

are missing or not estimated. See [87] for more discussions.

This kind of problems has many applications among a variety of fields, in partic-
ular, in the quantitative finance field. Wu [121], Zhang and Wu [123], and Brigo
and Mercurio [9] considered such a problem for pricing interest rate derivatives
under the LIBOR and swap market models. The factor models of basket options,
collateralized debt obligations (CDOs), portfolio risk models (VaR), and multi-
variate time series discussed by Lillo and Mantegna [69] rely on low rank nearest

correlation matrices. A correlation matrix of low rank is particularly useful in the

LA correlation matrix, a commonly used concept in statistics, is a real symmetric and positive

semidefinite matrix whose diagonal entries are all ones.



Monte Carlo simulation for solving derivatives pricing problems as a model with
low factors can significantly reduce the cost of drawing random numbers. Beyond
quantitative finance, the rank constrained nearest correlation matrix problems also

occur in many engineering fields, see for examples, [11, 20, 53, 110].

Notice that for a correlation matrix X € 8%,
| X ]« = trace(X) =n.

This implies that any convex relaxation of using the nuclear norm directly is

doomed as one will simply add a constant term if one does so.

In this thesis, we shall propose a penalty method to solve problem (1.5) and its
more general form
min %HH o (X = O)|
st. AXeb+Q,
X e St
rank(X) <r,

(1.6)

where A : 8" — R™ is a linear operator, Q := {0} x RL and m := p+¢. Moreover,
since in many situations the matrix X is not necessarily required to be symmetric,
we also consider the nonsymmetric counterpart of problem (1.6).

Let p > 0 be a given parameter. The penalty method proposed in this thesis
is also strongly motivated to solve the following structured low rank matrix, not

necessarily symmetric, approximation problem

min [ o (X~ C)|P + ol X[l
st. AX eb+ Q,

rank(X) <r,

X € jrmxmz

(1.7)

where m = p+¢q, A: R™*" — R™ is a linear operator, O € R is a closed convex

cone with nonempty interior and Q := {0}? x @ In this thesis, we shall address



some theoretical and numerical issues involved in problems (1.7) and (1.6).

Our main idea is to deal with the non-convex rank constraint via a penalty tech-
nique. The rationale for using the penalty approach is explained in later chapters.
It is worth noting that an e-optimal solution to the original problem is always
guaranteed by solving the penalized problem as long as the penalty parameter is
larger than some e-dependent number. The penalized problem, however, is still
not convex and no existing methods can be directly applied to solve it. Thus, we
further propose a proximal subgradient method to solve the penalized problem.
When using the proposed proximal subgradient method, one eventually needs to
solve a sequence of least squares nuclear norm problems. Notice that the efficiency
of the whole approach heavily relies on the method used for solving the subprob-
lems. For this purpose, we design a smoothing Newton-BiCGStab method to solve

these least squares subproblems.

Essentially, our approach transforms the structured low rank matrix problem into a
sequence of least squares nuclear norm problems. In this sense, the popular nuclear
norm relaxation may be regarded as the first step of our approach if we choose the
starting point properly. Different from the nuclear norm relaxation approach, our
method can continue to search for a better low rank solution by iteratively solving
a new least squares nuclear norm problem when the former fails to generate a

satisfactory solution.

Finally, it should be emphasized that our proposed approach here is quite flexible.
It can be used to solve problems beyond the ones described in (1.6) and (1.7).
For examples, we can easily adopt our approach to solve the portfolio selection
problem with the cardinality constraint [67, 70] and the weighted version of the
(Pf i) problem introduced by Werner and Schéttle in [120].



1.1 Outline of the thesis

1.1 Outline of the thesis

The thesis is organized as follows: in Chapter 2, we give some preliminaries to
facilitate later discussions. Chapter 3 presents a general framework of the proximal
subgradient approach. In Chapter 4, we introduce a penalty approach to tackle
the rank constraint and then apply the general proximal subgradient method to
the penalized problem. We also offer some theoretical justifications for using this
penalty technique. The Lagrangian dual reformulation and the global optimality
checking results are also presented in this chapter. In Chapter 5, we design a
quadratically convergent inexact smoothing Newton-BiCGStab method and then
apply it to solve the subproblems resulted in Chapter 4. We demonstrate the
effectiveness of our method by conducting some numerical experiments on both
nonsymmetric and symmetric cases on a variety of problems in Chapter 6. Finally,

we conclude the thesis and point out some future research directions in Chapter 7.



Chapter

Preliminaries

2.1 Notations

Let m and n be positive integers. We use O™ to denote the set of all orthogonal

matrices in "X i.e.,

Om = {Q c %me| QTQ — ]}’

where [ is the identity matrix with appropriate dimension. For any symmetric
matrix X, Y and Z in 8", we write X = 0 (- 0) to represent that X is positive
semidefinite (positive definite) and Z = X = Y to represent that X —Y > 0 and
Z—X 0. Let a C{l,...,m} and g C {1,...,n} be index sets, and M be an
m x n matrix. The cardinality of « is denoted by |a|. We write M, for the matrix
containing the columns of M indexed by o and M,p for the |a| x |5| submatrix
of M formed by selecting the rows and columns from M indexed by « and £,
respectively. The Frobenius norm in R”*" is denoted by || - ||. For any v € R,
we use diag(v) to denote the m x m diagonal matrix whose ith diagonal entry is
v, i =1,...,m, ||v]| to denote the 2-norm of v, and ||v||o to denote the cardinality

of the set {i|v; #0, i =1,...,m}. We also use |v| to denote the column vector



2.2 Matrix valued function and Lowner’s operator

in R™ such that its ith component is defined by |v|; = |v], i = 1,...,m and

vy = max(0,v). For any set W, the convex hull of W is denoted by conv W.

2.2 Matrix valued function and Lowner’s opera-

tor

Let X € 8™ admit the following spectral decomposition
X = PA(X)PT, (2.1)

where A(X) := diag(A(X)), M (X) > -+ > A\, (X) are the eigenvalues of X being
arranged in the non-increasing order and P € O™ is a corresponding orthogonal
matrix of orthonormal eigenvectors of X. Let f : R — R be a scalar function. The

corresponding Lowner’s symmetric matrix function at X is defined by [71]

F(X) = Pdiag(f (M (X)), f(he(X)). ... Fu(X)) PT = Y F(N(X)PRT .

- (2.2)
Let o € R™ is a given vector. Assume that the scalar function f(-) is differentiable
at each y; with the derivatives f'(u;), i = 1,...,n. Let fll(u) € 8" be the first

divided difference matrix whose (i, j)-th entry is given by
()]s = f(uuz — Zﬂ])’ i 7 . ij=1,....n. (2.3)

(i), if i = py,

The following proposition concerning the differentiability of the symmetric matrix

function F' defined in (2.2) can be largely derived from [60].

Proposition 2.1. Let X € 8" have the spectral decomposition as in (2.1). Then,

the symmetric matriz function F(-) is (continuously) differentiable at X if and



2.3 Semismoothness and the generalized Jacobian
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only for each i € {1,...,n}, f() is (continuously) differentiable at \;(X). In this

case, the Fréchet derivative of F(-) at X is given by

F'(X)H =P [fY\X))o(PTHP)| PT ¥V HeS". (2.4)

2.3 Semismoothness and the generalized Jaco-
bian

Let X and Y be two finite-dimensional real Hilbert spaces equipped with an inner
product (-,-) and its induced norm || - ||, respectively. Let O be an open set in X
and = : O C X — ) be a locally Lipschitz continuous function on the open set
O. The well known Rademacher’s theorem [107, Section 9.J] says that = is almost
everywhere F(réchet)-differentiable in O. Let Dz denote the set of F(réchet)-
differentiable points of = in O. Then, the Bouligand subdifferential of = at =,
denoted by 0pZ=(x), is

O5=(x) i= { Jim Z(a") | #* 2, 2" € D},

where Z'(z) denotes the F-derivative of = at . Then Clarke’s generalized Jacobian

of = at x [18] is the convex hull of 0p=(x), i.e.,
0=(x) := conv Op=(x).

The concept of semismoothness plays an important role in convergence analysis of
generalized Newton methods for nonsmooth equations. It was first introduced by
Mifflin [76] for functionals, and was extended by Qi and Sun [93], for cases when a

vector-valued function is not differentiable, but locally Lipschitz continuous.

Definition 1. Z: O C X — Y be a locally Lipschitz continuous function on the

open set 0. We say that = is semismooth at a point x € O if
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(i) = is directionally differentiable at x; and
(ii) for any Az € X and V € 0Z(x + Az) with Az — 0,

E(rz+ Ax) — Z(x) — VAz = o(||Az|]).

Furthermore, = is said to be strongly semismooth at x € X if = is semismooth at

x and for any Az € X and V € 0=(z + Az) with Az — 0,

E(r + Az) — Z(x) — VAz = O(]|Ax|]?).

2.4 Metric projection operators

In this section, we shall introduce three metric projections over three nonconvex

sets which are defined by

Si(r)={Z2e8"|Z =0, rank(Z) <r}, (2.5)
S"(r) ={Z € 8" | rank(Z) <r}, (2.6)
R = {7 € R™*™ | rank(Z) <r}. (2.7)

In order to study the metric projections over the above sets, which will be used in
the Lagrangian dual formulation in Chapter 4, much more analysis is involved due

to the non-convex nature of these sets.

We first discuss two metric projections over the sets S7(r) and S"(r) in the sym-
metric case. Let X € 8" be arbitrarily chosen. Suppose that X has the spectral
decomposition

X = PA(X)PT, (2.8)

where A(X) := diag(A(X)), M (X) > -+ > A\, (X) are the eigenvalues of X being
arranged in the non-increasing order and P € O" is a corresponding orthogonal

matrix of orthonormal eigenvectors of X. In order to characterize the following
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metric projections, we need the following Proposition. Suppose that X € S&™ has
the spectral decomposition as in (2.8) and let py > g > --- > ps be the distinct

eigenvalues of X. Define the following subsets of {1,...,n}
Te={i|NX)=m}, k=1,...,s. (2.9)

Proposition 2.2. Let A(X) = diag(A(X), Ao(X), ..., A\ (X)) with A\ (X) > Xa(X) >
o2 (X)), Let T, k=1,...,s be the corresponding subsets given by (2.9). Let
Q be an orthogonal matriz such that QTA(X)Q = A(X). Then, we have

Q7—_k7—_l:07——k7——“ k,lzl,"‘,s, kj%l,

T _NT _ _
Q’T’kfk TeTk fkf'k@’l_'kfk - I|’T_'k|7 k - 1? e 75'

(2.10)

2.4.1 Projection onto the nonconvex set S'(r)

Let X € 8" have the spectral decomposition as in (2.8), i.e., X = PA(X)PT.
Define

o= {0 | M(X) > A (X) }, 8= {0 | M(X) = A (X)), andy i= {i | A(X) < A(X) }

and write P = [P, Pz P,].
Denote

1
Us(X) := min 5||Z - X|I?

i

(2.11)
st. ZeSi(r).

Denote the set of optimal solutions to (2.11) by ILsp)(X), which is called the

metric projection of X over ST (r).

In order to characterize the solution set ILsr () (X), we need the Ky Fan’s inequality

given in the following lemma (e.g., see [3, (IV.62)]).

Lemma 2.3. Any matrices X and Y in 8" satisfy the inequality

X = Y[ = |]A(X) = A, (2.12)



2.4 Metric projection operators

where the equality holds if and only if X and Y have a simultaneous ordered spectral

decomposition.

Define Z* € 8™ by

r

Zr =Y (M(X)) PP (2.13)

i=1
Thus, from the Ky Fan’s inequality (2.12) and the fact that Z* € S}(r), we obtain
that Z* € Ilsp()(X) and

) = 5 DT ()~ A 45 3 X0 =5 3 N, (@)

i=1 i=r+1 1=t+1
where k denotes the number of positive eigenvalues of X, i.e., k := |{i| \;(X) > 0}

and ¢ := min(r, k).

Lemma 2.4. Let X € 8™ have the spectral decomposition as in (2.8). Then the

solution set s ) (X) to problem (2.11) can be characterized as follows
sn (X)) = { [ Po PsQs Py diag(v) [ Fo PpQps PV]T‘ Qp € OW'}, (2.15)
where v = ((A1(X))1, ..., (A(X))1,0,... ,O)T e R

Proof. By employing the Ky Fan’s inequality and noting (2.14), we have for any
A= HSQE(T) (X), that

IZ = XIP = IMZ) = MO 2 3 () = M) + 3 (), (216)

i=r+1
which implies that there exists U € O™ such that X and Z admit a simultaneous

ordered spectral decomposition as
X =UAX)UT and Z=UANZ)U". (2.17)
As A(X) is arranged in the non-increasing order and from (2.16), we obtain that

AZ) =v=(((X))4, ..., (A(X))1,0,...,0)". (2.18)
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Thus, by noting that X = PA(X)PT and then applying Proposition 2.2, we obtain
that
Z =UNZ)UT = (PQ)diag(v)(PQ)"

where () € O™ takes the form as in (2.10). Notice that the two matrices Z v U UL

i€a
and Z v;U;UL are independent of the choices of Q € O™ satisfying (2.10). Thus,
1€y
we can easily derive the conclusion (2.15) and complete the proof. O

Since W7(X) takes the same value as in (2.14) for any element in Ilsn () (X), for

notational convenience, with no ambiguity, we use %Hﬂgi () (X) — X|? to represent

Us(X). Define =5 : S* — R by

s 1 1 n
=2(2) = sy (2) — 2 + 51217, Z e 8" (2.19)
Then we have
1< 1< s 1
(X)) = §Z>\?(X) = 52 (X)), = §||Hsi(r)(X)||2,
=1 =1

where [|ILsy () (X)]| is interpreted as | Z|| for any Z € sy () (X), e.g., the matrix
Z* defined by (2.13). By noting that for any Z € 8™, Z5(Z) can be reformulated

r

as
. 1 1
=(2) = max {51207 - SV - 2]}
esn(r) L2 2
1 2
= max {(v.2) - IV} (2.20)

we know that Z5(-) is a convex function as it is the maximum of infinitely many

affine functions.

Proposition 2.5. Let X € 8" have the spectral decomposition as in (2.8). Then

=7 (X) = conv ILsy () (X) - (2.21)

T
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Proof. For any z € R", define

1 1 1
&(2) =max { 5[0 = Sly - =P} =max {w.2) - Swl’},  (222)

T T

where F,. := {y € R"|||lyllo < r,y > 0}. Then &,(-) is a convex function and its
sub-differential is well defined. Let x = A(X). Thus

1 1 1 1
&) = max { ol = Sy = oI} = SIACOI? — min Slly — ol (2.23)

Denote the solution set of (2.23) by F;. Thus, from the non-increasing order of
A(X), one can easily show that

T

1
&(7) =3 » (z)% and Fr =V, (2.24)
i=1
where

V= {ve%”| Ui:()\i(X))+fOI"Z'EOéU51, ’Ui:OfOI"Z'E(B\ﬁl)U')/,

where 8, C B and [Bi| =7 — |of }.
(2.25)

From convex analysis [105], we can easily derive that
0. (z) = conv V

and that &.(-) is differentiable at z if and only if A\, (X) > A41(X) > 0or A1 (X) <

0. In the latter case,

0 (x) = {V&(x)} = {v},
where v is defined in (2.18), i.e., v = (M (X))4, ..., (A (X))4,0,... ,O)T e R
Since the convex function &.(-) is symmetric, i.e., §.(z) = §,.(Sz) for any z € R

and any permutation matrix S, from [64, Theorem 1.4], we know that =Z(-) is

differentiable at X € 8™ if and only if &.(-) is differentiable at A\(X) and

E(X) = {Pdiag(v)P" |v € 8§ (M(X)), PA(X)PT =X, P O"}.
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Thus =Z3(-) is differentiable at X if and only if A\,.(X) > A\ 11(X) > 0 or A1 (X) <

0. In the latter case,

=H(X) = {()(X) } = { Pdiag(v)P" }

Let the B-subdifferential of Z5(-) at X be defined by

Op=(X) ={ lim (22)(X"), Z5(-) is differentiable at X*}.

XkoX

Then we can easily check that
IpE}(X) = Usn () (X), (2.26)

where we use the fact that the two matrices Z \(X)PPT and Z \i(X)P,PT
ica i€y

are independent of the choices of P € O" satisfying (2.8). Thus, by Theorem 2.5.1

in [18], one has
0E7(X) = conv IpE](X) = conv ILsy ) (X) .
The proof is completed. O

Remark 2.6. Proposition 2.5 implies that when \.(X) > A\11(X) > 0 or Ap1(X) <
0, Z3(°) is continuously differentiable near X and (Z7)(X) = sy (X) = {Z"},
where Z* is defined in (2.13).

Remark 2.7. Since, for a given symmetric positive definite matriz W € S™, the
following W -weighted problem
1
min —||[WY3(Z — X)W1/?|?
2 (2.27)
st. ZeS(r)
admits the solution set as W_%H‘gi(r)(W%XW%)W_%, there is no difficulty to work
out the corresponding results presented in Lemma 2.4 and Proposition 2.5 for this

more geneml case.
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Remark 2.8. When r = n, the metric projection operator Hgi(r)(-) reduces to the
projection operator Hgi(-) over the closed convex cone St. Given X € 8", lsn (X)

is the unique optimal solution to the following problem

1
min ~||Z — X|?
2 (2.28)
st. ZeSt.

It has long been known that Ilsn (X) can be computed analytically (e.g., [109])
sy (X) = Pdiag((4 (X)), (An(X)) 1) T (2.20)

For more properties about the metric projector ng(-), see [122, 75, 113] and ref-

erences therein.

2.4.2 Projection onto the nonconvex set S"(r)
Let Y € 8™ be arbitrarily chosen. Suppose that Y has the spectral decomposition
Y = UAY)UT, (2.30)

where U € O" is a corresponding orthogonal matrix of orthonormal eigenvectors
of Y and A(Y) := diag(A(Y)) where A(Y) = (M(Y),..., A\(Y))T is the column
vector containing all the eigenvalues of Y being arranged in the non-increasing

order in terms of their absolute values, i.e.,

MY = = )],

and whenever the equality holds, the larger one comes first, i.e.,
if |\(Y)| =[N (V)] and \(Y) > A;(Y), then i< j.

Define

~

a:={i| AW > AWML 8= {1 L) =AM} 5= {i] A < ALY
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and B = {i | L(Y) = [NV}, B = {i | M(Y) == \(YV)]}.
Write U = [Us Ujs Us). Denote
B(Y) = min %HZ—YHQ

(2.31)
st. ZeS™(r).

Denote the set of optimal solutions to (2.31) by Ilgn()(Y'), which is called the
metric projection of Y over §"(r). Define V- € O™ by

V = Udiag(v),

where for each i € {1,...,n}, v; = \(Y)/|M(Y)]if A;(Y) # 0 and v; = 1 otherwise.
Then, we have

Y = Udiag(|A\(Y))V7T.

Define Z* € 8™ by

ZM ) UV = ZM U (0;UT) = Z Y)U;UT . (2.32)

Thus, by using the fact that Z* € S"(r), we have
1 & ;
7" €llsun(Y) and W(Y) =7 > Y. (2.33)
i=r+1
Then we can fully characterize all the solutions to problem (2.31) in the following

lemma.

Lemma 2.9. Let Y € 8" have the spectral decomposition as in (2.30). Then the

solution set Ign()(Y) to problem (2.31) can be characterized as follows

Hsn(Y) = {[ UsQp Usldiag(v) [Us UsQps Uz |"

QB+

UGV,QB: 0 0
B_

\Qar €O,Q5. € O'B"} ,

(2.34)
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where

{veR| vi=N(Y) for i€ aUBy, v; =0 forie (B\Bi)UA
where B C B and || = — |a| }.
(2.35)

Proof. By employing Ky Fan’s inequality (2.12), i.e
1Z =Y = [AXZ) - AY)l, Zes",

where the equality holds if and only if Y and Z admit a simultaneous ordered

spectral decomposition, together with (2.33), we have for any Z € Hsniy(Y), that

SR < 7Y 2 D) APz YR, (230)

i=r+1 i=r+1
which implies that there exists P € O™ such that Y and Z admit the spectral

decompositions as in (2.8) with the same orthogonal matrix P.
Y = PA(Y)PT and Z = PA(Z)P". (2.37)

Note that there exists a permutation matrix S € R such that A(Y) = SA(Y).

Under this permutation matrix, v = SA(Z) for some v € V defined in (2.35) and

A(Y) = SA(Y)ST and diag(v) = SA(Z)ST. (2.38)
Noting that ¥ = UA(Y)UT, one has

Y = PA(Y)P" = PSTA(Y)SPT = UANY)UT .
Then, by applying Proposition 2.2, we obtain that

Z =PANZ)P" = PS"diag(v)SP" = (UQ)diag(v)(UQ)",

where ) € O™ takes the form as in (2.10). Notice that the two matrices Z v U UL
and ZviUiUiT are independent of the choices of () € O" satistying (;TO), thus

i€d
we can easily derive the conclusion (2.34) and complete the proof. O]
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Since W;(Y') takes the same value as in (2.33) for any element in IIgn¢)(Y), for
notational convenience, with no ambiguity, we use 3||ILsn()(Y") — Y||? to represent
UE(Y).

Define =2 : 8" — R by

—s 1 1 n
=2(2) = —5 IWse(2) = 21 + 511207, Z € S (2.39)
Then we have
s 1< 1
=) =3 > XY = §||H5n(r)(Y)||2,
=1

where ||ILsn(»)(Y)]| is interpreted as ||Z]| for any Z € Ilgn(y(Y), e.g., the matrix
Z* defined by (2.32). By noting that for any Z € 8™, Z5(Z) can be reformulated

as
—_ 1 1
=(2) = max {S12)° - 5Ix - 2|}
esn(r) L2 2
1
- X,Z) - -||IX 2} 2.40
s {(X.2) — 51X} (2.40)

we know that Z5(+) is a convex function as it is the maximum of infinitely many

affine functions.

