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SUMMARY 

“Data rich but information poor” is a common problem for most chemical 

processes. Therefore, how to extract useful information from data for controller 

design is one of the challenges in chemical industries. In this thesis, several data-

based control strategies for nonlinear process control have been developed using the 

Just-in-Time Learning (JITL) modeling technique and Virtual Reference Feedback 

Tuning (VRFT) method, respectively. The main contributions of this thesis are as 

follows. 

In the JITL modeling framework, which is capable of modeling the dynamic 

systems with a range of operating regimes, four adaptive control strategies are 

proposed, namely, a data-based linear quadratic regulator and integral compensator 

(LQI) design, an adaptive Internal Model Control (IMC) design, a self-tuning PID 

controller design, and a data-based Generalized Predictive Control (GPC) design. The 

traditional LQI controller design requires the availability of the state space model of 

the process, which is normally obtained from the first-principle model or closed-loop 

Kalman filter, which is either not available or too tedious to build in practice. To 

alleviate this drawback, a data-based LQI design method using JITL technique is 

developed. Next, by integrating the JITL into IMC design framework, an adaptive 

IMC design is developed. The controller parameters are updated not only based on the 

information provided by the JITL, but also its filter parameter is adjusted online by an 

updating algorithm derived based on the Lyapunov method to guarantee the 

convergence of JITL's predicted tracking error. In a similar setting for self-tuning PID 

controller design, a set of linear models obtained by the JITL provides the information 

required to adjust the parameters of PID controller by an updating algorithm derived 

by the Lyapunov method such that the JITL's predicted tracking error converges 

 vi



asymptotically. Lastly, to extend the Generalized Predictive Control (GPC) design to 

nonlinear systems, a data-based GPC strategy based on the JITL is proposed. The 

local model obtained by the JITL at each sampling instant is used as the process 

model in GPC design where the optimal changes in the manipulated variable are 

determined by solving a quadratic optimization problem.  

In the VRFT design framework, the design of feedback controller can be carried 

out directly based on the measured process input and output data without resorting to 

the identification of a process model. However, the existing results are restricted to 

the linear systems and their applications to nonlinear systems are limited. In this thesis, 

the relationship between the VRFT and the popular model-based design method, IMC 

design, is analyzed. Subsequently, to extend the VRFT design to nonlinear systems, 

two adaptive VRFT design methods are developed and their respective applications to 

adaptive PID controller design are discussed in detail.  

Simulation results are presented to demonstrate that the proposed control 

strategies give better performances than their respective conventional counterparts.  
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Chapter 1

Introduction

1.1 Motivation

With the market competition getting more intense than before, growing demands for

improving performance of process have stimulated engineers and researchers to de-

velop more efficient and reliable techniques for process control. These techniques are

useful not only for profits but also for safety, product specification and environment

for chemical plants. Product quality and quantity must be accepted according to

the customer demands for profits. Safety and environmental problems must be con-

sidered for the workers and residents in and around the plants. For these purposes,

the study of process control has been becoming more important for the development

of chemical industries.

In process industries, hundreds or thousands of variables, such as flow rates,

temperatures, pressure, level and compositions, are routinely measured and auto-

matically recorded to build the historical database, which can be utilized for the

purpose of process control, optimization and monitoring. Despite that significant

1
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benefits may be gained from the database, it is not a trivial task to extract useful

information and knowledge from the database. Therefore, most chemical processes

face the ”data rich information poor” problem. Although an accurate process model

is essential to design high performance controller, the construction of first-principles

models is usually time-consuming and costly. Moreover, model-based controller

design by incorporating these models would lead to complex controller structure.

Thus, if one desires a simple controller, e.g. PID controller, a non-trivial controller

reduction procedure needs to be performed. An alternative is the data-driven mod-

eling methods which have been proposed for nonlinear system modeling (Pearson,

1999, Nelles, 2001) in the last two decades, for example artificial neural networks

(ANN) and neuro-fuzzy model (Nelles, 2001). However, when dealing with large sets

of data, these approaches are less attractive because of the difficulties in specifying

model structure and the complexity of the associated optimization problems. To

alleviate the aforementioned problems, Aha et al. (1991) developed instance-based

learning algorithms for modeling nonlinear systems. This approach is inspired by

the ideas from local modeling and machine learning techniques. Different variants

of instance-based learning are also developed in the literature, e.g. locally weighted

learning (Atkeson et al., 1997a, 1997b) and just-in-time learning (JITL) techniques

(Bontempi et al., 1999, 2001). JITL has no standard learning phase because it

merely stores the data in the database and the computation is not performed until

the arrival of a query data. Furthermore, JITL constructs local approximation of

the dynamic systems characterized by the current query data, and thus low-order

model is usually employed in the JITL technique. Another advantage of the JITL is

its inherent adaptive nature, which is achieved by storing the current measured data
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into the database (Nelles, 2001). Therefore, this motivates the proposed research to

develop data-based advanced control strategies using the JITL modeling technique

in this thesis.

Another attractive data-based method for controller design is to design controller

directly based on the measured process input and output data without resorting to

the identification of a process model. For example, Spall and Cristion (1998) pre-

sented a stochastic design framework in which the controller is represented by a

function approximator (FA), like a polynomial or a neural network, whose param-

eters are determined stochastically based on the process measurement, rather than

a process model. Another direct design method is the iterative feedback tuning

method developed by Hjalmarsson et al. (1994). However, this method requires

considerable computational time to obtain a solution with a risk of being a local

optimum in the proposed minimization problem, not to mention its dependence on

the trial and error procedure for initialization. Furthermore, its computation needs

unbiased estimates of some variables, which impose much more stringent require-

ments on the experiment. As a result, the experiment required for IFT is typically

complicated. To overcome this problem, the virtual input direct design method

(VID2, Guardabassi and Savaresi, 1997; Savaresi and Guardabassi, 1998) was the

first direct controller design method without any gradient calculation. Campi et al.

(2000) improved and reorganized the idea of VID2 and renamed the new method as

the virtual reference feedback tuning (VRFT) method. Guardabassi and Savaresi

(2000) also developed their new version called virtual reference direct design (VRD2)

which basically follows the same design principles as VRFT. The VRFT design and

its variants share a common feature that controller parameters are obtained off-line
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by solving a quadratic optimization problem based on a set of process input and

output data. However, these methods are developed for linear systems and their

applications to nonlinear systems are limited. Therefore, attempts will be made to

extend the VRFT design to nonlinear systems as well in this thesis.

1.2 Contribution

In this thesis, data based methods for nonlinear process control are developed using

the JITL modeling technique and VRFT design method, respectively. The main

contributions of this thesis are as follows.

(1) Linear Quadratic Regulator and Integral Compensator (LQI) design using

the JITL technique: Traditional LQI design requires the state space model

of the process, which is normally obtained from the first-principle model or

closed-loop Kalman filter, which is either not available or too tedious to build

in practice. To overcome this problem, data-based LQI design using JITL

technique will be investigated.

(2) Internal Model Controller (IMC) design using the JITL technique: IMC is a

powerful controller design strategy for the open-loop stable dynamic systems.

However, the performance of IMC controller will degrade or become unstable

when it is applied to nonlinear processes with a range of operating conditions.

In the proposed IMC design, controller parameters are updated not only based

on the information provided by the JITL, but also its filter parameter is ad-

justed online by an updating algorithm derived based on the Lyapunov method

to guarantee the convergence of the JITL’s predicted tracking error.
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(3) Self-tuning PID design using the JITL technique: The well-known PID con-

trollers are still the most adopted controllers in the process industries. How-

ever, chemical processes often exhibit nonlinearities and contain high-order

dynamics, all of which can deteriorate the performance of PID controllers. In

the proposed design, a set of linear models obtained by the JITL provides the

information required to adjust the parameters of PID controller by the updat-

ing algorithm derived based on the Lyapunov method such that the JITL’s

predicted tracking error converges asymptotically.

(4) Nonlinear Generalized Predictive Controller (GPC) design using the JITL

technique: Model Predictive Controller (MPC) is now widely recognized as

a powerful methodology to address industrially important control problems.

However, most MPC techniques, like GPC, are based on linear models and

thus not very well-suited for the control of nonlinear systems. In this thesis,

the extension of GPC design to nonlinear system is attempted by using the

JITL technique.

(5) Adaptive PID controller designs by the adaptive VRFT methods: VRFT de-

sign can be applied to determine the parameters of a PID controller by using

a set of process input and output data without resorting to the identification

of a process model. Although it is an attractive alternative to the popular

model-based controller design methods, the existing results are restricted to

the linear systems. In the proposed research, the connection between VRFT

and IMC designs is firstly analyzed. Two adaptive VRFT design procedures,

which are tailor-made for adaptive PID designs, are proposed.
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1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 comprises the literature review of

nonlinear process control. In Chapter 3, a new optimal controller design using JITL

technique for nonlinear process control is described. By incorporating the JITL into

IMC and PID designs, an adaptive IMC controller and a self-tuning PID controller

for nonlinear process control are developed in Chapters 4 and 5, respectively. In

Chapter 6, a generalized predictive control based on the JITL technique is developed.

To extend the existing VRFT design methods to nonlinear systems, two adaptive

VRFT design methods are developed in Chapters 7 and 8, respectively. Finally, the

general conclusions from the present work and suggestions for future work are given

in Chapter 9.



Chapter 2

Literature Review

This chapter provides an overview of the current progress of several controller design

methods. Furthermore, just-in-time learning (JITL) modeling technique and its

application in various proposed data-based control strategies will be highlighted as

well.

2.1 Just-in-Time Learning Modeling Technique

Process models are fundamentally important for process control because controller

performance is dependent on the accuracy of process models. However, it is difficult

to obtain an accurate first principles model for most of chemical processes because

of the lack of complete physicochemical knowledge. To alleviate this drawback,

several empirical and black-box models have been developed. For example, neural

networks, fuzzy models, fuzzy neural networks, and local model networks have been

investigated and developed in the literature. However, one fundamental limitation of

these types of modeling approaches is that it is difficult for them to be updated on-

7



CHAPTER 2. LITERATURE REVIEW 8

line when the process dynamics are moved away from the nominal operating space.

In this situation, on-line adaptation of these models requires model update from

scratch, namely both model structure (e.g. number of hidden neurons in the neural

network models and number of fuzzy rules in fuzzy models) and model parameters

may need to be modified simultaneously. Evidently, this process is not only time-

consuming but also it will interrupt the plant operation, if these models are used in

controller design.

An alternative approach for nonlinear system modeling, just-in-time learning

(JITL), is developed recently. The JITL is attractive not only because of its pre-

diction capability for nonlinear processes but also its inherently adaptive nature.

Aha et al. (1991) developed instance-based learning algorithms for modeling non-

linear systems. This approach is inspired by ideas from local modeling and machine

learning techniques. Subsequent to Aha’s work, different variants of instance-based

learning are developed, such as locally weighted learning (Atkeson et al., 1997a,

1997b) and JITL (Bontempi et al., 1999, 2001). JITL has no standard learning

phase because it merely stores the data in the database and the computation is not

performed until a query data arrives. Furthermore, JITL constructs local approx-

imation of the dynamic systems characterized by the current query data. In this

sense, JITL constructs local approximation of the dynamic systems. Therefore, a

simple model structure can be chosen, e.g. a low-order ARX model. In addition,

JITL is inherent adaptive in nature, which is achieved by storing the current mea-

sured data into database (Nelles, 2001). To achieve better predictive performance

of JITL algorithm, Cheng and Chiu (2004) recently proposed an enhanced JITL

algorithm by using a new similarity measure that combines the conventional dis-
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tance measure with the angular relationship. In the following, the JITL algorithm

developed in Cheng and Chiu (2004), which is used in this thesis, is described.

There are three main steps in the JITL to compute model output corresponding

to the query data: (i) relevant data samples in the database are searched to match

the query data by some nearest neighborhood criterion; (ii) a low-order local model

is built based on the relevant data; (iii) model output is calculated based on the

local model and the current query data. When the next query data is available, a

new local model will be built by repeating the aforementioned procedure.

As a simple low-order model is usually employed by the JITL, without the loss

of generality, consider the following second-order ARX model:

ŷ(k) = αk
1y(k − 1) + αk

2y(k − 2) + βk
1u(k − 1) (2.1)

where ŷ(k) is the predicted output by the JITL at the k-th sampling time, y(k− 1)

and u(k − 1) are the output and manipulated variables at the (k − 1)-th sampling

time, αk
1, α

k
2 and βk

1 are the model coefficients at the k-th sampling time.

Define regression vector for the ARX model given in Eq. (2.1) as

xk =

[
y(k − 1) y(k − 2) u(k − 1)

]
(2.2)

To apply the JITL technique, its database is initially constructed by using pro-

cess input and output data obtained around the nominal operating condition. Sub-

sequently, this database can be updated during its on-line application, for example

in the controller design, when modeling error between the process output and pre-

dicted output by the JITL is greater than the pre-specified threshold, by simply

adding the current process data into the database. In those cases, the current pro-

cess data is considered as new data that is not adequately represented by the present
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database and is thus added to the database to improve its prediction accuracy for

new operating region where the process data may not be available to construct the

initial database for JITL.

Suppose that the present database of JITL consists ofN process data (y(i), xi)i=1∼N ,

given a query data xq, the objective of JITL is to obtain the local ARX model of

the nonlinear systems by focusing on the relevant region around the current oper-

ating condition. The first step is to select the relevant regression vectors from the

database that resemble the query data. To do so, the following similarity measure,

si, is considered.

si = κ
√
e−‖xq−xi‖2 + (1 − κ) cos(θi), if cos(θi) ≥ 0 (2.3)

where κ is a weight parameter constrained between 0 and 1, and θi is the angle

between Δxq and Δxi, where Δxq = xq − xq−1 and Δxi = xi − xi−1. The value

of si is bounded between 0 and 1. When si approaches to 1, it indicates that xi

resembles xq closely.

After all si are computed by Eq. (2.3), for each l ∈ [kmin kmax], where kmin

and kmax are the pre-specified minimum and maximum numbers of relevant data,

the relevant data set (yl, Φl) is constructed by selecting the l most relevant data

(yi, xi) corresponding to the largest si to the l-th largest si. The leave-one-out cross

validation test (Myers, 1990) is then conducted and the validation error is calculated.

Upon the completion of the above procedure, the optimal l, l∗, is determined by that

giving the smallest validation error. Subsequently, the predicted output for query

data is calculated as xT
q (PT

l∗Pl∗)
−1PT

l∗Wl∗yl∗ , where PT
l∗ = Wl∗Φl∗ and Wl∗ is a

diagonal matrix with entries being the first l∗ largest si.
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2.2 Controller Designs for Nonlinear Processes

The majority of chemical and biochemical industries is inherently nonlinear, how-

ever most controller design techniques are based on linear control techniques to deal

with such systems. The prevalence of linear control strategies is partly due to the

fact that, over the normal operating region, many of the processes can be approxi-

mated by linear models, which can be obtained by the well-established identification

methods and the available process input and output data. In addition, the theo-

ries for the stability analysis of linear control systems are quite well developed so

that linear control techniques are widely accepted. However, owing to the nonlinear

nature of most chemical processes, linear control design methodologies may not be

adequate to achieve a good control performance for these processes. This has led to

an increasing interest in the nonlinear controller design for the nonlinear dynamic

processes. In what follows, five control strategies, i.e. linear quadratic regulator and

Integral compensator (LQI) controller design as an example for optimal control,

adaptive control, nonlinear internal model control, nonlinear model predictive con-

trol, and direct data-based control capable of providing the improved performance

for nonlinear systems are reviewed.

2.2.1 LQI controller design method

The development of modern control concepts can be traced back to the work of

Kalman in the early 1960’s, who sought to determine when a linear control system

can be said to be optimal (Kuo, 1980; Lewis and Syrmos, 1995; Ogata, 1997).

Kalman studied state-space model design and optimal control strategy, which is the



CHAPTER 2. LITERATURE REVIEW 12

well-known linear quadratic regulator (LQR) design based on the minimization of a

quadratic objection function. Based on the LQR techniques, Fujii (1987) developed

the inverse linear quadratic regulator (I-LQ). Ikeda and Suda (1988) modified Fujii’s

method by proposing LQI controller design that has an integrator compensator to

eliminate steady-state offset within LQR frameworks. However, traditional LQI

design depends on the state space process model of the process constructed from the

first-principle model or closed-loop Kalman filter (Ebihara et al., 1988). Hashimoto

et al. (2000) reported the application of LQI design for nonlinear system based on

the discrete models obtained by the successive linearization of first-principle model,

which is either not available or too tedious to build in practice. To alleviate the

drawbacks of model-based LQI design methods, a data-based LQI design by using

JITL technique is considered in this thesis and will be developed in Chapter 3.

