

DYNAMIC JOB SHOP SCHEDULING USING ANT COLONY

OPTIMIZATION ALGORITHM BASED ON A MULTI-AGENT

SYSTEM

ZHOU RONG

(B.Eng., South China University of Technology, P.R. China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48639615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

i

Acknowledgement

The thesis would have been impossible without the invaluable guidance and constant

support of my supervisors: Professor Andrew Nee Yeh Ching and Associate Professor

Lee Heow Pueh.

I would like to thank Professor Nee for guiding me throughout the entire course with

his insights into the field and his unfailing help over the years on a wide range of

problems. I am extremely fortunate to be his student.

I cannot thank Professor Lee enough for helping me to clarify my thoughts through

many meetings and for providing advanced experimental facilities. His interests in

various fields have enabled me to identify a number of directions for future research.

I am also grateful to late Dr. Cheok Beng Teck for leading me into the field of agent

technology and Dr. Bud Fox for providing valuable opinions and helping me to

improve my writing skills.

I also thank the most important people in my life: my husband, Zou Chunzhong, for

his patience and encouragement throughout my Ph.D study, my lovely daughter, Zou

Yi Catherine, for lighting up my life like sunshine, and my mom, He Yuru, for her

endless love, tolerance, and support.

Lastly, I wish I could share the moment with my father, Zhou Wenzhong. His love

and expectations are always the source of courage for me to overcome difficulties and

to pursue high goals.

Table of Contents

ii

Table of Contents

Acknowledgement ..i

Table of Contents...ii

Summary .. ix

Nomenclature ...xi

List of Figures.. xv

List of Tables..xviii

1 Introduction...1

1.1 Manufacturing environments ...1

1.1.1 Classification ..1

1.1.2 Manufacturing production management ..4

1.2 Classical scheduling problems ...5

1.2.1 Notions ...5

1.2.2 Definition, representation, and roles..6

1.2.3 Classification of scheduling problems ...8

1.2.3.1 Machine environments ...8

1.2.3.2 Objectives ..9

1.2.4 Classes of schedules.. 11

1.2.5 Complexity of classical job shop scheduling problems12

1.3 Dynamic scheduling problems ... 13

1.3.1 Main approaches in industry ... 14

1.3.2 Main approaches reported in open literature.. 15

Table of Contents

iii

1.3.2.1 Queuing theory...16

1.3.2.2 Predictive-reactive scheduling ..16

1.3.2.3 Multi-agent systems ...17

1.4 Motivations..18

1.5 Research goals and methodologies...20

1.5.1 Goals ..20

1.5.2 Methodologies ..21

1.6 Outline of the thesis ...23

2 Literature Review.. 25

2.1 Approaches for the classical job shop scheduling problems............................25

2.1.1 An overview ...25

2.1.2 Exact mathematical algorithms..26

2.1.3 Dispatching rules .. 27

2.1.4 Metaheuristics... 28

2.1.5 Artificial intelligence ..29

2.2 Approaches for dynamic job shop scheduling problems.................................30

2.2.1 Predictive-reactive scheduling...31

2.2.1.1 An overview... 31

2.2.2 Literature review...33

2.2.3 Main conclusions .. 36

2.3 Multi agent systems ...37

2.3.1 Heterarchical MAS ...37

2.3.2 Hierarchical MAS...38

2.3.3 Hybrid MAS ...38

2.3.4 Nature-inspired MAS..39

2.4 Ant colony optimization algorithm..39

2.4.1 ACO overview..39

Table of Contents

iv

2.4.2 ACO for static scheduling problems..40

2.4.3 ACO for dynamic problems ..41

2.4.3.1 ACO for dynamic TSP ...42

2.4.3.2 ACO for dynamic job shop scheduling problems.............................. 43

2.4.4 ACO as an MAS ... 44

2.4.5 Summary ..45

3 Analysis of Dynamic Job Shop Scheduling Problems..46

3.1 Analysis of classical job shop scheduling problem ...46

3.2 Analysis of the dynamic scheduling problem ...47

3.2.1 Factors that characterize an intermediate JSSP ..48

3.2.1.1 The arrival time.. 48

3.2.1.2 The characteristics of the new job... 51

3.2.2 Factors that characterize an overall dynamic JSSP 52

3.3 Internal problem properties determine Approaches ..55

3.4 Analysis of factors affecting the evaluation of a scheduling technique 59

3.4.1 Factors that can affect the quality of an intermediate schedule.................60

3.4.1.1 The length of a computing interval ...61

3.4.1.2 The size of an intermediate JSSP..61

3.4.1.3 The quality of a scheduling algorithm...62

3.4.1.4 Dynamic scheduling strategies ... 62

3.4.2 Problem-related properties for improving schedule optimality.................63

3.5 Summary ... 64

4 The Test Bed...65

4.1 Background ... 65

4.2 The generic job shop..67

4.3 Discrete event simulation model ..68

Table of Contents

v

4.3.1 Decomposition of the global state ...69

4.3.2 States of entities ..71

4.3.3 Events and their actions... 71

4.3.3.1 Job-related events...72

4.3.3.2 Machine-related events...74

4.3.4 Event lists ...79

4.3.4.1 Analysis of event lists... 79

4.3.4.2 Mechanism to maintain correct simulation times 80

4.4 Implementing the simulated generic job shop as an MAS...............................82

4.4.1 Main agents ..82

4.4.2 Other agents..85

4.4.3 Fitting the MAS into the time frame of DES ... 85

4.5 Communication in the MAS ..86

4.5.1 Message passing for a single event..86

4.5.2 Message passing upon concurrent events in a single agent.......................89

4.5.3 Agent co-ordination .. 90

4.5.4 Coordination work of a workcenter ... 91

4.5.5 Coordination work of the shop floor..93

4.6 Case Study...95

4.6.1 Inputs..95

4.6.2 Simulation results..97

4.6.3 Statistical calculation ..98

4.6.4 Result analysis ..98

4.7 Summary ... 100

5 Scheduler Agent and ACO .. 102

5.1 The scheduler agent ... 102

5.1.1 Additional coordination related to the scheduler....................................102

Table of Contents

vi

5.1.2 Coordination among behaviours in the scheduler agent 103

5.1.2.1 Behaviour of receiving a new job ... 103

5.1.2.2 Behaviour of receiving a schedule request 105

5.1.2.3 Behaviour of collecting ant results.. 106

5.2 ACO optimizer .. 108

5.2.1 Notations .. 108

5.2.2 ACO flowchart..108

5.2.3 ACO for job shop scheduling problems...111

5.2.4 ACO for job shop scheduling problem with parallel machines............... 114

5.2.5 ACO in a dynamic job shop scheduling environment 114

5.3 ACO implemented as an MAS... 118

5.4 Summary ... 119

6 Application of ACO for Dynamic Job Shop Scheduling Problems................... 119

6.1 Experimental design .. 120

6.1.1 Experimental environments... 120

6.1.2 Experimental variables.. 122

6.2 Computational results and analysis .. 123

6.2.1 ACO performance analysis..124

6.2.2 The effects of the ACO adaptation mechanism...................................... 126

6.2.3 The effects of the number of minimal iterations127

6.2.4 The effects of changing the number of ants per iteration....................... 130

6.3 Summary ... 130

7 ACO Application Domains ...132

7.1 General experimental environment...132

7.1.1 Shop floor configuration ... 133

7.1.2 Job generation... 133

Table of Contents

vii

7.1.3 Experimental parameters... 134

7.2 Experiments - I .. 134

7.2.1 Experimental goals.. 135

7.2.2 Results .. 135

7.2.3 Discussions ...138

7.2.3.1 Processing times ranging from 1.0 to 10.0 (hours)138

7.2.3.2 The other two ranges of processing times 141

7.2.3.3 Compare the normalized performances of ACO.............................. 144

7.2.4 Summary .. 148

7.3 Experiments - II ... 149

7.3.1 Experimental goals.. 149

7.3.2 Results .. 149

7.3.3 Discussions ...150

7.3.4 Summary .. 154

8 Conclusions and Future Work ... 155

8.1 Research work summary.. 155

8.2 Contributions...156

8.2.1 Detailed analysis of dynamic JSSP.. 156

8.2.2 Proposal of a generic test bed combining DES and MAS....................... 156

8.2.3 Development of a simulation software prototype................................... 156

8.2.4 Better understanding of ACO in dynamic JSSPs 157

8.3 Further studies ... 157

8.3.1 Study other scheduling techniques using the current test bed.................157

8.3.2 Using the current scheduling technique to solve other problems............ 158

8.3.3 Explore ways to improve the performance of ACO158

References ...159

Table of Contents

viii

Publications arising from this Thesis.. 169

Summary

ix

Summary

A job shop manufacturing system is specifically designed to simultaneously produce

different types of products in a shop floor. Job shop scheduling problems (JSSPs)

have been studied extensively and most instances of JSSP are NP-hard, which implies

that there is no polynomial time algorithm to solve them. As a result, many

approximation methods have been explored to find near-optimal solutions within

reasonable computational efforts. Furthermore, in a real world, JSSP is generally

dynamic with continuous incoming jobs and providing schedules dynamically within

constrained computational times in order to optimize the system performance

becomes a great challenge.

The developments in both areas of multi-agent systems (MAS) and the behaviour of

foraging ants have inspired the current studies to build a scheduling system that can

provide quality schedules for a dynamic shop floor. A group of foraging ants is a

natural MAS with an internal mechanism to dynamically optimize the routes between

their nest and a food source. This optimization mechanism is realized through simple

interaction rules among ants and modeled as an algorithm titled Ant Colony

Optimization (ACO), which is promising in solving dynamic JSSPs.

In this thesis, a common test bed simulating a generic job shop is firstly built to

facilitate a systematic study of the performance of the proposed dispatching rules and

algorithms in a dynamic job shop; this is first simulated as a discrete event system

(DES) to provide long-term performance evaluations; thereafter it is implemented as

an MAS so that data collecting and analysis can be naturally distributed to the most

related entities and events can be executed simultaneously at different locations.

Summary

x

Secondly, the test bed further includes a scheduler agent employing ACO to

dynamically generate the schedules. The effectiveness of ACO is demonstrated in two

dynamic JSSPs with the same mean total workload but different dynamic frequencies

and disturbance severity. The effects of its adaptation mechanism are next studied.

Furthermore, two important parameters in the ACO algorithm, namely the minimal

number of iterations and the size of searching ants per iteration, which control the

computational time and the quality of the intermediate solutions, are also examined.

The results show that ACO performs effectively in both cases; the adaptation

mechanism can significantly improve the performance of ACO; increasing the

numbers of iterations and ants per iteration do not necessarily improve the overall

performance of ACO.

Finally, experiments were carried out to identify the appropriate application domains

defined by machine utilizations, ranges of processing times, and performance

measures. The steady-state performances of ACO are compared with those from

dispatching rules including first-in-first-out, shortest processing time, and minimum

slack time. The experimental results show that ACO can outperform other approaches

when the machine utilization or the variation of processing times is not high,

otherwise, the dispatching rules will have a better performance.

Nomenclature

xi

Nomenclature

A the machine environment in the n/m/A/B classification scheme

ACO ant colony optimization

ACS ant colony system

AC2 ant colony control

Ai accessible operation list

ANTS approximate non-deterministic tree search

AS ant system

ASrank the rank-based AS

B the field of performance measures in the n/m/A/B classification scheme

BMS biological manufacturing system

c the tightness index for setting the due date of jobs

Ci the completion time of job Ji

Cmax the makespan of job Ji, Cmax =]max[iC , where i = 1, …, m.

DES discrete event system

di the due date of job Ji

ijd

the heuristic distance between nodes i and j

e the base of the natural logarithm (e = 2.71828…)

ev the event of a new arrival job

EDD the earliest due date dispatching rule

EAS the elitist strategy for AS

Fi the flowtime of job Ji, iii CrF �

FIFO first-in-first-out dispatching rule

FMS flexible manufacturing system

Nomenclature

xii

FrMS fractal manufacturing system

FSP flow shop problem

F the mean flowtime of all the jobs in a schedule, F = ¦

n

i
iF

n 1

1

G a job shop

GSSP group shop scheduling problem

h the index of iteration number in the ACO scheduling procedure

HMS holonic manufacturing system

JADE Java Agent Development Framework

Ji the ith job arrived at the shop floor

JSSP job shop scheduling problem

k the number of occurrences of an event

l the starting point of the steady state

m the total number of machines or workcenters

M machine

MAS multi-agent system

MHS material handling system

Mi the ith machine

Mij the available times of all machines in workcenter j maintained by ant i

MST minimum-slacktime dispatching rule

n the total number of jobs

NAi non-accessible operation list

Oij the jth elementary task of job i to be performed on a machine

P-ACO population-based ACO

pij the processing time of Oij

Nomenclature

xiii

pij(h)

the probability for an ant to travel from node i to node j at hth iteration

P the mean processing time

PCi the total processing times of all the operations of job iJ

P-O-P-M position-operation-pheromone-matrix

Q the constant representing the total quality of pheromone on a route;

r i the release/arrival time of job Ji

s the size of iterations

smax the maximal sets of ants that can be initiated

smin the minimal sets of ants that can be initiated

Si scheduled operation list

SPT shortest-processing time dispatching rule

t time

Ti the tardiness of job iJ ,)](,0max[iii dCT �

TSP traveling salesman problem

T the mean tardiness of all jobs in a schedule, ¦

n

i
iT

n
T

1

1

TCi the technical order of job iJ

TWKi the total work content of job iJ

u the number of ants per iteration

U the utilization rate of a resource

UML unified modeling language

D the importance index of pheromone

E the importance index of distance heuristic

� a positive real number in a poisson distribution

D the mean inter-arrival time

Nomenclature

xiv

U the evaporation coefficient, which can be a real number between 0 and 1.0.

ijW the quantity of pheromone on the edge connecting node i and node j

)(hijW is the quantity of pheromone on the edge connecting nodes i and j at hth

iteration

� �hijW' the quantity of increased pheromone on the edge connecting nodes i and j at

hth iteration;

- the rate parameter in the exponential distribution, - > 0

List of Figures

xv

List of Figures

Fig. 1.1 Schematics of five types of manufacturing systems (Chryssolouris, 2006).....2

Fig. 1.2 Suitable manufacturing system types as a function of lot sizes (Chryssolouris,
2006)..3

Fig. 1.3 The information flow diagram in a manufacturing system (Pinedo, 2002)4

Fig. 1.4 Examples of machine- and job-oriented Gantt Chart7

Fig. 1.5 Venn diagram of classes of schedules..12

Fig. 2.1 Approaches to solve classic job shop scheduling problems..........................26

Fig. 2.2 Factors considered in the predictive-reactive scheduling research................ 32

Fig. 3.1 An optimal schedule for the example JSSP..49

Fig. 3.2 The comparison of two intermediate problems .. 49

Fig. 3.3 New optimal schedules after the same job enters at different times..............50

Fig. 3.4. Cmax=3.2 after the operation order is changed...51

Fig. 3.5. Cmax = 4.1 after the processing time is redistributed....................................52

Fig. 3.6 The initial schedule ... 56

Fig. 3.7 The 4th new job of type 1 enters at t1=0; new Cmax=5 by FIFO..................... 57

Fig. 3.8 The 5th new job of type 2 enters at t2=1; new Cmax=5.5 by FIFO..................57

Fig. 3.9 The 6th new job of type 3 enters at t2=2; new Cmax= 6 by FIFO.................... 58

Fig. 3.10. The optimality values of schedules over time in a dynamic environment .. 61

Fig. 4.1 The components of a job shop...68

Fig. 4.2. The components of a workcenter..68

List of Figures

xvi

Fig. 4.3. The hierarchical relationship in a generic job shop70

Fig. 4.4. The actions upon the new job event..73

Fig. 4.5. Actions and state changes upon the incoming job event.............................. 74

Fig. 4.6 Event actions and state changes upon a leaving job event............................75

Fig. 4.7. The dynamic events incurred by a routing job .. 75

Fig. 4.8. Event graph of job related events..76

Fig. 4.9. Actions and state changes upon a machine breakdown event......................77

Fig. 4.10. Actions and state changes upon a machine up event78

Fig. 4.11. Event graph of machine breakdown and up ..78

Fig. 4.13 State chart of a job agent ... 83

Fig. 4.14. State chart of a machine agent .. 84

Fig. 4.15. State chart of a workcenter agent.. 84

Fig. 4.16. State chart of a job shop agent .. 85

Fig. 4.17. The relationship between simulation time and execution time86

Fig. 4.18. Message passing for job-related events...87

Fig. 4.19. Message passing for machine-related events...88

Fig. 4.20. Message passing upon concurrent events of machine breakdown and
leaving job in a machine agent ...90

Fig. 4.21. The basic information flow in a simulation loop....................................... 91

Fig. 4.22. Co-ordination work of a workcenter agent.. 92

Fig. 4.23. Co-ordination work in the job shop agent...94

Fig. 4.24. Layout of the manufacturing system...96

Fig. 4.25. Moving average of hourly throughputs... 98

List of Figures

xvii

Fig. 5.1. The behaviour of receiving a new job in the scheduler agent 104

Fig. 5.2. The behaviour of the scheduler agent receiving a schedule request........... 106

Fig. 5.3. The behaviour of collecting ant results in the scheduler agent................... 107

Fig. 5.4. The flow chart of the ACO algorithm... 109

Fig. 5.5. The technical matrix TM and the processing matrix PM for a 2 x 3 JSSP .111

Fig. 5.6. The graph representing a 2 x 3 JSSP...112

Fig. 5.7. An example of the pheromone matrix for a 2 x 3 JSSP............................. 113

Fig. 5.8. Update pheromone matrix ..116

Fig. 6.1. The technical routings and processing times of jobs 121

Fig. 6.2. Moving average of hourly throughputs of problem 1 with adaptation 126

Fig. 6.3. Moving average of hourly throughputs of problem 2 with adaptation 126

Fig. 7.1. Performance comparison when processing times ranging from 1.0 to 10.0
(hours) ... 141

Fig. 7.2 Performance comparison when processing times range from 1.0 to 5.0 (hours)
... 143

Fig. 7.3 Performance comparison when processing times range from 5.0 to 10.0
(hours) ... 144

Fig. 7.4 Comparison of normalized performances .. 146

Fig. 7.5 Average sizes of operations of intermediate scheduling problems.............. 147

Fig. 7.6 Flowtime generated from ACO and SPT ... 151

Fig. 7.7 Tardiness generated from ACO and SPT... 151

Fig. 7.8 Comparison of ACO performances in different ranges of processing times153

List of Tables

xviii

List of Tables

Table 4.1. Distances between workcenters (feet) ..96

Table 4.2. Technical routes of jobs... 97

Table 4.3. Processing times of all operations..97

Table 4.4. Simulation results.. 97

Table 4.5. Simulation results from [Law and Kelton, 2000]......................................99

Table 6.1. The effects of pheromone adaptation – Problem 1 124

Table 6.2. The effects of pheromone adaptation – Problem 2 125

Table 6.3. Increase the number of iterations – Problem 1 128

Table 6.4. Increase the number of iterations – Problem 2 128

Table 6.5. Increase the number of ants per iteration – Problem 1............................ 129

Table 6.6. Increase the number of ants per iteration – Problem 2............................ 129

Table 7.1. Traveling times between workcenters (hours)..133

Table 7.2. Performances of ACO - processing times ranging from 1.0-10.0 (hours)135

Table 7.3. Performances of Dispatching rules - processing times ranging from 1.0-
10.0 (hours)..136

Table 7.4. Performances of ACO - processing times ranging from 1.0-5.0 (hours) .136

Table 7.5. Performances of Dispatching rules - processing times ranging from 1.0-5.0
(hours) ... 137

Table 7.6. Performances of ACO - processing times ranging from 5.0-10.0 (hours)137

Table 7.7. Performances of Dispatching rules - processing times ranging from 5.0-
10.0 (hours)..137

Table 7.8. Maximal and average sizes of intermediate scheduling problems........... 138

List of Tables

xix

Table 7.9. Flowtimes generated from ACO and SPT .. 149

Table 7.10. Tardiness generated from ACO and SPT ...150

Chapter 1: Introduction

1

1 Introduction

A background of the research in dynamic job shop scheduling is presented in this

chapter. Section 1.1 classifies manufacturing environments and gives the roles of

scheduling in manufacturing production management. Section 1.2 presents the

notions, definition, representation, roles, and the classification of classic scheduling

problems. The classification of schedules and the complexity of classical job shop

scheduling problems are also described. Section 1.3 introduces dynamic scheduling

problems and discusses the main approaches to solve them in the fields of industry

and academic research. Section 1.4 gives the motivations for this research and section

1.5 identifies the research goals and the methodologies. Finally, section 1.6 elaborates

the outline for the remaining parts of the thesis.

1.1 Manufacturing environments

1.1.1 Classification

Manufacturing environments can be classified into five types: job shop, project shop,

cellular system, flow line and continuous systems (Chryssolouris, 2006) (Fig. 1.1). In

a job shop (Fig. 1.1, (a)), machines with the same or similar material processing

capabilities are grouped together in workcenters. A part moves through the system by

visiting the different workcenters according to the part’s process plan. In a project

shop (Fig. 1.1, (b)), a product’s position remains fixed during manufacturing because

of its size and/or weight and materials are brought to the product as needed.

Chapter 1: Introduction

2

Ra w m a te ria l

A

Re a dy P a rt

A

A A

C C

C C

C C

D D

D D

D D

M ac hin es /R es ourc e s a re
g rou pe d a c c o rd ing to th e

p roc es s t hey p erfo rm

M a c h ines /R e s ou rc es are b ro ugh t
to an d rem oved from s tat iona ry

part a s req uired

A

A

B

B

A

A

B

B

Ra w
m a te ria l

Re a d y
P a rt

Ra w m a te ria l

B

Re a d y P a rt

C

D E

A B

D F

D E

F G

M a c hin es /R es ou rc e s a re group ed
ac c ord ing to th e pro c es s e s

req uire d for part fam ilies

 (a) A job shop (b) A project shop (c) A cellular system

Ra w m a te ria l

Re a d y P a rt

M ac hin es /R es ourc e s a re group ed
in line s ac c ord ing t o t he op era t io n

s equ en c e of one o r m ore part t y p es

B

F

D

A

A

F

D

C

F

G

B

Ra w m a te ria l

Re a dy P a rt

P roc e s s es are g rou pe d in lin es
a c c o rd ing to th e p ro c es s
s equ en c e of the prod uc t s

A

F

D

E

 (d) A flow line (e) A continuous system

Fig. 1.1 Schematics of five types of manufacturing systems (Chryssolouris, 2006)

Chapter 1: Introduction

3

In a cellular system (Fig. 1.1, (c)), the equipment or machinery is grouped according

to the process combinations that occur in families of parts. Each cell contains

machines that can produce a certain family of parts. In a flow line (Fig. 1.1, (d)), the

machines are ordered according to the process sequences of the parts to be

manufactured. Each line is typically dedicated to one type of parts. Finally, a

continuous system (Fig. 1.1, (e)) produces liquids, gases, or powders in a continuous

production mode.

One lot of jobs refers to a batch of jobs which are simultaneously released to a

manufacturing shop floor and the lot size directly affects inventory and scheduling.

Generally, the lot sizes that can be processed by a discrete manufacturing system,

which works on discrete pieces of products like metal parts, are related to the types of

manufacturing systems. Normally, job shops and project shops are most suitable for

small lot size production, flow lines are most suitable for large lot size production,

and cellular systems are most suitable for production of lots of intermediate size. It

can be seen from Fig. 1.2 that lot sizes in job shops range from 1 to 100 jobs.

1 100010010 10000

��������

������������
������������

��������

��������
��������

Lo t Size

job s hop

cellular
sys tem

projec t shop

flow line

Fig. 1.2 Suitable manufacturing system types as a function of lot sizes (Chryssolouris,

2006)

Chapter 1: Introduction

4

1.1.2 Manufacturing production management

The production management and control activities in a manufacturing system can be

classified as strategic, tactical and operational activities, depending on the long,

medium or short term nature of their tasks (Hopp and Spearman, 2000; Chryssolouris,

2006).

P ro d uc t io n p lan n in g ,
m as ter s c hed u lin g

M ater ia l r eq u ir em en ts ,
p lan n ing ,

c ap ac ity p lann in g

Q u an tit ies ,
d u e dates

S c h ed u lin g
an d

r es c hed u lin g

S ho p or d ers ,
r e leas e da tes

C ap ac ity
s tatu s

S c h ed u lin g
C o n s tra in ts

O rd er s ,
d em and
f or ec as ts

M ater ia l
r equ ir em en ts

D is p atc h in g

S c h ed u leS c h ed u le
p er f o rm a nc e

S ho p f lo o r
m an agem en t

S ho p f lo o r

S ho p
s tatu s

D ata
c o llec tio n

J o b load in g

D eta iled
s c h ed u lin g

L o n g te rm
S tra te g ic

Me diu m te rm
Tactical

S h o rt te rm
O pe ra tio n a l
(S h op Flo or)

Fig. 1.3 The information flow diagram in a manufacturing system (Pinedo, 2002)

The information flow diagram in a manufacturing system modified from Pinedo

(2002) is given in Fig.1.3 to illustrate the relationship of those activities at different

Chapter 1: Introduction

5

levels. The strategic production management decides issues related to the

determination of products according to the market demands or forecasts, the design of

the manufacturing systems to produce those products, the generation of master

schedule to meet the capacity requirement, etc. The tactical production management

decides issues relating to the generation of detailed plans according to the master

schedule. The results of this stage, such as shop orders with release and due dates are

passed to the lower control level, i.e., the operational production management, which

decides the processing of those orders on the shop floor in order to fulfill the order

requirements, and at the same time, optimizes the performance of the manufacturing

system. It needs proper scheduling strategies to meet those requirements. After

scheduling, the schedule is transferred to the shop floor and the implementation of a

schedule is often referred to as dispatching (Vollmann et al, 1992).

1.2 Classical scheduling problems

1.2.1 Notions

Important notions adopted in the current thesis are defined as follows.

An operation (Oij) refers to the jth elementary task of job i to be performed on a

machine.

A job (Ji) refers to the ith job which has a set of operations that are interrelated by

precedence constraints derived from technological restrictions.

The processing time (pij) of an operation is the amount of time required to process

operation Oij.

Chapter 1: Introduction

6

The setup time refers to the time required by a machine to shift from the current status

to the next one in order to process the next operation. In the current studies, setup

times are independent of operation sequence and are included in the processing time.

A machine (M) is a piece of equipment, a device, or a facility capable of performing

an operation.

The due date (di) of job i is the time by which the last operation of the job should be

completed.

The completion time (Ci) of job i is the time at which processing of the last operation

of the job is completed.

1.2.2 Definition, representation, and roles

Scheduling deals with the allocation of scarce resources to tasks over time. It is a

decision-making process with the goal of optimizing one or more objectives (Pinedo,

2002). The result of a scheduling procedure generates one or several schedules, which

are defined as plans with reference to the sequence of and time allocated for each item

or operation necessary to complete the item (Vollmann et al, 1992). A schedule can

be represented as a Gantt Chart, which is a two-dimensional chart showing time

along the horizontal axis and the resources along the vertical axis. Each rectangle on

the chart represents an operation of a job, which is allocated to certain time slots on

that resource. A Gantt Chart can be machine-oriented or job-oriented and examples

for both types are presented in Fig. 1.4, where jobs J1 and J2 are scheduled. O11, O12,

and O13 are three operations of J1 and O21, O22, and O23 are operations of J2. The

processing time of each operation is included in parentheses.

Chapter 1: Introduction

7

O 11 (1)

t

M ac h in e N o .

M 1

M 3

M 2

1 42

O 12 (1) O 22 (1)

O 13 (2)

O 23 (1)

3

O 21 (1)

0

(a) Machine-oriented Gantt Chart

O 11 (1)

t

J o b N o .

J1

J2

1 42

O 22 (1) O 23 (1)

3

O 21 (1)

O 12 (1)

0

O 13 (2)

(b) Job-oriented Gantt Chart

Fig. 1.4 Examples of machine- and job-oriented Gantt Chart

The main goal of manufacturing production management is to meet demands in a

timely and cost-effective manner. In most manufacturing environments, especially in

those with a wide variety of products, processes, and production levels, the

construction of advance schedules is recognized as central to achieving this goal.

Scheduling in manufacturing systems is very important for its roles in maximizing

throughput and resource utilization, meeting due dates of orders, reducing inventory

levels and cycle time, etc. Even small improvements in those measures can lead to

considerable profit and thus increase the competitiveness of a factory.

Chapter 1: Introduction

8

Furthermore, a production schedule can enable the anticipation of potential

performance obstacles and provide opportunities to minimize their harmful effects on

the overall system behavior; it can enable better coordination to increase productivity

and minimize operating costs; it can identify resource conflicts, control the release of

jobs to the shop floor, and ensure that the required raw materials are ordered in time.

A production schedule can also determine whether delivery promises can be met and

identify time periods available for preventive maintenance; it gives shop floor

personnel an explicit statement of what should be done so that supervisors and

managers can measure their performance (Vieira et al, 2003). All these contribute to

decreasing the cost of production and increasing profits for a factory.

1.2.3 Classification of scheduling problems

A scheduling problem can be described based on the n/m/A/B classification scheme of

Graham et al (1979). n is the number of jobs; m is the number of machines; the A

field describes the machine environment. The B field describes the objective to be

optimized and usually contains a single entry.

1.2.3.1 Machine environments

The possible machine environments are single machine, flow shop, job shop, etc. The

current studies focus mainly on job shop with the definition as follows.

In a job shop (G), there are m machines , M1, … Mm, which are different from each

other, and a set of n jobs J1, … Jn, which are to be processed on those machines

subject to the sequence constraints of their operations. Job Ji (ni dd1) consists of mi

operations 1iO , …
iimO (mmi dd0) and their respective number of machines can be

given in a vector iv , where)(kvi (imk dd0 , mkvi dd)(1) is the number of the

Chapter 1: Introduction

9

machine that processes operation ikO . The processing times of those operations

are 1ip , …
iimp . A schedule has to be found so that all jobs are routed in the shop floor

in a manner that the performance measures of the system can be optimized. The

schedule decides the starting time ikt for each operation ikO of job iJ and the

following formula holds:

� �hlhlkikiik ptptt �� �� ,max 1,1, .

 (1.1)

hlt is the starting time of job hJ , which is the job processed on the same machine

immediately before job iJ . ikt is decided by either the completion time of its direct

preceding operation or the earliest available time of its machine.

1.2.3.2 Objectives

The objectives to be optimized are always a function of the completion times of the

jobs. The objective criteria considered in this study include makespan, mean

flowtime, and mean tardiness, which are most commonly used in the literature of job

shop scheduling. Performance measures related to inventory status like throughput,

work-in-process and the size of jobs in a queue are also considered.

Makespan (Cmax) is the “length” of the schedule, or an interval between the time at

which the schedule begins and the time at which the schedule ends. Thus, the

makespan of a schedule equals to]max[iC , where i = 1, …, m.

Chapter 1: Introduction

10

Flowtime (Fi) (also called cycle time) is the amount of time job iJ spends in the shop

floor. It corresponds to the time interval between the release time ir and the

completion time iC of job iJ : iii rCF � .

Mean Flowtime (F) is the average flowtime of the schedule. F = ¦

n

i
iF

n 1

1
, where n

is the number of jobs.