Proposition 2.10. Let Y € 8™ have the spectral decomposition as in (2.50). Then
E0(Y) = convIgny(Y). (2.41)

Proof. For any z € R", define

_ Lo 1 2] _ Lo
&(2) = max {S 22 = Sllz 21} = max {(z.2) = Sllel?},  (242)
where F,. := {z € R"|||z]lo < r}. Then &.(-) is a convex function and its sub-

~

differential is well defined. Let y = A(Y). Thus

1 1 1, < 1
&(y) = max {Slyl* = Sl =yl } = SIA)IP — min Sl —y|?.  (243)

:L‘e]:r $E.F7
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Denote the solution set of (2.43) by F. Define o := {i|z; # 0} and = {i|z; =
0} for any given x € F,.. It then follows that

n

lwi—y)? =) (wi—u)’+ > (@w—u) =) =Yy, (244)

i=1 ica icp icp i=r+1
where the last inequality is from the facts that |5| > n — r and the non-increasing

order of y in terms of the absolute value. Therefore, we know that
1 - 2 *
&) =5 Z y; and Fr=V, (245)
where V is defined in (2.35). From convex analysis [105], we can easily derive that
0, (y) = convV

and that &,(-) is differentiable at y if and only if |A(Y)], > [A(Y)|,+1. In the latter

case,
& (y) ={V& )} ={veR"|v = N(Y)for 1<i<rand v; =0forr4+1<i< n}.

Since the convex function &.(-) is symmetric, i.e., §.(z) = §,.(Sz) for any z € R

and any permutation matrix S, for Z € S™ we can rewrite Z5(7) as

=5(Z) = £,(\2)) = & (\(2)),

where AM(Z) = (A(2), ..., \(2))T is the column vector containing all the eigen-
values of Z being arranged in the non-increasing order in terms of their absolute
values. By [64, Theorem 1.4], we know that Z(-) is differentiable at Y € S™ if and
only if &(-) is differentiable at A(Y) and

=3(Y) = {Udiag(v)UT |v € 8&(A(Y)), U € O", Udiag(A\(Y))UT =Y }.

Thus Z5(-) is differentiable at Y if and only if [A(Y)], > |A(Y)|,41. In the latter

T

case,

=Y) = {(E)(Y)} = {Udiag(v)U" | v; = Ni(Y)for 1 <i<rand v; =0forr+1 <i<n}.
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Let the B-subdifferential of Z5(-) at Y be defined by

Op=i(Y) ={ lim (Z2)(Y"), Z5() is differentiable at Y*}.

YkoY

Then we can easily check that
0= (Y) = Tlsn(r(Y), (2.46)
where we used the fact that the two matrices Z N(V)U;UT and Z MM UUT

€A 1€y

are independent of the choices of U € O" satisfying (2.30). Thus, by Theorem
2.5.1 in [18], one has

0=2(Y) = conv 0= (Y) = conv Hgny(Y) .
The proof is completed. O

Remark 2.11. Proposition 2.10 implies that when [M.(Y)| > |A\y1(Y)], Z5(-) is
continuously differentiable near Y and (Z2)(Y) = lgn((Y) = {Z*}, where Z* is
defined in (2.52).

Remark 2.12. Since, for a given symmetric positive definite matriz W € 8™, the

following W -weighted problem
min 1]|VV1/2(Z —Y)W?)?
2 (2.47)
st. Ze€S8S™(r)

admits the solution set as W_%HSn(r)<W%YW%)W_%, there is no difficulty to work
out the corresponding results presented in Lemma 2.9 and Proposition 2.10 for this

more geneml case.

2.4.3 Generalized projection onto the nonconvex set R *"

Let Y € " *"2(ny < ny) admit the singular value decomposition

Y =UE(Y) ovT =U[S(Y) 0]y Vo], (2.48)
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where U € O™ and V € O™ are orthogonal matrices, and X(Y) := diag(c(Y)),
oY) > - > 0,,(Y) > 0 are the singular values of Y being arranged in the
non-increasing order. Decompose V' € O™ into the form V = [V; V5], where
Vi € 2™ oand V, € Rm2X(27m) - The set of such matrix pairs (U, V) in the

singular value decomposition (2.48) is denoted by O™ "2(Y'). Denote the nuclear

ni
norm of Y by [|Y||. = Zai(Y).
i=1
Define the index sets of positive and zero singular values of Y, by

7:={i|oy(Y) >0} and 79:={i|o;(Y)=0}.

Let v1 > vy > ... > 1, > 0 be the nonzero distinct singular values of Y. Let

{7 }}_; be a partition of 7, which is given by
mo={i|ov(Y)=w}, k=1,...,t.

Proposition 2.13. For any given Y € R™*"2 denote ¥ := 3(Y). Let P € O™
and W € O™ satisfy
P[¥X 0]=[2 O)W. (2.49)

Then, there exist Q € O, Q" € O™~ and Q" € O™~ 1"l such that

0 0
P = @ and W = ©
O Q/ 0 Q//

Moreover, the orthogonal matriz Q) is a block diagonal matriz which takes the form

as follows:

Q’Tk’Tl:OTle7 k7l:17"'7t7 k#la

T _NT _ _
QTka TeTk TkaQTka - I‘Tk|7 k - 17 e 7t'

(2.50)

For the proof of this proposition, see [29].
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Now we discuss the generalized metric projection over the set R'**"? in the non-
symmetric case. Denote
1 9
Upr(Y) = min S||Z =Y+l Z].
(2.51)

st. ZeRre,

where p > 0 is a given parameter. Denote the set of optimal solutions to (2.51) by

P,(Y), which is called the generalized metric projection of Y over R/ *"2.

In order to characterize the solution set P, ,(Y"), we need the von Neumann’s trace
inequality first proved by von Neumann [83]. For the condition when the equality

holds, see [66].

Lemma 2.14. Any matrices X and Y in R satisfy tr XY < o(X)To(Y),
where X and Y have the singular value decomposition as in (2.48). The equality
holds if and only if X and Y have a simultaneous ordered singular value decompo-

sition.

Define Z* € R™*"2 by

r

Z0 =Y (oY) = p), UV (2.52)

=1

By noting that von Neumann’s trace inequality implies

12 =Y = lo(Z2) —a(Y)[, VZeR"", (2.53)
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we obtain that for any Z € R *"2,

1
12 =Y+l Z]l.
1

> Lo - ol + sl

- Y@ - ))z%é"g(y)”;“(z)

_ —Z 77) ~ (o >—p>)2+§:21103<¥>—%é(azm—p)?

> —Z (oY <az<Y>—p>>2+§Z§;a$<Y>—%é(m(ﬂ—pf
_ ——z o (Y +§iaf<y>

= Yz —vpe iz,
(2.54)
which, together with the fact that Z* € R**"2, implies that Z* € P,,(Y) and

T

Wou(V) = =5 3 (V) = )+ 5 D02, (2.55)

i=1
Lemma 2.15. Let Y € R"*"™ have the singular value decomposition as in (2.48).
Define the index sets by & := {i | 0;(Y) > 0,(Y)}, B:={i | 0:(Y) = 0,(Y)}, and
yi={i|o;(Y) <o.(Y)}. Then the solution set P,,.(Y) to problem (2.51) can be

characterized as follows
Por(Y) = { [Us UsQ3 Us ][ diag(v) 0][Via V13Q5 Vis Va]" | Q3 € O}, (2.56)
where v = ((01(Y) = p)4, -+, (0,(Y) = p)4, 0, ,O)T S
Proof. By (2.55), we have that for any Z € P, (Y),
1 — ) = 1 < s len
SNZ=YIE+pIZl = =5 D7 (V) = )+ 5 DY
i=1 i=1

which implies that the inequalities in (2.54) are both equalities if Z is replaced
by Z. Therefore, from the first inequality in (2.54), we can see that there exist
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U e O™ and V € O™ such that Y and Z admit the singular value decompositions

as in (2.48) with the same orthogonal matrices U and V/, i.e.,

T — —T

Y=UXY) 0V and Z=U[X(Z) 0]V . (2.57)

Moreover, by the second inequality in (2.54), together with the fact that o(Y") is

arranged in the non-increasing order, we obtain that
0(Z) =v:=((01(Y) = p)as -, (0,(Y) = p)o, 0, ,0). (2.58)
Then from Proposition 2.13 and Y = U[X(Y) 0]VT, we know that
Z=U[N(Z) V' = (UWy)[diag(v) 0](VWa)T,
with W7 € O™ and Wy € O™ taking the form

0 0
W, = © and Wy = @ , (2.59)

0 Q/ 0 Q//

where 7 := {i|oy(Y) > 0}, Q" € O~ Q" € O™l and Q € Ol is a block
diagonal matrix taking the same form as in (2.50). Notice that the two matrices
Z viUiV;T and Z v;U; VT are independent of the choices of W, € O™ and W, €
1EQ €5

O™ satisfying (2.59), then the conclusion (2.51) holds. O
Since ¥, ,(Y) takes the same value as in (2.14) for any element in P,,(Y), for
notational convenience, with no ambiguity, we use 1||P,,(Y) — Y||* + p||Y||. to

represent W, . (Y). Define Z,, : R — R by
—_ 1 2 1 2 N1 XN
20 2) = ~ 5Pl 2) — 21— pllZI. 4 2P, Z R (260)

Then we have

T

> () = )% = 3IPp VP,

i=1

Zor (Y) =

N | —
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where ||P,.(Y)]| is interpreted as || Z|| for any Z € P,.(Y), e.g., the matrix Z*
defined by (2.52). By noting that for any Z € ®"*"2, =, (Z) can be reformulated

as

- 1 1
Z,,(2) = max {122 SIX - 20 - pllx]l. |
XeR, 17" 1
= max {(X.2) = SIX|* - pllx]. | (261)
XeR, 172

we know that =,,(-) is a convex function as it is the maximum of infinitely many

affine functions.

Proposition 2.16. Let Y € R"*" have the spectral decomposition as in (2.48).
Then
0=,,(Y) =convP,,.(Y). (2.62)

Proof. For any z € R™ define

- 1 2 1 2 o 1 2
§pr(2) = max { S 12 = Slle = 2| = pllels } = max {(z 2) = Slall* = plal |
(2.63)
where F, = {x € R |||z]lo < r}. Then ¢,,(-) is a convex function and its

sub-differential is well defined. Let y = o(Y’). Thus

_ Lyowa 1 2 _ 1 o ol 2
oo y) = max { S yl*= S la—yllP=plials } = 5o (V)]*=min {3 la—yl*+plall:} .
(2.64)
Denote the solution set of (2.64) by F;. Thus, from the non-increasing order of
o(Y), one can easily show that

T

1
o) = 5 D= p2 and F =V, (2.65)

=1

where

Vi= {veRm] vi:(ai(Y)—p)Jrforz'e@UBl, v; =0forie (B\F)U7,

where 8, C f and [Bi| =r —|a| }.
(2.66)
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From convex analysis [105], we can easily derive that
0, (y) = convV

and that &,,(-) is differentiable at y if and only if ¢,.(Y) > o,41(Y) > 0 or
o,.+1(Y) = 0. In the latter case,

9pr(y) = {VEr(y)} = {v},
where v is defined in (2.58), i.e., v = ((61(Y) = p)4, ..., (0:(Y) = p)4,0,..., O)T €
R
Since the convex function £,,(-) is absolutely symmetric, i.e., £,,(2) = &,,(5%)
for any z € R™ and any generalized permutation matrix S which has exactly one
nonzero entry in each row and column, that entry being £1. From [63, Theorem

3.1 & Corollary 2.5], we know that =,,(-) is differentiable at Y € R™*"2 if and
only if £, ,(+) is differentiable at o(Y") and

9=, (Y) = {U[diag(v) O]V" |v € 9, ,(0(Y)), (U, V) € O™ (Y)}.

Thus =,,(+) is differentiable at Y if and only if ,(Y) > 0,41(Y) > 0 or 0,1 (Y) =

0. In the latter case,

0Z,,(Y) = {5,,(Y) } = {Uldiag(v) O]V" }.

psT

Let the B-subdifferential of =,,(-) at Y be defined by
5=, (Y) ={ lim E;T(Yk), =,.-(*) is differentiable at Y*}.
Yoy 7
Then we can easily check that
O5Z,0(Y) = PyulY), (2.67)
where we used the fact that the two matrices Z o:(Y)U;V' and ZU,(Y)UZ-V;T

1EQ 1€y

are independent of the choices of (U, V) € O™ (Y) satisfying (2.48). Thus, by
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Theorem 2.5.1 in [18], one has
0=,,(Y) = conv0pE,,(Y) = convP,,.(Y).
The proof is completed. O

Remark 2.17. Proposition 2.16 implies that when o,.(Y) > o,.1(Y) > 0 or
0r.41(Y) =0, Z,,(-) is continuously differentiable near Y and =), (V') =P, (V) =
{Z*}, where Z* is defined in (2.52).

Remark 2.18. Since, for given matrices Wi € R™ ™ and Wy € R™*"2 the

following weighted problem

. 1
min S [|[Wi(Z = Y)Wal* + p|| W1 ZWa|l.
2 (2.68)

st. Ze R,

admits the solution set as Wl_lpp,r(WlYWQ)Wg_l, there is no difficulty to work
out the corresponding results presented in Lemma 2.15 and Proposition 2.16 for

this more general case.

Remark 2.19. When r = ny, P,.(-) reduces to soft thresholding operator P,(-)
[12]; when p = 0, the generalized metric projection P, ,(-) reduces to the metric

projection g, xn, (+).
The equations (2.21) , (2.41) and (2.62) are particularly useful in developing a
technique for global optimality checking in Chapter 4.

2.5 The smoothing functions

In this section, we shall introduce the smoothing functions for the real-valued

nonsmooth function ¢, := max(0, t), which is not differentiable at ¢ = 0.
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Let ¢y : R x R — R be defined by the following Huber function for ¢,

t iftz%,
1 el ke €]
)= —{t+—— f ——<t<— t : 2.
Snet) =4 g3 i - <t< T (EnERXR (269)
0 ift<—u,

and the Smale smoothing function ¢g: R x & — R
os(e,t) =[t+Ve2+12]/2, (g, t) e RxR. (2.70)

Discussions on the properties of the smoothing functions can be found in [93, 124].
It has been known that both ¢5 and ¢g are globally Lipschitz continuous, contin-
uously differentiable around (e, t) whenever € # 0, and are strongly semismooth at
(0,%) (see [124] and references therein for details). Since ¢y and ¢g share similar
differential properties, in the following, unless we specify we will use ¢ to denote

the smoothing function either ¢y or ¢g.

2.6 The Slater condition

We consider the following problem

min  f(z)
st. Axr=b, (2.71)
x e,

where A : X — R™ is a linear mapping, b € R™ and K is a closed convex cone
with nonempty interior. We always assume that b € AX. The Slater condition for

problem (2.71) is as follows

A is onto and there exists z° € int(K) such that Az’ =b. (2.72)
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Proposition 2.20. If the Slater condition (2.72) holds for problem (2.71), then
(b,y) <0 for any 0 # y € R™ satisfying Ay € —K*. (2.73)

Conversely, if the condition (2.73) holds, then there exists x € int(KC) such that
Ax =b.

Proof. Suppose that the Slater condition (2.72) holds. Then there exists € int(K)
such that Az = b. Let 0 # € R™ such that A*y € —K*. Thus, A*y # 0 from the
fact that A is onto. Furthermore, Z € int(K) implies that there exists 6 > 0 such
that £ + 6 A*y € K . It then follows that

(z, A7) = (1 + 0A"y, A') — 0(A"y, A'p) < —0(A"y, A'p) <0.
Therefore, (b,y) = (Az,y) = (z, A*y) < 0, which proves the first part of this
proposition.

Next we prove the remaining part by contradiction. Define S := {z € X' | Az =b}.
Suppose that there does not exist = € int(KC) such that Az = b, i.e.,

{zeX|zemt(K)}NnS=10.
Then, from Separation Theorem [105], there exists 0 # p € X such that
p,y) <(p, x), Vyeint(K)and z € S. (2.74)
As K is a closed convex cone, for any £ > 0
k(p,y) <(p,z), Vyeint(K)and z € S.
It follows that
{p, )

(p,y) < lim =0, Vyecint(K).

K——+00 K

Thus, (p, y) <0 for all y € K. That is, p € —K*. Similarly, we can show that

(p,x)>0, Vzes. (2.75)
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Let z € S, ie.,, Az = b. Then § = 7 + Ker A, where Ker4d = {x € X| Az =0}
is the kernel of A. Note that KerA is a subspace, together with (2.75), one can

easily show that
{p,2°) =0, Va* € KerA and (p,z)>0.

Therefore, 0 # p € ImA*. That is, there exists 0 # gy € R™ such that p = A*y €
—K*. It then follows that

(p, 7) = (A"y, 7) = (§, A7) = (9, b) = 0,
which is contradictory to the condition (2.73). Thus we complete the proof. [

Remark 2.21. Consider the following problem

min  f(z)
s.t. APz =10P,
(2.76)
A%z € b1+ Q,
x e,

where b € NP, b1 € RI and Q, K are two closed convex cones with nonempty

interior. By adding a variable, we can rewrite it as

min f(z.)
AP bP
st. Az = ! = =0, (2.77)
Alr — s b
z, €K,
where
R T ~ K
flzs) = f(z), x5 = and K =
s Q

Again, we assume that b € ImA. Then Proposition 2.20 can be directly applied to
problem (2.77).
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2.7 Py(P)-matrix and quasi F,(P)-matrix

A matrix M € R is a called a Py-matrix (P-matrix) if all of its principal
minors are nonnegative (positive). Here, we will introduce some generalizations
of Py-matrix and P-matrix in order to exploit the properties of the generalized

Jacobians.

Definition 2. A matrix M € R™*" is called a quasi Py-matrix (P-matrix) if there

exists an orthogonal matrix U € R™*" such that UM U7 is a Py-matrix (P-matrix).

It is obvious that any Py-matrix (P-matrix) is a quasi Py-matrix (P-matrix). Any
quasi P-matrix is a quasi FPy-matrix and any quasi P-matrix is nonsingular. If A
is a quasi Py-matrix, then for any ¢ > 0, B := A+ ¢/ is a quasi P-matrix, where [
is the identity matrix. We will see later that the concepts of quasi Py-matrix and

quasi P-matrix are useful in the analysis of nonsingularity of generalized Jacobians.

Next we shall introduce the concept of a block quasi Fy-function. Suppose that

the set I is the Cartesian product of m (with m > 1) lower dimensional sets:

K .= ﬁle,
j=1

with each K7 being a nonempty closed convex subset of 1™ and Z;”:l n; = n. Cor-

respondingly, we partition both the variable x and the function F' in the following

way:
! Fl(z)
7 F(z)

T = . and F(x)= _ ,

where for every j, both 2/ and F7(x) belong to R". Let L(K) denote all the sets

in R” which have the same partitioned structure as K, i.e., D € L(K) if and only
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if D can be expressed as
D=]][D
j=1
where D7 € R for j =1,...,m.

Definition 3. F'is called a block quasi Py-function on D € L(K) if for every pair
x,y € D with x # y, there exist a block diagonal orthogonal matrix () € O™ which

takes the following form

QL 0 ... 0

0 Q ... 0
Q= “ ;
00 ... Q"]

where for j =1,...,m, @’ € O™, such that

sio_ o ai T i
max (2" — F'—F') >0
1§.ZSm( g, Fy—Fy) >0,
F AT

where Z := Qz, 7 := Qy, F, = QF (z) and ﬁy = QF(y).

Definition 4. Let X be a finite dimensional space. We shall say that f : X — R"
is weakly univalent if it is continuous and there exists a sequence of univalent (i.e.,
one-to-one and continuous) functions fj from X" to R such that f; converges to

f uniformly on bounded subsets of X.

Note that univalent functions, affine functions, monotone, and more generally P,-

functions on R" are all weakly univalent.



Chapter 3

A Framework of Proximal Subgradient

Method

Let X be a a finite-dimensional real Hilbert space equipped with an inner product
(-,-) and its induced norm || - ||. Let h : X — R be a smooth function (i.e.,
continuously differentiable), and g : X - RU {f+oo} and p: & — R U {£o0} be
two convex functions. A type of nonconvex nonsmooth optimization problem we
will consider in this chapter takes the following form:

win f(2) == h(z) + g(z) — p(a). (3.1)

zeX

In next chapter, one will clearly see how this kind of problems arises from the low

rank matrix optimization problems we are dealing with in this thesis.

Remark 3.1. Suppose that Q2 C X is a closed conver set. The constraint x € €2
in problem (3.1) can be absorbed into the convex function g(-) via an indicator
function Ig(x) : X — [—00, +00]

0, ifxe,

Io(x) :=
+00, otherwise.
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Now we introduce a proximal subgradient method for solving problem (3.1).

Algorithm 3.2. (A proximal subgradient method)
Step 0. Choose 2° € X. Set k := 0.

Step 1. Choose M* = 0 and W* € dpp(z*).

Step 2. Solve

min  f*(d) := (Vh(z*) ,d) + 3(d, M*d) + g(a* + d) — g(a*) — (WF, d)
st. F+deXx
(3.2)
to get d*.

Step 3. Armijo Line Search.

Choose af .. > 0. Let I}, be the smallest nonnegative integer | satisfying
f@* + g pd®) < f(a) + oaf, o AF (3:3)
where 0 < p<1,0< 0 <1, and
AF = (Vh(2), d") + g(z* + d¥) — g(a®) — (WF, d¥) . (3.4)
Set o := af .o and 21 = 2F 4 oFdF.

Step 4. If 2"t = 2F, stop; otherwise, set k =k + 1 and go to Step 1.

Remark 3.3. When p = 0, the proximal subgradient method reduces to the prox-
imal gradient method which was studied in [40, 77], see also [116] and reference
therein. Recently, there are intensive studies in accelerated proximal gradient meth-
ods for large-scale convex-concave optimization by Nesterov [82], Nemirovski [81]
and others. How to extend these accelerated versions to problem (3.1), however, is

still unknown and we leave it to further study.
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Note that various line search rules for smooth optimization can be adapted to our

nonsmooth setting to choose a*.

In Algorithm 3.2, we adapt the Armijo rule,
which is simple and effective. We will show the well-definedness of the Armijo rule

in the following two lemmas.

