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Summary 

A job shop manufacturing system is specifically designed to simultaneously produce 

different types of products in a shop floor. Job shop scheduling problems (JSSPs) 

have been studied extensively and most instances of JSSP are NP-hard, which implies 

that there is no polynomial time algorithm to solve them. As a result, many 

approximation methods have been explored to find near-optimal solutions within 

reasonable computational efforts. Furthermore, in a real world, JSSP is generally 

dynamic with continuous incoming jobs and providing schedules dynamically within 

constrained computational times in order to optimize the system performance 

becomes a great challenge.  

The developments in both areas of multi-agent systems (MAS) and the behaviour of 

foraging ants have inspired the current studies to build a scheduling system that can 

provide quality schedules for a dynamic shop floor. A group of foraging ants is a 

natural MAS with an internal mechanism to dynamically optimize the routes between 

their nest and a food source. This optimization mechanism is realized through simple 

interaction rules among ants and modeled as an algorithm titled Ant Colony 

Optimization (ACO), which is promising in solving dynamic JSSPs.  

In this thesis, a common test bed simulating a generic job shop is firstly built to 

facilitate a systematic study of the performance of the proposed dispatching rules and 

algorithms in a dynamic job shop; this is first simulated as a discrete event system 

(DES) to provide long-term performance evaluations; thereafter it is implemented as 

an MAS so that data collecting and analysis can be naturally distributed to the most 

related entities and events can be executed simultaneously at different locations.  
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Secondly, the test bed further includes a scheduler agent employing ACO to 

dynamically generate the schedules. The effectiveness of ACO is demonstrated in two 

dynamic JSSPs with the same mean total workload but different dynamic frequencies 

and disturbance severity. The effects of its adaptation mechanism are next studied. 

Furthermore, two important parameters in the ACO algorithm, namely the minimal 

number of iterations and the size of searching ants per iteration, which control the 

computational time and the quality of the intermediate solutions, are also examined. 

The results show that ACO performs effectively in both cases; the adaptation 

mechanism can significantly improve the performance of ACO; increasing the 

numbers of iterations and ants per iteration do not necessarily improve the overall 

performance of ACO.  

Finally, experiments were carried out to identify the appropriate application domains 

defined by machine utilizations, ranges of processing times, and performance 

measures. The steady-state performances of ACO are compared with those from 

dispatching rules including first-in-first-out, shortest processing time, and minimum 

slack time. The experimental results show that ACO can outperform other approaches 

when the machine utilization or the variation of processing times is not high, 

otherwise, the dispatching rules will have a better performance.   

 

 



Nomenclature 
 

xi 

Nomenclature 

A the machine environment in the n/m/A/B classification scheme 

ACO ant colony optimization 

ACS ant colony system 

AC2 ant colony control 

Ai accessible operation list 

ANTS approximate non-deterministic tree search 

AS ant system 

ASrank the rank-based AS 

B  the field of performance measures in the n/m/A/B classification scheme 

BMS biological manufacturing system 

c  the tightness index for setting the due date of jobs 

Ci  the completion time of job Ji  

Cmax the makespan of job Ji, Cmax = ]max[ iC , where i = 1, …, m.   

DES discrete event system 

di the due date of job Ji 

ijd
 

the heuristic distance between nodes i and j 

e the base of the natural logarithm (e = 2.71828…) 

ev the event of a new arrival job 

EDD the earliest due date dispatching rule 

EAS the elitist strategy for AS 

Fi the flowtime of job Ji, iii CrF �    

FIFO first-in-first-out dispatching rule 

FMS flexible manufacturing system 



Nomenclature 
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FrMS fractal manufacturing system 

FSP flow shop problem 

F   the mean flowtime of all the jobs in a schedule, F =  ¦
 

n

i
iF

n 1

1
 

G a job shop 

GSSP group shop scheduling problem 

h   the index of iteration number in the ACO scheduling procedure 

HMS holonic manufacturing system 

JADE  Java Agent Development Framework 

Ji the ith job arrived at the shop floor 

JSSP job shop scheduling problem 

k  the number of occurrences of an event  

l the starting point of the steady state 

m the total number of machines or workcenters 

M machine 

MAS multi-agent system 

MHS material handling system 

Mi the ith machine 

Mij the available times of all machines in workcenter j  maintained by ant i  

MST minimum-slacktime dispatching rule 

n the total number of jobs 

NAi non-accessible operation list 

Oij  the jth elementary task of job i to be performed on a machine 

P-ACO  population-based ACO 

pij  the processing time of Oij  
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pij(h)
 

the probability for an ant to travel from node i to node j at hth iteration 

P  the mean processing time 

PCi the total processing times of all the operations of job iJ  

P-O-P-M position-operation-pheromone-matrix 

Q  the constant representing the total quality of pheromone on a route;  

r i  the release/arrival time of job Ji 

s the size of iterations 

smax the maximal sets of ants that can be initiated 

smin the minimal sets of ants that can be initiated 

Si scheduled operation list 

SPT shortest-processing time dispatching rule 

t time  

Ti the tardiness of job iJ , )](,0max[ iii dCT �  

TSP traveling salesman problem 

T   the mean tardiness of all jobs in a schedule, ¦
 

 
n

i
iT

n
T

1

1
 

TCi the technical order of job iJ  

TWKi the total work content of job iJ   

u  the number of ants per iteration 

U  the utilization rate of a resource 

UML unified modeling language 

D   the importance index of pheromone 

E  the importance index of distance heuristic  

� a positive real number in a poisson distribution 

D  the mean inter-arrival time 
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U  the evaporation coefficient, which can be a real number between 0 and 1.0. 

ijW  the quantity of pheromone on the edge connecting node i and node j 

)(hijW  is the quantity of pheromone on the edge connecting nodes i and j at hth 

iteration 

� �hijW'  the quantity of increased pheromone on the edge connecting nodes i and j at 

hth iteration;  

-   the rate parameter in the exponential distribution, -  > 0  
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Chapter 1: Introduction 

1 

1 Introduction 

A background of the research in dynamic job shop scheduling is presented in this 

chapter. Section 1.1 classifies manufacturing environments and gives the roles of 

scheduling in manufacturing production management. Section 1.2 presents the 

notions, definition, representation, roles, and the classification of classic scheduling 

problems. The classification of schedules and the complexity of classical job shop 

scheduling problems are also described. Section 1.3 introduces dynamic scheduling 

problems and discusses the main approaches to solve them in the fields of industry 

and academic research. Section 1.4 gives the motivations for this research and section 

1.5 identifies the research goals and the methodologies. Finally, section 1.6 elaborates 

the outline for the remaining parts of the thesis.  

1.1 Manufacturing environments  

1.1.1 Classification 

Manufacturing environments can be classified into five types: job shop, project shop, 

cellular system, flow line and continuous systems (Chryssolouris, 2006) (Fig. 1.1). In 

a job shop (Fig. 1.1, (a)), machines with the same or similar material processing 

capabilities are grouped together in workcenters. A part moves through the system by 

visiting the different workcenters according to the part’s process plan. In a project 

shop (Fig. 1.1, (b)), a product’s position remains fixed during manufacturing because 

of its size and/or weight and materials are brought to the product as needed.  
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Fig. 1.1 Schematics of five types of manufacturing systems (Chryssolouris, 2006) 
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In a cellular system (Fig. 1.1, (c)), the equipment or machinery is grouped according 

to the process combinations that occur in families of parts. Each cell contains 

machines that can produce a certain family of parts. In a flow line (Fig. 1.1, (d)), the 

machines are ordered according to the process sequences of the parts to be 

manufactured. Each line is typically dedicated to one type of parts. Finally, a 

continuous system (Fig. 1.1, (e)) produces liquids, gases, or powders in a continuous 

production mode. 

One lot of jobs refers to a batch of jobs which are simultaneously released to a 

manufacturing shop floor and the lot size directly affects inventory and scheduling. 

Generally, the lot sizes that can be processed by a discrete manufacturing system, 

which works on discrete pieces of products like metal parts, are related to the types of 

manufacturing systems. Normally, job shops and project shops are most suitable for 

small lot size production, flow lines are most suitable for large lot size production, 

and cellular systems are most suitable for production of lots of intermediate size. It 

can be seen from Fig. 1.2 that lot sizes in job shops range from 1 to 100 jobs.   

1 100010010 10000

��������

������������
������������

��������

��������
��������

Lo t Size

job s hop

cellular
sys tem

projec t shop

flow line

 

Fig. 1.2 Suitable manufacturing system types as a function of lot sizes (Chryssolouris, 

2006) 
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1.1.2 Manufacturing production management  

The production management and control activities in a manufacturing system can be 

classified as strategic, tactical and operational activities, depending on the long, 

medium or short term nature of their tasks (Hopp and Spearman, 2000; Chryssolouris, 

2006).  
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Fig. 1.3 The information flow diagram in a manufacturing system (Pinedo, 2002) 

The information flow diagram in a manufacturing system modified from Pinedo 

(2002) is given in Fig.1.3 to illustrate the relationship of those activities at different 
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levels. The strategic production management decides issues related to the 

determination of products according to the market demands or forecasts, the design of 

the manufacturing systems to produce those products, the generation of master 

schedule to meet the capacity requirement, etc. The tactical production management 

decides issues relating to the generation of detailed plans according to the master 

schedule. The results of this stage, such as shop orders with release and due dates are 

passed to the lower control level, i.e., the operational production management, which 

decides the processing of those orders on the shop floor in order to fulfill the order 

requirements, and at the same time, optimizes the performance of the manufacturing 

system. It needs proper scheduling strategies to meet those requirements. After 

scheduling, the schedule is transferred to the shop floor and the implementation of a 

schedule is often referred to as dispatching (Vollmann et al, 1992).  

1.2 Classical scheduling problems 

1.2.1 Notions 

Important notions adopted in the current thesis are defined as follows. 

An operation (Oij) refers to the jth elementary task of job i to be performed on a 

machine.  

A job (Ji) refers to the ith job which has a set of operations that are interrelated by 

precedence constraints derived from technological restrictions.  

The processing time (pij) of an operation is the amount of time required to process 

operation Oij.  
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The setup time refers to the time required by a machine to shift from the current status 

to the next one in order to process the next operation. In the current studies, setup 

times are independent of operation sequence and are included in the processing time.  

A machine (M) is a piece of equipment, a device, or a facility capable of performing 

an operation. 

The due date (di) of job i is the time by which the last operation of the job should be 

completed.  

The completion time (Ci) of job i is the time at which processing of the last operation 

of the job is completed. 

1.2.2 Definition, representation, and roles 

Scheduling deals with the allocation of scarce resources to tasks over time. It is a 

decision-making process with the goal of optimizing one or more objectives (Pinedo, 

2002). The result of a scheduling procedure generates one or several schedules, which 

are defined as plans with reference to the sequence of and time allocated for each item 

or operation necessary to complete the item (Vollmann et al, 1992). A schedule can 

be represented as a Gantt Chart, which is a two-dimensional chart showing time 

along the horizontal axis and the resources along the vertical axis. Each rectangle on 

the chart represents an operation of a job, which is allocated to certain time slots on 

that resource. A Gantt Chart can be machine-oriented or job-oriented and examples 

for both types are presented in Fig. 1.4, where jobs J1 and J2 are scheduled. O11, O12, 

and O13 are three operations of J1 and O21, O22, and O23 are operations of J2. The 

processing time of each operation is included in parentheses.  
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(b) Job-oriented Gantt Chart 

Fig. 1.4 Examples of machine- and job-oriented Gantt Chart 

The main goal of manufacturing production management is to meet demands in a 

timely and cost-effective manner. In most manufacturing environments, especially in 

those with a wide variety of products, processes, and production levels, the 

construction of advance schedules is recognized as central to achieving this goal. 

Scheduling in manufacturing systems is very important for its roles in maximizing 

throughput and resource utilization, meeting due dates of orders, reducing inventory 

levels and cycle time, etc. Even small improvements in those measures can lead to 

considerable profit and thus increase the competitiveness of a factory.  
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Furthermore, a production schedule can enable the anticipation of potential 

performance obstacles and provide opportunities to minimize their harmful effects on 

the overall system behavior; it can enable better coordination to increase productivity 

and minimize operating costs; it can identify resource conflicts, control the release of 

jobs to the shop floor, and ensure that the required raw materials are ordered in time. 

A production schedule can also determine whether delivery promises can be met and 

identify time periods available for preventive maintenance; it gives shop floor 

personnel an explicit statement of what should be done so that supervisors and 

managers can measure their performance (Vieira et al, 2003). All these contribute to 

decreasing the cost of production and increasing profits for a factory.  

1.2.3 Classification of scheduling problems 

A scheduling problem can be described based on the n/m/A/B classification scheme of 

Graham et al (1979). n is the number of jobs; m is the number of machines; the A 

field describes the machine environment. The B field describes the objective to be 

optimized and usually contains a single entry.  

1.2.3.1 Machine environments  

The possible machine environments are single machine, flow shop, job shop, etc. The 

current studies focus mainly on job shop with the definition as follows.  

In a job shop (G), there are m machines , M1, … Mm, which are different from each 

other, and a set of n jobs J1, … Jn, which are to be processed on those machines 

subject to the sequence constraints of their operations. Job Ji ( ni dd1 ) consists of mi 

operations 1iO , … 
iimO  ( mmi dd0 ) and their respective number of machines can be 

given in a vector iv , where )(kvi  ( imk dd0 , mkvi dd )(1 ) is the number of the 
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machine that processes operation ikO . The processing times of those operations 

are 1ip , … 
iimp . A schedule has to be found so that all jobs are routed in the shop floor 

in a manner that the performance measures of the system can be optimized. The 

schedule decides the starting time ikt for each operation ikO  of job iJ and the 

following formula holds:  

� �hlhlkikiik ptptt �� �� ,max 1,1, .    

 (1.1) 

hlt  is the starting time of job hJ , which is the job processed on the same machine 

immediately before job iJ . ikt  is decided by either the completion time of its direct 

preceding operation or the earliest available time of its machine. 

1.2.3.2 Objectives 

The objectives to be optimized are always a function of the completion times of the 

jobs. The objective criteria considered in this study include makespan, mean 

flowtime, and mean tardiness, which are most commonly used in the literature of job 

shop scheduling. Performance measures related to inventory status like throughput, 

work-in-process and the size of jobs in a queue are also considered.  

Makespan (Cmax) is the “length” of the schedule, or an interval between the time at 

which the schedule begins and the time at which the schedule ends. Thus, the 

makespan of a schedule equals to ]max[ iC , where i = 1, …, m.  
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Flowtime (Fi) (also called cycle time) is the amount of time job iJ  spends in the shop 

floor. It corresponds to the time interval between the release time ir  and the 

completion time iC  of job iJ : iii rCF � .  

Mean Flowtime ( F ) is the average flowtime of the schedule. F  = ¦
 

n

i
iF

n 1

1
, where n 

is the number of jobs.  

Tardiness (Ti) of a job iJ  is the non-negative amount of time by which the 

completion time exceeds the due date id : )](,0max[ iii dCT � .   

Mean Tardiness (T ) is the average tardiness of all jobs in the schedule: ¦
 

 
n

i
iT

n
T

1

1
, 

where n is the number of jobs.  

Throughput (TP) is the average output of a production process (machine, workcenter, 

plant) per unit time (e.g., parts per hour).  

Work-In-Process (WIP) includes all unfinished parts or products that have been 

released to a production line; it represents the inventory in the shop floor and is 

preferred to be low so that less possibility of congestion in the shop floor is expected 

and less extra capital is expensed in inventory. However, the production rate cannot 

be guaranteed if WIP is too low according to Little’s Law, which is described as 

follows: at every WIP level, WIP is equal to the product of throughput and cycle time 

(Hopp and Spearman, 2000).  

Size of jobs in a queue refers to the number of jobs waiting in the queue of a resource 

(machine) or a workcenter.   
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The above performance measures can be put into four categories: utilization-based 

objectives, flow-based objectives, due-date-based objectives, and inventory-based 

objectives. Makespan corresponds to the utilization-based objective, which is related 

to the resource utilization. A schedule with a shorter makespan implies higher 

resource utilization.  mean flowtime, throughput, and WIP are flow-based objectives, 

which measure the turnaround times of the jobs in the shop floor; tardiness related 

objectives measure the ability to meet due dates; finally, the size of jobs in a queue 

and WIP are inventory-based objectives which measure the inventory status of the 

shop floor.  

Given a measure of performance Z , which is defined as a function of the set of job 

completion times, and � �nCCCfZ ,..., 21 , Z  is regular if: 1) the scheduling 

objective is to minimize Z , and 2) Z  can increase only if at least one of the 

completion times in the schedule increases (Baker, 1974). Makespan is a regular 

performance measure while mean tardiness-related objectives are non-regular.  

Thus, a scheduling problem given as n/m/G/T  refers to a job shop scheduling 

problem (JSSP) with n jobs, m machines; and the objective is to minimize the mean 

tardiness. n/m/G/F  refers to a JSSP with m workcenters and the objective is to 

minimize the mean flowtime.  

1.2.4 Classes of schedules 

In scheduling theory, schedules from optimizing regular measures of performance can 

be categorized into three types, semi-active, active and non-delay. A feasible schedule 

is called semi-active if no operation can be completed earlier without changing the 

order of processing on any one of the machines; it implies that there is no unnecessary 
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idle time inserted before the starting time of a job. A semi-active schedule is called 

active if there is at least one operation which can be started earlier without delaying 

any other operation. It is sufficient to consider only active schedules in order to find 

an optimum. An active schedule is called a non-delay schedule if no machine is kept 

idle at the time when it can begin processing some operations.  

The set of non-delay schedules is the subset of the set of active schedules for the same 

scheduling problem but the optimal schedule could be found in either sets. Fig. 1.5 

shows a Venn diagram of the relationships among the three classes of schedules 

(Pinedo, 2002). Generally, the best non-delay schedule can usually be expected to 

provide a very good solution, if not an optimum (Baker, 1974).  

N on -d elay Ac tiv e
S em i-
ac tiv e

All s c hed u les

O pt im al s c hed u le

 

Fig. 1.5 Venn diagram of classes of schedules 

1.2.5 Complexity of classical  job shop scheduling problems  

The inherent complexity of a classical JSSP arises mainly from the large size of its 

possible solutions as well as its objective functions. Both of them are decided by the 

medium- to long-term strategies of a manufacturing management system (Fig. 1.3).  
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The solution space including the optimum or a near-optimum solution is directly 

decided by the number of machines m and jobs n in the problem. It could be 

comprised of mn )!(  schedules assuming that each job has one operation on each type 

of machine. Research has been focused on finding efficient algorithms for optimal 

solutions in a computational time that grows polynomially as the size of jobs 

increases. However, there are no such algorithms for most scheduling problems and 

these scheduling problems are thus called NP-hard problems (Garey and Johnson, 

1979; Blazewicz et al., 1996). This fact also implies that it is impossible to find 

optimal solutions for most realistically sized scheduling problems in reasonable times. 

Hopp and Spearman (2000, pp.493-497) illustrated the complexity of a scheduling 

problem caused by the size of possible solutions and also concluded that there was 

little help by improving the speed of the computer. Thus the “optimal solution” 

mentioned in this thesis would mean a reasonably good solution unless it is otherwise 

indicated.  

Given the same scheduling problems, the time complexities to optimize different 

performance measures may be different. For example, optimal solutions can be found 

in a polynomial time of )log( nnO  with Johnson’s algorithm (Johnson, 1954) to 

minimize the makespan of a two-machine flow shop problem while the time 

complexities to optimize other objectives for the same problem are considered NP-

hard.  

1.3 Dynamic scheduling problems 

Scheduling in the real world is dynamic and stochastic in nature. A scheduling 

problem is dynamic if there are continuous arrivals of new jobs and stochastic if 

uncertain events like machine breakdowns or variant processing times are considered. 
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Those events are introduced into the system due to two factors. Quantities may either 

have inherent variability or they cannot be measured exactly (Ovacik and Uzsoy, 

1994, 1997). The main consequence of those uncertainties for a scheduling system is 

that a predetermined schedule can become obsolete immediately.  

In dynamic/stochastic manufacturing environments, managers, production planners, 

and supervisors must not only generate high-quality schedules but also react promptly 

to unexpected events in order to revise schedules in a cost-effective manner. In an 

attempt to construct an effective reactive scheduling system, various approaches have 

been proposed and they can be categorized as industrial and academic studies.  

1.3.1 Main approaches in industry 

Industry often uses simple but robust tools to guide production, like interactive 

schedulers, human involvement and self-developed software, often in combination 

with a Material Requirements Planning (MRP) system, which is one of the earliest 

applications of computers for medium- to long-term material and resource capacity 

planning for the entire production cycle.  

However, the simplistic model of MRP undermines its effectiveness because: 1) it 

assumes infinite capacity; 2) it uses one lead time for offsetting, which results in 

earlier release, larger queues, and hence longer cycle times; and 3) the small change in 

its master production schedule may result in a large change in planned order releases, 

which is called system nervousness (Hopp and Spearman, 2000).  

The problems in MRP prompted some scheduling researchers and practitioners to turn 

to enhancements in the form of Manufacturing Resource Planning (MRP II) and more 

recently, Enterprise Resource Planning (ERP). However, the fundamental problems of 
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assuming infinite capacity and fixed lead times are still with the basic models 

underlying those improved systems. Some just rejected MRP altogether in favor of 

Just-In-Time (JIT).  

JIT, which originated in mid-1950s, is a method to avoid scheduling by changing the 

production environment where the production is driven by the need of downstream 

workstations. This type of production system is also called the pull system. JIT 

demonstrates very good performance in automobile industries in Japan by removing 

idle intermediate WIP jobs. However, this approach assumes steady demand and is 

most suitable for a flow shop pull system. It may not equally benefit dynamic job 

shops where demands are variable.  

Finally, dispatching rules are widely adopted in practice and they are also well studied 

in literature. Their detailed description will be given in Chapter 2.  

1.3.2 Main approaches reported in open literature 

In open literature, there are basically two approaches to accommodate those dynamic 

events: proactive and reactive scheduling. In proactive scheduling, the events are 

considered predictable and some slacks are reserved in the original schedule so that 

disturbances can be absorbed without re-scheduling. In reactive scheduling, actions 

have to be taken to revise or repair a complete schedule that has been “overtaken” by 

events on the shop floor (Zweben et al, 1994). The latter approach is the main focus 

of this study.  

Three main ideas underlie the enormous number of approaches under the umbrella of 

reactive scheduling and they are: queuing theory, predictive-reactive scheduling, and 

artificial intelligence. Early research has used the queuing theory to explore the 



Chapter 1: Introduction 

16 

collective effect of several types of dynamics on a shop floor using simple rules to 

decide the orders of jobs. Later, researchers proposed to use schedules generated by 

more advanced scheduling techniques in order to improve overall production 

performance. Finally, the development in the field of artificial intelligence, especially 

multi-agent systems (MAS), has been inspiring its applications in dynamic 

scheduling.  