Tardiness (Ti) of a job iJ is the non-negative amount of time by which the

completion time exceeds the due date id :)](,0max[iii dCT � .

Mean Tardiness (T) is the average tardiness of all jobs in the schedule: ¦

n

i
iT

n
T

1

1
,

where n is the number of jobs.

Throughput (TP) is the average output of a production process (machine, workcenter,

plant) per unit time (e.g., parts per hour).

Work-In-Process (WIP) includes all unfinished parts or products that have been

released to a production line; it represents the inventory in the shop floor and is

preferred to be low so that less possibility of congestion in the shop floor is expected

and less extra capital is expensed in inventory. However, the production rate cannot

be guaranteed if WIP is too low according to Little’s Law, which is described as

follows: at every WIP level, WIP is equal to the product of throughput and cycle time

(Hopp and Spearman, 2000).

Size of jobs in a queue refers to the number of jobs waiting in the queue of a resource

(machine) or a workcenter.

Chapter 1: Introduction

11

The above performance measures can be put into four categories: utilization-based

objectives, flow-based objectives, due-date-based objectives, and inventory-based

objectives. Makespan corresponds to the utilization-based objective, which is related

to the resource utilization. A schedule with a shorter makespan implies higher

resource utilization. mean flowtime, throughput, and WIP are flow-based objectives,

which measure the turnaround times of the jobs in the shop floor; tardiness related

objectives measure the ability to meet due dates; finally, the size of jobs in a queue

and WIP are inventory-based objectives which measure the inventory status of the

shop floor.

Given a measure of performance Z , which is defined as a function of the set of job

completion times, and � �nCCCfZ ,..., 21 , Z is regular if: 1) the scheduling

objective is to minimize Z , and 2) Z can increase only if at least one of the

completion times in the schedule increases (Baker, 1974). Makespan is a regular

performance measure while mean tardiness-related objectives are non-regular.

Thus, a scheduling problem given as n/m/G/T refers to a job shop scheduling

problem (JSSP) with n jobs, m machines; and the objective is to minimize the mean

tardiness. n/m/G/F refers to a JSSP with m workcenters and the objective is to

minimize the mean flowtime.

1.2.4 Classes of schedules

In scheduling theory, schedules from optimizing regular measures of performance can

be categorized into three types, semi-active, active and non-delay. A feasible schedule

is called semi-active if no operation can be completed earlier without changing the

order of processing on any one of the machines; it implies that there is no unnecessary

Chapter 1: Introduction

12

idle time inserted before the starting time of a job. A semi-active schedule is called

active if there is at least one operation which can be started earlier without delaying

any other operation. It is sufficient to consider only active schedules in order to find

an optimum. An active schedule is called a non-delay schedule if no machine is kept

idle at the time when it can begin processing some operations.

The set of non-delay schedules is the subset of the set of active schedules for the same

scheduling problem but the optimal schedule could be found in either sets. Fig. 1.5

shows a Venn diagram of the relationships among the three classes of schedules

(Pinedo, 2002). Generally, the best non-delay schedule can usually be expected to

provide a very good solution, if not an optimum (Baker, 1974).

N on -d elay Ac tiv e
S em i-
ac tiv e

All s c hed u les

O pt im al s c hed u le

Fig. 1.5 Venn diagram of classes of schedules

1.2.5 Complexity of classical job shop scheduling problems

The inherent complexity of a classical JSSP arises mainly from the large size of its

possible solutions as well as its objective functions. Both of them are decided by the

medium- to long-term strategies of a manufacturing management system (Fig. 1.3).

Chapter 1: Introduction

13

The solution space including the optimum or a near-optimum solution is directly

decided by the number of machines m and jobs n in the problem. It could be

comprised of mn)!(schedules assuming that each job has one operation on each type

of machine. Research has been focused on finding efficient algorithms for optimal

solutions in a computational time that grows polynomially as the size of jobs

increases. However, there are no such algorithms for most scheduling problems and

these scheduling problems are thus called NP-hard problems (Garey and Johnson,

1979; Blazewicz et al., 1996). This fact also implies that it is impossible to find

optimal solutions for most realistically sized scheduling problems in reasonable times.

Hopp and Spearman (2000, pp.493-497) illustrated the complexity of a scheduling

problem caused by the size of possible solutions and also concluded that there was

little help by improving the speed of the computer. Thus the “optimal solution”

mentioned in this thesis would mean a reasonably good solution unless it is otherwise

indicated.

Given the same scheduling problems, the time complexities to optimize different

performance measures may be different. For example, optimal solutions can be found

in a polynomial time of)log(nnO with Johnson’s algorithm (Johnson, 1954) to

minimize the makespan of a two-machine flow shop problem while the time

complexities to optimize other objectives for the same problem are considered NP-

hard.

1.3 Dynamic scheduling problems

Scheduling in the real world is dynamic and stochastic in nature. A scheduling

problem is dynamic if there are continuous arrivals of new jobs and stochastic if

uncertain events like machine breakdowns or variant processing times are considered.

Chapter 1: Introduction

14

Those events are introduced into the system due to two factors. Quantities may either

have inherent variability or they cannot be measured exactly (Ovacik and Uzsoy,

1994, 1997). The main consequence of those uncertainties for a scheduling system is

that a predetermined schedule can become obsolete immediately.

In dynamic/stochastic manufacturing environments, managers, production planners,

and supervisors must not only generate high-quality schedules but also react promptly

to unexpected events in order to revise schedules in a cost-effective manner. In an

attempt to construct an effective reactive scheduling system, various approaches have

been proposed and they can be categorized as industrial and academic studies.

1.3.1 Main approaches in industry

Industry often uses simple but robust tools to guide production, like interactive

schedulers, human involvement and self-developed software, often in combination

with a Material Requirements Planning (MRP) system, which is one of the earliest

applications of computers for medium- to long-term material and resource capacity

planning for the entire production cycle.

However, the simplistic model of MRP undermines its effectiveness because: 1) it

assumes infinite capacity; 2) it uses one lead time for offsetting, which results in

earlier release, larger queues, and hence longer cycle times; and 3) the small change in

its master production schedule may result in a large change in planned order releases,

which is called system nervousness (Hopp and Spearman, 2000).

The problems in MRP prompted some scheduling researchers and practitioners to turn

to enhancements in the form of Manufacturing Resource Planning (MRP II) and more

recently, Enterprise Resource Planning (ERP). However, the fundamental problems of

Chapter 1: Introduction

15

assuming infinite capacity and fixed lead times are still with the basic models

underlying those improved systems. Some just rejected MRP altogether in favor of

Just-In-Time (JIT).

JIT, which originated in mid-1950s, is a method to avoid scheduling by changing the

production environment where the production is driven by the need of downstream

workstations. This type of production system is also called the pull system. JIT

demonstrates very good performance in automobile industries in Japan by removing

idle intermediate WIP jobs. However, this approach assumes steady demand and is

most suitable for a flow shop pull system. It may not equally benefit dynamic job

shops where demands are variable.

Finally, dispatching rules are widely adopted in practice and they are also well studied

in literature. Their detailed description will be given in Chapter 2.

1.3.2 Main approaches reported in open literature

In open literature, there are basically two approaches to accommodate those dynamic

events: proactive and reactive scheduling. In proactive scheduling, the events are

considered predictable and some slacks are reserved in the original schedule so that

disturbances can be absorbed without re-scheduling. In reactive scheduling, actions

have to be taken to revise or repair a complete schedule that has been “overtaken” by

events on the shop floor (Zweben et al, 1994). The latter approach is the main focus

of this study.

Three main ideas underlie the enormous number of approaches under the umbrella of

reactive scheduling and they are: queuing theory, predictive-reactive scheduling, and

artificial intelligence. Early research has used the queuing theory to explore the

Chapter 1: Introduction

16

collective effect of several types of dynamics on a shop floor using simple rules to

decide the orders of jobs. Later, researchers proposed to use schedules generated by

more advanced scheduling techniques in order to improve overall production

performance. Finally, the development in the field of artificial intelligence, especially

multi-agent systems (MAS), has been inspiring its applications in dynamic

scheduling.

1.3.2.1 Queuing theory

Queuing theory is inspired by the real-world applications where jobs are assumed to

arrive in a random process in some statistical forms; the processing times of

operations and dynamic events are random variables with known distributions. Jobs

are queued in the buffer of their waited machine until it is free. A job is selected from

the buffer to be processed according to some predetermined priority rules or

dispatching rules. Jobs are discharged from the system if all of its operations are

completed. The randomness in the arriving jobs, processing times, and stochastic

events like machine breakdowns together implies the distributions of job flow times

and machine busy/idle times. Different dispatching rules may be compared and the

best ones can be chosen for production.

The advantage of using the queuing theory is that a system reacts to events and makes

allocation decision one at a time only if necessary for keeping execution going based

on the current status of the system. This strategy is insensitive to unexpected events

and thus yields quite robust behaviour. Furthermore, it is highly effective

computationally. However, the performance of factory operations may be sacrificed

since there is no attempt for optimization.

1.3.2.2 Predictive-reactive scheduling

Chapter 1: Introduction

17

In the predictive-reactive scheduling approach, a schedule is generated for a set of

jobs in order to optimize certain criteria before those jobs are actually executed and

the schedule is refined when dynamic events occur. It is a common strategy to

reschedule dynamic manufacturing systems (Jain and ElMaraghy, 1997, Mehta and

Uzsoy, 1998).

There are two parts for the actions in this approach: namely generating predictive

schedules and reacting to disturbances. The generation of predictive schedules may

use the methods from the field of classic scheduling and the reaction to disturbances

implies decisions about what, when, and how to react (Sabuncuoglu and Bayiz, 2000)

in order to optimize system performance in the face of dynamic events (Church and

Uzsoy, 1992; Abumaizar, and Svestka, 1997). Different scheduling generation and

refining procedures may be explored and compared in order to find the best one for a

particular problem.

Generally, the predictive-reactive scheduling approach requires more computational

efforts to generate optimal or sub-optimal solutions as compared to dispatching rules

in the queuing theory. It is also different from queuing in that queuing decides only

the order of tasks while scheduling also decides their starting times.

1.3.2.3 Multi-agent systems

Parunak (1997) defined an intelligent agent as “an active object with initiative” and

views it as a software design paradigm, which is the next extended step to object-

oriented programming in software evolution. An agent has at least two important

capabilities. First, it is capable of autonomous/pro-active action to decide its actions in

order to realize its objectives. Second, it is capable of interacting with other agents

Chapter 1: Introduction

18

through exchanging data or through cooperating, coordinating or negotiating with

other agents (Wooldridge, 2001).

An MAS is a loosely-coupled network of agents that work together in a group to solve

a common problem (Pendharkar, 1999). As a distributed problem-solving paradigm,

an MAS can transform a complex scheduling problem into smaller and manageable

sub-problems to be solved by individual agents co-operatively. Like in the queuing

theory, no schedules are calculated in advance but the core is to find appropriate

protocols and architectures for agents to interact and share information dynamically.

The overall performance emerges as the result of the interactions among agents using

certain co-operation protocols.

1.4 Motivations

The essential motivation of the current study is to develop a scheduling system that

can keep on optimizing the performance of a job shop manufacturing system in real

time in the face of dynamic events.

The idea is first inspired by the advancement in the field of MAS. Durfee (1988) and

Durfee and Lesser (1989) proposed a heterarchical MAS where independent agents

interact with each other using only local information and a global optimization can

emerge from those local interactions. The emphasis of this approach is to find

appropriate interaction rules or coordination protocols for agents and model problem

components into appropriate agents. However, this approach has the disadvantages of

unsatisfactory optimality, unpredictability, and high communication overhead.

In order to improve optimality and predictability as well as to reduce communication

overhead, researchers have developed hierarchical MAS and furthermore, hybrid

Chapter 1: Introduction

19

MAS for dynamic control and scheduling. In a pure hierarchical MAS, agents at

higher levels can allocate tasks to their immediate lower level agents, which execute

their assigned tasks without any opinion. The system will produce schedules with

good global performance since the agent at the higher level can have a wider view of

the system. However, this architecture lacks reactivity to dynamic events since events

are first forwarded from the lowest level agents to the upper level agents and then the

reaction decision is passed down from the upper level agents to the lowest level

agents to be executed. This type of MAS may assume the schedules to guide

production in a similar manner performed in predictive scheduling. To cope with the

disadvantages and combine the advantages of the previous two types of MAS, some

hybrid architectures have been proposed. Basically, agents in a hybrid MAS have the

autonomy to promptly react to dynamic changes and simultaneously be guided by

those agents with global views.

Recent research on the foraging behaviour of a natural MAS, namely an ant colony,

has found that autonomous agents like ants can find the shortest route from their nest

to a food source based on the pheromone strength on their ways. Each ant affects the

environment by leaving behind itself some amount of pheromone. This type of

optimization mechanism is a collective effect of the interactions between the ants and

the pheromone environment. Furthermore, it is also found that an alternative shortest

path can soon be formed by foraging ants if the current one is not available. Both

features are of great research interests in the view of their applications in

dynamic/stochastic scheduling environments.

In order to realize this mechanism for the optimization purpose in scheduling

problems, two implementations had been proposed. One is the pure MAS approach;

Chapter 1: Introduction

20

the other is through the ant colony optimization (ACO) algorithm. The former

involves not only the indirect correspondence between a modeled agent and a facility

in the real world problem, but also a great number of communications among agents.

Thus, the ACO approach is adopted in the current study.

Meanwhile, the previous applications of ACO on JSSPs have been mainly focused on

static cases and its performance on dynamic JSSPs has not been systematically

studied. The current research aims to explore the effectiveness of ACO in dynamic

JSSPs, the factors affecting its performance, the effects of the adaptation mechanism,

and its application domains based on the research findings in the areas of the queuing

theory, ACO algorithms, and MAS. As dynamic JSSPs continues to be a challenge

(Smith, 2003; Stoop and Wiers, 1996), the research of exploring an advanced

scheduling system is considered valuable.

1.5 Research goals and methodologies

1.5.1 Goals

In summary, the goals of the current study include:

x� To analyze a dynamic JSSP, identify the systematic manners of research in this

field, and define the domains of the dynamic JSSP.

x� To build a generic test bed that can provide problem scenarios for systematically

evaluating a proposed scheduling approach.

x� To present the effectiveness of ACO in solving dynamic JSSPs, and demonstrate

the effectiveness of its adaptation mechanism.

x� To improve its performance through adjusting its parameters.

Chapter 1: Introduction

21

x� To find the best application domains of ACO in dynamic JSSPs.

1.5.2 Methodologies

Normally, the evaluation of an approach for a static scheduling problem includes the

comparisons in two aspects: schedule quality and computational time. Schedule

quality is evaluated in terms of target performance measures like makespan,

total/mean flowtime, total/mean tardiness, etc. Computational time refers to the time

spent by computers to find the schedule and can be measured through the analysis of

the computational complexity, which describes how the computational time and

memory requirements of the algorithm change as the size of the input to an algorithm

increases (Garey and Johnson, 1979). A good scheduling approach performs well in

either providing high quality schedules or obtaining acceptable schedules within

limited computational times.

However, the evaluation of approaches for dynamic scheduling problems is different.

Jobs continue to arrive during the entire period of the evaluation while the proposed

dynamic scheduling procedure continues to working simultaneously during the same

period. Occasional good schedules do not guarantee a long-term good performance of

a proposed approach. Thus, it is important to decide a reasonable test period in order

to obtain a fair evaluation of the proposed approach. The approach in the queuing

theory is to execute a simulation until the system reaches a steady state and the

performance data are recorded from that point. Next the simulation continues for a

certain period of time and an average steady-state performance of the approach can be

obtained.

A similar approach is adopted in the current study and all experiments were carried

out on a simulated test bed as the experiments on real factories are generally

Chapter 1: Introduction

22

expensive and sometimes impossible. First, a discrete job shop manufacturing system

is simulated using discrete event simulation (DES) in order to provide adequate

scenarios. Several replications of the experiments for the same problem

configurations were tested with only variations in the generation of initial random

numbers. DES can facilitate the examination of a long-term average performance of

the tested approach since the time intervals that do not change the system state are

skipped. The experimental results are analyzed or compared statistically.

Furthermore, the DES will be implemented as an MAS based on the following two

considerations. On the one hand, the optimization mechanism of foraging ants can be

implemented in different types of MAS, which will be described in Chapter 5. On the

other hand, the MAS implementation of a job shop has many advantages, which will

be mentioned in Chapter 4. Briefly, the test bed not only can properly model a shop

floor as a distributed system but also provide a long-term performance evaluation for

a proposed approach.

In order to build the above simulated job shop, commercial simulation tools like

ARENA have been considered at first. However, the effort of interfacing them with

the ACO scheduler would be about the same effort as building a new tool. In

particular, there should be communications between shop floor entities like

workcenters, jobs and the scheduler in order that it resembles the similar structure and

the logic in a real job shop. Thus, a test bed is thereafter built from scratch based on

Java Agent DEvelopment Framework (JADE), which is a software framework fully

implemented in Java language.

After the test bed is built, the ACO algorithm implemented as an MAS is used to

generate schedules for dynamic JSSPs, which are systematically designed to achieve

Chapter 1: Introduction

23

the goals set in section 1.5.1. The predictive-reactive scheduling procedure is used in

all experiments.

1.6 Outline of the thesis

Chapter 2 first reviews the approaches for solving static JSSPs in order to pave the

way of reviewing the approaches for dynamic JSSPs, which is followed immediately

by focusing on predictive-reactive scheduling. Next, MAS approaches and the

applications of ACO in the scheduling related fields are also reviewed in detail to give

a background of the current research.

Chapter 3 first analyzes the static JSSPs, then the dynamic JSSPs. Finally, the factors

affecting the evaluation of a scheduling technique in a predictive-reactive approach

are analyzed.

Chapter 4 builds a common test bed to facilitate a systematic examination of the

performance of control policies and algorithms in a dynamic job shop environment.

The definition of a generic job shop is first given, and a generic job shop is modeled

as a DES. A prototype of the job shop is implemented as an MAS. The

communication of agents in the MAS is presented and a case study is described.

Chapter 5 extends the test bed to include a scheduler, which uses ACO as an

optimizer simulating the scheduling function in a factory. It discusses the additional

coordination of the scheduler agent to the main existing agents like job, job shop and

workcenters agents and among the behaviours within the scheduler agent itself. The

procedure to dynamically update the pheromone matrix of ACO is also discussed.

Finally, the implementation of ACO as an MAS is presented.

Chapter 1: Introduction

24

Chapter 6 tests the performance of ACO on two dynamic JSSPs with the same mean

load but different dynamic frequency and severity. The effectiveness of its adaptation

mechanism is studied. Furthermore, two important parameters in the ACO algorithm,

namely the number of iterations and the size of searching ants per iteration, which

control the computing time and the quality of solutions, are also examined.

Chapter 7 first defines the three dimensions describing the domain of dynamic JSSPs:

namely the frequency of the arriving jobs, the variation of the processing times, and

performance measures. Two series of experiments are next carried out to find the

appropriate application domains of ACO in terms of the ranges of job arriving levels

and the variation of the processing times. The performances of the experiments are

compared and the proper ranges that ACO outperforms the best dispatching rule are

identified. In this manner, the domains that ACO can be effectively applied can be

identified.

Chapter 8 concludes the work, highlights the contributions, and identifies a number of

future works.

Chapter 2: Literature Review

25

2 Literature Review

Scheduling as a research discipline dated back to early 1900s but serious analysis of

scheduling problems did not begin until the advent of computer age in the 1950s and

1960s. Since then, a great amount of theoretical work has been reported. A good

historical overview of the different approaches was given by Froeschl (1993) and an

early introductory work on scheduling was reported by Baker (1974), French (1982),

Buxey (1989), and Sule (1997). Literature reviews on static deterministic scheduling

can be found in (Graves, 1981, Jain and Meeran, 1998, 1999, MacCarthy and Liu,

1993, Blazewicz et al, 1996, Sellers, 1996, Weirs, 1997, Jones and Rabelo, 1998, and

Pinedo, 2002). Nowicki and Smutnicki (1995) provided an excellent review of

minimum makespan job shop problems. Suresh and Chaudhari (1993) reviewed the

dynamic scheduling literature.

This review starts with the approaches for static JSSPs; then the emphasis is put on

the approaches for handling dynamic environments. Furthermore, the applications of

ACO in the scheduling related fields are reviewed in detail to give a background of

the current research.

2.1 Approaches for the classical job shop scheduling problems

2.1.1 An overview

The main approaches to solve the classical JSSPs include exact mathematical

algorithms, dispatching rules, metaheuristics, and artificial intelligence methods.

These approaches and some of their examples are listed in Fig. 2.1.

Chapter 2: Literature Review

26

s c h edu le
g en eratin g
p ro c ed u res

ex ac t a lg o r ithm s

ar t if ic ia l
in te llig enc e

m etah eu r is tic s

d is p atc h in g ru les

D y n am ic P ro gram m in g

G en etic al Alg or ith m .

S im u lated An nealin g

T abu S earc h

Ant C o lo n y O p tim ization

F u zzy Lo gic

N eu ral N etw o rk

Kno w led g e-Bas ed S ys tem

M u lt i-Ag en t S y s tem

F irs t - In- F irs t-O u t

S h or tes t P roc es s in g T im e

M in im al S lac k T im e

L in ear P ro gram m ing

Fig. 2.1 Approaches to solve classic job shop scheduling problems

2.1.2 Exact mathematical algorithms

Balas (1965, 1967) developed modern integer programming, which allows rather

realistic JSSPs to be formulated in a manner that would theoretically permit them to

be solved exactly. Two popular solution techniques for integer-programming

problems are branch-and-bound and Lagrangian relaxation. Branch-and-bound is an

enumerative technique, which systematically curtails undesired solutions by

dynamically setting lower bounds through modeling the JSSP as a decision tree.

Lagrangian relaxation solves integer-programming problems by omitting specific

integer-valued constraints and adding the corresponding costs to the objective

function.

Chapter 2: Literature Review

27

Another exact mathematical algorithm reported is dynamic programming, which

enumerates in an intelligent manner all the possible solutions. During the enumeration

process, schedules which are not optimal are eliminated.

However, both integer programming and dynamic programming are computationally

intensive. Thus large problems remain intractable although very small problems can

be solved with optimal solutions. Subsequently, the majority of scheduling problems

has to be solved using heuristics, which are techniques seeking good solutions instead

of the optimal ones at a reasonable computational cost (Voß, 2001). Main heuristic

approaches include dispatching rules, metaheuristics, and artificial intelligence.

2.1.3 Dispatching rules

The simplest heuristic to find a solution is using dispatching rules, where a schedule is

constructed in one iteration with generally a very light computational effort even for a

large problem. A dispatching rule is used to prioritize jobs waiting for processing at

the time that the waited machine/resource becomes available. The job with the highest

priority is selected to be processed on the machine. An early survey can be found in

Panwalkar and Iskander (1977).

Common dispatching rules employ processing times and due dates as deciding factors

in simple rules or their complex combinations. Some dispatching rules are extensions

of policies that work well on simple machine scheduling problems, for example, First-

In-First-Out (FIFO), Shortest Processing Time (SPT), Minimal Slack Time (MST),

and Earliest Due Date (EDD). In FIFO, the first operation coming into a workcenter

has the highest priority; in SPT, the operation with the shortest processing time has

the highest priority; in MST, the operation with the shortest slack time has the highest

priority. The slack time indicates the temporal difference between the due time, the

Chapter 2: Literature Review

28

current time and the remaining computation time. In EDD, the operation with the

earliest due date has the highest priority.

Other dispatching rules can be found in Panwalkar and Iskander (1977), which

provides an extensive list of dispatching rules and their classification includes five

categories: simple dispatching rules, combinations of simple rules, weighted priority

indices, heuristic scheduling rules, and similar findings by others, such as Blackstone

et al (1982), Ramasesh (1990), and Morton and Pentico (1993).

Owing to their inexpensive computational effort and robustness, dispatching rules are

widely adopted, especially, in dynamic environments (Li et al, 1993). However, they

do not guarantee the realization of the full potential of a shop floor as they do not aim

at optimization. Scheduling systems using algorithms, especially metaheuristic

algorithms, have continuously been studied to provide optimized solutions.

2.1.4 Metaheuristics

A Metaheuristic is a set of algorithmic concepts that can be used to define heuristic

methods applicable to a wide set of problems (Voß et al, 1999). It refers to an iterative

master process that guides and modifies subordinate heuristics in order to efficiently

produce high-quality solutions. There may be a complete (or incomplete) single

solution or a collection of solutions per iteration. The subordinate heuristics may be

high (or low) level procedures, or a simple local search, or just a construction method.

A local search algorithm is a metaheuristic iteratively moving from solution to

solution in the space of candidate solutions (the search space) until a solution deemed

optimal is found or a time bound has elapsed. A construction method generates a

schedule by adding in an operation one at a time until all operations are considered.

Chapter 2: Literature Review

29

Examples of metaheuristics include genetic algorithms (Goldberg, 1989), simulated

annealing (Kirkpatrick, et al, 1983), Tabu search (Glover, 1989, 1990; Glover and

Laguna, 1997), ACO (Dorigo and Di Caro, 1999), and their hybrids. Each has its own

perturbation methods, stopping rules, and methods for avoiding local optimum. The

use of metaheuristics has significantly increased the ability of finding very high-

quality solutions to hard, practically relevant combinatorial optimization problems in

a reasonable time (Dorigo and Stützle, 2004).

2.1.5 Artificial intelligence

The approaches to solve scheduling problems in the artificial intelligence field are

based on the inspirations from either human society or natural phenomena (Weiss,

1999). Many sophisticated procedures have been proposed including fuzzy logic,

neural network, knowledge-based systems and MAS (Kusiak, 2000).

Fuzzy set theory has been used to develop hybrid scheduling approaches. It can model

and solve job shop scheduling problems with uncertain processing times, constraints,

and set-up times, which are represented by fuzzy numbers. A neural network is

trained with historical data and some desired relationships between the inputs and the

outputs have been captured. The network can be used to estimate solutions for new

inputs.

Knowledge-based scheduling systems employ domain specific problem solving

information to derive schedules and this information knowledge is encoded as rules,

which are often obtained by eliciting knowledge from experienced schedulers

(Randhawa and McDowell, 1990). The work on constraint satisfaction problems is

also of direct relevance to scheduling, if the latter is regarded as their incremental

construction of a solution that satisfies the constraints in a problem space in which

Chapter 2: Literature Review

30

each additional assignment imposes a new set of constraints on the remainder of the

solution (Sadeh, 1991). The most well-known systems include ISIS (Fox and Smith,

1984), OPIS (Smith et al, 1990), CABINS (Miyashita, 1995), and IOSS (Park et al,

1996).

A knowledge-based system does not aim to guarantee optimal solutions; instead, it

just provides feasible good solutions (Randhawa and McDowell, 1990). Its

performance is not beyond what has been provided by rules in the system.

Furthermore, a great amount of domain-dependent heuristics is required and the most

difficult operation is to decide which knowledge source has to be activated (Akturk

and Gorgulau, 1999). Besides, scheduling decisions can only be evaluated locally.

MAS is a relatively new sub-field of computer science which was started around 1980

and has gained widespread recognition since the mid-1990s. It has been an active

research topic in the manufacturing arena (Jennings and Wooldridge, 1998; Jennings

et al, 1998; Parunak, 1994). Although an MAS can solve static scheduling problems,

its more promising applications are in dynamic/stochastic ones. Therefore, its detailed

description is specifically presented in section 2.3.

2.2 Approaches for dynamic job shop scheduling problems

Only two of the three approaches for dynamic JSSPs described in section 1.3 are

reviewed based on their importance and relevance to the current work. They are

predictive-reactive scheduling and MAS approaches. Reviews for the other

approaches can be found as follows. The survey on priority-rules in dynamic job shop

can be found in Haupt (1989); a detailed discussion of knowledge-based systems

related to reactive scheduling can be found in Blazewics et al (1994) and Szelke and

Kerr (1994). Conway et al (1967, Chapter 11) provided an excellent introduction to

Chapter 2: Literature Review

31

simulation in the context of the job shop. Parunak (1991) characterized the

manufacturing scheduling problems.

2.2.1 Predictive-reactive scheduling

2.2.1.1 An overview

Predictive-reactive scheduling is an approach most commonly used in practice (Vieira

et al, 2003). Basically, its study in manufacturing systems should consider the

following factors: 1) the applied production systems identified by the types of

manufacturing systems (flow shop, job shop, etc., or their extensions) and the types of

dynamic events (dynamic incoming jobs, machine breakdowns, or processing

variations) as well as their respective patterns of occurrences, 2) schedule

generation/regeneration methods (algorithms, dispatching rules, or cooperation), 3)

control rules (what, when and how to reschedule), 4) performance measuring criteria,

5) the testing period (short or long term), and 6) evaluation methods (comparison or

statistical analysis). Those factors are illustrated in Fig. 2.2.

Chapter 2: Literature Review

32

c o n f ig u r a t io n o f
th e f lo o r

ty p es /p at te rn s o f
d y n am ic o r

s to c h as tic ev e n ts

a p r o d u c tio n
s y s tem

f lo w s h o p

jo b s h o p

o p e n s h o p

s in g le m a c h in e
s h o p

g r o u p s h o p

ar r iv in g jo b s

m ac h in e b re ak d o w n s

v ar ia t io n s o f
p r o c es s in g t im es

tec h n ic a l s eq u en c e

p r o c es s in g t im es
d is t r ib u tio n

in te r- ar r iv a l t im es
d is t r ib u tio n

c o n tr o l
r u les w h en

h o w

ev en t- d r iv en

p er io d ic

p er f o r m an c e -d r iv en

s c h ed u le g en er at io n

r ig h t s h if t

s c h ed u lin g /
r es c h ed u lin g

m eth o d s

p er f o r m an c e
c r ite r ia

tes t in g
p er io d s

f ac to r s in
p r ed ic t iv e-

r eac t iv e
s c h ed u lin g

s tu d ies

lo n g - te rm

s h o rt - te r m

ev a lu at io n
m eth o d s

c o m p ar is o n

s ta t is tic a l an a ly s is

f lex ib le jo b s h o p

f lex ib le m an u fa c tu r in g
s y s tem

s c h ed u le
ef f ic ien c y

s c h ed u le
s tab ility

t im e- b a s ed m ea s u r es

r es o u rc e u t iliza t io n

in v e n to r y in s h o p f lo o r

m ea n f lo w tim e

m ea n tar d in e s s

w h at
p ar tia l s c h ed u le

c o m p le te s c h ed u le

Fig. 2.2 Factors considered in the predictive-reactive scheduling research

Chapter 2: Literature Review

33

A thorough study of a proposed scheduling procedure may include testing it on every

different production system, control rules, performance criteria, and testing periods.

That implies a huge number of experiments. In fact, researchers have done a lot of

work studying dispatching rules in dynamic/stochastic scheduling environments due

to their lower computational requirements. For scheduling procedures requiring

similar computational efforts as those in predictive-reactive scheduling, it is important

to identify the main domains that a proposed approach can perform well. In the

following sections, selected works are reviewed focusing on the framework described

in Fig. 2.2. Other reviews of dynamic scheduling can also be found in Smith (1995),

Raheja and Subramaniam (2002), Vieira et al (2003) and Aytug et al (2005). A good

survey of the simulation models for dynamic scheduling environments is provided by

Ramasesh (1990).