2.2.2 Adaptive control

Research in adaptive control has a long and vigorous history. The development of

adaptive control started in the 1950’s with the aim of developing adaptive flight

control systems. With the progress of control theories and computer technology,

various adaptive control methodologies were proposed for process control in the last

three decades. Åström (1983), Seborg et al. (1986), and Åström and Wittenmark

(1995) gave detailed reviews of the theories and application of adaptive control. Most

adaptive methodologies integrate a set of techniques for automatic adjustment of

controller parameters in real time in order to achieve or to maintain a desired level of

control performance when the dynamic characteristics of the process are unknown

or vary in time. The diagram of adaptive control concept is depicted in Figure
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2.1. There are three main technologies for adaptive control: gain scheduling, model

reference control, and self-tuning regulators. The purpose of these methods is to

find a convenient way of changing the controller parameters in response to changes

in the process dynamics. Gain scheduling is one of the earliest and most intuitive

approaches for adaptive control. The idea is to find process variables that correlate

well with the changes in process dynamics. It is then possible to compensate for pro-

cess parameter variations by changing the parameters of the controller as function of

the process variables. The advantage of gain scheduling is that the parameters can

be changed quickly in response to changes in the process dynamics. It is convenient

especially if the process dynamics in a well-known fashion on a relatively few easily

measurable variables. Gain scheduling has been successfully applied to nonlinear

control design in process industry (Åström and Wittenmark, 1995). One drawback

of gain scheduling is that it is open-loop compensation without feedback. Another

drawback of gain scheduling is that the design is time consuming. A further ma-

jor difficulty is that there is no straightforward approach to select the appropriate

scheduling variables for most chemical processes. Model reference control is a class

of direct self-tuners since no explicit estimate or identification of the process is made.

The desired performance of the closed-loop system is specified through a reference

model, and the adaptive system attempts to make the plant output match the refer-

ence model output asymptotically. The third class of adaptive control is self-tuning

control. The general strategy of this controller is to estimate model parameters

on-line and then adjust the controller settings based on current parameter estimate

(Åström, 1983). In the self-tuning controller, at each sampling instant the param-

eters in an assumed dynamic model are estimated recursively from input-output
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data and controller settings are then updated. The whole control strategy can be

divided into three steps: (i) information gathering of the present process behavior;

(ii) control performance criterion optimization; and (iii) adjustment of the controller

parameters. The first step implies the continuous determination of the current pro-

cess condition based on measurable process input and output data and appropriate

modeling approaches selected to identify the model parameters. Various types of

model identification can be distinguished depending on the information gathered

and the method of estimation. The last two steps calculate the control loop perfor-

mance and the decision as to how the controller will be adjusted or adapted. These

characteristics make self-tuning controller very flexible with respect to its choice

of controller design methodology and to the choice of process model identification

(Seborg et al., 1986).

Desired 
Performance

ProcessProcess

Parameter 
Estimator

Input

Set-point Output

Adaptation 
Scheme

ControllerController

Process 
Parameters

Controller 
Parameters

Figure 2.1: Block diagram of adaptive control scheme

In the past two decades, many research efforts have focused on the development

of intelligent control algorithms that can be applied to complex processes whose dy-

namics are poorly modeled and/or have severe nonlinearities. (Stephanopoulos and
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Han, 1996; Linkens and Nyongesa, 1996). Because neural networks (NN) have the

capacity to approximate any nonlinear function to any arbitrary degree of accuracy,

NNs have received much attention in the area of adaptive control. Perhaps the most

significant work of the application of NNs in adaptive control is that of Narendra

and Parthasarathy (1990) who investigated adaptive input-output neural models in

model reference adaptive control structures. Hernandez and Arkun (1992) studied

control-relevant properties of neural network model of nonlinear systems. Jin et

al. (1994) used recurrent neural networks to approximate the unknown nonlinear

input-output relationship. Based on the dynamic neural model, an extension of the

concept of the input-output linearization of discrete-time nonlinear systems is used

to synthesize a control technique under model reference control framework. Braake

et al. (1998) provided a nonlinear control methodology based on neural network

combined with feedback linearization technique to transform the nonlinear process

into an equivalent linear system in order to simplify the controller design problem.

Recently, some researchers have constructed stable NN for adaptive control based on

Lyapunov’s stability theory (Lewis et al., 1996; Polycarpou, 1996; Ge et al., 2002).

One main advantage of these schemes is that the adaptive laws are derived based on

the Lyapunov synthesis method and therefore guarantee the stability of the control

systems. While neuro-control techniques are suited to control an unknown nonlin-

ear dynamic process, it is generally difficult to present the control law in simple

analytical form. Also, a nonlinear optimization routine is required to determine the

control input, which may lead to the problems of large computational efforts and

poor convergence.

The PID controllers have received widespread use in the process industries pri-
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marily because of its simple structure, ease of implementation, and robustness in

operation. Due to these advantages, several adaptive PID controller designs have

been developed in recent years. For example, Riverol and Napolitano (2000) pro-

posed an adaptive PID controller whose parameters are adjusted on-line by a neural

network, while Chen and Huang (2004) designed adaptive PID controller based on

the instantaneous linearization of a neural network model. Altinten et al. (2004)

applied the genetic algorithm to the optimal tuning of a PID controller on-line.

Bisowarno et al. (2004) applied two adaptive PI control strategies for reactive dis-

tillation. Andrasik et al. (2004) made use of a hybrid model consisting of a neural

network and a simplified first-principle model to design a neural PID-like controller.

Yamamoto and Shah (2004) developed an adaptive PID controller using recursive

least squares for on-line identification of multivariable system. Shahrokhi and Bagh-

misheh (2005) designed an adaptive IMC-PID controller based on the local models

estimated by the recursive least squares method to control a fixed-bed reactor. Sim-

ilar approaches for adjusting PID controller parameters on-line were investigated

based on the multiple linearized models obtained by factorization algorithm and

lazy learning identification method at each sampling instant (Ho et al., 1999; Alp-

baz et al., 2006; Pan et al., 2007). In these works, basically, the parameters of

the process model are updated with respect to the current process condition and

then PID parameters are computed by the corresponding adaptation algorithm and

implemented. However, these adaptation algorithms employed in the previous re-

sults are inadequate to address the convergence of the predicted tracking error. To

overcome this problem, a self-tuning PID controller design based on a set of linear

models obtained by the JITL and a self-tuning PID algorithm derived by the Lya-
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punov method to guarantee the convergence of tracking error will be developed in

Chapter 5.

2.2.3 Nonlinear internal model control

Internal Model Control (IMC) proposed by Garcia and Morari (1982) is a powerful

controller design strategy for the open-loop stable dynamic systems (Morari and

Zafiriou, 1989). This is mainly due to two reasons. First, integral action is included

implicitly by using the IMC two-step design procedure. Moreover, plant and model

mismatch can be addressed via the design of the robustness filter. IMC design is

expected to perform satisfactorily as long as the process is operated in the vicinity

of the point where the linear process model is obtained. However, the performance

of IMC controller will degrade or even become unstable when it is applied to non-

linear processes with a range of operating conditions. To extend the IMC design

to nonlinear processes, various nonlinear IMC schemes have been developed in the

literature. For instance, Economou et al. (1986) provided a nonlinear extension of

IMC by employing contraction mapping principle and Newton method. However,

this numerical approach to nonlinear IMC design is computationally demanding.

Calvet and Arkun (1988) used an IMC scheme to implement their state-space lin-

earization approach for nonlinear systems with disturbance. A disadvantage of the

state-space linearization approach is that an artificial controlled output is introduced

in the controller design procedure and cannot be specified a priori. Another draw-

back of this method is that the nonlinear controller requires state feedback (Henson

and Seborg, 1991a). Henson and Seborg (1991b) proposed a state-space approach

and used nonlinear filter to account for plant and model mismatch. However, their
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method relied on the availability of a nonlinear state-space model, which may be

time-consuming and costly to obtain.

Another popular design method for implementing nonlinear IMC schemes is

based on the neural networks. In the earlier methods given in Bhat and McAvoy

(1990) and Hunt and Sbarbaro (1991), two NN were used in the IMC framework,

where one NN was trained to represent the nonlinear dynamics of process, which was

then used as the IMC model, while another NN was trained to learn the inverse dy-

namics of the process and was employed as the nonlinear IMC controller. Because

IMC model and controller were built by separate neural networks, the controller

might not invert the steady-state gain of the model and thus steady-state offset

might not be eliminated (Nahas et al., 1992). Moreover, these control schemes do

not provide a tuning parameter that can be adjusted to account for plant and model

mismatch. To ensure offset-free performance, Nahas et al. (1992) developed another

NN based nonlinear IMC strategy, which consists of a model inverse controller ob-

tained from a neural network and a robustness filter with a single tuning parameter.

In this control strategy, a numerical inversion of neural network process model was

proposed instead of training neural networks on the process inverse. Aoyama et

al. (1995) proposed a method using control-affine neural network models. Two

neural networks were used in this approach: one for the model of the bias or drift

term, and one for the model of the steady-state gain. As the process is approxi-

mated by a control-affine model, the inversion of process model is simply obtained

by algebraically inverting the process model.

However, the above nonlinear IMC designs sacrifice the simplicity associated

with linear IMC in order to achieve improved performance. This is mainly due to
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the use of computationally demanding analytical or numerical methods and neural

networks to learn the inverse of process dynamics for the necessary construction of

nonlinear process inverses. To overcome these difficulties, a promising approach has

been proposed to yield a flexible nonlinear model inversion (Doyle et al., 1995; Harris

and Palazoglu, 1998). This controller synthesis scheme based on partitioned model

inverse retains the original spirit and characteristics of conventional (linear) IMC

while extending its capabilities to nonlinear systems. When implemented as part of

the control law, the nonlinear controller consists of a standard linear IMC controller

augmented by an auxiliary loop of nonlinear ”correction”. The fact that only a

linear inversion is required in the synthesis of this controller is the most attractive

feature of this scheme. However, Volterra model derived using local expansion re-

sults such as Carleman linearization is accurate for capturing local nonlinearities

around an operating point, but may be erroneous in describing global nonlinear be-

havior (Maner et al., 1996). Harris and Palazoglu (1998) proposed another nonlinear

IMC scheme based on the functional expansion models instead of Volterra model.

However, functional expansion models are limited to fading memory systems and

the radius of convergence is not guaranteed for all input magnitudes. Consequently,

the resulting controller gives satisfactory performance only for a limited range of

operation. This limitation restricts the implementation of these models in practice

(Xiong and Jutan, 2002).

Shaw et al. (1997) used recurrent neural network (RNN) within the partitioned

model inverse controller synthesis scheme in IMC framework and showed that this

strategy provided an attractive alternative for NN-based control application. Mak-

sumov et al. (2002) investigated the first experimental application of this control
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strategy using NN as a nonlinear model and a linear ARX model. However, one

fundamental limitation of these global approaches for modeling is that the on-line

update of these models is not straightforward when the process dynamics are moved

away from the nominal operating space. Evidently, this will interrupt the plant

operation when these models are used in the controller design.

To alleviate the aforementioned problems, the JITL-based adaptive IMC design

strategy will be investigated in Chapter 4. By taking advantage of simple models

employed in JITL, the model inverse can be readily obtained for IMC design at

each sampling instant. Therefore, the IMC control strategy can be extended to the

nonlinear processes in a straightforward manner without scarifying the simplicity of

the linear IMC design.

2.2.4 Constrained control

Virtually all practical control systems are subject to hard constraints on their ma-

nipulated inputs. Typically, these constraints arise due to the physical limitations

inherent in the capacity of control actuators, e.g. bounds on the magnitude of valve

opening. An important limitation imposed by the input constraints is that they

can lead to degradation of the performance of closed-loop system and even loss of

stability. While there are many nonlinear and robust controller design methods

developed, they do not guarantee the control action to stay within the working

range of control actuators because the presence of input constraints is not explicitly

taken into account at the stage of controller design. The problems caused by in-

put constraints have consequently motivated many recent studies on the dynamics

and control of chemical processes subject to input constraints, e.g. the design of
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”anti-windup” schemes in order to prevent excessive performance deterioration of

an already designed controller when the input saturates (Kendi and Doyle, 1997,

1998; Kapoor and Daoutidis, 1999; Kothare et al., 1994)

Model predictive control (MPC) based on linear models, for example dynamic

matrix control (Cutler and Ramaker, 1979), quadratic dynamic matrix control (Gar-

cia and Morshedi, 1986), and generalized predictive control (Clarke et al., 1987), has

gained wide-spread acceptance as an advanced control strategy in chemical process

industries. This is primarily due to their ability to handle process constraints, time

delays, and multivariable systems in a unified design framework. The general strat-

egy of MPC algorithm is to utilize a model to predict the future output trajectory

of the process and compute future control action by solving a minimization problem

with suitable objective function that includes the difference between the predicted

output trajectory and reference trajectory and a penalty term on the future control

actions. Therefore, the effectiveness of MPC relies heavily on the availability of a

reasonably accurate process model. As many chemical processes are highly non-

linear and may be operated in a range of operating points, it is clear that MPC

algorithms based on linear process models can result in poor control performance.

As a result, various variants of MPC techniques have been studied and extended to

nonlinear systems (Bequette, 1991; Henson and Seborg, 1997; Henson, 1998; Lee,

2000; Mayne, 2000; Zheng, 2000). For example, Berber and Coskun (1996) studied

nonlinear MPC (NMPC) on an industrial low density polyethylene reactor. Seki

et al. (2001) implemented a two tier control algorithm. The first tier was for-

mulated by successive linearization of a nonlinear first-principle process model. In

the second tier, control actions were determined by solving a quadratic program
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problem formulated by a linear model that is obtained by linearizing around the

control trajectory. Piche et al. (2000) presented a neural network technique for

developing a nonlinear dynamic model for NMPC design. They used step test data

for building linear dynamic model and historical data for a nonlinear steady-state

model. Nonlinear dynamic model was then formed by combining the aforementioned

two models. Venkateswarlu and Gangiah (1997) utilized a recursive least squares

(RLS) algorithm to update the local model in a nonlinear generalized predictive

control strategy. However, the RLS algorithm can produce poor estimates of system

parameters if the online process input and output data do not meet excitation condi-

tions. Another popular nonlinear MPC technique by incorporating empirical models

like neural networks (Saint-Donat et al., 1991; Pottmann and Seborg, 1997; Chu et

al., 2003), fuzzy models (Kavsek-Biasizzo et al., 1997; Fischer et al., 1998; Abonyi

et al., 2000; Mahfouf et al., 2000), fuzzy neural networks (Lu and Tsai, 2007), and

local model networks (Prasad et al., 1998) have been investigated and developed

in the literature. However, the use of neural network in nonlinear MPC design is

computationally demanding due to the on-line optimization required to compute the

control signals. For fuzzy models and local model networks, the problem of how to

partition the operating regimes remains an ad-hoc procedure and therefore a prior

knowledge of the processes, which may not be readily accessible in most practical

cases, has to be exploited for the determination of the model structure. As discussed

previously, another fundamental limitation of these modeling approaches is the dif-

ficulty to update these models on-line when the process dynamics are moved away

from the nominal operating space.

To curtail the aforementioned problem encountered by the global models, a gen-
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eralized predictive control (GPC) strategy based on the JITL technique is proposed

in Chapter 6. The computational burden is reduced by modeling the nonlinear

systems by a set of local models obtained on-line by the JITL. The current local

model at each sampling instant is treated as the process model in the GPC design

where the optimal changes in the manipulated variable are determined by solving a

quadratic optimization problem formulated in the GPC design framework.

2.3 Direct Data-Based Controller Design Meth-

ods

Designing controllers directly based on a set of measured process input and output

data, without resorting to the identification of a process model, is an attractive

option for process control application. Such ’direct’ data-based design techniques

are conceptually more natural than model-based designs where the controller is

designed on the basis of an estimated model of the process, because the former

directly targets the final goal of tuning the parameters of a given class of controllers.

However, despite the appeal of direct data-based design methods, very few genuine

direct design techniques have been proposed in literature

Hjalmarsson et al. (1994) developed iterative feedback tuning (IFT) method with

promising result for real application (1998). However, IFT may require considerable

computational time to obtain a solution with a risk of being a local optimum in

the proposed minimization problem, not to mention its dependence on the trial

and error procedure for initialization. Furthermore, its computation needs unbiased

estimates of some variables, which impose much more stringent requirements on the
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experiment. As a result, the experiment required for IFT is typically complicated.

Spall and Cristion (1998) proposed a stochastic approach for adaptive control us-

ing a function approximator (FA) to calculate the action needed from the controller.

FA can be a polynomial or an artificial neural network, whose parameters are up-

dated repeatedly in accordance with the minimization of a cost function. However,

since a plant model is not available, the gradient of this cost function has to be eval-

uated by simultaneous perturbation stochastic approximation instead of quadratic

methods. Thus, the computational burden of this method is very high due to the

iterations and the convergence of the trained parameters may not be guaranteed.

To alleviate the aforementioned drawbacks, Campi and Lecchini (2000, 2002)

proposed the virtual reference feedback tuning method (VRFT). VRFT stems from

the idea of virtual input direct design (VID2) (Guardabassi and Savaresi, 1997;

Savaresi and Guardabassi, 1998), but in a better-organized form. This methodology

is simple and directly calculates the feedback controller parameters from the avail-

able process input and output data without the need of model identification. Under

this tuning framework, only the specification of desired reference model is required.