Lemma 3.4. Let {z*} and {d*} be two sequences generated by Algorithm 3.2.
Then for any o € (0,1] and k > 0, we have

f@*+ad®) < f(@")+a((Vha(z"), d*) +g(a* +d*) —g(z") = (W*, d*)) +0(a) (3.5)

and
(Vh(a"),d") + g(a* + d¥) — g(a*) — (WF,d*) < —(d", M*d").  (3.6)
Proof. For any « € (0, 1], from the convexity of g and p, we obtain
Pk + ad¥) — f(ab)
= h(z* + ad®) + g(z" + ad®) — p(z* + ad®) — (h(z*) + g(2*) — p(zF))
< h(@* +ad') — h(z¥) + ag(a® + d*) + (1 — a)g(*) — g(2")
—(p(a") + a(W*, d*) — p(a*))

= a((Vh("),d") + g(a* + d*) — g(a*) — (W*,d")) + o(a)

which proves (3.5). Moreover, by using the convexity of g and the fact that d* €

arg min f¥(d), we know that for any « € (0,1)
(zk+d)ex

(Vh(z¥),d*) + 5(d*, M*d*) + g(a* + d¥) — g(a*) — (W*,d¥)
Vh(2®), ad®) + %(adk M*(ad®)) + g(a* + ad®) — g(z*) — (W*, ad®)

IN

< o Vh(zF),d") + & (dF, M*d¥) + ag(a® + d¥) + (1 — a)g(z¥) — g(aF) — a(W*, dF)
= a(Vh(a®), d*) + %(dk, MFd*y + a(g(z® + d¥) — g(z*)) — a(WE, d*).
Rearranging the terms yields

(Vh(a), d) + gla* + ) — g(a*) — (W, d¥) <~ 2k k),

then taking a T 1 proves (3.6). O
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Lemma 3.5. Let {z*} and {d*} be two sequences generated by Algorithm 3.2.
Assume that for all k >0, 0 < v||d||* < (d, M*d) for any d € X. If h satisfies

IVh(y) = Vh(2)[| < Llly —2l|, Vy,z€ X, (3.7)
for some L > 0, then, for each integer k > 0, the descent condition
" 4 ad®) < f(2®) + oaA® (3.8)
is satisfied for any o € (0,1) whenever 0 < o < min{1,2v(1 —0o)/L}.

Proof. Without any ambiguity, we drop the superscript k£ for simplicity. For any
€ (0, 1], we obtain

flz +ad) = f(z)
= h(z+ad) — h(z) + g(z + ad) — g(z) — (p(z + ad) — p(z))
= a(Vh(z),d) + g(z + ad) — g(z) — (p(z + ad) — p(z))
+ [ (Vh(z + tad) — Vh(z), ad)dt
a((Vh(z),d) + g(z + d) — g(
< a((Vh(z),d) + g(z + d) — g(z) — (W, d)) + 5a?||d]]?,

IN

where W € dp(z). If a <2y(1 —0)/L, then
ZalldI? < (1~ 0)(d. M) < (1~ 0)((Vh(a).d) + gl + d) — g(x) — (W.)).

Therefore, when 0 < o < min{1,2v(1 — ¢)/L}, the inequality (3.8) holds for any
e (0,1). 0

Definition 5. A point z € X is said to be a stationary point of problem (3.1) if
O(h(x) + g(x)) N (Ip(x)) = (Vh(z) + dg(x)) N (Op(x)) # 0 (3.9)

and a B-stationary point of problem (3.1) if

O(h(x) + g(x)) N (Opp(x)) = (Vh(z) + dg(x)) N (Op(z)) # 0. (3.10)

z) — (W, d)) +a [} |Vh(z + tad) — Vh(z)|| - ||d|dt
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Assumption 3.6. For all k > 0, v||d||*> < (d, M*d) < v||d||* for any d € X, where

O0<v <V <+o0.

Theorem 3.7. Let {z*} and {d*} be two sequences generated by Algorithm 3.2
under Assumption 3.6. Then {f(x*)} is a monotonically decreasing sequence. If

k+

2"t = 2% for some integer k > 0, then x* is a B-stationary point of problem (3.1).

Otherwise, suppose that inf of ,, > 0, the following results hold:
(a). For each integer k > 0, A* satisfies
AR < —(dF, MR < —y||d¥||?,
(") — f(2®) < oa*fAF < 0.

(b). If {x*i} is a converging subsequence of {x*}, then lim d* = 0.

Jj—+oo

(c). Any accumulation point of {z*} is a B-stationary point of problem (3.1).

Proof. The monotone decreasing property of {f(x*)} follows easily from the line

search condition (3.3) in Algorithm 1.

We first consider the case that x*T! = z*F for some integer k > 0. It is clear that

d* = 0 is the optimal solution to problem (3.2). Then one has
0 € Vh(z") + 0g(z*) — WF |

which implies that 2% is a B-stationary point of problem (3.1) from the definition
(3.10).
Next we assume that 2! # 2% for all & > 0. Then an infinite sequence {z*}

is generated. Suppose that {z%} is a converging subsequence of {z*}. Let 7 :=

lim 2*
J—+o00

of dom(g) and dom(p), ‘liIJP f(a*) = f(z). Note that {f(z*)} is a decreasing
j—+o0

. Since h is continuous and g, p are continuous in the relative interiors

sequence, this implies that klim f(2*) = f(z). Hence
—+00

lim ofAF =0 (3.11)

k—+o00
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follows directly from the fact that f(z*) — f(z*™') — 0 as k — +o0.

Now we prove lim d¥ = 0. By contradiction, suppose that d* — 0 when j —
J—+oo

+00. By passing to a subsequence if necessary, we can assume that, for some § > 0,

|d¥i]| > § for all j > 0. Thus, A* < —p|d*||> < —vd. By noting (3.11), one has

k

ine

lim o = 0. Recall that o®i = afgitpl’“j and inf «
J—+0o0

index k > 0 such that of < afgit and ofi < p for all k; > k. Furthermore, «

. > 0. Then there exists some

k

is
chosen by the Armijo rule , it implies that
P55+ (05 [p)d) — F(@) > o(ab/p) A ¥ &y > .
Thus,
gAY = o ((Vh(z"),d") + g(ah + dV) — g(ahi) — (Wh, dV))
h(a*3 +(a"3 /p)d" ) ~h(a"7)+9(x"i +(a*1 /p)d")—g(a"9)~ (p(a"I + (a7 /)d"D)—p(a*1))
a®i/p
ki (¥ /p)dFi)—h(z"i . , : , ,
< MeBHPIIREN) (ks 4 i) — (k) — (W, db)
It follows that
h kj kj dk] _ h kj
2 2O Z D) (Gha). ) > —(1 - a8 > (1 a)udf|?,
aki/p
h(zh + aki i ) — h(z") ki
157 By 49
where % = M. Then —afA* > vaki||dbi||? > dvaki||dri|| > 0, thus

aki||d*i|| — 0 as j — +oo, which implies that &% — 0.
Note that there exists d, by further passing to a subsequence if necessary, such

that lim d_ d. Tt then follows that

jotoo Id ]

0= (Vi(z),d) = (VI(T),d) = (1 = )xd >0,

and thus this contradiction shows that d* — 0 as j — +o0.
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To complete the proof, we still need to show that z is a B-stationary point of
problem (3.1). Noting that d* = arg rdréi}? f¥(d), there exists V¥ € dg(zF 4 d)
such that

Vh(z*) 4+ MFighi 4 vh — Wk = 0.

Since both {z*/} and {z* + d*/} are bounded, from convex analysis [105, Chap
24, Theorem 24.7], we know that {V*} and {W*} are also bounded. By taking
subsequences respectively, if necessary, we assume that there exist V € dg(z) and
W € 9pp(7) such that lim; V¥ =V and lim; ., W% = W, respectively.
Hence,

Vhz)+V -W =0,
which implies that Z is a B-stationary point of problem (3.1), i.e.,
(Vh(z) + 0g(x)) N Opp(T) # 0.
[

By considering some special choices of M* in Algorithm 3.2, we have the following

lemma concerning the stepsize satisfying the Armijo descent condition (3.3).

Lemma 3.8. Let {z*} and {d*} be two sequences generated by Algorithm 3.2. If

for each integer k > 0, one can choose M* = 0 such that
h(y) < h(z®) + (Vh(2*),y — 2*) + %(y — ", MF(y—2"), Vyex, (3.12)
then the descent condition
f" 4+ ad®) < f(2®) + oan® (3.13)

is satisfied for any o € (0,1) whenever 0 < o < min{1,2(1 —0)}.
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Proof. Without any ambiguity, we drop the superscript £ for simplicity. For any
€ (0, 1], we obtain

f(@+ ad) — f(z)
= h(z + ad) = h(z) + g(z + ad) — g(z) — (p(z + ad) — p(z))
a(Vh(z ) d) + < (d, Md) + g(x + ad) — g(z) — (p(z + ad) — p(z))
a((Vh(z),d) + g(x +d) — g(x) — (W,d)) + % (d, Md) ,

IA

IN

where W € dp(z). If @« < 2(1 — o), then
%(d, Md) < (1—0)(d, Md) < —(1 — o) ((Vh(z),d) + g(x + d) — g(z) — (W, d)) .

Therefore, when 0 < o < min{1,2(1 — o)}, the inequality (3.13) holds for any
€ (0,1). O

One important implication of Lemma 3.8 is that if 0 < ¢ < %, then for any k£ > 0,
we can take o = 1, i.e., the unit stepsize is attainable. Using this observation, we

have the following proximal subgradient algorithm with no line search.
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Algorithm 3.9. (A proximal subgradient method with no line search)
Step 0. Choose 2° € X. Set k := 0.

Step 1. Choose M* = 0 such that for any x € X
. 1
h(x) < h¥(z) == h(z®) + (Vh(2"), 2 — 2*) + §<m — ¥, M*(z—2")). (3.14)
Choose W € Ogp(z*) and define p*(z) : X — R by

pF(x) = p(a®) + (W z —2) . (3.15)

Step 2. Solve

to get Ft1.

Step 3. If 2%t = a*, stop; otherwise, set k :=k+ 1 and go to Step 1.

From Theorem 3.7 and Lemma 3.8, we can easily derive the following corollary.

Corollary 3.10. Let {z*} be the sequences generated by Algorithm 3.9. Then
{f(2*)} is a monotonically decreasing sequence. If z*** = a* for some integer
k > 0, then z* is a B-stationary point of problem (3.1). Otherwise, the infinite
sequence { f(x*)} satisfies

1
§<mk+1 - xk7 Mk(xk+1 - xk)> S f(xk) - f(‘rk—i_l)? k= Oa ]-7 s

Moreover, any accumulation point of {x*} is a B-stationary point of problem (3.1)

provided that Assumption 3.6 holds.

Remark 3.11. If Vh satisfies the condition (3.7), i.e., Vh is Lipschitz continuous
with the Lipschitz constant L, we can simply choose M* = 0 for all k > 0 such
that (d, M*d) < L||d||* for any d € X.
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Remark 3.12. Let Q C & be a closed (bounded) set, which is not necessarily
convex. For a given continuous function f : X — R, the principle of a majorization
method for minimizing f(x) over Q is to start with an initial point 2° € Q and for
each k > 0, to minimize f*(x) over Q to get ¥, where f¥(-) is a majorization

function of f at =¥, i.e., f’“() satisfies
fHah) = fa) and  ff(2) > f(z), VeeQ.

The monotone decreasing property of the generated sequence {f(z*)} comes from

the so-called sandwich inequality [25] for the majorization method, i.e.,

A

) < PEM < Pt = feh), k=01 (3.16)

The efficiency of the above majorization method hinges on two key issues: i) the
magjorization functions should be simpler than the original function f so that the
resulting minimization problems are easier to solve, and ii) they should not deviate
too much from f in order to get fast convergence. These two often conflicting
1ssues need to be addressed on a case by case basis to achieve best possible overall

performance.

The idea of using a majorization function in optimization appeared as early as in
Ortega and Rheinboldt [84, Section 8.3] for the purpose of doing line searches to
decide a step length along a descent direction. This technique was quickly replaced
by more effective inexact line search models such as the back tracking. The very first
magorization method was introduced by de Leeuw[23, 24] and de Leeuw and Heiser
[28] to solve multidimensional scaling problems. Since then much progress has
been made on using majorization methods to solve various optimization problems
[26, 27, 49, 50, 57, 58], to name only a few.

In Algorithm 3.9, one may notice that h*(-) and p*(-) defined in (3.14) and (5.15)
are actually a special kind of the magjorization functions of h(-) and p(-) at x*,

respectively. In this sense, the proximal subgradient method with no line search can
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be treated as a majorization method, thus, it can also handle the nonconvex con-
straints like the majorization method. However, the proximal subgradient method
is designed for the cases where ) is convex and the majorization functions are not

easy to compute.



Chapter

A Penalty Approach

Let C' € R™"*™ be a given matrix and H € R"*" a given weight matrix whose
entries are nonnegative. Let O € R be a closed convex cone with nonempty interior
and define Q := {0}? x Q Denote O* as the dual cone of Q under the natural
inner product of R x N? . Let m := p+ g and p > 0 be a given number. Then
we consider the following structured low rank matrix, not necessarily symmetric,

approximation problem
o1
min [ H o (X = O)* + pl| Xl
st. AX eb+ Q,
rank(X) <r,
X e Rjmxne

(4.1)

where “o” denotes the Hadamard product, ie., (Ao B);; = A;;B;; for all 4,7,

A R R s a linear operator and r € {1,...,n1} is a given integer.

4.1 A penalty approach for the rank constraint

In this subsection, we shall introduce a penalty technique to deal with the non-

convex rank constraint in (4.1). Given the fact that for any X € R£"*"2 rank(X) <

46
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r if and only if 0,41 (X) + ... + 0,,(X) = 0, we can equivalently rewrite (4.1) as

follows
f:=min 6(X) = h(X)+ p||X].

st. AXeb+ 9,
Ori1(X) 4+ ...+ 0,,(X) =0,
X e pmxnz

(4.2)

1
where h(X) := 5 |Ho (X —C)|]*. Now we consider the following penalized problem
by taking a trade-off between the rank constraint and the weighted least squares

distance:
min  6(X) + c(op1(X) + ...+ 0py (X))

st. AX eb+ Q, (4.3)
X € jrxmz
where ¢ > 0 is a given penalty parameter that decides the allocated weight to the

rank constraint in the objective function. By noting that for any X € R™*"2

ni ni r r

> o) =3 a0 = Y a0 = IX]. = Y a(x),  (44)

i=r+1 i=1 i=1
we can equivalently write problem (4.3) as
min  f,(X) = 0(X) — ep(X)
st. AXeb+ Q, (4.5)
X € jpmxnz

where for any X € R™*"2,

<

p(X): oi(X) = | Xl <0, (4.6)

i=1
which is the difference of two convex functions. Note that the penalized problem
(4.5) is not equivalent to the original problem (4.1). Then the question is how
much we can say about the solutions to (4.1) by solving the penalized problem

(4.5). We will address this question in the following two propositions.
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Since the objective function f.(-) of problem (4.5) is coercive in R™"*"2, we know

that the problem (4.5) exists at least one global solution, say X.

Proposition 4.1. If the rank of X is not larger than r, then X is a global optimal
solution to problem (4.1).

Proof. Assume that the rank of X is not larger than r. Then X is a feasible
solution to (4.1) and p(X}¥) = 0. Let X, € R™*" be any feasible point to (4.1).
Thus, by noting that p(X,) = 0, we have

0(X7) = 0(X7) — ep(X]) < 0(X,) — ep(Xy) = 0(X,).
This shows that the conclusion of this proposition holds. O]

Proposition 4.1 says in the ideal situation when the rank of X is not larger than r,
X actually solves the original problem (4.1). Though this ideal situation is always
observed in our numerical experiments for a properly chosen penalty parameter
¢ > 0, there is no theoretical guarantee that this is the case. However, when
the penalty parameter c is large enough, [p(X7)| can be proven to be very small.
To see this, let X* be an optimal solution to the following least squares convex

optimization problem

min 6(X)
st. AX eb+ Q, (4.7)
X e jrxnz,

Proposition 4.2. Let ¢ > 0 be a given positive number and X, € R™*"2 a feasible

solution to problem (4.1). Assume that ¢ > 0 is chosen such that (0(X,) — 0(X*))/c <

e. Then we have

P(X) | <e and O(X7) <0 clp(XD)| <. (4.8)
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Proof. By noting that X, is feasible to the penalized problem (4.5) and p(X,) = 0,

we have

which implies

C C

|p(X)) | = —p(X]) < (0(X;) - 0(X7)) /e < e.
Let X be a global optimal solution to problem (4.1). Then from

0(X) — cp(X) = fo(X) > fo(X7) = 0(X]) — ep(XT)

c

and the fact that p(X) = 0, we obtain that §(X}) < 0(X)—c|p(X})| = 0—c|p(X})].
The proof is completed. O

Proposition 4.2 says that an e-optimal solution to the original problem (4.1) in
the sense of (4.8) is guaranteed by solving the penalized problem (4.5) as long as
the penalty parameter c is above some e-dependent number. This provides the
rationale to replace the rank constraint in problem (4.1) by the penalty function

—cp(+) in problem (4.5).

Remark 4.3. In Proposition 4.2, we need to choose a feasible point X, to problem

(4.1). That is equivalently to say that we need to find a global solution to

min o1 (X) + ...+ 0ny (X) = —p(X)
st. AX eb+Q, (4.9)
X e Rjmxne,

To solve problem (4.9), one may use the majorization method to be introduced in
next subsection. This corresponds to the case that H = 0. However, this is not
needed in many situations when a feasible point to problem (4.1) is readily available.
For example, the truncated singular value decomposition (TSVD) of X* is such a

choice if there are no constraints.



4.1 A penalty approach for the rank constraint

Remark 4.4. There are different choices to penalize the rank constraint. For
ni

2

example, one may use o.11(X) or g o;

2(X) instead. However, the performance

needs to be tested further. -
Recall that in the symmetric counterpart of problem (4.1), we consider the following
problem
min %HH o (X =)
st. AXeb+ 9,
X e St
rank(X) <r,

(4.10)

where C' € 8™ is given and H € S" is a given weight matrix whose entries are

nonnegative.

Given the fact that for any X € 8%, rank(X) < r if and only if A4 (X) + ... +
An(X) =0, and that

n s s

D7 ) = DTN = DTN = (1,X) = 3,

i=r+1 i=1 i=1 i=1

the penalized problem for (4.10) takes the following form

min £.(X) = 0(X) — ep(X)
st. AXecb+Q, (4.11)
X =0,

1
where 0(X) := §HH o (X —C)||* and for any X € S,

p(X) = Z N(X) — (I, X), (4.12)

which is a convex function and simpler than (4.6). Note that problem (4.11) is sim-
ilar to the penalized problem (4.5) in the nonsymmetric setting, thus Proposition

4.1 and 4.2 still hold for the symmetric counterpart problem (4.11).
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4.2 The proximal subgradient method for the pe-

nalized problem

In this section, we shall study the penalized problem (4.5), which can be rewritten

as follows
min  f.(X) = h(X) + g(X) — ep(X)

st. AX€b+Q, (4.13)
X e prmxnz

where h(X) = 1| H o (X — O)|12, 9(X) := (p+ ¢)|| X]|« and p(X) := Zo—i(X).

Let € denote the feasible set of problem (4.13), i.e.,
Q={XeR"™W™ | AX cb+Q}.
For any X € (), denote the normal cone of ) at the point X by
Nao(X) :={Z e R™*™ |(Z,Y — X) <0VY € Q}.
A point X € Q is said to be a stationary point of problem (4.13) if
(VR(X) + 99(X) + No(X)) N (cOp(X)) # 0,
and a B-stationary point of problem (4.13) if
(VA(X) + 09(X) + Na(X)) N (cOpp(X)) # 0.

A B-stationary point of problem (4.13) is always a stationary point of the problem

itself and the converse is not necessarily true.

From Remark 3.1, we know that the penalized problem (4.13) can directly be
solved by the proximal subgradient method introduced in Chapter 3 via the fol-

lowing problem

A

min  fo(X) = h(X) + §(X) — ep(X), (4.14)

X6§R'n1 Xng
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where §(X) := g(X) + Io(X) is still a convex function as € is a closed convex set.

By noting that h is a twice differentiable quadratic function and for any Y € " *"2
1
WX) = MY)+(VAY), X =Y) +5|Ho (X =Y)|,

when applying Algorithm 3.2 to problem (4.14), for each integer & > 0, we only
need to choose a componentwise nonnegative matrix H* > 0 in R™*™2 guch that
(Y, M*¥Y) = |H* o Y||? for any Y € R™>*"2. Then the following corollary comes

directly from Theorem 3.7.

Assumption 4.5. For all k > 0,

~ ~

k1 < min Hf.g max HE < ks,
i=l..m YT i=lm

where 0 < k1 < Ky < +00.

Corollary 4.6. Let {X*}, {d*} be two sequences generated by Algorithm 3.2 under
Assumption 4.5. Then {fC(Xk)} is a monotonically decreasing sequence. If X*+1 =
X* for some integer k > 0, then X* is a B-stationary point of problem (4.13).

Otherwise, suppose that inf of ,, > 0, the following results hold:
(a). For each integer k > 0, A* satisfies
AM < || o d"|” < —v||d"|?,
FAXFHY) — fU(XF) < oafAF < 0.
(b). If {X*} is a converging subsequence of {X*}, then jEIJPoo d* = 0.

(c). Any accumulation point of {X*} is a B-stationary point of problem (4.13).

Furthermore, one may notice that at each iteration k, it is not difficult to find

Rrixnz 5 [k > satisfying

1H o (X = XM)|* < |H o (X = XM)|”, VX eX,
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thus, for any X € RmM>"2,
R 1 ~
h(X) < h*(X) := h(X*) + (VR(X"), X — X*) + §\|H’f o (X — X2,

This implies that one may also apply the proximal subgradient method without

line search, i.e, Algorithm 3.9, to problem (4.13).

Corollary 4.7. Let {X*} be the sequence generated by Algorithm 3.9. Then
{f.(X®)} is a monotonically decreasing sequence. If X*' = X* for some inte-
ger k > 0, then X*! is a B-stationary point of problem (4.13). Otherwise, the
infinite sequence {f.(X*)} satisfies

1 ~ ~ ~
§||Hk o (XFH — XM)|I? < fu(XF) — fu(XFY ) k=0,1,... (4.15)

Moreover, any accumulation point of the bounded sequence {X*} is a B-stationary

point of problem (4.13) provided that Assumption 4.5 holds.

Similarly, in the symmetric case, for the penalized problem (4.11), we can also
define the stationary ( B-stationary) point. Let 2 denote the feasible set of problem
(4.11),ie., Q2 ={X € S"|AX € b+ Q}. A point X € 2 is said to be a stationary
point of problem (4.11) if

(VO(X) + No(X)) N (cOp(X)) # 0,
and a B-stationary point of problem (4.11) if
(VO(X) + No(X)) N (cOpp(X)) # 0.

