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Summary

Summary

A job shop manufacturing system is specificallyigiesd to simultaneously produce
different types of products in a shop floor. Jobsbkcheduling problems (JSSPSs)
have been studied extensively and most instanc&S®® are NP-hard, which implies
that there is no polynomial time algorithm to sotlilem. As a result, many
approximation methods have been explored to firad-pptimal solutions within
reasonable computational efforts. Furthermore,resdworld, JSSP is generally
dynamic with continuous incoming jobs and providsuedules dynamically within
constrained computational times in order to opterttze system performance

becomes a great challenge.

The developments in both areas of multi-agent syst@1AS) and the behaviour of
foraging ants have inspired the current studidsuitnl a scheduling system that can
provide quality schedules for a dynamic shop fldogroup of foraging ants is a
natural MAS with an internal mechanism to dynantycaptimize the routes between
their nest and a food source. This optimizationmaeésm is realized through simple
interaction rules among ants and modeled as amithigotitled Ant Colony

Optimization (ACO), which is promising in solvingreamic JSSPs.

In this thesis, a common test bed simulating a gef@ shop is firstly built to
facilitate a systematic study of the performancthefproposed dispatching rules and
algorithms in a dynamic job shpitis is first simulated as a discrete event system
(DES) to provide long-term performance evaluatighereatfter it is implemented as
an MAS so that data collecting and analysis candterally distributed to the most

related entities and events can be executed sinadtesly at different locations.



Summary

Secondly, the test bed further includes a schedgent employing ACO to
dynamically generate the schedules. The effects®pnéACO is demonstrated in two
dynamic JSS®with the same mean total workload but differemaiyic frequencies
and disturbance severity. The effects of its adaptanechanism are next studied.
Furthermore, two important parameters in the AG§oiadhm, namely the minimal
number of iterations and the size of searching petsteration, which control the
computational time and the quality of the internagelisolutions, are also examined.
The results show that ACO performs effectively athbcases; the adaptation
mechanism can significantly improve the performanicACO; increasing the
numbers of iterations and ants per iteration donecessarily improve the overall

performance of ACO.

Finally, experiments were carried out to identtg tappropriate application domains
defined by machine utilizations, ranges of progegsimes, and performance
measures. The steady-state performances of ACEparpared with those from
dispatching rules including first-in-first-out, stest processing time, and minimum
slack time. The experimental results show that AXa@ outperform other approaches
when the machine utilization or the variation odgessing times is not high,

otherwise, the dispatching rules will have a bgteformance.



Nomenclature

Nomenclature

ACO
ACS
AC?

A

the machine environment in thém/A/Bclassification scheme
ant colony optimization

ant colony system

ant colony control

accessible operation list

ANTS approximate non-deterministic tree search

AS

ant system

ASank therank-basedAS

B

BMS

G
Cm ax

DES

di

ev
EDD
EAS
Fi
FIFO

FMS

the field of performance measures in thm/A/Bclassification scheme
biological manufacturing system

the tightness index for setting the due date o job

the completion time of joi

the makespan of joly, Cnax= max|[C, ], wherei = 1, ...,m.

discrete event system
the due date of joB

the heuristic distance between nodasad]

the base of the natural logarithen<2.71828...)
the event of a new arrival job

the earliest due date dispatching rule

the elitist strategy for AS

the flowtime of jobJ;, F,

=1 -G
first-in-first-out dispatching rule

flexible manufacturing syste

Xi



Nomenclature

FrMS fractal manufacturing system

FSP flow shop problem
F the mean flowtime of all the jobs in a schede= EZ F
N5z

G a job shop

GSSP group shop scheduling problem

h the index of iteration number in the ACO schedufamgcedure
HMS holonic manufacturing system

JADE Java Agent Development Framework

Ji thei™ job arrived at the shop floor

JSSP job shop scheduling problem

k the number of occurrences of an event

I the starting point of the steady state

m the total number of machines or workcenters

M machine

MAS multi-agent system

MHS material handling system

M;  thei™ machine

Mi the available times of all machines in workcengemaintained by anit
MST minimum-slacktime dispatching rule

n the total number of jobs

NA  non-accessible operation list

Gj thej™ elementary task of jobto be performed on a machine
P-ACO population-based ACO
Pij the processing time @

Xii



Nomenclature

pii(h) the probability for an ant to travel from nod® nodej ath" iteration

P the mean processing time

PC  the total processing times of all the operationbfJ,
P-O-P-M position-operation-pheromone-matrix

Q the constant representing the total quality of pim&me on a route;
ri the release/arrival time of jal

S the size of iterations

Ssnax  the maximal sets of ants that can be initiated

snin  the minimal sets of ants that can be initiated

S scheduled operation list

SPT shortest-processing time dispatching rule

t time

Ti the tardiness of jold,, T. = max[0,(C, —d,)]

TSP traveling salesman problem

=

the mean tardiness of all jobs in a sche,dﬁle lZTI
i=1

TG the technical order of jold,
TWK: the total work content of jold,

u the number of ants per iteration
U the utilization rate of a resource

UML unified modeling language

o the importance index of pheromone
B the importance index of distance heuristic
A a positive real number in a poisson distribution

D the mean inter-arrival time

Xiii



Nomenclature

p the evaporation coefficient, which can be a reahlber between 0 and 1.0.

T; the quantity of pheromone on the edge connectinig hand node

t; (h) is the quantity of pheromone on the edge conneciugs andj at h"
iteration

At (h) the quantity of increased pheromone on the edgeemding nodesand] at
h'" iteration;

9 the rate parameter in the exponential distributirs 0
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Chapter 1: Introduction

1 Introduction

A background of the research in dynamic job shtyedualing is presented in this
chapter. Section 1.1 classifies manufacturing @mvirents and gives the roles of
scheduling in manufacturing production managenteattion 1.2 presents the
notions, definition, representation, roles, anddlassification of classic scheduling
problems. The classification of schedules and tmepdexity of classical job shop
scheduling problems are also described. Sectiomfrcluces dynamic scheduling
problems and discusses the main approaches tothelwein the fields of industry
and academic research. Section 1.4 gives the ntiotrgafor this research and section
1.5 identifies the research goals and the methgadoFinally, section 1.6 elaborates

the outline for the remaining parts of the thesis.
1.1  Manufacturing environments
11.1 Classification

Manufacturing environments can be classified inte fypes: job shop, project shop,
cellular system, flow line and continuous syste@isryssolouris, 2006) (Fig. 1.1). In
ajob shop(Fig. 1.1, (a)), machines with the same or simitaterial processing
capabilities are grouped together in workcentergsaX moves through the system by
visiting the different workcenters according to geet’'s process plan. Ingoject
shop(Fig. 1.1, (b)), a product’s position remains fixéuating manufacturing because

of its size and/or weight and materials are brouglhie product as needed.
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Fig. 1.1 Schematics of five types of manufactusggtems (Chryssolouris, 2006)
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In acellular system(Fig. 1.1, (c)), the equipment or machinery is greadi according
to the process combinations that occur in famdiggarts. Each cell contains
machines that can produce a certain family of partaflow line (Fig. 1.1, (d)), the
machines are ordered according to the process seggief the parts to be
manufactured. Each line is typically dedicatedrie ¢ype of parts. Finally, a
continuous systengFig. 1.1, (e)) produces liquids, gases, or powdega continuous

production mode.

One lot of jobs refers to a batch of jobs whichsineultaneously released to a
manufacturing shop floor and the lot size direaffgcts inventory and scheduling.
Generally, the lot sizes that can be processeddiscaete manufacturing system,
which works on discrete pieces of products likeahpartsare related to the types of
manufacturing systems. Normally, job shops andgatgghops are most suitable for
small lot size production, flow lines are most ahie for large lot size production,
and cellular systems are most suitable for produati lots of intermediate size. It

can be seen from Fig. 1.2 that lot sizes in jolpshrange from 1 to 100 jobs.

project shop
job shop
cellular
system
7 7 2 flow line
|7 Y. 7|
1 10 100 1000 10000 Lot Size

Fig. 1.2 Suitable manufacturing system types amation of lot sizes (Chryssolouris,

2006)
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1.1.2 Manufacturing production management

The production management and control activities manufacturing system can be
classified as strategic, tactical and operationtvities, depending on the long,

medium or short term nature of their tasks (Hopgh &pearman, 2000; Chryssolouris,

2006).
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Fig. 1.3 The information flow diagram in a manutaeig system (Pinedo, 2002)

The information flow diagram in a manufacturingteys modified from Pinedo

(2002) is given in Fig.1.3 to illustrate the retaiship of those activities at different
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levels. Thestrategicproduction management decides issues relatee to th
determination of products according to the markesbands or forecasts, the design of
the manufacturing systems to produce those progihetgieneration of master
schedule to meet the capacity requirement, etctddieal production management
decides issues relating to the generation of @éetgilans according to the master
schedule. The results of this stage, such as stigpowith release and due dates are
passed to the lower control leveg., theoperationalproduction management, which
decides the processing of those orders on thefidmpin order to fulfill the order
requirements, and at the same time, optimizesehenance of the manufacturing
system. It needs proper scheduling strategies & these requirements. After
scheduling, the schedule is transferred to the ibopand the implementation of a

schedule is often referred to dispatching(Vollmannet al,1992).
1.2 Classical scheduling problems

1.2.1 Notions

Important notions adopted in the current thesigdafamed as follows.

An operation(GQ;) refers to the’;‘h elementary task of jobto be performed on a

machine.

A job (J;) refers to the'™" job which has a set of operations that are ineserd by

precedence constraints derived from technologéesttictions.

Theprocessing timdp;) of an operation is the amount of time requiregracess

operationG;.
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Thesetup timerefers to the time required by a machine to $tofin the current status
to the next one in order to process the next ojperan the current studies, setup

times are independent of operation sequence ariddueled in the processing time.

A machine (M) is a piece of equipment, a device, or a factdapable of performing

an operation.

Thedue date(d) of jobi is the time by which the last operation of the ghiould be

completed.

Thecompletion timg(C;) of jobi is the time at which processing of the last openat

of the job is completed.

1.2.2 Definition, representation, and roles

Schedulingdeals with the allocation of scarce resourcesskstaver time. It is a
decision-making process with the goal of optimizamge or more objectives (Pinedo,
2002). The result of a scheduling procedure geesm@te or severatheduleswhich
are defined as plans with reference to the sequ&reed time allocated for each item
or operation necessary to complete the item (Vallmet al, 1992). A schedule can
be represented aszantt Chart which is a two-dimensional chart showing time
along the horizontal axis and the resources aloagertical axis. Each rectangle on
the chart represents an operation of a job, wisicllocated to certain time slots on
that resource. A Gantt Chart can be machine-orenitgob-oriented and examples
for both types are presented in Fig. 1.4, whers jpand Jare scheduled;s, O1»,

and Qs are three operations ofdnd Q1, Oz, and Qs are operations ogJThe

processing time of each operation is included neptoess.
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Machine No.
A
M1l O 023(1)
M2 | 012 | 022(1) |
M3 021 (1) | 0132
] ] ] >
0 1 2 3 4 t
(a) Machine-oriented Gantt Chart
Job No.
Bl ouw | Opw | 0130 |
Jy 021 ) | 022 023 1) |
1 1 1 1 >
0 1 2 3 4 t

(b) Job-oriented Gantt Chart

Fig. 1.4 Examples of machine- and job-oriented G&hart

The main goal of manufacturing production managénseto meet demands in a
timely and cost-effective manner. In most manufacguenvironments, especially in
those with a wide variety of products, processed,@moduction levels, the
construction of advance schedules is recognizegatsal to achieving this goal.
Scheduling in manufacturing systems is very imparfar its roles in maximizing
throughput and resource utilization, meeting dueslaf orders, reducing inventory
levels and cycle time, etc. Even small improvementiose measures can lead to

considerable profit and thus increase the competigss of a factory.
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Furthermore, a production schedule can enablerti@ation of potential
performance obstacles and provide opportunitiesitomize their harmful effects on
the overall system behavior; it can enable betierdination to increase productivity
and minimize operating costs; it can identify resewconflicts, control the release of
jobs to the shop floor, and ensure that the requa materials are ordered in time.
A production schedule can also determine whethlaredg promises can be met and
identify time periods available for preventive ntamance; it gives shop floor
personnel an explicit statement of what shoulddreedso that supervisors and
managers can measure their performance (Véied 2003). All these contribute to

decreasing the cost of production and increasiafitprfor a factory.
1.2.3 Classification of scheduling problems

A scheduling problem can be described based on/thé\/B classification scheme of
Grahamet al(1979).n is the number of jobsn is the number of machines; the
field describes the machine environment. Brigeld describes the objective to be

optimized and usually contains a single entry.
1.2.3.1 Machine environments

The possible machine environments are single macHow shop, job shop, etc. The

current studies focus mainly on job shop with thémition as follows.

In ajob shop(G), there aren machines Mj, ... Mm, which are different from each
other, and a set @fjobsJ, ... Jy,, which are to be processed on those machines
subject to the sequence constraints of their op&stJoh) (1<i < n) consists om

operationsQ,, ... O,, (0<m <m) and their respective number of machines can be

given in a vectown,, wherev, (k )(0<k<m, 1<v, (k) £ m) is the number of the
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machine that processes operat@p. The processing times of those operations
arepy, ... Py, - A schedule has to be found so that all jobsauéed in the shop floor

in a manner that the performance measures of thensysin be optimized. The

schedule decides the starting titpdor each operatio®, of job J,and the

following formula holds:

ty = ma)(ti,k—l+ pi,k—l!thl + phl)'

(1.1)

t,, is the starting time of jod, , which is the job processed on the same machine
immediately before jolJ, . t, is decided by either the completion time of itedi

preceding operation or the earliest available tiiés machine.
1.2.3.2 Objectives

The objectives to be optimized are always a funatibthe completion times of the
jobs. The objective criteria considered in thigigtinclude makespan, mean
flowtime, and mean tardiness, which are most conynased in the literature of job
shop scheduling. Performance measures relateddatiory status like throughput,

work-in-process and the size of jobs in a queueabs@considered.

Makespan(Cmay) is the “length” of the schedule, or an intervatkeen the time at
which the schedule begins and the time at whiclsthedule ends. Thus, the

makespan of a schedule equalsrtax|C, , wherei =1, ...,m.
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Flowtime (F) (also called cycle time) is the amount of time jhbspends in the shop
floor. It corresponds to the time interval betwélesm release time and the

completion timeC; of job J;: F, =C, —r,.

Mean FIowtime(E) is the average flowtime of the schedufe = lz F. , wheren
n i=1

is the number of jobs.

Tardiness(T;) of a job J, is the non-negative amount of time by which the

completion time exceeds the due ddte T, = max[0,(C, —d,)].

n

Mean TardinesgT ) is the average tardiness of all jobs in the scleedu = 1Z'I’, ,
Nz

wheren is the number of jobs.

Throughput(TP) is the average output of a production processlina, workcenter,

plant) per unit time (e.g., parts per hour).

Work-In-ProcesgWIP) includes all unfinished parts or products that Haeen
released to a production line; it represents tleritory in the shop floor and is
preferred to be low so that less possibility of gestion in the shop floor is expected
and less extra capital is expensed in inventoryvéier, the production rate cannot
be guaranteed if WIP is too low accordind-ttile’s Law, which is described as
follows: at every WIP level, WIP is equal to th@guct of throughput and cycle time

(Hopp and Spearman, 2000).

Size of jobs in a queurefers to the number of jobs waiting in the quetia resource

(machine) or a workcenter.

10
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The above performance measures can be put intc&egories: utilization-based
objectives, flow-based objectives, due-date-badgettves, and inventory-based
objectives. Makespan corresponds touhkzation-based objectivewhich is related
to the resource utilization. A schedule with a #filomakespan implies higher
resource utilization. mean flowtime, throughpuii &VIP arelow-based objectives
which measure the turnaround times of the jobkénshop floortardiness related
objectivesneasure the ability to meet due dates; finallg,dize of jobs in a queue
andWIP areinventory-based objectivaghich measure the inventory status of the

shop floor.

Given a measure of performange which is defined as a function of the set of job
completion times, and = f(Cl,CZ,...Cn), Z isregularif: 1) the scheduling
objective is to minimizeZ , and 2)Z can increase only if at least one of the
completion times in the schedule increases (Bdl@4). Makespan is a regular

performance measure while mean tardiness-relatedtes arenon-regular.

Thus, a scheduling problem givenns(m/GfT refers to a job shop scheduling

problem (JSSP) with jobs,m machines; and the objective is to minimize the mea

tardinessn/m/G/F refers to a JSSP with workcenters and the objective is to

minimize the mean flowtime.
1.2.4 Classesof schedules

In scheduling theory, schedules from optimizingutag measures of performance can
be categorized into three types, semi-active, acid non-delay. A feasible schedule
is calledsemi-activef no operation can be completed earlier withowtraging the

order of processing on any one of the machinasipties that there is no unnecessary

11
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idle time inserted before the starting time ofla j& semi-active schedule is called
activeif there is at least one operation which can beet earlier without delaying
any other operation. It is sufficient to considalyoactive schedules in order to find
an optimum. An active schedule is calledaom-delayschedule if no machine is kept

idle at the time when it can begin processing soperations.

The set of non-delay schedules is the subset cdfethef active schedules for the same
scheduling problem but the optimal schedule coeldoloind in either setFig. 1.5
shows a Venn diagram of the relationships amonghtte® classes of schedules
(Pinedo, 2002). Generally, the best non-delay adleerhn usually be expected to

provide a very good solution, if not an optimum kBg 1974).

YDpHmaIschedum

Semi-
active

>< Non-delay Active

All schedules

Fig. 1.5 Venn diagram of classes of schedules

1.2.5 Complexity of classcal job shop scheduling problems

The inherent complexity of a classical JSSP arisagly from the large size of its
possible solutions as well as its objective funetidBoth of them are decided by the

medium- to long-term strategies of a manufactunranagement system (Fig. 1.3).

12
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The solution space including the optimum or a rgamum solution is directly
decided by the number of machimasind jobah in the problem. It could be
comprised of(n!)™ schedules assuming that each job has one opematieach type
of machine. Research has been focused on findfiogeet algorithms for optimal
solutions in a computational time that grows polymelly as the size of jobs
increases. However, there are no such algorithmsdést scheduling problems and
these scheduling problems are thus called NP-hatnlems (Garey and Johnson,
1979 Blazewiczet al, 1996). This fact also implies that it is impddsito find
optimal solutions for most realistically sized sdhkng problems in reasonable times.
Hopp and Spearman (2000, pp.493-497) illustratecctimplexity of a scheduling
problem caused by the size of possible solutiodsadso concluded that there was
little help by improving the speed of the compulérus the “optimal solution”
mentioned in this thesis would mean a reasonalidy golution unless it is otherwise

indicated.

Given the same scheduling problems, the time caxitj@e to optimize different
performance measures may be different. For exaraptemal solutions can be found
in a polynomial time ofO(nlogn) with Johnson’s algorithm (Johnson, 1954) to
minimize the makespan of a two-machine flow shappf@m while the time
complexities to optimize other objectives for tiaeng problem are considered NP-

hard.

1.3 Dynamic scheduling problems

Scheduling in the real world is dynamic and stotibas nature. A scheduling
problem isdynamicif there are continuous arrivals of new jobs atathasticf

uncertain events like machine breakdowns or vapamtessing times are considered.

13
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Those events are introduced into the system dtweatdactors. Quantities may either
have inherent variability or they cannot be meas@seactly (Ovacik and Uzsoy,
1994, 1997). The main consequence of those unegemior a scheduling system is

that a predetermined schedule can become obswigtediately.

In dynamic/stochastic manufacturing environment@nagers, production planners,
and supervisors must not only generate high-qusdibedules but also react promptly
to unexpected events in order to revdshedules in a cost-effective manner. In an
attempt to construct an effective reactive schadutiystem, various approaches have

been proposed and they can be categorized asriaflasid academic studies.

1.3.1 Mainapproachesin industry

Industry often uses simple but robust tools to guitbduction, like interactive
schedulers, human involvement and self-developédare, often in combination
with a Material Requirements Planning (MRP) systesimich is one of the earliest
applications of computers for medium- to long-tematerial and resource capacity

planning for the entire production cycle.

However, the simplistic model of MRP underminesifectiveness becauss) it
assumes infinite capacity; 2) it uses one lead foneffsetting, which results in
earlier release, larger queues, and hence longér tiynes; and 3) the small change in
its master production schedule may result in sel@ftange in planned order releases,

which is calledsystem nervousnegsiopp and Spearman, 2000).

The problems in MRP prompted some scheduling rekees and practitioners to turn
to enhancements in the form of Manufacturing Resa®anning (MRP Il) and more

recently, Enterprise Resource Planning (ERP). Hewefie fundamental problems of

14
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assuming infinite capacity and fixed lead timessiléwith the basic models
underlying those improved systems. Some just rejeBtRP altogether in favor of

Just-In-Time (JIT).

JIT, which originated in mid-1950s, is a methotoid scheduling by changing the
production environment where the production is by the need of downstream
workstations. This type of production system i®alalled thepull systemJIT
demonstrates very good performance in automobdestries in Japan by removing
idle intermediate WIP jobs. However, this approasBumes steady demand and is
most suitable for a flow shop pull system. It may equally benefit dynamic job

shops where demands are variable.

Finally, dispatching rules are widely adopted iagtice and they are also well studied

in literature. Their detailed description will bevgn in Chapter 2.

1.3.2 Main approachesreported in open literature

In open literature, there are basically two appheado accommodate those dynamic
events: proactive and reactive schedulingorivactive schedulingthe events are
considered predictable and some slacks are resgrvie original schedule so that
disturbances can be absorbed without re-schedufingactive schedulingactions
have to be taken to revise or repair a completedsdh that has been “overtaken” by
events on the shop floor (Zwebenal 1994). The latter approach is the main focus

of this study.

Three main ideas underlie the enormous numbermbaghes under the umbrella of
reactive scheduling and they ageieuing theory, predictive-reactive schedulingl an

artificial intelligence. Early research has usegldgheuing theory to explore the

15
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collective effect of several types of dynamics ahap floor using simple rules to
decide the orders of jobs. Later, researchers paxpto use schedules generated by
more advanced scheduling techniques in order toowgpoverall production
performance. Finally, the development in the fielcrtificial intelligence, especially
multi-agent systems (MAS), has been inspiiisgapplications in dynamic

scheduling.

1.3.21 Queuing theory

Queuing theory is inspired by the real-world apmiicns where jobs are assumed to
arrive in a random process in some statistical pime processing times of
operations and dynamic events are random variabtesknown distributions. Jobs
are queued in the buffer of their waited machin# tns free. A job is selected from
the buffer to be processed according to some pradeted priority rules or
dispatching rules. Jobs are discharged from theeisy all of its operations are
completed. The randomness in the arriving jobs;gssing times, and stochastic
events like machine breakdowns together implieslisibutions of job flow times
and machine busy/idle times. Different dispatchimgs may be compared and the

best ones can be chosen for production.

The advantage of using the queuing theory is tisystem reacts to events and makes
allocation decision one at a time only if necessarkeeping execution going based
on the current status of the system. This strae@sensitive to unexpected events
and thus yields quite robust behaviour. Furthermioie highly effective
computationally. However, the performance of fagiperations may be sacrificed

since there is no attempt for optimization.