1.3.2.1 Queuing theory 

Queuing theory is inspired by the real-world applications where jobs are assumed to 

arrive in a random process in some statistical forms; the processing times of 

operations and dynamic events are random variables with known distributions. Jobs 

are queued in the buffer of their waited machine until it is free. A job is selected from 

the buffer to be processed according to some predetermined priority rules or 

dispatching rules. Jobs are discharged from the system if all of its operations are 

completed. The randomness in the arriving jobs, processing times, and stochastic 

events like machine breakdowns together implies the distributions of job flow times 

and machine busy/idle times. Different dispatching rules may be compared and the 

best ones can be chosen for production.  

The advantage of using the queuing theory is that a system reacts to events and makes 

allocation decision one at a time only if necessary for keeping execution going based 

on the current status of the system. This strategy is insensitive to unexpected events 

and thus yields quite robust behaviour. Furthermore, it is highly effective 

computationally. However, the performance of factory operations may be sacrificed 

since there is no attempt for optimization.   

1.3.2.2 Predictive-reactive scheduling 
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In the predictive-reactive scheduling approach, a schedule is generated for a set of 

jobs in order to optimize certain criteria before those jobs are actually executed and 

the schedule is refined when dynamic events occur. It is a common strategy to 

reschedule dynamic manufacturing systems (Jain and ElMaraghy, 1997, Mehta and 

Uzsoy, 1998).  

There are two parts for the actions in this approach: namely generating predictive 

schedules and reacting to disturbances. The generation of predictive schedules may 

use the methods from the field of classic scheduling and the reaction to disturbances 

implies decisions about what, when, and how to react (Sabuncuoglu and Bayiz, 2000) 

in order to optimize system performance in the face of dynamic events (Church and 

Uzsoy, 1992; Abumaizar, and Svestka, 1997). Different scheduling generation and 

refining procedures may be explored and compared in order to find the best one for a 

particular problem.  

Generally, the predictive-reactive scheduling approach requires more computational 

efforts to generate optimal or sub-optimal solutions as compared to dispatching rules 

in the queuing theory. It is also different from queuing in that queuing decides only 

the order of tasks while scheduling also decides their starting times.  

1.3.2.3 Multi-agent systems  

Parunak (1997) defined an intelligent agent as “an active object with initiative” and 

views it as a software design paradigm, which is the next extended step to object-

oriented programming in software evolution. An agent has at least two important 

capabilities. First, it is capable of autonomous/pro-active action to decide its actions in 

order to realize its objectives. Second, it is capable of interacting with other agents 
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through exchanging data or through cooperating, coordinating or negotiating with 

other agents (Wooldridge, 2001).  

An MAS is a loosely-coupled network of agents that work together in a group to solve 

a common problem (Pendharkar, 1999). As a distributed problem-solving paradigm, 

an MAS can transform a complex scheduling problem into smaller and manageable 

sub-problems to be solved by individual agents co-operatively. Like in the queuing 

theory, no schedules are calculated in advance but the core is to find appropriate 

protocols and architectures for agents to interact and share information dynamically. 

The overall performance emerges as the result of the interactions among agents using 

certain co-operation protocols.  

1.4 Motivations 

The essential motivation of the current study is to develop a scheduling system that 

can keep on optimizing the performance of a job shop manufacturing system in real 

time in the face of dynamic events.  

The idea is first inspired by the advancement in the field of MAS. Durfee (1988) and 

Durfee and Lesser (1989) proposed a heterarchical MAS where independent agents 

interact with each other using only local information and a global optimization can 

emerge from those local interactions. The emphasis of this approach is to find 

appropriate interaction rules or coordination protocols for agents and model problem 

components into appropriate agents. However, this approach has the disadvantages of 

unsatisfactory optimality, unpredictability, and high communication overhead.  

In order to improve optimality and predictability as well as to reduce communication 

overhead, researchers have developed hierarchical MAS and furthermore, hybrid 
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MAS for dynamic control and scheduling. In a pure hierarchical MAS, agents at 

higher levels can allocate tasks to their immediate lower level agents, which execute 

their assigned tasks without any opinion. The system will produce schedules with 

good global performance since the agent at the higher level can have a wider view of 

the system. However, this architecture lacks reactivity to dynamic events since events 

are first forwarded from the lowest level agents to the upper level agents and then the 

reaction decision is passed down from the upper level agents to the lowest level 

agents to be executed. This type of MAS may assume the schedules to guide 

production in a similar manner performed in predictive scheduling. To cope with the 

disadvantages and combine the advantages of the previous two types of MAS, some 

hybrid architectures have been proposed. Basically, agents in a hybrid MAS have the 

autonomy to promptly react to dynamic changes and simultaneously be guided by 

those agents with global views.  

Recent research on the foraging behaviour of a natural MAS, namely an ant colony, 

has found that autonomous agents like ants can find the shortest route from their nest 

to a food source based on the pheromone strength on their ways. Each ant affects the 

environment by leaving behind itself some amount of pheromone. This type of 

optimization mechanism is a collective effect of the interactions between the ants and 

the pheromone environment. Furthermore, it is also found that an alternative shortest 

path can soon be formed by foraging ants if the current one is not available. Both 

features are of great research interests in the view of their applications in 

dynamic/stochastic scheduling environments.  

In order to realize this mechanism for the optimization purpose in scheduling 

problems, two implementations had been proposed. One is the pure MAS approach; 
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the other is through the ant colony optimization (ACO) algorithm. The former 

involves not only the indirect correspondence between a modeled agent and a facility 

in the real world problem, but also a great number of communications among agents. 

Thus, the ACO approach is adopted in the current study.  

Meanwhile, the previous applications of ACO on JSSPs have been mainly focused on 

static cases and its performance on dynamic JSSPs has not been systematically 

studied. The current research aims to explore the effectiveness of ACO in dynamic 

JSSPs, the factors affecting its performance, the effects of the adaptation mechanism, 

and its application domains based on the research findings in the areas of the queuing 

theory, ACO algorithms, and MAS. As dynamic JSSPs continues to be a challenge 

(Smith, 2003; Stoop and Wiers, 1996), the research of exploring an advanced 

scheduling system is considered valuable.  

1.5 Research goals and methodologies 

1.5.1 Goals 

In summary, the goals of the current study include:  

x� To analyze a dynamic JSSP, identify the systematic manners of research in this 

field, and define the domains of the dynamic JSSP.  

x� To build a generic test bed that can provide problem scenarios for systematically 

evaluating a proposed scheduling approach.  

x� To present the effectiveness of ACO in solving dynamic JSSPs, and demonstrate 

the effectiveness of its adaptation mechanism.  

x� To improve its performance through adjusting its parameters.  
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x� To find the best application domains of ACO in dynamic JSSPs.   

1.5.2 Methodologies 

Normally, the evaluation of an approach for a static scheduling problem includes the 

comparisons in two aspects: schedule quality and computational time. Schedule 

quality is evaluated in terms of target performance measures like makespan, 

total/mean flowtime, total/mean tardiness, etc. Computational time refers to the time 

spent by computers to find the schedule and can be measured through the analysis of 

the computational complexity, which describes how the computational time and 

memory requirements of the algorithm change as the size of the input to an algorithm 

increases (Garey and Johnson, 1979). A good scheduling approach performs well in 

either providing high quality schedules or obtaining acceptable schedules within 

limited computational times.  

However, the evaluation of approaches for dynamic scheduling problems is different. 

Jobs continue to arrive during the entire period of the evaluation while the proposed 

dynamic scheduling procedure continues to working simultaneously during the same 

period. Occasional good schedules do not guarantee a long-term good performance of 

a proposed approach. Thus, it is important to decide a reasonable test period in order 

to obtain a fair evaluation of the proposed approach. The approach in the queuing 

theory is to execute a simulation until the system reaches a steady state and the 

performance data are recorded from that point. Next the simulation continues for a 

certain period of time and an average steady-state performance of the approach can be 

obtained.  

A similar approach is adopted in the current study and all experiments were carried 

out on a simulated test bed as the experiments on real factories are generally 
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expensive and sometimes impossible. First, a discrete job shop manufacturing system 

is simulated using discrete event simulation (DES) in order to provide adequate 

scenarios. Several replications of the experiments for the same problem 

configurations were tested with only variations in the generation of initial random 

numbers. DES can facilitate the examination of a long-term average performance of 

the tested approach since the time intervals that do not change the system state are 

skipped. The experimental results are analyzed or compared statistically.  

Furthermore, the DES will be implemented as an MAS based on the following two 

considerations. On the one hand, the optimization mechanism of foraging ants can be 

implemented in different types of MAS, which will be described in Chapter 5. On the 

other hand, the MAS implementation of a job shop has many advantages, which will 

be mentioned in Chapter 4. Briefly, the test bed not only can properly model a shop 

floor as a distributed system but also provide a long-term performance evaluation for 

a proposed approach.  

In order to build the above simulated job shop, commercial simulation tools like 

ARENA have been considered at first. However, the effort of interfacing them with 

the ACO scheduler would be about the same effort as building a new tool. In 

particular, there should be communications between shop floor entities like 

workcenters, jobs and the scheduler in order that it resembles the similar structure and 

the logic in a real job shop. Thus, a test bed is thereafter built from scratch based on 

Java Agent DEvelopment Framework (JADE), which is a software framework fully 

implemented in Java language.  

After the test bed is built, the ACO algorithm implemented as an MAS is used to 

generate schedules for dynamic JSSPs, which are systematically designed to achieve 
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the goals set in section 1.5.1. The predictive-reactive scheduling procedure is used in 

all experiments.  

1.6 Outline of the thesis 

Chapter 2 first reviews the approaches for solving static JSSPs in order to pave the 

way of reviewing the approaches for dynamic JSSPs, which is followed immediately 

by focusing on predictive-reactive scheduling. Next, MAS approaches and the 

applications of ACO in the scheduling related fields are also reviewed in detail to give 

a background of the current research.  

Chapter 3 first analyzes the static JSSPs, then the dynamic JSSPs. Finally, the factors 

affecting the evaluation of a scheduling technique in a predictive-reactive approach 

are analyzed.  

Chapter 4 builds a common test bed to facilitate a systematic examination of the 

performance of control policies and algorithms in a dynamic job shop environment. 

The definition of a generic job shop is first given, and a generic job shop is modeled 

as a DES. A prototype of the job shop is implemented as an MAS. The 

communication of agents in the MAS is presented and a case study is described.  

Chapter 5 extends the test bed to include a scheduler, which uses ACO as an 

optimizer simulating the scheduling function in a factory. It discusses the additional 

coordination of the scheduler agent to the main existing agents like job, job shop and 

workcenters agents and among the behaviours within the scheduler agent itself. The 

procedure to dynamically update the pheromone matrix of ACO is also discussed. 

Finally, the implementation of ACO as an MAS is presented.  
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Chapter 6 tests the performance of ACO on two dynamic JSSPs with the same mean 

load but different dynamic frequency and severity. The effectiveness of its adaptation 

mechanism is studied. Furthermore, two important parameters in the ACO algorithm, 

namely the number of iterations and the size of searching ants per iteration, which 

control the computing time and the quality of solutions, are also examined.  

Chapter 7 first defines the three dimensions describing the domain of dynamic JSSPs: 

namely the frequency of the arriving jobs, the variation of the processing times, and 

performance measures. Two series of experiments are next carried out to find the 

appropriate application domains of ACO in terms of the ranges of job arriving levels 

and the variation of the processing times. The performances of the experiments are 

compared and the proper ranges that ACO outperforms the best dispatching rule are 

identified. In this manner, the domains that ACO can be effectively applied can be 

identified. 

Chapter 8 concludes the work, highlights the contributions, and identifies a number of 

future works.  
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2 Literature Review 

Scheduling as a research discipline dated back to early 1900s but serious analysis of 

scheduling problems did not begin until the advent of computer age in the 1950s and 

1960s. Since then, a great amount of theoretical work has been reported. A good 

historical overview of the different approaches was given by Froeschl (1993) and an 

early introductory work on scheduling was reported by Baker (1974), French (1982), 

Buxey (1989), and Sule (1997). Literature reviews on static deterministic scheduling 

can be found in (Graves, 1981, Jain and Meeran, 1998, 1999, MacCarthy and Liu, 

1993, Blazewicz et al, 1996, Sellers, 1996, Weirs, 1997, Jones and Rabelo, 1998, and 

Pinedo, 2002). Nowicki and Smutnicki (1995) provided an excellent review of 

minimum makespan job shop problems. Suresh and Chaudhari (1993) reviewed the 

dynamic scheduling literature.  

This review starts with the approaches for static JSSPs; then the emphasis is put on 

the approaches for handling dynamic environments. Furthermore, the applications of 

ACO in the scheduling related fields are reviewed in detail to give a background of 

the current research.  

2.1 Approaches for the classical job shop scheduling problems 

2.1.1 An overview 

The main approaches to solve the classical JSSPs include exact mathematical 

algorithms, dispatching rules, metaheuristics, and artificial intelligence methods. 

These approaches and some of their examples are listed in Fig. 2.1.  
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Fig. 2.1 Approaches to solve classic job shop scheduling problems 

2.1.2 Exact mathematical algorithms 

Balas (1965, 1967) developed modern integer programming, which allows rather 

realistic JSSPs to be formulated in a manner that would theoretically permit them to 

be solved exactly. Two popular solution techniques for integer-programming 

problems are branch-and-bound and Lagrangian relaxation. Branch-and-bound is an 

enumerative technique, which systematically curtails undesired solutions by 

dynamically setting lower bounds through modeling the JSSP as a decision tree. 

Lagrangian relaxation solves integer-programming problems by omitting specific 

integer-valued constraints and adding the corresponding costs to the objective 

function.  
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Another exact mathematical algorithm reported is dynamic programming, which 

enumerates in an intelligent manner all the possible solutions. During the enumeration 

process, schedules which are not optimal are eliminated.  

However, both integer programming and dynamic programming are computationally 

intensive. Thus large problems remain intractable although very small problems can 

be solved with optimal solutions. Subsequently, the majority of scheduling problems 

has to be solved using heuristics, which are techniques seeking good solutions instead 

of the optimal ones at a reasonable computational cost (Voß, 2001). Main heuristic 

approaches include dispatching rules, metaheuristics, and artificial intelligence.  

2.1.3 Dispatching rules 

The simplest heuristic to find a solution is using dispatching rules, where a schedule is 

constructed in one iteration with generally a very light computational effort even for a 

large problem. A dispatching rule is used to prioritize jobs waiting for processing at 

the time that the waited machine/resource becomes available. The job with the highest 

priority is selected to be processed on the machine. An early survey can be found in 

Panwalkar and Iskander (1977).  

Common dispatching rules employ processing times and due dates as deciding factors 

in simple rules or their complex combinations. Some dispatching rules are extensions 

of policies that work well on simple machine scheduling problems, for example, First-

In-First-Out (FIFO), Shortest Processing Time (SPT), Minimal Slack Time (MST), 

and Earliest Due Date (EDD). In FIFO, the first operation coming into a workcenter 

has the highest priority; in SPT, the operation with the shortest processing time has 

the highest priority; in MST, the operation with the shortest slack time has the highest 

priority. The slack time indicates the temporal difference between the due time, the 
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current time and the remaining computation time. In EDD, the operation with the 

earliest due date has the highest priority.  

Other dispatching rules can be found in Panwalkar and Iskander (1977), which 

provides an extensive list of dispatching rules and their classification includes five 

categories: simple dispatching rules, combinations of simple rules, weighted priority 

indices, heuristic scheduling rules, and similar findings by others, such as Blackstone 

et al (1982), Ramasesh (1990), and Morton and Pentico (1993).  

Owing to their inexpensive computational effort and robustness, dispatching rules are 

widely adopted, especially, in dynamic environments (Li et al, 1993). However, they 

do not guarantee the realization of the full potential of a shop floor as they do not aim 

at optimization. Scheduling systems using algorithms, especially metaheuristic 

algorithms, have continuously been studied to provide optimized solutions.  

2.1.4 Metaheuristics 

A Metaheuristic is a set of algorithmic concepts that can be used to define heuristic 

methods applicable to a wide set of problems (Voß et al, 1999). It refers to an iterative 

master process that guides and modifies subordinate heuristics in order to efficiently 

produce high-quality solutions. There may be a complete (or incomplete) single 

solution or a collection of solutions per iteration. The subordinate heuristics may be 

high (or low) level procedures, or a simple local search, or just a construction method. 

A local search algorithm is a metaheuristic iteratively moving from solution to 

solution in the space of candidate solutions (the search space) until a solution deemed 

optimal is found or a time bound has elapsed. A construction method generates a 

schedule by adding in an operation one at a time until all operations are considered.  
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Examples of metaheuristics include genetic algorithms (Goldberg, 1989), simulated 

annealing (Kirkpatrick, et al, 1983), Tabu search (Glover, 1989, 1990; Glover and 

Laguna, 1997), ACO (Dorigo and Di Caro, 1999), and their hybrids. Each has its own 

perturbation methods, stopping rules, and methods for avoiding local optimum. The 

use of metaheuristics has significantly increased the ability of finding very high-

quality solutions to hard, practically relevant combinatorial optimization problems in 

a reasonable time (Dorigo and Stützle, 2004).  

2.1.5 Artificial intelligence 

The approaches to solve scheduling problems in the artificial intelligence field are 

based on the inspirations from either human society or natural phenomena (Weiss, 

1999). Many sophisticated procedures have been proposed including fuzzy logic, 

neural network, knowledge-based systems and MAS (Kusiak, 2000).  

Fuzzy set theory has been used to develop hybrid scheduling approaches. It can model 

and solve job shop scheduling problems with uncertain processing times, constraints, 

and set-up times, which are represented by fuzzy numbers. A neural network is 

trained with historical data and some desired relationships between the inputs and the 

outputs have been captured. The network can be used to estimate solutions for new 

inputs.  

Knowledge-based scheduling systems employ domain specific problem solving 

information to derive schedules and this information knowledge is encoded as rules, 

which are often obtained by eliciting knowledge from experienced schedulers 

(Randhawa and McDowell, 1990). The work on constraint satisfaction problems is 

also of direct relevance to scheduling, if the latter is regarded as their incremental 

construction of a solution that satisfies the constraints in a problem space in which 
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each additional assignment imposes a new set of constraints on the remainder of the 

solution (Sadeh, 1991). The most well-known systems include ISIS (Fox and Smith, 

1984), OPIS (Smith et al, 1990), CABINS (Miyashita, 1995), and IOSS (Park et al, 

1996).  

A knowledge-based system does not aim to guarantee optimal solutions; instead, it 

just provides feasible good solutions (Randhawa and McDowell, 1990). Its 

performance is not beyond what has been provided by rules in the system. 

Furthermore, a great amount of domain-dependent heuristics is required and the most 

difficult operation is to decide which knowledge source has to be activated (Akturk 

and Gorgulau, 1999). Besides, scheduling decisions can only be evaluated locally.  

MAS is a relatively new sub-field of computer science which was started around 1980 

and has gained widespread recognition since the mid-1990s. It has been an active 

research topic in the manufacturing arena (Jennings and Wooldridge, 1998; Jennings 

et al, 1998; Parunak, 1994). Although an MAS can solve static scheduling problems, 

its more promising applications are in dynamic/stochastic ones. Therefore, its detailed 

description is specifically presented in section 2.3.  

2.2 Approaches for dynamic job shop scheduling problems 

Only two of the three approaches for dynamic JSSPs described in section 1.3 are 

reviewed based on their importance and relevance to the current work. They are 

predictive-reactive scheduling and MAS approaches. Reviews for the other 

approaches can be found as follows. The survey on priority-rules in dynamic job shop 

can be found in Haupt (1989); a detailed discussion of knowledge-based systems 

related to reactive scheduling can be found in Blazewics et al (1994) and Szelke and 

Kerr (1994). Conway et al (1967, Chapter 11) provided an excellent introduction to 



Chapter 2: Literature Review  
 

31 

simulation in the context of the job shop. Parunak (1991) characterized the 

manufacturing scheduling problems.  

2.2.1 Predictive-reactive scheduling 

2.2.1.1 An overview 

Predictive-reactive scheduling is an approach most commonly used in practice (Vieira 

et al, 2003). Basically, its study in manufacturing systems should consider the 

following factors: 1) the applied production systems identified by the types of 

manufacturing systems (flow shop, job shop, etc., or their extensions) and the types of 

dynamic events (dynamic incoming jobs, machine breakdowns, or processing 

variations) as well as their respective patterns of occurrences, 2) schedule 

generation/regeneration methods (algorithms, dispatching rules, or cooperation), 3) 

control rules (what, when and how to reschedule), 4) performance measuring criteria, 

5) the testing period (short or long term), and 6) evaluation methods (comparison or 

statistical analysis). Those factors are illustrated in Fig. 2.2.  
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Fig. 2.2 Factors considered in the predictive-reactive scheduling research 
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A thorough study of a proposed scheduling procedure may include testing it on every 

different production system, control rules, performance criteria, and testing periods. 

That implies a huge number of experiments. In fact, researchers have done a lot of 

work studying dispatching rules in dynamic/stochastic scheduling environments due 

to their lower computational requirements. For scheduling procedures requiring 

similar computational efforts as those in predictive-reactive scheduling, it is important 

to identify the main domains that a proposed approach can perform well. In the 

following sections, selected works are reviewed focusing on the framework described 

in Fig. 2.2. Other reviews of dynamic scheduling can also be found in Smith (1995), 

Raheja and Subramaniam (2002), Vieira et al (2003) and Aytug et al (2005). A good 

survey of the simulation models for dynamic scheduling environments is provided by 

Ramasesh (1990).  

2.2.2 Literature review 

Holloway and Nelson (1974) proposed a multi-pass heuristic scheduling procedure to 

generate schedules in a job shop where processing time variations of the operations 

are considered. This centralized scheduling procedure is later used in the dynamic job 

shop environments (Nelson et al, 1977) to generate schedules periodically. They 

concluded that a periodic policy (scheduling/rescheduling periodically) is very 

effective.  

Muhleman et al (1982) analyzed the periodic scheduling policy in a dynamic and 

stochastic job shop system and their experiments showed that a more frequent 

revision can improve scheduling performance. Church and Uzsoy (1992) studied the 

period and event driven policies in a dynamic one-machine system. They concluded 
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that the performance of periodic scheduling was affected by the length of the 

rescheduling period while event-driven policy performs well in the given problem.  

Bean et al (1991) proposed a match-up scheduling procedure to match up with the 

schedule, which was optimal or near optimal before the disturbance occurred. The 

match-up procedure ensures that the revised schedule is consistent with the original 

one after the “match-up point” as soon as possible. The procedure is applied to a set 

of real problems in the automotive manufacturing industry where a partial schedule is 

produced to minimize total tardiness at each rescheduling point. The results from the 

proposed match-up procedure are significantly better than those from pure static and 

dynamic strategies that are often used in practice. It also performs well when machine 

utilization is high. Later, Arturk and Gorgulu (1999) used match-up scheduling to 

react to disturbances. Their methods improve the schedule quality, the stability, and 

the computational time compared to several match-up alternatives under different 

experimental settings.  

Raman and Talbot (1993) decomposed a dynamic problem into a series of static 

problems, which were then solved in their own entirety and then implemented on a 

rolling basis. A heuristic is used to construct the schedule for the entire system at each 

rescheduling moment. The experiments on dynamic scheduling problems are carried 

out with balanced and unbalanced machine utilizations. Their results indicate that a 

significant due date performance improvement over several dispatching rules is 

obtained.  

