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Summary 

The Cdc42 effector IRSp53 is an adaptor protein consisting of a SH3 domain, a 

potential WW binding motif, a partial CRIB motif, an IMD domain, as well as a PDZ 

domain binding motif in some isoforms. Previous work has shown that IRSp53 can 

induce the formation of filopodia and neurites in N1E115 neuroblastoma cells in a 

Cdc42-dependent manner (Govind et al., 2001). In this study I show that the SH3 

domain of IRSp53 is essential for its induction of complex neurites (with multiple 

filopodia and lamellipodia). The SH3 domain of IRSp53 has been reported to bind a 

number of proteins known to be involved in remodeling of the actin cytoskeleton, 

including, Mena, WAVE1/2, mDia2/p140 and Espin. I show here that the SH3 

domain of IRSp53 interacts directly with N-WASP. I also show that N-WASP is a 

key component for IRSp53-induced filopodia formation as overexpression of IRSp53 

in N-WASP knock out (KO) fibroblasts was unable to induce filopodia formation. 

IRSp53-induced filopodia formation can be reconstituted in N-WASP KO fibroblasts 

by full length N-WASP and by N-WASPΔWA (a mutant unable to activate the 

Arp2/3 complex). Interestingly, the filopodia reconstituted with N-WASP have a 

shorter half-life than those reconstituted with N-WASPΔWA. I show that IMD 

domain induces “partial filopodia”, dynamic protrusions that lack F-actin. Full length 

IRSp53 requires cooperation between the IMD, CRIB and SH3 domains for its 

filopodia formation activity. Taken together, these results suggested that Cdc42, 

IRSp53 and N-WASP protein-protein interactions are important for filopodia 

formation and turnover. 
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Chapter 1. Introduction 

1. 1. The cell as a fundamental unit of life.  

The advent of light microscopy initiated a major paradigm shift in thinking about the 

nature of life. In 1665 Robert Hooke made thin slices of cork and likened the structures 

he saw to the cells in a monastery. However, he did not make the link between the 

structures he saw and life. At about the same time Antony van Leeuwenhoek invented a 

simple (one-lens) microscope that was able to magnify specimens  around 200 times and 

achieved higher resolutions than the best compound microscopes of his day, mainly 

because he crafted better lenses. Antony van Leeuwenhoek made observations of, for the 

first time, single-cell organisms, or "little animalcules" as he called them. These likely 

included  microorganisms, red blood cells and sperm cells. About 100 hundred years later 

Henri Dutrochet made the connection between plant cells and animal cells explicit.  He 

put forward the idea that the cell constitutes the basic unit of life. From these initial 

observations and subsequent work by other people (e.g. Raspail, Schleiden and Schwann) 

the three main parts of the cell theory emerged: (i) all living matter is composed of one or 

more cells, (ii) cells are the simplest independent units of all organisms and (iii) all cells 

are generated from pre-existing cells. Further improvements in microscopy, in particular 

the advent of Electron Microscopy, revealed subcellular structures such as the 

endoplasmic reticulum, mitochondria and the cytoskeleton.   

 

The application of genetics, biochemistry and molecular biology, to simple single cell 

organisms, helped elucidate the mechanism by which cells grow and divide. In particular, 

the demonstration that the human Cdc2 kinase can fulfill the function of the 
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Schizosaccharomyces pombe homolog in control of the cell cycle confirms the 

fundamental nature of the cell (Nurse et. al., 2002). 

  

1.1.1. Cell migration. 

Like cell growth and division, cell migration, is a fundamental cell process. Cell 

migration underlies the development of all organisms and the function of different tissue 

systems. Cell migration over a substrate has been described as the succession of 

protrusion, attachment and retraction (Abercrombie et. al., 1980). The first step in the 

sequence, protrusion is driven by actin polymerization at the leading edge of the cell 

(Pollard et. al., 2003). Two morphological structures, lamellipodia and filopodia, which 

are comprised of different F-actin networks and dynamics are the basic units of cell 

migration (for review, Svitkina et. al., 1996). Protrusion is followed by retraction of the 

trailing edge and finally the cell translocates to a new position (Figure 1.1). 

 

1.1.2. Lamellipodia and membrane ruffling. 

Lamellipodia are broad, flat protrusions, in which actin filaments form a branched 

network (Svitkina et. al., 1997, Svitkina and Borisy, 1999). The current model for 

lamellipodial dynamics (Borisy and Svitkina, 2000, Pollard et. al., 2000) suggests that 

treadmilling of the branched actin filament array consists of repeated cycles of dendritic 

nucleation, elongation, capping and depolymerization of filaments. During the elongation 

after nucleation, the filament pushes the membrane. When a filament elongates beyond 

the efficient length for pushing, its growth is thought to be terminated by capping protein  
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Figure 1.1  A model of cell migration. 
 
Cell migration consists of the following successive steps.  
 

1. Protrusion. Extracellular stimili induce de novo actin polymerization at the 
leading edge leading to the formation of F-actin-based membrane protrusions 
such as filopodia and lamellipodia.  

 
2. Retraction. Adhesive structures and stress fibres at the trailing edge are broken 

down.  
 
3. Translocation. The net result of 1 and 2 is that the cell has moved to a new 

position.  
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Figure 1.1 
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(Copper and Schafer, 2000). Depolymerization is assisted by proteins of the ADF/cofilin 

family (Bamburg, 1999). There are other proteins playing supporting roles in this process.  

Profilin targets filament elongation to barbed ends (Carlier and Pantaloni, 1997), 

enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family proteins protect 

elongating barbed ends from capping (Bear et. al., 2002), contactin stabilizes branches 

(Weaver et. al., 2001), and filamin A (Flangan et. al., 2001) and α-actinin stabilize and 

consolidate the whole network. If the actin treadmilling rate exceeds that at which the cell 

can migrate, the plasma membrane is seen to move vertically and then back over the cell 

in the form of a wave. This phenomenon is known as membrane ruffling and is linked 

with high levels of F-actin (Figure 1.2).   

 

1.1.3.  Filopodia. 

Filopodia are thin cellular processes, in which actin filaments are long, parallel, and 

organized into tight bundles (Small et. al., 1998, Lewis and Bridgman, 1992; Small et. al., 

2002). There are other cellular structures, such as microspikes and retraction fibres that 

bear similarities to filopodia and may be related to them. Microspikes are parallel actin 

bundles within the lamellipodium. Retraction fibres are long, thin cellular processes that 

remain attached to the substratum after cell withdrawal. They also contain parallel 

bundles of F-actin filaments (Small et. al., 1998, Lewis and Bridgman, 1992). 

 

Filopodia first came to prominence in the 1960s, when they were shown to be involved in 

sea urchin gastrulation. During the invagination of the sea urchin endoderm, 

mesenchymal cells extend filopodia to ectodermal cells across the blastocoel cavity and     
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Figure 1.2 Morphological characteristics of a migrating cell. 
 
The image shows an electron micrograph of a fully spread fibroblast. The cell has a broad 
flattened area at its leading edge and an elongated tail at its rear. Lamellipodia and 
filopodia decorate the peripheral regions of the cell. Dorsal membrane ruffling and 
filopodia are also visible.  
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Figure 1.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Le

ad
in

g 
E

dg
e

Lamellipodium

Peripheral Ruffling

Tr
ai

lin
g 

R
ea

r

Filopodium
Dorsal Filopodium

Dorsal Ruffling

Le
ad

in
g 

E
dg

e

Lamellipodium

Peripheral Ruffling

Tr
ai

lin
g 

R
ea

r

Filopodium
Dorsal Filopodium

Dorsal Ruffling



these filopodia are responsible for the directed migration of the mesenchyme. Many types 

of motile cells have and use filopodia.  

 

Filopodia are often found associated with the lamellipodia and when the two merge, ribs 

are seen to form. In neurons, filopodia are clearly seen in growth cones, and dendritic 

spines are essentially short filopodia. At times, the visualization of filopodia is difficult 

due to their size and dynamic nature and the fact that they can be damaged by the process 

of fixation. However, with improvements in image processing, CCD cameras and 

microscopy, filopodia can be detected and followed in real time.  

 

Filopodia appear to explore the extracellular matrix (ECM) and surfaces of other cells. 

They are likely to play a role in; identification of appropriate targets for adhesion, axonal 

guidance and chemotaxis. These functions are essential in cell migration and many 

morphogenetic events, including axonal path finding, epithelial cell adhesion, 

gastrulation, dorsal closure in Drosophila, ventral enclosure in Caenorhabditis elegans, 

and wound healing. 

  

Filopodia can have different sizes and tensile strength. Classical sea urchin filopodia are 

long, thin and straight with a diameter range of 0.2 to 0.4 μm. These filopodia normally 

extend between 5 to 35 μm, but occasionally they can extend to more than 70 μm in 

length. They have a growth rate of 10 μm/min, with a burst of maximum activity at up to 

25 μm/min. The filopodia retraction rate is of similar magnitude and kinking is 

sometimes observed during the process. Filopodia can be robust and maintain  structural 
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integrity even when they exceed over 70 μm in length. Specialized filopodia such 

cytonemes are found in the Drosophila wing imaginal disc and can grow up to a length of 

800 μm.  

 

Filopodia protrusion is thought to occur by a filament treadmilling mechanism, which 

was originally proposed for both filopodia and lamellipodia (Small et. al., 1994). 

According to this model, all actin filaments within a bundle elongate at their barbed ends 

and release subunits from their pointed ends. Existing experimental data support this 

model of filopodia elongation. Structurally, actin filaments in filopodia are long and 

unbranched (Svitkina and Borisy, 1999), suggesting that assembly occurs by elongation, 

not by branched nucleation. Dynamic observations (Mallavarapu and Mitchison, 1999) 

revealed that labeled actin incorporated at the filopodial tips, moved backward and 

dissipated at the rear (as predicted by the treadmilling mechanism), and that actin 

turnover in filopodia was slow; consistent with the idea of long filaments adding or losing 

subunits only at their ends.  

 

1.2. The cytoskeleton. 

1.2.1. Components of the cytoskeleton. 

The ability of eukaryotic cells to adapt to a variety of shapes and to carry out coordinated 

movements depends on a complex network of protein filaments that extend throughout 

the cytoplasm. This network is called the cytoskeleton. It is a highly dynamic structure 

that reorganizes continuously as the cell changes shape and responds to its environment. 

The diverse activity of the cytoskeleton is dependent on three type of protein filaments; 
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actin microfilaments, microtubules and intermediate filaments (IFs). Each type of 

filament is formed from different protein subunits: actin for actin microfilaments, tubulin 

for microtubules and a family of related fibrous proteins such as lamin for IFs.  

 

1.2.2. Actin microfilaments. 

Actin genes are highly conserved and are present in all eukaryotic species. Actin is the 

most abundant protein in many cells and is distributed throughout the cytoplasm. There 

are six types of actin in mammalian cells and they can be divided into 3 classes according 

to their isoelectric point. α-Actins are found mainly in muscle while β-actin and γ-actin 

are found in non-muscle cells. Actin exists in two forms, the globular monomeric form 

known as G-actin and the filamentous form, F-actin. G-actin is non-covalently associated 

with a molecule of ATP. Polymerization of actin results in the hydrolysis of the terminal 

phosphate of ATP, resulting in actin filaments that consist of tight helix of uniformly 

orientated actin molecules. The actin monomer has polarities and contains a “plus” end 

and a “minus” end (as defined with decoration of filaments by myosin heads). The 

general belief is that a dynamic equilibrium exists between the monomeric (G)-actin and 

filamentous (F)-actin. While there are no control factors, a process known as treadmilling 

occurs. G-actin is added to the barbed or plus end and this is matched by dissociation 

from the pointed or minus end (Wenger, 1976).  

 

Actin networks can be organized into three general arrays. In parallel bundles of actin 

filaments, filaments orientated with polarity give rise to structures such as filopodia and 

microspikes. In contractile bundles, commonly found in the contractile ring in mitosis as 
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well as in stress fibres, the bundles are arranged with opposite polarities and they are 

associated with the motor protein myosin. The third and last class of array is a dendritic 

arrangement. F-actin is in an open organization, forming a meshwork of many 

interconnecting filaments, resulting in a gel-like network found in lamellipodia 

(Matsudaria, 1991). 

 

1.2.3. Microtubules. 

Microtubules are made up of the protein tubulin. Tubulin exists as a heterodimer 

consisting of α− and β−tubulin subunits that form a tightly linked globular protein. 

Tubulin heterodimers contain 13 linear protofilaments, each composed of alternating α− 

and β−tubulin subunits, bundled into parallel to form a cylinder. The protofilaments are 

aligned in parallel with the same polarity to form a polar microtubule. Microtubules, like 

actin, have a fast growing plus end and a slower growing minus end. The β−tubulin 

monomer is arranged such that it faces the plus end, whereas α−tubulin monomer is 

exposed at the minus end. The polarity set up of the microtubule structure is important for 

the function of the motor protein families; kinesin (Vale and Fletterick, 1997) and dynein. 

These proteins utilize the energy release from ATP hydrolysis to move unidirectionally 

along microtubules (Desai and Mitchision, 1997). The minus end of the microtubule is 

unstable, but it is stabilized by attachment to a microtubule organizing centre (MTOC) of 

the centrosome. Biochemical studies have shown that microtubules undergo continual 

depolymerization and repolymerization, a process known as dynamic instability 

(Erickson et. al., 1992). This dynamic instability requires an input of energy from GTP 

hydrolysis to achieve a balance between polymerization and depolymerization. GTP 
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binds β−tubulin of the heterodimeric tubulin molecules to the end of a microtubule, and 

this leads to the hydrolysis of GTP to GDP. GTP hydrolysis provides a mechanism for 

microtubules to depolymerize by weakening the bonds between tubulin subunits in the 

microtubule.  

 

Microtubules play an important role in non-dividing as well as dividing eukaryotic cells. 

In non-dividing cells, they are important for organizing the cytoplasm, nucleus and 

organelle position and forming structures such as flagella and cilia (Desai and Mitchison, 

1997). They also play an important role in axon formation and axonal transport (Stevens 

et. al., 1998; Hirokawa et. al., 1996). Microtubules are stabilized by the MAPs 

(microtubule associated proteins). In neuronal cells, MAPs have been shown to increase 

polymerization of tubulin, depress catastrophe and promote rescue. (Drechsel et. al., 1992; 

Trinczek at al., 1995), thus increasing the amount of polymerized, stable tubulin in the 

cell. 

 

1.2.4. Intermediate filaments. 

Expression of IFs is cell-type specific and they are highly diverse and can account for up 

to 85% of total protein in differentiated cells such as keratinocytes and neuronal cells 

(Fuchs and Cleavland, 1998). IFs play a structural or tension bearing role in the cell. 

They are found as dimers composed of two α-helical chains that are parallel and 

intertwined in a coiled-coil rod. The end rods are highly conserved and associate from 

head to tail. The dimers form linear arrays, of which four of these will be in an 

antiparallel, half-staggered manner forming photofibrils. When three or four photofibrils 
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intertwined, an apolar intermediate filament of 10 nm in diameter is formed. In the 

neuronal system, IFs are made up of three type of proteins; neurofilaments NF-L (67kD), 

NF-M (150kD) and NF-H (200kD). NF-L forms the backbone on which NF-M and NF-H 

integrate to form peripheral dimer arrays. In this formation, NF-M and NF-H tails are 

turned, protruding away from the backbone, leaving them open to associate with other 

neurofilaments and microtubules in the axoplasm.  The nonpolarised structure of IFs 

distinguishes them from actin microfilaments and microtubules that are polarized and 

whose functions are dependent on this polarity (Stewart, 1993). 

 

1.3. Microfilament assembly and disassembly: Actin dynamics. 

Actin polymerization is required in many processes such as cell motility, neurite 

extension, nerve growth cone movement and cell spreading. Actin rapidly cycles between 

G-actin and F-actin forms. The rate of cycling is determined by actin binding proteins 

(ABPs) which includes the sequestering proteins and the capping proteins. Sequestering 

proteins inhibit polymerization by binding to monomeric G-actin, sequestering them 

away from the working pool. Capping proteins bind to the barbed or plus end of the actin 

filament, thus preventing its growth (Barkalow et. al., 1996). New actin filaments are 

produced by either elongation of existing filaments or de novo nucleation of monomeric 

G-actin with elongation. Actin microfilaments can also be formed by severing of barbed 

ends to create new ones or uncapping of existing of barbed ends (Higgs and Pollard, 

1999).  
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The Rho GTPases play important roles in actin polymerization. Activated Rac1 induces 

uncapping of filaments that result in further actin polymerization (Hartwig et. al., 1995). 

Other effectors like WASP and N-WASP have also been shown to play an active role in 

actin polymerization. These proteins will be covered in more detail in section 1.8.  

 

Depolymerization of actin filaments occurs through severing of existing actin filaments. 

The plus ends of these severed filaments are prevented from renewed actin 

polymerization as ADP-bound G-actin is less efficiently polymerized into the ends of 

severed filaments. Severed filaments are also capped by capping proteins such as CapG 

and CapZ (Carlier et. al., 1997). 

 

1.3.1. Arp2/3 complex. 

The identification of the Arp2/3 complex was an important event that contributed to the 

understanding of the actin polymerization process. The Arp2/3 complex consists of seven 

polypeptides, of which two major components are actin related proteins: Arp2 and Arp3 

(Machesky et. al., 1999). The Arp2/3 complex was first identified in Acanthamoeba 

castellani extracts on a profilin affinity column (Machesky et. al., 1994). The Arp2/3 

complex is regulated by members of the WASP/SCAR family via a C-terminal region 

consisting of one or two WASP homology 2 (WH2) motif, a central linking region and an 

acidic region (Higgs et. al., 2001), to which actin monomers are recruited and added to 

existing filaments (Rohatigi et. al., 1999). The Arp2/3 complex nucleates actin at a 70o 

angle and this phenomena leads to the branching of actin filaments (Blanchoin et al, 

2000). The lone Arp2/3 complex is intrinsically inactive in vivo, and its activation 
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requires actin filaments, ATP and activating proteins such as N-WASP (neural-WASP).  

Upon binding of ATP, a conformational change occurs. The two Arp proteins come into 

close proximity to form a structure that is favorable for actin polymerization (Robinson et. 

al., 2001). There are currently two models for actin polymerization by Arp2/3 complex. 

The dendritic actin-nucleation model (Mullins et. al., 1998; Pollard et. al., 2000) and the 

barbed-end nucleation model (Pantaloni et. al., 2000). The exact mechanism and actions 

of the Arp2/3 complex is still unclear.  

 

1.3.2. Myosin. 

Myosins are characterized by three domains, a N-terminal motor or “head” that binds 

actin and ATP, a neck domain consisting of one or more light chain binding IQ motifs 

and a C-terminal tail. By sequence analysis of the motor domains, ~20 distinct classes 

have been identified (Berg at el., 2001) and the best studied ones are Myosin I and V 

which have been implicated to be involved in vesicle transport (Depina et. al., 1999).  All 

myosin proteins possess a conserved head region of approximately 80 kDa, followed by a 

neck or regulatory region. The neck region is of variable length and binds between one 

and six light chains of calmodulin/EF-hand family proteins. The head and neck region 

comprise the motor domain which is responsible for ATP hydrolysis and provides energy 

to power a unidirectional force along the actin filament (Bahler, 1996). This ATPase 

activity is regulated by the phosphorylation and dephosphorylation of myosin light chain 

(MLC). The phosphorylation of MLC is catalyzed by MLC kinase (MLCK) and 

dephosphorylation is regulated by myosin phosphatase (Citi, 1987). While the myosin 

head is conserved across all myosins, the tail is highly variable. Myosin can possess a 
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membrane binding site and/or a site that allows binding to a second actin filament. The 

myosin tail region also determines the function of the protein; vesicle trafficking, 

attachment to plasma membrane or alignment of actin filaments relative to each other 

(Alberts et. al., 1994).  

 

1.3.3. Actin binding proteins. 

Regulation of polymerization and depolymerization of actin is carried out by a group of 

proteins that are responsible for the crosslinking, severing, sequestering of monomeric 

actin subunits and capping of existing actin filaments. This group of proteins is 

collectively known as actin binding proteins (see figure 1.3).  

 

β-thymosin is the most abundant of these actin-monomer binding proteins and is widely 

expressed.  It is an unusually small protein with a molecular weight of about 5 kDa. β-

thymosin sequesters G-actin thereby inhibiting filament growth (Cassineris et. al., 1992).  

 

Profilin, another actin-monomer binding protein which is widely expressed, is thought to 

play a part in controlling actin polymerization in response to external stimuli. It is 

associated predominantly with the plasma membrane and the binding of profilin to G-

actin accelerates the ADP/ATP nucleotide exchange (Goldschmit-clermont et. al., 1991). 

Profilin is thought to play a role in stimulating actin polymerization as a mutant yeast that 

is deficient in profilin lacks actin filaments.  
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Figure 1.3 Functions of ABPs. 
 
A schematic of ABPs is shown illustrating their function in the modification of the actin 
network. 
 
The ABPs have the following activities; Profilin and ADF cofilin bind G- and F-actin and 
they are mostly concentrated at the leading edge of the cell. They promote the 
disassembly of actin filament. Gelsolin is responsible for F-actin severing and capping. 
Filamin, actinin and fimbrim crosslink F-actin. Myosins are involved in vesicle 
trafficking, attachment to plasma membrane and transport of cargo. The Arp2/3 complex 
facilitates branching of F-actin with angle of 70o. 
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Figure 1.3 
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Fimbrin and α-actinin are widely distributed actin cross-linking (bundling) proteins. 

They are enriched in parallel bundles at the leading edge and in microspikes or filopodia, 

together with fimbrin, while α-actinin is accountable for the loose cross-linking of actin 

filaments in stress fibres (Albert et. al., 1994).  

 

Tropomyosin is comprised of two alpha-helical chains in a coiled coil conformation, 

forming a chain of subunits, polymerized end to end. It is ubiquitously expressed and is 

widely distributed in the cell. It is found to associate with actin along the two grooves of 

the F-actin filament, giving rise to both structural stability and function modulation 

(Perry, 2001). 

 

Filamin plays a role in the organization of F-actin into networks and stress fibres. They 

form dimers in a tail-to-tail manner and anchor transmembrane proteins to the actin 

cytoskeleton, providing a scaffold for cytoplasmic Signaling proteins (Van der Flier et. 

al., 2001). 

 

Cofilin is a ubiquitous actin-binding protein that enhances turnover of actin filaments by 

increasing the polymerization rate from the pointed end (Carlier et. al., 1997) and 

severing the actin filaments directly (Du et. al., 1998). Actin depolymerizing factor 

(ADF) is homologous to cofilin. Both cofilin and ADF bind monomeric and filamentous 

actin and promote the disassembly of actin filaments. They inhibit polymerization and 

nucleotide exchange of ATP-actin for ADP-actin. Their binding activities are inhibited by 
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protein phosphorylation and competitive binding of phosphoinositides (Theriot et. al., 

1997). 

 

Gelsolin is an actin filament severing and capping protein, and is regulated by calcium 

and PIP2 (Kwiatkowski et. al., 1999; Robinson et. al., 1999). Gelsolin binds to actin 

filaments and causes a conformational change in the actin filament. Gelsolin remains 

attached to the severed filament as a capping protein, preventing short filament re-

annealing or elongation at the barbed ends. The severing process results in an increased 

number of actin filaments and the uncapping of gelsolin exposes many barbed ends 

where actin monomers can be added. This allows the cell to rebuild its actin cytoskeleton 

network in response to external cues.  

 

Spectrin and ankyrin were first discovered as prominent components of the membrane-

associated cytoskeleton of mammalian red blood cells. They form heterodimers or 

heterotetramers via interchain binding at the ‘head’ end between α and β chains. The 

‘tail’ end contains sites that associate spectrin with other proteins such as actin. Spectrins 

are connected at their ends by very short actin filaments. Spectrins are also link to an 

abundant transmembrane protein (band 3) through ankyrin bridges. They provide 

mechanical support to the plasma membrane of erythrocytes. 

 

The formins family of proteins is another group of proteins that constitute a second 

mechanism for inducing actin polymerization in eukaryotic cells. Rho stimulates actin 

polymerization in mammalian cells through the diaphanous-related formin (DRF), 
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mDia1/mDia2, and in S. cerevisiae through Bnr1 and Bni1, the only two formins in this 

organism. Binding of Rho GTPases to mDia1 relieves an auto-inhibitory interaction, 

exposing an FH2 domain that then binds to the barbed end of an actin filament (Zigmond 

et. al., 2004). mDia1 also contains an essential FH1 domain which interacts with a 

profilin/actin complex and delivers it to the filament end. mDia1 remains bound to the 

barbed end after adding an actin monomer, ready to add another one, and this has been 

described as a leaky cap. Exactly how monomer assembly occurs at the barbed end with 

formin bound is still unclear.  

 

1.4. The Ras superfamily. 

The Ras superfamily of small guanosine triphosphatases (GTPases) comprise over 150 

members in humans, with evolutionarily conserved orthologs found in Drosophila, C. 

elegans, S. cerevisiae, S. pombe, Dictyostelium and plants (Colicelli, 2004). The Ras 

oncogene proteins are the founding members of this family, which is divided into five 

major branches on the basis of sequence and functional similarities: Ras, Rho, Rab, Ran 

and Arf. Small GTPases share a common biochemical mechanism and act as binary 

molecular switches. Despite being similar to the heterotrimeric G protein α subunits in 

biochemistry and function, Ras family proteins function as monomeric G proteins. 

Variations in structure (Biou and Cherfils, 2004), post-translational modifications that 

dictate specific subcellular locations and the proteins that serve as their regulators and 

effectors allow these small GTPases to function as sophisticated modulators of a complex 

and diverse range of cellular processes.  
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1.4.1. Ras superfamily members. 

The Ras sub-families control diverse cellular functions. Ras sarcoma (Ras) oncoproteins 

are the founding members of the Ras family (36 members) and have been subject of 

intense research, in large part because of their critical roles in human oncogenesis 

(Repasky et. al., 2004). Ras proteins serve as signaling nodes activated in response to 

diverse extracellular stimuli. Activated Ras interacts with multiple, catalytically distinct 

downstream effectors, which are responsible for regulating cytoplasmic Signaling 

networks that control gene expression and regulation of cell proliferation, differentiation, 

and survival.  

 

Like Ras, Ras homologous (Rho) proteins also serve as key regulators of extracellular-

stimulus-mediated Signaling networks that regulate actin organization, cell cycle 

progression and gene expression (Etienne-Manneville and Hall, 2002). Twenty members 

have been identified to date. The 3 best studied members are RhoA (ras homolog gene 

family, member A), Rac1 (ras-related C3 botulinum toxin substrate 1) and Cdc42 (Cell 

division cycle 42). 

 

First described as Ras-like proteins in brain (Rab), Rab proteins comprise the largest 

branch of the superfamily, with 61 members identified (Pereira-Leal and Seabra, 2001). 

Rab GTPases are regulators of intracellular vesicular transport and the trafficking of 

proteins between different organelles of the endocytic and secretory pathways (Zerial and 

McBride, 2001).  
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The Ras-like nuclear (Ran) protein is the most abundant small GTPase in the cell and is 

best known for its function in nucleocytoplasmic transport of both RNA and proteins 

(Weis, 2003). Unlike other small GTPases, Ran function is dependent on a spatial 

gradient of the GTP-bound form of Ran. There is a single human Ran protein that is 

regulated by a Ran-specific nuclear GEF and cytoplasmic GAP activities. Thus, there is a 

high concentration of Ran-GTP in the nucleus, which facilitates the directionality of 

nuclear import and export. Nuclear Ran-GTP interacts with importin to promote cargo 

release, and with exportin-complexed cargo to facilitate nuclear import and export of 

cargo. By a similar mechanism, Ran GDP/GTP cycling also regulates mitotic spindle 

assembly, DNA replication and nuclear envelope assembly (Li et. al., 2003). 

 

The ADP-ribosylation factor (Arf) family of proteins is involved in regulation of 

vesicular transport like the Rab proteins, and Arf 1 is the best characterized member 

(Memon, 2004). Arf GDP/GTP cycling is regulated by distinct GEFs and GAPs (Nie et. 

al., 2003). The active form, Arf-GTP interacts with effectors including vesicle coat 

proteins. Conformational differences between the two nucleotide-bound forms are not 

restricted to the switch I and II regions but also changes in the N-terminal region that 

facilitate interaction with membranes in their GTP-bound state (Pasqualato et. al., 2002). 

Arf1 regulates the formation of vesicle coats at different steps in the exocytic end 

endocytic pathways (Nie et. al., 2003; Memon, 2004). GTP- and donor-membrane-bound 

Arf associates with and activates coat proteins. The Arf-coat-protein complex then 

facilitates cargo sorting and vesicle formation and release. GAP-mediated formation of 
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Arf-GDP is required for dissociation of the Arf-coat-protein complex and subsequent 

vesicle fusion with acceptor membranes.  

 

1.4.2. Ras as a molecular switch. 

Ras superfamily GTPases function as guanosine-5 –diphosphate (GDP)/GTP-regulated 

molecular switches (Vetter and Wittinghofer, 2001; Figure 1.4). They share a set of 

conserved G box GDP/GTP-binding motif elements from the N-terminal end, which 

together make up ~20kDa G domain (Ras residues 5-166). It has a conserved structure 

and biochemistry shared by all Ras superfamily proteins, as well as Gα and other 

GTPases.  

 

The GTPase proteins are able to bind and hydrolyze magnesium complexes of nucleotide 

GTP and exchanging GDP for GTP in a cyclic fashion. In their GTP-bound stage, these 

proteins are able to transduce signals to a downstream effector to elicit their biological 

effects. The cycling between the GTP-bound and GDP-bound conformations is 

dependent on the relative rates of reactions, the exchange of GDP for GTP and the 

hydrolysis of bound GTP.  These reactions occur spontaneously at a slow rate. But the 

rates of these reactions can be accelerated by regulatory proteins, guanine nucleotide 

exchange factors (GEFs) and GTPase activating proteins (GAPs) (Bourne et. al., 1990). 
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Figure 1.4 Ras as molecular switch. 
 
Ras GTPase is a monomeric protein of 21 kDa that shuttles between a GTP-bound form 
and GDP-bound form. It acts as a molecular switch. In its resting (or "off") state it is 
found complexed with GDP. In its active (or "on") state it has a molecule of GTP bound 
to it. Ras is turned "on" by removing the GDP and replacing it with a GTP. This 
nucleotide exchange reaction is controlled and catalyzed by proteins called "exchange 
factors" - RasGEFs. Ras possesses a GTPase activity that converts GTP to GDP by 
hydrolyzing the γ-phosphate off the GTP. Thus the Ras protein has the ability to return to 
"off" state through phosphate hydrolysis. This reaction is also regulated by other proteins, 
called GTPase activating proteins - RasGAPs.  
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Figure 1.4 
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1.4.3. Mutations and oncogenic Ras. 

The ras genes were first identified as the agents responsible for conferring transforming 

ability to the Harvey and Kirsten strains of murine sarcoma retrovirus (Ellis et. al., 1981). 

Mutations in the RAS family of proto-oncogenes (comprising H-ras1, H-ras2, N-ras and 

K-ras) are very common, being found in 20% to 30% of all human tumours (Bos et. al., 

1989). 

 

Oncogenic Ras disrupts the usual cycling between active and inactive states by having a 

lower intrinsic GTPase activity, and it is also insensitive to GAP stimulation, resulting in 

a highly active protein. The mutant of Ras is generated by the changes of residues 12, 13 

and 61 (Barbacid, at al., 1987). A second class of mutations is located at residues 28, 

116-119, 144 and 146. These latter mutants display a lower affinity for GDP guanine 

nucleotide, leading to a rapid exchange of GDP and GTP. All these mutations give Ras 

the ability to continue signaling to downstream effectors even in the absence of 

extracellular stimuli, and have been used extensively (in particular G12V mutant) in the 

study of Ras function.  