Hence, one can easily show that both Corollary 4.7 and 4.6 still hold for the pe-
nalized problem (4.11).
4.2.1 Implementation issues

In this subsection, we discuss several implementation issues when applying the

proximal subgradient method to penalized problem (4.13) and (4.11). Due to
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the nice properties of the first term h(-) (smooth and quadratic) in the objective
function of problem (4.13) in the nonsymmetric setting, we simply apply Algorithm
3.9 to problem (4.13) and eventually need to solve a sequence of problems taking

the form of

. 1 ~
min ff(X)I5\!Hko(X—X'“)H2+<X7H0HO(X’“—0)—CWk>+9(X)+qf
st. AX eb+ Q,

X € pruxne
(4.16)

where ¢* := h(X*) — (VA(XF), X*) —cp, (XF*) + c(WF, X*). Here we assume that
0<H;;<lfori=1,...,nyand j=1,...,ny (see Remark 4.8 if it fails to hold).
It then follows that for all £ > 0, H* can simply be chosen as F/ whose entries are
all ones. Then the objective function f#(-) in (4.16) can be equivalently written as
FHX) = YX = XF2 4+ (X,HoHo (X"~ C)— W) + g(X) + ¢
= SlIX = (X*+CH)P + g(X) + fo(X*) = 3IC¥[?,
where C* := ¢W* — H o H o (X* — C). By dropping the constant terms in f*(X)
and noting that ¢(X) = (p + ¢)|| X||«, we can equivalently write problem (4.16) as
the following well-studied least squares nuclear norm problem
1
min  Z[|X — (X" + C* + (o + )1 X].
st. AX €b+Q, (4.17)
X € pmxnz

which can be efficiently solved by the well developed smoothing Newton-BiCGStab
method.

Remark 4.8. If not all the components of the given weight matriz H are in [0, 1],
one can do the preprocessing as follows. Define two vectors di € R™ and dy € R™
by

(di); = max{d, max{ H;; |7 =1,...,n2}}, 1=1,...,n,
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and

(do); = max{d, max{ H;; |i=1,...,m}}, j=1,...,n9,

where § > 0 is a small positive number. Let Dy = diag(dy) and Dy = diag(ds).
Then we consider the following problem instead of the original problem (4.1)

min |[Ho (X ~ ) + pllDi XDl
st. AXeb+ 9,

rank(X) <r,

X e fmxnz

(4.18)

which can be equivalently written as

- >
min S H o (X = O)* + pl| X[l
st. AX =AX €b+Q,

rank(X) <r,

(4.19)

X e jrme,

where H = Dy ?HD;"?, X = DI?XDY? and C = D;*CD)?.
Note that problem (4.19) now takes the same form as problem (4.1). Moreover,

the components of the weight matriz H are all in [0, 1].

Remark 4.9. Alternatively, one may also apply Algorithm 3.2 to problem (4.13),

which again leads to a sequence of least squares problems. We omit the details here.

Now we turn our attention to the penalized problem (4.11) in the symmetric setting.

Similarly, we eventually need to solve a sequence of problems in the following form

N 1 ~
min  fF(X) = §||Hk o (X = X")|?+ (X, HoHo (X* —C) — W) 4 g
st. AX eb+ Q,

X e sy,
(4.20)
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where g* == 0(X*) — (VO(XF), X*) — ep(XF*) + (W X*). For the sake of easy
computations, in our implementation, we always choose a positive vector d € R"
such that H;; < I?Z = /d;d; for all i,j € {1,...,n}. Let D = diag(d). Then the
objective function f¥(-) in (4.20) can be equivalently written as
FEX) = JIDYA(X = XF)DVA|2 4+ (X, H o H o (XF = C) — cWF) + g
— %||D1/2(X _ (Xk 4 Okz))Dl/2H2 4 fC<Xk> _ %”Dl/ZCkal/QHQ ’
where C* := D™ (cW* — H o H o (X* — C')) D'. By dropping the constant terms
in f5(X), we can equivalently write problem (4.20) as the following well-studied
diagonally weighted least squares positive semidefinite problem
1
min 5HDV2 (X — (X% +CF) D22
st. AX €b+Q, (4.21)
X eS8t
which can be solved efficiently by the recently developed smoothing Newton-
BiCGStab method [42].

For the choice of d € R™, one can simply take
di =...=d, =max {6, max{ H;; |i,j =1,...,n}}, (4.22)

where § > 0 is a small positive number. However, a better way is to choose d € R"

as follows
d; = max{é, max{ H;; | j = 1,...,n}}, 1=1,...,n. (4.23)

Remark 4.10. The choice of d in (4.22) is simpler and will lead to an unweighted
least squares problem. The disadvantage of this choice is that the resulting problem
generally takes more iterations to converge than the one obtained from the choice
of (4.23) due to the fact that the error |H —dd™ || is larger for the choice of (4.22).
If H takes the form of hh™ for some column vector R* > h > 0, we can just take

o =H for all k > 1. In this case, the majorization function of 0(-) is itself.
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4.2.2 Some rationale for the penalty approach

Now we consider the following simplest case of problem (4.1)

.1
min S| X — C|* + pl|X].
st rank(X) <r, (4.24)
X e jmxrz,

i.e., there is no weight matrix H and no linear constraints for X. Suppose that the

given matrix C' has the singular value decomposition as in (2.48), i.e.,
C=U[x(C) oV, (4.25)

where U € O™, V € O™ and X(C) = diag(a(C)) = (01(C),...,0,,(C))T with
o1(C) > -+ > 0,,(C) > 0. Write

U=1[U,....,U, ] and V =[V,...,V,,].

Recall that problem (4.24) is exactly the problem (2.51) we studied in Chapter 2

and one of its global optimal solution is given by

T

X" = Z (Ui(C) — p)+UiV;~T.

i=1
Now we claim that this global optimal solution to problem (4.24) can be obtained

in two iterations by our majorized penalty approach provided that the penalty

parameter ¢ > 0,41(C) — p.

To prove this claim, let the initial point X° = 0. Then W" = 0. Noting that
Xkt =P . (C + cWF), we obtain that

X' =Ppe(CH+ W) =) (0:(C) = p—c) UV,

i=1

and thus W' € Opp,(X') can be simply chosen as W' = >0 U;V;'. It then
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follows that

X2 = PP+C<C+CW1)

r

- Z (0:(C) — ,0)+UiViT + Z (0:(C) —p— c)+UiViT
i=1 i=r+1

= Z (Ui(C) - p)+Uz‘V¢T = X7,

i=1
which implies that we can recover the original optimal solution to problem ?7? by
solving its penalized problem.
This interesting result provides us the justification for using the penalty approach

to deal with the rank constraint.

4.3 The Lagrangian dual reformulation

In this section, we shall study the Lagrangian dual problems in both nonsymmetric
case and symmetric case in order to check the optimality of the solutions obtained

by applying the proximal subgradient method to the penalized problems.

4.3.1 The Lagrangian dual problem for the nonsymmetric

problem

We first study the Lagrangian dual of problem (4.1), which takes the form as
follows

max V(y) := inf L(X,y), (4.26)

yeQ* XE%;H xXng

where L(X,y) is the Lagrangian function of (4.1)

1
L(X.y) = 5[[Ho (X =)+ pll X[ + (b= AX, y), (X y) € R™™ x R™.
2
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Suppose that y € Q* is an optimal solution to (4.26). Then for any feasible solution
X to (4.1), one has
1 ~ ~
SI1H o (X = Q) + pll Xl
1 v v < —
> SIHo(X = O +pllX]. + (0 - AX, ) (4.27)
= V()
which implies that the optimal dual value V(y) provides a valid lower bound for
checking the optimality of the primal solution. When H is the matrix with all

the entries equal to 1, we can further simplify the expression for V' (y) and write it

explicitly as

Vy)
i 1
=it {SIX =P X+ - X, )
XeRp1 2
. 1 . 1 o
= it {SIX = (A XL+ ) - F1C + AP + 5O
XeRp1 2

1 . 1
= IR (C+ AP + (o) + 5 ICI

where A* is the adjoint of A. Define ®(y) := =V (y) + 1||C||? for any y € Q*. Now

we can rewrite the dual problem as follows
1
min  ®(y) = =||P,.(C + A*y)||* — (b,
)= 5Pl + AV = 0.0 o
st. ye Q*=RP x Q.
In order to facilitate subsequent analysis, we first rewrite A and b as
P bP
A= and b= ,
A b?
where AP : R™M>"2 — RP AT RMxm2 5 Q4P € RP and b? € R,
Now we discuss the existence of the optimal solutions to (4.28). For this purpose,

we need the following Slater condition:

AP is onto, and
(4.29)

3 X0 € R such that APX? = b and A9X° — b € int(Q).
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Using Proposition 2.20 and Remark 2.21, we have the following corollary.

Corollary 4.11. Assume that the Slater condition (4.29) holds. Then (b,y) < 0
for any 0 # y € Q* satisfying A*y = 0.

Proposition 4.12. Assume that the Slater condition (4.29) holds. Then, for any
constant v € R, the level set L, := {y € Q*| ®(y) < v} is bounded.

Proof. We prove the conclusion of this proposition by contradiction. Suppose that
on the contrary that there exists a constant v € R such that L, is unbounded.
Then there exists a sequence {y*} € Q* such that ®(y*) < v for all k > 1 and

limsup ||y*|| = +o0o. Without loss of generality, we may assume that y* # 0 for
k—4o00

each k > 1 and ||[y*|| — oo as k — oco. We assume, by taking a subsequence if

necessary, that there exists y # 0 such that
lm 2
im
koo [y

=7.
Next we consider the following two subcases:

1). Ay # 0. Let D¥ := C + A*y* and its singular value decomposition (SVD)
be
D* — UH[EF OV

where U* € R">™ and VF € R"2*"2 are two orthogonal matrices, XF =

diag(of,...,0k ), and of > --- > ok > 0 are singular values of D*. Let
B* := D*/||4*||. Then B* = Uk[\\?’fll 0](VF)T — A*y. It follows that there

k
91

exists a positive number 6 > 0 such that ir > 26 > 0 and S|lyF|| > p for k

sufficiently large. Hence, we have
1Ppr(C + AY")| = [Py, (DV)|| = max(a — p, 0) = 26[|y*[| — p > 6ly"|],

and thus,

liminf ®(y*) = liminf (%HPM(C + AR 1> — (b, yk>>

k—4o00 k—+o00

52
> Tl k <_ k| >: )
2 liminf [y { S lly*ll = bl ) = +o0
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2). A*y = 0. Then (b,y) < 0 follows immediately from Corollary 4.11. There-

fore,

tim inf ®(y") > lim inf [y — (b,5"/Il4"1)) > —(b. ) i inf [4]/2 = 40
—+o00 k——+o00

k—+o0

In summary, we have shown that ®(y*) — 400 as k — oo, which is a contradiction
to our assumption that CID(yk) < v for all kK > 1. This contradiction shows that the

conclusion of this proposition holds. O

Proposition 4.12 says that if the Slater condition (4.29) holds, the dual problem
(4.28) always has optimal solutions. Let § € Q* be an optimal solution to (4.28).

Then we have

0 € 99(y) +No-(7) - (4.30)
Theorem 4.13. The optimal solution y € Q* to the dual problem (4.28) satisfies
0+ (b— Aconv P, (C + A*Y)) N Ng-(7). (4.31)

Furthermore, if there exists a matriv X € P,,.(C + A*y) such that b — AX €
No- (@), then X and § globally solve the primal problem (4.1) with H = E and the
corresponding dual problem (4.28), respectively and there is no duality gap between

the primal and dual problems.

1
Proof. Recall that fory € Q*, ®(y) = §||77p,r(0+./4*y)||2—(b, y). From Proposition
2.16, we know that the sub-differential of ®(-) at the optimal solution point § can

be written as

0®(y) = Aconv P, (C + A*y) — b. (4.32)

Then (4.31) now follows directly from (4.30). If there exists a matrix X € P, ,.(C'+
A*y) such that b — AX € Ng-(9), we have that

AX € b+ Q and <b—.,47, gj>:0.
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Then X is feasible to the primal problem (4.1) and that
I I .
V(G) = SIX = CIIF + pl Xl + (b = AX, 7) = S X = Ol + pll X,

which, together with the fact that §y € Q* is feasible to the dual problem (4.28),

completes the proof of the remaining part of the theorem.

]

Corollary 4.14. Let i be an optimal solution of (4.28). If o,(C+A*y) > 0,.41(C+
A*G) > 0 or 0,41(C + A*y) = 0, then X = P, ,(C + A*Y) globally solves problem

(4-1).

Proof. Tt follows directly from Remark 2.17. O

4.3.2 The Lagrangian dual problem for the symmetric prob-

lem

In this subsection, we shall study the Lagrangian dual of problem (4.10), i.e,

1
min §||Ho (X -O)7?

st. AXeb+ Q,

(4.33)
X est,
rank(X) <r.
The Lagrangian function of (4.33) is
1
L(Xay):§HHO(X_C)H2+<I)_AX7 y>7 <X7y)68n><%m
Then the Lagrangian dual problem of (4.33) takes the form of
max V (y), (4.34)

yeQ*
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where Q* is the dual cone of Q and V(y) is defined by

V(y) = inf L(X,y)= inf ){%HHO (X =O)* + (b— AX, y)} . (4.35)

Xes? Xesn(r

Suppose that y € Q* is an optimal solution to (4.34). Then for any feasible X to
(4.33), one has

1 - 1 - -
SIHo(X =0 > S[Ho(X -O)*+ (b - AX, 7)
2 2 (4.36)
> V(y),

which implies that the dual solution y provides a valid lower bound for checking

the optimality of the primal solution. When H is the matrix with all the entries
equal to 1, we can further simplify (4.35) and write V (y) explicitly as

1
= inf X -C|*+ (- AX
v = i G- cP e - ax )

_ : 1 _ * 2_1 * 2 1 2
= ut 51X = € AP = FIC + AP+ )+ 5l

1 1 1
= Ul (C+ A) = (C+ A = HIC+ Ay + () + SO

1 . 1

= Ll (€ + A+ () + IO

1
where A* is the adjoint of A. For any y € Q*, let ®%(y) := =V (y) + §||C’||2 Now

we can rewrite the dual problem as follows

L 1 R
min @°(y) = sy (C + A")* = (b, 9)

st. ye Q' =P x RN

(4.37)

Remark 4.15. When H takes the form of H = hh"™ for some column vector h > 0
in R", we can also derive a similar explicit expression for V(y) as follows
1 1 1 1 1 1
V<y) = _5”1_[«91(7") (Di(c + D_IA*yD_I)Dﬁ) H2 + <b7 y) + 5”D§CD§ H2 )

where D3 = diag(h). For the general weight matriz H, we cannot reformulate
(4.35) explicitly. However, we can still apply the majorized penalty method intro-

duced earlier in this paper to compute V (y).
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Next we discuss the existence of the optimal solution to (4.37). For this purpose,

we need the following Slater condition:
{A;}}_, are linearly independent,
there exists X > 0 such that A; X% =b; for j=1,...,p, (4.38)
and A; X >0 for j=p+1,...,m.

Using Proposition 2.20 and Remark 2.21, we have the following corollary.

Corollary 4.16. Assume that the Slater condition (4.38) holds. Then (b,y) < 0
for any 0 # y € Q* satisfying A*y < 0.

Proposition 4.17. Assume that the Slater condition (4.38) holds. Then, for any
constant v € R, the level set L, := {y € Q*| ®*(y) < v} is bounded.

Proof. We prove the conclusion of this proposition by contradiction. Suppose that
on the contrary that there exists a constant v € R such that L, is unbounded.
Then there exists a sequence {y*} € Q* such that ®*(y*) < v for all £ > 1 and

limsup ||y*|| = +oo. Without loss of generality, we may assume that ||y*|| # 0 for
k—+o0

each k > 1 and ||y*|| — oo as k — oo. For k > 1, let B* := (C + A*y*)/||y"||. We

assume, by taking a subsequence if necessary, that there exists y # 0 such that

k
lim
koo [|y*||

=7.
Next we consider the following two cases:

1). A*g £0, ie., A*y has at least one positive eigenvalue. It then follows that

there exists a positive number § > 0 such that

. . E\I[12 _ 1: . * —\ (|2

lim inf [[ILs ) (B%)||" = Lim inf [[ILsy i) (A"g) [ 2 0 > 0.
Hence, we have

PR o1 .
liminf ®*(y*) = liminf <§||H31(T)(C + A*y")||? — (b, yk>>

k——+o0 k——+o0

1
o s k Sl k " kY12 _ —
timinf [y | (5 19" Ty o (B2 = b1l ) = +00.

v
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2). A*y < 0. Then (b,y) < 0 follows immediately from Corollary 4.16. There-

fore,

liminf &(y*) > limin [y (= (b y*/llg* ) > —(6,7) lim int [y /2 = +o0.
k—+4o0 k—+o0

k—4o00

In summary, we have shown that ®*(y*) — +o0 as k — oo, which is a contradiction
to our assumption that <I>S(yk) < v for all k > 1. This contradiction shows that

the conclusion of this proposition holds. O

Proposition 4.17 says that if the Slater condition (4.38) holds, the dual problem
(4.37) always has optimal solutions. Let y € Q* be an optimal solution to (4.37).

Then we have

0 € 09°(g) + No- (1) - (4.39)
Theorem 4.18. The optimal solution y € Q* to the dual problem (4.87) satisfies
0 # (b— AconvIlsy () (C + A*g)) N No- (7). (4.40)

Furthermore, if there exists a matriz X € Hsy ) (C + A*g) such that b — AX €
No- (@), then X and g globally solve the primal problem (4.33) with H = E and the
corresponding dual problem (4.37), respectively and there is no duality gap between

the primal and dual problems.

Proof. From Proposition 2.5, we know that the sub-differential of ®*(-) at the

optimal solution point 4 can be written as
0®*(3) = Aconv H‘gi(T)(C +A*y)—b. (4.41)

Then (4.40) now follows directly from (4.39). If there exists a matrix X € sy () (C+
A*7j) such that b — AX € Ng-(7), we know that

AX € b+ Q and <b—.A7, §>:O.
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Then X is feasible to the primal problem (4.33) and
I 9 S )
V(5) = SIE ~ I+ (- AX. 5) = LIT - I

which, together with the fact that § € Q* is feasible to the dual problem (4.37),

completes the proof of the remaining part of the theorem. O
Corollary 4.19. Let § be an optimal solution of (4.37). If \.(C+A*y) > \.1(C+
A*G) >0 or My (C+A*g) <0, then X = Lsr () (C'+A"Y) globally solves problem
(4.93).

Proof. 1t follows directly from Remark 2.6. O
Remark 4.20. Theorem 4.18 also holds for the following W -weighted problem

min %HWW(X _ WP
st. AX eb+ Q,

X e sy,

rank(X) <r,

(4.42)

where W is a symmetric positive definite matriz.

Remark 4.21. Theorem 4.18 can be regarded as an extension of the globalization
checking results of Zhang and Wu [123, Theorem 4.5] which only holds for a special
kind of correlation matrix calibration problems. However, the technique introduced

wn Theorem 4.18 allows us to deal with more general cases in several aspects:
(E1). The matriz C is no longer required to be a valid correlation matriz.

(E2). The problem may have more general constraints including the simple lower

and upper bound constraints.

(E3). The assumption |\, (C + diag(y))| > [Ars1(C + diag(y))| is much weaker to

include more general situations.



Chapter

A Smoothing Newton-BiCGStab Method

5.1 The algorithm

The purpose of this section is to introduce an inexact smoothing Newton method

for solving the general nonsmooth equation
Fy)=0, yeR™,

where F' : ™ — R™ is a locally Lipschitz continuous function. This inexact
smoothing Newton method is largely modified from the exact smoothing Newton
method constructed in [94] for solving complementarity and variational inequality
problems. The motivation to introduce an inexact version is completely from the
computational point of view because the costs of the exact smoothing Newton

method for solving problems such as the LSSDP problem (5.16) are prohibitive.

Let G : & x R™ — R™ be a locally Lipschitz continuous function satisfying

G(e,y) = F(y) as (g,9) = (0,y).

Furthermore, G is required to be continuously differentiable around any (g, y) un-

less ¢ = 0. The existence of such a function G can be easily proven via convolution.

67



5.1 The algorithm

Define £ : & x ®™ — R x ™ by

£
E(e,y) == . (e,y) e RxR™.

G(e,y)

Then solving the nonsmooth equation F(y) = 0 is equivalent to solving the follow-

ing smoothing-nonsmooth equation
E(e,y) =0.

Our inexact smoothing Newton method is specifically designed for solving the latter

one.

Define the merit function ¢ : ® x ™ — R, by
ple.y) = 1B y)I*, (e,y) € RxR™.
Choose r € (0,1). Let
C(g,y) :=rmin{l,o(c,9)}, (g,y) €RxR™.
Then the inexact smoothing Newton method can be described as follows.

Algorithm 5.1. (An inexact smoothing Newton method)
Step 0. Let € € (0,00) and n € (0,1) be such that
6 :=2max{ré,n} <1.

Select constants p € (0,1), o € (0,1/2), 7 € (0,1), and 7 € [1,00). Let

e¥:=¢& and y° € R™ be an arbitrary point. k := 0.
Step 1. If E(c*,y*) = 0, then stop. Otherwise, compute

(= rmin{l,gp(ek,yk)} and 17 = min{T,f'HE(ak,yk)H}.
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Step 2. Solve the following equation

Ac (il

E(e*y") + E'(",¢") = (5.1)
AyF 0
approzimately such that
[Ri[| < min{ne|G (", y") + GLE" yF) At nl| E(", 471} (5.2)
where
Ae* = —¢F 4 Cré
and
Ag*
Ry :=G(",y") + G'(e",y)
AyF

Step 3. Let I, be the smallest nonnegative integer | satisfying
P+ pAr y + P AYY) <1 = 20(1 = 8)plp(e" ") (5.3)
Define:
(Yt = (& pR AR Y 4 pr YY)
Step 4. Replace k by k+ 1 and go to Step 1.

Lemma 5.2. If for some (£,5) € £, x R™, E'(€,9) is nonsingular, then there
exist an open neighborhood O of (£,7) and a positive number a € (0, 1] such that

for any (e,y) € O and a € [0,a], € € Ry, E'(e,y) is nonsingular, and
ole + ale,y+ alAy) < [1—20(1—6)a]p(e,y), (5.4)
where (Ae, Ay) € R x R™ satisfies
Ae = —e +((e,y)é

and

, Ae
G(e,y) +G'(e,y) A <nllE(e,y)ll-
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Proof. Since € € Ry, and E’(€,7) is nonsingular, there exists an open neighbor-

hood O of (&,7) such that for any (e,y) € O, ¢ € R, and F'(e,y) is nonsingular.