1.3.22 Predictivereactive scheduling

16
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In thepredictive-reactive schedulireppproacha schedule is generated for a set of
jobs in order to optimize certain criteria befdnede jobs are actually executed and
the schedule is refined when dynamic events odtisra common strategy to
reschedule dynamic manufacturing systems (JairEfiddraghy, 1997, Mehta and

Uzsoy, 1998).

There are two parts for the actions in this appgnoaamely generating predictive
schedules and reacting to disturbances. The ganedtpredictive schedules may
use the methods from the field of classic schedwdind the reaction to disturbances
implies decisions abouthat when,andhowto react (Sabuncuoglu and Bayiz, 2000)
in order to optimize system performance in thes fafcdynamic events (Church and
Uzsoy, 1992 Abumaizar, and Svestka, 1997). Different schedujjaneration and
refining procedures may be explored and comparedder to find the best one for a

particular problem.

Generally, theredictive-reactive schedulirgpproach requires more computational
efforts to generate optimal or sub-optimal soluias compared to dispatching rules
in the queuing theory. It is also different fromegung in that queuing decides only

the order of tasks while scheduling also decides 8tarting times.

1.3.23 Multi-agent systems

Parunak (1997) defined an intelligexgentas “an active object with initiative” and
views it as a software design paradigm, whichésribxt extended step to object-
oriented programming in software evolution. An ageas at least two important
capabilities. First, it is capable of autonomous/active action to decide its actions in

order to realize its objectives. Second, it is tdgaf interacting with other agents

17
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through exchanging data or through cooperatingidinating or negotiating with

other agents (Wooldridge, 2001).

An MAS is a loosely-coupled network of agents that wodether in a group to solve
a common problem (Pendharkar, 1999). As a diseibptoblem-solving paradigm,
an MAS can transform a complex scheduling probletm $smaller and manageable
sub-problems to be solved by individual agents peratively. Like in the queuing
theory, no schedules are calculated in advancehbutore is to find appropriate
protocols and architectures for agents to inteaadtshare information dynamically.
The overall performance emerges as the resulteohtieractions among agents using

certain co-operation protocols.

14 Motivations

The essential motivation of the current study id¢welop a scheduling system that
can keep on optimizing the performance of a jolpshanufacturing system in real

time in the face of dynamic events.

The idea is first inspired by the advancement enfigld of MAS. Durfee (1988) and
Durfee and Lesser (1989) proposeukegerarchical MAS where independent agents
interact with each other using only local informatanda global optimization can
emerg from those local intetions. The emphasis of this approach is to find
appropriate interaction rules or coordination peote for agents and model problem
components into appropriate agents. However, fipsaach has the disadvantages of

unsatisfactory optimality, unpredictability, andjhicommunication overhead.

In order to improve optimality and predictability eell as to reduce communication

overhead, researchers have developed hierarchia8l &hd furthermore, hybrid

18
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MAS for dynamic control and scheduling. In a phierarchical MAS, agents at
higher levels can allocate tasks to their immeda@teer level agents, which execute
their assigned tasks without any opinion. The systgll produce schedules with
good global performance since the agent at theehilglvel can have a wider view of
the system. However, this architecture lacks redgtio dynamic events since events
are first forwarded from the lowest level agentth® upper level agents and then the
reaction decision is passed down from the uppel legents to the lowest level
agents to be executed. This type of MAS may asghmechedules to guide
production in a similar manner performed in prade&scheduling. To cope with the
disadvantages and combine the advantages of thi@psawo types of MAS, some
hybrid architectures have been proposed. Basicadignts in d&aybrid MAS have the
autonomy to promptly react to dynamic changes andls&aneously be guided by

those agents with global views.

Recent research on the foraging behaviour of aalatAS, namely an ant colony,
has found that autonomous agents like ants carttimghortest route from their nest
to a food source based on the pheromone strengtieonways. Each ant affects the
environment by leaving behind itself some amourgltgdromone. This type of
optimization mechanism is a collective effect & thteractions between the ants and
the pheromone environment. Furthermore, it is filsad thatan alternative shortest
path can soon be formed by foraging ants if theecurone is not available. Both
features are of great research interests in thve @i¢heir applications in

dynamic/stochastic scheduling environments.

In order to realize this mechanism for the optirti@apurpose in scheduling

problems, two implementations had been proposed.i©tihe pure MAS approach;

19



Chapter 1: Introduction

the other is through tremt colony optimization (ACO) algorithm. The former
involves not only the indirect correspondence betwa modeled agent and a facility
in the real world problem, but also a great nundd&rommunications among agents.

Thus, the ACO approach is adopted in the curremalyst

Meanwhile, the previous applications of ACO on JSB&ve been mainly focused on
static cases and its performance on dynamic JS&Psdt been systematically
studied. The current research aims to exploreffeet&zeness of ACO in dynamic
JSSPs, the factors affecting its performance, fiieets of the adaptation mechanism,
and its application domains based on the researdimd@is in the areas of the queuing
theory, ACO algorithms, and MAS. As dynamic JSS#tginues to be a challenge
(Smith, 2003 Stoop and Wiers, 1996), the research of explamgdvanced

scheduling system is considered valuable.

1.5 Research goalsand methodologies

151 Goals

In summary, the goals of the current study include:

e To analyzea dynamic JSSP, identify the systematic mannerssdarch in this

field, and define the domains of the dynamic JSSP.

e To build a generic test bed that can provide praldeenarios for systematically

evaluating a proposed scheduling approach.

e To present the effectiveness of ACO in solving dgitalSSB, and demonstrate

the effectiveness of its adaptation mechanism.

e To improve its performance through adjusting iteapzeters.
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e To find the best application domains of ACO in dynaJSSRB

15.2 Methodologies

Normally, the evaluation of an approach for a statiheduling problem includes the
comparisons in two aspects: schedule quality antpadational time. Schedule
quality is evaluated in terms of target performamaasures like makespan,
total/mean flowtime, total/mean tardines; Computational time refers to the time
spent by computers to find the schedule and candaesured through the analysis of
the computational complexitywhich describes how the computational time and
memory requirements of the algorithm change asitteeof the input to an algorithm
increases (Garey and Johnson, 1979). A good sahgdagproach performs well in
either providing high quality schedules or obtagnactceptable schedules within

limited computational times.

However, the evaluation of approaches for dynamheduling problems is different.
Jobs continue to arrive during the entire periothefevaluation while the proposed
dynamic scheduling procedure continues to workingikaneously during the same
period. Occasional good schedules do not guarani@eg-term good performance of
a proposed approach. Thus, it is important to @deaiceasonable test period in order
to obtain a fair evaluation of the proposed appnodtie approach in the queuing
theory is to execute a simulation until the systeathes a steady state and the
performance data are recorded from that point. exsimulation continues for a
certain period of time and an average steady-p&termance of the approach can be

obtained.

A similar approach is adopted in the current staidg all experiments were carried

out on a simulated test bed as the experimenteairfactories are generally

21



Chapter 1: Introduction

expensive and sometimes impossible. First, a desgoé shop manufacturing system
is simulated using discrete event simulation (DiES)rder to provide adequate
scenarios. Several replications of the experimfamtthe same problem
configurations were tested with only variationghie generation of initial random
numbers. DES can facilitate the examination ofregdterm average performance of
the tested approach since the time intervals thawod change the system state are

skipped. The experimental results are analyzedmpared statistically.

Furthermore, the DES will be implemented as an MSed on the following two
considerations. On the one hand, the optimizatienlanism of foraging ants can be
implemented in different types of MAS, which wikldescribed in Chapter 5. On the
other hand, the MAS implementation of a job shop many advantages, which will
be mentioned in Chapter 4. Briefly, the test bedamy can properly model a shop
floor as a distributed system but also providergiterm performance evaluation for

a proposed approach.

In order to build the above simulated job shop, m@rcial simulation tools like
ARENA have been considered at first. However, fifi@reof interfacing them with

the ACO scheduler would be about the same effaoudding a new tool. In

particular, there should be communications betvat®mp floor entities like
workcenters, jobs and the scheduler in order thrasembles the similar structure and
the logic in a real job shop. Thus, a test betiesdafter built from scratch based on
Java Agent DEvelopment Framework (JADE), which sotiware framework fully

implemented in Java language.

After the test bed is built, the ACO algorithm iraplented as an MAS is used to

generate schedules for dynamic JSSPs, which atensgically designed to achieve
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the goals set in section 1.5.1. The predictivetreascheduling procedure is used in

all experiments.

1.6 Outlineof thethesis

Chapter 2 first reviews the approaches for solgiagic JSSPs in order to pave the
way of reviewing the approaches for dynamic JS®PRgh is followed immediately
by focusing on predictive-reactive scheduling. N&AS approaches and the
applications of ACO in the scheduling related feetde also reviewed in detail to give

a background of the current research.

Chapter 3 first analyzes the static JSSPs, thedyhemic JSSPs. Finally, the factors
affecting the evaluation of a scheduling technioua predictive-reactive approach

are analyzed.

Chapter 4 builds a common test bed to facilitadgsdematic examination of the
performance of control policies and algorithms ithyaamic job shop environment.
The definition of a generic job shop is first givamd a generic job shop is modeled
as a DES. A prototype of the job shop is implemgatgan MAS. The

communication of agents in the MAS is presentedaaodse study is described.

Chapter 5 extends the test bed to include a schedutich uses ACO as an
optimizer simulating the scheduling function inaatbry. It discusses the additional
coordination of the scheduler agent to the maistewj agents like jogpb shop and
workcenters agents and among the behaviours vitikischeduler agent itself. The
procedure to dynamically update the pheromone matrACO is also discussed.

Finally, the implementation of ACO as an MAS isg&nated.
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Chapter 6 tests the performance of ACO on two dyod®SPs with the same mean
load but different dynamic frequency and sevefiitye effectiveness of its adaptation
mechanism is studied. Furthermore, two importardpaters in the ACO algorithm,

namely the number of iterations and the size afcésrag ants per iteration, which

control the computing time and the quality of sioins, are also examined.

Chapter 7 first defines the three dimensions deisyithedomainof dynamic JSSPs:
namely the frequency of the arriving jobs, the ation of the processing times, and
performance measures. Two series of experimentseattecarried out to find the
appropriate application domains of ACO in termshef ranges of job arriving levels
and the variation of the processing times. Thegperénces of the experiments are
compared and the proper ranges that ACO outperftrensest dispatching rule are
identified. In this manner, the domains that AC@ ba effectively applied can be

identified.

Chapter 8 concludes the work, highlights the cbotions, and identifies a number of

future works.
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2 Literature Review

Scheduling as a research discipline dated bacértg £900s but serious analysis of
scheduling problemsid not begin until the advent of computer age in1&80s and
1960s. Since then, a great amount of theoreticsk Wwas been reported. A good
historical overview of the different approaches wa®n by Froeschl (1993) aiad
early introductory work on scheduling was repottgdBaker (1974), French (1982),
Buxey (1989), and Sule (1997). Literature reviewstatic deterministic scheduling
can be found in (Graves, 1981, Jain and Meerar8,18899, MacCarthy and Liu,
1993, Blazewiczt al, 1996, Sellers, 1996, Weirs, 1997, Jones and Bab@98, and
Pinedo, 2002). Nowicki and Smutnicki (1995) proddm excellent review of
minimum makespan job shop problems. Suresh anddblaaiu(1993) reviewed the

dynamic scheduling literature.

This review starts with the approaches for st&88Bs; then the emphasis is put on
the approaches for handling dynamic environmentghErmore, the applications of
ACO in the scheduling related fields are reviewedetail to give a background of

the current research.
2.1 Approachesfor the classical job shop scheduling problems
211 Anoverview

The main approaches to solve the classical JSSksl@éexact mathematical
algorithms, dispatching rules, metaheuristics, amificial intelligence methods.

These approaches and some of their examples & iisFig. 2.1.
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—{ Linear Programming|

— exact algorithms [

— Dynamic Programming

—{ First-In-First-Out |

— dispatching rules Shortest Processing Tim¢

—{ Minimal Slack Time |

schedule —{ Genetical Algorithm. |
generating —
procedures — Simulated Annealing

— metaheuristics

—{ Tabu Search |

—{ Ant Colony Optimization |

— Fuzzy Logic

— Neural Network

artificial
intelligence

—{ Knowledge-Based Syster|1

—{ Multi-Agent System |

Fig. 2.1 Approaches to solve classic job shop sdlivegiproblems

2.1.2 Exact mathematical algorithms

Balas (1965, 1967) developed modern integer progriam which allows rather
realistic JSSPs to be formulated in a manner tloatdvtheoretically permit them to
be solved exactly. Two popular solution technigfeesnteger-programming
problems are branch-and-bound and Lagrangian raxdranch-and-boung an
enumerative technique, which systematically cugtaridesired solutions by
dynamically setting lower bounds through modeling S® as a decision tree.
Lagrangian relaxation solves integer-programmirapf@ms by omitting specific
integer-valued constraints and adding the correfipgrcosts to the objective

function.
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Another exact mathematical algorithm reportedyisamic programmingwvhich
enumerates in an intelligent manner all the possblutions. During the enumeration

process, schedules which are not optimal are editath

However, both integer programming and dynamic @ogning are computationally
intensive. Thus$arge problems remain intractable although very sprablems can

be solved with optimal solutions. Subsequently,rtfagority of scheduling problems
has to be solved usirtgeuristics which are techniques seeking good solutionsaaiste
of the optimal ones at a reasonable computaticst! (&/0f3, 2001). Main heuristic

approaches include dispatching rules, metahewsjstind artificial intelligence.

2.1.3 Dispatchingrules

The simplest heuristic to find a solution is usthgpatching rules, where a schedule is
constructed in one iteration with generally a M@t computational effort even for a
large problem. Alispatching ruleis used to prioritize jobs waiting for processatg

the time that the waited machine/resource becoweahle. The job with the highest
priority is selected to be processed on the maclhinesarly survey can be found in

Panwalkar and Iskander (1977).

Common dispatching rules employ processing timesdaue dates as deciding factors
in simple rules or their complex combinations. Satispatching rules are extensions
of policies that work well on simple machine scheduproblems, for example, First-
In-First-Out (FIFO), Shortest Processing Time (SMihimal Slack Time (MST),

and Earliest Due Date (EDD). In FIFO, the first @g®mn coming into a workcenter
has the highest priority; in SPT, the operatiorhviite shortest processing time has
the highest priority; in MST, the operation witletshortest slack time has the highest

priority. The slack time indicates the temporafeliénce between the due time, the
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current time and the remaining computation timeEDD, the operation with the

earliest due date has the highest priority.

Other dispatching rules can be found in Panwalkdriskander (1977), which
provides an extensive list of dispatching rules enadr classification includes five
categories: simple dispatching rules, combinatafr@mple rules, weighted priority
indices, heuristic scheduling rules, and similadings by others, such as Blackstone

et al(1982), Ramasesh (1990), and Morton and Pent@@3(1

Owing to their inexpensive computational effort aodustness, dispatching rules are
widely adopted, especially, in dynamic environmdhtst al 1993). However, they
do not guarantee the realization of the full pagmtf a shop floor as they do not aim
at optimization. Scheduling systems using algorghespecially metaheuristic

algorithms, have continuously been studied to pl®wptimized solutions.

2.1.4 Metaheuristics

A Metaheuristicis a set of algorithmic concepts that can be usefine heuristic
methods applicable to a wide set of problems (§0& 1999). It refers to an iterative
master process that guides and modifies subordh®atgstics in order to efficiently
produce high-quality solutions. There may be a detegor incomplete) single
solution or a collection of solutions per iteratidime subordinate heuristics may be
high (or low) level procedures, or a simple loeadr€h, or just a construction method.
A local search algorithmis a metaheuristic iteratively moving from solutitm

solution in the space of candidate solutions (#asch space) until a solution deemed
optimal is found or a time bound has elapsedoAstruction methodyenerates a

schedule by adding in an operation one at a tintiealhoperations are considered.
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Examples of metaheuristics include genetic algor#tiGoldberg, 1989), simulated
annealing (Kirkpatricket al 1983), Tabu search (Glover, 1989, 196bver and
Laguna, 1997), ACO (Dorigo and Di Caro, 1999), #rer hybrids. Each has its own
perturbation methods, stopping rules, and methodavioiding local optimum. The
use of metaheuristics has significantly increakedability of finding very high
quality solutions to hard, practically relevant donatorial optimization problems in

a reasonable time (Dorigo and Stutzle, 2004).

2.1.5 Artificial intelligence

The approaches to solve scheduling problems iattifecial intelligence field are
based on the inspirations from either human societyatural phenomena (Weiss,
1999). Many sophisticated procedures have beeropeapincluding fuzzy logic,

neural network, knowledge-based systems and MASI@ky2000).

Fuzzy set theory has been used to develop hybnedsding approaches. It can model
and solve job shop scheduling problems with uneepgeocessing times, constraints,
and set-up times, which are represented by fuzeybeus. A neural network is

trained with historical data and some desired iceighips between the inputs and the
outputs have been captured. The network can betassdimate solutions for new

inputs.

Knowledge-based scheduling systems employ domaiifspproblem solving
information to derive schedules and this informatoowledge is encoded as rules,
which are often obtained by eliciting knowledgenirexperienced schedulers
(Randhawa and McDowell, 1990). The work on constrsatisfaction problems is
also of direct relevance to scheduling, if theelat$ regarded as their incremental

construction of a solution that satisfies the c@sts in a problem space in which
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each additional assignment imposes a new set atreants on the remainder of the
solution (Sadeh, 1991). The most well-known systemiside ISIS (Fox and Smith,
1984), OPIS (Smitlet al 1990), CABINS (Miyashita, 1995), and IOSS (Patlal

1996).

A knowledge-based system does not aim to guarapi#®al solutions; instead, it
just provides feasible good solutions (RandhawaMoowell, 1990). Its
performance is not beyond what has been providedleyg in the system.
Furthermore, a great amount of domain-dependenidties is required and the most
difficult operation is to decide which knowledgeuste has to be activated (Akturk

and Gorgulau, 1999). Besidesheduling decisions can only be evaluated locally.

MAS is a relatively new sub-field of computer s@erwhich was started around 1980
and has gained widespread recognition since thel®@ds. It has been an active
research topic in the manufacturing arena (JenrangsWooldridge, 1998; Jennings
et al 1998; Parunak, 1994). Although an MAS can sotaécsscheduling problems,
its more promising applications are in dynamic/ststic ones. Therefore, its detailed

description is specifically presented in sectidh 2.

2.2 Approachesfor dynamicjob shop scheduling problems

Only two of the three approaches for dynamic JSf&Bsribed in section 1.3 are
reviewed based on their importance and relevanteetourrent work. They are
predictive-reactive scheduling and MAS approacReviews for the other
approaches can be found as follows. The surveyiontg-rules in dynamic job shop
can be found in Haupt (1989); a detailed discussidmowledge-based systems
related to reactive scheduling can be found in 8Mdeset al (1994) and Szelke and

Kerr (1994). Conwayt al (1967, Chapter 11) provided an excellent intromuncto
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simulation in the context of the job shop. Paru(i&#®1) characterized the

manufacturing scheduling problems.

2.2.1 Predictive-reactive scheduling

2.2.1.1 An overview

Predictive-reactive scheduling is an approach reostmonly used in practice (Vieira
et al 2003). Basically, its study in manufacturing syss should consider the
following factors: 1) the applied production systementified by the types of
manufacturing systems (flow shop, job shop, etctheir extensions) and the types of
dynamic events (dynamic incoming jobs, machine kiteans, or processing
variations) as well as their respective patternsostirrences, 2) schedule
generation/regeneration methods (algorithms, difyag rules, or cooperation), 3)
control rules (what, when and how to reschedulepet¢formance measuring criteria,
5) the testing period (short or long term), an@®luation methods (comparison or

statistical analysis). Those factors are illustiateFig. 2.2.
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Fig. 2.2 Factors considered in the predictive-igacicheduling research
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A thorough study of a proposed scheduling procethag include testing it on every
different production system, control rules, perfarme criteria, and testing periods.
That implies a huge number of experiments. In fe@dearchers have done a lot of
work studying dispatching rules in dynamic/stocicastheduling environments due
to their lower computational requirements. For siciieg procedures requiring
similar computational efforts as those in predetieactive scheduling, it is important
to identify the main domains that a proposed apgr@an perform well. In the
following sections, selected works are reviewedifing on the framework described
in Fig. 2.2. Other reviews of dynamic scheduling e¢so be found in Smith (1995),
Raheja and Subramaniam (2002), Viedtal (2003) and Aytuget al(2005). A good
survey of the simulation models for dynamic scheduénvironments is provided by

Ramasesh (1990).

2.2.2 Literaturereview

Holloway and Nelson (1974) proposed a multi-passisgc scheduling procedure to
generate schedules in a job shop where processiag/arriations of the operations
are considered. This centralized scheduling praeeiduater used in the dynamic job
shop environments (Nels@t al 1977) to generate schedules periodically. They
concluded that a periodic policy (scheduling/resiciiag periodically) is very

effective.

Muhlemanet al (1982) analyzed the periodic scheduling policg idynamic and
stochastic job shop system and their experimemiwesti that a more frequent
revision can improve scheduling performance. Chawwth Uzsoy (1992) studied the

period and event driven policiesardynamic one-machine system. They concluded
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that the performance of periodic scheduling wascéd by the length of the

rescheduling period while event-driven policy penis well in the given problem.

Beanet al(1991) proposed a match-up scheduling procedumeatoh up with the
schedule, which was optimal or near optimal betbeedisturbance occurred. The
match-up procedure ensures that the revised sehelobnsistent with the original
one after the “match-up point” as soon as possifie. procedure is applied to a set
of real problems in the automotive manufacturirdustry where a partial schedule is
produced to minimize total tardiness at each rethdivey point. The results from the
proposed match-up procedure are significantly béttn those from pure static and
dynamic strategies that are often used in pradtiedso performs well when machine
utilization is high. Later, Arturk and Gorgulu (1®9used match-up scheduling to
react to disturbances. Their methods improve thedwle quality, the stability, and
the computational time compared to several matchhapnatives under different

experimental settings.

Raman and Talbot (1993) decompoaetynamic problem into a series of static
problems, which were then solved in their own etgiand then implemented on a
rolling basis. A heuristic is used to construct shkedule for the entire system at each
rescheduling moment. The experiments on dynamiediding problems are carried
out with balanced and unbalanced machine utilinatid heir results indicate that a
significant due date performance improvement oggesal dispatching rules is

obtained.

Bierwirth et al (1995) explored the adaptive optimization abiityGA for reactive
scheduling in dynamic job shops and their work e@ginued by Liret al (1997).

However, the size of their tested jobs was only, 1tich is not enough to give a fair
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evaluation of the average performance of GA. L&errwirth and Mattfeld (1999)
again studied the similar problem by using two ie#1s of improved GA to generate a
new schedule every time a new job arrives reusiegptevious solution. Furthermore,
they tested on 1000 jobs instead of 100 and coregsidenly the steady state
performance, which was the performance betweetirties that jobs 201 and 800
arrived at the system. Both versions of GA outpented SPT dispatching rule at

reasonable computational times for the minimizatibthe mean flow-time of jobs.