Bierwirth et al (1995) explored the adaptive optimization ability of GA for reactive 

scheduling in dynamic job shops and their work was continued by Lin et al (1997). 

However, the size of their tested jobs was only 100, which is not enough to give a fair 
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evaluation of the average performance of GA. Later, Bierwirth and Mattfeld (1999) 

again studied the similar problem by using two versions of improved GA to generate a 

new schedule every time a new job arrives reusing the previous solution. Furthermore, 

they tested on 1000 jobs instead of 100 and considered only the steady state 

performance, which was the performance between the times that jobs 201 and 800 

arrived at the system. Both versions of GA outperformed SPT dispatching rule at 

reasonable computational times for the minimization of the mean flow-time of jobs.  

Holthaus and Rajendran (1997) examined the performance of several dispatching 

rules in a dynamic job shop. They found their proposed dispatching rules efficient in 

minimizing flowtime and tardiness related criteria. They also described the simulated 

test bed and experimental designs in detail. These methods have been followed by 

Bierwirth and Mattfeld (1999). Holthaus (1999) further analyzed dispatching rules in 

dynamic job shop scheduling considering machine breakdowns. The results revealed 

that the relative performance of scheduling rules can be affected by changing the 

levels of the breakdown parameters.  

Lawrence and Sewell (1997) compared the static and the dynamic applications of 

heuristic and optimal solution methods to JSSPs when processing times were 

uncertain and the performance measure was the makespan. They demonstrated that 

simple dispatch heuristics provide performance comparable or superior to that of 

algorithmically more sophisticated scheduling policies.  

Sabuncuoglu and Bayiz (2000) proposed a heuristic algorithm basing on a filtered 

beam search to analyze reactive scheduling problems under different job shop 

environments considering machine breakdowns. They concluded that: 1) there was 

not much difference between the optimum methods and heuristics when uncertainty 
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or variability was high, which was a conclusion also made by Lawrence and Sewell 

(1997), Hopp and Spearman (2000), Sabuncuoglu and Bayiz (2000), and Hall and 

Posner (2001); 2) the performance of the off-line algorithm was affected more than 

the on-line method in a stochastic environment; 3) the solution quality improved as 

the scheduling frequency increased; and 4) the quality of schedule deteriorated as the 

length of the partial schedule decreased. From these results, one could infer that the 

effort to reduce the variability and uncertainty in the systems might worth more than 

the difficulties in using more sophisticated algorithms (Sabuncuoglu and Bayiz, 

2000). 

Sabuncuoglu and Kizilisik (2003) studied reactive scheduling in a simulated Flexible 

Manufacturing System (FMS) considering a multi-machine environment and a 

material handling system (MHS) under variant system configurations, processing time 

variations, and machine breakdowns. Some of their conclusions were: 1) it would be 

more beneficial to use the online scheduling systems in dynamic and stochastic 

environments; and 2) full rescheduling was generally better than partial rescheduling 

at a cost of higher CPU times.  

2.2.3 Main conclusions 

In summary, some observations can be drawn from the research of the last thirty 

years. Firstly, there is not much difference between the optimum methods and 

heuristics when the uncertainty or variability is high (Lawrence and Sewell, 1997; 

Sabuncuoglu and Bayiz, 2000). Secondly, the performance of a scheduling procedure 

is affected by control policies like the frequency of scheduling and the length of the 

intermediate schedule. Thus the performance of a scheduling method is problem-

dependent.  
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2.3 Multi agent systems  

Many MAS scheduling systems have been proposed to generate schedules through the 

interactions of distributed and independent agents using certain protocols based on 

appropriate architecture. Manufacturing scheduling systems built as MAS had been 

surveyed by Shen and Norrie (1999) and Baker (1998). They are further reviewed 

according to their architecture: heterarchical, hierarchical, hybrid, and nature-inspired 

MAS.  

2.3.1 Heterarchical MAS  

A heterarchical MAS was built at a General Motors factory to assign trucks to paint 

booths using a simple bidding mechanism and each paint booth made decision 

whether it would take a job through negotiation (Morley and Schelberg, 1993, 

Morley, 1996). The MAS outperformed the previous centralized scheduling system in 

terms of throughput and paint costs. Liu (1996) proposed an MAS which sequentially 

initiated two groups of agents representing resources and jobs for distributed 

manufacturing scheduling and agents in the same group communicate based on 

several coordination schemes. The MAS was tested on several deterministic 

benchmark JSSPs and the results showed that it could provide equivalent or superior 

performance to centralized scheduling techniques.  

Heterarchical MAS can provide a highly distributed structure to the manufacturing 

system and it is very robust and reactive against disturbances. However, banning all 

forms of hierarchy, it cannot perform global optimization and the behaviour of a 

system under heterarchical control can be hardly predicted. Furthermore, many 

heterarchical algorithms need to be properly fine-tuned, which is a labour intensive 

work (Bongaerts, 1998). Thus it is believed that in the unstructured environments, 
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heterarchical control without explicit schedulers can be the most suitable approach. In 

other situations, however, the incorporation of a scheduler in a distributed system will 

enhance the stability, predictability and performance.  

2.3.2 Hierarchical MAS  

Parunak (1987) proposed YAMS for real time task allocation and control. A factory is 

modeled as a hierarchy of work cells and each work cell corresponds to a node in a 

contract net (Smith, 1980) and negotiates with others nodes vertically and laterally. 

Zhou et al (2004) used a hierarchical MAS to solve a deterministic scheduling 

problem using heuristic dispatching rules and Contract Net Protocol. Their results 

show that the MAS can generate good solutions for a given problem as compared to a 

mathematical approach. Cavalieri et al (2000) compared the performances of 

heterarchical and hierarchical MAS experimentally.  

2.3.3 Hybrid MAS 

Hybrid MAS includes holonic manufacturing system (HMS) (Bongaerts, 1998; 

Bongaerts et al, 2000; Wyns, 1999), biological manufacturing system (BMS) (Okino, 

1993), and fractal manufacturing system (FrMS) (Warnecke, 1993; Ryu and Jung, 

2003). Basically, agents in those systems have the autonomy to promptly react to 

dynamic changes and simultaneously to be guided by the agents with global views. 

Valckenaers et al (1994) compared the above three architectures and found that the 

hybrid one performed well in a wider range of situations. Wong et al (2006a, 2006b) 

proposed a hybrid MAS for integrating process planning with 

scheduling/rescheduling in job shops in cases of machine breakdown and new part 

arrival.  
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2.3.4 Nature-inspired MAS  

Bonabeau et al (1999) gave a comprehensive survey of adaptive MASs, which were 

inspired by natural insect behaviors. Cicirello and Smith (2001) reviewed those MASs 

focusing on manufacturing applications. Valckenaers et al (2001) discussed multi-

agent coordination and control using techniques inspired by the behavior of social 

insects. It presents a system design that enables desirable overall behavior to emerge 

without exposing the individual agents to the complexity and dynamics of the overall 

system.  Cicirello and Smith (2004) proposed a new coordination rule inspired by the 

behaviour of a wasp colony for dynamic shop floor routing.  

2.4 Ant colony optimization  algorithm 

2.4.1 ACO overview  

ACO is a class of distributed algorithms used for solving NP-hard combinatorial 

optimization problems. Its introduction can be found in (Dorigo et al, 1996, 1999), 

(Dorigo and Gambardella, 1997a, 1997b), and (Dorigo and Di Caro, 1999).  

The first form of ACO, Ant System (AS), was introduced by Dorigo et al (1991) and 

is based on the foraging behaviour observed in a real ant colony. The cooperation of 

ants and how they efficiently find the shortest routes have been formulated into an 

algorithm used to solve combinatorial optimization problems.  

The first improvement of the initial AS is called the elitist strategy for AS (EAS) 

(Dorigo et al, 1996), where only the best-so-far solution is used to update the 

pheromone trails. The idea is to enhance the promising search space. Another 

improvement is called the rank-based AS (ASrank), proposed by Bullnheimer et al 

(1999). The amount of pheromone that each ant deposits on the trails decreases 
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according to its rank. Meanwhile, the best-so-far ant still deposits pheromone at each 

iteration. The results of an experimental evaluation suggest that ASrank performs 

slightly better than EAS and significantly better than AS.   

A MAX-MIN Ant System is another improvement proposed by Stützle and Hoos 

(1997, 2000). It limits the possible range of pheromone WUDLO�YDOXHV�WR�DQ�LQWHUYDO�>2min, 

2max] in order to avoid stagnation caused by exploring best-so-far solutions; all trails 

are initiated with the upper pheromone value and the pheromone evaporation rate is 

small; finally, pheromone trails are reinitiated whenever stagnation is met or a 

solution has not been improved for a certain number of consecutive iterations.  

There are also a few extensions of AS, for example, the Ant Colony System (ACS) by 

Dorigo and Gambardella (1997a, b), Approximate Non-deterministic Tree Search 

(ANTS) by Maniezzo (1999) and population-based ACO (P-ACO) by Guntsch and 

Middendorf (2002a). Some local search methods can also be combined with ACO to 

improve the solutions.  

ACO has been used to solve the traveling salesman problem, the quadratic assignment 

problem, data network routing problem (Schoonderwoerd et al, 1996), and scheduling 

problem (flow shop or job shop).  It has been successful in finding near-optimal 

solutions comparable to those found using the state-of-the-art approaches in most of 

those problems except JSSP (Dorigo and Stüzle, 2004, pp.168). The following review 

presents results obtained from previous work of ACO related to scheduling problems 

and dynamic problems which may give insights for reactive scheduling in a dynamic 

job shop.  

2.4.2 ACO for static scheduling problems 
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The AS was first applied to JSSP by Colorni et al (1994). It was successful in finding 

solutions within 10% of the optima for both instances of 10x10 and 10x15 job shop 

scheduling problems (Dorigo et al, 1996). However, despite showing the viability of 

the approach, the computational results were not competitive with state-of-the-art 

algorithms for classic JSSPs (Stützle and Dorigo, 1999).  

EAS was applied to three benchmark JSSPs in 1999 (Zwaan and Marques, 1999). The 

results were within 8% and 26% of the best known optima for the 10/10/G/Cmax Muth-

Thompson problem and the 20/10/G/Cmax Lawrence problem (OR-Library), 

respectively. The authors considered the results promising since the tests were only 

partially executed with an iteration number of 2000. The study also presented the 

importance of parameter settings.  

There are also reports of other forms of JSSPs. Blum (2002) applied MMAS to solve 

the Group Shop Scheduling Problem (GSSP), which is a general Shop Scheduling 

problem covering JSSP and Open Shop Scheduling (OSSP).  Several versions of 

MMAS were compared and the proposed algorithm could find optima for the tested 

benchmark JSSP (15x15) and OSSP. Stützle (1998) applied MMAS integrating a 

local search for a series of benchmark flow shop problems (FSP). The results were 

compared with several other heuristics and showed that the MMAS gave high quality 

solutions to FSP in a shorter time, performing better or at least comparable to other 

state-of-the-art algorithms.  

2.4.3 ACO for dynamic problems 

The dynamic problems that ACO has been applied include routing problems in 

communication networks, dynamic traveling salesman problem (TSP), and dynamic 

JSSP. The applications of ACO in dynamic TSP are reviewed in this study because of 
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its close relevance to dynamic JSSP and the reports of ACO in dynamic scheduling 

problems are few.  

2.4.3.1 ACO for dynamic TSP 

The main concern for ACO being applied to a dynamic TSP is about the updating of 

its problem graph and pheromone matrix, which are the main procedures consuming 

computational space and time. Thus, the strategies to modify the pheromone matrix 

become a main topic.  

Angus and Hendtlass (2002) applied ACO to dynamic TSP and their motive was 

based on the following observation: ants did not retreat to their nest and start all over 

if something blocked their current efficient path; rather, they adapted the path to suit 

the new constraint. All the pheromone levels at each city were normalized relative to 

the path segment involving that city with the highest pheromone concentration 

whenever a city is added in or removed. The result was that the adaptation rate was 

very high, significantly faster than finding the result by starting all over.  

Guntsch and Middendorf (2001) proposed one global and two local strategies to 

update the pheromone matrix for dynamic TSP considering the compromise between 

resetting (through equalization) and keeping enough information. The strategies are 1) 

Restart-Strategy – reinitializes all the pheromone values by the same degree. ����–

Strategy – uses distances between cities to decide to what degree equalization is done 

RQ�WKH�SKHURPRQH�YDOXHV�RQ�DOO�HGJHV�LQFLGHQW�WR�HDFK�FLW\�����2-Strategy – uses 

pheromone based information to define another concept of distance between cities. 

They concluded that the first two strategies performed be the best, closely followed by 

WKH�2-Strategy.  
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Guntsch et al (2001) proposed several strategies for ACO to solve a highly dynamic 

TSP in order to provide a good solution quality averaged over time. Their motive is 

that the new optimal solutions might be in some sense related to the old ones if 

changes of the problem instances occur frequently and each change is not too large. 

The highly dynamic TSP refers to the problem where k cities are exchanged every t  

iterations between an initial TSP with 200 cities and a spare city pool of 200 cities. 

EAS was used to update the pheromone matrix. Empirical evaluation showed that the 

�–Strategy was the best overall strategy.  

Guntsch and Middendorf (2002a) proposed P-ACO to keep some recent information 

for adapting to a new solution in a reasonable time when there was a change in the 

problem instances. Such recent information was represented by a group of k best 

solutions. A series of TSP benchmarks were tested and the comparison shows that the 

performance of P-ACO was as least as good as the standard ACO and MAX-MIN 

ACO for static problems.  

The P-ACO was further tested on dynamic TSP by Guntsch and Middendorf (2002b). 

Their main approach was that a set of solutions was transferred from one iteration to 

the next rather than transferring pheromone information as in most ACO algorithms. 

The advantage was that it would usually be faster to modify a few solutions directly 

than to modify the whole pheromone information of a standard ACO algorithm. Five 

new population updating strategies were tested on the TSP problem similar to that in 

(Guntsch et al, 2001). The experimental results showed that P-ACO performs superior 

than the approach that restarted the procedure upon dynamic events.  

2.4.3.2 ACO for dynamic job shop scheduling problems  
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Vogel et al (2002) proposed a continuously operating Ant Algorithm, which could 

easily adapt to sudden changes in the production system. A position-operation-

pheromone-matrix (P-O-P-M) and an allocation table were maintained. Pheromone 

values were reset whenever there was a change. Pheromone updating depends on two 

factors: temporal buffer and the priorities of jobs (which was reflected in the time of 

initiating pheromone). The dynamic ACO was tested on a record based on the real-

world practice for two months and was compared to manual, priority-rule and GA 

approaches. The result generated by ACO was only inferior to the GA approach.  

2.4.4 ACO as an MAS 

There are two approaches to implement the ACO algorithm as MAS. The first 

approach is to take the advantages of parallel computation of concurrent ant agents, 

for example, Xiang et al (2005). The other is to analogize the co-ordination strategy 

among foraging ants and their decision-making rules in the field of manufacturing 

control in order to reach a similar emergent global optimal performance. A good 

overview of solving difficult real-life problems mimicking natural phenomena can be 

found in Bonabeau et al (1999).  

In (Peeters et al, 2001), the ant in AS was modeled as an order and resource agent to 

find solutions while the pheromone environment was modeled according to the layout 

of a physical flow shop. The test results showed that the proposed approach offered 

clear benefits in terms of change management. However, the main disadvantages of 

the pheromone concept were time delays and the need for tuning.  

Cicirello and Smith (2001, 2001a) proposed the Ant Colony Control (AC2) applying 

the analogy of ACO to the problem of dynamic shop floor routing. The main idea was 

to assign a new incoming job to an ant, which was responsible for the routing of this 
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job. All communication was carried out indirectly in the form of pheromone that the 

ants left on the trail between resources. Four experiments were conducted to the AC2 

with different problem configurations. They concluded that the global behaviour 

emerged was comparable to following the optimal routing strategy on simple 

problems.  

2.4.5 Summary 

In summary, the reactive scheduling problem in a dynamic job shop has been studied 

using dispatching rules, optimum seeking algorithms, and ACO inspired MAS. 

Dispatching rules are robust in situations where uncertainty or variability is high as 

compared to optimum seeking approaches. The nature-inspired MAS has only been 

tested on very simple problem models. For systems where uncertainty or variability is 

not so high, reactive scheduling using optimum seeking algorithms may provide better 

solutions with global optimization.  

The application of ACO in dynamic TSP inspires the current study of using ACO for 

dynamic JSSPs although its performance for static JSSPs is not competitive with the 

other state-of-the-art approaches. Although the ACO algorithm has been tested on the 

data of a real-world dynamic job shop, a general understanding of its performance in 

dynamic JSSP is still not clear. In this work, ACO is tested to optimize the throughput 

and the resource utilization of a simulated dynamic job shop.  
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3 Analysis of Dynamic Job Shop 

Scheduling Problems 

It can be seen from Chapter 1 that scheduling is a function with a short-term effect in 

the hierarchy of production management. The decisions from a higher level of 

management related to production planning internally determine the complexity of a 

dynamic scheduling problem. However, a proper scheduling system can facilitate the 

realization of  the full potential of a given production system and the general 

challenge is to explore efficient procedures to find best possible solutions within the 

time limit demanded by a specific problem.  

This chapter first analyzes static JSSPs in section 3.1, then dynamic JSSPs in section 

3.2. A simple example in section 3.3 illustrates that an appropriate scheduling 

approach is decided based on the particular properties of a dynamic JSSP itself. 

Thereafter the factors affecting the evaluation of a scheduling technique in a 

predictive-reactive approach are analyzed in section 3.4 and finally, section 3.5 

summarizes the chapter.  

3.1 Analysis of classical job shop scheduling problem 

The factors determining the complexity of a classical JSSP include the sizes of jobs 

and machines as well as the performance measures, which have been illustrated in 

section 1.2.5. The factors affecting the solution quality of a classical JSSP are 

described as follows.  
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Given a static scheduling problem, the quality of its solution can be determining by: 

1) the complexity of the JSSP, 2) the quality of the scheduling procedure, and 3) the 

available computing time.  

The complexity of a problem is determining by the factors mentioned in the above 

section; the scheduling procedure can be any of those ranging from exact 

mathematical methods, dispatching rules, meta-heuristics, to artificial intelligence. 

The available computing time determines how thorough a procedure can be allowed 

to explore the solution space of the scheduling problem. Some parts of the solution 

space may never be searched and thus the good schedules in those parts may not be 

discovered due to the limited computing time. In fact, computing time may hardly be 

sufficient for finding optimal solutions for most static JSSPs with even moderate sizes 

due to their NP-hard nature.  

The optimality of a schedule should be measured by how near the solution is to the 

optimal one, if it is known, in terms of solution quality. However, this is generally not 

measurable since the optima are unknown. Thus either advanced scheduling 

techniques or extended computing time has to be adopted in order to improve the 

optimality of a schedule.     

3.2 Analysis of the dynamic scheduling problem 

The dynamism of a scheduling problem is usually treated following the approach of a 

rolling time horizon (Raman and Talbot, 1993), i.e., a deterministic scheduling 

problem consisting of all known jobs is solved at each rescheduling moment. When a 

new job arrives at time t, the part of the solution consisting of operations already 

started before t is fixed and a new problem is constructed, consisting of the backlog to 

be starting after time t, plus all the operations from the newly arrived job. The 
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dynamic problem is thus decomposed into a series of static intermediate scheduling 

problems over time (Branke, 2002). 

Therefore, in a dynamic JSSP, each incoming job changes the current setting of the 

intermediate scheduling problem and the task of reactive scheduling is to 

continuously generate schedules for the set of existing unprocessed jobs in a timely 

manner so that an overall optimality of performance can be reached for the given 

period of time. A specific intermediate scheduling problem is internally decided not 

only by the characteristic of the new job but also by the status of the shop floor at the 

moment that the job arrives.  

3.2.1 Factors that characterize an intermediate JSSP 

The two factors that characterize an intermediate JSSP are the arrival time of a new 

job and its characteristics determined by the technical sequence, which refers to the 

order of workcenters that the job has to be processed, and the processing time 

distribution over workcenters.  Their effects are illustrated in the following sections.  

3.2.1.1 The arrival time 

Given a set of jobs with a priori  schedule, the subsequent intermediate JSSP varies as 

the arrival time of the new job varies. For example, given a max//3/2 CG  JSSP with a 

technological matrix T and a processing time matrix P:   
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an optimal schedule can be given in Fig. 3.1.  
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m ac h in e N o .

M 1

M 3

M 2
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O 22 (0 .6 )

1 .3 2 .6

O 13 (1 .2 )

O 23 (0 .6 )

t1  =  0 .5 t2 =  1 .5
 

Fig. 3.1 An optimal schedule for the example JSSP 

A new job J3 coming at 5.01  t  incurs a new scheduling problem that is different 

from the one incurred by the same job but coming at 5.12  t . The former has earliest 

machine available times from̂ 3̀.1,5.0,0.1  for ̂ 3̀,2,1 MMM  respectively and a set of 

un-executed operations including 12O , 13O , 22O , 23O  plus all of the operations from 

the new job. Operations 11O  and 21O  are not included because they are already being 

processed at the time the new job comes in.  

Similarly, the later problem has earliest machine available times from̂ 5̀.1,0.2,5.1  for 

^ 3̀,2,1 MMM  respectively and the set of operations including 13O , 22O , 23O  plus 

those of the new job. The two different intermediate JSSPs are list in Fig. 3.2. 

ope ra tions for
re sche duling

e a rlie st m a chine
a va ila ble  tim e

proble m  1 (t1) O 12, O 13, O 22, O 23 1 .0,  0 .5 ,  1 .3

proble m  2 (t2) O 13, O 22, O 23 1 .5,  2 .0 ,  1 .5
 

Fig. 3.2 The comparison of two intermediate problems 

Two new JSSPs are different in their operations and the earliest machine available 

times. Thus, their complexities are different in seeking new optimal schedules. Fig. 



Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems 
 

50 

3.3 illustrates the solutions of two different problems assuming that the technical 

sequence and the processing times of job J3 are ^ 1̀,3,23 MMMTC   and 

^ 5̀.0,5.0,5.03  PC , respectively.  

O 11 (1 . 0 )

O 12 (1 .0 )

m ac h in e N o.

M 1

M 3

M 2

1.0 3.22.0

O 21 (1 . 3 )

O 22 (0 . 6 )

1.3 2.6

O 13 (1 . 2 )

O 23 (0 . 6 )

t1 =  0 .5

O 31 (0 .5 )

O 32 (0 .5 )

O3 1  (0 .5 )

Cm ax=  3 .2

t ( tim e u n it)

 

(a) New optimal schedule with Cmax=3.2 when the new job enters at 0.5 
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O 1 2 (1 . 0 )
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��������O 2 1 (1 .3 )

O 2 2 (0 .6 )

1 .3 2 .6

O 1 3 (1 .2 )

O 2 3 (0 .6 )

t2 =  1 .5

O 3 1 (0 . 5 )

O 3 2 (0 . 5 )

O 3 3 (0 . 5 )

3 .7 4 .2

Cm ax=  4 .2

t ( tim e u n it)

 

(b) New optimal schedule with Cmax=4.2 when the new job enters at 1.5 

��������
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o p erat io n
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o p erat io n
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o p erat io n

n ew
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Fig. 3.3 New optimal schedules after the same job enters at different times 
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3.2.1.2 The characteristics of the new job  

The new problem is also affected by the characteristics of the new job, which can be 

described in terms of the technical order and the processing-time distribution of its 

operations.  

x� The effects of the technical order 

The minimal makespan (Cmax) could be improved from Cmax = 4.2 (Fig. 3.2 (b)) to 

Cmax = 3.2 (Fig. 3.4) if the technical order of the new job is changed to 

^ 2̀,1,3'3 MMMTC  .  