Nakamoto (2005) extended this controller design technique to multivariable systems

and showed a chemical process application.

As the existing results on VRFT design are restricted to linear systems, to extend

its application to nonlinear systems, two adaptive VRFT designs will be discussed

and developed in Chapters 7 and 8, respectively.



Chapter 3

Data-Based LQI Controller Design

Using the JITL Technique

3.1 Introduction

Process models are fundamentally important for process control because the perfor-

mance of advanced control design methods is intimately dependent on the availabil-

ity of accurate process models. However, most chemical processes are multivariable

and nonlinear in nature and their dynamics can be time-varying, therefore first-

principle models are often unavailable or too costly and time-consuming to build

due to the lack of complete physicochemical knowledge of chemical processes. An

alternative approach is to develop data-based methods to build a model from process

data collected in industrial processes.

The development of modern control theory can be traced back to the work

of Kalman (Lewis and Syrmos, 1995), who proposed Linear Quadratic Regulator

(LQR) design based on the minimization of a quadratic objective function. Within

25
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the LQR design framework, Ikeda and Suda (1988) proposed LQI controller design

embedded with an integrator compensator to eliminate steady-state offset. However,

traditional LQI design depends on the state space model of the process constructed

from the first-principle model or closed-loop Kalman filter (Ebihara et al., 2000;

Hashimoto et al., 2000), which is either not available or it is too tedious to build

in practice. An alternative LQI design is based on an empirical ARX model with

on-line parameter adaptation by the standard recursive procedure, where a forget-

ting factor is adopted to enable the recursive identification algorithm to handle both

nonlinear and time-varying features of dynamic systems by giving more weight to

the most recent process data. However, it was discussed by Bontempi et al. (1999)

that recursive identification algorithm may suffer the problem of data interference,

also known as stability-plasticity dilemma.

Motivated by the advantages of the JITL algorithm and to alleviate the draw-

backs of model-based LQI design methods, data-based LQI design by using JITL

technique is proposed in this chapter. Literature examples are used to illustrate

the proposed design method and a comparison with its conventional counterparts is

made.

3.2 Data-Based LQI Design

In the proposed data-based LQI design, the following second-order ARX model is

employed in the JITL algorithm at each sampling time:

y(k) = α1y(k − 1) + α2y(k − 2) + β1u(k − 1) + β2u(k − 2) (3.1)
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where u(k) is the manipulated variable at the k-th sampling time, y(k) is the output

variable at the k-th sampling time, αi, βj are the model coefficients (i, j = 1, 2). It

is evident that a first-order ARX model is obtained by setting α2 = β2 = 0.

Equation (3.1) can be represented by the following state space equation.

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (3.2)

where

x(k) =

[
y(k) y(k − 1) u(k − 1)

]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎣
α1 α2 β2

1 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

[
β1 0 1

]T

C =

[
1 0 0

]

Equation (3.2) can be rewritten as

Δx(k + 1) = AΔx(k) + BΔu(k) (3.3)

Δy(k) = CΔx(k) (3.4)

where

Δx(k) = x(k) − x(k − 1) (3.5)

Δu(k) = u(k) − u(k − 1) (3.6)

Δy(k) = y(k) − y(k − 1) (3.7)
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Subsequently, the following equation can be easily drawn:

x̃(k + 1) =

⎡
⎢⎢⎣ A 0

−CA I

⎤
⎥⎥⎦
⎡
⎢⎢⎣ Δx(k)

e(k)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣ B

−CB

⎤
⎥⎥⎦Δu(k)

= Ãx̃(k) + B̃Δu(k) (3.8)

e(k) = C̃x̃(k) (3.9)

where x̃(k) =

[
Δx(k) e(k)

]T

, e(k) = r(k) − y(k), and C̃ =

[
0 0 0 1

]
.

The objective of LQI design is to find the optimal input given by

Δu(k) = F(k)x̃(k) (3.10)

such that the following quadratic function is minimized subject to the system de-

scribed by Eq. (3.9).

J =
∞∑

k=0

{x̃(k + 1)TQx̃(k + 1) + Δu(k + 1)RΔu(k + 1)} (3.11)

where Q is a positive semidefinite symmetric weighting matrix and R is a scalar

weight.

The optimal feedback gain matrix F(k) in Eq. (3.10) is calculated as

F(k) = −
(
B̃TPB̃ +R

)−1

B̃TPÃ (3.12)

where P is the solution of the following difference Riccati equation:

P = Q + ÃTPÃ − ÃTPB̃
(
R+ B̃TPB̃

)−1

B̃TPÃ (3.13)

One remark on the design of Q is given as follows. Considering the following

first-order plus time-delay reference model:

M(z−1) =
(1 −�)z−N−1

1 −�z−1
(3.14)
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where α is the tuning parameter related to the speed of closed-loop response and N

is the time-delay of the process.

In order to make LQI design include the poles of the reference model, the fol-

lowing formulation of Q is employed:

Q =

[
C̃

(
I − 1

�
Ã

)]T [
C̃

(
I − 1

�
Ã

)]
(3.15)

The implementation of the proposed data-based LQI design is summarized as

follows:

Step 1 Obtain initial database for the JITL algorithm;

Step 2 Design � and R;

Step 3 At each sampling instant, obtain the linear model given in Eq. (3.1) by

using the most current process data and the JITL algorithm. The database is

updated by the current process data if the absolute value of difference between

the predicted output and the process output is larger than 5% of the process

output.

Step 4 Calculate Δu(k) by Eqs. (3.10) and (3.12) and go to Step 3.

3.3 Examples

Example 1 Consider the following Hammerstein process given by

y(k + 1) = 0.8y(k) + 0.4 tanh(2u(k)) (3.16)
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To proceed with the proposed LQI design, a first-order ARX model is used.

Therefore, the following state space equation is considered.

Δx(k + 1) = α1Δy(k) + β1Δu(k)

Δy(k) = Δx(k) (3.17)

where α1 and β1 are calculated at each sampling instant by the JITL algorithm with

the following parameters: κ = 0.99, kmin = 6 and kmax = 60. The initial database for

the JITL algorithm is built from process data generated by introducing uniformly

random steps with distribution of [-0.05 0.05] in the process input u(k).

Consequently, the following augmented state space equation can be formed.

x̃(k + 1) =

⎡
⎢⎢⎣ α1 0

−α1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣ Δx(k)

e(k)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣ β1

−β1

⎤
⎥⎥⎦Δu

= Ãx̃(k) + B̃Δu(k) (3.18)

The quadratic function given in Eq. (3.11) is then minimized subject to the

system described in Eq. (3.18). The optimal feedback gain F(k) is computed by

Eqs. (3.12) and (3.13), and consequently Δu(k) is obtained by Eq. (3.10).

For comparison purposes, the following analytical local model obtained by suc-

cessive linearization of Eq. (3.16) is employed in the LQI design

Δy(k + 1) ∼= 0.8Δy(k) + 0.4
3.2

cosh2(2u(k − 1))
Δu(k) (3.19)

To evaluate the performance of these two LQI designs, the successive step changes

in the set-point as depicted in Figure 3.1 are considered. The resulting performance

indices J of two LQI designs are comparable as shown in Tables 3.1 and 3.2 for

different values of tuning parameters R and �. Likewise, the respective mean-

squared errors (MSE) of the tracking performance are given in Tables 3.3 and 3.4.
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It can be seen that the proposed data-based LQI design yields a slightly smaller

tracking error than that achieved by LQI design using the analytical model given in

Eq. (3.19). For illustration purposes, the closed-loop responses of two LQI designs

with R = 0.4 and � = 5 are compared in Figure 3.1.

To test the robustness of the proposed LQI design, both process inputs and

outputs are corrupted by 4% Gaussian white noise. As shown in Figure 3.2, the

proposed LQI design can yield reasonably good control performance in the pres-

ence of process noise. Furthermore, Figure 3.3 illustrates the disturbance rejection

capability of the proposed design, where step disturbances of −0.2 and +0.2 are in-

troduced at t = 30 and 60, respectively. It is clear that the proposed data-based LQI

design achieves comparable control performance as that obtained by its counterpart

based on the analytical model.

Lastly, the proposed LQI design is compared with LQI design based on a first-

order ARX model with parameter adaptation by the recursive identification proce-

dure. As can be seen from Figure 3.4, both designs exhibit comparable performance

for smaller set-point changes, i.e. the first three successive set-point changes with

magnitudes of 1 and −1. However, the proposed LQI design shows better control

performance for large set-point changes, as evidenced by the last two consecutive

set-point changes with magnitudes of 2 and −2.
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Table 3.1: Index J for data-based LQI design

�

4 5 10 50

0.2 15.1 16.8 20.6 24.7

R 0.4 14.8 16.2 19.7 23.4

0.8 15.4 17.3 20.2 23.3

1.2 16.0 17.6 20.8 24.0

Table 3.2: Index J for LQI design based on analytical model

�

4 5 10 50

0.2 13.9 15.5 19.0 22.0

R 0.4 14.8 16.1 19.3 22.2

0.8 16.1 17.1 20.4 23.3

1.2 16.3 18.1 21.4 24.3
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Table 3.3: Tracking error of data-based LQI design

�

4 5 10 50

0.2 0.154 0.155 0.159 0.167

R 0.4 0.149 0.148 0.149 0.152

0.8 0.154 0.152 0.151 0.151

1.2 0.158 0.156 0.155 0.152

Table 3.4: Tracking error of LQI design based on analytical model

�

4 5 10 50

0.2 0.159 0.161 0.164 0.166

R 0.4 0.166 0.164 0.165 0.166

0.8 0.177 0.172 0.171 0.171

1.2 0.178 0.179 0.177 0.176
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Figure 3.1: Servo performances of LQI designs based on JITL and successive lin-

earization models (SLM)
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Figure 3.2: Servo performances of two LQI designs in the presence of noise
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Figure 3.3: Disturbance rejection performances of LQI designs based on JITL and

successive linearization models (SLM)
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Figure 3.4: Servo performances of LQI designs based on JITL and recursive least

square models (RLS)
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Example 2 The second application considered is the Van de Vusse reaction,

A → B → C and 2A → D, carried out in an isothermal CSTR as described by the

following equations (Doyle et al., 1995):

ĊA = −k1CA − k3C
2
A +

F

V
(CAf − CA)

ĊB = k1CA − k2CB − F

V
CB (3.20)

where CA, CB, and CC denote the concentrations of components A, B, and C,

respectively. The model parameters and nominal operating condition used in the

simulation are: k1 = 50 h−1, k2 = 100 h−1, k3 = 10 L mol−1 h−1, CAf = 10 mol L−1,

V = 1 L, F0 = 34.3 L h−1, CA = 3.0 mol L−1, and CB = 1.12 mol L−1. The control

problem is to regulate CB by manipulating the inlet flow rate F .

To design the proposed data-based LQI controller, a first-order ARX model and

parameters κ = 0.9, kmin = 12, and kmax = 60 are chosen for the JITL algorithm.

The initial database is generated by introducing uniformly random steps with dis-

tribution of [30.3 38.3] in process input F . Again, for comparison purposes, LQI

controller based on local models obtained by successive linearization of the first-

principle model Eq. (3.20) as derived in Appendix A is designed. With weight

R = 2.80 and � = 10 chosen, the performances of these two controllers for setpoint

change from 1.12 to 1.2 are compared in Figure 3.5. Although the LQI design based

on the analytical models has slightly better performance, the simulation result shows

that the proposed data-based LQI design, which does not require the availability of

the first-principle model, is able to achieve comparable control performance as that

achieved by its model-based counterpart.
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Figure 3.5: Performance comparison of two LQI designs

3.4 Conclusion

A data-based LQI design directly from plant data is proposed in this chapter. By

incorporating the JITL technique, LQI design can be carried out without the need

of a first-principle model or Kalman filter. Simulation results illustrate that the

proposed LQI design achieves comparable control performance as that obtained by

the LQI design based on the successive linearization of the nonlinear first-principle

model.



Chapter 4

Internal Model Controller Design

Using the JITL Technique

4.1 Introduction

Internal Model Control (IMC) is a powerful controller design strategy for the open-

loop stable dynamic systems (Morari and Zafiriou, 1989). IMC design is expected

to perform satisfactorily as long as the process is operated in the vicinity of the

point where the linear process model is obtained. However, the performance of

IMC controller will degrade or even become unstable when it is applied to non-

linear processes with a range of operating conditions. To extend the IMC design

to nonlinear processes, various nonlinear IMC schemes have been proposed in the

literature. For instance, Economou et al. (1986) provided a nonlinear extension of

IMC by employing contraction mapping principle and Newton method. However,

this numerical approach to nonlinear IMC design is computationally demanding.

Calvet and Arkun (1988) implemented a state-space linearization approach within

38
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IMC framework to improve disturbance performance for nonlinear systems. A dis-

advantage of their approach is that an artificial controlled output is introduced in

the controller design procedure and cannot be specified a priori. Another drawback

of this method is that the nonlinear controller requires state feedback (Henson and

Seborg, 1991a). Henson and Seborg (1991b) proposed a state-space approach and

used nonlinear filter to account for the plant/model mismatch. However, these IMC

control strategies relied on the availability of a first-principle model, which is often

unavailable or too time-consuming and costly to obtain due to the lack of complete

physicochemical knowledge of chemical processes. An alternative approach is to

develop black-box models from process data collected from the industrial processes.

To this end, the ability of artificial neural networks to model almost any nonlinear

function without a priori knowledge has led to the investigation of nonlinear IMC

schemes using neural networks (NN). In the methods proposed by Bhat and Mcavoy

(1990) and Hunt and Sbarbaro (1991), one NN was trained to represent the nonlin-

ear dynamics of process, which was then used as the IMC model, while another NN

was trained to learn the inverse dynamics of the process and was employed as the

nonlinear IMC controller. Because IMC model and controller were built by separate

neural networks, the controller might not invert the steady-state gain of the model

and thus steady-state offset might not be eliminated (Nahas et al., 1992). Moreover,

these control schemes do not provide a tuning parameter that can be adjusted to

account for the plant/model mismatch. Nahas et al. (1992) developed another NN

based nonlinear IMC strategy, which consists of a model inverse controller obtained

from a neural network and a filter with a single tuning parameter.

However, the above nonlinear IMC designs sacrifice the simplicity associated with
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linear IMC in order to achieve improved performance. This is mainly due to the use

of computationally demanding analytical or numerical methods and neural networks

to obtain the inverse of process dynamics. To overcome these difficulties, Doyle et

al. (1995) proposed a partitioned model-based IMC design based on the Volterra

model that retains the original spirit and characteristics of conventional IMC while

extending its capabilities to nonlinear systems. However, Volterra model derived us-

ing local expansion results such as Carleman linearization is accurate for capturing

local nonlinearities around an operating point, but may be erroneous in describing

global nonlinear behavior (Maner et al., 1996). Harris and Palazoglu (1998) pro-

posed an alternative partitioned model-based IMC scheme based on the functional

expansion models instead of Volterra model. However, functional expansion models

are limited to fading memory systems and consequently, the resulting controller gives

satisfactory performance only for a limited range of operation. Shaw et al. (1997)

used recurrent neural network within the partitioned model-based IMC scheme as

an alternative for NN-based control application. Maksumov et al. (2002) investi-

gated a similar control scheme consisting of a linear ARX model and a NN model.

However, one fundamental limitation of these types of global approaches for model-

ing is that it is difficult for them to be updated on-line when the process dynamics

are moved away from the nominal operating space. In this situation, on-line adap-

tation of these models requires model update from scratch, namely both network

structure (e.g. the number of hidden neurons) and network parameters may need

to be changed simultaneously. Evidently, this process is not only time-consuming

but also it will interrupt the plant operation, if these models are incorporated into

model based controller design.
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To circumvent the aforementioned drawback, an adaptive IMC design based on

the Just-in-Time Learning (JITL) technique is proposed in this chapter. In the

proposed method, a set of linear models obtained on-line by the JITL is employed

as the IMC model by which the IMC controller is designed. The JITL is considered

not only because its prediction capability for nonlinear processes but also the low-

order model employed in the JITL, which enables the construction of model-inverse

in a straightforward manner. In addition, an updating algorithm for the IMC filter

parameter is developed based on the Lyapunov method to guarantee the convergence

of JITL’s predicted tracking error. Literature examples are presented to illustrate

the proposed control strategy and a comparison with its conventional counterparts

is made.