 

A different approach to understanding the function of a protein is to generate a dominant 

inhibitory protein that interferes with the function of the endogenous protein. A mutation 

that has been very useful in this aspect in the study of Ras function is a serine to 

asparagine substitution at amino acid residue 17 in H-ras. This mutation yields a protein 

that has higher affinity for binding to GDP than GTP. The S17N mutated Ras is thought 

to interfere with endogenous Ras function by titrating RasGEFs so that they are no longer 
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available  (Feig and Cooper, 1988). The serine residue is involved in binding Mg2+ and 

the mutation is thought to result in defective Mg2+ complexing.  Proper binding of Mg  

by serine 17 may be necessary so that Ras can reach an active conformation, because the 

'effector' domain also binds this tethered Mg  (through threonine 35) when Ras switches 

to the active state. 

2+

2+

(Feig et. al., 1999). 

 

Important mutations that affect the biological activity of Ras without interfering with 

nucleotide binding or intrinsic GTPase activity reside within the effector loop. Certain 

mutations in this region abrogate Ras’s ability to modulate particular downstream 

pathways (White et. al., 1995).  

 

The residues that are required for Ras function are those between residues 26 and 48, 

with the most critical residues for biological function being E31, P43, T35, D38, Y40, 

V45 and G48. The importance of these residues within the effector domain has been 

shown through the generation of a chimeric Ras/Rho protein. Rho does not induce a 

malignant phenotype when substituted with amino acid residues 23-46 of Ras but does 

induce transformed foci in NIH3T3 cells in a manner similar to RasV12 (Self et. al., 

1993). Many studies have utilized these mutations in the effector domain of Ras to 

investigate pathways downstream of Ras, to assume or exclude a role for candidate 

effectors of Ras-mediated pathways. These approaches provided a paradigm for the 

investigation of the Rho family of GTPases.  
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1.4.4. Ras GTPase regulatory proteins. 

1.4.4.1. Ras guanine nucleotide exchange factors (RasGEFs). 

RasGEFs have a common ~250 amino acid CDC25 homology catalytic domain (also 

known as the RasGEF domain) and an adjacent ~50 amino acid amino-terminal Ras 

exchange motif (REM; also known as the RasGEFN domain). There are three main 

classes of RasGEFs, namely Son-of-sevenless (Sos), Ras guanine nucleotide releasing 

factor (RasGRF) and Ras guanyl releasing protein (RasGRP), and they are distinguished 

by additional flanking domains and motifs that facilitate their activation by distinct 

upstream signaling mechanisms or possess additional catalytic functions. RasGRF (also 

known as Cdc25Mn) is brain specific (Shou et. al., 1992), SosGEFs are closely related to 

the Drosophila Sos gene product, and RasGRP constitute a group of RasGEFs activated 

by diacylglycerol (DAG) and phorbol ester (Wennerberg et. al., 2004). 

 

The ability of the CDC25 homology domains to concurrently activate other Ras family 

proteins and the presence of separate Rho-specific GEF catalytic domains in Sos and 

RasGRF proteins provide the links between Ras activation and the function of Ras and 

Rho family of proteins. The two main RasGFF families, Sos and RasGRF also serve as 

GEFs for the Rac1 small GTPase, a member of the Rho branch of the Ras superfamily 

(Wennerberg et. al., 2004). Sos1 and Sos2 contain a CDC25 homology domain which 

acts as a GEF for Ras as well as R-Ras2 and R-Ras3 proteins. In addition to the CDC25 

homology domain, the amino termini of Sos proteins contain Dbl homology (DH; also 

called RhoGEF) and pleckstrin homology (PH) domains. The tandem DH-PH domain 

cluster is a signature motif of Dbl family proteins, which comprise the majority of GEFs 
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for Rho family GTPases (Rossman et. al., 2005). The catalytic DH domain mediates the 

GDP/GTP exchange of Rho GTPases, while the PH domain modulates the activity of the 

DH domain by a variety of mechanisms, by promoting membrane association, facilitating 

GTPase substrate binding, or by controlling intramolecular interactions. Therefore, Sos 

proteins are endowed with a dual GEF catalytic activity for Ras and Rac1 GTPases. 

 

1.4.4.2.  Ras GTPase activating factors (RasGAPs). 

RasGAPs have a common ~250 amino acid residue RasGAP catalytic domain, but 

otherwise do not share any sequence similarity or domain architecture in the sequences 

that flank this RasGAP domain. GAPs accelerate the very slow intrinsic GTP hydrolysis 

activity of Ras by several orders of magnitude.  

 

p120 RasGAP was the first GAP to be discovered and provided an important biochemical 

explanation for why missense mutations at Ras residues G12 and Q61 result in 

constitutively activated, highly transforming proteins (Bernards et. al., 2004). These 

tumor-associated mutant Ras proteins, found in 30% of all human cancers are insensitive 

to the action of GAPs and therefore are persistently GTP-bound.  

 

Neurofibromin is the gene product of NF1, a tumor suppressor gene lost in autosomal 

dominantly inherited disorder neurofibromatosis type 1 (NF1; Dasgupta et. al., 2003). 

Affected individuals are prone to development of benign and malignant tumors. Loss of 

neurofibromin expression in NF1 associated tumors or NF1-deficient mouse cells is 

associated with elevated Ras activity and Signaling as well as increased cell proliferation. 
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Tumor-associated Ras mutant proteins are also insensitive to neurofibromin-mediated 

inhibition. Similar to p120 RasGAP, evidence for regulation of neurofibromin-mediated 

inhibition of normal Ras function is limited.  

 

Other additional RasGAPs have been identified and mechanisms for their regulation has 

been described. GAP1P4BP and GAP P

1m are founding members of a family of four 

RasGAPs having common domain architecture yet displaying distinct mechanism of 

regulation. The RasGAP domains are flanked by amino-terminal tandem Ca2+-dependent 

lipid-binding C2 domains and a carboxy-terminal PH domain which contains a Bruton’s 

tyrosine kinase (Btk) motif. Despite their similar domain architecture, RasGAP family 

members exhibit different modes of regulation and associate differently with membrane. 

GAP1P4BP has a constitutive PH-domain-dependent plasma membrane association 

(Lockyer et. al., 1997), that could be mediated by phosphatidylinositol 4,5 bi-phosphate 

(PIP  binding (Cozier et. al., 2000), and its Ras GAP activity may be regulated by 

inositiol 1,3,4,5-tetrakisphophate (Cullen et. al., 1995). Interestingly, GAP

2)

1m was not 

found at the plasma membrane, but showed a distinct, perinuclear and cytoplasmic 

localization. It is however translocated to the plasma membrane upon EGF activation of 

phosphoinositide 3-phosohate lipid kinase (PI3K) and production of phosphatidylinositol 

3,4,5-phosphate  (PIP ) through a PH-domain dependent translocation. CAPRI, is the 

third member of the family, and is normally cytosolic and inactive. A G-linked receptor-

stimulated increase of Ca

3

2+ levels causes CAPRI to undergo rapid, C2-domain-dependent 

association with plasma membrane that activates the RasGAP activity of CAPRI, leading 

to reduced Ras activity (Lockyer et. al., 2001). A fourth member, RASAL, also 
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undergoes Ca2+ -stimulated plasma membrane association but it also oscillates in 

synchrony with simultaneously measured repetitive Ca2+ spikes between the plasma 

membrane and cytosol. Therefore, Ca2+ regulation controls the activities of RasGAPs as 

well as RasGEFs. 

 

1.4.5. Ras effectors. 

One of the most studied Ras effectors are the Raf serine/threonine kinases (A-Raf, B-Raf 

and C-Raf1). Raf is activated by interaction with the GTP-bound form of Ras at its core 

effector binding region, and this lead to the activation of the mitogen activated kinase 

kinases (MEK1/2). This in turn leads to activation of downstream extracellular-signal-

regulated kinase (ERK) mitogen-activated protein kinases (Erk MAPKs) cascade (Bar-

Sagi et. al., 2000; Pruitt et. al., 2001). 

 

PI3K is another extensively studied effector of Ras (Downward, 1998). PI3K is activated 

by binding to Ras and this facilitates the conversion of PIP2 to PIP3. This in turn leads to 

the activation of the Akt/PKB serine/theorinine kinase (Franke at. el, 1995).  Activation 

of Rac1-GEFs has also been linked with an increase of PIP3 levels, and this is thought to 

provide a link between Ras and Rho GTPases (Hawkins, 1995). 

 

Ral-GEFs family has also been identified as targets of Ras. Ral-GDS, Rlf, RGL1 and 

RGL2 have been reported to bind to Ras, and this interaction only occurs with GTP-

bound form (Katz and McCormick, 1997). Interaction is abolished by mutations in the 
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effector binding region. The Ral-GEFs/Ral-GDS competes with Raf for interaction with 

active Ras (Hermann et. al., 1996). 

 

1.5. Rho family. 

The Rho GTPases form a subgroup of the Ras superfamily of small GTP-binding proteins 

and are highly conserved throughout eukaryotes. 20 genes encoding different members of 

the Rho family have been identified in the human genome to date. The mammalian Rho-

like GTPases comprise at least 10 distinct proteins: RhoA, B, C, D and E; Rac1, Rac2 

and Rac 3; Cdc42Hs, and TC10. A comparison of the amino acid sequences of the Rho 

proteins from various species revealed that they are conserved in primary structure and 

are 50%-55% homologous to each other. Like all members of the Ras superfamily, the 

Rho GTPases functions as molecular switches, cycling between an inactive GDP-bound 

state and an active GTP-bound state. Their interconversion is tightly controlled by GEFs 

that increase GDP/GTP exchange rates. It is well established that members of the Rho 

subfamily are involved primarily in the regulation of cytoskeletal organization in 

response to extracellular growth factors. Further studies have also revealed that Rho 

GTPases play crucial roles in diverse cellular events such as membrane trafficking, 

transcriptional regulation, cell growth control and development. Many targets of the Rho 

GTPases have now been identified and characterization of some of them has provided 

major insights toward the understanding of Rho GTPase function at the molecular level 

(see section 1.8).  
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1.5.1. Regulators of Rho GTPases. 

As with all members of the Ras superfamily, the activity of the Rho GTPases is 

determined by the ratio of their GTP/GDP-bound forms in the cell (Boguski and 

McCormick, 1993). The ratio of the two forms are regulated by the opposing effects of 

the GEFs, which enhance the exchange of bound GDP for GTP, and the GAPs, which 

increase the intrinsic rate of hydrolysis of bound GTP. In addition, Rho-like GTPases are 

further regulated by guanine nucleotide dissociation inhibitors (GDIs), which can inhibit 

both the exchange of GTP and the hydrolysis of bound GTP (Figure 1.5). 

 

1.5.2. RhoGEFs. 

GEFs for Rho-like GTPases were originally identified as oncogenes after transfection of 

immortalized fibroblast cell lines with cDNA expression libraries. They share a common 

feature: a Dbl homology (DH) domain adjacent to a PH domain. The Dbl oncogene was 

originally discovered by its ability to induce focus formation in N1H3T3 cells (Eva and 

Aaronson, 1985). Dbl was observed to have a 29% sequence identity with the cell 

division cycle protein Cdc24, which is a GEF for Cdc42 in S. cerevisiae (Ron et. al., 

1991). Biochemical analysis show that Dbl is indeed able to release GDP from the human 

homolog of Cdc42 in vitro. It was also demonstrated through deletion studies that the DH 

domain was essential and sufficient for the GEF activity. The PH domain of the GEF is 

always positioned adjacent to the DH domain, suggesting a functional interdependence 

between the two domains (Musacchio et. al., 1993).  
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Figure 1.5 The Rho family GTPases as molecular switches. 

Rho GTPases act as molecular switches that regulate diverse pathways that control the 
cytoskeleton, gene transcription and cell growth. They are GTP-binding proteins of about 
21 kDa that cycle between GDP-bound inactive and GTP-bound active states. The 
GTPase cycle is regulated by three classes of proteins. GDIs sequester the GDP-bound 
GTPases, masking the isoprenyl modification on the CAAX motif, and thereby keeping 
them from interacting with membranes. GAPs stimulate the intrinsic GTP hydrolysis 
activity of the GTPases, resulting in a more rapid conversion back to the inactive GDP 
state. GEFs catalyze the release of bound GDP which results in formation of the GTP-
bound active protein. In contrast to the Ras GTPase cycle, the Rho GTPase cycle not only 
changes the activation state of the proteins but also their location – cytosol vs. 
membrane-bound.   
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Figure 1.5 
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This assumption is supported by studies on the Rac1GEF, vav where it was suggested 

that the PH domain fulfils an autoinhibitory role on vav’s GEF activity. The deletion of 

the PH domain results in a constitutively active protein (Ma et. al., 1998).  

 

It was generally assumed that all proteins that contain a DH and PH domains in tandem 

will be GEFs for Rho subtype proteins. This appears to be true for some but not all 

DH/PH-containing proteins. RhoGEFs also differs in their specificity, in which some 

exhibit exchange activity in vitro for a wide range of Rho-like GTPases whereas others 

appear to be more specific. Lbc, Lfc and Lsc are specific for Rho whereas Fgd1 is 

specific for Cdc42 (Glaven et. al., 1996; Zheng et. al., 1996). Vav, which has been 

previously reported to be an activator of Ras was shown to function as a GEF for 

members of the Rho family (Crespo et. al., 1997; Han et. al., 1997). Therefore it is not 

clear what determines the selectivity of GEFs for specific Rho family members. Work 

has also been done to determine whether the proteins that serve as Rho GEF in vitro can 

perform similar functions in vivo. Lbc has been reported to induce stress fibre formation 

in Swiss 3T3 cells (Zheng et. al., 1995, Olsen et. al., 1997). Fgd1, the faciogential 

dysplasia gene product implicated in normal skeletal development also functions as a 

GEF (Pasteris et. al., 1994). FDG1 was shown to display GFF activity specific for Cdc42 

and induces Cdc42-type morphological phenotype in Swiss 3T3 cells and also activates 

Jun-kinase and p70s6 kinase downstream of Cdc42 (Zheng et. al., 1996; Olsen et. al., 

1997; Nagata et. al., 1998). Both Dbl and Vav were observed to trigger the formation of 

filopodia, lamellipodia and stress fibres mediated by Cdc42, Rac1 and Rho, respectively. 

Both Dbl and Vav also stimulated the SAPK/JNK activity (Olson et. al., 1996). Tiam was 
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first identified as an invasion and metastasis inducing gene in T-lymphoma cells (Habets 

at el., 1995). T-cell lymphoma invasion and metastasis 1 (Tiam1) activates Rac1 and 

Cdc42 in vitro, but in vivo it activates Rac1 exclusively, inducing Rac1-dependent 

membrane ruffles (Michiels et. al., 1995). Michiels et. al. (1997) further demonstrated 

that an intact amino-terminal PH domain was essential for these activities. αPIX and 

βPIX are Rac1 GEFs that were identified through their ability to interact with PAK. The 

two PIX isoforms contain the conserved DH and PH domains common to RhoGEFs. PIX 

exhibits GEF activity on both Cdc42 and Rac1 in vitro but act exclusively to Rac1 in vivo 

(Manser et. al., 1998). 

 

Other than DH and PH domains, many of the exchange factors have other domains that 

are commonly found in Signaling molecules, such as the Src homology (SH3) domain 

and a diacylglycerol-binding zinc butterfly motif, suggesting that they may have 

additional functions (Cerione and Zheng 1996).  

 

1.5.3.  RhoGAPs. 

About 80 GTPase-activating proteins (GAPs) which increase the intrinsic rate of GTP 

hydrolysis of Rho GTPases have been identified to date. The GAP domain of RhoGAP is 

highly conserved and through sequence similarity of this domain with n-chimaerin and 

bcr-encoded protein, it led to identification of other Rho family GAPs (Diekmann et. al., 

1991). The first GAP protein described for Rho GTPases was identified by biochemical 

analysis of cell extracts with recombinant Rho (Garrett et. al., 1989). The protein 

designated p50RhoGAP, was shown to have GAP activity toward Rho, Cdc42 and Rac1 
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in vitro (Hall 1990; Lancaster et. al., 1994) but in vivo, its activity is restricted to Rho 

only (Ridley et. al., 1993). Therefore, similar to their GEFs counterpart, GAPs also differ 

in their specificity for members of the Rho GTPases.  

 

The p190GAP was first identified as a tyrosine-phosphorylated Ras GAP-associated 

protein in Src-transformed cells and in growth factor treated cells. However it was later 

shown to possess GAP activity for Rho GTPases (Ellis et. al., 1981; Settleman et al, 

1992). In vitro studies show inhibition of Rho-mediated stress fibre formation (Ridley et. 

al., 1993). p190GAP interaction with RasGAP was proposed to provide a link between 

Ras and Rho Signaling pathways (Hu and Settlement, 1997). Indeed recent work has 

provided proof for this assumption. Tiam1/Rac1 signaling is shown to antagonize Rho 

activity directly at the GTPase level in COS-7 cells. p190-RhoGap plays a central 

regulatory role in this Signaling pathway. Interfering with its activation by Src-kinase-

dependent tyrosine phosphorylation or its recruitment to the membrane through 

interaction with the SH2 domain of p120-RasGAP blocked the Tiam1-mediated rapid 

downregulation of Rho. This process is mediated by Rac1, but not Rac2 or Rac3 isoforms. 

These data provide evidence for a biochemical pathway of the reciprocal regulation of 

two related small GTPases (Herbrand et. al., 2006). 

 

Other than accelerating the hydrolysis of GTP, RhoGAPs may mediate other downstream 

functions of the Rho proteins in mammalian system. A role for p190 in regulating Rho 

function in cells undergoing cytoskeletal rearrangements has been suggested (Chang et. 

al., 1995).  Some GAP proteins also display effector function as well as GAP activity, 
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such as n-chimaerin and GRAP (Kozma et. al., 1996; Taylor et. al., 1999). n-Chimaerin is 

a brain specific GAP that display GAP activity preferentially for Rac1 and minimal 

activity for Cdc42 in vitro. The activity is regulated by phospholipids and phorbol esters 

through its protein kinase C-like domain (Hall et. al., 1990; Manser et. al., 1992, Ahmed 

et. al., 1993). Injection of the GAP domain of n-chimaerin downregulates Rac1 activity in 

Swiss 3T3, inhibiting Rac1-induced lamellipodia formation (Kozma et. al., 1996). In 

contrast, full-length n-chimaerin expression induced both lamellipodia and filopodia 

formation independent of the GAP activity, suggesting both effector function as well as 

GAP activity for n-chimaerin. It is also able to induce neurite outgrowth in N1E115 

neuroblastoma cells (Kozma et. al., 1996). 

 

1.5.4. RhoGDIs. 

GDIs form the third class of Rho family regulatory proteins. RhoGDIs are ubiquitiously 

expressed and was first identified as an inhibitor of RhoGDP dissociation and GTP 

binding protein (Fukumoto et. al., 1990). Association of Rho proteins with membranes is 

mediated by an iso-prenyl lipid (20-carbon geranylgerany or 15-carbon farnesyl) attached 

to their C-terminal cysteine. RhoGDIs, which were initially named after their ability to 

inhibit the spontaneous dissociation of GDP, form cytosolic complexes with 

geranylgeranylated Rho GTPases, thus maintaining a GDP-bound soluble fraction in 

resting cells (Olofsson et. al. 1999). They are therefore regarded as housekeeping 

regulators whose major function is to act as chaperones to provide the cell with a 

reservoir of inactive Rho proteins that can be distributed to any membrane with little or 

no specificity. Compared with the large number of RhoGEFs and RhoGAPs, there are 
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only three RhoGDI in mammals and plants, and only one has been found in several other 

eukaryotic genomes. In mammals, RhoGDI is the most abundant and ubiquitous 

representative, and it is able to form cytosolic complexes with most members of the Rho 

family (Fukumoto et. al., 1990; Leonard et. al., 1992). On the other hand, RhoGDI2 (also 

known as KyGDI or D4GDI) is found predominantly in hematopoietic cells where it 

appears to have a more narrow specificity for the Rac1 subfamily (Lelias et. al., 1993). 

The third member, RhoGDI3 (also known as RhoGDIγ) (Zalcman et. al., 1996; Adra et. 

al., 1998) is a low abundance member that interacts in vitro with several Rho GTPases as 

other RhoGDIs do but seems to be specific for RhoG in the cell (Brunet et. al., 2002). It 

also differs from other RhoGDIs by an N-terminal extension responsible for its unique 

localization to the Golgi apparatus.  

 

Other than the classical function of RhoGDIs as universal chaperones for GDP-bound 

proteins, more evidence indicating of extra roles played by this family of proteins is 

accumulating. Recent in vitro studies provided insight into the mechanism by which 

RhoGDIs act in isolation, delivering and extracting Rho proteins from membranes. This 

reveals how their modularity allows them to function both in the cytoplasm and at the 

membrane interfaces (Nomanbhoy et. al., 1999; Hoffman et. al., 2000; Golovanov at al., 

2001; Dransart et. al., 2005). 

 

Potential new functions of RhoGDIs may include the modulation of this basic mechanism 

by RhoGDI-binding proteins by phosphorylation or by the lipid composition of 

membranes to achieve the specificity in the delivery of Rho proteins to subcellular 
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membranes. In addition, RhoGDI may uncouple from the GEF-regulated GDP/GTP cycle, 

by regulating GTP-bound populations of Rho or by the ability of certain Rho proteins to 

undergo GDP/GTP cycles without leaving the membrane. 

 

1.6. Rho family functions. 

1.6.1. Cdc42. 

The Rho GTPase Cdc42 is implicated in a wide variety of cellular functions such as 

receptor-mediated signal transduction leading to initiation of transcription, cell cycle 

progression, actin cytoskeleton rearrangement and apoptosis. All Cdc42 proteins share a 

common C-terminal membrane targeting consensus sequence C-X-X-L with the 

exception of two brain-specific members, Cdc42Mmb and G25K, which have a 

phenylalanine in place of the leucine residue. Cdc42 contain many domains, four of them 

located at the N-terminus are responsible for the binding and hydrolysis of GTP to GDP. 

The Switch I domain or effector binding region (resides 26-50) has the potential to bind 

to multiple effectors simultaneously and might also possess regions that are specific for 

certain effectors to bind. Rho GTPases have an insert domain of ~13 residues and this is a 

unique feature not found in other Ras superfamily members. GEF interaction is believed 

to primarily be at a central region comprised of the β4-α3 strand region (residues 82-100; 

Johnson, 1999). 

 

Transcriptional activation. Cdc42 couples cell surface receptors to the MAP kinases, 

providing a passage for relaying extracellular cues to intracellular events that include 

mitogenesis, cell growth, stress response and immune gene expression. During stress 
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response, stress-activated protein kinase (SAPKs) and c-Jun kinases (JNKs) are activated. 

Activation of JINK and p38 by Cdc42 results in an elevation of the c-Jun AP-1 

transcriptional activity (Minden et. al., 1995). Activation of JNK/SPAK and p38 kinases 

causes them to translocate to the nucleus where various transcriptional activators are 

phosphorylated and gene expression is initiated (Johnson, 1999).  

 

Actin cytoskeleton organization. In response to extracellular cues, Cdc42 interacts with 

a number of downstream effectors, which results in the rearrangement of the actin 

cytoskeleton. Microinjection of constitutively active Cdc42 into Swiss 3T3 fibroblast 

cells causes the formation of peripheral actin microspikes. It also induces vinculin 

containing focal complexes and a reduction in Rho induced stress fibres (Kozma et al, 

1995; Nobes et. al., 1995).  Cdc42 is also required for the assembly of functional cell-cell 

contacts (Kuroda et. al., 1998). Integrin-dependent adhesion and cell spreading in NIH-

3T3 fibroblasts are mediated by Cdc42 (Clark et. al., 1998). During the differentiation of 

cultured cortical rat neurons, Cdc42 also plays a role in the generation of filopodia, that 

serve to sense guidance cues in the surrounding environment. 

 

Cell polarity. Cdc42 is involved in the regulation of cell polarity. Studies carried out on 

Bac-1 macrophages to CSF-1 suggested that Cdc42 is required for cell polarity. Wound 

healing assays have also provided evidence for role of Cdc42 in cell polarity. Making a 

wound in the monolayer of REF cells will result in a margin of cells that develop to a 

morphological polarity. These cells are observed to process protrusive activity at the site 

of injury and nowhere else.  
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1.6.2. Rac1 

The Rho GTPase Rac1 regulates various aspects of the actin cytoskeleton. It also 

possesses other functions such oxidative destruction of bacterial invaders during 

phagocytosis, and provides means to interact with and regulate inositol lipid kinases.  

 

NADPH oxidase. The nicotinamide adenine dinucleotide phosphate-oxidase (NADPH 

oxidase) enzyme generates superoxide, and eventually forms hydrogen peroxide which 

leads to the production of hydroxyl free radicals and hypochlorous acid. These are 

effective destructive agents utilized by leukocytes for phagocytosis. It has been shown 

that Rac1 and its effector p67phox are components of the NADPH oxidase complex 

(Diekmann et. al., 1994) and Rac1 is an essential component (Knaus et. al., 1991). 

NADPH oxidase is active when Rac1 is in a GTP-bound state and inactive when Rac1 is 

GDP-bound (Heyworth et. al., 1993). 

 

Inositol lipid kinases. Phosphatidylinositol lipids have been shown to play a role in the 

regulation of the actin cytoskeleton. Rac1 was shown to regulate the activity of type-I 

phosphatidylinositol 4-phosphate 5-kinase (PIP5K). PIP5K generates the enzymatic 

product PIP2, which is involved in the regulation of profilin, α-actinin, vinculin, talin and 

actin-capping proteins. Rac1 has also been implicated in the activation of PI3K in a GTP-

dependent manner (Bokoch et. al., 1996), which in turns mediates the interleukin-2 

activation of protein kinase C (Gomez et. al., 1997). 
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Actin cytoskeleton organization. Rac1 induces formation of membrane ruffles when 

overexpressed. Treatment of fibroblast with PDGF results in a phenotype of membrane 

ruffling that is due to the upregulation of Rac1 activity (Ridley et. al., 1992). Rac1 is also 

involved in the migration of border cells in the developing embryo of Drosophila. 

Inhibition of Rac1 blocks the migration of these cells during oogenesis (Murphy et. al., 

1996).  

 

1.6.3. Rho. 

Rho plays a role in the reorganization of the actin cytoskeleton as with other members of 

the Rho GTPase family. It is also implicated in the process of oncogenic transformation. 

 

Oncogenic transformation. The progression to malignancy is a multi-stage process 

which results in the uncontrolled ability of cells to leave their normal environment and 

invade surrounding tissues. Overexpression of RhoC results in metastasis while its 

inhibition diminishes the ability of cells to invade and metastatise (Clark et. al., 2000). 

RhoA and its downstream effector Rho kinase (ROK) have also been implicated in 

tumour-cell invasion. Invasive abilities of lysophosphatidic acid (LPA) induced tumour 

cells are suppressed when ROK is inhibited (Itoh et. al., 1999). 

 

Actin cytoskeleton organization. Overexpression of RhoA has been shown to induce 

stress fibre formation in fibroblast cells (Paterson et. al., 1990). LPA activation of the 

Rho pathway induces both stress fibre and focal adhesion formation in fibroblast cells 

(Ridley et. al., 1992). Interaction of Rho and its downstream effectors ROK and mDia 
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accounts for the formation of bundled actin stress fibres and alignment with microtubules 

(Watanabe et. al., 1997; Tominaga et. al., 2000; Ishizaki et. al., 2001). 

 

1.7. Rho family effector proteins. 

1.7.1. The CRIB motif. 

All Cdc42 and Rac1 effector proteins share a common feature known as the Cdc42/Rac1 

interactive binding (CRIB) motif (Burbelo et. al., 1995). This was first reported by 

Manser et al,  (1994) as a conserved sequence present in rat p65 p21 Activated Kinase 

(p65PAK), Activated Cdc42 associated kinase (ACK) and Sterile 20 (Ste20), the yeast 

PAK homologue. The binding sequence is reported to span over 40 amino acid residues. 

Burbelo et al later redefined the motif as a minimal consensus binding sequence of 16 

amino acids. CRIB has been identified in over 25 proteins, including CIP4, IRSp53 and 

N-WASP. 

 

1.7.2. PAK family kinases. 

PAKs were the first GTPase-regulated kinases to be identified, through a screen for Rho 

GTPase binding partners in rat brain cytosol (Manser et. al., 1994). GTP bound forms of 

Rac1 and Cdc42 were shown to interact in overlay assays with proteins of 68, 65 and 62 

kDa. These protein targets turned out to be the three major PAK isoforms. The human 

forms are termed PAK1 (rat αPAK), PAK3 (rat βPAK) and PAK2 (rat γPAK) 

respectively (Manser et. al., 1995; Bagrodia et. al., 1995). PAKs have an ancient origin 

and serve as important regulators of cytoskeletal dynamics and cell motility. They are 

also implicated in transcription through MAPK cascades, death and survival signaling 
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and cell-cycle progression (Bokoch et. al., 2003). Consequently, PAKs are implicated in 

a number of pathological conditions and in ell transformation.  

 

PAK1 binds to and is activated by Rac1, Rac2, Rac3 (Manser et. al., 1994; Kanus et. al., 

1998; Mira et. al., 2000) and Cdc42 (Manser et. al., 1994). Conserved residues within the 

N-terminal PDB (p21-binding domain) are involved primarily in binding and activation 

by GTPases. Other features include two conserved canonical PXXP SH3 (Src homology 

3) binding motifs, and a conserved non-classical SH3 binding site for PIX (PAK-

interacting exchange factor, also known as Rac1/Cdc42 GEF6) (Manser et. al., 1998). 

Nck binds to the first conserved SH3 binding site (Bokoch et. al., 1996) while Grb2 binds 

to the second SH3 site, suggesting that all three PAKs can be recruited in a similar 

manner to a variety of signal transduction pathways. 

 

PAK1 exist as a homodimer in solution and in cells, and is probably in a trans-inhibited 

conformation, where the KI region of one PAK molecule packs against the C-terminal 

catalytic domain of the other (Parrini et. al., 2002). Binding of Rac1 or Cdc42 to the 

CRIB motif results in a conformational change causing the C-terminal kinase domain to 

become exposed. The protein is then autophosphorylated in seven sites (S21, S57, S144, 

S149, S199, S204 and T42) (Manser et. al., 1997) and becomes active. It is then able to 

interact with other substrates such as NADPH oxidase component p67phox (Benna et. al., 

1994; Knaus et. al., 1995).  
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PAK1-PAK3 complex with the focal adhesion-associated protein PIX, which is a 

Cdc42/Rac1 GFP. Both αPIX and βPIX bind PAK via their SH3 domains (Manser et. al., 

1995; Bagrodia et. al., 1998). Analysis of αPIX deficient cells suggested a key role for 

the PIX-PAX complex in Cdc42 mediated direction sensing of chemotactic leucocytes 

(Li et. al., 2003). PIX is tightly associated with GIT1, a 90 kDa protein that targets focal 

adhesions by binding paxillin (Turner et. al., 1999). Overexpression of GIT1 leads to 

disassembly of focal adhesions together with loss of paxillin. This could be an indirect 

consequence of PAK activation by GIT1 (Loo et. al., 2004). Therefore, GIT1 and PIX are 

critical partners that both localize and activate PAK at focal adhesions, at the leading 

edge of motile cells and also at cell-cell junctions (Zegers et. al., 2003; Zhao et. al., 2000; 

Manabe et. al., 2002). 