��������
��������
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O 22 (0 . 6 )

1.3 2.6

O 13 (1 . 2 )

O 23 (0 . 6 )

t2 =  1 .5

O 3 3 (0 .5 )

O 3 2 (0 .5 )

O 3 1 (0 .5 )

Cm ax=  3 .2

t ( tim e u n it)

��������
c o m p leted
o p erat io n

p ro c es s in g
o p erat io n

n o t p ro c es s ed
o p erat io n

n ew
o p erat io n  

Fig. 3.4. Cmax=3.2 after the operation order is changed 

x� The effects of the distribution of processing times 

Similarly, the minimal makespan could be improved from Cmax = 4.2 (Fig. 3.2 (b)) to 

Cmax = 4.1 (Fig. 3.5) if the processing time of the new job is re-distributed from  

^ 5̀.0,5.0,5.03  PC  to ^ 5̀.0,4.0,6.0'3  PC  while the total processing time and its 

arrival time remain unchanged.  
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Fig. 3.5. Cmax = 4.1 after the processing time is redistributed 

3.2.2 Factors that characterize an overall dynamic JSSP 

As a dynamic JSSP is the combination of all static intermediate JSSPs and each of 

them is determined only by the arrival time and the characteristics of the new job, it 

can be concluded that the distribution function of arrival times over time and the 

distribution function of processing times over workcenters work together to 

characterize an overall dynamic JSSP for the given period.  The distribution function 

of arrival times is called inter-arrival function; the distribution function of processing 

times over workcenters is generally determined by another two distributions within 

each job: the technical sequence and the processing time distribution of operations.  

Furthermore, jobs can be released to the shop floor in lots, that is, several jobs can be 

simultaneously included in one lot. The following sections describe the effects of the 

above three aspects of a dynamic JSSP.  
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3.2.2.1 Effects of inter-arrival function  

The inter-arrival function determines the moments of jobs arriving at the shop floor. 

In literature, this function always takes the form of a Poisson distribution, which has 

been shown to be a good approximation to the arrival process if the different sources 

generating job arrivals to the shop are statistically independent (Albin, 1982). Poisson 

distribution is also adopted in the current study to simulate the arrival process of 

incoming jobs.  

This Poisson distribution is given as: 
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       (3.1) 

where e is the base of the natural logarithm (e = 2.71828…); k is the number of 

occurrences of an event – the probability of which is given by the function; k! is the 

factorial of k; and ��LV�D�SRVLWLYH�UHDO�QXPEHU��HTXDO�WR�WKH�H[SHFWHG�QXPEHU�RI�

occurrences that take place during the given interval.  

Thus the expected mean number of jobs per time unit should be: O/1 , which 

determines the mean workloads of all the machines over time and the dynamic level 

of the JSSP. For a given set of jobs, the higher the value of O/1 , the higher are the 

workloads of the machines and the more dynamic is the dynamic JSSP. The value of 

O/1  actually determines the complexity of a dynamic JSSP as the mean size of an 

intermediate JSSP increases, or when the value ofO/1  increases.  

3.2.2.2 Effects of the distribution of processing times  
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The distribution of processing times over workcenters or machines of all jobs are the 

collective results of the distributions of their technical orders and processing times.  

x� Technical order 

In the literature, the order of the operations in a job is generally randomly chosen 

from a uniform distribution. That is, every workcenter has an equal chance to be 

chosen. The same mechanism is adopted in the current study.  

x� Values of processing times 

The values of processing times are normally decided by the exponential distribution in 

the literature. Exponential distribution is also adopted in the current study to generate 

processing times. The exponential distribution has the form of: 
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where -  > 0 is a parameter of the distribution, often called the rate parameter. The 

distribution is supported on the interval [0,����The mean or expected value of an 

exponentially distributed random variable X with rate parameter -  is given by 
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Shannon (1979) reported that the nature of processing time distribution significantly 

affects the performance of the scheduling rules. An interesting observation is that the 

use of the exponential distribution tends to favor the SPT rule. The reason could be 

that SPT avoids allocating the machines to one of the very long operations, which is 

possible when draws are taken from an exponential distribution (Ramasesh, 1990).  
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3.2.2.3 Effects of job lots  

Sometimes, the jobs are released in lots instead of one by one. The size of jobs in a lot 

determines the severity that the underlying scheduling problem is changed. For 

example, there are 16 unprocessed operations when a lot of new jobs are released to 

the shop floor. The size of the operations for the new intermediate JSSP is 22 if there 

is only one job, which has 6 operations, per lot. However, it becomes 28 if there is 

one more job (which also has 6 operations) per lot. Obviously, the underlying 

problem is changed more severely by the larger lot than the smaller one.  

3.3 Internal problem properties determine Approaches  

It is widely acknowledged that no one particular approach can perform best in all 

situations. Each approach has its own niches of application domains and it is 

important to find the appropriate application domains of a proposed scheduling 

algorithm. The following example shows a scenario that is best suited for FIFO 

dispatching rules. Some indications can be made for potential application domains of 

algorithmic approaches.    

Figures 3.6 to 3.9 present an example where the utilizations of all machines can reach 

100% with a very simple FIFO dispatching rule if dynamic jobs arrive regularly and 

their processing time distributions on the machines can match each other to cover all 

the time slots on all the machines.  

Fig. 3.6 gives an initial optimal schedule, which minimizes the makespan for three 

types of jobs: T1, T2 and T3. Their technical orders are ^ 3̀,2,11 MMMTC  , 

^ 1̀,3,22 MMMTC  and ^ 2̀,1,33 MMMTC  ; their respective processing times 

are ^ 5̀.0,5.0,2 PC . Jobs are assumed to arrive at the shop floor regularly in the 
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sequence of T1, T2 and T3 per time unit. Obviously, the combination of these 

technical orders as well as the distributions of processing times makes the workloads 

on all machines identical.  

m ac h in e N o .

M 1

M 3

M 2

3

O 22

O12

O33

O23

O21

O 32

O33

O31

0

O11

2 .52

T 1

T 3

T 2

t ( tim e u n it )  

Fig. 3.6 The initial schedule 

The 4th job of type 1 (T1) comes in at 01  t  and the subsequent orders of the 

operations on three machines according to FIFO are given in Fig. 3.7. Those orders 

are changed (Fig. 3.8) where the 5th new job of type 2 (T2) at 12  t . At the same 

time, the first operations of all the first three jobs are being processed. Next, the 6th 

job of type 3 (T3) arrives at the shop floor at 23  t  when the operations of the first 

three jobs are completed. There are two possible schedules as both O22 and O61 arrive 

at machine 3 (M3) simultaneously. Fig. 3.9 gives both schedules when O22 and O61 are 

first processed respectively.  
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Fig. 3.7 The 4th new job of type 1 enters at t1=0; new Cmax=5 by FIFO 
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Fig. 3.8 The 5th new job of type 2 enters at t2=1; new Cmax=5.5 by FIFO 
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Fig. 3.9 The 6th new job of type 3 enters at t2=2; new Cmax= 6 by FIFO 
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The utilizations of all machines can always be optimized at 100% by FIFO if jobs 

continue to come in at the same inter-arrival time distribution and in the same 

sequence of job types. The example shows that the dynamic JSSP can be optimally 

solved with a very simple dispatching rule, FIFO, which takes very little 

computational effort. The particular combination of internal factors like the arrival 

frequency and the processing time distribution of dynamic jobs determine the success 

of this solution approach.  

Furthermore, dynamic JSSPs that have no such special combination of the jobs and 

the inter-arrival function but have jobs coming in at a high frequency may also favor 

dispatching rules as many researchers have observed, which can be explained as 

follows. 1) The schedules found in a limited computing time may not be optimal or 

near optimal at all. 2) An unsatisfactory schedule may cause its following scheduling 

problem to be more complex. 3) Even if the schedules are optimal, their strengths may 

not be fully realized before they are made obsolete by dynamic events.  

Thus, the dynamic JSSPs that have great potentials to be solved with high 

performance through a predictive-reactive approach adopting optimum seeking 

algorithms may have characteristics like less frequent dynamic jobs or non-uniformly 

distributed arrival times and processing times.  

3.4 Analysis of factors affecting the evaluation of a scheduling technique  

In a static JSSP, the execution of a schedule is not considered as it is assumed that the 

optimality predicted by a schedule can be fully realized. However, it is no longer the 

case for a dynamic JSSP, where the underlying scheduling problem continues to 

changing due to continuously arriving jobs. The performance of a scheduling 
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technique in the predictive-reactive approach for a given period of time is thus the 

overall results of the realized optimality provided by many intermediate schedules.  

The principle for a scheduling system adopting the rolling time horizon approach has 

been always trying to find a best schedule for each intermediate scheduling problem. 

It is also desirable to realize the optimality of intermediate schedules as early as 

possible since their execution is uncertain in a dynamic environment and is out of the 

control of a scheduling system. Thus, the performance of a scheduling technique in a 

dynamic environment is related not only to its ability of finding the best schedule for 

each static intermediate scheduling problem but also to the realization of the 

optimality provided by those intermediate schedules.  

3.4.1 Factors that can affect the quality of an intermediate schedule  

The optimality values of intermediate schedules over time in a dynamic environment 

can be illustrated in Fig. 3.10, with the optimality value formulated as makespan1  so 

that a minimal makespan implies a maximal optimality. In the figure, a schedule with 

an optimality value of 0a  has been executed from time 0t  to 1t , when a new job 
1J  

arrives. The optimality of the current schedule immediately drops to '0a  if job 
1J is 

simply put at the end of the schedule. Next, a reactive scheduling procedure is 

triggered to form a sub-problem with the backlog operations and all of the operations 

from 
1J assuming the scheduling period allowed is [1t , '1t ]. A new schedule with an 

optimality value of 1a  is generated and executed from '1t  till the second job
2J  arrives 

at time 2t , where the similar procedure repeats.  
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Fig. 3.10. The optimality values of schedules over time in a dynamic environment 

The optimality of the intermediate schedule found in the time intervals of [1t , '1t ] or 

[ 2t , '2t ] is affected by the following factors: 1) the length of the time interval; 2) the 

operation size of the intermediate JSSP; 3) the quality of the scheduling algorithm; 

and 4) dynamic scheduling strategies.  

3.4.1.1 The length of a computing interval  

A computing interval refers to the time span that can be allowed for generating a new 

intermediate schedule. The length of this interval is problem-dependent, for example, 

the computing time for the sub-problem caused by job 1J  can be decided by its 

traveling time from the reception area to its first workcenter. The length can 

proportionally affect the optimality of the schedule.  

3.4.1.2 The size of an intermediate JSSP  

Given the same scheduling period, a smaller scheduling problem implies lower 

computational cost and better solution and vice versa. A schedule minimizing 

makespan may have better opportunity to complete more operations before an 

interruption occurs. Thus, the resulting intermediate sub-problem can have a smaller 

size and hence a better chance to find a good schedule, which facilitates the 
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generation of another good schedule following a disturbed moment. On the contrary, a 

larger sub-problem may have less opportunity to find a good schedule, and a poorer 

schedule, in turn, can produce a larger following sub-problem. The procedure goes on 

and the overall performance of the scheduling system may deteriorate.  

3.4.1.3 The quality of a scheduling algorithm 

A good scheduling algorithm should generate a timely and satisfactory schedule to 

guide production. Information adaptation may help in speeding up the procedure of 

finding a new optimum, especially when the underlying problem is not changed 

severely. The idea is to generate a schedule not from scratch but to exploit the optimal 

information kept in the current solution and quickly find a good solution for the 

modified problem. This adaptation also has an advantage of maintaining similarity 

between two continual schedules, which is preferred in real life applications. This idea 

has been studied in TSP (Guntsch and Middendorf, 2001, 2002a, and 2002b) 

(Guntsch et al, 2001).  

3.4.1.4 Dynamic scheduling strategies 

Dynamic scheduling strategies involve choosing scheduling frequency or employing 

partial scheduling. Scheduling frequency refers to how often the schedule generation 

procedures are triggered. It can be event-driven, periodic-driven or performance-

driven. The event-driven approach triggers a rescheduling procedure whenever an 

event occurs; the periodic-driven approach triggers the rescheduling procedure 

according to a pre-set time period; the performance-driven approach uses 

performance values of the current production system as the trigger of the rescheduling 

procedure. These approaches essentially solve different dynamic scheduling problems 
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where the last two alter the original problem by postponing the reactions to 

interrupters.  

Partial scheduling considers only a partial set of jobs from the sub-problem in one 

computing interval in order to cover the next estimated execution period. This 

approach is inspired by the fact that a schedule may not have an opportunity to be 

fully executed before dynamic disturbances; thus, there is no need to include the 

operations that may not be processed before those interruptions in order to reduce 

computation efforts. This approach may find a partial schedule in a short time but 

lacks a global view of the problem.   

Dynamic scheduling strategies can change an original computing interval through 

different scheduling-driven approaches and alter the original size of an intermediate 

JSSP by partial scheduling. Keeping other experimental parameters unchanged, the 

adjustment of dynamic scheduling strategies can improve the performance of a 

proposed scheduling algorithm.  

3.4.2 Problem-related properties for improving schedule optimality 

Some problem-related properties, which can facilitate the realization of the optimality 

provided by a schedule as early as possible, should be explored. For example, given 

two different schedules with the same makespan for the same problem, the one with 

more operations at the early stage may be preferred since more operations may have 

been completed before the interruption and thus reduce the size of the next scheduling 

problem.   
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The identification of these properties is problem-dependent and promising in 

improving performance. Other potential properties may be related to the positions of 

time slacks and the operations with longest processing times on critical paths.   

3.5 Summary 

This chapter analyzes the static JSSP, the dynamic JSSP and the factors that 

characterize an intermediate JSSP and the overall dynamic JSSP. It also points out 

that internal problem properties determine appropriate approaches. Finally, it explores 

the factors affecting the evaluation of a scheduling technique.  

Based on these analyses, the systematic approaches to test a proposed scheduling 

technique can be carried out in the following directions: 1) to test a scheduling 

technique in different experimental environments defined by different dynamic levels, 

dynamic severity, processing time distributions, system configurations, and 

performance measures; and 2) to improve the performance through adjusting the 

internal parameters of the scheduling algorithm if possible, and the dynamic 

scheduling strategies like the rescheduling-driven mechanism and partial scheduling.  
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4 The Test Bed 

The goal of this chapter is to build a common test bed to facilitate systematic studies 

of the performance of scheduling algorithms in a dynamic job shop environment. The 

test bed simulating a generic job shop should be able to provide a realistic 

configuration of a shop floor, generate dynamic or stochastic events such as incoming 

jobs and machine breakdowns, provide necessary scheduling algorithms or 

dispatching rules to guide processing and control rules to react to dynamic events, 

track job movements and the status of the machines, workcenters and the shop floor, 

and provide statistical analysis for performance measures.  

The structure of the chapter is as follows: in section 4.1, the related works on system 

modeling/test beds for dynamic scheduling are presented; in section 4.2, the definition 

of a generic job shop is given; in section 4.3, a generic job shop is modeled as a DES, 

and a prototype of the job shop is implemented in section 4.4 as an MAS. Section 4.5 

is especially devoted to describe the communication of agents in the MAS and a case 

study is provided in section 4.6.  

4.1 Background  

In order to build an up-to-date test bed to study the scheduling methods in 

dynamic/stochastic environments, the test beds of main dynamic scheduling 

approaches should be reviewed. Generally, the performances of dispatching rules and 

predictive-reactive scheduling approaches are tested through simulation and 

Ramasesh (1990) gave an excellent review on the simulation research in dynamic 

JSSP.  
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Simulation is the most common method for constructing models that include the 

temporal dynamics of manufacturing systems, many of which can be modeled as DES 

(Askin and Standridge, 1993). Law and Kelton (2000) applied simulation to find the 

best configuration of facilities using dispatching rules.  In Sabuncuoglu and Bayiz 

(2000), the test bed is based on a simulation model coded in the C language with ten 

levels of frequency of scheduling and four types of problem instances. The down time 

distribution follows a Gamma distribution with a shape parameter of 1.4 and a mean 

of 40 minutes; the number of operations for one job is drawn from a discrete uniform 

distribution from 5 to 15; processing times are generated from a discrete uniform 

distribution from 20 to 80. In Sabuncuoglu and Kizilisik (2003), six machines and 

three automatic guided vehicles (AGVs) comprise the flexible manufacturing system. 

The job inter-arrival time is exponentially distributed. Each job has either five or six 

operations with equal probability; operation times are drawn from a 2–Erlang 

distribution. The review shows that a test bed should also have the capability for 

statistical analysis.  

The complex nature of the dynamic scheduling problem dictates that traditional 

simulation experiments can only be performed on small systems. Besides, a good 

scheduling test bed should be able to facilitate the systematic selection of parameters 

and configurations. The distributed computation, which can be realized through agent 

technology, has the computational capacity for large problems and provides the 

scalable structure for many problem configurations.   

Furthermore, the performance of a scheduling approach can be systematically 

evaluated based on statistical analysis on different dynamical levels, problem 
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configurations and performance measures. Long-term average performance based on 

statistical analysis can be carried out when the generic job shop is simulated as a DES.  

Combining MAS with DES enables the proposed test bed not only to meet the 

requirements in section 4.1 but also has the advantages of: 1) simultaneous execution 

of events on distributed locations, 2) distribution of event generation, state keeping, 

event-list managing and data recording/analyzing, 3) possible performance 

improvement through agent coordination or negotiation, 4) examination of long-term 

performance, 5) scalability of the MAS to support further extension of the test bed, 

and 6) a common test bed that could use the similar structure and logic between 

simulation and actual control of the job shop.  

4.2 The generic job shop 

A generic job shop in this study refers to a generalized representation of real life job 

shops considering not only the configuration of their floor layout but also MHS.  

A generic job shop can be physically made up of several workcenters, a 

receiving/shipping station, and material transportation devices as shown in Fig. 4.1. A 

workcenter, shown in Fig. 4.2, processes one type of operation using several similar 

machines. It has a queue to buffer incoming jobs when all the machines are not 

available and another queue for completed jobs to wait for transportation. The 

receiving/shipping stations receive new jobs and ship out all the completed jobs. All 

the workcenters and the receiving/shipping station are located in the shop floor 

according to certain layouts. The distances between every two of them are given in a 

layout matrix. Some MHDs transport jobs between workcenters.  
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Fig. 4.1 The components of a job shop 
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Fig. 4.2. The components of a workcenter 

4.3 Discrete event simulation model 

Three basic elements in the discrete event simulation include the state of the system, 

event actions and event lists. The overall state of a generic job shop system is 

determined by the status of the machines and jobs in it where machines are located in 

different workcenters and jobs are distributed either in workcenters or on traveling 

devices. According to Koestler (1967), architectures of manufacturing systems are 

inherently hierarchical. In section 4.3.1, entities are organized hierarchically so that 
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the global state can be monitored by distributed entities at different levels. In section 

4.3.2, the possible states for each type of entities are described. In section 4.3.3, the 

dynamic events and their actions are presented and finally, the mechanism to maintain 

distributed event lists is explained in section 4.3.4.  

4.3.1 Decomposition of the global state 

The hierarchical relationship in a generic job shop is illustrated in Fig. 4.3. Entities 

like machines or jobs can be grouped and monitored by a higher level entity, which in 

turn forms another group with its similar entities and is monitored by another higher 

level supervisor. For example, a group of machines is monitored by their workcenter 

manager and the state of the workcenter is monitored by the shop floor monitor. A job 

can be monitored by either a workcenter manager or the shop floor depending on 

whether it stays in a workcenter or travels on a MHD. In this manner, the global state 

of the job shop can be tracked through monitoring workcenters and traveling jobs.  
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Fig. 4.3. The hierarchical relationship in a generic job shop 

There are seven types of entities in the simulated job shop: machines, workcenters, 

shop floor, jobs, scheduler, job releaser, and controller. Generally, an entity will have 

a wider view of the system if it is located at a higher level in the hierarchy.  A 

machine, a job or a scheduler can only monitor its own states while a workcenter has 

a wider scope by monitoring jobs, machines and buffers. Similarly, the shop floor 

entity can have an even wider view of monitoring the workcenters, traveling jobs and 

MHDs. Furthermore, the state of an entity in a higher lever does not contain the 

detailed state information of its supervised entities. For example, the state of the job 

shop does not contain the information of the buffer status in its supervised 

workcenters. This approach facilitates distributing data as well as their analysis to 

their most relevant locations.  

The job releaser and the controller are not parts of a job shop but are responsible for 

generating new jobs and advancing the simulation time, respectively.  
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4.3.2 States of entities 

A job can be in the states of waiting-for-process, in-process and on-traveling 

assuming that only one buffer is needed in a workcenter and finished jobs can be sent 

to the next stage immediately. It is in waiting-for-process when it waits at the buffer 

of a workcenter to be processed; it is in-process when being processed on a machine; 

and it is on-traveling when it is traveling between workcenters.  

A machine can be in the states of busy, idle and down. It is busy when it processes a 

job and idle when it waits for a job. The down state refers to the period from machine 

breakdown to its recovery. 

A workcenter can be in four states: idle, partial, full, and buffered. It is idle when 

there is no job in it and all available machines are idle. It is partial when machines are 

only partially used. It is full when all machines are busy and there are no waiting jobs. 

Finally, it is buffered when all machines are busy and there are jobs waiting.  

A shop floor can be in three states according to the number of jobs in it: idle (no job 

on the floor and all workcenters are idle), working (at least one job is on the floor) and 

completed (simulation completed and analysis can be carried out). 

4.3.3 Events and their actions 

The global state of a job shop system is changed by the actions incurred by any 

dynamic events concerning jobs and stochastic events in the shop floor. The dynamic 

events related to a job entity include its arriving at or leaving resources like machines, 

workcenters, the shop floor and MHDs. The stochastic events include dynamic 

incoming of job orders, machine breakdowns/ups and processing time variation. 

However, it is not necessary to model all of the aforementioned events. Only five 
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essential events are identified and they can be categorized as job-related and machine-

related events.  

4.3.3.1 Job-related events 

Job-related events are initiated by jobs and there are two types.  

�� New job event 

A new job event represents a new job order, which is released to the shop floor by the 

job releaser according to certain distribution functions. The event action for this event 

is illustrated in Fig. 4.4. The event is registered to the shop floor, which then increases 

the size of its WIP and confirms the registry. The job then heads to the next 

workcenter from the receiving station traveling on a MHD and another event called 

the incoming job event is generated immediately. The time period required to travel to 

the next workcenter is decided by the speed of its MHD and the distance between the 

two workcenters. The incoming job event is forwarded to the shop floor entity and its 

description is given in the following section.   
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Fig. 4.4. The actions upon the new job event 

�� Incoming job event 

An incoming job event indicates the arrival of a traveling job at a workcenter. When it 

is initiated, the job enters a workcenter from the shop floor and requests service; the 

workcenter then allocates the job according to its state and control rules or the 

schedule. If the job cannot be processed immediately, it will be put into the 

workcenter buffer, otherwise, it will be sent to one of the machines and another event, 

namely a “leaving job" event (from the machine), will be generated. The event actions 

and state changes on the related entities are represented in Fig. 4.5.  
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Fig. 4.5. Actions and state changes upon the incoming job event. 