2.2.2 Literature review

Holloway and Nelson (1974) proposed a multi-pass heuristic scheduling procedure to

generate schedules in a job shop where processing time variations of the operations

are considered. This centralized scheduling procedure is later used in the dynamic job

shop environments (Nelson et al, 1977) to generate schedules periodically. They

concluded that a periodic policy (scheduling/rescheduling periodically) is very

effective.

Muhleman et al (1982) analyzed the periodic scheduling policy in a dynamic and

stochastic job shop system and their experiments showed that a more frequent

revision can improve scheduling performance. Church and Uzsoy (1992) studied the

period and event driven policies in a dynamic one-machine system. They concluded

Chapter 2: Literature Review

34

that the performance of periodic scheduling was affected by the length of the

rescheduling period while event-driven policy performs well in the given problem.

Bean et al (1991) proposed a match-up scheduling procedure to match up with the

schedule, which was optimal or near optimal before the disturbance occurred. The

match-up procedure ensures that the revised schedule is consistent with the original

one after the “match-up point” as soon as possible. The procedure is applied to a set

of real problems in the automotive manufacturing industry where a partial schedule is

produced to minimize total tardiness at each rescheduling point. The results from the

proposed match-up procedure are significantly better than those from pure static and

dynamic strategies that are often used in practice. It also performs well when machine

utilization is high. Later, Arturk and Gorgulu (1999) used match-up scheduling to

react to disturbances. Their methods improve the schedule quality, the stability, and

the computational time compared to several match-up alternatives under different

experimental settings.

Raman and Talbot (1993) decomposed a dynamic problem into a series of static

problems, which were then solved in their own entirety and then implemented on a

rolling basis. A heuristic is used to construct the schedule for the entire system at each

rescheduling moment. The experiments on dynamic scheduling problems are carried

out with balanced and unbalanced machine utilizations. Their results indicate that a

significant due date performance improvement over several dispatching rules is

obtained.

Bierwirth et al (1995) explored the adaptive optimization ability of GA for reactive

scheduling in dynamic job shops and their work was continued by Lin et al (1997).

However, the size of their tested jobs was only 100, which is not enough to give a fair

Chapter 2: Literature Review

35

evaluation of the average performance of GA. Later, Bierwirth and Mattfeld (1999)

again studied the similar problem by using two versions of improved GA to generate a

new schedule every time a new job arrives reusing the previous solution. Furthermore,

they tested on 1000 jobs instead of 100 and considered only the steady state

performance, which was the performance between the times that jobs 201 and 800

arrived at the system. Both versions of GA outperformed SPT dispatching rule at

reasonable computational times for the minimization of the mean flow-time of jobs.

Holthaus and Rajendran (1997) examined the performance of several dispatching

rules in a dynamic job shop. They found their proposed dispatching rules efficient in

minimizing flowtime and tardiness related criteria. They also described the simulated

test bed and experimental designs in detail. These methods have been followed by

Bierwirth and Mattfeld (1999). Holthaus (1999) further analyzed dispatching rules in

dynamic job shop scheduling considering machine breakdowns. The results revealed

that the relative performance of scheduling rules can be affected by changing the

levels of the breakdown parameters.

Lawrence and Sewell (1997) compared the static and the dynamic applications of

heuristic and optimal solution methods to JSSPs when processing times were

uncertain and the performance measure was the makespan. They demonstrated that

simple dispatch heuristics provide performance comparable or superior to that of

algorithmically more sophisticated scheduling policies.

Sabuncuoglu and Bayiz (2000) proposed a heuristic algorithm basing on a filtered

beam search to analyze reactive scheduling problems under different job shop

environments considering machine breakdowns. They concluded that: 1) there was

not much difference between the optimum methods and heuristics when uncertainty

Chapter 2: Literature Review

36

or variability was high, which was a conclusion also made by Lawrence and Sewell

(1997), Hopp and Spearman (2000), Sabuncuoglu and Bayiz (2000), and Hall and

Posner (2001); 2) the performance of the off-line algorithm was affected more than

the on-line method in a stochastic environment; 3) the solution quality improved as

the scheduling frequency increased; and 4) the quality of schedule deteriorated as the

length of the partial schedule decreased. From these results, one could infer that the

effort to reduce the variability and uncertainty in the systems might worth more than

the difficulties in using more sophisticated algorithms (Sabuncuoglu and Bayiz,

2000).

Sabuncuoglu and Kizilisik (2003) studied reactive scheduling in a simulated Flexible

Manufacturing System (FMS) considering a multi-machine environment and a

material handling system (MHS) under variant system configurations, processing time

variations, and machine breakdowns. Some of their conclusions were: 1) it would be

more beneficial to use the online scheduling systems in dynamic and stochastic

environments; and 2) full rescheduling was generally better than partial rescheduling

at a cost of higher CPU times.

2.2.3 Main conclusions

In summary, some observations can be drawn from the research of the last thirty

years. Firstly, there is not much difference between the optimum methods and

heuristics when the uncertainty or variability is high (Lawrence and Sewell, 1997;

Sabuncuoglu and Bayiz, 2000). Secondly, the performance of a scheduling procedure

is affected by control policies like the frequency of scheduling and the length of the

intermediate schedule. Thus the performance of a scheduling method is problem-

dependent.

Chapter 2: Literature Review

37

2.3 Multi agent systems

Many MAS scheduling systems have been proposed to generate schedules through the

interactions of distributed and independent agents using certain protocols based on

appropriate architecture. Manufacturing scheduling systems built as MAS had been

surveyed by Shen and Norrie (1999) and Baker (1998). They are further reviewed

according to their architecture: heterarchical, hierarchical, hybrid, and nature-inspired

MAS.

2.3.1 Heterarchical MAS

A heterarchical MAS was built at a General Motors factory to assign trucks to paint

booths using a simple bidding mechanism and each paint booth made decision

whether it would take a job through negotiation (Morley and Schelberg, 1993,

Morley, 1996). The MAS outperformed the previous centralized scheduling system in

terms of throughput and paint costs. Liu (1996) proposed an MAS which sequentially

initiated two groups of agents representing resources and jobs for distributed

manufacturing scheduling and agents in the same group communicate based on

several coordination schemes. The MAS was tested on several deterministic

benchmark JSSPs and the results showed that it could provide equivalent or superior

performance to centralized scheduling techniques.

Heterarchical MAS can provide a highly distributed structure to the manufacturing

system and it is very robust and reactive against disturbances. However, banning all

forms of hierarchy, it cannot perform global optimization and the behaviour of a

system under heterarchical control can be hardly predicted. Furthermore, many

heterarchical algorithms need to be properly fine-tuned, which is a labour intensive

work (Bongaerts, 1998). Thus it is believed that in the unstructured environments,

Chapter 2: Literature Review

38

heterarchical control without explicit schedulers can be the most suitable approach. In

other situations, however, the incorporation of a scheduler in a distributed system will

enhance the stability, predictability and performance.

2.3.2 Hierarchical MAS

Parunak (1987) proposed YAMS for real time task allocation and control. A factory is

modeled as a hierarchy of work cells and each work cell corresponds to a node in a

contract net (Smith, 1980) and negotiates with others nodes vertically and laterally.

Zhou et al (2004) used a hierarchical MAS to solve a deterministic scheduling

problem using heuristic dispatching rules and Contract Net Protocol. Their results

show that the MAS can generate good solutions for a given problem as compared to a

mathematical approach. Cavalieri et al (2000) compared the performances of

heterarchical and hierarchical MAS experimentally.

2.3.3 Hybrid MAS

Hybrid MAS includes holonic manufacturing system (HMS) (Bongaerts, 1998;

Bongaerts et al, 2000; Wyns, 1999), biological manufacturing system (BMS) (Okino,

1993), and fractal manufacturing system (FrMS) (Warnecke, 1993; Ryu and Jung,

2003). Basically, agents in those systems have the autonomy to promptly react to

dynamic changes and simultaneously to be guided by the agents with global views.

Valckenaers et al (1994) compared the above three architectures and found that the

hybrid one performed well in a wider range of situations. Wong et al (2006a, 2006b)

proposed a hybrid MAS for integrating process planning with

scheduling/rescheduling in job shops in cases of machine breakdown and new part

arrival.

Chapter 2: Literature Review

39

2.3.4 Nature-inspired MAS

Bonabeau et al (1999) gave a comprehensive survey of adaptive MASs, which were

inspired by natural insect behaviors. Cicirello and Smith (2001) reviewed those MASs

focusing on manufacturing applications. Valckenaers et al (2001) discussed multi-

agent coordination and control using techniques inspired by the behavior of social

insects. It presents a system design that enables desirable overall behavior to emerge

without exposing the individual agents to the complexity and dynamics of the overall

system. Cicirello and Smith (2004) proposed a new coordination rule inspired by the

behaviour of a wasp colony for dynamic shop floor routing.

2.4 Ant colony optimization algorithm

2.4.1 ACO overview

ACO is a class of distributed algorithms used for solving NP-hard combinatorial

optimization problems. Its introduction can be found in (Dorigo et al, 1996, 1999),

(Dorigo and Gambardella, 1997a, 1997b), and (Dorigo and Di Caro, 1999).

The first form of ACO, Ant System (AS), was introduced by Dorigo et al (1991) and

is based on the foraging behaviour observed in a real ant colony. The cooperation of

ants and how they efficiently find the shortest routes have been formulated into an

algorithm used to solve combinatorial optimization problems.

The first improvement of the initial AS is called the elitist strategy for AS (EAS)

(Dorigo et al, 1996), where only the best-so-far solution is used to update the

pheromone trails. The idea is to enhance the promising search space. Another

improvement is called the rank-based AS (ASrank), proposed by Bullnheimer et al

(1999). The amount of pheromone that each ant deposits on the trails decreases

Chapter 2: Literature Review

40

according to its rank. Meanwhile, the best-so-far ant still deposits pheromone at each

iteration. The results of an experimental evaluation suggest that ASrank performs

slightly better than EAS and significantly better than AS.

A MAX-MIN Ant System is another improvement proposed by Stützle and Hoos

(1997, 2000). It limits the possible range of pheromone WUDLO�YDOXHV�WR�DQ�LQWHUYDO�>2min,

2max] in order to avoid stagnation caused by exploring best-so-far solutions; all trails

are initiated with the upper pheromone value and the pheromone evaporation rate is

small; finally, pheromone trails are reinitiated whenever stagnation is met or a

solution has not been improved for a certain number of consecutive iterations.

There are also a few extensions of AS, for example, the Ant Colony System (ACS) by

Dorigo and Gambardella (1997a, b), Approximate Non-deterministic Tree Search

(ANTS) by Maniezzo (1999) and population-based ACO (P-ACO) by Guntsch and

Middendorf (2002a). Some local search methods can also be combined with ACO to

improve the solutions.

ACO has been used to solve the traveling salesman problem, the quadratic assignment

problem, data network routing problem (Schoonderwoerd et al, 1996), and scheduling

problem (flow shop or job shop). It has been successful in finding near-optimal

solutions comparable to those found using the state-of-the-art approaches in most of

those problems except JSSP (Dorigo and Stüzle, 2004, pp.168). The following review

presents results obtained from previous work of ACO related to scheduling problems

and dynamic problems which may give insights for reactive scheduling in a dynamic

job shop.

2.4.2 ACO for static scheduling problems

Chapter 2: Literature Review

41

The AS was first applied to JSSP by Colorni et al (1994). It was successful in finding

solutions within 10% of the optima for both instances of 10x10 and 10x15 job shop

scheduling problems (Dorigo et al, 1996). However, despite showing the viability of

the approach, the computational results were not competitive with state-of-the-art

algorithms for classic JSSPs (Stützle and Dorigo, 1999).

EAS was applied to three benchmark JSSPs in 1999 (Zwaan and Marques, 1999). The

results were within 8% and 26% of the best known optima for the 10/10/G/Cmax Muth-

Thompson problem and the 20/10/G/Cmax Lawrence problem (OR-Library),

respectively. The authors considered the results promising since the tests were only

partially executed with an iteration number of 2000. The study also presented the

importance of parameter settings.

There are also reports of other forms of JSSPs. Blum (2002) applied MMAS to solve

the Group Shop Scheduling Problem (GSSP), which is a general Shop Scheduling

problem covering JSSP and Open Shop Scheduling (OSSP). Several versions of

MMAS were compared and the proposed algorithm could find optima for the tested

benchmark JSSP (15x15) and OSSP. Stützle (1998) applied MMAS integrating a

local search for a series of benchmark flow shop problems (FSP). The results were

compared with several other heuristics and showed that the MMAS gave high quality

solutions to FSP in a shorter time, performing better or at least comparable to other

state-of-the-art algorithms.

2.4.3 ACO for dynamic problems

The dynamic problems that ACO has been applied include routing problems in

communication networks, dynamic traveling salesman problem (TSP), and dynamic

JSSP. The applications of ACO in dynamic TSP are reviewed in this study because of

Chapter 2: Literature Review

42

its close relevance to dynamic JSSP and the reports of ACO in dynamic scheduling

problems are few.

2.4.3.1 ACO for dynamic TSP

The main concern for ACO being applied to a dynamic TSP is about the updating of

its problem graph and pheromone matrix, which are the main procedures consuming

computational space and time. Thus, the strategies to modify the pheromone matrix

become a main topic.

Angus and Hendtlass (2002) applied ACO to dynamic TSP and their motive was

based on the following observation: ants did not retreat to their nest and start all over

if something blocked their current efficient path; rather, they adapted the path to suit

the new constraint. All the pheromone levels at each city were normalized relative to

the path segment involving that city with the highest pheromone concentration

whenever a city is added in or removed. The result was that the adaptation rate was

very high, significantly faster than finding the result by starting all over.

Guntsch and Middendorf (2001) proposed one global and two local strategies to

update the pheromone matrix for dynamic TSP considering the compromise between

resetting (through equalization) and keeping enough information. The strategies are 1)

Restart-Strategy – reinitializes all the pheromone values by the same degree. ����–

Strategy – uses distances between cities to decide to what degree equalization is done

RQ�WKH�SKHURPRQH�YDOXHV�RQ�DOO�HGJHV�LQFLGHQW�WR�HDFK�FLW\�����2-Strategy – uses

pheromone based information to define another concept of distance between cities.

They concluded that the first two strategies performed be the best, closely followed by

WKH�2-Strategy.

Chapter 2: Literature Review

43

Guntsch et al (2001) proposed several strategies for ACO to solve a highly dynamic

TSP in order to provide a good solution quality averaged over time. Their motive is

that the new optimal solutions might be in some sense related to the old ones if

changes of the problem instances occur frequently and each change is not too large.

The highly dynamic TSP refers to the problem where k cities are exchanged every t

iterations between an initial TSP with 200 cities and a spare city pool of 200 cities.

EAS was used to update the pheromone matrix. Empirical evaluation showed that the

�–Strategy was the best overall strategy.

Guntsch and Middendorf (2002a) proposed P-ACO to keep some recent information

for adapting to a new solution in a reasonable time when there was a change in the

problem instances. Such recent information was represented by a group of k best

solutions. A series of TSP benchmarks were tested and the comparison shows that the

performance of P-ACO was as least as good as the standard ACO and MAX-MIN

ACO for static problems.

The P-ACO was further tested on dynamic TSP by Guntsch and Middendorf (2002b).

Their main approach was that a set of solutions was transferred from one iteration to

the next rather than transferring pheromone information as in most ACO algorithms.

The advantage was that it would usually be faster to modify a few solutions directly

than to modify the whole pheromone information of a standard ACO algorithm. Five

new population updating strategies were tested on the TSP problem similar to that in

(Guntsch et al, 2001). The experimental results showed that P-ACO performs superior

than the approach that restarted the procedure upon dynamic events.

2.4.3.2 ACO for dynamic job shop scheduling problems

Chapter 2: Literature Review

44

Vogel et al (2002) proposed a continuously operating Ant Algorithm, which could

easily adapt to sudden changes in the production system. A position-operation-

pheromone-matrix (P-O-P-M) and an allocation table were maintained. Pheromone

values were reset whenever there was a change. Pheromone updating depends on two

factors: temporal buffer and the priorities of jobs (which was reflected in the time of

initiating pheromone). The dynamic ACO was tested on a record based on the real-

world practice for two months and was compared to manual, priority-rule and GA

approaches. The result generated by ACO was only inferior to the GA approach.

2.4.4 ACO as an MAS

There are two approaches to implement the ACO algorithm as MAS. The first

approach is to take the advantages of parallel computation of concurrent ant agents,

for example, Xiang et al (2005). The other is to analogize the co-ordination strategy

among foraging ants and their decision-making rules in the field of manufacturing

control in order to reach a similar emergent global optimal performance. A good

overview of solving difficult real-life problems mimicking natural phenomena can be

found in Bonabeau et al (1999).

In (Peeters et al, 2001), the ant in AS was modeled as an order and resource agent to

find solutions while the pheromone environment was modeled according to the layout

of a physical flow shop. The test results showed that the proposed approach offered

clear benefits in terms of change management. However, the main disadvantages of

the pheromone concept were time delays and the need for tuning.

Cicirello and Smith (2001, 2001a) proposed the Ant Colony Control (AC2) applying

the analogy of ACO to the problem of dynamic shop floor routing. The main idea was

to assign a new incoming job to an ant, which was responsible for the routing of this

Chapter 2: Literature Review

45

job. All communication was carried out indirectly in the form of pheromone that the

ants left on the trail between resources. Four experiments were conducted to the AC2

with different problem configurations. They concluded that the global behaviour

emerged was comparable to following the optimal routing strategy on simple

problems.

2.4.5 Summary

In summary, the reactive scheduling problem in a dynamic job shop has been studied

using dispatching rules, optimum seeking algorithms, and ACO inspired MAS.

Dispatching rules are robust in situations where uncertainty or variability is high as

compared to optimum seeking approaches. The nature-inspired MAS has only been

tested on very simple problem models. For systems where uncertainty or variability is

not so high, reactive scheduling using optimum seeking algorithms may provide better

solutions with global optimization.

The application of ACO in dynamic TSP inspires the current study of using ACO for

dynamic JSSPs although its performance for static JSSPs is not competitive with the

other state-of-the-art approaches. Although the ACO algorithm has been tested on the

data of a real-world dynamic job shop, a general understanding of its performance in

dynamic JSSP is still not clear. In this work, ACO is tested to optimize the throughput

and the resource utilization of a simulated dynamic job shop.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

46

3 Analysis of Dynamic Job Shop

Scheduling Problems

It can be seen from Chapter 1 that scheduling is a function with a short-term effect in

the hierarchy of production management. The decisions from a higher level of

management related to production planning internally determine the complexity of a

dynamic scheduling problem. However, a proper scheduling system can facilitate the

realization of the full potential of a given production system and the general

challenge is to explore efficient procedures to find best possible solutions within the

time limit demanded by a specific problem.

This chapter first analyzes static JSSPs in section 3.1, then dynamic JSSPs in section

3.2. A simple example in section 3.3 illustrates that an appropriate scheduling

approach is decided based on the particular properties of a dynamic JSSP itself.

Thereafter the factors affecting the evaluation of a scheduling technique in a

predictive-reactive approach are analyzed in section 3.4 and finally, section 3.5

summarizes the chapter.

3.1 Analysis of classical job shop scheduling problem

The factors determining the complexity of a classical JSSP include the sizes of jobs

and machines as well as the performance measures, which have been illustrated in

section 1.2.5. The factors affecting the solution quality of a classical JSSP are

described as follows.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

47

Given a static scheduling problem, the quality of its solution can be determining by:

1) the complexity of the JSSP, 2) the quality of the scheduling procedure, and 3) the

available computing time.

The complexity of a problem is determining by the factors mentioned in the above

section; the scheduling procedure can be any of those ranging from exact

mathematical methods, dispatching rules, meta-heuristics, to artificial intelligence.

The available computing time determines how thorough a procedure can be allowed

to explore the solution space of the scheduling problem. Some parts of the solution

space may never be searched and thus the good schedules in those parts may not be

discovered due to the limited computing time. In fact, computing time may hardly be

sufficient for finding optimal solutions for most static JSSPs with even moderate sizes

due to their NP-hard nature.

The optimality of a schedule should be measured by how near the solution is to the

optimal one, if it is known, in terms of solution quality. However, this is generally not

measurable since the optima are unknown. Thus either advanced scheduling

techniques or extended computing time has to be adopted in order to improve the

optimality of a schedule.

3.2 Analysis of the dynamic scheduling problem

The dynamism of a scheduling problem is usually treated following the approach of a

rolling time horizon (Raman and Talbot, 1993), i.e., a deterministic scheduling

problem consisting of all known jobs is solved at each rescheduling moment. When a

new job arrives at time t, the part of the solution consisting of operations already

started before t is fixed and a new problem is constructed, consisting of the backlog to

be starting after time t, plus all the operations from the newly arrived job. The

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

48

dynamic problem is thus decomposed into a series of static intermediate scheduling

problems over time (Branke, 2002).

Therefore, in a dynamic JSSP, each incoming job changes the current setting of the

intermediate scheduling problem and the task of reactive scheduling is to

continuously generate schedules for the set of existing unprocessed jobs in a timely

manner so that an overall optimality of performance can be reached for the given

period of time. A specific intermediate scheduling problem is internally decided not

only by the characteristic of the new job but also by the status of the shop floor at the

moment that the job arrives.

3.2.1 Factors that characterize an intermediate JSSP

The two factors that characterize an intermediate JSSP are the arrival time of a new

job and its characteristics determined by the technical sequence, which refers to the

order of workcenters that the job has to be processed, and the processing time

distribution over workcenters. Their effects are illustrated in the following sections.

3.2.1.1 The arrival time

Given a set of jobs with a priori schedule, the subsequent intermediate JSSP varies as

the arrival time of the new job varies. For example, given a max//3/2 CG JSSP with a

technological matrix T and a processing time matrix P:

»
¼

º
«
¬

ª

123

321

MMM

MMM
T »

¼

º
«
¬

ª

6.06.03.1

0.10.10.1
P ,

an optimal schedule can be given in Fig. 3.1.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

49

O 11 (1 .0)

O 12 (1 . 0)

t (tim e u n it)

m ac h in e N o .

M 1

M 3

M 2

1 .0 3 .22 .0

O 21 (1 .3)

O 22 (0 .6)

1 .3 2 .6

O 13 (1 .2)

O 23 (0 .6)

t1 = 0 .5 t2 = 1 .5

Fig. 3.1 An optimal schedule for the example JSSP

A new job J3 coming at 5.01 t incurs a new scheduling problem that is different

from the one incurred by the same job but coming at 5.12 t . The former has earliest

machine available times from̂ 3̀.1,5.0,0.1 for ̂ 3̀,2,1 MMM respectively and a set of

un-executed operations including 12O , 13O , 22O , 23O plus all of the operations from

the new job. Operations 11O and 21O are not included because they are already being

processed at the time the new job comes in.

Similarly, the later problem has earliest machine available times from̂ 5̀.1,0.2,5.1 for

^ 3̀,2,1 MMM respectively and the set of operations including 13O , 22O , 23O plus

those of the new job. The two different intermediate JSSPs are list in Fig. 3.2.

ope ra tions for
re sche duling

e a rlie st m a chine
a va ila ble tim e

proble m 1 (t1) O 12, O 13, O 22, O 23 1 .0, 0 .5 , 1 .3

proble m 2 (t2) O 13, O 22, O 23 1 .5, 2 .0 , 1 .5

Fig. 3.2 The comparison of two intermediate problems

Two new JSSPs are different in their operations and the earliest machine available

times. Thus, their complexities are different in seeking new optimal schedules. Fig.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

50

3.3 illustrates the solutions of two different problems assuming that the technical

sequence and the processing times of job J3 are ^ 1̀,3,23 MMMTC and

^ 5̀.0,5.0,5.03 PC , respectively.

O 11 (1 . 0)

O 12 (1 .0)

m ac h in e N o.

M 1

M 3

M 2

1.0 3.22.0

O 21 (1 . 3)

O 22 (0 . 6)

1.3 2.6

O 13 (1 . 2)

O 23 (0 . 6)

t1 = 0 .5

O 31 (0 .5)

O 32 (0 .5)

O3 1 (0 .5)

Cm ax= 3 .2

t (tim e u n it)

(a) New optimal schedule with Cmax=3.2 when the new job enters at 0.5

����
����

O 1 1 (1 .0)

O 1 2 (1 . 0)

m ac h in e N o.

M 1

M 3

M 2

1 .0 3 .22 .0
��������
��������O 2 1 (1 .3)

O 2 2 (0 .6)

1 .3 2 .6

O 1 3 (1 .2)

O 2 3 (0 .6)

t2 = 1 .5

O 3 1 (0 . 5)

O 3 2 (0 . 5)

O 3 3 (0 . 5)

3 .7 4 .2

Cm ax= 4 .2

t (tim e u n it)

(b) New optimal schedule with Cmax=4.2 when the new job enters at 1.5

��������
��������c o m p leted

o p erat io n
p ro c es s in g
o p erat io n

n o t p ro c es s ed
o p erat io n

n ew
o p erat io n

Fig. 3.3 New optimal schedules after the same job enters at different times

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

51

3.2.1.2 The characteristics of the new job

The new problem is also affected by the characteristics of the new job, which can be

described in terms of the technical order and the processing-time distribution of its

operations.

x� The effects of the technical order

The minimal makespan (Cmax) could be improved from Cmax = 4.2 (Fig. 3.2 (b)) to

Cmax = 3.2 (Fig. 3.4) if the technical order of the new job is changed to

^ 2̀,1,3'3 MMMTC .

��������
��������

O 11 (1 . 0)

O 12 (1 .0)

m ac h in e N o.

M 1

M 3

M 2

1.0 3.22.0

��������O 21 (1 . 3)

O 22 (0 . 6)

1.3 2.6

O 13 (1 . 2)

O 23 (0 . 6)

t2 = 1 .5

O 3 3 (0 .5)

O 3 2 (0 .5)

O 3 1 (0 .5)

Cm ax= 3 .2

t (tim e u n it)

��������
c o m p leted
o p erat io n

p ro c es s in g
o p erat io n

n o t p ro c es s ed
o p erat io n

n ew
o p erat io n

Fig. 3.4. Cmax=3.2 after the operation order is changed

x� The effects of the distribution of processing times

Similarly, the minimal makespan could be improved from Cmax = 4.2 (Fig. 3.2 (b)) to

Cmax = 4.1 (Fig. 3.5) if the processing time of the new job is re-distributed from

^ 5̀.0,5.0,5.03 PC to ^ 5̀.0,4.0,6.0'3 PC while the total processing time and its

arrival time remain unchanged.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

52

����
����O 11 (1 . 0)

O 12 (1 .0)

m ac h in e N o.

M 1

M 3

M 2

1.0 3.22.0

��������
��������O 21 (1 . 3)

O 22 (0 . 6)

1.3 2.6

O 13 (1 . 2)

O 23 (0 . 6)

t2 = 1 .5

O 3 1 (0 .6)

O3 2 (0 .4)

O 3 3 (0 .5)

3.6 4.1

Cm ax= 4 .1

t (tim e u n it)

��������
c o m p leted
o p erat io n

p ro c es s in g
o p erat io n

n o t p ro c es s ed
o p erat io n

n ew
o p erat io n

Fig. 3.5. Cmax = 4.1 after the processing time is redistributed

3.2.2 Factors that characterize an overall dynamic JSSP

As a dynamic JSSP is the combination of all static intermediate JSSPs and each of

them is determined only by the arrival time and the characteristics of the new job, it

can be concluded that the distribution function of arrival times over time and the

distribution function of processing times over workcenters work together to

characterize an overall dynamic JSSP for the given period. The distribution function

of arrival times is called inter-arrival function; the distribution function of processing

times over workcenters is generally determined by another two distributions within

each job: the technical sequence and the processing time distribution of operations.

Furthermore, jobs can be released to the shop floor in lots, that is, several jobs can be

simultaneously included in one lot. The following sections describe the effects of the

above three aspects of a dynamic JSSP.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

53

3.2.2.1 Effects of inter-arrival function

The inter-arrival function determines the moments of jobs arriving at the shop floor.

In literature, this function always takes the form of a Poisson distribution, which has

been shown to be a good approximation to the arrival process if the different sources

generating job arrivals to the shop are statistically independent (Albin, 1982). Poisson

distribution is also adopted in the current study to simulate the arrival process of

incoming jobs.

This Poisson distribution is given as:

!

),(
k

e
kf

k
O

O
O�

 (3.1)

where e is the base of the natural logarithm (e = 2.71828…); k is the number of

occurrences of an event – the probability of which is given by the function; k! is the

factorial of k; and ��LV�D�SRVLWLYH�UHDO�QXPEHU��HTXDO�WR�WKH�H[SHFWHG�QXPEHU�RI�

occurrences that take place during the given interval.

Thus the expected mean number of jobs per time unit should be: O/1 , which

determines the mean workloads of all the machines over time and the dynamic level

of the JSSP. For a given set of jobs, the higher the value of O/1 , the higher are the

workloads of the machines and the more dynamic is the dynamic JSSP. The value of

O/1 actually determines the complexity of a dynamic JSSP as the mean size of an

intermediate JSSP increases, or when the value ofO/1 increases.

3.2.2.2 Effects of the distribution of processing times

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

54

The distribution of processing times over workcenters or machines of all jobs are the

collective results of the distributions of their technical orders and processing times.

x� Technical order

In the literature, the order of the operations in a job is generally randomly chosen

from a uniform distribution. That is, every workcenter has an equal chance to be

chosen. The same mechanism is adopted in the current study.

x� Values of processing times

The values of processing times are normally decided by the exponential distribution in

the literature. Exponential distribution is also adopted in the current study to generate

processing times. The exponential distribution has the form of:

¯
®
­

�

t�

�

.0,0

,0,1
),(

x

xe
xF

x-

- (3.2)

where - > 0 is a parameter of the distribution, often called the rate parameter. The

distribution is supported on the interval [0,����The mean or expected value of an

exponentially distributed random variable X with rate parameter - is given by

 .
1

][
-

 XE (3.3)

Shannon (1979) reported that the nature of processing time distribution significantly

affects the performance of the scheduling rules. An interesting observation is that the

use of the exponential distribution tends to favor the SPT rule. The reason could be

that SPT avoids allocating the machines to one of the very long operations, which is

possible when draws are taken from an exponential distribution (Ramasesh, 1990).

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

55

3.2.2.3 Effects of job lots

Sometimes, the jobs are released in lots instead of one by one. The size of jobs in a lot

determines the severity that the underlying scheduling problem is changed. For

example, there are 16 unprocessed operations when a lot of new jobs are released to

the shop floor. The size of the operations for the new intermediate JSSP is 22 if there

is only one job, which has 6 operations, per lot. However, it becomes 28 if there is

one more job (which also has 6 operations) per lot. Obviously, the underlying

problem is changed more severely by the larger lot than the smaller one.

3.3 Internal problem properties determine Approaches

It is widely acknowledged that no one particular approach can perform best in all

situations. Each approach has its own niches of application domains and it is

important to find the appropriate application domains of a proposed scheduling

algorithm. The following example shows a scenario that is best suited for FIFO

dispatching rules. Some indications can be made for potential application domains of

algorithmic approaches.

Figures 3.6 to 3.9 present an example where the utilizations of all machines can reach

100% with a very simple FIFO dispatching rule if dynamic jobs arrive regularly and

their processing time distributions on the machines can match each other to cover all

the time slots on all the machines.