4.2 JITL-Based Adaptive IMC Design

The block diagram of the IMC structure is shown in Figure 4.1, where G and G̃

denote the open-loop stable process and process model, respectively. The IMC

controller, Q, can be designed by the following equation (Morari and Zafiriou, 1989):

Q = G̃−1
− f (4.1)

where G̃− is the minimum-phase part of G̃ and f is a low-pass filter, which is

designed to make the IMC controller Q realizable and to meet the design trade-

off between the performance and robustness requirements. The IMC framework

allows the use of a variety of process models, such as first-principle models as well

as neural network models. However, the difficulty in the use of these models in the

IMC framework arises in the design of IMC controller, which is based on the inverse
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of minimum-phase part of the model G̃ that necessitates a reliable and efficient

method to obtain this inversion (Maksumov et al., 2002). To address this problem,

the JITL model is employed in the IMC framework so that the model inverse can

be obtained readily. The proposed adaptive IMC scheme is depicted in Figure 4.2,

where the process model G̃ is updated by the JITL algorithm on-line and controller

Q is designed based on the inverse of the minimum-phase dynamics of process model

G̃ augmented with a low-pass filter. In the proposed method, filter parameter is not

fixed, instead it is adjusted on-line by an updating algorithm to be developed in the

sequel. As such, the JITL is employed to update the parameters of both IMC model

and controller.
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Q
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- 
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Figure 4.1: Block diagram of IMC structure



CHAPTER 4. INTERNAL MODEL CONTROLLER DESIGN USING THE
JITL TECHNIQUE 43

+

-

G+
-

ŷ
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Figure 4.2: JITL-based adaptive IMC scheme

As discussed previously, a simple model structure, e.g. low-order ARX models,

is usually employed by the JITL. Therefore, the following second-order ARX model

is considered in the proposed controller design,

ŷ(k) = αk
1y(k − 1) + αk

2y(k − 2) + βk
1u(k − 1) (4.2)

where ŷ(k) is the predicted output by the JITL at the k-th sampling time, y(k− 1)

and u(k − 1) are the output and manipulated variables at the (k − 1)-th sampling

time, αk
1, α

k
2 and βk

1 are the model coefficients at the k-th sampling time.

The transfer function model corresponding to Eq. (4.2) is given by:

G̃k(z−1) =
βk

1z
−1

1 − αk
1z

−1 − αk
2z

−2
(4.3)

Using a first-order filter, IMC controller is designed as following:

Q̃k(z−1) =
1 − αk

1z
−1 − αk

2z
−2

βk
1

1 − λ(k)

1 − λ(k)z−1
(4.4)
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where λ(k) is the IMC filter parameter obtained at the k-th sampling instant.

The control law resulting from Eq. (4.4) is then given by

u(k) = λ(k)u(k − 1) +
1 − λ(k)

βk
1

(
v(k) − αk

1v(k − 1) − αk
2v(k − 2)

)
(4.5)

where v(k) � r(k) + ŷ(k) − y(k).

Because IMC filter parameter λ(k) is constrained between 0 and 1, the following

sigmoid function is employed to map the set [0 1] to �, which denotes the set of real

number:

λ(k) =
1

1 + e−ζ(k)
(4.6)

where ζ(k) ∈ �. In the sequel, an updating algorithm will be developed to adjust

ζ(k) on-line, and subsequently the filter parameter λ(k) can be easily calculated by

Eq. (4.6).

In order to update the parameter ζ(k) so that the convergence of the JITL’s pre-

dicted output to the desired set-point trajectory is guaranteed, Lyapunov function

is chosen as follows:

V (k) = γe2r (k) (4.7)

where er(k) is the predicted tracking error defined as er(k) = r(k)− ŷ(k) and γ is a

positive constant.

Define

er(k + 1) = er(k) + Δer(k + 1) (4.8)
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The increment of the Lyapunov function, ΔV (k), is obtained by

ΔV (k) = V (k + 1) − V (k)

= γe2r (k + 1) − γe2r (k)

= 2γer(k)Δer(k + 1) + γΔe2r (k + 1) (4.9)

In Eq. (4.9), Δer(k + 1) can be further expressed as

Δer(k + 1) =
∂er(k + 1)

∂k

=
∂ [r(k + 1) − ŷ(k + 1)]

∂u(k)

∂u(k)

∂λ(k)

∂λ(k)

∂ζ(k)

∂ζ(k)

∂k

= −∂ŷ(k + 1)

∂u(k)

∂u(k)

∂λ(k)

∂λ(k)

∂ζ(k)
Δζ(k) (4.10)

where

∂ŷ(k + 1)

∂u(k)
= βk+1

1

∂u(k)

∂λ(k)
= u(k − 1) − 1

βk
1

(
v(k) − αk

1v(k − 1) − αk
2v(k − 2)

)
∂λ(k)

∂ζ(k)
= λ(k) (1 − λ(k)) (4.11)

Based on the on-going analysis, the following theorem provides the theoretical

basis for the convergence property of the proposed updating algorithm for ζ(k).

Theorem 1. Let 0 < η(k) < 2 and the parameter ζ(k) is updated by the following

equation,

ζ(k + 1) = ζ(k) +
η(k)

βk+1
1

er(k)

λ(k)(1 − λ(k))

[
∂u(k)

∂λ(k)

]−1

(4.12)

then the tracking error er(k) is guaranteed to converge to zero asymptotically.
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Proof: Based on Eqs. (4.10) and (4.12), Eq. (4.9) is further derived as:

ΔV (k)

= −2γer(k)
∂ŷ(k + 1)

∂u(k)

∂u(k)

∂λ(k)

∂λ(k)

∂ζ(k)
Δζ(k) + γ

(
−∂ŷ(k + 1)

∂u(k)

∂u(k)

∂λ(k)

∂λ(k)

∂ζ(k)
Δζ(k)

)2

= −2γer(k)β
k+1
1

∂u(k)

∂λ(k)
λ(k) (1 − λ(k))

η(k)

βk+1
1

er(k)

λ(k) (1 − λ(k))

[
∂u(k)

∂λ(k)

]−1

+γ

(
−βk+1

1

∂u(k)

∂λ(k)
λ(k) (1 − λ(k))

η(k)

βk+1
1

er(k)

λ(k) (1 − λ(k))

[
∂u(k)

∂λ(k)

]−1
)2

= −2γη(k)e2r (k) + γη2(k)e2r (k)

= −η(k)(2 − η(k))γe2r (k) (4.13)

It is evident from Eq. (4.13) that ΔV (k) is always negative if 0 < η(k) < 2

holds, meaning that the predicted tracking error er(k) is guaranteed to converge to

zero by using the updating algorithm, Eq. (4.12), to design ζ(k+1). This completes

the proof.

One remark about Theorem 1 is the determination of η(k). Generally, a larger

η(k) in the specified range [0 2] would lead to faster convergence but might result

in overshoot and oscillatory response, while a smaller η(k) has the opposite effect.

Owing to the lacking of systematic guidelines for the determination of η(k), it is

usually chosen experimentally for each problem. In the proposed design, the follow-

ing rules are used to update the learning rate: (i) if the increment of |er(k)| is more

than the threshold, the filter parameter remains unchanged and the learning rate

is decreased by a factor ldec, i.e. η(k + 1) = ldecη(k); (ii) if the absolute value of

the change of |er(k)| is within the threshold, only the filter parameter is updated;

otherwise, (iii) the filter parameter is updated and the learning rate is increased by

a factor linc, i.e. η(k + 1) = lincη(k).
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The implementation of the proposed adaptive IMC controller design is summa-

rized as follows:

Step 1 Given the initial database for the JITL, initialize the IMC filter parameter

and its learning rate;

Step 2 Given the current process output y(k), compute the manipulated variable

u(k) from Eq. (4.5);

Step 3 The JITL database is updated by the current process data if the absolute

value of prediction error between the JITL’s output and the current process

output is larger than the specified threshold;

Step 4 Obtain ARX model for the next sampling instant by using the current

process data and JITL algorithm, followed by updating η(k) and ζ(k). Con-

sequently, IMC filter parameter at the next sampling instant, λ(k + 1), is

calculated by using Eq. (4.6)

Step 5 Set k = k + 1 and go to Step 2.

4.3 Examples

Example 1 Consider a continuous polymerization reaction that takes place in a

jacketed CSTR (Doyle et al., 1995), where an isothermal free-radical polymerization

of methyl methacrylate (MMA) is carried out using azo-bis-isobutyronitrile (AIBN)

as initiator and toluene as solvent. The control objective is to regulate the product

number average molecular weight (y =NAMW) by manipulating the flow rate of the
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initiator (u = FI). This process can be described by the following balance equations:

dCm

dt
= −(kP + kfm)CmP0 +

F (Cmin
− Cm)

V

dCI

dt
= −kICI +

FICIin − FCI

V

dD0

dt
= (0.5kTC

+ kTd
)P 2

0 + kfmCmP0 − FD0

V

dD1

dt
= Mm(kP + kfm)CmP0 − FD1

V
(4.14)

where P0 =
[

2f∗kICI

kTd
+kTc

]0.5

and y = D1

D0
. The steady-state operation condition and

model parameters are given in Tables 4.1 and 4.2.

To proceed with the JITL method, input and output data are generated by

introducing uniformly random steps with distribution of [0.012 0.021] to the process

input FI. With sampling time of 0.03h, input and output data thus obtained (see

Figure 4.3) are used to build the database. A second-order ARX model is used

as the local model and the parameters chosen for JITL algorithm are as follows:

κ = 0.95, kmin = 6 and kmax = 60. The initial IMC filter is λ = 0.83 with the

initial learning rate η = 1 × 10−7. For the purpose of comparison, an adaptive

IMC controller is designed based on a second-order ARX model with parameter

adaptation by the recursive least-square (RLS) identification procedure and IMC

filter parameter equal to λ = 0.76 (Shahrokhi and Baghmisheh, 2005). In addition,

the following benchmark IMC controller employed in the previous work (Doyle et al.,

1995) is also designed based on the linear model obtained at the nominal operating

condition and a second-order IMC filter with filter time constant equal to 0.06:

Q(s) =
−7.3s4 − 298.7s3 − 4589.6s2 − 31334.6s− 80187.3

s4 + 55.1s3 + 1122.1s2 + 9983.6s+ 32753.6
(4.15)
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Table 4.1: Steady-state operating condition of polymerization reactor

Cm = 5.506774 kmol/m3 D1 = 49.38182 kmol/m3

CI = 0.132906 kmol/m3 u = 0.016783 m3/h

D0 = 0.0019752 kmol/m3 y = 25000.5 kg/kmol

Table 4.2: Model parameters for polymerization reactor

kTc = 1.3281 × 1010 m3/(kmol h) F = 1.00 m3/h

kTd = 1.0930 × 1011 m3/(kmol h) V = 0.1 m3

kI = 1.0225 × 10−1 L/h CIin = 8.0 kmol/m3

kP = 2.4952 × 106 m3/(kmol h) Mm = 100.12 kg/kmol

kfm = 2.4522 × 103 m3/(kmol h) Cmin
= 6.0 kmol/m3

f ∗ = 0.58
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Figure 4.3: Input and output data used to construct the JITL’s database
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To evaluate the servo performances of three controllers, successive set-point

changes between 25000.5 kg/kmol and 12500 kg/kmol as illustrated in Figure 4.4

are considered. Note that the symbol ”∗” in this figure denotes the sample instants

at which JITL’s database is updated. It is obvious that the proposed adaptive

IMC design has better performance than those achieved by the other two IMC con-

trollers, as evidenced by the reduction of the Mean Absolute Error (MAE) by 18.8%

and 18.1%, relative to the linear IMC and RLS-based adaptive IMC controllers,

respectively. Figure 4.5 shows the updating of the IMC filter parameter in the

aforementioned closed-loop responses.

To compare the disturbance rejection capability of three IMC controllers, unmea-

sured ±10% step disturbances in the inlet initiator concentration CIin are considered.

The resulting closed-loop responses at three different operating points are shown in

Figures 4.6 and 4.7. As also can be seen from Table 4.3, the proposed IMC controller

yields slightly better performance around the nominal operating condition compared

to the other two IMC controllers. However, when the operating conditions are away

from the nominal one, the proposed design gives marked improvement as evidenced

by the respective MAE reductions in the ranges of 2% to 39% (RLS-IMC) and 33%

to 64% (IMC). Next, to evaluate the robustness of the proposed control strategy,

10% modeling error in the kinetic parameter kI and 20% error in the coefficients

of the D1 and Mm are assumed. It is evident from Figure 4.8 that the proposed

controller still maintains better control performance over the linear IMC controller

by achieving 22.7% reduction of MAE in the aforementioned set-point changes. In

this case, RLS-based adaptive IMC controller yields steady-state off-set as shown in

Figure 4.9. Lastly, to study the effect of process noise on the proposed design, both
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process input and output are corrupted by 1% Gaussian white noise, which means

that the database used for JITL algorithm also contains the corrupted process data.

As shown in Figure 4.10, the proposed IMC controller can yield reasonably good

control performance in the presence of process noise.

Table 4.3: Control performance comparison of three controllers

Tracking error (MAE)

Adaptive IMC Adaptive IMC Linear IMC

(JITL) (RLS)

Servo Response 799.59 976.49 984.27

Servo Response∗ 907.55 off-set 1174.70

+10% in CIin at y=25000.5 45.45 45.94 46.42

+10% in CIin at y=18750 43.72 69.50 90.16

+10% in CIin at y=13500 94.42 96.90 141.15

-10% in CIin at y=25000.5 52.35 55.12 56.88

-10% in CIin at y=18750 39.27 64.34 110.81

-10% in CIin at y=13500 85.40 97.31 171.93

∗ In the presence of modeling error
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Figure 4.4: Servo responses of three IMC designs (∗: database update)
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(∗: database update)
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Example 2 Consider the following first-order plus dead-time process (Tan et al.,

1997):

τ1(y)
dy

dt
+ y = τ2(y)u(t− θ) (4.16)

where y is the process output, u is the process input, θ is the dead-time of 0.5 unit

time, and τ1(y) and τ2(y) are the model parameters dependent on y. The process

has three operating regions as specified in Table 4.4, where the nonlinear region 2

is surrounded by two linear ones (regions 1 and 3).

Table 4.4: Process model for example 2

Process condition Region 1 Region 2 Region 3

y y < 2 2 ≤ y ≤ 7 7 < y

τ1(y) 10
√

133.6 − 16.8y 4

τ2(y) 1
√

4.8y − 8.6 5

To proceed with the JITL method, input and output data used to construct

the JITL’s database are generated by introducing uniformly random steps with

distribution of [0 2] to the process input u. A first-order ARX model is used as the

local model and the parameters chosen for JITL algorithm are as follows: κ = 0.95,

kmin = 6 and kmax = 60. The initial IMC filter is λ = 0.9 with the initial learning

rate η = 1.3×10−9. For the purpose of comparison, the gain-scheduling PI controller

employed in the previous work (Tan et al., 1997) is designed. The parameters of

this gain-scheduling PI controller are summarized in Table 4.5.

The servo performances of two controllers are compared for the successive set-

point changes as illustrated in Figures 4.11 and 4.12. It is obvious that the pro-
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posed adaptive IMC design has better performance than that achieved by the gain-

scheduling PI controller because the latter exhibits sustained oscillation around the

set-point equal to 3 and large overshoot for the set-point change from 3 to 5. Next,

to evaluate the robustness of the proposed control strategy, it is assumed that the

process parameter τ2(y) is subject to 10% modeling error and the resulting servo

responses of two controllers are compared in Figures 4.13 and 4.14. Evidently, the

proposed controller still maintains superior control performance as compared with

gain-scheduling PI controller. Lastly, to study the effect of process noise on the pro-

posed design, both process input and output are corrupted by 3% Gaussian white

noise. As shown in Figure 4.15, the proposed IMC controller can yield reasonably

good control performance in the presence of process noise.

Table 4.5: Gain-scheduling PI controller

y ≤ 2.0 2.0 5 7

KC 10.0 1.25 2.0 1.0

τI 10.0 3.5 2.15 2.0
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Figure 4.11: Servo response of the proposed IMC design (∗: database update)
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Figure 4.12: Servo response of the gain-scheduling PI controller
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Figure 4.13: Servo response of the proposed IMC design under +10% modeling error

in τ2 (∗: database update)
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Figure 4.15: Servo response of the proposed IMC design in the presence of noise
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4.4 Conclusion

By incorporating the JITL into IMC framework, an adaptive IMC design method-

ology is developed for nonlinear process control. The IMC controller parameters are

updated not only based on a set of linear models identified on-line by the JITL, but

also its filter parameter is adjusted on-line by an updating algorithm derived from

the Lyapunov method. Compared with the previous nonlinear IMC controller design

methods, it is straightforward for the proposed method to obtain the model inverse,

and consequently the design of IMC controller can be carried out readily. Simulation

results are presented to demonstrate the advantage of the proposed adaptive IMC

design over its conventional counterpart.



Chapter 5

Self-Tuning PID Controllers Using

the JITL Technique

5.1 Introduction

The PID controllers have received widespread use in the process industries primarily

because of its simple structure, ease of implementation, and robustness in operation.