Holthaus and Rajendran (1997) examined the perfocmaf several dispatching
rules in a dynamic job shop. They found their psgzbdispatching rules efficient in
minimizing flowtime and tardiness related critefidey also described the simulated
test bed and experimental designs in detail. Thretbods have been followed by
Bierwirth and Mattfeld (1999). Holthaus (1999) fuet analyzed dispatching rules in
dynamic job shop scheduling considering machinakitewns. The results revealed
that the relative performance of scheduling rubes loe affected by changing the

levels of the breakdown parameters.

Lawrence and Sewell (1997) compared the statidtaamdynamic applications of
heuristic and optimal solution methods to JSSPswgnecessing times were
uncertain and the performance measure was the pekeShey demonstrated that
simple dispatch heuristics provide performance caiple or superior to that of

algorithmically more sophisticated scheduling piebc

Sabuncuoglu and Bayiz (2000) proposed a heurigarithm basing on a filtered
beam search to analyze reactive scheduling probleesr different job shop
environments considering machine breakdowns. Tbeagladed that: 1) there was

not much difference between the optimum methodsheudistics when uncertainty
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or variability was high, which was a conclusioroaisade by Lawrence and Sewell
(1997), Hopp and Spearman (2000), Sabuncuoglu agz B2000), and Hall and
Posner (2001); 2) the performance of the off-lilgoathm was affected more than
the on-line method in a stochastic environmenth8)solution quality improved as
the scheduling frequency increased; and 4) thatyudlschedule deteriorated as the
length of the partial schedule decreased. Frormettessilts, one could infer that the
effort to reduce the variability and uncertaintythi® systems might worth more than
the difficulties in using more sophisticated algfums (Sabuncuoglu and Bayiz,

2000).

Sabuncuoglu and Kizilisik (2003) studied reactighexduling in a simulated Flexible
Manufacturing System (FMS) considering a multi-maetenvironment and a
material handling system (MHS) under variant systemfigurations, processing time
variations, and machine breakdowns. Some of tlegiclasions were: 1) it would be
more beneficial to use the online scheduling systendynamic and stochastic
environments; and 2) full rescheduling was gengtaditer than partial rescheduling

at a cost of higher CPU times.

2.2.3 Main conclusions

In summary, some observations can be drawn frometbearch of the last thirty
years. Firstly, there is not much difference betw#e optimum methods and
heuristics when the uncertainty or variability igth(Lawrence and Sewell, 1997,
Sabuncuoglu and Bayiz, 2000). Secondly, the peidorna of a scheduling procedure
is affected by control policies like the frequemdyscheduling and the length of the
intermediate schedule. Thus the performance ohadiding method is problem-

dependent.
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2.3 Multi agent systems

Many MAS scheduling systems have been proposedriergte schedules through the
interactions of distributed and independent agesitsg certain protocols based on
appropriate architecture. Manufacturing schedudiygtems built as MAS had been
surveyed by Shen and Norrie (1999) and Baker (1988)y are further reviewed
according to their architecture: heterarchicalrdrighical, hybrid, and nature-inspired

MAS.

2.3.1 Heterarchical MAS

A heterarchical MAS was built at a General Mot@stbry to assign trucks to paint
booths using a simple bidding mechanism and eaich Ipaoth made decision
whether it would take a job through negotiation (Mg and Schelberg, 1993,
Morley, 1996). The MAS outperformed the previoustcalized scheduling system in
terms of throughput and paint costs. Liu (1996)ppsed an MAS which sequentially
initiated two groups of agents representing ressiand jobs for distributed
manufacturing scheduling aladents in the same group communicate based on
several coordination schemes. The MAS was testestoeral deterministic
benchmark JSSPs and the results showed that d poovide equivalent or superior

performance to centralized scheduling techniques.

Heterarchical MAS can provide a highly distribuggdlicture to the manufacturing
system andk is very robust and reactive against disturbandesiever, banning all
forms of hierarchy, it cannot perform global optzation and the behaviour of a
system under heterarchical control can be hardigipted. Furthermore, many
heterarchical algorithms need to be properly fineetd, which is a labour intensive

work (Bongaerts, 1998). Thus it is believed thatia unstructured environments,
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heterarchical control without explicit scheduleas de the most suitable approach. In
other situations, however, the incorporation oflzesluler in a distributed system will

enhance the stability, predictability and perforeen

2.3.2 Hierarchical MAS

Parunak (1987) proposed YAMS for real time tas@&ation and control. A factory is
modeled as a hierarchy of work cells and each welkcorresponds to a node in a
contract net (Smith, 1980) and negotiates with isthedes vertically and laterally.
Zhouet al (2004) used a hierarchical MAS to solve a deteistimscheduling

problem using heuristic dispatching rules and GantNet Protocol. Their results
show that the MAS can generate good solutions fpven problem as compared to a
mathematical approach. Cavalietial (2000) compared the performances of

heterarchical and hierarchical MAS experimentally.

2.3.3 Hybrid MAS

Hybrid MAS includes holonic manufacturing systenM8)) (Bongaerts, 1998
Bongaertet al 2000 Wyns, 1999), biological manufacturing system (BMSkino,
1993), and fractal manufacturing system (FrMS) (Weake, 1993; Ryu and Jung,
2003). Basically, agents in those systems havadtEnomy to promptly react to
dynamic changes and simultaneously to be guidatiexggents with global views.
Valckenaer®t al(1994) compared the above three architecture$camd that the
hybrid one performed well in a wider range of dikias. Wonget al (2006a, 2006b)
proposed a hybrid MAS for integrating process piagnvith
scheduling/rescheduling in job shops in cases @hina breakdown and new part

arrival.
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2.3.4 Nature-inspired MAS

Bonabeatet al (1999) gave a comprehensive survey of adaptive 8/Bich were
inspired by natural insect behaviors. Cicirello &mith (2001) reviewed those MASs
focusing on manufacturing applications. Valckenated (2001) discussed multi-
agent coordination and control using techniquegitied by the behavior of social
insects. It presents a system design that enabssatlle overall behavior to emerge
without exposing the individual agents to the caewjty and dynamics of the overall
system. Cicirello and Smith (2004) proposed a ocewerdination rule inspired by the

behaviour of a wasp colony for dynamic shop flamrting.

24 Ant colony optimization algorithm

24.1 ACO overview

ACO is a class of distributed algorithms used @viag NP-hard combinatorial
optimization problems. Its introduction can be fdum (Dorigoet al, 1996, 1999),

(Dorigo and Gambardella, 1997a, 1997b), and (Doaigd Di Caro, 1999).

The first form of ACO, Ant System (AS), was intrasha by Dorigcet al (1991) and
is based on the foraging behaviour observed iralear@ colony. The cooperation of
ants and how they efficiently find the shortesttesthave been formulated into an

algorithm used to solve combinatorial optimizatmoblems.

The first improvement of the initial AS is callduketelitist strategyfor AS (EAS)
(Dorigo et al, 1996), where only the best-so-far solution isduseupdate the
pheromone trails. The idea is to enhance the pmg&earch space. Another
improvement is called thank-basedAS (ASan), proposed by Bullnheimet al

(1999). The amount of pheromone that each ant d@sposthe trails decreases
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according to its rank. Meanwhile, the best-so-farstill deposits pheromone at each
iteration. The results of an experimental evaluatioggest that Ak performs

slightly better than EAS and significantly bettean AS.

A MAX-MIN Ant Systemis another improvement proposed by Stltzle andsHoo
(1997, 2000). It limits the possible range of pineooetrail values to an interval [Tmin,
Tmay IN Oorder to avoid stagnation caused by explohirgt-so-far solutions; all trails
are initiated with the upper pheromone value aedptireromone evaporation rate is
small; finally, pheromone trails are reinitiatedemever stagnation is met or a

solution has not been improved for a certain nurolbepnsecutive iterations.

There are also a few extensions of AS, for exanthé&e Ant Colony System (ACS) by
Dorigo and Gambardella (1997a, b), Approximate Meterministic Tree Search
(ANTS) by Maniezzo (1999) and population-based AGAACO) by Guntsch and
Middendorf (2002a). Some local search methods tsantee combined with ACO to

improve the solutions.

ACO has been used to solve the traveling salesmadolgm, the quadratic assignment
problem, data network routing problem (Schoonderdiegal 1996), and scheduling
problem (flow shop or job shop). It has been sssté in finding near-optimal
solutions comparable to those found using the-sththe-art approaches in most of
those problems except JSSP (Dorigo and Stuzle,,20268). The following review
presents results obtained from previous work of A€lated to scheduling problems
and dynamic problems which may give insights factie scheduling in a dynamic

job shop.

24.2 ACO for static scheduling problems
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The AS was first applied to JSSP by Colahal (1994). It was successful in finding
solutions within 10% of the optima for both instasa®f 10x10 and 10x15 job shop
scheduling problems (Doriget al 1996). However, despite showing the viability of
the approach, the computational results were nojpetitive with state-of-the-art

algorithms for classic JSSPs (Stitzle and Dori§89).

EAS was applied to three benchmark JSSPs in 19884# and Marques, 1999). The
results were within 8% and 26% of the best knowtmag for the 10/10/G/gaxMuth-
Thompson problem and tB€/10/G/G.axLawrence problem (OR-Library),
respectively. The authors considered the resuiiijsing since the tests were only
partially executed with an iteration number of 2008e study also presented the

importance of parameter settings.

There are also reports of other forms of JSSPsnEBR002) applied MMAS to solve
the Group Shop Scheduling Problem (GSSP), whiehgsneral Shop Scheduling
problem covering JSSP and Open Shop SchedulingRPSSeveral versions of
MMAS were compared and the proposed algorithm cbaottioptima for the tested
benchmark JSSP (15x15) and OSSP. Stutzle (1998dMMAS integrating a
local search for a series of benchmark flow shapiems (FSP). The results were
compared with several other heuristics and showatithe MMAS gave high quality
solutions to FSP in a shorter time, performingdratt at least comparable to other

state-of-the-art algorithms.

24.3 ACO for dynamic problems

The dynamic problems that ACO has been appliedideclouting problems in
communication networks, dynamic traveling salesprablem (TSP), and dynamic

JSSP. The applications of ACO in dynamic TSP aveveed in this study because of
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its close relevance to dynamic JSSP and the repbA€O in dynamic scheduling

problems are few.

24.31 ACO for dynamic TSP

The main concern for ACO being applied to a dynah@® is about the updating of
its problem graph and pheromone matrix, which leentain procedures consuming
computational space and time. Thus, the strategig®dify the pheromone matrix

become a main topic.

Angus and Hendtlass (2002) applied ACO to dynan@® &nd their motive was
based on the following observation: ants did nbee to their nest and start all over
if something blocked their current efficient pathither, they adapted the path to suit
the new constraint. All the pheromone levels aheaty were normalized relative to
the path segment involving that city with the highgheromone concentration
whenever a city is added in or removed. The resa$ that the adaptation rate was

very high, significantly faster than finding thesuét by starting all over.

Guntsch and Middendorf (2001) proposed one globdlteo local strategies to
update the pheromone matrix for dynamic TSP conisigehe compromise between
resetting (through equalization) and keeping enanfgitmation. The strategies are 1)
Restart-Strategy — reinitializes all the pheromealeies by the same degrégn—
Strategy — uses distances between cities to dexidbat degree equalization is done
on the pheromone values on all edges incident to each city. 3) t-Strategy — uses
pheromone based information to define another qurafedistance between cities.
They concluded that the first two strategies pentad be the best, closely followed by

the t-Strategy.
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Guntschet al(2001) proposed several strategies for ACO toesalhighly dynamic
TSP in order to provide a good solution qualityraged over time. Their motive is
that the new optimal solutions might be in somessamrlated to the old ones if
changes of the problem instances occur frequentyeach change is not too large.
The highly dynamic TSP refers to the problem wheodies are exchanged evety
iterations between an initial TSP with 200 citiesl @ spare city pool of 200 cities.
EAS was used to update the pheromone matrix. Ecapeivaluation showed that the

n—Strategy was the best overall strategy.

Guntsch and Middendorf (2002a) proposed P-ACO @&pleme recent information
for adapting to a new solution in a reasonable twhen there was a change in the
problem instances. Such recent information wasessprted by a group &fbest
solutions. A series of TSP benchmarks were testddl@e comparison shows that the
performance of P-ACO was as least as good asahdatd ACO and MAX-MIN

ACO for static problems.

The P-ACO was further tested on dynamic TSP by &ilmand Middendorf (2002b).
Their main approach was that a set of solutionstreasferred from one iteration to
the next rather than transferring pheromone inféionaas in most ACO algorithms.
The advantage was that it would usually be fastenddify a few solutions directly
than to modify the whole pheromone information standard ACO algorithm. Five
new population updating strategies were testethe 6P problem similar to that in
(Guntschet al, 2001). The experimental results showed that P-A€@orms superior

than the approach that restarted the procedure dywamic events.

24.32 ACO for dynamic job shop scheduling problems
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Vogelet al(2002) proposed eontinuously operating Ant Algorithmwhich could
easily adapt to sudden changes in the productistersy A position-operation-
pheromone-matrix (P-O-P-M) and an allocation tatdee maintained. Pheromone
values were reset whenever there was a changeorRbee updating depends on two
factors: temporal buffer and the priorities of jqiadich was reflected in the time of
initiating pheromone). The dynamic ACO was testagaecord based on the real-
world practice for two months and was compared amual, priority-rule and GA

approaches. The result generated by ACO was ofdyian to the GA approach.
244 ACO asan MAS

There are two approaches to implement the ACO ihgnras MAS. The first
approach is to take the advantages of parallel atatipn of concurrent ant agents,
for example, Xianget al(2005). The other is to analogize the co-ordimastrategy
among foraging ants and their decision-making rineke field of manufacturing
control in order to reach a similar emergent glaijimal performance. A good
overview of solving difficult real-life problems micking natural phenomena can be

found in Bonabeaat al (1999).

In (Peeteret al 2001), the ant in AS was modeled as an ordereswlirce agent to
find solutions while the pheromone environment wasleled according to the layout
of aphysical flow shop. The test results showed thafroposed approach offered
clear benefits in terms of change management. Hexwvéve main disadvantages of

the pheromone concept were time delays and thefoedéahing.

Cicirello and Smith (2001, 2001a) proposed the @albony Control (AC) applying
the analogy of ACO to the problem of dynamic sHoprfrouting. The main idea was

to assign a new incoming job to an ant, which vesponsible for the routing of this
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job. All communication was carried out indirecttythe form of pheromone that the
ants left on the trail between resources. Four exm@ats were conducted to the AC
with different problem configurations. They conataldthat the global behaviour
emerged was comparable to following the optimatingustrategy on simple

problems.
245 Summary

In summary, the reactive scheduling problem in @adgyic job shop has been studied
using dispatching rules, optimum seeking algorithamsl ACO inspired MAS.
Dispatching rules are robust in situations whereeuainty or variability is high as
compared to optimum seeking approaches. The natspaed MAS has only been
tested on very simple problem models. For systehesevuncertainty or variability is
not so high, reactive scheduling using optimum sepélgorithms may provide better

solutions with global optimization.

The application of ACO in dynamic TSP inspires ¢herent study of using ACO for
dynamic JSSPs although its performance for st&®P% is not competitive with the
other state-of-the-art approaches. Although the AGforithm has been tested on the
data of a real-world dynamic job shop, a generdeustanding of its performance in
dynamic JS8Bis still not clear. In this work, ACO is testeddptimize the throughput

and the resource utilization of a simulated dyngoticshop.
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3 Analysisof Dynamic Job Shop

Scheduling Problems

It can be seen from Chapter 1 that schedulingusetion with a short-term effect in
the hierarchy of production management. The datssicom a higher level of
management related to production planning inteyrddkermine the complexity of a
dynamic scheduling problem. However, a proper sglgl system can facilitate the
realization of the full potential @ given production system and the general
challenge is to explore efficient procedures td fiest possible solutions within the

time limit demanded by a specific problem.

This chapter first analyzes static JSSPs in se@tibnthen dynamic JSSPs in section
3.2. A simple example in section 3.3 illustratest tn appropriate scheduling
approach is decided based on the particular pliepest a dynamic JSSP itself.
Thereafter the factors affecting the evaluatioa e€heduling technique in a
predictive-reactive approach are analyzed in se@&@id and finally, section 3.5

summarizes the chapter.
3.1 Analysisof classical job shop scheduling problem

The factors determining the complexity of a classkSSP include the sizes of jobs
and machines as well as the performance measuné&d) have been illustrated in
section 1.2.5. The factors affecting the solutiaaliy of a classical JSSP are

described as follows.
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Given a static scheduling problem, the qualityteplution can be determining by:
1) the complexity of the JSSP, 2) the quality & sicheduling procedure, and 3) the

available computing time.

The complexity of a problem is determining by thetbrs mentioned in the above
section; the scheduling procedure can be any skth@nging from exact

mathematical methods, dispatching rules, meta-siesj to artificial intelligence.

The available computing time determines how thohoagrocedure can be allowed

to explore the solution space of the schedulindplera. Some parts of the solution
space may never be searched and thus the goodutehadthose parts may not be
discovered due to the limited computing time. let faomputing time may hardly be
sufficient for finding optimal solutions for mogasic JSSPs with even moderate sizes

due to their NP-hard nature.

The optimality of a schedule should be measureldvy near the solution is to the
optimal one, if it is known, in terms of solutionality. However, this is generally not
measurable since the optima are unknown. Thusreitheanced scheduling
techniques or extended computing time has to bptadan order to improve the

optimality of a schedule.

3.2 Analysisof the dynamic scheduling problem

The dynamism o& scheduling problem is usually treated following #pproach of a
rolling time horizon (Raman and Talbot, 1993),, a deterministic scheduling
problem consisting of all known jobs is solved atle rescheduling moment. When a
new job arrives at timg the part of the solution consisting of operatialieady
started beforeis fixed and a new problem is constructed, comgjsif the backlog to

be starting after timg plus all the operations from the newly arrived. j®he
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dynamic problem is thus decomposed into a seristtit intermediate scheduling

problems over time (Branke, 2002).

Therefore, in a dynamic JSSP, each incoming jongés the current setting of the
intermediate scheduling problem and the task aftneascheduling is to
continuously generate schedules for the set ofiegisinprocessed jobs in a timely
manner so that an overall optimality of performacoae be reached for the given
period of time. A specific intermediate schedulprgblem is internally decided not
only by the characteristic of the new job but ddgahe status of the shop floor at the

moment that the job arrives.
3.2.1 Factorsthat characterize an inter mediate JSSP

The two factors that characterize an intermedi@@&RJare the arrival time of a new
job and its characteristics determined by the teathsequence, which refers to the
order of workcenters that the job has to be prazkssnd the processing time

distribution over workcenters. Their effects disirated in the following sections.
3211 Thearrival time

Given a set of jobs with priori schedule, the subsequent intermediate JSSP aaries

the arrival time of the new job varies. For exampleen a2/3/G/C,,, JSP with a

technological matrix T and a processing time marix

[M1 M2 M3 o_ 10 10 10
IM3 M2 M1 113 06 06|

an optimal schedule can be given in Fig. 3.1.
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machine No.
A

I I
I I

M1 O11i(1A0) I 0,3 (0.6)
i !

M2 | Olzi(l.O) 0,,(0.6)
I .

M3 OI21(1A3) | O13i(1:2)
o '
i N — >
‘ 1.01.3 . 2.0 2.6 3.2 t (time unit)
I I
tl = 0.5 tz =15

Fig. 3.1 An optimal schedule for the exampleBSS

A new job 3 coming att, = 05incurs a new scheduling problem that is different
from the one incurred by the same job but coming atl.5. The former has earliest
machine available times frofr.0051.3} fo{M1M 2, M3} respectively and a set of
un-executed operations includir@,, O,;, O,,, O,; plus all of the operations from

the new job. Operation§,, and O,, are not included because they are already being

processed at the time the new job comes in.

Similarly, the later problem has earliest machivailable times fronj 1.52.0,.5} for
{M1,M 2,M 3} respectively and the set of operations includg O,,, O,, plus

those of the new job. The two different intermeelid8SPs are list in Fig. 3.2.

operations for earliest machine

rescheduling available time
problem 1 (t;) 01,0130, 0y 1.0,0.5,1.3
problem 2 (t,) 01302 0,3 1.5,2.0,1.5

Fig. 3.2 The comparison of two intermediate protdem

Two new JSSPs are different in their operationsthacearliest machine available

times. Thus, their complexities are different ieldgag new optimal schedules. Fig.
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3.3 illustrates the solutions of two different plens assuming that the technical

sequence and the processing times of jayel C, = {M 2,M3 M 1} and

PC, ={ 050505}, respectively.

Amachine No.

Crax 3.2
!
M1| Oulwo 051 (0.5)| 0,5 0.6)
[
M2 03105)] 05,000 |05(0.6)
| -
M3 Op1 ¢-3) |°32 (0-5)| 013(1.2)
I L : i 5 >
| 1.01.3 2.0 2.6 3.2 t (time unit)
|
ty = 0.5

(a) New optimal schedule with.e=3.2 when the new job enters at 0.5

machine No.
A

| Chnac 4.2
i
M1 W | 053(0.6) 033 (0.5)
— —
M2 015(1.0)  [02,(06)[0:, (0.5): 5
: | ' i
M3 W | O13(12) |05, (0.5) ;
o : :
N ] ] ' L L N L >
1013 | 2.0 2.6 3.2 3.7 42 t (time unit)
I
t,= 1.5

(b) New optimal schedule with=4.2 when the new job enters at 1.5
% completed processing not processed new
m operation I:I operation I:I operation I:I operation

Fig. 3.3 New optimal schedules after the same idére at different times
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3.2.1.2 Thecharacteristicsof the new job

The new problem is also affected by the charatiesisf the new job, which can be
described in terms of the technical order and tbegssing-time distribution of its

operations.
e The effects of the technical order

The minimal makespan ) could be improved from £x= 4.2 (Fig. 3.2 (b)) to
Cmax= 3.2 (Fig. 3.4) if the technical order of the nel is changed to

TC,'={M3M1LM2}.

machine No.
A I Coac 3.2
|
M1 W | 032 (0.5)[ O3 (0.6)
M2 0151.0)  [055(0.6)|0350.5)]:
: | 5 :
M3 W 047 (0.5) 0430.2)
I I I : . >
1.01.3 I 2.0 2.6 3.2 t (time unit)
t, = 1.5

7 completed processing not processed new
M operation I:I operation I:I operation I:I operation
Fig. 3.4. Gax=3.2 after the operation order is changed

e The effects of the distribution of processing times

Similarly, the minimal makespan could be improveshf Gnax= 4.2 (Fig. 3.2 (b)) to
Cmax= 4.1 (Fig. 3.5) if the processing time of the rjetvis re-distributed from

PC, ={ 050505} to PC,'={ 060405} while the total processing time and its

arrival time remain unchanged.
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machine No.
A | Cmax: 4.1
i
M1 W | | .023(06). Ioaa(o.s)l
5 i
M2 015(1.0) | 0270:6)| 021 (0.6) .
E | H ' ' ,
M3 W ! 013 (t1.2) 03, (0.4)
P : i : !
1013 | 20 26 3.2 36 41 t (time unit)
|
t2: 1.5

v completed processing not processed new
//% operation I:I operation I:I operation I:I operation
Fig. 3.5. Ghax= 4.1 after the processing time is redistributed

3.2.2 Factorsthat characterize an overall dynamic JSSP

As a dynamic JSSP is the combination of all siatermediate JSSPs and each of
them is determined only by the arrival time anddharacteristics of the new job, it
can be concluded that the distribution functiomwival times over time and the
distribution function of processing times over wagkters work together to
characterize an overall dynamic JSSP for the gdeziod. The distribution function
of arrival times is calledhter-arrival function; the distribution function of processing
times over workcenters is generally determinedrimtfzer two distributions within

each job: the technical sequence and the processiaglistribution of operations.