Fig. 3.6 gives an initial optimal schedule, which minimizes the makespan for three

types of jobs: T1, T2 and T3. Their technical orders are ^ 3̀,2,11 MMMTC ,

^ 1̀,3,22 MMMTC and ^ 2̀,1,33 MMMTC ; their respective processing times

are ^ 5̀.0,5.0,2 PC . Jobs are assumed to arrive at the shop floor regularly in the

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

56

sequence of T1, T2 and T3 per time unit. Obviously, the combination of these

technical orders as well as the distributions of processing times makes the workloads

on all machines identical.

m ac h in e N o .

M 1

M 3

M 2

3

O 22

O12

O33

O23

O21

O 32

O33

O31

0

O11

2 .52

T 1

T 3

T 2

t (tim e u n it)

Fig. 3.6 The initial schedule

The 4th job of type 1 (T1) comes in at 01 t and the subsequent orders of the

operations on three machines according to FIFO are given in Fig. 3.7. Those orders

are changed (Fig. 3.8) where the 5th new job of type 2 (T2) at 12 t . At the same

time, the first operations of all the first three jobs are being processed. Next, the 6th

job of type 3 (T3) arrives at the shop floor at 23 t when the operations of the first

three jobs are completed. There are two possible schedules as both O22 and O61 arrive

at machine 3 (M3) simultaneously. Fig. 3.9 gives both schedules when O22 and O61 are

first processed respectively.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

57

m ac h in e N o .

M 1

M 3

M 2

O 22

O 12O21

O41

O 42

O31

0

O43

t1= 0

O11

5

O33

4

O32 O23

O13

32 .52 t (t im e u n it)

Fig. 3.7 The 4th new job of type 1 enters at t1=0; new Cmax=5 by FIFO

m ac h in e N o .

M 1

M 3

M 2

O 22

O12O21

O41

O 42

O31

0

O43

O11

5 .5

O33

4

O32 O 23

O 13O52

O53

t2= 1

O 51

32 .52 t (t im e u n it)

p ro c es s in g o p erat io n

Fig. 3.8 The 5th new job of type 2 enters at t2=1; new Cmax=5.5 by FIFO

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

58

m ac h in e N o .

M 1

M 3

M 2

O 22

��������
��������O21

O41

O42

��������
��������

O31

0

O43

��������
��������O11

64

O32 O23

O 13O 52

O53 O62

O63

O 61

t3= 2

6 .5

O33O51 O12

2 .52 t (t im e u n it)

(a) O22 is selected first on M3

m ac h in e N o .

M 1

M 3

M 2

��������
��������O21

O41

O 42

��������
��������O31

0

O43

��������
��������

O11

64

O32 O23

O13O 52

O51

O 62

O61

t3= 2

O22

O33O12

O53

O63

52 t (t im e u n it)

(b) O61 is selected first on M3

c o m ple ted o per at ion

����
����

Fig. 3.9 The 6th new job of type 3 enters at t2=2; new Cmax= 6 by FIFO

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

59

The utilizations of all machines can always be optimized at 100% by FIFO if jobs

continue to come in at the same inter-arrival time distribution and in the same

sequence of job types. The example shows that the dynamic JSSP can be optimally

solved with a very simple dispatching rule, FIFO, which takes very little

computational effort. The particular combination of internal factors like the arrival

frequency and the processing time distribution of dynamic jobs determine the success

of this solution approach.

Furthermore, dynamic JSSPs that have no such special combination of the jobs and

the inter-arrival function but have jobs coming in at a high frequency may also favor

dispatching rules as many researchers have observed, which can be explained as

follows. 1) The schedules found in a limited computing time may not be optimal or

near optimal at all. 2) An unsatisfactory schedule may cause its following scheduling

problem to be more complex. 3) Even if the schedules are optimal, their strengths may

not be fully realized before they are made obsolete by dynamic events.

Thus, the dynamic JSSPs that have great potentials to be solved with high

performance through a predictive-reactive approach adopting optimum seeking

algorithms may have characteristics like less frequent dynamic jobs or non-uniformly

distributed arrival times and processing times.

3.4 Analysis of factors affecting the evaluation of a scheduling technique

In a static JSSP, the execution of a schedule is not considered as it is assumed that the

optimality predicted by a schedule can be fully realized. However, it is no longer the

case for a dynamic JSSP, where the underlying scheduling problem continues to

changing due to continuously arriving jobs. The performance of a scheduling

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

60

technique in the predictive-reactive approach for a given period of time is thus the

overall results of the realized optimality provided by many intermediate schedules.

The principle for a scheduling system adopting the rolling time horizon approach has

been always trying to find a best schedule for each intermediate scheduling problem.

It is also desirable to realize the optimality of intermediate schedules as early as

possible since their execution is uncertain in a dynamic environment and is out of the

control of a scheduling system. Thus, the performance of a scheduling technique in a

dynamic environment is related not only to its ability of finding the best schedule for

each static intermediate scheduling problem but also to the realization of the

optimality provided by those intermediate schedules.

3.4.1 Factors that can affect the quality of an intermediate schedule

The optimality values of intermediate schedules over time in a dynamic environment

can be illustrated in Fig. 3.10, with the optimality value formulated as makespan1 so

that a minimal makespan implies a maximal optimality. In the figure, a schedule with

an optimality value of 0a has been executed from time 0t to 1t , when a new job
1J

arrives. The optimality of the current schedule immediately drops to '0a if job
1J is

simply put at the end of the schedule. Next, a reactive scheduling procedure is

triggered to form a sub-problem with the backlog operations and all of the operations

from
1J assuming the scheduling period allowed is [1t , '1t]. A new schedule with an

optimality value of 1a is generated and executed from '1t till the second job
2J arrives

at time 2t , where the similar procedure repeats.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

61

J1

J2

t1 t2 t3

J3

t0 t2 't1 '

a1
a0

a2

s c h edu lin g
p er io ds

o p tim ality va lue = 1/m akes p an
(1 /h ou r)

a0'

t (ho u r)

Fig. 3.10. The optimality values of schedules over time in a dynamic environment

The optimality of the intermediate schedule found in the time intervals of [1t , '1t] or

[2t , '2t] is affected by the following factors: 1) the length of the time interval; 2) the

operation size of the intermediate JSSP; 3) the quality of the scheduling algorithm;

and 4) dynamic scheduling strategies.

3.4.1.1 The length of a computing interval

A computing interval refers to the time span that can be allowed for generating a new

intermediate schedule. The length of this interval is problem-dependent, for example,

the computing time for the sub-problem caused by job 1J can be decided by its

traveling time from the reception area to its first workcenter. The length can

proportionally affect the optimality of the schedule.

3.4.1.2 The size of an intermediate JSSP

Given the same scheduling period, a smaller scheduling problem implies lower

computational cost and better solution and vice versa. A schedule minimizing

makespan may have better opportunity to complete more operations before an

interruption occurs. Thus, the resulting intermediate sub-problem can have a smaller

size and hence a better chance to find a good schedule, which facilitates the

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

62

generation of another good schedule following a disturbed moment. On the contrary, a

larger sub-problem may have less opportunity to find a good schedule, and a poorer

schedule, in turn, can produce a larger following sub-problem. The procedure goes on

and the overall performance of the scheduling system may deteriorate.

3.4.1.3 The quality of a scheduling algorithm

A good scheduling algorithm should generate a timely and satisfactory schedule to

guide production. Information adaptation may help in speeding up the procedure of

finding a new optimum, especially when the underlying problem is not changed

severely. The idea is to generate a schedule not from scratch but to exploit the optimal

information kept in the current solution and quickly find a good solution for the

modified problem. This adaptation also has an advantage of maintaining similarity

between two continual schedules, which is preferred in real life applications. This idea

has been studied in TSP (Guntsch and Middendorf, 2001, 2002a, and 2002b)

(Guntsch et al, 2001).

3.4.1.4 Dynamic scheduling strategies

Dynamic scheduling strategies involve choosing scheduling frequency or employing

partial scheduling. Scheduling frequency refers to how often the schedule generation

procedures are triggered. It can be event-driven, periodic-driven or performance-

driven. The event-driven approach triggers a rescheduling procedure whenever an

event occurs; the periodic-driven approach triggers the rescheduling procedure

according to a pre-set time period; the performance-driven approach uses

performance values of the current production system as the trigger of the rescheduling

procedure. These approaches essentially solve different dynamic scheduling problems

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

63

where the last two alter the original problem by postponing the reactions to

interrupters.

Partial scheduling considers only a partial set of jobs from the sub-problem in one

computing interval in order to cover the next estimated execution period. This

approach is inspired by the fact that a schedule may not have an opportunity to be

fully executed before dynamic disturbances; thus, there is no need to include the

operations that may not be processed before those interruptions in order to reduce

computation efforts. This approach may find a partial schedule in a short time but

lacks a global view of the problem.

Dynamic scheduling strategies can change an original computing interval through

different scheduling-driven approaches and alter the original size of an intermediate

JSSP by partial scheduling. Keeping other experimental parameters unchanged, the

adjustment of dynamic scheduling strategies can improve the performance of a

proposed scheduling algorithm.

3.4.2 Problem-related properties for improving schedule optimality

Some problem-related properties, which can facilitate the realization of the optimality

provided by a schedule as early as possible, should be explored. For example, given

two different schedules with the same makespan for the same problem, the one with

more operations at the early stage may be preferred since more operations may have

been completed before the interruption and thus reduce the size of the next scheduling

problem.

Chapter 3: Analysis of Dynamic Job Shop Scheduling Problems

64

The identification of these properties is problem-dependent and promising in

improving performance. Other potential properties may be related to the positions of

time slacks and the operations with longest processing times on critical paths.

3.5 Summary

This chapter analyzes the static JSSP, the dynamic JSSP and the factors that

characterize an intermediate JSSP and the overall dynamic JSSP. It also points out

that internal problem properties determine appropriate approaches. Finally, it explores

the factors affecting the evaluation of a scheduling technique.

Based on these analyses, the systematic approaches to test a proposed scheduling

technique can be carried out in the following directions: 1) to test a scheduling

technique in different experimental environments defined by different dynamic levels,

dynamic severity, processing time distributions, system configurations, and

performance measures; and 2) to improve the performance through adjusting the

internal parameters of the scheduling algorithm if possible, and the dynamic

scheduling strategies like the rescheduling-driven mechanism and partial scheduling.

Chapter 4: The Test Bed

65

4 The Test Bed

The goal of this chapter is to build a common test bed to facilitate systematic studies

of the performance of scheduling algorithms in a dynamic job shop environment. The

test bed simulating a generic job shop should be able to provide a realistic

configuration of a shop floor, generate dynamic or stochastic events such as incoming

jobs and machine breakdowns, provide necessary scheduling algorithms or

dispatching rules to guide processing and control rules to react to dynamic events,

track job movements and the status of the machines, workcenters and the shop floor,

and provide statistical analysis for performance measures.

The structure of the chapter is as follows: in section 4.1, the related works on system

modeling/test beds for dynamic scheduling are presented; in section 4.2, the definition

of a generic job shop is given; in section 4.3, a generic job shop is modeled as a DES,

and a prototype of the job shop is implemented in section 4.4 as an MAS. Section 4.5

is especially devoted to describe the communication of agents in the MAS and a case

study is provided in section 4.6.

4.1 Background

In order to build an up-to-date test bed to study the scheduling methods in

dynamic/stochastic environments, the test beds of main dynamic scheduling

approaches should be reviewed. Generally, the performances of dispatching rules and

predictive-reactive scheduling approaches are tested through simulation and

Ramasesh (1990) gave an excellent review on the simulation research in dynamic

JSSP.

Chapter 4: The Test Bed

66

Simulation is the most common method for constructing models that include the

temporal dynamics of manufacturing systems, many of which can be modeled as DES

(Askin and Standridge, 1993). Law and Kelton (2000) applied simulation to find the

best configuration of facilities using dispatching rules. In Sabuncuoglu and Bayiz

(2000), the test bed is based on a simulation model coded in the C language with ten

levels of frequency of scheduling and four types of problem instances. The down time

distribution follows a Gamma distribution with a shape parameter of 1.4 and a mean

of 40 minutes; the number of operations for one job is drawn from a discrete uniform

distribution from 5 to 15; processing times are generated from a discrete uniform

distribution from 20 to 80. In Sabuncuoglu and Kizilisik (2003), six machines and

three automatic guided vehicles (AGVs) comprise the flexible manufacturing system.

The job inter-arrival time is exponentially distributed. Each job has either five or six

operations with equal probability; operation times are drawn from a 2–Erlang

distribution. The review shows that a test bed should also have the capability for

statistical analysis.

The complex nature of the dynamic scheduling problem dictates that traditional

simulation experiments can only be performed on small systems. Besides, a good

scheduling test bed should be able to facilitate the systematic selection of parameters

and configurations. The distributed computation, which can be realized through agent

technology, has the computational capacity for large problems and provides the

scalable structure for many problem configurations.

Furthermore, the performance of a scheduling approach can be systematically

evaluated based on statistical analysis on different dynamical levels, problem

Chapter 4: The Test Bed

67

configurations and performance measures. Long-term average performance based on

statistical analysis can be carried out when the generic job shop is simulated as a DES.

Combining MAS with DES enables the proposed test bed not only to meet the

requirements in section 4.1 but also has the advantages of: 1) simultaneous execution

of events on distributed locations, 2) distribution of event generation, state keeping,

event-list managing and data recording/analyzing, 3) possible performance

improvement through agent coordination or negotiation, 4) examination of long-term

performance, 5) scalability of the MAS to support further extension of the test bed,

and 6) a common test bed that could use the similar structure and logic between

simulation and actual control of the job shop.

4.2 The generic job shop

A generic job shop in this study refers to a generalized representation of real life job

shops considering not only the configuration of their floor layout but also MHS.

A generic job shop can be physically made up of several workcenters, a

receiving/shipping station, and material transportation devices as shown in Fig. 4.1. A

workcenter, shown in Fig. 4.2, processes one type of operation using several similar

machines. It has a queue to buffer incoming jobs when all the machines are not

available and another queue for completed jobs to wait for transportation. The

receiving/shipping stations receive new jobs and ship out all the completed jobs. All

the workcenters and the receiving/shipping station are located in the shop floor

according to certain layouts. The distances between every two of them are given in a

layout matrix. Some MHDs transport jobs between workcenters.

Chapter 4: The Test Bed

68

R ec eiv ing /S h ipp in g

W o rk C en ter 1

W o rk C en ter 4

W o rk C en ter 3W o rk C en ter 2

W o rk C en tern

M HDM HD M HD

Fig. 4.1 The components of a job shop

M ac h in e 1 M ac h in e 2

M ac h in e 3 M ac h in e n

Q u eu e
In

Q u eu e
O u t

Fig. 4.2. The components of a workcenter

4.3 Discrete event simulation model

Three basic elements in the discrete event simulation include the state of the system,

event actions and event lists. The overall state of a generic job shop system is

determined by the status of the machines and jobs in it where machines are located in

different workcenters and jobs are distributed either in workcenters or on traveling

devices. According to Koestler (1967), architectures of manufacturing systems are

inherently hierarchical. In section 4.3.1, entities are organized hierarchically so that

Chapter 4: The Test Bed

69

the global state can be monitored by distributed entities at different levels. In section

4.3.2, the possible states for each type of entities are described. In section 4.3.3, the

dynamic events and their actions are presented and finally, the mechanism to maintain

distributed event lists is explained in section 4.3.4.

4.3.1 Decomposition of the global state

The hierarchical relationship in a generic job shop is illustrated in Fig. 4.3. Entities

like machines or jobs can be grouped and monitored by a higher level entity, which in

turn forms another group with its similar entities and is monitored by another higher

level supervisor. For example, a group of machines is monitored by their workcenter

manager and the state of the workcenter is monitored by the shop floor monitor. A job

can be monitored by either a workcenter manager or the shop floor depending on

whether it stays in a workcenter or travels on a MHD. In this manner, the global state

of the job shop can be tracked through monitoring workcenters and traveling jobs.

Chapter 4: The Test Bed

70

O v era ll
C o n tr o lle r

s h o p _ f lo o rjo b

w o r k _ c en ter
1

w o r k _ c en ter
2

w o r k _ c en ter
n

M ac h in e 1 _ 1 M ac h in e 1 _ 2

jo b _ r e leas er

M ac h in e 1 _m M ac h in e n_ 1 M ac h in e n_ 2 M ac h in e n _ k

s c h ed u le r

Fig. 4.3. The hierarchical relationship in a generic job shop

There are seven types of entities in the simulated job shop: machines, workcenters,

shop floor, jobs, scheduler, job releaser, and controller. Generally, an entity will have

a wider view of the system if it is located at a higher level in the hierarchy. A

machine, a job or a scheduler can only monitor its own states while a workcenter has

a wider scope by monitoring jobs, machines and buffers. Similarly, the shop floor

entity can have an even wider view of monitoring the workcenters, traveling jobs and

MHDs. Furthermore, the state of an entity in a higher lever does not contain the

detailed state information of its supervised entities. For example, the state of the job

shop does not contain the information of the buffer status in its supervised

workcenters. This approach facilitates distributing data as well as their analysis to

their most relevant locations.

The job releaser and the controller are not parts of a job shop but are responsible for

generating new jobs and advancing the simulation time, respectively.

Chapter 4: The Test Bed

71

4.3.2 States of entities

A job can be in the states of waiting-for-process, in-process and on-traveling

assuming that only one buffer is needed in a workcenter and finished jobs can be sent

to the next stage immediately. It is in waiting-for-process when it waits at the buffer

of a workcenter to be processed; it is in-process when being processed on a machine;

and it is on-traveling when it is traveling between workcenters.

A machine can be in the states of busy, idle and down. It is busy when it processes a

job and idle when it waits for a job. The down state refers to the period from machine

breakdown to its recovery.

A workcenter can be in four states: idle, partial, full, and buffered. It is idle when

there is no job in it and all available machines are idle. It is partial when machines are

only partially used. It is full when all machines are busy and there are no waiting jobs.

Finally, it is buffered when all machines are busy and there are jobs waiting.

A shop floor can be in three states according to the number of jobs in it: idle (no job

on the floor and all workcenters are idle), working (at least one job is on the floor) and

completed (simulation completed and analysis can be carried out).

4.3.3 Events and their actions

The global state of a job shop system is changed by the actions incurred by any

dynamic events concerning jobs and stochastic events in the shop floor. The dynamic

events related to a job entity include its arriving at or leaving resources like machines,

workcenters, the shop floor and MHDs. The stochastic events include dynamic

incoming of job orders, machine breakdowns/ups and processing time variation.

However, it is not necessary to model all of the aforementioned events. Only five

Chapter 4: The Test Bed

72

essential events are identified and they can be categorized as job-related and machine-

related events.

4.3.3.1 Job-related events

Job-related events are initiated by jobs and there are two types.

�� New job event

A new job event represents a new job order, which is released to the shop floor by the

job releaser according to certain distribution functions. The event action for this event

is illustrated in Fig. 4.4. The event is registered to the shop floor, which then increases

the size of its WIP and confirms the registry. The job then heads to the next

workcenter from the receiving station traveling on a MHD and another event called

the incoming job event is generated immediately. The time period required to travel to

the next workcenter is decided by the speed of its MHD and the distance between the

two workcenters. The incoming job event is forwarded to the shop floor entity and its

description is given in the following section.

Chapter 4: The Test Bed

73

a new job is g ene rated and
reg is ter s to s h op f lo o r

n ew job up da tes even t lis t
and fo r w ard inc o m ing job

even t to s h op f lo o r

n ew job heads to its f ir s t
w o r ks h op

s hop f lo o r (w ip+ +) c on f ir m s
reg is tra tion

end

n ew job ev en t

Fig. 4.4. The actions upon the new job event

�� Incoming job event

An incoming job event indicates the arrival of a traveling job at a workcenter. When it

is initiated, the job enters a workcenter from the shop floor and requests service; the

workcenter then allocates the job according to its state and control rules or the

schedule. If the job cannot be processed immediately, it will be put into the

workcenter buffer, otherwise, it will be sent to one of the machines and another event,

namely a “leaving job" event (from the machine), will be generated. The event actions

and state changes on the related entities are represented in Fig. 4.5.

Chapter 4: The Test Bed

74

w o r k c en ter w ip+ +

an y m ac h in e
av ailab le?

m ac h in e (b u s y) /
jo b (in p ro c es s)

leav in g J o b ev en t

in s e r t jo b in to th e
b u f fe r

w o r k c en ter (p a r t ia l/ fu ll)
jo b (in p ro c es s)

w o r k c en ter(b u ffe re d)
jo b (w a it in g)

in c o m in g jo b ev en t

en d

y es n o

Fig. 4.5. Actions and state changes upon the incoming job event.

4.3.3.2 Machine-related events

Machine-related events are initiated by a machine and there are three types: 1) leaving

jobs, 2) machine breakdowns, and 3) machine ups.

�� Leaving job

A leaving job event indicates the completion of an operation by a machine. When this

event is initiated, the completed job leaves its machine and workcenter, travels to the

next workcenter and then generates another incoming job event. Meanwhile, the

newly freed machine is available for processing the next job. If it is allocated with

another job, a new leaving job event for the new job will be generated, otherwise it

Chapter 4: The Test Bed

75

will be idle. Finally, the workcenter reduces the size of its WIP by one. The event

actions and the state changes of the related entities are presented in Fig. 4.6.

job c reates an inc om ing
job event fo r en ter ing
 the next w orkc en ter

any w ait ing jobs
in the bu f fer?

another job (in p roc ess) ,
new leav ing job even t

w orkc en ter (fu ll o r buf fered)

c u rren t w orkc en ter
(w ip--)

w orkc en ter (par tia l o r id le)
the m ac h ine (id le)

leaving job even t

end

yes no

Fig. 4.6 Event actions and state changes upon a leaving job event

wo rkc e nte r 1 wo rkc e nte r 2

d istan ce

inc o m ing jo b e ve nt le aving jo b e ve n t
(t rave l ing jo b)

inc o m ing jo b e ve nt

ne w Jo b e ve nt

S ho p f lo o r

Fig. 4.7. The dynamic events incurred by a routing job

Chapter 4: The Test Bed

76

The locations of the previous events in a job shop are illustrated in Fig. 4.7. The

leaving job event causes a job to leave both its machine and workcenter

simultaneously, assuming that the finished job can be immediately transported to the

next workcenter. The relationship between job events is shown as an event diagram in

Fig. 4.8.

N ew Jo b Inc o m ing
Jo b

L eav ing
Jo b

Fig. 4.8. Event graph of job related events

�� Machine breakdowns/ups

A machine breakdown event is assumed in this work to occur only when a machine is

busy processing jobs (Law and Kelton, 2000). The machine will change its state to

down on a machine breakdown event and immediately create a machine-up event to

represent the time that it will take to be repaired. Meanwhile, the interrupted job is

sent to another available machine generating another incoming job event or it is sent

to the buffer. Similarly, when a machine-up event occurs, the machine is ready to

process operations. If a job is allocated to it, the machine will go to the state of busy

and a new leaving job event will be generated. Otherwise, it remains idle. The action

and state changes for both events are illustrated in figures 4.9 and 4.10, and their

relationship is given in the event diagram in Fig. 4.11.

Chapter 4: The Test Bed

77

m ac h in e (d o w n)
m ac h in e u p ev en t

an y m ac h in e
av ailab le?

m ac h in e (b u s y)/
jo b (in p ro c e s s)
ev Leav ein g J o b

w o rk c en ter
(p ar tia l/ fu ll)

jo b b ac k to q u eu e
jo b (w ait in g)

w o rk c en ter
(b uf fered)

m ac h in e
b r eak do w n ev en t

en d

y es n o

Fig. 4.9. Actions and state changes upon a machine breakdown event

Chapter 4: The Test Bed

78

m ac h ine c reates
m ac h ine dow n even t

any job
w ait ing?

m ac h ine (bus y)
job (in proc es s)

c reates leav ing job even t

w o rkc enter
(fu ll/bu f fered)

m ac h ine
(id le)

end

m ac h ine up event

yes no

Fig. 4.10. Actions and state changes upon a machine up event

M a c hine
B re a kdow n

M a c hine
U p

Fig. 4.11. Event graph of machine breakdown and up

Chapter 4: The Test Bed

79

4.3.4 Event lists

The global state is maintained as one entity and all events are sorted in one event list

according to their occurring times in conventional approaches. However, in a system

where the global state is decomposed and monitored by many distributed entities, the

global event list also has to be decomposed and monitored by the respective entities.

This approach can reduce the size of the list and thus the sorting time. Meanwhile, the

correct simulation time should be maintained carefully since the event lists are

distributed and the execution of one event may cause event changes at different

entities. The analysis of the event list in each component is given in section 4.4.4.1

and the mechanism to maintain correct simulation time is presented in section 4.4.4.2.

4.3.4.1 Analysis of event lists

Each entity maintains an event list although only machines, jobs and the job releaser

are the initiators of events. Other types of components only receive events from their

entities supervising them and keep only the earliest ones in their own event lists.

The event list of a machine can contain at most three possible types of events:

machine breakdowns, machine ups and leaving jobs. Its size can be at most two since

machine breakdown and machine up events cannot co-exist. The event list of a job

entity is a one-item list containing one incoming job event. Similarly, the job releaser

also has a one-item list containing one new job event.

A workcenter entity keeps only the earliest events from its supervised machines; the

job shop entity in turn keeps only the earliest events from all the workcenters and

traveling jobs. The controller is at the top of the hierarchy and it decides the earliest

event time for the next simulation round.

C
h

a
p

ter 4
: T

he T
e

st B
ed

8
0

4.3.4.2
M

echanism
 to m

aintain correct sim
ulation tim

es

T
h

e m
e

cha
nism

 to
 m

a
inta

in
 co

rre
ct sim

u
la

tio
n tim

e
s

is illu
stra

te
d in F

ig. 4
.12

, w
he

re

“e
v” sta

nd
s fo

r “e
ve

nt”.

ea r liest

ev

ear lie
stev

ea
rli

es
te

v

earliest
ev

e1 e2

M 1 _ 1

e1

M 1 _ 3

e1 e2e1 e2

M 1 _ 2

e1 W C 1

e1 sh op f loor

ea
rli

es
t

ev

ea
rli

es
te

v earliestev
e1 e2

M 2 _ 1

e1 e2

M 2 _ 2

e1 W C 2

earliest

ev
ea

r li
es

te
v earliestev

ea r liestev

e1 e2

M 3 _ 1

e1

M 3 _ 3

e1 e2e1 e2

M 3 _ 2

e1 W C 3

earliestev

e1

M 3 _ 4

e1 e2

e1job re le as e r

e1con tro lle r

earlie
st

ev

ear liest

ev

e1job 1

earliestev

e1job 2

earliestev

e1job 3

earliestev

1

3

2

3

n : pa thn

Fig. 4.12. The hierarchy of event lists

Chapter 4: The Test Bed

81

Each entity forwards its earliest events up to its respective supervisor and finally the

earliest events reach the controller. There are three propagating paths: the first one is

from the job releaser directly to the controller, the second one starts from the traveling

jobs to the shop floor, then the controller, and the third one starts from machines, goes

through the workcenters and the shop floor and finally reaches the controller.

An example for maintaining the event lists in a typical simulation round is given as

follows. Workcenter 1 (WC1) has three machines, m1_1, m1_2 and m1_3. Each of

them forwards its earliest event to WC1. WC1 compares the three events, identifies

the earliest one and keeps it in its event list. The same procedure happens

concurrently at workcenter 2 and workcenter 3. Three workcenters forward their

earliest events to the shop floor, which at the same time, also keeps the events of the

traveling jobs. Hence the earliest event that will occur on the whole shop floor can be

found and further forwarded to the controller, which also receives the event of

generating the next job from the job releaser. The controller then finds the earliest

event and announces the occurring time as the next simulation time to both the job

releaser and the shop floor. The shop floor forwards the new time to all the

workcenters, which pass down to their machines. Each entity checks its own event list

upon receiving the new time and starts to act if there are some due events; otherwise,

it takes no action. It is obvious that there could be many concurrent events occurring

at the different locations. The detailed messages for coordinating those single or

concurrent events are illustrated in section 4.6.

It can also be seen that the size of a job shop event list is bound to the sum of both the

sizes of the workcenters and the traveling jobs. In addition, the size of a workcenter

Chapter 4: The Test Bed

82

event list is bound to the size of its machines. An overall long event list is thus

avoided and the list-sorting time is reduced.

4.4 Implementing the simulated generic job shop as an MAS

The implementation of agent-based simulation essentially includes two steps: 1)

identifying the behaviors of each individual agent, and 2) coordinating the

communication among agents. The behaviors of agent and the change of its status can

be expressed clearly in state charts while the coordination of communication can be

illustrated in the sequential diagrams of unified modeling language (UML).

All entities of a generic job shop are modeled as autonomous agents pursuing their

own interests with unique functions. The possible stable states for the main agents

have been identified in section 4.4.2 and the transition between them in real time is

described using UML state charts. Some transient states or actions, such as data

recording, list sorting and message sending are also included in the state charts for a

better illustration; the stable states are shaded. It should be noted that in the given

state charts, “mg” refers to “message” and symbol C refers to a conditional gate.

Finally, the mechanism of fitting an MAS to a time frame decided by DES is

described.

4.4.1 Main agents

The state chart of a job agent, illustrated in Fig. 4.13, shows three stable states: 1)

waiting for process, 2) in processing, and 3) on traveling, and four transient states: 1)

idle, 2) entering shop floor, 3) entering workcenter and 4) leaving shop floor. The life

cycle of a job agent involves the stable and the transient states. It starts in the idle

state and changes to the on traveling state after entering the shop floor. It turns to

Chapter 4: The Test Bed

83

either the waiting for process state or the in process state after entering a workcenter

depending on the current state of the workcenter. If it is in the waiting for process

state and receives an “available machine” message from its workcenter, the job will

be processed on the assigned machine and its new state will be in process. It remains

in this state until it receives either a “machine breakdown” or a “finish operation”

message. It will go back to the waiting for process or the in process state if the former

is received. Otherwise, its operation will be finished; it turns to the on traveling state,

and moves to the next workcenter or the shipping bay if all the operations are

completed.

J o b

id le

en ter ing
shop f loo r

m
gR

eg is terSu ccessed

on traveling

leav ing
shop f loo r

C
[ye s]

en ter ing
w orkc en ter

w ait ing fo r
p roc ess

in
p roc ess ing

[n
o]

C
the s ta te o f
w orkc en ter

incom
ingJobev f ired

job com
p leted?

m gF inishO perat ion

[w
orkcen

te
r

part ial/ free]

C

[w o rkc en ter
fu ll]

e vM
ach

in
eB

D

s ta t e o
fw

o
r k c e n

te r?

[fu
l l/

b u f f e
r ed]

[w
o rkcen

te
r

partia l]

m
gA

va
ila

bl
eM

ac
hi

ne

Fig. 4.13 State chart of a job agent

The flow time, waiting time and actual processing time of a job can be tracked by its

own job agent, which can record the times it reaches or exits the shop floor,

workcenter buffers, or machines. The state changes of the machine agent, workcenter

agent, and shop floor agent are illustrated in figures 4.14 to 4.16.

Chapter 4: The Test Bed

84

M a chine

id le m gS erv ic eReques t

ins er t to
even t lis t

s e n d t o
w o rk c e n te r

g e n e ra t e
l e a v in gJo bev

proc es s ing operat ion

L
eavin

g
Job

E
v

b usy

m
gE

arliestEv

evM
achineB

D

d ow n

evJobLeave

evM ach ineU p

c r e a t e
m a c h in e upev

m achineU pEv

generate
m a c h in e B D ev

m achineB DEv

Fig. 4.14. State chart of a machine agent

W o rk C e nte r

id le

rec eiv ing
job

par tia l

C
bu f fered

m ach ine
available?