Most of the tuning rules for PID controllers are based on a linear process model ob-

tained either through a step test or by linearizing a nonlinear process model around

the nominal operating condition. Although the use of a linear model makes the tun-

ing of PID controller simple, performance of the conventional PID controller might

degrade or even become unstable when the underlying process dynamics are non-

linear and time-varying in nature, which are the characteristics of many industrial

chemical and biochemical processes. To improve the control performance, several

schemes of incorporating nonlinear control techniques in the design of PID controller

have been developed in recent years. For example, Riverol and Napolitano (2000)

68
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proposed an adaptive PID controller whose parameters are adjusted on-line by a

neural network, while Chen and Huang (2004) designed adaptive PID controller

based on the instantaneous linearization of a neural network model. Altinten et

al. (2004) applied the genetic algorithm to the optimal tuning of a PID controller

on-line. Bisowarno et al. (2004) applied two adaptive PI control strategies for re-

active distillation. Andrasik et al. (2004) made use of a hybrid model consisting of

a neural network and a simplified first-principles model to design a neural PID-like

controller. Yamamoto and Shah (2004) developed an adaptive PID controller using

recursive least squares for on-line identification of multivariable system. Shahrokhi

and Baghmisheh (2005) designed an adaptive IMC-PID controller based on the lo-

cal models estimated by the recursive least squares method to control a fixed-bed

reactor. Similar approaches for adjusting PID controller parameters on-line were

investigated based on the multiple linearized models obtained by factorization algo-

rithm and lazy learning identification method at each sampling instant (Ho et al.,

1999; Alpbaz et al., 2006; Pan et al., 2007). In these works, basically, the parame-

ters of the process model are updated with respect to the current process condition

and then PID parameters are computed by the corresponding adaptation algorithm

and implemented. However, these adaptation algorithms employed in the previous

results are inadequate to address the convergence of the predicted tracking error.

Toward this end, Chang et al. (2002) derived a stable adaptation mechanism in the

continuous time domain by the Lyapunov approach such that the PID controller

tracks a pre-specified feedback linearization control asymptotically.

Motivated by the above consideration, a self-tuning PID controller in the discrete

time systems based on the Just-in-Time Learning (JITL) technique is proposed in
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this chapter. The JITL is considered not only because its prediction capability for

nonlinear processes can match that obtained by the neural network, but also its

inherent adaptive nature. In the proposed method, a set of linear models obtained

on-line by the JITL provides the information to adjust PID controller by a self-

tuning algorithm derived by the Lyapunov method to guarantee the convergence of

JITL’s predicted tracking error. A literature example is presented to illustrate the

proposed control strategy and a comparison with its conventional counterparts is

made.

5.2 Self-Tuning PID Controller Design

The proposed self-tunign PID controller design is depicted in Figure 5.1, where

the JITL technique is mainly used to identify the current process dynamics at each

sampling instant. In the proposed self-tuning PID design, the following second-order

ARX model is employed in the JITL algorithm:

ŷ(k) = αk
1y(k − 1) + αk

2y(k − 2) + βk
1u(k − 1) (5.1)

where ŷ(k) is the predicted output by the JITL at the k-th sampling time, y(k− 1)

and u(k − 1) are the output and manipulated variables at the (k − 1)-th sampling

time, αk
1, α

k
2 and βk

1 are the model coefficients at the k-th sampling time.
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Figure 5.1: JITL based self-tuning PID control system

The control law of the proposed PID controller is given by:

u(k) = u(k − 1) + w1(k)e(k) + w2(k)Δe(k) + w3(k)δe(k) (5.2)

where w1(k), w2(k), and w3(k) are the parameters of PID controller at the k-th

sampling instant, e(k) is the error between process output and its set-point at the

k-th sampling instant, Δe(k) = e(k)− e(k− 1) is the difference between the current

and previous error, and δe(k) = Δe(k) − Δe(k − 1).

Since the controller parameters wi are constrained to be positive or negative, the

following function is introduced to map the set of positive (or negative) number to

the set of real number:

ζi(k) =

⎧⎪⎪⎨
⎪⎪⎩

ln[wi(k)], if wi(k) ≥ 0

ln[−wi(k)], if wi(k) < 0

, i = 1 ∼ 3 (5.3)

where ζi(k) is a real number. In the sequel, an updating algorithm will be developed

to adjust ζi(k) online, and subsequently the PID parameters wi(k) can be easily
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calculated by Eq. (5.3).

To facilitate the subsequent development, the following vectors related to the

controller parameters are defined as:

w(k) =

[
w1(k) w2(k) w3(k)

]T

(5.4)

ζ(k) =

[
ζ1(k) ζ2(k) ζ3(k)

]T

(5.5)

In order to update the parameter ζi(k) at each sampling time so that the JITL’s

predicted output converges to the desired set-point trajectory, the following Lya-

punov function is considered:

V (k) = γe2r (k) (5.6)

where er(k) is the predicted tracking error defined as er(k) = r(k)− ŷ(k) and γ is a

positive constant.

Define

er(k + 1) = er(k) + Δer(k + 1) (5.7)

The increment of the Lyapunov function, ΔV (k), is obtained by

ΔV (k) = V (k + 1) − V (k)

= γe2r (k + 1) − γe2r (k)

= 2γer(k)Δer(k + 1) + γΔe2r (k + 1) (5.8)

In Eq. (5.8), Δer(k + 1) can be further expressed as

Δer(k + 1) =
∂er(k + 1)

∂k

=
∂ [r(k + 1) − ŷ(k + 1)]

∂u(k)

∂u(k)

∂w(k)

∂w(k)

∂ζ(k)

∂ζ(k)

∂k

= −∂ŷ(k + 1)

∂u(k)

∂u(k)

∂w(k)

∂w(k)

∂ζ(k)
Δζ(k) (5.9)
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where

∂ŷ(k + 1)

∂u(k)
= βk+1

1

∂u(k)

∂w(k)
= eu(k) =

[
e(k) Δe(k) δe(k)

]

∂w(k)

∂ζ(k)
=

⎡
⎢⎢⎢⎢⎢⎢⎣
w1(k) 0 0

0 w2(k) 0

0 0 w3(k)

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.10)

Based on the on-going analysis, the following theorem provides the theoretical

basis for the convergence property of the proposed updating algorithm for ζ(k).

Theorem 1. Let 0 < ηi(k) < 2 and the parameter vector ζ(k) is updated by the

following equation,

ζ(k + 1) = ζ(k) +
1

βk+1
1

Ω(k)

[
∂w(k)

∂ζ(k)

]−1
eu(k)

Ter(k)

eu(k)eu(k)T
(5.11)

where

Ω(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣
η1(k) 0 0

0 η2(k) 0

0 0 η3(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

then the tracking error er(k) is guaranteed to converge to zero asymptotically.
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Proof: Based on Eqs. (5.9) and (5.11), Eq. (5.8) is expressed as:

ΔV (k)

= −2γer(k)
∂ŷ(k + 1)

∂u(k)

∂u(k)

∂w(k)

∂w(k)

∂ζ(k)
Δζ(k) + γ

(
−∂ŷ(k + 1)

∂u(k)

∂u(k)

∂w(k)

∂w(k)

∂ζ(k)
Δζ(k)

)2

= −2γer(k)β
k+1
1 eu(k)

∂w(k)

∂ζ(k)

1

βk+1
1

Ω(k)

[
∂w(k)

∂ζ(k)

]−1
eu(k)

Ter(k)

eu(k)eu(k)T
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(5.12)

It is evident from Eq. (5.12) that ΔV (k) is always negative if 0 < ηi(k) < 2

holds, meaning that tracking error er(k) is guaranteed to converge to zero by using

the updating algorithm, Eq. (5.11), to design ζ(k + 1). This completes the proof.

One remark about Theorem 1 is the determination of η(k). Generally, a larger

η(k) in the specified range [0 2] would lead to faster convergence but might result

in overshoot and oscillatory response, while a smaller η(k) has the opposite effect.

Owing to the lacking of systematic guidelines for the determination of η(k), it is

usually chosen experimentally for each problem. In the proposed design, the fol-

lowing rules are used to update the learning rates: (i) if the increment of |er(k)| is

more than the threshold, the PID parameters remain unchanged and learning rate

is decreased by a factor ldec,i, i.e. ηi(k + 1) = ldec,iηi(k); (ii) if the absolute value of

the change of |er(k)| is within the threshold, only the PID parameters are updated;
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otherwise, (iii) both PID parameters are updated and learning rate is adjusted by

ηi(k) = linc,iηi(k − 1).

The implementation of the proposed self-tuning PID controller design is summa-

rized as follows:

Step 1 Given the initial database for the JITL, initialize the PID controller param-

eters and their respective learning rates;

Step 2 Given the current process output y(k), compute the manipulated variable

u(k) from Eq. (5.2);

Step 3 The JITL’s database is updated by the current process data if the absolute

value of prediction error between the JITL’s output and the current process

output is larger than the specified threshold;

Step 4 Obtain ARX model for the next sampling instant by using the current pro-

cess data and JITL algorithm, followed by updating ηi(k) and ζi(k). Conse-

quently, PID parameters at the next sampling instant, wi(k+1), are calculated

by using Eq. (5.3)

Step 5 Set k = k + 1 and go to Step 2.

5.3 Examples

Example 1 The proposed self-tuning PID strategy is applied to a polymerization

reactor example discussed earlier in Chapter 4. The model parameters and steady-

state operation condition can be found in Tables 4.1 and 4.2. The proposed self-

tuning PID controller design is based on the same database and parameters used for
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the JITL algorithm mentioned in Chapter 4. In addition, the IMC and RLS-based

adaptive PID controllers provided in Chapter 4 serve as the benchmark design for

comparison purpose.

To compare the performances of three controllers, successive set-point changes

between 25000.5 kg/kmol and 12500 kg/kmol are conducted. As can be seen from

Figure 5.2, the proposed self-tuning PID controller has better performance than

those achieved by the other two controllers, resulting in the respective reductions of

the Mean Absolute Error (MAE) by 29.4% and 28.8% as compared with the linear

IMC and RLS-based adaptive PID controllers. Note that the symbol ”∗” in Figure

5.2 denotes the sampling instants at which JITL’s database is updated. Figure 5.3

shows the updating of PID parameters and learning rates of the proposed design in

the aforementioned closed-loop responses.

Figures 5.4 and 5.5 compare the disturbance rejection capability of three con-

trollers with respect to unmeasured ±10% step disturbances in the inlet initiator

concentration CIin . Again, the proposed self-tuning PID controller has superior

control performance over the other two controllers. Table 5.1 summarizes the per-

formance achieved by the proposed PID controller. Next, to evaluate the robustness

of the proposed control strategy, it is assumed that there exist 10% modeling error in

the kinetic parameter kI and 20% error in the coefficients of the D1 and Mm. As can

be seen from Figure 5.6, the proposed controller outperforms the linear IMC con-

troller, as also evidenced by the reduction of MAE by 28.5% for the aforementioned

set-point changes. In this case, adaptive PID controller based on RLS model yields

steady-state off-set as discussed in Chapter 4. Lastly, to study the effect of process

noise on the proposed design, both process input and output are corrupted by 1%
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Gaussian white noise, which means that the database used for JITL algorithm also

contains the corrupted process data. As shown in Figure 5.7, the proposed self-

tuning controller can yield reasonably good control performance in the presence of

process noise.

Table 5.1: Control performance comparison of three controllers

Tracking error (MAE)

self-tuning PID Adaptive PID Linear IMC

(JITL) (RLS)

Servo Response 695.25 976.49 984.27

Servo Response∗ 840.12 off-set 1174.70

+10% in CIin at y=25000.5 35.17 45.94 46.42

+10% in CIin at y=18750 57.49 69.50 90.16

+10% in CIin at y=13500 96.1 96.90 141.15

-10% in CIin at y=25000.5 40.37 55.12 56.88

-10% in CIin at y=18750 64.32 64.34 110.81

-10% in CIin at y=13500 84.25 97.31 171.93

∗ In the presence of modeling error
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Figure 5.2: Servo responses of three controller designs (∗: database update)
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Figure 5.3: Updating of the PID parameters and learning rates for servo response
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Figure 5.4: Closed-loop responses for -10% step change in CIin
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Figure 5.5: Closed-loop responses for +10% step change in CIin
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Figure 5.6: Servo responses of the self-tuning PID and IMC designs in the presence

of modeling error (∗: database update)
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Figure 5.7: Servo response of the self-tuning PID controller in the presence of noise
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Example 2 The proposed self-tuning PID strategy is applied to the first-order

plus dead-time process discussed in Chapter 4. Like in Chpater 4, a first-order ARX

model is used as the local model and the parameters chosen for JITL algorithm are

as follows: κ = 0.95, kmin = 6 and kmax = 60. The initial PI controller is specified

by w1 = 0.3 and w2 = 1.6 with initial learning rates given by η1 = 4 × 10−11 and

η2 = 1 × 10−10. For the purpose of comparison, the gain-scheduling PI controller

given in Table 4.5 is considered as benchmark design.

Figures 5.8 and 4.12 compare the servo performances of two controllers for the

successive set-point changes between 0 and 6. It can be seen that the proposed self-

tuning PI design has better performance than that achieved by the gain-scheduling

PI controller because the latter exhibits sustained oscillation around the set-point

at 3 and large overshoot for the set-point change from 3 to 5. Next, to evaluate

the robustness of the proposed control strategy, 10% modeling error in the process

parameter τ2(y) is assumed and the resulting servo responses of two controllers are

compared in Figures 5.9 and 4.14. It is evident that the proposed controller still

maintains superior control performance in the aforementioned set-point changes.

Lastly, to study the effect of process noise on the proposed design, both process

input and output are corrupted by 3% Gaussian white noise. As shown in Figure

5.10, the proposed controller can yield reasonably good control performance in the

presence of process noise.



CHAPTER 5. SELF-TUNING PID CONTROLLERS USING THE JITL
TECHNIQUE 85

0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

6

7

8

Time

y

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3

4

5

6

Time

u

Figure 5.8: Servo response of the self-tuning PI design (∗: database update)
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Figure 5.9: Servo response of the self-tuning PI controller under +10% modeling

error in τ2 (∗: database update)
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Figure 5.10: Servo response of the self-tuning PI controller in the presence of noise
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5.4 Conclusion

By incorporating the JITL into PID framework, a self-tuning PID design method-

ology is developed for nonlinear process control in this chapter. PID controller pa-

rameters are updated not only based on the information provided by the JITL, but

also an updating algorithm derived from the Lyapunov method. Compared with the

previous neural network based PID controller designs, the proposed method is more

straightforward for implementation. Simulation results are presented to demonstrate

the advantage of the proposed adaptive PID controller design over its conventional

counterpart.



Chapter 6

Generalized Predictive Control

Using the JITL Technique

6.1 Introduction

Model predictive control (MPC) based on linear models, for example dynamic ma-

trix control (Cutler and Ramaker, 1979), quadratic dynamic matrix control (Garcia

and Morshedi, 1986), and generalized predictive control (Clarke et al. 1987), has

gained wide-spread acceptance as an advanced control strategy in chemical process

industries. This is primarily due to their ability to handle process constraints, time

delay, and multivariable systems in a unified design framework. In MPC, a dy-

namic process model is first developed to predict the future process outputs in the

prediction horizon, by which future control actions are computed by minimizing a

pre-specified cost function. Therefore, the effectiveness of MPC relies heavily on the

availability of a reasonably accurate process model. As many chemical processes

are highly nonlinear and may be operated in a range of operating points, it is clear

89
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that MPC algorithms based on linear process models can result in poor control per-

formance. As a result, various variants of MPC techniques have been studied and

extended to nonlinear systems. Although a number of nonlinear MPC designs have

been developed based on the first-principle models, their applications have been lim-

ited due to the difficulty associated with the development of a reasonably accurate

first-principles model and the extensive computational burden as inevitably required

by solving the associated on-line nonlinear optimization problems. To reduce the

computational burden arising from the use of nonlinear models in nonlinear MPC

design, Venkateswarlu and Gangiah (1997) utilized a recursive least squares (RLS)

algorithm to update the local model in a nonlinear generalized predictive control

strategy. However, the RLS algorithm can produce poor estimates of system param-

eters if the online process input and output data do not meet excitation conditions.

Another popular nonlinear MPC techniques by incorporating empirical models like

neural networks (Saint-Donat et al., 1991; Pottmann and Seborg, 1997; Chu et al.,

2003), fuzzy models (Kavsek-Biasizzo et al., 1997; Fischer et al., 1998; Abonyi et

al., 2000; Mahfouf et al., 2000), fuzzy neural networks (Lu and Tsai, 2007), and

local model networks (Prasad et al., 1998) have been investigated and developed

in the literature. However, the use of neural network in nonlinear MPC design is

computationally demanding due to the on-line optimization required to compute the

control signals. For fuzzy models and local model networks, the problem of how to

partition the operating regimes remains an ad-hoc procedure and therefore a prior

knowledge of the processes, which may not be readily accessible in most practical

cases, has to be exploited for the determination of the model structure. Another

fundamental limitation of these types of modeling approaches is that it is difficult
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for them to be updated on-line when the process dynamics are moved away from

the nominal operating space. In this situation, on-line adaptation of these models

requires model update from scratch, namely both model structure (e.g. number of

hidden neurons in the neural networks models and number of fuzzy rules in fuzzy

models) and model parameters may need to be modified simultaneously. Evidently,

this process is not only time-consuming but also it will interrupt the plant operation,

if these models are used in controller design.