Furthermore, jobs can be released to the shopifidots, that is, several jobs can be
simultaneously included in one lot. The followirgctons describe the effects of the

above three aspects of a dynamic JSSP.

52



Chapter 3: Analysis of Dynamic Job Shop Schedufingblems

3221 Effectsof inter-arrival function

The inter-arrival function determines the momerit®bs arriving at the shop floor.
In literature, this function always takes the fasfra Poisson distribution, which has
been shown to be a good approximation to the dmpacess if the different sources
generating job arrivals to the shop are statidtiagatiependent (Albin, 1982). Poisson
distribution is also adopted in the current stumlgitnulate the arrival process of

incoming jobs.

This Poisson distributions given as:

ek

f(k,A) = ”

(3.1)

wheree is the base of the natural logarithew(2.71828...)k is the number of
occurrences of an event — the probability of whicgiven by the functiork! is the
factorial ofk; andX is a positive real number, equal to the expected number of

occurrences that take place during the given iaterv

Thus the expected mean number of jobs per timestoild bel/ % , which
determines the mean workloads of all the machines time and the dynamic level
of the JSSPFor a given set of jobs, the higher the valud./of , the higher are the
workloads of the machines and the more dynamiceisiynamic JSSP. The value of
1/ actually determines the complexity of a dynami8B%&s the mean size of an

intermediate JSSP increases, or when the valu@.oincreases.

3222  Effectsof the distribution of processing times
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The distribution of processing times over workcesite machines of all jobs are the

collective results of the distributions of theictmical orders and processing times.
e Technical order

In the literature, the order of the operations jakais generally randomly chosen
from a uniform distribution. That is, every workt¢enhas an equal chance to be

chosen. The same mechanism is adopted in the tsttety.
e Values of processing times

The values of processing times are normally dedmethe exponential distribution in
the literature. Exponential distribution is als@ptéd in the current study to generate

processing times. Trexponential distributionhas the form of:

1-e ¥, x>0,

0 . x<0. (3.2)

F(x,9)= {
where8 > 0 is a parameter of the distribution, oftenexithe rate parameter. The
distribution is supported on the intervalof), The mean or expected value of an

exponentially distributed random variable X witlerparamete8 is given by

1
El X]=—.
[X] B (3.3)

Shannon (1979) reported that the nature of pravgssne distribution significantly
affects the performance of the scheduling rulesirtgresting observation is that the
use of the exponential distribution tends to faar SPT rule. The reason could be
that SPT avoids allocating the machines to ondé®wery long operations, which is

possible when draws are taken from an exponenstilzltion (Ramasesh, 1990).
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3223  Effectsof job lots

Sometimes, the jobs are released in lots instead@by one. The size of jobs in a lot
determines the severity that the underlying schedyroblem is changed. For
example, there are 16 unprocessed operations Wla¢ianew jobs are released to
the shop floor. The size of the operations forrtee intermediate JSSP is 22 if there
is only one job, which has 6 operations, per lawdver, it becomes 28 if there is
one more job (which also has 6 operations) peQobtiously, the underlying

problem is changed more severely by the largehkot the smaller one.
3.3 Internal problem properties deter mine Approaches

It is widely acknowledged that no one particulapraach can perform best in all
situations. Each approach has its own niches dfcgtion domains and it is
important to find the appropriate application domsaof a proposed scheduling
algorithm. The following example shows a scendrat is best suited for FIFO
dispatching rulesSome indications can be made for potential appbeatiomains of

algorithmic approaches.

Figures 3.6 to 3.9 present an example where theatitbns of all machines can reach
100% with a very simple FIFO dispatching rule ihdynic jobs arrive regularly and
their processing time distributions on the machoesmatch each other to cover all

the time slots on all the machines.

Fig. 3.6 gives an initial optimal schedule, whicinimizes the makespan for three
types of jobs: T1, T2 and T3. Their technical osdereTC, = {M1,M 2,M 3},
TC, = {M2,M3M1jandTC, = {M3,M1,M 2}; their respective processing times

arePC = { 2,0.5,0.5}. Jobs are assumed to arrive at the shop flooladgun the
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sequence of T1, T2 and T3 per time unit. Obviouslyg,combination of these
technical orders as well as the distributions otpssing times makes the workloads

on all machines identical.

machine No.
4 1
M1 oy, 02|02 [ 1

M2 on  [0u|0s
M3 0n  [0x0s
- >
0 2 253 t (time unit)

Fig. 3.6 The initial schedule

The 4" job of type 1 (T1) comes in af = 0 and the subsequent orders of the
operations on three machines according to FIFQigen in Fig. 3.7. Those orders
are changed (Fig. 3.8) where tHerfew job of type 2 (T2) at, = .JAt the same
time, the first operations of all the first thred$ are being processed. Next, the 6
job of type 3 (T3) arrives at the shop floortat=  wRen the operations of the first
three jobs are completed. There are two possilhledsdes as bothand Q;arrive

at machine 3 (M3) simultaneously. Fig. 3.9 givethtsrhedules whenand Qare

first processed respectively.
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machine No.
Ao
M1 Oy | Oy 032|023|
M3 O, 0,:|0s| L {o
N ! >
0 2 253 4 5 t (time unit)

Fig. 3.7 The % new job of type 1 enters at0; new G.a=5 by FIFO

machine No.
PO
M1 (o) | Oy 032|023|053
M2 o | 0u  Jou|o.|on]
M3 O 0y, O55[013] Ous
N ! >
0 2 253 4 5.5 t (time unit)

I:I processing operation

Fig. 3.8 The B new job of type 2 enters atfl; new Ga=5.5 by FIFO
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machine No.

A f:z
N7 R E T

w2 7722770 oa iolz 0c0s| [0
M3 O 8/)0=] O : 05,(015 [ 045 |

N ! >
0 2 2.5 4 6 6.5 t (time unit)
(a) Oxis selected first on M3
machine No.
A
M1 %//% Oy O32[062[023|Os3
M2 7B A On |92[04]|0s|0s
M3 W% 061 022 013 043
' ' >
0 2 4 5 6 t (time unit)

(b) Gs;is selected first on M3
m completed operation

Fig. 3.9 The 8 new job of type 3 enters at®2; new Ga= 6 by FIFO
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The utilizations of all machines can always beroped at 100% by FIFO if jobs
continue to corain at the same inter-arrival time distribution andhe same
sequence of job types. The example shows thatytieendic JSSP can be optimally
solved with a very simple dispatching rule, FIFQjeh takes very little
computational effort. The particular combinatiorirgérnal factors like the arrival
frequency and the processing time distributionyofadnic jobs determine the success

of this solution approach.

Furthermore, dynamic JSSPs that have no such $peaidination of the jobs and

the inter-arrival function but have jobs comingaina high frequency may also favor
dispatching rules as many researchers have obsevtéh can be explained as
follows. 1) The schedules found in a limited conpgitime may not be optimal or
near optimal at all. 2) An unsatisfactory scheduossy cause its following scheduling
problem to be more complex. 3) Even if the scheslake optimal, their strengths may

not be fully realized before they are made obsdigtdynamic events.

Thus, the dynamic JSSPs that have great potetdidks solved with high
performance through a predictive-reactive appra@adpting optimum seeking
algorithms may have characteristics like less fesalynamic jobs or non-uniformly

distributed arrival times and processing times.

3.4 Analysisof factors affecting the evaluation of a scheduling technique

In a static JSSP, the execution of a scheduletisonsidered as it is assumed that the
optimality predicted by a schedule can be fullflizeal. However, it is no longer the
case for a dynamic J®Swhere the underlying scheduling problem contirtoes

changing due to continuously arriving jobs. Thef@@anance of a scheduling
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technique in the predictive-reactive approach fgivan period of time is thus the

overall results of the realized optimality provideglmany intermediate schedules.

The principle for a scheduling system adoptingrtiéng time horizon approach has
been always trying to find a best schedule for eatgimediate scheduling problem.
It is also desirable to realize the optimality mermediate schedules as early as
possible since their execution is uncertain in @asyic environment and is out of the
control of a scheduling system. Thus, the perfogeasf a scheduling technique in a
dynamic environment is related not only to its itypidf finding the best schedule for
each static intermediate scheduling problem buat @the realization of the

optimality provided by those intermediate schedules

3.4.1 Factorsthat can affect the quality of an inter mediate schedule

The optimality values of intermediate schedules ¢ivee in a dynamic environment
can be illustrated in Fig. 3.10, with the optimaiialue formulated a¥ makespanso
that a minimal makespan impliasnaximal optimality. In the figure, a schedule with
an optimality value of, has been executed from timgto t,, when a new joky,
arrives. The optimality of the current schedule ieadinately drops ta,' if job J,is

simply put at the end of the schedule. Next, atreascheduling procedure is
triggered to form a sub-problem with the backlogrmions and all of the operations

from J assuming the scheduling period allowedtjs f;']. A new schedule with an
optimality value ofa, is generated and executed fromtill'the second joly, arrives

at timet,, where the similar procedure repeats.
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optimality value = 1/makespan

schedulin
v/ periods g\'

(1/hour)

Fig. 3.10. The optimality values of schedules dirae in a dynamic environment

The optimality of the intermediate schedule foumdhie time intervals oft[, t,'] or
[t,, t,'] is affected by the following factors: 1) the len@f the time interval; 2) the

operation size of the intermediate JSSP; 3) thétyuwd the scheduling algorithm;

and 4) dynamic scheduling strategies.

34.1.1 Thelength of a computing interval

A computing interval refers to the time span tlat be allowed for generating a new
intermediate schedule. The length of this inteiv@iroblem-dependent, for example,
the computing time for the sub-problem caused byJpcan be decided by its
traveling time from the reception area to its fisstrkcenter. The length can

proportionally affect the optimality of the scheelul

3.4.1.2 Thesizeof an intermediate JSSP

Given the same scheduling period, a smaller schrggptoblem implies lower
computational cost and better solution &g versaA schedule minimizing
makespan may have better opportunity to complete mperations before an
interruption occurs. Thus, the resulting interm&glsub-problem can have a smaller

size and hence a better chance to find a good stheshich facilitates the
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generation of another good schedule following tudid moment. On the contrary, a
larger sub-problem may have less opportunity td frgood schedeland a poorer
schedule, in turn, can produce a larger followinlg-problem. The procedure goes on

and the overall performance of the scheduling systeay deteriorate.

3.4.1.3 Thequality of a scheduling algorithm

A good scheduling algorithm should generate a §maed satisfactory schedule to
guide production. Information adaptation may helgpeeding up the procedure of
finding a new optimum, especially when the undedyproblem is not changed
severely. The idea is to generate a schedule ot $cratch but to exploit the optimal
information kept in the current solution and quyckhd a good solution for the
modified problem. This adaptation also has an aidggnof maintaining similarity
between two continual schedules, which is prefeimaéal life applications. This idea
has been studied in TSP (Guntsch and Middendo®f].,22002a, and 2002b)

(Guntschet al, 2001).

3.4.1.4 Dynamic scheduling strategies

Dynamic scheduling strategies involve choosing dulieg frequency or employing
partial schedulingScheduling frequencyefers to how often the schedule generation
procedures are triggered. It can be event-drivenipgic-driven or performance-
driven. Theevent-drivemnapproach triggers a rescheduling procedure whesave
event occurs; thperiodic-drivenapproach triggers the rescheduling procedure
according to a pre-set time period; gerformance-driverapproach uses
performance values of the current production sysisrhe trigger of the rescheduling

procedure. Tése approaches essentially solve different dynantieduling problems
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where the last two alter the original problem bgtponing the reactions to

interrupters.

Partial schedulingconsiders only a partial set of jobs from the pulhlem in one
computing interval in order to cover the next estied execution period. This
approach is inspired by the fact that a schedulemohave an opportunity to be
fully executed before dynamic disturbances; thueset is no need to include the
operations that may not be processed before théseuptions in order to reduce
computation efforts. This approach may find a phetthedule in a short time but

lacks a global view of the problem.

Dynamic scheduling strategies can change an origoraputing interval through
different scheduling-driven approaches and altemotiiginal size of an intermediate
JSSP by partial scheduling. Keeping other experiatigrarameters unchanged, the
adjustment of dynamic scheduling strategies camon®gthe performance of a

proposed scheduling algorithm.

3.4.2 Problem-related propertiesfor improving schedule optimality

Some problem-related properties, which can fat#lithe realization of the optimality
provided by a schedule as early as possible, shmmi&kplored. For example, given
two different schedules with the same makespathtosame problem, the one with
more operations at the early stage may be prefeimeg more operations may have
been completed before the interruption and thusaedhe size of the next scheduling

problem.
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The identification of thse properties is problem-dependent and promising in
improving performance. Other potential propertiesyrbe related to the positions of

time slacks and the operations with longest praggdsnes on critical paths.

35 Summary

This chapter analyzes the static JSSP, the dyn2®8€ and the factors that
characterize an intermediate JSSP and the overadindic JSSP. It also points out
that internal problem properties determine appatprapproaches. Finally, it explores

the factors affecting the evaluation of a schedutachnique.

Based on these analyses, the systematic approactesst a proposed scheduling
technique can be carried out in the following digats: 1) to tesh scheduling
technique in different experimental environmentingel by different dynamic levels,
dynamic severity, processing time distributionstesn configurations, and
performance measures; and 2) to improve the pesaoncethrough adjusting the
internal parameters of the scheduling algorithpoisible, and the dynamic

scheduling strategies like the rescheduling-drivexchanism and partial scheduling.
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4 The Test Bed

The goal of this chapter is to build a common best to facilitate systematic studies
of the performance of scheduling algorithms in aadyic job shop environment. The
test bed simulating a generic job shop should ketalprovide a realistic
configuration ofa shop floor, generate dynamic or stochastic evanth as incoming
jobs and machine breakdowns, provide necessarylslting algorithms or
dispatching rules to guide processing and conirlebkrto react to dynamic events,
track job movements and the status of the machmakcenters and the shop floor,

and provide statistical analysis for performancesoees.

The structure of the chapter is as follows: inisact.1, the related works on system
modeling/test beds for dynamic scheduling are prteske in section 4.2, the definition
of a generic job shop is given; in section 4.3enagic job shop is modeled as a DES,
and a prototype of the job shop is implementeceatisn 4.4 as an MAS. Section 4.5
is especially devoted to describe the communicatfaagents in the MAS and a case

study is provided in section 4.6.
41  Background

In order to build an up-to-date test bed to stumtydcheduling methods in
dynamic/stochastic environments, the test bedsawf islynamic scheduling
approaches should be reviewed. Generally, the edgoces of dispatching rules and
predictive-reactive scheduling approaches aredehteugh simulation and
Ramasesh (1990) gave an excellent review on thelaiion research in dynamic

JSSP.
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Simulation is the most common method for constngecinodels that include the
temporal dynamics of manufacturing systems, marwlo€h can be modeled as DES
(Askin and Standridge, 1993). Law and Kelton (20@plied simulation to find the
best configuration of facilities using dispatchides. In Sabuncuoglu and Bayiz
(2000), the test bed is based on a simulation moat#dd in the C language with ten
levels of frequency of scheduling and four typepmblem instances. The down time
distribution follows a Gamma distribution with aagle parameter of 1.4 and a mean
of 40 minutes; the number of operations for oneigatirawn from a discrete uniform
distribution from 5 to 15; processing times areggated from a discrete uniform
distribution from 20 to 80. In Sabuncuoglu and Ks# (2003), six machines and
three automatic guided vehicles (AGVs) comprisefigrable manufacturing system.
The job inter-arrival time is exponentially diswied. Each job has either five or six
operations with equal probability; operation tinaes drawn from @—Erlang
distribution. The review shows that a test bed khaiso have the capability for

statistical analysis.

The complex nature of the dynamic scheduling proldéctates that traditional
simulation experiments can only be performed onllssyatems. Besides, a good
scheduling test bed should be able to facilitagestistematic selection of parameters
and configurations. The distributed computationiclttan be realized through agent
technology, has the computational capacity fordgygpblems and provides the

scalable structure for many problem configurations.

Furthermore, the performance of a scheduling ajgbroan be systematically

evaluated based on statistical analysis on diffedgnamical levels, problem
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configurations and performance measures. Long-taenage performance based on

statistical analysis can be carried out when thege job shop is simulated as a DES.

Combining MAS with DES enables the proposed tedtriz# only to meet the
requirements in section 4.1 but alss tiee advantages of: 1) simultaneous execution
of events on distributed locations, 2) distributadrevent generation, state keeping,
event-list managing and data recording/analyzingo3sible performance
improvement through agent coordination or negamat4) examination of long-term
performance, 5) scalability of the MAS to suppartlier extension of the test bed,
and 6) a common test bed that could use the sistilacture and logic between

simulation and actual control of the job shop.

42  Thegenericjob shop

A generic job shopn this study refers to a generalized represeniaif real life job

shops considering not only the configuration ofrtHeor layout but also MHS.

A generic job shop can be physically made up oésdworkcenters, a
receiving/shipping station, and material transganedevices as shown in Fig. 4.1. A
workcenter shown in Fig. 4.2, processes one type of operatging several similar
machines. It has a queue to buffer incoming jobemdil the machines are not
available and another queue for completed jobsaiib far transportation. The
receiving/shipping stationseceive new jobs and ship out all the completéd.jéll

the workcenters and the receiving/shipping stedi@nlocated in the shop floor
according to certain layouts. The distances betwaeny two of them are given in a

layout matrix. Som&HDs transport jobs between workcenters.
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Work Center 1 Work Center 2 Work Center 3

Work Center 4 Work Centern

Ii iMHD EVIHD @HD

Receiving/Shipping

Fig. 4.1 The components of a job shop

Queue
In

Queue
Out

Fig. 4.2. The components of a workcenter

4.3 Discrete event ssmulation model

Three basic elements in the discrete event sinomaticlude the state of the system,
event actions and event lists. The overall state géneric job shop system is
determined by the status of the machines and jolisvhere machines are located in
different workcenters and jobs are distributedegiih workcenters or on traveling
devices. According to Koestler (1967), architectusémanufacturing systems are

inherently hierarchical. In section 4.3.1, entité&e organized hierarchically so that
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the global state can be monitored by distributedies at different levels. In section
4.3.2, the possible states for each type of estiire described. In section 4.3.3, the
dynamic events and their actions are presentediraaity, the mechanism to maintain

distributed event lists is explained in section4.3

4.3.1 Decomposition of the global state

The hierarchical relationship in a generic job sisoilustrated in Fig. 4.3. Entities
like machines or jobs can be grouped and monitoyeal higher level entity, which in
turn forms another group with its similar entiteasd is monitored by another higher
level supervisor. For example, a group of machis@sonitored by their workcenter
manager and the state of the workcenter is mouwitoyethe shop floor monitor. A job
can be monitored by either a workcenter manag#reoshop floor depending on
whether it stays in a workcenter or travels on alDMhh this manner, the global state

of the job shop can be tracked through monitoriogkeenters and traveling jobs.
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Overall
Controller

job_releaser

Fig. 4.3. The hierarchical relationship in a gem@b shop

There are seven types of entities in the simulmiedhop: machines, workcenters,
shop floor, jobs, scheduler, job releaser, androtet. Generallyan entity will have

a wider view of the system if it is located at ghwr level in the hierarchy. A
machine, a job or a scheduler can only monitoowts states while a workcenter has
a wider scope by monitoring jobs, machines anddosffSimilarly, tle shop floor
entity can have an even wider view of monitoring Workcenters, traveling jobs and
MHDs. Furthermore, the state of an entity in a biglever does not contain the
detailed state information of its supervised esditiFor example, the state of the job
shop does not contain the information of the bustatus in its supervised
workcenters. This approach facilitates distributitaga as well as their analysis to

their most relevant locations.

The job releaser and the controller are not pdrésjob shop but are responsible for

generating new jobs and advancing the simulatioe trespectively.
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432 Statesof entities

A job can be in the states of waiting-for-processyrocess and on-traveling
assuming that only one buffer is needed in a warlereand finished jobs can be sent
to the next stage immediately. It isviiting-for-processvhen it waits at the buffer

of a workcenter to be processed; itniprocesswvhen being processed on a machine;

and it ison-travelingwhen it is traveling between workcenters.

A machine can be in the states of busy, idle anmehddt is busywhen it processes a
job andidle when it waits for a job. Thedownstate refers to the period from machine

breakdown to its recovery.

A workcenter can be in four states: idle, parfiall, and buffered. It isdle when
there is no job in it and all available machinesidte. It ispartial when machines are
only partially used. It isull when all machines are busy and there are no \wgdios.

Finally, it isbufferedwhen all machines are busy and there are jobsngait

A shop floor can be in three states according émntimber of jobs in iidle (no job
on the floor and all workcenters are idieprking (at least one job is on the floor) and

completedsimulation completed and analysis can be caowayl

4.3.3 Eventsand their actions

The global state of a job shop system is changdtdwctions incurred by any
dynamic events concerning jobs and stochastic ewerthe shop floor. The dynamic
events related to a job entity include its arrivaigr leaving resources like machines,
workcenters, the shop floor and MHDs. The stocbastents include dynamic
incoming of job orders, machine breakdowns/ups@ndessing time variation.

However, it is not necessary to model all of thrererinentioned events. Only five
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essential events are identified and they can l®goaied as job-related and machine-

related events.

4331 Job-related events

Job-related events are initiated by jobs and tasrdwo types.

- New job event

A new job event represents a new job order, whiakeleased to the shop floor by the
job releaser according to certain distribution fio1ts. The event action for this event
is illustrated in Fig. 4.4. The event is registetethe shop floor, which then increases
the size of its WIP and confirms the registry. Jétethen heads to the next
workcenter from the receiving station travelingsoMHD and another event called
the incoming job event is generated immediatelye Titme period required to travel to
the next workcenter is decided by the speed dfii#® and the distance between the
two workcenters. The incoming job event is forwartie the shop floor entity and its

description is given in the following section.
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[ new job event ]

v

a new job is generated and
registers to shop floor

Y

shopfloor (wip++) confirms
registration

v

new job heads to its first
workshop

v

new job updates event list
and forward incoming job
event to shop floor

Y

)

Fig. 4.4. The actions upon the new job event

- Incoming job event

An incoming job event indicates the arrival of a/&ling job at a workcenter. When it
is initiated, the job enters a workcenter fromshep floor and requests service; the
workcenter then allocates the job according tstage and control rules or the
schedule. If the job cannot be processed immegjatetill be put into the

workcenter buffer, otherwise, it will be sent toeosf the machines and another event,
namely a “leaving job" event (from the machine)ll ¢ generated. The event actions

and state changes on the related entities areseagesl in Fig. 4.5.
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[incoming job even]

v

workcenter wip++

any machine
available?

no

machine (busy)/
job (in process) buffer

insert job into the

leaving Job event

Y |

workcenter (partial/full) workcenter(buffered)
job (in process) job (waiting)

i, |
o)

Fig. 4.5. Actions and state changes upon the inogioib event.