 

Two closely related human protein phosphatases that efficiently dephosphorylate PAK1 

have been identified. POPX1 and POPX2 bind to various forms of PIX and form 

multimeric complexes containing PAK (Koh et. al., 2002). Overexpression of either of 

these PP2C-related phosphatases antagonizes the cellular effects of active PAK (Koh et. 

al., 2002). Other protein kinases that might downregulate PAK function include Akt that 

phosphorylates PAK1 at Ser-21. This modification decreases binding of Nck to the PAK1 

N-terminus while increasing kinase activity (Zhao et. al., 2000; Tang et. al., 2000). 

 

1.7.3. MRCK. 

The myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) family is 

Cdc42/Rac1 effectors that are related to PAK in the GTPase-binding domain but to the 
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Rho effectors ROK/ CRIK (Citron Kinase) in the kinase domain (Madaule et. al., 1998), 

and thus act on related substrates (Tan et. al., 2001). MRCKα was isolated through its 

interaction with Cdc42 and the human gene for MRCKα extends over approximately 

250-300 kb (Moncrieff et. al., 1999). The new described MRCKγ is a lot more compact 

but its product contains all the features of the α- and β- isoforms (Pirone et. al., 2001). 

MRCK expression is ubiquitous in mammals, with the highest level in the brain. The 

MRCK proteins encode the conserved p21-binding domain. MRCKs contain a kinase 

domain, coiled-coil a-helix region, a cysteine rich region and PH domain.  

 

MRCK as an effector for Cdc42 induces cytoskeletal changes. Cotransfection of MRCK 

and Cdc42V12 result in a Cdc42 phenotype in HeLa cells where MRCK colocalizes with 

Cdc42 at cell-cell junctions and Cdc42-induced surface protrusions. Cdc42V12-mediated 

microspikes and focal complex formation were blocked when kinase dead MRCK was 

used instead.   

 

MRCKα can contain two CRIB domains, and CRIB1 binds preferentially to Cdc42-GTP, 

while the addition of CRIB2 increases the interaction of MRCK with Rac1-GTP (Leung 

et. al., 1998). MRCKα exons 21-24 is region of alternative splicing with at least 13 

isoforms detected (Moncrieff et. al., 1999). The conserved stretch of about 70 amino acid 

residues N-terminal to the Myotonic Dystrophy Protein Kinase domain (DMPK) is 

essential for kinase activity. Together, the kinase activity and the C-terminal cysteine-

rich/PH domain and a citron homology region in MRCKα were shown to be required for 

neurite outgrowth (Chen et. al., 1999). 

 44



1.7.4. ACK. 

ACK (Activated Cdc42 associated Kinase) is a non-receptor tyrosine kinase that binds 

specifically to Cdc42 in its activated form (Manser et. al., 1993). ACK is thought to be 

involved in regulating cell adhesion (Yang and Cerione, 1997) 

 

1.7.5. ROK. 

ROK was the first kinase effector of RhoA to be discovered (Leung et. al., 1995, 1996; 

Nakagawa et. al., 1996; Matsui et. al., 1996; Fujisawa et. al., 1996). ROK interacts with 

GTP-bound RhoA as well as with other Rho members B and C but does not interact with 

Cdc42 nor Rac1 (Leung et. al., 1996). Both ROK α and ROK β mRNAs are expressed in 

most mammalian tissues (Leung et. al., 1996; Nakagawa et. al., 1996), with the ROK α 

transcript being most abundant in muscle and brain. Both isoforms are 160 kD proteins 

with a N-terminal serine/threonine kinase domain, coiled-coil region, a Rho-binding 

domain and a C-terminal cysteine/histidine-rich/pleckstrin homology domain. The N-

terminal kinase domain contains a highly conserved 30 amino acid sequence found in 

both isoforms, of which 20 are identical and these are essential for binding of RhoA.  

 

The catalytic activity of ROK is dependent on the intramolecular interaction of the C-

terminus with the kinase domain and formation of multimeric complexes that leads to 

trans-autophosphorylation of the kinase domain. Binding of activated Rho to the Rho 

binding domain disrupts the autoinhibitory interaction between the C-terminus and the 

kinase domain, activating the protein (Amano et. al., 1999). The ROK kinase domain 

displays high homology to the myotonic dystrophy kinase (Brook et. al., 1992). ROK is 
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translocated to the plasma membrane upon association with Rho, resulting in stress fibre 

and focal adhesion complex formation. The cytoskeletal rearrangement is dependent on 

the N-terminal kinase domain, and mutation or removal of this domain leads to 

disassembly of stress fibres and focal complexes (Leung et. al., 1996).  

 

1.7.6. PKN. 

PKN is a Rho specific target protein. Its serine/threonine kinase is activated upon binding 

of Rho in its GTP bound form (Watanabe et. al., 1996). It was proposed that PKN is 

involved in Rho mediated actin cytoskeleton reorganization events such as stress fibre 

formation (Amano et. al., 1996). 

 

1.7.7. Rho GTPase effectors – adaptor proteins. 

Many Rho GTPases effectors/interactors have been identified to date, some of which are 

specific to Cdc42, Rac1 or Rho and a small proportion are  able to interact with more 

than one effector or even all three. 

 

p67 phox is a Rac1 specific effector (Diekman et. al., 1994) and is phosphorylated in a Pak 

dependent manner (Ahmed et. al., 1998). It was proposed that this interaction between 

p67phox and Pak is one means of NADPH oxidase regulation.  

 

n-Chimaerin, which was first identified as a Rac1 GAP (Hall et. al., 1990; Manser et. al., 

1992, Ahmed et. al., 1993) was shown to have effector functions for both Rac1 and 

Cdc42 (Kozma et. al., 1996). 
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POR1 (Partner Of Rac1) is a Rac1 specific interactor as its name implies and is believed 

to synergise with Ras V12 in inducing membrane ruffles (Van-Aelst et. al., 1996).  

 

p35 is a specific interactor of Rac1 and upon binding, it regulates Cdk5 activity. It is 

neuron specific and is therefore often used as a neuronal marker (Nikolic et. al., 1998). 

The p35/Cdk5 pair is often involved in neuronal cell migration, neurite outgrowth and 

regulation of adhesion. It also played an important role in neuronal development (Paglini 

and Caceres, 2001). 

 

p140sra-1 (Specifically Rac1 associated protein) is a Rac1 specific interactor and 

colocalizes with Rac1V12 and the cortical actin of membranes ruffles (Kobayashi et. al., 

1998).  

 

Borgs (Binders Of Rho GTPases) is a family of proteins that consist of five family 

members. They interact with Cdc42 and TC10 GTPase. Borgs-1 and 3 was proposed as  

to be involved in cell spreading (Joberty et. al., 1999). Borg-5 has been shown to be 

involved in Cdc42 mediated actin cytoskeleton reorganization events 

 

1.8. The WASP and VASP family of actin polymerization regulators. 

A major mechanism for Rho GTPases to modulate the actin cytoskeleton is through the 

WASP family of proteins. WASP family of proteins are key regulators of Arp2/3 

nucleated actin polymerization at the membrane proximal site (Higgs and Pollard, 2001). 

The family consists of Wiskott-Aldrich Syndrome Protein (WASP), the protein mutated 
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in patients with Wiskott-Aldrich syndrome, it’s ubiquitously expressed homologue N-

WASP, as well as the more distantly related WAVE proteins (also known as SCAR). At 

least one family member has been found in all eukaryotes examined so far. They are 

multidomain proteins that interact with signaling molecules, actin monomers and the 

Arp2/3 complex (Figure 1.6). Ena/VASP family consists of  Drosophila Enabled (Ena), 

its mammalian homolog Mena (mammalian Ena), VASP (vasodilator-stimulated 

phosphoprotein), and Evl (Ena-VASP-like) proteins. They are associated with 

microfilaments, adherens-type cell-matrix, cell-cell junctions, and highly dynamic 

membrane regions as well as in tip complexes. 

 

1.8.1 WASP family domain structure. 

The two subgroups of the WASP family (WASP, N-WASP and WAVE1, WAVE2, 

WAVE3) retain functionally conserved binding sites for the Arp2/3 complex and actin, 

the VCA domain (V, verprolin-homology; C, cofilin-homology or central domain; A, 

acidic region; N-WASP contains two verprolin-homology domain), also called the WA 

region. The VVCA/VCA will be referred to as the WA domain throughout the rest of the 

thesis (Figure 1.7).  The WA is sufficient to activate the Arp2/3 complex (Machevsky and 

Insall, 1998, Egile et. al., 1999, Machesky et. al., 1999, Rhoatagi et. al., 1999, Winter et. 

al., 1999, Yamaguchi et. al., 2000). For maximal activation, WA must bind both the 

Arp2/3 complex and an actin monomer (Machesky and Insall, 1998, Miki and Takenawa, 

1998).  
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Figure 1.6 WAVE2 and N-WASP protein complexes. 
 
N-WASP and WAVE2 are ubiquitous isoforms of the WASP and WAVE families, 
respectively. Both contain multiple domains and motifs which can bind to other 
interacting proteins allowing protein complex formation.  
 
(A) The WAVE2 complex exists as a pentameric heterocomplex that consists of WAVE2, 
Abi (Abelson-interacting protein), p125Nap-1, p140Sra-1 (or the closely related PIR121) 
and HSPC300. Regulators of the WAVE2 complex include PIP2, Rac1 and IRSp53. 
 
(B) The N-terminal region of N-WASP contains a WH1 domain that binds to a specific 
proline-rich sequence of the WASP-interacting protein (WIP) and regional expression-16 
(CR-16) as well as CR-16 homologous protein, WICH (WIP-related, WIRE). WIP, CR-
16 and WICH/WIRE form heterocomplexes with N-WASP. Regulators of the N-WASP 
complex include PIP2, Rac1 and IRSp53. 
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Figure 1.6 
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Figure 1.7 Schematic of WASP/WAVE family. 
 
The Wiskott-Aldrich syndrome protein (WASP) family of proteins consist of multiple 
functional domains. WASP and N-WASP are activated by direct binding to Cdc42 via the 
CRIB domain, whereas WAVE (WASP-family verprolin-homologous proteins) link to 
Rac1 via intermediates. The C-terminal verprolin-homology, cofilin-like and acidic 
(VCA) or WA domains are important for induction of actin polymerization. The V and 
CA domains bind actin monomer (G-actin) and the Arp2/3 complex, respectively.  
 
Regions of WASP and WAVE family proteins. 
 
WA     - CA cofilin-like and acidic and, V, verprolin homology  
CRIB  - Cdc42 and Rac1 interactive binding.  
IQ  - IQ motif.  
P  - Proline-rich. 
WH1  - WASP homology 1. 
WHD  - WAVE homology domain. 
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Figure 1.7 
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Both N-WASP and WAVE family also contain a conserved polyproline region which is 

important for interaction with SH3 containing proteins such as IRSp53 and Toca-1, 

respectively. 

 

1.8.2. WASP. 

Wiskott Aldrich Syndrome Protein (WASP), the gene product that is mutated in patients 

with Wiskott-Aldrich Syndrome (Derry et. al., 1994),  is expressed exclusively in all cells 

of hematopoietic stem cell-derived lineages, i.e. the lymphocytic and megakaryocytic cell 

lineages. Wiskott-Aldrich Syndrome is a human X chromosome-linked recessive 

hereditary disorder characterized by immunodeficiency, thrombocytopenia with small 

platelets and eczema (Ochs, 1998; Snapper and Rosen, 1999). WASP phenotypes can 

range from mild to severe, with affected cells showing a reduced cell and cytoskeletal 

abnormalities like aberrant cell surface microvilli, suggesting a role of WASP in the 

regulation of the cytoskeleton (Molina et. al., 1992).  

 

T cells of WASP patients have both signaling and cytoskeletal abnormalities (Remold-

O’Donell et al, 1996). In these T cells, the response to antigen receptor stimulation is 

severely depressed or absent (Molina et. al., 1993). In contrast, responses to non-specific 

mitogens are often normal, suggesting a role of WASP in T cell receptor proximal 

signaling events (Molina et. al., 1993; Sullivan et. al., 1994). Peripheral blood 

lymphocytes also show a paucity of cell surface microvilli (Kenney et. al., 1986). 

Defective regulation of the actin cytoskeleton may be responsible for the abnormal 

expression of cell surface glycoproteins (Remold-O’Donnell et. al., 1992). WASP has 
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also been reported to be predominantly cytoplasmic with some of the protein found in 

membrane (16%) and nuclear (>3%) fractions (Stewart et. al., 1996). 

 

The carboxy-terminal WA domain of WASP were found to activate Arp2/3 nucleation of 

actin assembly (Machesky and Insall, 1998). Full length WASP is a less potent activator 

due to an intramolecular interaction resulting in autoinhibition (Kim et. al., 2000), which 

is released upon regulatory interactions of the amino-terminal part of WASP with 

signaling proteins such as Cdc42 in its GTP-bound form (Higgs and Pollard, 2000; Kim 

et. al., 2000). 

 

1.8.3. N-WASP. 

N-WASP was first identified as a 65 kDa protein from bovine brain that binds to the 

adaptor protein Ash (abundant Src homology)/Grb2 (growth factor receptor-bound 

protein 2) (Miki et. al., 1996; Miura et. al., 1996). The predicted amino acid sequence 

revealed 50% overall sequence identity to WASP (Wiskott-Aldrich-Syndrome protein) 

(Miki et. al., 1996), as well as a similar multi-domain organization as shown in Figure 1.7.  

 

N-WASP was first found to be expressed at nerve terminals in the brain with weaker 

expression levels in other organs (Miura et. al., 1996; Fukuoka et. al., 1997). It was later 

recognized to be expressed ubiquitously (Miki et. al., 1998). This is further confirmed in 

the mouse, where N-WASP expression was detected in Northern blot analysis in all tissue 

analyzed, which included brain, colon, lung, heart, muscle, kidney, testis, liver embryonic 

stem cells and lymphocytes (Snapper and Rosen, 1999).  
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At the amino-terminal, N-WASP contains a WH1 (WASP homology 1) domain which 

shares similarity to polyproline binding EVH1 domains (Ena/VASP homology domain 1) 

(Fedorov et. al., 1999; Prehoda et. al., 1999). Indeed, the WH1 domain of N-WASP has 

been shown to bind to the proline-rich actin-binding protein WIP (WASP interacting 

protein) (Ramesh et. al., 1997; Moreau et. al., 2000). The N-WASP-WIP complex is 

thought to act as a functional unit in integrating signaling cascades that lead to actin 

polymerization (Moreau et. al., 2000; Martinez-Quiles et. al., 2001), such as in the 

formation of filopodia protrusions and the mobility of intracellular pathogens 

(Frischknecht and Way, 2001). Other than binding to WIP, the WH1 domain has also 

been shown to bind to a similar proline-rich actin containing protein predominantly 

expressed in the brain, CR16 (Ho et. al., 2001).  The amino-terminal sequences have also 

been shown to bind to F-actin (Egile et. al., 1999). 

 

It has been proposed that a PH domain is located at the amino-terminus of N-WASP at 

overlapping sequences with the WH1 domain, which allows interaction with 

phosphatidylinositol 4,5-biphosphate (PIP2) coated surfaces, and was important for the 

localization of N-WASP to membranes (Miki et. al., 1996).  However, there is some 

controversy as to whether or not the amino-terminal sequences of N-WASP really 

constitute a PH-domain because of the low sequence identity (6 amino acids out of 94 

(Insall and Machesky, 1999). Subsequently, the basic region was identified as the binding 

site for PIP2 (Prehoda et. al., 2000; Rohatgi et. al., 2000). Binding of PIP2 is thought to be 

important for the synergistic stimulation of full Arp2/3 activating ability of N-WASP 

together with other activating proteins such as activated Cdc42 (Rohatgi et. al., 1999) or 
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Nck (Rohatgi et. al., 2001) at membrane proximal sites. N-WASP is also the only 

member of the WASP/WAVE family that contains an IQ motif, which may be a site for 

Ca2+ -dependent binding of calmodulin (Miki et. al., 1996), raising the possibility that N-

WASP is regulated by Ca2+ -signaling.  

 

Unlike other members in the same family, N-WASP interacts directly with the Rho 

family GTPase Cdc42 through their CRIB domain (Burbelo et. al., 1995). The proline-

rich region binds to various SH3 domain containing proteins, including the signaling 

adaptor molecules Ash/Grb2 (Miki et el., 1996) and Nck, as well as the WASP 

interacting SH3 protein (WISH) (Fukuoka et. al., 2001), and profilin (Suetsugu et. al., 

1998). N-WASP was also shown to interact with the SH3 domains of Intersectin-1, the 

neuronal isoform of dynamin-associated endocytic scaffolding protein Intersectin 

(Hussain et. al., 2001), as well as with the SH3 domain of Syndapin I (synaptic, dynamin-

associated protein I), which is also highly enriched in the brain (Qualmann et. al., 1999; 

Qualmann and Kelly, 2000).   

 

The WA region of N-WASP is more potent activator of the Arp2/3 complex than other 

members of the family (Egile at el., 1999; Rohatgi et. al., 1999). This has been attributed 

to the presence of the two Verprolin-homology domains instead of one (Yamaguchi et. al., 

2000) within the WA region. The WA region of N-WASP alone is sufficient to activate 

Arp2/3 complex in vitro (Egile et. al., 1999; Rohtagi et. al., 1999). In fact, full length N-

WASP protein is less potent in activating Arp2/3 than the WA domain alone. This is due 

to the intramolecular autoinhibitory interaction whereby sequences of the cofilin-
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homology domain are bound to the CRIB, which prevents the activation of the Arp2/3 

complex by WA in full length N-WASP (Orehoda et. al., 2000). 

 

1.8.4. WAVE family proteins. 

WAVE is a homologue of WASP that was identified as a novel protein that possesses a V 

domain (Miki et. al., 1998; Suetsugu et. al., 1999). Around the same time, a 

Dictyostelium homologue of WAVE was identified and named SCAR (Bear et. al., 1998). 

Two other homologues of WAVE have been identified to date and they are termed, 

WAVE2 and WAVE3 (the original WAVE was then termed WAVE1; Suetsugu et. al., 

1999). WAVEs do not interact with Rho GTPases directly and therefore must be 

regulated differently from N-WASP and WASP. The amino-terminal of WAVEs proteins 

share sequence homology of an unknown function within their subgroup. This domain is 

termed the SH domain for SCAR homology domain (reviewed in Higgs and Pollard, 

2001). WAVE1 localizes to lamellipodial tips (Hahne et. al., 2001, Nakagawa et. al., 

2001) and has been implicated in activating Arp2/3 in lamellipodia formation (Machesky 

and Insall, 1998; Miki et. al., 1998). WAVE1 was also implicated in dorsal ruffling while 

WAVE2 was implicated in peripheral ruffling (Suetsugu et. al., 2003). WAVE1-depleted 

cells revealed a strong inhibition of lamellipodia formation and cell spreading, and 

filopodia formation was also strongly inhibited (Biyasheva et. al., 2004). WAVE1 and 

WAVE2 exist as protein complexes composed of the proteins Abi1, p125Nap-1, p140sra-

1 and HSPC300. These proteins serve to regulate WAVE family proteins by controlling 

its stability and localization (Kunda et. al., 2003; Innocenti et. al., 2004).  
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1.8.5. Ena/VASP family of proteins. 

Ena/VASP family proteins consists of the Drosophila Ena (Enabled), mena (mammalian 

Ena), VASP (vasodilator-stimulated phosphoportein), and EVL (Ena/VASP-like protein) 

(Gertler et. al., 1996). Ena was identified through genetic interactions with the 

Drosophila Abl (Abelson murine  leukemia viral oncogene) homologue (Gertler et. al., 

1990; 1995), whereas VASP was identified as a prominent target for cAMP (PKA) and 

cGMP-dependent protein kinases in platelets (Halbrugge et. al., 1990). Mena and EVL 

were identified by similarity to Ena (Gertler et. al., 1996). Ena, Mena and VASP are 

important in processes that require highly dynamic actin reorganization, including axon 

guidance (Lanier et. al., 1999), platelet aggregation (Hauser et. al., 1999; Aszodi et. al., 

1999), and fibroblast motility (Bear et. al., 2000). These proteins are concentrated in 

regions of the cell associated with movement and adhesion, including the leading edge of 

lamellipodia, focal adhesions, adherens junctions and tips of filopodia (Gertler et. al., 

1996; Reinhard et. al., 1992; Vasioukhin et. al., 2000).  

 

1.8.6. Ena/VASP and Mena. 

The Ena/VASP proteins share a common domain structure that consist of an amino-

terminal Ena/VASP homology (EVH) 1 domain, a carboxyl-terminal EVH2 domain, and 

a central proline-rich domain. The EVH1 domain is highly conserved and binds to target 

sequences that have the consensus (E/D)/FPPPPXDE (Fedorov et. al., 1999; Niebuhr et. 

al., 1997). Functional EVH1-binding motifs are present in the Listeria monocytogenes 

surface protein ActA (Niebuhr et. al., 1997); in focal adhesion proteins vinculin and 

Zyxin (Reinhard et. al., 1995) in Fyb/SLAP (Fyn-binding protein/SLP76-aassociated 
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protein), a component of the T-cell receptor pathway (Krause et. al., 2000); and in the 

axon guidance proteins ROBO (Kidd et. al., 1998) and Semaphorin-6A-1. In fibroblasts, 

the EVH1 domain mediates focal adhesion (Gretler et. al., 1996; Niebuhr et. al., 1997; 

Carl et. al., 1999) and leading edge targeting (Bear et. al., 2000) and a functional EVH1 

domain is required for Ena function in Drosophila (Ahern-Djamali et. al., 1998). The 

EVH2 domain contains conserved motifs implicated in actin binding (Reinhard et. al., 

1992; Bachmann et. al., 1999; Laurent et. al., 1999) and formation of both homo- and 

heteromultimers of the Ena/VASP proteins (Carl et. al., 1999; Ahern-Djamali et. al., 1998; 

Figure 1.8). 

 

In contrast to the highly conserved EVH1 and EVH2 domains, the central proline-rich 

domain of the different proteins contains variable lengths of consecutive polyproline 

clusters. Three types of ligands have been shown to bind to this region in Ena/VASP 

proteins. They are the SH3, WW domains as well as the actin-binding protein profilin 

(Gertler et. al., 1996; 1995; Bachmann et. al., 1999; Reinhard et. al., 1995; Ermekova et. 

al., 1997). There is evidence that suggests that the interactions between profilin and 

Ena/VASP proteins are important in vivo.  
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Figure 1.8 Schematic of VASP/Mena family. 

The Ena/VASP family includes three highly related proteins; Mena (mammalian 
Enabled), VASP (vasodilator-stimulated phosphoprotein), and EVL (Ena-VASP-like). 
The family members share a conserved domain structure: a proline-rich core (PRO), 
flanked by two distinct regions called the Enable-VASP-homology domains (EVH1 and 
EVH2, respectively).  
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Figure 1.8 
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In mice, there is potent dosage-sensitive genetic interaction between Mena and Profilin I 

(Lanier et. al., 1999). Although Mena mutants are viable, they display defects in several 

nerve fibre tracts in the brain and a reduction of profilin levels by 50% causes Mena 

mutants to exhibit a severe defect in closure of the cephalic portion of the neural tube. In 

Drosophila, mutations in Ena and profilin have been shown to exhibit dosage-sensitive 

genetic interactions with Abl (Gretler et. al., 1990; Wills et. al., 1999). Despite all the 

genetic evidence, the mechanism that regulates the interaction and function of 

Ena/VASP-profilin complexes remains poorly understood (Lanier et. al., 2000). Barzik et. 

al., however did show that recombinant His-tagged VASP increased the rate of actin 

polymerization in the presence of the barbed end cappers, heterodimeric capping protein 

(CP), CapG, and gelsolin-actin complex. Profilin enhanced the ability of VASP to protect 

barbed ends from capping by CP, and this required the interactions of profilin with G-

actin and VASP. The VASP EVH2 domain was sufficient to protect barbed ends from 

capping, and the F-actin and G-actin binding motifs within EVH2 were required. 

Phosphorylation by protein kinase A at sites within the VASP EVH2 domain regulates 

anti-capping. Therefore, it was proposed that Ena/VASP protein associate at or near actin 

filament barbed ends, promoting actin assembly and restricting the access of barbed end 

capping proteins (Barzik et. al., 2005). 

 

Another study documented a 74 kDa novel protein termed PREL1 (Proline Rich EVH1 

Ligand) that shares homology with the Grb7-family of signaling adaptors. It was shown 

that PREL1 binds directly to Ena/VASP proteins and colocalizes with them at 

lamellipodia tips and at focal adhesions in response to Ras activation. PREL1 also 
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directly binds to activated Ras in a phophoinositide-dependent manner. This is the first 

direct link between Ras signaling and cytoskeletal remodeling via Ena/VASP proteins 

during cell migration and spreading (Jenzora et. al., 2006). Further work on VASP 

revealed a novel mechanism of action, namely the regulation of tensile strength, 

contractility and rigidity of the actin cytoskeleton. Fibroblasts derived from VASP-

deficient mice were observed to have thicker and more stable actin stress fibres compared 

to wild-type cells. Furthermore, in the VASP-deficient cells, focal adhesions are enlarged, 

myosin light chain phosphorylation is increased, and the rigidity of the filament-

supported plasma membrane is elevated about three- to four-fold (evident from atomic 

force microscopy).  Fibronectin-coated beads also adhere more strongly to the surface of 

VASP-deficient cells. The resistance of these beads to mechanical displacement by laser 

tweezers is dramatically increased in an F-actin-dependent manner. Cytoskeletal 

stabilization coincides with slower cell adhesion and detachment, while overall adhesion 

is increased. Interestingly, many of these effects observed in VASP(-/-) cells are seen in 

VASP-overexpressing cells, suggesting that a balanced stoichiometry necessary for 

appropriate VASP function (Galler et. al. 2006). 

 

1.8.7. EVL. 

The third member of the Ena/VASP family, EVL, partially restores Listeria movement in 

cell-free extracts depleted of VASP and Mena (Laurent et. al., 1999) and shares many 

structural features with the other family members. The EVH1 domain and distinct parts 

of EVH2 domain are homologous, but the central portion differs in both length and 

proline content. The number of conserved cyclic nucleotide-dependent kinase 
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phosphorylation sites also differs; whereas VASP and Mena has three and two, 

respectively, EVL has only one site (Gertler et. al., 1996).  

 

Two isoforms, EVL and EVL-I, were highly expressed in hematopoietic cells of thymus 

and spleen. In CD3-activated T-cells, EVL was found in F-actin rich patches and at the 

distal tips of the microspikes that formed on the activated side of the T-cells. Like the 

other family members, EVL localized to focal adhesions and the leading edge of 

lamellipodia when expressed in fibroblasts. EVL was a substrate for the cAMP-

dependent protein kinase, and this phosphorylation regulated several of the interactions 

between EVL and its ligands. Unlike VASP, EVL nucleated actin polymerization under 

physiological conditions, whereas phosphorylation of both EVL and VASP decreased 

their nucleating activity. EVL bound directly to Abl, Lyn and nSrc SH3 domain, as well 

as to the FE65 WW domain and profilin, most likely through its proline-rich core. 

Binding of Abl and nSrc SH3 domains but not profilin or other SH3 domains, was 

abolished by cAMP-dependent protein kinase phosphorylation of EVL. Strong 

cooperative binding of two profilin dimers on the polyproline sequence of EVL was also 

observed. These data suggest that the function of EVL could be modulated through 

interactions with multiple ligands and phosphorylation by cyclic nucleotide dependent 

kinases (Lambrechts et. al., 2000).  EVL has also been shown to interact and colocalized 

with spectrin.  
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1.8.8. Abi proteins. 

The Abi proteins were originally identified as substrates and binding partners for the Abl 

tyrosine kinases (Dai et. al., 1995; Shi et. al., 1995; Wang et. al., 1996), a family of 

proteins that bind actin and regulate actin dynamics (Pendgergast et. al., 2002).  Abi1 and 

Abi2 are the products of different genes, while Abi2a and Abi2b are splice variants that 

differ primarily in their N termini (Biesova et. al., 1997; Blagg et. al., 2003; Chen et. al., 

2001). This family of proteins contains several major domains, including; a coiled-coil 

region, a homeobox homology region (HR), a polyproline stretch (PRO) and a SH3 

domain.  

 

Abi proteins have been linked to Rac1-dependent cytoskeletal reorganization (Biesova et. 

al., 1997; Blagg et. al., 2003; Bogerd et. al., 1996; Chapman et. al., 1994). Abi1 

associates with Sos-1 and EGF-receptor substrate Eps8 in a complex that exhibits Rac1-

GEF activity. The depletion of Abi1 by microinjection of antibodies into fibroblast 

inhibits membrane ruffling in response to PDGF (Chapman et. al., 1994). It is also a 

scaffolding protein that permits the assembly of different multi-molecular complexes 

(Stradal et. al.,, 2004; Innocenti et. al., 2003; Disanza et. al., 2004) including the WAVE-

Abi1-p125Nap-1- p140sra-1(PIR121) complex, which is essential for the formation of 

membrane protrusions where it specifically localizes (Innocenti et. al., 2004; Steffen et. 

al., 2004).  Abi1 interacts directly with WAVE2 WHD domain, thereby increases 

WAVE2 actin polymerization activity (Innocenti et. al., 2005a). Abi1 also binds to N-

WASP, and cooperating with Cdc42, potently induces N-WASP activity in vitro 

(Innocenti et. al., 2005b).  
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1.9. IRSp53. 

1.9.1 Introduction. 

IRSp53, also known as brain-specific angiogenesis inbibitor 1-associated protein 2 (BAI-

AP2) is a multifunctional adaptor protein enriched in the central nervous system (Abbot 

et. al., 1999; Oda et. al., 1999; Yeh et. al., 1996). IRSp53 was originally identified as 

IRSp53/p58, a hamster insulin receptor tyrosine kinase substrate of 53 and 58 kDa (Yeh 

at el., 1996). Subsequently, IRSp53 was identified as a binding partner for WAVE1 

polyproline sequence (Miki et. al., 2000), Cdc42 (Govind et. al., 2001), Rac1 (Krugmann 

et. al., 2001), DRPLA protein: a product of the gene responsible for a neurodegenerative 

disorder, dentatorubral pallidoluysian atrophy (Okamura et. al., 1999) and the 

cytoplasmic domain of the Fas ligand (GenBank/EMBL/DDBJ accession number 

U70669). Previous studies identified at least four isoforms (L-, M-, S- and T-forms) in 

human, where the first 511 amino acid residues were identical, followed by unique 

sequences of 9–41 amino acid residues (Okamura at el., 2001, Alvarez at el., 2002), 

generated by alternative splicing of the 3’-terminal exon. The functional significance of 

these splice variants has not been resolved.  
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1.9.2. Domain families and structure.  

IRSp53 is composed a half-CRIB motif, a proline-rich domain, a Src homology 3 (SH3) 

domain and a WW domain-binding motif (WW). The SH3 domain is important for 

binding with a variety of proteins, such as proteins containing proline-rich motifs 

(WAVE1/2) whereas the half-CRIB motif allows for direct interaction with Cdc42. At 

the N-terminus, IRSp53 has high sequence identity to a domain of Missing in Metastasis 

(MIM) protein, which has been termed the IMD (IRSp53 MIM Homology Domain; 

Yamagishi et. al., 2004). MIM contains a WASP homology 2 (WH2) domain in the C-

terminus, and identified in human and mouse (Figure 1.9).  