[y
e

s
a v

a i
la

b l
e

m
ac

h i
n e

 >
1]

evJobLeave

job s >m ach ines?

[no]

C

fu ll

[y e s

a va ilab le m ac h ine = 1]

[y es]

[no]

evM
achineBD

jobs>m
ach ines?evM

ach
in

eU
p

evIn
com

in
g

Jo
b

e v
I n

c o
m

in
g

J o
b

jo
b

s<
m

ac
h

in
e s

?

evM
ach

in
eB

D

C

[y
es

]

[no]

C
evM achineB D

jo b s< m a c h in e s ? [no]

[y es]

evJobLeave/

evM
ach ineU

p evJobLeave/evM ach ineUp

C

[y es]

[n
o]

evIn
com

in
g

Jo
b

Fig. 4.15. State chart of a workcenter agent

Chapter 4: The Test Bed

85

S ho p F lo o r

id le
s end to

s c hedu ler
m gN ew J ob

rec o rd
job in fo

m gR eg is terT oJ S

se n d t o
c o n t ro lle r fo r

e x e c ut io n

w ip

m gJobL eaveJS

C
[ye s]

rec o rd
f low tim e

r e c o rde r

[no]

w
ip

 =
 0

?

c om p leted

m
gReg isterToJS

m gW C Events

s or t
even t lis t

F irstD ueEv

m gR eg isterToJS

Fig. 4.16. State chart of a job shop agent

4.4.2 Other agents

The controller and the job releaser in Fig. 4.3 are also implemented as agents. The

controller works to initiate the whole system and maintains the simulation clock and

the job releaser generates new jobs with particular information concerning technical

sequence, processing times, starting and due times, etc.

4.4.3 Fitting the MAS into the time frame of DES

There are two types of time in the system: simulation time and execution time. The

simulation time is a clock time when an event starts to be executed. It is decided by

DES. The execution time refers to the period of CPU time MAS takes for event

execution. Their relationship is illustrated in Fig. 4.17.

Chapter 4: The Test Bed

86

0 s im ula t io n t im et (in h o ur)t1 t3t2

C P U t (in m i l l i seco nd)

e x e cut io n t im et 2 '

f o r e v e n t a t t 2

e x e cut io n t im et 3 '

f o r e v e n t a t t 3

e x e cut io n t im et1 '

f o r e v e n t a t t 1

Fig. 4.17. The relationship between simulation time and execution time

The event occurred at time 1t causes MAS to execute taking '1t CPU time. Then the

next simulation time 2t , maybe hours after, is decided at the end of execution time

'1t . Another period of event execution then starts. The simulation proceeds in this way

from 1t to 2t and 3t until a predefined termination time is reached while the events are

executed one after another by the agents.

4.5 Communication in the MAS

All the communication in an MAS is realized through message passing. The

execution of an event always incurs a string of messages propagating to the other

agents, which may react to the messages by further sending messages to other agents.

Messages may be passed concurrently in many distributed locations, and it is crucial

to coordinate them so that all event lists can be updated in a consistent manner and the

correct simulation time can be maintained. Message passing for a single event is

analyzed in section 4.6.1 and that for concurrent events in a single agent is described

in section 4.6.2. The mechanism to coordinate all agents is given in section 4.6.3.

4.5.1 Message passing for a single event

�� Message passing for job related events

Chapter 4: The Test Bed

87

The message passing for two job-related events, i.e. the new job event and the

incoming job event, is illustrated in Fig. 4.18.

jo b s h o p f lo o r w o r k c en ter m ac h in e

n e wJ ob
reg is terN ew J o b

co n f irm
flo o r lay o ut

reg is ter
in c o m in g J o b ev

in co m in g Job req u es t s er v ic e
n u m o f

receiv ed jo b s

a ll in c o min g Jo b s
re a c h w o rkc e n te rs

u p d a te sim u T im e
(to th o se h av in g

d u e ev e n ts)
f ire ev en t

rec e iv e a ll
c h an g ed s tates

1 n

u p d a te
n e w s ta te

allo c a te in c o m in g J o b s to m ac h in es

req u es t o p er atio n p ro c es s

n e w Co min g Jo b ++

e v e n t
a c t io n s

d a ta
re c o rd in g

d a ta
re c o rd in g

Fig. 4.18. Message passing for job-related events

�� Message passing for machine related events

Message passing for three machine-related events, i.e., the leaving job, the machine

breakdown, and the machine up event, is illustrated in Fig. 4.19.

The machine agent sends a message to the job agent representing the job processed on

the machine when a leaving job event is fired and notifies it on completion of its

operation. The job agent then requests to leave the workcenter while the machine

updates the workcenter about its new state. The workcenter then checks whether there

Chapter 4: The Test Bed

88

are waiting jobs or interrupted jobs to be re-allocated accordingly. Finally, it permits

the job agent to leave the workcenter. The job agent in turn registers with the shop

floor agent with another incoming job event as shown in Fig. 4.19(a).

m a ch in e B D
O p er at io n I n ter ru p te d

re - r eg is ter a s in c o m in g J o b

re -a llo c ate in c o m in g J o b s

m a ch in e Up m ac h in e Up

re -a llo c ate in c o m in g J o b s

u p d a te
n e w s ta tere c eiv e

all c h a n g ed s tate s

c h ec k
b u f f er

re q u es t p r o c es s in g o p er at io n

le a v in g J o b
o p er at io n c o m p lete d

c h ec k o u t in g w o r k c en ter u p d a te
n e w s ta te

re c eiv e
all c h a n g ed s tate s

u p d a te
W C s ta tu s

re leas e
y o u f in is h ed jo b s

c o n f irm c h ec k o u t w o r k c en ter

re g is ter
in c o m in g J o b e v

re c eiv e
all c h a n g ed s tatu s

jo b s h o p f lo o r w o rk c e n ter m ac h in e

d ata
re c o rd in g

d ata
re c o rd in g

d ata
re c o rd in g

d ata
re c o rd in g

(a)

(c)

(b)

Fig. 4.19. Message passing for machine-related events

Chapter 4: The Test Bed

89

The broken down machine sends a message to its job agent announcing an

interruption when a machine breakdown event is fired. The job then re-registers itself

with the workcenter as a waiting job while the machine updates the workcenter about

its new state. Finally, the workcenter re-allocates the interrupted job according to its

new state and sends the job agent a “waiting” or a “processing” message. The job then

acts accordingly as described above in Fig. 4.19(b).

The machine will notify the workcenter about its new state when a machine up event

is fired and the workcenter will check its buffer to see whether there are waiting jobs.

If there are, an allocation message will be sent to the appropriate jobs from the

workcenter, otherwise no messages will be generated. This procedure is shown in Fig.

4.19(c).

4.5.2 Message passing upon concurrent events in a single agent

It is possible that there could be several events initiated at the same moment within

one agent. The message passing for possible concurrent events is described as

follows. A job agent can only have an incoming job event in its event list and thus it

has no concurrent events. A machine agent can have at most two concurrent events: a

leaving job and a machine breakdown event. The finished job is leaving the machine

and the machine’s state turns to be down. The messages incurred are depicted in Fig.

4.20.

Chapter 4: The Test Bed

90

le av in gJob
&

m ach in e
bre ak down

operation c om p leted

 reques t c hec kou t upda te
n ew s ta tere c e iv e a ll

c h a n g e d m a c h in e
s ta te s

update
W C s tatus

r e le a s e
y o u f in is h e d j o b s

c hec kou t app roval

reg is ter
inc om ingJ ob ev

re c e iv e
a ll c h a n g e d s ta tu s

1 n

job s hop f loo r w o rkc en ter m ac h ine

d a ta
re c o rd in g

Fig. 4.20. Message passing upon concurrent events of machine breakdown and
leaving job in a machine agent

The workcenter agents, the shop floor agent and the controller agent do not initiate or

execute any events by themselves, but monitor the status of the agents and coordinate

messages passing in their domains.

4.5.3 Agent co-ordination

The basic information flow in a simulation loop is illustrated in Fig. 4.21. It starts

from sending all agents the current simulation time with messages 1 to 4. Agents from

the lowest level then update their supervisors of their new status, after event actions,

with messages 5 to 8. The messages contain the information on the time of their

respective next events. Finally, the controller updates the simulation time to the

earliest event time, and the next loop starts through messages 9 and 10.

Chapter 4: The Test Bed

91

s hop f loor w orkc enter m ac h inec ontro llerjobReleas er

s im uT im esim uT im e

s im uT im e
1 all

s tatus

1 2

sim u lation
1 all

s ta tu s
1 all

s tatus
1 all

s ta tu s

s im uT im es im uT im e

5

4

3

9

8

6

7

1 0

Fig. 4.21. The basic information flow in a simulation loop

A workcenter supervises several machine agents and is responsible for coordinating

their messages to assure correct status updating. Thus, there are coordinating

messages of a workcenter agent between messages 3 and 6. Similarly, a shop floor

agent is responsible to coordinate workcenters through messages 2 to 7 in Fig. 4.21.

4.5.4 Coordination work of a workcenter

 The workcenter receives a time message from the shop floor agent and then begins to

coordinate all the actions in the workcenter. The most complex situation is when a

workcenter has to receive new incoming jobs and all of its machines have

simultaneous due events. The goals of a workcenter are thus to ensure that: 1) new

incoming jobs are properly allocated, 2) the interrupted jobs are re-allocated, 3)

waiting jobs are allocated when machines are available, 4) all machines update their

new status, and 5) completed jobs leave the workcenter. A workcenter can only

update its new status to its supervisor after all the above goals are realized.

Chapter 4: The Test Bed

92

req u est se rv ice

sim uT im e
fi re e v e n ts

(to th o se h a v in g
d u e e v e n ts) e v e n t

a c t io n so p e ra t io n fin is h e d
o r ma c h in e b re a kd o w n

n e w C o m in gJo b + +
st o r e in t h e buf f e r

 re q u e s t c h e c ko u t
o r re -re q u e s t s e rv ic e

le a v in gJo b+ +
o r in t e r r u p t e dJo b+ +

n e w s ta te s

up da t e d m a c h in e + +

re -a llo c a te in te rru p te d jo b s

re q u e s t o p e ra t io n s e rv ic e
(in te rru p te d jo b s)

confirm
se riv e

c o n f i r m a t io n + +

sim uT im e
1 n

u p d a te
 s ta te

1 n

m a c h in e st a t e + +
n u b e r o f

le a v in g Jo b

con fi rm atio n

c h e c ko u t a p p ro v e d

5

2

3 4

6

7

10

9

8

13

12

1 1

re g is te r
in c o min g Jo b e v e n t

m ac h in ew o rk c en ters h o p f lo o rjob

con f irm recep tion
o f inco m ing Jo b

1

1 4

1 6

1 5

c h e c k f i r e d e v e n t s
se t w a i t in g l is t

da t a
r e c o r d in g

mes s a g e
a s s e mb ly in g

d a ta
re c o rd in g

mes s a g e
a s s e mb ly in g

se t w a i t in g
l ist

m e ssa g e
a sse m b ly in g

d a ta
re c o rd in g

r e c e iv e d jo b + +

u p d a te
s ta tu s

u p d a te y o u r
s ta te

1 8

1 7

m e ssa g e
a sse m b ly in g

c o n f i r m e d
r e c e p t io n + +

Fig. 4.22. Co-ordination work of a workcenter agent

The co-ordination messages are illustrated in Fig. 4.22 based on the most complex

situation mentioned above. A workcenter receives the new incoming jobs through

messages 1 and 2 before it receives a time message from message 3. It then checks the

Chapter 4: The Test Bed

93

event list to determine the number and the types of fired events and a waiting list can

be set up accordingly. For example, the workcenter will expect to receive both a

“leave” request from the job and a new state updating it from the machine if the event

for finishing a job is initiated. The workcenter then initiates all the events by message

4.

The workcenter is contacted by all the expected machines and jobs through messages

6 and 7 after the event actions are finished. The workcenter may be unbalanced at this

time with newly available machines and waiting jobs in the buffer. It then allocates

the waiting jobs or re-allocates the interrupted jobs to the machines through messages

8 to 10. The simulation time is forwarded through message 11 to all the machines,

which immediately update their status through message 12. Finally, the completed

jobs are approved to leave the workcenter through messages 13 to 16, and a

workcenter can update its new status through message 18.

4.5.5 Coordination work of the shop floor

The shop floor prepares to monitor all the dynamics at the moment it receives a time

message from the controller agent. The most complex situation for a shop floor agent

to co-ordinate is when the following dynamics occur simultaneously: 1) new jobs

come to the shop floor, 2) some traveling jobs arrive at their workcenters, and 3) some

jobs in workcenters completed their operation and are ready to travel to the next stage.

The shop floor needs to ensure that: 1) all new jobs are registered, 2) traveling jobs

are received by their workcenters, and 3) jobs leaving their workcenters reach the

shop floor. Only after all the above dynamics have been handled, can the shop floor

agent update its new status to the controller agent. The co-ordination messages are

given in Fig. 4.23.

Chapter 4: The Test Bed

94

job s hop f loor w o rkc en ter

s im u T im e

in c o m in gJo b + +

c o n f i rm rec e p t io n
o f in c o m in g Jo b

n u b e r o f
le a v in g Jo b

c o n f i rm a t io n

c h e c ko u t a p p ro v e d

u p d a te
s ta tu s

1

5

2

3

4

7

1 0

9

8

1 3

1 1

re g is te r
in c o m in g Jo b e v e n t

u p d a te
y o u r s ta te

c on tro ller

s im u T im e

re q u e s t s e rv ic e

re g is te r
n e w jo b

c o n firm
re g is t ra t io n

re g is te r
in c o m in g Jo b e v e n t

6

in c o m in gJo b+ +
(f r o m n e w jo bs)

r e c e iv e d
in c o m in gJo b+ +

s im u T im e

e v e n t a c t io n

in c o m in gJo b+ +
(f r o m c o m p e t e jo bs)

1 2

up da t e d
wo r k c e n t e r ++u p d a te

s ta tu s

1 5

1 4

da t a
r e c o r din g

da t a
r e c o r din g

c o un t t h e n um
o f due t r a v e lin g jo bs

r e c e iv e d
c o m p le t e d jo bs + +

m e ssa ge
a sse m bly in g

Fig. 4.23. Co-ordination work in the job shop agent

Chapter 4: The Test Bed

95

The shop floor agent also receives a time message through message 1 and initially

makes sure that all the traveling jobs are received by their workcenters through

messages 2, 3 and 7. It then updates all workcenters with the new simulation time

through message 8. Meanwhile, there may be some new jobs entering the shop floor:

they are handled through messages 4, 5 and 6. The shop floor agent is then notified of

the number of leaving jobs by the workcenters through message 9 and starts to collect

all the expected leaving jobs through message 12. It notifies all the workcenters to

update their new states through message 13 after all the leaving jobs are collected.

Finally, it updates its new status to the controller agent through message 14.

4.6 Case Study

The case study pursued here adopts the data from the example on pages 684-695 of

Law and Kelton (2000). The MAS model runs on an AMD Opteron Linux Cluster

with 26 nodes (2.2GHz, 4GB RAM) + 8 nodes (2.4GHz, 32GB RAM) in the Institute

of High Performance Computing (IHPC). The random number generator used in

simulation is proposed by L’Ecuyer et al (2001).

4.6.1 Inputs

The studied job shop is shown in Fig. 4.24 with five workcenters and one

Receiving/Shipping station. The machines in a particular workcenter are identical

while the machines in different stations are dissimilar. The distances between the six

workcenters are given in Table 4.1. Jobs are transported between workcenters by

MHDs assuming that there are sufficient number of them are available and the time

spent on the trip is proportional to the distance between the two locations.

Chapter 4: The Test Bed

96

W ork c e n te r 2

W ork c e n te r 1

W ork c e n te r 4

W ork c e n te r 5

W ork c e n te r 3

R e c e iv ing/S hipp in g
 (W ork c e n te r 6)

Fig. 4.24. Layout of the manufacturing system

Table 4.1. Distances between workcenters (feet)

Work ce nte r 1 2 3 4 5 6

1 0 1 50 2 13 3 36 3 00 1 50
2 1 50 0 1 50 3 00 3 36 2 13
3 2 13 1 50 0 1 50 2 13 1 50
4 3 36 3 00 1 50 0 1 50 2 13
5 3 00 3 36 2 13 1 50 0 1 50
6 1 50 2 13 1 50 2 13 1 50 0

Jobs arrive at the shop floor with inter-arrival times that are independent exponential

random variables with a mean of 1/15 hour. There are three types of jobs: 1, 2 and 3,

with respective probabilities 0.3, 0.5 and 0.2. Job types 1, 2 and 3 require 4, 3, and 5

operations to be done respectively, and each operation must be done at a specified

workcenter in a prescribed routing (technical order), which is given in Table 4.2. Each

job enters the shop floor at the Receiving/Shipping station (workcenter 6), travels to

the workcenters on its routing and then leaves the system at the Receiving/Shipping

station. All MHDs move at a constant speed of 5 feet per second.

A job joins a single FIFO buffer if all the machines in the workcenter it reaches are

busy. The time to perform an operation at a particular machine is given in Table 4.3.

Chapter 4: The Test Bed

97

Table 4.2. Technical routes of jobs

Job type Work s tat ions in rout ing

1 3 , 1 , 2 , 5

2 4 , 1 , 3

3 2 , 5 , 1 , 4 , 3

Table 4.3. Processing times of all operations

Job typ e
M ean s ervic e t im e for s uc c es s ive

operat ions (hours)

1 0 .2 5 , 0 .1 5 , 0 .1 0 , 0 .3 0

2 0 .1 5 , 0 .2 0 , 0 .3 0

3 0 .1 5 , 0 .1 0 , 0 .3 5 , 0 .2 0 , 0 .2 0

4.6.2 Simulation results

The simulation ran 10 replications of 920 hours length, which equals to 115 eight-

hour days. The results for different performance measures are listed in Table 4.4. The

first row shows the configuration of the job shop, which is comprised of five

workcenters with four, two, five, three and two machines respectively. All

performance measures except Maximum Number in Queue and Maximal Size of

Working-in-Process are the average values of ten experiments.

Table 4.4. Simulation results

Num ber of m achines : 4, 2, 5, 3, 2
Num ber of fork lifts : enough
M ac hine effic iency : 1

p e r fo r m an c e m e a su r e 1 2 3 4 5

P roport ion m achines busy (workc enter) 0.806 0.450 0.795 0.570 0.825

A verage num ber in queue (workc enter) 1.662 0.137 0.653 0.276 0.790

M ax im um num ber in queue (workc enter) 35 9 12 10 17

A verage daily throughput (shop floor) 120.075

A verage t im e in sys tem (s hop floor) 1.067

A verage total t im e in queues (shop floor) 0.240

Max ima l s iz e o f w orking-in -p roc es s (s hop f loor) 56

Chapter 4: The Test Bed

98

4.6.3 Statistical calculation

A warming up period is first obtained using Welch’s procedure [Law and Kelton,

2000] on 920 hourly throughputs in each of the 10 replications. The moving average

)20(i8 uses a window of 20, and is plotted in Fig. 4.25. A warming up period of

120 l hours is obtained.

l = 120

� �20i8

i

Fig. 4.25. Moving average of hourly throughputs

Then a 90 percent confidence interval for the steady-state mean daily throughput is

constructed as
10

0.54
075.120 95.0,9tr or 23.0075.120 r , which contains 120, which is

the expected mean daily throughput.

4.6.4 Result analysis

The expected daily throughput is 120 jobs per 8-hour day, which is the maximum

possible (because the inter-arrival times of jobs are independent exponential random

Chapter 4: The Test Bed

99

variable with a mean of 1/15 hour). The 90% confidence interval built in the previous

section demonstrates that the system can reach a daily throughput of 120 jobs.

Table 4.5. Simulation results from [Law and Kelton, 2000]

Num ber of m ac hines : 4, 2, 5, 3, 2
Num ber of fork lifts : 2
M ac hine in work center 1 and 5 have effic ienc ies of 0.9

p e rformance me asure 1 2 3 4 5

P roport ion m ac hines busy (m achines) 0 .81 0 .45 0 .8 0 .58 0 .83

A verage num ber in queue (work center) 16.55 0 .25 2 .15 0 .49 46.73

M ax im um num ber in queue (work center) 111 .00 11.00 32.00 14.00 262 .00

A verage daily throughput (s hop floor) 119 .88

A verage tim e in sy s tem (s hop floor) 5 .31

A verage total t im e in queues (s hop floor) 4 .37

Max imal s iz e o f w o rking - in-p roc es s (s hop f loo r) - -

The simulation results of a similar system built by Law and Kelton (2000) are listed in

the Table 4.5 to be compared to the results in Table 4.4. Their system has more

constraints such as limited MHD and machine efficiencies while the case study in this

thesis assumes enough MHD and no machine breakdown. Both systems achieve 120

expected daily throughputs. This can be explained by the fact that Law and Kelton’s

system achieves the same level of proportion of busy machines despite of its limited

resources. However, the limited resources cause both the average and the maximum

number in the queues of Law and Kelton’s system much larger than those in the

current developed system. Subsequently, the average time of a job staying in the

system is longer in Law and Kelton’s system. Thus, both the statistical analysis and

the comparison with the existing report have validated that the proposed DES-MAS

system can correctly simulate a dynamic job shop.

Chapter 4: The Test Bed

100

The case study also takes the advantages of distributed data collection and calculation

offered by MAS. All the data have been collected and maintained by their most

related agents. For example, the average/maximum numbers of jobs in queues are

collected by five workcenter agents and the shop floor agent keeps those data that are

out of the scope of the other agents. Those data are the average daily throughput,

average time in system, average total time in queues, the size work-in-process, etc.

The information of machine utilization can be properly maintained by each machine

itself. A workcenter can request the machine agents to provide such information when

it needs to calculate the proportion of busy machines under its supervision. Thus the

burden of a centralized computation can be naturally distributed to different

computing entities.

4.7 Summary

An MAS simulating a real-life job shop is built in order to provide a test bed for

studying approaches in a dynamic job shop environment. The essential architecture of

a job shop manufacturing system is first identified, and then built as a DES, which can

examine the performance of a system over a long period of time. The DES is

implemented as an MAS so that the intelligent agents can be used to realize

distributed computation and prompt reaction to dynamic events.

This approach requires careful coordination among event lists, which are distributed

in different agents, in order to maintain a correct simulation time. The coordination

involves communication among the agents. The agents in this model do not

necessarily lose their autonomy. The discrete events set the time steps and the agents

are autonomous within their event execution periods. In this way, a long-term

performance of an MAS can be examined.

Chapter 4: The Test Bed

101

All the communication and state changes are clearly illustrated using UML sequential

diagrams and state charts. A case study demonstrates the advantage of distributed data

collection and analysis; it also validates the proposed system by statistical analysis

and comparison to existing simulation results on a similar test case.

Chapter 5: Scheduler Agent and ACO

102

5 Scheduler Agent and ACO

In this chapter, the previous test bed is extended to include a scheduler which uses

ACO to generate schedules. The ACO scheduler is modeled as an agent in section 5.1.

The application of ACO for a dynamic JSSP and the procedure of dynamically

updating the pheromone matrix are discussed in section 5.2. Finally, the

implementation of ACO as an MAS is presented in section 5.3.

5.1 The scheduler agent

Implementing a scheduler agent in the MAS test bed implies not only additional

coordination of the scheduler agents to the main existing agents like the job, job shop

and workcenters, but also the coordination of the behaviours within the scheduler

agent itself. However, a scheduler does not generate dynamic events and thus there is

no change in the event management of the existing test bed.

5.1.1 Additional coordination related to the scheduler

The new agent, scheduler, can communicate with the job, shop floor and workcenter

agents. A job agent contacts both the shop floor and the scheduler right after it has

been generated by the job releaser agent. The scheduler agent then prepares to

reschedule to include this new incoming job according to its states. A shop floor agent

proactively requests the scheduler to update the schedule when necessary and

suspends its actions. The scheduler then updates all the workcenters with new

schedules. All workcenters confirm to the scheduler regarding to the reception of

schedules; then the scheduler replies to the shop floor agent that its request has been

fulfilled. At this time, the job shop resumes its work.

Chapter 5: Scheduler Agent and ACO

103

5.1.2 Coordination among behaviours in the scheduler agent

The scheduler agent can be in either one of two states: idle or searching. It is idle

when all jobs are scheduled and the schedule is issued; otherwise, it is in a searching

state. It should be able to receive new jobs and react to schedule requests anytime.

These two abilities are supported by the two independent and concurrent behaviours:

receive a new job (Fig. 5.1) and receive schedule requests (Fig. 5.2). The former

behaviour is initiated by the arrival of a new job agent and the latter is initiated by the

job shop agent. Meanwhile, solutions from the ant agents are collected through

“collect ant results” behaviour (Fig. 5.3). The following sections present the

flowcharts of those behaviours and the coordination among them.

5.1.2.1 Behaviour of receiving a new job

Fig. 5.1 presents the flowchart for the behaviour of receiving a new job, which

triggers the rescheduling procedure of the scheduler when it comes to the shop floor at

the reception/shipping section. The schedule should have been updated by the time a

new job arrives at its first workcenter. This point of time is called expected due time

of rescheduling and the operations scheduled before this moment by the previous

schedule should not be considered in the new scheduling problem.

Chapter 5: Scheduler Agent and ACO

104

1. jo b _n um ++
2. re c o rd t h e n e w e xp e c te d t ime

e xp e c te d t im e d u e ?

no

s c h e d u le is s u e d ?

yes

s to re th e jo b in
n e w Jo b W a it in g lis t

no

yes

1. u p d a te A C O ma p ;
2.s c h e d u le F o rD is trib u t io n = n u ll;

re c e iv e a n e w jo b

fla g _ s e a rc h in g =
t ru e ?

yes

st o r e t h e jo b in :
jo bCo m e W h e n N o Sc h e dule I sRe quire d

1. f la g _ is s u e d = fa ls e ;
2. f la g _ s e a rc h in g = t ru e ;
3. n u mO fRe p lie d A n ts = 0;
4. s e a rc h _ it e ra t io n =0 ;

1. in it ia t e Co lle c tA n tR e s u lt s
Be h a v io u r

2. in it ia t e a n t s
fla g _ N e w Pro b le m Sta rt = t ru e

end

no

Fig. 5.1. The behaviour of receiving a new job in the scheduler agent

Upon receiving a new job, the scheduler agent increases the number of its jobs by

one, records the new expected due time and checks whether a previous schedule

request, if any, is due. The new job should be stored temporarily in the list called

jobComeWhenNoScheduleIsRequired if it has not reached the expected time for

releasing a schedule and the scheduler is seeking a schedule. A flag named

flag_NewProblemStart is then raised and marked in green color in Fig. 5.1. It will be

handled in Fig. 5.3 in the location with the same color. This mechanism is to

Chapter 5: Scheduler Agent and ACO

105

synchronize the actions between two concurrent behaviours: receiving a new job and

collecting ant results. However, the scheduler starts seeking schedules if it is idle at

the time a new job arrives.

A new job may come at the same time that a schedule is due to be issued. The

scheduler should guarantee that the due schedule is issued before the new job is

considered for rescheduling. If the schedule is not issued, the new job has to be stored

temporarily in the list called newJobWaiting and the procedure is colored pink in Fig.

5.1. It will be included to generate a new schedule right after the due schedule is

issued indicated in Fig. 5.3 in the procedure highlighted with the same color. This

mechanism is to synchronize the two concurrent behaviours: receiving a new job and

receiving a schedule request. Otherwise, the rescheduling procedure is executed

immediately if the previous schedule is issued.

5.1.2.2 Behaviour of receiving a schedule request

Fig. 5.2 presents the flowchart of the behaviour of receiving a schedule request. The

scheduler basically checks whether it is in the correct state of searching a schedule

and raises a flag called flag_waitForSchedule, which is marked in yellow color, to

wait for a schedule. Then the behaviour of collecting ant results can immediately

dispatch a new schedule once it is ready. The procedure is indicated in the procedure

marked in the same color in Fig. 5.3. This flag synchronizes the behaviours of

requesting schedule and collecting ant results.

Chapter 5: Scheduler Agent and ACO

106

fla g _ w a itF o rS c h e d u le = t ru e

fla g _ s e a rc h in g =
t ru e ?

y es

th r ew ex c ep tio n

r ec eiv e a s c h e d u le r eq u es t

en d

n o

Fig. 5.2. The behaviour of the scheduler agent receiving a schedule request

5.1.2.3 Behaviour of collecting ant results

The main goal of this behaviour is to collect all ant results, update the best solution

and the pheromone matrix, and initiate ants to search schedule for the next round of

searching (Fig. 5.3). The behaviour checks the flag of new job coming

(flag_NewProblemStart) when all the ant results have been collected. If it is raised,

the record of the best solution is removed and the pheromone matrix/ACO map is

updated. A new problem is then formed and rescheduling starts.

However, searching continues if the problem is not changed until the minimum

number of iterations is met. At that time, the schedule agent checks whether a

schedule request (flag_waitForSchedule) is waiting. It should dispatch schedules to

all the workcenters if a request is made, otherwise, it will continue to search to find

better solutions until a maximal number of iterations is reached. The list containing

the waiting jobs (newJobWaiting list) is checked after the schedules are dispatched in

order to synchronize the concurrency between a new job event and a schedule request.

Chapter 5: Scheduler Agent and ACO

107

n u m O fR e p lie d A n ts + + ;

n u m O fR e p lie d A n ts =
to ta lIn it ia t e d A n ts?

yes

f la g _ N e w Pro b le mS ta r
t = t ru e ?

no

1 . update sho rtes t s olu tion
2 . update pherom onem a t irx
3 . s earc h_ iteration ++

s e a rc h _ it e ra t io n
> = m in ima l N o .?

u p d a te s c h e d u le F o rD is t rib u t io n

yes

f la g _ w a itFo rSc h e d u le
= t ru e ?

yes

1. in it ia t e
C o lle c tA n tRe s u lt s
B e h a v io u r

2 . in it ia t e a n t s
3 . n u m O fR e p lie d A n ts = 0

n e w Jo b W a it in g l ist
= n ull?

1. u p d a te A CO ma p
2. n e w Jo b W a it in g L is t = n u ll
3 . in it ia t e a n e w p ro b le m

1. d is t rib u te s c h e d u le ;
2 . s c h e d u le F o rD is t rib u t io n = n u ll
3 . re s e t p a ra m e te rs a n d fla g s

rec eive a res u lt o f an ant

no

1. u p d a te A CO ma p ;
2 . f la g _ N e w Pro b le mS ta rt
 = fa ls e ;
3 . in it ia t e a n e w p ro b le m

yes

yes

end

no

no

no

Fig. 5.3. The behaviour of collecting ant results in the scheduler agent

Chapter 5: Scheduler Agent and ACO

108

5.2 ACO optimizer

In this section, the flowchart of the ACO algorithm is first illustrated; the

representation of the JSSP as well as the application of ACO for dynamic JSSPs is

then described; finally, the implementation of ACO as an MAS is described.