For any (e,y) € O, denote

, Ae
R(e,y) == G(e,y) + G'(e,y)
Ay

Then (Aeg, Ay) is the unique solution of the following equation

Blew) + Blew) | | = | O
Ay R(e,y)
Thus,
Ae Ae
<Vs0(€,y), > = <2VE(€,y)E(€,y), >
Ay Ay

- <2E(8 Y), [ “Ew)e } - E(€7y)>
R(e,y)
= —2@(5 y) —|—2€C( ,Yy)e +2<R(57y)7G<€7y)>

< —2p(e,y) + 2e(ré) min{1, o(c,y)} + 2ne(e, y)2(|G (e, v,

which, implies that if p(e,y) > 1 we have

Ae
V(e y),
Ay
< —20(e,y) + 2e(ré) + 2np(e, )2 G (e, y)|)
< —20p(e,y) + 2max{ré, n} (e + (e, y) 2/ o(e, y) — €2)
S _290(6’ y) + 2\/§max{ré, 77}90(67 y)

= 2(vV2max{ré,n} —1)p(c,y) (5.5)
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and if ¢(e,y) < 1 we have

Ae
< Vo(e,y), >
Ay

< —20p(g,y) + 2e(ré)p(e, y) + 2np(e, y) V2 ||G(e, y) |
< =2¢(e,y) + 2max{ré, n}o(e,y) % (ep(e, y) 2 + Vp(e, y) — €2)
< —20(e,y) + 2vV2max{ré, n}te(e, y)

= 2(vV2max{ré,n} —1)p(c,y). (5.6)
Therefore, by inequalities (5.5) and (5.6), we have

Ae

<V90(6,y), A
y

> < -2(1-0)(e,y). (5.7)

By using the fact that V(-, ) is uniformly continuous on O, we obtain from the

Taylor expansion that

Ae

>—|—0(a) V(e,y) €O,
Ay

(e + ale,y + aly) = ¢(e,y) + a <V90(6, Y),

which, together with (5.7), implies that there exists a positive number & € (0, 1]
such that for all a € [0, @], (5.4) holds. O

Let
N :={(e,y) e > (e, y)é}. (5.8)

Proposition 5.3. For each fized k > 0, if ¥ € R, ¢, (eF,9%) € N, and E' (¥, y¥)

is nonsingular, then for any o € [0, 1] such that
ol + Al 4+ angh) < [1- 20(1 - Salp(* 1) (59)

it holds that (e* + aAe*, y* + aAy*) e N.
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Proof. Note that (¢¥,y%) € N, ie., e¥ > (1€, so Aek = —F + (& < 0. Thus, by
the definition of ¢, together with (5.9), we have

eb + aAe? — ((eF + aAer, yF + aAyF)é
> eF + Ak — ((eF + aAer, yF + aAyF)e
= Gé — C(eF + aAe”, y* + aAyF)é
> 0. (5.10)

This completes our proof. ]

In order to discuss the global convergence of Algorithm 5.1 we need the following

assumption.
Assumption 5.4. For any (e,y) € Ry x R*, E'(e,y) is nonsingular.

Theorem 5.5. Suppose that Assumptions 5.4 is satisfied. Then Algorithm 5.1 is
well defined and generates an infinite sequence {(e¥,y*)} € N with the property
that any accumulation point (2,5) of {(e*,y*)} is a solution of E(e,y) = 0.

Proof. 1t follows from Lemma 5.2, Proposition 5.3, and Assumption 5.4 that Al-

gorithm 5.1 is well defined and generates an infinite sequence {(c*,y*)} € N,

From the design of Algorithm 5.1, p(e*1 y#1) < (¥ y¥) for all k& > 0. Hence,
the two sequences {¢(e*,y*)} and {¢(e*,y*)} are monotonically decreasing. Since
both (¥, y*) and ((*, y*) are nonnegative for k > 0, there exist ¢» > 0 and ¢ > 0
such that ¢(e*, y*) — @ and (¥, y*) — C as k — oo.

Let (£,7) be any accumulation point (if it exists) of {(*,y*)}. By taking a sub-
sequence if necessary, we may assume that {(*,y*)} converges to (£,7). Then
¢ =v(7), ¢=((E7), and (£,7) € N.

Suppose that ¢ > 0. Then, from ((Z,7) = rmin{l, p(Z,7)} and (£,7) € N, we see
that € € R, . Thus, from Assumption 5.4, E'(£,y) exists and is invertible. Hence,

from Lemma 5.2, there exist an open neighborhood O of (£,7) and a positive
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number & € (0, 1] such that for any (¢,y) € O and all @ € [0,a], € € R4y, E'(e,y)
is invertible, and (5.4) holds. Therefore, there exists a nonnegative integer [ such

that p' € (0,a] and p'* > p! for all k sufficiently large. Thus

Py < (1= 20(1 = ) (et ) < [1 - 20(1 - 6)plJile", ")

for all sufficiently large k. This contradicts the fact that the sequence {o(e¥, 3*)}
converges to ¢ > 0. This contradiction shows that ¢(&,7) = ¢ = 0. ie., E(&,y) =
0. The proof is completed.

Theorem 5.6. Suppose that Assumptions 5.4 is satisfied and that (£,y) is an
accumulation point of the infinite sequence {(e*,y*)} generated by Algorithm 5.1.
Suppose that E is strongly semismooth at (£,y) and that all V € OgE(Z,y) are
nonsingular. Then the whole sequence {(g*,y*)} converges to (£,%) quadratically,
i.e.,

[ =™ =) =0 — &, " —n)IIP) .- (5.11)

Proof. First, from Theorem 5.5, (€,7) is a solution of E(e,y) = 0. Then, since all
V € OgE(&,%) are nonsingular, from [92], for all (¥, 3*) sufficiently close to (&, %),

1E' (%, 5*) 7] = 0(1)

and
gk Ack g
+ —
Y AyF y
ek , g
= + E’({—:k,yk)*l y .
y* y
ek —¢ ro(ek,y
= | B - B -
Yy -7 Ry,
, eh—¢g
= O| || E(E"y") - EEYy) — E'( ) L + O(¢( )) + O([| R |l)
y =y
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Since E is locally Lipschitz continuous near (£,%), for all (¥, 4*) close to (&,7) we

have

ot y") = |E(" y") — EEp)II° = O(lIc" — & v" = D)I*) (5.13)

and
IRLl < mllG(e*, y*) + GL(er, y*) Ac™||

< O(IEE" y")NIGER y)l + O(A)
< O(IE(E"y") = EE DI - (5.14)

Therefore, by using the assumption that £ is strongly semismooth at (£,7) and
the relations (5.12), (5.13), and (5.14), we have for all (g*,y*) sufficiently close to
(€,y) that

(", %) + (Ac®, Ay™) = E Dl = O(I(e",v*) — (E. D)) - (5.15)

Finally, since F is strongly semismooth at (£,7) and that all V' € 0gE(&,y) are

nonsingular, we have for all (¢*, y*) sufficiently close to (£,%) that
1%, 9") = E Il < OB ),
which, together with (5.15) and the Lipschitz continuity of F, implies that
p(e" + Ak, yt + AyF) = O(p? (8, 4")).
This shows that for all (¢*,y*) sufficiently close to (£, %),
(eF+1 A1) = (6% k) 4 (Ack, Ayh) .

Thus, by using (5.15) we know that (5.11) holds. O
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5.2 Least squares semidefinite programming

In this section, we apply the general inexact smoothing Newton method developed
in the last section to the following least squares semidefinite programming (LSSDP)
1 2
min —||X —C||
2
s.t. <A“X>:b“ i:17...,p,
(5.16)
<A,“X> Z bi7 i:p—i—l,...,m,
X eS8t
where 8" and ST are, respectively, the space of n x n symmetric matrices and the
cone of positive semidefinite matrices in S™, || - || is the Frobenius norm induced
by the standard trace inner product (-,-) in 8", C' and A;, i = 1,..., m are given
matrices in 8", and b € R™. Mathematically, the LSSDP problem (5.16) can be

equivalently written as

min ¢

s.t. <AZ',X>:bZ', izl,...,p,

<Ai>X>Zbi7 i:p+1,...,m, (517)
t= | X -0,
X 8.

Problem (5.17) is a linear optimization problem with linear equality /inequality, the
second order cone, and the positive semidefinite cone constraints. This suggests
that one may then use well developed and publicly available softwares, based on
interior point methods (IPMs), such as SeDuMi [112], SDPT3 [117], and a few
others to solve (5.17), and so the LSSDP problem (5.16), directly. This is indeed
feasible on a Pentium IV PC (the computing machine that we will use in our
numerical experiments) as long as n is small (say 80 at most) and m is not too

large (say 5,000). The reason is that at each iteration these solvers require to
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formulate and solve a linear system with a dense Schur complement matrix (for
example, see [5]) of the size (m + 1+ n) x (m + 1+ n), where n := in(n + 1).

Realizing the difficulties in using IPMs to solve the LSSDP problem, in two recent
papers, Malick [74] and Boyd and Xiao [7] proposed, respectively, to apply clas-
sical quasi-Newton methods (in particular, the BFGS method) and the projected
gradient method to the Lagrangian dual of problem (5.16) as the objective func-
tion in the corresponding Lagrangian dual (dual in short) problem is continuously
differentiable. Unlike the IPMs, these two dual based approaches are relatively
inexpensive at each iteration as the dual problem is of dimension m only. The
overall numerical performance of these two approaches vary from problem to prob-
lem. They may take dozens of iterations for some testing examples and several

hundreds or thousands for some others.

For subsequent discussions, in this section we introduce some basic properties of

matrix valued functions related to the LSSDP problem (5.16) and its dual.

Let F denote the feasible set of of problem (5.16). Assume that F # (. Then
problem (5.16) has a unique optimal solution X. Let ¢ = m—p and Q@ = {0}? xRY.
Denote A : 8™ — R™ by

<A17 X>
A(X) = : , Xeds".
(Am, X)
For any symmetric X € 8", we write X = 0 and X > 0 to represent that X is

positive semidefinite and positive definite, respectively. Then
F={XeS"|AX)eb+Q, X =0}
and the dual problem of (5.16) takes the form
. 1 * 2 1 2
min 0(y) = [ Wse (C+ A — (b} — 5C]

st. ye Q=R x NL.
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The objective function #(-) in (5.18) is a continuously differentiable convex function
with
Vi(y) = Allsy (C + A'y) —b, yeR™,

where the adjoint A* : R™ — S™ takes the form
A(y) =) widi, yeR™. (5.19)
i=1

One classical dual approach described by Rockafellar in [106, Page 4], when spe-
cialized to problem (5.16), is to first find an optimal solution g, if it exists, to the
dual problem (5.18), and then to obtain the unique optimal solution X to problem
(5.16) via X = Ilsn (C + A*y). See Malick [74] and Boyd and Xiao [7] for the
worked out details.

In order to apply a dual based optimization method to solve problem (5.16), we
need the following Slater condition to hold:
{A;}._, are linearly independent,
(5.20)
3 X% € F such that (A;, X°) >0;, i=p+1,...,mand X°=0.
The next proposition is a straightforward application of [106, Theorems 17 & 18|.

Proposition 5.7. Under the Slater condition (5.20), the following hold:

(i) There ezists at least one y € Q* that solves the dual problem (5.18). The

unique solution to problem (5.16) is given by
X =1Ilsr (C + A™y). (5.21)

(ii) For every real number T, the constrained level set {y € Q" |0(y) < 7} is

closed, bounded, and convex.

Proposition 5.7 says that one should be able to use any gradient based optimization

method to find an optimal solution to the convex problem (5.18), and thus solves
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problem (5.16), as long as the Slater condition (5.20) holds. Note that for any given
y € R, both 0(y) and VO(y) can be computed explicitly as the metric projector

ILsy (+) has long been known by statisticians to admit an analytic formula [109].

Since 0(-) is a convex function, y € Q* solves problem (5.18) if and only if it

satisfies the following variational inequality
(y—9,VO(y) >0 Vye Q. (5.22)
Define F': R™ — R™ by
Fly) =y —llg-(y = VO(y)), yeR™. (5.23)

Then one can easily check that § € Q* solves (5.22) if and only if F(y) = 0
[30]. Thus, solving the dual problem (5.18) is equivalent to solving the following
equation

F(y)=0, yeR™. (5.24)

Since both Ilg«(+) and Hgi(-) are globally Lipschitz continuous, F' is globally Lips-
chitz continuous. This means that though one cannot use classical Newton method
to solve (5.24), one can still use Clarke’s generalized Jacobian based Newton meth-
ods [61, 92, 95]. Unlike the case with equality constraints only, however, F(-) is
no longer the gradient mapping of any real valued function. This means that we
cannot use the techniques in [89] to globalize these Clarke’s generalized Jacobian
based Newton methods. In this paper, we shall introduce an inexact smoothing
Newton method to overcome this difficulty. For this purpose, we need smoothing

functions for F(-).

Next, we shall first discuss smoothing functions for the metric projector Hgi(-).

Let X € 8™. Suppose that X has the spectral decomposition

X = PAPT = Pdiag(\, ..., \,) P, (5.25)
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where \; > --- > )\, are the eigenvalues of X and P is a corresponding orthogonal

matrix of orthonormal eigenvectors of X. Then, from [109],
[sy (X) = Pdiag(max(0, A1), . .., max(0, A,)) P, (5.26)
Define
a:={i| >0}, B:={i| =0}, and v:={i | \; <0}

Write P = [P, P3 P,| with P,, Ps, and P, containing the columns in P indexed
by «, £, and , respectively. Let ¢ : 8 x R — R be defined by the following Huber

smoothing function

t if ¢ >
1
¢(e,t) = Td(w%)? if —l<r<E (c,t)eRxR. (5.27)
KO 1ft§—%,

For any ¢ € R, let

(e, X):=P PT. (5.28)
P(g, An)

Note that when e = 0, ®(0, X) = Ilsz(X). From Proposition 2.1, we know that
when € # 0 or 5 = (),

(e, X)(H) = P[Q(e,\) o (PTHP)|PT VH eS8, (5.29)
where “o” denotes the Hadamard product, A = (A, ..., \,)?, and the symmetric
matrix (e, A) is given by

¢(€>)\i) - ¢(€> )‘J) c [0’ 1} if \; 7& )\j’
(2%, 0], = A= A i,j=1,...,n. (530)
qbg\l (5, )\z) S [O, 1] if )\z = )‘j ,
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When € # 0 or 8 = (), the partial derivative of ®(-,-) with respect to € can be
computed by
P’ (2, X) = Pdiag(¢L(e, A1), -+, ¢L(g, \a)) PT .

Thus, ®(+, -) is continuously differentiable around (g, X) € RxS™ife £ 0 or 8 = 0.
Furthermore, ®(-,-) is globally Lipschitz continuous and strongly semismooth at
any (0,X) € R x 8™ [124]. In particular, for any € | 0 and 8" 5 H — 0, it holds
that

Ple, X + H) - ®(0,X) - ®(e,X + H)(e, H) = O(||(¢, H)|]?) . (5.31)

Recall that for a locally Lipschitz continuous function I' from a finite dimensional
real Hilbert space X to R", the B-subdifferential of I" at € X" in the sense of Qi
[92] is defined by

Opl'(z) ={V |V = klim I'(z%), 2* = 2, 2, € Dr},

where Dr is the set of points where I' is Fréchet differentiable. The generalized
Jacobian OT'(x) of T' at z in the sense of Clarke [18] is just the convex hull of
Opl'(z).

Define @5 : # x Sl — SI8I by replacing the dimension n in the definition of
¢ R xS" — S with |f]. As the case for ®(-,-), the mapping ®g(-,-) is also
Lipschitz continuous. Then the B-subdifferentials 0p®(0, X) of ® at (0, X) and
OpP5)(0, Z) of g at (0, 2) € Rx Sl in the sense of Qi [92] are both well defined.

The following result can be proven similarly as in [15, Proposition 5].

Proposition 5.8. Suppose that X € 8™ has the spectral decomposition as in (5.25).
Then V € 0p®(0, X) if and only if there exists Vig € OpP5/(0,0) such that for all
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(e,H) e R x 8",
[ prHP, PTHP; U, o(PTHP,) |
V(e,H)=P (PTHPS)T  Vig(e, PYHP;) 0 PT . (5.32)
| (PTHP,)T o UL, 0 0 |

where U € 8™ is defined by

max{\;, 0} + max{\;,0}
[ A+ 1] ’

Uy = ij=1,...,n, (5.33)

where 0/0 is defined to be 1.

In order to define smoothing functions for F(), we need to define smoothing func-
tions for IIg«(+). This, however, can be done in many different ways. For simplicity,

we shall only use the function ¢ given by (5.27) to define a smoothing function for

[Io«(+). Let b : R x R™ — R™ be defined by

2 ife=1,...,p,
Yi(e, 2) = (e,2) € R x R™. (5.34)
oe,z) ifi=p+1,....,m,

The function 1 is obviously continuously differentiable around any (e, z) € R x R™

as long as ¢ # 0 and is strongly semismooth everywhere.

Now, we are ready to define a smoothing function for F'(-) itself. Let
T(e,y) =y —v(ey— (AL, C+ Ay) —b)), (5,y) eRxR".  (5.35)

By the definitions of T, ¢, and ®, we know that for any y € ®™, F(y) = T(0,y).

We summarize several useful properties of T in the next proposition.

Proposition 5.9. Let T : & x R™ be defined by (5.35). Lety € R™. Then it holds
that

(i) Y is globally Lipschitz continuous on R x R™.
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(ii) Y is continuously differentiable around (e,y) when € # 0. For any fized
e eR, Y(e,-) is a Po-function, i.e., for any (y,h) € R™ x R™ with y # h,
n;%((yi — hi)(Yi(e,y) — Yi(e,h)) >0, (5.36)
Yi T

and thus for any fired e # 0, T} (e,y) is a Po-matriz.

(iii) Y is strongly semismooth at (0,y). In particular, for any ¢ { 0 and ™ >

h — 0 we have

T(e,y+h)—T(0,y) = Y'(c,y +h) 2 = O(ll(e, W)II").

(iv) For any h € R™,
05Y(0,4)(0,h) C h—0py(0,y — VO(y))(0,h — AdpP(0,C + A*y)(0, A*h)).

Proof. (i) Since both ¢ and ® are globally Lipschitz continuous, T is also globally

Lipschitz continuous.

(ii) From the definitions of ¢ and ® we know that T is continuously differentiable

around (e,y) € ® x ™ when € # 0.

Since, by part (i), T is continuous on R x R™, we only need to show that for any
0#¢eceR Y(e-) is a Py-function.
Fix € # 0. Define g. : R — R™ by

9-(y) = A®(,C + A'y) —b, yeER™.
Then g. is continuously differentiable on R™. From (5.29) and (5.30), we have
(h, (g:)' (y)h) = (h, AD'y (¢, X)(A"h)) = (A"h, 'y (¢, X)(Ah)) >0 VheR",

which implies that g. is a Py-function on R™. Let (y,h) € R™ x R™ with y # h.
Then there exists i € {1,...,m} with y; # h; such that

(i — hi)((g)i(y) — (ge)i(h)) = 0.
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Furthermore, by noting that for any z € R™,

¢, (e,z) €[0,1], i=1,...,m,
we obtain that

(yi — hi)(Ti(e,y) — Ti(e, k) = 0.

This shows that (5.36) holds. Thus, T (e, y) is Fy-matrix for any fixed € # 0.

(iii) Since it can be checked directly that the composite of strongly semismooth

functions is still strongly semismooth [37], T is strongly semismooth at (0, ).

(iv) Since both v and ® are directionally differentiable, for any (¢,7’) € R x ™
such that Y is Fréchet differentiable at (e,1/),

T/(€7 y/>(0a h) =h-— w/ ((57 Z/); (O’ h — A(I),((57 C + A*y/); (07 A*h)))) ’
which, together with the semismoothness of ¢ and ®, implies
T'(e,y)(0,h) € h — Opip(e, ) (0,h — ADp®(e, C + A*Y') (0, A*h)) ,

where 2’ 1=y — (AP(e,C' + A*Y') — b). By taking (e,y') — (0,y) in the above

inclusion, we complete the proof. O

5.2.1 Global and local convergence analysis

In this section, we apply the general inexact smoothing Newton method developed

in the last section to the least squares semidefinite programming (5.16).

Let F : R™ — R™ be defined by (5.23). Let k € (0,00) be a constant. Define
G:RXR" = R by

G(e,y) == Y(e,y) + klely, (e,y) € R xRN, (5.37)

where T : R x R™ — R™ is defined by (5.35). The reason for defining G by (5.37) is
that for any (e,y) € R xR™ with ¢ # 0, G| (¢, y) is a P-matrix (i.e., all its principal
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minors are positive), thus nonsingular while by part (ii) of Proposition 5.9 T (¢, y)
is only a Py-matrix (i.e., all its principal minors are nonnegative), which may be

singular.

Let £ : 1 x ®™ — R x R™ be defined by

Eey)=| = |= : L (e ERXRT. (5.39)
G(e,y) T(e,y) + klely

Let A be defined by (5.8). Next, we discuss convergent properties of Algorithm
5.1 when it is applied to solve E(g,y) = 0.

Theorem 5.10. Algorithm 5.1 is well defined and generates an infinite sequence
{(g*,y*)} € N with the properties that any accumulation point (£,9) of {(*,y*)}
is a solution of E(c,y) = 0 and limy_ ©(¥,9y*) = 0. Additionally, if the Slater
condition (5.20) holds, then {(e*,y*)} is bounded.

Proof. From part (ii) of Proposition 5.9 and the definitions of G and E we know
that for any (e,y) € Ry x K™, G} (€,y), and so E'(¢,y), is a P-matrix. Then from
Theorem 5.5 we know that Algorithm 5.1 is well defined and generates an infinite
sequence {(e*, %)} € N with the property that any accumulation point (£,%) of
{(e*,y*)} is a solution of E(e,y) = 0.

Since (¥, y*) is a decreasing sequence, limy,_, ., (¥, y*) exists. Let
@ = lim o(e",9y") > 0.
k—o00

If ¢ > 0, then there exists an ¢/ > 0 such that ¥ > ¢’ forall k > 0. For any v > 0,
let
Ly, ={y e R"||T(v,y) + wry|| < v, v e[, €]}.

Then it is not difficult to prove that for any v > 0, L, is bounded. In fact,
suppose that for some v > 0, L, is unbounded. Then there exist two sequences

2!V and {2} such that lim;_ . ||2!|| = co and for all [ > 1, ¢/ < v} < ¢ and
{
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|7 (1, 2Y) + kvt2l]| < v. By taking subsequences if necessary, we may assume that

lim; o ! =7 € [¢, €] and

ielI*ul™™ul’ Vie{l,...,m},

where
I°:={i| lim 2zl =00, i =1,...,m},
l—o0
I :={i| lim 2! = —00, i =1,...,m}, and
l—o0

IV = {i|{z!} is uniformly bounded, i = 1,...,m}.
Then, we have
(V2 — —o0 VieI™, (5.39)
and
TV, 2 =00 VielI ™. (5.40)
For each [ > 1, define h! € R™ as follows

0 ifiel>*ul—", )
= 1=1,...,m.