 

1.9.3. IRSp53 function. 

IRSp53 when overexpressed induces filopodia formation and neurite outgrowth (Govind 

et. al., 2001; Krugmann et. al., 2001). IRSp53 has been shown to be a Cdc42 effector as 

the IRSp531267N mutant is unable to bind Cdc42 and fails to localize with F-actin, induce 

filopodia formation or neurite outgrowth (Govind et. al., 2001). Furthermore, binding of 

activated Cdc42 to the CRIB motif of IRSp53 enhances its ability to promote filopodia 

formation (Govind et. al., 2001, Krugmann et. al., 2001, Yamagishi et. al., 2004). Taken 

together, these results suggested that the Cdc42 facilitates filopodia formation and neurite 

outgrowth by localizing protein complexes via adaptor proteins such as IRSp53 to F-actin.  

Rac1 is suggested to bind to the IMD/BAR domain IRSp53 (Miki et. al., 2000; Miki and 

Takenawa. 2002). The Rac1 interaction has not been observed by a number of groups and 

its role in IRSp53 function is unclear. IRSp53 has been shown to bind to proline-rich 

regions of a range of known actin regulators through its SH3 domain.  
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Figure 1.9 Schematic of IRSp53 and Missing in Metastasis  (MIM). 
 
Schematic representation of IRSp53 and MIM proteins. IRSp53 contains a half-CRIB 
motif, an SH3 domain, and a 250 amino acid residue stretch, termed the IRSp53 MIM 
Homology Domain -IMD. 
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Figure 1.9 
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This includes SCAR2/WAVE2 (Miki et. al., 2000, Miki and Takenawa, 2002), Mena 

(Krugmann et. al., 2001), mDia1 (Fujiwara et. al., 2000), ProSAP/shank (Bockmann et. 

al., 2002, Soltau et. al., 2002), espin (Sekerkova et. al., 2003) and Eps8 (Funato et. al., 

2004).  IRSp53 has also emerged as a binding partner of PDZ-domain-containing 

proteins such as PSD-95 in the post synaptic density and MALS at cell-cell contacts 

(Hori at al., 2003, Sltau et. al., 2004). Thus IRSp53 is likely to play a promiscus role in a 

range of biology’s connected  actin dynamics. 
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1.10. Functional roles of filopodia. 

1.10.1. Components of filopodia. 

The molecular structure of a filopodium can be broken down into 4 components: tip 

complexes, adhesion complexes, actin filaments and the membrane component. Filopodia 

extension is driven by polymerization of actin filaments at their tips (Mallavarapu and 

Mitchison, 1999), although the regulating mechanism of this process is unclear. From 

electron microscopic studies, it has been revealed that a filopodial tip complex exists at 

the interface between growing ends of actin filaments and the plasma membrane (Lewis 

and Bridgman, 1992; Svitkina et. al., 2003). Several components of this tip complex have 

been identified, including Ena/vasodilator-stimulated phosphoprotein actin-binding 

proteins (Lanier et. al., 1999; Svitkina et. al., 2003), the motor proteins myosin X and IIIa 

(Berg et. al., 2002; Les Erickson et. al., 2003) and β1-integrins (Wu et. al., 1999). The tip 

complex proteins, such as Ena/VASPs, were proposed to promote growth of long, 

unbranched filaments by inhibiting the capping process (Bear at el., 2002). Ena/VASPs 

might also be required to recruit other proteins to further stabilize and organize the actin 

filaments into bundles as the filopodium grows. In addition, a robust enrichment of 

tyrosine-phosphorylated proteins at the tips of the growth cone filopodia has been 

reported.  

 

Studies have shown that different types of adhesions exist on individual filopodia.  

Adhesions were detected in individual filopodium of sensory growth cones through 

optical recordings, adhesion markers and electron microscopy. Adhesions on filopodial 

shafts were able to control veil (lamellar) advance and be modulated by guidance cues. 
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When a filopodium is lacking in shaft adhesions, veils can readily advance along the 

filopodium but they rarely advance when shaft adhesions are present. When a cellular cue 

was contacted by the filopodial tip, veil extension and shaft adhesions were altered in 

concert. These results suggested that the veil extension was under control of shaft 

adhesions and that guidance signal cascades can be altered by altering these adhesions 

(Stekette et. al., 2002). 

 

Mammalian filopodia are made up of actin filaments that are up to 15 μm long and 

arranged into a tight bundle (Small et. al., 1988, Lewis and Bridgman et. al., 1992). 

Filopodia arise from the process of actin polymerization, whereby G-actin subunits are 

polymerized into F-actin containing actin filaments. A typical filopdium may contain 

from 10 to 30 actin filaments, arranged into a tight bundle (Sheetz et. al., 1992).  

 

1.10.2. Rho family Signaling, lamellipodia and filopodia. 

The protrusion of lamellipodia and filopodia is regulated by two members of the Rho 

family of GTPases, Rac1, and Cdc42, respectively (Machesky and Hall, 1997; Nobes and 

Hall, 1995; Ridley, 2001). Insight into the effectors involved downstream of Rac1 and 

Cdc42 involved in mediating protrusion is now beginning to emerge from information 

collected on protein complexes affecting actin polymerization in vtiro (Higgs and Pollard, 

2001). The work on the molecular determinants of actin-based pathogen mobility, as well 

as localization of proteins in lamellipodia and filopodia in living cells are also 

contributing to the better understanding of the downstream events from Rac1 and Cdc42.  
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The WASP family of proteins clearly plays important roles downstream of Cdc42 and 

Rac1 in integrating signaling and actin dynamics. 

 

1.10.3. Axonal Guidance. 

Growth cones are specialized motile structures at the ends of developing axons. The 

activity of growth cones is the main determinant of axon guidance and elongation. In the 

process of an axon extending through the complex extracellular environment in vivo, its 

growth cone samples the local environment and responds to a variety of molecular 

guidance cues. These cues can be either attractive or repulsive and they operate at short-

range, by a contacted-mediated mechanism involving cell surface ECM molecules, and at 

longer range, whereby target cells secrete diffusible factors, which either attract or repel 

the growing axon. Many of these cues have been identified; netrins are diffusible proteins 

that can attract some axons and repel other. Another group of proteins, the semaphorins, 

is a large family of cell surface and secreted proteins that can act as long or short-range 

inhibitors of axon growth. There are also the ephrins that operate bi-directionally, 

allowing a growth cone to signal to a target cell and vice versa. Many cell adhesion 

molecules and their receptors play an important role in axonal guidance.  

 

Growth cones sample their environment by extending slender fingerlike projections 

called filopodia and veil-like structures termed lamellipodia. Both lamellipodia and 

filopodia are strictly dependent on the polymerization and organization of actin filaments. 

A migrating axon must read these guidance signals via its filopodia in order to be drawn 
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towards (by attractive cues) or forced away from (repulsive cues) various locations 

during the journey toward its target destination.  

 

Past studies have shown that single filopodial contacts with environment cues can change 

the behavior of the growth cone (Bandtlow et. al., 1993; O’connor et. al., 1990). Growth 

cone behavior is also drastically changed by single filopodial contact with defined 

molecules. Filopodia have been shown to carry receptors for certain cell adhesion 

molecules (Letourneau et. al., 1989). Chick dorsal root ganglion (DRG) growth cones 

behave differently at the border between two substrate molecules, laminin and fibronectin. 

This illustrates that these ECM molecules provide instructive cues that are picked up and 

read by individual filopodium (Gomze et. al., 1994). Further evidence for filopodium-

dependent steering comes from studies on retinotectal axons in Xenopus. These axons 

grow past their normal turning point into the tectum when stripped of their filopodia by 

cytochalasin B treatment (Chien et. al., 1993).  

 

1.10.4. Metastasis. 

Metastasis is the dissemination of cancer cells from the primary tumor to a distant site 

and this is the most frequent cause of death in patients with cancer. Despite this, the 

molecular mechanisms of metastasis are poorly understood due to its complexity. Cancer 

cell migration and invasion into adjacent tissues and intravasation into blood and 

lymphatic vessels are required for metastasis (Chambers et. al., 2002; Friedl et. al., 2003). 

Invasive carcinoma cells acquire a migratory phenotype associated with elevated 

expression of several genes involved in cell motility (Wang et. al., 2004; 2005). This 
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allows for the carcinoma cells to respond to cues from the environment that trigger tumor 

invasion.  

 

The initial step in cell migration is the protrusion of the cell membrane. This is mediated 

by localized actin polymerization (Pollard et. al., 1994) which can occur in response to 

chemotactic signals (DesMarais et. al., 2005). It was reported that carcinoma cells 

crawling on ECM fibres in primary tumors extend pseudopods that attach to fibres at the 

migration front (Condeelis et. al., 2003). These pseudopods appears to be functionally 

equivalent to lamellipodia although the shapes of the former are more three dimensional 

in vivo (Wang et. al., 2002).  

 

The leading protrusions attach to collagen containing fibres, a process that may involve 

the participation of dynamic adhesion structures i.e. focal complexes. Therefore, 

increased expression of adhesion molecules such as laminins and integrins (Wang et. al., 

2004; 2002) is consistent with the importance of integrins in Rac1 stimulation, adhesion 

formation and cell migration in invasive tumors cells (Yu et. al., 2005).  

 

Genes responsible for EGF-stimulated protrusions such as cofilin, capping proteins and 

Arp2/3 complexes are also upregulated. The cofilin pathway is directly involved in 

directional sensing during chemotaxis of carcinoma cells to EGF (Mouneimne et al, 2004) 

and it is sufficient to set the direction of cell movement (Ghosh et. al., 2004). The 

directional sensing of EGF requires a pool of free actin filament barbed ends that is 

generated by cofilin-mediated severing, which results in localized actin polymerization 
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(Mouneimne et al, 2004). Studies have also shown that the cofilin-dependent actin 

polymerization acts in synergy with Arp2/3 complex to generate protrusions in response 

to EGF that are responsible for cell migration (DesMarais et. al., 2005).  

 

In order to migrate through a physical barrier of dense ECM, cancer cells need to extend 

protrusions that can remodel and degrade ECM. These protrusions are very important for 

the invasion of cancer cells through the basement membrane covering blood vessels. Two 

types of structures account for this function. The first type is the filopodia-like, actin-rich 

membrane protrusions that extend vertically from the ventral cell membrane on invasive 

cancer cells cultured on physiological substrates. These are termed invadopodia due to 

their matrix degradation activity. Invadopodia are enriched with actin regulatory proteins, 

adhesion molecules, signaling/adaptor proteins, membrane remodeling proteins and 

matrix degrading proteases (Baldassarre et. al., 2003; Buccione et. al., 2004; McHugh et. 

al., 2004; Yamaguchi et. al., 2005). Invadopodia are form only in highly invasive cancer 

cells and only are implicated in tumor cell metastasis.  

 

The second type of structure is the podosomes. Podosomes are dynamic actin-rich 

adhesion structures very similar to invadopodia in molecular composition. They are 

formed by monocyte-derived cells, such as macrophages, as well as by some non-

hematopoietic cells and by transformed fibroblasts (Linder et. al., 2003). The formation 

of podosomes and invadopodia are dependent on two key proteins, namely WASP and N-

WASP. WASP was shown to regulate podosome formation in macrophages, dendritic 

cells and osteoclasts (Linder et a., 2003; Calle et. al., 2004). N-WASP on the other hand 
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is a component of podosomes and invadopodia in non-hematopoietic and cancer cells 

(Yamaguchi et. al., 2005; Linder et. al., 2003; Moreau et. al., 2003; Spinardi et al; Park et. 

al., 2005). Upstream activators of N-WASP/WASP, including Cdc42, Nck1 and WIP as 

well as a downstream effector, the Arp/23 complex have been shown to function in 

invadopodia/podosome formation (Buccione et. al., 2004; Yamagachi et. al., 2005; 

Moreau et al, 2003; Nakahara et. al., 2003; Kaverina et. al., 2003). The WASP/N-WASP 

signaling pathway most likely plays a role in the ECM remodeling via the formation of 

podosomes and invadopodia, and hence in tumor invasion and metastasis. Evidence that 

supports this hypothesis hails from the reduced ability of mammary tumors of rat derived 

from carcinoma cells with dominant-negative N-WASP to intravasate and spontaneously 

metastasize (Yamaguchi., Unpublished).  

 

1.10.5. Cell motility and immunity. 

Cell migration is a key aspect of many biological processes, including defense against 

infections. When tissues become locally infected or suffers an injury, an inflammatory 

reaction ensues. The inflammatory response is made up of three components; (a) 

increased blood flow, (b) increased capillary permeability, and (c) increased migration of 

leukocytes into the affected area. It is characterized by the orderly recruitment and 

deployment of leukocytes at the focus of tissue necrosis. The cell types seen in different 

inflammatory foci vary widely and depend on the nature of the stimulus. Movement of 

cells into sites of inflammation depends initially upon interactions between leukocytes 

and endothelia (Dustin et. al., 1989; Teddler et. al., 1995). The process is then largely 

directed by the process of chemotaxis (Downey, 1994). Leukocytes will migrate within 
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an ECM towards a high point of a concentrate gradient of chemoattractant, and this is 

mediated by coordinated activation of the cytoskeleton and associated adhesive integrins 

(Howard and Watts, 1994; Bokoch et. al., 1996; Laudanna et. al., 1996). The actin 

cytoskeleton is believed to provide both the protrusive and contractile forces required for 

cell migration.  This is achieved via a combination of actin polymerization, 

depolymerization, actin filament cross-linking, and the interaction of myosin-based 

motors with actin filaments (Condeelis, 1993; Stossel, 1993; Howard and Watts, 1994; 

Lauffen-burger and Horwitz, 1996; Mitchison and Cramer, 1996).  Three members of the 

Rho family of GTPases, Cdc42, Rac1 and Rho, are known to regulate the organization of 

actin-based cytoskeletal structures. Studies on Bac1.2F5 macrophages have shown that 

Rho regulates cell contraction, while Rac1 and Cdc42 regulate the formation of 

lamellipodia and filopodia, respectively. Studies using the colony stimulating factor-1 

(CSF-1) induced macrophage migration and chemotaxis system, have further elucidated 

the roles of the three proteins in cell migration. Microinjection of constitutively activated 

RhoA, Rac1, or Cdc42 inhibited cell migration and this was thought to be due to the cells 

being unable to polarize significantly in response to CSF-1. Both Rho and Rac1 were 

required for CSF-1-induced migration. Migration speed was reduced to background 

levels in cells injected with C3 transferase, an inhibitor of Rho, or with dominant-

negative Rac1 mutant, Rac1N17.  

 

In contrast to the effects of inhibiting Rho and Rac1, a dominant-negative Cdc42 mutant, 

Cdc42N17 does not inhibit cell migration. Cdc42N17 injected cells were observed to 

migrate in a CSF-1 gradient at almost twice the speed of control Rac1V12A35-injected 
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cells. The loss of filopodia in these cells were observed, as well as a marked reduction in 

the degree of cell polarity. These cells retain the ability to migrate but completely lose the 

ability to move towards a source of CSF-1, suggesting that filopodia have a significant 

role to play in gradient perception (Allen et. al., 1998).  

 

1.10.6. Wound healing. 

The response to tissue injury requires the harmonious interaction of immune cells, 

keratinocytes, fibroblasts, and endothelial cells, which unite to regenerate the damaged 

epithelium. This complex process requires integrin-mediated activation of Rho-GTPases. 

The subsequent influx of fibroblasts and endothelial cells results in the production of 

tissue stroma and formation of new blood vessels, which lead to the generation of 

functional tissue. Initially studies on wound healing utilized an in vitro wound healing 

assay. Wounding of a monolayer of cells induce cells at or close to the leading edge to 

crawl forward to close the gap and cells were observed to move cooperatively as a sheet, 

retaining close contacts with their neighbors. Wounding induces an array of immediate 

dynamic responses, including formation of lamellipodial and filopodial protrusions as 

well as membrane ruffling at the leading edge of the cell. Microinjection of wound edge 

cells with Rac1 inhibitor prevents lamellipodia formation and membrane ruffling without 

affecting filopodia formation, and injected cells were observed to have defective cell 

migration as no cell movement was observed over the time course of the experiment 

(Nobes et. al., 1999).  
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The other protrusive structures seen after wounding are the filopodia, and from work 

done on Swiss 3T3 cells, these can be blocked by inhibition of Cdc42 in wound edge 

cells. Interestingly, this results in only a partial block (~50%) of wound closure, 

suggesting that Cdc42 activity is required for efficient cell movement in the assay but is 

not absolutely essential. In normal circumstances, cells at the wound margin develop a 

morphological polarity showing a clear leading edge (with membrane ruffles and 

filopodia), but have no protrusion activity at their sides or rear, where they are in contact 

with neighboring cells. Therefore, inhibition of Cdc42 in wound edge cells caused a 

complete loss of polarity. Cells lose the ability to protrude filopodia and instead, protrude 

lamellipodia all around their periphery, irrespective of whether there are cell-cell contacts. 

This establishes a role for filopodia in wound healing.  
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1.10.7. Aims of this thesis. 

In this study I used rapid sequential DIC/fluorescence time-lapse microscopy to follow 

lamellipodia/membrane ruffles, filopodia formation and GFP-actin in live cells. This 

combination allowed me to determine with certainty the morphological activity being 

affected. Another important aspect of the work was the use of cells that either had 

overexpressed protein or engineered to lack expression. The use of N-WASP and Mena 

KO cells provided a clean background to understand the function of these proteins.  

Lastly, the use of FRET (Forster resonance energy transfer), which enabled me to 

demonstrate protein-protein interactions in vivo, was instrumental in investigating the 

role of proteins in filopodia formation. 

 

The aim of this thesis was to elucidate the mechanism of filopodia formation through 

studies on Cdc42, IRSp53 and its binding partners. Filopodia inhibitors generated 

through such a study would then facilitate addressing the wider question of the 

physiological function of these structures. For example, do filopodia play a role in axonal 

guidance or wound healing? The answer to this question will not only lead us to 

understand fundamental aspects of cell biology but may also identify ways of intervening 

in disease states.  
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MATERIALS AND METHODS 

2.1. Materials. 

2.1.1. General laboratory reagents. 

General laboratory chemicals were obtained from Sigma or BDH. Ethanol, methanol, 

isopropanol, glycerol, HCl, sodium hydroxide, Tris-HCl, Tween 20, Triton-x-100, 

bromophenol blue, glycine and glacial-acetic acid were obtained from BDH, Merck and 

Sigma. Purified water and phosphate buffered saline (PBS) were prepared by central 

facilities (Biopolis) according to standard protocols. Bovine serum albumin (BSA) and 

sodium dodecyl sulphate (SDS) were from Sigma.  

 

2.1.2. DNA manipulation reagents. 

DNA restriction enzymes were obtained from NEB, Gibco-BRL and Roche. DNA 

purification mini-prep system, Maxi-prep system and PCR purification kits were from 

Qiagen. Agarose and ethidium bromide were obtained from Bio-Rad. DNA markers were 

from New England Bio-labs. Escherichia Coli XL1-Blue competent cells were from 

Stratagene. DNA modifying enzymes were from New England Bio-labs.   

 

2.1.3. Protein manipulation reagents. 

Pre-stained molecular markers were from Bio-Rad. Sodium vanadate and PMSF were 

from Sigma. Complete general protease inhibitor tablets were from Roche Diagnostics. 

PVDF transfer membrane were from NEN. Acrylamide/Bis-acrylamide (30%/0.8% and 

40%/10.5%) were from Bio-Rad. DTT, Temed β−Mecaptoethanol were from Sigma and 

BDH. [32P]-dCTP (3000Ci/mmol, 10mCi/ml) from NEN. Hybond-N filters, Hyperfilm-
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ECL and ECL (enhanced chemiluminescent) reagents were from Ambersham. 

Autoradiography X- mat film was from Kodak. G-50 Sephadex was from Pharmacia 

biotech. 

 

2.1.4. Tissue culture reagents. 

Dulbecco’s Modified Eagle Medium (DMEM) with 4500 mg/L glucose or 1000 mg/L 

glucose and 0.25% trypsin were obtained from centralized media preparation facilities 

(Biopolis). Fetal bovine serum was from Sigma. Anti-microbial /antibiotic cocktails and 

lipofectAMINE 2000 were obtained from Gibco-BRL. Mouse laminin solution was from 

Invitrogen. Mouse interferon γ is from ROCHE. N-WASP WT/KO and Mena WT/KO 

cells were from Dr. Klemens Rottner.  

 

2.1.5. Reagents for immunodetection and immunofluorescence. 

2.1.5.1. Phalloidin. 

Phalloidin, a component from the mushroom Amanita phalloides, binds to actin filaments 

and stabilizes them against depolymerization (Cooper, 1987). The following fluorescent 

derivatives were used to stain actin filaments in permeabilized cells; 

1. FITC-phalloidin (Sigma), diluted 1:1000 (in 1 % BSA in PBS). 

2. TRITC-phalloidin (Sigma), diluted 1:1000 (in 1 % BSA in PBS). 

3. Alexa647-phalloidin (Molecular Probes), diluted 1:8000 (in 1 % BSA in PBS). 
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2.1.5.2. Primary antibodies. 

Anti-IRSp53 mouse monoclonal antibody, 1:100. Anti-HA mouse monoclonal antibody 

(SC-7392, Santa-Cruz), 1:200. Anti-N-WASP rabbit polyclonal antibody (SC-20770, 

Santa-Cruz),  1:200. Anti-WAVE1 goat polyclonal (SC-10388, Santa-Cruz), 1:200. Anti-

WAVE2 goat polyclonal antibody (SC-10394, Santa Cruz), 1:200.  

 

2.1.5.3. Secondary antibodies. 

Goat anti-Rabbit IgG-Alexa FluorTM 350, (1:500, A11046, Molecular Probes). Goat anti-

Rabbit IgG-Alexa FluorTM 488, (1:400, A11008, Molecular Probes). Goat anti-Rabbit 

IgG-Alexa FluorTM 594 (1:400, A11012, Molecular Probes). Goat anti-Rabbit IgG-Cy5 

(1:400,  81-6116, Molecular Probes). 

 

2.1.6. cDNA constructs. 

cDNA constructs using the mammalian expression vector pXJ40. HA-IRSp53 as 

described in Govind et. al., (2001). HA-N-WASP, HA-Cdc42, HA-Cdc42V12, HA-

Cdc42-N17, HA-Rac1, HA-Rac1V12, HA-Rac1N17, HA-RhoA, HA-RhoAV14 and HA-

Rho1N19 were from Dr. Thomas Leung (Glaxo-IMCB, Singapore). GFP-actin was from 

Dr. Dong Jing Ming (Glaxo-IMCB, Singapore). GFP-SCAR and GFP-WAVE2 were 

from Dr. Giorgio Scita (IFOM-IEO, Italy). GFP-IRSp53, GFP-IRSp53 (1-250), GFP-

IRSp53 (251-521), GFP-IRSp53 (1-363), GFP-IRSp53-W/R, GFP-IRSp53- FP/AA, pNF-

IRSp53 (1-25), pNF-IRSp53 (1-250) and pNF-IRSp53 (251-521) were from Dr. Akiko 

Yamagishi (NCCRI, Japan). GFP-N-WASP, GFP-N-WASP∆WA were from Dr. Silvia 

Lommel (IZB, Germany). GFP-Mena was from Dr. Klemens Rottner (HCIR, Germany). 
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2.1.7. Oligomer Synthesis and cDNA sequencing Service. 

Oligos were synthesized by Pro-oligo,inc (Singapore). DNA Sequencing provided by 

Sequencing Core facilities in IMCB. 

 

2.2. Methods. 

2.2.1. Plasmid DNA preparation. 

2.2.1.1. Transformation of E.coli (XL1-Blue competent cells). 

Competent E.coli XL1-Blue cells were transformed according to manufacturer protocol. 

Briefly, cells were thawed on ice and then transferred to pre-chilled eppendorf tubes in 

50-100 μl aliquots. 1 μl (1-50  ng) of plasmid DNA or 10 μl of a ligation mix were then 

added to the cells and left to stand on ice for 30 mins. Cells were then heat shocked at 

42ºC for 45 secs and were then returned to the ice for a further two mins. 0.9ml of pre-

warmed Luria-Bertani broth (L-Broth) media was added to the cells and incubated with 

agitation (225-250 rpm) at 37ºC for 60 mins. If a re-transformation was performed, 50 μl 

of competent cells were used, and the 60 mins amplification step was omitted (for 

ampicillin selection). Cells were then pelleted briefly in a microcentrifuge at room 

temperature (RT) and resuspended in 100 μl of media and spread directly onto pre-

warmed L-Broth ampicillin (80 μg/ml) or L-Broth kanamycin (50 μg/ml)  agar plates and 

incubated overnight at 37ºC. 

  

2.2.1.2. Qiagen Mini-preps. 

A single colony of transformed E.coli  XL1-Blue competent cells containing the required 

plasmid DNA was picked using a sterile toothpick. The toothpick was placed into 5 ml of 
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pre-warmed L-Broth containing 80 μg/ml of amplicillin or 50 mg/ml of kanamycin in a 

14 ml falcon tube. The culture was incubated then at 37ºC in a shaker for 16 hours. 500 μl 

of culture was mixed with 500 μl of glycerol and stored at -70ºC. The remaining culture 

was centrifuged at 3,000 rpm in a bench top centrifuge for 10 mins at 4ºC. The 

supernatant was decanted and the pellet was resuspended in 250 μl of cell resuspension 

buffer (50 mM Tris-Cl, pH 8; 10 mM EDTA, 100 μg/ml RNaseA).  Samples were 

vortexed to ensure full resuspension of the cell pellet. To each preparation 250 μl of cell 

lysis buffer (200 mM NaOH, 1%SDS) was added and mixed by inverting the tube a few 

times. Preperations were then incubated at RT for 5 mins. 350 μl of neutralizing buffer (3 

M potassium acetate, pH 5.5) was added and mixed immediately by inverting the tube. 

Preparations were centrifuged at 14,000 rpm for 10 mins to remove bacterial cell debris. 

The lysates were transferred to mini-prep columns which were placed into 2 ml collection 

tubes. Columns were centrifuged at 14,000 rpm for 1 min. Flow through was discarded. 

Columns were washed by the application of 250 μl of column wash solution (1M NaCl, 

50 mM MOPS, pH 7, 15% isopropanol) followed by centrifugation at 14,000 rpm for 2 

mins at RT. Columns were transferred to a clean eppendorf tubes. Plasmid DNA was 

eluted by the addition of 50 μl of TE buffer onto the mini-prep columns followed by 

centrifugation at 14,000 rpm for 1 min. 

 

2.2.1.3. Qiagen Maxi-preps. 

DNA constructs required for transfection and microinjection purposes were prepared 

using a Qiagen Maxi-prep protocol. Briefly, a 5 ml starter culture was prepared by 

inoculating L-Broth amplicillin or kanamycin with a single colony. The culture was 
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allowed to grown for 8 hours at 37ºC with shaking at 220rpm. This culture was diluted 

1/100 into selective L-Broth amplicillin or L-Broth kanamycin and grown at 37ºC 

overnight with shaking. Cells were harvested by centrifugation at 4000 rpm for 15 mins 

at 4ºC in a Sorvall RC-5C centrifuge. The bacterial pellet is resuspended in 4 ml of buffer 

P1 (50 mM Tris-Cl; pH 8; 10 mM EDTA, 100 μg/ml RNase A) containing RNAase in a 

50 ml Falcon tube. The cell suspension was lysed with 4 ml of buffer P2 (200 mM NaOH, 

1% SDS). Upon addition the solution was mixed gently by inversion 4-6 times resulting 

in an increase in viscosity of the suspension. The tube was incubated on ice for 5 mins. 

For the precipitation of genomic DNA, 4 ml of chilled buffer P3 (3 M potassium acetate, 

pH 5.5) were added and mixed immediately by gentle inversion. The tube was incubated 

on ice for a further 15 mins. The supernatant was separated from the precipitate by 

centrifugation in polypropylene tubes at 20,000 rpm for 30 mins at 4ºC in a Sorvall RC-

5C centrifuge. The supernatant was re-centrifuged at 20,000 rpm for 15 mins at 4ºC and 

then promptly removed. The clear supernatant was applied to an equilibrated Qiagen-tip 

100. Allowing 10 ml of buffer QBT (750 mM NaCl, 50 mM MOPS, pH 7, 15% 

isopropanol, 0.15% Triton X-100) to flow through the column carried out the 

equilibration. Following application of the supernatant, the columns were washed with 2 

x 30 ml of buffer QC (1 M NaCl, 50 mM MOPS, pH 7, 15% isopropanol) to assist in the 

removal of contaminants present in the plasmid DNA preparation. DNA was eluted with 

15 ml of buffer QF (1.25 M NaCl, 50 mM Tris, Tris-Cl, pH 8.5, 15% isopropanol). The 

DNA was precipitated by adding 10.5 ml (0.7 volumes) of isopropanol equilibrated to RT 

(to prevent the co-precipitation of salt). The solution was mixed and centrifuged at 

15,000 rpm for 30 mins at 4ºC. The supernatant was decanted carefully and the DNA 

 83



pellet was washed with 2 ml of RT 70% ethanol and centrifuged at 15,000 rpm for 10 

mins at 4ºC. The supernatant was decanted from the pellet, to allow the pellet to air-dry 

for 10 mins. The pellet was resuspend in 400 μl of 1 x TE pH 8.0 overnight at RT. 

 

2.2.1.4. Quantification of DNA in solution. 

DNA concentrations and purity were determined by measuring the light absorbence of 

DNA samples at 260 nm and 280 nm respectively. 5 μl of a DNA sample was diluted into 

1 ml of 1 x TE. DNA samples were measured in UV cuvettes in a Bio-Rad 

spectrophotometer.  

 

2.2.1.5. Qiagen Magic DNA clean-up system. 

DNA fragments in agarose or DNA samples treated with enzymes were purified by 

incubating in 1 ml of Qiagen resin (6 M guanidine thiocyannate). The mix was incubated 

at RT on a rotator until the agarose pieces had completely passed through a Qiagen 

column using a 2 ml syringe. The resin was washed with 2 ml of 80% isopropanol and 

dried by spinning the tube for 2 mins in a microcentrifuge at RT. The DNA was eluted 

with 50 μl of 1 x TE buffer (pH 8.0) heated to 80ºC. 

 

2.2.1.6. Gel electrophoresis of DNA. 

Linearised DNA was separated on an agarose gels. 1% agarose gels were cast by 

dissolving 1 g agarose into 100 ml of 1 x TBE in a microwave. The clear transparent 

solution was left to cool before it was poured into a sealed rectangular mould. A Teflon 

comb was positioned at the top of the mould to form the wells. The gel was left to 
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solidify at RT for 30-45 mins. The comb and seals were then removed and the gel was 

placed into an electrophoresis tank containing enough electrophoresis buffer (1 x TBE) to 

cover the surface of the gel. DNA samples were mixed with 1:5 volume of 6 x loading 

buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF, 30% glycerol in water) and 

loaded into the wells. Either HaeIII-digested Φx174 or HindIII-digested bacteriophage 

DNA markers or a mixture of the two were loaded in a separate well to determine the 

fragment sizes of the DNA sample. Agarose gels were run at 140 V for 45 mins or until 

the dye front had run approximately 80% through the gel. 

 

2.2.1.7. Visualization of DNA with ethidium bromide. 

DNA fragments were visualized by incubating agarose gels in 1 x TBE containing 1% 

ethidium bromide for 15-30 mins. Gels were washed briefly in 1 x TBE to remove excess 

ethidium bromide solution and then placed on UV box. Images were captured on Polaroid 

film.  

 

2.2.1.8. Isolation of DNA fragments from agarose gels. 

DNA fragments required for ligation purposes or for probe preparation were purified in 

the appropriate percentage agarose gel. Wells were formed to accommodate the increased 

sample volume 50-100 μl. An additional 10 μl of sample were also loaded into a separate 

well that could be separated and incubated in ethidium bromide for visualization as 

described above. The whole gel was then placed onto a low wavelength UV box and 

fragment excised with a razor following the position of the corresponding visible 

fragment. The fragment of interest was then purified as described 2.2.1.5. 
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2.2.1.9. Enzymatic modification of DNA. 