 

4.3.3.2 Machine-related events 

Machine-related events are initiated by a machine and there are three types: 1) leaving 

jobs, 2) machine breakdowns, and 3) machine ups. 

�� Leaving job 

A leaving job event indicates the completion of an operation by a machine. When this 

event is initiated, the completed job leaves its machine and workcenter, travels to the 

next workcenter and then generates another incoming job event. Meanwhile, the 

newly freed machine is available for processing the next job. If it is allocated with 

another job, a new leaving job event for the new job will be generated, otherwise it 
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will be idle. Finally, the workcenter reduces the size of its WIP by one. The event 

actions and the state changes of the related entities are presented in Fig. 4.6.  
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Fig. 4.6 Event actions and state changes upon a leaving job event 
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Fig. 4.7. The dynamic events incurred by a routing job 
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The locations of the previous events in a job shop are illustrated in Fig. 4.7. The 

leaving job event causes a job to leave both its machine and workcenter 

simultaneously, assuming that the finished job can be immediately transported to the 

next workcenter. The relationship between job events is shown as an event diagram in 

Fig. 4.8.  
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Jo b

L eav ing
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Fig. 4.8. Event graph of job related events 

 

�� Machine breakdowns/ups 

A machine breakdown event is assumed in this work to occur only when a machine is 

busy processing jobs (Law and Kelton, 2000). The machine will change its state to 

down on a machine breakdown event and immediately create a machine-up event to 

represent the time that it will take to be repaired. Meanwhile, the interrupted job is 

sent to another available machine generating another incoming job event or it is sent 

to the buffer. Similarly, when a machine-up event occurs, the machine is ready to 

process operations. If a job is allocated to it, the machine will go to the state of busy 

and a new leaving job event will be generated. Otherwise, it remains idle. The action 

and state changes for both events are illustrated in figures 4.9 and 4.10, and their 

relationship is given in the event diagram in Fig. 4.11.  
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Fig. 4.9. Actions and state changes upon a machine breakdown event 
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Fig. 4.10. Actions and state changes upon a machine up event 
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Fig. 4.11. Event graph of machine breakdown and up 
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4.3.4 Event lists 

The global state is maintained as one entity and all events are sorted in one event list 

according to their occurring times in conventional approaches. However, in a system 

where the global state is decomposed and monitored by many distributed entities, the 

global event list also has to be decomposed and monitored by the respective entities. 

This approach can reduce the size of the list and thus the sorting time. Meanwhile, the 

correct simulation time should be maintained carefully since the event lists are 

distributed and the execution of one event may cause event changes at different 

entities. The analysis of the event list in each component is given in section 4.4.4.1 

and the mechanism to maintain correct simulation time is presented in section 4.4.4.2.  

4.3.4.1 Analysis of event lists 

Each entity maintains an event list although only machines, jobs and the job releaser 

are the initiators of events. Other types of components only receive events from their 

entities supervising them and keep only the earliest ones in their own event lists.  

The event list of a machine can contain at most three possible types of events: 

machine breakdowns, machine ups and leaving jobs. Its size can be at most two since 

machine breakdown and machine up events cannot co-exist. The event list of a job 

entity is a one-item list containing one incoming job event. Similarly, the job releaser 

also has a one-item list containing one new job event.  

A workcenter entity keeps only the earliest events from its supervised machines; the 

job shop entity in turn keeps only the earliest events from all the workcenters and 

traveling jobs. The controller is at the top of the hierarchy and it decides the earliest 

event time for the next simulation round.  
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Fig. 4.12. The hierarchy of event lists 
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Each entity forwards its earliest events up to its respective supervisor and finally the 

earliest events reach the controller. There are three propagating paths: the first one is 

from the job releaser directly to the controller, the second one starts from the traveling 

jobs to the shop floor, then the controller, and the third one starts from machines, goes 

through the workcenters and the shop floor and finally reaches the controller. 

An example for maintaining the event lists in a typical simulation round is given as 

follows. Workcenter 1 (WC1) has three machines, m1_1, m1_2 and m1_3. Each of 

them forwards its earliest event to WC1. WC1 compares the three events, identifies 

the earliest one and keeps it in its event list. The same procedure happens 

concurrently at workcenter 2 and workcenter 3. Three workcenters forward their 

earliest events to the shop floor, which at the same time, also keeps the events of the 

traveling jobs. Hence the earliest event that will occur on the whole shop floor can be 

found and further forwarded to the controller, which also receives the event of 

generating the next job from the job releaser. The controller then finds the earliest 

event and announces the occurring time as the next simulation time to both the job 

releaser and the shop floor. The shop floor forwards the new time to all the 

workcenters, which pass down to their machines. Each entity checks its own event list 

upon receiving the new time and starts to act if there are some due events; otherwise, 

it takes no action. It is obvious that there could be many concurrent events occurring 

at the different locations. The detailed messages for coordinating those single or 

concurrent events are illustrated in section 4.6.  

It can also be seen that the size of a job shop event list is bound to the sum of both the 

sizes of the workcenters and the traveling jobs. In addition, the size of a workcenter 
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event list is bound to the size of its machines. An overall long event list is thus 

avoided and the list-sorting time is reduced.  

4.4 Implementing the simulated generic job shop as an MAS 

The implementation of agent-based simulation essentially includes two steps: 1) 

identifying the behaviors of each individual agent, and 2) coordinating the 

communication among agents. The behaviors of agent and the change of its status can 

be expressed clearly in state charts while the coordination of communication can be 

illustrated in the sequential diagrams of unified modeling language (UML).  

All entities of a generic job shop are modeled as autonomous agents pursuing their 

own interests with unique functions. The possible stable states for the main agents 

have been identified in section 4.4.2 and the transition between them in real time is 

described using UML state charts. Some transient states or actions, such as data 

recording, list sorting and message sending are also included in the state charts for a 

better illustration; the stable states are shaded. It should be noted that in the given 

state charts, “mg” refers to “message” and symbol C refers to a conditional gate. 

Finally, the mechanism of fitting an MAS to a time frame decided by DES is 

described.  

4.4.1 Main agents 

The state chart of a job agent, illustrated in Fig. 4.13, shows three stable states: 1) 

waiting for process, 2) in processing, and 3) on traveling, and four transient states: 1) 

idle, 2) entering shop floor, 3) entering workcenter and 4) leaving shop floor. The life 

cycle of a job agent involves the stable and the transient states. It starts in the idle 

state and changes to the on traveling state after entering the shop floor. It turns to 
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either the waiting for process state or the in process state after entering a workcenter 

depending on the current state of the workcenter. If it is in the waiting for process 

state and receives an “available machine” message from its workcenter, the job will 

be processed on the assigned machine and its new state will be in process. It remains 

in this state until it receives either a “machine breakdown” or a “finish operation” 

message. It will go back to the waiting for process or the in process state if the former 

is received. Otherwise, its operation will be finished; it turns to the on traveling state, 

and moves to the next workcenter or the shipping bay if all the operations are 

completed.  
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Fig. 4.13 State chart of a job agent 

The flow time, waiting time and actual processing time of a job can be tracked by its 

own job agent, which can record the times it reaches or exits the shop floor, 

workcenter buffers, or machines. The state changes of the machine agent, workcenter 

agent, and shop floor agent are illustrated in figures 4.14 to 4.16.  
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Fig. 4.14. State chart of a machine agent 
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Fig. 4.15. State chart of a workcenter agent 
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Fig. 4.16. State chart of a job shop agent 

 

4.4.2  Other agents 

The controller and the job releaser in Fig. 4.3 are also implemented as agents. The 

controller works to initiate the whole system and maintains the simulation clock and 

the job releaser generates new jobs with particular information concerning technical 

sequence, processing times, starting and due times, etc.  

4.4.3 Fitting the MAS into the time frame of DES  

There are two types of time in the system: simulation time and execution time. The 

simulation time is a clock time when an event starts to be executed. It is decided by 

DES. The execution time refers to the period of CPU time MAS takes for event 

execution. Their relationship is illustrated in Fig. 4.17.  
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Fig. 4.17. The relationship between simulation time and execution time 

The event occurred at time 1t causes MAS to execute taking '1t  CPU time. Then the 

next simulation time 2t  , maybe hours after, is decided at the end of execution time 

'1t . Another period of event execution then starts. The simulation proceeds in this way 

from 1t to 2t  and 3t  until a predefined termination time is reached while the events are 

executed one after another by the agents.  

4.5 Communication in the MAS 

All the communication in an MAS is realized through message passing. The 

execution of an event always incurs a string of messages propagating to the other 

agents, which may react to the messages by further sending messages to other agents. 

Messages may be passed concurrently in many distributed locations, and it is crucial 

to coordinate them so that all event lists can be updated in a consistent manner and the 

correct simulation time can be maintained. Message passing for a single event is 

analyzed in section 4.6.1 and that for concurrent events in a single agent is described 

in section 4.6.2. The mechanism to coordinate all agents is given in section 4.6.3.  

4.5.1 Message passing for a single event  

�� Message passing for job related events 
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The message passing for two job-related events, i.e. the new job event and the 

incoming job event, is illustrated in Fig. 4.18.  
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Fig. 4.18. Message passing for job-related events 

 

�� Message passing for machine related events 

Message passing for three machine-related events, i.e., the leaving job, the machine 

breakdown, and the machine up event, is illustrated in Fig. 4.19.  

The machine agent sends a message to the job agent representing the job processed on 

the machine when a leaving job event is fired and notifies it on completion of its 

operation. The job agent then requests to leave the workcenter while the machine 

updates the workcenter about its new state. The workcenter then checks whether there 
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are waiting jobs or interrupted jobs to be re-allocated accordingly. Finally, it permits 

the job agent to leave the workcenter. The job agent in turn registers with the shop 

floor agent with another incoming job event as shown in Fig. 4.19(a). 
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Fig. 4.19. Message passing for machine-related events 
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The broken down machine sends a message to its job agent announcing an 

interruption when a machine breakdown event is fired. The job then re-registers itself 

with the workcenter as a waiting job while the machine updates the workcenter about 

its new state. Finally, the workcenter re-allocates the interrupted job according to its 

new state and sends the job agent a “waiting” or a “processing” message. The job then 

acts accordingly as described above in Fig. 4.19(b). 

The machine will notify the workcenter about its new state when a machine up event 

is fired and the workcenter will check its buffer to see whether there are waiting jobs. 

If there are, an allocation message will be sent to the appropriate jobs from the 

workcenter, otherwise no messages will be generated. This procedure is shown in Fig. 

4.19(c).  

4.5.2 Message passing upon concurrent events in a single agent 

It is possible that there could be several events initiated at the same moment within 

one agent. The message passing for possible concurrent events is described as 

follows. A job agent can only have an incoming job event in its event list and thus it 

has no concurrent events. A machine agent can have at most two concurrent events: a 

leaving job and a machine breakdown event. The finished job is leaving the machine 

and the machine’s state turns to be down. The messages incurred are depicted in Fig. 

4.20.  
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Fig. 4.20. Message passing upon concurrent events of machine breakdown and 
leaving job in a machine agent 

 

The workcenter agents, the shop floor agent and the controller agent do not initiate or 

execute any events by themselves, but monitor the status of the agents and coordinate 

messages passing in their domains.  

4.5.3 Agent co-ordination 

The basic information flow in a simulation loop is illustrated in Fig. 4.21. It starts 

from sending all agents the current simulation time with messages 1 to 4. Agents from 

the lowest level then update their supervisors of their new status, after event actions, 

with messages 5 to 8. The messages contain the information on the time of their 

respective next events. Finally, the controller updates the simulation time to the 

earliest event time, and the next loop starts through messages 9 and 10.  
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Fig. 4.21. The basic information flow in a simulation loop 

 

A workcenter supervises several machine agents and is responsible for coordinating 

their messages to assure correct status updating. Thus, there are coordinating 

messages of a workcenter agent between messages 3 and 6. Similarly, a shop floor 

agent is responsible to coordinate workcenters through messages 2 to 7 in Fig. 4.21.  

4.5.4 Coordination work of a workcenter 

 The workcenter receives a time message from the shop floor agent and then begins to 

coordinate all the actions in the workcenter. The most complex situation is when a 

workcenter has to receive new incoming jobs and all of its machines have 

simultaneous due events. The goals of a workcenter are thus to ensure that: 1) new 

incoming jobs are properly allocated, 2) the interrupted jobs are re-allocated, 3) 

waiting jobs are allocated when machines are available, 4) all machines update their 

new status, and 5) completed jobs leave the workcenter. A workcenter can only 

update its new status to its supervisor after all the above goals are realized.  
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Fig. 4.22. Co-ordination work of a workcenter agent 

 

The co-ordination messages are illustrated in Fig. 4.22 based on the most complex 

situation mentioned above. A workcenter receives the new incoming jobs through 

messages 1 and 2 before it receives a time message from message 3. It then checks the 
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event list to determine the number and the types of fired events and a waiting list can 

be set up accordingly. For example, the workcenter will expect to receive both a 

“leave” request from the job and a new state updating it from the machine if the event 

for finishing a job is initiated. The workcenter then initiates all the events by message 

4.  

The workcenter is contacted by all the expected machines and jobs through messages 

6 and 7 after the event actions are finished. The workcenter may be unbalanced at this 

time with newly available machines and waiting jobs in the buffer. It then allocates 

the waiting jobs or re-allocates the interrupted jobs to the machines through messages 

8 to 10. The simulation time is forwarded through message 11 to all the machines, 

which immediately update their status through message 12. Finally, the completed 

jobs are approved to leave the workcenter through messages 13 to 16, and a 

workcenter can update its new status through message 18.  

4.5.5 Coordination work of the shop floor 

The shop floor prepares to monitor all the dynamics at the moment it receives a time 

message from the controller agent. The most complex situation for a shop floor agent 

to co-ordinate is when the following dynamics occur simultaneously: 1) new jobs 

come to the shop floor, 2) some traveling jobs arrive at their workcenters, and 3) some 

jobs in workcenters completed their operation and are ready to travel to the next stage. 

The shop floor needs to ensure that: 1) all new jobs are registered, 2) traveling jobs 

are received by their workcenters, and 3) jobs leaving their workcenters reach the 

shop floor. Only after all the above dynamics have been handled, can the shop floor 

agent update its new status to the controller agent. The co-ordination messages are 

given in Fig. 4.23. 
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Fig. 4.23. Co-ordination work in the job shop agent 
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The shop floor agent also receives a time message through message 1 and initially 

makes sure that all the traveling jobs are received by their workcenters through 

messages 2, 3 and 7. It then updates all workcenters with the new simulation time 

through message 8. Meanwhile, there may be some new jobs entering the shop floor: 

they are handled through messages 4, 5 and 6. The shop floor agent is then notified of 

the number of leaving jobs by the workcenters through message 9 and starts to collect 

all the expected leaving jobs through message 12. It notifies all the workcenters to 

update their new states through message 13 after all the leaving jobs are collected. 

Finally, it updates its new status to the controller agent through message 14.   

4.6 Case Study 

The case study pursued here adopts the data from the example on pages 684-695 of 

Law and Kelton (2000). The MAS model runs on an AMD Opteron Linux Cluster 

with 26 nodes (2.2GHz, 4GB RAM) + 8 nodes (2.4GHz, 32GB RAM) in the Institute 

of High Performance Computing (IHPC). The random number generator used in 

simulation is proposed by L’Ecuyer et al (2001).  

4.6.1 Inputs 

The studied job shop is shown in Fig. 4.24 with five workcenters and one 

Receiving/Shipping station. The machines in a particular workcenter are identical 

while the machines in different stations are dissimilar. The distances between the six 

workcenters are given in Table 4.1. Jobs are transported between workcenters by 

MHDs assuming that there are sufficient number of them are available and the time 

spent on the trip is proportional to the distance between the two locations.  
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Fig. 4.24. Layout of the manufacturing system 

 
 
 

Table 4.1. Distances between workcenters (feet) 

Work ce nte r 1 2 3 4 5 6

1 0 1 50 2 13 3 36 3 00 1 50
2 1 50 0 1 50 3 00 3 36 2 13
3 2 13 1 50 0 1 50 2 13 1 50
4 3 36 3 00 1 50 0 1 50 2 13
5 3 00 3 36 2 13 1 50 0 1 50
6 1 50 2 13 1 50 2 13 1 50 0

 

Jobs arrive at the shop floor with inter-arrival times that are independent exponential 

random variables with a mean of 1/15 hour. There are three types of jobs: 1, 2 and 3, 

with respective probabilities 0.3, 0.5 and 0.2. Job types 1, 2 and 3 require 4, 3, and 5 

operations to be done respectively, and each operation must be done at a specified 

workcenter in a prescribed routing (technical order), which is given in Table 4.2. Each 

job enters the shop floor at the Receiving/Shipping station (workcenter 6), travels to 

the workcenters on its routing and then leaves the system at the Receiving/Shipping 

station. All MHDs move at a constant speed of 5 feet per second.  

A job joins a single FIFO buffer if all the machines in the workcenter it reaches are 

busy. The time to perform an operation at a particular machine is given in Table 4.3.  
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Table 4.2. Technical routes of jobs 

Job type Work  s tat ions  in rout ing

1 3 , 1 , 2 ,  5

2 4 , 1 , 3

3 2 , 5 , 1 ,  4 , 3
 

Table 4.3. Processing times of all operations 

Job typ e
M ean s ervic e  t im e for s uc c es s ive

operat ions  (hours )

1 0 .2 5 , 0 .1 5 , 0 .1 0 , 0 .3 0

2 0 .1 5 , 0 .2 0 , 0 .3 0

3 0 .1 5 , 0 .1 0 , 0 .3 5 , 0 .2 0 , 0 .2 0
 

4.6.2 Simulation results 

The simulation ran 10 replications of 920 hours length, which equals to 115 eight-

hour days. The results for different performance measures are listed in Table 4.4. The 

first row shows the configuration of the job shop, which is comprised of five 

workcenters with four, two, five, three and two machines respectively. All 

performance measures except Maximum Number in Queue and Maximal Size of 

Working-in-Process are the average values of ten experiments.  

Table 4.4. Simulation results 

Num ber of m achines : 4,  2, 5,  3,  2
Num ber of fork lifts : enough
M ac hine effic iency : 1

p e r fo r m an c e   m e a su r e 1 2 3 4 5

P roport ion m achines  busy  (workc enter) 0.806 0.450 0.795 0.570 0.825

A verage num ber in queue (workc enter) 1.662 0.137 0.653 0.276 0.790

M ax im um  num ber in queue (workc enter) 35 9 12 10 17

A verage daily  throughput (shop floor) 120.075

A verage t im e in sys tem  (s hop floor)  1.067

A verage total t im e in queues  (shop floor) 0.240

Max ima l s iz e o f w orking-in -p roc es s  (s hop f loor ) 56
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4.6.3 Statistical calculation 

A warming up period is first obtained using Welch’s procedure [Law and Kelton, 

2000] on 920 hourly throughputs in each of the 10 replications. The moving average 

)20(i8 uses a window of 20, and is plotted in Fig. 4.25. A warming up period of 

120 l hours is obtained.  

l  =  120

� �20i8

i

 

Fig. 4.25. Moving average of hourly throughputs 

Then a 90 percent confidence interval for the steady-state mean daily throughput is 

constructed as 
10

0.54
075.120 95.0,9tr   or 23.0075.120 r , which contains 120, which is 

the expected mean daily throughput.  

4.6.4 Result analysis 

The expected daily throughput is 120 jobs per 8-hour day, which is the maximum 

possible (because the inter-arrival times of jobs are independent exponential random 
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variable with a mean of 1/15 hour). The 90% confidence interval built in the previous 

section demonstrates that the system can reach a daily throughput of 120 jobs.  

Table 4.5. Simulation results from [Law and Kelton, 2000] 

Num ber of m ac hines : 4, 2,  5,  3, 2
Num ber of fork lifts :  2
M ac hine in work center 1 and 5 have effic ienc ies  of 0.9

p e rformance   me asure 1 2 3 4 5

P roport ion m ac hines  busy  (m achines ) 0 .81 0 .45 0 .8 0 .58 0 .83

A verage num ber in queue (work center) 16.55 0 .25 2 .15 0 .49 46.73

M ax im um  num ber in queue (work center) 111 .00 11.00 32.00 14.00 262 .00

A verage daily  throughput (s hop floor) 119 .88

A verage tim e in sy s tem  (s hop floor)  5 .31

A verage total t im e in queues  (s hop floor) 4 .37

Max imal s iz e  o f w o rking - in-p roc es s  (s hop  f loo r ) - -

 

The simulation results of a similar system built by Law and Kelton (2000) are listed in 

the Table 4.5 to be compared to the results in Table 4.4. Their system has more 

constraints such as limited MHD and machine efficiencies while the case study in this 

thesis assumes enough MHD and no machine breakdown. Both systems achieve 120 

expected daily throughputs. This can be explained by the fact that Law and Kelton’s 

system achieves the same level of proportion of busy machines despite of its limited 

resources. However, the limited resources cause both the average and the maximum 

number in the queues of Law and Kelton’s system much larger than those in the 

current developed system. Subsequently, the average time of a job staying in the 

system is longer in Law and Kelton’s system. Thus, both the statistical analysis and 

the comparison with the existing report have validated that the proposed DES-MAS 

system can correctly simulate a dynamic job shop.  
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The case study also takes the advantages of distributed data collection and calculation 

offered by MAS. All the data have been collected and maintained by their most 

related agents. For example, the average/maximum numbers of jobs in queues are 

collected by five workcenter agents and the shop floor agent keeps those data that are 

out of the scope of the other agents. Those data are the average daily throughput, 

average time in system, average total time in queues, the size work-in-process, etc. 

The information of machine utilization can be properly maintained by each machine 

itself. A workcenter can request the machine agents to provide such information when 

it needs to calculate the proportion of busy machines under its supervision. Thus the 

burden of a centralized computation can be naturally distributed to different 

computing entities.  

4.7 Summary 

An MAS simulating a real-life job shop is built in order to provide a test bed for 

studying approaches in a dynamic job shop environment. The essential architecture of 

a job shop manufacturing system is first identified, and then built as a DES, which can 

examine the performance of a system over a long period of time. The DES is 

implemented as an MAS so that the intelligent agents can be used to realize 

distributed computation and prompt reaction to dynamic events.  

This approach requires careful coordination among event lists, which are distributed 

in different agents, in order to maintain a correct simulation time. The coordination 

involves communication among the agents. The agents in this model do not 

necessarily lose their autonomy. The discrete events set the time steps and the agents 

are autonomous within their event execution periods. In this way, a long-term 

performance of an MAS can be examined.  



Chapter 4: The Test Bed 
 

101 

All the communication and state changes are clearly illustrated using UML sequential 

diagrams and state charts. A case study demonstrates the advantage of distributed data 

collection and analysis; it also validates the proposed system by statistical analysis 

and comparison to existing simulation results on a similar test case.  
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5 Scheduler Agent and ACO 

In this chapter, the previous test bed is extended to include a scheduler which uses 

ACO to generate schedules. The ACO scheduler is modeled as an agent in section 5.1. 