4332 Machine-related events

Machine-related events are initiated by a machitethere are three types: 1) leaving

jobs, 2) machine breakdowns, and 3) machine ups.

- Leaving job

A leaving job event indicates the completion obgeration by a machine. When this
event is initiated, the completed job leaves itsimm@e and workcenter, travels to the
next workcenter and then generates another incojpingvent. Meanwhile, the
newly freed machine is available for processingriéxet job. If it is allocated with

another job, a new leaving job event for the nebwijdll be generated, otherwise it

74



Chapter 4: The Test Bed

will be idle. Finally, the workcenter reduces tieesf its WIP by one. The event

actions and the state changes of the relatedemnéite presented in Fig. 4.6.

[ leaving job event]

v

job creates an incoming
job event for entering
the next workcenter

v

current workcenter
(wip--)

any waiting jobs
in the buffer?

no

another job (in process),
new leaving job event
workcenter (full or buffered

i<
)

Fig. 4.6 Event actions and state changes uporvantepb event

workcenter (partial or idle)
the machine (idle)

4/ Shop floor
_ o (traveling job)
incoming job event g aying job event incoming job event
\é workcenter 1 > > workcenter2
new Job event ——distance—»

Fig. 4.7. The dynamic events incurred by a roujiig
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The locations of the previous events in a job sirepillustrated in Fig. 4.7. The
leaving job event causes a job to leave both itshin@ and workcenter
simultaneously, assuming that the finished joblmammediately transported to the

next workcenter. The relationship between job evenshown as an event diagram in

Incoming . Leaving
Job Job

Fig. 4.8. Event graph of job related events

Fig. 4.8.

- Machine breakdowns/ups

A machine breakdown event is assumed in this wadctur only when a machine is
busy processing jobs (Law and Kelton, 2000). Thetmme will change its state to
downon a machine breakdown event and immediately er@atachine-up event to
represent the time that it will take to be repaifdéanwhile, the interrupted job is
sent to another available machine generating anatbeming job event or it is sent
to the buffer. Similarly, when a machine-up evectws, the machine is ready to
process operations. If a job is allocated to &, riiechine will go to the state of busy
and a new leaving job event will be generated. @iitse, it remains idle. The action
and state changes for both events are illustratéigures 4.9 and 4.10, and their

relationship is given in the event diagram in Bid.1.
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machine
breakdown event

v

machine (down)
machine up event

any machine
available?

machine pusy)/
job (in process)
evLeaveingJob

no

job back to queue
job (waiting)

v

v

workcenter
(partial/full)

workcenter
(buffered)

;
D

Fig. 4.9. Actions and state changes upon a madh@ekdown event
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[m achine up ever%

v

machine creates
machine down event

any job
w aiting?

no

machine (busy)
job (in process)
creates leaving job even
* machine
(idle)

workcenter
(full’buffered)

l<
)

Fig. 4.10. Actions and state changes upon a maciprevent

Machine
Breakdown

Fig. 4.11. Event graph of machine breakdown and up
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434 Eventlists

The global state is maintained as one entity anelvahts are sorted in one event list
according to their occurring times in conventioggproaches. However, in a system
where the global state is decomposed and monitoyedany distributed entities, the
global event list also has to be decomposed andtaned by the respective entities.
This approach can reduce the size of the list hasl the sorting time. Meanwhile, the
correct simulation time should be maintained cdlggince the event lists are
distributed and the execution of one event mayeawsnt changes at different
entities. The analysis of the event list in eacmgonent is given in section 4.4.4.1

and the mechanism to maintain correct simulatime tis presented in section 4.4.4.2.

4341  Analysisof event lists

Each entity maintains an event list although onchines, jobs and the job releaser
are the initiators of events. Other types of congoas only receive events from their

entities supervising them and keep only the eaniess in their own event lists.

The event list of a machine can contain at mosietimossible types of events:
machine breakdowns, machine ups and leaving jabsizle can be at most two since
machine breakdown and machine up events cannotisb-€he event list of a job
entity is a one-item list containing one incominb gvent. Similarly, the job releaser

also has a one-item list containing one new jolmeve

A workcenter entity keeps only the earliest evémis its supervised machines; the
job shop entity in turn keeps only the earliestréydérom all the workcenters and
traveling jobs. The controller is at the top of therarchy and it decides the earliest

event time for the next simulation round.
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4.3.4.2

M echanism to maintain cor rect ssmulation times

The mechanism to maintain correct simulation timsabustrated in Fig. 4.12, where

“ev” stands for “event”.

pathn

el

controller

shop floor

el

job releaser

job3|el

WC3

job2|el

el

WC 2

el

WC1

el

job1|el

el|e2

el|e2

M 3

el|e2

el|e2

el|e2

el|e2

earliest ev—f

el |e2

el|e2

el |e2

M3_4

3

M2_2 M3_1 M3_2

1
Fig. 4.12. The hierarchy of event lists

1 M1 2 M1_3 M 2
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Each entity forwards its earliest events up tedpective supervisor and finally the
earliest events reach the controller. There aextpropagating paths: the first one is
from the job releaser directly to the controlléie second one starts from the traveling
jobs to the shop floor, then the controller, arettiird one starts from machines, goes

through the workcenters and the shop floor andlyimaaches the controller.

An example for maintaining the event lists in aidgb simulation round is given as
follows. Workcenter 1 (WC1) has three machines, lminl_2 and m1_3. Each of
them forwards its earliest event to WC1. WC1 coraepdine three events, identifies
the earliest one and keeps it in its event lise $&dme procedure happens
concurrently at workcenter 2 and workcenter 3. &werkcenters forward their
earliest events to the shop floor, which at theeséime, also keeps the events of the
traveling jobs. Hence the earliest event that @dtur on the whole shop floor can be
found and further forwarded to the controller, whadso receives the event of
generating the next job from the job releaser. ddrgroller then finds the earliest
event and announces the occurring time as thesimaxtation time to both the job
releaser and the shop floor. The shop floor foreaingé new time to all the
workcenters, which pass down to their machineshEstity checks its own event list
upon receiving the new time and starts to actdfélare some due events; otherwise,
it takes no action. It is obvious that there cdaddmany concurrent events occurring
at the different locations. The detailed messagesdordinating those single or

concurrent events are illustrated in section 4.6.

It can also be seen that the size of a job shoptdigeis bound to the sum of both the

sizes of the workcenters and the traveling jobsdadition, the size of a workcenter
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event list is bound to the size of its machines.oserall long event list is thus

avoided and the list-sorting time is reduced.

44  Implementing the simulated generic job shop asan MAS

The implementation of agent-based simulation egdnincludes two steps: 1)
identifying the behaviors of each individual ageartd 2) coordinating the
communication among agents. The behaviors of ag@hthe change of its status can
be expressed clearly in state charts while thediation of communication can be

illustrated in the sequential diagrams of unifieddaling language (UML).

All entities of a generic job shop are modeled@s@omous agents pursuing their
own interests with unique functions. The possiltddke states for the main agents
have been identified in section 4.4.2 and the itiandbetween them in real time is
described using UML state charts. Some transiatg¢sior actions, such as data
recording, list sorting and message sending aceiladtuded in the state charts for a
better illustration; the stable states are shaldetiould be noted that in the given
state charts, “mg” refers to “message” and symbméf€rs to a conditional gate.
Finally, the mechanism of fitting an MAS to a tifiame decided by DES is

described.

44.1 Main agents

The state chart of a job agent, illustrated in Bid.3, shows three stable states: 1)
waiting for process?2)in processingand 3)on traveling and four transient states: 1)
idle, 2) entering shop floqr3) entering workcenteand 4)leaving shop floarThe life
cycle of a job agent involves the stable and thesient states. It starts in tide

state and changes to the travelingstate after entering the shop floor. It turns to
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either thewaiting for processtate or thén processstate after entering a workcenter
depending on the current state of the workcenftérislin thewaiting for process
state and receives an “available machine” messageits workcenter, the job will
be processed on the assigned machine and its agwstl bein processlt remains
in this state until it receives either a “machimedkdown” or a “finish operation”
message. It will go back to theaiting for proces®r thein processstate if the former
is received. Otherwise, its operation will be firgsl; it turns to then travelingstate,

and moves to the next workcenter or the shippingifcell the operations are

completed.

Job

the state of [workcenter waiting for
workcenter full \ process
W

\m
S

>\10N\\
an

-
®
2
=
=
=
@
)
2

o
@®
>
=
™

Fig. 4.13 State chart of a job agent

The flow time, waiting time and actual processinget of a job can be tracked by its

own job agent, which can record the times it readrexits the shop floor,

workcenter buffers, or machines. The state chaafjgb® machine agent, workcenter

agent, and shop floor agent are illustrated inregut.14 to 4.16.
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Fig. 4.14. State chart of a machine agent
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Fig. 4.15. State chart of a workcenter agent
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Fig. 4.16. State chart of a job shop agent

442 Other agents

The controller and the job releaser in Fig. 4.3ase implemented as agents. The
controller works to initiate the whole system anaimains the simulation clock and
the job releaser generates new jobs with partieafarmation concerning technical

sequence, processing times, starting and due tetes,
44.3 Fittingthe MASinto thetime frame of DES

There are two types of time in the system: simaiatime and execution time. The
simulation time is a clock time when an event steotbe executed. It is decided by
DES. The execution time refers to the period of Girl¢ MAS takes for event

execution. Their relationship is illustrated in FHgl7.

85



Chapter 4: The Test Bed

execution timety' execution timet,' execution timety'
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Fig. 4.17. The relationship between simulation temne execution time

The event occurred at timecauses MAS to execute takimg CPU time. Then the
next simulation time, , maybe hours after, is decided at the end ofwgi@ttime
t,". Another period of event execution then start® Simulation proceeds in this way

from t;to t, andt, until a predefined termination time is reachedlevthe events are

executed one after another by the agents.

45 Communication in the MAS

All the communication in an MAS is realized througlkessage passing. The
execution of an event always incurs a string ofsagss propagating to the other
agents, which may react to the messages by fusdreting messages to other agents.
Messages may be passed concurrently in many digtddocations, and it is crucial

to coordinate them so that all event lists cangdated in a consistent manner and the
correct simulation time can be maintained. Messagsing for a single event is
analyzed in section 4.6.1 and that for concurreants in a single agent is described

in section 4.6.2. The mechanism to coordinategehés is given in section 4.6.3.

45.1 Message passing for a single event

- Message passing for job related events
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The message passing for two job-related evertshe new job event and the

incoming job event, is illustrated in Fig. 4.18.

| job | I shap floor I | workcenterl | machine

+—registerNew Job»

newJob data
5 confirm recording
data ~ floor layout
recording register

incomingJob ev

incomingJob ¢ request service >
num of newComingJob++

received jobs

allincomingJob¢{

reach workcente )
(to those having

. . n
1update simuTime®— due events) —»

fire event event
actions
< update
new state

receive all
changed state

<+—allocate incomingJobs to machines

\ 4

request operation process
| |

Fig. 4.18. Message passing for job-related events

- Message passing for machine related events

Message passing for three machine-related eviemishe leaving job, the machine

breakdown, and the machine up event, is illustratd€ig. 4.19.

The machine agent sends a message to the jobrageasenting the job processed on
the machine when a leaving job event is fired awtifies it on completion of its
operation. The job agent then requests to leavevtikcenter while the machine

updates the workcenter about its new state. Th&agoter then checks whether there
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are waiting jobs or interrupted jobs to be re-alked accordingly. Finally, it permits
the job agent to leave the workcenter. The job &igeturn registers with the shop

floor agent with another incoming job event as shawFig. 4.19§).

| job | | shop floor | | workcenterl | machine |

_ < operation com pleted
(a) leavingdob . data
checkouting workcented > update recording
. new state
receive
all changed statg
P update
WC status
receive
allchanged statu
release
you finished jobs
data < confirm checkout workcenter——o
recording register
incomingJob ev
(b) machineBD
< Operationinterrupte
data data
recording recording
-regi i i b >
re-register as incomingJoes update
receive new state
allchanged state
[4——e-allocate ir;comingJob-s—
request processing operatien >
(c) machineUp <+—machineUp—
check
buffer
<—e¢ -allocate incomingJobs

Fig. 4.19. Message passing for machine-relatedtsven
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The broken down machine sends a message to itggj@ft announcing an

interruption when a machine breakdown event igififiehe job then re-registers itself
with the workcenter as a waiting job while the maehupdates the workcenter about
its new state. Finally, the workcenter re-allocdhesinterrupted job according to its
new state and sends the job agent a “waiting”“pr@cessing” message. The job then

acts accordingly as described above in Fig. 4.19(b)

The machine will notify the workcenter about itswngtate when a machine up event
is fired and the workcenter will check its buffersee whether there are waiting jobs.
If there are, an allocation message will be sethéoappropriate jobs from the

workcenter, otherwise no messages will be generatad procedure is shown in Fig.

4.19¢).

45.2 Message passing upon concurrent eventsin a single agent

It is possible that there could be several evenitisiied at the same moment within
one agent. The message passing for possible cent@vents is described as
follows. A job agent can only have an incoming @ent in its event list and thus it
has no concurrent events. A machine agent candtawest two concurrent events: a
leaving job and a machine breakdown event. TheHed job is leaving the machine
and the machine’s state turns todmsvn The messages incurred are depicted in Fig.

4.20.
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job shop floor workcenter machine
operation completed
leavingJob
& [ request checkout > update
machine i P
receive all new state
break down changed machi
states
L update
) WC status
receive
allchanged stat
1 release N
you finished jobs
< c a—1
data heckout approv
recording register
incomingJob ev

Fig. 4.20. Message passing upon concurrent evéntachine breakdown and
leaving job in a machine agent

The workcenter agents, the shop floor agent anddh&oller agent do not initiate or
execute any events by themselves, but monitort#tessof the agents and coordinate

messages passing in their domains.

45.3 Agent co-ordination

The basic information flow in a simulation looplisstrated in Fig. 4.21. It starts
from sending all agents the current simulation tmith messages 1 to 4. Agents from
the lowest level then update their supervisor$eir tnew status, after event actions,
with messages 5 to 8. The messages contain thenafion on the time of their
respective next events. Finally, the controlleratpd the simulation time to the

earliest event time, and the next loop starts tifinanessages 9 and 10.
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Fig. 4.21. The basic information flow in a simutetiloop

A workcenter supervises several machine agentssamdponsible for coordinating
their messages to assure correct status updatiug, There are coordinating
messages of a workcenter agent between messagdss3 @imilarly, a shop floor

agent is responsible to coordinate workcentersutiftonessages 2 to 7 in Fig. 4.21.
4.5.4 Coordination work of a workcenter

The workcenter receives a time message from thye 8bor agent and then begins to
coordinate all the actions in the workcenter. Theshtomplex situation is when a
workcenter has to receive new incoming jobs andfats machines have
simultaneous due events. The goals of a workcangethus to ensure that: 1) new
incoming jobs are properly allocated, 2) the intpted jobs are re-allocated, 3)
waiting jobs are allocated when machines are &vail@) all machines update their
new status, and 5) completed jobs leave the wot&cef workcenter can only

update its new status to its supervisor aftehallabove goals are realized.
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Fig. 4.22. Co-ordination work of a workcenter agent

The co-ordination messages are illustrated in4&RR based on the most complex

situation mentioned above. A workcenter receivesrgw incoming jobs through

messages 1 and 2 before it receives a time mefsagenessage 3. It then checks the
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event list to determine the number and the typdseaf events and a waiting list can
be set up accordingly. For example, the workcentiéexpect to receive both a
“leave” request from the job and a new state updatifrom the machine if the event
for finishing a job is initiated. The workcenteethinitiates all the events by message

4.

The workcenter is contacted by all the expectedhinas and jobs through messages
6 and 7 after the event actions are finished. Towkeenter may be unbalanced at this
time with newly available machines and waiting jabshe buffer. It then allocates

the waiting jobs or re-allocates the interruptdasjto the machines through messages
8 to 10. The simulation time is forwarded througéssage 11 to all the machines,
which immediately update their status through mgsd42. Finally, the completed

jobs are approved to leave the workcenter througésages 13 to 16, and a

workcenter can update its new status through mesk&yg

455 Coordination work of the shop floor

The shop floor prepares to monitor all the dynamicthe moment it receives a time
message from the controller agent. The most congitaation fora shop floor agent

to co-ordinate is when the following dynamics ocsmmultaneously: 1) new jobs
come to the shop floor, 2) some traveling jobsvarat their workcenters, and 3) some
jobs in workcenters completed their operation anredr@ady to travel to the next stage.
The shop floor needs to ensure that: 1) all new pole registered, 2) traveling jobs
are received by their workcenters, and 3) jobsiteptheir workcenters reach the
shop floor. Only after all the above dynamics hagen handled, can the shop floor
agent update its new status to the controller agéw co-ordination messages are

given in Fig. 4.23.
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Fig. 4.23. Co-ordination work in the job shop agent
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The shop floor agent also receives a time messagagh message 1 and initially
makes sure that all the traveling jobs are recelbyetheir workcenters through
messages 2, 3 and 7. It then updates all workeewiér the new simulation time
through message 8. Meanwhile, there may be somgatesventering the shop floor:
they are handled through messages 4, 5 and 6.hbpeflsor agent is then notified of
the number of leaving jobs by the workcenters tglomessage 9 and starts to collect
all the expected leaving jobs through messaget idtifies all the workcenters to
update their new states through message 13 dfthedeaving jobs are collected.

Finally, it updates its new status to the contrcdigent through message 14.

46  Case Study

The case study pursued here adopts the data f@extimple on pages 684-695 of
Law and Kelton (2000). The MAS model runs on an AKpteron Linux Cluster
with 26 nodes (2.2GHz, 4GB RAM) + 8 nodes (2.4GB2GB RAM) in the Institute
of High Performance Computing (IHPC). The randormbar generator used in

simulation is proposed by L'Ecuyet al(2001).

46.1 Inputs

The studied job shop is shown in Fig. 4.24 witle fivorkcenters and one
Receiving/Shipping station. The machines in a paldr workcenter are identical
while the machines in different stations are digsimThe distances between the six
workcenters are given in Table 4.1. Jobs are t@atesp between workcenters by
MHDs assuming that there are sufficient numbehei are available and the time

spent on the trip is proportional to the distaneaveen the two locations.
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Fig. 4.24. Layout of the manufacturing system

Table 4.1. Distances between workcenters (feet)

Workcenter 1 2 3 4 5 6
1 0 150 213 336 300 150
2 150 0 150 300 336 213
3 213 150 0 150 213 150
4 336 300 150 0 150 213
5 300 336 213 150 0 150
6 150 213 150 213 150 0

Jobs arrive at the shop floor with inter-arrivahéis that are independent exponential
random variables with a mean of 1/15 hour. Theegtlaree types of jobs: 1, 2 and 3,
with respective probabilities 0.3, 0.5 and 0.2. 9gples 1, 2 and 3 require 4, 3, and 5
operations to be done respectively, and each openaiust be done at a specified
workcenter in a prescribed routing (technical oydehich is given in Table 4.2. Each
job enters the shop floor at the Receiving/Shipsitagion (workcenter 6), travels to
the workcenters on its routing and then leavesyiseem at the Receiving/Shipping

station. All MHDs move at a constant speed of % e second.

A job joins a single FIFO buffer if all the machsm the workcenter it reaches are

busy. The time to perform an operation at a pderamachine is given in Table 4.3.
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Table 4.2. Technical routes of jobs

Job type | Work stations in routing

1 3,1,2,5
2 4,1,3
3 2,5,1,4,3

Table 4.3. Processing times of all operations

Job type Mean service 'time for successive
operations (hours)
1 0.25,0.15,0.10, 0.30
0.15,0.20, 0.30
3 0.15,0.10, 0.35, 0.20, 0.20

46.2 Simulation reaults

The simulation ran 10 replications of 920 hourgtenwhich equals to 115 eight-
hour days. The results for different performanceasnees are listed in Table 4.4. The
first row shows the configuration of the job sheyinich is comprised of five
workcenters with four, two, five, three and two hiaes respectively. All
performance measures except Maximum Number in QaedéMaximal Size of

Working-in-Process are the average values of tperxents.

Table 4.4. Simulation results

Number of machines: 4, 2, 5, 3, 2

Number of forklifts: enough

Machine efficiency: 1

performance measure 1 2 3 4 5
Proportion machines busy (workcenter) 0.806 0.450 0.795 0.570 0.825
Average number in queue (workcenter) 1.662 0.137 0.653 0.276 0.790
Maximum number in queue (workcenter) 35 9 12 10 17
Average daily throughput (shop floor) 120.075

Average time in system (shop floor) 1.067

Average total time in queues (shop floor) 0.240

Maximal size of w orking-in-process (shop floor) 56
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46.3 Statistical calculation

A warming up period is first obtained using Welcht®cedure [Law and Kelton,

2000] on 920 hourly throughputs in each of thedlications. The moving average
Y (20) uses a window of 20, and is plotted in Fig. 4.25vaming up period of

| =120hours is obtained.

- muoving average for hourly throughput, w = 20

;
t1= 120

I I
0 60 120 180 240 300 360 420 480 540 600 660 720 7el 940 900 i

Fig. 4.25. Moving average of hourly throughputs

Then a 90 percent confidence interval for the stesgte mean daily throughput is

constructed a$200754_rt9’0.951/01'—24 or 120075+ 0.23, which contains 120, which is

the expected mean daily throughput.
4.6.4 Result analysis

The expected daily throughput is 120 jobs per 8rlgayy, which is the maximum

possible (because the inter-arrival times of jolesiadependent exponential random
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variable with a mean of 1/15 hour). The 90% confaeinterval built in the previous

section demonstrates that the system can readlydtadaughput of 120 jobs.

Table 4.5. Simulation results from [Law and Kelt8000]

Number of machines: 4, 2, 5, 3, 2

Number of forklifts: 2

Machine in workcenter 1 and 5 have efficiencies of 0.9

performance measure 1 2 3 4 5
Proportion machines busy (machines) 0.81 0.45 0.8 0.58 0.83
Average number in queue (workcenter) 16.55 0.25 2.15 0.49 46.73
Maximum number in queue (workcenter) 111.00 11.00 32.00 14.00 262.00
Average daily throughput (shop floor) 119.88

Average time in system (shop floor) 5.31

Average total time in queues (shop floor) 4.37

Maximal size of w orking-in-process (shop floor)

The simulation results of a similar system builtlawv and Kelton (2000) are listed in
the Table 4.5 to be compared to the results in€ldldl. Their system has more
constraints such as limited MHD and machine efficies while the case study in this
thesis assumes enough MHD and no machine breakd®ntim systems achieve 120
expected daily throughputs. This can be explainethé fact that Law and Kelton’s
system achieves the same level of proportion oy meschines despite of its limited
resources. However, the limited resources caudethetaverage and the maximum
number in the queues of Law and Kelton’s systemmaiger than those in the
current developed system. Subsequently, the avéirageof a job staying in the
system is longer in Law and Kelton’s system. Thash the statistical analysis and
the comparison with the existing report have vaéidahat the proposed DES-MAS

system can correctly simulate a dynamic job shop.
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The case study also takes the advantages of disdlzata collection and calculation
offered by MAS. All the data have been collected araintained by their most

related agents. For example, the average/maximumberts of jobs in queues are
collected by five workcenter agents and the shoprfhgent keeps those data that are
out of the scope of the other agents. Those dattharaverage daily throughput,
average time in system, average total time in gsiethe size work-in-process, etc.
The information of machine utilization can be prdpenaintained by each machine
itself. A workcenter can request the machine agensovide such information when
it needs to calculate the proportion of busy maehiunder its supervision. Thus the
burden of a centralized computation can be najudadtributed to different

computing entities.