2.2.1.9.1. Digestion of DNA with restriction enzymes. 

Plasmids, vectors and fragments were digested with various endonucleases using the 

buffers provided with the enzymes at a 10-fold dilution. Most digests were carried out in 

10 μl volumes for diagnostic purposes and in greater volumes of 20-100 μl when 

preparing fragments or vectors for ligation. Enzymes units were used according to the 

amount of DNA present in sample ensuring that the enzyme concentration was not in 

excess to prevent star activity. Most digestions were carried out at 37ºC for 1-2 hours 

unless otherwise recommended by the manufacturers. Double digest were performed 

using the buffer with the lower salt concentration if a compatible buffer was not available. 

 

2.2.1.9.2. Stratagene Klenow fill-in kit. 

The Klenow fill-in kit is designed for complete and partial fill-in reactions of 5’ DNA 

overhangs. The following reaction was typically performed with a 50 μl DNA sample, to 

which the following components were added. 6.5 μl of 10 x Klenow buffer (60 mM Tris-

HCl (pH 7.5), 60 mM NaCl, 60 mM MgCl2, 0.5% gelatin, 10 mM DTT), 8 μl of 10mM 

dNTPs 1:1:1:1 (A:T:G:C) and 2 μl of Klenow enzyme (5 u/μl). The reaction was 

incubated at RT for 15 mins and then incubated at 65ºC for 10 mins to inactivate the 

Klenow enzyme. DNA was purified by using the Qiagen “Magic DNA “clean-up” kit 

(see section 2.2.1.5). The purified sample was then used in the ligation reactions 

described below. 
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2.2.1.10. DNA ligation. 

T4 DNA ligase (Promega) catalyzes the formation of phosphodiester bonds between 

adjacent 5’ phosphate and the 3’ hydroxyl residues of adjacent nucleotides in either 

cohesive-ended or blunt-ended fragments. To perform DNA ligations, the following 

components were added; 20 ng of insert DNA, 100 ng of linearised vector, 2 μl of 10 x 

T4 reaction buffer (30 mM Tris-HCl (pH 7.8), 10 mM MgCl2, 10 mM DTT, 1 mM ATP), 

ddH2O to a final volume of 20 μl and 1 μl of T4 DNA ligase (3 u/μg). Cohesive-end 

ligations were incubated at 23ºC for 3-4 hours. Blunt-ended ligations were performed at 

15ºC for 4-18 hours. 10 μl of ligation mix were used to transform 100 μl of XL1-Blue 

competent cells. 

 

2.2.1.11. Inactivation and removal of enzymes. 

Heat inactivation of enzyme activity was achieved by heating the digest mixture at 65ºC 

for 15 mins. With larger preparations, the DNA samples were cleaned using the DNA 

clean-resin as described in 2.2.1.5. 

 

2.2.1.12. Polymerase chain reaction (PCR). 

Polymerase chain reaction (PCR) uses single stranded DNA as a template to amplify 

required DNA sequences. This in vitro technique amplifies a required DNA sequence by 

the use of two oligonucleotides, which are complementary to opposite strands of the 

DNA template at either end of the DNA sequence to be amplified. The Vent DNA 

polymerase (NEBL) extends these oligonucleotides by incorporating complementary 

nucleotides to the template DNA between the two primers. The DNA is heat denatured 
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and the whole process of annealing and synthesis is repeated. This technique proceeds to 

produce the required DNA sequence in an exponential manner as both the original DNA 

template and subsequently formed DNA sequences can act as a template for the 

oligonucleotides to anneal to forming new complementary DNA sequences. 

 

A typical PCR reaction tube will contain the following; 

10 μl of 10 x ThermoPol buffer 

3 μl of  25 mM dNTP mix (ATP, TTP, CTP, GTP) 

2 μl of  DNA Template 

0.5 μl of VANT polyermerase 

2.5 μl of Oligomers 

81 μl of ddH2O to make up a volume of 100 μl 

 

Tubes were placed into a MJ Research PCR machine for the following cycles; 

94oC for 4 mins to denature template DNA 

94 oC for 1 min to denature template DNA in later amplification cycles 

X oC for 1 min to allow annealing of oligomers to template DNA 

72 oC for 5 mins to allow extension of oligomers so as to copy template DNA 

This part of the cycle was repeated 25-30 times in order to amplify the required section of 

the template DNA. 

72 oC for 5 mins to allow final extention of oligomers 

4 oC to store PCR products overnight and to end reaction 

The value of X is based on the Tm value of the oligonucleotides used in the reaction 
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Tm = 2(A+T) + 4(G+C) 

where A, T, G, and C refer to the nucleotide base content. 

PCR products were analysed by running 10 μl on either a 1% agarose gel or a 16% 

acrylamide gel depending on the size of the products. 

 

2.2.1.13. siRNA.  

Long double-stranded RNAs (dsRNAs; typically >200 nt) can be used to silence the 

expression of target genes in a variety of organisms and cell types (e.g., worms, fruit flies, 

and plants). Upon introduction, the long dsRNAs enter a cellular pathway that is 

commonly referred to as the RNA interference (RNAi) pathway. First, the dsRNAs get 

processed into 20-25 nucleotide (nt) small interfering RNAs (siRNAs) by an RNase III-

like enzyme called Dicer (initiation step). Then, the siRNAs assemble into 

endoribonuclease-containing complexes known as RNA-induced silencing complexes 

(RISCs), unwinding in the process. The siRNA strands subsequently guide the RISCs to 

complementary RNA molecules, where they cleave and destroy the cognate RNA 

(effecter step). Cleavage of cognate RNA takes place near the middle of the region bound 

by the siRNA strand.  

 

In mammalian cells, introduction of long dsRNA (>30 nt) initiates a potent antiviral 

response, exemplified by nonspecific inhibition of protein synthesis and RNA 

degradation. The mammalian antiviral response can be bypassed, however, by the 

introduction or expression of siRNAs. 
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2.2.1.14. Cloning of WAVE1/2 RNAi fragment into pSUPER vector. 

Reduction of endogenous WAVE1 and WAVE2 expression in N1E115 cells was 

performed using the pSUPRE RNAi system (Oligoengine, Seattle, WA, USA) according 

to the manufacturer’s instructions. Oligonucleotides within the open reading frame of 

mouse WAVE1 or WAVE2 were used as target sequences. Inserts coding for short 

hairpin RNA (shRNA) against WAVE1 or WAVE2 transcript were cloned between 

EcoR1 and Hind III restriction site of the pSUPER vector. A scramble RNAi containing a 

mock shRNA sequence was generated as a control. WAVE RNAi in pSUPER vectors 

was provided by Tan Yueh-Li (SA lab.). 

 
The following sequences were used for WAVE1, WAVE2 RNAi and scramble sequence; 
 
 
WAVE1: CGATGAGAAAGGCTTTCCG  
WAVE2: TACTCGGAAGGCCTTCAGA 
Scramble: CGCTATGAACGGTAGCTGA 
 
The following oligos were generated:
 
WAVE 1 Sense:  
 
5” –  gATCCCCgCgATgAgAAAggCTTTCCgTTCAA 
gAgACggAAAgCCTTTCTCATCATCgTTTTTA –3” 
 
WAVE1  antisense: 
 
5” – AgCTTAAAAACgATgAgAAAggCTTTCCgTCT 
CTTgAACggAAAgCCTTTCTCATCgCggg – 3” 
 
WAVE2 Sense: 
 
5” – gATCCCCgTACTCggAAggCCTTCAgATTCAA 
gAgATCTgAAggCCTTCCgAgTATTTTTA –3” 
 
 
 
WAVE2 antisense: 
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5” – AgCTTAAAAATACTCggAAggCCTTCAgATCT 
CTTgAATCTgAAggCCTTCCgAgTACggg –3” 
 
Scramble sense: 
 
5” – gATCCCCgCgCTATgAACggTAgCTgATTCAA 
gAgATCAgCTACCgTTCATAgCgTTTTTA –3” 
 
Scramble antisense: 
 
5” – AgCTTAAAAACgCTATgAACggTAgCTgATCT 
CTTgAATCAgCTACCgTTCATAgCgCggg –3” 
 

2.2.2. Protein expression and purification. 

2.2.2.1. Expression of recombinant GST-fusion proteins. 

The glutathione s-transferase (GST) Gene Fusion System is an integrated system for the 

inducible expression of fusion proteins in E.coli. pGEX plasmids are designed for the 

expression of genes or gene fragments with Schistosoma Japonicum GST. Protein 

expression from the pGEX plasmid is under the control of the tac promoter, which is 

induced using the lactose analog isopropyl-D-thiogalactoside (IPTG). Rapid purification 

can be achieved using Glutathione Sepharose 4B beads where fusion proteins can be 

purified to >90% in a single chromatographic step. Fusion proteins can then be recovered 

from beads under competitive elution conditions using excess reduced glutathione.  

 

Single E.coli colonies transformed with recombinant pGEX plasmid were used to 

inoculate 2 ml of L-Broth-amp. Cultures were grown overnight at 37ºC with agitation and 

then were diluted at 1:100 with pre-warmed L-Broth-amp and allowed to continue 

growing to an optical density (O.D.) of 0.5 at 600nm. Adding IPTG at 1 mM induced 

fusion protein expression and cells were grown for a further 5-6 hours and then harvested. 
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Cells were then centrifuged for 10 mins to form a pellet. Pellets were washed in PBS to 

remove residual media and re-pelleted and left overnight at -20ºC. 

 

2.2.2.2. Purification of recombinant GST-fusion proteins. 

Pellets were thawed on ice and completely resuspended in PBS 1% Triton x-100 

containing protease inhibitors; 0.5 mM PMSF, 1 μg/ml aprotinin and 1 μg/ml pepstain. 

The “freeze-thaw” step assists the lysis of the cells. For complete lysis, the cell 

suspension was sonicated using an Ultrasonic liquid processor (XL series) for 3 x 25 secs 

on ice until the cloudy suspension becomes semi-translucent. The bacterial lysate was 

cleared of cellular debris by centrifugation at 20,000 rpm for 15 mins at 4ºC. Before 

incubation with cleared lysate the glutathione-Sepharose 4B beads are washed 3 x in 10 

ml of cold 1 x PBS to remove the 20% ethanol storage solution. Approximately 100 μl of 

the beads slurry is used per 100 ml of bacterial culture. The clear supernatant was then 

incubated with glutathione-Sepharose 4B beads for 1 hour at 4ºC in 50 ml falcon tubes on 

a rotator. The beads were pelleted briefly and the supernatant, containing the unbound 

protein removed. The beads were then washed 3 x for 20 mins in PBS 1% Triton x-100. 

Purified GST-fusion protein was eluted from the beads by incubating with 10 ml of 5 

mM Glutathione in 50 mM Tris-HCl, pH 7.5, 0.1 mM EDTA for 10 mins at RT. The 

suspension was passed down a column to separate the beads from the eluted protein. 
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2.2.2.3. Dialysis and concentration of GST-fusion proteins. 

Purified fusion proteins was dialysed first against 2 litres of dialysis buffer (50 mM Tris-

HCl pH 7.5, 150 mM NaCl, 2.5 mM CaCl2) for 1 hour, then again overnight and once 

more for 1 hour. The protein was then concentrated by ultrafilteration using Centricon-10 

tubes (Amicon) by spinning at 3-4 x at 3,000rpm for 10 mins at 4ºC until 10 ml is 

reduced to 500 μl.  

 

2.2.2.4. Quantification of protein concentrations. 

Protein concentrations were determined photometrically on a Bio-Rad spectrophotometer 

using Bio-Rad reagent. 1-10 μl of protein sample resuspended with 200 μl of Bio-Rad 

reagent with 0.8 ml of ddH2O and left at RT for 5 mins before measuring the OD at 595 

nm. Protein concentrations were determined using a BSA standard curve. 

 

2.2.2.5. Preparation of SDS-PAGE. 

SDS polyacrylamide gel electrophoresis (PAGE) was used to separate proteins on the 

basis of their molecular weight. This was performed using polyarcylamide gels in a 

discontinuous buffer system. The final acrylamide concentration in the resolving gel is 

determined by the molecular weight of the proteins that require separation. The 

composition of a 22% acrylamide resolving gel for separation of proteins typically 

ranging from 20 kDa to 1 kDa is as follow: 

 

7.3 ml 30% acrylamide/bis-acrylamide 

2.5 ml 1.5 M Tris-HCl pH 8.8 
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100 μl 10% (w/v) SDS 

50 μl 10% APS 

7 μl TEMED 

 

Approximately 7.5 ml of this mix was pipetted into a minigel apparatus (Bio-Rad) 

allowing space for a stacking gel. ddH2O was applied to the top of the acrylamide mix 

and left to polymerize at RT for 45 mins. Once polymerized the ddH2O was poured off 

and any residual fluid removed using filter paper. A stacking mix was prepared as follow: 

 

1.67 ml 30% acrylamide/bis-acrylamide 

1.25 ml 0.5 M Tris-HCl pH 6.8 

7 ml ddH2O 

100 μl 10% (w/v) SDS 

50 μl 10% APS 

12 μl TEMED 

 

The stacking gel was pipetted onto the polymerized resolving gel, into which a Teflon 

comb was inserted. The stacking gel was left to polymerize at RT for 30 mins. Once 

polymerized, the comb was removed and residual non-polymerized acrylamide was 

removed by washing wells with ddH2O. 
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2.2.2.6. Separation of proteins by SDS-PAGE. 

Protein samples were separated according to their molecular weight. Protein markers of 

known size were run in parallel to samples to estimate the molecular weight of proteins 

separated on the acrylamide gel. Samples were mixed with 5 x SDS-gel loading buffer 

(10% SDS, 50% glycerol, 0.3 M Tris-HCl pH  6.8, 0.124 ml β-mercaptoethanol, 

bromophenol blue, ddH2O top to 5 ml) and heat denatured at 100ºC for 5 mins before 

being loaded onto the denaturing SDS-PAGE. A 22% SDS gel was typically used to 

separate proteins ranging from 20 kDa to 4 kDa. 10% gels were used to separate proteins 

of 16 kDa to 68 kDa molecular weight. Proteins were separated using a Bio-Rad vertical 

gel discontinuous buffer system. Gels were run at 140 V for typically 90 mins in 1 x TGS 

buffer (dilution of the 10× TGS buffer produces a 1× running buffer containing 25 mM 

Tris, 192 mM glycine and 0.1% SDS, pH approx. 8.6). 

 

2.2.2.7. Visualization of separated proteins. 

Proteins separated by SDS-polyacrylamide gel electrophoresis were stained with 

Coomassie Brilliant blue solution (0.25 g of coomassie brilliant blue dissolved in 90 ml 

of methanol:H2O [1:1 v/v] and 10 ml of glacial acetic acid). The solution was filtered 

through a Whatman No.1 filter to remove any particulate matter). Gels were stained for 

1-4 hours on a slow rotating platform and then destained in Destain solution (50% dd 

H2O, 40% methanol, 10% glacial acetic acid) for 4-6 hours, with 3-4 changes of the 

Destain solution. 
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2.2.2.8. Gel drying. 

For permanent records, gels were dried on a slab dryer. Gels were rinsed in ddH2O and 

placed in between two layers of cellophane that has been immersed in ddH2O. The 

sandwich was placed in between two layers of 3M filter paper. Gels were dried for 1 hour 

40 mins at 60ºC under a vacuum. 

 

2.2.2.9. Western transfer of proteins onto nitrocellulose filters by semi-dry blotting. 

Proteins separated by electrophoresis on denaturing SDS-acrylamide gels were 

transferred onto nitrocellulose for probing with antibodies (Western blotting). The SDS-

gels were equilibrated in 1 x transfer buffer (100 ml of 10 x stock (48 mM Tris, 39 mM 

glycine, 1.3 mM (0.037%) SDS, 20% (v/v) methanol made up to 1 l with ddH2O). Four 

pieces of Whatman filter paper and one piece of PVDF membrane were cut to a size of 

10 cm x 7 cm. The PVDF membrane was soaked in methanol for 30 mins, rinsed in 

ddH2O and then equilibrated in 1x transfer buffer along with the Whatman filter paper for 

30 mins. The sandwich was prepared following manufacturers guidelines on a Bio Rad 

semi-dry transfer system. The sandwich consisted of  two pieces of Whatman filter paper, 

PVDF membrane, SDS-acrylamide gel, two pieces of Whatman filter paper. Proteins 

were transferred overnight at a constant voltage of 8 V. 

 

2.2.2.10. Immunoanalysis of nitrocellulose immobilized proteins. 

Proteins immobilized onto nitrocellulose filers by semi-dry blotting were stained for 30 

mins in coomassie blue (0.5g coomassie brilliant blue, 45% methanol, 10% acetic acid, 

45% ddH2O) and then destained in destain (40% methanol, 50% ddH2O, 10% acetic acid) 
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solution for 30 mins followed by washing for 3 x 10 mins in PBS. Filters were then 

blocked for 1 hour at RT or overnight at 4 oC in 3% milk powder in PBS. Filters were 

then washed for 3 x 10 mins in PBS/0.1% Tween 20. Filters were incubated with primary 

antibodies in 1% milk powder in PBS for 1.5 hour at RT. Filters were washed for 3 x 10 

mins in PBS/0.1% Tween-20 prior to incubation with a Horseradish peroxidase (HRP) 

conjugated secondary antibody (Santa Cruz) used at 1:1000 dilution of stock in 1% milk 

powder in PBS. Filters were incubated for 1 hour at RT. Again filters were washed for 3 

x 10 mins in PBS/0.1% Tween-20 before being probe with ECL western blotting 

detection reagents (Amersham). The ECL system is a non-radioactive, luminescent 

reagent used for detection of antibodies conjugated with horseradish peroxidase. Equal 

volumes of ECL reagents 1 and 2 were mixed briefly before being applied to filters for 

one min. Excess liquid was removed by blotting on Whatman filter paper. Filters were 

wrapped in saran warp before being placed into a film cassette protein side up and 

exposed to ECL film (Kodak). A series of varying time length exposures were performed 

to obtain an optimum signal. 

 

2.2.2.11. In vitro transcription-translation and binding assay. 

The TNT coupled reticulocyte lysate system (L4610, Promega) was used to assess 

whether N-WASP and IRSp53 interact in vitro. N-WASP and GFP were transcribed and 

translated in vitro using the TNT T7-coupled reticulocyte lysate systems with pXJ40-N-

WASP-HA as the template for N-WASP and pXJ40-GFP as the template for GFP 

following the manufacturer’s protocol. The plasmids were individually added to the 

rabbit reticulocyte lysate containing T7 polymerase and [35S]-methionine in a reaction 
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volume of 50 µl at 30 °C for 90 mins. The translation products were verified by SDS-

PAGE and autoradiography. GST, GST-Cdc42Q61L and GST-IRSp53-SH3 (amino acid 

residues, 400-469) proteins were bound to GST beads for 1 hour at 4°C before blocking 

in 1 mg/ml BSA for 30 mins at 25°C. Beads were resuspended in GST purification buffer 

before adding N-WASP or GFP transcription/translation mixes (20 µl) for 1 hour at 4°C.  

 

2.2.3. Cell culture. 

2.2.3.1. Cell culture of N1E115 cells. 

N1E115 neuroblastoma cells are a clone derived from a C-1300 mouse neuroblastoma 

(Amano et. al., 1971). They are adrenergic neurons with a high level of acetylcholine 

esterase enzyme present. This cell line also has a relatively high production rate of 

tyrosine hydroxylase, which is involved in the noradrenaline synthesis pathway. 

 

Cells were cultured in DMEM with high glucose (4500 mg/l; DMEM-high) and 10% 

FBS/1% anti-microbial cocktail (supplements) and plated in 90 mm tissue culture dishes 

(Nunc). Cell cultures were grown at 37oC in a humidified atmosphere with 5% CO2 

(Sanyo).  

 

2.2.3.2. Cell culture of N-WASP WT and KO cells. 

N-WASP WT (flox) and N-WASP KO cell line (1h51) were cultured in DMEM with low 

glucose (1000 mg/l) (DMEM-low) with supplements and plated in 90 mm tissue culture 

dishes (Nunc). Cell cultures were grown at 32oC in a humidified atmosphere with 5% 

CO2 (Sanyo). For more information on N-WASP WT/KO cells see Lommel et. al., 2001. 
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2.2.3.3. Cell culture of Mena WT and KO cells. 

Mena WT (GMH3.0) and KO (MDV7) cells were cultured in Immorto medium (DMEM 

with high glucose (4500 mg/l), supplemented with 15 % FBS, 1 % antibiotic cocktail 

(penicillin-streptomycin) and mouse interferon γ (50 U/ml). Cells were plated in 90 mm 

tissue culture dishes (Nunc) and were grown at 32 oC in a humidified atmosphere with 

5% CO2 (Sanyo). For more information on the Mena WT/KO cells see Geese et. al., 2002. 

 

2.2.3.4. Cell maintenance. 

Cells were grown to sub-confluence before being passage and plated onto fresh dishes, 

typically at 1/5, 1/10 and 1/20 densities. Cells were fed every other day and on average 

passaged 3 times a week.  

 

Media was removed from the dish using a suction line and sterile glass pipette in a Class 

II biohazard hood (Gelman BH Class II Series). Cells were detached by pipetting 10 ml 

of fresh media and placed into a 14 ml falcon tube. The cells were then pelleted at 1000 

rpm in a (IEC Centra CL2) table centrifuge for 5 mins. The supernatant was removed and 

cell pellet was resuspended in 10 ml of fresh media by gentle pipetting. Cells were then 

plated out onto 90 mm dishes or 150 mm dishes at the required density in fresh media. 

N-WASP and Mena WT/KO cells were treated in the same manner as N1E115 cells, 

except that 1 ml of pre-warmed trypsin (0.125% w/v) was used to trypsinize the cells to 

disrupt cell attachment and facilitate their removal from the dish. This is due to N-WASP 

and Mena WT/KO cells attaching to the culture dish much more efficiently than N1E115 
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cells. 6 ml of pre-warmed media was then added to the dish to prevent further actions of 

the trypsin and cells were collected into a falcon tube and treated as described above. 

 

2.2.3.5. -70oC storage of cells. 

A sub-confluent plate of cells was harvested in 10 ml of fresh media and placed in a 14 

ml falcon tube. The cells were then pelletd by centrifuging at 1000 rpm for 5 mins (IEC 

Centra CL2) on a table centrifuge. The media was aspirated and the cell pellet 

resuspended in 4 ml of freezing media (20% FBS, 10% DMSO4 , 70% Media). The cells 

were then aliquoted into 1 ml portions into screw cap cyro-tubes. The tubes were then 

wrapped well in tissue paper and placed into a polystyrene box before being stored in the 

-20 oC freezer for overnight. The cells were then transferred to the -70 oC freezer for 48 

hours. Tubes were finally transferred to liquid nitrogen storage, where they can be stored 

until required. 

 

2.2.3.6. Cell plating from stocks in liquid nitrogen storage. 

Vials of cell stocks are thawed rapidly at 37 oC in a water bath. Cells are transferred to a 

14ml falcon tube containing 10 ml of pre-warmed media with appropriate supplements 

(refer to section 2.2.3 for details on medium composition for each cell type). Cells are 

pelleted by centrifuging at 750 rpm for 7 min. Media was aspirated and cell pellet was 

resuspended in 10 ml of fresh media. Cells are then plated out in the appropriate dishes at 

either 0.33 or 0.25 densities. Cells were incubated at the appropriate temperature in a 

humid environment and 5% CO2.  
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2.2.3.7. Preparation of coverslips. 

2.2.3.7.1. Preparation of laminin-coated coverslips. 

Square coverslips of sizes 18mm x 18mm were autoclaved under standard conditions. 

These coverslips were then placed in a tissue culture dish and coated with mouse laminin 

(10 μg/ml) for 4 hours at RT or overnight at 4 oC. The laminin solution was removed and 

the coverslips were washed once with ddH2O and left to air dry in the tissue culture hood 

for 15 mins. The coverslips were then placed into 35 mm dish or 6 well plates with 3 ml 

of culture medium, ready for plating out of cells for transfection or stored at 4 oC for up to 

a week. 

 

2.2.3.7.2. Preparation of fibronectin-coated coverslips. 

Square coverslips of sizes 18mm x 18mm were autoclaved under standard conditions. 

These coverslips were then placed in a tissue culture dish and coated with mouse 

fibronectin (1 mg/ml) in 1 x HBSS solution for 5 mins at RT. The coating solution was 

then removed and the coverslips were left to air dry in the culture hood for 15 mins. The 

coverslips were then placed into 35 mm dish or 6 well pates with 3 ml of appropriate 

media with supplements (see earlier sections for medium composition details for different 

cell type) ready for plating out of cells for transfection.  

 

2.2.3.8. Transient transfection of N1E115 neuroblastoma cells.  

Coverslips and glass-bottomed dishes (Mattek) were prepared as detailed in 2.2.3.7.1. 

N1E115 cells were plated out at approximately 1 x 105 cells per laminin coated coverslip 

and grown overnight at 37 oC in DMEM-high with supplements. Before transfection, 
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cells were serum starved in 1 ml of DMEM-high. Transfection mixes were made with 

200 μl DMEM-high medium, 1-1.5 μg of DNA and 6-12 μl of lipofectAMINE and left at 

RT for 45 mins for the formation of DNA liposomes. The transfection mixes were added 

to the cells and incubated at 37 oC. After 4 hours the media was aspirated off and replaced 

with 2 ml of DMEM-high with supplements. Cells were then left overnight at 37 oC for 

expression. 

 

2.2.3.9. Transient transfection of N-WASP WT/KO cells.

Coverslips and glass-bottomed dishes were prepared as detailed in 2.2.3.7.2 or used as. 

For transient transfection, N-WASP WT and N-WASP KO cells were plated out at 1 x 

105 cells per coverslip and grown overnight at 32°C in DMEM-low with supplements. 

Before transfection, cells were serum starved for 1 hour in 1 ml of DMEM-low. 

Transfection mixes were made with 200 µl DMEM-low with supplements, 0.1-0.5 µg 

DNA, and 3 µl lipofectamine and left at RT for 45 mins for the formation of DNA 

liposomes. For co-transfections the amount of lipofectAMINE was adjusted accordingly. 

The transfection mixes were added to the cells and incubated at 32°C. After 4 hours 

medium was removed and replaced with 2.5 ml of DMEM-low with supplements. Cells 

were then left overnight at 32°C for expression. 

 

2.2.3.10. Delivery of RNAi into N1E115 cells.  

Coverslips and glass-bottomed dishes were prepared as detailed in 2.2.3.7.1. N1E115 

cells were plated out a approximately 1 x 105 cells per laminin coated coverslips and 

grown overnight at 37 oC in DMEM-high with supplements. Before transfection, cells 
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were serum starved in 1 ml of DMEM-high. Transfection mixes were made with 200 μl 

DMEM-high, 1-1.5 μg of RNAi constructs, 0.5-1 μg of other cDNA and 6-12 μl of 

lipofectAMINE and left at RT for 45 mins for the formation of DNA liposomes. The 

transfection mixes were added to the cells and incubated at 37 oC. After 4 hours the media 

was aspirated off and replaced with 2 ml of DMEM-high with supplements. Cells were 

then left at 37 oC  to express for 20 to 38 hours.  

 

2.2.3.11. Microinjection of N-WASP WT and KO cells. 

N-WASP WT and KO cells were plated out at approximately 1 x 105 cells per glass-

bottom dishes and grown overnight at 32°C in DMEM-low with supplements. cDNA of 

required constructs were prepared at 50ng/ul in ddH2O  and centrifuged at 14,000 rpm for 

30 mins. 6 μl of DNA mix was loaded into a microinjection needle and cells were 

injected at a constant pressure of 20 psi for 100 ms duration. Microinjection was 

performed on a custom microinjection setup and Olympus microscope (IMT-10). 

Between 100-150 cells were injected per dish and cells were left to express protein for 1 

to 6 hours before they were imaged or fixed and stained. 

 

2.2.3.12. Microinjection of Mena WT/KO cells. 

Mena WT/KO cells were plated out at approximately 1 x 105 cells per glass-bottom 

dishes and grown overnight at 37°C in Immorto medium. cDNA of required constructs 

were prepared at 50 ng/μl in ddH2O  and centrifuged at 14,000 rpm for 30 mins. 6 μl of 

DNA mix was loaded into a microinjection needle and cells were injected at a constant 

pressure of 20 psi for 100 ms duration. Microinjection was performed on a custom 
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microinjection setup and Olympus microscope (IMT-10). Between100-150 cells were 

injected per dish and cells were left to express protein for 1 to 6 hours before they were 

imaged or fixed and stained. 

 

2.2.3.13. Fluorescence microscopy. 

Before fixing cells were washed briefly with PBS to remove residual media. Cells were 

incubated with 4% paraformaldehyde in PBS for 10 mins at RT. Coverslips were then 

washed twice in PBS for 10 mins. Cells were then permeabilized in PBS containing 0.5% 

Trinton x-100 for 1 min. Coverslips were then washed again in PBS twice for 10 mins. 

Coverslips were then blocked using 3% BSA in PBS for 15 mins. Coverslips were 

incubated with the primary antibodies (Sigma, Santa Cruz) at 1:200 dilution. 50 μl of 

diluted antibody solution was added to each cover slip, overlaid with parafilm and 

incubated 37°C for 1 hour in a humid chamber. Coverslips were washed in PBS/0.1% 

Tween-20 for 2 x 10 mins. Coverslips were then incubated with secondary antibodies, 

which have a fluorescence tag (Cyc5/Alexa350/488/594/640, Molecular Probes) attached. 

Secondary antibodies were diluted in 1% BSA in PBS solution. Coverslips were 

incubated at 37°C for 1 hour in a humid chamber. Coverslips were washed as before in 

PBS/0.1% Tween-20 for 2 x 10 mins. Coverslips were left to air dry for 10 mins and then 

mounted onto glass slides using 50 μl of immunofluor mountant. Cells were then 

visualized and analyzed on a fluorescence microscope (Zeiss Axiovert 200M).  Images 

were obtained with a CoolSNAP CCD camera (Roper Scientific).  
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2.2.3.14. Live imaging studies. 

2.2.3.14.1. Actin dynamics of N1E115 cells. 

30 mm glass-bottomed dishes (Mattek) were coated with mouse laminin as described in 

2.2.4.7.1. 1 x 105 cells were seeded onto these dishes in 2.5 ml of DMEM-high with 

supplements. Cells were incubated overnight at 37°C and 5% CO2. Cells were then 

transiently transfected with required construct and GFP-actin as described in 2.2.3.8. or 

for RNAi analysis, cells were transfected as described in 2.2.3.10. 

 

For DIC/fluorescence time-lapse analysis, cells were incubated on a heated stage at 37°C 

and 5% CO2 chamber. The imaging was carried out with a monochromator on a Zeiss 

Axiovert 200 microscope enclosed in an incubator box with a CoolSNAP CCD camera. 

Generally, images were taken over a period of 10 mins at 10 secs intervals. Movies were 

compiled using the Metamorph software. 

 

2.2.3.14.2. Actin dynamics of N-WASP WT/KO cells. 

1 x 105 cells were seeded onto 30 mm glass-bottomed dishes in 2.5 ml of DMEM-low 

with supplements. Cells were incubated overnight at 32°C and 5% CO2. Cells were then 

transiently transfected with GFP-actin or other constructs as described in 2.2.4.8. or 

microinjected as described in 2.2.4.10. 