The application of ACO for a dynamic JSSP and the procedure of dynamically 

updating the pheromone matrix are discussed in section 5.2. Finally, the 

implementation of ACO as an MAS is presented in section 5.3.  

5.1 The scheduler agent  

Implementing a scheduler agent in the MAS test bed  implies not only additional 

coordination of the scheduler agents to the main existing agents like the job, job shop 

and workcenters, but also the coordination of the behaviours within the scheduler 

agent itself. However, a scheduler does not generate dynamic events and thus there is 

no change in the event management of the existing test bed.   

5.1.1 Additional coordination related to the scheduler 

The new agent, scheduler, can communicate with the job, shop floor and workcenter 

agents. A job agent contacts both the shop floor and the scheduler right after it has 

been generated by the job releaser agent. The scheduler agent then prepares to 

reschedule to include this new incoming job according to its states. A shop floor agent 

proactively requests the scheduler to update the schedule when necessary and 

suspends its actions. The scheduler then updates all the workcenters with new 

schedules. All workcenters confirm to the scheduler regarding to the reception of 

schedules; then the scheduler replies to the shop floor agent that its request has been 

fulfilled. At this time, the job shop resumes its work. 



Chapter 5: Scheduler Agent and ACO 
 

103 

5.1.2 Coordination among behaviours in the scheduler agent 

The scheduler agent can be in either one of two states: idle or searching. It is idle 

when all jobs are scheduled and the schedule is issued; otherwise, it is in a searching 

state. It should be able to receive new jobs and react to schedule requests anytime. 

These two abilities are supported by the two independent and concurrent behaviours: 

receive a new job (Fig. 5.1) and receive schedule requests (Fig. 5.2). The former 

behaviour is initiated by the arrival of a new job agent and the latter is initiated by the 

job shop agent. Meanwhile, solutions from the ant agents are collected through 

“collect ant results” behaviour (Fig. 5.3). The following sections present the 

flowcharts of those behaviours and the coordination among them.  

5.1.2.1 Behaviour of receiving a new job 

Fig. 5.1 presents the flowchart for the behaviour of receiving a new job, which 

triggers the rescheduling procedure of the scheduler when it comes to the shop floor at 

the reception/shipping section. The schedule should have been updated by the time a 

new job arrives at its first workcenter. This point of time is called expected due time 

of rescheduling and the operations scheduled before this moment by the previous 

schedule should not be considered in the new scheduling problem.  
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Fig. 5.1. The behaviour of receiving a new job in the scheduler agent 

Upon receiving a new job, the scheduler agent increases the number of its jobs by 

one, records the new expected due time and checks whether a previous schedule 

request, if any, is due. The new job should be stored temporarily in the list called 

jobComeWhenNoScheduleIsRequired if it has not reached the expected time for 

releasing a schedule and the scheduler is seeking a schedule. A flag named 

flag_NewProblemStart is then raised and marked in green color in Fig. 5.1. It will be 

handled in Fig. 5.3 in the location with the same color. This mechanism is to 
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synchronize the actions between two concurrent behaviours: receiving a new job and 

collecting ant results. However, the scheduler starts seeking schedules if it is idle at 

the time a new job arrives.  

A new job may come at the same time that a schedule is due to be issued. The 

scheduler should guarantee that the due schedule is issued before the new job is 

considered for rescheduling. If the schedule is not issued, the new job has to be stored 

temporarily in the list called newJobWaiting and the procedure is colored pink in Fig. 

5.1. It will be included to generate a new schedule right after the due schedule is 

issued indicated in Fig. 5.3 in the procedure highlighted with the same color. This 

mechanism is to synchronize the two concurrent behaviours: receiving a new job and 

receiving a schedule request. Otherwise, the rescheduling procedure is executed 

immediately if the previous schedule is issued.  

5.1.2.2 Behaviour of receiving a schedule request  

Fig. 5.2 presents the flowchart of the behaviour of receiving a schedule request. The 

scheduler basically checks whether it is in the correct state of searching a schedule 

and raises a flag called flag_waitForSchedule, which is marked in yellow color, to 

wait for a schedule. Then the behaviour of collecting ant results can immediately 

dispatch a new schedule once it is ready. The procedure is indicated in the procedure 

marked in the same color in Fig. 5.3. This flag synchronizes the behaviours of 

requesting schedule and collecting ant results.   
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Fig. 5.2. The behaviour of the scheduler agent receiving a schedule request 

 

5.1.2.3 Behaviour of collecting ant results  

The main goal of this behaviour is to collect all ant results, update the best solution 

and the pheromone matrix, and initiate ants to search schedule for the next round of 

searching (Fig. 5.3). The behaviour checks the flag of new job coming 

(flag_NewProblemStart) when all the ant results have been collected. If it is raised, 

the record of the best solution is removed and the pheromone matrix/ACO map is 

updated. A new problem is then formed and rescheduling starts.  

However, searching continues if the problem is not changed until the minimum 

number of iterations is met. At that time, the schedule agent checks whether a 

schedule request (flag_waitForSchedule) is waiting. It should dispatch schedules to 

all the workcenters if a request is made, otherwise, it will continue to search to find 

better solutions until a maximal number of iterations is reached. The list containing 

the waiting jobs (newJobWaiting list) is checked after the schedules are dispatched in 

order to synchronize the concurrency between a new job event and a schedule request.  
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Fig. 5.3. The behaviour of collecting ant results in the scheduler agent 
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5.2 ACO optimizer 

In this section, the flowchart of the ACO algorithm is first illustrated; the 

representation of the JSSP as well as the application of ACO for dynamic JSSPs is 

then described; finally, the implementation of ACO as an MAS is described.  

5.2.1 Notations 

The notations used in the ACO algorithm are listed as follows. 

h  is the index of iteration number 

ijp is the probability for an ant to travel from node i to node j at hth iteration 

)(hijW  is the quantity of pheromone on the edge connecting nodes i and j at hth 

iteration; 

ijd is the heuristic distance between nodes i and j; 

U  is the evaporation coefficient, which can be a real number between 0 and 1.0. 

� �hijW'  is the quantity of increased pheromone on the edge connecting nodes i and j 

at hth iteration;  

Q  is a constant representing the total quality of pheromone on a route;  

� �farsobestfevaluation __  is the best value obtained so far optimizing the given 

objective.  

5.2.2 ACO flowchart 

The flowchart of the ACO algorithm is given in Fig. 5.4. The basic idea is to 

repetitively initiate a set of ants, which walk in a common environment (problem 

graph) comprised of all the operations in a JSSP. The operations are modeled as nodes 
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in a graph, which is described in detail in Fig. 5.6. Each ant walks through all of those 

operations (nodes) one by one and thus forms a route, which can be interpreted as 

schedules and its length can represent the value of some performance measures like 

makespan, flowtime, or tardiness. The goal of each ant is to find a shortest route.   

 

in it iate ants

f ind  the shor tes t rou te

u p d a te :
             s h o rte s t_ le n g th
             b e s t_ s o lu t io n
             p h e ro mo n e  ma t rix (fo rmu la  5 .2, 5.3 )

iteration_c nt+ +

s top?

end

yes

no

s ta rt

in it iate c ounters :
             it e ra t io n _ c n t  =  0 ;
             s h o rte s t_ le n g th  =  0;
             b e s t_ s o lu t io n  =  n u ll;

e a c h  a n t  fin d s  a  ro u te
(d e c is io n  m a k in g  a c c o rd in g  t o  fo rmu la  5.1 )

 

Fig. 5.4. The flow chart of the ACO algorithm 

 



Chapter 5: Scheduler Agent and ACO 
 

110 

A walking ant leaves behind on its route some amount of pheromone, which changes 

the global environment. The probability for an ant to choose its next node is directed 

by both the amount of pheromone on the route and the distance from its current 

location to the targeted one.  Ant i chooses the next node according to the State 

Transition Rule in formula (5.1) (Dorigo et al, 1996).  
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The heuristic distance ijd in this study is the sum of traveling time between the current 

workcenter to the target workcenter and the processing time of the operation in the 

target workcenter. The environment is represented by a pheromone matrix, which is 

updated by the best solution at each iteration. The updating can be described in 

formulae (5.2) and (5.3) (Dorigo et al, 1996).  
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Pheromones on all edges evaporate at the rate of U so as to diversify the search 

procedure into larger solution spaces and jump out of local optima. The information 
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of the best solution can be used to intensify certain search areas by strengthening the 

pheromones on all the edges of the best route by an amount of � �1�' tijW  through 

formula (5.2).  

The centralized actions include choosing and keeping the best solution, as well as 

deciding whether or not to continue solution seeking.  

5.2.3 ACO for job shop scheduling problems 

Each job in a classical JSSP is comprised of several operations to be processed on 

different machines. Generally, their technical orders and the processing times are 

represented in a technical matrix TM and a processing time matrix PM, respectively. 

Each row of TM indicates the order of machines that all the operations of one job will 

visit while each row of PM indicates the processing times that all those operations 

will take on their processing machines. Simple examples of these are given as 

follows.  
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Fig. 5.5. The technical matrix TM and the processing matrix PM for a 2 x 3 JSSP 

 

Fig. 5.5 presents a technical matrix and a processing matrix of a JSSP with two jobs 

and three machines. The first job has three operations 11O , 12O , and 13O  that will be 

processed on machines M1, M2 and M3, in that order, and its three operations need 

processing times of )( 11Ot , )( 12Ot , and )( 13Ot  respectively.  
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The JSSP above can be represented as a graph (Fig. 5.6). Nodes 1 to 6 represent 

operations 11O , 12O , to 13O , and 21O , 22O , to 23O . They are connected by horizontal 

directional edges indicating the precedence constraints given in matrix TM. The bi-

directional edges indicate no ordering constraints among those operations. Dummy 

nodes 0 and 7 representing the source and the sink of the graph are the starting and the 

ending points of routing. They are connected by directional edges to the first and the 

last operations of all jobs, respectively.  
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Fig. 5.6. The graph representing a 2 x 3 JSSP 

 

Each edge is associated with a pair of values ^ `ijij d,W , representing the amount of 

pheromone on it and the heuristic distance between the two nodes it connects. The 

value of ijd  can be easily looked up from matrix PM while the value for ijW  should be 

found in the pheromone matrix, which is updated by the ants who found the best 

solutions (Fig. 5.6). An example of the pheromone matrix for the previous JSSP is 

shown in Fig. 5.7, which records the pheromone values of all the edges connecting 

every two nodes.  
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N 0 N 1 N2 N3 N4 N 5 N6

N0 0 0 .1 0 0 0 .1 0 0

N1 0 0 0 .1 6 0 0 .1 8 0 .1 9 0 .2 0

N2 0 0 0 0 .1 8 0 .1 9 0 .2 0 0 .2 1

N3 0 0 0 0 0 .2 0 0 .2 1 0 .2 2

N4 0 0 .1 6 0 .1 5 0 .1 4 0 0 .2 2 0

N5 0 0 .1 7 0 .1 6 0 .1 5 0 0 0 .2 4

N6 0 0 .1 8 0 .1 7 0 .1 6 0 0 0
 

Fig. 5.7. An example of the pheromone matrix for a 2 x 3 JSSP 

The first row of Fig. 5.7 gives the pheromone values of the edges starting from node 0 

to the other six nodes (The pheromones of edges that end at nodes 7 are not necessary 

to be included). Only 1.001  W and 1.004  W  exist since node 0 can only reach node 1 

and node 4. Others are initiated to be 0. Similarly, the second row gives the 

pheromones of the edges starting from node 1. 10W , 11W  and 13W  do not exist and are 

thus initiated as 0. The updating of the pheromone matrix takes the majority of the 

computation effort due to the dominant size of the pheromone matrix 2)1( �umn , 

where n  and m  are the sizes of jobs and machines, respectively. As each ant walks 

through all the nodes in the matrix, the computational complexity is 

� �� �2mnusO uuu , where s  is the size of iterations and u is the number of ants per 

iteration.  

Ant i cannot guarantee to find a feasible route for a JSSP before it is equipped with 

three lists: scheduled operation list (iS ), accessible operation list (iA ), and non-

accessible operation list ( iNA ). List iS  includes the nodes that are visited by ant i ; 

iA stores the currently accessible nodes; iNA  stores the rest of the unvisited nodes. 
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The size of iS  increases as ant i  proceeds in the graph. Finally, the ordered nodes in 

list iS  form a complete route, which is a schedule for the JSSP.  

5.2.4 ACO for job shop scheduling problem with parallel machines 

It is assumed in a classical JSSP that there is only one machine in one workcenter. 

However, in the present studied problem, it is assumed that there can be an arbitrary 

number of machines in one workcenter. ACO demonstrates a good ability to be 

adjusted to this change if a list ijM  recording available times of all machines in 

workcenter j  is maintained by ant i . For example, a ^ 1̀.2,3.1,0.123  M  

represents the available times of all three machines in workcenter 3 kept by ant 2. 

Machine 1 is available from time 1.0; machine 2 is from time 1.3; and machine 3 is 

from time 2.1. 23M  becomes ^ 1̀.2,3.1,8.123  M  after an operation with a 

processing time of 0.8 allocated to machine 1.  

The rule to choose a machine among several available machines is based on the times 

that machines become available. In this study, the machine with the earliest available 

time has the highest priority to be chosen, assuming all the machines in one 

workcenter are identical. A random one will be chosen if several machines have the 

same earliest available times. This approach avoids the situation that some machines 

have been idle for too long.   

5.2.5 ACO in a dynamic job shop scheduling environment 

x� Updating intermediate JSSP 
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At each rescheduling moment, an intermediate JSSP has to be updated before the 

ACO algorithm can be executed through updating its pheromone matrix, which 

involves updating of nodes and pheromone values.  

The updating of nodes in the pheromone matrix has two aspects: deleting the nodes 

that represent completed or processing operations and adding the nodes representing 

all the operations of the new job. For example, a new job with three operations 31O , 

32O  and 33O  arrives at the job shop at the moment that node 1 is completed and node 

4 is processing. The updating of nodes includes deleting all the cells related to node 1, 

as well as adding in the three new nodes (Fig. 5.8). 
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(a) Deleting the cells related to nodes 1 and 4 

N0 N2 N3 N5 N6 N7 N8 N9

N0 0 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1

N2 0 0 0 .1 8 0 .2 0 0 .2 1 0 .1 0 .1 0 .1

N3 0 0 0 0 .2 1 0 .2 2 0 .1 0 .1 0 .1

N5 0 0 .1 6 0 .1 5 0 0 .2 4 0 .1 0 .1 0 .1

N6 0 0 .1 7 0 .1 6 0 0 0 .1 0 .1 0 .1

N7 0 0 .1 0 .1 0 .1 0 .1 0 0 .1 0

N8 0 0 .1 0 .1 0 .1 0 .1 0 0 0 .1

N9 0 0 .1 0 .1 0 .1 0 .1 0 0 0
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(b) Adding in three nodes 7, 8, 9 

N0 N1 N2 N3 N 4 N 5 N6 N7

N0 0 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1

N1 0 0 0 .1 8 0 .2 0 0 .2 1 0 .1 0 .1 0 .1

N2 0 0 0 0 .2 1 0 .2 2 0 .1 0 .1 0 .1

N3 0 0 .1 6 0 .1 5 0 0 .2 4 0 .1 0 .1 0 .1

N4 0 0 .1 7 0 .1 6 0 0 0 .1 0 .1 0 .1

N5 0 0 .1 0 .1 0 .1 0 .1 0 0 .1 0

N6 0 0 .1 0 .1 0 .1 0 .1 0 0 0 .1

N7 0 0 .1 0 .1 0 .1 0 .1 0 0 0
 

(c) The updated pheromone matrix 

Fig. 5.8. Update pheromone matrix 

 

The cells related to node 1 include those from the whole third column and the third 

row while the cells related to node 4 include those from the whole sixth column and 

the sixth row. All of them are shaded in table (a) of Fig. 5.8 and need to be deleted. 

Three new nodes representing three operations of the new job are added to both ends 

of the row and the column surrounded by black borders in table (b); all the new cells 

are initiated with appropriate values. Finally, the nodes are re-numbered according to 

the updated order and a new pheromone matrix is generated in table (c).  

x� Parameters constrained in dynamic environment  

Updating the pheromone values of the new pheromone matrix can be with or without 

an adaptation mechanism. In the former case, the pheromone values on all edges are 

re-initiated while in the latter case, only the new edges are initiated and the others 

remain unchanged. For example, the adaptation mechanism is presented in Fig. 5.8, 

where only new edges within the frame of table (b) are initiated and the others remain 
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unchanged. In this way, some optimization information in the previous problem can 

be kept and a new schedule is sought based on it.  

Given the computational complexity of � �� �2mnusO uuu  for the ACO approach, 

increasing the values of the number of iterations (s ) and the number of ants per 

iteration (u ) increases both the solution quality and the computational time. Thus 

they are constrained in a dynamic environment where the computational timeslot for 

each intermediate JSSP is always limited.  

The value of s can be a variable depending on the dynamism of the system in order to 

produce an intermediate schedule as good as possible. Thus, the minimal and maximal 

values of s are considered. The value of  mins  determines the minimal sets of ants that 

can be initiated. Its role is to guarantee a minimal computational timeslot for each 

intermediate JSSP. The value of maxs  determines the maximal sets of ants that can be 

initiated. Its role is to avoid over-enhancement of the pheromone values on some 

edges. A variable s within[ mins , maxs ] can improve the quality of an intermediate 

schedule as much as possible in the current test bed where the rescheduling procedure 

and the event of a new arrival job (ev) run independently on different computational 

threads; the rescheduling procedure is triggered only by ev. For example, if ev arrives 

before mins  is satisfied in the previous intermediate JSSP, its execution will be 

delayed until mins  is completed; otherwise, it can be immediately executed. 

Meanwhile, more iterations are allowed to initiate ants to improve the solution if the 

rescheduling procedure is not stopped by ev and s is not greater than maxs .  

The values of u is also adjustable and its effects will be investigated in the 

experiments. 
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5.3 ACO implemented as an MAS 

5.3.1 Implementation 

ACO is inherently a distributed methodology which makes use of many individual 

and local procedures, and it is particularly well suited to parallelization. In this study, 

the ACO algorithm can be implemented as an MAS to take the advantage of parallel 

computation of distributed concurrent ants.  

There are mainly two types of agents: environment and ant. The environment agent 

maintains the pheromone matrix; it initiates a set of ant agents and collects their 

solutions at each iteration; it also keeps the best solution and updates it during the 

scheduling procedure. Each ant agent seeks its own schedule independently, reports it 

to the environment agent, and finally kills itself and ceases its functions. The 

responsibilities of the environment agent in this study are fulfilled by several 

behaviours of the scheduler agent mentioned in section 5.1.  

5.3.2 Functions of MAS in this study 

Thus, in this thesis, the MAS works not only as a test bed to generate different 

experimental scenarios and analyze results but also as an approach to implement the 

ACO algorithm. A generic job shop simulated as a DES is further implemented as a 

MAS to be a test bed in order to systematically study the performance of control rules 

and algorithms in reactive scheduling under different environments. The test bed 

provides not only the basic entities simulating a shop floor and dynamic events, but 

also facilities the execution of  schedules and measures the long term performance of 

the proposed approach for several criteria. The ACO algorithm is implemented as an 
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MAS taking the advantage of the concurrent computation of independent ants, which 

are modeled as agents. JADE is used to build the ACO algorithm as a pure MAS.  

5.4 Summary 

A scheduler agent using ACO as the optimizer is first combined with an existing 

MAS test bed to simulate the scheduling function in a real-world job shop. Next, the 

ACO algorithm, its application to JSSP, the representation of JSSP in a graph, and the 

procedure of dynamically updating the pheromone matrix have been explained. 

Meanwhile, the adaptation mechanism and two parameters, which are constrained in 

dynamic job shop environments, are also discussed. Finally, the implementation of 

ACO as an MAS and the functions of MAS in the current study are described. 

6 Application of ACO for Dynamic 

Job Shop Scheduling Problems 

In this chapter, ACO is applied to two dynamic job scheduling problems, which have 

the same mean total workload but different dynamic levels and disturbance severity. 

Its performances on these two problems are statistically analyzed and the effects of its 

adaptation mechanism are next studied. Furthermore, the effects of two important 

parameters in the ACO algorithm, namely the minimum number of iterations and the 

size of searching ants per iteration, which control the computational time and the 

solution quality of an intermediate scheduling problem, are also investigated. The 

results show that ACO can perform effectively in both cases; the adaptation 

mechanism can significantly improve the performance of ACO when disturbances are 
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not severe; increasing the size of iterations and ants per iteration does not necessarily 

improve the overall performance of ACO.  

6.1 Experimental design 

It is assumed that the reception of a new job will trigger a rescheduling procedure to 

find a full schedule with makespan as performance measure within the computational 

timeslot. The best-so-far schedule is then dispatched to be executed in all 

workcenters. The rescheduling procedure repeats until the preset stop criteria are met. 

 

 

 

6.1.1 Experimental environments 

x� Problem configuration 

The dynamic job shop studied is shown in Fig. 4.24 with five workcenters and one 

receiving/shipping station. The numbers of machines in workcenters 1 to 5 are 4, 2, 5, 

3, and 2, respectively. The machines in the same workcenter are assumed identical. 

The distances between all the workcenters are given in Table 4.1. Jobs are transported 

between workcenters by MHDs and the time spent on one trip is proportional to the 

distance between the two locations. All MHDs are assumed to be moving at a 

constant speed of 5 feet per second and they are assumed to be adequate.  

New jobs arrive at the receiving/shipping station (workcenter 6) and travel among the 

workcenters according to their technical orders and finally leave the system from the 
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receiving/shipping station. There are a total of 120!5   types of jobs and each type of 

job occurs with a probability of !51  and the total processing time for each job is 1 

hour. The technical routes and processing times of all operations of the jobs are given 

in Fig. 6.1. 

Job  type T ech n ica l rou tes

1 1, 2,  3,  4, 5

2 1, 2,  3,  5, 4

. . . . . .

120 5, 4,  3,  2, 1
      

Job type Process in g  times  (h ou rs )

1 0.25, 0 .15, 0 .10, 0 .30, 0 .20

2 0.25, 0 .15, 0 .10, 0 .30, 0 .20

... . . . . . .

120 0.25, 0 .15, 0 .10, 0 .30, 0 .20
 

(a) Technical routes          (b) Processing times of all operations 

Fig. 6.1. The technical routings and processing times of jobs 

 

x� ACO Parameters  

The parameters of the ACO algorithm are 0.10 D , 0.10 E , 0.01 U , 0.1 Q , and 

5.00  W tuned by Zwaan and Marques (1999) to solve several JSSP benchmarks. 

They are adopted here as each intermediate JSSP is similar to those benchmarks.  