In this chapter, a generalized predictive control (GPC) strategy based on the

Just-in-Time Learning (JITL) technique is proposed. The JITL is considered not

only because of its prediction capability for nonlinear systems but also its inherent

adaptive nature. This latter feature makes JITL an attractive alternative to be

incorporated into the nonlinear MPC design so that the aforementioned problems

encountered by the global models can be alleviated. Furthermore, the computa-

tional burden is reduced by modeling the nonlinear systems by a set of local models

obtained on-line by the JITL. The current local model at each sampling instant is

treated as the process model in GPC design where the optimal changes in the manip-

ulated variable are determined by solving a quadratic optimization problem formu-

lated in the GPC design framework. Literature examples are presented to illustrate

the proposed control strategy and a comparison with its conventional counterparts

is made.



CHAPTER 6. GENERALIZED PREDICTIVE CONTROL USING THE JITL
TECHNIQUE 92

6.2 JITL-Based Generalized Predictive Controller

Design

Since the local models obtained by the JITL algorithm are ARX models, GPC design

framework (Clarke et al., 1987) is considered for the development of the proposed

nonlinear MPC design. In the proposed GPC design, the following second-order

ARX model is employed in the JITL algorithm at each sampling time:

ŷ(k) = αk
1y(k − 1) + αk

2y(k − 2) + βk
1u(k − nd − 1) (6.1)

where nd denotes the time delay.

Similar to the conventional GPC design, the aim of the proposed nonlinear GPC

scheme is to find the optimal future changes in the manipulated variable that make

the future process output track the reference trajectory as closely as possible in the

presence of system constraints and disturbances. The above control performance

requirement can be expressed by the following optimization problem:

min
Δu(k),Δu(k+1),··· ,Δu(k+Nu−1)

Np∑
i=1

(r(k + i) − y(k + i/k))2 +

Nu∑
i=1

μi (Δu(k + i− 1))2

(6.2)

subject to the following input constraints:

umin ≤ u(k + i− 1) ≤ umax, i = 1, 2, · · · , Nu (6.3)

Δumin ≤ Δu(k + i− 1) ≤ Δumax, i = 1, 2, · · · , Nu (6.4)

where r(k+i) is the future set-point, y(k+i/k) is the prediction of the future process

output at the (k+ i)-th sampling instant in the prediction horizon Np, Δu(k+ i−1)

is the future change in the manipulated variable at the (k+i−1)-th sampling instant
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in the control horizon Nu, μi is a weighting factor, umin and umax are the lower and

upper limits of manipulated variable, and Δumin and Δumax are the lower and upper

limits for the increment of manipulated variable.

Equations (6.2) to (6.4) can be rewritten in the following vector form:

min
Δu

(r − y)T(r − y) + ΔuTMΔu (6.5)

subject to the input constraints

CuΔu ≥ cf (6.6)

where r =

[
r(k + 1) · · · r(k +Np)

]T

, y =

[
y(k + 1/k) · · · y(k +Np/k)

]T

,

Δu =

[
Δu(k) · · · Δu(k +Nu − 1)

]T

, M is a diagonal matrix consisting of

μi, and Cu and cf are the corresponding matrix and vector accounting for the

inequalities of input constraints.

In order to solve the aforementioned quadratic optimization problem, the objec-

tive function is requited to be formulated as a function of the future changes in the

manipulated variable. To this end, consider the ARX local model expressed by the

following CARMA (Controlled Auto - Regressive and Moving Average) model:

A(z−1)Δy(k) = B(z−1)Δu(k − 1) (6.7)

where z−1 denotes the backward shift operator and

A(z−1) = 1 − αk
1z

−1 − αk
2z

−2 (6.8)

B(z−1) = βk
1z

−nd (6.9)

To derive the ith-step ahead prediction of y(k+1/k), consider a set of Diophan-

tine equations:

1 = Ei(z
−1)A(z−1)Δ + z−iFi(z

−1), i = 1, 2, · · · , Np (6.10)
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where Ei(z
−1) and Fi(z

−1) are polynomials in z−i. Multiplying Eq. (6.7) by

Ei(z
−1)zi yields:

Ei(z
−1)A(z−1)Δy(k + i/k) = Ei(z

−1)B(z−1)Δu(k + i− 1) (6.11)

Substituting Eq. (6.10) into above equation gets

y(k + i/k) = Ei(z
−1)B(z−1)Δu(k + i− 1) + Fi(z

−1)y(k) (6.12)

Subsequently, Eq. (6.12) is used to predict the future process outputs in the

prediction horizon Np:

y(k + 1/k) = G1(z
−1)Δu(k) + F1(z

−1)y(k) =

future︷ ︸︸ ︷
g1(z)Δu(k)+f1

...
...

y(k +Np/k) = GNp(z
−1)zNp−1Δu(k) + FNp(z

−1)y(k) =

future︷ ︸︸ ︷
gNp(z)Δu(k) +fNp (6.13)

where Gi(z
−1) = Ei(z

−1)B(z−1), gi(z) consists of those terms in Gi(z
−1)zi−1 with

nonnegative exponent in zi, and fi is the remaining term calculated based on the

past values of process output and input. Equation (6.13) can be written as

y =

[
y(k + 1/k) · · · y(k +Np/k)

]T

= GΔu + h (6.14)

where G is a lower triangular matrix with elements consisting of the coefficients in

gi(z) and h =

[
f1 f2 · · · fNp

]T

. By using Eq. (6.14), the objective function

of Eq. (6.5) can be recast as a quadratic optimization problem as follows:

min
Δu

(r − h −GΔu)T(r − h− GΔu) + ΔuTMΔu (6.15)

With aforementioned discussion, the implementation of the proposed GPC design

is summarized as follows:
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Step 1 Given the initial database for the JITL and the weighting matrix M;

Step 2 Given the current process output y(k), Δu is computed by solving the

quadratic optimization problem of Eq. (6.15) subject to the constraints given

in Eq. (6.6) and only Δu(k) is implemented into the process;

Step 3 The JITL’s database is updated by the current process data if the absolute

value of prediction error between the JITL’s output and the current process

output is larger than the specified threshold;

Step 4 Obtain ARX model for the next sampling instant by using the current

process data and JITL algorithm.

Step 5 Set k = k + 1 and go to Step 2.

6.3 Examples

Example 1 Consider the polymerization reactor studied in Chapters 4 and 5.

The model parameters and steady-state operation condition can be found in Tables

4.1 and 4.2. In addition, the same database and parameters for the JITL used in

Chapters 4 and 5 are employed.

To evaluate the servo performances of three controllers, successive set-point

changes between 25000.5 kg/kmol and 12500 kg/kmol are considered. The input

constraint is specified as u ≥ 0.007 for three GPC designs. The parameters of three

GPC designs are tuned to give their respective optimal tracking performances. For

the proposed GPC design, the prediction horizon is Np = 7, the control horizon

Nu = 1, and the weighting matrix is M = 0.002I. In addition, Np = 6, Nu = 1, and
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M = 0I are designed for linear GPC design that is based on the linear model given

in Eq. (4.15), while Np = 10, Nu = 1, and M = 0.002I are used in the adaptive

GPC design based on the RLS method. It is clear from Figure 6.1 that the proposed

GPC design has faster response than those achieved by the other two GPC designs,

resulting in the respective reductions of the Mean Absolute Error (MAE) by 11.8%

and 14.3%.

Figures 6.2 and 6.3 compare the disturbance rejection capability of three con-

trollers with respect to unmeasured ±10% step disturbances in the inlet initiator

concentration CIin . The proposed JITL-based GPC design gives better control per-

formance over the other two GPC designs except at the nominal operating condi-

tion. Table 6.1 summarizes the control performances of three GPC designs. Next,

to evaluate the robustness of the proposed control strategy, 10% modeling error in

the kinetic parameter kI and 20% error in the coefficients of the D1 and Mm are

assumed. As can be seen from Figure 6.4, the proposed controller still maintains

better control performance over the other two controllers, leading to 2.6% and 17.8%

reduction of MAEs compared with RLS-based GPC and linear GPC design, respec-

tively. Lastly, to study the effect of process noise on the proposed design, both

process input and output are corrupted by 1% Gaussian white noise, which means

that the database used for JITL algorithm also contains the corrupted process data.

As shown in Figure 6.5, the proposed JITL-based GPC design can yield reasonably

good control performance in the presence of process noise.



CHAPTER 6. GENERALIZED PREDICTIVE CONTROL USING THE JITL
TECHNIQUE 97

Table 6.1: Control performance comparison of three controllers

Tracking error (MAE)

JITL-based GPC RLS-based GPC Linear GPC

Servo Response 419.10 475.66 488.18

Servo Response∗ 517.76 531.70 629.64

+10% in CIin at y=25000.5 9.85 12.31 6.97

+10% in CIin at y=18750 15.08 19.87 19.82

+10% in CIin at y=13500 19.96 29.21 33.49

-10% in CIin at y=25000.5 14.06 15.30 7.80

-10% in CIin at y=18750 14.04 23.60 19.82

-10% in CIin at y=13500 9.27 32.61 40.07

∗ In the presence of modeling error
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Figure 6.1: Servo responses of three GPC designs (∗: database update)
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Figure 6.2: Closed-loop responses for -10% step change in CIin



CHAPTER 6. GENERALIZED PREDICTIVE CONTROL USING THE JITL
TECHNIQUE 100

0 0.6 1.2 1.8 2.4
2.48

2.49

2.5

2.51
x 104

Time [h]

y

0 0.6 1.2 1.8 2.4

0.015

0.016

0.017

Time [h]
u

0 0.6 1.2 1.8 2.4
1.85

1.86

1.87

1.88
x 104

Time [h]

y

0 0.6 1.2 1.8 2.4
0.025

0.03

0.035

Time [h]

u

0 0.6 1.2 1.8 2.4
1.32

1.33

1.34

1.35

1.36
x 104

Time [h]

y

0 0.6 1.2 1.8 2.4
0.055

0.06

0.065

0.07

Time [h]

u

GPC (JITL)
GPC (RLS)
GPC (Linear)

Figure 6.3: Closed-loop responses for +10% step change in CIin
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Figure 6.5: Servo response of the JITL-based GPC design in the presence of noise
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Example 2 Consider the first-order plus dead-time process studied in Chapters

4 and 5. Three operating regions of this process are given in Table 4.4. In addi-

tion, the identical database and parameters for the JITL used in Chapters 4 and 5

are employed. For comparison purpose, an adaptive GPC design based on a first-

order local model with parameter adaptation by the RLS identification procedure is

designed. The following input constraints are considered in two GPC designs.⎧⎪⎪⎨
⎪⎪⎩

u ≤ 2.1 while y ≤ 2.5

u ≤ 1.5 while y > 2.5

(6.16)

Figures 6.6 and 6.7 compare the servo performances of two controllers for the

successive set-point changes between 0 and 6. For the proposed GPC design, the

prediction horizon is Np = 5, the control horizon Nu = 1, and the weighting matrix

is M = 3I, while Np = 5, Nu = 1, and M = 4I are used in the RLS-based GPC

design. It is evident that the proposed GPC design has better overall performance

than that achieved by the GPC controller based on the RLS method, especially the

large overshoot for the set-point change from 1 to 3 displayed in the latter design.

Next, to compare the disturbance rejection capability of two GPC designs, a step

disturbance of 0.05 is introduced at the process output and the resulting control

performances at different operating conditions are shown in Figures 6.8 and 6.9.

Again, the proposed GPC design gives a marked improvement over that achieved

by the RLS-based GPC design. Lastly, to evaluate the robustness of two GPC

designs, 10% modeling error in the process parameter τ2(y) is assumed. As can be

seen from Figure 6.10, the proposed GPC design still maintains superior control

performance in the aforementioned set-point changes.
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Figure 6.6: Servo response of the JITL-based GPC design
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Figure 6.7: Servo response of the RLS-based GPC design



CHAPTER 6. GENERALIZED PREDICTIVE CONTROL USING THE JITL
TECHNIQUE 106

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Time

y

0 50 100 150 200 250 300 350 400
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time

u

Figure 6.8: Servo response of the JITL-based GPC design under +10% modeling

error
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Figure 6.9: Servo response of the RLS-based GPC design under +10% modeling

error
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Figure 6.10: Servo response of the JITL-based GPC design in the presense of noise
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6.4 Conclusion

A constrained GPC design based on multiple linear models is developed in this

chapter. The set of local models obtained by the JITL modeling technique is used

for modeling the nonlinear systems and serves as the process model in the GPC

design. As a result, the computational burden associated with the conventional

nonlinear model predictive control algorithms can be reduced. Simulation results

show that the proposed GPC design is able to handle process uncertainties and

nonlinearities as well as input constraints in a systematic manner. The comparative

studies also reveal that the proposed GPC design exhibits better control performance

to its counterparts designed based on a fixed linear model and the multiple linear

models utilizing the recursive least squares method.



Chapter 7

Adaptive PID Controller Design

Directly From Plant Data - Part I

7.1 Introduction

Model-based techniques have been the predominant controller design methods that

have received much research interest in the past several decades. For example, based

on the transfer function models like first-order-plus-dead-time model, various PID

tuning formulas including ITAE performance index, direct synthesis design method,

and Internal Model Control (IMC) design are well established in the literature. Gen-

erally, model-based controller design methods involve two-step procedure, where the

first step is to identify a process model among the pre-specified model structures that

gives reasonably good modeling accuracy, followed by the controller design based

on the model thus obtained. However, these model-based design methods suffer the

following drawbacks. First, those simplified transfer function models employed in

controller design may not carry sufficient information for the process under con-

110
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trol and thus the performance of the resulting controller will become poor if the

discrepancy between the process and model is too large. Even when those models

have acceptable modeling accuracy, a trial and error procedure is normally required

to evaluate which model is best suited in controller design to give the best control

performance.

To alleviate the aforementioned problems, the Virtual Reference Feedback Tun-

ing (VRFT) method (Campi et al., 2000, 2002) is recently developed as a direct

data-based method that determines the parameters of a controller by using a set of

input and output data of a plant without resorting to the identification of a process

model. However, this design framework is originally developed for linear systems

and thus its application to nonlinear systems is restricted.

In this research, the connection between VRFT and IMC designs is first ana-

lyzed. Next, by suitable management of database for VRFT design, an adaptive

PID controller design method for nonlinear processes is developed. In the proposed

adaptive VRFT design, the off-line database employed in the conventional VRFT

design is continuously updated by adding the current process data into the database.

Furthermore, PID parameters are determined by the VRFT design at each sampling

instant using the relevant dataset selected from the current database based on k-

nearest neighborhood criterion. Simulation results are presented to illustrate the

proposed design and a comparison with conventional VRFT design is made.
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7.2 The VRFT Design Framework

The VRFT method approximately solves a model-reference problem in discrete time

as depicted in Figure 7.1, where the reference model T (z−1) describes the desired be-

havior of the closed-loop system consisting of a linear time-invariant process P (z−1)

and a parameterized controller C(z−1; θ) as shown in Figure 7.2. Let us assume that

P (z−1) is unknown and only a set of process input and output data, {u(k)}k=1∼N

and {y(k)}k=1∼N , have been collected from the experiment on the plant and that a

reference model T (z−1) has been chosen. The design goal is to solve θ, a vector con-

sisting of the controller parameters, such that the feedback control system in Figure

7.1 behaves as closely as possible to the pre-specified reference model T (z−1).

~ y )( 1−zr )( 1−z
)( 1−zT

Figure 7.1: Reference model

C(z-1 ; ) P (z-1)
e y

+
r

−

u(z -1) (z -1)(z -1) (z -1)

Figure 7.2: Feedback control system

Given the measured output signal {y(k)}k=1∼N , the corresponding reference sig-

nal {r̃(k)}k=1∼N in Figure 7.1 is obtained by

r̃(z−1) = T−1(z−1)y(z−1) (7.1)
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where r̃(z−1) and y(z−1) are the Z-transforms of discrete time signals {r̃(k)}k=1∼N

and {y(k)}k=1∼N , respectively. r̃(z−1) is called ’virtual’ reference signal because

it does not exist in reality and in fact it was not used in the generation of y(k).

However, it plays a pivotal role in the VRFT framework in that the fundamental idea

of the VRFT framework is to treat {y(k)}k=1∼N as the desired output of the feedback

system when the reference signal is specified by {r̃(k)}k=1∼N . As a consequence,

given error signal e(k) = r̃(k) − y(k), the controller output ũ(k) is calculated as:

ũ(z−1) = C(z−1; θ){r̃(z−1) − y(z−1)} (7.2)

where ũ(z−1) is the Z-transforms of discrete time signal {ũ(k)}k=1∼N .