 

For DIC/fluorescence time-lapse analysis, cells were incubated on a heated stage at 37°C 

and 5% CO2 chamber. The imaging was carried out with a monochromator on a Zeiss 

Axiovert 200 microscope enclosed in an incubator box with a CoolSNAP CCD camera. 
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Generally, images were taken over a period of 10 mins at 10 secs intervals. Movies were 

compiled using the Metamorph software. 

 

2.2.3.14.3. Actin dynamics of Mena WT/KO cells. 

1 x 105 cells were seeded onto 30 mm glass-bottomed dishes (Matek) in 2.5 ml of 

Immorto medium. Cells were incubated overnight at 32°C and 5% CO2. Cells were then 

transiently transfected with GFP-actin or other constructs as described in 2.2.4.8. or 

microinjected as described in 2.2.4.10. 

 

For DIC/fluorescence time-lapse analysis, cells were incubated on a heated stage at 37°C 

and 5% CO2 chamber. The imaging was carried out with a monochromator on a Zeiss 

Axiovert 200 microscope enclosed in an incubator box with a CoolSNAP CCD camera. 

Generally, images were taken over a period of 10 mins at 10 secs intervals. Movies were 

compiled using the Metamorph software. 

 

2.2.4. S. cerevisiae (yeast) two hybrid. 

2.2.4.1. Preparation of competent cells. 

A stationary phase of Y190 was established following overnight growth at 30°C with 

agitation in YPD, or for transformed yeast, cells were grown in minimal media for up to 

48 hours. The cells were subcultured into 100 ml of fresh pre-warmed media and grown 

to O.D. at 600 nM of 0.2 (100 ml of culture generates 1 ml of competent cells). The 

culture was grown with agitation at 30°C until an O.D.600 of 0.6-1.0 was reached. The 

cells were examined using light microscopy to check that the culture is free of 
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contaminants and is actively growing. The cells were transferred to 50ml falcon tubes and 

pelleted at 2,000 rpm for 2 mins at RT. The supernatant was discarded and the cell pellet 

was washed twice in 1 ml of LiAc/TE and transferred to a sterile eppendorf tube. The 

cells were re-pelleted at 12,000 rpm in a microcentrifuge at RT for 2 mins. The pellet was 

then resuspended in 1 ml of LiAc/TE. 

 

2.2.4.2. S. cerevisiae transformation. 

To transform competent Y190 cells the following components were added together; 

between 200 ng-1μg of plasmid DNA was used for a single transformation in a volume 

no greater than 10 μl, 5 μl of salmon sperm carrier DNA (10 mg/ml), 50 μl of competent 

cells and 300 μl of 40% PEG/LiAc/TE solution. The suspension was mixed by gentle 

inversion. The transformation mix was then placed at 30°C for 30 mins without agitation 

and then transferred to 42°C for a further 20 mins. The cells were centrifuged for 2 mins 

at 12,000 rpm in a microcentrifuge at RT. The supernatant was decanted and the cells 

were resuspended into 150 μl of sterile water. The cell suspension was divided 3:7 and 

spread over two pre-warmed selective plates to allow for overcrowding of transformants. 

The plates were incubated at 30°C for 2-3 days. 

 

2.2.4.3. Isolation of plasmid DNA from S. cerevisiae. 

Plasmid DNA was isolated from yeast colonies that tested positive for both reporter 

genes. Single colonies were inoculated into 2 ml of YPD medium and incubated 

overnight at 30°C with shaking until the culture reached saturation. 1.5 ml of the culture 

was spun in a table top centrifuge at top speed for 5 sec at RT in an eppendorf tube to 

 107



pellet the cells. The supernatant was decanted and the remaining liquid was used to 

resuspend the cells. 200 μl of yeast lysis solution was added to the cell suspension. 200 μl 

of phenol/chloroform/isoamyl alcohol (25:24:1) and 0.3 g of acid-washed glass beads 

were added. The tube was vortexed for 2 mins and then spun at 14,000 rpm for 5 mins at 

RT. The supernatant was transferred to a clean eppendorf tube, to which 1/10 volume of 

3M NaAc and 2.5 volumes of ethanol was added. The DNA was precipitated and washed 

with 70% ethanol and air dried.  

 

2.2.4.4. Recovery of target protein cDNA by electroporation. 

The E. coli strain of KC8 carries trpC, leuB and hisB mutations which can be 

complemented by the yeast TRP1, LEU2 and HIS3 wild-type genes. Therefore the 

GAL4AD plasmid of pACT-2 carrying the LEU2 gene and cDNA encoding the 

interacting target protein can be selected on this basis from yeast plasmid preparation 

described in section 2.2.4.3. Electroporation is recommended to achieve high 

transformation efficiency, as the plasmid DNA preparations from yeast tend to contain 

genomic DNA. KC8 cells were electroporated with yeast plasmid DNA. DNA samples 

were resuspended in ddH2O rather than TE to perform electroporation and all samples 

were chilled before use. KC8 cells were thawed on ice of which 40-80 μl were used per 

reaction. Cells were mixed with <100 ng of DNA in a 5% volume of the cells and left on 

ice for 1 min. The following settings were use for the Electroporator II (capacitance 50 

μF, resistance 150 Ω, voltage 1500 V). Cells were added to pre-chilled 0.2 cm 

electroporation cuvettes and placed into the pulse chamber and a pulse was applied after 

which 480 μl of YPD media (at RT without antibiotics) was immediately added. The 

 108



suspension was gently mixed in the cuvette before it was transferred to a 15  ml falcon 

tube for incubation at 37°C in a rotary incubator at 225 rpm for 1 hour. Cells were then 

pelleted by centrifugation at 2500 rpm for 5 mins and then washed twice in M9 minimal 

media. Cells were plated on M9 agar media containing leu- dropout solution. Plasmid 

DNA was isolated from Leu+-KC8 transformants using the miniprep procedure described 

in section 2.2.1.2. 

 

2.2.4.5. Filter assay for β-Galactosidase activity. 

To test for transcriptional activation of the LacZ reporter gene a filter assay for β-

galactosidase activity was performed. LacZ gene expression results in the formation of β-

galactosidase, which drives the conversion of 5-bromo-4-chloro-3-indoly-D-

galactopyranoside (X-gal) into an analogue that results in blue colonies. Yeast colonies 

were grown to 1-2 mm in diameter before they were assayed for β-galactosidase activity. 

Whatman filters were pre-soaked in Z buffer/X-gal solution in Petri dishes. Fresh filters 

were placed over the surface of the agar plates containing the yeast transformants. The 

filters and plates were marked for orientation by poking asymmetric holes through the 

filter into the agar with a needle. Filters were lifted off the agar plates with forceps and 

placed into a pool of liquid nitrogen for 10 secs until completely frozen. Filters were 

removed and placed colony-side up on 3MM paper to thaw at RT. The freeze-thaw step 

permeabilized the cells. The thawed filters were then sealed and incubated at 30°C and 

checked periodically for the appearance of blue colonies. Colonies producing β-

galactosidase were expected to turn blue in 30 mins to 30 hours. Aligning the filters to 

the agar plate using the orientation marks identified the β-galactosidase producing 
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colonies. The corresponding colonies were isolated and streaked onto fresh plates or 

grown in liquid cultures. 

 

2.2.4.6. Generation of the mating pairs. 

IRSp53-SH3-pGBKT7 construct was generated by bacterial (KC8) recombination and 

confirmed by DNA sequencing.  

 

The forward primer was; 

5’GGAGGACCTGCATATGGCCATGGAGGCCGAAATGGCAGCCGGCCTGGAGC

GC-3’ and the reverse primer was   

5’AGTTATGCGGCCGCTGCAGGTCGACGGATCTCACACTGTGGACACCAGCGT

G-3’. The DNA encodes the C-terminal of IRSp53 (154 amino acid residues). 

 

IRSp53-SH3-pGBKT7 was transformed into AH109.  N-WASP-pACT2 was derived 

from the yeast-two hybrid screening of the human brain library as bait.  N-WASP-pACT2 

was transformed into Y187.  A yeast mating was performed using IRSp53-SH3-pGBKT7 

(AH109) and N-Wasp-pACT2 (Y187). The mating mixture was plated on QDO plate and 

a β-gal colony lift assay was performed on the colonies that grew. The mating between 

IRSp53-SH3-pGBKT7 (AH109) and pACT2 (Y187) was used as a control. Yeast mating 

and other assays were carried out as described in the Clontech manuals. Y2H work was 

done in collaboration with Bu Wenyu (SA lab). 
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2.2.5. Mass spectrometry analysis.  

Proteins associated with the SH3 domain of IRSp53 were isolated by affinity purification 

from lysates of adult rat brain with GST fusion protein of the SH3 domain of IRSp53 

immobilized on sepharose beads.  The protein complex was eluted and resolved by 10% 

SDS-PAGE and detected by Coomassie colloidal blue (Pierce).  Protein bands detected 

by colloidal Coomassie blue were excised and subjected to in-gel reduction, S-alkylation 

and trypsin hydrolysis. Liquid chromatography tandem mass spectrometry (LC-MS/MS) 

analysis of the peptides was performed on a Finnigan LCQ Deca ion trap mass 

spectrometer (Thermo Finnigan) fitted with a Nanospray source (MDS Proteomics). 

Chromatographic separation was conducted using a Famos autosampler and an Ultimate 

gradient system (LC Packings) over Zorbax SB-C18 reverse phase resin (Agilent) packed 

into 75 µM ID PicoFrit columns (New Objective). Protein identifications were made 

using the search engines Mascot (Matrix Sciences) and Sonar (ProteoMetrics).  44 

peptides were obtained for N-wasp, with 60% coverage of the protein. Mass Spec. 

analysis was done in collaboration with Dr. Ong Siew Hwa and Dr. Tony Pawson 

(Toronto). 
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2.2.6. Statistical analysis of morphology.  

Morphological phenotypes were quantitated using the following definitions;  

1. Filopodia - protrusions that contains GFP-actin, are dynamic, with a width of 

1.5 μm and an average length of between 6-15 μm. The number of filopodia per cell was 

determined.   

2. Neuirte or neurite like-structures - processes longer than one body length. The 

number of neurites per cell was determined. 

3. Lamellipodia/membrane ruffling - areas of cell flattening/wavy membrane 

thickening. Each cell was divided into eight sectors and each sector assessed for the 

presence of lamellipodia or membrane ruffling. Each sector contributes a maximum of 

12.5% morphological activity.  The eight sector values for each cell were then combined 

to give  % lamellipodia/membrane ruffle per cell. 

 

For each experiment approx. 12 cells were evaluated for filopodia, neurites/neurite-like 

structures and lamellipodia/membrane ruffles. At least 3 independent experiments were 

carried out for any one set of conditions giving an n value of approx. 36. Values 

presented in bar charts and tables represent mean +/- S.D.  

 

2.2.7. Forster resonance energy transfer (FRET) analysis. 

2.2.7.1. Tissue culture.  

CHO-1 cells were obtained from ATCC (Manassas, VA) and grown in 75 cm2 tissue 

culture flask up to 90% confluency in the complete growth media, 1 x F-12 Nutrient 

mixture (Kaighn’s modification) media containing 10% Fetal Bovine Serum (FBS) and 
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1% antibiotics (penicillin and streptomycin). All the tissue culture reagents were obtained 

from Invitrogen (Singapore). Transient transfection was performed using Fugene 6 

(Roche). For transfection, cells were seeded in a 6-well tissue culture plate containing the 

pre-washed and sterilized cover slips at 1.0 × 105 cells/well one day before transfection. 

CHO cells were co-transfected with mRFP-IRSp53 and GFP-actin or GFP-N-WASP 

plasmids by following the standard Fugene 6 protocol supplied by the manufacturer. 

Similar transfections were carried out for the control experiments as well. After 36 hours 

of transfection, cells were washed thrice with 1 x PBS and fixed with paraformaldehyde 

and mounted on a microscope slide using Hydromount, an aqueous non-fluorescing 

mounting media (from National Diagnostics, USA) For tissue culture of N1E115 and N-

WASP WT/KO cells, please refer to Section 2.2.3. 

 

2.2.7.2. Conditions for FRET. 

FRET occurs when; (i) a pair of spectrally distinct fluorescent molecules are sufficiently 

close (between 1 and 10 nm), (ii) their dipole moments are aligned to allow a 

radiationless transfer of energy and (iii) the emission profile of the donor must be such as 

to allow excitation of the acceptor. If these three conditions are met then FRET may 

occur. The FRET efficiency is dependent upon the distance between the acceptor and 

donor. The Förster distance, defined as the distance between the donor and acceptor, 

where the average efficiency of energy transfer is 50%, is used to estimate the 

intramolecular distances between the two molecules. Commonly, FRET is employed to 

visualize protein-protein interactions by targeting the desired cellular constituents with 

fluorescent dyes, fluorescent antibodies and/or fluorescent proteins (Figure 2.1).  
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7There are two common methods used to determine whether FRET is occurring between 

two molecules.  

(i) Sensitized emission and  

(ii) Acceptor photobleaching. 

In this thesis I have used acceptor photobleaching using GFP as the donor and mRFP as 

the acceptor as illustrated in figure 2.1.  

 
 

2.2.7.3. Acceptor photo-bleaching (AP)-FRET measurement. 

FRET was measured by acceptor photobleaching method by making necessary settings 

on a Zeiss LSM 510 confocal microscope with the C-Apochromat 63 x 1.2 W objective. 

The fusion proteins of GFP and mRFP were excited using 488 and 561 nm laser lines, 

respectively, by selecting 405/488/561 dichroic mirror and 490,565 secondary dichroic 

mirrors for GFP and mRFP emission, respectively. The emission was monitored by 

selecting GFP (BP 505-550) and Red (LP 575) emission filters to record the fluorescence 

intensity. The ROI was selected and mRFP bleached using 70% of 561 nm laser power 

by selecting 50 iterations. Bleaching was performed following pre- and post- scan images. 

The increase in GFP fluorescence intensity followed by mRFP bleaching was measured 

as FRET. FRET efficiency was calculated using the change in background subtracted 

fluorescence intensity as 100 x [(post-bleach intensity)-(pre-bleach intensity) / (post-

bleach intensity)]. In order to verify the increase in GFP intensity due to any possible 

artifact we obtained the Pearson product moment correlation coefficient r, a 

dimensionless index that ranges from -1.0 to 1.0 inclusive and reflects the extend of a 

linear relationship between the two fluorescence intensity data of GFP and mRFP while 
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bleaching. In our case we expect -1.0 as the perfect fitting of the linear relation. The 

range between -0.7 to -1.0 was selected as positive FRET based on values obtained from 

negative controls (cyto-mRFP/cyto-GFP pair) which range between –0.1 to 0.3. 

      r =             ∑(x-x) (y-y) 
                         _________ 
                    ___    _           _ 
                  √ ∑(x-x)2 ∑(y-y)2 

 

Where x and y are the sample means average (array1, GFP intensity) and average 
(array2, mRFP intensity). 

 
FRET analysis work was done in collaboration with Dr. Thankiah Sudhaharan (SA Lab). 
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Figure 2.1 FRET analysis by acceptor photobleaching (AP-FRET). 

A schematic illustrating the theory of FRET is shown in the left panel. If two protein 
molecules are within 1-10 nm of each other, i.e. directly binding each other, and the 
dipole moments of the two fluorescent molecules are in the correct orientation, FRET 
may occur. In the right panel acceptor photobleaching is shown as a means to determine 
whether FRET is occurring. In this method the acceptor is destroyed by bleaching 
eliminating a potential energy transfer from the donor. Increase in donor emission on 
acceptor photobleaching is an indicator that FRET is occurring (AP-FRET). 
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Figure 2.1 
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RESULTS 
 
Chapter 3. The IRSp53 phenotype. 

3.1. Introduction. 

The adaptor protein IRSp53 was identified in a yeast-two hybrid screen using the 

WAVE1 polyproline sequence as bait (Miki, 2000). It was also identified in Cdc42 and 

Rac1 yeast two-hybrid screens (Govind et. al., 2000; Krugmann et. al., 2001, respectively) 

and shown to be an effector of Cdc42. It contains a potential Rac1-binding (RCB) 

domain (residues 1-228), a Cdc42-binding (CRIB) and a Src homology 3 (SH3) domain 

as well as other protein interaction sites. The mechanism by which IRSp53 induces 

morphological change and in particular filopodia formation is the subject of this thesis.  

 

In this chapter, to further understand the functions of IRSp53, I used sequential time-

lapse DIC/fluorescence microscopy of N1E115 neuroblastoma cells (a model for 

neuronal cells)  transfected with GFP-actin and tdRed-IRSp53. 

 

3. 2. Study of cytoskeletal dynamics using GFP-actin in N1E115 cells. 

To study the cytoskeleton dynamics of filopodia/lamellipodia in mammalian cells, GFP-

actin cDNA constructs were transfected in N1E115 cells under live conditions. Actin 

cytoskeleton changes were observed with time-lapse microscopy, carried out on a heated 

stage (37oC) on an inverted microscope (Axiovert 200M, Zeiss) equipped for 

fluorescence and DIC microscopy. Data were acquired with a back-illuminated CCD 

camera (Roper Scientific), and Metamorph software.  
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The cells appeared to be morphologically active. The actin network was found to be 

dynamic with cells having a leading edge, filopodia and lamellipodia but no neurites 

(Figure 3.1). Transfected cells were observed to cycle between a state of membrane 

ruffling and filopodia protrusion throughout the whole timeframe, with no defined 

polarity in most cases observed. Thus I was able to use GFP-actin to follow actin 

dynamics in live cell imaging studies. 

 

3. 3. Phenotype of IRSp53 overexpression in N1E115 cells. 

IRSp53 is a Cdc42 effector and an efficient inducer of filopodia formation in N1E115 

cells and Swiss 3T3 cells (Govind et. al., 2001; Krugmann et. al., 2001). IRSp53 may 

induce membrane ruffling and lamellipodia formation through interaction with WAVE1 

and 2 (Miki et. al., 2000). Recent work has suggested that the N-terminal of IRSp53 is 

sufficient to induce filopodia formation (Yamagishi et. al., 2004; Millard, et. al., 2005). 

Filopodia are actin-based protrusions that emerge from the periphery of cells and 

neuronal growth cones. They have distinct morphology; uniform cylinder shape, are of a 

certain length and sometimes protrude at an angle, waving as they extend. In contrast to 

retraction fibres and aberrant actin protrusions, filopodia are transient in nature. It is 

therefore essential to do time-lapse experiments to determine the nature of structures 

being observed and whether they have all the characteristics of filopodia.  

 

In the experiments described in this thesis a filopodia is defined as an actin containing 

structure, with a life-time of 120-170s, a width of approximately 1-2 μm and length of  
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Figure 3.1 Time-lapse imaging of N1E115 cells transfected with GFP-actin. 

N1E115 cells were transfected with GFP-actin and imaged 18-24 hours later.  Live cell 
imaging was carried by sequential image acquisition using fluorescence and DIC 
channels (for details, see Materials and Methods section). Images were taken every 10 
secs for 10 mins.  
(Bar = 10 μm) 
 
(Movie 3.1.  GFP-actin transfected N1E115 cells). 
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Figure 3.1 
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between 6-15 μm. This is based on characterization and statistical analysis of various 

induced filopodia in mammalian cells (see appendix III for details).  

 

To analyze the phenotypic effect of IRSp53, I carried out time-lapse experiments 

following the fluorescence using GFP-actin. Cells were observed to undergo successive 

rounds of actin polymerization, with formation of lamellipodia and filopodia (Figure 3.2). 

 

To analyze the phenotypic effect in more detail I carried out time-lapse experiments 

following DIC and fluorescence simultaneously, using GFP-actin and tdRed-IRSp53 

transfected N1E115 cells. The morphology of cells expressing HA-IRSp53 was similar to 

those expressing GFP-actin/tdRed-IRSp53 suggesting that the relatively larger ‘GFP- or 

tdRed- fusions’ did not alter the IRSp53 phenotype significantly (Figure 3.3).  

Overexpression of IRSp53 induced a number of phenotypes within the cell population. 

The general features of overexpressing cells include formation of neurites (with 

branching), filopodia, lamellipodia with well defined ribs and membrane ruffling. Figure 

3.3 shows examples of two cells with these features. Filopodia and lamellipodia 

formation could be seen along the length of the neurite (Figure 3.3B). In some cells the 

predominant phenotype was the formation of large lamellipodia with well defined ribs 

(Figure 3.3A). IRSp53 colocalized with actin in filopodia (Figure 3.3C), the ribs (Figure 

3.3D) and lamellipodia (Figure 3.3E). IRSp53 was most strongly enriched with F-actin in 

filopodia and the rib-like structures. In cells that expressed high levels of IRSp53 the 

filopodia become stabilized and form star-like clusters. These structures did not appear to 

turnover.  
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Figure 3.2 Time-lapse imaging of N1E115 cells transfected with GFP-actin and HA-
IRSp53. 
 
N1E115 cells were transfected with GFP-actin and HA-IRSp53 by standard transfection 
procedure and left between 18-24 hours for cDNA expression. Live cell 
DIC/fluorescence imaging was then carried out (as described in Materials and Methods). 
(Movie 3.2.  N1E115 cells transfected with HA-IRSp53 and GFP-actin) 
 
(A) GFP-actin image of a N1E115 cell transfected with IRSp53.  
(B) Time sequence of three regions (panels 1-3) of the cell in (A). 
(Bar = 10 μm) 
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Figure 3.2 
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Figure 3.3 Time-lapse imaging of GFP-actin and tdRed-IRSp53 in N1E115 cells. 

N1E115 cells were transfected with GFP-actin and tdRed-IRSp53 and left for between 
over 18-24 hours for cDNA expression. Following cDNA expression time-lapse imaging 
was carried out to visualize GFP, tdRed and DIC (as described in Materials and Methods).  
(Bar = 10 μm) 
 
(Movie 3.3.1. N1E115 transfected with GFP-actin and tdRed-IRSp53 – A)  
(Movie 3.3.2. N1E115 transfected with GFP-actin and tdRed-IRSp53 – B) 
 
(A) N1E115 cell with IRSp53 induced lamellipodia and ribs 
(B) N1E115 cell with IRSp53 induced neurites 
(C) Time sequence showing filopodia  
(D) Time sequence showing membrane ruffle and ribs 
(E) Time sequence showing lamellipodia 
 
For C-E; lane 1-DIC, lane 2-GFP-actin, lane 3-tdRedIRSp53 and lane 4-Merge images. 
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Figure 3.3 
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3. 4. Role of the IRSp53 SH3 domain in filopodia and lamellipodia formation. 

IRSp53 induces complex branched neurites that lack polarity. Induction of complexity 

(filopodia/lamellipodia) is significantly reduced in an IRSp53 mutant missing the C-

terminal domain comprising the SH3 domain (Govind et. al., 2001).  The C-terminal of 

IRSp53 contains at least three protein binding domains, the SH3 domain, a potential WW 

domain binding motif, and a PDZ domain binding motif that could be responsible for the 

neurite complexity. The IRSp53 SH3 domain is known to interact with a number of 

proteins, including, WAVE1/2, Mena, Espin, and Eps8 (Miki et. al., 2000, Krugmann, et  

al., 2001; Sekerkova et. al., 2003). To determine if the SH3 domain was responsible for 

the neurite complexity, I compared the phenotypes of wild-type protein with that of two 

mutants defective in binding to ligands (W/R and FP/AA) of the SH3 domain (expressed 

as GFP fusions). N1E115 neuroblastoma cells were transfected with the GFP-tagged 

fusion constructs of W/R and FP/AA (Phe427Pro428/Ala427/428). The two SH3 domain 

mutants did not affect neurite formation significantly (Figure 3.4). However, filopodia 

formation was reduced in the W/R mutant and absent in the FP/AA mutant (Figure 3.4D). 

Lamellipodia formation was reduced by 80% in both mutants but was still detectable 

(Figure 3.4E). Neurite branching was reduced in the SH3 domain mutants by 

approximately 50%. Thus the SH3 domain plays a major role in filopodia and 

lamellipodia formation induced by IRSp53. 

 

 

 

 

 123



Figure 3.4 Effect of mutations of the SH3 domain (W/R and FP/AA) on IRSp53 
phenotype in N1E115 cells. 
 
N1E115 cells were transfected with GFP-IRSp53, GFP-IRSp53-W/R and GFP-IRSp53-
FP/AA and left for 18-24 hours for cDNA expression. Whole cell images are shown in 
(A). In (B) areas of lamellipodia formation and in (C) structure of neurites are shown. 
 
Bar chart in (D) and (E) shows statistical data after scoring for filopodia per cell and 
lamellipodia/membrane ruffle per cell (see Materials and Methods for details). Data 
presented as mean +/- S.D. (n=6) (Experiments=3). 
(Bar = 10 μm). 
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Figure 3.4 
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Chapter 4. IRSp53 SH3 domain binding partners. 

4.1. Introduction. 

IRSp53 SH3 domain is known to interact with a number of proteins, including, 

WAVE1/2, Mena, Espin, and Eps8 (Miki et. al., 2000, Krugmann et. al., 2001, Sekerkova 

et. al., 2003). Mena was initially thought to be the strongest candidate to play a role in 

filopodia formation downstream of Cdc42-IRSp53 (Krugmann et. al., 2001). However, 

experiments with MDV7 Mena/VASP KO cells suggest that Mena is not essential for 

IRSp53 induced filopodia formation although quantitative data from these experiments 

were not presented (Nakagawa et. al., 2003). To identify new partners of IRSp53, a Mass 

Spectrometry analysis was carried out to isolate proteins interacting with IRSp53 SH3 

domain.  

 

4.2. IRSp53 SH3 domain associates with both N-WASP and WAVE1/2 protein 

complexes. 

A GST-IRSp53 SH3 domain affinity column was set up and brain proteins that bound 

were analyzed. Interestingly, WAVE1 and the WAVE2 complex proteins, Abi1/2b, 

p125Nap-1 and p140sra-1 were present on the GST-SH3 column (Figure 4.1). In addition 

to the WAVE1 complex I found N-WASP and CR-16 binding to the affinity column 

(Figure 4.1). Actin, tubulin, dynamin and mDia1 were also present on the column. In 

similar experiments using T-cell lysates instead of brain I detected Mena and WAVE2 as 

found previously (Krugmann, et. al., 2001; Miki et. al., 2000; Ong, S-W. and Ahmed, S., 

unpublished data).  
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Figure 4.1 Mass Spectrometry analysis of brain proteins binding to the IRSp53 SH3 
domain affinity column. 
 
Brain lysates were loaded onto GST-SH3 domain affinity columns and after washing, run 
on SDS-PAGE gels. Protein bands of distinct molecular mass were then excised and the 
peptide sequence determined as described in the Materials and Methods section. 
 
Lane 1- GST affinity column 
Lane 2- GST-IRSp53 SH3 domain affinity column 
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Figure 4.1 
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KIAA1681, known as the Ras association (RalGDS/AF-6) and pleckstrin homology 

domain was also among the proteins been pulled down. 

 

4. 3. IRSp53 interacts with N-WASP directly. 

The presence of N-WASP and CR-16 on SH3 domain affinity columns suggested that 

IRSp53 might induce filopodia formation by direct interaction with N-WASP. To 

investigate this, I used in vitro-transcription/translation to produce 35S-labelled N-WASP 

protein for use in binding with IRSp53 SH3 expressed as GST and bound on gluthathione 

sepharose beads. Cdc42-GST binding was used as positive control (Figure 4.2.B, lane 1) 

and GFP as a negative control (Figure 4.2.B, lane 4). The SH3 domain of IRSp53 indeed 

interacted specifically with N-WASP (Figure 4.2.B, lane 2). A weak interaction between 

amino acid residues 1-1295 of IRSp53 and N-WASP was also detected (Figure 4.2.B, 

lane 3).  

 

The IRSp53 SH3 domain interaction with N-WASP was also analysed using the yeast 

two-hybrid system. The SH3 domain was cloned into the bait vector (Clontech, system 3) 

and mated with a strain carrying the N-WASP cDNA cloned into the prey vector or with 

a strain carrying an empty prey vector as a control. IRSp53 and N-WASP were found to 

interact as diploids grew on quadruple dropout plates and possessed significant β-

galactosidase activity (Figure 4.3). 
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Figure 4.2 IRSp53 SH3 domain interaction with 35S-labelled N-WASP in vitro.  
 

35S-labelled N-WASP and GFP were generated using an in vitro transcription/translation 
kit. (A) SDS-PAGE analysis of GST proteins used for pull down and (B) X-ray 
autoradiograph film of 35S-N-WASP pull down experiment. (A and B) The GST fusion 
protein of Cdc42 (lane 1), IRSp53 SH3 (lanes 2 and 4), and IRSp53 lacking the SH3 
domain (lane 3) were used to pull down 35S-labelled-protein from the in vitro mix. 
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Figure 4.2 
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Figure 4.3 IRSp53 SH3 domain interaction with N-WASP using Yeast Two Hybrid. 

Yeast a/α strains containing (A) IRSp53 SH3 domain with N-WASP or (B) IRSp53 SH3 
and pACT2 (empty vector) were mated and then plated on either quadruple drop out 
(QDO) plates or his-/trp- plates for β-gal assays. The QDO is the selection plate for 
protein-protein interaction and the β-gal plate shows protein-protein interaction by 
enzyme activity (for details of the yeast two hybrid assay see Materials and Methods 
section). 
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Figure 4.3 
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4.4. FRET analysis of the IRSp53-N-WASP interaction. 

To confirm the interaction between IRSp53 and N-WASP, mRFP-tagged full length 

IRSp53 and GFP-tagged full length N-WASP were overexpressed in N1E115 and CHO-1 

cells. FRET analysis (by Acceptor Photo-Bleaching) was carried out. (For the theory on 

FRET, please refer to Materials and Methods section). 

 

FRET efficiencies (FEs) were calculated as described in the Materials and Methods 

section. FRET only occurs when the 2 molecules are in close proximity (distance of 

between 1 and 10 nm). A tandem mRFP-GFP construct was used as a positive control. 

The mRFP-IRSp53/GFP pair, GFP-N-WASP/mRFP pair and cyto-GFP/cyto-mRFP pair 

were used as negative controls. All the negative controls gave FEs in the range of 0.96-

1.91 (Table 4.1).   

 

In NIE115 cells FRET between N-WASP and IRSp53 was found to occur (FEs) in the 

filopodia (6.95%), neurites (18.4%) and the cell body (12.6%). In CHO-1 cells N-

WASP/IRSp53 FRET was observed in the filopodial tip (Figure 4.4).  FRET analysis was 

also carried out with mRFP-tagged full length N-WASP and GFP-tagged IRSp53 SH3 

mutants FP/AA and W/R. The FP/AA mutant cannot bind downstream effectors. FEs 

values for mutants were 2.95% and 4.34%, respectively, (Table 4.1). To investigate the 

FRET data in more detail, I used  the Pearson product moment correlation coefficient r 

(CC), a dimensionless index that ranges from -1.0 to 1.0 inclusive and reflects the extent 

of a linear relationship between the two fluorescence intensity data of GFP and mRFP 

while bleaching. In this case, I expect -1.0 as the perfect fitting of the linear relation. 
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Based on negative controls (see Materials and Methods), I used CC values between –0.7 

to –1.0 as FRET positive. CC values were express with a +/-SD (Table 4.1). 

 

From the FRET analysis I conclude that N-WASP can interact with IRSp53 in vivo at 

spatially important sites.  
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Figure 4.4 AP-FRET assay of mRFP-IRSp53 and GFP-N-WASP. 