It is assumed that the computation timeslot determined by mins  is within the time 

constraint in realistic applications. The following are the default values: 25smin  , 

100smax   , and 10 u .  

x� Intermediate objectives 

A dynamic JSSP is comprised of a series of intermediate JSSPs over time as 

mentioned in section 3.4. Thus the performance objective of those intermediate JSSPs 



Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems 
 

122 

has to be decided in order to yield the best total throughput, overall mean flow time, 

or overall mean tardiness. Three performance measures for those intermediate JSSPs 

are tested and they are the makespan, mean flowtime, and mean tardiness. Irrespective 

of the intermediate performance measure, evaluation values are recorded for all the 

three overall performance measures: total throughput, overall mean flowtime, and 

overall mean tardiness.  

6.1.2 Experimental variables 

Jobs arrive at the shop floor with inter-arrival times that are independent exponential 

random variables. The mean job inter-arrival time and the lot size are the two problem 

variables that decide the utilizations of workcenters. Two levels of job-arrival 

frequencies with the same mean size of total jobs are tested. In problem 1, jobs arrive 

one by one with the mean job inter-arrival time is nine jobs per hour. In problem 2, 

jobs are released in lots and arrive one lot per hour with nine jobs per lot. Jobs in one 

lot can be different types and will be processed job by job. In both problems, the type 

of a job is randomly decided so that each one of the 120 types has an equal chance to 

be chosen. Thus the mean total processing time demanded on each workcenter is the 

same. 

The size of jobs in a lot determines the severity that an underlying scheduling problem 

is disturbed. For example, there are 16 unprocessed operations when a lot of new jobs 

are released to the shop floor. The size of operations for the new intermediate JSSP is 

22 if there is only one job with 6 operations in the lot. The old operations take about 

73% (16/22) of the total operations in the new problem. However, they take only 57% 

(16/28) of the total operations in the new problem if there is one additional job (also 
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with 6 operations) in the lot. Obviously, the underlying problem is changed more 

severely by the larger lot with two jobs than the smaller one with one job.  

The simulation for each problem runs five replications for 200 simulation hours 

(totally about 1800 jobs) and the warming-up time is 20 hours (about 180 jobs). Only 

steady-state performance is measured and the average values of five replications are 

listed for all the performance measures.  

6.2 Computational results and analysis 

All the results are given in tables 6.1 to 6.6. Performance measures like the proportion 

of machine busy time, both the average and the maximum numbers of waiting jobs in 

queue are recorded by each workcenter agent while the average daily throughput, the 

average time in system, the average total time in queues, the maximum size of WIP 

are recorded by the shop floor agent. The maximum and the average sizes of 

operations in the scheduling procedure are recorded by the ACO scheduler agent.  

Some general observations are as follows. Firstly, workcenters 2 and 5 are bottlenecks 

shown in all tables with utilizations of approximately 90%. Secondly, the machine 

utilization is inversely proportional to the number of the machines in its workcenter. 

The above two results are in accordance with the facts that the numbers of machines 

in both workcenters are the smallest with only 2 while having the same workload as 

other workcenters. Thirdly, the improvement in the average daily throughput and the 

machine utilization can reduce the average and maximum numbers of waiting jobs in 

a queue, the average time jobs spending in the system, the average total waiting times 

jobs spending in queues, the maximal size of WIP, and the maximal/average size of 

operations of intermediate problems, which reflects the overall performance of ACO 

as analyzed in section 3.4.1.2. 
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6.2.1 ACO performance analysis  

The performances of ACO in two dynamic JSSPs are listed in tables 6.1 and 6.2. The 

200 hourly throughputs of the five replications for both problems with the adaptation 

mechanism are plotted in figures 6.2 and 6.3 using moving average )20(i8 with a 

window of 20 (Law and Kelton, 2000) and a warming up period of 20 l  hours is 

obtained. Next, 90 percent confidence intervals for the steady-state mean daily 

throughputs of the two problems are constructed as 
5

0.46
72.258 95.0,9tr  (or 

]43.72,09[72. ) for Problem 1 and 
5

2.13
73.973 95.0,9tr  (or ]75.74,[73.19 ) for 

Problem 2. 

 

 

 

 

 
 
 
 

Table 6.1. The effects of pheromone adaptation – Problem 1 
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M ean job inter-arriva l t im e:  1/9 hour, 1 job/lot                              Num ber of m ac hines : 4, 2, 5, 3,  2
A CO (with/without pherom one adaptat ion) (10 ants )                    S im ulat ion tim e: 200 hours
120 ty pes  of jobs  (random ly )                                                     W arm ing up t im e: 20 hours

p e rfo rmance   me asure 1 2 3 4 5

Proportion mac hines  busy  (w orkcenter) 0.404/0.421 0.902/0.830 0.355/0.334 0.564/0.563 0.916/0.839

A verage number in queue (w orkcenter) 0.703/5.764 5.558/36.115 0.404/3.316 1.297/14.793 5.838/35.726

Max imum number in  queue (w orkcenter)
7.0(10) /
20.4(33)

21.2(28)/
104.4(140)

5.2(6)/
14.0(24)

9.4(12) /
41.4(70)

21.0(31)/
77.6(123)

A verage daily  throughput (s hop f loor)                          72.258/64.871

A verage time in s ys tem (shop f loor )                             2 .524/11.022

A verage to tal time in  queues  (s hop f loor)                     1 .448/9.946

Max imal s iz e of W IP (s hop f loor)                                    48.8(69) /216(380)

max imal s iz e of A CO operations                                    138.8(198)/734.4(1335)

average s iz e of A CO operations                                    59.8/285.8

 

 

Table 6.2. The effects of pheromone adaptation – Problem 2 

M ean job inter-arriva l t im e:  1/1 hour, 9 jobs /batc h                       Num ber o f m ac h ines : 4 , 2,  5,  3, 2
A CO (with/without adaptat ion) (10 ants )                                     S im ulat ion tim e: 200 hours
120 ty pes  of jobs  (random ly )                                                     W arm ing up t im e: 20 hours

p e rfo rmance   me asure 1 2 3 4 5

Proportion mac hines  busy  (w orkcenter) 0.438/0.462 0.922/0.924 0.364/0.361 0.617/0.617 0.935/0.935

A verage number in queue (w orkcenter) 3.482/3.488 27.839/29.382 2.420/2.445 5.564/5.523 30.195/29.774

Max imum number in  queue (w orkcenter)
15.8(17)/
17.6(21)

70.0(84)/
80.4(86)

15.2(18)/
15.2(17)

21.0(28)/
22.4(26)

69.8(87)/
71.4(91)

A verage daily  throughput (s hop f loor)                          73.973/73.929

A verage time in s ys tem (shop f loor )                             8 .426/8.545

A verage to tal time in  queues  (s hop f loor)                     7 .350/7.469

Max imal s iz e of W IP (s hop f loor)                                    151.4(178) /152.6(178)

max imal s iz e of A CO operations                                     565.8(669)/569.4(683)

average s iz e of A CO operations                                    275.4(364)/278.8
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l  =  20

� �20i8

i

 
Fig. 6.2. Moving average of hourly throughputs of problem 1 with adaptation 

 

l  =  20

� �20i8

i

 
Fig. 6.3. Moving average of hourly throughputs of problem 2 with adaptation 

 

The results show that ACO can perform well in both dynamic JSSPs to meet the 

expected daily throughput of 72 jobs as the mean inter-arrival time of jobs is 1/9 hour 

and there are 8 hours per day.  

6.2.2 The effects of the ACO adaptation mechanism 

The comparisons of ACO with/without adaptation in both problems are also listed in 

tables 6.1 and 6.2. The daily throughputs drop from 72.258 to 64.871 in Problem 1 

(Table 6.1) and from 73.973 to 73.929 in Problem 2 (Table 6.2) when the adaptation 
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mechanism is first applied and then removed. The change is significant in Problem 1 

and minor in Problem 2.  

The results indicate that the adaptation mechanism has greater effects in the situation 

where disturbances are not severe as in problem 1 and has little effect in the situation 

where disturbances are severe as in problem 2. The observation can be explained as 

follows. In problem 1, jobs arrive one by one and neighboring intermediate JSSPs are 

not severely different. A good solution can be found through the adaptation 

mechanism within a given computational timeslot. However, in problem 2, there 

would be not much difference between the pheromone matrices with and without the 

adaptation mechanism since the underlying problem can be dramatically changed by a 

large lot. 

6.2.3 The effects of the number of minimal iterations 

The results given in tables 6.3 and 6.4 show that increasing mins  deteriorates the 

performance of ACO in both problems, especially in problem 1 (72.258 for 25smin   

and 64.693 for 40smin  ), when both problems adopt the adaptation mechanism. This 

seems to be against the initial expectation that increasing the number of minimal 

iterations can increase the optimality of an intermediate schedule and thus improve 

the overall performance of ACO.   

This phenomenon could be explained as follows. The pheromone values of certain 

edges are increased too much as the result of increasing mins  and the initial amount of 

pheromone on the new edges introduced by new jobs becomes trivial. Thus the 

pheromone matrix fails to properly represent a new scheduling problem and is called 

too rigid to find a new good solution. Thus, the scheduler can only produce a worse 
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intermediate schedule each time, especially in a highly dynamic environment where 

the computational time is limited. 

 

Table 6.3. Increase the number of iterations – Problem 1 

M ean job inter-arriva l t im e:  1/9 hour, 1 job/lot                               Num ber of m ac hines :  4,  2,  5, 3, 2
A CO (s mi n  =  25/40 itera tions ) (10 ants )                                       S im ulat ion tim e: 200 hours

120 ty pes  of jobs  (random ly )                                                      W arm ing up tim e:  20 hours

p e rfo rmance   me asure 1 2 3 4 5

Mac hine utiliz ation              (w orkcenter) 0.404/0.419 0.902/0.826 0.355/0.332 0.564/0.560 0.916/0.835

A verage number in queue (w orkcenter) 0.703/6.040 5.558/37.344 0.404/3.113 1.297/15.989 5.838/37.085

Max imum number in  queue (w orkcenter)
7.0(10) /
24.4(35)

21.2(28)/
78.2(140)

5.2(6)/
13.4(27)

9.4(12) /
45.4(75)

21.0(31)/
75.4(117)

A verage daily  throughput (s hop f loor)                          72.258/64.693

A verage time in s ys tem (shop f loor )                             2 .524/11.458

A verage to tal time in  queues  (s hop f loor)                     1 .448/10.382

Max imal s iz e of W IP (s hop f loor)                                    48.8(69) /222(383)

max imal s iz e of A CO operations                                    138.8(198)/778.2(1362)

average s iz e of A CO operations                                    59.8/300.2

 

 

Table 6.4. Increase the number of iterations – Problem 2 

M ean job inter-arriva l t im e:  1/1 hour, 9 jobs / lot                              Num ber of m ac hines :  4, 2, 5, 3 , 2
A CO (s mi n  =  25/40 itera tions ) (10 ants )                                       S im ulat ion tim e: 200 hours

120 ty pes  of jobs  (random ly )                                                      W arm ing up tim e:  20 hours

p e rfo rmance   me asure 1 2 3 4 5

Mac hine utiliz ation              (w orkcenter) 0.438/0.459 0.922/0.918 0.364/0.334 0.617/0.530 0.935/0.930

A verage number in queue (w orkcenter) 3.482/4.640 27.839/31.667 2.420/3.436 5.564/8.295 30.195/32.961

Max imum number in  queue (w orkcenter)
15.8(17)/
19.0(30)

70.0(84)/
73.6(90)

15.2(18)/
16.4(24)

21.0(28.0) /
25.2(37)

69.8(87)/
73.6(86)

A verage daily  throughput (s hop f loor)                          73.973/73.138

A verage time in s ys tem (shop f loor )                             8 .426/9.657

A verage to tal time in  queues  (s hop f loor)                     7 .350/8.581

Max imal s iz e of W IP (s hop f loor)                                    151.4(178) /164(194)

max imal s iz e of A CO operations                                     565.8(669)/598.6(687)

average s iz e of A CO operations                                    275.4(364)/302.2(413)
 

 



Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems 
 

129 

 

 
 

Table 6.5. Increase the number of ants per iteration – Problem 1 

M ean job inter-arriva l t im e:  1/9 hour, 1 job/lot                               Num ber of m ac hines :  4,  2,  5, 3, 2
A CO  (u  =  20/40)                                                                     S im ulation tim e: 200  hours
120 ty pes  of jobs  (random ly )                                                     W arm ing up t im e: 20 hours

p e rfo rmance   me asure 1 2 3 4 5

Mac hine utiliz ation              (w orkcenter) 0.421/0.423 0.873/0.838 0.348/0.335 0.550/0.566 0.884/0.848

A verage number in queue (w orkcenter) 4.666/5.209 34.264/32.949 3.112/2.937 12.153/14.593 34.237/32.734

Max imum number in  queue (w orkcenter)
18.2(34)/
22.2(34)

75.2(143)/
70(138)

13.2(22)/
11.8(21)

36.2(79)/
41.2(83)

72.8(122)/
68.6(116)

A verage daily  throughput (s hop f loor)                        68.364/65.502

A verage time in s ys tem (shop f loor )                           9.999/10.232

A verage to tal time in  queues  (s hop f loor)                   8.923/9.156

Max imal s iz e of W IP (s hop f loor)   189.8(389)/200.2(382)

max imal s iz e of A CO operations                                  626.6(1320)/674.2(1332)

average s iz e of A CO operations                                 275.4(529)/262.6(531)

 

 

Table 6.6. Increase the number of ants per iteration – Problem 2 

M ean job inter-arriva l t im e:  1/1 hour, 9 jobs / lot                             Num ber of m ac hines : 4, 2 , 5,  3,  2
A CO (u  =  20/40)                                                                      S im u lat ion t im e: 200 hours
120 ty pes  of jobs  (random ly )                                                     W arm ing up t im e: 20 hours

p e rfo rmance   me asure 1 2 3 4 5

Mac hine utiliz ation              (w orkcenter) 0.434/0.453 0.916/0.903 0.319/0.355 0.614/0.605 0.929/0.914

A verage number in queue (w orkcenter) 4.940/9.140 31.686/37.849 3.372/6.538 8.251/16.221 33.826/37.819

Max imum number in  queue (w orkcenter)
19.8(32)/
30.0(41)

73.4(84)/
77.2(97)

17.6(23)/
27.4(36)

25.2(36)/
38.8(45)

72.4(87)/
75.6(94)

A verage daily  throughput (s hop f loor)                          72.978/71.502

A verage time in s ys tem (shop f loor )                             9 .759/12.349

A verage to tal time in  queues  (s hop f loor)                     8 .683/11.273

Max imal s iz e of W IP (s hop f loor)                                    166.6(213) /177.6(282)

max imal s iz e of A CO operations                                     599.8(679)/718.2(963)

average s iz e of A CO operations                                    305.4(443)/358.6(507)
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6.2.4 The effects of  changing the number of ants per iteration 

The results on the effects of changing the number of ants per iteration are given in 

tables 6.1, 6.2, 6.5, and 6.6, which show that the overall performance of ACO 

deteriorates as the size of ants per iteration increases. For example, with other 

problem parameters unchanged, the average daily throughput decreases from 72.258 

(Table 6.3), 68.364 (Table 6.5), to 65.502 (Table 6.5) as the size of ants per iteration 

increases from 10, 20, to 40 in Problem 1 while the same performance measure 

decreases from 73.973 (Table 6.4), 72.978 (Table 6.6), to 71.502 (Table 6.6) in 

Problem 2.  

The phenomenon can be explained as follows. A schedule with a small makespan is 

more likely found by more ants; subsequently, a greater pheromone value is added on 

the related edges. The optimality found in this schedule will be fully realized if the 

execution of the schedule is not disturbed by any dynamic/stochastic events. 

However, once the execution is disturbed, the schedule’s optimality will not be able to 

be fully realized. Furthermore, the amount of pheromone left on edges by the 

optimized but obsolete schedule may over-strength the pheromone matrix, which, 

similar to the situation in section 6.2.3, may become rigid in capturing new 

information introduced by new jobs and thus fail to give good schedules for the 

subsequent intermediate problems. Thus, increasing the number of ant per iteration 

may lead to an inferior overall performance in a dynamic environment. For both cases 

of with and without adaptation mechanism, ten ants per iteration can provide best 

solutions.  

6.3 Summary 
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A basic version of ACO has been applied to two dynamic JSSPs with the same 

workloads but different dynamic levels and disturbing severity. The computational 

results show: 1) the ACO performs effectively in both cases; 2) the adaptation 

mechanism of the ACO does have effects in situations where disturbances are slight 

but have little effects in situations where disturbances are severe; and 3) improving 

the optimality of immediate schedules but sacrificing the flexibility of the pheromone 

matrix may lead to an inferior long-term performance.    
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7 ACO Application Domains  

The purpose of this chapter is to explore the best application domains that ACO can 

be applied to in the area of dynamic JSSP. The term domain describing dynamic 

JSSPs is comprised of three dimensions: namely the frequency of arriving jobs, the 

variation of processing times, and performance measures. Given the total number of 

jobs and performance objectives, a high frequency of arriving jobs implies a highly 

dynamic problem, which in turn is more difficult to be solved Sthrough algorithmic 

approaches. The variation of processing times refers to the range that a processing 

time can take. More types of performance measures are optimized for intermediate 

JSSPs and they are makespan, mean flowtime, and mean tardiness.  

There are two series of experiments. The first series aims to find the range of dynamic 

levels that ACO can perform well and compares the performances of ACO with 

several dispatching rules in problems with different dynamic levels and performance 

objectives. Next, the best ACO strategy and the best dispatching rule are found and 

used in the second series of experiments to explore the effects of the variation of 

processing times. Their performances are compared and the proper ranges that ACO 

outperforms the best dispatching rule are identified. In this manner, a general 

understanding of the domains that ACO can be appropriately applied will be gained. 

7.1 General experimental environment 

General experimental environment and rescheduling strategies are similar to those in 

Chapter 6 and only some differences or important parameters are given as follows.  
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7.1.1 Shop floor configuration  

The simulation experiments have been conducted in a job shop with five workcenters 

and a reception/shipping station, where new jobs are received and completed jobs are 

shipped. There is one machine in each workcenter. The traveling times between any 

of two workcenters are given in Table 7.1.  

Table 7.1. Traveling times between workcenters (hours) 

Wo rk ce nte r 1 2 3 4 5 6

1 0 0.01 0.01 0.02 0.02 0.01

2 0.01 0 0.01 0.02 0.02 0.01

3 0.01 0.01 0 0.01 0.01 0.01

4 0.02 0.02 0.01 0 0.01 0.01

5 0.02 0.02 0.01 0.01 0 0.01

6 0.01 0.01 0.01 0.01 0.01 0  

7.1.2 Job generation 

Jobs have random processing times, random release dates and the routing of each job 

is generated randomly with every machine having an equal probability of being 

chosen. Each job has five operations and processing times are drawn from different 

ranges of the rectangular distribution. Three ranges that processing times can be 

drawn are: 1.0-5.0, 5.0-10.0, and 1.0-10.0 (hours). The due date of a job is decided 

following the total work-content method (Ramasesh, 1990). The total work-content of 

job i (TWKi) refers to its total processing times and the due-date (Di) setting follows 

the formula: 

di = r i + c*TWKi     

 (7.1) 

where ri refers to the arrival time of the job i and c indicates the tightness of the due 

date. c equals 2 in this study to provide a tight due time so that the performance in 
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terms of mean tardiness can be clearly shown. Jobs arrive at the shop floor with inter-

arrival times that are independent exponential random variables.   

The overall resource utilization of a job shop can be defined as the total processing 

times required on its machines. The value is affected by the mean inter-arrival time 

D  and the mean processing time P  of the incoming jobs. The desired utilization rate 

U can be expressed as mPU /
 D  where m is the number of machines. An 

increasing D leads to an increasing U when the values of P andmare fixed. Thus, 

high machine utilization means highly dynamic JSSP.  

7.1.3 Experimental parameters 

There are a total of 2200 tested jobs and the steady state begins from the 200th job, 

which is determined by the technique of the moving average of hourly throughputs 

(Law and Kelton, 2000). The state of the production system between the arrival times 

of the 201st job and the 2201st job are then taken as steady state and data collected 

during this time are collected for statistical analysis. Each simulation consists of five 

replications.  

The parameters of the ACO in this study are 0.10 D , 0.10 E , 0.01 U , and 5.00  W  

tuned by Zwaan and Marques (1999). Q  is adjusted according to the mean values of 

the processing times in order to give a reasonable influence on the pheromone matrix. 

For each intermediate JSSP, the minimal and maximal numbers of iterations are 25 

and 100, respectively, and the number of ants initiated per iteration is 10.  

7.2 Experiments - I 
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7.2.1 Experimental goals  

The goals of this series of experiments are designed to study the performances of the 

ACO optimizing three different intermediate performance measures, such as 

makespan, mean flowtime, and mean tardiness, in solving intermediate JSSPs under 

different experimental conditions. The outcomes are compared with those from FIFO, 

SPT, and MST for the same problems. Next, the ACO using the best intermediate 

performance measure, which generates the best overall performance, and the best 

dispatching rule are used to study the effects of different ranges of processing times in 

section 7.3.  

Three machine-utilization levels are tested in the experiments: 70%, 80%, and 90%. It 

is obvious that a greater U  implies a larger number of operations to be scheduled at 

any specified time, which implies a harder problem to address. Thus, in all, there are 

three ranges of processing times, three different utilization levels, and three 

optimization objectives, making totally 27 simulation experiment sets for the ACO 

approach; and total 27 simulation experiment sets for all of three dispatching rules.  

7.2.2 Results 

All the results are presented in tables 7.2 to 7.7. The average values of five 

replications for each simulation problem are recorded. Measures of the maximal WIP, 

total throughput, mean flowtime, and mean tardiness are listed. Furthermore, the 

maximal and the average numbers of operations of intermediate scheduling problems 

are also recorded for all instances of the ACO approach in Table 7.8.  