It is noted that, even though the process dynamics P (z−1) is not known, when

the process is fed by u(k), i.e. the measured input signal, it generates y(k), i.e. the

corresponding measured output signal. Therefore, a good controller generates u(k)

when the error signal is given by e(k). The idea is then to search for C(z−1; θ) whose

output ũ(k) matches u(k) as closely as possible. Hence, the controller design task

reduces to the following minimization problem:

J(θ) = min
θ

1

N

N∑
k=1

{u(k) − ũ(k)}2 (7.3)

If the controller is given by C(z−1; θ) = ρT(z−1)θ where ρ(z−1) is a vector of

discrete-time transfer function, it can be seen that Eq. (7.3) is quadratic in θ. Con-

sequently, the controller parameter θ∗ which minimizes Eq. (7.3) can be explicitly

obtained by the classical least-square technique. As a result, the VRFT design

framework effectively recasts the problem of designing a model-reference feedback

controller into a standard system-identification problem. More detailed discussions

on the VRFT can be found in Campi et al. (2000, 2002).
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7.2.1 PID controller design by VRFT method

To illustrate the VRFT design in more detail, its application to PID design is dis-

cussed in this subsection. Consider a PID controller given by:

u(k) = u(k − 1) +KP{e(k) − e(k − 1)} +KIe(k)

+KD{e(k) − 2e(k − 1) + e(k − 2)} (7.4)

where u(k) is the manipulated value at the k-th sampling instant, e(k) is the error

between process output and its set-point at the k-th sampling instant, and KP , KI

and KD are PID parameters.

In VRFT design framework, the reference model T (z−1) is specified by the fol-

lowing first-order equation:

T (z−1) =
(1 − A)z−1

1 − Az−1
(7.5)

where A is a tuning parameter related to the speed of response.

To design a PID controller by the VRFT method, the virtual input ũ(z−1) is

calculated by Eqs. (7.1), (7.2), and (7.5) to obtain

ũ(z−1) =

[
KP +

KI

1 − z−1
+KD

(
1 − z−1

)] 1 − z−1

(1 − A)z−1
y(z−1) (7.6)

Equation (7.6) can be rewritten as

ũ(k) = Ψ(k)K (7.7)

where

Ψ(k) =

[
ψP (k) ψI(k) ψD(k)

]
(7.8)

K =

[
KP KI KD

]T

(7.9)
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ψP (k) =
1

1 −A
{y(k + 1) − y(k)} (7.10)

ψI(k) =
1

1 −A
y(k + 1) (7.11)

ψD(k) =
1

1 −A
{y(k + 1) − 2y(k) + y(k − 1)} (7.12)

Equation (7.3) is then expressed by

J(K) = min
K

1

N

N∑
k=1

{u(k) − Ψ(k)K}2

= min
K

1

N
‖u − ΨK‖2 (7.13)

subject to the sign constraints of PID controller parameters:

KP , KI , KD ≥ 0

or

KP , KI , KD < 0 (7.14)

where

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψP (1) ψI(1) ψD(1)

ψP (2) ψI(2) ψD(2)

...
...

...

ψP (N) ψI(N) ψD(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.15)

u =

[
u(1) · · · u(N)

]T

(7.16)

Consequently, PID parameters are obtained by solving the constrained least

square problem as stated above. It is evident that this solution not only depends

on the database for VRFT design but also the design parameter A in the reference

model. Typically, a smaller value of A would give more aggressive PID design and

vice versa.
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7.3 Connection Between VRFT and IMC Designs

In this section, the equivalence relationship between VRFT and IMC designs is

established. First, in the IMC design, under the assumption of perfect model, i.e.

P (z−1) = M(z−1) in Figure 7.3, the process model M(z−1) can be factorized as

M(z−1) = M+(z−1)M−(z−1) (7.17)

where M+(z−1) consists of time delay and zeros outside the unit circle.

Using a first-order filter, IMC controller Q is given by

Q(z−1) = f(z−1)M−1
− (z−1) =

1 −A

1 −Az−1
M−1

− (z−1) (7.18)

Therefore, the resulting closed-loop transfer function is described by

y(z−1)

r(z−1)
=

1 − A

1 − Az−1
M+(z−1) (7.19)

On the other hand, if the objective function J(θ) in VRFT design can be made

sufficiently small and the database for VRFT design are rich enough to represent the

process dynamics, the following equation can be obtained from Eqs. (7.2), (7.18)

and (7.19) and the relation P (z−1) = y(z−1)
u(z−1)

:

C(z−1; θ){(Q(z−1)P (z−1))−1 − 1}P (z−1) = 1 (7.20)

The feedback controller C(z−1; θ) is then obtained by

C(z−1; θ) =
Q(z−1)

1 −Q(z−1)P (z−1)
(7.21)

which is essentially identical to the feedback controller designed based on the IMC

design method.
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Figure 7.3: IMC control system

Example 1 Consider the following first-order linear system given by Seborg et

al. (1989):

y(k) = 0.8187y(k − 1) + 0.1813u(k − 1) (7.22)

To illustrate the equivalence between VRFT and IMC designs, without the loss of

generality, the IMC filter time constant in the IMC design and the tuning parameter

in VRFT design are chosen as A = 0.3. In the VRFT design, the number of process

data considered is N = 150 and a PI controller is designed correspondingly. The

servo performances of these two controllers are compared in Figure 7.4. As can

be seen, the performances of these two controllers are almost indistinguishable,

which supports the analysis given in this section. Next, to further investigate the

effect of number of process data utilized in VRFT design on the resulting controller

performance in the aforementioned set-point changes, Table 7.1 summarizes the

average difference of tracking errors between IMC and VRFT designs obtained for

various values of N and A. It is clear that VRFT design resembles closely to IMC

design with minimum process data N = 20 for this example.
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Figure 7.4: Comparison of servo performances between VRFT and IMC designs



CHAPTER 7. ADAPTIVE PID CONTROLLER DESIGN DIRECTLY FROM
PLANT DATA - PART I 119

Table 7.1: The difference of the tracking error between VRFT and IMC designs

N 20 60 100 140 180

MAE(×10−16) 0.982 1.011 1.032 1.033 1.040

7.4 Adaptive VRFT Design of PID Controller

In the conventional VRFT design, the database collected from an off-line open-loop

experiment is utilized and as a result the resulting controller is expected to perform

well in the vicinity of operating space close to the operating condition where this

dataset is generated. To extend the VRFT design to nonlinear systems, one possible

approach is to augment the original off-line database by adding the current process

data at each sampling instant so that the expanded database can cover new operating

space where its dynamics is not available in the construction of original database.

This expanded database is subsequently used to obtain PID parameters by VRFT

design at each sampling instant. In doing so, the relevant data in the expanded

database that corresponds to the current process condition is first determined by

using the k-nearest neighborhood criterion based on the following distance measure:

di = ‖x̄(k − 1) − x̄i‖ (7.23)

where ‖ · ‖ denotes the Euclidean norm, x̄i = [y(i) u(i)]T is a pair of input and

output data in the present dataset, and x̄(k − 1) is a vector with similar definition

for the input and output data at the (k − 1)-th sampling instant.

By using Eq. (7.23), those x̄i corresponding to the k smallest di are selected as

the relevant data in the current database, by which the constrained least squares

problem discussed in the subsection 7.2.1 is solved to calculate PID parameters for
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the current sampling instant. This design procedure repeats at the next sampling

instant when the database for VRFT design is further updated by the corresponding

process data.

The following gives an outline of the computational algorithm for the proposed

adaptive VRFT (AVRFT) design of PID controller:

Step 1 Input (u(k)) and output (y(k)) identification data which characterize the

dynamics of nonlinear system are assumed to be available and the off-line

database for VRFT design is constructed as (x̄i)i=1∼N ;

Step 2 The design parameter in reference model, A, and the number of nearest

neighborhood are specified;

Step 3 At each sampling instant, based on the current database for VRFT design,

the relevant data is selected according to Eq. (7.23), by which PID parameters

are computed by solving the optimization problem, Eq. (7.13), subject to the

constraint, Eq. (7.14), and the manipulated variable u(k) is obtained by Eq.

(7.4);

Step 4 The database for VRFT design is augmented by adding the current process

data y(k) and u(k);

Step 5 Set k = k + 1 and go to Step 3.

In what follows, the performance of the AVRFT design is evaluated by using two

literature examples provided in Chapter 4.

Example 2 Consider the polymerization reactor example studied in Chapters 4

to 6 with model parameters and steady-state operation condition given in Tables 4.1
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and 4.2. To design PID controller by the proposed AVRFT and VRFT methods, the

identical off-line process data in Chapter 4 are employed. Furthermore, the tuning

parameters for the AVRFT are specified by A = 0.78 and k = 350, while A = 0.72

is chosen for the VRFT design.

To compare the performances of two designs, successive set-point changes be-

tween 25000.5 kg/kmol and 12500 kg/kmol are conducted. As can be seen from

Figure 7.5, the proposed AVRFT design has better performance than that achieved

by the conventional VRFT design, resulting in the reduction of Mean Absolute Er-

ror (MAE) by 7.1% as compared with the conventional VRFT design. Figure 7.6

shows the updating of PID parameters by the AVRFT design in the aforementioned

closed-loop responses.

Figures 7.7 and 7.8 compare the disturbance rejection capability of two con-

trollers with respect to unmeasured ±10% step disturbances in the inlet initiator

concentration CIin . Again, the proposed design has better control performance than

that obtained by the VRFT design. Table 7.2 summarizes the performance improve-

ment achieved by the AVRFT design as measured by the MAEs. Next, to evaluate

the robustness of the proposed control strategy, it is assumed that there exist 10%

modeling error in the kinetic parameter kI and 20% error in the coefficients of the

D1 and Mm. As can be seen from Figure 7.9, the proposed design outperforms the

VRFT design, as also evidenced by the reduction of MAE by 19.7% for the afore-

mentioned set-point changes. Lastly, to investigate the effect of process noise on

the proposed design, both process input and output are corrupted by 1% Gaussian

white noise, which means that the database used for VRFT design also contains

the corrupted process data. As shown in Figure 7.10, the proposed design can yield
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reasonably good control performance in the presence of process noise.

Table 7.2: Control performance comparison of two VRFT designs

Tracking error (MAE) % Decrease

AVRFT VRFT in MAE

Servo Response 794.07 854.50 7.1

Servo Response∗ 883.49 1100.06 19.7

+10% in CIin at y=25000.5 41.72 42.12 0.9

+10% in CIin at y=18750 57.29 82.14 30.3

+10% in CIin at y=13500 63.92 127.50 49.9

-10% in CIin at y=25000.5 49.11 51.53 4.7

-10% in CIin at y=18750 62.83 100.38 37.4

-10% in CIin at y=13500 75.95 163.52 53.6

∗ In the presence of modeling error
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Figure 7.5: Servo responses of two VRFT designs
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Example 3 Consider the first-order plus dead-time process studied in Chapters

4 to 6. Two PID controllers are designed based on the VRFT and AVRFT methods.

In the proposed AVRFT design, the tuning parameters are specified by A = 0.88

and k = 630, whereas A = 0.89 is selected for the VRFT design.

Figures 7.11 and 7.12 compare the servo performances of two PID controllers

for the successive set-point changes between 0 and 6. It can be seen that the pro-

posed AVRFT design has better performance than that achieved by the conven-

tional VRFT design, resulting in the reduction of MAE by 6.6% as compared with

the VRFT design. To evaluate the robustness of the proposed control strategy, 10%

modeling error in the process parameter τ2(y) is assumed and the resulting servo

responses of two controllers are compared in Figures 7.13 and 7.14. It is evident

that the proposed AVRFT design still maintains better control performance over

the VRFT design by achieving 8.4% reduction of MAE in the aforementioned set-

point changes. Lastly, to study the effect of process noise on the proposed design,

both process input and output are corrupted by 3% Gaussian white noise. It can be

seen from Figure 7.15 that the proposed design can yield reasonably good control

performance in the presence of process noise.

7.5 Conclusion

In this chapter, the connection between the VRFT and IMC design methods is es-

tablished and an extension of VRFT method to adaptive PID controller design is

proposed. Specifically, under very mild assumptions, the equivalence between the

VRFT and IMC designs is shown. Furthermore, by incorporating the current pro-
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Figure 7.11: Servo response of the adaptive VRFT design
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Figure 7.12: Servo response of the VRFT design
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Figure 7.14: Servo response of the VRFT design under +10% modeling error
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Figure 7.15: Servo response of the adaptive VRFT design in the presence of noise
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cess data into the database for VRFT design, the relevant data of this expanded

database corresponding to the current operating condition are selected using the

k-nearest neighborhood criterion, by which PID parameters are calculated by the

VRFT design at each sampling instant. Simulation results are presented to demon-

strate the advantage of the proposed adaptive VRFT design over the conventional

VRFT design in nonlinear process control.



Chapter 8

Adaptive PID Controller Design

Directly From Plant Data - Part II

In Chapter 7, the main idea of the proposed adaptive VRFT design is to keep

the database for VRFT design current with respect to the process dynamics by

adding the current process data into the database. As such, the feedback controller

thus obtained based on the VRFT design would utilize new process data, rather

than those old process data obtained in an off-line experiment, which are more

likely to be considered as the relevant data for VRFT design by using k-nearest

neighborhood criterion. In this chapter, an attempt is made to update another

important element in the VRFT design, namely the reference model, together with

the update of database at each sampling instant. For this reason, the adaptive

VRFT design developed in this chapter is termed as enhanced VRFT (EVRFT)

design in order to distinguish it from AVRFT design developed in Chapter 7.

136
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8.1 Enhanced VRFT Design

In the proposed method, the following reference model is considered:

T (z−1) =
GOL(z−1)

1 +GOL(z−1)
(8.1)

GOL(z−1) =
k0z

−(nd+1)

1 − z−1
H(z−1) (8.2)

where k0 is the tuning parameter to be adjusted on-line by the proposed EVRFT

design, nd is the apparent time-delay and H(z−1) is a transfer function in z−1.

For a unit step change in the set-point, r(z−1), the tracking error of the reference

model, em(z−1), can be calculated as:

em(z−1) = {1 − T (z−1)}r(z−1) =
1

1 − z−1 + k0z−(nd+1)H(z−1)
(8.3)

It is clear from Eq. (8.3) that the minimum tracking error depends on k0, nd

and H(z−1). To keep H(z−1) as simple as possible, H(z−1) is specified as follows:

H(z−1) =
1

1 + χz−1
(8.4)

where χ is a design parameter to be determined in the sequel.

With H(z−1) specified by Eq. (8.4), the parameters k0 and χ corresponding to

the smallest tracking error can be obtained by solving the following optimization

problem:

min
k0, χ

∞∑
i=1

|em(i)| (8.5)

where em(i) is the tracking error at the i-th sampling instant.

Table 8.1 summarizes the optimal values of k0 and χ for various values of nd
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Table 8.1: The optimal values of k0 and χ

nd 0 1 2 3 4 5

k0 1 1 0.43 0.38 0.25 0.23

χ 0 1 0.57 0.99 0.74 0.99

To apply the proposed EVRFT method to PID design, consider a PID controller

given by:

u(k) = u(k − 1) +KP{e(k) − e(k − 1)} +KIe(k)

+KD{e(k) − 2e(k − 1) + e(k − 2)} (8.6)

where u(k) is the manipulated value at the k-th sampling instant, e(k) is the error

between process output and its set-point at the k-th sampling instant, and KP , KI

and KD are PID parameters.

Combining Eqs. (8.1), (8.2) and (8.4), the virtual input ũ(z−1) in the VRFT

design can be calculated by Eq. (7.2) to obtain as

ũ(z−1) =

[
KP +

KI

1 − z−1
+KD

(
1 − z−1

)] (1 − z−1)(1 + χz−1)

k0z−(nd+1)
y(z−1) (8.7)

Equation (8.7) can be recast as

ũ(k) = Ψ(k)K (8.8)

where

Ψ(k) =

[
ψP (k) ψI(k) ψD(k)

]
(8.9)

K =

[
KP KI KD

]T

(8.10)
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ψP (k) =
1

k0
{y(k + nd + 1) + (χ− 1)y(k + nd)

−χy(k + nd − 1)} (8.11)

ψI(k) =
1

k0
{y(k + nd + 1) + χy(k + nd)} (8.12)

ψD(k) =
1

k0
{y(k + nd + 1) + (χ− 2)y(k + nd)

−(2χ− 1)y(k + nd − 1) + χy(k + nd − 2)} (8.13)

Equation (7.3) is then expressed by

J1(K) = min
K

1

N
‖u − ΨK‖2 (8.14)

subject to the sign constraints of PID controller parameters:

KP , KI , KD ≥ 0

or

KP , KI , KD < 0 (8.15)

where

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψP (1) ψI(1) ψD(1)

ψP (2) ψI(2) ψD(2)

...
...

...

ψP (N) ψI(N) ψD(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.16)

u =

[
u(1) · · · u(N)

]T

(8.17)

Consequently, PID parameters are obtained by solving the constrained least

square problems, Eqs. (8.14) and (8.15), at each sampling instant. For a specified

value of nd, the corresponding optimal parameters k0 and χ in Table 8.1 are used to
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calculate the initial PID parameters using the off-line database for VRFT design.

Subsequently, k0 will be adjusted to cope with process nonlinearity by an updating

algorithm to be discussed in the next subsection. Based on this newly updated k0

and database at each sampling instant, PID parameters are then obtained by solving

the aforementioned optimization problem.