5.2.1 Notations

The notations used in the ACO algorithm are listed as follows.

h is the index of iteration number

ijp is the probability for an ant to travel from node i to node j at hth iteration

)(hijW is the quantity of pheromone on the edge connecting nodes i and j at hth

iteration;

ijd is the heuristic distance between nodes i and j;

U is the evaporation coefficient, which can be a real number between 0 and 1.0.

� �hijW' is the quantity of increased pheromone on the edge connecting nodes i and j

at hth iteration;

Q is a constant representing the total quality of pheromone on a route;

� �farsobestfevaluation __ is the best value obtained so far optimizing the given

objective.

5.2.2 ACO flowchart

The flowchart of the ACO algorithm is given in Fig. 5.4. The basic idea is to

repetitively initiate a set of ants, which walk in a common environment (problem

graph) comprised of all the operations in a JSSP. The operations are modeled as nodes

Chapter 5: Scheduler Agent and ACO

109

in a graph, which is described in detail in Fig. 5.6. Each ant walks through all of those

operations (nodes) one by one and thus forms a route, which can be interpreted as

schedules and its length can represent the value of some performance measures like

makespan, flowtime, or tardiness. The goal of each ant is to find a shortest route.

in it iate ants

f ind the shor tes t rou te

u p d a te :
 s h o rte s t_ le n g th
 b e s t_ s o lu t io n
 p h e ro mo n e ma t rix (fo rmu la 5 .2, 5.3)

iteration_c nt+ +

s top?

end

yes

no

s ta rt

in it iate c ounters :
 it e ra t io n _ c n t = 0 ;
 s h o rte s t_ le n g th = 0;
 b e s t_ s o lu t io n = n u ll;

e a c h a n t fin d s a ro u te
(d e c is io n m a k in g a c c o rd in g t o fo rmu la 5.1)

Fig. 5.4. The flow chart of the ACO algorithm

Chapter 5: Scheduler Agent and ACO

110

A walking ant leaves behind on its route some amount of pheromone, which changes

the global environment. The probability for an ant to choose its next node is directed

by both the amount of pheromone on the route and the distance from its current

location to the targeted one. Ant i chooses the next node according to the State

Transition Rule in formula (5.1) (Dorigo et al, 1996).

> @

> @
E

D

E

D

W

W

»
»
¼

º

«
«
¬

ª

»
»
¼

º

«
«
¬

ª

6
�� ij

ij
nodesallowedj

ij
ij

ij

d
h

d
h

hp
1

.)(

1
.)(

)(

 (5.1)

The heuristic distance ijd in this study is the sum of traveling time between the current

workcenter to the target workcenter and the processing time of the operation in the

target workcenter. The environment is represented by a pheromone matrix, which is

updated by the best solution at each iteration. The updating can be described in

formulae (5.2) and (5.3) (Dorigo et al, 1996).

� � � � � � � �111 �'��� � hhh ijijij WWUW

 (5.2)

� � � �

°
°
¯

°°
®

­

 �'

otherwise

farsobestf

Q

h evaluation
ij

,0

__
1W

 (5.3)

Pheromones on all edges evaporate at the rate of U so as to diversify the search

procedure into larger solution spaces and jump out of local optima. The information

Chapter 5: Scheduler Agent and ACO

111

of the best solution can be used to intensify certain search areas by strengthening the

pheromones on all the edges of the best route by an amount of � �1�' tijW through

formula (5.2).

The centralized actions include choosing and keeping the best solution, as well as

deciding whether or not to continue solution seeking.

5.2.3 ACO for job shop scheduling problems

Each job in a classical JSSP is comprised of several operations to be processed on

different machines. Generally, their technical orders and the processing times are

represented in a technical matrix TM and a processing time matrix PM, respectively.

Each row of TM indicates the order of machines that all the operations of one job will

visit while each row of PM indicates the processing times that all those operations

will take on their processing machines. Simple examples of these are given as

follows.

»
¼

º
«
¬

ª

213

321

MMM

MMM
TM »

¼

º
«
¬

ª

)()()(

)()()(

232221

131211

OtOtOt

OtOtOt
PM

Fig. 5.5. The technical matrix TM and the processing matrix PM for a 2 x 3 JSSP

Fig. 5.5 presents a technical matrix and a processing matrix of a JSSP with two jobs

and three machines. The first job has three operations 11O , 12O , and 13O that will be

processed on machines M1, M2 and M3, in that order, and its three operations need

processing times of)(11Ot ,)(12Ot , and)(13Ot respectively.

Chapter 5: Scheduler Agent and ACO

112

The JSSP above can be represented as a graph (Fig. 5.6). Nodes 1 to 6 represent

operations 11O , 12O , to 13O , and 21O , 22O , to 23O . They are connected by horizontal

directional edges indicating the precedence constraints given in matrix TM. The bi-

directional edges indicate no ordering constraints among those operations. Dummy

nodes 0 and 7 representing the source and the sink of the graph are the starting and the

ending points of routing. They are connected by directional edges to the first and the

last operations of all jobs, respectively.

0

654

321

^W01,
d 0 1̀

^W
04 , d

04`

^W1 2, d1 2` ^W2 3, d 2 3`

^W4 5, d4 5` ^W5 6, d 5 6`

1 : O 1 1

2 : O 1 2

3 : O 1 3

4 : O 2 1

5 : O 2 2

6 : O 2 3

7

^W
37 , d

37`

^W67,
d 6 7̀

Fig. 5.6. The graph representing a 2 x 3 JSSP

Each edge is associated with a pair of values ^ `ijij d,W , representing the amount of

pheromone on it and the heuristic distance between the two nodes it connects. The

value of ijd can be easily looked up from matrix PM while the value for ijW should be

found in the pheromone matrix, which is updated by the ants who found the best

solutions (Fig. 5.6). An example of the pheromone matrix for the previous JSSP is

shown in Fig. 5.7, which records the pheromone values of all the edges connecting

every two nodes.

Chapter 5: Scheduler Agent and ACO

113

N 0 N 1 N2 N3 N4 N 5 N6

N0 0 0 .1 0 0 0 .1 0 0

N1 0 0 0 .1 6 0 0 .1 8 0 .1 9 0 .2 0

N2 0 0 0 0 .1 8 0 .1 9 0 .2 0 0 .2 1

N3 0 0 0 0 0 .2 0 0 .2 1 0 .2 2

N4 0 0 .1 6 0 .1 5 0 .1 4 0 0 .2 2 0

N5 0 0 .1 7 0 .1 6 0 .1 5 0 0 0 .2 4

N6 0 0 .1 8 0 .1 7 0 .1 6 0 0 0

Fig. 5.7. An example of the pheromone matrix for a 2 x 3 JSSP

The first row of Fig. 5.7 gives the pheromone values of the edges starting from node 0

to the other six nodes (The pheromones of edges that end at nodes 7 are not necessary

to be included). Only 1.001 W and 1.004 W exist since node 0 can only reach node 1

and node 4. Others are initiated to be 0. Similarly, the second row gives the

pheromones of the edges starting from node 1. 10W , 11W and 13W do not exist and are

thus initiated as 0. The updating of the pheromone matrix takes the majority of the

computation effort due to the dominant size of the pheromone matrix 2)1(�umn ,

where n and m are the sizes of jobs and machines, respectively. As each ant walks

through all the nodes in the matrix, the computational complexity is

� �� �2mnusO uuu , where s is the size of iterations and u is the number of ants per

iteration.

Ant i cannot guarantee to find a feasible route for a JSSP before it is equipped with

three lists: scheduled operation list (iS), accessible operation list (iA), and non-

accessible operation list (iNA). List iS includes the nodes that are visited by ant i ;

iA stores the currently accessible nodes; iNA stores the rest of the unvisited nodes.

Chapter 5: Scheduler Agent and ACO

114

The size of iS increases as ant i proceeds in the graph. Finally, the ordered nodes in

list iS form a complete route, which is a schedule for the JSSP.

5.2.4 ACO for job shop scheduling problem with parallel machines

It is assumed in a classical JSSP that there is only one machine in one workcenter.

However, in the present studied problem, it is assumed that there can be an arbitrary

number of machines in one workcenter. ACO demonstrates a good ability to be

adjusted to this change if a list ijM recording available times of all machines in

workcenter j is maintained by ant i . For example, a ^ 1̀.2,3.1,0.123 M

represents the available times of all three machines in workcenter 3 kept by ant 2.

Machine 1 is available from time 1.0; machine 2 is from time 1.3; and machine 3 is

from time 2.1. 23M becomes ^ 1̀.2,3.1,8.123 M after an operation with a

processing time of 0.8 allocated to machine 1.

The rule to choose a machine among several available machines is based on the times

that machines become available. In this study, the machine with the earliest available

time has the highest priority to be chosen, assuming all the machines in one

workcenter are identical. A random one will be chosen if several machines have the

same earliest available times. This approach avoids the situation that some machines

have been idle for too long.

5.2.5 ACO in a dynamic job shop scheduling environment

x� Updating intermediate JSSP

Chapter 5: Scheduler Agent and ACO

115

At each rescheduling moment, an intermediate JSSP has to be updated before the

ACO algorithm can be executed through updating its pheromone matrix, which

involves updating of nodes and pheromone values.

The updating of nodes in the pheromone matrix has two aspects: deleting the nodes

that represent completed or processing operations and adding the nodes representing

all the operations of the new job. For example, a new job with three operations 31O ,

32O and 33O arrives at the job shop at the moment that node 1 is completed and node

4 is processing. The updating of nodes includes deleting all the cells related to node 1,

as well as adding in the three new nodes (Fig. 5.8).

N0����
����

N1 N2 N3����
����

N4 N5 N6

N0 0
����
����

0 .1 0 .1 0 .1
����
����

0 .1 0 .1 0 .1

��������
��������

N1

����
����

0
����
����

0
��������
��������

0 .1 6
����
����

0
����
����

0 .1 8
��������
��������

0 .1 9
����
����

0 .2 0

N2 0
����
����

0 0 0 .1 8
����
����

0 .1 9 0 .2 0 0 .2 1

N3 0
����
����

0 0 0
����
����

0 .2 0 0 .2 1 0 .2 2

��������
��������N4

����
����0
����
����0 .1 6
��������
��������0 .1 5

����
����0 .1 4
����
����0
��������
��������0 .2 2

����
����0

N5 0

����
����0 .1 7 0 .1 6 0 .1 5

����
����0 0 0 .2 4

N6 0

����
����0 .1 8 0 .1 7 0 .1 6

����
����0 0 0

(a) Deleting the cells related to nodes 1 and 4

N0 N2 N3 N5 N6 N7 N8 N9

N0 0 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1

N2 0 0 0 .1 8 0 .2 0 0 .2 1 0 .1 0 .1 0 .1

N3 0 0 0 0 .2 1 0 .2 2 0 .1 0 .1 0 .1

N5 0 0 .1 6 0 .1 5 0 0 .2 4 0 .1 0 .1 0 .1

N6 0 0 .1 7 0 .1 6 0 0 0 .1 0 .1 0 .1

N7 0 0 .1 0 .1 0 .1 0 .1 0 0 .1 0

N8 0 0 .1 0 .1 0 .1 0 .1 0 0 0 .1

N9 0 0 .1 0 .1 0 .1 0 .1 0 0 0

Chapter 5: Scheduler Agent and ACO

116

(b) Adding in three nodes 7, 8, 9

N0 N1 N2 N3 N 4 N 5 N6 N7

N0 0 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1

N1 0 0 0 .1 8 0 .2 0 0 .2 1 0 .1 0 .1 0 .1

N2 0 0 0 0 .2 1 0 .2 2 0 .1 0 .1 0 .1

N3 0 0 .1 6 0 .1 5 0 0 .2 4 0 .1 0 .1 0 .1

N4 0 0 .1 7 0 .1 6 0 0 0 .1 0 .1 0 .1

N5 0 0 .1 0 .1 0 .1 0 .1 0 0 .1 0

N6 0 0 .1 0 .1 0 .1 0 .1 0 0 0 .1

N7 0 0 .1 0 .1 0 .1 0 .1 0 0 0

(c) The updated pheromone matrix

Fig. 5.8. Update pheromone matrix

The cells related to node 1 include those from the whole third column and the third

row while the cells related to node 4 include those from the whole sixth column and

the sixth row. All of them are shaded in table (a) of Fig. 5.8 and need to be deleted.

Three new nodes representing three operations of the new job are added to both ends

of the row and the column surrounded by black borders in table (b); all the new cells

are initiated with appropriate values. Finally, the nodes are re-numbered according to

the updated order and a new pheromone matrix is generated in table (c).

x� Parameters constrained in dynamic environment

Updating the pheromone values of the new pheromone matrix can be with or without

an adaptation mechanism. In the former case, the pheromone values on all edges are

re-initiated while in the latter case, only the new edges are initiated and the others

remain unchanged. For example, the adaptation mechanism is presented in Fig. 5.8,

where only new edges within the frame of table (b) are initiated and the others remain

Chapter 5: Scheduler Agent and ACO

117

unchanged. In this way, some optimization information in the previous problem can

be kept and a new schedule is sought based on it.

Given the computational complexity of � �� �2mnusO uuu for the ACO approach,

increasing the values of the number of iterations (s) and the number of ants per

iteration (u) increases both the solution quality and the computational time. Thus

they are constrained in a dynamic environment where the computational timeslot for

each intermediate JSSP is always limited.

The value of s can be a variable depending on the dynamism of the system in order to

produce an intermediate schedule as good as possible. Thus, the minimal and maximal

values of s are considered. The value of mins determines the minimal sets of ants that

can be initiated. Its role is to guarantee a minimal computational timeslot for each

intermediate JSSP. The value of maxs determines the maximal sets of ants that can be

initiated. Its role is to avoid over-enhancement of the pheromone values on some

edges. A variable s within[mins , maxs] can improve the quality of an intermediate

schedule as much as possible in the current test bed where the rescheduling procedure

and the event of a new arrival job (ev) run independently on different computational

threads; the rescheduling procedure is triggered only by ev. For example, if ev arrives

before mins is satisfied in the previous intermediate JSSP, its execution will be

delayed until mins is completed; otherwise, it can be immediately executed.

Meanwhile, more iterations are allowed to initiate ants to improve the solution if the

rescheduling procedure is not stopped by ev and s is not greater than maxs .

The values of u is also adjustable and its effects will be investigated in the

experiments.

Chapter 5: Scheduler Agent and ACO

118

5.3 ACO implemented as an MAS

5.3.1 Implementation

ACO is inherently a distributed methodology which makes use of many individual

and local procedures, and it is particularly well suited to parallelization. In this study,

the ACO algorithm can be implemented as an MAS to take the advantage of parallel

computation of distributed concurrent ants.

There are mainly two types of agents: environment and ant. The environment agent

maintains the pheromone matrix; it initiates a set of ant agents and collects their

solutions at each iteration; it also keeps the best solution and updates it during the

scheduling procedure. Each ant agent seeks its own schedule independently, reports it

to the environment agent, and finally kills itself and ceases its functions. The

responsibilities of the environment agent in this study are fulfilled by several

behaviours of the scheduler agent mentioned in section 5.1.

5.3.2 Functions of MAS in this study

Thus, in this thesis, the MAS works not only as a test bed to generate different

experimental scenarios and analyze results but also as an approach to implement the

ACO algorithm. A generic job shop simulated as a DES is further implemented as a

MAS to be a test bed in order to systematically study the performance of control rules

and algorithms in reactive scheduling under different environments. The test bed

provides not only the basic entities simulating a shop floor and dynamic events, but

also facilities the execution of schedules and measures the long term performance of

the proposed approach for several criteria. The ACO algorithm is implemented as an

Chapter 5: Scheduler Agent and ACO

119

MAS taking the advantage of the concurrent computation of independent ants, which

are modeled as agents. JADE is used to build the ACO algorithm as a pure MAS.

5.4 Summary

A scheduler agent using ACO as the optimizer is first combined with an existing

MAS test bed to simulate the scheduling function in a real-world job shop. Next, the

ACO algorithm, its application to JSSP, the representation of JSSP in a graph, and the

procedure of dynamically updating the pheromone matrix have been explained.

Meanwhile, the adaptation mechanism and two parameters, which are constrained in

dynamic job shop environments, are also discussed. Finally, the implementation of

ACO as an MAS and the functions of MAS in the current study are described.

6 Application of ACO for Dynamic

Job Shop Scheduling Problems

In this chapter, ACO is applied to two dynamic job scheduling problems, which have

the same mean total workload but different dynamic levels and disturbance severity.

Its performances on these two problems are statistically analyzed and the effects of its

adaptation mechanism are next studied. Furthermore, the effects of two important

parameters in the ACO algorithm, namely the minimum number of iterations and the

size of searching ants per iteration, which control the computational time and the

solution quality of an intermediate scheduling problem, are also investigated. The

results show that ACO can perform effectively in both cases; the adaptation

mechanism can significantly improve the performance of ACO when disturbances are

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

120

not severe; increasing the size of iterations and ants per iteration does not necessarily

improve the overall performance of ACO.

6.1 Experimental design

It is assumed that the reception of a new job will trigger a rescheduling procedure to

find a full schedule with makespan as performance measure within the computational

timeslot. The best-so-far schedule is then dispatched to be executed in all

workcenters. The rescheduling procedure repeats until the preset stop criteria are met.

6.1.1 Experimental environments

x� Problem configuration

The dynamic job shop studied is shown in Fig. 4.24 with five workcenters and one

receiving/shipping station. The numbers of machines in workcenters 1 to 5 are 4, 2, 5,

3, and 2, respectively. The machines in the same workcenter are assumed identical.

The distances between all the workcenters are given in Table 4.1. Jobs are transported

between workcenters by MHDs and the time spent on one trip is proportional to the

distance between the two locations. All MHDs are assumed to be moving at a

constant speed of 5 feet per second and they are assumed to be adequate.

New jobs arrive at the receiving/shipping station (workcenter 6) and travel among the

workcenters according to their technical orders and finally leave the system from the

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

121

receiving/shipping station. There are a total of 120!5 types of jobs and each type of

job occurs with a probability of !51 and the total processing time for each job is 1

hour. The technical routes and processing times of all operations of the jobs are given

in Fig. 6.1.

Job type T ech n ica l rou tes

1 1, 2, 3, 4, 5

2 1, 2, 3, 5, 4

.

120 5, 4, 3, 2, 1

Job type Process in g times (h ou rs)

1 0.25, 0 .15, 0 .10, 0 .30, 0 .20

2 0.25, 0 .15, 0 .10, 0 .30, 0 .20

...

120 0.25, 0 .15, 0 .10, 0 .30, 0 .20

(a) Technical routes (b) Processing times of all operations

Fig. 6.1. The technical routings and processing times of jobs

x� ACO Parameters

The parameters of the ACO algorithm are 0.10 D , 0.10 E , 0.01 U , 0.1 Q , and

5.00 W tuned by Zwaan and Marques (1999) to solve several JSSP benchmarks.

They are adopted here as each intermediate JSSP is similar to those benchmarks.

It is assumed that the computation timeslot determined by mins is within the time

constraint in realistic applications. The following are the default values: 25smin ,

100smax , and 10 u .

x� Intermediate objectives

A dynamic JSSP is comprised of a series of intermediate JSSPs over time as

mentioned in section 3.4. Thus the performance objective of those intermediate JSSPs

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

122

has to be decided in order to yield the best total throughput, overall mean flow time,

or overall mean tardiness. Three performance measures for those intermediate JSSPs

are tested and they are the makespan, mean flowtime, and mean tardiness. Irrespective

of the intermediate performance measure, evaluation values are recorded for all the

three overall performance measures: total throughput, overall mean flowtime, and

overall mean tardiness.

6.1.2 Experimental variables

Jobs arrive at the shop floor with inter-arrival times that are independent exponential

random variables. The mean job inter-arrival time and the lot size are the two problem

variables that decide the utilizations of workcenters. Two levels of job-arrival

frequencies with the same mean size of total jobs are tested. In problem 1, jobs arrive

one by one with the mean job inter-arrival time is nine jobs per hour. In problem 2,

jobs are released in lots and arrive one lot per hour with nine jobs per lot. Jobs in one

lot can be different types and will be processed job by job. In both problems, the type

of a job is randomly decided so that each one of the 120 types has an equal chance to

be chosen. Thus the mean total processing time demanded on each workcenter is the

same.

The size of jobs in a lot determines the severity that an underlying scheduling problem

is disturbed. For example, there are 16 unprocessed operations when a lot of new jobs

are released to the shop floor. The size of operations for the new intermediate JSSP is

22 if there is only one job with 6 operations in the lot. The old operations take about

73% (16/22) of the total operations in the new problem. However, they take only 57%

(16/28) of the total operations in the new problem if there is one additional job (also

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

123

with 6 operations) in the lot. Obviously, the underlying problem is changed more

severely by the larger lot with two jobs than the smaller one with one job.

The simulation for each problem runs five replications for 200 simulation hours

(totally about 1800 jobs) and the warming-up time is 20 hours (about 180 jobs). Only

steady-state performance is measured and the average values of five replications are

listed for all the performance measures.

6.2 Computational results and analysis

All the results are given in tables 6.1 to 6.6. Performance measures like the proportion

of machine busy time, both the average and the maximum numbers of waiting jobs in

queue are recorded by each workcenter agent while the average daily throughput, the

average time in system, the average total time in queues, the maximum size of WIP

are recorded by the shop floor agent. The maximum and the average sizes of

operations in the scheduling procedure are recorded by the ACO scheduler agent.

Some general observations are as follows. Firstly, workcenters 2 and 5 are bottlenecks

shown in all tables with utilizations of approximately 90%. Secondly, the machine

utilization is inversely proportional to the number of the machines in its workcenter.

The above two results are in accordance with the facts that the numbers of machines

in both workcenters are the smallest with only 2 while having the same workload as

other workcenters. Thirdly, the improvement in the average daily throughput and the

machine utilization can reduce the average and maximum numbers of waiting jobs in

a queue, the average time jobs spending in the system, the average total waiting times

jobs spending in queues, the maximal size of WIP, and the maximal/average size of

operations of intermediate problems, which reflects the overall performance of ACO

as analyzed in section 3.4.1.2.

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

124

6.2.1 ACO performance analysis

The performances of ACO in two dynamic JSSPs are listed in tables 6.1 and 6.2. The

200 hourly throughputs of the five replications for both problems with the adaptation

mechanism are plotted in figures 6.2 and 6.3 using moving average)20(i8 with a

window of 20 (Law and Kelton, 2000) and a warming up period of 20 l hours is

obtained. Next, 90 percent confidence intervals for the steady-state mean daily

throughputs of the two problems are constructed as
5

0.46
72.258 95.0,9tr (or

]43.72,09[72.) for Problem 1 and
5

2.13
73.973 95.0,9tr (or]75.74,[73.19) for

Problem 2.

Table 6.1. The effects of pheromone adaptation – Problem 1

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

125

M ean job inter-arriva l t im e: 1/9 hour, 1 job/lot Num ber of m ac hines : 4, 2, 5, 3, 2
A CO (with/without pherom one adaptat ion) (10 ants) S im ulat ion tim e: 200 hours
120 ty pes of jobs (random ly) W arm ing up t im e: 20 hours

p e rfo rmance me asure 1 2 3 4 5

Proportion mac hines busy (w orkcenter) 0.404/0.421 0.902/0.830 0.355/0.334 0.564/0.563 0.916/0.839

A verage number in queue (w orkcenter) 0.703/5.764 5.558/36.115 0.404/3.316 1.297/14.793 5.838/35.726

Max imum number in queue (w orkcenter)
7.0(10) /
20.4(33)

21.2(28)/
104.4(140)

5.2(6)/
14.0(24)

9.4(12) /
41.4(70)

21.0(31)/
77.6(123)

A verage daily throughput (s hop f loor) 72.258/64.871

A verage time in s ys tem (shop f loor) 2 .524/11.022

A verage to tal time in queues (s hop f loor) 1 .448/9.946

Max imal s iz e of W IP (s hop f loor) 48.8(69) /216(380)

max imal s iz e of A CO operations 138.8(198)/734.4(1335)

average s iz e of A CO operations 59.8/285.8

Table 6.2. The effects of pheromone adaptation – Problem 2

M ean job inter-arriva l t im e: 1/1 hour, 9 jobs /batc h Num ber o f m ac h ines : 4 , 2, 5, 3, 2
A CO (with/without adaptat ion) (10 ants) S im ulat ion tim e: 200 hours
120 ty pes of jobs (random ly) W arm ing up t im e: 20 hours

p e rfo rmance me asure 1 2 3 4 5

Proportion mac hines busy (w orkcenter) 0.438/0.462 0.922/0.924 0.364/0.361 0.617/0.617 0.935/0.935

A verage number in queue (w orkcenter) 3.482/3.488 27.839/29.382 2.420/2.445 5.564/5.523 30.195/29.774

Max imum number in queue (w orkcenter)
15.8(17)/
17.6(21)

70.0(84)/
80.4(86)

15.2(18)/
15.2(17)

21.0(28)/
22.4(26)

69.8(87)/
71.4(91)

A verage daily throughput (s hop f loor) 73.973/73.929

A verage time in s ys tem (shop f loor) 8 .426/8.545

A verage to tal time in queues (s hop f loor) 7 .350/7.469

Max imal s iz e of W IP (s hop f loor) 151.4(178) /152.6(178)

max imal s iz e of A CO operations 565.8(669)/569.4(683)

average s iz e of A CO operations 275.4(364)/278.8

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

126

l = 20

� �20i8

i

Fig. 6.2. Moving average of hourly throughputs of problem 1 with adaptation

l = 20

� �20i8

i

Fig. 6.3. Moving average of hourly throughputs of problem 2 with adaptation

The results show that ACO can perform well in both dynamic JSSPs to meet the

expected daily throughput of 72 jobs as the mean inter-arrival time of jobs is 1/9 hour

and there are 8 hours per day.

6.2.2 The effects of the ACO adaptation mechanism

The comparisons of ACO with/without adaptation in both problems are also listed in

tables 6.1 and 6.2. The daily throughputs drop from 72.258 to 64.871 in Problem 1

(Table 6.1) and from 73.973 to 73.929 in Problem 2 (Table 6.2) when the adaptation

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

127

mechanism is first applied and then removed. The change is significant in Problem 1

and minor in Problem 2.

The results indicate that the adaptation mechanism has greater effects in the situation

where disturbances are not severe as in problem 1 and has little effect in the situation

where disturbances are severe as in problem 2. The observation can be explained as

follows. In problem 1, jobs arrive one by one and neighboring intermediate JSSPs are

not severely different. A good solution can be found through the adaptation

mechanism within a given computational timeslot. However, in problem 2, there

would be not much difference between the pheromone matrices with and without the

adaptation mechanism since the underlying problem can be dramatically changed by a

large lot.

6.2.3 The effects of the number of minimal iterations

The results given in tables 6.3 and 6.4 show that increasing mins deteriorates the

performance of ACO in both problems, especially in problem 1 (72.258 for 25smin

and 64.693 for 40smin), when both problems adopt the adaptation mechanism. This

seems to be against the initial expectation that increasing the number of minimal

iterations can increase the optimality of an intermediate schedule and thus improve

the overall performance of ACO.

This phenomenon could be explained as follows. The pheromone values of certain

edges are increased too much as the result of increasing mins and the initial amount of

pheromone on the new edges introduced by new jobs becomes trivial. Thus the

pheromone matrix fails to properly represent a new scheduling problem and is called

too rigid to find a new good solution. Thus, the scheduler can only produce a worse

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

128

intermediate schedule each time, especially in a highly dynamic environment where

the computational time is limited.

Table 6.3. Increase the number of iterations – Problem 1

M ean job inter-arriva l t im e: 1/9 hour, 1 job/lot Num ber of m ac hines : 4, 2, 5, 3, 2
A CO (s mi n = 25/40 itera tions) (10 ants) S im ulat ion tim e: 200 hours

120 ty pes of jobs (random ly) W arm ing up tim e: 20 hours

p e rfo rmance me asure 1 2 3 4 5

Mac hine utiliz ation (w orkcenter) 0.404/0.419 0.902/0.826 0.355/0.332 0.564/0.560 0.916/0.835

A verage number in queue (w orkcenter) 0.703/6.040 5.558/37.344 0.404/3.113 1.297/15.989 5.838/37.085

Max imum number in queue (w orkcenter)
7.0(10) /
24.4(35)

21.2(28)/
78.2(140)

5.2(6)/
13.4(27)

9.4(12) /
45.4(75)

21.0(31)/
75.4(117)

A verage daily throughput (s hop f loor) 72.258/64.693

A verage time in s ys tem (shop f loor) 2 .524/11.458

A verage to tal time in queues (s hop f loor) 1 .448/10.382

Max imal s iz e of W IP (s hop f loor) 48.8(69) /222(383)

max imal s iz e of A CO operations 138.8(198)/778.2(1362)

average s iz e of A CO operations 59.8/300.2

Table 6.4. Increase the number of iterations – Problem 2

M ean job inter-arriva l t im e: 1/1 hour, 9 jobs / lot Num ber of m ac hines : 4, 2, 5, 3 , 2
A CO (s mi n = 25/40 itera tions) (10 ants) S im ulat ion tim e: 200 hours

120 ty pes of jobs (random ly) W arm ing up tim e: 20 hours

p e rfo rmance me asure 1 2 3 4 5

Mac hine utiliz ation (w orkcenter) 0.438/0.459 0.922/0.918 0.364/0.334 0.617/0.530 0.935/0.930

A verage number in queue (w orkcenter) 3.482/4.640 27.839/31.667 2.420/3.436 5.564/8.295 30.195/32.961

Max imum number in queue (w orkcenter)
15.8(17)/
19.0(30)

70.0(84)/
73.6(90)

15.2(18)/
16.4(24)

21.0(28.0) /
25.2(37)

69.8(87)/
73.6(86)

A verage daily throughput (s hop f loor) 73.973/73.138

A verage time in s ys tem (shop f loor) 8 .426/9.657

A verage to tal time in queues (s hop f loor) 7 .350/8.581

Max imal s iz e of W IP (s hop f loor) 151.4(178) /164(194)

max imal s iz e of A CO operations 565.8(669)/598.6(687)

average s iz e of A CO operations 275.4(364)/302.2(413)

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

129

Table 6.5. Increase the number of ants per iteration – Problem 1

M ean job inter-arriva l t im e: 1/9 hour, 1 job/lot Num ber of m ac hines : 4, 2, 5, 3, 2
A CO (u = 20/40) S im ulation tim e: 200 hours
120 ty pes of jobs (random ly) W arm ing up t im e: 20 hours

p e rfo rmance me asure 1 2 3 4 5

Mac hine utiliz ation (w orkcenter) 0.421/0.423 0.873/0.838 0.348/0.335 0.550/0.566 0.884/0.848

A verage number in queue (w orkcenter) 4.666/5.209 34.264/32.949 3.112/2.937 12.153/14.593 34.237/32.734

Max imum number in queue (w orkcenter)
18.2(34)/
22.2(34)

75.2(143)/
70(138)

13.2(22)/
11.8(21)

36.2(79)/
41.2(83)

72.8(122)/
68.6(116)

A verage daily throughput (s hop f loor) 68.364/65.502

A verage time in s ys tem (shop f loor) 9.999/10.232

A verage to tal time in queues (s hop f loor) 8.923/9.156

Max imal s iz e of W IP (s hop f loor) 189.8(389)/200.2(382)

max imal s iz e of A CO operations 626.6(1320)/674.2(1332)

average s iz e of A CO operations 275.4(529)/262.6(531)

Table 6.6. Increase the number of ants per iteration – Problem 2

M ean job inter-arriva l t im e: 1/1 hour, 9 jobs / lot Num ber of m ac hines : 4, 2 , 5, 3, 2
A CO (u = 20/40) S im u lat ion t im e: 200 hours
120 ty pes of jobs (random ly) W arm ing up t im e: 20 hours

p e rfo rmance me asure 1 2 3 4 5

Mac hine utiliz ation (w orkcenter) 0.434/0.453 0.916/0.903 0.319/0.355 0.614/0.605 0.929/0.914

A verage number in queue (w orkcenter) 4.940/9.140 31.686/37.849 3.372/6.538 8.251/16.221 33.826/37.819

Max imum number in queue (w orkcenter)
19.8(32)/
30.0(41)

73.4(84)/
77.2(97)

17.6(23)/
27.4(36)

25.2(36)/
38.8(45)

72.4(87)/
75.6(94)

A verage daily throughput (s hop f loor) 72.978/71.502

A verage time in s ys tem (shop f loor) 9 .759/12.349

A verage to tal time in queues (s hop f loor) 8 .683/11.273

Max imal s iz e of W IP (s hop f loor) 166.6(213) /177.6(282)

max imal s iz e of A CO operations 599.8(679)/718.2(963)

average s iz e of A CO operations 305.4(443)/358.6(507)

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

130

6.2.4 The effects of changing the number of ants per iteration

The results on the effects of changing the number of ants per iteration are given in

tables 6.1, 6.2, 6.5, and 6.6, which show that the overall performance of ACO

deteriorates as the size of ants per iteration increases. For example, with other

problem parameters unchanged, the average daily throughput decreases from 72.258

(Table 6.3), 68.364 (Table 6.5), to 65.502 (Table 6.5) as the size of ants per iteration

increases from 10, 20, to 40 in Problem 1 while the same performance measure

decreases from 73.973 (Table 6.4), 72.978 (Table 6.6), to 71.502 (Table 6.6) in

Problem 2.