Table 7.2. Performances of ACO - processing times ranging from 1.0-10.0 (hours) 
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Utilizatio n
AC O  interm ediate

m eas ure
ma x. W IP to ta l T P

 me a n
flowtime

me an
ta rd ine ss

70 % m ak es pan 23 .2 2000.2 56 .6 59 10 .8 63

m ean flowt im e 19.4 19 9 9.6 49.825 6.364

m ean tardines s 19 .8 19 9 8.8 50 .0 28 9 6.65 7

80 % m ak es pan 30 .8 19 9 7.6 74 .8 35 25 .6 38

m ean flowt im e 26.2 1998.8 65.552 18.474

m ean tardines s 27 .2 19 9 8 66 .5 95 19 .4 69

90 % m ak es pan 60 .2 2004.6 17 1 .98 2 11 9 .31 9

m ean flowt im e 52 .2 20 0 0.8 14 8 .79 9 97 .3 28

m ean tardines s 51.8 20 0 0.2 147.824 96.345
 

 

 

Table 7.3. Performances of Dispatching rules - processing times ranging from 1.0-
10.0 (hours) 

Utilizatio n Rules max W IP tota l TP  mean
flo wtime

mean
tard iness

70% F IF O 22.8 1998 .4 59.3 85 11.2 03

S P T 20 1999 51.723 6.555

M S T 20.8 1998 .8 57.3 63 8.26 1

80% F IF O 31.4 1998 .2 79.4 10 27.5 36

S P T 24.8 1999 .4 63.433 15.135

M S T 27.2 2000.2 75.3 25 22.6 83

90% F IF O 50.6 2003.8 140.898 86.7 09

S P T 37.2 1999 .8 97.571 45.989

M S T 44 1999 .8 138.154 83.6 89
 

Table 7.4. Performances of ACO - processing times ranging from 1.0-5.0 (hours) 

Utiliza tio n
A CO  interm ediate

m eas ure
ma x. W IP to ta l T P

 me a n
flowtime

me a n
ta rd in e ss

7 0 % m ak es pan 2 2 .6 1 9 9 9 3 0 .0 8 9 5 .25 6

m ean flow tim e 19 1999.6 26.727 3.117

m ean tardines s 2 0 .4 1 9 9 9 2 6 .7 8 4 3 .31 3

8 0 % m ak es pan 3 1 .2 1998.8 3 9 .2 1 1 1 2 .4 3 7

m ean flow tim e 26.6 1 9 9 8 .4 34.587 8.993

m ean tardines s 2 6 .8 1998.8 3 4 .8 5 4 9 .38 4

9 0 % m ak es pan 5 3 .4 2004 8 0 .3 2 4 5 1 .6 7 5

m ean flow tim e 5 0 .4 2 0 0 1 .6 7 4 .1 0 6 4 6 .1 9 9

m ean tardines s 47.4 1 9 9 9 .6 72.280 44.387
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Table 7.5. Performances of Dispatching rules - processing times ranging from 1.0-5.0 
(hours) 

Utilizatio n R u les max W IP tota l T P
 me an

flo wtime
mea n

tard ine ss

7 0 % F IFO 2 2 1999.2 3 0 .9 23 4 .9 6 8

S P T 2 0 1 9 98 .8 27.687 3.279

M S T 19.6 1 9 98 3 0 .1 30 3 .6 4 3

8 0 % F IFO 3 0 .8 1 9 98 .4 4 0 .8 43 1 2 .7 71

S P T 25.2 1 9 98 .6 34.357 8.026

M S T 2 6 .8 1999.6 3 9 .0 39 1 0 .5 20

9 0 % F IFO 4 7 .4 2002.6 7 0 .5 63 4 1 .0 49

S P T 36.8 1 9 99 .4 51.916 23.853

M S T 4 0 .2 2 0 01 .6 6 7 .0 87 3 7 .4 17
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Table 7.6. Performances of ACO - processing times ranging from 5.0-10.0 (hours) 

Utiliza tio n
A CO  in te rm edia te

m eas ure
ma x. W IP to ta l T P  me a n

flo wtime
me a n

ta rd in e ss

7 0 % m ak es pan 2 2 .6 1 9 9 9 .4 7 2 .4 9 8 1 1 .3 7 5

m ean flow t im e 19.6 1 9 9 8 .8 64.520 6.848

m ean ta rd ines s 2 0 .4 1999.6 6 5 .0 3 2 7 .3 6 1

8 0 % m ak es pan 3 1 1 9 9 7 .8 9 2 .1 2 7 2 6 .6 7 1

m ean flow t im e 27.6 1 9 9 6 .8 81.502 19.158

m ean ta rd ines s 2 7 .8 1998 8 3 .1 9 3 2 0 .6 3 9

9 0 % m ak es pan 5 0 .8 2000.6 1 7 6 .6 1 7 1 0 6 .0 9 3

m ean flow t im e 4 8 .2 2 0 0 0 .2 1 6 0 .7 6 4 9 2 .1 3 5

m ean ta rd ines s 47.6 1 9 9 7 .8 153.073 84.617
 

Table 7.7. Performances of Dispatching rules - processing times ranging from 5.0-
10.0 (hours) 

Utilizatio n R ules ma x W IP to ta l T P  mea n
flo wtime

me an
ta rd ine ss

7 0% F IFO 2 1.6 1 99 8.6 7 1.9 14 8 .53 0

S P T 1 9.2 1 99 7.8 68.433 8 .02 6

M S T 19 1998.8 7 1.1 52 6.392

8 0% F IFO 2 9 1 99 8 9 3.0 53 2 3.8 68

S P T 2 5.8 1 99 6.8 84.529 1 9.4 70

M S T 24.4 1998.6 8 8.8 47 18.487

9 0% F IFO 4 4.6 1 99 9 1 48 .26 4 7 4.9 88

S P T 3 8.4 1 99 7.6 124.880 55.398

M S T 36.4 1999.8 1 36 .22 6 6 2.3 50
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Table 7.8. Maximal and average sizes of intermediate scheduling problems 

mach in e
utilization 70% 80% 90%

proce ssin g
time  ran ge 1.0~10.0 1.0~5.0 5.0~10.0 1.0~10.0 1.0~5.0 5.0~10.0 1.0~10.0 1.0~5.0 5.0~10.0

m akespan

ma x.
op era tio ns

67 .6 69 .6 67 .4 89 .8 87 .6 86 .4 15 8.8 14 4.6 13 8.0

ave.
op era tio ns

21 .8 21 .6 20 .2 31 .6 31 .8 28 75 65 .6 56 .0

m ean
flow tim e

ma x.
op era tio ns 67 66 .8 66 .6 92 .2 87 .6 90 .2 15 7.2 15 0.8 14 4.6

ave.
op era tio ns

22 .2 22 21 .2 32 .6 31 .8 29 .4 74 .2 68 .4 59 .6

m ean
tardines s

(c =2)

ma x.
op era tio ns

69 67 .8 68 .6 92 90 .6 90 .2 15 3.4 14 7.2 13 9.4

ave.
op era tio ns 22 21 .6 21 .2 32 .8 31 .6 29 .8 73 .8 67 .2 57 .2

 

7.2.3 Discussions 

First of all, it is observed that the differences of total throughputs generated by all the 

approaches for the same problem are very small. The greatest difference is 4.4 jobs 

occurring in two occasions of ACO approaches: when the processing time range is 1.0 

to 10 with 90% machine utilization (Table 7.2) and when the processing time range is 

1.0 to 5.0 with 90% machine utilization (Table 7.4). The size of 4.4 jobs is considered 

insignificant as compared to the total number of evaluated jobs, which is 2000 in this 

study. Thus, this performance measure will not be further considered in the following 

analysis.  

7.2.3.1 Processing times ranging from 1.0 to 10.0 (hours) 

x� Identify the best ACO approach 

Among the three intermediate performance measures, ACO optimizing F  performs 

best when the machine utilizations are 70% and 80%. For example, it generates 

overall mean flowtimes of 49.825 and 65.552 (hours), and overall mean tardiness of 

6.364 and 18.474 (hours) for machine utilizations of 70% and 80%, respectively 

(Table 7.2).  
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The results can be explained as follows. The best intermediate schedule chosen 

according to the minimal makespan does favor the completion of more jobs. 

However, this advantage is not prominent when the workload does not exceed the 

machine capability, especially when machine utilizations are not high. Meanwhile, the 

other two intermediate performance measures explicitly optimize F  and T . 

Subsequently, the values of their overall F  and T  are better than those from the first 

approach.  

Furthermore, the overall values of F  and T  generated by minimizing F  are better 

than those from minimizing T  in all the problems where machine utilizations are 70% 

or 80%. The former approach considers the release times of jobs and can facilitate the 

jobs with earlier releasing times to be completed earlier. Thus it can improve both the 

performances of F  and T . Finally, all the ACO solutions are outperformed by the 

dispatching rules when the machine utilization is 90% and thus their performances are 

not further analyzed.  

x� Identify the best dispatching rule 

Among the three tested dispatching rules, the dispatching rule of SPT always 

outperforms the other two in terms of mean flowtime and mean tardiness in most 

cases (tables 7.3, 7.5, and 7.7). For example, in Table 7.3 when processing times rang 

from 1.0 to 10.0 hours, SPT performs best for all measures when the machine 

utilization is 70% and it performs best for all measures except the total throughput 

when machine utilizations are 80% and 90%. The similar conclusion is observed in 

the cases when processing times rang from 1.0 to 5.0 hours (Table 7.5) and from 5.0 

to 10.0 hours (Table 7.7).  
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This observation shows that to reduce the total number of operations in a system is 

important to improve the overall performance. 

x� Compare the best ACO and the best dispatching rule 

The comparisons of the best ACO and the best dispatching rule in terms of mean 

flowtime and mean tardiness are given in Fig. 7.1 according to Table 7.2 and Table 

7.3.  
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(a) mean flowtime 
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Overall Mean Tardiness(1.0-10.0)
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(b) mean tardiness 

Fig. 7.1. Performance comparison when processing times ranging from 1.0 to 10.0 
(hours) 

 

 

In summary, the best approaches for the three levels of machine utilizations 

optimizing F  are ACO for 70% and SPT for both 80% and 90%. The respective best 

values of overall F are 49,825 for 70%, 63.433 for 80%, and 97.571 for 90%. Fig. 7.1 

(a) indicates that the performance of ACO deteriorates faster than SPT when the 

machine utilization is beyond 80%.  

Similar results can also be observed in the case of optimizing T . The only difference 

is that ACO outperforms SPT when the machine utilization is 80% (Fig. 7.1 (b)), 

which means that the best approaches for the three levels of machine utilizations for 

ACO are 70% and 80%, and SPT for 90%.   

7.2.3.2 The other two ranges of processing times  
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The analysis for the ranges of 1.0 to 5.0 and 5.0 to 10.0 are given in Fig. 7.2 and Fig. 

7.3, which show similar results observed in the previous case in both the measures of 

overall F  and T .   
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(a) mean flowtime 
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(b) mean tardiness 

Fig. 7.2 Performance comparison when processing times range from 1.0 to 5.0 (hours) 
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Fig. 7.3 Performance comparison when processing times range from 5.0 to 10.0 

(hours) 

 
 
 
 
 

7.2.3.3 Compare the normalized performances of ACO 
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The mean job processing times for the ranges of 1.0 to 10.0, 1.0 to 5.0, and 5.0 to 10.0 

are 27.5, 15.0, and 37.5 (hours) respectively. In order to investigate the effect of the 

variation of processing times on the ACO performance, the value of a normalized 

performance is defined as the performance value divided by the mean job processing 

time. For example, the normalized mean flowtime obtained by ACO optimizing 

makespan for intermediate JSSPs equals to 72.498/37.5 when machine utilization is 

70% and the range of processing times is 5.0 to 10.0 (hours) (Table 6). 72.498 is the 

mean flowtime value and the 37.5 is the mean value of the range 5.0 to 10.0. Thus, the 

normalized performances for the best ACO in three ranges are illustrated in Fig. 7.4 

where the values of overall  F  and T   are divided by the respective job processing 

times.  
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(a) Normalized flowtime 
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(b) Normalized tardiness 

Fig. 7.4 Comparison of normalized performances 

 
 
 
 
 
 

The comparison shows that ACO for the range of 5.0 to 10.0 performs best while 

ACO for the range of 1.0 to 5.0 performs worst for both mean flowtime and mean 
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tardiness measures in all three machine utilizations. As the sizes of tested jobs for all 

the experiments are the same, which is 2200, the normalized performances suggest 

that the variation of job processing times changes either the complexity of a dynamic 

JSSP or the performance of ACO, or both. Further studies of the effects of the 

variation of processing times are presented in section 7.3.  

The results also show that the performance of ACO is closely related to the average 

size of its intermediate JSSPs. For example, Fig. 7.5 illustrates the average sizes of 

intermediate JSSPs of the best ACO for three machine utilizations and three ranges of 

processing times, which are recorded in Table 7.8. The average operation sizes for the 

range of 1.0 to 10.0 are greater than the other two ranges for all three machine 

utilizations and the results generated by ACO for this range are the worst (Fig. 7.4). 

Thus, it can be concluded that the performance of ACO is inversely related to the 

average size of its intermediate JSSPs.  
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Fig. 7.5 Average sizes of operations of intermediate scheduling problems 

This can be explained as follows. The optimality of the schedule generated by ACO 

decreases as the number of operations increases given the same numbers of iterations 

and ants. This inferior schedule in turn may increase the number of operations in the 
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following JSSP, making it even harder to be solved. Thus, the approach with fewer 

operations averagely will always perform better in a long term.  

7.2.4 Summary 

In summary, the following observations can be made for the two performance 

measures of mean flowtime and mean tardiness, for all three different ranges of 

processing times.  

1) ACO optimizing mean flowtime for all the intermediate scheduling problems 

performs better than the other two intermediate performance measures while SPT 

is the best one among three dispatching rules.  

2) ACO performs best when the machine utilization is 70% while SPT performs best 

when the machine utilization is 90% in terms of mean flowtime and mean 

tardiness for all the three ranges of processing times; both ACO and SPT can 

outperform each other when the machine utilization is 80%.  

3) The machine utilization is an important factor affecting the performance of ACO. 

ACO is outperformed by SPT quickly after the machine utilization reaches 80%. 

This is in accordance with the findings by Sabuncuoglu and Bayiz, (2000): a) 

there was not much difference between the optimum methods and heuristics when 

uncertainty or variability was high; and b) the performance of the off-line 

algorithm was affected more than the on-line method in a stochastic environment.  

4) The complexity of a dynamic JSSP is also affected by the ranges of job processing 

times and the overall performance of ACO is affected by the average size of 

operations of intermediate scheduling problems.  

5) The value changes for the performance measures of mean flowtime and mean 

tardiness in different problem settings follow similar trends.   
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7.3 Experiments - II 

7.3.1 Experimental goals 

In the current section, experiments are carried out to identify how the variation of 

processing times would affect the dynamic problem and the performance of ACO. 

Only the best ACO approach and the best dispatching rule, SPT, are compared. Three 

levels of processing time ranges: 7.0-8.0, 5.0-10.0, and 1.0-14.0 (hours) are chosen to 

represent three increasing levels of varieties while the mean operation processing 

times are kept unchanged at 7.5 hours. The variation of processing times is the 

smallest in the range of 7.0 to 8.0 (hours), followed by the ranges of 5.0 to 10.0 

(hours), and then the range of 1.0-14.0 (hours). Three levels of machine utilizations 

are tested: 60%, 70% and 80%. F  and T  are also the overall performance measures. 

Thus, there are totally 18 simulation problems and each of them has five replications.  

7.3.2 Results 

The results are presented in Table 7.9 and Table 7.10 where the average values of five 

replications for each problem are recorded.  

 
 
 
 
 
 
 
 
 
 
 

Table 7.9. Flowtimes generated from ACO and SPT 

range of processing times 

 

machine 

utilization 7.0~8.0 5.0~10.0 1.0~14.0 
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60% 54.369 55.885 58.228 

70% 61.693 64.52 68.938 ACO 

80% 76.156 81.502 92.078 

60% 59.37 57.052 61.126 

70% 69.557 68.433 70.964 SPT 

80% 87.04 84.529 87.917 

 

Table 7.10. Tardiness generated from ACO and SPT 

range of processing times 

 

machine 

utilization 7.0~8.0 5.0~10.0 1.0~14.0 

60% 1.938 2.449 3.342 

70% 5.47 6.848 9.549 ACO 

80% 15.476 19.158 27.665 

60% 3.6 2.644 3.879 

70% 9.136 8.026 9.216 SPT 

80% 22.064 19.47 21.694 

 

7.3.3 Discussions 

The results in tables 7.9 and 7.10 can be illustrated in Fig. 7.6 and Fig. 7.7 for the 

measure of mean flowtime and mean tardiness, respectively. The horizontal axis 

represents the range of processing times where 1 refers to the range of 7.0 to 8.0 

(hours); 2 refers to the range of 5.0 to 10.0 (hours); 3 refers to the range of 1.0 to 14.0 

(hours).  
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Mean Flowtime of ACO and SPT

50

55

60

65

70

75

80

85

90

95

1 2 3

processing time range

ho
ur

aco 60%

aco 70%

aco 80%

spt 60%

spt 70%

spt 80%

 

Fig. 7.6 Flowtime generated from ACO and SPT 
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Fig. 7.7 Tardiness generated from ACO and SPT 

 
 

x� ACO vs. SPT 

In both figures, the top two lines represent the values of mean flowtimes or mean 

tardiness generated by ACO and SPT for the three ranges of processing times when 
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the machine utilization is 80%. Similarly, the middle two and the lowest two represent 

those values when machine utilizations are 70% and 60%, respectively.  

Both figures show that ACO outperforms SPT in all tested problems for both 

performance measures in all processing time ranges except for the only occasion 

when processing time range is from 1.0 to 14.0 and the machine utilization is 80%. It 

can be concluded that the performance of ACO decreases as the variations of 

processing times increase, especially, when the machine utilization is high. However, 

this is not the case for SPT, which performs even better for all the three machine 

utilizations when the processing times are in the range of 5.0 to 10.0 (hours) than in 

the other two ranges. The observations are more apparent in Fig. 7.6.  

Furthermore, ACO increasingly outperforms SPT for all machine utilizations when 

the variations of processing times decrease from 1.0~10.0, to 7.0~8.0 and its 

superiority reaches the highest when the machine utilization (dynamic level) is 80% 

and processing times range from 7.0 to 8.0 (hours). The value of mean tardiness 

generated is 15.476 hours from ACO while it is 22.064 hours from SPT (Table 7.10 

and Fig. 7.7). The difference of 6.588 hours between the two approaches is significant 

as the overall tardiness is obtained by multiplying the mean tardiness with the total 

number of jobs, which is 2000 here for the steady state analysis. 

 

 

 

x� ACO in different ranges of processing times 
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ACO Mean Flowtimes in Different Ranges
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(a) ACO mean flowtimes in different ranges 

ACO Mean Tardiness in Different Ranges
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(b) ACO mean tardiness in different ranges 

Fig. 7.8 Comparison of ACO performances in different ranges of processing times 

The results are further illustrated in Fig. 7.8, which also shows that the performances 

of ACO in terms of mean flowtime and mean tardiness are inversely affected by the 

variations of the processing times. That is, the performance of ACO increases when 

the ranges of processing times decrease from 1.0~14.0, 5.0~10.0, to 7.0~8.0 for the 

same machine utilization.  
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7.3.4 Summary 

The main findings of this section are as follows. ACO can perform very well in the 

following situations: 1) when the machine utilization is not high, for example, below 

90%, and 2) when the variation of processing times is small. In the latter case, the 

advantage of ACO can be further enhanced when the machine utilization increases 

within 90%.  
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8 Conclusions and Future Work 

This chapter first summarizes the work reported in this thesis in section 8.1. Section 

8.2 highlights the contributions and the conclusions made in the previous chapters. 

Finally, future research directions are outlined in section 8.3.  

8.1 Research work summary 

The thesis first presents a general background of dynamic JSSP. The state-of-the-art 

predictive-reactive scheduling, MAS scheduling, and applications of ACO on 

scheduling related problems are reviewed. The internal factors that characterize a 

dynamic JSSP as well as the factors that affect its overall performance are analyzed. 

Thereafter, the test bed for systematically studying dynamic JSSPs is built, validated 

and extended to include an ACO scheduler agent.  

Extensive experiments are carried out to present the effectiveness of ACO in solving 

dynamic JSSPs and the effects of the adaptation mechanism of ACO in the 

experimental environments characterized with different dynamic levels and 

disturbance severity. Two important ACO parameters, namely the number of 

iterations and the size of ants per iteration, are tuned in order to improve the overall 

performance under the same problem settings. Finally, the appropriate application 

domains of ACO are experimentally found by testing ACO in many dynamic JSSPs 

defined by three dimensions of dynamic levels, processing time distributions and 

intermediate performance measures.    
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8.2 Contributions 

A number of original contributions are listed in the light of the work carried out in this 

thesis.  

8.2.1 Detailed analysis of dynamic JSSP 

Detailed analyses of the internal factors that characterize a dynamic JSSP as well as 

the factors that affect its overall performance are given. The analyses have led to the 

understanding that the characteristics of a dynamic JSSP can internally determinate its 

solution approaches and therefore the potential scenarios that are appropriate for 

optimum-seeking algorithms can be predicted. Furthermore, the factors that can affect 

the performance of a predictive-reactive approach are analyzed. Finally, the 

systematic ways of testing a proposed scheduling technique are identified and the 

domain classification of dynamic JSSPs is introduced according to this analysis.  

8.2.2 Proposal of a generic test bed combining DES and MAS 

A novel test bed combining the MAS technology and DES has been built to provide 

scenarios for a systematic study of dynamic JSSPs. This test bed can test traditional 

approaches like dispatching rules, mathematical methods, or metaheuristics and pure 

MAS scheduling techniques on their long term performance. To the best of the 

author’s knowledge, this is the first implementation of MAS with DES for job shop 

systems. 

8.2.3 Development of a simulation software prototype 

A simulation software prototype was designed using UML and developed to apply 

ACO to many dynamic JSSPs. The software was implemented in pure JAVA and 
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based on the JADE platform, which makes it extensible for simulating many other 

types of shop floor configurations, dynamic events, etc. It is also equipped with 

graphs to dynamically exhibit intermediate schedules in Gantt charts. Furthermore, 

the MAS approach makes it possible to be concurrently deployed on several 

computing nodes and thus the software has the potential to solve large sized problems.  

8.2.4 Better understanding of ACO in dynamic JSSPs 

A substantial amount of experiments have been designed according to the analyses in 

Chapter 3 to show the effectiveness of the adaptation mechanism of the ACO 

pheromone-matrix and the effectiveness of ACO for dynamic JSSPs, improve the 

performance through adjusting the ACO parameters, and find the appropriate 

application domains.  

The results show that the adaptation mechanism of the ACO can facilitate the 

adjustment to a new good schedule when a new job interrupts, but this advantage 

disappears when the frequency of the dynamic events is too low or the pheromone 

matrix is over strengthened by too many numbers of iterations or too many ants per 

iteration. In general, the performance of ACO in dynamic JSSPs is affected not only 

by the distributions of new jobs in time and over the workcenters as well as the batch 

size, but also its internal important parameters such as the size of ant per iteration and 

the total number of iterations for one solution. ACO outperforms several main 

dispatching rules in domains 1) where machine utilization is not higher than 90%, 2) 

where the variation of processing times is small.  

8.3 Further studies  

8.3.1 Study other scheduling techniques using the current test bed 
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The most obvious direction is to study new scheduling techniques, like genetic 

algorithms, tabu search, simulated annealing, especially those from the MAS 

scheduling field, etc. to solve dynamic JSSPs taking the advantages of the current 

DES-MAS test bed in identifying their long-term performances.  

The test bed developed can also be used to benchmark dynamic/stochastic scheduling 

problems so that new algorithms developed in the future can be systematically studied 

based on those typical scenarios.  

8.3.2 Using the current scheduling technique to solve other problems 

The proposed ACO can be applied to new problems generated through extending the 

current test bed. For example, the test bed can include more dynamic/stochastic events 

like machine breakdowns, processing time variations, or even job due-time settings. 

The increased complexity may provide new domains that ACO can have a better 

performance.  

The test bed can also be extended to simulate other types of manufacturing systems 

such as Flexible Manufacturing System or flexible job shop.  

8.3.3 Explore ways to improve the performance of ACO 

The performance of ACO can be further improved internally and externally in a given 

dynamic JSSP. The internal approach is to systematically adjust its own parameters or 

introduce some hybrid versions of ACO, which show better performance than the 

basic version of ACO in static scheduling problems; the external approach is to 

explore other control strategies as illustrated in Fig. 2.2 through the use of partial 

schedules, the periodic driven rescheduling, etc.  
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