47  Summary

An MAS simulating a real-life job shop is built @arder to provide a test bed for
studying approaches in a dynamic job shop enviroriniée essential architecture of
a job shop manufacturing system is first identifi@dd then built as a DES, which can
examine the performance of a system over a lorigghef time. The DES is
implemented as an MAS so that the intelligent ageah be used to realize

distributed computation and prompt reaction to ayitaevents.

This approach requires careful coordination amosmelists, which are distributed

in different agents, in order to maintain a corgotulation time. The coordination
involves communication among the agents. The agerlss model do not
necessarily lose their autonomy. The discrete evagttthe time steps and the agents
are autonomous within their event execution peritdhis way, a long-term

performance of an MAS can be examined.
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All the communication and state changes are clelautrated using UML sequential
diagrams and state charts. A case study demorsstrege@dvantage of distributed data
collection and analysis; it also validates the ps®al system by statistical analysis

and comparison to existing simulation results esmalar test case.

101



Chapter 5: Scheduler Agent and ACO

5 Scheduler Agent and ACO

In this chapter, the previous test bed is extenndaaclude a scheduler which uses
ACO to generate schedules. The ACO scheduler ifadés an agent in section 5.1.
The application of ACO for a dynamic JSSP and tleegdure of dynamically
updating the pheromone matrix are discussed imogest2. Finally, the

implementation of ACO as an MAS is presented inise®.3.
51  The scheduler agent

Implementing a scheduler agent in the MAS test medlies not only additional
coordination of the scheduler agents to the maistiag agents like the job, job shop
and workcenters, but also the coordination of thealviours within the scheduler
agent itself. However scheduler does not generate dynamic events asdhbte is

no change in the event management of the exististgoed.
5.1.1 Additional coordination related to the scheduler

The new agent, scheduler, can communicate witlotheshop floor and workcenter
agents. A job agent contacts both the shop flodrthe scheduler right after it has
been generated by the job releaser agent. Thedehedjent then prepares to
reschedule to include this new incoming job aceaydo its states. A shop floor agent
proactively requests the scheduler to update thedsde when necessary and
suspends its actions. The scheduler then updatie alorkcenters with new
schedules. All workcenters confirm to the schedrdgarding to the reception of
schedules; then the scheduler replies to the shopdgent that its request has been

fulfilled. At this time, the job shop resumes itenk.
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5.1.2 Coordination among behaviour sin the scheduler agent

The scheduler agent can be in either one of twesstalle or searching. It is idle
when all jobs are scheduled and the scheduleusds®therwise, it is in a searching
state. It should be able to receive new jobs aadtm® schedule requests anytime.
These two abilities are supported by the two inddpat and concurrent behaviours:
receive a new jolgFig. 5.1) andeceive schedule requegtsg. 5.2). The former
behaviour is initiated by the arrival of a new mipent and the latter is initiated by the
job shop agent. Meanwhile, solutions from the getnaés are collected through
“collect ant resultsbehaviour (Fig. 5.3). The following sections prasthe

flowcharts of those behaviours and the coordinagimong them.

5.1.2.1 Behaviour of receiving a new job

Fig. 5.1 presents the flowchart for the behavidueoeiving a new job, which

triggers the rescheduling procedure of the schedvhen it comes to the shop floor at
the reception/shipping section. The schedule shioal@ been updated by the time a
new job arrives at its first workcenter. This pastime is calledexpected due time

of reschedulingand the operations scheduled before this mometitébprevious

schedule should not be considered in the new stihggaroblem.
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[ receive a new job]

v

1.job_num ++

2.record the new expected tim

@D

expected time due?

no

no schedule issued?

store the job in 1.update ACO map;
newJobW aiting list 2.scheduleForDistribution = null

v

flag_searching =
true?

1.flag_issued = false;

2. flag_searching = true;

3.numOfRepliedAnts = 0; store the job in:

4. search_iteration =0; jobComeW henNoSchedulelsRequire

1.initiate CollectAntResults +
Behaviour

2. initiate ants

flag_NewProblemStart = true

o)

Fig. 5.1. The behaviour of receiving a new jobha scheduler agent

Upon receiving a new job, the scheduler agent asze the number of its jobs by
one, records the new expected due time and cheodther a previous schedule
request, if any, is due. The new job should beestéemporarily in the list called
jobComeWhenNoSchedulelsRequifathas not reached the expected time for
releasinga schedule and the scheduler is seeking a scheilfily named
flag_NewProblemStaiis then raised and marked in green color in Figy. B will be

handled in Fig. 5.3 in the location with the sam®c This mechanism is to
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synchronize the actions between two concurrent\neties: receiving a new job and
collecting ant results. However, the scheduleitstseeking schedules if it is idle at

the timea new job arrives.

A new job may come at the same time that a schesldiee to be issued. The
scheduler should guarantee that the due schedskuisd before the new job is
considered for rescheduling. If the schedule isissted, the new job has to be stored
temporarily in the list calledewJobWaitingand the procedure is colored pink in Fig.
5.1. It will be included to generate a new schediglat after the due schedule is
issued indicated in Fig. 5.3 in the procedure hggftéd with the same color. This
mechanism is to synchronize the two concurrentWaebes: receiving a new job and
receiving a schedule request. Otherwise, the relsding procedure is executed

immediately if the previous schedule is issued.

5.1.2.2 Behaviour of receiving a schedule request

Fig. 5.2 presents the flowchart of the behavioureckiving a schedule request. The
scheduler basically checks whether it is in theemdrstate of searching a schedule
and raises a flag calldthg_waitForScheduleyhich is marked in yellow color, to
wait for a schedule. Then the behaviour of collegctnt results can immediately
dispatch a new schedule once it is ready. The duoeds indicated in the procedure
marked in the same color in Fig. 5.3. This flagadywnizes the behaviours of

requesting schedule and collecting ant results.
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[receive a schedule requ%st

flag_searching =
true?

no

flag_waitForSchedule = true threw exception
[ end ]

Fig. 5.2. The behaviour of the scheduler agentive@ea schedule request

5.1.2.3 Behaviour of collecting ant results

The main goal of this behaviour is to collect ait eesults, update the best solution
and the pheromone matrix, and initiate ants tockeschedule for the next round of
searching (Fig. 5.3). The behaviour checks thedlagew job coming
(flag_NewProblemStaytwhen all the ant results have been collecteitidfraised,
the record of the best solution is removed angtieromone matrix/ACO map is

updated. A new problem is then formed and rescheglstarts.

However, searching continues if the problem isat@nged until the minimum

number of iterations is met. At that time, the skhie agent checks whether a
schedule requestigg_waitForScheduleis waiting. It should dispatch schedules to

all the workcenters if a request is made, otherwiseill continue to search to find
better solutions until a maximal number of iteratias reached. The list containing

the waiting jobsr{ewJobWaiting ligtis checked after the schedules are dispatched in

order to synchronize the concurrency between ajolwvent and a schedule request.
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4>[receive a result of an a}ﬂ

numOfRepliedAnts ++;

no

numOfRepliedAnts =
totallnitiatedAnts?

flag_NewProblemStar yes

t=true?

'

; 1l.update ACO map;
1. update shortest solution 2.flag_NewProblemStar
2. update pheromonmatirx - false:
3. search_iteration ++ 3.initiate a new problem
search_iteration 1.initiate
>= minimal No.? CollectAntResults
Behaviour

2.initiate ants
3.numOfRepliedAnts= 0

update scheduleForDistribution A
flag_waitForSchedule
=true?
1.distribute schedule; 1l.update ACO map
2.scheduleForDistribution = null 2.newJobW aitingList = null
3.reset parameters and flags 3.initiate a new problem

no

newJobW aitin glist
= null?

Fig. 5.3. The behaviour of collecting ant result$hie scheduler agent

107



Chapter 5: Scheduler Agent and ACO

5.2  ACO optimizer

In this section, the flowchart of the ACO algorithefirst illustrated; the
representation of the JSSP as well as the applicatiACO for dynamic JSSPs is

then described; finally, the implementation of A@®an MAS is described.

52.1 Notations
The notations used in the ACO algorithm are ligiedollows.

h is the index of iteration number

p; is the probability for an ant to travel from nade nodej ath™ iteration
t; (h) is the quantity of pheromone on the edge conngctotes andj ath™
iteration;

d; is the heuristic distance between nodasd;;
p is the evaporation coefficient, which can be a neshber between 0 and 1.0.

Aty (h) is the quantity of increased pheromone on the edgeecting nodeisand]

ath" iteration;

Q isaconstant representing the total quality of phenoenon a route;

f best so_ far) is the best value obtained so far optimizing tivery

evaluation(

objective.

5.2.2 ACO flowchart

The flowchart of the ACO algorithm is given in Fig4. The basic idea is to
repetitively initiate a set of ants, which walkarcommon environment (problem

graph) comprised of all the operations in aBSi®e operations are modeled as nodes
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in a graph, which is described in detail in Figh.Fach ant walks through all of those
operations (nodes) one by one and thus forms a,rafditich can be interpreted as
schedules and its length can represent the valsenoé performance measures like

makespan, flowtime, or tardiness. The goal of eatlhis to find a shortest route.

initiate counters:
iteration_cnt = 0;
shortest_length = 0;
best _solution = null;

v

initiate ants g

v

each ant finds a route
(decision making according to formula 5.1

v

find the shortest rout
update:

shortest_length
best solution
pheromone matrix (formula 5.2, 5.3

L]

N

D

no

| iteration_cnt++ |

Fig. 5.4. The flow chart of the ACO algorithm
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A walking ant leaves behind on its route some arhotipheromone, which changes
the global environment. The probability for an emthoose its next node is directed
by both the amount of pheromone on the route amdligtance from its current
location to the targeted one. Arthooses the next node according to the State

Transition Rule in formula (5.1) (Doriget al 1996).

F, () BT

1J

> (h)]“-HT

jeallowed-nodes

pij (h) =

(5.1)

The heuristic distancd; in this study is the sum of traveling time betwéfes current

workcenter to the target workcenter and the pracggsne of the operation in the
target workcenter. The environment is represenyeal pheromone matrix, which is
updated by the best solution at each iteration.ufeating can be described in

formulae (5.2) and (5.3) (Doriget al, 1996).

ey (h+D=(-p)t, (h)+ac, (h+1)

(5.2)
Q
At (h + ]_) - fevaluatiOn(beSt_ SO_ far)
0, otherwise
(5.3)

Pheromones on all edges evaporate at the rgtesofas to diversify the search

procedure into larger solution spaces and jumpmblatcal optima. The information
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of the best solution can be used to intensify aedaarch areas by strengthening the

pheromones on all the edges of the best route layremunt ofAr; (t +1) through

formula (5.2).

The centralized actions include choosing and kegthia best solution, as well as

deciding whether or not to continue solution segkin
5.2.3 ACO for job shop scheduling problems

Each job in a classical JSSP is comprised of skopeaations to be processed on
different machines. Generally, their technical esdend the processing times are
represented in a technical matrix TM and a proogstine matrix PM, respectively.
Each row of TM indicates the order of machines #ithe operations of one job will
visit while each row of PM indicates the procesdintes that all those operations
will take on their processing machines. Simple gxasof these are given as

follows.

{Ml M 2 Ms} {t(on) t(O,,) t(%)}
™ = PM =
M3 M1 M2 t(0,) 1(0,,) t(0,)

Fig. 5.5. The technical matrix TM and the procegsimatrix PM for a 2 x 3 JSSP

Fig. 5.5 presents a technical matrix and a proogssiatrix of a JSSP with two jobs

and three machines. The first job has three opers0,,, O,,, andO,, that will be
processed on machines M1, M2 and M3, in that oalet,its three operations need

processing times afO,;, ,)t(O,,), andt(O,; ) respectively.

111



Chapter 5: Scheduler Agent and ACO

The JSSP above can be represented as a grapb.@igNodes 1 to 6 represent
operationsO,;, O,,, to O;5, andO,,, O,,, to O,;. They are connected by horizontal

directional edges indicating the precedence cansirgiven in matrix TM. The bi-
directional edges indicate no ordering constraant®ng those operations. Dummy
nodes 0 and 7 representing the source and thetthle graph are the starting and the
ending points of routing. They are connected bgational edges to the first and the

last operations of all jobs, respectively.

:OM
1012

:021
:022

o OB W N

Fig. 5.6. The graph representing a 2 x 3 JSSP

Each edge is associated with a pair of vaI{utﬂasdij } representing the amouwif
pheromone on it and the heuristic distance betwleeiwo nodes it connects. The
value ofd; can be easily looked up from matrix PM while ttadue fort; should be
found in the pheromone matrix, which is updatedhgyants who found the best
solutions (Fig. 5.6). An example of the pheromoradrin for the previous JSSP is

shown in Fig. 5.7, which records the pheromoneeshbf all the edges connecting

every two nodes.
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No | Ny | N | Ny | Ng | Ng | Ng
0.1 0 0 0.1 0 0
0 016 0 0.18]0.19(0.20
0 0 0.180.19(0.20|0.21
0.20]0.21(0.22
0.16(0.15({0.14| O 022 0
0.17]10.16(0.15| O 0 0.24
0.18(0.17(0.16| O 0 0

=2
w
o o o o o o o
o
o
o

Fig. 5.7. An example of the pheromone matrix f@»a3 JSSP

The first row of Fig. 5.7 gives the pheromone valoéthe edges starting from node O
to the other six nodes (The pheromones of edge®titbat nodes 7 are not necessary
to be included). Only,, = 0dndt,, = 0.lexist since node O can only reach node 1
and node 4. Others are initiated to be 0. Simildhg second row gives the
pheromones of the edges starting from node.t,, andt,, do not exist and are
thus initiated as 0. The updating of the pheronmoatrix takes the majority of the
computation effort due to the dominant size ofgheromone matrinx m+1)?,

wheren and m are the sizes of jobs and machines, respectigslygach ant walks

through all the nodes in the matrix, the computaticomplexity is

O(s>< ux (nx m)z), wheres is the size of iterations and is the number of ants per

iteration.

Ant i cannot guarantee to find a feasible route for &PI&Fore it is equipped with

three lists: scheduled operation Ii§ ), accessible operation lisf(), and non-
accessible operation listNA ). List § includes the nodes that are visited by ignt

A stores the currently accessible noddg; stores the rest of the unvisited nodes.
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The size ofS increases as antproceeds in the graph. Finally, the ordered naues

list § form a complete route, which is a schedule forXB&.

5.2.4 ACO for job shop scheduling problem with parallel machines

It is assumed in a classical JSSP that there ysand machine in one workcenter.
However, in the present studied problem, it is amslithat there can be an arbitrary
number of machines in one workcenter. ACO demotestra good ability to be

adjusted to this change if a liM; recording available times of all machines in

workcenter | is maintained by arit. For example, M,, = {10, 13 21}

represents the available times of all three mashimevorkcenter 3 kept by ant 2.
Machine 1 is available from time 1.0; machine fasn time 1.3; and machine 3 is

from time 2.1.M,, becomesM,, = {18, 13 21} after an operation with a

processing time of 0.8 allocated to machine 1.

The rule to choose a machine among several avaitahthines is based on the times
that machines become available. In this studynibehine with the earliest available
time has the highest priority to be chosen, assgrmiinthe machines in one
workcenter are identical. A random one will be &ho# several machines have the
same earliest available times. This approach atbelsituation that some machines

have been idle for too long.
5.25 ACO inadynamic job shop scheduling environment

e Updating intermediate JSSP
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At each rescheduling moment, an intermediate J&SRohbe updated before the
ACO algorithm can be executed through updatingtitsromone matrix, which

involves updating of nodes and pheromone values.

The updating of nodes in the pheromone matrix Wwasatspects: deleting the nodes
that represent completed or processing operatinhsidding the nodes representing
all the operations of the new job. For examplegw job with three operations,,,

0,, andO,, arrives at the job shop at the moment that nodecdmpleted and node

4 is processing. The updating of nodes includestitgl all the cells related to node 1,

as well as adding in the three new nodes (Fig. 5.8)

0] 01 ) 01 pO) 01 | 0.1
006y 0 401810191020
0 0 |0.18 0291 0.20| 0.21
02071 0.21] 0.22
OGN QASNOXA N O j022 ) 0
01771016 0.15 0 0 |0.24
0:1810.17|0.16 [0 0 0

=
w
o o () o o (e’ o
(e
o
o

(a) Deleting the cells related to nodes 1 and 4

No | No | Na | Ns | Ne | Ny | Ng [ Ng
No 0 011]101(011f01 0.1] 01] 0.1
N, 0 0 0.18(0.20(0.214 0.1 0.1 0.1
Nj 0 0 0 0.21(0.22y 0.1 0.1 0.1
Ns 0 0.16[0.15( 0 0.24y 0.1 0.1 0.1
Ng 0 0.1710.16( 0 0 011 01| 0.1
N~ 0 0101 01| 01 O 0.1 0
Ng 0 0101 01| 01 O 0 0.1
Ng 0 0101 01| 01 O 0 0
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(b) Adding in three nodes 7, 8, 9

No | No | Ny | Ny | Ny | Ns | Ng | Ny
No 0 011010212 ]01]01]01]01
Ny 0 0 0.18(0.20(0.21| 0.1 | 0.1 | 0.1
N, 0 0 0 0211022 0.1 | 0.1 ] 0.1
Nj 0 0.16 [ 0.15| 0 0241 0.1 | 01| 0.1
Ny 0 0.1710.16| 0 0 01101101
Ns 0 0.1]021]01]01 0 0.1 0
Ng 0 0.1]01]01]01 0 0 0.1
N 0 0.1]021]01]01 0 0 0

(c) The updated pheromone matrix

Fig. 5.8. Update pheromone matrix

The cells related to node 1 include those fromuthele third column and the third
row while the cells related to node 4 include thivem the whole sixth column and
the sixth row. All of them are shaded in tabledBlrig. 5.8 and need to be deleted.
Three new nodes representing three operationsafdiv job are added to both ends
of the row and the column surrounded by black bardetable (b); all the new cells
are initiated with appropriate values. Finally, tiagles are re-numbered according to

the updated order and a new pheromone matrix isrgéed in table (c).

o Parameters constrained in dynamic environment

Updating the pheromone values of the new pherommatex can be with or without
an adaptation mechanism. In the former case, theopione values on all edges are
re-initiated while in the latter case, only the nedges are initiated and the others
remain unchanged. For example, the adaptation mesrhas presented in Fig. 5.8,

where only new edges within the frame of tablea(te)initiated and the others remain
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unchanged. In this way, some optimization infororin the previous problem can

be kept and a new schedule is sought based on it.

Given the computational complexity G(Sx ux (nx m)z) for the ACO approach,
increasing the values of the number of iteration$ &nd the number of ants per
iteration (U ) increases both the solution quality and the caatmnal time. Thus
they are constrained in a dynamic environment witlegeomputational timeslot for

each intermediate JSSP is always limited.

The value ofs can be a variable depending on the dynamism odytsiem in order to
produce an intermediate schedule as good as passiuls, the minimal and maximal
values ofs are considered. The value sf;, determines the minimal sets of ants that
can be initiated. Its role is to guarantee a mihicoaputational timeslot for each

intermediate JSSP. The valueg)f, determines the maximal sets of ants that can be

initiated. Its role is to avoid over-enhancementhef pheromone values on some

edges. A variables within[ s, S,.,] can improve the quality of an intermediate

min ?
schedule as much as possible in the current tesivhere the rescheduling procedure
and the event of a new arrival jo&/) run independently on different computational
threads; the rescheduling procedure is triggerédmnev. For example, ievarrives

befores,,;, is satisfied in the previous intermediate JS8Rexecution will be

min
delayed untils,;, is completed; otherwise, it can be immediatescexed.

Meanwhile, more iterations are allowed to initiates to improve the solution if the

rescheduling procedure is not stoppedbgnd s is not greater thas,, .

The values ol is also adjustable and its effects will be invesggl in the

experiments.
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53 ACO implemented asan MAS

5.3.1 Implementation

ACO is inherently a distributed methodology whicbhkes use of many individual
and local procedures, and it is particularly walted to parallelization. In this study,
the ACO algorithm can be implemented as an MASike the advantage of parallel

computation of distributed concurrent ants.

There are mainly two types of agents: environmedtant. The environment agent
maintains the pheromone matrix; it initiates acsetnt agents and collects their
solutions at each iteration; it also keeps the belsition and updates it during the
scheduling procedure. Each ant agent seeks itssolgdule independently, reports it
to the environment agent, and finally kills itseffd ceases its functions. The
responsibilities of the environment agent in thigly are fulfilled by several

behaviours of the scheduler agent mentioned inogebtl.

5.3.2 Functionsof MASIn this study

Thus, in this thesis, the MAS works not only agst bed to generate different
experimental scenarios and analyze results butealsm approach to implement the
ACO algorithm. A generic job shop simulated as é&Shdfurther implemented as a
MAS to be a test bed in order to systematicallggtine performance of control rules
and algorithms in reactive scheduling under diifi¢environments. The test bed
provides not only the basic entities simulatindnapsfloor and dynamic events, but
also facilities the execution of schedules andsuess the long term performance of

the proposed approach for several criteria. The AlgOrithm is implemented as an
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MAS taking the advantage of the concurrent commriaif independent ants, which

are modeled as agents. JADE is used to build th® Al@orithm as a pure MAS.
54  Summary

A scheduler agent using ACO as the optimizer & iombined with an existing

MAS test bed to simulate the scheduling functioa meal-world job shop. Next, the
ACO algorithm, its application to JSSP, the repnéstgon of JSSP in a graph, and the
procedure of dynamically updating the pheromoneimbhave been explained.
Meanwhile, the adaptation mechanism and two paemsievhich are constrained in
dynamic job shop environments, are also discu$sedlly, the implementation of

ACO as an MAS and the functions of MAS in the caotrgtudy are described.

6 Application of ACO for Dynamic

Job Shop Scheduling Problems

In this chapter, ACO is applied to two dynamic gateduling problems, which have
the same mean total workload but different dynaewels and disturbance severity.
Its performances on these two problems are stailtianalyzed and the effects of its
adaptation mechanism are next studied. Furtherrttueegffects of two important
parameters in the ACO algorithm, namely the mininmumber of iterations and the
size of searching ants per iteration, which corttrelcomputational time and the
solution quality of an intermediate scheduling peaf, are also investigated. The
results show that ACO can perform effectively irtbcases; the adaptation

mechanism can significantly improve the performanicACO when disturbances are
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not severe; increasing the size of iterations amsl per iteration does not necessarily

improve the overall performance of ACO.