8.1.1 Updating algorithm for k0

As discussed previously, in addition to the update of database for the VRFT design

at each sampling instant as discussed in Chapter 7, the reference model employed in

the VRFT design is also updated to enhance the capability of VRFT design to cope

with the variation of process dynamics caused by process nonlinearity. Specifically,

the parameter k0 in the reference model will be updated at each sampling instant as

it has direct effect on the PID parameters calculated by the VRFT design. It can

be seen from Eq. (8.8) that the value of k0 is proportional to the solution of PID

parameters K(k), which can then be rewritten as:

K(k) = k0(k)

[
kP (k) kI(k) kD(k)

]T

(8.18)

The objective of adjusting k0(k) is to minimize the following quadratic function:

J2(k) =
1

2

[{r(k) − y(k)}2 + ω {u(k) − u(k − 1)}2] (8.19)

where ω is a weight parameter.

By the steepest descent method, the updating algorithm is derived as:

k0(k + 1) = k0(k) − η
∂J2(k)

∂k0(k)
(8.20)
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where η is the learning rate and

∂J2(k)

∂k0(k)
=

∂J2(k)

∂u(k)

∂u(k)

∂k0(k)

=

[
ω {u(k) − u(k − 1)} − e(k)

∂y(k)

∂u(k)

]
·
{
kPΔe(k)

+kIe(k) + kDδe(k)
}

�
[
ω {u(k) − u(k − 1)} − e(k)

y(k) − y(k − 1)

u(k) − u(k − 1)

]
·{

kPΔe(k) + kIe(k) + kDδe(k)
}

(8.21)

Δe(k) = e(k) − e(k − 1)

δe(k) = Δe(k) − Δe(k − 1) (8.22)

In the proposed design, the following rules are used to update the learning rate:

(i) if the increment of J2 is more than the threshold, k0 remains unchanged and the

learning rate is decreased by a factor ldec, i.e. η(k+1) = ldecη(k); (ii) if the absolute

value of the change of J2 is within the threshold, only k0 is updated; otherwise, (iii) k0

is updated and the learning rate is increased by a factor linc, i.e. η(k+1) = lincη(k).

The following gives an outline of the computational algorithm for the proposed

EVRFT design of PID controller:

Step 1 Input (u(k)) and output (y(k)) identification data which characterize the

dynamics of nonlinear system are assumed to be available and the off-line

database for VRFT design is constructed as (x̄i)i=1∼N ;

Step 2 Given the apparent time-delay nd, learning rate η, the weight ω and the

number of nearest neighborhood, the corresponding parameters k0 and χ are

obtained from Table 8.1;
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Step 3 At each sampling instant, based on the current database for VRFT design,

the relevant data is selected according to Eq. (7.23), by which PID parameters

are computed by solving the optimization problem, Eq. (8.14), subject to the

constraint, Eq. (8.15), and the manipulated variable u(k) is obtained by Eq.

(8.6);

Step 4 The database for VRFT design is augmented by adding the current process

data y(k) and u(k) and k0 is updated by Eq. (8.20);

Step 5 Set k = k + 1 and go to Step 3.

8.2 Examples

Example 1 Consider the following nonlinear process given by Yamamoto and

Hinamoto (2004):

(1) System 1

y(k) = 0.6y(k − 1) − 0.1y(k − 2) + 1.2x(k − 1) − 0.1x(k − 2)

x(k) = 1.5u(k) − 1.5u2(k) + 0.5u3(k) (8.23)

(2) System 2

y(k) = 0.5y(k − 1) − 0.05y(k − 2) + 1.2x(k − 1) − 0.1x(k − 2)

x(k) = 1.5u(k) − 1.5u2(k) + 0.5u3(k) (8.24)

To construct the initial database for VRFT design, input and output data are

generated by introducing uniformly random step with distribution of [0 0.005] as
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shown in Figure 8.1. The tuning parameters for the enhanced VRFT (EVRFT)

design are specified by nd = 1, ω = 0.1, η = 0.5 and k = 120. For the purpose of

comparison, adaptive VRFT (AVRFT) design developed in Chapter 7 is employed

and its parameters are chosen as A = 0.53 and k = 180.

To evaluate two adaptive VRFT designs, successive set-point changes as illus-

trated in Figure 8.2 are conducted. It is clear that EVRFT design gives better

performance than the AVRFT design. The tracking errors for these two designs

in term of MAE are 0.0306 (EVRFT) and 0.0622 (AVRFT), respectively. Figure

8.3 shows the updating of PID parameters and k0 in the EVRFT design for the

aforementioned closed-loop responses.

Figure 8.4 compares the robustness of these two controllers by assuming that

the process dynamics are changed from Eq. (8.23) to Eq. (8.24) at k = 10. As

can be seen, EVRFT design still maintains superior control performance compared

with AVRFT design, leading to 56.3% reduction of MAE. Lastly, to study the effect

of process noise on the proposed design, both input and output are corrupted by

5% Gaussian white noise, which means that the initial database contains the cor-

rupted process data. As shown in Figure 8.5, the proposed EVRFT design can yield

reasonably good control performance in the presence of process noise.
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Figure 8.1: Input and output data used to construct the initial database for VRFT

design
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Figure 8.2: Servo responses of two VRFT designs
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Figure 8.3: Updating of the PID parameters and k0 by the EVRFT design
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Figure 8.4: Servo responses of two VRFT designs in the presence of modeling error
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Figure 8.5: Servo response of the EVRFT design in the presence of noise
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Example 2 Consider a continuous polymerization reactor studied in Chapters 4

to 7. The model parameters and steady-state operation condition are given in Tables

4.1 and 4.2. To design PID controller by the EVRFT and AVRFT methods, the

identical off-line process data in Chapter 4 are employed. Furthermore, the tuning

parameters for the EVRFT are specified by nd = 1, ω = 1× 10−5, η = 2× 10−4 and

k = 120, while A = 0.78 and k = 350 are chosen for the AVRFT design.

To compare the performances of two controllers, successive set-point changes

between 25000.5 kg/kmol and 12500 kg/kmol are conducted. As can be seen from

Figure 8.6, EVRFT design has better performance than that achieved by the AVRFT

design, resulting in the reduction of MAE by 31.7% as compared with the AVRFT

design. Figure 8.7 shows the updating of PID parameters and k0 by the EVRFT

design in the aforementioned closed-loop responses.

Figures 8.8 and 8.9 compare the disturbance rejection capability of two con-

trollers with respect to unmeasured ±10% step disturbances in the inlet initiator

concentration CIin. Again, EVRFT design has superior or similar control perfor-

mance compared with the AVRFT design. Table 8.2 summarizes the performance

improvement achieved by the proposed design as measured by the MAEs. Next, to

evaluate the robustness of the proposed control strategy, it is assumed that there ex-

ist 10% modeling error in the kinetic parameter kI and 20% error in the coefficients

of the D1 and Mm. As can be seen from Figure 8.10, EVRFT design outperforms

AVRFT design by reducing MAE by 24.4% in the aforementioned set-point changes.

Lastly, to study the effect of process noise on the proposed design, both process in-

put and output are corrupted by 1% Gaussian white noise, which means that the

database used for VRFT design also contains the corrupted process data. As shown
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in Figure 8.11, the proposed controller can yield reasonably good control perfor-

mance in the presence of process noise.

To investigate the effect of time-delay on the EVRFT design, time-delay of 0.06 h

(two sampling time) is assumed in the measurement of process output. The tuning

parameters for two adaptive VRFT designs remain the same as those mentioned

previously, except that nd = 3 is chosen for the EVRFT design and nd = 2 for

AVRFT design. For the conventional VRFT design, nd = 2 and A = 0.6 are chosen.

It can be seen from Figure 8.12 that the EVRFT design outperforms the other two

VRFT designs in the aforementioned set-point changes.

Table 8.2: Control performance comparison of two VRFT designs

Tracking error (MAE)

EVRFT AVRFT

Servo Response 542.74 794.07

Servo Response∗ 668.19 883.49

+10% in CIin at y=25000.5 22.06 41.72

+10% in CIin at y=18750 41.78 57.29

+10% in CIin at y=13500 67.64 63.92

-10% in CIin at y=25000.5 26.27 49.11

-10% in CIin at y=18750 50.94 62.83

-10% in CIin at y=13500 82.73 75.95

∗ In the presence of modeling error
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Figure 8.6: Servo responses of two VRFT controller designs
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Figure 8.7: Updating of the PID parameters and k0 for servo response
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Figure 8.8: Closed-loop responses for -10% step change in CIin
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Figure 8.9: Closed-loop responses for +10% step change in CIin
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Figure 8.10: Servo responses of two VRFT designs in the presence of modeling error
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Figure 8.11: Servo response of the EVRFT designs in the presence of noise



CHAPTER 8. ADAPTIVE PID CONTROLLER DESIGN DIRECTLY FROM
PLANT DATA - PART II 157

0 1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

4

Time [h]

y

set-point
EVRFT
AVRFT
VRFT

0 1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time [h]

u

Figure 8.12: Servo responses of three VRFT designs in the presence of time-delay
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Example 3 Consider the first-order plus dead-time process studied in Chapters

4 and 7. Two PID controllers are designed based on the EVRFT and AVRFT

methods. In the EVRFT design, the tuning parameters are specified by nd = 2,

ω = 0.0032, η = 0.003 and k = 190, whereas A = 0.88 and k = 630 are selected for

the AVRFT design as discussed in Chapter 7.

Figure 8.13 shows the servo performance of the proposed controller for the suc-

cessive set-point changes between 0 and 6. Compared with figures in Chapter 7,

it can be seen that EVRFT design has better performance than that achieved by

the AVRFT design, resulting in the reduction of MAE by 19.2%. Next, to evaluate

the robustness of the EVRFT design strategy, 10% modeling error in the process

parameter τ2(y) is assumed and the resulting servo response is shown in Figure

8.14. In this case, EVRFT design gives slightly better control performance over the

AVRFT design by achieving 3.6% reduction of MAE in the aforementioned set-point

changes. Lastly, to study the effect of process noise on the proposed design, both

process input and output are corrupted by 3% Gaussian white noise. As shown in

Figure 8.15, EVRFT design can yield reasonably good control performance in the

presence of process noise.
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Figure 8.13: Servo response of the EVRFT design
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Figure 8.14: Servo response of the EVRFT design under +10% modeling error
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Figure 8.15: Servo response of the EVRFT design in the presence of noise
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8.3 Conclusion

Based on the adaptive VRFT design provided in Chapter 7, an enhanced VRFT

design method for nonlinear process control is developed in this chapter. In addition

to the update of database for VRFT design, the reference model is updated as well by

an updating algorithm at each sampling instant. Simulation results demonstrate the

advantage of the enhanced VRFT design over the adaptive VRFT design developed

in Chapter 7 and the conventional VRFT design for that matter.



Chapter 9

Conclusions and Further Work

9.1 Conclusions

In this thesis, several control strategies for nonlinear systems are developed. By

integrating the just-in-time learning (JITL) technique into the controller design, four

data-based control strategies are developed, meaning that data-based LQI controller

design, adaptive IMC controller, self-tuning PID controller, and nonlinear GPC

design. These controllers take use of the information provided by the JITL to realize

online tuning of control parameters or calculation of the manipulated variable for

nonlinear process control.

Firstly, to lessen the modeling requirement in the LQI design, which typically

relies upon the availability of the first-principles model or Kalman filter, the proposed

data-based LQI design offers an attractive design alternative because simulation

results reveal that it can achieve comparable control performance as that obtained

by the traditional LQI design, which is based on a set of analytical models derived

from the successive linearization of the first-principles process model.

163
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Secondly, by incorporating the JITL into the IMC design, an adaptive IMC

design methodology is developed for nonlinear systems. The IMC controller param-

eters are updated not only based on the information provided by the JITL, but also

IMC filter parameter is adjusted by an updating algorithm derived by Lyapunov

method. Compared with the previous nonlinear IMC controller design methods, it

is straightforward to obtain the model inversion in the proposed design.

Thirdly, a self-tuning PID design utilizing JITL model technique is developed

for nonlinear process control. PID parameters are updated based on the informa-

tion provided by the JITL and an updating algorithm derived from the Lyapunov

method. Compared with the previous nonlinear PID controller design methods,

such as neural networks based PID designs, the proposed method is more amenable

for implementation.

Fourthly, a constrained GPC design based on multiple models is developed. The

set of local models obtained by the JITL modeling technique is used for modeling

the nonlinear systems and serves as the process model in the GPC design. As a

consequence, the computational burden associated with the conventional nonlinear

model predictive control algorithms can be reduced.

Lastly, two adaptive PID controllers under the VRFT framework are designed

for nonlinear processes. In addition, the equivalence between the VRFT and IMC

designs is established. In the first adaptive VRFT design of PID controller, the

k-nearest neighborhood criterion is used to determine the relevant data in the ex-

panded database for the VRFT design, by which PID parameters are calculated

according to the design equation developed under the VRFT framework. Another

adaptive VRFT design of PID controller is based on not only the update of database



CHAPTER 9. CONCLUSIONS AND FURTHER WORK 165

for VRFT design, but also the update of reference model. In doing so, a new refer-

ence model is proposed and its associated updating equation is developed.

Simulation results are presented to illustrate the improved control performance

obtained by the proposed controller designs, except the data-based LQI design, over

their respective conventional counterparts. By using the polymerization reactor

as an example, the control performances of five proposed controller designs are

compared in Table 9.1. Furthermore, looking back to the simulation results provided

in the previous chapters, the proposed nonlinear GPC design (as expected) is the

only viable design approach capable of taking into account the input constraint,

FI ≥ 0.007, while achieving the best control performances in terms of the smallest

MAEs among the five proposed design methods. When the above input constraint

is replaced by a soft one, i.e. FI ≥ 0, adaptive PID controller obtained by the

EVRFT design gives the second best control performance, followed by the adaptive

PID controller based on the JITL technique. Both adaptive PID controller resulting

from AVRFT design and adaptive IMC controller give the worst control performance

for this example. The better control performance attained by the APID (or EVRFT)

design over the AIMC (or AVRFT) design maybe can be explained as a result of

more tuning parameters (or more complicated control scheme) in the former design

method.
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Table 9.1: Comparison of five proposed controller designs

Tracking error (MAE)

JITL-based GPC EVRFT Self-tuning PID

Servo Response 419.10 542.74 695.25

Servo Response∗ 517.76 668.19 840.12

+10% in CIin at y=25000.5 9.85 22.06 35.17

+10% in CIin at y=18750 15.08 41.78 57.49

+10% in CIin at y=13500 19.96 67.64 96.1

-10% in CIin at y=25000.5 14.06 26.27 40.37

-10% in CIin at y=18750 14.04 50.94 64.32

-10% in CIin at y=13500 9.27 82.73 84.25

Adaptive IMC AVRFT

Servo Response 799.59 794.07

Servo Response∗ 907.55 883.49

+10% in CIin at y=25000.5 45.45 41.72

+10% in CIin at y=18750 43.72 57.29

+10% in CIin at y=13500 94.42 63.92

-10% in CIin at y=25000.5 52.35 49.11

-10% in CIin at y=18750 39.27 62.83

-10% in CIin at y=13500 85.40 75.95

∗ In the presence of modeling error
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9.2 Suggestions for Further Work

There are few open questions that warrant further investigation, which are summa-

rized in below.

The data-based control strategies developed in this thesis are only applicable to

the single-input single-output systems. Therefore, it is of practical importance to

extend the proposed design methods to the multivariable systems, which are often

encountered industrial control practices.

Another open problem is fault tolerant controller design by integrating the tasks

of process monitoring and controller design into an unified framework. Specifically,

when a process fault is identified and diagnosed in a control system, how can such

monitoring information be utilized to redesign the controller in order to maintain

acceptable control performance? Given the complexity of chemical processes, this

problem is indeed a challenging one worthwhile further investigation.



Appendix A

Analytical Linear Model for

Example 2 in Chapter 3

The analytical local model for Eq. (3.20) is derived as follows:⎡
⎢⎢⎣ CA(k + 1)

CB(k + 1)

⎤
⎥⎥⎦ = A(k)

⎡
⎢⎢⎣ CA(k)

CB(k)

⎤
⎥⎥⎦+ B(k)F (k) (A.1)

y(k) = C(k)

⎡
⎢⎢⎣ CA(k)

CB(k)

⎤
⎥⎥⎦ (A.2)

where

A(k) =

⎡
⎢⎢⎣ eA1(k)Δt 0

50
A2(k)−A1(k)

(eA2(k)Δt − eA1(k)Δt) eA2(k)Δt

⎤
⎥⎥⎦

B(k) =

⎡
⎢⎢⎣

B1(k)
A1(k)

(eA1(k)Δt − 1)

50B1(k)−A1(k)B2(k)
A1(k)A2(k)

+ 50B1(k)
A1(k)(A1(k)−A2(k))

eA1(k)Δt + 50B1(k)+(A2(k)−A1(k))B2(k)
A2(k)(A2(k)−A1(k))

eA2(k)Δt

⎤
⎥⎥⎦

C(k) =

[
0 1

]
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and A1(k) = −50 − 20CA(k − 1) − F (k − 1), A2(k) = −100 − F (k − 1), B1(k) =

10 − CA(k − 1), B2(k) = −CB(k − 1), and Δt is the sampling time.
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