The phenomenon can be explained as follows. A schedule with a small makespan is

more likely found by more ants; subsequently, a greater pheromone value is added on

the related edges. The optimality found in this schedule will be fully realized if the

execution of the schedule is not disturbed by any dynamic/stochastic events.

However, once the execution is disturbed, the schedule’s optimality will not be able to

be fully realized. Furthermore, the amount of pheromone left on edges by the

optimized but obsolete schedule may over-strength the pheromone matrix, which,

similar to the situation in section 6.2.3, may become rigid in capturing new

information introduced by new jobs and thus fail to give good schedules for the

subsequent intermediate problems. Thus, increasing the number of ant per iteration

may lead to an inferior overall performance in a dynamic environment. For both cases

of with and without adaptation mechanism, ten ants per iteration can provide best

solutions.

6.3 Summary

Chapter 6: Apply ACO to Dynamic Job Shop Scheduling Problems

131

A basic version of ACO has been applied to two dynamic JSSPs with the same

workloads but different dynamic levels and disturbing severity. The computational

results show: 1) the ACO performs effectively in both cases; 2) the adaptation

mechanism of the ACO does have effects in situations where disturbances are slight

but have little effects in situations where disturbances are severe; and 3) improving

the optimality of immediate schedules but sacrificing the flexibility of the pheromone

matrix may lead to an inferior long-term performance.

Chapter 8: Conclusions and Future Work

132

7 ACO Application Domains

The purpose of this chapter is to explore the best application domains that ACO can

be applied to in the area of dynamic JSSP. The term domain describing dynamic

JSSPs is comprised of three dimensions: namely the frequency of arriving jobs, the

variation of processing times, and performance measures. Given the total number of

jobs and performance objectives, a high frequency of arriving jobs implies a highly

dynamic problem, which in turn is more difficult to be solved Sthrough algorithmic

approaches. The variation of processing times refers to the range that a processing

time can take. More types of performance measures are optimized for intermediate

JSSPs and they are makespan, mean flowtime, and mean tardiness.

There are two series of experiments. The first series aims to find the range of dynamic

levels that ACO can perform well and compares the performances of ACO with

several dispatching rules in problems with different dynamic levels and performance

objectives. Next, the best ACO strategy and the best dispatching rule are found and

used in the second series of experiments to explore the effects of the variation of

processing times. Their performances are compared and the proper ranges that ACO

outperforms the best dispatching rule are identified. In this manner, a general

understanding of the domains that ACO can be appropriately applied will be gained.

7.1 General experimental environment

General experimental environment and rescheduling strategies are similar to those in

Chapter 6 and only some differences or important parameters are given as follows.

Chapter 8: Conclusions and Future Work

133

7.1.1 Shop floor configuration

The simulation experiments have been conducted in a job shop with five workcenters

and a reception/shipping station, where new jobs are received and completed jobs are

shipped. There is one machine in each workcenter. The traveling times between any

of two workcenters are given in Table 7.1.

Table 7.1. Traveling times between workcenters (hours)

Wo rk ce nte r 1 2 3 4 5 6

1 0 0.01 0.01 0.02 0.02 0.01

2 0.01 0 0.01 0.02 0.02 0.01

3 0.01 0.01 0 0.01 0.01 0.01

4 0.02 0.02 0.01 0 0.01 0.01

5 0.02 0.02 0.01 0.01 0 0.01

6 0.01 0.01 0.01 0.01 0.01 0

7.1.2 Job generation

Jobs have random processing times, random release dates and the routing of each job

is generated randomly with every machine having an equal probability of being

chosen. Each job has five operations and processing times are drawn from different

ranges of the rectangular distribution. Three ranges that processing times can be

drawn are: 1.0-5.0, 5.0-10.0, and 1.0-10.0 (hours). The due date of a job is decided

following the total work-content method (Ramasesh, 1990). The total work-content of

job i (TWKi) refers to its total processing times and the due-date (Di) setting follows

the formula:

di = r i + c*TWKi

 (7.1)

where ri refers to the arrival time of the job i and c indicates the tightness of the due

date. c equals 2 in this study to provide a tight due time so that the performance in

Chapter 8: Conclusions and Future Work

134

terms of mean tardiness can be clearly shown. Jobs arrive at the shop floor with inter-

arrival times that are independent exponential random variables.

The overall resource utilization of a job shop can be defined as the total processing

times required on its machines. The value is affected by the mean inter-arrival time

D and the mean processing time P of the incoming jobs. The desired utilization rate

U can be expressed as mPU /
 D where m is the number of machines. An

increasing D leads to an increasing U when the values of P andmare fixed. Thus,

high machine utilization means highly dynamic JSSP.

7.1.3 Experimental parameters

There are a total of 2200 tested jobs and the steady state begins from the 200th job,

which is determined by the technique of the moving average of hourly throughputs

(Law and Kelton, 2000). The state of the production system between the arrival times

of the 201st job and the 2201st job are then taken as steady state and data collected

during this time are collected for statistical analysis. Each simulation consists of five

replications.

The parameters of the ACO in this study are 0.10 D , 0.10 E , 0.01 U , and 5.00 W

tuned by Zwaan and Marques (1999). Q is adjusted according to the mean values of

the processing times in order to give a reasonable influence on the pheromone matrix.

For each intermediate JSSP, the minimal and maximal numbers of iterations are 25

and 100, respectively, and the number of ants initiated per iteration is 10.

7.2 Experiments - I

Chapter 8: Conclusions and Future Work

135

7.2.1 Experimental goals

The goals of this series of experiments are designed to study the performances of the

ACO optimizing three different intermediate performance measures, such as

makespan, mean flowtime, and mean tardiness, in solving intermediate JSSPs under

different experimental conditions. The outcomes are compared with those from FIFO,

SPT, and MST for the same problems. Next, the ACO using the best intermediate

performance measure, which generates the best overall performance, and the best

dispatching rule are used to study the effects of different ranges of processing times in

section 7.3.

Three machine-utilization levels are tested in the experiments: 70%, 80%, and 90%. It

is obvious that a greater U implies a larger number of operations to be scheduled at

any specified time, which implies a harder problem to address. Thus, in all, there are

three ranges of processing times, three different utilization levels, and three

optimization objectives, making totally 27 simulation experiment sets for the ACO

approach; and total 27 simulation experiment sets for all of three dispatching rules.

7.2.2 Results

All the results are presented in tables 7.2 to 7.7. The average values of five

replications for each simulation problem are recorded. Measures of the maximal WIP,

total throughput, mean flowtime, and mean tardiness are listed. Furthermore, the

maximal and the average numbers of operations of intermediate scheduling problems

are also recorded for all instances of the ACO approach in Table 7.8.

Table 7.2. Performances of ACO - processing times ranging from 1.0-10.0 (hours)

Chapter 8: Conclusions and Future Work

136

Utilizatio n
AC O interm ediate

m eas ure
ma x. W IP to ta l T P

 me a n
flowtime

me an
ta rd ine ss

70 % m ak es pan 23 .2 2000.2 56 .6 59 10 .8 63

m ean flowt im e 19.4 19 9 9.6 49.825 6.364

m ean tardines s 19 .8 19 9 8.8 50 .0 28 9 6.65 7

80 % m ak es pan 30 .8 19 9 7.6 74 .8 35 25 .6 38

m ean flowt im e 26.2 1998.8 65.552 18.474

m ean tardines s 27 .2 19 9 8 66 .5 95 19 .4 69

90 % m ak es pan 60 .2 2004.6 17 1 .98 2 11 9 .31 9

m ean flowt im e 52 .2 20 0 0.8 14 8 .79 9 97 .3 28

m ean tardines s 51.8 20 0 0.2 147.824 96.345

Table 7.3. Performances of Dispatching rules - processing times ranging from 1.0-
10.0 (hours)

Utilizatio n Rules max W IP tota l TP mean
flo wtime

mean
tard iness

70% F IF O 22.8 1998 .4 59.3 85 11.2 03

S P T 20 1999 51.723 6.555

M S T 20.8 1998 .8 57.3 63 8.26 1

80% F IF O 31.4 1998 .2 79.4 10 27.5 36

S P T 24.8 1999 .4 63.433 15.135

M S T 27.2 2000.2 75.3 25 22.6 83

90% F IF O 50.6 2003.8 140.898 86.7 09

S P T 37.2 1999 .8 97.571 45.989

M S T 44 1999 .8 138.154 83.6 89

Table 7.4. Performances of ACO - processing times ranging from 1.0-5.0 (hours)

Utiliza tio n
A CO interm ediate

m eas ure
ma x. W IP to ta l T P

 me a n
flowtime

me a n
ta rd in e ss

7 0 % m ak es pan 2 2 .6 1 9 9 9 3 0 .0 8 9 5 .25 6

m ean flow tim e 19 1999.6 26.727 3.117

m ean tardines s 2 0 .4 1 9 9 9 2 6 .7 8 4 3 .31 3

8 0 % m ak es pan 3 1 .2 1998.8 3 9 .2 1 1 1 2 .4 3 7

m ean flow tim e 26.6 1 9 9 8 .4 34.587 8.993

m ean tardines s 2 6 .8 1998.8 3 4 .8 5 4 9 .38 4

9 0 % m ak es pan 5 3 .4 2004 8 0 .3 2 4 5 1 .6 7 5

m ean flow tim e 5 0 .4 2 0 0 1 .6 7 4 .1 0 6 4 6 .1 9 9

m ean tardines s 47.4 1 9 9 9 .6 72.280 44.387

Chapter 8: Conclusions and Future Work

137

Table 7.5. Performances of Dispatching rules - processing times ranging from 1.0-5.0
(hours)

Utilizatio n R u les max W IP tota l T P
 me an

flo wtime
mea n

tard ine ss

7 0 % F IFO 2 2 1999.2 3 0 .9 23 4 .9 6 8

S P T 2 0 1 9 98 .8 27.687 3.279

M S T 19.6 1 9 98 3 0 .1 30 3 .6 4 3

8 0 % F IFO 3 0 .8 1 9 98 .4 4 0 .8 43 1 2 .7 71

S P T 25.2 1 9 98 .6 34.357 8.026

M S T 2 6 .8 1999.6 3 9 .0 39 1 0 .5 20

9 0 % F IFO 4 7 .4 2002.6 7 0 .5 63 4 1 .0 49

S P T 36.8 1 9 99 .4 51.916 23.853

M S T 4 0 .2 2 0 01 .6 6 7 .0 87 3 7 .4 17

��
��
��
��

��
��

Table 7.6. Performances of ACO - processing times ranging from 5.0-10.0 (hours)

Utiliza tio n
A CO in te rm edia te

m eas ure
ma x. W IP to ta l T P me a n

flo wtime
me a n

ta rd in e ss

7 0 % m ak es pan 2 2 .6 1 9 9 9 .4 7 2 .4 9 8 1 1 .3 7 5

m ean flow t im e 19.6 1 9 9 8 .8 64.520 6.848

m ean ta rd ines s 2 0 .4 1999.6 6 5 .0 3 2 7 .3 6 1

8 0 % m ak es pan 3 1 1 9 9 7 .8 9 2 .1 2 7 2 6 .6 7 1

m ean flow t im e 27.6 1 9 9 6 .8 81.502 19.158

m ean ta rd ines s 2 7 .8 1998 8 3 .1 9 3 2 0 .6 3 9

9 0 % m ak es pan 5 0 .8 2000.6 1 7 6 .6 1 7 1 0 6 .0 9 3

m ean flow t im e 4 8 .2 2 0 0 0 .2 1 6 0 .7 6 4 9 2 .1 3 5

m ean ta rd ines s 47.6 1 9 9 7 .8 153.073 84.617

Table 7.7. Performances of Dispatching rules - processing times ranging from 5.0-
10.0 (hours)

Utilizatio n R ules ma x W IP to ta l T P mea n
flo wtime

me an
ta rd ine ss

7 0% F IFO 2 1.6 1 99 8.6 7 1.9 14 8 .53 0

S P T 1 9.2 1 99 7.8 68.433 8 .02 6

M S T 19 1998.8 7 1.1 52 6.392

8 0% F IFO 2 9 1 99 8 9 3.0 53 2 3.8 68

S P T 2 5.8 1 99 6.8 84.529 1 9.4 70

M S T 24.4 1998.6 8 8.8 47 18.487

9 0% F IFO 4 4.6 1 99 9 1 48 .26 4 7 4.9 88

S P T 3 8.4 1 99 7.6 124.880 55.398

M S T 36.4 1999.8 1 36 .22 6 6 2.3 50

Chapter 8: Conclusions and Future Work

138

Table 7.8. Maximal and average sizes of intermediate scheduling problems

mach in e
utilization 70% 80% 90%

proce ssin g
time ran ge 1.0~10.0 1.0~5.0 5.0~10.0 1.0~10.0 1.0~5.0 5.0~10.0 1.0~10.0 1.0~5.0 5.0~10.0

m akespan

ma x.
op era tio ns

67 .6 69 .6 67 .4 89 .8 87 .6 86 .4 15 8.8 14 4.6 13 8.0

ave.
op era tio ns

21 .8 21 .6 20 .2 31 .6 31 .8 28 75 65 .6 56 .0

m ean
flow tim e

ma x.
op era tio ns 67 66 .8 66 .6 92 .2 87 .6 90 .2 15 7.2 15 0.8 14 4.6

ave.
op era tio ns

22 .2 22 21 .2 32 .6 31 .8 29 .4 74 .2 68 .4 59 .6

m ean
tardines s

(c =2)

ma x.
op era tio ns

69 67 .8 68 .6 92 90 .6 90 .2 15 3.4 14 7.2 13 9.4

ave.
op era tio ns 22 21 .6 21 .2 32 .8 31 .6 29 .8 73 .8 67 .2 57 .2

7.2.3 Discussions

First of all, it is observed that the differences of total throughputs generated by all the

approaches for the same problem are very small. The greatest difference is 4.4 jobs

occurring in two occasions of ACO approaches: when the processing time range is 1.0

to 10 with 90% machine utilization (Table 7.2) and when the processing time range is

1.0 to 5.0 with 90% machine utilization (Table 7.4). The size of 4.4 jobs is considered

insignificant as compared to the total number of evaluated jobs, which is 2000 in this

study. Thus, this performance measure will not be further considered in the following

analysis.

7.2.3.1 Processing times ranging from 1.0 to 10.0 (hours)

x� Identify the best ACO approach

Among the three intermediate performance measures, ACO optimizing F performs

best when the machine utilizations are 70% and 80%. For example, it generates

overall mean flowtimes of 49.825 and 65.552 (hours), and overall mean tardiness of

6.364 and 18.474 (hours) for machine utilizations of 70% and 80%, respectively

(Table 7.2).

Chapter 8: Conclusions and Future Work

139

The results can be explained as follows. The best intermediate schedule chosen

according to the minimal makespan does favor the completion of more jobs.

However, this advantage is not prominent when the workload does not exceed the

machine capability, especially when machine utilizations are not high. Meanwhile, the

other two intermediate performance measures explicitly optimize F and T .

Subsequently, the values of their overall F and T are better than those from the first

approach.

Furthermore, the overall values of F and T generated by minimizing F are better

than those from minimizing T in all the problems where machine utilizations are 70%

or 80%. The former approach considers the release times of jobs and can facilitate the

jobs with earlier releasing times to be completed earlier. Thus it can improve both the

performances of F and T . Finally, all the ACO solutions are outperformed by the

dispatching rules when the machine utilization is 90% and thus their performances are

not further analyzed.

x� Identify the best dispatching rule

Among the three tested dispatching rules, the dispatching rule of SPT always

outperforms the other two in terms of mean flowtime and mean tardiness in most

cases (tables 7.3, 7.5, and 7.7). For example, in Table 7.3 when processing times rang

from 1.0 to 10.0 hours, SPT performs best for all measures when the machine

utilization is 70% and it performs best for all measures except the total throughput

when machine utilizations are 80% and 90%. The similar conclusion is observed in

the cases when processing times rang from 1.0 to 5.0 hours (Table 7.5) and from 5.0

to 10.0 hours (Table 7.7).

Chapter 8: Conclusions and Future Work

140

This observation shows that to reduce the total number of operations in a system is

important to improve the overall performance.

x� Compare the best ACO and the best dispatching rule

The comparisons of the best ACO and the best dispatching rule in terms of mean

flowtime and mean tardiness are given in Fig. 7.1 according to Table 7.2 and Table

7.3.

Overall Mean Flowtime (1.0-10.0)

0
20
40
60

80
100

120
140

160

70 80 90

machine utilization (%)

h
o

u
r SPT

ACO

(a) mean flowtime

Chapter 8: Conclusions and Future Work

141

Overall Mean Tardiness(1.0-10.0)

0

20

40

60

80

100

120

70 80 90

machine utilization (%)

h
o

u
r SPT

ACO

(b) mean tardiness

Fig. 7.1. Performance comparison when processing times ranging from 1.0 to 10.0
(hours)

In summary, the best approaches for the three levels of machine utilizations

optimizing F are ACO for 70% and SPT for both 80% and 90%. The respective best

values of overall F are 49,825 for 70%, 63.433 for 80%, and 97.571 for 90%. Fig. 7.1

(a) indicates that the performance of ACO deteriorates faster than SPT when the

machine utilization is beyond 80%.

Similar results can also be observed in the case of optimizing T . The only difference

is that ACO outperforms SPT when the machine utilization is 80% (Fig. 7.1 (b)),

which means that the best approaches for the three levels of machine utilizations for

ACO are 70% and 80%, and SPT for 90%.

7.2.3.2 The other two ranges of processing times

Chapter 8: Conclusions and Future Work

142

The analysis for the ranges of 1.0 to 5.0 and 5.0 to 10.0 are given in Fig. 7.2 and Fig.

7.3, which show similar results observed in the previous case in both the measures of

overall F and T .

Chapter 8: Conclusions and Future Work

143

Overall Mean Flowtime (1.0-5.0)

0
10

20
30

40
50

60
70
80

70 80 90

machine utilization (%)

h
o

u
r SPT

ACO

(a) mean flowtime

Overall Mean Tardiness (1.0-5.0)

0

10

20

30

40

50

70 80 90

machine utilization (%)

h
o

u
r SPT

ACO

(b) mean tardiness

Fig. 7.2 Performance comparison when processing times range from 1.0 to 5.0 (hours)

Chapter 8: Conclusions and Future Work

144

Overall Mean Flowtime (5.0-10.0)

0
20
40
60
80

100
120
140
160
180

70 80 90

machine utilization (%)

h
o

u
r SPT

ACO

(a) mean flowtime

Overall Mean Tardiness (5.0-10.0}

0
10
20
30
40
50
60
70
80
90

70 80 90

machine utilization (%)

h
o

u
r SPT

ACO

(b) mean tardiness

Fig. 7.3 Performance comparison when processing times range from 5.0 to 10.0

(hours)

7.2.3.3 Compare the normalized performances of ACO

Chapter 8: Conclusions and Future Work

145

The mean job processing times for the ranges of 1.0 to 10.0, 1.0 to 5.0, and 5.0 to 10.0

are 27.5, 15.0, and 37.5 (hours) respectively. In order to investigate the effect of the

variation of processing times on the ACO performance, the value of a normalized

performance is defined as the performance value divided by the mean job processing

time. For example, the normalized mean flowtime obtained by ACO optimizing

makespan for intermediate JSSPs equals to 72.498/37.5 when machine utilization is

70% and the range of processing times is 5.0 to 10.0 (hours) (Table 6). 72.498 is the

mean flowtime value and the 37.5 is the mean value of the range 5.0 to 10.0. Thus, the

normalized performances for the best ACO in three ranges are illustrated in Fig. 7.4

where the values of overall F and T are divided by the respective job processing

times.

Chapter 8: Conclusions and Future Work

146

ACO Normalized Flowtime

0

5

10

15

20

25

30

70 80 90

machine utilization (%)

h
o

u
rs

1.0-10.0

1.0-5.0

5.0-10.0

(a) Normalized flowtime

ACO Normalized Tardiness

0

5

10

15

20

70 80 90

machine utilization (%)

h
o

u
r

1.0-10.0

1.0-5.0

5.0-10.0

(b) Normalized tardiness

Fig. 7.4 Comparison of normalized performances

The comparison shows that ACO for the range of 5.0 to 10.0 performs best while

ACO for the range of 1.0 to 5.0 performs worst for both mean flowtime and mean

Chapter 8: Conclusions and Future Work

147

tardiness measures in all three machine utilizations. As the sizes of tested jobs for all

the experiments are the same, which is 2200, the normalized performances suggest

that the variation of job processing times changes either the complexity of a dynamic

JSSP or the performance of ACO, or both. Further studies of the effects of the

variation of processing times are presented in section 7.3.

The results also show that the performance of ACO is closely related to the average

size of its intermediate JSSPs. For example, Fig. 7.5 illustrates the average sizes of

intermediate JSSPs of the best ACO for three machine utilizations and three ranges of

processing times, which are recorded in Table 7.8. The average operation sizes for the

range of 1.0 to 10.0 are greater than the other two ranges for all three machine

utilizations and the results generated by ACO for this range are the worst (Fig. 7.4).

Thus, it can be concluded that the performance of ACO is inversely related to the

average size of its intermediate JSSPs.

Average Sizes of Operations

0

20

40

60

80

1 2 3

machine utilization (%)

si
ze

 o
f

o
p

er
at

io
n

s

1.0~10.0

1.0~5.0

5.0~10.0

Fig. 7.5 Average sizes of operations of intermediate scheduling problems

This can be explained as follows. The optimality of the schedule generated by ACO

decreases as the number of operations increases given the same numbers of iterations

and ants. This inferior schedule in turn may increase the number of operations in the

Chapter 8: Conclusions and Future Work

148

following JSSP, making it even harder to be solved. Thus, the approach with fewer

operations averagely will always perform better in a long term.

7.2.4 Summary

In summary, the following observations can be made for the two performance

measures of mean flowtime and mean tardiness, for all three different ranges of

processing times.

1) ACO optimizing mean flowtime for all the intermediate scheduling problems

performs better than the other two intermediate performance measures while SPT

is the best one among three dispatching rules.

2) ACO performs best when the machine utilization is 70% while SPT performs best

when the machine utilization is 90% in terms of mean flowtime and mean

tardiness for all the three ranges of processing times; both ACO and SPT can

outperform each other when the machine utilization is 80%.

3) The machine utilization is an important factor affecting the performance of ACO.

ACO is outperformed by SPT quickly after the machine utilization reaches 80%.

This is in accordance with the findings by Sabuncuoglu and Bayiz, (2000): a)

there was not much difference between the optimum methods and heuristics when

uncertainty or variability was high; and b) the performance of the off-line

algorithm was affected more than the on-line method in a stochastic environment.

4) The complexity of a dynamic JSSP is also affected by the ranges of job processing

times and the overall performance of ACO is affected by the average size of

operations of intermediate scheduling problems.

5) The value changes for the performance measures of mean flowtime and mean

tardiness in different problem settings follow similar trends.

Chapter 8: Conclusions and Future Work

149

7.3 Experiments - II

7.3.1 Experimental goals

In the current section, experiments are carried out to identify how the variation of

processing times would affect the dynamic problem and the performance of ACO.

Only the best ACO approach and the best dispatching rule, SPT, are compared. Three

levels of processing time ranges: 7.0-8.0, 5.0-10.0, and 1.0-14.0 (hours) are chosen to

represent three increasing levels of varieties while the mean operation processing

times are kept unchanged at 7.5 hours. The variation of processing times is the

smallest in the range of 7.0 to 8.0 (hours), followed by the ranges of 5.0 to 10.0

(hours), and then the range of 1.0-14.0 (hours). Three levels of machine utilizations

are tested: 60%, 70% and 80%. F and T are also the overall performance measures.

Thus, there are totally 18 simulation problems and each of them has five replications.

7.3.2 Results

The results are presented in Table 7.9 and Table 7.10 where the average values of five

replications for each problem are recorded.

Table 7.9. Flowtimes generated from ACO and SPT

range of processing times

machine

utilization 7.0~8.0 5.0~10.0 1.0~14.0

Chapter 8: Conclusions and Future Work

150

60% 54.369 55.885 58.228

70% 61.693 64.52 68.938 ACO

80% 76.156 81.502 92.078

60% 59.37 57.052 61.126

70% 69.557 68.433 70.964 SPT

80% 87.04 84.529 87.917

Table 7.10. Tardiness generated from ACO and SPT

range of processing times

machine

utilization 7.0~8.0 5.0~10.0 1.0~14.0

60% 1.938 2.449 3.342

70% 5.47 6.848 9.549 ACO

80% 15.476 19.158 27.665

60% 3.6 2.644 3.879

70% 9.136 8.026 9.216 SPT

80% 22.064 19.47 21.694

7.3.3 Discussions

The results in tables 7.9 and 7.10 can be illustrated in Fig. 7.6 and Fig. 7.7 for the

measure of mean flowtime and mean tardiness, respectively. The horizontal axis

represents the range of processing times where 1 refers to the range of 7.0 to 8.0

(hours); 2 refers to the range of 5.0 to 10.0 (hours); 3 refers to the range of 1.0 to 14.0

(hours).

Chapter 8: Conclusions and Future Work

151

Mean Flowtime of ACO and SPT

50

55

60

65

70

75

80

85

90

95

1 2 3

processing time range

ho
ur

aco 60%

aco 70%

aco 80%

spt 60%

spt 70%

spt 80%

Fig. 7.6 Flowtime generated from ACO and SPT

Mean Tardiness of ACO and SPT

0

5

10

15

20

25

30

1 2 3

processing time range

h
o

u
r

aco 60%

aco 70%

aco 80%

spt 60%

spt 70%

spt 80%

Fig. 7.7 Tardiness generated from ACO and SPT

x� ACO vs. SPT

In both figures, the top two lines represent the values of mean flowtimes or mean

tardiness generated by ACO and SPT for the three ranges of processing times when

Chapter 8: Conclusions and Future Work

152

the machine utilization is 80%. Similarly, the middle two and the lowest two represent

those values when machine utilizations are 70% and 60%, respectively.

Both figures show that ACO outperforms SPT in all tested problems for both

performance measures in all processing time ranges except for the only occasion

when processing time range is from 1.0 to 14.0 and the machine utilization is 80%. It

can be concluded that the performance of ACO decreases as the variations of

processing times increase, especially, when the machine utilization is high. However,

this is not the case for SPT, which performs even better for all the three machine

utilizations when the processing times are in the range of 5.0 to 10.0 (hours) than in

the other two ranges. The observations are more apparent in Fig. 7.6.

Furthermore, ACO increasingly outperforms SPT for all machine utilizations when

the variations of processing times decrease from 1.0~10.0, to 7.0~8.0 and its

superiority reaches the highest when the machine utilization (dynamic level) is 80%

and processing times range from 7.0 to 8.0 (hours). The value of mean tardiness

generated is 15.476 hours from ACO while it is 22.064 hours from SPT (Table 7.10

and Fig. 7.7). The difference of 6.588 hours between the two approaches is significant

as the overall tardiness is obtained by multiplying the mean tardiness with the total

number of jobs, which is 2000 here for the steady state analysis.

x� ACO in different ranges of processing times

Chapter 8: Conclusions and Future Work

153

ACO Mean Flowtimes in Different Ranges

50

55

60

65

70

75

80

85

90

95

70 80 90

machine utilization (%)

ho
ur

7.0~8.0

5.0~10.0

1.0~14.0

(a) ACO mean flowtimes in different ranges

ACO Mean Tardiness in Different Ranges

0

5

10

15

20

25

30

70 80 90

machine utilization (%)

h
ou

r

7.0~8.0

5.0~10.0

1.0~14.0

(b) ACO mean tardiness in different ranges

Fig. 7.8 Comparison of ACO performances in different ranges of processing times

The results are further illustrated in Fig. 7.8, which also shows that the performances

of ACO in terms of mean flowtime and mean tardiness are inversely affected by the

variations of the processing times. That is, the performance of ACO increases when

the ranges of processing times decrease from 1.0~14.0, 5.0~10.0, to 7.0~8.0 for the

same machine utilization.

Chapter 8: Conclusions and Future Work

154

7.3.4 Summary

The main findings of this section are as follows. ACO can perform very well in the

following situations: 1) when the machine utilization is not high, for example, below

90%, and 2) when the variation of processing times is small. In the latter case, the

advantage of ACO can be further enhanced when the machine utilization increases

within 90%.

Chapter 8: Conclusions and Future Work

155

8 Conclusions and Future Work

This chapter first summarizes the work reported in this thesis in section 8.1. Section

8.2 highlights the contributions and the conclusions made in the previous chapters.

Finally, future research directions are outlined in section 8.3.

8.1 Research work summary

The thesis first presents a general background of dynamic JSSP. The state-of-the-art

predictive-reactive scheduling, MAS scheduling, and applications of ACO on

scheduling related problems are reviewed. The internal factors that characterize a

dynamic JSSP as well as the factors that affect its overall performance are analyzed.

Thereafter, the test bed for systematically studying dynamic JSSPs is built, validated

and extended to include an ACO scheduler agent.

Extensive experiments are carried out to present the effectiveness of ACO in solving

dynamic JSSPs and the effects of the adaptation mechanism of ACO in the

experimental environments characterized with different dynamic levels and

disturbance severity. Two important ACO parameters, namely the number of

iterations and the size of ants per iteration, are tuned in order to improve the overall

performance under the same problem settings. Finally, the appropriate application

domains of ACO are experimentally found by testing ACO in many dynamic JSSPs

defined by three dimensions of dynamic levels, processing time distributions and

intermediate performance measures.