6.1 Experimental design

It is assumed that the reception of a new jobtwidger a rescheduling procedure to
find a full schedule with makespan as performaneasuare within the computational
timeslot. The best-so-far schedule is then disgatth be executed in all

workcenters. The rescheduling procedure repeaiisiitpreset stop criteria are met.

6.1.1  Experimental environments

o Problem configuration

The dynamic job shop studied is shown in Fig. 4v&# five workcenters and one
receiving/shipping station. The numbers of machinegorkcenters 1 to 5 are 4, 2, 5,
3, and 2, respectively. The machines in the santkogater are assumed identical.
The distances between all the workcenters are givé&able 4.1. Jobs are transported
between workcenters by MHDs and the time spentmentop is proportional to the
distance between the two locations. All MHDs asuased to be moving at a

constant speed of 5 feet per second and they swenasl to be adequate.

New jobs arrive at the receiving/shipping statimoikcenter 6) and travel among the

workcenters according to their technical ordersfarally leave the system from the
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receiving/shipping station. There are a totablef120 types of jobs and each type of
job occurs with a probability df/5 and the total processing time for each job is 1

hour. The technical routes and processing timedl operations of the jobs are given

in Fig. 6.1.
Job type| Technical routes Job type Processing times (hours)
1 1,2,3,4,5 0.25, 0.15, 0.10, 0.30, 0.20
2 1,2,3,5 4 2 0.25, 0.15, 0.10, 0.30, 0.20
120 5,4,3,2, 1 120 0.25, 0.15, 0.10, 0.30, 0.20
(a) Technical routes (b) Processing times of all operations

Fig. 6.1. The technical routings and processingsimmf jobs

° ACO Parameters

The parameters of the ACO algorithm@re10.0,3 =10.0,p =0.01, Q= 1.0, and
1, = 05tuned by Zwaan and Marques (1999) to solve sedy&&P benchmarks.

They are adopted here as each intermediate JS8Rilsr to those benchmarks.

It is assumed that the computation timeslot detegohbys,;, is within the time
constraint in realistic applications. The followiage the default values; =25,

Smax =100 , andu = 10 .

o Intermediate objectives

A dynamic JSSP is comprised of a series of interated SSPs over time as

mentioned in section 3.4. Thus the performanceablig of those intermediate JSSPs
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has to be decided in order to yield the best tht@ughput, overall mean flow time,

or overall mean tardiness. Three performance meadar those intermediate JSSPs
are tested and they are the makespan, mean flowdindemean tardiness. Irrespective
of the intermediate performance measure, evaluattres are recorded for all the
three overall performance measures: total througlgwerall mean flowtime, and

overall mean tardiness.

6.1.2 Experimental variables

Jobs arrive at the shop floor with inter-arrivahéis that are independent exponential
random variables. The mean job inter-arrival timd the lot size are the two problem
variables that decide the utilizations of workcesitdwo levels of job-arrival
frequencies with the same mean size of total jobdested. In problem 1, jobs arrive
one by one with the mean job inter-arrival timaiise jobs per hour. In problem 2,
jobs are released in lots and arrive one lot par hadth nine jobs per lot. Jobs in one
lot can be different types and will be processéxig job. In both problems, the type
of a job is randomly decided so that each one®fl20D types has an equal chance to
be chosen. Thus the mean total processing timem#gdaon each workcenter is the

same.

The size of jobs in a lot determines the sevehiéy in underlying scheduling problem
is disturbed. For example, there are 16 unprocegsexhtions when a lot of new jobs
are released to the shop floor. The size of operatior the new intermediate JSSP is
22 if there is only one job with 6 operations ie tht. The old operations take about

73% (16/22) of the total operations in the new feob However, they take only 57%

(16/28) of the total operations in the new probléthere is one additional job (also
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with 6 operations) in the lot. Obviously, the urigieig problem is changed more

severely by the larger lot with two jobs than thea#ler one with one job.

The simulation for each problem runs five replioas for 200 simulation hours
(totally about 1800 jobs) and the warming-up tisi20 hours (about 180 jobs). Only
steady-state performance is measured and the &veafiges of five replications are

listed for all the performance measures.

6.2 Computational resultsand analysis

All the results are given in tables 6.1 to 6.6 féfemance measures like the proportion
of machine busy time, both the average and themmaxi numbers of waiting jobs in
queue are recorded by each workcenter agent wialaverage daily throughput, the
average time in system, the average total timeigugs, the maximum size of WIP
are recorded by the shop floor agent. The maximudntlae average sizes of

operations in the scheduling procedure are recdrgietie ACO scheduler agent.

Some general observations are as follows. Firsttykcenters 2 and 5 are bottlenecks
shown in all tables with utilizations of approxiraBt90%. Secondly, the machine
utilization is inversely proportional to the numlmdrthe machines in its workcenter.
The above two results are in accordance with tbis fhat the numbers of machines
in both workcenters are the smallest with only 2levhaving the same workload as
other workcenters. Thirdly, the improvement in #verage daily throughput and the
machine utilization can reduce the average and maxi numbers of waiting jobs in

a queue, the average time jobs spending in therayshe average total waiting times
jobs spending in queues, the maximal size of Wi, the maximal/average size of
operations of intermediate problems, which refl¢lsésoverall performance of ACO

as analyzed in section 3.4.1.2.
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6.21  ACO performance analysis

The performances of ACO in two dynamic JSSPs atrediin tables 6.1 and 6.2. The

200 hourly throughputs of the five replications iath problems with the adaptation
mechanism are plotted in figures 6.2 and 6.3 usioging averagé7i (20) with a

window of 20 (Law and Kelton, 2000) and a warmimgperiod ofl = 20 hours is

obtained. Next, 90 percent confidence intervalgtersteady-state mean daily

throughputs of the two problems are constructed2ag58t t, %3 (or

[72.097243) for Problem 1 and’3.97&tgy0‘951/%3 (or[73.1974.75]) for

Problem 2.

Table 6.1. The effects of pheromone adaptatioroblEPm 1
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Mean job inter-arrival time: 1/9 hour, 1 job/lot
ACO (with/without pheromone adaptation) (10 ants)

120 types of jobs (randomly)

Number of machines: 4, 2, 5, 3, 2
Simulation time: 200 hours
Warming up time: 20 hours

performance measure 1 2 3 4 5
Proportion machines busy (w orkcenter) 0.404/0.421 0.902/0.830 0.355/0.334 0.564/0.563 0.916/0.839
Average number in queue (w orkcenter) 0.703/5.764  5.558/36.115 0.404/3.316 1.297/14.793 5.838/35.726
. . 7.0(10)/ 21.2(28)/ 5.2(6)/ 9.4(12)/ 21.0(31)/
Maximum number in queue (w orkcenter) | o'y aq) 104.4(140) 14.0(24) 41.4(70) 77.6(123)

Average daily throughput (shop floor)

72.258/64.871

Average time in system (shop floor)

2.524/11.022

Average total time in queues (shop floor)

1.448/9.946

Maximal size of WIP (shop floor)

48.8(69)/216(380)

maximal size of ACO operations

138.8(198)/734.4(1335)

average size of ACO operations

59.8/285.8

Table 6.2. The effects of pheromone adaptatioroblBm 2

Mean job inter-arrival time: 1/1 hour, 9 jobs/batch
ACO (with/without adaptation) (10 ants)

120 types of jobs (randomly)

Number of machines: 4, 2, 5, 3, 2
Simulation time: 200 hours
Warming up time: 20 hours

performance measure 1 2 3 4 5
Proportion machines busy (w orkcenter) 0.438/0.462 0.922/0.924 0.364/0.361 0.617/0.617 0.935/0.935
Average number in queue (w orkcenter) 3.482/3.488 27.839/29.382  2.420/2.445 5.564/5.523 30.195/29.774
. . 15.8(17)/ 70.0(84)/ 15.2(18)/ 21.0(28)/ 69.8(87)/
Maximum number in queue (w orkcenter) | 7 ¢1) 80.4(86) 15.2(17) 22.4(26) 71.4(91)

Average daily throughput (shop floor)

73.973/73.929

Average time in system (shop floor)

8.426/8.545

Average total time in queues (shop floor)

7.350/7.469

Maximal size of WIP (shop floor)

151.4(178)/152.6(178)

maximal size of ACO operations

565.8(669)/569.4(683)

average size of ACO operations

275.4(364)/278.8

125




Chapter 6: Apply ACO to Dynamic Job Shop Schedufingblems

i il 40 i} a0 100 120 140 160 180 i

Fig. 6.2. Moving average of hourly throughputs odlgem 1 with adaptation

i 20 40 60 a0 100 120 140 160 180 i

Fig. 6.3. Moving average of hourly throughputs odlgem 2 with adaptation

The results show that ACO can perform well in badyhamic JSSPs to meet the
expected daily throughput of 72 jobs as the mesr-arrival time of jobs is 1/9 hour

and there are 8 hours per day.

6.2.2 The effectsof the ACO adaptation mechanism

The comparisons of ACO with/without adaptation aifbproblems are also listed in
tables 6.1 and 6.2. The daily throughputs drop ff@258 to 64.871 in Problem 1

(Table 6.1) and from 73.973 to 73.929 in Proble(itable 6.2) when the adaptation
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mechanism is first applied and then removed. Tlaagé is significant in Problem 1

and minor in Problem 2.

The results indicate that the adaptation mechahesmgreater effects in the situation
where disturbances are not severe as in problemd has little effect in the situation
where disturbances are severe as in problem 2of$@rvation can be explained as
follows. In problem 1, jobs arrive one by one aeijhboring intermediate JSSPs are
not severely different. A good solution can be ftimrough the adaptation
mechanism within a given computational timeslotwdger, in problem 2, there
would be not much difference between the pheronmoaieices with and without the
adaptation mechanism since the underlying probkembe dramatically changed by a

large lot.

6.2.3 Theeffectsof the number of minimal iterations

The results given in tables 6.3 and 6.4 show til@aeasings,,, deteriorates the
performance of ACO in both problems, especiallgrioblem 1 (72.258 fos,,, = 25
and 64.693 foss,,, = 40), when both problems adopt the adaptation mectmarisis

seems to be against the initial expectation tlaessing the number of minimal
iterations can increase the optimality of an intediate schedule and thus improve

the overall performance of ACO.

This phenomenon could be explained as follows. giteromone values of certain
edges are increased too much as the result ofisiags,,,, and the initial amount of
pheromone on the new edges introduced by new jetshes trivial. Thus the
pheromone matrix fails to properly represent a seleduling problem and is called

too rigid to find a new good solution. Thus, theetuler can only produce a worse
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intermediate schedule each time, especially irghlyidynamic environment where

the computational time is limited.

Table 6.3. Increase the number of iterations — IProi

Mean job inter-arrival time: 1/9 hour, 1 job/lot
ACO (Spin = 25/40 iterations) (10 ants)

120 types of jobs (randomly)

Number of machines: 4, 2, 5, 3, 2
Simulation time: 200 hours

Warming up time: 20 hours

performance measure 1 2 3 4 5
Machine utilization (w orkcenter) 0.404/0.419 0.902/0.826 0.355/0.332 0.564/0.560 0.916/0.835
Average number in queue (w orkcenter) 0.703/6.040  5.558/37.344 0.404/3.113 1.297/15.989 5.838/37.085
. . 7.0(10)/ 21.2(28)/ 5.2(6)/ 9.4(12)/ 21.0(31)/
Maximum number in queue (w orkcenter) |, aq) 78.2(140) 13.4(27) 45.4(75) 75.4(117)

Average daily throughput (shop floor)

72.258/64.693

Average time in system (shop floor)

2.524/11.458

Average total time in queues (shop floor)

1.448/10.382

Maximal size of WIP (shop floor)

48.8(69)/222(383)

maximal size of ACO operations

138.8(198)/778.2(1362

)

average size of ACO operations

59.8/300.2

Table 6.4. Increase the number of iterations — IErol2

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot

ACO (Spin = 25/40 iterations) (10 ants)
120 types of jobs (randomly)

Number of machines: 4, 2, 5, 3, 2
Simulation time: 200 hours

Warming up time: 20 hours

performance measure 1 2 3 4 5
Machine utilization (workcenter) | 0.438/0.459  0.922/0.918  0.364/0.334  0.617/0.530 0.935/0.930
Average number in queue (w orkcenter) 3.482/4.640 27.839/31.667  2.420/3.436 5.564/8.295 30.195/32.961
. . 15.8(17)/ 70.0(84)/ 15.2(18)/ 21.0(28.0)/ 69.8(87)/
Maximum number in queue (w orkcenter) | 4 o 55 73.6(90) 16.4(24) 25.2(37) 73.6(86)

Average daily throughput (shop floor)

73.973/73.138

Average time in system (shop floor)

8.426/9.657

Average total time in queues (shop floor)

7.350/8.581

Maximal size of WIP (shop floor)

151.4(178)/164(194)

maximal size of ACO operations

565.8(669)/598.6(687)

average size of ACO operations

275.4(364)/302.2(413)
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Table 6.5. Increase the number of ants per iteratiBroblem 1

Mean job inter-arrival time: 1/9 hour, 1 job/lot Number of machines: 4, 2, 5, 3, 2

ACO (u = 20/40)
120 types of jobs (randomly)

Simulation time: 200 hours
Warming up time: 20 hours

performance measure

1 2 3 4 5

Machine utilization (w orkcenter)

Average number in queue (w orkcenter)

Maximum number in queue (w orkcenter)

0.421/0.423 0.873/0.838 0.348/0.335 0.550/0.566 0.884/0.848

4.666/5.209 34.264/32.949  3.112/2.937 12.153/14.593 34.237/32.734

18.2(34)/ 75.2(143)/ 13.2(22)!/ 36.2(79)/ 72.8(122)/
22.2(34) 70(138) 11.8(21) 41.2(83) 68.6(116)

Average daily throughput (shop floor)

68.364/65.502

Average time in system (shop floor)

9.999/10.232

Average total time in queues (shop floor)

8.923/9.156

Maximal size of WIP (shop floor)

189.8(389)/200.2(382)

maximal size of ACO operations

626.6(1320)/674.2(1332)

average size of ACO operations

275.4(529)/262.6(531)

Table 6.6. Increase the number of ants per iteratiBroblem 2

Mean job inter-arrival time: 1/1 hour, 9 jobs/lot Number of machines: 4, 2,5, 3, 2

ACO (u = 20/40)
120 types of jobs (randomly)

Simulation time: 200 hours
Warming up time: 20 hours

performance measure

1 2 3 4 5

Machine utilization (w orkcenter)

Average number in queue (w orkcenter)

Maximum number in queue (w orkcenter)

0.434/0.453 0.916/0.903 0.319/0.355 0.614/0.605 0.929/0.914

4.940/9.140 31.686/37.849  3.372/6.538 8.251/16.221 33.826/37.819

19.8(32)/ 73.4(84)/ 17.6(23)/ 25.2(36)/ 72.4(87)/
30.0(41) 77.2(97) 27.4(36) 38.8(45) 75.6(94)

Average daily throughput (shop floor)

72.978/71.502

Average time in system (shop floor)

9.759/12.349

Average total time in queues (shop floor)

8.683/11.273

Maximal size of WIP (shop floor)

166.6(213)/177.6(282)

maximal size of ACO operations

599.8(679)/718.2(963)

average size of ACO operations

305.4(443)/358.6(507)
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6.24 Theeffectsof changing the number of ants per iteration

The results on the effects of changing the numbants per iteration are given in
tables 6.1, 6.2, 6.5, and 6.6, which show thattrerall performance of ACO
deteriorates as the size of ants per iteratioreas®s. For example, with other
problem parameters unchanged, the average dailyghput decreases from 72.258
(Table 6.3), 68.364 (Table 6.5), to 65.502 (Tab%g &s the size of ants per iteration
increases from 10, 20, to 40 in Problem 1 whileddw@e performance measure
decreases from 73.973 (Table 6.4), 72.978 (Tablg & 71.502 (Table 6.6) in

Problem 2.

The phenomenon can be explained as follows. A sdéedth a small makespan is
more likely found by more ants; subsequently, agrepheromone value is added on
the related edges. The optimality found in thisestthe will be fully realized if the
execution of the schedule is not disturbed by amachic/stochastic events.
However, once the execution is disturbed, the sdbédoptimality will not be able to
be fully realized. Furthermore, the amount of phesae left on edges by the
optimized but obsolete schedule may over-strergipheromone matrix, which,
similar to the situation in section 6.2.3, may beeaigid in capturing new
information introduced by new jobs and thus faigtee good schedules for the
subsequent intermediate problems. Thus, incredlsemgumber of ant per iteration
may lead to an inferior overall performance in aayic environment. For both cases
of with and without adaptation mechanism, ten getsiteration can provide best

solutions.

6.3 Summary
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A basic version of ACO has been applied to two dyica] SSPs with the same
workloads but different dynamic levels and distagoseverity. The computational
results show: 1) the ACO performs effectively irttboases; 2) the adaptation
mechanism of the ACO does have effects in situatwimere disturbances are slight
but have little effects in situations where disanbes are severe; and 3) improving
the optimality of immediate schedules but sacnficthe flexibility of the pheromone

matrix may lead to an inferior long-term performenc
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7 ACO Application Domains

The purpose of this chapter is to explore the apgtication domains that ACO can
be applied to in the area of dynamic JSSP. The demmaindescribing dynamic
JSSPs is comprised of three dimensions: nameliyelyeency of arriving jobs, the
variation of processing times, and performance omeas Given the total number of
jobs and performance objectivedhigh frequency of arriving jobs implies a highly
dynamic problem, which in turn is more difficultbe solved Sthrough algorithmic
approaches. The variation of processing timessdfethe range that a processing
time can take. More types of performance measugeeimized for intermediate

JSSPs and they are makespan, mean flowtime, amnul taveliness.

There are two series of experiments. The firsesaims to find the range of dynamic
levels that ACO can perform well and compares gropmances of ACO with
several dispatching rules in problems with différgynamic levels and performance
objectives. Next, the best ACO strategy and thé dispatching rule are found and
used in the second series of experiments to exfhereffects of the variation of
processing times. Their performances are compareédhe proper ranges that ACO
outperforms the best dispatching rule are idewtifla this manner, a general

understanding of the domains that ACO can be apjaitepy applied will be gained.
7.1 General experimental environment

General experimental environment and reschedutnagegjies are similar to those in

Chapter 6 and only some differences or importardrpaters are given as follows.
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7.1.1 Shop floor configuration

The simulation experiments have been conducteddh ahop with five workcenters
and a reception/shipping station, where new jobsetceived and completed jobs are
shipped. There is one machine in each workcenter tfiveling times between any

of two workcenters are given in Table 7.1.

Table 7.1. Traveling times between workcenters (§)ou

Workcenter 1 2 3 4 5 6
1 0 0.01 | 0.01 | 0.02 | 0.02 0.01
2 0.01 0 0.01 | 0.02 | 0.02 0.01
3 0.01 | 0.01 0 0.01 | 0.01 0.01
4 0.02 | 0.02 | 0.01 0 0.01 0.01
5 0.02 | 0.02 | 0.01 | 0.01 0 0.01
6 0.01 | 0.01 | 0.01 | 0.01 | 0.01 0

7.1.2 Job generation

Jobs have random processing times, random reledss a@nd the routing of each job
is generated randomly with every machine havinggual probability of being
chosen. Each job has five operations and procetisieg are drawn from different
ranges of the rectangular distribution. Three ranbat processing times can be
drawn are: 1.0-5.0, 5.0-10.0, and 1.0-10.0 (hodis¢. due date of a job is decided
following the total work-content method (Ramasd$90). The total work-content of
job i (TWK) refers to its total processing times and the diage- O;) setting follows

the formula:

di=ri+ c*TWK;

(7.1)

wherer; refers to the arrival time of the jolandc indicates the tightness of the due

date.c equals 2 in this study to provide a tight due tenehat the performance in
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terms of mean tardiness can be clearly shown. @olve at the shop floor with inter-

arrival times that are independent exponential sandariables.

The overall resource utilization of a job shop bardefined as the total processing
times required on its machines. The value is afibly the mean inter-arrival time

D and the mean processing tirReof the incoming jobs. The desired utilization rate
U can be expressed bk = D * P/ m wheremis the number of machines. An

increasing D leads to an increasitigvhen the values oP andmare fixed. Thus,

high machine utilization means highly dynamic JSSP.

7.1.3 Experimental parameters

There are a total of 2200 tested jobs and the gt&tate begins from the 200th job,
which is determined by the technique of the mowamgrage of hourly throughputs
(Law and Kelton, 2000). The state of the producsigstem between the arrival times
of the 20%' job and the 220 1job are then taken as steady state and data emllec
during this time are collected for statistical as&. Each simulation consists of five

replications.

The parameters of the ACO in this study @re100, p =100, p =0.01, andr, = 05

tuned by Zwaan and Marques (1999).is adjusted according to the mean values of

the processing times in order to give a reasonabiieence on the pheromone matrix.
For each intermediate JSSP, the minimal and maxiomabers of iterations are 25

and 100, respectively, and the number of antsietti per iteration is 10.

7.2 Experiments- |
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7.2.1 Experimental goals

The goals of this series of experiments are dedigmstudy the performances of the
ACO optimizing three different intermediate perf@mee measures, such as
makespan, mean flowtime, and mean tardiness, wngointermediate JSSPs under
different experimental conditions. The outcomescamapared with those from FIFO,
SPT, and MST for the same problems. Next, the AGBgithe best intermediate
performance measure, which generates the bestligverformance, and the best
dispatching rule are used to study the effectsftérént ranges of processing times in

section 7.3.

Three machine-utilization levels are tested ingkperiments: 70%, 80%, and 90%. It
is obvious that a greatél implies a larger number of operations to be scleztiat

any specified time, which implies a harder probteraddress. Thus, in all, there are
three ranges of processing times, three differgiitation levels, and three
optimization objectives, making totally 27 simutatiexperiment sets for the ACO

approach; and total 27 simulation experiment smtalf of three dispatching rules.

7.2.2 Reaults

All the results are presented in tables 7.2 to The. average values of five
replications for each simulation problem are reedrdVleasures of the maximal WIP,
total throughput, mean flowtime, and mean tardirzesdisted. Furthermore, the
maximal and the average numbers of operationsteimrediate scheduling problems

are also recorded for all instances of the ACO @gogdn in Table 7.8.