N1E115 or CHO-1 cells were transfected with mRFP-tagged IRSp53 and GFP-tagged N-
WASP cDNA for around 36 hours to allow complete folding of the fluorescent proteins. 
A region of interest (ROI) was then selected and both GFP and RFP channels monitored 
over the time course of the experiment. Once baseline signals for both GFP and mRFP 
channels was obtained the mRFP was beached using a 561nm laser. Traces show changes 
in intensity of the GFP and mRFP channels during the experiment. The box in each 
image indicates the ROI. Full details of the AP-FRET methodology can be found in the 
Materials and Methods section 2.2.7.3. 
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Figure 4.4 
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Table 4.1 AP-FRET assay of mRFP-IRSp53 and GFP-N-WASP. 

AP-FRET analysis was carried out as described in Figure 4.4. FEs and CC were 
calculated as described in Materials and Methods 2.2.7.3.  
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Chapter 5. IRSp53 phenotype in N-WASP knock out cells. 

5.1. Introduction. 

Members of the WASP/WAVE family proteins promote actin polymerization by 

stimulating the actin-nucleating activity of the Arp2/3 complex (Takenawa and Miki, 

2001).  Hematopoietic WASP and ubiquitously expressed N-WASP interact directly with 

the Rho-GTPase Cdc42 through their CRIB domain (Aspenstrom et. al., 1996, Rohatatgi 

et. al., 1999). Cdc42 induces the formation of cell surface projections such as filopodia 

(Kozma et. al., 1995, Nobes and Hall, 1995) which is enhanced upon the presence of N-

WASP (Miki et. al., 1998).  This suggests that filopodia formation can result from 

Cdc42-based activation of N-WASP, which leads to Arp2/3 recruitment and leading to 

actin filament assembly (Carlier et. al., 1999).  In order to examine the functional 

consequence of the IRSp53-N-WASP interaction, I employed the use of N-WASP control 

precursors (WT) and N-WASP knock-out (KO) fibroblast cell lines respectively (for 

details of N-WASP WT and KO fibroblasts see Lommel et. al., 2003 and Materials and 

Methods). 

 

5.2. IRSp53 requires N-WASP for filopodia formation. 

In the first set of experiments I compared the effect of IRSp53 cDNA microinjection on 

the morphology of the N-WASP WT and KO cells. cDNA for GFP-actin was included in 

the microinjection to identify expressing cells and to facilitate imaging of the actin 

dynamics (Figure 5.1). When cells were injected with GFP-actin cDNA alone, and scored 

for filopodia and membrane ruffling, there was no difference between N-WASP WT and  
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Figure 5.1 IRSp53 phenotypes in N-WASP WT and KO cells. 
 
(A) N-WASP WT (b,d,e) and N-WASP KO fibroblast (a,c) were microinjected with (a,b) 
GFP-actin, or (c,d) GFP-actin with IRSp53 cDNA. Cells were left for 1-6 hours for 
cDNA expression. Images show a time sequence from time-lapse experiments of; GFP-
actin/IRS-53 microinjection in N-WASP WT cells (f), and N-WASP KO cells (g).   
(Bar = 10 μm) 
 
(B) and (C) Statistical analysis of experiments illustrated in A. Filopodia per cell and % 
lamellipodia/membrane ruffle per cell were scored (refer to section 2.2.6 in Materials and 
Methods). 
 
(Movie 5.1.1. N-WASP WT microinjected with IRSp53). 
(Movie 5.1.2. N-WASP KO microinjected with  IRSp53). 
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Figure 5.1 
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N-WASP KO cells (Figure 5.1A, a and b). IRSp53 induced strong filopodia formation in 

N-WASP WT and caused the formation of neurite-like projections (Figure 5.1A, d). In N- 

WASP KO cells no filopodia or neurite–like processes were seen. However, membrane 

ruffling (and lamellipodia formation) was strongly stimulated when IRSp53 was 

expressed in N-WASP KO cells. (Figure 5.1A, c). These results suggested that N-WASP 

is essential for IRSp53 induced filopodia formation, and when it was absent secondary 

morphological activities were revealed.  

 
 
5.3. The Effect of Rac1N17 on IRSp53 Phenotype in N-WASP KO cells. 

IRSp53 induces a strong filopodial response in N-WASP WT cells but not in KO cells. 

However, IRSp53 does induce a membrane ruffling response in the N-WASP KO cells. 

To eliminate the possibility that the membrane ruffling was masking potential filopodial 

activity in the N-WASP KO cells, I examined the effect of Rac1N17 on the IRSp53 

induced phenotype. In the presence of Rac1N17, IRSp53-induced ruffling is kept to 

minimum in both cell types (Figure 5.2C, lanes 5-6). A significant increase in filopodia 

number was observed in the WT cells with IRSp53/Rac1N17 (Figure 5.2B, lane 5) as 

compared to IRSp53 alone (Figure 5.2B, lane 3). In KO cells, no filopodia were observed 

despite ruffling activity been reduced significantly by Rac1N17 (Figure 5.2B, compare 

lanes 4 and 6, and Figure 5.2C, lanes 4 and 6). 
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Figure 5.2 Effect of Rac1N17 on IRSp53 induced phenotype. 
 
(A) N-WASP WT and KO cells were microinjected with either (a,b) IRSp53 or (c,d) 
IRSp53 with Rac1N17 and GFP-Actin cDNA. The cells were then left to express the 
cDNA for between 1-6 hours. GFP-actin positive cells were imaged using DIC time-lapse 
microscopy as described in the Material and Methods section.  
(Bar = 10 μm) 
 
(B) and (C) Statistical analysis of experiments illustrated in A. Filopodia per cell and % 
lamellipodia/membrane ruffle per cell were scored (refer to section 2.2.6 in Materials and 
Methods). 
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Figure 5.2 
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5.4. IRSp53 overexpression is comparable in both N-WASP WT and KO cells. 

The expression level of a protein can affect the function. To determine if the expression 

level of the IRSp53 proteins in the two cell types was the same IRSp53 fluorescence 

intensity was measured in both N-WASP WT and KO cells. The expression level of 

IRSp53 was found to be of comparable levels in both cell types. (Figure 5.3) 

 

5.5. Effect of N-WASP reconstitution in KO fibroblasts of IRSp53 phenotype. 
 
In the next set of experiments I titrated in N-WASP cDNA to the KO cells with IRSp53 

cDNA. Low levels of N-WASP cDNA were tolerated by the cells and allowed me to 

carry out reconstitution experiments. N-WASP KO cells microinjected with N-WASP 

cDNA responded to IRSp53 by filopodia formation (Figure 5.4B) and neurite-like 

processes were also formed. These results support the idea that IRSp53 requires N-

WASP for its filopodia formation.  

 
N-WASP contains a WA domain that is important for binding to and activation of the 

Arp 2/3 complex that is required for actin branching networks. To investigate if Arp2/3 

activation is essential for the filopodia formation observed, I used an N-WASPΔWA 

mutant that had a WA (ΔVCA) deletion and carried out reconstitution experiments. This 

N-WASP-ΔWA mutant protein would not be able to bind or activate the Arp2/3 complex. 

The N-WASPΔWA-IRSp53 combination was able to reconstitute filopodia formation in 

KO cells but neurite-like processes were not observed. Furthermore, filopodia formation 

with the ΔWA mutant was more robust than that observed with cDNA encoding wild-

type protein. Reconstitution with the N-WASP-ΔWA mutant induced filopodia on the 

dorsal surface of the KO cells as well as on the periphery (Figure 5. 4C).   
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Figure 5.3 IRSp53 expression in N-WASP WT and KO cells. 
 
(A) N-WASP WT and KO cells were transfected with HA-IRSp53 and GFP-actin. Cells 
were left for between 18-24 hours for cDNA expression. They were then fixed and 
stained. Anti-HA antibodies were used to detect IRSp53.  
(Bar = 10μm) 
 
(B) Quantification of fluorescence signal was carried out using Metamorph software and 
Microsoft Excel. A semi-automated procedure was employed in the analysis.  
 

1. Load images into Metamorph.  
2. Define the ROI (region of interest) (under Regions/Region Tools).  
3. Connect to Excel through Dynamic Data Exchange (Under Measure 

Menu/Region Measurements/Open log/DDE/Excel).  
4. Choose "all regions" (in Region Measurements window).  
5. Log data. This will generate a table containing image number, average intensity, 

and other values as specified in Metamorph.  
 
The values obtained were presented in graphical form.  
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Figure 5.3 
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Figure 5.4  Reconstitution of N-WASP KO cells with N-WASP and N-WASPΔWA.  
 
The IRSp53 phenotype was assessed in N-WASP KO cells, after reconstitution with (B) 
N-WASP or (C) N-WASPΔWA. Cells were left for between1-6 hours for cDNA 
expression. GFP-actin positive cells were imaged using DIC time-lapse microscopy as 
described in the Material and Methods section. (D and E) Statistical analysis of the 
experiment illustrated in A-C. Cells were scored for the number of filopodia per cell and 
% lamellipodia/membrane ruffle per cell (refer to section 2.2.6 in Materials and Methods). 
(Bar = 10 μm) 
 
(Movie 5.4.1. N-WASP KO microinjected with  IRSp53). 
(Movie 5.4.2. N-WASP KO microinjected with  IRSp53 and N-WASP). 
(Movie 5.4.3. N-WASP KO microinjected with  IRSp53 and N-WASPΔWA). 
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Figure 5.4 
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5.6. Characteristics of filopodia induced in N-WASP reconstitution experiments. 

I compared filopodia induced by IRSp53/N-WASP pair and IRSp53/NWASPΔWA pair 

in reconstitution experiments for size and turnover time (Figure 5.5C and D). The 

filopodia induced in the two situations differed significantly only in turnover time (Figure 

5.5D). The effect of the WA deletion was to increase the half-life of the filopodia from 30 

sec to 120 sec (Figure 5.5E) which was caused by an increase in time taken for 

disassembly.  

 

5.7. WAVE1 (SCAR) and WAVE1 ∆WA can reconstitute IRSp53 induced filopodia 

formation in N-WASP KO cells. 

N-WASP contains a number of domains, including an N-terminal sequence that has been 

shown to be important for interacting with the WASP interacting protein (CR16, WIP) 

forming a complex. To determine whether the N-terminal sequence of N-WASP was 

required for reconstitution, I used SCAR (a WASP family homolog, WAVE1 homolog in 

Drosophila) and SCAR ∆WA construct and investigated whether these proteins can 

reconstitute IRSp53 induced filopodia formation in N-WASP KO cells. (The SCAR 

constructs will be referred to as WAVE1 and WAVE1 ∆WA throughout rest of the thesis.) 

The combination of IRSp53 and WAVE1 or WAVE1 ∆WA mutant was able to 

reconstitute filopodia formation in the KO cells (Figure 5.6). The level of filopodia 

formation obtained by WAVE1 and WAVE1∆WA reconstitution was comparable to that 

obtained with N-WASP (Figure 5.6C, lanes 3, 4 and 5).  
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Figure 5.5 IRSp53 induced filopodia dynamics in N-WASP KO cells reconstituted 
with either N-WASP or N-WASPΔWA. 
 
N-WASP KO cells were transfected with GFP-actin/IRSp53 and (A) N-WASP cDNA or 
(B) N-WASPΔWA cDNA and cells left for 1-6 hours for cDNA expression. GFP-actin 
positive cells were imaged using DIC time-lapse microscopy as described in the Material 
and Methods section. The time-lapse series shown gives an example of one such 
measurement. Filopodia were measured for (C) size, (D) half-life, and (E) 
assembly/disassembly. 
(Bar=5 μm) 
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Figure 5.5 
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Figure 5.6 IRSp53 induced filopodia dynamics in N-WASP KO cells transfected 
with either WAVE1 (SCAR) or WAVE1ΔWA (SCAR mutant). 
 
N-WASP KO cells were microinjected with GFP-actin and (A) IRSp53 and WAVE1 
cDNA or (B) IRSp53 and WAVE1ΔWA cDNA and cells were left for 1-6 hours for 
cDNA expression. GFP-actin positive cells were imaged using DIC time-lapse 
microscopy as described in the Material and Methods section. (C,D) Statistical analysis 
of the experiment illustrated in A. Cells were scored for the number of filopodia per cell 
and % lamellipodia/membrane ruffle per cell (refer to section 2.2.6 in Materials and 
Methods). 
(Bar=10 μm) 
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Figure 5.6 
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Figure 5.6 
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These data suggest that the N-terminal sequence of N-WASP may not be essential for 

IRSp53 induced filopodia formation in this system, making a role for WIP unlikely. 

 

5.8. The SH3 domain is required for IRSp53 induced filopodia formation. 

To determine the role of the SH3 domain in IRSp53 induced filopodia formation, a SH3 

deletion mutant FP/AA was employed in the study.  The FP/AA mutant would not be 

able to bind to N-WASP or other interacting proteins like WAVE/SCAR family. In FRET 

experiments the FP/AA mutation eliminated IRSp53 binding to N-WASP (Table 4.1).  

The FP/AA mutant failed to induce any filopodia formation in both the WT and KO cells 

(Figure 5.7). N-WASP reconstitution experiments on the KO cells were also done using 

the FP/AA mutant. This combination of the FP/AA mutant and N-WASP was not able to 

re-constitute the filopodia activity in the KO cells (Figure 5.8C, lane 4). These results 

strongly support the idea that the SH3 domain is required for N-WASP to reconstitute 

IRSp53 induced filopodia formation in N-WASP KO cells. 

 

5.9. FRET analysis of the IRSp53-N-WASP interaction in the KO cells. 

To confirm that the IRSp53-N-WASP interaction described in Chapter 4.4 also occurs in 

the N-WASP KO cell line, I overexpressed mRFP-tagged full length IRSp53 and GFP-

tagged full length N-WASP in the N-WASP WT and KO cell and  AP-FRET analysis 

was carried out. A positive FRET result with FE values of 22% and 20% in N-WASP 

WT and KO cells were obtained, respectively. CC values of -0.99 was also obtained for 

both WT and KO cells respectively. These results fall within the acceptable range of -0.7 
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to -1, confirming that the observed increase in GFP signal was not an artifact (for details, 

refer to Materials and Methods).   
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 Figure 5.7  Morphological activity of the SH3 domain mutant IRSp53-FP/AA.  
 
(A) N-WASP WT and KO cells were microinjected with IRSp53-FP/AA cDNA and 
GFP-actin. Cells were left for between 1-6 hours for cDNA expression. GFP-actin 
positive cells were imaged using fluorescence and DIC time-lapse-microscopy as 
described in the Material and Methods section. (B,C) Statistical analysis of cells from the 
experiment illustrated in (A). Cells were scored for number of filopodia per cell and % 
lamellipodia/membrane ruffle per cell (refer to section 2.2.6 in Materials and Methods). 
(Bar = 10 μm) 
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Figure 5.7 
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Figure 5.7 

0

5

10

15

20
Fi

lo
po

di
a 

pe
r c

el
l

N-WASP WT

N-WASP KO

 

B 

1. GFP-actin 
2. GFP-actin 
3. GFP-actin and IRSp53 
4. GFP-actin and IRSp53 
5. GFP-actin, IRSp53 FP/AA  
6. GFP-actin, IRSp53 FP/AA  

 1       2              3       4            5      6 

 
 

0

10

20

30

40

50

60

%
 L

am
el

lip
od

ia
/M

em
br

an
e 

ru
ffl

e 
pe

r c
el

l

N-WASP WT

N-WASP KO

 

C 

1. GFP-actin 
2. GFP-actin 
3. GFP-actin and IRSp53 
4. GFP-actin and IRSp53 
5. GFP-actin, IRSp53 FP/AA  
6. GFP-actin, IRSp53 FP/AA  

 1      2              3     4              5      6 

 
 



Figure 5.8 IRSp53-FP/AA induced morphological  effects in N-WASP KO cells 
reconstituted with N-WASP. 
 
(A) A reconstitution experiment was carried out with the IRSp53-FP/AA mutant. N-
WASP KO cells were micro-injected with GFP-IRSp53-FP/AA and N-WASP 
(approximately 100 ng cDNA). Cells were then left for between 1-6 hours for cDNA 
expression. GFP-actin positive cells were then imaged as described in Materials and 
Methods. (B,C) Statistical analysis of the experiment illustrated in (A). The cells were 
scored for number of filopodia per cell and % lamellipodia/membrane ruffle per cell 
(refer to section 2.2.6 in Materials and Methods).  
(Bar = 10 μm). 
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Figure 5.8 
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Figure 5.8 
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Chapter  6. The IRSp53 IMD 

6.1. Introduction. 

The predicted  N-terminal helical stretch of 250 amino acids of IRSp53 has been reported 

to be an evolutionarily conserved F-actin bundling domain involved in filopodia 

formation (Millard et. al., 2005). A number of proteins including IRSp53 and missing in 

metastasis (MIM) protein share this unique domain termed the IRSp53/MIM homology 

domain (IMD/BAR domain). The IMD domain is highly conserved in vertebrates and has 

domain relatives in invertebrates which do not show obvious homology to any known 

actin interacting proteins. A previous report (Yamagashi at.el, 2004) has shown that the 

IMD domain derived from both IRSp53 and MIM can induce “filopodia” (for definition 

of filopodia, please refer to section 6.2 below) in cultured cells and form tightly packed 

F-actin bundles in vitro. On the other hand, findings from work on MIM that suggested 

the domain does not bundle F-actin (Dr. Pekka Lappalainen, University of Helsinki, 

personal communications). In this chapter I set out to investigate the role of IMD domain 

in IRSp53 function. Is the IMD sufficient for filopodia formation? 

 

6.2. IRSp53 IMD domain produces protrusions. 
 
To establish the role of IMD in IRSp53 function, I carried out overexpression studies in 

N-WASP WT and KO cells. GFP-IMD and mRFP-actin cDNA were microinjected into 

N-WASP WT and KO cells and time-lapse microscopy was carried out. The IMD domain 

was indeed able to drive protrusions. However, upon further examination, I determined 

that the IMD-driven protrusions were not filopodia. I defined a filopodium by the 

following criteria:  
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1. Contains F-actin 

2. Have a length of between 6-15 μm  

3. Have a thickness of between 1-2 μm 

4. Have a lifetime of 120 – 170 secs 

 

This is based on observations of filopodia formation induced by IRSp53, N-WASP, 

Cdc42 and Toca-1 in a variety of mammalian cell lines (for more details, please refer to 

appendix III). 

 

The IMD-driven protrusions observed fulfil some but not all of the criteria. They can be 

classified into 3 groups (Figure 6.1; Table 6.1). The first group consist of protrusions that 

were stable and contained F-actin. They were also of the correct length but with a smaller 

width (thickness). The second group of protrusions was also stable but did not contain F-

actin. These protrusions were also smaller in size in terms of length and thickness. The 

last group of protrusions were dynamic but they were also smaller in size in terms of 

length and thickness and most importantly, they did not contain F-actin (Table 6.1).  
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Figure 6.1 Characterization of IMD domain driven protrusive structures. 
 
(A) N-WASP WT or KO cells were microinjected with (a-c) GFP-IMD and mRFP-actin 
and cells were left for between 1-6 hours for cDNA expression. Positive cells were 
imaged using time-lapse microscopy as described in the Material and Methods section.(a) 
Stable protrusions with actin; (b) Stable protrusions without actin; (c) Dynamic 
protrusions without actin. (d) N-WASP WT cells microinjected with IRSp53 and GFP-
actin. (B) Statistical analysis of experiments illustrated in A, together with additional data 
from experiments carried out with the IMD-4K mutant. Cells were scored for different 
types of protrusive activity per cell. 
(Bar = 10 μm) 
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Figure 6.1 
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Table 6.1 Characterization of IMD/IMD-4K induced protrusions. 
 
IMD/IMD-4K induced protrusions can be classified into 3 groups:  

1. Stable structures with actin 
2. Stable structures without actin 
3. Dynamic structures without actin 
 
Filopodia produced by IRSp53 is used for comparison as group 4 

 
N-WASP WT and KO cells were microinjected with GFP-IMD or GFP-IMD-4K with 
mRPF-actin. Cells were left for 1-6 hours for cDNA expression before live cell imaging 
was carried out. Protrusions were imaged for 10 mins with frames taken every 10 secs. 
Stable structures (1,2) did not turnover during the 10 mins and are scored as having a 
lifetime of more than 10 mins. Dynamic structures (3,4) are those that are 
appearing/disappearing over the 10 mins. Lifetime is determined as the time taken from 
appearance to disappearance.  
 
F-actin was followed with mRFP signal. All measurements are presented as an average + 
SD. (n=7). Three experiments were carried out. 
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The IRSp53-IMD was reported to have intrinsic actin-bundling activity and four lysine 

(4K) residues have been identified to be important for interaction with actin (Millard et. 

al., 2005). It was reported that mutation of these four residues resulted in loss of 

“filopodia” formation and reduced F-actin bundling activity. To investigate if the 4K of 

the IMD is indeed required for filopodia formation, I employed the use of an IMD mutant, 

GFP-IMD-4K. The IMD-4K has 4 lysines (K142,143,146 and 147) mutated to glutamic 

acid (D). I microinjected GFP-IMD-4K and mRFP-actin cDNA into N-WASP WT and 

KO cells and carried-out time-lapse microscopy. I was able to detect dynamic protrusions 

that resemble filopodia but they did not contain any F-actin (Figure 6.1B, Table 6.1). 

These structures were also of a smaller size in terms of length and thickness. IMD-4K did 

not induce stable protrusions with or without actin.  (Figure 6.1B; Table 6.1). Taken 

together, these results suggested that the IMD domain is able to drive protrusions. 

However, these protrusions either lack the dynamics of a real filopodium or do not 

contain F-actin. I will refer to these IMD induced protrusions as “partial filopodia”; 

dynamic membrane protrusions that lack F-actin. 

 

6.3. The IMD-4K is important for IRSp53 filopodia formation. 

The IMD domain was microinjected into N-WASP WT and KO cells and found to induce 

“partial filopodia in both cases (Figure 6.2A). N-WASP does not play a role in IMD 

function on its own.  

 

To investigate if the 4 lysines of the IMD domain are required for IRSp53-induced 

filopodia formation, I employed the use of a full length IRSp53 protein with an IMD-4K 
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mutation (IRSp53-4K).  IRSp53-4K did not induce filopodia in either WT or KO cells 

(Figure 6.2B; Figure 6.2C, lane 5-8). Thus, the data are consistent with IMD activity 

being important for IRSp53 function.  

 

6. 4. IRSp53 interacts directly with F-actin but IMD does not.  

To determine if IRSp53 and IMD interact directly with F-actin, AP-FRET experiments 

were carried out. Cells were transfected with GFP-IRSp53 or GFP-IMD with mRFP-actin  

and AP-FRET analysis was carried out.  FRET was observed between GFP-

IRSp53/mRFP-acin in the filopodia, neurite, rib, ruffles and cell body. FE values ranging 

from 5.4 to 7.7 % was obtained (Table 6.2). Corresponding CC values also fall within the 

acceptable range of between –0.7 to –1, confirming the positive FRET results. On the 

other hand, I failed to observe any FRET between GFP-IMD/mRFP-actin or the GFP-

IMD-4K/mRFP-actin pair (Table 6.2). 
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Figure 6.2 Phenotype of the IRSp53-4K in N-WASP WT and N-WASP KO cells. 
 
(A) Cells were microinjected with GFP-IMD and mRFP-actin or (B) GFP-IRSp53-4K 
and mRFP-actin and were cells left for between1-6 hours for cDNA expression. Positive 
cells were imaged using time-lapse microscopy as described in the Material and Methods 
section. (a,c) N-WASP WT cells and (b,d) N-WASP KO cells. (C and D) Statistical 
analysis of the experiments illustrated in A and B. Cells were scored for protrusions per 
cell and % lamellipodia/membrane ruffle per cell (refer to section 2.2.6 in Materials and 
Methods). 
(Bar = 10 μm) 
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Figure 6.2 
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Figure 6.2 
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Table 6.2 AP-FRET assay of mRFP-IRSp53, mRPF-IMD and GFP-actin. 
 
AP-FRET analysis was carried out as described in Figure 4.4. FEs and CC were 
calculated as described in Materials and Methods 2.2.7.3. 
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Chapter 7. The role of G-Proteins. 

7.1. Introduction. 

Cdc42 is a ubiquitously expressed protein that belongs to the family of Rho GTPases 

(Bishop & Hall, 2000). Rho GTPases control many process including the organization of 

the actin and microtubule cytoskeleton, proliferation and apoptosis. They exist in an 

inactive GDP-bound and an active GTP-bound state. Activation of the Rho GTPases is 

mediated by GEFs that catalyze the replacement of the GDP by GTP. Expression of 

constitutively active Cdc42, Cdc42V12, induces the formation of actively protruding 

filopodia with or without concomitant lamellipodia formation depending on the cell type 

(Kozma, et. al., 1995; Nobes et. al., 1995). N-WASP is one of the downstream effectors 

of Cdc42 that has been implicated to be involved in filopodia formation (Miki et. al., 

1998). N-WASP was shown to bind directly to Cdc42 through its CRIB motif. When co-

expressed with active Cdc42, the formation of filopodia was observed. Binding of active 

Cdc42 to the CRIB region of N-WASP disrupts the inhibitory interaction between N- and 

C- terminal moieties of the N-WASP molecule to reveal the binding sites to several 

proteins (Kim et. al., 2000). On filopodia formation, N-WASP is assumed to activate 

Arp2/3 complex and recruit actin monomers of profilin-actin complex to the fast growing 

ends of actin filaments (Rohatgi et. al., 1999). 

 

7. 2. The Cdc42 phenotype. 

To analyze the phenotypic effect of Cdc42, I carried out time-lapse experiments 

following the fluorescence using GFP-actin to observe actin dynamics. N1E115 cells 

were transfected with Cdc42V12 and GFP-actin cDNA. Overexpression of Cdc42V12 
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induces a fan shape leading edge with ribs and a thin lamellae (Figure 7.1, compare with 

Figure 3.1). Cdc42V12-induced filopodia are not clearly seen because the activation of 

Rac1 induced membrane ruffling.  

 

Previous work (Lommel et. al., 2001) has suggested that Cdc42 is competent to induce 

filopodia in N-WASP KO cells. However, the experiments were done with 

Cdc42L61/Rac1N17/C3 toxin combination and not with Cdc42V12 or Cdc42L61 alone. I 

re-investigated the role of Cdc42 by comparing the effects of Cdc42V12 alone, 

Cdc42V12/Rac1N17 and Cdc42V12/Rac1N17/C3 toxin in the two cell lines. I could not 

reproduce the results (Lommel, et. al., 2001) using Cdc42V12/Rac1N17/C3 toxin; the 

cells invariably died with this combination of reagents. Cdc42V12 induced a strong 

membrane ruffling response in both cell lines and filopodia could not be detected in the 

KO cells.  

 

7.3. The effect of Rac1N17 on the Cdc42 phenotype in N-WASP KO cells. 

Cdc42 induces a strong membrane ruffling response in N-WASP WT/KO cells (figure 

7.2A). To eliminate the possibility that the membrane ruffling was masking potential 

filopodial activity in these cells, I examined the effect of Rac1N17 on Cdc42V12 induced 

phenotype. In the presence of Rac1N17, Cdc42V12-induced ruffling is kept to a 

minimum in both cell types (Figure 7.2D, Lane 7 and 8). A significant increase in 

filopodia number was observed in the WT cells with Cdc42V12/Rac1N17 (Figure 7.2B; 

Figure 7.2C, Lane 7). In KO cells, no filopodia were observed despite ruffling activity  
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Figure 7.1 Phenotype of Cdc42V12 in N1E115 cells 
 
GFP-actin phenotype of N1E115 cells overexpressing Cdc42V12. A typical fan shape 
spread of thin lamellae and ribs are observed with a directional progression of 
polymerization. Panel on the right shows the details in DIC channel.  
(Bar = 12 μm) 
 
(Movie 7.1. N1E115 transfected with Cdc42V12 and GFP-actin). 
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Figure 7.1 
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Figure 7.2  Phenotype of Cdc42V12 in N-WASP WT and KO cells. 
 
N-WASP WT and KO cells were (A) microinjected with Cdc42V12 cDNA or (B) with 
Cdc42V12 and Rac1N17 cDNA as per described in Materials and Methods. Cells were 
cells left for between 1-6 hours for cDNA expression. Positive cells were imaged using 
time-lapse microscopy as described in the Material and Methods section. (C and D) 
Statistical analysis of experiments illustrated in A and B. Cells were scored for 
protrusions/ruffling and compared to various conditions (refer to section 2.2.6 in 
Materials and Methods). 
(Bar = 10 μm) 
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Figure 7.2 
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having been reduced significantly by Rac1N17 (Figure 7.2B, panel d; Figure 7.2C, Lane 

8). These results suggested that N-WASP is likely to be required for Cdc42-induced 

filopodia formation. 

 

7. 4. Cdc42 requires N-WASP for filopodia formation. 

In the next set of experiments, I titrated in N-WASP cDNA to the KO cells with Cdc42 

V12/Rac1N17 cDNA to carry out reconstitution experiments. N-WASP KO cells 

microinjected with N-WASP cDNA responded to Cdc42V12/Rac1N17 and filopodia 

formation was observed (Figure 7.3A). As a control, N-WASP cDNA was titrated into 

the N-WASP KO cells and time-lapse microscopy was carried out (Figure 7.3B). A 

ruffling phenotype was observed but no filopodia were detected. Taken together, these 

results support the idea that N-WASP is essential for Cdc42 driven filopodia formation.  
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Figure 7.3 Cdc42V12/Rac1N17 phenotype in N-WASP KO cells with N-WASP 
reconstitution.  
 
N-WASP KO cells were microinjected with N-WASP cDNA (100ng/μl)/GFP-actin and 
with (A) Cdc42V12/Rac1N17 cDNA mix or (B) without. Cells were then left for between 
1-4 hours for cDNA expression. GFP-actin positive cells were imaged using DIC time-
lapse-microscopy as described in the Material and Methods section. (C,D) Statistical 
analysis of experiments illustrated in A and B. Cells were scored for the number of 
filopodia per cell and % lamellipodia/membrane ruffle per cell (refer to section 2.2.6 in 
Materials and Methods). 
(Bar = 10 μm) 
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Figure 7.3 
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Chapter 8. Role of WAVE1, WAVE2 and Mena in IRSp53 induced filopodia 

formation. 

8.1 Introduction. 

WASP/WAVE-and Ena/VASP-family proteins have been reported to regulate the actin 

cytoskeleton as downstream effectors of the Rho-family small GTPases, Rac1 and Cdc42 

(Aspenstrom et. al., 1996; Kolluri et. al., 1996; Miki et. al., 1998; Symons et. al., 1996). 

These proteins have common binding sites for actin, profilin and Arp2/3 complex (Egile 

et. al., 1999; Machesky and Insall, 1998, Machesky et. al., 1999; Miki et. al., 1996; Miki 

et. al., 1998; Rohatgi et. al., 1999; Suetsugu et. al., 1998), but have unique amino acid 

sequences around their N-terminus. The C-terminal acidic domain of WASP family 

proteins stimulates the actin filament nucleation activity of Arp2/3 complex (Machesky 

and Insall, 1998; Rohatgi et. al., 1999). Like N-WASP, WAVE1-3 are ubiquitiously 

expressed in mammalian organs (Miki et. al., 1996; 1998b). Studies have shown that 

WAVE1 is localized to the lamellipodium edge whereas WAVE2 has been shown to 

localized to filopodia tips with IRSp53 (Nakagawa et. al., 2001). KO studies on WAVE1 

and WAVE2 have suggested that they are responsible for different types of ruffling 

activity observed in cells  (Suetsugu et. al., 2003). Mena belongs to the family of 

Ena/VASP and has been shown to localize to the tip of lamellipodia and filopodia 

(Rottner et. al., 1999; Nakagawa et. al., 2001). To further understand the functions of 

WAVE1, WAVE2 and Mena as binding partners of IRSp53, I used RNAi technology, 

KO cells and time-lapse microscopy. 
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8.2.  Phenotype of WAVE1, WAVE 2 and Mena overexpression  in N1E115 cells. 