Chapter 8: Conclusions and Future Work

156

8.2 Contributions

A number of original contributions are listed in the light of the work carried out in this

thesis.

8.2.1 Detailed analysis of dynamic JSSP

Detailed analyses of the internal factors that characterize a dynamic JSSP as well as

the factors that affect its overall performance are given. The analyses have led to the

understanding that the characteristics of a dynamic JSSP can internally determinate its

solution approaches and therefore the potential scenarios that are appropriate for

optimum-seeking algorithms can be predicted. Furthermore, the factors that can affect

the performance of a predictive-reactive approach are analyzed. Finally, the

systematic ways of testing a proposed scheduling technique are identified and the

domain classification of dynamic JSSPs is introduced according to this analysis.

8.2.2 Proposal of a generic test bed combining DES and MAS

A novel test bed combining the MAS technology and DES has been built to provide

scenarios for a systematic study of dynamic JSSPs. This test bed can test traditional

approaches like dispatching rules, mathematical methods, or metaheuristics and pure

MAS scheduling techniques on their long term performance. To the best of the

author’s knowledge, this is the first implementation of MAS with DES for job shop

systems.

8.2.3 Development of a simulation software prototype

A simulation software prototype was designed using UML and developed to apply

ACO to many dynamic JSSPs. The software was implemented in pure JAVA and

Chapter 8: Conclusions and Future Work

157

based on the JADE platform, which makes it extensible for simulating many other

types of shop floor configurations, dynamic events, etc. It is also equipped with

graphs to dynamically exhibit intermediate schedules in Gantt charts. Furthermore,

the MAS approach makes it possible to be concurrently deployed on several

computing nodes and thus the software has the potential to solve large sized problems.

8.2.4 Better understanding of ACO in dynamic JSSPs

A substantial amount of experiments have been designed according to the analyses in

Chapter 3 to show the effectiveness of the adaptation mechanism of the ACO

pheromone-matrix and the effectiveness of ACO for dynamic JSSPs, improve the

performance through adjusting the ACO parameters, and find the appropriate

application domains.

The results show that the adaptation mechanism of the ACO can facilitate the

adjustment to a new good schedule when a new job interrupts, but this advantage

disappears when the frequency of the dynamic events is too low or the pheromone

matrix is over strengthened by too many numbers of iterations or too many ants per

iteration. In general, the performance of ACO in dynamic JSSPs is affected not only

by the distributions of new jobs in time and over the workcenters as well as the batch

size, but also its internal important parameters such as the size of ant per iteration and

the total number of iterations for one solution. ACO outperforms several main

dispatching rules in domains 1) where machine utilization is not higher than 90%, 2)

where the variation of processing times is small.

8.3 Further studies

8.3.1 Study other scheduling techniques using the current test bed

Chapter 8: Conclusions and Future Work

158

The most obvious direction is to study new scheduling techniques, like genetic

algorithms, tabu search, simulated annealing, especially those from the MAS

scheduling field, etc. to solve dynamic JSSPs taking the advantages of the current

DES-MAS test bed in identifying their long-term performances.

The test bed developed can also be used to benchmark dynamic/stochastic scheduling

problems so that new algorithms developed in the future can be systematically studied

based on those typical scenarios.

8.3.2 Using the current scheduling technique to solve other problems

The proposed ACO can be applied to new problems generated through extending the

current test bed. For example, the test bed can include more dynamic/stochastic events

like machine breakdowns, processing time variations, or even job due-time settings.

The increased complexity may provide new domains that ACO can have a better

performance.

The test bed can also be extended to simulate other types of manufacturing systems

such as Flexible Manufacturing System or flexible job shop.

8.3.3 Explore ways to improve the performance of ACO

The performance of ACO can be further improved internally and externally in a given

dynamic JSSP. The internal approach is to systematically adjust its own parameters or

introduce some hybrid versions of ACO, which show better performance than the

basic version of ACO in static scheduling problems; the external approach is to

explore other control strategies as illustrated in Fig. 2.2 through the use of partial

schedules, the periodic driven rescheduling, etc.

References

159

References

Abumaizar, R. J., and Svestka, J. A., 1997. Rescheduling job shops under disruptions.
International Journal of Production Research, 35, 2065-2082.

ACO, http://iridia.ulb.ac.be/dorigo/ACO/ACO.html.

Akturk, M. S. and Gorgulu, E., 1999. Match-up scheduling under a machine
breakdown, European Journal of Operational Research, Vol. 112, pp. 81-97.

Albin, S.L., 1982. On Poisson approximations fro super-position of arrival processes
in queues. Management Science, Vol. 28 (2), pp. 126-127.

Angus, D. and Hendtlass, T., 2002. Ant Colony Optimization Applied to a
Dynamically Changing Problem. IEA/AIE 2002, LNAI 2358, pp. 618-627.

Askin, R. G. and Standridge, C. R., 1993. Modeling and Analysis of Manufacturing
Systems. John Wiley & Sons, Inc.

Aytug, H., Lawley, M.A., Mckay, K., Mohan, S. and Uzsoy, R., 2005. Executing
production schedules in the face of uncertainties: a review and some future directions.
European Journal of Operations Research, Vol. 161, pp. 86-110.

Baker, K. R., 1974. Introduction to sequencing and scheduling, John Wiley & Sons.

Baker, A. D., 1998. A survey of factory control algorithms that can be implemented in
a multi-agent heterarchy: dispatching, scheduling and pull. Journal of Manufacturing
Systems, Vol. 17, pp. 297-320.

Balas, E., 1965. An additive algorithm for solving linear programs with zero-one
variables, Operations Research, Vol.13, pp. 517-546.

Balas, E., 1967. Discrete programming by the filter method, Operations Research,
Vol. 15, pp. 915-957.

Bean, J.C., Birge, J. R., Mittenthal, J., and Noon, C.E., 1991. Matchup scheduling
with multiple resources, release dates and disruptions, Operations Research, Vol. 39,
No. 3.

Bierwirth, C., 1995. A generalized permutation approach to job shop scheduling with
genetic. algorithms. OR Spektrum. 17 (1995) 87–92.

Bierwirth, C., and Mattfeld, D. C., 1999. Production scheduling and rescheduling with
genetic algorithms, Evolutionary Computation, Vol. 7, No. 1, pp. 1-17.

Blackstone, J.H., Phillips, D.T. and Hogg, G.L., 1982. A state-of-the-art survey of
dispatching rules for manufacturing job shop operations. International Journal of
Production Research, Vol. 20, pp. 27-45.

References

160

Blazewicz, Ecker, K., Schmidt, G., and Weglarz, J., 1994 Scheduling in computer and
manufacturing systems, 2nd version, Springer-Verlag.

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G. and Weglarz, J., 1996. Scheduling
computer and manufacturing processes. Springer-Verlag.

Blum, C., 2002. ACO Applied to Group Shop Scheduling: A Case Study on
Intensification and Diversification. In M. Dorigo, G. Di Caro, and M. Sampels,
editors, Proceedings of ANTS 2002 - Third International Workshop on Ant
Algorithms, volume 2463 of Lecture Notes in Computer Science, pages 14-27.
Springer Verlag, Berlin, Germany.

Bonabeau, E., Dorigo, M. and Theraulaz, G., 1999. Swarm Intelligence: From natural
to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity.
Oxford University Press.

Bongaerts, L., 1998, Integration of scheduling and control in holonic manufacturing
system, Ph.D thesis, Katholieke University, Leuven.

Bongaerts, L., Monostori, L., McFarlane, D. and Kadar, B., 2000. Hierarchy in
distributed shop floor control. Computers in Industry, Vol. 43, pp. 123-137.

Branke, J., 2002. Evolutionary optimization in dynamic environments, Kluwer
Academic Publishers, Boston.

Bullnheimer, B., Hartl, R. F., and Strauss, C. 1999. A new rank-based version of the
Ant System: A computational study. Central European Journal for Operations
Research and Economics, 7(1), pp. 25-38.

Buxey, G., 1989. Production Scheduling: Practice and Theory. European Journal of
Operational Research, 39, 17-31.

Cavalieri, S., Garetti, M., Macchi, M. and Taisch, M., 2000. An experimental
benchmarking of two multi-agent architectures for production scheduling and control.
Computers in Industry, Vol. 43, pp. 139-152.

Chryssolouris, G., 2006. Manufacturing systems, Theory and Practice, Springer-
Verlag, New York.

Church, L. K., and Uzsoy, R., 1992. Analysis of periodic and event-driven
rescheduling policies in dynamic shops. International Journal of Computer Integrated
Manufacturing, 5, 153-163.

Cicirello, V. A. and Smith, S. F., 2001. Ant colony control for autonomous
decentralized shop floor routing. In ISADS-2001, fifth International Symposium on
Autonomous Decentralized Systems. IEEE Computer Society Press, pp. 383–390.

Cicirello, V. A. and Smith, S. F., 2001a. Insect societies and manufacturing, in IJCAI-
01 Workshop on Artificial Intelligence and Manufacturing: New AI Paradigms for
Manufacturing.

References

161

Cicirello, V. and Smith, S. F., 2004. Wasp-based agents for distributed factory
coordination, Journal of Autonomous Agents and Multi-Agent Systems, Vol. 8 (3),
pp. 237-266, May.

Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M., 1994. Ant system for Job-
shop scheduling. JORBEL-Belgian Journal of Operations Research, Statistics and
Computer Science, 34(1), pp. 39-53.

Conway, R.W., Maxwell, W.L. and Miller, L. W., 1967. Theory of scheduling,

Dorigo, M. and Di Caro, G., 1999. The ant colony optimization meta-heuristic. In D.
Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pp. 11–32.
McGraw-Hill.

Dorigo, M., Di Caro, G., and Gambardella, L. M., 1999. Ant algorithms for discrete
optimization, Artificial Life, Vol.5, No.3, pp. 137-172.

Dorigo, M. and Gambardella, L. M. 1997a. Ant colonies for the traveling salesman
problem. BioSystems, 43(2), pp. 73-81.

Dorigo, M. and Gambardella, L. M. 1997b. Ant colony System: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions on
Evolutionary Computation, 6(4), pp. 317-365.

Dorigo, M. and Stützle, T., 2004. Ant Colony Optimization. A Bradford Book, The
MIT press, Cambridge, Massachusetts, London, England.

Dorigo, M., Maniezzo, V. and Colorni, A., 1991. Distributed optimization by ant
colonies, Proceedings of ECAL91 – European Conference on Artificial Life, Elsevier
Publishing, 134-142.

Dorigo, M., Maniezzo, V. and Colorni, A., 1996. Ant System: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 26(1).

Durfee, E.H., 1988. Coordination of Distributed Problem Solvers, Kluwer Academic
Publishers.

Durfee, E.H. and Lesser, V., 1989. Negotiating task decomposition and allocation
using partial global planning. In L. Gasser and M. Huhns, editors, Distributed
Artificial Intelligence, Volume II, pp229-244. Pitman Publishing: London and
Morgan Kaufmann: San Mateo, CA.

French, S., 1982. Sequencing and scheduling: an introduction to the mathematics of
the job shop, Ellis Horwood Limited and John Wiley & Sons.

Froeschl, K., 1993. Two paradigms of combinatorial production scheduling
operations re-search and articial intelligence. In Scheduling of Production Processes.
Dorn, J. and Froeschl, K., 1993, England: Ellis Horwood.

Fox, M.S. and Smith, S.F., 1984. ISIS: a knowledge-based system for factory
scheduling. Expert Systems 1, 25-49.

References

162

Garey, M.R. and Johnson, D.S., 1979, Computers and intractability: a guide to the
theory of NP-completeness, San Francisco: W. H. Freeman.

Glover, F., 1989. Tabu search-Part I, ORSA Journal on Computing, 1(3), pp. 190-206.

Glover, F., 1990. Tabu search-Part II, ORSA Journal on Computing, 2(1), pp. 4-32.

Glover, F., and Laguna, M., 1997. Tabu Search, Boston, Kluwer Academic
Publishers.

Goldberg, D.E., 1989. Genetic algorithms in search, optimization and machine
learning, MA, Addison-Wesley.

Grave, S.C. 1981. A review of production scheduling, Operations Research, Vol. 29,
No. 4, Operations Management/Research, pp. 646-675.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G., 1979.
Optimization and approximation in deterministic sequencing and scheduling: a
survey, Annals of Discrete Mathematics 5, 287--326.

Guntsch, M. and Middendorf, M., 2001. Pheromone modification strategies for ant
algorithms applied to dynamic TSP. In Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith,
R.E., Cagnoni, S., Hart, E., Raidl, G.R. and Tijink, H., (eds.): Applications of
Evolutionary Computing: Proceedings of EvoWorkshops 2001, number 2037 in
Lecture Notes in Computer Science, pages 213–222. Springer Verlag.

Guntsch, M. and Middendorf, M., 2002a. A Population Based Approach for ACO, In
Cagnoni, S., Gottlieb, J., Hart, E. Middendorf , M., and Raidl, G.R. (eds.):
Applications of Evolutionary Computing - Evo Workshops 2002: EvoCOP, EvoIASP,
EvoSTIM/EvoPLAN, volume 2279 of LNCS, pp. 72-81. Springer.

Guntsch, M. and Middendorf, M., 2002b. Applying Population Based ACO to
Dynamic Optimization Problems. In Ant Algorithms, Proceedings of Third
International Workshop ANTS 2002, volume 2463 of LNCS, pp. 111-122.

Guntsch, M. and Middendorf, M., and Schmeck, H., 2001. An ant colony
optimization approach to dynamic TSP. In Spector, L, Goodman, E.D., Wu, A.,
Langdon, W.B., and Voigt, H.M., editors: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pages 860–867. Morgan
Kaufmann Publishers.

Hall, N. G. and Posner, M. E., 2001. Generating experimental data for computational
testing with machine scheduling applications, Operations Research, Vol. 49, No. 7,
pp.854-865.

Haupt, R., 1989. A survey of priority rule-based scheduling, Operations Research,
Spektrum, Vol.11, No.1, pp.3-36.

Holloway, C.A., and Nelson, R. T., 1974. Job shop scheduling with due dates and
variable processing times, Management Science 20 (9), pp. 1264-1275.

References

163

Holthaus, O., 1999. Scheduling in job shops with machine breakdowns: an
experimental study, Computer & Industrial Engineering, Vol. 36, pp. 137-162.

Holthaus, O. and Rajendran, C., 1997. Efficient dispatching rules for scheduling in a
job shop. International Journal of Production Economics, Vol. 48, pp. 87-105.

Hopp, W. J. and Spearman, M. L., 2000. Factory physics: Foundations of
manufacturing management, 2nd Edition, Irwin McGraw-Hill.

IHPC, Institute Of High Performance Computing, Singapore. http://www.ihpc.a-
star.edu.sg (in April. 2007).

JADE, http://jade.tilab.com/ (in April. 2007).

Jain, A. K., and ElMaraghy, H. A., 1997. Production scheduling/rescheduling in
flexible manufacturing. International Journal of Production Research, 35, 281-309.

Jain, A. S. and Meeran, S., 1998. A state-of-the-art review of job shop scheduling
techniques. In: http://citeseer.nj.nec.com (in April. 2007).

Jain, A. S. and Meeran, S., 1999. Deterministic job-shop scheduling: Past, present and
future. European Journal of Operational Research, 113 (2), 390-434.

Jennings N. R., Sycara K. and Wooldridge M., 1998. A Roadmap of Agent Research
and Development, Autonomous Agents and Multi-Agent Systems, Vol. 1, pp.275-
306, Kluwer Academic Publishers.

Jennings, N. R. and Wooldridge, M., 1998. Agent Technology: Foundations,
Applications and Markets, Springer, pp. 3-28.

Jones, A. and Rabelo, L. C., 1998. Survey of job shop scheduling techniques. In:
http://citeseer.nj.nec.com (in April. 2007).

Johnson, S.M., 1954. Optimal two-and-three-stage production schedules with set-up
times included. Naval Research Logistic Quarterly, Vol. 1, pp. 61-68.

Kirkpatrick, S., Gelatt, C.D., Jr., and Vecchi, M.P., 1983. Optimization by simulated
annealing, Science, Vol. 220, pp. 671-680.

Koestler, A., 1967. The Ghost in the Machine, Arkana Books, London.

Kusiak, A., 2000. Computational Intelligence in Design and Manufacturing, John
Wiley & sons, Inc.

Law, A.M. and Kelton, W.D., 2000. Simulation Modeling and Analysis. McGraw
Hill.

Lawrence, S. R. and Sewell, E. C., 1997. Heuristic, optimal, static, and dynamic
schedules when processing times are uncertain. Journal of Operations Management
Vol. 15, pp. 71-82.

References

164

L’Ecuyer, P., Simard, R., Chen, E.J., Kelton, W.D., 2001. An Object-Oriented
Random-Number Package with Many Long Streams and Substreams, Operations
Research, Vol. 50 (6), pp. 1073-1075.

Li, R.K., Shyu, Y.T., and Adiga, S., 1993. A heuristic rescheduling algorithm for
computer-based production scheduling systems. International Journal of Production
Research, 31, 1815-1826.

Lin, S., Goodman, E.D., and Punch, W.F., 1997. A Genetic Algorithm Approach to
Dynamic Job Shop Scheduling Problems. . In Back, T., editor, Proceedings of the
Seventh International Conference on Genetic Algorithms, pages 481-489, Morgan
Kaufmann, San Mateo, California.

 Liu, J., 1996. Coordination of multiple agents in distributed manufacturing
scheduling. PhD thesis, Carnegie Mellon University.

MacCarthy, B. L. and Liu, J. 1993. Addressing the gap in scheduling research: a
review of optimization and heuristic methods in production scheduling. International
Journal of Production Research, 31 (1), 59-79.

Maniezzo, V., 1999. Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem. INFORMS Journal on Computing, 11(4), pp.
358-369.

Mehta, S. V., and Uzsoy, R. M., 1998. Predictable scheduling of a job shop subject to
breakdowns. IEEE Transactions on Robotics and Automation, 14, 365-378.

Miyashita, K., 1995. CABINS: A framework of knowledge acquisition and iterative
revision for schedule improvement and reactive repair, AI Vo. 76, pp. 377-426.

Morley, D, 1996. Painting trucks at general motors: The effectiveness of a
complexity-based approach, in Embracing Complexity: Exploring the Application of
Complex Adaptive Systems to Business, pp.53-58. The Ernst and Young Center for
Business Innovation.

Morley, D. and Schelberg, C., 1993. An analysis of a plant-specific dynamic
scheduler. In Final Report, Intelligent Dynamic Scheduling for manufacturing
System, pp. 115-122.

Morton, T. e. and Pentico, D. W., 1993. Heuristic Scheduling Systems: With
Applications to Production Systems and Project Management. John Wiley and Sons.

Muhleman, A.P., Lockett, A.G., and Fan, C.K., 1982. Job shop scheduling heuristics
and frequency of scheduling, International Journal of Production Research, Vol. 20,
No. 2. pp.227-241.

Nelson, R., Holloway, D., and Wong, R.M., 1977. Centralized scheduling and priority
implementation heuristics for a dynamic job-shop model with due dates and variable
processing time. AIIE Transactions, Vol. 9, No. 1, pp. 95-102.

Nowicki, E. and Smutnicki, C., 1995. A fast taboo search algorithm for the job shop
problem. Management Science, 42, 797-813.

References

165

Okino, N., 1993. Bionic manufacturing systems. Proceedings of the CIRP Seminar on
Flexible Manufacturing Systems Past-Present-Future, edited by J. Peklenik, Bled,
Slovenia, pp. 73-95.

OR-Library, www.ms.ic.ac.uk/info.html (in April. 2007).

Ovacik, I.M., and Uzsoy, R., 1994. Exploiting shop floor status information to
schedule complex job shop. Journal of Manufacturing Systems, 13 (2), pp. 73-84.

Ovacik, I.M., and Uzsoy, R., 1997. Decomposition methods for complex factory
scheduling problem, Kluwer, Dordrecht.

Panwalkar, S. S., and Iskander, W., 1977. A survey of scheduling rules, Operations
Research, Vol. 25, pp. 45-61.

Park, J., Kang, M., and Lee, K, 1996. Intelligent operations scheduling system in a job
shop. International Journal of Advanced Manufacturing Technology, Vol. 11, pp.
111-119.

Parunak, H. V.D., 1987. Manufacturing Experience with the Contract Net. Distributed
Artificial Intelligence, Huhns, M.N. ed., Pitman, pp. 285-310.

Parunak, H. V. D., 1991. Characterizing the manufacturing scheduling problem.
Journal of Manufacturing Systems, Vol. 10, pp. 241--259.

Parunak, V. 1994. Applications of Distributed Artificial Intelligence in Industry.
O'Hare and Jennings, eds. 1996, Foundations of Distributed Artificial Intelligence.
Wiley Inter-Science.

Parunak, H.V.D., 1997. “Go to the Ant”: Engineering Principles from Natural Multi-
Agent Systems, Annals of Operations Research, Vol. 75, pp. 69-101 (Special Issue on
Artificial Intelligence and Management Science).

Peeters, P., Brussel, H. V., Valckenaers, P., Wyns, J., Bongaerts, L., Kollingbaum,
M., and Heikkilä, T., 2001. Pheromone based emergent shop floor control system for
flexible flow shops, Artificial Intelligence in Engineering, Vol. 15, pp. 343-352.

Pendharkar, P.C., 1999. A computational study on design and performance issues of
multi-agent intelligent systems for dynamic scheduling environments, Expert Systems
with Application, Vol.16, pp. 121-133.

Pinedo, M., 2002. Scheduling theory, algorithms and systems. Second edition,
Prentice Hall, Upper Saddle River, New Jersey.

Raheja, A.S. and Subramaniam, V., 2002. Reactive recovery of job shop schedules - a
review. International Journal of Advanced Manufacturing Technology, Vol. 19,
pp.756-763.

Raman, N. and Talbot, F.B., 1993. The job shop tardiness problem: a decomposition
approach, European Journal of Operational Research, vol. 69, pp. 187-199.

References

166

Ramasesh, R., 1990. Dynamic job shop scheduling: a survey of simulation research,
OMEGA International Journal of Management Science, Vol. 18, No. 1, pp. 43-57,
1990.

Randhawa, S.U. and McDowell, E.D., 1990. An investigation of the applicability of
expert systems to job shop scheduling, International Journal of Man-Machine Studies,
Vol. 32, pp. 203-13.

Ryu, K. and Jung, M. 2003. Agent-based fractal architecture and modelling for
developing distributed manufacturing systems, International Journal of Production
Research, 2003, Vol. 41, No. 17, 4233-4255.

Sabuncuoglu, I. and Bayiz, M., 2000. Analysis of reactive scheduling problems in a
job shop environment, European Journal of Operational Research, Vol. 126, pp.567-
586.

Sabuncuoglu, I. and Kizilisik, O.B., 2003. Reactive scheduling in a dynamic and
stochastic FMS environment, International Journal of Production research, Vol. 41,
No. 17, 4211-4231.

Sadeh, N, 1991. Look-Ahead Techniques for Micro Opportunistic Job Shop
Scheduling PhD thesis, Carnegie Mellon University.

Schoonderwoerd, R., Holland, O., Bruten, J. And Rothkrantz, L., 1996. Ant-based
Load Balancing in Telecommunications Networks. Adaptive Behavior Vol. 5, pp.
168-207.

Sellers, D. W., 1996. A survey of approaches to the job shop scheduling problem,
Proceedings of the 28th Southeastern Symposium on System Theory (SSST '96),
IEEE, pp. 396 – 400.

Shannon, J.B., 1979. An analysis of the distributions of the job shop scheduling rules.
AIDS Proceedings, 11th Annual Meeting, November 1979.

Shen, W. and Norrie, D.H., 1999, Agent-based systems for intelligent manufacturing:
a state-of-the-art survey. International Journal Knowledge and Information Systems,
1, 129–156.

Smith, R.G., 1980. The contract net protocol: high-level communication and control
in a distributed problem solver. IEEE Transactions on Computers, C-29 (12),
pp.1104-1113.

Smith, S.F., Ow, P.S., Potvin, J.-Y, Muscotella, N., and Matthys, D., 1990. An
integrated framework for generating and revising factory schedules. Journal of
Operational Research Society, Vol. 41, (6), pp. 539-552.

Smith, S. F., 1995. Reactive scheduling systems, in Intelligent Scheduling Systems,
edited by Brown, D. E, and Scherer, W. T. Boston : Kluwer Academic Publishers, pp.
155-192.

References

167

Smith, S. F., 2003 (August). Is Scheduling a Solved Problem? Invited Keynote Talk,
Proceedings First Multi-Disciplinary International Conference on Scheduling:
Theory and Applications (MISTA 03), Nottingham, UK.

Stoop, P.P.M., Wiers, V.C.S., 1996. The complexity of scheduling in practice.
International Journal of Operational and Production Management 16 (10), 37–53.

Stützle, T., 1998. An Ant Approach to the Flow Shop Problem, Proceedings of
EUFIT'98, Aachen, pp. 1560-1564.

Stützle, T. and Dorigo, M., 1999. ACO Algorithms for the Traveling Salesman
Problem, In Miettinen, K., Mäkälä, M. M., Neittaanmäki, P. and Périaux, J. (Eds.),
Evolutionary Algorithms in Engineering and Computer Science (pp. 163-183).
Chichester, UK, John Wiley & Sons.

Stützle, T. and Hoos, H. H., 1997. The MAX-MIN Ant System and local search for
the traveling salesman problem. In Bäck, T., Michalewicz, Z. and Yao, X. (Eds.),
Proceedings of the 1997 IEEE International Conference on Evolutionary Computation
(ICEC’97) (pp. 309-314). Piscataway, NJ, IEEE Press.

Stützle, T. and Hoos, H. H., 2000. MAX-MIN Ant System. Future Generation
computer Systems, 16 (8), pp. 889-914.

Sule, D.R., 1997. Industrial Scheduling, PWS Publishing Company.

Suresh, V., and Chaudhari, D., 1993. Dynamic scheduling – a survey of research,
International Journal of Production Economics, Vol. 32, pp. 53-63.

Szelke, E. and Kerr, R., 1994. Knowledge-based reactive scheduling. Production
Planning and Control, Vol. 5, pp. 124-145.

UMBC. http://agents.umbc.edu/Institutes_and_labs/Academic/index.shtml

UML, http://www.omg.org/technology/documents/formal/uml.htm (in April. 2007).

Valckenaers, P., Bonneville, F., Brussel, H.V. and Wyns, J., 1994. Results of the
holonic system benchmark at KU Leuven, Proceedings of the Fourth International
Conference on Computer Integrated Manufacturing and Automation Technology, Oct.
10-12, Troy, New York, pp. 128-133.

Valckenaers, P., Brussel, H. V., Kollingbaum, M, and Bochmann, O., 2001. Multi-
agent coordination and control using stigmergy applied to manufacturing control,
Mutli-Agents Systems and Applications, pp. 317 – 334.

Vieira, G.E., Herrmann, J.W. and Lin, E., 2003. Rescheduling manufacturing
systems: A framework of strategies, policies, and methods. Journal of Scheduling,
Vol. 6, No. 1, pp. 39-62.

Vogel, A., Fischer, M., Jaehn, H. And Teich, T., 2002. Real-world shop floor
scheduling by Ant Colony Optimization, In Dorigo, M., Di Caro, G, and Sampels, M.
al (Eds.): ANTS 2002, LNCS 2463, pp. 268-273.

References

168

Vollmann, T.E., Berry, W.L. and Whybark, D.C., 1992. Manufacturing Planning and
Control Systems, Irwin, Homewood, IL.

Voß, S., Martello, S., Osman, I. H., and Roucariol, C., editors, 1999. Meta-heuristics:
advances and trends in local search paradigms for optimization. Kluwer, Boston.

Voß, S., 2001. Meta-heuristics: The State of the Art, in (ed. Nareyek, A.) Local
Search for Planning and Scheduling, ECAI 2000 Workshop, Springer Lecture Notes
in AI, Vol. 2148.

Warnecke, H.J., 1993. The Fractal Company, a Revolution in Corporate Culture,
Springer-Verlag, Berlin.

Weirs, V. C. S., 1997. A review of the applicability of OR and AI scheduling
techniques in practice. Omega International Journal of Management Science, 25(2),
145-153.

Weiss G., 1999. Multiagent systems – a modern approach to distributed artificial
intelligence. Cambridge: MIT Press.

Wong, T.N., Leung, C.W., Mak, K.L., and Fung R.Y.K., 2006a. An agent-based
negotiation approach to integrate process planning and scheduling, International
Journal of Production Research, Vol. 44, No. 7, pp. 1331-1351.

Wong, T.N., Leung, C.W., Mak, K.L., and Fung R.Y.K., 2006b. Integrated process
planning and scheduling/rescheduling-and agent-based approach, International
Journal of Production Research, Vol. 44, Nos. 18-19, pp. 3627-3655.

Wooldridge, M., 2001. An Introduction to Multiagent Systems, John Wiley & Sons,
Ltd.

Wyns, J., 1999. Reference architecture for holonic manufacturing systems: the key to
support evolution and reconfiguration. Ph.D thesis, Katholieke University, Leuven.

Xiang, W., Fox B. and Lee, H. P., 2005. "Ant Colony Optimization for the Job
Shop Scheduling Problem using Multi-Agent Systems", Proceedings of the 2005
International Conference on Artificial Intelligence (ICAI'05), Las Vegas,
June 27-30, 2005, pp. 898-904, 2005.

Zhou, R., Fox, B., Lee, H. P., and Nee, A. Y. C., 2004. Bus maintenance scheduling
using multi-agent systems, Engineering Applications of Artificial Intelligence, Vol.
17, pp. 623-630.

Zhou, R., Lee, H. P., and Nee, A. Y. C., 2006. Simulating the Generic Job Shop as A
Multi-Agent System, International Journal of Intelligent Systems Technologies and
Applications (IJISTA): Special Issue on: “Advanced Evolutionary Computational
Techniques for Design, Manufacturing, Logistics and Supply Chain Problems” (in
press).

Zwaan, d.v.S. and Marques, C., 1999. Ant colony optimisation for job shop
scheduling. In Proceedings of the ’99 Workshop on Genetic Algorithms and Artificial
Life GAAL’99.

References

169

Zweben, M., Duan, B., Deale, M., 1994. Scheduling and rescheduling with iterative
repair. In: Fox, M.S. (Ed.), Intelligent Scheduling. Wiley, New York, pp. 241–255.

Publications arising from this Thesis

Zhou, R., Fox, B., Lee, H.P., and Nee, A.Y.C., 2004. Bus Maintenance Scheduling

using Multi-Agent Systems, Engineering Application of Artificial Intelligence, Vol.

17, pp. 623-630.

Zhou, R., Lee, H.P., and Nee, A.Y.C., 2008. Simulating the Generic Job Shop as A

Multi-Agent System, Special Issue of International Journal of Intelligent Systems

Technologies and Applications (IJISTA), Vol. 4, Nos. 1/2, pp.5-33.

Zhou, R., Lee, H.P., and Nee, A.Y.C., 2007. Application of Ant Colony Optimization

Algorithm for Dynamic Job Shop Scheduling Problems, International Journal of

Manufacturing Research (in press).

Zhou, R., Nee, A.Y.C., and Lee, H.P., 2007. The Performance of Ant Colony

Optimization Algorithm in Dynamic Job Shop Scheduling Problems, International

Journal of Production Research (in press).