2ifielv,
Since, by part (ii) of Proposition 5.9, for any { > 1, YT(¢/},-) is a P,-function, by
further taking subsequences if necessary, we know that there exists ¢ € I U [~

(note that hé- = zé for all j € IV and [ > 1) such that
(28 = BT 2 = 1 Rh) >0 Vi1,

which is impossible in view of (5.39), (5.40), and the fact that {Y(!,h!)} is
bounded (note that T is globally Lipschitz continuous). This shows that for any

v >0, L, is bounded, i.e.,
{y e R"[|G(e,y)l| S v, e €€, €]}

is bounded. This implies that {(¥,4*)} is bounded. Thus, {(*,4*)} has at least
one accumulation point, which is a solution of E(e,y) = 0, contradicting ¢ > 0.

Therefore, = 0.
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Suppose that the Slater condition (5.20) holds. Then from Proposition 5.7 we
know that the solution set of the dual problem is nonempty and compact. Thus,
E(e,y) = 0 also has a nonempty and compact solution set. Since part (ii) of
Proposition 5.9 implies that E is a Py-function, the boundedness of {(¢*,4")}
follows directly from [97, Theorem 2.5]. O

Assume that the Slater condition (5.20) holds. Let (£, ) be an accumulation point
of the infinite sequence {(g*,y*)} generated by Algorithm 5.1. Then, by Theorem
5.10, we know that & = 0 and F(y) = 0, i.e.,, § € Q* = R x R% is an optimal
solution to the dual problem (5.18). Let X := IIsr (C' + A*y). By Proposition 5.7

we know that X € S¥ is the unique optimal solution to problem (5.16).

For quadratic convergence of Algorithm 5.1, we need the concept of constraint non-
degeneracy initiated by Robinson [104] and extensively developed by Bonnans and
Shapiro [4]. This concept is a generalization of the well-known linear independence
constraint qualification (or LICQ) used in nonlinear programming. For a given
closed K € X, a finite dimensional real Hilbert space, as in convex analysis [105]
we use Tk (x) to denote the tangent cone of K at = € K. The largest linear space
contained in T (z) is denoted by lin(Tk(z)). Let Z be the identity mapping from
S™ to S™. Then the constraint nondegeneracy is said to hold at X for the problem
(5.16) if
A S lin (TQ(A(Yi— b)) _ R | (5.41)
7z lin (TS_?_ (X)) S”
where Q = {0}” x R%. Note that the constraint nondegenerate condition (5.41) is

called the primal nondegeneracy in [1].

Let Ind(X) denote the index set of active constraints at X:
Ind(X) :={i|(A;, X)=b;, i=p+1,...,m},

and s be the number of elements in Ind(X). Without loss of generality, we assume
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that
md(X)={p+1,...,p+s}.
Define A : S® — RP+s by
(A1, X)
A(X) = : , Xeds, (5.42)
(Aprs, X)

and the adjoint of A is denoted by A,

Lemma 5.11. Let X := C + A*y have the spectral decomposition as in (5.25).
Then the constraint nondegenerate condition (5.41) holds at X if and only if for
any h € KPS,

PTAh=0<=h=0. (5.43)

Proof. Since the linearity space lin(To(A(X) — b)) in (5.41) can be computed
directly as follows

lin(To(A(X) = b)) ={h € R™|h; =0, i=1,...,p, i € Ind(X)}, (5.44)

we can see that (5.41) is reduced to

{o}pts Rpts
S" + o = )
7 lin(Tsn (X)) Sn
which is equivalent to
A(linTsy (X)) = R+, (5.45)

Note that

X = llgn (X) = Pdiag(max(0, A1), ..., max(0, \,)) P*,

the tangent cone Tisr (X), which was first characterized by Arnold [2], takes the
form

Tsy(X) = {B € 8"|[Ps P,]"B[P; P,] = 0}.
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Consequently,
lin(Tsn (X)) = {Be€S" | P;BP; =0, P BP, =0, PJBP,=0}.  (5.46)

Thus, from (5.45), the constraint nondegeneracy condition (5.41) holds if and only
if (5.43) holds. O

Lemma 5.12. Let & : £ x 8" — S" be defined by (5.28). Assume that the
constraint nondegeneracy (5.41) holds at X. Then for any V € 0p®(0, X) we have

(h, AV (0, A"h)) >0 YO0 #h € R+, (5.47)

Proof. Let V € 93®(0,X). Suppose that there exists 0 # h € RP** such that
(5.47) fails to hold, i.e.,
(h, AV (0, A*h)) < 0.

Denote H := A*h. Then, by Proposition 5.8, there exists Vig € dp®|g(0,0) such

that
[ rrEp, PIHP;  Usyo(PTHP) |
V(O,H)=P | (PTHP;)"  Vig(0, PYHPs) 0 P,
| (PTHP,)T o UL, 0 0 |

where U € S" is defined by (5.33). Since (P HPgs,Vig (0, P§ HP3)) > 0 and
(h,ﬁV(O,ﬁ*h» < 0, we obtain from (h, AV (0, A*h)) = (H,V (0, H)) that

P'HP,=0, PFHP; =0, and PTHP, =0,

ie.,
PTH =PTA*h =0.
On the other hand, since the constraint nondegeneracy (5.41) holds at X, from

(5.43) we know that h = 0. This contradiction shows that for any V' € dp®(0, X),
(5.47) holds. O
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Proposition 5.13. Let T : R x R™ — R™ be defined by (5.35). Assume that the
constraint nondegeneracy (5.41) holds at X. Then for any W € 9 Y (0, %) we have

max h;(W(0,h)); >0 VO #heR™. (5.48)

Proof. Let W € 0pY(0, 7). Suppose that there exists 0 # h € R™ such that (5.48)
does not hold, i.e.,

max hi(W(0,h)); <0. (5.49)

Then from part (iv) of Proposition 5.9 we know that there exist D € 9p1(0, 2)
and V € 9p®(0, X) such that

W(0,h) = h — D(0, h — AV (0, A*h)) = h — D(0, h) + D(0, AV (0, A*h)), (5.50)

where z := § — VO(y) = 5 — (AP(0, X) — b). By simple calculations, we can see

that there exists a nonnegative vector d € R satisfying

1 if 1 <i<p,
di=4q €[0,1] ifp+1<i<p+s,
0 ifp+s+1<i:<m

such that for any y € R™,

Thus, we obtain from (5.50) and (5.49) that

Bi(AV/(0, A*h)); < 0 f1<i<p,
h; =0 ifp+s+1<i<m,

which, implies

(h, AV (0, A"h)) = (h, AV (0, A"h)) < 0,
where 0 # h € R is defined by h; = h;, i = 1,...,p + s. This, however,
contradicts (5.47) in Lemma 5.12. This contradiction shows that (5.48) holds. [
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Theorem 5.14. Let (£,7) be an accumulation point of the infinite sequence {(e*, y*)}
generated by Algorithm 5.1. Assume that the constraint nondegeneracy (5.41) holds
at X. Then the whole sequence { (¥, y*)} converges to (£,7) quadratically, i.e.,

[ =&y =)l = O(lI(e" — &9 — D)) - (5.51)

Proof. In order to apply Theorem 5.6 to obtain the quadratic convergence of
{(*,94%)}, we only need to check that E is strongly semismooth at (£, 7) and
that all V € 0gE(£,y) are nonsingular.

The strong semismoothness of F at (£,y) follows directly from part (iii) of Propo-
sition 5.9 and the fact that the modulus function | - | is strongly semismooth ev-
erywhere on . The nonsingularity of all matrices in OgE(£,y) can be proved as

follows.

Let V € 0gE(&,y) be arbitrarily chosen. From Proposition 5.13 and the definition
of B, we know that for any 0 # d € R™H,

max d;(Vd); >0,

which, by [19, Theorem 3.3.4], implies that V' is a P-matrix, and so nonsingular.
Then the proof is completed. 0

Theorem 5.14 says that Algorithm 5.1 can achieve quadratic convergence under the
assumption that the constraint nondegenerate condition (5.41) holds at X. Next,
we shall discuss about this assumption by considering the following special least

squares semidefinite programming
min %HX —~C?
st. Xy =eij, (4,7) € Be,
Xy > 1y, (i,5) € By, (5.52)
Xij <, (4,5) € Bu,
X e St
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where B., B;, and B, are three index subsets of {(i,7) |1 < i < j < n} satisfying
B.nB =0, B.NnB, =0, and l;; < w;; for any (i,5) € B, N B,. Denote the
cardinalities of B, B;, and B, by p, q;, and q,, respectively. Let m := p + q + q..
For any (i,7) € {1,...,n} x {1,...,n}, define EY € R™" by

) 1 if (s,) = (i, §) |
(g = (s,8) = (&.) s,t=1,....n.

0 otherwise,

Thus, problem (5.52) can be written as a special case of (5.16) with

{(AY, X)} i j)eB.
AX) = | (A9 X)}pes |, XES (5.53)
—{(AY, X)} i jyeB, |

and
{eij}ages.

b= {lijig)es ;

—{ij } (i j)eB.

where A% := 1(EY + £7%). Then, its dual problem takes the same form as (5.18)

with ¢ := ¢ + ¢,. The index set Ind(X) of active constraints at X now becomes
Ind(X) = B, UB,,
where
Bii={(i,j) € B[ (A7 X) =1} and B, :={(i,j) € Bu| (AY,X) = uy}.

Let s be the cardinality of Ind(X). Then the mapping A S" — R+ defined by
(5.42) takes the form

{(A7, X)} i j)eB.
AX) = | {(47,X)}

(i.4)€By

—{ (A9, X>}(i,j)el§u
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Recall that the constraint nondegenerate condition (5.41) holds at X if and only
if for any h € RP** (5.43) holds. A particular case for (5.43) to hold is when
B. = {(4,i)|i = 1,...,n}, BLUB, = 0, and b > 0 [89, 91]. Furthermore, if
B, has a band structure, (5.43) also holds as long as the corresponding band of
the given matrix C' is positive definite [91]. In general, the equivalent constraint
nondegenerate condition (5.43) may fail to hold for problem (5.52). In [88], Qi
establishes an interesting connection between the constraint nondegeneracy and

the positive semidefinite matrix completions on chordal graphs.

5.3 Least squares matrix nuclear norm problems

In this section, we shall introduce the least squares matrix nuclear norm program-
ming (LSNNP) and then still apply the general inexact smoothing Newton method
to solve it.

Let A° : X2 — Jme - AL Rmxn2 s e and A9 : RMX"2 — ™ be the linear

operators defined by

Ae(X) = [<A§7X>; T ;<AZ%7X>]7
AX) = [(A], X); - 5 (AL, X)),
A1(X) = [(A, X);- - §<Agnq—1>X>7O]'

Denote a second order cone by
K = {y € R™a | HytH? < Ymyq }7

where y = [y15 Y23 =+ 5 Ymg—1} Ymg) = (U’ Yrmy)-
Let p > 0 and A > 0 be two given numbers and C' € R™*" be a given matrix.

The least squares matrix nuclear norm problem (LSNNP) then takes the following
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form

, A
min  S|X — CJ* + pl[X].
st A(X)—bF = 0, b eRm,

AX)y=b > 0, b eRrm, (5.54)
AN X)) —b?7 € Kma, b? e R,
X € Rmxnz,

Denote b := [b%; V'; b?] and Q := {0} x R x K™4. Let m := m.-+m;+m,. Define
A Rmxnz o Rm by A = [A° Al A9, Then problem (5.54) can be rewritten in
the following compact form
min fu,(X) = 31X I + ol Xl
st. AX)eb+Q, (5.55)
X € mxne,

5.3.1 The Lagrangian dual problem and optimality condi-

tions

The Lagrangian function L(X,y) : R"*"2 x R™ — R for problem (5.55) is defined
by

L(X,y) = [a,(X) = (AX) =b, y) = %IIX—C||2+/)IIX||*+<b—A(X)7y) - (5.56)
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The dual objective function g(y) can be derived from the Lagrangian function

(5.56) by

gly) =  inf L(X.y)
= it X X+ - A, )
Xepnixnz L2 ’
= b {2 - 20 A X) 4O+ T AYI) + X
Xepnixnz (2 A ’ A i

A 1 *, (12 A 2
—SlC+ T A + SO + () |

. A I A 1, A
= inf {SIX = (C+ AP+ ol XN = IO+ T AR+ SICH + (by) |-

XE%"l Xng

where A* = [(A°)* (A)* (A9)*] is the adjoint operator of A.

A 1
In order to get the infimum of §||X -C - X.A*yH2 + pl| X« in g(y), we need
to introduce the singular value thresholding operator P.(-) for any 7 > 0. Let

Y € R™>*™2 have the singular value decomposition (SVD) as in (2.48)
Y = U[S(Y) oV VT, S() = diag(o(Y),

where o(Y) = (01(Y),..., 00, (Y))T are singular values of Y. For any 7 > 0,
P.(Y) is defined by:

P(Y) = UE(Y) 0][n Va]" =UB(Y)V/,

where X,(Y) = diag((01(Y) =7)4, ..., (00, (V) —T)+)T. The singular value thresh-
olding operator is a proximity operator associated with nuclear norm. Details of

proximity operator can be found in [52].

The following proposition' allows us to obtain the result of infx{3[|X — (C +
T A*Y)|I> + pl| X ||+ }. Tts proof can be found in [12, 73].

!'Donald Goldfard first reported the formula (5.57) at the ”Foundations of Computational
Mathematics Conference’08” held at the City University of Hong Kong, June 2008
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Proposition 5.15. For eacht > 0 andY € R™*"2 the singular value thresholding

operator obeys

1
P-(Y) :argn;}n{éﬂX—YH%—i—THXH*}. (5.57)
Proposition 5.15 implies that
A 1, | R T,
o) = SIPL(C+TAY) = (C+ T AP +plPg(C+ Ay +

)\ 1 * 2 >\ 2

2NC+ AP+ SICI + b,w)

A 1, A

= —SIPg(C+ AP+ SICI + (b,

Let
Aoy A 1,
0(y) = —9(y) + SICI° = SIP£(C+ LAY = (b,y).

Then we obtain the dual problem for problem (5.55) is

min  6(y)
st ye 9.

(5.58)

The objective function () in the dual problem (5.58) is a continuously differen-
tiable convex function [52]. However it is not twice continuously differentiable. Its
gradient is given by

VO(y) = AP, (C + %A*y) b, (5.59)

by
The dual problem (5.58) of problem (5.55) is a convex constrained vector-valued
problem, in contrast to the matrix-valued problem (5.55). When it is easier to
apply optimization algorithms to solve for the dual problem (5.58) than for the
primal problem (5.55), one can use Rockafellar’s dual approach [106] to find an
optimal solution ¢ for (5.58) first. An optimal solution X for (5.55) can then be
obtained by

1
X = arg i&f L(X,y) =Pe(C + XA*gj) .
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Before introducing optimality conditions, we assume that the Slater condition holds

for the primal problem (5.55):

{A;}e are linearly independent,

(5.60)
3 XY such that A (X?) > b and AY(X?) — b9 € ri(K™a).

where ri(K™) denotes the relative interior of ™. When the Slater condition

is satisfied, the following proposition, which is a straightforward application of

Rockafellar’s results in [106, Theorems 17 & 18], holds.

Proposition 5.16. Under the Slater condition (5.60), the following results hold:

(i) There ezists at least one y € Q* that solves the dual problem (5.58). The

unique solution to the primal problem (P) is given by
— 1 .
X = 'Pg(c + XA ). (5.61)

(ii) For every real number 7, the constrained level set {y € Q*| 0(y) < 7} is

closed, bounded and convex.

The convexity in the second part of Proposition 5.16 allows us to apply any gradient
based optimization method to obtain an optimal solution for the dual problem
(5.58). When a solution is found for (5.58), one can always use (5.61) to obtain a

unique optimal solution to the primal problem .

Define F' : R™ — R™ by

F(y) ==y —To-(y — VO(y)), yeR". (5.62)

Then, one can easily check that solving the dual problem (5.58) is equivalent to

solving the following equation:

Fly)=0, yeR". (5.63)
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It is known that F'is globally Lipschitz continuous but not everywhere continuously
differentiable. Similarly, we can apply the smoothing Newton-BiCGStab method
to solve (5.62).

Recall that
1 *
Fy) =y =T (y — (AP¢(C + T Ay) = 1))
Now we introduce the smoothing functions for the IIg:(-) and Pe (+), respectively.

F' contains a composition of two nonsmooth functions. In the outer layer, IIo«(-) is
a metric projection operator from R™ to Q*. Recall that Q" = R x R} x L™,
then Ilg«(-) is given by

Mo (2) = [ Ty (21); Mma (2], (5.64)
where z = [2¢; 2!; 29] and Ilxme(2) denotes the projection of z onto the second-
order cone K™, The properties of second order cone have been well studied. The
following well known proposition gives an analytical solution to IIia(+), the metric

projection onto a second order cone K" of dimension n. See [39, 85] and references

therein for more discussions on Il (+).

Proposition 5.17. For any z € R", let z = [2%; z,] where 2 € R"™! and z, € R.

Then z has the following spectral decomposition
z=M(2)c1(2) + Aa(2)ca(2), (5.65)
where fori=1,2,

X(z) = za+ (1) 2,

1 P .y
o = {2V D TEEO
5((—1)%{), nt if =0,

where w € R satisfies ||[wl||s = 1. Then Ixn(2) is given by

Mn(2) = (M(2))1e1(2) + (Aa(2))c2(2) - (5.66)
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Now we are ready to introduce a smoothing function ¥*¢ : R x ™ — R™ for
Ijcmq (+). For any 27 € R™e which has the spectral decomposition as in (5.65), we

define 1*°¢ : ® x R — K™ by

(e, 2) = dle, M(2))er(27) + dle, Aa(27))ea(27) (5.67)

where ¢(-,-) is the Huber or Smale smoothing function defined as in (2.69) or
(2.70). It has been shown in [124, Theorem 5.1] that 1*°°(-, ) is globally Lipschitz
continuous and strongly semismooth on &, x 1™ if the smoothing function ¢ is

globally Lipschitz continuous and strongly semismooth on £, x R.

Next we consider the smoothing for Ilgn (-). Define " : §¢ x R™ — ™ by

rme(e, ) = g(e,2)  fori=1,...,mi, (52) ERXRM. (5.68)

In order to define smoothing function for F'(-), we need to define smoothing function

for Ilg«(+). Let ¢ : & x ™ — R™ be defined by

ZC

V(e z) = | ymo(e, ) |- (5.69)

b2, 29)
It is obvious that i is a globally Lipschitz continuous, and strongly semismooth
function on R x R™. Furthermore, it can be easily checked that for any fixed € # 0,

any t,s € R and t # s,

d ¢(5’t) — ¢(5’ S) c [

oy(e,t) €10,1] an P—

0,1], (5.70)

thus, together with the result of Kordnyi [60, Page 74|, we know that for any
zeR™,

Ui(e, 2) = (¥ile, 2)),

0=<¢l(ez) =1

(5.71)

Next we will construct a smoothing function for the inner layer on the nonsym-

metric matrix operator Pa (-).
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Let Y € R™*™ (n; < my). Suppose that Y has the following singular value
decomposition as in (2.48), i.e.,
(5.72)

Y = US(Y) oVT = US(Y) o) Vi”.

Let the orthogonal matrix Q@ € O™ "2 be defined by
Q- 1 u U 0 (5.73)
V2Z\v -V V2n
In order to properly define the smoothing function for nonsymmetric matrix-valued

functions, we will transform a nonsymmetric matrix into a symmetric matrix and

make use of the known properties of the symmetric matrix-valued functions. Define

R Smtne by

0 Y
=(Y) = .Y eRmom
YT 0

Then, from [44, Section 8.6], Z(Y") has the following spectral decomposition:

> 0 0
EV)=Q| 0o -x o |Q", (5.74)
0O 0 O
i.e., the eigenvalues of Z(Y') are +0,(Y), i = 1,...,ny, and 0 of multiplicity ns —n;.
For some 7 > 0, we define a real-valued function g, : 8 — R by
t—71 ift>r1
gr(t) =t =T)g — (=t =7)y =4 0 if —r<t<r , teR. (5.75)
t+7 ift<—71
For any W = Qdiag(A1, ..., Ayyan,) QT € S™172 define
G.(W) = Qdiag(g:(M1), -+ 9r(Any4na)) Q1
(5.76)

= HSK(W—TI)—HSK(—W—TI).
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By direct calculation, we have

G- (E(Y)) = P((;/)T PT(()Y) . (5.77)

The smoothing functions for g,(-) in (5.75) and G.(-) in (5.76) can be defined,
respectively, by

bg,(e,8) = ole,t—T)—ple,—t —7), (5.78)

where ¢(,-) is the Huber or Smale smoothing function defined as in (2.69) or

(2.70), and

Z¢£JT O 0
Oq,(e,2(Y) = Q| 0 -3 0 |Q, (5.79)
0 0 0

where S5, = diag(¢y, (£,01), ..., ¢y, (g,04,)).

From (5.77), One can easily derive that ®_ has the following form

— 0 (I)'PT (57 Y)
CI)GT (67 ‘:'(Y)) = ) (580)
(Pp, (e, Y))" 0

where ®p_: R x RM*"2 — R™M>72 s defined by
Dp, (c,Y) :=U[Z,, OV, (5.81)

which is the smoothing function for the soft thresholding operator P.(-). Note that
when ¢ =0, &¢.(0,2(Y)) = G (E(Y)) and ¢p_(0,Y) = P,(Y).