To analyze the phenotypic effect of WAVE1, WAVE2 and Mena I carried out 

overexpression studies in N1E115 cells. WAVE1 overexpression induced a phenotype 

that is relatively flat, with large lamellipodia and small protrusions (Figure 8.1). WAVE2 

overexpressing cells possessed multiple short protrusions resembling a potential neuronal 

phenotype. Overexpression of Mena induced a phenotype where the cells adopt a 

flattened morphology with short protrusions and many dynamic filopodia decorating the 

protrusions and cell body (Figure 8.1). Like IRSp53, WAVE1 and Mena induced 

lamellipodia/membrane ruffling and increases filopodia formation (Figure 8.2B and C). 

WAVE2 only affected filopodia formation (Figure 8.2 B and C, lane 4).  Mena but not 

WAVE1 and WAVE2 induced neurites (Figure 8.2D). 

 

8.3. Localization of WAVE1 and WAVE2 with IRSp53 overexpression in N1E115 

cells. 

Both WAVE1 and WAVE2 proteins contain a proline rich region and are thus capable of 

binding to SH3 domain containing proteins such as IRSp53 (Miki et. al., 2000). IRSp53 

phenotype in N1E115 cells is described in Chapter 3. In addition to filopodia, IRSp53 

induced membrane ruffling and lamellipodia formation perhaps through interaction with 

WAVE1 and WAVE2. To examine IRSp53, WAVE1 and WAVE2  interactions in more 

detail, I carried out immunostaining studies to look at the distribution of the endogenous 

WAVE1 and WAVE2 in N1E115 cells overexpressing IRSp53. 
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Figure 8.1 Phenotypes of WAVE1, WAVE2 and Mena overexpression in N1E115 
cells. 
 
N1E115 cells were transfected with A (a) GFP-WAVE1 and (b) GFP-WAVE2 and (c) 
GFP-Mena. Cells were then left for between 16-24 hours for cDNA expression. GFP 
positive cells were imaged using DIC time-lapse-microscopy as described in the Material 
and Methods section. (B, C and D) Statistical analysis was carried out on experiments 
illustrated in a-c. Cells were scored for the number of filopodia per cell, % 
lamellipodia/membrane ruffle per cell and neurites (refer to section 2.2.6 in Materials and 
Methods). 
(Bar = 10 μm) 
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Figure 8.1 
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WAVE1 was observed to be distributed throughout the cell body and along the neurites. 

But most strikingly, WAVE1 is highly concentrated along the edges of extending 

lamellipodia (Figure 8.2). WAVE2 was observed to be highly concentrated in the cell 

body and  distributed along the length of neurites.  It also appears to be localized to tips 

of some filopodia (Figure 8.2C and D).  

 

8.4. Effect of WAVE1 and WAVE 2 knockdown on IRSp53 phenotype in N1E115 

cells. 

In order to examine the functional consequences of the IRSp53-WAVE1/2 interaction, I 

employed the use of RNAi. WAVE1 and WAVE2 RNAi were delivered into N1E115 

cells by co-transfection with IRSp53 and GFP-actin cDNA as described in the Materials 

and Methods section. Knock down was assessed by intensity of WAVE1 and WAVE2 

staining in GFP-actin positive cells (Figure 8.3). In WAVE1 knockdown cells, IRSp53 

induced a phenotype of branching neurites with filopodia seen along the length of the 

neurite. However, no ruffling or lamellipodia were observed (Figure 8.4). In WAVE2 

knockdown cells, IRSp53 did not induce neurite formation. In place were short stumps or 

extensions. Ruffling, lamellipodia and filopodia formation do not seem to be affected by 

WAVE2 knockdown (Figure 8.4). As a control, a scramble RNAi transfection was also 

carried out. Normal IRSp53 phenotypes were observed in these cells, confirming that the 

distinct phenotypes observed with the WAVE1/2 RNAi knockdown were specific (Figure 

8.4). 
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Figure 8.2 Localization of WAVE1 and WAVE2 in IRSp53 overexpression N1E115 
cells. 
 
Cells were transfected with HA-IRSp53 and GFP-actin, and were then fixed and stained 
with (A) anti-WAVE1 and (B) anti-WAVE2 antibodies See Materials and methods for 
details. (C, D) Areas of the cells enlarged to allow localization of WAVE1 and WAVE to 
be determined. C (a-c, d-f) WAVE1 localization in the lamellipodia and (g-i) filopodia. 
D(a-c) WAVE2 localization in the lamellipodia and (d-f, g-i) in filopodia. 
(Bar = 10 μm) 
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Figure 8.3 Effect of WAVE1 and WAVE2 RNAi treatment on IRSp53 induced 
morphology.  
 
Cells were transfected with HA-IRSp53 and GFP-actin and (a,b,c) WAVE RNAi or (d,e,f) 
WAVE2 RNAi. (a,d) WAVE1/2 expression. (b,e) GFP-actin expression and (c, f) Merge. 
Cells were left for between 20-24 hours for RNAi/cDNA expression  and were then fixed 
and stained with (a,b,c) anti-WAVE1 and (d,e,f) anti-WAVE2. 
(Bar = 10 μm) 
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Figure 8.3 
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Figure 8.4  Effect of WAVE1 and WAVE2 knockdown on IRSp53 phenotype. 
 
N1E115 cells were transfected with HA-IRSp53 and GFP-actin and (a, a’) WAVE1 
RNAi, (b,b’) WAVE2 RNAi and (c,c’) scramble RNAi. (A) GFP-actin and (B) DIC. 
Cells were then left for between 20-24 hours for RNAi/ cDNA expression. GFP-actin 
positive cells were imaged using fluorescence and DIC time-lapse-microscopy as 
described in the Materials and Methods section. (C, D and E) Statistical analysis was 
carried out on experiments illustrated in a-c. Cells were scored for the number of 
filopodia per cell, % lamellipodia/membrane ruffle per cell and neurites (refer to section 
2.2.6 in Materials and Methods). 
(Bar = 10 μm) 
 
(Movie 8.4.1. N1E115 transfected with IRSp53 and WAVE1 RNAi).  
(Movie 8.4.2. N1E115 transfected with IRSp53 and WAVE2 RNAi). 
(Movie 8.4.3. N1E115 transfected with IRSp53 and scramble RNAi).  
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8.5. IRSp53 Phenotype in Mena KO cells. 

The IRSp53-Mena complex has been shown to represent one pathway by which IRSp53 

induced filopodia can be derived (Krugmann et. al., 2001). I have shown that IRSp53 

induced filopodia requires N-WASP. To determine if Mena too is required for IRSp53 

function, I employed the use of Mena control precursor (WT) and Mena knock-out (KO) 

cells (for details of Mena WT and KO cells see Materials and Methods).  

 

I compared the effect of IRSp53 cDNA microinjection on the morphology of the Mena 

WT and KO cells. GFP-actin cDNA was included in the microinjection to identity 

expressing cells and to facilitate the imaging of actin dynamics (Figure 8.5). When cells 

were injected with GFP-actin cDNA alone, there were no morphological differences 

between the WT and KO cells . IRSp53 induced strong filopodia formation in Mena WT 

and causes the formation of neurite-like extensions (Figure 8.5C and D). However, 

membrane ruffling formation was strongly stimulated when IRSp53 was overexpressed in 

Mena KO cells (Figure 8.5D). These results are very similar to those observed in N-

WASP WT and KO cell lines and suggest that Mena, together with N-WASP are 

essential for the IRSp53 induced filopodia formation.  
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Figure 8.5 IRSp53 phenotypes in Mena WT and KO cells. 
 
(A) Mena WT and (B) Mena KO cells were microinjected with IRSp53 and GFP-actin 
cDNA. Cells were left for between 1-6 hours for cDNA expression. Positive cells were 
imaged using fluorescence and DIC time-lapse-microscopy as described in the Material 
and Methods section. Images showing time-lapse experiments of GFP-actin/IRSp53 
microinjection in WT cells (A) and Mena KO cells (B). (C and D) Statistical analysis was 
carried out on experiments illustrated in A and B. Cells were scored for the number of 
filopodia per cell and % lamellipodia/membrane ruffle per cell (refer to section 2.2.6 in 
Materials and Methods). 
(Bar = 10 μm) 
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 Mena WT 
 
A Mena KO B
 
 
 
 
 
 
 
 
 
 
 
 

c a 

G
FP

-a
ct

in
 

 
 
 
 
 
 
 
 
 
 
 
 

b 

D
IC

 

d 

 IRSp53 and GFP-actin  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 8.5 
 
 

0

10

20

30

40

50

60

N-WASP WT N-WASPKO Mena WT Mena KO

F
ilo

po
di

a
 p

e
r 

c
e
ll

 

C 

 

0

10

20

30

40

50

60

70

80

N-WASP WT N-WASPKO Mena WT Mena KO

%
 L

am
e
lli

po
di

a/
M

e
m

br
an

e
 r

u
ff
le

 p
e
r 

c
e
ll

 

D 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9. DISCUSSION 

9. 1. Are all protrusive structures filopodia? 

F-actin based filopodia are well conserved morphological structure at the periphery of 

mammalian cells. In particular, neurons have prominent filopodia in their growth cones 

and these structures are thought to help axons find their targets (Chien et. al., 1993). 

Filopodia are constructed from parallel bundles of F-actin that lie perpendicular to the 

cell periphery. Mammalian cells form a number of structures that resemble filopodia. For 

example, retraction fibres protrude from the cell periphery and have similar overall 

dimensions to filopodia. Howerver, retraction fibres are tapered while filopodia have 

uniform thickness along their length. The length of filopodia varies between 6-15 μM in 

mammalian cells. Retraction fibres are static structures while filopodia are highly 

dynamic and are characterized by a half-life of approximately 120-170 secs. To 

distinguish filopodia from other cell protrusions it is essential to compare physical 

characteristics and to use time-lapse analysis.  

 

9.2. Cdc42 effectors in filopodia formation and Rac1 activation. 

The observation that Cdc42 plays a major role in the formation of filopodia and Rac1-

dependent lamellipodia/membrane ruffles (as a secondary event) has opened avenues to 

study mechanisms of cell migration and growth cone guidance (Kozma et. al., 1995; 

Nobes and Hall, 1995). Cdc42 binds to a number of effectors, including the kinases, PAK, 

ACK and MRCK, and the adaptor proteins, IQGAP, PAR6, N-WASP and IRSp53 (see 

Bishop and Hall, 2000, for list of effectors). Of these effectors there is strong evidence 
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for involvement in filopodia formation only for the latter two (Miki et. al., 1998; Govind 

et. al., 2001 and Krugmann et. al., 2001). 

 

9. 3. IRSp53 phenotype in N1E115 cells.  

Since the identification IRSp53 was initially reported, its specific function has been 

debated. In the present study I used a time-lapse analysis with GFP-actin and tdRed-

IRSp53 overexpression to study IRSp53 function. N1E115 transfected cells developed 

complex and branched neurites comprising of multiple filopodia, lamellipodia and 

membrane ruffles. These phenotypes were not seen in untransfected cells or cells 

transfected with a range of other Cdc42 effectors such as ACK, PAK or MRCK (Sarner 

et. al., 2000; Ahmed, S., unpublished data). Two typical phenotypes of IRSp53 

overexpressing cells were either large lamellipodia with prominent ribs or cells with 

branched neurites decorated with areas of membrane ruffling, lamellipodia and filopodia. 

With N1E115 cells membrane ruffling was not a prominent phenotype of IRSp53 

overexpression. IRSp53 localizes most significantly with F-actin to the ribs of 

lamellipodia-like protrusions and filopodia. IRSp53 is poorly localized to membrane 

ruffles.  

 

9. 4. IRSp53 SH3 domain function. 

The SH3 domain of IRSp53 is clearly important in the morphological activities of this 

molecule. Using mutants of the SH3 domain (W/R and FP/AA mutants) that were unable 

to bind to its ligands, I was able to show that the SH3 domain of IRSp53 is important for 

induction of neurite complexity (which includes filopodia and lamellipodia formation). 
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The double point SH3 domain mutant of IRSp53-FP/AA, which was null for filopodia 

formation, was nevertheless able to induce neurites and some lamellipodia suggesting 

that the SH3 domain is not essential for these morphological activities. The binding of 

Tiam1 to IRSp53 near its partial CRIB motif may explain the phenotypes obtained with 

SH3 domain mutants.  

 

Yamagishi et. al., (2004) and Millard et. al., (2005) have suggested that the SH3 domain 

is not essential for filopodia formation and that the N-terminal IMD domain is sufficient. 

Since time-lapse analysis was not documented in these studies it is difficult to interpret 

the data presented.  I believe the SH3 domain-independent structures described in these 

studies are not filopodia. However, the data presented do suggest that IRSp53 through the 

IMD domain is capable of generating protrusions (see below for further discussion on the 

IRSp53 IMD).  

 

To search for SH3 domain binding proteins, Mass Spectrometry analysis using the 

IRSp53 SH3 domain as a bait was carried out and a number of candidate proteins were 

isolated. These include p140-Sra-1, KIAA1681, mDia1, CR-16, Abi1 and N-WASP (for 

complete analysis, see Results Chapter 4.2) The analysis suggested that N-WASP can 

bind the SH3 domain of IRSp53 and this was confirmed in both pull-down experiments, 

yeast two-hybrid analysis and AP-FRET in vivo. For the first time I show N-WASP and 

IRSp53 interact in filopodia and filopodial tips. Thus N-WASP is a not only a bona fide 

target for IRSp53 in vivo but also in the right place. These results reveal the additional 
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insights obtained from AP-FRET versus more traditional immuno-precipitation 

experiments. 

 

9. 5. IRSp53 phenotypes in N-WASP KO cells 

Mutations in the Cdc42 binding site (Govind et. al., 2001) and the SH3 domain 

(Krugmann et. al., 2001; present study) significantly affect the ability of IRSp53 to 

induce filopodia formation. I have identified N-WASP as a candidate IRSp53 SH3 

domain binding partner. Taken together, these results suggest that the Cdc42-IRSp53-N-

WASP complex is important for filopodia formation. To investigate the role of the 

Cdc42-IRSp53-N-WASP interaction I employed the use of N-WASP KO fibroblasts. 

Overexpression of IRSp53 in control fibroblasts N-WASP WT induced strong filopodia 

formation. However, in N-WASP KO cells overexpression of IRSp53 induced strong 

membrane ruffling and filopodia were not observed.  The possibility that the membrane 

ruffling was masking filopodia formation in KO fibroblasts was addressed by using 

IRSp53 in combination with Rac1N17. In N-WASP WT cells the IRSp53 filopodia 

response was enhanced by using Rac1N17, however, in KO cells filopodia were still not 

observed.   

 

To determine if N-WASP KO cells were capable of generating filopodia I carried out 

reconstitution experiments. N-WASP cDNA was included with IRSp53 in the 

injection/transfection of N-WASP KO cells and filopodia formation was observed. To 

extend this analysis I carried out the reconstitution with the mutant, N-WASPΔWA, 

which is unable to bind the Arp2/3 complex. N-WASPΔWA was fully competent to 
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reconstitute filopodia formation. The filopodia generated by N-WASPΔWA were similar 

to those generated by N-WASP apart from the rates of disassembly. The slower the 

disassembly rates seen with N-WASPΔWA may be caused by changes in actin 

depolymerization. Further work examining actin polymerization rates will be required to 

resolve this issue. These results suggest that the role of N-WASP in IRSp53 mediated 

filopodia formation is not to recruit the Arp2/3 complex but perhaps other interacting N-

WASP proteins are important, e.g. the N-WASP interacting protein, WIP (Ho et. al., 

2001).  To address this latter point I used WAVE1 and WAVE1ΔWA in reconstitution 

experiments and found that both allowed IRSp53 to induce filopodia in N-WASP KO 

cells. In addition, I found that the IRSp53 mutant FP/AA could not substitute for IRSp53 

in the reconstitution experiments. I conclude that N-WASP interaction with the SH3 

domain of IRSp53 is essential for filopodia formation. Further, the role of N-WASP is 

not to activate the Arp2/3 complex or recruit other interacting proteins. Rather it is to 

bind to the IRSp53 SH3 domain and perhaps facilitate an “open conformation” (see 

Model, Figure 9.2). 

 

9.6. The role of IRSp53 IMD in filopodia formation. 

Recent work by Scita’s group (Disanza et. al., 2006) has proposed a model for  IRSp53 

mediated filopodia formation. They suggest that Eps8 binding to IRSp53 reveals the IMD 

domain and activates F-actin bundling while Cdc42 recruits the IRSp53-Eps8 complex to 

the membrane. Interestingly, Eps8 alone was found to have F-actin bundling activity. 

Like the previous two studies on IRSp53 F-actin bundling activity (Yamagishi et. al., 

2004; Millard et. al., 2005), Disanza et. al., (2006) failed to show any in vivo time-lapse 
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experiments on filopodia formation making it difficult to interpret these studies. Further, 

the amounts of IRSp53 needed to bundle F-actin are approximately 50-fold higher than 

well-established F-actin bundling proteins such as Fascin. Under physiological conditions 

it is unlikely that cellular contrations of IRSp53 will reach the levels required for F-actin 

bundling.    

 

I overexpressed the GFP-actin and the IMD domain in cells and monitored morphological 

activity by timelapse microscopy. Interestingly,  a variety of protrusive structures were 

seen. Firstly, protrusive structures containing actin similar to that already reported     

(Yamagishi et. al., 2004; Millard et. al., 2005) were observed. However, these were static. 

Secondly, IMD also induced protrusive structures that are either dynamic or static but 

lacked actin. The IMD induced structures lacking actin were thinner and shorter than 

filopodia. The IMD-4K mutant, which has reduced efficiency in F-actin binding and 

bundling, only induced dynamic structures lacking actin. Thus the IMD has at least two 

activities, it is able to cause membrane protrusion (4K mutant) and can link to F-actin 

changes. I conclude that IMD generates “partial filopodia” but is not capable of 

generating complete filopodia. 

 

Unlike IRSp53, IMD was not sensitive to the presence of N-WASP. Similar protrusive 

structures were generated by the IMD in both N-WASP WT and KO cells. This is not 

unexpected since I have already shown that IRSp53 SH3 domain is essential for its 

interaction with N-WASP.    
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9.7. Cdc42 does not induce filopodia in N-WASP KO cells. 

The original study on N-WASP KO cells investigating the ability of Cdc42 to generate 

filopodia concluded that N-WASP was not required (Lommel, et.al., 2001). However, 

Cdc42 alone was not used in this work. DIC time-lapse experiments were carried out 

after microinjection of Cdc42L61 protein with Rac1N17 protein and C3 toxin. I repeated 

these experiments but the combination of Cdc42V12/Rac1N17/C3 caused cell retraction, 

blebbing and death. To address the issue of whether Cdc42 could induce filopodia in N-

WASP KO cells I compared Cdc42V12 and Cdc42V12/Rac1N17 transfections. Using 

Cdc42V12 alone in either N-WASP WT or KO cells generate membrane ruffling and 

lamellipodia formation with few visible filopodia. However, with the 

Cdc42V12/Rac1N17 combination filopodia could be clearly seen in N-WASP WT but 

not in N-WASP KO  cells, while membrane ruffling/lamellipodia formation was reduced 

significantly in both cell types.  

 

To confirm that N-WASP KO cells were capable of generating filopodia I reconstituted 

the cells with N-WASP cDNA and found that Cdc42V12/Rac1N17 was able to induce 

filopodia formation in these cells. I conclude that N-WASP is essential for Cdc42 

induced filopodia formation. One possible explanation for the results reported by 

Lommel et. al., 2001, is that C3 toxin, a RhoA inhibitor, may induce dissociation of a 

RhoA-mDia2 complex making mDia2 available for Cdc42. The Cdc42-mDia2 may be 

sufficient to drive filopodia formation in N-WASP KO cells. Peng et. al. (2003) has 

shown that depletion of Drf3 (mDia2) could interfere with and block Cdc42 induced 

filopodia. Drf3 was also reported to contain a previously unidentified CRIB-like motif 
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within its GTPase binding domain (GBD). This motif was shown by FRET analysis to be 

required for Cdc42 binding and Drf3 recruitment to the leading edge. These results 

suggested that Cdc42-mDia2 is another candidate pathway leading to filopodia formation.  

 

9. 8. Relationship between IRSp53 and WAVE1, WAVE2 and Mena. 

IRSp53 binding partners include WAVE1, WAVE2 and Mena. What role, if any, do 

these proteins play in the IRSp53 phenotype? To address this question I overexpressed 

these proteins in N1E115 cells and followed changes in morphology by time-lapse 

microscopy. WAVE1 overexpression induced a phenotype that is relatively flat and with 

large lamellipodia protrusions and small extensions while cells overexpressing WAVE2 

adopt a neuronal phenotype, with multiple short extensions. Mena, WAVE1 and WAVE2 

induced a significant number of filopodia. Mena and WAVE1 induce 

lamellipodia/membrane ruffling but not WAVE2.. WAVE1 and WAVE2 did not induce 

neuritis while Mena did. 

 

Next I used IRSp53 overexpression in combination with RNAi for WAVE1 and WAVE2 

and Mena KO cells to determine whether these proteins were required for the IRSp53 

phenotype. The RNAi was able to reduce expression of WAVE1/2 protein at the single 

cell level as seen by reduced in situ staining. I selected cells that had the greatest 

reduction in WAVE1/2 expression and examined their phenotype. Neither RNAi affected 

IRSp53 induced filopodia formation. However, the WAVE1 RNAi affected 

lamellipodia/membrane ruffling while WAVE2 RNAi affected neurite formation. 
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9. 9. Relationship between IRSp53 and Mena. 

IRSp53 failed to induce filopodia in Mena KO cells. This result extends data initially 

presented by Krugmann, et. al. 2001, identifying Mena as an IRSp53 binding partner and 

a protein that synergizes with IRSp53-mediated filopodia formation.  

 

9. 10. Is IRSp53 a Cdc42 or Rac1 effector? 

Takenawa’s group initially reported that IRSp53 is a Rac1 binding protein and an 

essential mediator of membrane ruffling via WAVE2 (Miki et. al, 2000). In a follow-up 

paper it is suggested that Rac1 binding to the N-terminus of IRSp53 (RCB domain, 1-226) 

is stimulated by unfolding of the protein and WAVE2 interaction (Miki and Takenawa, 

2002).  Attempts to confirm direct Rac1 binding to N-terminus of IRSp53 have been 

unsuccessful (Govind, S., and Ahmed, S., unpublished data). Similarly, other studies 

have failed to show direct Rac1 interaction with IRSp53 (Krugmann et. al., 2001; Soltau 

et. al., 2002).  The reason for this discrepancy is unclear. 

 

Nevertheless, it is possible that IRSp53 may bind Rac1 indirectly through SH3 domain 

interactions with the WAVE1/2 complexes or the Rac1 exchange factor Eps8 (Funato et. 

al., 2004). Most recently, Connolly et. al., 2005, has found that IRSp53 interacts directly 

with the Rac1 exchange factor Tiam1 via a region near the partial CRIB motif. Two other 

Cdc42 effectors are also linked to Rac1 exchange factors: PAK binds to PIX (Obermeir et. 

al., 1998) and PAR6 binds to Tiam1 (Chen et. al., 2005; Nishimura et. al; 2005). In both 

cases lamellipodia/membrane ruffling is stimulated by the interaction. 
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IRSp53 point mutants of the partial CRIB motif lack Cdc42-binding activity and are not 

able to induce neurites and associated morphologies in N1E115 cells (Govind et. al., 

2001). This result strongly supports the idea that IRSp53 is primarily a Cdc42 effector. 

 

9.11. The relation between IMD and BAR domains. 

The BAR domain was first identified in vertebrate Bin1 and Amphiphysins and in the S. 

cerevisiae Rvs proteins (Sakamuro et. al., 1996) due to its common occurance. The BAR 

domain is highly conserved across species and evolution. The family has since expanded 

to include many other BAR-containing proteins, such as endophilins and sorting nexins, 

proteins that are mostly involved in membrane binding or remodeling events (Peter et. al., 

2004).  

 

The structures of BAR domains in Drosophila Amphiphysin, human Arfaptin2, and 

murine Endophilin have been published. These structural studies have revealed that the 

BAR domain adopts a banana-shaped α-helical dimer that functions to sense highly 

curved membranes (Gallop et. al., 2006; Masuda et. al., 2006; Weissenhorn et. al., 2006; 

Peter et. al., 2004). The banana shape of the BAR domain favors curved membranes with 

an outer radius of 11-15 nm and primarily uses electrostatic forces to bind negatively 

charged lipids, such as phosphatidyl serine (PS) or PIP2.  

 

BAR domains can also induce lipids to form tubules (tubulate) in vitro and in vivo (Itoh 

et. al., 2005). BAR domains form higher order structures and are capable of polymerizing 

to give rise to long filamentous structures in vitro (Itoh et. al., 2005).  
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Most recently, the structure of IMD has been solved and was shown to share striking 

similarities to the BAR domain (Millard et. al., 2005).  IMD was found to share the same 

turns and folds seen in BAR proteins (Figure 9.1). Interestingly, the IMD structure differs 

only in the shape; instead of the typical banana-shaped BAR domain, the IMD domain is 

almost straight. This has led to the suggestion that the IMD domain is able to drive 

membrane protrusion rather than membrane invagination. This implication of IMD 

having the potential to play a role in membrane deformation is supported with my 

observations that IMD induces “partial filopodia”. The IMD/BAR domains are likely to 

provide an important link between membrane deformation and the actin cytoskeleton. 
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Figure 9.1 Comparison of the IMD with known structures of different BAR domains.  
 
Ribbon representation of the different BAR domains of known structures. (A-B) BAR 
domains (Drosophila Amphiphysin and Arfaptin) consists of a central 6-helix bundle 
(blue), flanked by a 3-helix bundle (orange-red) and a 2-helix coiled-coil at the periphery 
(yellow). (C) IRSp53 IMD domain contains the exact folds and turns, except that it 
contains an extra helix (green). The BAR domains adopts the typical banana-shaped 
conformation whereas IMD has a straight structure, with not much curvature. (D) 
Bin1BAR (blue) superimposed with the IMD domain of IRSp53 (green). The numbers i-
iii correspond to the side, concave and convex views of the dimer, respectively. Number 
iv corresponds to the superposed images of the protomers alone. 
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9.12. Conclusion 

A Proposed Model. 

In this study I have demonstrated that IRSp53 and N-WASP interact directly. Taken 

together with observations made previously (Govind et al, 2001) and by other groups 

(Krugmann et. al., 2001; Miki et. al., 2000; Funato et. al., 2004; Connolly et. al., 2005), a 

mechanism of IRSp53 induced filopodia formation emerges (Figure 9.2).  

 

IMD. 

The simplest morphological activity generated by IRSp53 was by the mutant IMD-4K. 

This mutant domain induced membrane protrusion without actin involvement. Strikingly, 

the size and dynamics of the protrusions generated by IMD-4K resembled filopodia. The 

wild-type IMD generated in addition a static protrusion, with aberrant morphology, that 

contained F-actin. FRET analysis showed that IRSp53 interacted directly with F-actin but 

the IMD domain did not. The relationship between IMD and F-actin is unclear. When the 

IMD-4K mutation was inserted into full length IRSp53 it was no longer able to induce 

filopodia, suggesting that this region of IRSp53 is important for filopodia formation.  

 

Cdc42. 

Activated Cdc42 binds IRSp53 and N-WASP through their CRIB motifs, localizing these 

proteins to the plasma membrane, and revealing the SH3 domain and polyproline 

sequence, respectively, which in turn leads to IRSp53 binding to N-WASP. The Cdc42-

IRSp53-N-WASP-Cdc42 complex initiates filopodia formation first as both IRSp53 and 

N-WASP are Cdc42 binding proteins. Subsequently, IRSp53 recruits Mena (and other 
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interacting proteins) which may help influence the dynamics of filopodia formation. Next, 

IRSp53 recruits WAVE2 (and WAVE1) or Eps8 and simultaneously Tiam1. The co-

ordination of recruitment of proteins by IRSp53 involved in filopodia formation and 

lamellipodia formation/membrane ruffling ensures the continuous cycling of these 

structures in particular locations.  

 

SH3 domain. 

Filopodia formation requires full length IRSp53. I suggest that the SH3 domain works in 

concert with the IMD domain by providing the dynamic actin components of filopodia 

through proteins such as N-WASP and Mena. The exact molecular mechanism by which 

the IRSp53 SH3 domain binding partners control actin dynamics requires further work. 

Nevertheless, I think it reasonable to suggest that Mena may contribute to the filament 

anti-capping activity, thereby stimulating actin polymerization, while N-WASP may 

sequester free actin through its WA domain, and influence depolymerization. Results 

obtained from the RNAi study supports the idea that WAVE1 and WAVE2 interaction 

with SH3 is not required for the filopodial activity of IRSp53. Eps8 that binds to IRSp53 

SH3 domain may also contribute to the filopodia activity through its F-actin bundling 

activity (Disanza et. al., 2006). 
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Figure 9.2 Proposed model of filopodia formation through IRSp53. 
 
IRSp53 exist in a closed conformation. N-WASP/Cdc42 binding to IRSp53 allows it to 
open up at a location determined by Cdc42. SH3 binding proteins, such as N-WASP, 
Mena, Eps8 and  mDia2, along with the IMD/BAR domain allow filopodia formation. 
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Figure 9.2 
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Apendix II.  IRSp53 Variants 
 
IRSp53 GenBank Resource 
 
IRSp53 (BAIAP2) 
 

Organism Accession # g.I 
Bos taurus BT020639 59857642 
  BC111352 83405333 
Cricetinae gen. sp. U41899 1203819 
Homo sapiens AB015019 4126474 
  AB015020 4126476 
  AB017119 4239981 
  AB017120 4239983 
  AB104726 28804792 
  AK222670 62896898 
  BC014020 33878456 
  BC032559 21619131 
Macaca fascicularis AB169737 67970951 
Mus musculus AB105196 28971723 
Mus musculus AF390178 14573640 
  AF390179 15029333 
  AK004918 26338407 
  AK049469 26340201 
  AK143783 74150867 
  AK145924 74219242 
  AK160401 74137430 
  BC006620 13879291 
  BC048937 29124482 
  BC015459 15930030 
  BC016411 16741114 
Rattus norvegicus AY037934 14906126 
  BC074009 49258139 
  BC089216 58402628 
  BC105815 BC105815 
Danio rerio AY398378 37681866 
  BC050238 29571120 
  BC068330 46249678 
  BC092786 62204322 
  BX571946 53748640 
  BX571961 42517007 
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Appendix III. Filopodia Characterization 
 

Characteristics 
 

Cdc42 
V12/Rac1N17 

 
IRSp53 

 

 
N-WASP  

 
TOCA -1 

Contains F-actin Yes Yes Yes Yes 
average length (mm) 8.37+ 1.5 6.83 + 1.97 7.35 + 0.97 8.12 + 1.3 
minimum length (mm) 6.57 4.43 6.34 6.3 
maximum length (mm) 10.24 10.22 9.14 10.21 
average thickness (mm) 1.27+ 0.28 1.26 + 0.12 1.27+ 0.19 1.19 + 0.14 
average life time (s) 157 + 30 187 + 38 154 + 20.7 163 + 21.4 
minimum life time (s) 130 130 130 130 
maximum life time (s) 210 240 180 190 
 
Characterization of Filopodia dynamics 
Cdc42V12/Rac1N17, IRSp53, N-WASP and Toca-1 induced filopodia were 
characterized for dynamics, as per described in Table 6.1. All measurements are 
presented as average + SD.  
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