Table 7.2. Performances of ACO - processing timeging from 1.0-10.0 (hours)
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Utilization Aconizgmgdiate max. WIP total TP flgq\/ftxe ta??i?r?:ss
70% makespan 23.2 2000.2 56.659 10.863
mean flowtime 19.4 1999.6 49.825 6.364
mean tardiness 19.8 1998.8 50.0289 6.657
80% makespan 30.8 1997.6 74.835 25.638
mean flowtime 26.2 1998.8 65.552 18.474
mean tardiness 27.2 1998 66.595 19.469
90% makespan 60.2 2004.6 171.982 119.319
mean flowtime 52.2 2000.8 148.799 97.328
mean tardiness 51.8 2000.2 147.824 96.345

Table 7.3. Performances of Dispatching rules - @ssing times ranging from 1.0-
10.0 (hours)

Utilization Rules max WIP total TP flcinv\iﬁ]:e tarrlzj?r?enss
70% FIFO 22.8 1998.4 59.385 11.203
SPT 20 1999 51.723 6.555
MST 20.8 1998.8 57.363 8.261
80% FIFO 314 1998.2 79.410 27.536
SPT 24.8 1999.4 63.433 15.135
MST 27.2 2000.2 75.325 22.683
90% FIFO 50.6 2003.8 140.898 86.709
SPT 37.2 1999.8 97.571 45.989
MST 44 1999.8 138.154 83.689

Table 7.4. Performances of ACO - processing timeging from 1.0-5.0 (hours)

Utilization ACO intermediate max. WIP total TP mean mean
measure flowtime tardiness
70% makespan 22.6 1999 30.089 5.256
mean flowtime 19 1999.6 26.727 3.117
mean tardiness 20.4 1999 26.784 3.313
80% makespan 31.2 1998.8 39.211 12.437
mean flowtime 26.6 1998.4 34.587 8.993
mean tardiness 26.8 1998.8 34.854 9.384
90% makespan 53.4 2004 80.324 51.675
mean flowtime 50.4 2001.6 74.106 46.199
mean tardiness 47.4 1999.6 72.280 44.387
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Table 7.5. Performances of Dispatching rules - @ssing times ranging from 1.0-5.0

(hours)

Utilization Rules max WIP total TP flgquftxe ta??i?r?:ss
70% FIFO 22 1999.2 30.923 4.968
SPT 20 1998.8 27.687 3.279

MST 19.6 1998 30.130 3.643

80% FIFO 30.8 1998.4 40.843 12.771
SPT 25.2 1998.6 34.357 8.026

MST 26.8 1999.6 39.039 10.520

90% FIFO 47 .4 2002.6 70.563 41.049
SPT 36.8 1999.4 51.916 23.853

MST 40.2 2001.6 67.087 37.417

Table 7.6. Performances of ACO - processing timegiing from 5.0-10.0 (hours)

Utilization Acor;ltss":rzd'ate max. WIP total TP fIc;nvftia:]:e ta??i?r?:ss
70% makespan 22.6 1999.4 72.498 11.375
mean flowtime 19.6 1998.8 64.520 6.848

mean tardiness 20.4 1999.6 65.032 7.361

80% makespan 31 1997.8 92.127 26.671
mean flowtime 27.6 1996.8 81.502 19.158

mean tardiness 27.8 1998 83.193 20.639

90% makespan 50.8 2000.6 176.617 106.093
mean flowtime 48.2 2000.2 160.764 92.135

mean tardiness 47.6 1997.8 153.073 84.617

Table 7.7. Performances of Dispatching rules - @ssing times ranging from 5.0-
10.0 (hours)

Utilization Rules max WIP total TP flcinwetier:?e ta??jeir?enss
70% FIFO 21.6 1998.6 71.914 8.530
SPT 19.2 1997.8 68.433 8.026
MST 19 1998.8 71.152 6.392

80% FIFO 29 1998 93.053 23.868
SPT 25.8 1996.8 84.529 19.470

MST 24.4 1998.6 88.847 18.487

90% FIFO 44.6 1999 148.264 74.988
SPT 38.4 1997.6 124.880 55.398

MST 36.4 1999.8 136.226 62.350
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Table 7.8. Maximal and average sizes of intermediaheduling problems

machine o o o
utilization 70% 80% 90%
processing _ _ _ _ _ _ _ _ _
time range |1-0-10.0| 1.0-5.0 15.0~10.0{1.0-100| 1.0-5.0 |5.0~10.0 | 1.0-10.0 | 1.0-5.0 |5.0~10.0
max. 67.6 69.6 67.4 89.8 87.6 86.4 158.8 144.6 | 138.0
operauons
makespan
ave. 21.8 21.6 20.2 31.6 31.8 28 75 65.6 56.0
operauons
max.
ean operations 67 66.8 66.6 92.2 87.6 90.2 157.2 150.8 | 1446
flow time ave. 22.2 22 21.2 32.6 31.8 29.4 74.2 68.4 59.6
operauons
max.
mean operations 69 67.8 68.6 92 90.6 90.2 153.4 147.2 | 1394
tardiness ave
(c=2) operations 22 21.6 21.2 32.8 31.6 29.8 73.8 67.2 57.2

7.2.3 Discussions

First of all, it is observed that the differencésatal throughputs generated by all the
approaches for the same problem are very smallgiéegest difference is 4.4 jobs
occurring in two occasions of ACO approaches: wifierprocessing time range is 1.0
to 10 with 90% machine utilization (Table 7.2) amiden the processing time range is
1.0 to 5.0 with 90% machine utilization (Table 7 #he size of 4.4 jobs is considered
insignificant as compared to the total number @fleated jobs, which is 2000 in this
study. Thus, this performance measure will notusthér considered in the following

analysis.
7.2.3.1 Processing timesranging from 1.0 to 10.0 (hours)

e Identify the best ACO approach

Among the three intermediate performance measi@s, optimizingE performs
best when the machine utilizations are 70% and a@%example, it generates
overall mean flowtimes of 49.825 and 65.552 (hquasjll overall mean tardiness of
6.364 and 18.474 (hours) for machine utilizatiohg@%o and 80%, respectively

(Table 7.2).
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The results can be explained as follows. The méstmediate schedule chosen
according to the minimal makespan does favor timepdetion of more jobs.
However, this advantage is not prominent when theklead does not exceed the

machine capability, especially when machine utii@as are not high. Meanwhile, the
other two intermediate performance measures etplmptimize F andT .

Subsequently, the values of their ovef@dllandT are better than those from the first

approach.

Furthermore, the overall values Bf and T generated by minimizin@ are better

than those from minimizin& in all the problems where machine utilizations &0&6
or 80%. The former approach considers the reless of jobs and can facilitate the

jobs with earlier releasing times to be completadier. Thus it can improve both the

performances of andT . Finally, all the ACO solutions are outperformadthe
dispatching rules when the machine utilizationd8®and thus their performances are

not further analyzed.
e Identify the best dispatching rule

Among the three tested dispatching rules, the tijrag rule of SPT always
outperforms the other two in terms of mean flowtamel mean tardiness in most
cases (tables 7.3, 7.5, and 7.7). For examplealnel7.3 when processing times rang
from 1.0 to 10.0 hours, SPT performs best for &asures when the machine
utilization is 70% and it performs best for all meees except the total throughput
when machine utilizations are 80% and 90%. Thelamebnclusion is observed in
the cases when processing times rang from 1.®tbdurs (Table 7.5) and from 5.0

to 10.0 hours (Table 7.7).

139



Chapter 8: Conclusions and Future Work

This observation shows that to reduce the totalbemof operations in a system is

important to improve the overall performance.
e Compare the best ACO and the best dispatching rule

The comparisons of the best ACO and the best disjpaf rule in terms of mean
flowtime and mean tardiness are given in Fig. €¢doeding to Table 7.2 and Table

7.3.

Overall Mean Flowtime (1.0-10.0)
160
140 A
120
100
5 e - —e—SPT
o
< 60 e —=—ACO
—
40
20
0
70 80 90
machine utilization (%)

(a) mean flowtime
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Overall Mean Tardiness(1.0-10.0)

120
100
80 /
S —e—SPT
g f0 _=_ACO
40 i
0 ‘

70 80 90

machine utilization (%)

(b) mean tardiness

Fig. 7.1. Performance comparison when processingstiranging from 1.0 to 10.0
(hours)

In summary, the best approaches for the threedefehachine utilizations
optimizing F are ACO for 70% and SPT for both 80% and 90%. relspective best

values of overallF are 49,825 for 70%, 63.433 for 80%, and 97.57D@%%. Fig. 7.1
(a) indicates that the performance of ACO detetamdaster than SPT when the

machine utilization is beyond 80%.

Similar results can also be observed in the cae@kilhizing'?. The only difference
is that ACO outperforms SPT when the machine atiin is 80% (Fig. 7.1 (b)),
which means that the best approaches for the kwveés of machine utilizations for

ACO are 70% and 80%, and SPT for 90%.

7.2.3.2 The other two ranges of processing times
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The analysis for the ranges of 1.0 to 5.0 and& IDt0 are given in Fig. 7.2 and Fig.

7.3, which show similar results observed in thevjoes case in both the measures of

overall F andT.
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Overall Mean Flowtime (1.0-5.0)
80
70 -
60
_
5 50 ——SPT
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70 80 90
machine utilization (%)
(a) mean flowtime
Overall Mean Tardiness (1.0-5.0)
50
40 a
= 30 —e—SPT
2 5 _—* —=—ACO
0 ; :
70 80 90
machine utilization (%)

(b) mean tardiness

Fig. 7.2 Performance comparison when processingstirange from 1.0 to 5.0 (hours)
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Overall Mean Flowtime (5.0-10.0)
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5 100 ——SPT
2 o 7‘/ —=—ACO
60
40
20
0
70 80 90
machine utilization (%)
(a) mean flowtime
Overall Mean Tardiness (5.0-10.0}
90
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5 50 Prad —e—SPT
2 40 —=—ACO
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20 //
10 ——
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70 80 90
machine utilization (%)

(b) mean tardiness

Fig. 7.3 Performance comparison when processingstirange from 5.0 to 10.0

(hours)

7.2.3.3 Compare the normalized per formances of ACO
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The mean job processing times for the ranges at110.0, 1.0 to 5.0, and 5.0 to 10.0
are 27.5, 15.0, and 37.5 (hours) respectivelyrdieioto investigate the effect of the
variation of processing times on the ACO perforneaitice value of a normalized
performance is defined as the performance valudetivby the mean job processing
time. For example, the normalized mean flowtimeaote#d by ACO optimizing
makespan for intermediate JSSPs equals to 72.498A8i&n machine utilization is
70% and the range of processing times is 5.0 10 (tthurs) (Table 6). 72.498 is the
mean flowtime value and the 37.5 is the mean vafuke range 5.0 to 10.0. Thus, the

normalized performances for the best ACO in theages are illustrated in Fig. 7.4

where the values of overalF andT are divided by the respective job processing

times.
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ACO Normalized Flowtime

25 //.’
20 —+—1.0-10.0

(2]
3 15 —=1.0-5.0
< 10 W/‘/ 5.0-10.0

5
0
70 80 90
machine utilization (%)
(a) Normalized flowtime
ACO Normalized Tardiness
20

15 /

/ —+—1.0-10.0
10 —=—1.0-5.0

5.0-10.0
5 '/

0 T
70 80 90

machine utilization (%)

hour

(b) Normalized tardiness

Fig. 7.4 Comparison of normalized performances

The comparison shows that ACO for the range ot®10.0 performs best while

ACO for the range of 1.0 to 5.0 performs worstidoth mean flowtime and mean
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tardiness measures in all three machine utilizatiévs the sizes of tested jobs for all
the experiments are the same, which is 2200, thealzed performances suggest
that the variation of job processing times charegéeer the complexity of a dynamic
JSSP or the performance of ACO, or both. Furthetiss of the effects of the

variation of processing times are presented in@edt3.

The results also show that the performance of ACC@asely related to the average
size of its intermediate JSSPs. For example, Fgilldstrates the average sizes of
intermediate JSSPs of the best ACO for three madititizations and three ranges of
processing times, which are recorded in TableTh8.average operation sizes for the
range of 1.0 to 10.0 are greater than the otheranges for all three machine
utilizations and the results generated by ACO litg tange are the worst (Fig. 7.4).
Thus, it can be concluded that the performance@dAs inversely related to the

average size of its intermediate JSSPs.

Average Sizes of Operations

80
2 /‘
S 60 A
7 —e—1.0-100
(]
5 5.0~10.0
° 20
N
‘»
0

1 2 3

machine utilization (%)

Fig. 7.5 Average sizes of operations of intermedsaheduling problems

This can be explained as follows. The optimalityref schedule generated by ACO
decreases as the number of operations increasss thi@ same numbers of iterations

and ants. This inferior schedule in turn may insesthhe number of operations in the
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following JSSP, making it even harder to be solviéuis, the approach with fewer

operations averagely will always perform bettea ilong term.

7.2.4 Summary

In summary, the following observations can be mfadé¢he two performance

measures of mean flowtime and mean tardiness|lfthrae different ranges of

processing times.

1)

2)

3)

4)

5)

ACO optimizing mean flowtime for all the intermetisscheduling problems
performs better than the other two intermediatéoperance measures while SPT

is the best one among three dispatching rules.

ACO performs best when the machine utilization(%cAvhile SPT performs best
when the machine utilization is 90% in terms of méawtime and mean
tardiness for all the three ranges of processinggj both ACO and SPT can

outperform each other when the machine utilizaiso80%.

The machine utilization is an important factor affieg the performance of ACO.
ACO is outperformed by SPT quickly after the maehintilization reaches 80%.
This is in accordance with the findings by Sabumgtu@nd Bayiz, (2000): a)
there was not much difference between the optim@thods and heuristics when
uncertainty or variability was high; and b) thefpemance of the off-line

algorithm was affected more than the on-line methaal stochastic environment.

The complexity of a dynamic JSSP is also affectethb ranges of job processing
times and the overall performance of ACO is affddig the average size of

operations of intermediate scheduling problems.

The value changes for the performance measuregan rilowtime and mean

tardiness in different problem settings follow damitrends.
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7.3 Experiments- ||

7.3.1 Experimental goals

In the current section, experiments are carried@identify how the variation of
processing times would affect the dynamic problewch the performance of ACO.
Only the best ACO approach and the best dispatchieg SPT, are compared. Three
levels of processing time ranges: 7.0-8.0, 5.0518@ 1.0-14.0 (hours) are chosen to
represent three increasing levels of varietiesentfie mean operation processing
times are kept unchanged at 7.5 hours. The vamiafiprocessing times is the
smallest in the range of 7.0 to 8.0 (hours), foovby the ranges of 5.0 to 10.0

(hours), and then the range of 1.0-14.0 (hours)ed revels of machine utilizations

are tested: 60%, 70% and 80%.and T are also the overall performance measures.

Thus, there are totally 18 simulation problems @ach of them has five replications.

7.3.2 Reaults

The results are presented in Table 7.9 and Tab@®where the average values of five

replications for each problem are recorded.

Table 7.9. Flowtimes generated from ACO and SPT

machine | range of processing times

utilization| 7.0~8.0 5.0~10.0 1.0~14.0

149



Chapter 8: Conclusions and Future Work

60% 54.369 55.885 58.228
ACO 70% 61.693 6452 68.938
80% 76.156 81.502 92.078
60% 59.37 57.052 61.126
SPT 70% 69.557 68.433 70.964
80% 87.04 84529 87.917

Table 7.10. Tardiness generated from ACO and SPT

machine | range of processing times
utilization| 7.0~8.0 5.0~10.0 1.0~14.0
60% 1.938 2.449 3.342
ACO 70% 547 6.848 9.549
80% 15476 19.158 27.665
60% 3.6 2.644 3.879
SPT 70% 9.136  8.026 9.216
80% 22064 19.47 21.694

7.3.3 Discussions

The results in tables 7.9 and 7.10 can be illustrat Fig. 7.6 and Fig. 7.7 for the
measure of mean flowtime and mean tardiness, regplc The horizontal axis
represents the range of processing times whertetsi® the range of 7.0 to 8.0
(hours); 2 refers to the range of 5.0 to 10.0 (Bpu# refers to the range of 1.0 to 14.0

(hours).
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Mean Flowtime of ACO and SPT

/

—e—aco 60%
—=—aco 70%
aco 80%

5
2 —4— spt 60%
—%—spt 70%
—e—spt 80%
1 2 3
processing time range
Fig. 7.6 Flowtime generated from ACO and SPT
Mean Tardiness of ACO and SPT
—e—aco 60%
—=—aco 70%
5 / aco 80%
2 —4— spt 60%
—%—spt 70%
—e—spt 80%
1 2 3
processing time range
Fig. 7.7 Tardiness generated from ACO and SPT
e ACOvs. SPT

In both figures, the top two lines represent theies of mean flowtimes or mean

tardiness generated by ACO and SPT for the thragesaof processing times when
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the machine utilization is 80%. Similarly, the mieldwo and the lowest two represent

those values when machine utilizations are 7096894, respectively.

Both figures show that ACO outperforms SPT in@ditéd problems for both
performance measures in all processing time ra@gespt for the only occasion
when processing time range is from 1.0 to 14.0thadnachine utilization is 80%. It
can be concluded that the performance of ACO deegseas the variations of
processing times increase, especially, when thdimaaitilization is high. However,
this is not the case for SPT, which performs etteb for all the three machine
utilizations when the processing times are in #mge of 5.0 to 10.0 (hours) than in

the other two ranges. The observations are morarappin Fig. 7.6.

Furthermore, ACO increasingly outperforms SPT fbmechine utilizations when

the variations of processing times decrease fr@m1D.0, to 7.0~8.0 and its
superiority reaches the highest when the machitieation (dynamic level) is 80%
and processing times range from 7.0 to 8.0 (holits).value of mean tardiness
generated is 15.476 hours from ACO while it is BZ.0ours from SPT (Table 7.10
and Fig. 7.7). The difference of 6.588 hours betwihe two approaches is significant
as the overall tardiness is obtained by multiplying mean tardiness with the total

number of jobs, which is 2000 here for the stedadiesanalysis.

e ACO in different ranges of processing times
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Fig. 7.8 Comparison of ACO performances in diffén@mges of processing times

The results are further illustrated in Fig. 7.8jahhalso shows that the performances
of ACO in terms of mean flowtime and mean tardireegsinversely affected by the
variations of the processing times. That is, thdopmance of ACO increases when
the ranges of processing times decrease from 1.0/-834~10.0, to 7.0~8.0 for the

same machine utilization.
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734 Summary

The main findings of this section are as followSE@ can perform very well in the
following situations: 1) when the machine utilizatiis not high, for example, below
90%, and 2) when the variation of processing timesnall. In the latter case, the
advantage of ACO can be further enhanced when #uhime utilization increases

within 90%.
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8 Conclusions and Future Work

This chapter first summarizes the work reportethis thesis in section 8.1. Section
8.2 highlights the contributions and the conclusiorade in the previous chapters.

Finally, future research directions are outlinedeation 8.3.
8.1 Research work summary

The thesis first presents a general backgroungmdmic JSSP. The state-of-the-art
predictive-reactive scheduling, MAS scheduling, apglications of ACO on
scheduling related problems are reviewed. Thenatdactors that characterize a
dynamic JSSP as well as the factors that affectvigsall performance are analyzed.
Thereatfter, the test bed for systematically stuglgignamic JSSPs is built, validated

and extended to include an ACO scheduler agent.

Extensive experiments are carried out to preseneftectiveness of ACO in solving
dynamic JSSPs and the effects of the adaptatiohanésm of ACO in the
experimental environments characterized with défeéidynamic levels and
disturbance severity. Two important ACO parameteas)ely the number of
iterations and the size of ants per iterationtaned in order to improve the overall
performance under the same problem settings. Firth# appropriate application
domains of ACO are experimentally found by tes#@O in many dynamic JSSPs
defined by three dimensions of dynamic levels, gssing time distributions and

intermediate performance measures.
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8.2 Contributions

A number of original contributions are listed iretight of the work carried out in this

thesis.

8.2.1 Detailed analyssof dynamic JSSP

Detailed analyses of the internal factors that atigrize a dynamic JSSP as well as
the factors that affect its overall performancegiven. The analyses have led to the
understanding that the characteristics of a dyna®8P can internally determinate its
solution approaches and therefore the potentialestes that are appropriate for
optimum-seeking algorithms can be predicted. Funtioee, the factors that can affect
the performance of a predictive-reactive approaelaaalyzed. Finally, the
systematic ways of testing a proposed schedulitignique are identified and the

domain classification of dynamic JSSPs is introdumecording to this analysis.

8.2.2 Proposal of ageneric test bed combining DESand MAS

A novel test bed combining the MAS technology arlShas been built to provide
scenarios foa systematic study of dynamic JSSPs. This test badest traditional
approaches like dispatching rules, mathematicahau, or metaheuristics and pure
MAS scheduling techniques on their long term perfance. To the best of the
author’s knowledge, this is the first implementataf MAS with DES for job shop

systems.

8.2.3 Development of a ssimulation softwar e prototype

A simulation software prototype was designed us&iM). and developed to apply

ACO to many dynamic JSSPs. The software was impiéeden pure JAVA and
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based on the JADE platform, which makes it extdadir simulating many other
types of shop floor configurations, dynamic eveats, It is also equipped with
graphs to dynamically exhibit intermediate schesluteGantt charts. Furthermore,
the MAS approach makes it possible to be concuyreleployed on several

computing nodes and thus the software has the ftémsolve large sized problems.

8.2.4 Better understanding of ACO in dynamic JSSPs

A substantial amount of experiments have been dedigccording to the analyses in
Chapter 3 to show the effectiveness of the adaptaiechanism of the ACO
pheromone-matrix and the effectiveness of ACO foragnic JSSPs, improve the
performance through adjusting the ACO parameteis fiad the appropriate

application domains.

The results show that the adaptation mechanisineoACO can facilitate the
adjustment to a new good schedule when a new jelrimpts, but this advantage
disappears when the frequency of the dynamic evemt® low or the pheromone
matrix is over strengthened by too many numberteadtions or too many ants per
iteration. In general, the performance of ACO imayic JSSPs is affected not only
by the distributions of new jobs in time and ove tvorkcenters as well as the batch
size, but also its internal important parametech ss the size of ant per iteration and
the total number of iterations for one solution.@@utperforms several main
dispatching rules in domains 1) where machinezatiion is not higher than 90%, 2)

where the variation of processing times is small.

8.3 Further studies

8.3.1 Study other scheduling techniquesusing the current test bed
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The most obvious direction is to study new schedulechniques, like genetic
algorithms, tabu search, simulated annealing, éspethose from the MAS
scheduling field, etc. to solve dynamic JSSPs takie advantages of the current

DES-MAS test bed in identifying their long-term fagmances.

The test bed developed can also be used to benkhiyr@amic/stochastic scheduling
problems so that new algorithms developed in theréucan be systematically studied

based on those typical scenarios.

8.3.2 Usingthe current scheduling techniqueto solve other problems

The proposed ACO can be applied to new problemergésd through extending the
current test bed. For example, the test bed cdmdaanore dynamic/stochastic events
like machine breakdowns, processing time variafiongven job due-time settings.
The increased complexity may provide new domaias ACO can have a better

performance.

The test bed can also be extended to simulate tyihes of manufacturing systems

such as Flexible Manufacturing System or flexilole $hop.

8.3.3 Explorewaysto improve the performance of ACO

The performance of ACO can be further improvedrimaly and externally in a given
dynamic JSSP. The internal approach is to systeaigtadjust its own parameters or
introduce some hybrid versions of ACO, which sha#tdr performance than the
basic version of ACO in static scheduling probleths; external approach is to
explore other control strategies as illustrateBim 2.2 through the use of partial

schedules, the periodic driven rescheduling, etc.
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