We have known that the smoothing function (5.69) for the outer layer of F
in (5.64) is strongly semismooth at (0,y). Next we will show the strong semis-

moothness of ®p_, which is a smoothing function for the inner layer projection of

F.
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Applying Proposition 2.1, we obtain that when ¢ # 0 or 0; # 7, =1,...,ny, for
any H € R™M>"2

(e, )z (e, EV) E(H) = Q[Q(e, ME(Y))) o (QRTE(H)Q)]QT,  (5.82)
where Q(e, A(2(Y"))) is the first divided difference matrix of ®_ at A(E(Y)) and
ME(Y)) = (01,...,0n,—01,...,—0n,,0,...,0)T € Rtn2,
One can easily check that Q(e, A(E(Y))) € 8™ "2 takes the following form

Qi Qe Q3
Q(57)\(E(Y))): Q{g Qog Qa3 |
Of; Q3 Qs

where
ngT (67 Ji) B gb!]r (67 0-]) lf o; # 0_]
[Qll]ij = [Q(&T, )\)]U = 0; — 0y , for Z,j = ]., cea, Ny,
(9g. ), (€, 04) if 0; = 0,
¢97(€’ O—i) + ¢gr (57 Uj) lf o; 7£ 0 or O_j 7& 0
[Qu2]i5 = [Q(e, M]igg+n) = 0i + 0 fori,j=1,...,nq,
(¢97’),0'i (87 01) if 0, =05 = 0
—¢gT(6’ il if o; 20 . .
[zl = [QUe, Migi+2n) = o Jfori=1,...,n1,5=1,...,n0—ny,
(¢4, )5, (e,00) if0i=0
[a3]i5 = [, Mt2n)G+201) = (D4, )i(,0), for i, j =1,...,na =,
and

Q22 = Qlla QQ3 = QlS-

Note that Q1; = QF}, Q1 = Qf, and [Q(e, \)];; € [0,1] for all 4,5 = 1,...,n1 + na.
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By direct calculation, we can easily show that

(Pc. )=y (e, Z(Y)) =(H)
UT ‘/IT
_ 1 0 H U U 0 .,
_ Q(Q(e,)\(:(Y)))o§ ur T )Q
HT 0 Vi Vi V2V,
0 V2V,

1 (AT 4+ A)oQy (AT —A)oQy V2Bo Qs
= 5@ (A - AT) o le —(AT + A) (@) QQQ \/§B O Qgg QT

\/§BT o} le \/§BT o 932 0
0 P12
PL 0

where A =UTHV,, B=UTHV, and
1
P, = 5U((A + AT) o Uy + (A— AT) 0 Q) VT + U(B o Qu3)Vsy .

When ¢ # 0 or 0; # 7,1 =1,...,ny, the partial derivative of ®¢_(-,) with respect

to € can be computed by

(Pc,)-(e,Y) =@ 0 -DE%) o0]Q7, (5.83)
0 0 0
where
D(e,%) = diag((¢g,):(c,01), - -, (0g,)2(E, 0n,)) - (5.84)
Note that
0 (©p,)'(e,Y) (v, H)

(Pc.) (e, E(Y) (v, E(H)) = T ,
(((I)PT)/(an)(Vv H)) 0

then ®p_(+,-) is continuously differentiable around (e,Y) € R™*"2 if ¢ # 0 or
o; #7,1=1,...,n, and its derivative is given by
((I)’P‘ry(ga Y)(V7 H)

A+ AT A— AT (5.85)
LLEN FuD(E D))V 4+ U (00 BV

= U(Qn o
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Furthermore, ®p_(+, ) is globally Lipschitz continuous and strongly semismooth at
any (0,Y) € R x ™ *"2 [124]. In particular, for any € — 0 and R"*"2 5 AY — 0
and, it holds that

Op (e, Y +AY)—=®p (0,Y)—(®p ) (e, Y +AY) (g, AY) = O(||(g, AY)|]*). (5.86)

Now we are ready to introduce a smoothing function T : & x ™ — R™ for F

defined in (5.62) with (5.69) and (5.81),

T(e,y) =y — ¢<g, y— (Ap, (e,C + %A*w . b)). (5.87)

By the definitions of T, ¢ and ®p_, we know that for any y € R™, F(y) = Y(0,y).

In order to study the properties of T, we need the following notations. Let
my := me + my. Define

Ki=Rx-xRxR™,
—_——

mi

and

D=Rx--- xRN,
—_——

mi

where K™ denotes the second order cone with dimension m, as usual. Then

D e L(K).

Proposition 5.18. Let T: R x R™ be defined by (5.87). Let y € R™. Then it
holds that

(i) Y is globally Lipschitz continuous on R x R™.

(i) Y is continuously differentiable around (e,y) where ¢ # 0. For any fized
e €R, Y(g,-) is a block quasi Py-function on D € L(K), i.e., for any y, h in
R™ with y # h, there exists an orthogonal matrixz QQ € O™ taking the form of

I 0
Q= , (5.88)

0 Qi
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where Q1 € O™ such that

N N A AN ‘
1§?§%§+1<y h ) Ty Th> = 07 (5 89)
]]i;ﬁhi
where
v v, i=1,...,miy, . R, i=1,...,m,
Y= 4 , b= . )
quz’ Z.:Tnl—i—la Qtha i:m1+17
~. Yi(e,y), 1=1,...,my, ~. Yi(e, h), 1=1,...,mq,
T; = ( y> ! , T;z = ( ) !
QT (e, y), i=mi+1, QI (e, h), i=m+ 1.

Furthermore, for any fired € # 0, T, (e,y) is a quasi Py-matriz.

In particular, if m? = 0, then for any fivzed ¢ € R, Y(e,-) is a Py-function,
i.e., for any y, h in R™ with y # h,

max (yi — ki) (Ti(e,y) — Ti(e, h)) >0, (5.90)

and thus for any fired € # 0, T} (,y) is a Po-matriz.

(i1i) Y is strongly semismooth at (0, y). In particular, for any € | 0 and R™ >

h — 0 we have

T(e,y+h)=T(0,y) =T,y +h) Z = O(ll(e, M)I1*)-

(iv) For any h € R,

95 (0,)(0, h) € h—01(0, y—V8()) (0, h—%Achpp§ (0, C+§A*y>(o, AR)).
(5.91)

Proof. (i) Since both ¢ and ®p, are globally Lipschitz continuous, T is also
By
globally Lipschitz continuous.
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(ii) From the definitions of ¢ and ®p,, we know that T is continuously differen-
X

tiable for any (e,y) € R x R™ when € # 0.
We first show that for any 0 # ¢ € R, T(e,-) is a block quasi Py-function on
D e L(K). Fix ¢ # 0 and define g. : ™ — R™ by

1
9:-(y) = .A(I>7>§ (e, C+ X.A*y) —b, yeR™.

Then g. is continuously differentiable and monotone on R™ [54].
Applying the classical mean value theorem to 1 (e, -), together with the struc-

ture of ¢ and (5.71), one has that there exists 0 < S < I, taking the form

D™ 0
S = , (5.92)
0S4

where D™ € 8™ is a diagonal matrix and S? € 8™4, such that for any y,
h € R with y # h,

T(€>y) - T(€> h) = (y - ?ﬂ(& Yy — g&(y))) - (h - w(ga h — ga(h)))
= (y—h) = S((y = 9:v)) = (h = g=(h)))
- ([ - S)(y - h) + S(gs(y) - gs(h)) .
From the structure of S in (5.92), we know that there exists an orthogonal
matrix @) € O™ taking the form
I 0
0 Q1

where Q4 € O™ such that QSQT = D and 0 < D < I is a diagonal matrix.

I

Then it follows that

Y, —Tn = QY(e,y) — QY(e,h)
= (I - D)(Qy - Qh> + D(an(y) - Qge<h))
= (I=D)(§—h)+D(G -3,
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where ¢ := Qg.(y) and g := Qg.(h). Note that

G —h, g =9 = (Qy— Qh, Qg.(y) — Qge(h))
= <y - h7 ge(y) - gs(h>> Z 07

where the inequality comes from the monotocity of g.. Thus, there exists

ie{l,...,mq+1} such that §° # h* and
which implies that (5.89) holds for any &* # 0.

Since T is continuous on R x R, in order to show that Y(0,-) is also a block
quasi Pp-function on D € L(K), we choose an arbitrary positive sequence
{e*} such that limy ., ¥ = 0. Since (5.89) holds for all ¥ > 0, we can
easily get the conclusion by taking k& — 400 on both sides of (5.89) and
noting that the index set {i|§" # hi,i = 1,...,m} is independent of k.
Thus, Y(e,-) is a block quasi Py-function on D € L(K) for any € € R.

Next we will show that for any fixed € # 0, T/ (¢, ) is a quasi Fy-matrix. Fix
e#0. Let z: =y —g.(y), V:i=1l(e,2z) and A := (¢.)'(y) for any y € R™.
By using above arguments, we know that there exists @ € O™ which takes

the same form as in (5.88), i.e.,

@ I, O
0o Qv |
where @‘1 € O™a, such that @V@T = Dand0 = D =< I is a diagonal matrix.

Then, one has
QT (e.y)Q" = QI ~ V(I - 4)Q" =1~ D+ D(QAQ").

Note that A is a Py-matrix, so is @A@T. Thus, @T;(e,y)@T is also Fp-

matrix, which implies that T} (e,y) is a quasi Py-matrix for any fixed € # 0.
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In particular, if there is no second order cone constraint, i.e., m, = 0, note

that for any z € R™,
Ul (e,2%)€[0,1], i=1,...,m.

Let y,h € R™ with y # h. Then there exists i € {1,...,m} with y; # h;
such that

(yi = hi)((92)i(y) — (ge)i(h)) = 0.
Then we obtain that
(yi = hi)(Ti(e,y) — Ti(e, b)) =2 0.
Thus T is a Py-function and (5.90) holds for any y, h € R such that y # h.

(iii) From the fact that the composite of strongly semismooth functions is still
strongly semismooth [37] and that both ¢ defined in (5.69) and ®p, defined

X
in (5.81) are strongly semismooth at any (0, y), we conclude that Y is strongly

semismooth at (0,y).

(iv) Both ¢ and ®p, are directionally differentiable. For any (e,y’) € & x R™
A
such that T is Fréchet differentiable at (e,y’), we know that

/ / / / 1 / 1 * / *
which, together with semismoothness of 1) and ®p,, implies
A
/ / / 1 1 * ! *
T ((67 Yy )7 <07 h)) €h— an((gv < )(Oa h— XAaB(I)P§ (87 C + XA Y )(07 A y))a

where 2/ =y — (A®p, (¢,C + $A*Y) — b). By taking (¢,3') — (0,y) in the
A
above inclusion, we complete the proof.

]
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5.3.2 Global convergence analysis

Let F': R™ — R™ be defined by (5.62). Let x € (0,00) be a constant. Define
G:R xR — R by

G(e,y) = T(e,y) +rlely, (5,y) € R xRN, (5.93)

where T : R x R™ — R™ is defined by (5.87). The reason for defining G' by
(5.93) is that for any (g,y) € R x R™ with ¢ # 0, G} (¢,y) is a quasi P-matrix,
thus nonsingular while by part (ii) of Proposition 5.18, T} (e,y) is only a quasi

Py-matrix, which may be singular.

Let £: R x R™ — R x R™ be defined by

Eey)=| = |= : L Gy ERXRT. (5.94)

G(e,y) T(e,y) + klely
Let A be defined by (5.8). Next, we discuss convergent properties of Algorithm
5.1 when it is applied to solve E(e,y) = 0.

Lemma 5.19. The mapping E defined in (5.94) is weakly univalent.

Proof. For every positive integer k£ > 1, consider the mapping

k . 0 _ € m
E(an) .—E(&“,y)—l— - ) (an)E%XéR )

y/k G*(,y)
where G*(g,y) = G(e,y) + y/k = Y(e,y) + (ke + 1/k)y. It is obvious that E* is
continuous for every k and the sequence { E*} converges to E uniformly on bounded
subsets. So, to proof the Lemma, we only need to show that for each k, E¥ is one-
to-one. Let (g,) and (€, h) be two vectors in R x R™ such that E*(e,y) = E¥ (¢, h).
Thus, € = ¢ and G*(¢,y) = G*(e, h). Suppose that y # h. Since, by part (ii) of
Proposition 5.18, T(e, -) is a block quasi Py-function on D € L(K) for any € € R, we
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obtain that for any k& > 1, there exists i € {1,...,m; + 1} and a block orthogonal
matrix QF € O™ taking the form as in (5.88) such that ¢ # A’ and

0= (" — k', (G5 — (GEY') > (ke + 1/R)||§° — B> >0, VEk>1,

where § 1= Q%y, h := QFh, é’; = QFG*(e,y) and é\i = Q*G*(e,h). Thus we
complete the proof. O

Theorem 5.20. Algorithm 5.1 is well defined and generates an infinite sequence
{(g*,y*)} € N with the properties that any accumulation point (£,4) of {(*,y*)}
is a solution of E(e,y) = 0 and limy_,o, (¥, y*) = 0. Additionally, if the Slater
condition (5.60) holds, then {(e*,y*)} is bounded.

Proof. From part (ii) of Proposition 5.18 and the definitions of G and E we know
that for any (e,y) € Ryy x N, G (e,y), and so E'(e,y), is a quasi P-matrix.
Then from Theorem 5.5, we know that Algorithm 5.1 is well defined and generates
an infinite sequence {(¢*,y*)} € A with the property that any accumulation point
(&,7) of {(e*,y*)} is a solution of E(e,y) = 0.

Since (¥, y*) is a decreasing sequence, limy,_,., (¥, y*) exists. Let

@ = lim o(e",9y*) > 0.

k—o0

If ¢ > 0, then there exists an ¢/ > 0 such that e* > ¢/ forall k > 0. For any v > 0,
let

L, :={y e R"|||T(v,y) + sry|| < v, v el é}.
Then it is not difficult to prove that for any v > 0, L, is bounded. In fact,
suppose that for some v > 0, L, is unbounded. Then there exist two sequences
{2'} and {¢!} such that lim;_ ||2!|]| = oo and for all [ > 1, & < ! < & and
|7, =) + ki'2l|| < wo. By taking subsequences if necessary, we may assume that

lim;_,o ! = 7 € [¢/,€] and define an index set by

1 = {i| lim [|())"] = o0, i=1,...,m1+1}.
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For each [ > 1, define h! € R™ as follows

N 0 ifiel™,
(h')' = A (5.95)
(N ifie{1,...,my+1}\ I
Since, by part (i) of Proposition 5.18, for any [ > 1, YT(#!,-) is a block quasi
Py-function on D € L(K), i.e., there exists ¢ € {1,...,m; + 1} and an orthogonal

matrix Q' € O™ which takes the form as in (5.88) such that (2!)¢ # (A!)¢ and
(Y = (B (GL) = (G = A = (BY1P, Vi1,

where 2 := Q'2!, bl := Q'R!, CAJZZZ = Q'G'(V!, 2') and Cjﬁll = Q'G (v, h!), which fails
to hold for all [ sufficiently large since {Y (v, 2!) + st/!2'} and {Y (v, h!) + kr'h!}

are bounded. Thus, for any v > 0, L, is bounded, i.e.,
{y e R"|[|G(e,y)l| < v, e €[]}

is bounded. This implies that {(¥,4*)} is bounded. Thus, {(*,4*)} has at least
one accumulation point, which is a solution of E(e,y) = 0, contradicting @ > 0.
Therefore, = 0.

Suppose that the Slater condition (5.60) holds. Then from Proposition 5.16 we
know that the solution set of the dual problem is nonempty and compact. Thus,

E(e,y) = 0 also has a nonempty and compact solution set.

Since F is weakly univalent from Lemma 5.19, the boundedness of {(g*, y*)} follows

directly from [97, Theorem 2.5]. O

Assume that the Slater condition (5.60) holds. Let (£, y) be an accumulation point
of the infinite sequence {(g*,y*)} generated by Algorithm 5.1. Then, by Theorem
5.20, we know that £ = 0 and F(y) =0, i.e., y € Q* is an optimal solution to the
dual problem (5.58). Let X := Pe(C+ $A*y). By Proposition 5.16, we know that

X € Rm*m2 g the unique optimal solution to problem (5.55).
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5.3.3 Local convergence analysis
Define h : f§"*" — R by h(X) = || X||«. Let £"*"2 be the epigraph of h, i.e.,
K2 = epih = {(X,t) e R"™ xR | h(X) <t}

which is a close convex cone. Let A = (A 0). Then problem (5.54) can be

reformulated as \
min §||X —C|* +pt

~

st. AX,t)eb+Q, (5.96)
(X,t) e Kmxn2,
It is easy to see that if X is an optimal solution to problem (5.55) if and only if
(X, 1) is an optimal solution to (5.96) and t = || X||,.
For quadratic convergence analysis, we need the concept of constraint nondegen-
eracy. Let Z be an identity mapping from R™*"2 x R to R"*"2 x R. Then the
constraint nondegeneracy is said to hold at (X, ?) if

A lin(To(AX, ) — b m
A (§Rn1><nz X%)—l— 1I1< Q( ( 3 )) _ §R

7 (5.97)
I ]_II].(T]Cnl Xng (X, t_)) %nl X1z X %

Now we try to characterize Tjn xny(X,%) which involves the epigraph of h. Let

X € R™M>"™ have the singular value decomposition
X =UEX) o]y V',

where ¥(X) = diag(o1(X),...,0,,(X)). Suppose that X is of rank r. Write
U = [U; Uy] where U; € R™*" consists of the first r columns in U and U, €
Rrx(m=7) denotes the remaining part in U. Similarly, Vi can be partitioned into
Vi = [Vi1 Vig]. For any H € R™*"2 define g(H) := h/(X;H). Noting that
h(X) =31, 04(X), by the result of Watson [118] about the directional derivative
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of the singular values, we obtain that

1. if o(X) =0,
g(H) =< (UVI H), if omin(X) >0,
<U1‘/1,]£7 H> + ||U5FH[VY12 ‘/2]”*7 if Urrlin(X> =0 and Unlax(X> > 0.

(5.98)
By using [18, Proposition 2.3.6 & Theorem 2.4.7], we have that

T,

epih(X> h(X)) =epi W' (X;-).

It follows that
Tienixna (X, 1(X)) = {(H, s) € R™*" x R (Ui, H) + U3 H[Vis Va]|l.c < s}
Thus, its linearity space is as follows

I (Tienyxne (X, 1(X))) = {(H, s) € R xR | (U1 V]], H) = s, Uy H[Vi2 Vo] =0} .

(5.99)
Under the constraint nondegeneracy condition (5.97), it is possible to prove that
all V' € 0pE(0,y) are nonsingular, which implies that the sequence generated
by Algorithm 5.1 will converge quadratically to (0,7) according to Theorem 5.6.
Actually, when there is no second order cone constraint, i.e., m, = 0, this has
already been proven in [54]. Note that in this case, the constraint nondegeneracy

condition (5.97) can be further simplified as follows. Let Ind(X) denote the index

set of active constraints at X

Ind(X) = {i| (AL X) =08}, i=m.+1,...,m},

and s = |Ind(X)|. Without loss of generality, we assume that

Ind(X) ={m.+1,...,m. + s}.

Define A : RmXm2 — Rmets by

AX) = [(AS XD, (AS XD (AL XD, (AL 0], X e mme
(5.100)
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Let A= (A 0). Then (5.97) can be reduced to

A O Mme+S §Rme+s
(R x R) + {0y . = (5.101)
z 1in(T,Cn1m2 (X,f)) X2 R

which is equivalent to
AU (Tiem xns (X, 1)) = R0 (5.102)

When m, # 0, the proof for the nonsingularity of all V' € 0gE(0,y) under the
constraint nondegeneracy 5.97 can be done similarly, but its analysis is much more

involved. To save some space, we omit the details in this thesis.



Chapter 6

Numerical Results

In this chapter, we conduct some numerical experiments on the SLR-MOPs and
report our numerical results for the symmetric SLR-MOPs and the nonsymmetric

SLR-MOPs, respectively, in the following two sections.

6.1 Numerical results for the symmetric SLR-

MOPs

For the symmetric SLR-MOPs, we consider problem (1.5) introduced in Chapter
1, i.e.,
min %HH o (X = )2
st. Xu=11=1,...,n,
Xij = €ij, (i,7) € Be,
Xi; > 1, (i,§) € By, (6.1)
Xij <wyy, (1,7) € By,
X eS8t
rank(X) <r.

114
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We have shown that problem (6.1) has many applications among a variety of fields.
Here we shall first discuss some existing methods for solving this problem. For this
purpose, we start from a simple version of problem (6.1). The so-called rank

constrained nearest correlation matrix problem (rank-NCM)

1
min §||HO(X—C')||2
st. Xuy=1, i=1,...,n,
(6.2)
X eS8t
rank(X) <r

has been investigated by many researchers. In [111], Simon gave a comprehen-
sive literature review and summarized thirteen methods for solving the rank-NCM
problem (6.2) and its many different variations. Here we will only briefly discuss
several methods which are most relevant to our approach to be introduced in this

thesis.

We start with mentioning the method of “principal component analysis” (PCA).
This method truncates the spectral decomposition of the symmetric matrix C' to
a positive semidefinite matrix by taking the first r largest eigenvalues of C'. Its
modified version (mPCA), perhaps firstly introduced by Flurry [38], is to take ac-
count of the unit diagonal constraints via a normalization procedure. The mPCA
method is very popular in the financial industry due to its simplicity and has been
widely implemented by many financial institutions for obtaining a correlation ma-
trix with the required rank. The major drawback of the mPCA approach is that
it only produces a non-optimal feasible solution to problem (6.2). Nevertheless, it
can be used as a good initial feasible point for other methods of solving the rank-
NCM problem. In terms of finding an optimal solution, Zhang and Wu [123] and
Wu [121] took an important step by using a Lagrange dual method to solve the
rank-NCM problem (6.2) with equal weights, i.e., H = E, where F is a symmetric

matrix whose entries are all ones. Under the assumptions that the given matrix C'
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is a valid correlation matrix and the rth and (r + 1)th eigenvalues (arranged in the
non-increasing order in terms of their absolute values) of C'+diag(y) have different
absolute values, where 3 is an optimal solution to the Lagrange dual problem of
(6.2) and diag(y) is a diagonal matrix whose diagonal is g, Zhang and Wu [123]
provided a way to get a global solution of problem (6.2). This global optimality
checking is very rare in non-convex optimization. The Lagrange dual method is
effective when the required rank r is large. The next major progress is achieved
by Pietersz and Groenen [87] who proposed an innovative row by row alternating
majorization method. This method can be applied to problem (6.2) with an arbi-
trary symmetric nonnegative weight matrix H and is particularly efficient when r
is small as its computational cost at each iteration is of the order O(r?n?). In [47],
Grubisic and Pietersz introduced a geometric programming approach for solving
problem (6.2). This approach is applicable to any weight matrix H too, but its
numerical performance is not so efficient as the majorization method of Pietersz
and Groenen as far as we know. Another well studied method for solving problem
(6.2) is the trigonometric parametrization method of Rebonato [98, 99, 100, 101],
Brigo [8], Brigo and Mercurio [10] and Rapisarda et al. [96]. In this method, they
first decompose X = RRT with R € ®"*" and then parameterize each row vector
of R by trigonometric functions through spherical coordinates. The resulting prob-
lem is unconstrained, but highly nonlinear and non-convex. It is not clear to us if
the problem can be efficiently solved in practice. The trigonometric parametriza-
tion method has been considered earlier for the cases without the rank constraint
[72, 101]. A class of alternating direction methods, which are easy to implement,
are also well studied by many researchers for solving the rank-NCM problem. For
example, Morini and Webber [79] suggested an iterative algorithm called eigen-
value zeroing by iteration (EZI). This algorithm generally does not converge to a

stationary point of the rank-NCM problem and cannot be extended to the case
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with a general weight matrix H. Very recently, Li and Qi [68] proposed a sequen-
tial semismooth Newton method for solving problem (6.2) with H = E. They
formulate the problem as a bi-affine semidefinite programming and then use an
augmented Lagrange method to solve a sequence of least squares problems. This

approach can be effective when the required rank 7 is relatively large.

So far we have seen that unless » < O(y/n) in which case the majorization method
of Pietersz and Groenen [87] is an excellent choice, there still lacks an efficient
method. Note that problem (6.1) is a generalization of problem (6.2) and for
problem (6.1) to have a feasible solution, the required rank r cannot be arbitrarily
chosen as in problem (6.2) when m is large. From numerical algorithmic point of
view, however, there is no much progress in extending approaches from problem
(6.2) to deal with the more challenging problem (6.1). Only recently, Simon and
Abell [111] extended the majorization method of Pietersz and Groenen [87] by
incorporating some equality constraints of the kind X;; = 0. But unlike the case
for the simpler problem (6.2), this extension can easily fail even the number of such
constraints is not large. The main reason is that the desired monotone decreasing
property of the objective function is no longer valid whenever the off-diagonal
bounds exist. Under this situation, our proposed approach seems to be the only

choice so far.

Next, we address several practical issues in the implementation of the proximal

subgradient method to the penalized problem of (6.1).

1. The choice of the initial point X° € Q. Compute d as in (4.23). Let D =

diag(d). We then apply the majorization method alternatively (first fix Z
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and then X') to approximately solve
1 1
min S [[H o (X = O + S |[H o (2~ C)| + | D"2(X — 7)Y
st. AXeb+Q,
X est,

rank(Z) <r
(6.3)

to obtain a feasible solution, say ()? , Z ), where p > 0 is initially set as 100
and is increased by 10 times at each step. The maximum number of steps is

set as 10. Then we set X? := X € Q.

2. The choice of the penalty parameter c. Let X* be an optimal solution to the
following problem
min Z|[Ho (X~ O)]
st. AX €eb+ 0, (6.4)
X edsy.

We choose the initial penalty parameter ¢ to be
¢ :=min {1, 0.25(A(X°) — 0(X*))/ max{1, p(X°) — p(X*)}}.

Thereafter, ¢ is updated as follows: when |p(X*)|/max{1,r} > 0.1, ¢ is
increased by 4 times; otherwise, ¢ is increased by 1.4 times. The penalty

parameter ¢ will be kept unchanged if |p(X*)| < 1075,

3. The choice of the algorithm for solving the subproblems (4.21). The success
of our approach heavily relies on our ability in solving a sequence of the
subproblems of the form (4.21). For this purpose, we use the well tested
smoothing Newton-BiCGStab method developed in [42].

4. The stopping criterion. We terminate our algorithm if

VI IR _
max (100, v/ fo(X*-1)) —

Ip(X*)| <107® and
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We did our numerical experiments in MATLAB 7.8.0 (R2009a) running on a PC
Intel (R) Core (TM) 2 of 3.16 GHz CPU each and 2.96 GB of RAM. The testing

examples to be reported are given below.

Example 6.1. Let n = 500 and the weight matric H = E. For 1,7 = 1,...,n,
Cij = 0.5+ 0.5¢0051=3l " The index sets are B. = B = By, = 0. This matriz C is

a valid correlation matriz and has been used by a number of authors [8, 68].

Example 6.2. Let n = 500 and the weight matric H = E. The matrix C' 1is
extracted from the correlation matriz which is based on a 10,000 gene micro-array

data set obtained from 256 drugs treated rat livers; see Natsoulis et al. [80] for
details. The index sets are B. = B; = B, = 0.

Example 6.3. Let n = 500. The matriz C' is the same as in Example 6.1, i.e.,
C = 0.5+ 0.5e7 003l for i j=1,... n. The index sets are B, = B, = B, = (.
The weight matriz H is generated in the same way as in [91] such that all its entries

are uniformly distributed in [0.1,10] except for 2 x 100 entries in [0.01,100].

Example 6.4. Let n = 500. The matrix C' is the same as in Example 6.2. The
index sets are B, = B; = B, = 0. The weight matriz H is generated in the same

way as in FExample 6.3.

Example 6.5. The matriz C is an estimated 943 x 943 correlation matriz based on
100,000 ratings for 1682 mowvies by 943 users. Due to missing data, the generated
matriz G is not positive semi-definite [{1]. This rating data set can be downloaded
from http://www.grouplens.org/node/73. The index sets are B, = B, = B, =
(). The weight matriz H is provided by T. Fushiki at Institute of Statistical Math-

ematics, Japan.

Example 6.6. The matriz C' is obtained from the gene data sets with dimension

n = 1,000 as in Fxample 6.2. The weight matriz H is the same as in Fxample
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Example 5.1: n=500, H=E
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Figure 6.1: Example 6.1

6.3. The index sets B., By, and B, C {(i,7)|1 <i < j <n} consist of the indices
of min(n,,n — i) randomly generated elements at the ith row of X, i =1,...,n
with n, =5 for B. and n, = 10 for B, and B,. We take e;; = 0 for (i,j) € Bk,

[ 0.1 for (i,7) € By and u;; = 0.1 for (i, j) € B,.

g —

Our numerical results are reported in Tables 6.1-6.5, where “time” and “residue’
stand for the total computing time used (in seconds) and the residue \/m at
the final iterate X* of each algorithm, respectively. For the simplest rank-NCM
problem (6.2) of equal weights (i.e., H = E), there are many algorithms to choose
from. For the purpose of comparison, we only selected three most efficient ones
from the literure: the dual approach of Zhang and Wu [123] and Wu [121] (C is
required to be a valid correlation matrix), the majorization approach of Pietersz
and Groenen [87], and the augmented Lagrangian approach of Li and Qi [68]. For

the majorization approach and the augmented Lagrangian approach, we used the
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Example 6.1 Major SemiNewton Dual-BFGS PenCorr
rank time residue relgap|time residue relgap| time residue relgap |time residue relgap
2 1.9 1.564e2 3.4e-3|63.0 1.564e2 3.5e-3|432.0 1.660e2 6.5e-2 |25.7 1.564e2 3.4e-3
5 2.2 7.883el 6.5e-5|23.5 7.883el 2.8¢-5| 24.6 7.883el 1.1e-15| 7.5 7.883el 7.0e-5
10 2.7 3.869¢l 6.9e-5/19.0 3.868¢l 8.0e-6| 8.0 3.868el 1.7e-14| 4.4 3.869¢l 6.7e-5
15 4.2 2.325el 8.3e-5|18.5 2.324el 7.3e-6| 6.0 2.324el 3.4e-14| 3.9 2.325el 7.9e-5
20 7.5 1.571el 8.8e-5{15.3 1.571el 7.6e-6| 5.6 1.571el 2.9e-14| 4.1 1.571el 6.9¢e-5
25 12.8 1.145el 1.1e-4|14.4 1.145el 8.6e-6| 5.0 1.145el 1.8e-13| 3.2 1.145el 1.0e-4
30 19.4 8.797e0 1.3e-4|14.0 8.796e0 9.5e-6| 4.3 8.795e0 4.4e-13| 3.0 8.796e0 9.4e-5
35 34.4 7.020e0 1.7e-4/14.0 7.019e0 1.0e-5| 4.8 7.019e0 2.0e-13| 4.7 7.019¢0 2.8e-5
40 43.4 5.766€0 2.2e-4| 1.3 5.774e0 1.7e-3| 4.3 5.764€0 5.6e-13| 3.0 5.765e0 3.9¢e-5
45 63.6 4.843e0 3.0e-4| 1.3 4.849¢0 1.6e-3| 4.5 4.841e0 7.4e-13| 3.0 4.841e0 4.2¢e-5
50 80.1 4.141e0 4.0e-4| 1.4 4.146€0 1.6e-3| 4.3 4.139e0 1.8e-12| 1.8 4.139e0 6.8e-5
60 145.0 3.156€0 6.7e-4| 1.4 3.158e0 1.4e-3| 4.5 3.153e0 8.4e-13| 1.6 3.154e0 8.4e-5
70 243.0 2.507e0 1.1e-3| 1.4 2.507e0 1.3e-3| 4.3 2.504¢e0 3.4e-12| 1.6 2.504€0 1.0e-4
80 333.0 2.053e0 1.6e-3| 1.52.052e0 1.2e-3| 4.1 2.050e0 4.2¢-12| 1.6 2.050e0 1.2e-4
90 452.0 1.722e0 2.4e-3| 1.6 1.720e0 1.2e-3| 4.2 1.718e0 1.1e-11| 1.7 1.718e0 1.4e-4
100 620.0 1.471e0 3.3e-3| 1.5 1.468e0 1.1e-3| 4.3 1.467e0 3.3e-12| 1.6 1.467e0 1.5e-4
125 1180.0 1.055€0 6.8e-3| 1.7 1.049¢e0 9.9e-4| 4.2 1.048e0 1.0e-11| 1.7 1.048e0 1.8e-4

Table 6.1: Numerical results for Example 6.1 with C' € S?%
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Example 6.2 Major SemiNewton Dual-BFGS PenCorr

rank time residue relgap|time residue relgap| time residue relgap |time residue relgap
2 0.6 2.858e2 6.5e-4|54.4 2.860e2 1.5e-3|304.5 2.862e2 2.1e-3 |37.2 2.859¢2 8.2e-4
5 6.0 1.350e2 2.0e-3|38.2 1.358¢2 8.1e-3| 78.8 1.367e2 1.5e-2 |99.2 1.351e2 2.4e-3
10 9.3 6.716el 4.4e-4|32.7 6.735el 3.2e-3| 58.3 6.802el 1.3e-2|32.1 6.719el 9.7e-4
15 8.8 4.097el 3.4e-4|26.8 4.100el 1.0e-3| 44.6 4.096el 1.0e-4 |18.4 4.099el 7.5e-4
20 13.0 2.842¢el 7.3e-4| 18.8 2.844el 1.4e-3| 40.4 2.842el 8.9e-4 |16.6 2.843el 1.1e-3
25 34.9 2.149el 1.2e-3|18.0 2.152el 2.6e-3| 26.6 2.149el 1.2e-3 [16.4 2.151el 2.2e-3
30 33.7 1.693el 4.3e-4]17.3 1.695el 1.7e-3| 23.0 1.694el 7.8e-4 |14.5 1.694el 1.2¢-3
35 71.8 1.379¢1 1.3e-3|18.1 1.381el 2.6e-3| 19.7 1.378el 7.le-4 |11.9 1.379¢1l 1.6e-3
40 50.0 1.151el 1.5e-3|12.5 1.152el 2.1e-3| 34.7 1.145el 3.2e-4 | 7.7 1.151el 1.6e-3
45 43.3 9.733e0 9.6e-4|10.6 9.736e0 1.3e-3| 23.1 9.733¢0 9.2e-4 | 6.3 9.733e0 1.0e-3
50 44.5 8.318e0 4.1e-4]10.7 8.319e0 4.8e-4| 19.7 8.315e0 5.1e-6 | 5.7 8.318e0 4.5e-4
60 66.5 6.214e0 8.1e-4/10.9 6.214e0 7.4e-4| 6.1 6.209¢e0 1.4e-13| 6.9 6.213e0 5.9e-4
70 91.2 4.733e0 1.1e-3|11.0 4.731e0 8.2e-4| 23.1 4.728¢0 1.9e-4 | 4.6 4.731e0 7.2¢e-4
80 93.0 3.663e0 8.7e-4| 2.2 3.800e0 3.8e-2| 5.2 3.660e0 4.0e-13| 2.9 3.662¢e0 4.5e-4
90 125.0 2.865€0 1.2e-3| 2.0 2.962¢0 3.5e-2| 5.0 2.862e0 5.1e-13| 3.0 2.864e0 7.0e-4
100 150.0 2.255e0 1.4e-3| 1.7 2.323e0 3.2e-2| 15.1 2.254e0 7.8e-4 | 2.9 2.254e0 8.3e-4
125 288.6 1.269e0 2.4e-3| 1.4 1.304e0 3.0e-2| 17.1 1.266e0 1.6e-4 | 2.7 1.268e0 1.4e-3

Table 6.2: Numerical results for Example 6.2 with C' € S5%
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Example 6.3 Example 6.4
Majorw PenCorr Majorw PenCorr
rank time residue time residue time residue time residue
2 8.8 1.805¢2 81.2 1.804e2 2.9 3.274e2 141.6 3.277e2
5 27.0 8.984el 70.0 8.986el 34.4 1.523e2 245.0 1.522¢e2
10 38.7 4.382el 48.7 4.383el 48.5 7.423el 98.7 7.428el
15 55.5 2.616el 43.7 2.618el 70.5 4.442¢1 79.9 4.446el
20 84.4 1.751el 39.1 1.753el 101.4 2.985el 67.0 2.987el
25 117.0 1.265¢1 38.2 1.266e1 289.6 2.197el 69.8 2.204el
30 171.8 9.657¢0 36.5 9.657e0 335.6 1.694el 65.8 1.699el
35 250.6 7.639¢0 39.8 7.632e0 436.7 1.345el 71.0 1.343el
40 324.7 6.213e0 38.8 6.203e0 470.7 1.098el 50.5 1.098el
45 408.4 5.169e0 38.4 5.148e0 498.7 9.104e0 47.7 9.094e0
50 502.2 4.391e0 37.5 4.355e0 639.5 7.625e0 48.0 7.623e0
60 654.1 3.290e0 35.6 3.219e0 837.6 5.552e0 44.0 5.523e0
70 972.5 2.579¢0 38.2 2.481e0 987.5 4.135e0 44.9 4.084e0
80 1274.9 2.090e0 42.6 1.959e0 1212.0 3.127e0 38.0 3.082e0
90 1526.9 1.740e0 44.0 1.588e0 1417.0 2.393e0 35.6 2.345e0
100 1713.7 1.478e0 40.9 1.310e0 1612.0 1.865€0 32.7 1.814e0
125 2438.1 1.052¢0 44.6 8.591e-1 1873.0 1.030e0 27.7 9.748e-1

Table 6.3: Numerical results for Examples 6.3 and 6.4 with C € S%%
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Figure 6.2: Example 6.2

Example 6.5 Majorw PenCorr
rank time residue time residue
5 233.4 5.242e2 1534.9 5.273e2
10 706.5 3.485e2 1634.6 3.509e2
20 926.7 2.389%¢2 1430.2 2.398e2
50 2020.1 1.706e2 829.9 1.709e2
100 3174.3 1.609e2 537.5 1.611e2
150 3890.6 1.608e2 687.1 1.610e2
250 7622.5 1.608e2 694.2 1.610e2

Table 6.4: Numerical results for Example 6.5 with C € §%43
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Example 6.6 PenCorr
rank time residue
20 11640.0 1.872¢2
20 1570.0 1.011e2
100 899.0 8.068el
250 318.3 7.574el
500 326.3 7.574el

Table 6.5: Numerical results for Example 6.6 with C' € S0

codes developed by the authors of [87] and [68]. They are referred to as Major!
and SemiNewton, respectively, in Examples 6.1 and 6.2. For the dual approach of
[123, 121], we used the BFGS implementation of Lewis and Overton [65] to solve the
Lagrangian dual problem. This is denoted by Dual-BFGS. The Dual-BFGS solves
the Lagrangian dual problem to get an approximate optimal dual solution y*. This
approximate optimal dual solution may not always be able to generate an optimal
solution to the primal problem as the rth and (r+1)th eigenvalues (arranged in the
non-increasing order in terms of their absolute values) of C' + diag(y*) may be of
the same absolute values, but it does provide a valid lower bound for the optimal
value of the primal problem. The final iterate of the Dual-BFGS is obtained by
applying the modified PCA procedure to C + diag(y*). Our own code is indicated
by PenCorr. In Tables 6.1-6.2, “relgap” denotes the relative gap which is computed

as
residue — lower bound

l =
rergap max{1, lower bound} ’

where the lower bound is obtained by the Dual-BFGS. This “relgap” indicates the

worst possible relative error from the global optimal value.

Majorw is the corresponding code for solving the weighted cases.
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From Tables 6.1-6.2, we can see that even for the simplest rank-NCM problem
(6.2) of equal weights (i.e., H = FE), PenCorr is quite competitive in terms of
computing time and solution quality except for small rank cases that Major is a
clear winner. Examples 6.3, 6.4, and 6.5 belong to the rank-NCM problem (6.2)
of general weights. For these three examples, we can see clearly from Tables 6.3-
6.4 that Majorw performs better than PenCorr when the ranks are not large and
loses its competitiveness quickly to PenCorr as the rank increases. When there are
constraints on the off-diagonal parts as in Example 6.6, PenCorr seems to be the

only viable approach.

6.2 Numerical results for the nonsymmetric SLR-

MOPs

To conduct the numerical experiments on the nonsymmetric SLR-MOPs, we con-

sider the following problem

min %HHO (X -0O)|?

s.t. Xy =e, (1,5) € Be,
Xi; > 1, (i,5) € By, (6.5)
Xij <y, (i,7) € Bus
rank(X) <r.

Notice that problem (6.5) is a special problem of (4.1) with p = 0 [The case that

p > 0 is not reported here because its performance is similar to the case that p = 0].
In our implementation, the initial point X, the initial penalty parameter ¢, and the
termination criterion are chosen in the same way as in the symmetric SLR-MOPs.
We did our numerical experiments in MATLAB 7.8.0 (R2009a) running on a PC.

The testing examples to be reported are given below.



6.2 Numerical results for the nonsymmetric SLR-MOPs 127

Example 6.7. Let ny = 300 and ny = 500. The matriz C' is a randomly generated
ny X ng matriz with entries in [—1,1] and the weight matriz H is generated in the
same way as in [91] such that all its entries are uniformly distributed in 0.1, 10]
except for 2x100 entries in [0.01,100]. The index sets B, By, and B, C {(i,7)|1 <
i < j < my} consist of the indices of min(n,,n, — i) randomly generated elements
at the ith row of X, 1 =1,... ,ny withn, =1 for B, and n, = 2 for B; and B,. We
take e;; = 0 for (i,7) € Be, l;; = —0.1 for (i,7) € By and u;; = 0.1 for (i,7) € B,.

Example 6.8. Let ny = 300 and ny = 500. The matrix C € R™*™ and three
index sets are generated in the same way as in Example 6.7. The weight matrix
H is extracted from the matriz provided by T. Fushiki at Institute of Statistical
Mathematics, Japan. We still take e;; = 0 for (i,j) € Be, lij = —0.1 for (4, j) € B
and w;; = 0.1 for (i,7) € B,.

Example 6.9. Let ny = 500 and ny = 1,000. The matrices C and H are generated
in the same way as in Example 6.7. The index sets B., B;, and B, are generated
in the same way as in Fxample 6.7 with n, = 2 for B, and n, =5 for B; and B,.
Again, we take e;; = 0 for (i,j) € Be, l;; = —0.1 for (i,j) € By and u;; = 0.1 for
(i,7) € Bu.

Our numerical results are reported in Tables 6.6 and 6.7, where “tzme” and “residue”
stand for the total computing time used (in seconds) and the residue /20(X*) at
the final iterate X*, respectively. Tables 6.6 and 6.7 show that our approach also
performs well for the nonsymmetric SLR-MOPs.
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PenCorr Example 6.7 Example 6.8
rank time residue time residue
> 3370.3 1.249e3 2886.2 7.986e3
10 1241.5 1.195e3 2699.5 7.106e3
15 1130.0 1.144e3 1729.5 6.469e3
30 852.0 1.004e3 2084.8 5.015e3
20 579.3 8.390e2 2190.9 3.683e3
100 943.7 5.183e2 1615.9 1.846e3

Table 6.6: Numerical results for Examples 6.7 and 6.8 with C' € $#300%500

PenCorr Example 6.9
rank time residue
15 12451.3 2.213e3
25 7248.9 2.109e3
20 3561.0 1.867e3
100 2305.7 1.450e3

Table 6.7: Numerical results for Example 6.9 with C' € ®°00x1000
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Chapter

Conclusions

In this thesis, we studied the structured low rank matrix optimization problems
(SLR-MOPs) which concern the construction of the nearest approximation to a
given matrix by another matrix with a specific linear structure and a rank no
more than a specified number. This approximation is needed in many important
applications arising from a wide range of fields. The SLR-MOPs are known to be
non-convex and NP-hard. Thus we proposed a penalty approach for solving the
structured low rank matrix problems of the general form (4.1), i.e., absorbing the
non-convex rank constraint into the objective function via a penalty technique by
using the fact that for any X € R"*"2 rank(X) < r if and only if 0,41 (X) +...+
on, (X) = 0. We further proved that an e-optimal solution to the original problem
is guaranteed by solving the penalized problem as long as the penalty parameter
¢ is above some e-dependent number which provides some rationale for using this
penalty technique. In order to solve the related penalized problem, we presented
a framework of proximal subgradient method and further proposed a smoothing
Newton-BiCGStab method to solve the resulting sequence of least squares nuclear
norm problems which are recently well studied. Interestingly, we also extended the

globalization checking results of Zhang and Wu [123, Theorem 4.5] to deal with
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more realistic problems. These results are very rare for non-convex optimization
problems. Numerical results indicate that our approach is able to handle both the
rank and the linear constraints effectively, in particular in the situations when the

rank is not very small.

Our approach has paved a new way to deal with the structured low rank matrix
optimization problems by solving a sequence of least squares nuclear norm prob-
lems. We believe that it represents a good progress for the non-convex low rank

matrix approximation problems.

There are still many unanswered questions whose solutions will introduce further
development on rank constrained matrix optimization problems. Here we list some

of them:

Q1. Is it possible to accelerate our proximal subgradient method as for the case

in the accelerated proximal gradient method for convex problems?

Q2. How to further improve the efficiency of the smoothing Newton-BiCGStab

method when there are a large number of constraints in the primal problem?

Q3. How to deal with other matrix norms such as the spectral norm and the

maximum norm?

Q4. Numerically, though in order to make problem (6.1) feasible, one cannot ask
the rank to be very small when there are a large number of bound constraints,
it is still interesting to know if one can design a more efficient method to solve

problem (6.1) with a small rank and a small number of bound constraints.
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